
DOK- 1

Modicon 984
Programmable
Controller
Systems Manual
GM--0984--SYS Rev. B

May, 1991

MODICON, Inc., Industrial Automation Systems
One High Street
North Andover, Massachusetts 01845

DOK-2

GM--0984--SYS Table of Contents v

Table of Contents

Chapter 1 The 984 Programmable Controllers 1.

Modicon’s Family of Programmable Controllers 2. .
The 984 Family 2. .
Controller Compatibility 3. .

984 Controller Performance and Capacity Characteristics 4.
How a 984 System Provides Application Control 6. .
The 984 Control Architecture: An Overview 6. .
Reliability and Maintainability 7. .

P190-Style Panel Software Support 8. .
Standard Panel Software Editors 8. .
Special Loadable Software 9. .

MODSOFT Panel Software Support 10. .
Sequential Function Charts 10. .
MODSOFT Macros 11. .
MODSOFT Operating Modes 11. .

Overview of the 984 Instruction Set 12. .

Chapter 2 Optional and Peripheral Control Devices 15. . .

Programming Panels 16. .
The P230 16. .
The P190 Panels 17. .
Using Industry-standard PCs as Programming Panels 17.

The P965 Data Access Panel 18. .
Physical Design 18. .
How the P965 Can Be Used 19. .

The Hot Standby Option Modules 20. .
How a Hot Standby System Functions 20. .
Controller Compatibilities 20. .

The Coprocessing Option Modules 22. .
The C986 Copro for Chassis Mount 984s 22. .
The C996 Copros for Slot Mount 984s 23. .

Enhancing Your Processing Environment with a Copro 24.
Application Mode 24. .
Immediate DX Processing 24. .
Deferred DX Processing 25. .

Optional Communication Modules 26. .

GM--0984--SYSTable of Contentsvi

Modbus Modems 26. .
Modbus II Modules 26. .
The Modbus Plus Options 27. .
The Distributed Communications Option 27. .

Chapter 3 984 I/O Subsystems 29. .

I/O Subsystems 30. .
Input and Output Modules 30. .
I/O Module Types 30. .
Local and Remote I/O 31. .

Local I/O 32. .
Remote I/O 33. .
Remote I/O Drop Interfaces 33. .

ASCII Communication at the Remote I/O Drops 34. .
RIO Interfaces that Support ASCII Communication 34.
ASCII Device Programming 34. .
The ASCII Operator Keypad 35. .

Overview of I/O Support for 984 Controllers 36. .
800 Series I/O Modules 37. .
800 Series Discrete Input Modules 37. .
800 Series Discrete Output Modules 37. .
800 Series Analog Input Modules 38. .
800 Series Analog Output Modules 38. .
800 Series Special Purpose I/O Modules 39. .
800 Series Intelligent I/O Modules 40. .
800 Series MMI Operator Panels 40. .

Power Supplies for Local and Remote 800 Series I/O Drops 41.
200 Series I/O Modules 42. .
200 Series Discrete Input Modules 42. .
200 Series Discrete Output Modules 42. .
200 Series Analog Input Modules 43. .
200 Series Analog Output Modules 43. .
200 Series Special Purpose I/O Modules 43. .

500 Series I/O Modules 44. .
500 Series Discrete Input Modules 44. .
500 Series Discrete Output Modules 44. .
500 Series Special Purpose I/O Modules 45. .

A120 Series I/O Modules 46. .
A120 Discrete Input Modules 46. .
A120 Discrete Output Modules 46. .
A120 Combo Modules 46. .
A120 Analog Input Modules 47. .
A120 Analog Output Module 47. .

GM--0984--SYS Table of Contents vii

A120 Special Purpose Module 47. .
300 Series I/O Modules 48. .
300 Series Discrete Input Modules 48. .
300 Series Discrete Output Modules 48. .
300 Series Analog I/O Modules 49. .
300 Series BCD Register I/O Modules 49. .

Chapter 4 984 Communications Capabilities 51.

Modbus Capabilities 52. .
The Modbus Port Parameters 52. .

Modbus Port Pinouts for the P230 Programming Panel 54.
Modbus Port Pinouts for the P190 Programming Panel 55.
Modbus Port Pinouts for an IBM-XT 56. .
Modbus Port Pinouts for a Modicon Comm Modem 57.
A Modbus Network 58. .
Network Capacity 58. .
Communication Media 58. .
Communication Parameters 58. .

A Modbus Plus Network 60. .
Network Capacity 60. .
The Logical Network 61. .
The Physical Network 61. .
Adding and Deleting Nodes from the Network 61. .

Joining Modbus Plus Networks 62. .
A Modbus II Network 64. .
Modbus II Software 64. .

Distributed Control Processing 66. .
Distributed Control Applications 67. .

Network Topology Overview 68. .

Chapter 5 984 Memory Allocation 71.

User Memory 72. .
System Overhead 72. .
User Logic 73. .
User Memory Storage 73. .

State RAM Values 74. .
A Referencing System for Inputs and Outputs 74. .
How Discrete and Register Data Are Stored in State RAM 75.

State RAM Structure 76. .
The Required Minimum State RAM Values 77. .

GM--0984--SYSTable of Contentsviii

Storing History and Disable Bits for Discrete Values 77.
The Configuration Table 78. .
Assigning a Battery Coil 79. .
Assigning a Timer Register 79. .
The Time of Day Clock 79. .

The Traffic Cop Table 82. .
Determining the Size of the Traffic Cop Table 82. .
Writing Data to the Traffic Cop Table 82. .

Chapter 6 984 Opcode Assignments 83.

Translating Ladder Logic Elements in the System Memory Database 84. . . .
Translating Logic Elements and Non-DX Functions 84.

Translating DX Functions in the System Memory Database 86.
How the x and z Bits Are Used in 16 Bit Nodes 86. .
How the x and z Bits Are Used in 24 Bit Nodes 87. .
How the y Bits are Utilized for DX Functions 89. .

Opcode Assignments for Other Functions 90. .
How to Handle Opcode Conflicts 91. .

Extra Opcodes Available in 24 Bit CPUs 92. .

Chapter 7 Ladder Logic Overview 95.

The Structure of Ladder Logic 96. .
Ladder Logic Segments 96. .
Ladder Logic Networks 96. .

Ladder Logic Elements and Standard Instructions 98.
Additional Ladder Logic Instructions 100. .
DX MOVE and DX Matrix Functions 102. .
MOVE Functions 102. .
Matrix Functions 102. .

How Ladder Logic Is Solved 103. .
Scan Time 104. .
Logic Solve Time 104. .
I/O Servicing 104. .
Overhead 105. .

How to Measure Scan Time 106. .
Maximizing Throughput 108. .
The Ideal Throughput Situation 108. .

The Order of Solve 110. .
Using the Segment Scheduler to Improve Critical I/O Throughput 112.
Using the Segment Scheduler to Improve System Performance 114.

GM--0984--SYS Table of Contents ix

Using the Segment Scheduler to Improve Comm Port Servicing 115.
Sweep Functions 116. .
Constant Sweep 116. .
Single Sweep 117. .

Chapter 8 Contacts, Shorts, and Coils 119.

Relay Contacts 120. .
Vertical and Horizontal Shorts 122. .
An Either/Or Example 122. .

Normal and Latched Coils 124. .
Coils in a Logic Network 125. .
Enable/Disable Capabilities for Discrete Values 125.
Forcing Discretes ON and OFF 125. .

Chapter 9 Counters and Timers 127.

Up Counters and Down Counters 128. .
Three Kinds of Timers 130. .
A Real-Time Clock Example 132. .

Chapter 10 Standard Calculate Functions 133.

ADD 134. .
SUB 135. .
MUL 136. .
DIV 137. .
A DIV Example 138. .
A Fahrenheit-to-Centigrade Conversion Example 139.

Chapter 11 DX Move Functions 141. .

Moving Registers and Tables 142. .
Register-to-Table Move 142. .
Table-to-Register Move 144. .
Table-to-Table Move 146. .

Two Functions for Building a FIFO Queue 148. .
SRCH 150. .

GM--0984--SYSTable of Contentsx

A SRCH Example 151. .
BLKM 152. .
A Recipe Storage Example 153. .

Chapter 12 DX Matrix Functions 155.

Three Boolean Functions 156. .
Some Boolean Examples 158. .
COMP 160. .
A COMP Example 161. .

CMPR 162. .
A CMPR Example 163. .

Sensing and Modifying Bits in a Matrix 164. .
Rotating a Bit Pattern 166. .
How to Report Status Information 167. .
A Simple Table Averaging Example 168. .

Chapter 13 ASCII READ/WRITE Functions 169.

READ 170. .
WRIT 172. .
ASCII Message Handling 174. .
How the READ/WRIT Blocks Handle ASCII Messages 175.
ASCII Error Status 176. .

Chapter 14 Monitoring System Status 179.

The STAT Function 180. .
The S901 Status Table 181. .
Accessing S901 Status Data with a Programming Panel 182.
Accessing S901 Status Data with a P965 DAP 183. .
S901 Controller Status Words 184. .
S901 I/O Module Health Status Words 188. .
S901 RIO Communication Status Words 190. .
The S908 Status Table 191. .
Accessing S908 Status Data with a Programming Panel 192.
Accessing S908 Status Data with a P965 DAP 193. .
S908 Controller Status Words 194. .
S908 I/O Module Health Status Words 198. .
Converting from Word # to Drop and Rack 199. .

GM--0984--SYS Table of Contents xi

Converting from Drop and Rack to Word # 199. .
Status Words for the MMI Operator Panels 199. .

S908 I/O Communication Status Words 200. .
Converting a Word # to a Drop # or Word 203. .
Converting a Drop # or Word to a Word # 203. .

Chapter 15 Bypassing Networks with SKP 205.

SKP 206. .
A Simple SKP Example 207. .

Chapter 16 Extended Memory Capabilities 209.

Extended Memory File Structure 210. .
How Extended Memory Is Stored in User Memory 211.
Extended Memory Control Table 212. .
Format of the Extended Memory Status Word 213. .

Extended Memory Write Function 214. .
Extended Memory Read Function 215. .

Chapter 17 Modbus Plus Master Function 217.

MSTR Block Overview 218. .
MSTR Function Error Codes 220. .
Read and Write MSTR Functions 222. .
Control Block Utilization 222. .

Get Local Statistics MSTR Function 223. .
Control Block Utilization 223. .

Clear Local Statistics MSTR Function 224. .
Control Block Utilization 224. .

Write Global Data MSTR Function 225. .
Control Block Utilization 225. .

Read Global Data MSTR Function 226. .
Control Block Utilization 226. .

Get Remote Statistics MSTR Function 227. .
Control Block Utilization 227. .

Clear Remote Statistics MSTR Function 228. .
Control Block Utilization 228. .

Network Statistics 229. .

GM--0984--SYSTable of Contentsxii

Chapter 18 CKSM 233. .

CKSM 234. .

Chapter 19 Ladder Logic Subroutines 237.

Using Ladder Logic Subroutines 238. .
The Value of Subroutines 238. .
Where to Store Subroutines in Ladder Logic 238. .

JSR 239. .
LAB 240. .
RET 241. .
A Subroutine Example 242. .
Some Cautionary Notes About Subroutines 244. .

Chapter 20 984 Enhanced Instructions 245.

Moving Blocks to Tables and Tables to Blocks 246. .
Capabilities of the EMTH Block 247. .
Double Precision Math Functions 249. .
Integer Math Functions 252. .
Floating Point Arithmetic Functions 255. .
The IEEE Floating Point Standard 255. .
Dealing with Negative Floating Point Numbers 255.

A Closed Loop Control System 276. .
Set Point and Process Variable 276. .
Proportional Control 276. .
Proportional-Integral Control 277. .
Proportional-Integral-Derivative Control 277. .

The PID2 Algorithm 278. .
PID2 280. .
A Level Control Example 287. .
Ladder Logic for the PID2 Example 288. .

Chapter 21 984 Loadable Instructions 291.

Loadable Software Packages for 984 Controllers 292.
Loadable Support for Controller Option Modules 292.
Other 984 Loadable Functions 293. .

The 984 Hot Standby Loadable 294. .

GM--0984--SYS Table of Contents xiii

The HSBY Status Register 296. .
An HSBY Reverse Transfer Example 297. .
CALL Blocks for the 984 Coprocessors 298. .
MBUS and PEER 300. .
MBUS 300. .
PEER 302. .

The MBUS Get Statistics Function 304. .
Designing Custom Loadable Functions 306. .
Programming Considerations 307. .

Sequential Control Functions 308. .
DRUM 308. .
ICMP 310. .
Cascaded DRUM/ICMP Blocks 311. .

Extended Math Loadables 312. .
MATH 312. .
DMTH 313. .

2The EARS Loadable 317. .
984 Functions in an Event/Alarm Recording System 317.
Host↔Controller Interaction 317. .
The EARS Block 318. .

Index 321. .

GM--0984--SYS Preface iii

Preface

The data and illustrations found in this book are not binding. We reserve the
right to modify our products in line with our policy of continuous product
improvement. Information in this document is subject to change without notice
and should not be construed as a commitment by Modicon, Inc., Industrial
Automation Systems. Modicon, Inc. assumes no responsibility for any errors
that may appear in this document.

No part of this document may be reproduced in any form or by any means,
electronic or mechanical, without the express written permission of Modicon,
Inc., Industrial Automation Systems. All rights reserved.

The following are trademarks of Modicon, Inc.:

Modbus Modbus Plus Modbus II 984 984A
984B 984X 984-785 984-780 984-685
984-680 984-485 984-480 984-385 984-381
984-380 Micro-984 984-120 984-130 984-145
Compact 984 AT-984 MC-984 Q984 P190
P230 BP85 SM85 SA85

MODSOFT® is a registered trademark of Modicon, Inc.

IBM® is a registered trademark of International Business Machines Corporation.
IBM AT™, IBM XT™, Micro Channel™, Personal System/2™, and NetBIOS™ are
trademarks of International Business Machines Corporation.

Microsoft® and MS-DOS® are registered trademarks of Microsoft Corporation.

Copyright © 1991 by Modicon, Inc. All rights reserved.
Printed in U. S. A.

GM--0984--SYS The 984 Programmable Controllers 1

Chapter 1
The 984 Programmable
Controllers

Modicon’s Family of 984 Programmable Controllers

984 Controller Performance and Capacity Characteristics

How a 984 System Provides Application Control

P190-Style Panel Software Support

MODSOFT Panel Software Support

Overview of the 984 Instruction Set

GM--0984--SYSThe 984 Programmable Controllers2

1.1 Modicon’s Family of Programmable
Controllers

Modicon offers a wide range of compact, midsize, and high-performance CPUs
with its 984 family of programmable controllers. All 984 controllers, regardless of
their particular hardware implementation, use a common processing architecture;
they are all programmed with ladder logic, a powerful and graphical language that
emulates relay-equivalent symbology; and they share common instructions drawn
from a large set of calculation, data transfer (DX), matrix, and special-application
functions. Modicon also provides you with various networking strategies, allowing
you to interconnect multiple controllers—and other devices—for increased appli-
cation control and data exchange.

1.1.1 The 984 Family

984 controllers are available in four generic hardware classes:

Large, rugged, high-performance chassis mount controllers

Rugged, midrange-performance slot mount controllers, which reside in a
primary housing beside 800 Series I/O modules

Host-based controllers built on various industry-standard computer cards
designed to reside in and execute control logic from a host computer

Low-cost, easy-to-install compact controllers, for applications with less
demanding environmental and performance requirements

The family approach to 984 controller design allows you to make choices based
on controller capacity (the number of discrete and analog/register points available
for application programming, the number of I/O drops it supports), throughput (the
rate at which it solves logic and updates I/O modules), and environmental hard-
ness (the design standards its hardware implementation must meet).

GM--0984--SYS The 984 Programmable Controllers 3

1.1.2 Controller Compatibility

A major advantage of the family approach to 984 controller design is product
compatibility. Regardless of its computational capacity, performance characteris-
tics, or hardware implementation, each 984 controller is architecturally consistent
with other 984s.

The 984 instruction set (the functional capabilities of the controller, part of the sys-
tem firmware stored in executive PROM) comprises logic functions common to
other 984s. This means that user logic created on a midrange or high-perform-
ance unit such as a 984-685 or a 984B can be relocated to a smaller controller
such as a 984-145 (assuming sufficient memory in the smaller machine) and that
logic created on a smaller controller is upwardly compatible to a larger unit. As
your application requirements increase, it is relatively easy to upgrade your con-
troller hardware without having to rewrite control logic.

Also, training costs and learning curves can be reduced, since users familiar with
one 984 model automatically have a strong understanding of others.

GM--0984--SYSThe 984 Programmable Controllers4

1.2 984 Controller Performance and
Capacity Characteristics

The table on the following page gives you an overview of 984 programmable con-
troller characteristics. The 984 controller models are listed by capacity in de-
scending order, the 24 bit CPUs first, followed by the 16 bit CPUs. The capacity
of a controller is a function of the number of discrete and register points available
in state RAM—a discrete point uses one bit while a register/analog point requires
16 bits.

Notice that the discretes and registers are implemented in two different areas of
system memory—in state RAM and in real-world I/O locations as defined by the
984 traffic cop. The registers and discretes available in state RAM may be used
for programming I/O, internal coils, and data registers; the registers and discretes
available through the traffic cop can be used only for programming local or remote
I/O points. In some of the smaller-cpacity controllers, the traffic cop limits the
maximum number of I/O bits and the total number of discrete I/O points to num-
bers below what is available in state RAM. The additional discretes and registers
from state RAM may be used in the logic program for internal coils and data stor-
age buffers, but they cannot be mapped to I/O points.

4

984 Programmable Controller Performance and Capacity Characteristics

984 Hardware Logic Solve CPU User State RAM Maximum I/O Maximum I/O Total Max. Drops
Model Implementation (ms/Kword) Size Logic Size** Regs Discretes Bits per Drop Bits/System Discrete I/O per System

984B Chassis mount 0.75 24 bits 32K/64K* 9999 8192*** 1024 in/1024 out 32768 in/32768 out 8192 in/8192 out 32 R (S908)
256 in/256 out 4096 in/4096 out 4096 in/4096 out 16 R (S901)

984--780/--785 Slot mount 1.5 24 bits 16K/32K 9999 8192*** 512 in/512 out 16384 in/16384 out 8192 in/8192 out 1 L, 31 R

Q984 Host Based 2.0 24 bits 12K 9999 8192*** 512 in/512 out 3584 in/3584 out 3584 any mix 7 R

984A Chassis mount 0.75 16 bits 16K/32K 1920 2048 any mix 1024 in/1024 out 32768 any mix 2048 any mix 32 R (S908)
256 in/256 out 4096 in/4096 out 2048 any mix 16 R (S901)

984X Chassis mount 0.75 16 bits 8K 1920 2048 any mix 512 in/512 out 3584 in/3584 out 2048 any mix 1 L, 6 R

984--685 Slot mount 2.0 16 bits 8K/16K 4096**** 2048 any mix 512 in/512 out 16384 in/16384 out 2048 any mix 1 L, 31 R

984--680 Slot mount 3.0 16 bits 8K/16K 4096**** 2048 any mix 512 in/512 out 16384 in/16384 out 2048 any mix 1 L, 31 R

AT--984 Host Based 1.5 16 bits 8K 1920 2048 any mix 512 in/512 out 3584 in/3584 out 2048 any mix 7 R

MC--984 Host Based 1.5 16 bits 8K 1920 2048 any mix 512 in/512 out 3584 in/3584 out 2048 any mix 7 R

984--485 Slot mount 3.0 16 bits 4K/8K 1920 2048 any mix 512 in/512 out 3584 in/3584 out 1024 any mix 1 L, 6 R

984--480 Slot mount 5.0 16 bits 4K/8K 1920 2048 any mix 512 in/512 out 3584 in/3584 out 1024 any mix 1 L, 6 R

984--385 Slot mount 3.0 16 bits 4K/6K 1920 2048 any mix 512 in/512 out 512 in/512 out 512 any mix 1 L

984--381 Slot mount 5.0 16 bits 1.5K/4K/6K 1920 2048 any mix 512 in/512 out 512 in/512 out 512 any mix 1 L

984--380 Slot mount 5.0 16 bits 1.5K/4K/6K 1920 2048 any mix 512 in/512 out 512 in/512 out 256 any mix 1 L

984--145 Compact 4.25 16 bits 8K 1920 2048 any mix 512 in/512 out 512 in/512 out 256 any mix 1 L

984--130 Compact 4.25 16 bits 4K 1920 2048 any mix 512 in/512 out 512 in/512 out 256 any mix 1 L

984--120 Compact 4.25 16 bits 1.5K 1920 2048 any mix 512 in/512 out 512 in/512 out 256 any mix 1 L

Micro--984 Micro 5.0 16 bits 4K 1920 2048 any mix 64 in/64 out 64 in/64 out 112 any mix 1 L
(112 total) (112 total)

R = Remote, L = Local

* The 984B offers extended memory (XMEM) in 32K, 64K, and 96K sizes; total
memory can be up to 128K, with up to 64K devoted to user logic (UL):

• 32K = 32K UL

• 64K = 64K UL or 32K UL/32K XMEM

• 96K = 32K UL/64K XMEM or 64K UL/32K XMEM

• 128K = 32K UL/96K XMEM or 64K UL/64K XMEM *** State RAM in these 24 bit CPUs may be allocated as 8192 discrete I/O
+ 9999 registers or as (8192 discrete in/8192 discrete out + 8500 registers).

** Approximately 1K words of user logic are used for system overhead; utilizes
one word/node for user logic—e.g., a normally open contact uses one word **** 4096 registers are available if you use an Extended Register cartridge
of user logic memory. (AS--E685--914 or AS--E680--914); otherwise, 1920 registers are available.

GM--0984--SYSThe 984 Programmable Controllers6

1.3 How a 984 System Provides
Application Control

A 984 programmable controller is a special-purpose computer with digital
processing capabilities, designed for real time control in industrial and manufactur-
ing applications. In essence, a programmable controller monitors the state of field
devices by receiving signals from its input modules, solves a user logic program
via its CPU component, and directs further field device activity by sending control
signals to its output modules.

1.3.1 The 984 Control Architecture: An Overview

All controllers in the 984 family share a common processing architecture, which
comprises:

A memory section that stores user logic, state RAM, and system overhead in
battery-backed CMOS RAM and holds the system’s Executive firmware in
nonvolatile ROM

A CPU section that solves the user logic program based on the current input
values in state RAM, then updates the output values in state RAM

An I/O processing section that directs the flow of signals from input modules to
state RAM and provides a path over which output signals from the CPU’s logic
solve are sent to the output modules

A communications section that provides one or more port interfaces. These in-
terfaces allow the controller to communicate with programming panels, host
computers, hand-held diagnostic tools, and other peripheral (master) devices
as well as with additional controllers and other nodes on a communications
network

GM--0984--SYS The 984 Programmable Controllers 7

984 Controller

Input
Modules

State RAM
Register Ins
Register Outs
Discrete Ins
Discrete Outs

I/O Processor

User Logic
Ladder logic
networks &
segments

Memory

CPU

Communications Processor

Peripheral
(Host) Devices

Other Nodes
on a Network

Output
Modules

from
Application
Sensing
Devices

to
Application
Switching
Devices

1.3.2 Reliability and Maintainability

Modicon designs fault protection and isolation features into all 984 controllers.
Orderly system startup and shutdown procedures help protect system memory,
state RAM, and system hardware from damage due to external power failures.

Long-life lithium batteries back up system memory and state RAM in the event of
an unexpected power failure. When power has been restored, a series of internal
controller checksum diagnostics validate that RAM data are consistent with the
values that were active at the time of power-down.

GM--0984--SYSThe 984 Programmable Controllers8

1.4 P190-Style Panel Software Support

Modicon provides P190 panel software (SW-CS9T-0TB) on specially constructed
cassette tapes, and P190 emulation software on 5.25 in (SW-CS9D-5DA) and
3.5 in (SW-CS9D-3DA) diskettes for the P230 Programming Panel or for IBM-XT,
-AT, or compatible Personal Computers.

1.4.1 Standard Panel Software Editors

Standard panel software packages contain the following editors:

Software 3.5 in 5.25 in P190 Editor
Editor Diskette Diskette Tape Description

Configurator Defines control and communication para-
meters, allocates memory, accesses con-
troller operations

Traffic Cop Links discrete and register reference num-
bers to locations in the I/O subsystems

Programmer Generates, edits, monitors ladder logic, and
accesses controller operations

ASCII Generates and edits ASCII-formatted
Programmer messages

LRV Loads programs from disk to controller,
records 984 memory to disk, compares pro-
grams on disk and in memory

Tape Loader Records user logic on tape, loads programs
to 984 memory, compares programs on tape
and in memory

Ladder Lister Generates hard copy of user logic program

Annotated Prints user comments along with hard copy
Ladder Lister* of the user logic program

Utility Accesses controller memory, prints ladder
listing, accesses controller operations

Executive Overview menu for PC programming
software

* There is no editor feature comparable to the Annotated Ladder Lister in the P190 Panel
Software package.

GM--0984--SYS The 984 Programmable Controllers 9

1.4.2 Special Loadable Software

Additional loadable software is available to support optional controller hardware
and special purpose applications:

Software 3.5 in 5.25 in P190 Program
Loadable Diskette Diskette Tape Description

HSBY Enables switchover of controller functions to
a back-up controller without downtime

CALL Expands controller’s processing capabilities
by calling C functions from a Coprocessor
library

MBUS/PEER Enables peer-to-peer communications via
Modbus II

PID2** Enables configuring, tuning, and monitoring
of closed loop control system

MSTR* ** Provides Modbus Plus capabilities via the
S985 option module

DRUM/ICMP Simplifies implementation of sequential step
oriented logic

Advanced Provides enhanced math and data transfer
Math/DX* capabilities

EARS Provides an event/alarm reporting system
that detects and time-stamps changes in
events, and places the data in a controller
buffer where it can be accessed by a host
computer or high speed network

* Advanced math functions include log, antilog, square root, process square root,
and double precision math; advanced DX functions include table-to-block and
block-to-table moves and checksum.

** PID2, MSTR, and the advanced math DX functions are provided as loadables for the
chassis mount controllers only; comparable functionality is provided as standard in
other controllers (see Section 1.6).

For more details on the loadable software packages, see Chapter 21.

GM--0984--SYSThe 984 Programmable Controllers10

1.5 MODSOFT Panel Software Support

MODSOFT is an integrated software tool for programming, testing, and docu-
menting application logic for 984 controllers that may be used on a P230 Pro-
gramming Panel or on an IBM-XT, -AT, or compatible Personal Computer. All the
editor functions available in the P190 and P190 emulation packages are combined
in MODSOFT along with enhanced features. MODSOFT comprises a set of
source code editors for programs and for symbolic information. The source pro-
grams are subdivided into SFC language and ladder logic.

1.5.1 Sequential Function Charts

SFC is an optional feature that allows you to generate new programs arranged in
blocks rather than the linear sequence of straight ladder logic. A sequential func-
tion chart can solve multiple networks in a parallel link block or one in a choice of
several networks in a selective link block.

S011

S021 S022 S023 S024

S031

S041 S042 S043

1

1

2 2 2 2

16 3

T 011

T 021

T 031 T 032 T 033

T 041 T 042 T 043

S011

Initial Step

Parallel Link

Selective Link

Reference (goto)

S = Step
T = Transition

GM--0984--SYS The 984 Programmable Controllers 11

Logic is solved within a block until a specified transition event informs the CPU to
move to the next step. SFC allows application software to be created in a format
that more closely emulates an actual machining procedure or process flow; it can
help improve system throughput by solving only those networks specified by tran-
sition events rather than moving linearly through each network in the program on
every scan.

1.5.2 MODSOFT Macros

MODSOFT provides a macro feature that can simplify the task of generating and
updating large number of repetitive network structures. Using the macro feature,
you can create the repeating structure once, then specify the node values using
macro parameters rather than standard 984 reference numbers. Each macro can
contain up to 66 macro parameters—by using ∗ wild card characters in your nam-
ing scheme, you can actually create thousands of parameters/macro.

1.5.3 MODSOFT Operating Modes

You may operate in three modes in MODSOFT:

Offline, where programming and programming modification can be done with-
out using a 984 controller linked to the programming device

Online, where the application is communicating with the controller and any
changes made to the program are reflected in the controller

Debug, where any changes made to the logic program are saved simulta-
neously in the 984 controller and in the offline program file and where SFC can
be monitored for power flow

GM--0984--SYSThe 984 Programmable Controllers12

1.6 Overview of the 984 Instruction Set

The following instructions are standard in all 984 System Executives:

Instruction Meaning

Normally open contact

Normally closed contact
↑ Positive transitional contact
↓ Negative transitional contact
)(Coil
)(L Latch coil

Calculations Functions
ADD Addition
SUB Subtraction, greater than, less than, and equal to
MUL Multiplication
DIV Division

Counting & Timing Functions
UCTR Up counter from 0 to a preset
DCTR Down counter from a preset to 0
T1.0 Timer that increments in seconds
T0.1 Timer that increments in tenths of a second
T.01 Timer that increments in hundredths of a second

Data Transfer (DX) Move Functions
R→T Register-to-table move
T→R Table-to-register move
T→T Table-to-table move
BLKM Block move
FIN First-in operation to a queue
FOUT First-out operation from a queue
SRCH Table search
STAT Programmable controller health status

DX Matrix Functions
AND Logical AND of two matrices
OR Logical inclusive OR of two matrices
XOR Logical exclusive OR of two matrices
COMP Logical complement of one matrix
CMPR Logical compare of two matrices
MBIT Logical bit modify
SENS Logical bit sense
BROT Logical bit rotate
SKP A skip function

GM--0984--SYS The 984 Programmable Controllers 13

The following instructions may be available in standard executive, loadable, or
executive upgrade form, depending on controller type:

Instruction Meaning

TBLK Moves a block of data from a table to another specified block area
BLKT Moves a block of registers to specified locations in a table
PID2 Performs proportional-integral-derivative control functions

The following are standard in some Executives and unavailable in others:

Instruction Meaning

Available with 984s that Support Remote I/O
READ Reads data from an ASCII device to 984 memory
WRIT Sends data from a 984 to an ASCII device

Available in 984s with Extended Memory
XMRD Reads function for 984s with Extended Memory
XMWT Writes Extended Memory data

Available in 984s with Modbus Plus Capabilities
MSTR Reads, writes, and gets status of MB+ network operations

Available in 984s with Subroutines Capabilities
JSR Jumps the CPU from scheduled logic to a ladder logic subroutine
LAB Labels the entry point for a ladder logic subroutine
RET Returns the CPU from a subroutine to scheduled ladder logic

Unavailable in Chassis Mount Controllers
EMTH Performs extended math functions—square root, process square

root, log, antilog, and floating point functions

Unavailable in Controllers that Support Modbus Plus
CKSM Performs CRC-16, LRC, straight, or binary add checksum functions

The following are available as loadables in some controllers:

Instruction Meaning

HSBY Supports a Hot Standby control system
MBUS, PEER Supports Modbus II read/write/status capabilities
CALL Supports C986/C996 Coprocessor capabilities
DRUM, ICMP Support drum sequencer applications
MATH, DMTH Perform some extende math functions in 984s that don’t use EMTH
FNxx Supports a user-developed library of custom loadable functions
EARS Supports an event/alarm reporting system

For more details regarding loadable instructions, see Chapter 21.

GM--0984--SYS Optional and Peripheral Control Devices 15

Chapter 2
Optional and Peripheral
Control Devices

Programming Panels

The P965 Data Access Panel

The Hot Standby Option Modules

The Coprocessing Option Modules

Optional Communication Modules

GM--0984--SYSOptional and Peripheral Control Devices16

2.1 Programming Panels

Modicon offers two kinds of industrially hardened programming panels—the P230
and the P190. These panels may be used to:

Start and stop the controller

Enter, modify, and archive ladder logic programs

Monitor the register and discrete values in user memory and state RAM

Enable, disable, and force discrete inputs and coils

Display and modify the contents of holding registers

Display and set communication parameters for the communication ports

Provide on-line monitoring of power flow

2.1.1 The P230

The AS-P230-000 is a portable programming panel with a 40 Mbyte hard disk for-
matted and installed with MS-DOS and GW-BASIC interpreter software. It sup-
ports both MODSOFT and P190 emulation software, either of which may be
loaded from the unit’s a 3.5 in disk drive. The P230 power supply is 115/230 VAC
user-selectable.

GM--0984--SYS Optional and Peripheral Control Devices 17

2.1.2 The P190 Panels

The P190 is a Modicon-proprietary portable programming panel software with a
set of specially designed digital tapes (see section 1.4) for use specifically in this
panel. The P190 does not support the MODSOFT. There are two types of P190
Panels available—the AS-P190-212, which operates on 115 VAC, and the
AS-P190-222, which operates on 220 VDC.

2.1.3 Using Industry-standard PCs as Programming Panels

A set of 5.25 in and 3.5 in disks is available to emulate the P190 software on a
standard DOS-based PC, and the integrated MODSOFT package is also available
on both 5.25 in and 3.5 in distribution disks. These software packages can be run
on any IBM-AT or true AT-compatible PC.

GM--0984--SYSOptional and Peripheral Control Devices18

2.2 The P965 Data Access Panel

The AS-P965-000 Data Access Panel (DAP) is a hand-held troubleshooting de-
vice. It connects to a Modbus port (or ASCII/DAP port on a 984A or 984B) on any
Modicon controller that supports Modbus communication.

2.2.1 Physical Design

The P965 DAP is a lightweight device with a 64-character liquid crystal display
(LCD) screen and a keypad with alphanumeric and function keys.

GM--0984--SYS Optional and Peripheral Control Devices 19

2.2.2 How the P965 Can Be Used

A P965 DAP is a very effective tool for monitoring and troubleshooting the control-
ler. With it, you can

Start and stop the controller

Monitor the register and discrete values in user memory and state RAM

Enable, disable, and force discrete inputs and coils

Display and modify the contents of holding registers

Display and set communication parameters for the Modbus ports

The P965 can be used on the shop floor to monitor the status of a 984 program-
mable controller by accessing the STAT block. (Procedures for accessing the
STAT block are described in Sections 14.4 and 14.10; the types of statistics avail-
able from the STAT block are described in detail in Section 14.5 ... 14.7 for an
S901 RIO network and Sections 14.11 ... 14.13 for other 984 I/O networks.

GM--0984--SYSOptional and Peripheral Control Devices20

2.3 The Hot Standby Option Modules

The Hot Standby capability has been designed for applications that demand
fault-tolerant, high-availability performance. Two identically configured 984 con-
trollers communicate with each other through two Hot Standby option modules,
one in each controller. Each controller has the HSBY loadable software function
block installed in the first segment of ladder logic (described in Chapter 21).

2.3.1 How a Hot Standby System Functions

AM-R911-000 Hot Standby option modules are designed for use in a system in-
volving two identically configured chassis mount controllers. AS-S911-800 Hot
Standby option modules are designed for use in a system involving two identically
configured 984-680, -685, -780, or -785 slot mount controllers.

Upon powering up a 984 Hot Standby system, one of the two identically confi-
gured 984 controllers acts as the primary controller—it reads input data from re-
mote I/O drops, executes the stored user programs from memory, and sends ap-
propriate output commands to the drops. The primary controller updates the
standby controller with current system and state RAM status information at the
end of each scan.

The standby controller only reads this information—it does not execute control
functions and does not interfere with primary control operations. It will assume
primary system control in 13 ... 48 ms if the primary controller fails.

2.3.2 Controller Compatibilities

The S911 and R911 Hot Standby modules are devices designed to be installed in
option slots with their host controllers. They work in conjunction with 984 control-
lers that use S908 Remote I/O Processor modules. The R911 modules work with
the 984A, 984B, and 984X chassis mount Controllers; the S911 modules work
with 984-68x and 984-78x slot mount Controllers. All hardware and firmware in
the primary and standby controllers must be identical.

GM--0984--SYS Optional and Peripheral Control Devices 21

The two Hot Standby modules in a system are interconnected by a AS-W911-0xx
cable, and the coaxial cables running from the two S908 RIO Processors pass
through self-terminating connectors before being joined by an MA-0186-100 line
splitter.

MA-0186-100 Line Splitter

52-0370-000 75Ω Self-terminating Connector

60-0513 75Ω Feed-through Terminator

MA-0185-100 Line Tap

TR-75F 75Ω Cable Terminator

S
9
0
8

S/R
9
1
1

S
9
0
8

S/R
9
1
1

J
8
9
0

W911

Coax

J
8
9
2

P
4
5
3

800
Series
I/O

800
Series
I/O

200
Series
I/O

with
J290

984 Control-
ler
(Primary)

984 Control-
ler
(Standby)

GM--0984--SYSOptional and Peripheral Control Devices22

2.4 The Coprocessing Option Modules

Modicon offers two types of integrated control processors (Copros)—the C986 for
use with chassis mount 984 controllers and the C996 for use with slot mount 984
controllers that support option modules. These option modules extend the pro-
cessing capabilities of your controller, providing alternative programming solutions
for problems that are difficult or inefficient to handle via ladder logic.

2.4.1 The C986 Copro for Chassis Mount 984s

The AM-C986-004 Copro resides in a single option slot in a 984A, 984B, or 984X
chassis. It uses the flexible, multitasking VRTX Operating System, which allows
it to perform parallel application processing, immediate DX processing, and
deferred DX processing (see Section 2.5). Programs developed in Microsoft C,
either by you or by Modicon, can be downloaded to the Copro and run in parallel
with the 984 CPU.

Green READY LED indicates the system is scanning

Green STATUS 1 LED goes ON when the 984 is communicating
with the C986

Green STATUS 2 LED goes ON when the C986 is under user
software control

Red BATTERY LOW LED indicates that the battery needs replacing

Nine-pin D-shel subminiature receptacles that can be configured
for RS-232C or RS-422

GM--0984--SYS Optional and Peripheral Control Devices 23

2.4.2 The C996 Copros for Slot Mount 984s

Two coprocessor models are available for use with slot mount controllers—the
AM-C996-802 Copro with two expansion slots and the AM-C996-804 Copro with
four expansion slots. These copros are DOS-based computer systems with a pro-
prietary high speed interface to 984 controller memory. The C996 Copros can
perform parallel application processing and immediate DX processing, but not def-
erred DX processing (see Section 2.5).

The AM-C996-802 consumes one and a half slots in a slot mount controller hous-
ing, and the AM-C996-804 consumes two and a half slots in the housing.

Green READY LED goes ON after power-up to indicate
that the device driver is loaded; other uses of this LED
are application-dependent

Green STATUS LED is application-dependent

Two 9-pin serial ports, fully programmable for
asynchronous communication

A 37-pin floppy drive interface

A keyboard port programmed to support a serial
interface to an AT or AT-compatible keyboard

AM-C996-802 AM-C996-804

The expansion slots can support various commercially available option cards.
The depth dimension of the C996 expansion slots limits your choice of option
cards to half-size IBM-XT cards.

GM--0984--SYSOptional and Peripheral Control Devices24

2.5 Enhancing Your Processing
Environment with a Copro

Both the VRTX-based C986 Copro and the DOS-based C996 Copros can com-
municate with the controller in two different modes—application mode and imme-
diate DX mode. Only the C986 Copro can communicate with the controller in
deferred DX mode.

2.5.1 Application Mode

The C986 and C996 Copros can run programs in application mode in parallel with
the 984 CPU, exchanging data with the controller at the end of scan (EOS):

SCAN 1 SCAN 2

EOS

984 CPU

COPRO
Logic
Scanning

Application
Processing

Interrupt

How a Copro Handles Application Processing in Parallel with the 984 CPU

2.5.2 Immediate DX Processing

The C986 and C996 Copros can run standard and customized C routines that are
initiated, or called, by ladder logic—a loadable CALL function block (described in
Chapter 21) is provided for this purpose.

GM--0984--SYS Optional and Peripheral Control Devices 25

When a Copro suspends application processing for a short interval and dedicates
itself to the solution of a CALL function, it is performing in immediate DX mode. A
typical immediate DX function might be a floating point math calculation.

SCAN 1 SCAN 2

CALL
to

IMMDX
EOS

984
CPU

COPRO

How a Copro Handles Immediate DX Processing

2.5.3 Deferred DX Processing

Because of the multitasking capability inherent of the VRTX Operating System,
the C986 can also call deferred DX functions simultaneously with application and
immediate DX processing. Up to ten tasks can be supported.

In deferred DX mode, DX processing begins with a call and continues until it is fin-
ished, even if its processing runs longer than one scan. A typical deferred DX
function might be reading bar code input to a serial port.

SCAN 1 SCAN 2

CALL
to

DEFDX
EOS

984
CPU

COPRO

How the C986 Copro Handles Deferred DX Processing

GM--0984--SYSOptional and Peripheral Control Devices26

2.6 Optional Communication Modules

984 Controllers may be interconnected in various kinds of local area (and in some
cases long distance) networks. The following 984 controller option modules that
allow you to establish the network connections are described here; overall net-
working capabilities are described in more detail in Chapter 4.

2.6.1 Modbus Modems

The AM-S978-000 Dual Modbus Modem is an option module that allows a chassis
mount 984 controller to be used as a slave processor in a Modbus network. The
AS-J878-000 is an option module that provides similar capability in a slot mount
984 controller. These Modbus modems allow you to create Modbus networks up
to 15,000 ft (4572 m) long and comprising up to 247 slave nodes.

These modems are electrically compatible with all Modbus products and are sized
to fit in one slot (in a 984 chassis in the case of the S978 and in an 800 Series I/O
primary housing in the case of the J878). The S978 module contains two mo-
dems, which are connected via cable to Modbus ports on the comm processor
module in the controller; the J878 module contains one modem.

An S978 Modem accepts digital data from the slave controller in which it resides
and modulates the data into an FM analog signal—a form of transmission suited
to four-wire cable. It transmits the analog FM signal to the host’s Modbus Master
device, where it is demodulated to digital data. Conversely, the Modbus Master
transmits digital data, which is modulated to an FM analog signal on its way back
to the S978 Modem. The S978 demodulates the analog signal to digital data and
sends the data to the slave controller in which it resides.

For more information about Modbus network capabilities, see Section 4.6.

2.6.2 Modbus II Modules

The S975 Modbus II Interfaces are option modules that allows a 984 controllers to
be used as a processing node in the Modbus II network. The AM-S975-100 mod-

GM--0984--SYS Optional and Peripheral Control Devices 27

ule may be used with any chassis mount controller, and the AM-S975-820 module
may be used with 984-685, -780, or -785 slot mount controllers.

Modbus II provides peer-to-peer communication capabilities between 984 control-
lers and other Modbus II devices over a local area network. For more information
about Modbus II networking, see Section 4.9.

Special software must be loaded into the controller to program Modbus II commu-
nications in ladder logic. Two loadable function blocks—MBUS and PEER (de-
scribed in Chapter 21)—are used to initiate communications. MBUS writes infor-
mation to or reads information from a single controller. PEER writes register
information to up to 16 controllers simultaneously.

2.6.3 The Modbus Plus Options

Several 984 controllers have a Modbus Plus capability built directly into the con-
troller—i.e, the slot mount 984-385, 984-485, 984-685, and 984-785 Controllers,
the Compact 984-145 Controller, and the host based AT-984 and MC-984
Controllers.

For the chassis mount controllers and for the slot mount controllers that accept
option modules (the 984-68x and -78x), various S985 Modbus Plus Adapter
cards are available as option modules. An S985 comes with a loadable version of
the MSTR function block (described in Chapter 17), which allows you to initiate
Modbus Plus communication functions; in 984 controllers with built-in Modbus
Plus capabilities, the MSTR function is part of the standard executive firmware.
The AM-S985-000 card is used with a 984X Controller, the AM-S985-020 is used
with a 984A Controller (with an S908 RIOP), and the AM-S985-040 is used with
the 984B Controller (with an S908 RIOP).

2.6.4 The Distributed Communications Option

The AS-D908-110 and AS-D908-120 Distributed Control Processors allow you to
extend programmable control capabilities over the S908 remote I/O link. These
option modules allow entire 984 control systems (CPU and I/O) to appear as re-
mote I/O drops on a higher level remote I/O link. The distributed link is described
in Section 4.10.

GM--0984--SYSOptional and Peripheral Control Devices28

The D908 modules may be used with a 984-680, -685, 780, and -785 slot mount
controllers installed at remote locations and connected to a higher level 984 con-
troller via the S908 remote I/O cable. The higher level controller sees this distrib-
uted controller as a J890 remote I/O drop. The D908-110 option module supports
one cable connection; the D908-120 supports two connections.

GM--0984--SYS 984 I/O Subsystems 29

Chapter 3
984 I/O Subsystems

I/O Subsystems

Local I/O

Remote I/O

ASCII Communication at Remote I/O Drops

Overview of I/O Support for 984 Controllers

800 Series I/O Modules

Power Supplies for Local and Remote 800 Series I/O Drops

200 Series I/O Modules

500 Series I/O Modules

A120 Series I/O Modules

300 Series I/O Modules

GM--0984--SYS984 I/O Subsystems30

3.1 I/O Subsystems

The application logic that is stored in and solved by the controller is implemented
on the factory floor by input and output modules. These I/O modules are field-
wired to sensing or switching devices on the shop floor and linked to the controller
over an I/O bus to create a complete control system. Modicon provides several
series of I/O modules that may be implemented by different 984 controllers.

3.1.1 Input and Output Modules

An input module accepts electrical signals from field sensing devices, isolates
these signals from the controller, and converts them into acceptable voltage levels
that update the controller’s State RAM.

An output module accepts electrical signals from the controller’s state RAM, iso-
lates these signals from the field, and converts them into voltage or current levels
necessary to activate working devices or indicator displays on the factory floor.

3.1.2 I/O Module Types

Input and output modules are wired to industrial field devices that send or receive
application data. When you plan your I/O layout, match the electrical signal used
in the I/O modules with the signal used by the field device to which it is wired.
Modicon offers a wide range of I/O modules:

Discrete in, which convert signals coming from field input devices such as pres-
sure switches, limit and proximity switches, or photo sensors into voltage levels
that can be used by the controller

Discrete out, which convert voltage levels generated by the controller’s logic
solving into output signals used by output field sensing devices such as relays,
lamps, or solenoids

Discrete input and output modules are available to support AC, DC, and TTL
field input devices

Analog in, which convert analog input signals coming from field input devices
such as pressure, level, temperature, or weight sensors into numerical data

GM--0984--SYS 984 I/O Subsystems 31

that can be used by the controller—this numerical data ranges from 0000 to
4095

Analog out, which convert numerical data generated by the controller’s logic
solving into analog output signals to be used by output field devices—such as
heaters or pumps

Special purpose, designed for unique field applications such as multiplexing,
high speed counting, and temperature reading

Intelligent, designed for unique field applications requiring bidirectional (in/out)
capabilities and on-board processing power

3.1.3 Local and Remote I/O

I/O subsystems may be local—located together with or in close proximity to the
controller—or remote—located at distances up to 15,000 ft (4.5 km) from the con-
troller, depending on the cable type.

GM--0984--SYS984 I/O Subsystems32

3.2 Local I/O

When local I/O is supported, it consists of one drop only, always designated as
drop #1 in your system configuration. Your controller restricts you to one specific
series of I/O modules at the local drop.

984 Controllers that Local I/O I/O-to-Controller Local Devices
Support Local I/O Supported Connectivity Supported

984X 800 Series I/O I/O in secondary 800 Up to five housings
Series housings* up supported
to 12 ft from control-
ler, connected by
W929 cable

984-780, -785 800 Series I/O In the primary 800 Up to five housings
Series I/O housing supported
with controller

984-680, -685 800 Series I/O In the primary 800 Up to five housings
Series I/O housing supported
with controller

984-480, -485 800 Series I/O In the primary 800 Up to two housings
Series I/O housing supported
with controller

984-380, -381, -385 800 Series I/O In the primary 800 Up to two housings
Series I/O housing supported
with controller

Micro-984 300 Series I/O Built-in I/O bus with Up to 14 I/O
side-to-side connec- modules supported

tors between controller
and other modules

984-120, -130, -145 A120 Series I/O In primary DTA hous- Up to 18 I/O
ing with controller modules supported

in up to four DTA
housings

* Because the I/O modules reside in a separate housing from the 984X Controller, the I/O
modules must receive their power from one or more independent slot mount power sup-
ply modules.

GM--0984--SYS 984 I/O Subsystems 33

3.3 Remote I/O

When remote I/O is supported, the 984 controller may support several drops—in
some cases as many as 32. In a remote I/O configuration, an RIO processor in
the controller is connected via a coaxial cable system to an RIO interface device
at each remote drop.

All 984 controllers that support remote I/O have been designed to drive 800 Se-
ries I/O at the remote drops. Several option modules and/or field modification kits
are available that allow you to drive installed bases of 200 and 500 Series I/O at
remote drops as well.

3.3.1 Remote I/O Drop Interfaces

At each remote drop is a remote I/O (RIO) interface device that communicates
over the coaxial cable with the RIO processor in the controller. The RIO interface
passes data to and from the I/O modules in the drop over the I/O housing back-
plane and passes data to and from the 984 controller over the RIO cable system.
An RIO interface also contains a set of switches that you use to address all the
drops in your system.

There are various kinds of RIO Interfaces you can use, depending on the I/O Se-
ries in the drop and the type of RIO processor in the controller. According to your
application requirements, you may select RIO Interfaces that provide the drop with
ASCII device support.

For a detailed discussion of the planning, installing, and testing an RIO cable sys-
tem, refer to the Modicon Remote I/O Cable System Planning Guide
(GM-0984-RIO).

GM--0984--SYS984 I/O Subsystems34

3.4 ASCII Communication at the Remote
I/O Drops

A 984 Controller that communicates with remote I/O allows you to connect ASCII
data entry and data display devices at as many as 16 drop sites. Special types of
remote I/O interface devices must be used at drops when ASCII devices are used.

3.4.1 RIO Interfaces that Support ASCII Communication

The J812 and J892 Remote I/O Interfaces (for 800 Series I/O) and P453 Remote
I/O Interface (for 200 and 500 Series I/O) have 25-pin female ASCII ports; the
P892 RIO Interface (for 800 Series I/O) has 9-pin female ASCII ports:

25-Pin Male
RIO ASCII Port
(J812, J892, P453)

SHIELD

TX

RX

RTS

CTS

DSR

GROUND

1

2

3

4

5

6

7

20DTR

SHIELD

RX

TX

DTR

GROUND

DSR

RTS

1

2

3

4

5

6

7

8CTS

9-Pin Male
RIO ASCII Port

(P892)

Each of these RIO Interface devices can support two ASCII devices. As many as
32 ASCII devices can be run from a 984 controller, two/drop from up to 16 drops.

3.4.2 ASCII Device Programming

Two three-node function blocks—READ and WRIT—are provided in the Executive
PROM of all 984 controllers with RIO capabilities. The function blocks are im-
plemented in user logic to handle ASCII message passing between the remote
devices and controller memory.

GM--0984--SYS 984 I/O Subsystems 35

ASCII messages may be written to 984 system memory from an ASCII input de-
vice (a keyboard, a bar code reader, a pushbutton panel) at a remote drop via a
READ function; the controller may send messages to an ASCII display device (a
CRT, a printer) via a WRIT function.

984 Controller

with S908

P
8
9
2

J
8
9
2

800 Series I/O

800 Series I/O200 Series I/O

ASCII Paper Printer

ASCII Keypad

ASCII Input Keyboard
and Display Terminal

P/S

P453 with J290

An ASCII editor in your panel software allows you to create, edit, and manage a li-
brary of ASCII messages to be read or written over the RIO communication link.
These ASCII messages reside in a table that occupies space in user logic
memory.

3.4.3 The ASCII Operator Keypad

An ASCII Operator Keypad with an AS-KPPR-000 option board can be connected
directly to an S908 RIO network and can be cofigured as a drop on that network.
This keypad has two ASCII ports associated with it, one as the keypad interface
and one that can be connected to another external device.

GM--0984--SYS984 I/O Subsystems36

3.5 Overview of I/O Support for 984
Controllers

984 I/O RIO RIO Drop
Type Series Local RIO Processor Interface ASCII

984A, 800 S908 J890/P890 No
984B J892/P892 Yes

S901 J810 No
J812 Yes

200 S908 P451 & J291 No
P453 & J290 Yes

S901 P451 No
P453 Yes

500 S908 P451 & J291 w J540 No
453 & J290 w J540 Yes

S901 P451 w J540 No
P453 w J540 Yes

984X 800 S929 J890/P890 No
J892/P892 Yes

200 S929 P451 w J291 No
P453 w J290 Yes

500 S929 P451 w J540 & J291 No
P453 w J540 & J290 Yes

984-785, 800 S908 J890/P890 No
984-780, J892/P892 Yes
984-685, 200 S908 P451 w J291 No
984-680, P453 w J290 Yes
984-485, 500 S908 P451 w J540 & J291 No
984-480 P453 w J540 & J290 Yes

984-385,
984-381,
984-380 800 N/A N/A No

AT-984, 800 N/A J890/P890 No
MC-984, J892/P892 Yes
Q984 200 S908 P451 w J291 No

P453 w J290 Yes
500 S908 P451 w J540 & J291 No

P453 w J540 & J290 Yes

984-120, A120 N/A N/A No
984-130,
984-145

Micro-984 300 N/A N/A No

GM--0984--SYS 984 I/O Subsystems 37

3.6 800 Series I/O Modules

3.6.1 800 Series Discrete Input Modules

Voltage Disc. Number/ Power Draw (mA)
Model Range Ins Common +5.0V +4.3V -5.0V Connector

AS-B803-008 115VAC 8 1 27 1 2 AS-8534-000
AS-B805-016 115VAC 16 8 40 1 14 AS-8535-000
AS-B807-032 115VAC 32 8 80 2 0 AS-8535-000
AS-B809-016 230VAC 16 8 42 1 15 AS-8534-000
AS-B817-116 115VAC 16 1 25 25 8 AS-8535-000
AS-B817-216 230VAC 16 1 25 25 8 AS-8535-000
AS-B821-008 10...60VDC 8 2 27 1 0 AS-8534-000
AS-B825-016 24VDC 6 8 27 2 0 AS-8534-000
AS-B827-032 24VDC 32 32 30 1 0 AS-8535-000
AS-B829-116 5V TTL 16 16 27 1 0 AS-8534-000
AS-B833-016 24VDC 16 8 27 2 0 AS-8534-000
AS-B837-016 24VAC/DC 16 8 40 1 15 AS-8534-000
AS-B849-016 48VAC/DC 16 8 40 1 15 AS-8534-000
AS-B853-016 115VAC 16 8 40 1 15 As-8534-000

125VDC
AS-B881-001* 24VDC 16 16 30 1 0 As-8534-000

*The B881 Module must be addressed as one register IN (3x) and one register OUT (4x).

3.6.2 800 Series Discrete Output Modules

Voltage Disc. Number/ Power Draw (mA)
Model Range Outs Common +5.0V +4.3V -5.0V Connector

AS-B802-008 115VAC 8 2 76 240 0 AS-8534-000
AS-B804-016 115VAC 16 8 76 480 0 AS-8534-000
AS-B806-032 115VAC 32 8 210 1 N/A AS-8535-000
AS-B808-016 230VAC 16 8 76 480 0 AS-8534-000
AS-B810-008 115VAC 8 1 50 240 0 AS-8534-000
AS-B814-108 Relay 8 1 107 800 0 AS-8534-000
AS-B820-008 10...60VDC 8 2 90 80 0 AS-8534-000
AS-B824-016 24VDC 16 8 32 260 0 AS-8534-000
AS-B826-032 24VDC 32 32 90 1 0 AS-8535-000
AS-B828-016 5V TTL 16 16 32 220 0 AS-8534-000
AS-B832-016 24VDC 16 8 32 235 0 AS-8534-000
AS-B836-016 12...250VDC 16 1 50 603 0 AS-8535-000
AS-B838-032 24VDC 32 8 160 1 0 AS-8535-000
AS-B840-108 Reed Relay 8 1 67 400 0 AS-8534-000
AS-B881-108 120 VAC 8 optional 285* 240 0 AS-8535-000
AS-B882-032 24 VDC 32 8 300** 10 0 AS-8535-000

* When all outputs are ON, power draw at +5 V is 285 mA maximum on the
B881-108; when all outputs are OFF, power draw at +5 V is210 mA maximum.

** When all outputs are ON, power draw at +5 V is 300 mA on the B882-032; when
all outputs are OFF, power draw is 200 mA.

GM--0984--SYS984 I/O Subsystems38

3.6.3 800 Series Analog Input Modules

Application Analog Power Draw (mA)
Model Ranges Inputs +5.0V +4.3V -5.0V Connectors

AS-B873-001 4...20mA; 4 300 300 0 AS-8533-002
1...5V (Included)

AS-B873-002 -1...+10V 4 300 300 0 AS-8533-002
(Included)

AS-B875-002 4...20mA; 4 300 300 0 AS-8533-002
1...5V (Included)

AS-B875-012 -10...+10V 4 300 300 0 AS-8533-002
(Included)

AS-B875-101 4...20mA; 8 650 975 0 AS-8533-004
-10...+10; (Included)
-5...+5V;
0...10V;
0...5V; 1...5V

AS-B875-111 0...5V, 1...5V 8 Differential 500 900 0 AS-8535-000
-5...+5V, 16 Single-ended (included)
0...10V,
-10...10V,
0...2mA,
0.4...2mA,
-2...+2mA

3.6.4 800 Series Analog Output Modules

Application Analog Power Draw (mA)
Model Ranges Outputs +5.0V +4.3V -5.0V Connectors

AS-B872-100 4...20mA 4 800 5 0 AS-8535-000
(included)

AS-B872-200 0...5V, 0...10V 4 800 5 0 AS-8535-000
-5...+5V, (included)
-10...+10V

GM--0984--SYS 984 I/O Subsystems 39

3.6.5 800 Series Special Purpose I/O Modules

Power Draw (mA) Addressable
Model Description +5.0V +4.3V -5.0V Registers(I/o) Connector

AS-B846-001 MUX: 65 1 0 0/1 AS-8535-000
16 Voltage
Inputs

AS-B846-002 MUX: 65 1 0 0/1 AS-8535-000
16 Current
Inputs

AS-B864-001 TTL Register: 220 180 0 0/8 AS-8535-000
8 outputs;
8/common

AS-B865-001 TTL Register: 400 600 0 8/0 AS-8535-000
8 inputs;
8/common

AS-B882-239 High Speed 188 0 0 2/2 AS-8533-005
Counter: (Included)
2 UpCounts
0...30kHz

AS-B883-001 High Speed 680 0 0 3/3 52-0325-000
Counter: (Included)
2 Up/Down
Counts:
0...50kHz;
Internal Clock

AS-B883-200 Reads ten 300 0 0 3/3 52-0325-000
Thermocouple (Included)
Inputs:
Types B,E,J,K,
R,S,T,N, or
linear mV

AS-B883-201 Reads 8 RTD 400 5 0 3/3 52-0325-000
Inputs: 2 or (Included)
3-wire; American
or European
100Ω Platinum

GM--0984--SYS984 I/O Subsystems40

3.6.6 800 Series Intelligent I/O Modules

Intelligent I/O modules perform tasks that require special on-board processing
capabilities.

Power Draw (mA) Addressable
Model Description +5.0V +4.3V -5.0V Registers(I/O) Connector

AS-B883-101 CAM Emulator: 1000 0 0 3/3 52-0325-000
Absolute (Included)
Encoder Input,
8 Discrete
Outputs

AS-B883-111 CAM Emulator 1000 0 0 3/3 52-0325-000
w/ Velocity (Included)
Compensation

AS-B884-002 PID: 2 Loops, 50 0 0 4/4 AS-8644-000
Cascadable, (Included)
Standalone,
11 Total I/O

AS-B885-002 ASCII/BASIC: 500 1760 0 6/6 N/A
64K RAM,
2 RS232/422
Ports

AS-B984-100 Discrete High 0 0 0 4/4 or 8/8 AS-8533-004
Speed Logic (Included)
Solver

3.6.7 800 Series MMI Operator Panels

A variety of prepackaged man-machine interface (MMI) devices may also be
connected to the RIO network.

Two types of 32 Element Pushbutton Panels may be installed and traffic copped
like I/O at remote S908/S929 drops. The MM-32SD-000 Panel is connected via a
W801 cable to an 800 Series I/O drop being driven by an S908-compatible RIO
interface device. By adding an MM-32PR-000 Primary Option board to this opera-
tor panel, you create a primary device that can be connected directly to the S908
RIO network.

A PanelMate Plus Video Control Panel may also be installed as a drop on an RIO
network. PanelMate Plus is traffic copped like a D908 Distributed Control Proces-
sor (see Section 4.10).

GM--0984--SYS 984 I/O Subsystems 41

3.7 Power Supplies for Local and
Remote 800 Series I/O Drops

To determine the power requirements of a drop, add the individual power draws of
each module in the drop. A primary power supply is required in the first slot of the
primary housing in a remote I/O drop; an auxiliary power supply may be installed
in the first slot of a secondary housing:

Power Supplies for a Remote 800 Series I/O Drop

I/O Power (in mA) RIO Interface
Model Description Voltage +5V +4.3V --5V Power (@ +5V)

AS-P810-000 primary/aux 120/220VAC 5000* 5000* 300 7500 mA* **

AS-P802-001 primary/aux 120/220AC 2500*** 10100*** 500 9500 mA***

AS-P884-001 primary/aux 120/220VAC 5000 10100 500 11000 mA

AS-P800-003 primary/aux 120/22VAC 2500*** 10100*** 500 9500 mA***

AS-P890-000 primary (in an 115/230VAV 3000# 3000# 250 N/A
AS-P892-000 RIO interface) 24VDC

AS-P830-000 auxiliary only 120/240VAC 5000## 6000## 500 N/A
24VDC

* Total maximum of +5V I/O, +4.3V I/O, and +5V Interface cannot exceed 13500 mA
** Total maximum of +5V I/O and +4.3V I/O cannot exceed 5000 mA
*** Total maximum of +5V I/O, +4.3V I/O, and +5V Interface cannot exceed 16100 mA
Total maximum of +5V I/O and +4.3V I/O cannot exceed 3000 mA
Total maximum of +5V I/O and +4.3V I/O cannot exceed 6000 mA

A slot mount 984 controller provides the primary power supply for its local I/O
drop; auxiliary power supplies listed above may be used in secondary housings:

Primary Power Supplies for a Local 800 Series I/O Drop

I/O Power (in mA) Total Maximum
Model Voltage +5V +4.3V --5V Power (in mA)

PC-0984-785/ 120/220VAC 8000 6000 500 8000
-780/-685/-680 24VDC

PC-0984-485/ 120/220VAC 3000 3000 250 3000
-480/-385/-381/-380 24VDC

GM--0984--SYS984 I/O Subsystems42

3.8 200 Series I/O Modules

200 Series I/O modules may be used at remote I/O drops in conjunction with any
chassis mount, slot mount, or host based 984 controller; they cannot be used at
local drops. The 200 Series provides discrete in, discrete out, analog in, analog
out, and special purpose I/O modules.

3.8.1 200 Series Discrete Input Modules

Voltage Number Number
Model Range of Inputs per Common

AS-B225-001 24VDC (True High) 16 1
AS-B231-501 115VAC 16 4
AS-B233-501 24VDC 16 4
AS-B235-501 220VAC 16 4
AS-B237-001 5VDC (TTL) 16 4
AS-B245-001 220VAC (Isolated) 8 Separate Commons
AS-B247-001 115VAC 8 Separate Commons
AS-B271-001 36...60VAC 16 4
AS-B273-001 12VDC 16 4

(Intrinsically Safe)
AS-B275-501 10...60VDC 16 4
AS-B279-001 18...30VAC 16 4

3.8.2 200 Series Discrete Output Modules

Voltage Number Number
Model Range of Outputs per Common

AS-B224-001 24VDC (True High) 16 1
AS-B230-501 115VAC 16 4
AS-B232-501 24VDC 16 4
AS-B234-501 220VAC 16 4
AS-B236-501 5VDC (TTL) 16 4
AS-B238-001 24VDC (True Low) 16 4
AS-B244-101 230VAC (Isolated) 8 Separate Commons
AS-B246-501 115VAV (Isolated) 8 Separate Commons
AS-B248-501 10...60VDC 16 4
AS-B266-501 115VAC 8 Separate Commons

(Reed Relay, NO)
AS-B268-001 230VAC 8 Separate Commons

(Reed Relay, NO)
AS-B270-001 48VAC 16 4
AS-B274-001 115VAV (Relay, NC) 8 Separate Commons
AS-B276-001 230VAC (Relay, NC) 8 Separate Commons
AS-B278-001 10..60VAC 16 4

GM--0984--SYS 984 I/O Subsystems 43

3.8.3 200 Series Analog Input Modules

Application Number
Model Range of Channels Words(I/O)

AS-B243-105 1...5VDC, 4 4/0
4...20MADC,

AS-B243-110 0...10VDC, 4 4/0
-10...+10VDC

3.8.4 200 Series Analog Output Modules

Application Number
Model Range of Channels Words(I/O)

AS-B260-005 1...5VDC 4 0/4
AS-B260-010 0...10VDC 4 0/4
AS-B262-001 1...5VDC, 4...20VDC 4 0/4

3.8.5 200 Series Special Purpose I/O Modules

Number
Model Description of Inputs Words(I/O)

AS-B239-001 Dual High Speed 2 2/2
Counter

AS-B258-101 16-to-1 Analog 16 0/1
MUX (used with a
B243 Module)

AS-B281-001 Thermocouple 10 10/0
Module

AS-B283-001 RTD Input 8 8/0
Module

GM--0984--SYS984 I/O Subsystems44

3.9 500 Series I/O Modules

500 Series I/O modules may be used at remote I/O drops in conjunction with any
chassis mount, slot mount, or host based 984 controller; they cannot be used at
local drops. The 500 Series provides discrete in, discrete out, and special pur-
pose I/O modules.

3.9.1 500 Series Discrete Input Modules

Voltage Number Number
Model Range of Inputs per Common

AS-B531-001 5...28VDC 4 (Latched) 2
AS-B551-001 115VAC 4 Separate Commons
AS-B553-001 9...56VDC 4 (True High) 2
AS-B557-001 5VDC (TTL) 4 2
AS-B559-001 9...56VDC 4 (True Low) 2

(Current Sink)
AS-B561-001 90...150VDC 4 Separate Commons
AS-B565-001 18..30VAC 4 Separate Commons
AS-B569-001 30...60VAC 4 Separate Commons
AS-B583-001 Proximity 8 2

Switch (Intrinsically Safe)

3.9.2 500 Series Discrete Output Modules

Voltage Number Number
Model Range of Outputs per Common

AS-B550-001 115VAC 4 2
AS-B552-001 9...56VDC 4 2
AS-B554-001 220VAC 4 2
AS-B556-001 5VDC (TTL) 4 2
AS-B558-001 9...56VDC 4 2

(Current Sink)
AS-B560-001 90...150VDC 4 Separate Commons
AS-B564-001 20..60VAC 4 2
AS-B592-001 115VAC 4 Separate Commons

(Reed Relay, NO)
AS-B596-001 115VAC 4 Separate Commons

(Reed Relay, NC)

GM--0984--SYS 984 I/O Subsystems 45

3.9.3 500 Series Special Purpose I/O Modules

Number
Model Description of Inputs Words(I/O)

AS-B570-001 Output Register MUX 16 0/8 0r 0/16
(16 three-digit,
Latch-on-High LEDs)

AS-B571-001 Input Register MUX 16 8/0 or 16/0
(16 three-digit, 9’s
complement Thumbwheels)

AS-B572-001 D/A Converter 2 0/2
0...10V

AS-B581-001 Absolute Encoder 12 bits 1/0
Module

GM--0984--SYS984 I/O Subsystems46

3.10 A120 Series I/O Modules

A120 Series I/O modules are used as local I/O with the -120, -130, and -145 Com-
pact 984 Controllers; they cannot be used in remote I/O configurations. The A120
Series provides discrete in, discrete out, analog in, analog out, and special pur-
pose I/O modules.

3.10.1 A120 Discrete Input Modules

Voltage Disc. Power Draw Opto-isolation
Model Range Ins Internal (5 V) from I/O Bus

AS-BDEP-208 230 VAC 8 < 50 mA Yes
AS-BDEP-209 120 VAC 8 < 30 mA Yes
AS-BDEP-216 120 VAC 16 < 15 mA Yes
AS-BDEO-216 24 VDC 16 < 15 mA No
AS-BDEP-220 24 VDC 16 < 15 mA Yes

3.10.2 A120 Discrete Output Modules

Voltage Power Draw Opto-isolation
Model Range Outs Internal (5V) External (24 V) from I/O Bus

AS-BDAP-204 24 VDC or 4 relays < 25 mA < 150 mA Yes
220 VAC

AS-BDAP-208 24 VDC or 8 relays < 60 mA < 150 mA Yes
220 VAC

AS-BDAP-209 120 VAC 8 disc < 88 mA Yes

AS-BDAP-216 24 VDC 16 disc < 50 mA Yes

3.10.3 A120 Combo Modules

Voltage Ins/ Power Draw Opto-isolation
Model Range Outs Internal (5 V) External (24 V) from I/O Bus

AS-BDAP-212 24 VDC 8 disc/ < 25 mA < 150 mA Yes
4 relays

AS-BDAP-220 24 VDC 8 disc/ < 25 mA Yes
8 disc

GM--0984--SYS 984 I/O Subsystems 47

3.10.4 A120 Analog Input Modules

Application Range Analog Power Draw Opto-isolation
Model (Recommended) Ins Internal (5 V) from I/O Bus

AS-BADU-204 --500 mV ... +500 mV 4 < 30 mA No
Pt 100 RTD

AS-BADU-205 --10 V ... +10 V or 4 < 30 mA No
--20 mA ... +20 mA

3.10.5 A120 Analog Output Module

Application Range Analog Power Draw Opto-isolation
Model (Recommended) Outs Internal External from I/O Bus

AS-BDAU-202 --10 V ... +10 V or 2 < 60 mA < 150 mA Yes
--20 mA ... +20 mA

3.10.6 A120 Special Purpose Module

Voltage Power Draw Opto-isolation
Model Application Range Internal (5 V) External (24 V) from I/O Bus

AS-BZAE-201 Positioner or 24 VDC <100 mA < 30 mA Yes
Counter

GM--0984--SYS984 I/O Subsystems48

3.11 300 Series I/O Modules

300 Series I/O modules are used in conjunction with the Micro-984 Controller.
The 300 Series provides discrete in, discrete out, analog, and BCD register I/O
modules.

3.11.1 300 Series Discrete Input Modules

Voltage Number
Model Range of Inputs

AS-B351-001 115VAC 8
AS-B353-001 24VDC (True Low) 8
AS-B355-001 220VAC 8
AS-B357-001 24VDC (True High) 8
AS-B359-001 24VAC 8

3.11.2 300 Series Discrete Output Modules

Voltage Number
Model Range of Outputs

AS-B350-001 115VAC 8
AS-B352-001 24VDC (True Low) 8
AS-B354-001 220VAC 8
AS-B356-001 24VDC (True High) 8
AS-B358-001 24VAC 8
AS-B360-001 Dry Contact (Relay, NO) 6
AS-B360-002 Dry Contact (Relay, NC) 6

GM--0984--SYS 984 I/O Subsystems 49

3.11.3 300 Series Analog I/O Modules

Application
Model Range Words(I/O)

AS-B373-001 0...10VDC 2/0
AS-B374-001 1...5VDC/4...20mA 0/2
AS-B375-001 1...5VDC/4...20mA 2/0

3.11.4 300 Series BCD Register I/O Modules

Application
Model Range Words(I/O)

AS-B370-001 0...5VDC; 3 digits 0/2
AS-B371-001 0...5VDC; 3 digits 2/0

GM--0984--SYS 984 Communications Capabilities 51

Chapter 4
984 Communications
Capabilities

Modbus Capabilities

Modbus Port Pinouts for the P230 Programming Panel

Modbus Port Pinouts for the P190 Programming Panel

Modbus Port Pinouts for an IBM-XT

A Modbus Network

A Modbus Plus Network

Bridging Modbus Plus Networks

A Modbus II Network

Distributed Control Processing

Network Topology Overview

GM--0984--SYS984 Communications Capabilities52

4.1 Modbus Capabilities

A Modbus communications capability is resident in all chassis mount, slot mount,
and micro 984 controllers. Modbus may be used as the connection for a host de-
vice such as a programming panel or data access panel or as the port to a multi-
controller master-slave network where a single master device can initiate commu-
nications with up to 247 slave nodes.

4.1.1 The Modbus Port Parameters

All chassis mount, slot mount, and micro controllers provide at least one Modbus
port as a serial communications capability. The communication parameters for
your Modbus port(s) may be set by switches on the controller or via the panel soft-
ware, depending on your controller type. There are three communication parame-
ters:

Communication mode—the protocol, or bit structure, of the message transmis-
sions; either ASCII or RTU (Remote Terminal Unit)

Baud—the data transmission speed, measured in bits/s

Parity—a method of verifying the accuracy of a data transmission, using an ad-
ditional bit in the message to make the sum of the 1 bits EVEN or ODD

4.1.1.1 Communication Modes
In ASCII mode, a Modbus port handles messages composed of bytes containing
one start bit, seven data bits, one parity bit, and two stop bits:

logic 1

logic 0

start
bit

stop

1

stop

2

parity

bit
1 2 3 4 5 6 7

data bits
ASCII Mode

GM--0984--SYS 984 Communications Capabilities 53

ASCII mode uses a restricted character set and character-based message fram-
ing, and may be used for communicating with computers, operating systems,
packet networks, or other networking devices that may restrict the message con-
tent or timing.

In RTU mode, a Modbus port handles messages composed of bytes containing
eight data bits and either one parity bit and one stop bit or no parity bit and two
stop bits:

logic 1

logic 0

start
bit

stop

bit

parity

bit
1 2 3 4 5 6 7

data bits
RTU Mode

8

RTU mode packs data bits more compactly in order to increase speed.

GM--0984--SYS984 Communications Capabilities54

4.2 Modbus Port Pinouts for the P230
Programming Panel

The chassis mount controllers provide one or more 25-pin Modbus ports, and the
other controllers provide nine-pin ports. Here are the pinouts for for the P230
Panel with these ports. (The same pinouts apply to an IBM-AT Personal
Computer and to a FactoryMate Plus Operator Panel.):

9-Pin Female
P230

25-Pin Male
984

CD

RX

TX

DTR

GROUND

DSR

RTS

CTS

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

20

SHIELD

TX

RX

RTS

CTS

DSR

GROUND

DTR
8 CD

9-Pin Female
P230

9-Pin Male
984

NC

RX

TX

DTR

GROUND

DSR

RTS

CTS

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

9

SHIELD

TX

RX

DTR

GROUND

DSR

RTS

NC
8 CTS

P230 to Modbus Pinouts

TX: transmitted data DSR: data set ready CTS: clear to send
RX: received data DTR: data terminal ready NC: no connection
RTS: request to send CD: carrier detect

GM--0984--SYS 984 Communications Capabilities 55

4.3 Modbus Port Pinouts for the P190
Programming Panel

Here are the Modbus port pinouts for the P190 Programming Panel:

25-Pin Male
P190

25-Pin Male
984

SHIELD

TX

RX

RTS

CTS

DSR

GROUND

CD

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

20

SHIELD

TX

RX

RTS

CTS

DSR

GROUND

DTR
8 CD

25-Pin Male
P190

9-Pin Male
984

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

9

SHIELD

TX

RX

DTR

GROUND

DSR

RTS

NC
8 CTS

20DTR

SHIELD

TX

RX

RTS

CTS

DSR

GROUND

NC
20DTR

P190 to Modbus Pinouts

GM--0984--SYS984 Communications Capabilities56

4.4 Modbus Port Pinouts for an IBM-XT

Here are the Modbus port pinouts for an IBM-XT Personal Computer:

25-Pin Female
IBM-XT

25-Pin Male
984

SHIELD

TX

RX

RTS

CTS

DSR

GROUND

CD

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

20

SHIELD

TX

RX

RTS

CTS

DSR

GROUND

DTR
8 CD

25-Pin Female
IBM-XT

9-Pin Male
984

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

9

SHIELD

TX

RX

DTR

GROUND

DSR

RTS

NC
8 CTS

20DTR

SHIELD

TX

RX

RTS

CTS

DSR

GROUND

NC
20DTR

IBM-XT to Modbus Pinouts

GM--0984--SYS 984 Communications Capabilities 57

4.5 Modbus Port Pinouts for a Modicon
Comm Modem

Here are the Modbus port pinouts for the J478/S978 Modicon Modems:

25-Pin Male
J478/S978

25-Pin Male
984

SHIELD

TX

RX

RTS

CTS

DSR

GROUND

CD

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

20

SHIELD

TX

RX

RTS

CTS

DSR

GROUND

DTR
8 CD

25-Pin Male
J478/S978

9-Pin Male
984

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

9

SHIELD

TX

RX

DTR

GROUND

DSR

RTS

NC
8 CTS

20DTR

SHIELD

TX

RX

RTS

CTS

DSR

GROUND

NC
20DTR

Comm Modem to Modbus Pinouts

GM--0984--SYS984 Communications Capabilities58

4.6 A Modbus Network

A Modbus network is a master-slave network, and all communications are initiated
by a single Modbus master device. The master device requires a modem such as
the J478—which transforms digital data into an FM analog signal—and the net-
work slave controllers each require a receptor modem such as a J878, a S978, or
another J478 to demodulate FM to digital.

4.6.1 Network Capacity

A Modbus network has one master device that originates all communications to
as many as 247 slave nodes throughout the plant (or in remote locations)—the to-
tal number of nodes supported depends on the communications equipment used.
A Modicon J478 master modem, for example, may support up to 32 slaves over a
twisted-pair cable network. Additional J478s may be used as repeaters to extend
the number of slave nodes on the network beyond 32.

4.6.2 Communication Media

Slave nodes may be linked via four-wire twisted-pair cable in a local installation up
to 15,000 ft (4572 m) long. They may also be linked via common carrier (phone
line, radio, microwave) over remote distances or linked locally via other dedicated
lines. A well-defined set of network guidelines is available for systems that use
Modicon modems and Belden 8777 twisted-pair cable (see Modbus System
Planning User’s Manual, ML-MBUS-PLN). The requirements for other arrange-
ments depend on the type of commercial facilities selected.

4.6.3 Communication Parameters

All communications on a Modbus network are initiated by the Modbus master.
The master device may be a host computer, a dedicated programming panel such
as a P190, or a Modicon programmable controller with ASCII (RIO) communica-
tion capability. Communications may be of the query↔response type—where the
master addresses only one slave—or of the broadcast↔no response type—
where the master simultaneously addresses all slaves.

GM--0984--SYS 984 Communications Capabilities 59

Commonly used functions over the Modbus network are READ coil status (0x),
READ input status (1x), READ/WRIT holding register (4x), READ input register
(3x), and FORCE coil ON or OFF.

A library of C functions is available from Modicon—Modcom IIC, SW-APPD-IDC.
It allows you to design custom Modbus applications.

The master communicates at a set baud to all slaves on the network. The Mod-
bus ports on all slave devices must be set to a uniform set of communication pa-
rameters—this means that if some controllers have a more limited selection of
bauds, the entire network is constrained to those selections.

GM--0984--SYS984 Communications Capabilities60

4.7 A Modbus Plus Network

Modbus Plus is a local area network that allows host computers, programmable
controllers, and other data sources to communicate as peers throughout an indus-
trial plant via twisted-pair cable. A Modbus Plus network operates at a data trans-
fer rate of one million bits/s.

Modbus Plus networks may be used for

Data transfer between controllers

Data transfer between controllers and host computers

Programming of controllers

Uploading/downloading and archiving of application programs from a host

4.7.1 Network Capacity

The network comprises one or more communication links; one comm link may
support up to 32 peer devices (nodes); by using an RR85 Repeater, you can join
two links to support up to a maximum of 64 Modbus Plus nodes on a network.
One communication link may be up to 1500 ft (450 m) long. Additional repeaters
(up to three between any two nodes) may be used to extend the network dis-
tance—the maximum cable length between any two nodes is 6000 ft (1800 m) in a
linear configuration. (The minimum cable length between nodes is 10 ft.)

RR85
Repeater

6000 ft (1800 m), 64 Nodes per Network Max.

End
Node

End
Node

32 Nodes
per Link Max.

RR85
Repeater

RR85
Repeater

Maximum Linear Configuration in a Modbus Plus Network

GM--0984--SYS 984 Communications Capabilities 61

Each node on the network must be assigned a unique address in the range 1 ...
64; the address is generally set via a special DIP switch located on the controller
(or on the Modbus Plus Adaptor card inserted in a host computer). Repeaters do
not use addresses on the network.

4.7.2 The Logical Network

Nodes on a Modbus Plus network function as peer members of a logical ring,
gaining access to the network upon receipt of a token frame. When a node holds
a token, it can initiate message transactions with selected destinations—mes-
sages may be addressed to any node on the network. The vehicle for initiating a
message is the MSTR instruction, an instruction that is standard on 984 control-
lers that support Modbus Plus. With the MSTR block, you define source and des-
tination routing information for each message.

4.7.3 The Physical Network

The network medium is two-wire twisted-pair shielded cable, laid out in a sequen-
tial multidrop path directly between successive nodes. Use Belden type 9841
cable, available from Modicon in rolls of 100 ft (97-9841-100), 500 ft
(97-9841-500), and 1000 ft (97-9841-01K). Taps and splitters are not allowed.

A connector is attached to the cable at each node site and is plugged into a 9-pin
Modbus Plus port on each node. Use AS-MBKT-185 terminating connectors at
the two ends of a link, and AS-MBKT-085 inline connectors at all other node sites.
These connectors are available from Modicon.

4.7.4 Adding and Deleting Nodes from the Network

If your 984 controller is a new or replacement node device on an active Modbus
Plus network, you do not need to disable other devices on the network in order to
install the new device. Simply disconnect the local drop cable and reconnect it—
do not power down the other nodes. The network protocol automatically by-
passes a node when it is removed and includes it when it is reconnected. Con-
nectors are built with internal termination resistors and do not have to be

GM--0984--SYS984 Communications Capabilities62

connected to a device. You should cover its pins to prevent damage and contami-
nation.

GM--0984--SYS 984 Communications Capabilities 63

4.8 Joining Modbus Plus Networks

For applications requiring a large number of nodes, you can use the BP85 Bridge
Plus device to join multiple Modbus Plus networks. The BP85 has two port con-
nectors and two sets of address switches and is connected as a node on two
Modbus Plus networks. The Bridge operates as an independent node on each
network, receiving and passing tokens according to each network’s address se-
quence.

Network A (Up to 64 Nodes)

Network B (Up to 64 Nodes)

Node 5

Node 20

Node 15

Node 10

BP85

Node Node

Node

Node

NodeBP85

= Terminating Connector
= Inline Connector

The illustration on the following page shows an example of a Modbus Plus system
topology.

The Bridge Plus provides the benefit of faster communications on individual net-
works. Each network maintains faster communication between devices for
time-critical control applications, while the bridge facilitates intercommunication
between two networks.

2

Host Computer

984--785 Controller
used
as the Cell Manager

Bridge
Plus

FactoryMate Plus
MMI w SA85

= Terminating Connector

= Inline Connector

Using Modbus Plus Networks in a Multi--Cell Manufacturing Area

Bridge

MUX

IBM--AT w SA85

984--785 Controller
used
as the Cell Manager

Bridge
Plus

Modbus

Modbus Plus

984--385 Controllers at
Individual Cell Stations

984--385 Controllers at
Individual Cell Stations

984--385 Controllers at
Individual Cell Stations

984--385 Controllers at
Individual Cell Stations

Station
#1

Station
#3

Station
#5

Station
#1

Station
#3

Station
#5

Station
#2

Station
#4

Station
#2

Station
#4

PS/2 w SM85

GM--0984--SYS 984 Communications Capabilities 65

4.9 A Modbus II Network

For communication-intensive and time-critical applications, the Modbus II option
delivers highly reliable real-time response. It operates at 5 Mbits/s and supports
up to 50 nodes. Modbus II is a peer-to-peer network.

A Modbus II network may be used for

Data transfer between controllers

Data transfer between controllers and host computers

Programming of controllers

Uploading/downloading and archiving of application programs from a host

Modbus II communications are conducted over the same type of cable media
used in MAP networks.

4.9.1 Modbus II Software

Modbus II network applications are programmed using two loadable instructions—
MBUS and PEER. MBUS allows your application to read or write registers or dis-
cretes across the network. PEER allows you to write registers simultaneously to
as many as 16 nodes on the network, providing rapid updating of common appli-
cation and process values.

Any node on the network may initiate data transfers across the network using
these two instructions. CRC-32 error checking diagnostics automatically assure
you of reliable data transfer.

1

A Modbus II Network

FactoryMate Plus
MMI w SA75

984B w S975--100 modiule

FactoryMate Plus
MMI w SA75

Self--terminating
F Adapter

Trunk Cable
Terminator

Self--terminating
F Adapter

Self--terminating
F Adapter

Self--terminating
F Adapter

Self--terminating
F Adapter

4--portTap* 2--portTap*

Trunk Cable
Terminator

4--portTap*

* Multiport taps may be installed at each drop, with
additional ports for future device expansion at the
drops. A tap port terminator is used at each

currently unused port.

984--780 Controllers w S975--820 Modules

GM--0984--SYS 984 Communications Capabilities 67

4.10 Distributed Control Processing

You can establish a distributed control processing capability using an
AS-D908-1x0 module in an S908 style of remote I/O communication system. The
D908 provides the interface to the high speed (1.5 Mbits/s) communication link. A
distributed architecture provides a tightly integrated system that transfers data and
control information between the supervisor and the distributed controllers for inter-
locking and data collection.

A D908 module plugs into an option slot in a distributed 984-68x or -78x Control-
ler. It communicates over the coaxial link with an S908 (or S929) RIO Processor
in the supervisor. Up to 32 distributed controllers may be linked to the supervisory
controller, depending on that supervisor’s RIO capabilities.

Supervisory 984
(with S908 RIOP)

800 Se-
ries
I/O

Distributed 984
(with D908-120)

800 Se-
ries
I/O

Distributed 984
(with D908-120)

800 Se-
ries
I/O

Distributed 984
(with D908-120)

800 Se-
ries
I/O

Remote I/O Drop
(with P810 & J890)

The supervisory controller sees the distributed controller as a J890 I/O drop with
input and output addresses Traffic Copped to it. A special D908 Traffic Cop
screen is used in the panel software.

GM--0984--SYS984 Communications Capabilities68

Distributed processing means that system control development can be broken up
into smaller programs at individual distributed stations while the supervisor con-
trols the interlocking and collects the process information. Smaller programs
mean better throughput and easier troubleshooting.

4.10.1 Distributed Control Applications

Distributed processing systems are well suited to transfer line control and material
handling applications. In certain cell applications, a supervisory 984 controller
with a C986 Coprocessor can act as the cell controller, doing data collection, data
logging, and program uploading/downloading and archiving; when process
changes are required, new data can be downloaded via the D908s to quickly
change parameters and resume production:

Supervisory 984 (with
S908 and C986 Copro)

Distributed 984
(with D908-110)

Mass Storage
Device Distributed 984

(with D908-110)
Distributed 984
(with D908-110)

Program Upload/Download Network

RIO Network

GM--0984--SYS 984 Communications Capabilities 69

4.11 Network Topology Overview

The illustration on the following page shows, in simplified form, how multiple net-
works types may be interconnected in a 984 control system. It shows networked
hierarchy for controlling a material handling environment.

A D908-based distributed processing is used to link a string of 984-680 Control-
lers at pick locations along with a standard drop of 800 Series I/O for high speed
sorting.

Above the distributed network in the control hierarchy is a Modbus Plus network
used for data acquisition and management. It Modbus Plus bridge MUX links the
Modbus Plus network via a Modbus interface to the host computer that resides at
the top of the control hierarchy.

3

Using Multiple Networks In a Material Handling Environment

Host Computer

FactoryMate Plus
MMI w SA85

Bridge

MUX

Modbus

Modbus Plus

Modbus Plus—Used for Data Acquisition and Management

D908 Distributed Control—Used for Application Control

Pick Location #1 Pick Location #2

984B with S985 MBPL Adaptor
and S908 Remote I/O Processor
Controlling a High Speed Sorter

984--680s with
D908
Distributed Control
Processors at each
Pick Location Pick Location #3

J890 Remote I/O
Drop with P810 P/S
and 800 Series I/O for
High Speed Sorting

IBM--AT w SA85PS/2 w SM85

GM--0984--SYS 984 Memory Allocation 71

Chapter 5
984 Memory Allocation

User Memory

State RAM

How the System Protects Volatile Memory

The Configuration Table

The Traffic Cop Table

Loadable Function Storage

User Logic

Executive Firmware

GM--0984--SYS984 Memory Allocation72

5.1 User Memory

User memory is the space provided in the controller for your logic program and for
system overhead. Optional user memory sizes varying from 1.5K ... 64K words
are available, depending on controller type and model. Each word in user
memory is stored on page 0 in the controller’s memory structure; words may be
either 16 or 24 bits long, depending on the controller’s CPU size.

User Application Program

CKSM Diagnostics
Configuration Table
Loadables
Traffic Cop
Segment Scheduler
(129 words)
STAT Block Tables
(up to 277 words)
System Diagnostics

page 0

Overhead

User
Logic

Approximately

888 Words

5.1.1 System Overhead

System overhead comprises a set of tables that define the system’s size, struc-
ture, and status. Some tables in system overhead have a predetermined amount
of memory space allocated to them—for example, the configuration table always
contains 128 words and the order-of-solve table (or segment scheduler) always
contains 129 words. Other tables, such as the traffic cop, may consume a large
but nonpredetermined amount of memory. Optional pieces of system overhead,
such as a loadables table, may or may not consume memory depending on the
requirements of your application.

GM--0984--SYS 984 Memory Allocation 73

5.1.2 User Logic

The amount of space available for application logic is calculated by subtracting
the amount of space consumed by system overhead from the total amount of user
logic. System overhead in a relatively conservative system configuration can be
expected to consume around 1000 words; system configurations with moderate or
large traffic cops will require more overhead.

5.1.3 User Memory Storage

User memory is stored in CMOS RAM. In the event that power is lost, CMOS
RAM is backed up by a long-life (typically 12-month) lithium battery.

Ladder logic requires one word of either 16 bit or 24 bit memory to uniquely
identify each node in an application program. Contacts and coils each occupy
one node, and therefore one word. Function blocks, which usually comprise two
or three nodes, require two or three words, respectively. Other elements that con-
trol program scanning—start of a network (SON), beginning of a column (BOC),
and horizontal shorts—use one word of user logic memory as well. (A vertical
short does not use any user logic memory words.)

SON

BOC BOC BOC

SON = 1

BOC = 3

= 3

= 1

8 words

GM--0984--SYS984 Memory Allocation74

5.2 State RAM Values

As part of the 984 configuration process (using the Configurator editor in the panel
software), you will specify a certain number of discrete outputs (or coils), discrete
inputs, input registers, and holding registers available for application control.
These inputs and outputs are placed in a table of 16-bit words in an area of sys-
tem memory called state RAM.

5.2.1 A Referencing System for Inputs and Outputs

The system displays the various types of inputs and outputs using a reference
numbering system. Each reference number has a leading digit that identifies its
data type followed by a string of digits that defines it unique location in state RAM:

0x A discrete output (or coil). It can be used to drive a real
output through an output module or to set one or more in-
ternal coils in State RAM. A specific 0x reference may be
used only once as a coil in a logic program; its status may
be used multiple times to drive contacts.

1x A discrete input. Its ON/OFF status is controlled by an in-
put module. It can be used to drive contacts in the logic
program.

3x An input register. This register holds numerical inputs from
an external source—for example, a thumbwheel entry, an
analog signal, or data from a high speed counter. A 3x reg-
ister can hold 16 consecutive discrete signals, which may
be entered into the register in either binary or binary coded
decimal (BCD) format.

4x An output (holding) register. It may be used to store nu-
merical (decimal or binary) information in State RAM or to
send the information to an output module.

6x Used to store binary information in extended memory
area—available only in the 984B Controller (see Chap-
ter 16).

GM--0984--SYS 984 Memory Allocation 75

5.2.2 How Discrete and Register Data Are Stored in State
RAM

State RAM data are always 16 bit words and are stored on page F in System
Memory. The state RAM table is followed immediately by a discrete history table
that stores the state of the bits at the end of the previous scan, and by a table of
the current ENABLE/DISABLE status of all the discrete (0x and 1x) values in state
RAM.

16 bits

ENABLE/DISABLE Tables
Discrete History Tables
4x History Table

State RAM

page F

EOL Pointers
Crash Codes
Executive ID
Executive Rev #

0000

Each 0x or 1x value implemented in user logic is represented by one bit in a word
in state RAM, by a bit in a word in the history table, and by a bit in a word in the
DISABLE table. In other words, for every discrete word in the state RAM table
there is one corresponding word in the history table and one corresponding word
in the DISABLE table.

Counter input states for the previous scan are represented on page F in an
upcounter/downcounter history table. Each counter register is represented by a
single bit in a word in the table; a value of 1 indicates that the top input was ON in
the last scan, and a value of 0 indicates that the top input was OFF in the last
scan.

GM--0984--SYS984 Memory Allocation76

5.3 State RAM Structure

Words are entered into the state RAM table from the top down in the following
order:

0x

1x

3x

4x

Always begins on a 16-word
boundary

Always begins on a 16-word
boundary

0x + n

1x + n

3x + n

4x + n

..

.

..

.

..

.

..

.

Word 0001

Word 2048

Coil History
..
.

Up/Downcounter History
..
.

Discrete DISABLE

The discrete words come first in the top-down entry procedure, first the 0x words
followed immediately by the 1x words. The register values follow; the blocks of 3x
and 4x register values must each begin at a word that is a multiple of 16. For ex-
ample, if you allocate five words for eighty 0x references and five words for eighty
1x references (5 words x 16 bits/word = 80), you have used words 0001 ... 0010.
Words 0011 ... 0016 are then left empty so that the first 3x reference begins at
word 0017.

GM--0984--SYS 984 Memory Allocation 77

5.3.1 The Required Minimum State RAM Values

In a minimum configuration, you must allocate:

48 0x discrete references—three words (in MODSOFT);
16 0x discrete references—one word (in P190/P190 emulation software)

16 1x discrete references—at least one word

One 3x register reference—one word

Three 4x register references—three words (in MODSOFT);
One 4x register reference—one word (in P190/P190 emulation software)

5.3.2 Storing History and Disable Bits for Discrete Values

For each discrete word allocated in state RAM, two words are allocated in the his-
tory/disable tables, which follow the state RAM table on page F in system
memory. The history/disable tables are generated from the bottom up in the fol-
lowing manner:

Input DISABLE Bits

Output DISABLE Bits

Input History Bits

Output History Bits

Word 0001

Word 2048
..
.

..

.

..

.

..

.

GM--0984--SYS984 Memory Allocation78

5.4 The Configuration Table

The configuration table is one of the key pieces of overhead contained in system
memory. It comprises 128 consecutive words and provides a means of accessing
information defining your control system capabilities and your user logic program.

With your programming panel software, you can access the configurator editor,
which allows you to specify the configuration parameters—such as those shown
on the following page—for your control system.

Caution When you make a change in an existing 984 configura-
tion table and write the change to system memory, you may erase
your ladder logic, traffic cop, and ASCII message table. This may
occur if you change the number of:

• Discrete inputs
• Discrete outputs
• Input registers
• Holding registers
• I/O drops
• I/O modules
• Logic segments
• Modbus ports
• ASCII messages
• Total ASCII message words

Back up your application program and ASCII messages before
writing the new configuration information. Reenter your traffic
cop, then relocate the backed up logic and ASCII message table
to the newly configured system memory.

When a controller’s memory is empty—in a state called DIM AWARENESS—you
are not able to write a traffic cop or a user logic program. Therefore, the first pro-
gramming task you must undertake with a new controller is to write a valid config-
uration table using your configurator editor.

GM--0984--SYS 984 Memory Allocation 79

5.4.1 Assigning a Battery Coil

A 0x coil can be set aside in the configuration to reflect the current status of the
controller’s battery backup system. If this coil has been set and is queried, it dis-
plays a discrete value of either 0, indicating that the battery system is healthy, or
1, indicating that the battery system is not healthy.

5.4.2 Assigning a Timer Register

A 4x register can be set aside in the configuration as a synchronization timer. It
stores a count of clock cycles in 10 ms increments. If this register is set and
queried, it displays a free-running value that ranges from 0000 to FFFF hex with
wrap-around to 0000.

Note If you are doing explicit address routing in bridge mode on a
Modbus Plus network, the location of the explicit address table in the
configuration is dependent on the timer register address—i.e., a timer
register must be assigned in order to create the explicit address table.
The explicit address table can consist of from 0 ... 10 blocks, each
block containing five consecutive 4x registers. The address of first
block in the explicit address table begins with the 4x register immedi-
ately following the address assigned to the timer register. Therefore,
when you assign the timer register, you must choose a 4x register ad-
dress that has the next 5 ... 50 registers free for this kind of applica-
tion.

5.4.3 The Time of Day Clock

When a 4x holding register assignment is made in the configurator for the time of
day (TOD) clock, that register and the next seven consecutive registers (4x ...
4x + 7) are set aside in the configuration to store TOD information. The block of
registers is implemented as follows:

GM--0984--SYS984 Memory Allocation80

4x The control register:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 = error
1 = all clock values have been set

1 = clock values are being read
1 = clock values are being set

Not used

4x + 1 Day of the week (Sunday = 1, Monday = 2, etc.)
4x + 2 Month of the year (Jan. = 1, Feb. = 2, etc.)
4x + 3 Day of the month (1 ... 31)
4x + 4 Year (00 ... 99)
4x + 5 Hour in military time (0 ... 23)
4x + 6 Minute (0 ... 59)
4x + 7 Second (0 ... 59)

For example, if you configured register 40500 for your TOD clock, set the bits ap-
propriately as shown above, then read the clock values at 9:25:30 on Tuesday,
July 16, 1991, the register values displayed in decimal format would read:

40500 0110000000000000

40501 3 Dec

40502 7 Dec

50503 16 Dec

40504 91 Dec

40505 9 Dec

40506 25 Dec

40507 30 Dec

Configuration Data Overview

Data Default Notes and
Type Format Setting Exceptions

Configuration Size

of coils Even multiple of 16 16
of discrete inputs Even multiple of 16 16
of register outputs 01
of register inputs 01
of I/O drops Up to 32, depending on controller type 01 Used only when I/O is configured in drops.
of I/O modules Up to 1024, depending on controller type 00 Not displayed by editor; used by system to

calculate Traffic Cop words.
of logic segments Generally equal to # of drops 00 Add one additional segment for subroutines.
of I/O channels Even number from 02 ... 32 02 Used only when I/O is configured in channels.
Memory size 32K or 64K 32K 64K can be used only on a 984B Controller.

Modbus (RS--232C) Port Parameters

Communication mode ASCII or RTU RTU
Baud rate 50, 75, 110, 134.5, 150, 300, 600,

1200, 1800, 2000, 2400, 3600, 4800,
7200, 9600, 19200 9600

Parity ON/OFF; EVEN/ODD ON/EVEN
Stop bit(s) 1 or 2 2
Device addresss 001--247 001
Delay time (in ms) 01--20 (representing 10--200 ms) 01 (10 ms)

ASCII Message Table

of messages Up to 9999 00 If your controller doesn’t support remote I/O,
Size of message area Decimal > 0 < difference between mem-- it cannot support ASCII devices.

ory size (32K or 64K) and sys. overhead
(1 word = 2 ASCII characters) 00

of ASCII ports Two per drop, up to 32 00
ASCII port parameters Baud rate 1200

Parity ON/EVEN
of stop bits 01
of data bits per character 08
Presence of a keyboard NONE

Simple ASCII input A 4x value representing the first Only a 984B Controller supports simple
of 32 registers for simple ASCII input NONE ASCII input.

Simple ASCII output A 4x value representing the first Only 984A and 984B Controllers support
of 32 registers for simple ASCII output NONE simple ASCII output.

Special Functions

SKIP functions allowed YES/NO NO
Battery coil A 0x reference reflecting the Once a battery coils is placed in a Configura--

status of battery backup system 00000 tion Table, it cannot be removed.
Timer register A 4x register set aside to hold

a number of 10 ms clock cycles NONE
TOD clock A 4x register, the first of eight

reserved for time--of--day values NONE

Loadables Instructions

Install loadable PROCEED or CANCEL Various 984 controllers support different kinds
Delete loadable(s) DELETE ALL, DELETE ONE, CANCEL of loadable instruction sets. Make sure that

your loadables and controller are compatible.

Writing Configurator Data to System Memory

Write data as specified PROCEED or CANCEL NONE PROCEED will overwrite any previous
Configuration Table data.

GM--0984--SYS984 Memory Allocation82

5.5 The Traffic Cop Table

Just as a programmable controller needs to be physically linked to I/O modules in
order to become a working control system, the references in user logic need to be
linked in the system architecture to the signals received from the input modules
and sent to the output modules. The traffic cop table provides that link.

5.5.1 Determining the Size of the Traffic Cop Table

The traffic cop directs data flow between the input/output signals and the user log-
ic program; it tells the controller how to implement inputs in user logic and pro-
vides a pathway down which to send signals to the output modules. The traffic
cop table, which is stored on page 0 in system memory, consumes a large but not
predetermined amount of system overhead. Its length is a function of the number
of discrete and register I/O points your system has implemented and is defined by
the type of I/O modules you specify in the configuration table. The minimum al-
lowable size of the traffic cop table is nine words.

5.5.2 Writing Data to the Traffic Cop Table

With your programming panel software, you can access a traffic cop editor that al-
lows you to define:

The number of drops in the 984 I/O system

The number of discretes/registers that may be used for input and output

The number, type, and slot location of the I/O modules in the drop

The reference numbers that link the discretes/registers to the I/O modules

Drop hold-up time for each I/O drop

ASCII port addresses (if used) for any drop

GM--0984--SYS 984 Opcode Assignments 83

Chapter 6
984 Opcode
Assignments

Translating Ladder Logic Elements in the System Memory
Database

Translating DX Functions in the System Memory Database

Opcode Assignments for Other Functions

Extra Opcodes Available in 24 Bit CPUs

GM--0984--SYS984 Opcode Assignments84

6.1 Translating Ladder Logic Elements
in the System Memory Database

A 984 automatically translates symbolic ladder elements and function blocks into
database nodes that are stored on page 0 in system memory. A node in ladder
logic is a 16 or 24 bit word—an element such as a contact translates into one da-
tabase node, while an instruction such as an ADD block translates into three data-
base nodes.

The database format differs for 16 bit and 24 bit nodes:

16 BIT NODE FORMAT

24 BIT NODE FORMAT

x y zx x x x y y y y y y y z z

z z zy y y y y y y y y y y y yx x x x xx x x

The five most significant bits in a 16 bit node and the eight most significant bits in
a 24 bit node—the x bits—are reserved for opcodes. An opcode defines the type
of functional element associated with the node—for example, the code 01000
specifies that the node is a normally open contact, and the code 11010 specifies
that the node is the third of three nodes in a multiplication function block.

6.1.1 Translating Logic Elements and Non-DX Functions

When the system is translating standard ladder logic elements and non-DX func-
tion blocks, it uses the remaining (y and z) bits as pointers to register or bit loca-
tions in State RAM associated with the discretes or registers used in your ladder
logic program.

With a 16 bit node, 11 bits are available as state RAM pointers, giving you a total
addressing capability of 2048 words. The maximum number of configurable regis-
ters in most 16 bit machines is 1920, with the balance occupied by up to 128
words (2048 bits) of discrete reference, disable, and history bits. An exception is
the 984-680/-685 Controllers, which have an extended registers option that sup-
ports 4096 registers in state RAM.

GM--0984--SYS 984 Opcode Assignments 85

With a 24 bit node, 16 bits are available as state RAM pointers. The maximum
number of configurable registers in a 24 bit machine is 9999.

Opcodes are generally expressed by their hex values:

Opcodes for Standard Ladder Logic Elements and Non-DX Instructions

16 Bit Nodes 24 Bit Nodes Ladder Logic
(Binary) (Binary) (Hex) Element/Instruction

00000 00000000 00 Beginning of a column in a network
00001 00000001 01 Beginning of a column in a network
00010 00000010 02 Beginning of a column in a network
00011 00000011 03 Beginning of a column in a network

00100 00000100 04 Start of a network
00101 00000101 05 I/O exchange/End-of-Logic
00110 00000110 06 Null Element
00111 00000111 07 Horizontal short

01000 00001000 08 Normally open contact
01001 00001001 09 Normally closed contact
01010 00001010 0A Positive transitional contact
01011 00001011 0B Negative transitional contact

01100 00001100 0C Nonretentive coil
01101 00001101 0D Retentive coil

01110 00001110 0E Constant quantity skip function
01111 00001111 0F Register quantity skip function

10000 00010000 10 Constant value storage
10001 00010001 11 Register reference
10010 00010010 12 Discrete group reference

10011 00010011 13 Down counter (DCTR) function
10100 00010100 14 Up counter (UCTR) function
10101 00010101 15 One second timer (T1.0) function
10110 00010110 16 0.1 second timer (T0.1) function
10111 00010111 17 0.01 second timer (T.01) function

11000 00011000 18 Add (ADD) math function
11001 00011001 19 Subtract (SUB) math function
11010 00011010 1A Multiply (MULT) math function
11011 00011011 1B Divide (DIV) math function

Note The opcodes for these standard ladder logic elements and in-
structions are hard-coded in the system firmware, and they cannot be
altered.

GM--0984--SYS984 Opcode Assignments86

6.2 Translating DX Functions in the
System Memory Database

6.2.1 How the x and z Bits Are Used in 16 Bit Nodes

When you are using a 16 bit CPU, you are left with only four more x bit combina-
tions—11100, 11101, 11110, and 11111—with which to express opcodes for 18 DX
functions. To gain the necessary bit values, the system uses the three least sig-
nificant (z) bits along with the x bits to express the opcodes:

1 z

1

z z1 1 0 0

1 1 1 0 1 z z z

z z z1 1 1 0

= R→T0 0 0
= T→R0 0 1
= T→T0 1 0

0 1 1 = BLKM
1 0 0 = FIN
1 0 1 = FOUT
1 1 0 = SRCH
1 1 1 = STAT

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

= AND
= OR
= CMPR
= SENS
= MBIT
= COMP
= XOR
= BROT

0 0 0
0 0 1

= READ
= WRIT

16 Bit Node Format for DX Functions

0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

For Loadable Options

GM--0984--SYS 984 Opcode Assignments 87

6.2.2 How the x and z Bits Are Used in 24 Bit Nodes

In the 24 bit CPUs, the three most significant x bits are used to indicate the type of
DX function:

1 z

1

z z1 1 0 0

1 1 1 0 1 z z z

z z z1 1 1 0

= R→T0 0 0
= T→R0 0 1
= T→T0 1 0

0 1 1 = BLKM
1 0 0 = FIN
1 0 1 = FOUT
1 1 0 = SRCH
1 1 1 = STAT

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1

= AND
= OR
= CMPR
= SENS
= MBIT
= COMP
= XOR
= BROT

0 0 0
0 0 1

= READ
= WRIT

24 Bit Node Format for DX Functions

x x x

x x x

x x x

1 1

0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1

0 0 0
0 0 1

1 1

0 0 0
0 0 1

0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

For Loadable Options

0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

The z bits, which simply echo the three most significant x bits, may be ignored in
the 24 bit nodes.

GM--0984--SYS984 Opcode Assignments88

Opcode Representations for Standard 984 DX Functions

Binary Hexadecimal DX Instruction

00011100 1C R→T
00111100 3C T→R
01011100 5C T→T
01111100 7C BLKM
10011100 9C FIN
10111100 BC FOUT
11011100 DC SRCH
11111100 FC STAT
00011101 1D AND
00111101 3D OR
01011101 5D CMPR
01111101 7D SENS
10011101 9D MBIT
10111101 BD COMP
11011101 DD XOR
11111101 FD BROT
00011110 1E READ
00111110 3E WRIT
01111110 7E XMWT*
10011110 9E XMRD*

* XMWT and XMRD are used for extended memory capabilities available only in the
984B chassis mount Controller. They are not installed in other 24 bit controllers.

Note The opcodes for these standard ladder logic elements and in-
structions are hard-coded in the system firmware, and they cannot be
altered.

GM--0984--SYS 984 Opcode Assignments 89

6.2.3 How the y Bits are Utilized for DX Functions

The y bits in a database node holding DX function data contain a binary number
that expresses the number of registers being transferred in the function.

A 16 bit database node has eight y bits. A 16 bit CPU is, therefore, machine lim-
ited to no more than 255 transfer registers per DX operation.

A 24 bit database node has 13 y bits. A 24 bit CPU is, therefore, capable of
reaching a theoretical machine limit of 8191 transfer registers per DX operation;
practically, however, the greatest number of transfer registers allowed in a 24 bit
DX operation is 999.

GM--0984--SYS984 Opcode Assignments90

6.3 Opcode Assignments for Other
Functions

Several 984 controllers have additional instructions in their System Executive.
These instructions use the following opcodes:

Opcode Representations for Other Executive Instructions

Binary Hexadecimal Instruction

01011110 5E PID2
11011110 DE JSR
10111110 BE LAB
11111110 FE RET
01111111 7F EMTH
10011111 9F BLKT
10111111 BF CKSM or MSTR*
11011111 DF TBLK

*MSTR and CKSM share the same opcode and are mutually exclusive EPROM-based in-
structions. MSTR is included in the Executive of any 984 controller that employs Modbus
Plus, and the CKSM instruction is not included on these Executives. CKSM is provided in
several 984 controllers that do not implement Modbus Plus.

Note If your controller contains these additional functions in its Sys-
tem Executive, the opcodes are hard-coded in the system firmware,
and they cannot be altered.

The PID2, BLKT, TBLK, MSTR, and CKSM instructions are also avail-
able as loadable instructions for some 984 controllers (when a control-
ler does not support these functions in any version of its Executive
firmware). The loadable versions of these instructions are assigned
the same opcodes.

Various ladder logic instructions are available only in loadable software packages.
When instructions are loaded to a controller, they are stored in RAM on page 0 in
system memory. They are not resident on the EPROM. The loadable functions
have the following opcodes:

GM--0984--SYS 984 Opcode Assignments 91

Opcode Representations for 984 Loadable Instructions

Binary Hexadecimal Loadable Instruction

11111111 FF HSBY
01011111 5F CALL, FNxx, or EARS (non--chassis mount)
00011111 1F MBUS
00111111 3F PEER
11011110 DE DMTH
10111110 BE MATH or EARS (for chassis mount only)
11111110 FE DRUM
01111111 7F ICMP

Note No two instructions with the same opcode can coexist on a
controller. As you can see, several loadables have conflicting op-
codes. ICMP is also in conflict with EMTH, DMTH is in conflict with
JSR, DRUM is in conflict with RET, and MATH is also in conflict with
LAB.

6.3.1 How to Handle Opcode Conflicts

The easiest way to stay out of trouble is to never employ two loadables with con-
flicting opcodes in your user logic. If you are using MODSOFT panel software, it
allows you to change the opcodes for loadable instructions. The lodutil utility in
the Modicon Custom Loadable Software package (SW-AP98-GDA) also allows
you to change loadable opcodes—this software package is not available for all
984 controllers (see Section 21.1).

Caution If you modify any loadables so that their opcodes are
different from the ones shown in this chapter, you must use cau-
tion when porting user logic to or from your controller. The op-
code conflicts that can result may hang up the target controller or
cause the wrong function blocks to be executed in ladder logic.

Note Remember that no opcodes residing in EPROM firmware can
be modified.

GM--0984--SYS984 Opcode Assignments92

6.4 Extra Opcodes Available in 24 Bit
CPUs

Because the 24 bit CPUs provide eight x bits per node, 28 (256) combinations are
available for opcode assignments. The 984B chassis mount Controller is the ex-
ception—it is design--limited to the x--bit assignments described in Section 6.2.2 in
order to enforce conformance with the 16 bit CPUs. The other 24 bit CPUs—e.g.,
the 984-780/-785, the Q984—can use all opcodes in the hexadecimal range
00 ... FF for loadables and user-defined function blocks.

The matrix on the following page shows how the opcode assignments, indicating
which codes are reserved, which codes may be flexibly assigned in either 16 bit or
24 bit CPUs, and which are available for 24 bit CPUs only:

GM--0984--SYS 984 Opcode Assignments 93

0 1

0

1

2

2

3

3

4

4

5

5

6

6

7

7 8

8

9

9

A

A

B

B C

C

D

D E

E

F

F

= Standard Ladder Logic

and Non--DX Functions
= Combinations Avail-
able
Only to 24 Bit CPUs
(exception: 984B)

= DX Move Instructions

= DX Matrix Instructions

= Assigned or Re-
served
Codes

Note If you assign an opcode to an instruction and that opcode is a
combination available only to a 24 bit CPU, any programs you create
using that instruction cannot be ported to a 16 bit CPU (or to a 984B
Controller).

GM--0984--SYS Ladder Logic Overview 95

Chapter 7
Ladder Logic Overview

The Structure of Ladder Logic

Ladder Logic Elements and Standard Instructions

Additional Ladder Logic Instructions

DX MOVE and DX Matrix Functions

How Ladder Logic Is Solved

Scan Time

How to Measure Scan Time

Maximizing Throughput

The Order of Solve

Using the Segment Scheduler to Improve Critical I/O Throughput

Using the Segment Scheduler to Improve System Performance

Using the Segment Scheduler to Improve Comm Port Servicing

Sweep Functions

GM--0984--SYSLadder Logic Overview96

7.1 The Structure of Ladder Logic

Ladder logic is a highly graphical, easy-to-use programming language that uses
relay-equivalent symbology. Its major structural components are segments, net-
works, and elements.

7.1.1 Ladder Logic Segments

A ladder logic program is a collection of segments. As a rule, the number of seg-
ments equals the number of I/O drops being driven by the controller, although in
many cases there may be more segments than drops (never more drops than
segments). A segment is made up of a group of networks. There is no pre-
scribed limit on the number of networks in a segment—the size is limited only by
the amount of User Memory available and by the maximum amount of time avail-
able for the CPU to scan the logic (250 ms).

You can modify the order in which logic is solved with the segment scheduler, an
editor available with your panel software that allows you to adjust the or-
der-of-solve table in system memory. With some 984 controllers, you may also
create an unscheduled segment that contains one or more ladder logic subrou-
tines, which can be called from the scheduled segments via the JSR function.

7.1.2 Ladder Logic Networks

The networks that comprise the ladder logic segment(s) have a clearly defined
structure. Each network is a small ladder diagram bounded on the left by a power
rail and on the right by a rail which, by convention, is not displayed. Within the
rails, the network holds seven rungs (or rows) and eleven columns.

The 77 intersections of the rungs and columns are called nodes. Logic elements
—contacts, coils, horizontal and vertical shorts—and function block instructions
are inserted in the nodes of a network. Logic elements and instructions, which
are the fundamental building blocks of ladder logic, can occupy the whole 77-node
network area or just a portion of it.

GM--0984--SYS Ladder Logic Overview 97

1 2 3 4 5 6 7 8 9 10 11

7 Rungs
maximum

10 Element columns maximum Coils

Any mix of relays, contacts,
timers, counters, math, or matrix
function blocks

In some panel software programming packages, the seven nodes in the 11th col-
umn are reserved for displaying coils. If your software treats coil usage this way,
then no other logic elements may be displayed in the 11th column, and the re-
maining 70 nodes may not be used for coils.

Although coils may be automatically displayed in the 11th column, they are not al-
ways solved there. The column in which coil 00101 is solved is determined by the
position of its controlling logic:

30101

40101

SUB
40102

00200

UCTR
40005

10033 00101

00102

00103

Coil 00103 is solved immediately after the UCTR function block, and coil 00102 is
solved immediately after the normally open contact (10033). Coil 00101 is the last
coil to be solved in this network.

GM--0984--SYSLadder Logic Overview98

7.2 Ladder Logic Elements and
Standard Instructions

There are six standard one-node ladder logic elements (contacts and coils) in all
984 Controller firmware packages:

Standard One-Node Ladder Logic Elements

Symbol Meaning

-| |- A normally open contact

-|\|- A normally closed contact

-|↑|- A positive transitional contact

-|↓|- A negative transitional contact

A normal coil

L
A latched coil

GM--0984--SYS Ladder Logic Overview 99

There are 26 standard (block) instructions available in all 984 Controller firmware
packages:

Standard Instructions for All 984s

Instruction Meaning

Counter and Timer Instructions (Two-Node Functions)
UCTR Counts up from 0 to a preset value
DCTR Counts down from a preset value to 0
T1.0 Timer that increments in seconds
T0.1 Timer that increments in tenths of a second
T.01 Timer that increments in hundredths of a second

Calculation Instructions (Three-Node Functions)
ADD Adds top node value to middle node value
SUB Subtracts middle node value from top node value
MUL Multiplies top node value by middle node value
DIV Divides top node value by middle node value

DX Move Instructions (Three-Node Functions)
R→T Moves register values to a table
T→R Moves specified table values to a register
T→T Moves a specified set of values from one table to another table
BLKM Moves a specified block of data
FIN First-in operation to a queue
FOUT First-out operation from a queue
SRCH Performs a table search
STAT Displays status registers from status table in system memory

DX Matrix Instructions (Three-Node Functions)
AND Logically ANDs two matrices
OR Does logical inclusive OR of two matrices
XOR Does logical exclusive OR of two matrices
COMP Performs the logical complement of values in a matrix
CMPR Logically compares the values in two matrices
MBIT Logical bit modify
SENS Logical bit sense
BROT Logical bit rotate

Skip-Node Instruction (One-Node Function)
SKP Skips a specified number of networks in a ladder logic program

GM--0984--SYSLadder Logic Overview100

7.3 Additional Ladder Logic Instructions

Some special instructions are standard in some 984 controllers but are unavail-
able in others:

Standard Instructions for Select 984s

Instruction Meaning

ASCII Communication Instructions (Three-Node Functions)
Standard with All 984s that Support Remote I/O Drops

READ Reads data entered at an ASCII device into 984 Memory
WRIT Sends a message from the 984 controller to an ASCII device

Ladder Logic Subroutine Instructions (One- and Two-Node Functions)
Standard with Slot Mount and Micro 984s

JSR Jumps from scheduled logic scan to a ladder logic subroutine
LAB Labels the entry point of a ladder logic subroutine
RET Returns from the subroutine to scheduled logic

Checksum Instruction (Three-Node Function)
Standard on Slot Mount and Micro 984s that Don’t Provide Modbus Plus

CKSM Calculates any of four types of checksum operations (CRC-16,
LRC, straight CKSM, and binary add)

Network Communication Initiation Instruction (Three-Node Function)
Standard with All 984s that Provide Modbus Plus

MSTR* Specifies a function from a menu of networking operations

* The MSTR block is available in the 984A/B/X chassis mount controllers only as a load-
able function, not in firmware.

All standard elements and instructions are stored in the system Executive
firmware.

GM--0984--SYS Ladder Logic Overview 101

Additional instructions are available for some 984 controllers on an Enhanced
Executive PROM:

Enhanced Instructions for Select 984 Controllers

Instruction Meaning

PID Instruction (Three-Node Function)
PID2* Performs a specified proportional-integral-derivative function

Enhanced Math (Three-Node Function)
EMTH Performs 38 math operations, including floating point math oper-

ations and extra integer math operations such as square root

Enhanced DX Move Instructions (Three-Node Functions)
TBLK* Moves a block of data from a table to another specified block area
BLKT* Moves a block of registers to specified locations in a table

* The PID2, TBLK, and BLKT blocks are available in the 984A/B/X chassis mount con-
trollers only as loadable functions, not in firmware.

In controllers that offer these instructions as standard features, the instructions
are stored in the system Executive firmware.

GM--0984--SYSLadder Logic Overview102

7.4 DX MOVE and DX Matrix Functions

7.4.1 MOVE Functions

DX MOVE functions copy 16 bit words of data from one memory area to another.
The copied data can then be operated on, and the original data remain intact.

A group of consecutive 16 bit registers is called a table. The minimum table
length is 1—i.e., one word or one register. The maximum table length depends on
the DX function and on the type of controller (16 or 24 bit CPU).

Groups of 16 discretes can also be placed in tables. The reference number used
is the first discrete in the group, and the other 15 are implied. The number of the
first discrete must be of the first of 16 type—00001, 10001, 00017, 10017, 00033,
10033, ... , etc.

Some DX move functions use a register to indicate which table position the rele-
vant data has been copied from or moved to. This register is called a pointer.
The pointer value must never exceed the table length. Zero is a valid pointer val-
ue, typically indicating that the next operation of the function block will be to copy
data from or read data to the first table position. (See examples in Chapter 11.)

7.4.2 Matrix Functions

A matrix is a sequence of data bits formed by consecutive 16 bit words derived
from tables. DX matrix functions operate on bit patterns within tables.

The minimum table length is 1—i.e., one word or one register. The maximum
table length depends on the DX function and on the type of controller (16 or 24 bit
CPU).

Groups of 16 discretes can also be placed in tables. The reference number used
is the first discrete in the group, and the other 15 are implied. The number of the
first discrete must be of the first of 16 type—00001, 10001, 0017, 10017, 00033,
10033, ... , etc. (See examples in Chapter 12.)

GM--0984--SYS Ladder Logic Overview 103

7.5 How Ladder Logic Is Solved

The controller’s CPU scans the ladder logic program sequentially in this manner:

Segments are scanned according to their arrangement in the order-of-solve
table—i.e., the segment scheduler—in system memory

Networks 01 through nn within each segment are scanned

Nodes within each network are scanned top to bottom, left to right:, in the
following manner:

NETWORK 1

NETWORK 2

NEXT NETWORK

START

The controller begins solving logic within a network at the top of the leftmost col-
umn and proceeds down, then moves to the top of the next column and proceeds
down. Each node is solved in the order it is encountered in the logic scan. Power
flow within the network is always down each column from left to right, never from
bottom to top and never from right to left.

GM--0984--SYSLadder Logic Overview104

7.6 Scan Time

The time it takes a controller to solve a complete ladder logic program and update
all I/O modules is called scan time. Scan time comprises the time it takes the 984
controller to solve all scheduled logic—i.e., logic solve time, service I/O drops, and
perform system overhead—servicing communication ports and option processors,
executing intersegment transfer (IST) and system diagnostics.

7.6.1 Logic Solve Time

Logic solve time is the time it takes to solve a complete logic program, indepen-
dent of the time it takes to service I/O or carry out any system overhead tasks.
Logic solve times are different in different types of 984 controllers—the various
times, measured in ms/Kwords of logic, are given in the chart in Section 1.2.

Segment 1
Logic Networks

Segment 2
Logic Networks

Segment 3
Logic Networks

I
S
T

I
S
T

OVHDI
S
T

Input

Output Output

Input

Output

Input

One Scan

= Logic Solve Time

7.6.2 I/O Servicing

In order to optimize system throughput, the 984 control architecture coordinates
the solution of ladder logic segments by the controller’s CPU with the servicing of
I/O drops by the controller’s I/O processor. Typically a particular logic segment is
coordinated with a particular I/O drop—for example, the logic networks in segment
2 correspond to the real-world I/O points at drop 2. Inputs are read during the pre-
vious segment and outputs are written during the subsequent segment.

This method of I/O servicing assures that the most recent input status is available
for logic solve and that outputs are written as soon as possible after logic solve.

GM--0984--SYS Ladder Logic Overview 105

It ensures predictability between the 984 controller and the process it is control-
ling.

Segment 1
Logic Networks

Segment 2
Logic Networks

Segment 3
Logic Networks

I
S
T

I
S
T

Drop 2
Input

Output Output

Input

Drop 2
Output

Input

One Scan

= Time to Service I/O Drop #2

OVHD
I
S
T

7.6.3 Overhead

An intersegment transfer occurs between each segment, at which time data are
exchanged between the I/O processor and the state RAM—previous inputs are
transferred to state RAM and the next outputs are transferred to the I/O processor.
The logic scan and I/O servicing for each segment are coordinated in this fashion.
Using direct memory access (DMA), ISTs typically take less than 1 ms/segment.

At the end of each scan, input messages to the communication ports (Modbus,
Modbus Plus, Modbus II) are serviced. The maximum time allotted for comm port
servicing is 2.5 ms/scan; typical servicing times are less than 1 ms/scan. If the
controller is using any option processors (C986 Coprocessors or D908 Distributed
Communications Processors), they are also serviced at the end of each scan and
typically require less than 1 ms/scan.

System diagnostics take from 1 ... 2 ms/scan to run, depending on controller type.

GM--0984--SYSLadder Logic Overview106

Segment 1
Logic Networks

Segment 2
Logic Networks

Segment 3
Logic Networks

I
S
T

I
S
T

I
S
T

Drop 2
Input

Drop 3
Output

Drop 1
Output

Drop 3
Input

Drop 2
Output

Drop 1
Input

One Scan

= Overhead Support Time

OVHD

GM--0984--SYS Ladder Logic Overview 107

7.7 How to Measure Scan Time

The following ladder logic circuit may be entered into your program to evalute sys-
tem scan time:

01000

00500

UCTR
40001

00999

T.01
40003

01000

10001

10001

100

DIV

40002

40005

The upcounter counts 1000 scans as it transitions 500 times. When the counter
has transitioned 500 times, the T.01 timer turns OFF and stores the number of
hundredths of seconds it has taken for the counter to transition 500 times (1000
scans) in register 40003.

The value stored in 40002/40003 in the DIV block is then divided by 100 and the
result—which represents logic solve time in ms—is stored in register 40005.

Note 10001 is controlled via a DISABLE or a hard-wired input; if you
are running the program in optimized mode, a hard-wired input is re-
quired to toggle 10001.

GM--0984--SYSLadder Logic Overview108

Note The maximum amount of time allowed for a scan is 250 ms; if
the scan has not completed in that amount of time, a watchdog timer in
the controller’s CPU stops the application and sends a timeout error
message to the programming panel display. The maximum limit on
scan time protects the controller from entering into infinite loops.

GM--0984--SYS Ladder Logic Overview 109

7.8 Maximizing Throughput

The way that the 984 architecture simultaneously solves logic and services I/O
drops optimizes system throughput. Throughput is the time it takes for a signal
received at a field sensing device to be sent as an input to the controller, pro-
cessed in ladder logic, and returned as an output signal to a field working device.
Throughput time may be longer or shorter than a single scan; it gives you a realis-
tic measure of the system’s actual performance.

7.8.1 The Ideal Throughput Situation

If the default order-of-solve table is in place, the system automatically solves the
logic starting at segment 01 and moving sequentially through segment nn.
Throughput is optimized when logic referring to real-world I/O is contained in the
segment that corresponds to that I/O drop.

For instance, if you are using I/O in drop 1 of a three-drop system to control a
pushbutton that starts a motor, the ideal condition is for logic segment 1 to contain
all the appropriate logic:

984 Controller

Drop 1

Drop 2

Drop 3

10001

00001

10001 00001

Segment 1

GM--0984--SYSLadder Logic Overview110

When all logic segments are coordinated with all physical I/O drops in such a
manner, the throughput for a given logic segment can be less than one scan:

Segment 1
Logic Networks

Segment 2
Logic Networks

Segment 3
Logic Networks

I
S
T

I
S
T

I
S
T

Drop 2
Input

Drop 3
Output

Drop 1
Output

Drop 3
Input

Drop 2
Output

Drop 1
Input

Scan 1

OVHD Segment 1
Logic Networks

Drop 2
Input

Drop 3
Output

Scan 2

A B C D
Throughput

E

The illustration above shows the throughput for drop 3—the time beginning with
field input data being read by the input modules in drop 3 and ending with the out-
put modules at drop 3 being updated with data from the CPU. Throughput in this
best case example is about 75% of total scan time. Five events are shown as
drop 3 throughput benchmarks:

Event A, where the inputs from drop 3 are available to the I/O processor

Event B, where the I/O processor transfers data to state RAM

Event C, where the segment 3 logic networks (which correspond to drop 3 I/O)
are solved

Event D, where data are transferred from state RAM to the I/O processor

Event E, where the output data are written to the output modules at drop 3

GM--0984--SYS Ladder Logic Overview 111

7.9 The Order of Solve

You specify the number of segments and I/O drops with the configurator editor in
your panel software package. The default order-of-solve condition is segment 01
through segment nn consecutively and continuously, once per scan, with the cor-
responding I/O drops serviced in like order. You are able to change the order of
solve using the segment scheduler editor in your panel software package.

There may be times when you can modify the order of solve to improve overall
system performance. The segment scheduler can be used effectively to:

Improve throughput for critical I/O

Improve overall system performance

Optimize the servicing of communication ports

GM--0984--SYSLadder Logic Overview112

Here is what a standard order-of-solve table might look like, as seen in the
MODSOFT segment scheduler editor:

Service Comm CnstSwp MinScan Quit

F1 F2 F3 F4 F5 F6 F7 F8 F9 L

Insert Delete

SEGMENT - SCHEDULER

Number of Drops : 3

Constant Sweep : OFF
Min
Scan Time --- ms

Register
:
4----

Number Type
Ref.
Number Sense

Seg-
ment
Nr

Drop
Input

Drop
Output

1 CONTINUOUS 01 01 01

2 CONTINUOUS 02 02 02

3 CONTINUOUS 03 03 03

4 EOL

A Default Order-of-Solve Table for a Three-Segment Logic Program

GM--0984--SYS Ladder Logic Overview 113

7.10 Using the Segment Scheduler to
Improve Critical I/O Throughput

Suppose that your logic program is three segments long and that segment 3 con-
tains logic that is critical to your application—for example, monitoring a proximity
switch to verify part presence. Segments 1 and 2 are running noncritical logic
such as part count analysis and statistic gathering, The program is running in the
standard order-of-solve mode, and you are finding that the controller is not able to
read critical inputs with the frequency desired, thereby causing unexceptable sys-
tem delay.

Using the segment scheduler editor, you can improve the throughput for the criti-
cal I/O at drop 3 by scheduling segment 3 to be solved two (or more) times in the
same scan:

Segment 1
Logic Networks

Segment 3
Logic Networks

Segment 2
Logic Networks

I
S
T

I
S
T

I
S
T

Drop 3
Input

Drop 3
Output

Drop 1
Output

Drop 2
Input

Drop 3
Output

Drop 3
Input

One Scan

OVHD
Segment 3
Logic Networks

Drop 1
Input

Drop 2
Output

I
S
T

By rescheduling the order-of-solve table, you actually increase the scan time, but
more importantly you improve throughput for the critical I/O supported by logic in
segment 3. Throughput is the better measure of system performance.

GM--0984--SYSLadder Logic Overview114

Here is how the MODSOFT segment scheduler would show the resulting or-
der-of-solve table:

Service Comm CnstSwp MinScan Quit

F1 F2 F3 F4 F5 F6 F7 F8 F9 L

Insert Delete

SEGMENT - SCHEDULER

Number of Drops : 3

Constant Sweep : OFF
Min
Scan Time --- ms

Register
:
4----

Number Type
Ref.
Number Sense

Seg-
ment
Nr

Drop
Input

Drop
Output

1 CONTINUOUS 01 01 01

2 CONTINUOUS 03 03 03

3 CONTINUOUS 02 02 02

4

EOL

An Order-of-Solve Table Rescheduled for Critical I/O

5

CONTINUOUS 03 03 03

GM--0984--SYS Ladder Logic Overview 115

7.11 Using the Segment Scheduler to
Improve System Performance

When certain areas of a ladder logic program do not need to be solved continually
on every scan—for example, an alarm handling routine, a data analysis routine,
some diagnostic message routines—they can be designated as controlled seg-
ments by the segment scheduler editor. Based on the status of an I/O or internal
reference, a controlled segment may be scheduled to be skipped, thereby reduc-
ing scan time and improving overall system throughput.

For example, suppose that you have some alarm handling logic in segment 2 of a
three-segment logic program. You can use the segment scheduler editor to con-
trol segment 2 based on the status of a coil 00056—if the coil is ON, segment 2
logic will be activated in the scan, and if the coil is OFF the segment will not be
solved in the scan. I/O servicing is still performed, regardless of the conditional
status.

Here is how the MODSOFT segment scheduler would show the resulting or-
der-of-solve table:

Service Comm CnstSwp MinScan Quit

F1 F2 F3 F4 F5 F6 F7 F8 F9 L

Insert Delete

SEGMENT - SCHEDULER

Number of Drops : 3

Constant Sweep : OFF
Min
Scan Time --- ms

Register
:
4----

Number Type
Ref.
Number Sense

Seg-
ment
Nr

Drop
Input

Drop
Output

1 CONTINUOUS 01 01 01

2 CONTINUOUS 03 03 03

3 CONTROLLED 02 02 02

4

EOL

An Order-of-Solve Table Rescheduled for a Controlled Logic Segment

5

CONTINUOUS 03 03 03

00056 ON

GM--0984--SYSLadder Logic Overview116

7.12 Using the Segment Scheduler to
Improve Comm Port Servicing

When you find that the frequency of standard end-of-scan servicing of communi-
cation ports, option processors, or system diagnostics is inadequate for your
application requirements, you can increase service frequency by inserting one or
more reset watchdog timer routines in the order-of-solve table. Each time this
routine is encountered by the CPU, it causes all communication ports to be serv-
iced and causes the system diagnostics to be run.

Here is how the MODSOFT segment scheduler would show an order-of-solve
table where the comm ports are serviced after each segment in the logic program:

Service Comm CnstSwp MinScan Quit

F1 F2 F3 F4 F5 F6 F7 F8 F9 L

Insert Delete

SEGMENT - SCHEDULER

Number of Drops : 3

Constant Sweep : OFF
Min
Scan Time --- ms

Register
:
4----

Number Type
Ref.
Number Sense

Seg-
ment
Nr

Drop
Input

Drop
Output

1 CONTINUOUS 01 01 01

2 WDT RESET

3 CONTINUOUS 02 02 02

4

EOL

An Order-of-Solve Table Rescheduled for Three Comm Port Servicings per Scan

5

WDT RESET

03 03 03

6

CONTINUOUS

GM--0984--SYS Ladder Logic Overview 117

7.13 Sweep Functions

Sweep functions allow you to scan a logic program at fixed intervals. They do not
make the controller solve logic faster or terminate scans prematurely.

7.13.1 Constant Sweep

Constant Sweep allows you to set target scan times from 10 ... 200 ms (in multi-
ples of 10). A target scan time is the time between the start of one scan and the
start of the next; it is not the time between the end of one scan and the beginning
of the next.

Constant Sweep is useful in applications where data must be sampled at constant
time intervals.

If a Constant Sweep is invoked with a time lapse smaller than the actual scan
time, the time lapse is ignored and the system uses its own normal scan rate.

The Constant Sweep target scan time encompasses logic solving, I/O and
Modbus port servicing, and system diagnostics. If you set a target scan of 40 ms
and the logic solving, I/O servicing, and diagnostics require only 30 ms, the con-
troller will wait 10 ms on each scan.

Consult your programming documentation for procedures to invoke a Constant
Sweep function.

GM--0984--SYSLadder Logic Overview118

7.13.2 Single Sweep

The Single Sweep function allows your controller to execute a fixed number of
scans (from 1 ... 15) and then to stop solving logic but continue servicing I/O.

This function is useful for diagnostic work—it allows solved logic, moved data, and
performed calculations to be examined for errors.

Warning The Single Sweep function should not be used to de-
bug controls on machine tools, processes, or material handling
systems when they are active. Once a specified number of scans
has been solved, all outputs are frozen in their last state. Since
no logic solving is taking place, the controller ignores all input in-
formation. This can result in unsafe, hazardous, and destructive
operation of the machine or process connected to the controller.

Consult your programming documentation for procedures to invoke Single Sweep
functions.

GM--0984--SYS Contacts, Shorts, and Coils 119

Chapter 8
Contacts, Shorts, and
Coils

Relay Contacts

Vertical and Horizontal Shorts

Normal and Latched Coils

GM--0984--SYSContacts, Shorts, and Coils120

8.1 Relay Contacts

The relay contact is the basic programming element. It can be referenced to a
logic coil (0x) or a discrete input (1x). There are four types of relay contacts:

Normally Open

A normally open contact passes power when its referenced coil or input is ON.

Normally Closed

A normally closed contact passes power when its referenced coil or input is OFF.

Here is an example of how you might use two sets of normally open and normally
closed contacts to create logic for a momentary pushbutton switch:

10001

10001

10002

10002

10001

Input
Module

10002

Pushbutton Open

Pushbutton Closed

Physical
Inputs

Ladder
Logic

No Power Flow

Passes Power

Passes Power

No Power Flow

Input
Module

GM--0984--SYS Contacts, Shorts, and Coils 121

Positive Transitional

A positive transitional contact passes power for only one scan as the contact or
coil transitions from OFF to ON.

OFF

ON

OFF

CLOSE

Controller State

Power Flow
One
Scan

Negative Transitional

A negative transitional contact passes power for only one scan as the contact or
coil transitions from ON to OFF.

OFF

ON

OFF

CLOSE

Controller State

Power Flow
One
Scan

GM--0984--SYSContacts, Shorts, and Coils122

8.2 Vertical and Horizontal Shorts

Shorts are simply straight-line connections between contacts and/or function
blocks.

A vertical short connects contacts or function blocks one above the other in a net-
work column. Vertical shorts can also be used to connect inputs or outputs in a
function block to create either/or conditions. When two contacts are connected by
vertical shorts, power is passed when one or both contacts receive power. A ver-
tical short does not consume any user memory.

Horizontal shorts are used in combination with vertical shorts to expand logic with-
in a network without breaking the power flow. A horizontal short consumes one
word of memory in a 16 bit CPU and 1.5 words in a 24 bit CPU.

8.2.1 An Either/Or Example

Horizontal and vertical shorts can be combined with relay contacts to create an
either/or condition in ladder logic.

10001

10003

00001

Horizontal short

The vertical short is part of

the node in which 10002 is
programmed.

Ladder Logic for an Either/Or Example

10002

GM--0984--SYS Contacts, Shorts, and Coils 123

One line of logic contains two contacts (10001 and 10002), and the line below it
contains one contact (10003). A horizontal short is placed beside contact 10003,
and a vertical short connects the second line with the first line.

Power will pass through to energize coil 00001 if either contacts 10001 and 10002
are energized or if contact 10003 is energized.

GM--0984--SYSContacts, Shorts, and Coils124

8.3 Normal and Latched Coils

A coil is a discrete output value represented by a 0x reference number. Because
output values are updated in State RAM by the controller’s CPU, a coil may be
used internally in the logic program or externally via the Traffic Cop to a discrete
output module. Coils are either OFF or ON, depending on power flow in the logic
program. When a coil is ON, it may either pass power to a discrete output circuit
on the shop floor or change the state of an internal relay contact in state RAM.
There are two types of coils:

Normal Coil

A normal coil is turned OFF if power at the controller is removed.

L

Latched Coil

If a latched coil has been energized at the time of a controller power loss, the coil
will come back up in the same state for one scan once power has been restored.

Closing the
Pushbutton ...

Input
Module10001

Output
Module

Physical
Input

Physical
Output

Ladder
Logic

10001 00001
00001

... Turns ON
the Light

GM--0984--SYS Contacts, Shorts, and Coils 125

8.3.1 Coils in a Logic Network

Each network can contain a maximum of seven coils. Each 0x reference number
can be used as a coil only once, but it can be referenced to any number of relay
contacts.

8.3.2 Enable/Disable Capabilities for Discrete Values

Via panel software, you may disable a logic coil or a discrete input in your logic
program. A disable condition will cause the input field device to have no control
over its assigned 1x logic and the logic to have no control over the disabled 0x
value.

The MEMORY PROTECT switch on your 984 controller must be OFF before you
disable (or enable) a coil or a discrete input.

Caution There is an important exception you need to be aware
of when disabling coils: data transfer functions that allow coils in
their destination nodes recognize the current ON/OFF state of all
coils, whetheer they are disabled or not, and cause the logic to
respond accordingly. If you are expecting a disabled coil to re-
main disabled in the DX function, your application may experi-
ence unexpected and undesireable effects.

8.3.3 Forcing Discretes ON and OFF

The panel software also provides FORCE ON and FORCE OFF capabilities.
When a coil or discrete input has been disabled, the only way you can change its
state from OFF to ON is with FORCE ON, and the only way to change from ON to
OFF with FORCE OFF.

When a coil or input is enabled, it cannot be forced ON or forced OFF.

GM--0984--SYS Counters and Timers 127

Chapter 9
Counters and Timers

Up Counters and Down Counters

Three Kinds of Timers

A Real-Time Clock Example

GM--0984--SYSCounters and Timers128

9.1 Up Counters and Down Counters

Two counter instructions are available, UCTR and DCTR, for up counting and
down counting. Both are designed to count control input transitions from OFF to
ON either up to or down from a counter preset value. Each is a two-node function
block structured as follows:

counter
preset

accumulated
count

DCTR/UCTR

OFF→ON
initiates counter

accumulated count = 0 for DCTR
accumlated count = counter preset for UCTR

accumulated count > 0 for DCTR
accumulated count < counter preset for UCTR

0 = reset
1 = enabled

The counter preset in the top node can be

A decimal ranging from 1 ... 999 in 16 bit CPUs and 1 ... 9999 in 24 bit CPUs

An input register (3x)

A holding register (4x)

The bottom node signifies the DCTR or UCTR function and contains a holding
register (4x) that stores the accumulated count.

GM--0984--SYS Counters and Timers 129

Here is an example of an up counter:

00100

UCTR
40007

10027

00077

00077

00055

When contact 10027 is energized, CONTROL IN receives power, and, since con-
tact 00077 is also receiving power, UCTR is enabled.

Each time contact 10027 transitions from OFF to ON, the accumulated count val-
ue increments 1. When the value reaches 100 (when contact 10027 has transi-
tioned 100 times), the top output passes power. Coil 00077 is energized, and coil
00055 is de-energized.

Contact 00077 loses power when coil 00077 is energized, and the accumulated
count value is reset to 0 on the next scan.

On the next scan, coil 00077 is de-energized. Contact 00077 is then re-energized
and the UCTR function is enabled.

GM--0984--SYSCounters and Timers130

9.2 Three Kinds of Timers

Three timer instructions are available for timing an event or creating a delay.
They measure time in seconds (T1.0), in tenths of a second (T0.1), and in hun-
dredths of a second (T.01). Each timer is a two-node function block:

timer
preset

accumulated
time

T1.0/T0.1/T.01

Time accumulates when
ON with bottom input
enabled

When ON,
accumulated time = timer preset

When ON,
accumulated time < timer preset

0 = reset
1 = enabled

The timer preset in the top node can be

A decimal ranging from 1 ... 999 in 16 bit CPUs and 1 ... 9999 in 24 bit CPUs

An input register (3x)

A holding register (4x)

The bottom node indicates that the timer is incrementing as a T1.0, T0.1, or T.01
counter and contains a holding register (4x) that stores accumulated time.

Caution If you cascade T1.0 timers with presets of 1, the timers
will time-out together; to avoid this problem, change the presets
to 10 and substitute a T0.1 timer. The same holds true for a T0.1
timer, in which case you can substitute a T.01 timer.

GM--0984--SYS Counters and Timers 131

00005

T1.0
40040

10001

10002

00107

00108

The example above assumes that 10002 is closed (timer enabled) and that the
value contained in register 40040 is 0. Because 40040 does not equal the timer
preset (5), coil 00107 is OFF and coil 00108 is ON.

When 10001 is closed, 40040 begins to accumulate counts at 1 s intervals until it
reaches 5. At that point, 00107 is ON and 00108 is OFF.

When 10002 is opened, 40040 resets to 0, coil 00107 goes OFF, and 00108 goes
ON.

Note If the accumulated time value is less than the timer preset val-
ue, the bottom output will pass power even though no inputs to the
block are present.

GM--0984--SYSCounters and Timers132

9.3 A Real-Time Clock Example

00001

00001

00002

00002

00003

00001

00002

00003

00060

T1.0
40053

00060

40052
UCTR

00024

40051
UCTR

The first function block above is a T1.0 instruction programmed as a one minute
timer. When logic solving begins, coil 00001 is OFF—both the top and bottom in-
puts of the timer receive power.

Register 40053 starts incrementing time in seconds. After 60 increments, the top
output passes power and energizes coil 00001. Register 40053 is reset. Register
40052 in the first up counter block increments by 1, indicating that one minute has
passed.

Because the T1.0 block is no longer equal to the preset, coil 00001 is de-ener-
gized and the timer resumes incrementing seconds. When the value in 40052
reaches 60, the top output in the first up counter passes power and energizes coil
00002.

Register 40052 is reset, and the accumulated count in the second up counter
(register 40051) increases by 1, indicating that one hour has passed.

The correct time of day can be read in registers 40051 (indicating hours), 40052
(indicating minutes), and 40053 (indicating seconds).

GM--0984--SYS Standard Calculate Functions 133

Chapter 10
Standard Calculate
Functions

ADD

SUB

MUL

DIV

A DIV Example

A Fahrenheit-to-Centigrade Conversion Example

GM--0984--SYSStandard Calculate Functions134

10.1 ADD

The ADD instruction adds value 1 to value 2 and stores the sum in a holding reg-
ister. ADD is a three-node function block:

ON = add value
1
and value 2

OVERFLOW (sum > 9999)value 1

value 2

sum
ADD

The top node and middle node contain value 1 and value 2, respectively—they
can be:

Decimals ranging from 1 ... 999 in a 16 bit CPU and from 1 ... 9999 in a 24 bit
CPU

Input registers (3x)

Holding registers (4x)

The bottom node indicates that this is an ADD function and contains a holding
register (4x) where the sum of the addition is stored.

GM--0984--SYS Standard Calculate Functions 135

10.2 SUB

The SUB instruction performs an absolute subtraction (without signs) of
value 1 - value 2 and stores the result in a holding register. It can be used as a
comparator, identifying whether value 1 is greater than, equal to, or less than val-
ue 2. SUB is a three-node function block:

ON = value 2
subtracted from
value 1

value 1 > value 2value 1

value 2

result
SUB

value 1 = value 2

value 1 < value 2

The top node and middle node are value 1 and value 2, respectively—they can
be:

Decimals ranging from 1 ... 999 in a 16 bit CPU and from 1 ... 9999 in a 24 bit
CPU

Input registers (3x)

Holding registers (4x)

The bottom node indicates that this is a SUB function and contains a holding reg-
ister (4x) where the result of the subtraction is stored.

GM--0984--SYSStandard Calculate Functions136

10.3 MUL

The MUL instruction multiplies value 1 by value 2 and stores the result in two
holding registers. MUL is a three-node function block:

ON = value 1

multiplied by
value 2

Top input
is powered

value 1

value 2

result:
high order

MUL

low order

The top node and middle node are value 1 and value 2, respectively—they can
be:

A decimal ranging from 1 ... 999 in a 16 bit CPU and from 1 ... 9999 in a 24 bit
CPU

An input register (3x)

A holding register (4x)

The bottom node indicates that this is a MUL function and contains two consecu-
tive a holding registers (4x and 4x + 1) where the result of the multiplication is
stored.

The higher order digits are stored in the register specified in the bottom node, and
the lower order digits are stored in the next sequential register. For example, if
the top node value is 8000 and the middle node value is 2, the result (16,000) is
stored in two sequential registers: 4x contains the higher order digits (0001), and
4x + 1 contains the lower order digits (6000).

GM--0984--SYS Standard Calculate Functions 137

10.4 DIV

The DIV instruction divides value 1 by value 2 and stores the result and the re-
mainder in two consecutive holding registers. DIV is a three-node function block:

ON = value 1
divided by value 2

division successfulvalue 1:

value 2

result:

DIV

remainder

overflow: if the result > 9999
a 0 value is returned

value 2 = 0

0 = fractional remainder
1 = decimal remainder

low orderhigh order

The top node, value 1, can be:

A decimal ranging from 1 ... 999 in a 16 bit CPU and from 1 ... 9999 in a 24 bit
CPU

Two consecutive input registers, 3x for the higher order digits and 3x + 1 for the
lower order digits

Two consecutive holding registers, 4x for the higher order digits and 4x + 1 for
the lower order digits

The middle node, value 2, can be:

A decimal ranging from 1 ... 999 in a 16 bit CPU and from 1 ... 9999 in a 24 bit
CPU

An input register (3x)

A holding register (4x)

The bottom node indicates that this is a DIV function and contains two holding
registers (4x and 4x + 1). The result of the division is stored in the first register,
and the remainder is stored in the second register. The remainder may be ex-
pressed as a fraction or a decimal, depending on whether the middle input is a 1
or a 0.

GM--0984--SYSStandard Calculate Functions138

10.5 A DIV Example

Here is an example of a DIV operation where value 1 (105) is divided by value 2
(25). The result is stored in register 40270 and the remainder is stored in register
40271.

10001

00105

00025

DIV
40270

10002

The result (4) is stored in register 40270, and the remainder (5) is stored in regis-
ter 40271.

If 10002 is open, the remainder is expressed as a fraction (0005). If 10002 is
closed, the remainder is expressed as a decimal (2000).

GM--0984--SYS Standard Calculate Functions 139

10.6 A Fahrenheit-to-Centigrade
Conversion Example

00011

30001

00032

SUB
41201

41201

00005

MUL
41202

41202

DIV
40001

00009

Note The vertical short to coil 00011 must be to the left of the vertical
shorts linking the three SUB block outputs.

We want to implement the formula

°C = (°F -- 32) x 5/9

When the top input of the SUB function block receives power, the number 32 is
subtracted from the value in register 30001, which represents some number of de-
grees Fahrenheit. The result is placed in register 41201.

The top input to the MUL function block then receives power, whether the SUB re-
sult is positive, negative, or 0. If the SUB result is negative, coil 00011 is ener-
gized to indicate a negative value.

The value in register 41201 is then multiplied by 5, and the result is placed in reg-
ister 41202. The top input of the DIV function block is then energized, and the val-
ue in register 41202 is divided by 9. The result, which is the temperature conver-
sion in degrees Centigrade, is placed in register 40001.

GM--0984--SYS DX Move Functions 141

Chapter 11
DX Move Functions

Moving Registers and Tables

Moving Blocks to Tables and Tables to Blocks

Two Functions for Building a FIFO Queue

SRCH

BLKM

A Recipe Storage Example

GM--0984--SYSDX Move Functions142

11.1 Moving Registers and Tables

The 984 standard instruction set provides three function blocks for moving register
and table data—one for moving register values to a table (R→T), one for moving
table values to a single register (T→R), and one for moving values from one table
to another (T→T). Each of these register transfer instructions is a three-node
function block, and the system can accommodate the transfer of one register per
scan.

11.1.1 Register-to-Table Move

The R→T instruction copies the bit pattern of a register or of 16 discretes to a
specific register located in a table:

ON = move data and increment pointer;
maximum pointer value = table length

Copies top inputsource
register

pointer to
destination table

table length
R→T

pointer = table lengthON freezes the pointer

ON resets the pointer

The top node can be:

The first 0x in a table of coils or discrete outputs

The first 1x in a table of discrete inputs

The first 3x in a table of input registers

The first 4x in a table of holding registers

The value in the middle node is a pointer to the register in the destination table
where data will be moved in this scan. The pointer is a 4x register, and the first
register in the destination table is 4x + 1. The number of registers in the destina-

GM--0984--SYS DX Move Functions 143

tion table is specified in the bottom node. A value of 0 in the pointer equals the
first register in the table.

The bottom node indicates that the function is a register-to-table transfer instruc-
tion and specifies the table length—it may range from 1 ... 255 in 16 bit CPUs and
from 1 ... 999 in 24 bit CPUs.

10001
30001

40340

R→T
00005

10002

10003

00135

30001

source

40341

destination

40342
40343
40344
40345

40340

pointer

max length = 255/999

An R→T Example

The first transition of 10001 copies 30001 to 40341 and increments the pointer
value stored in 40340 to 1; its second transition copies 30001 to 40342 and incre-
ments the pointer value to 2; and so on through five transitions. At the fifth transi-
tion, which copies 30001 to 40345 and increments the pointer value to the table
length, the middle output passes power, energizing coil 00135. No R→T opera-
tions are possible while these two values are equal.

If, after the second transition, 10002 were to be energized, the pointer value could
not be changed. All subsequent transitions of 10001 would cause the value in
30001 to be copied to 40343. When 10003 is energized, the pointer will be reset
to 0.

GM--0984--SYSDX Move Functions144

11.1.2 Table-to-Register Move

The T→R instruction copies the bit pattern of a register or 16 discretes located
within a table to a specific holding register:

ON = move data and increment pointer;
maximum pointer value = table length

Copies top inputsource
table

pointer to
source table

table length

T→R

pointer = table lengthON freezes the pointer

ON resets the pointer

The top node can be:

The first 0x in a table of coils or discrete outputs

The first 1x in a table of discrete inputs

The first 3x in a table of input registers

The first 4x in a table of holding registers

The value in the middle node is a pointer to the register in the source table that
will be moved in this scan. The pointer is a 4x register, and the destination regis-
ter is 4x + 1. A value of 0 in the pointer equals the first register in the table.

The bottom node indicates that the function is one of the three register transfer in-
structions and specifies the length of the source table—in the range 1 ... 255 in 16
bit CPUs and 1 ... 999 in 24 bit CPUs. The number specifies the total number of
registers to be transferred.

GM--0984--SYS DX Move Functions 145

10001
40371

40376

T→R
00005

10002

10003

00136

40377

source

40371

destination

40372
40373
40374
40385

40376

pointer

A T→R Example

The first transition of 10001 copies the contents of 40371 to register 40377 and in-
crements the pointer value stored in 40376 to 1. The second transition of 10001
copies 40372 to 40377 and increments the pointer value to 2; the third transition
copies 40373 to 40377 and increments the pointer value to 3; the fourth transition
copies 40374 to 40377 and increments the pointer value to 4.

The fifth transition of 10001 copies 40375 to 40377 and increments the pointer
value to 5. Because the pointer value now equals the table length, the middle
output passes power, energizing coil 00136. No T→R operations are possible
while these two values are equal.

If, after the second transition of 10001, 10002 were to be energized, the pointer
value could not be changed. All subsequent transitions of 10001 would cause the
value in 40343 to be copied to 40377.

When 10003 is energized, the pointer is reset to 0.

GM--0984--SYSDX Move Functions146

11.1.3 Table-to-Table Move

The T→T instruction copies the bit pattern of a register or 16 discretes from a po-
sition within one table to the same position in a second table of holding registers:

ON = move data and increment pointer;
maximum pointer value = table length

Copies top inputsource table

pointer to
destination table

table length
T→T

pointer = table lengthON freezes the pointer

ON resets the pointer

The top node can be:

The first 0x in a source table of coils or discrete outputs

The first 1x in a source table of discrete inputs

The first 3x in a source table of input registers

The first 4x in a source table of holding registers

The value in the middle node is a pointer to the register in the source table to be
moved in the scan and to the register in the destination table where the source
register will go. The pointer is a 4x register, and the first register in the destination
table is 4x + 1. The length of the two tables must be equal, and this length is spe-
cified in the bottom node. A value of 0 in the pointer equals the first register in the
table.

The bottom node indicates that the function is a table-to-table register transfer in-
struction and specifies the table length for both the source and destination tables.
The length may range from 1 ... 255 in 16 bit CPUs and 1 ... 999 in 24 bit CPUs.

GM--0984--SYS DX Move Functions 147

10001
30001

40380

T→T
00003

10002

10003

00137

30001

source

40381

destination

40382
40383

40380

pointer

30002
30003

A T→T Example

The first transition of 10001 moves the contents of 30001 to register 40381 and in-
crements the pointer value stored in 40380 to 1, and the second transition moves
the contents of 30002 to register 40382 and increments the pointer value to 2.

The third transition of 10001 moves the contents of 30003 to register 40383 and
increments the pointer value to 3. Because the pointer value now equals the table
length, the middle input passes power and energizes coil 00137. No T→T opera-
tions are possible while these two values are equal.

If, after the second transition of 10001, 10002 were to be energized, the pointer
value would be locked to 2, and all subsequent transitions of 10001 would cause
the value in 30003 to be moved to register 40383.

GM--0984--SYSDX Move Functions148

11.2 Two Functions for Building a FIFO
Queue

The standard 984 instruction set provides two function blocks that are used to pro-
duce a first in-first out queue. The FIN instruction copies the bit pattern of any
register or 16 discretes to the first register in a table of holding registers; this reg-
ister is at the top of the queue:

1111 1111 2222 2222 3333 3333
1111 2222

1111

FIN FIN FIN

Source Source Source

Stack Stack Stack

The FOUT instruction moves the bit pattern of a holding register within a table to a
destination register or to 16 discrete outputs; the oldest data in the queue is
moved first. FOUT should be placed before FIN to ensure that the oldest data are
removed from a full queue before the newest data are entered. If the FIN block
were to appear first, the attempt to enter the new data would be ignored if the
queue were full.

4444 4444
3333
22221111

3333
2222 FOUT
1111
Stack Destination

FIN

Source

Stack

Both instructions are three-node function blocks:

ON = insert bit
pattern in queue

Copies current
state
of the top input

source

pointer

queue length
FIN

Queue full

Queue empty

GM--0984--SYS DX Move Functions 149

ON = remove bit
pattern from queue

Copies current
state
of the top input

pointer

queue length
FOUT

Queue full

Queue empty

destination

The source, which is specified in the top node of the FIN block, may be:

The first of 16 logic coils (0x)

The first of 16 discrete inputs (1x)

An input register (3x)

A holding register (4x)

The pointer, which is specified in the middle node of the FIN block and the top
node of the FOUT block, is a holding register (4x). A pointer indicates where in
the table the data will be taken from or written to.

The bottom node indicates that the block is either an FIN or FOUT instruction and
specifies the queue length, which may range from 1 ... 100 and which represents
the number of registers in the queue.

Warning FOUT will override any disabled coils within a destina-
tion table without enabling them. This can cause injury if a coil
has been disabled for repair or maintenance because the coil’s
state can change as a result of the FOUT operation.

GM--0984--SYSDX Move Functions150

11.3 SRCH

The SRCH instruction searches a table of registers for a specific bit pattern.
SRCH is a three-node function block:

ON = initiate
search

Copies top inputsource

pointer

table length
SRCH

Match found0 = search from beginning
1 = search from last match

The top node specifies the source table to be searched; it may be

The first 3x in a table of input references

The first 4x in a table of holding registers

The middle node must be a holding register (4x). It is a pointer to the table being
searched (as specified in the top node). The next consecutive register, 4x + 1,
contains the value or bit pattern being searched for.

The bottom node indicates that this is a SRCH function and specifies a table
length, which may range from 1 ... 100.

GM--0984--SYS DX Move Functions 151

11.3.1 A SRCH Example

Here we search a five-register table for the register that contains the value 3333.

40421

SRCH

10001

0014210002

40430

00005

table to be searched
40421
40422
40423
40424
40425

= 1111

= 2222
= 3333
= 4444
= 5555

40430
40431

= pointer
= 3333 = value searched for

The source table is searched for a 3333 on every scan where 10001 transitions
from OFF to ON. If 10002 is OFF, the SRCH function finds a match at register
40423 and stops searching for the remainder of the scan. It sets the pointer value
to 3 for one scan, indicating that a match exists in table position 3. Coil 00142 is
energized for one scan.

When 10001 is transitioned a second time, it starts again at 40421 and searches
for a match. It will find it again at 40423.

When 10002 is energized and 10001 transitions from OFF to ON, the source table
is searched for a 3333. The SRCH function finds a match at register 40423 and
stops the SRCH. It sets the pointer value to 3, indicating that a match exists in
table position 3. Coil 00142 is energized for one scan.

GM--0984--SYSDX Move Functions152

11.4 BLKM

BLKM is the block move instruction—in one scan, it copies the entire contents of
one table to another table of outputs or holding registers. BLKM is a three-node
function block:

ON = move

initiated

Copies current state
of
the top input

source

destination

table length
BLKM

The top node—source—may be:

The first 0x in a table of output references

The first 1x in a table of input references

The first 3x in a table of input registers

The first 4x in a table of holding registers

The middle node—destination—may be:

The first 0x in a table of coils or output registers (the one and only time that the
referenced coils may be used)

The first 4x in a table of holding registers

The bottom node indicates that this is a BLKM function and specifies a table size
that can range from 1 ... 100.

Warning BLKM will override any disabled coils within a destina-
tion table without enabling them. This can cause injury if a coil
has been disabled for repair or maintenance because the coil’s
state can change as a result of the BLKM instruction.

GM--0984--SYS DX Move Functions 153

11.5 A Recipe Storage Example

You can use ladder logic to write specific process programs (or recipes), store
each in a unique table, then write a general process program and store it in anoth-
er working table. The recipe tables must be structured with similar information in
corresponding registers—if a heating temperature is in the third register in one
recipe table, it should be in the third register in all recipe tables. Recipes can be
pulled into the generic process program with BLKM functions:

40101

BLKM
00008

40109

BLKM
00008

40117

BLKM
00008

10101 10102 10103

101031010110102

1010110103 10102

40201

40201

40201

The process is controlled with three input switches—10101, 10102, and 10103.
To run process A, turn on 10101, and leave 10102 and 10103 off. When input
10101 is energized, it passes power through normally closed contacts 10102 and
10103. A BLKM function moves the recipe for process A from registers 40101 ...
40108 to registers 40201 ... 40208. This table of registers is a working table, with
each register controlling a part of the general process. By using one working
table, you can control the output for three separate processes with only one pro-
gram.

GM--0984--SYS DX Matrix Functions 155

Chapter 12
DX Matrix Functions

Three Boolean Logic Functions

Some Boolean Examples

COMP

CMPR

Sensing and Modifying Bits in a Matrix

Rotating a Bit Pattern

How to Report Status Information

A Simple Table Averaging Example

GM--0984--SYSDX Matrix Functions156

12.1 Three Boolean Functions

The standard 984 instruction set provides three function blocks that perform AND,
OR, and Exclusive OR Boolean operations. The AND instruction logically ANDs
each bit in a source matrix with corresponding bits in a destination matrix. The re-
sult is placed in the destination matrix, overwriting the previous contents:

0 0

1

1 1 0

0

1destination

source

0

0 1

0

ANDing
Operation

The OR instruction logically ORs each bit in a source matrix with corresponding
bits in a destination matrix:

0 0

1

1 1 1

0

1destination

source

0

0 1

1

ORing
Operation

The XOR instruction performs a logical Exclusive OR function on each bit in a
source matrix with corresponding bits in a destination matrix.

0 0

1

1 0 1

0

1destination

source

0

0 1

1

XORing
Operation

GM--0984--SYS DX Matrix Functions 157

Each of these instructions is a three-node function block:

ON = initiate
operation

Copies current state
of
the top input

source

destination

matrix length

AND, OR,
or XOR

The top node—source—may be:

The first 0x in a table of output references

The first 1x in a table of input references

The first 3x in a table of input registers

The first 4x in a table of holding registers

The middle node—destination—may be:

The first 0x in a table of output references

The first 4x in a table of holding registers

If you specify a 0x in the middle node, it counts as the one and only time that the
referenced coils may be used.

The bottom node indicates which type of Boolean function to implement and spec-
ifies a matrix length that may range from 1 ... 100 words—i.e., a length of 2 indi-
cates 32 bits.

Warning These Boolean functions will override any disabled
coils within the destination group without enabling them. This
can cause personal injury if a coil has disabled an operation for
maintenance or repair because the coil’s state can change as a
result of the Boolean operation.

GM--0984--SYSDX Matrix Functions158

12.2 Some Boolean Examples

10001
40600

40604

AND
00002

source matrix
40600 = 1111111100000000 40601 = 1111111100000000

destination matrix
40604 = 1111111111111111 40605 = 0000000000000000

ANDed destination
40604 = 1111111100000000 40605 = 0000000000000000

ANDing Example

When 10001 passes power, the bit matrix formed by registers 40600 and 40601
are ANDed with the bit matrix formed by registers 40604 and 40605. The result is
copied into registers 40604 and 40605, overwriting the previous bit pattern. (If
you want to keep the original bit pattern of registers 40604 and 40605, copy the
information into another table before performing an AND operation using a
BLKM.)

ORing Example

10001

40600

40606

OR
00002

source matrix
40600 = 1111111100000000 40601 = 1111111100000000

destination matrix
40606 = 1111111111111111 40607 = 0000000000000000

ORed destination
40606 =11111111111111111 40607 = 1111111100000000

Whenever 10001 passes power, the bit matrix formed by registers 40600 and
40601 is ORed with the bit matrix formed by 40606 and 40607. The result is co-
pied into registers 40606 and 40607.

Caution Outputs and coils cannot be turned OFF with the OR
instruction.

GM--0984--SYS DX Matrix Functions 159

XORing Example

10001

40600

40608

XOR
00002

source matrix
40600 = 1111111100000000 40601 =

1111111100000000
destination matrix

40608 = 1111111111111111 40609 = 0000000000000000

XORed destination
40608 = 0000000011111111 40609 = 1111111100000000

When 10001 passes power, the bit matrix formed by registers 40600 and 40601 is
XORed with the bit matrix formed by 40608 and 40609. The result is copied into
registers 40608 and 40609.

GM--0984--SYSDX Matrix Functions160

12.3 COMP

The COMP instruction complements the bit pattern of one matrix (changes all 0’s
to 1’s and all 1’s to 0’s), then copies the result into a second matrix, all in the same
scan. COMP is a three-node function block:

ON = comple-
ment
the bit values in
the top node

Copies current state
of
the top input

source

destination

matrix length
COMP

The matrix specified in the top node is the data source; it may be:

The first 0x in a table of output references

The first 1x in a table of input references

The first 3x in a table of input registers

The first 4x in a table of holding registers

The matrix specified in the middle node is the destination for the complemented
data; it may be:

The first 0x in a table of output references

The first 4x in a table of holding registers

If the middle node entry is a 0x, it counts as the one and only time that the refer-
enced coils may be used.

The bottom node indicates that this is a COMP function and specifies a matrix
length that can range from 1 ... 100.

GM--0984--SYS DX Matrix Functions 161

12.3.1 A COMP Example

10001

40600

40602

COMP

00002

matrix a
40600 = 1111111100000000 40601 = 1111111100000000

matrix b (before COMP)
40602 = 1111111111111111 40603 = 0000000000000000

matrix b (after COMP)
40602 =0000000011111111 40603 = 0000000011111111

When 10001 passes power, the bit value complements in the source matrix (regis-
ters 40600 and 40601) are copied into the destination matrix (registers 40602 and
40603).

Warning COMP will override any disabled coils within the desti-
nation matrix without enabling them. This can cause injury if a
coil has been disabled for repair or maintenance because the
coil’s state can change as a result of the COMP instruction.

GM--0984--SYSDX Matrix Functions162

12.4 CMPR

The CMPR instruction compares the bit pattern of one matrix against the bit pat-
tern of a second matrix for discrepancies. CMPR is a three-node function block:

ON = compare bits
in matrix a

against bits in
matrix b

Copies current state
of
the top input

matrix a

pointer
to
matrix b

matrix length
CMPR

0 = start function at last miscompare
1 = start function at the beginning

(reset pointer)

Miscompare detected

State of miscompared bit
in matrix a

The matrix in the top node specifies the source data to be compared; it may be:

The first 0x in a table of output references

The first 1x in a table of input references

The first 3x in a table of input registers

The first 4x in a table of holding registers

The middle node must be a holding register (4x); it is the pointer to a particular bit
in the matrix starting with 4x + 1.

The bottom node indicates that this is a CMPR function and specifies a matrix
length that can range from 1 ... 100.

GM--0984--SYS DX Matrix Functions 163

12.4.1 A CMPR Example

10001
40620

40622

CMPR
00002

matrix a
40620 = 0000000000000000 40621 = 1000000000000001

pointer
40622

matrix b
40623 = 0000000000000000 40624 = 0000000000000000

10002 00143

00144

If 10002 is energized, matrix a is compared against matrix b on every scan that
10001 receives power. Matrix b has all bits cleared to 0. The comparison is done
bit by bit. This finding of a miscompare is accomplished in one scan.

In this example, the comparison continues until bit 17, where matrix a = 1 and ma-
trix b = 0. At this point, when 40622 = 17, the function stops; 00143 and 00144
energize for one scan. On the second transition of 10001, the function starts
again at bit 1 and stops again when 40622 = 17.

If 10002 is de-energized, the first transition of 10001 will stop the function at
40622 = 17; 00143 and 00144 will energize for one scan. On the second transi-
tion of 10001, the function will stop at 40622 = 32; 00143 and 00144 will energize
for one scan.

Coil 00144 indicates the sense of the bit in the source matrix when a miscompare
occurs.

GM--0984--SYSDX Matrix Functions164

12.5 Sensing and Modifying Bits in a
Matrix

The standard 984 instruction set provides two function blocks that allow you to ex-
amine and modify current bit values inside data tables in a matrix. The SENS in-
struction examines and reports the sense—1 or 0—of specific bits within a matrix.
The MBIT instruction modifies a specific bit within a matrix—a 0 bit is set to 1 or a
1 bit is cleared to 0. One bit may be sensed or modified per scan. Both instruc-
tions are three-node function blocks:

ON = report
sense

of bits in matrix

Copies the current state
of
the top input

data table

pointer
to
matrix

matrix length
SENS

Increment pointer
after bit sensing Copy of sensed bit

pointer > matrix lengthReset pointer to 1

ON = change
sense

of bits in matrix

data table

matrix length
MBITIncrement pointer

after modification

Copy of middle input

pointer > matrix length

0 =clear bit
1 = set bit

pointer
to
matrix

Copies the current state of
the top input

Note The differences in each of the function blocks are in the way
the middle and bottom inputs are treated; the block nodes themselves
are essentially the same.

The top node is a pointer to a value to be sensed or modified in the data table; it
may be:

GM--0984--SYS DX Matrix Functions 165

A constant when the value falls in the range 1 ... 999 in 16 bit CPUs or
1 ... 9600 in 24 bit CPUs

An input register (3x) that may hold a value in the range 1 ... 4080 in 16 bit
CPUs or 1 ... 9600 in 24 bit CPUs

A holding register (4x) that may hold a value in the range 1 ... 4080 in 16 bit
CPUs or 1 ... 9600 in 24 bit CPUs

The middle node is the first word or register in the data table; it may be:

The first 0x in a table of output references

The first 4x in a table of holding registers

The bottom node indicates that the function is either a SENS or MBIT operation
and specifies a matrix length that may range from 1 ... 255 in 16 bit CPUs and
from 1 ... 600 in 24 bit CPUs. The number represents registers or groups of 16
discretes—for example, 200 = 3200 bits.

Warning MBIT will override any disabled coils within a destina-
tion group without enabling them. This can cause injury if a coil
has been disabled for repair or maintenance because the coil’s
state can change as a result of the MBIT instruction.

GM--0984--SYSDX Matrix Functions166

12.6 Rotating a Bit Pattern

The BROT instruction rotates or shifts the bit pattern of a matrix. The bits shift
one position per scan. BROT is a three-node function block:

ON = shift bit position
in source matrix

Copies the current state
of the top input

destination

source

matrix length
BROT

0 = exiting bit falls out of the
register

1 = exiting bit wraps to the start
of the rigister

Sense of exiting bit0 = register starts at the left
1 = register starts at the right

The top node is the source node, which can be

The first 0x in a matrix of output references

The first 1x in a matrix of input references

The first 3x in a matrix of input registers

The first 4x in a matrix of holding registers

The middle node is the destination, which can be

The first 0x in a matrix of output references

The first 4x in a matrix of holding registers

The bottom node indicates that the function is a BROT operation and specifies a
matrix length that may range from 1 ... 100.

Warning BROT will override any disabled coils within a destina-
tion table without enabling them. This can cause injury if a coil
has been disabled for repair or maintenance because the coil’s
state can change as a result of the BROT instruction.

GM--0984--SYS DX Matrix Functions 167

12.7 How to Report Status Information

A simple ladder logic construction of a STAT block and a SENS block allows you
to report system status information as part of your User Logic program. In this ex-
ample, bit 12 of register 40201 is being checked. All other bits may be checked
using the same method:

00012

SENS
00001

00003

40201

STAT
00043

40201

The top input to the STAT block receives power on every scan because it is at-
tached to the power rail. Status information is recorded in registers
40201 ... 40243. Register 40201 holds the controller status, which needs to be in-
terpreted.

Since each bit’s state represents different information, you can use a SENS block
to report incoming bit status. Connect the top output of the STAT block to the top
input of the SENS block. This construction lets you check and report the com-
plete bit status on every scan.

GM--0984--SYSDX Matrix Functions168

12.8 A Simple Table Averaging Example

40202

40204

ADD
40202

40201

00001

ADD
40201

40101

T→R
00084

40201

40203

DIV
40301

40201

40201

XOR
00003

00003

10006
40203

AVERAGE = 40301 . 40302

When input 10006 receives power, the top input to the T→R block receives power
and the value in the first register in the table of registers 40101 ... 40184 is copied
into the middle node (40204) of the first ADD block. The middle node (40203) in
the DIV block holds the pointer value. Because the top output of the T→R block
is passing power, the first ADD block receives power, causing the value copied to
40204 to be added to 40202. Register 40202 equals 0 to start.

This routine continues until the pointer value in the T→R block (40203) equals the
table length—84. The middle output in the T→R block then passes power, and
the DIV block receives power. The values in registers 40201 and 40202 are di-
vided by 84 (the value in the middle node of the DIV block). The result is placed
in register 40301, and the remainder is placed in register 40302. Because the
middle input of the DIV block is receiving power, the remainder is expressed as a
decimal.

The top output of the DIV block passes power, and the XOR block receives power.
By using the XOR function to exclusively OR the values in matrix 40201 ... 40203
with themselves, you clear the matrix to 0. The top output of the XOR block
passes power to coil 00003, indicating that the current table averaging operation
is complete and that a new one should start.

GM--0984--SYS ASCII READ/WRITE Functions 169

Chapter 13
ASCII READ/WRITE
Functions

ASCII Message Handling

READ

WRIT

ASCII Error Status

How the READ/WRIT Blocks Handle ASCII Messages

The ASCII Character Set

GM--0984--SYSASCII READ/WRITE Functions170

13.1 READ

The READ instruction provides the ability to read data entered at an ASCII device
through the RIO interface and into 984 Memory. READ is a three-node function
block:

Activates READ Block active

destination

table length
READ

Power pauses READ
function

Error condition detected

(for one scan)

Power aborts READ

function
READ complete (for one scan)

ASCII
control block

Caution Make sure that no two ASCII READ/WRIT function
blocks are active in the same segment at the same time—such a
condition will cause the block to return an error or return bad
data.

The first register in the ASCII control block is specified in the top node. It is the
first of seven consecutive (4x) holding registers:

Register Definition

4x bits 0 ... 5 = port number (1 ... 32); bits 6 ... 15 = error code
4x + 1 message number
4x + 2 number of registers required to satisfy format
4x + 3 number of registers transmitted thus far
4x + 4 status of solve
4x + 5 unassigned
4x + 6 checksum of registers 0 ... 5

GM--0984--SYS ASCII READ/WRITE Functions 171

The destination register in the middle node is the first in a table of (4x) holding
registers whose length is determined by the value in the bottom node. Variable
data in a READ message are written into this table.

Consider this READ message:

please enter password:AAAAAAAAAA
(Embedded Text) (Variable Data)

Note An ASCII READ message may contain the embedded text—
placed inside quotation marks—as well as the variable data in the for-
mat statement—i.e., the ASCII message.

The 10-character ASCII field AAAAAAAAAA is the variable data field; variable
data must be entered via an ASCII input device.

The bottom node indicates that this is an ASCII READ function, and it contains a
number specifying length of the destination table. Table length may range from
1 ... 255 in a 16 bit CPU and from 1 ... 999 in a 24 bit CPU.

GM--0984--SYSASCII READ/WRITE Functions172

13.2 WRIT

The WRIT instruction provides the ability to send a message from the 984 control-
ler over the RIO communications link to an ASCII device. WRIT is a three-node
function block:

Block active

table length
WRIT

Power pauses WRIT
function

Error condition detected

(for one scan)

Power aborts WRIT
function WRIT complete (for one scan)

sourceActivates WRIT

ASCII
control block

Caution Make sure that no two ASCII READ/WRIT function
blocks are active in the same segment at the same time—such a
condition will cause the block to return an error or return bad
data.

The source register in the top node may be either the first (3x) input register or the
first (4x) holding register in a table whose length is specified in the bottom node.

This table will contain the data required to fill the variable field in a message.
Consider the following WRIT message

vessel #1 temperature is:III

The 3-character ASCII field III is the variable data field; variable data are
loaded, typically via DX moves, into a table of variable field data.

GM--0984--SYS ASCII READ/WRITE Functions 173

The ASCII control block register specified in the middle node is the first of seven
consecutive (4x) holding registers:

Register Definition

4x bits 0 ... 5 = port number (1 ... 32); bits 6 ... 15 = error codes
4x + 1 message number
4x + 2 number of registers required to satisfy format
4x + 3 number of registers transmitted thus far
4x + 4 status of solve
4x + 5 unassigned
4x + 6 checksum of registers 0 ... 5

The bottom node indicates that this is an ASCII READ function, and it contains a
number specifying length of the source table. Table length may range from
1 ... 255 in a 16 bit CPU and from 1 ... 999 in a 24 bit CPU.

GM--0984--SYSASCII READ/WRITE Functions174

13.3 ASCII Message Handling

The ASCII READ and WRIT function blocks provide the routines necessary for
communication between the ASCII message table in 984 system memory and an
RIO interface module that supports ASCII at your RIO drops (such as a J812,
J892, P892, or P453). These routines verify correct ASCII parameters—for exam-
ple, port # and message #—lengths of variable data fields, error detection and re-
cording, and RIO interface status.

Each function requires two tables of registers: one to retrieve and store variable
data and the other to identify which port and message numbers are to be used.
The port and message table contains seven registers, and the size of the variable
data table needs to be specified. The balance of the registers is used for
housekeeping.

The 984 provides support logic to monitor the status of a READ or WRIT function,
detect errors, and enable you to take corrective action. Two basic errors that re-
quire action are declared (detected) errors and timeout errors.

GM--0984--SYS ASCII READ/WRITE Functions 175

13.4 How the READ/WRIT Blocks Handle
ASCII Messages

Once a READ or WRIT block has been activated (power transitioned from low to
high at the top input), you may remove power from the node; the block remains
active for as many scans as are necessary to complete the message transaction.
Power at the middle or bottom input will stop the function.

When the middle input receives power, the READ/WRIT function pauses—i.e., the
middle input deactivates the function. When power is removed from the middle in-
put, the READ/WRIT function continues from where it was interrupted unless
there has been some communication at the port during the pause. If there has
been communication, the message transaction starts at the beginning.

When the bottom input receives power, the READ/WRIT function is aborted. The
middle output (error condition detected) passes power for one scan, then loads
the four most significant bits of the register specified in the top node with error
code 6:

user initiated abort

To restart an ASCII READ/WRIT function after an abort, the top input must be
cycled from low to high.

GM--0984--SYSASCII READ/WRITE Functions176

13.5 ASCII Error Status

When an ASCII message is aborted because of a communication error, an error
code gets stored in the 984. To retrieve the error code for an aborted ASCII block,
use your programming panel or DAP to display the contents of the register holding
the error word. To retrieve an aborted READ block, go to the first register of the
source node; to retrieve an aborted WRIT block, go to the first register of the des-
tination node.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

J812/J892 Drop Error
Port Number assigned

to each ASCII block
(range: 1 ... 32)

Controller Error

Bits 15 ... 12 Controller Error
(HEX)

1 An error has been detected in the input to the RIO interface from
the ASCII device.

2 An exception response from the RIO interface indicates bad data.
3 A sequenced number from the addressed RIO interface differs from

the expected value.
4 There is a user register checksum error—often caused by altering

READ/WRIT registers while the block is active.
5 An invalid port or message number has been detected.
6 A user-initiated abort is indicated; the bottom input of the READ/

WRIT block is energized.
7 No response from the drop indicates a communication error.
8 A node has aborted because of the use of the SKP function.
9 The ASCII message area has been scrambled. Reload memory.
A A port has not been configured in the traffic cop (J892 only).
B This error indicates an illegal ASCII request (J892 only).
C An unknown response has been received from the ASCII port (J892

only).
D An illegal ASCII element has been detected in user logic—

e.g., Duplicate Block.
F The (S901 or S908) RIO processor in the 984 is down.

GM--0984--SYS ASCII READ/WRITE Functions 177

Bits 11 ... 6 J812/J892 Drop Error

11 The input from the ASCII device is not compatible with the specified
format.

10 There is an input buffer overrun—data are being received too quickly at
the (J812/J892) RIO interface.

9 A USART error has been detected—a bad byte has been received at the
(J812/J892) RIO interface.

8 An illegal format has been processed—the format has not been received
properly by the (J812/J892) RIO interface.

7 The ASCII device is off-line—it has been turned off, disconnected, put
into off-line operation, or has activated normal handshaking. Check the
cabling to the device.

6 An ASCII message has terminated early (keyboard mode only).

ASCII Character Code Chart

Dec Octal Hex Name Dec Octal Hex Symbol

0 000 00 NUL (null) 64 100 40 @
1 001 01 SOH (start of heading) 65 101 41 A
2 002 02 STX (start of text) 66 102 42 B
3 003 03 ETX (end of text) 67 103 43 C
4 004 04 EOT (end of transmission) 68 104 44 D
5 005 05 ENQ (enquiry) 69 105 45 E
6 006 06 ACK (acknowledge) 70 106 46 F
7 007 07 BEL (bell or audio tone) 71 107 47 G
8 010 08 BS (backspace) 72 110 48 H
9 011 09 HT (horizontal tab) 73 111 49 I
10 012 0A LF (line feed) 74 112 4A J
11 013 0B VT (vertical tab) 75 113 4B K
12 014 0C FF (form feed) 76 114 4C L
13 015 0D CR (carriage return) 77 115 4D M
14 016 0E SO (shift out (red ribbon)) 78 116 4E N
15 017 0F SI (shift in (black ribbon)) 79 117 4F O
16 020 10 DLE (data link escape) 80 120 50 P
17 021 11 DC1 (device control 1 (X--ON)) 81 121 51 Q
18 022 12 DC2 (device control 2 (aux--ON)) 82 122 52 R
19 023 13 DC3 (device control 3 (X--OFF)) 83 123 53 S
20 024 14 DC4 (device control 4 (aux--OFF)) 84 124 54 T
21 025 15 NAK (negative acknowledge (error)) 85 125 55 U
22 026 16 SYN (synchronous file) 86 126 56 V
23 027 17 ETB (end of transmission block) 87 127 57 W
24 030 18 CAN (cancel) 88 130 58 X
25 031 19 EM (end of medium) 89 131 59 Y
26 032 1A SUB (substitute) 90 132 5A Z
27 033 1B ESC (escape) 91 133 5B [
28 034 1C FS (file separator) 92 134 5C \
29 035 1D GS (group separator) 93 135 5D]
30 036 1E RS (record separator) 94 136 5E ∧
31 037 1F US (unit separator) 95 137 5F __
32 040 20 SP (space) 96 140 60 ‘
33 041 21 ! 97 141 61 a
34 042 22 ” 98 142 62 b
35 043 23 # 99 143 63 c
36 044 24 $ 100 144 64 d
37 045 25 % 101 145 65 e
38 046 26 & 102 146 66 f
39 047 27 ’ 103 147 67 g
40 050 28 (104 150 68 h
41 051 29) 105 151 69 i
42 052 2A * 106 152 6A j
43 053 2B + 107 153 6B k
44 054 2C , 108 154 6C l
45 055 2D -- 109 155 6D m
46 056 2E . 110 156 6E n
47 057 2F / 111 157 6F o
48 060 30 0 112 160 70 p
49 061 31 1 113 161 71 q
50 062 32 2 114 162 72 r
51 063 33 3 115 163 73 s
52 064 34 4 116 164 74 t
53 065 35 5 117 165 75 u
54 066 36 6 118 166 76 v
55 067 37 7 119 167 77 w
56 070 38 8 120 170 78 x
57 071 39 9 121 171 79 y
58 072 3A : 122 172 7A z
59 073 3B ; 123 173 7B {
60 074 3C < 124 174 7C |
61 075 3D = 125 175 7D }
62 076 3E > 126 176 7E ∼
63 077 3F ? 127 177 7F DEL (delete)

GM--0984--SYS Monitoring System Status 179

Chapter 14
Monitoring System
Status

The STAT Function

Troubleshooting with the STAT Function

Accessing Status Registers from Your Programming Panel

Accessing Status Registers with a DAP

The Status Table

Controller Status

I/O Module Health Status

I/O Communication Status

GM--0984--SYSMonitoring System Status180

14.1 The STAT Function

The STAT instruction lets you access the 984 status table in system memory; here
vital system diagnostic information is written into a table of registers or discretes,
as specified in the destination node. This information includes

Controller status

Possible error conditions in the I/O modules

Input-to-controller-to-output communication status

STAT is a two-node function block:

destination

table length
STAT

ON = access
status table

Operation completed

The top destination node, where the first word of system status is written, may be

The first 0x in a table of discrete output references

The first 4x in a table of holding registers

Caution We recommend that you do not use discretes in the
STAT destination node because of the excessive number required
to contain status information.

The bottom node indicates that this is a STAT function and specifies the number
of registers in the table where status information will be written. The table length
ranges from 1 ... 75 for controllers using the S901 RIO protocol and 1 ... 277 for
controllers using the S908 protocol. The table length that can actually be read by
the STAT block depends on the addressing capabilities of the controller—a 16 bit
CPU can access only up to the first 255 words in the STAT table, whereas a 24 bit
CPU can access all 277 words.

GM--0984--SYS Monitoring System Status 181

14.2 The S901 Status Table

The 75 words in the S901 status table are divided into three sections—the first 11
words for controller status information, the next 32 words for I/O module health in-
formation, and the last 32 words for I/O communications information:

1 Controller Status
2 Unused
3 Controller Status
4 S901 Status
5 Controller Stop State
6 Number of Segments in User Logic
7 Address of End-0f-Logic Pointer
8 RIO Redundancy and Timeout
9 ASCII Message Status
10 Run Load Debug Status
11 Address of Status Word Pointer Table

12 Channel 1 Input Channel 2 Input
13 Channel 3 Input Channel 4 Input
14 Channel 5 Input Channel 6 Input

” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ”
27 Channel 29 Input Channel 30 Input
28 Channel 31 Input Channel 32 Input

29 Channel 1 Output Channel 2 Output
30 Channel 3 Output Channel 4 Output
31 Channel 5 Output Channel 6 Output

” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ”
42 Channel 29 Output Channel 30 Output
43 Channel 31 Output Channel 32 Output

44 Remote I/O Channels 5 and 6 First Word
45 Remote I/O Channels 5 and 6 Second Word
46 Remote I/O Channels 7 and 8 First Word
47 Remote I/O Channels 7 and 8 Second Word

” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ”
70 Remote I/O Channels 31 and 32 First Word
71 Remote I/O Channels 31 and 32 Second Word
72 Remote I/O Channels 1 and 2 First Word
73 Remote I/O Channels 1 and 2 Second Word
74 Remote I/O Channels 3 and 4 First Word
75 Remote I/O Channels 3 and 4 Second Word

01
02
03
04
05
06
07
08
09
0A
0B

0C
0D
0E
”
1B
1C

1D
1E
1F
”
2A
2B

2C
2D
2E
2F
”
46
47
48
49
4A
4B

DECIMAL
WORD

HEX
WORD

GM--0984--SYSMonitoring System Status182

14.3 Accessing S901 Status Data with a
Programming Panel

Status words 1 ... 11 can be found in sequential memory starting at absolute
memory location 65 (hex). The system keeps a status block pointer in absolute
memory location 6F (hex); it points to a table of addresses 76 words long. Ad-
dresses 2 ... 76 point to status words 1 ... 75, respectively.

Procedure Locating a Status Word with a Programming
Panel

Step 1 Read the pointer stored in location 6F.

Step 2 Add the status word number to the pointer.

Step 3 If the most significant hex digit of the pointer is > 8, add
E8000 to the pointer as follows:

Pointer Address

8xxx F0xxx
9xxx F1xxx
Axxx F2xxx xxx = last three digits of the
Bxxx F3xxx pointer become last three
Cxxx F4xxx digits of the address
Dxxx F5xxx
Exxx F6xxx For example, pointer B984 becomes
Fxxx F7xxx address F3984.

Step 4 Read the pointer from the pointer table.

Step 5 If the most significant hex digit of the pointer is > 8, convert
the address using the procedure described in Step 3.

Step 6 Read the status word from system memory.

GM--0984--SYS Monitoring System Status 183

14.4 Accessing S901 Status Data with a
P965 DAP

Status words 1 ... 11 can be found in sequential memory starting at absolute
memory location 300101 (decimal). The system keeps a status block pointer in
absolute memory location 300111 (decimal); it points to a table of addresses 76
words long. Addresses 2 ... 76 point to status words 1 ... 75.

Procedure Locating a Status Word with a P965 DAP

Step 1 Read the pointer stored in location 300111.

Step 2 Add the status word number to the pointer.

Step 3 Add 300000 to the pointer as follows:

Pointer Address

xxxxx 3xxxxxx

where the last five digits (xxxxx) of the pointer become the last five digits of the address. For
example, pointer 00984 becomes address 300984.

Step 4 Read the pointer from the pointer table.

Step 5 Convert the address using the procedure described in
Step 3.

Step 6 Read the status word from system memory.

GM--0984--SYSMonitoring System Status184

14.5 S901 Controller Status Words

Words 1 ... 11 display the controller status words:

Word 1 Displays the following aspects of the controller’s status:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Not Used
Battery Failed

Memory Protect OFF
Run Light OFF

AC Power ON

1 = 16 Bit User Logic
0 = 24 Bit User Logic

Enable Single Sweep Delay
Enable Constant Sweep

Not Used

If the bit is set to 1, then the condition is TRUE.

Word 2 is not used, and therefore all bit values are 0.

Word 3 Displays the following aspects of the controller’s status:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Exiting DIM AWARENESS
Not Used

If the bit is set to 1, then the condition is TRUE.

Single Sweeps

Constant Sweep Times Exceeded
Start Command Pending

First Scan

GM--0984--SYS Monitoring System Status 185

Word 4 Displays the status of the S901 Remote I/O Processor:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S901 Memory Failure
Not Used

If the bit is set to 1, then the condition is TRUE.

S901 Loopback Failure
S901 Timeout

S901 Bad

RIO Error
(see Legend)

000 = RIO did not respond
001 = No response on loopback
010 = Failed loopback data check
011 = Timeout while awaiting a response
100 = RIO did not accept message

RIO ERRORS

Word 5 Displays the controller’s stop state conditions:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CPU Failed
Real Time Clock Error

Watchdog Timer Expired
No End-Of-Logic

If the bit is set to 1, then the condition is TRUE.

Bad Config
Coil Disabled

Logic chksm
Invalid Node

Invalid Traffic Cop

State RAM Test Failed
Start of Node Did Not Start Segment

Segment Scheduler Invalid
Illegal Peripheral Intervention

Controller in DIM AWARENESS
Extended Memory Parity Error

Peripheral Port Stop

in RUN Mode

GM--0984--SYSMonitoring System Status186

Word 6 Displays the number of logic segments:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Segments (expressed as a binary number)

Word 7 Displays the end-of-logic (EOL) pointer:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

EOL Pointer

Word 8 Holds a RIO redundancy flag and displays an RIO timeout
constant:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

RIO Redundancy Flag RIO Timeout Constant

Word 9 Displays the ASCII message status:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Mismatch Between Number of Messages and Pointers
Invalid Message Pointer

Invalid Message
Message Chksm Error

If the bit is set to 1, then the condition is TRUE.

GM--0984--SYS Monitoring System Status 187

Word 10 Uses its two most significant bits to display the RUN load
debug status:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If the bit is set to 1, then the condition is TRUE.

Debug = 0 0
Run = 0 1
Load = 1 0

Word 11 Displays the address of the table of status word pointers:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pointer to the Table of Status Word Pointers

GM--0984--SYSMonitoring System Status188

14.6 S901 I/O Module Health Status
Words

Words 12 ... 43 display the health of the I/O modules in the odd and even
channels:

12 Channel 1 Input Channel 2 Input
13 Channel 3 Input Channel 4 Input
14 Channel 5 Input Channel 6 Input

” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ”
26 Channel 29 Input Channel 30 Input
27 Channel 31 Input Channel 32 Input

28 Channel 1 Output Channel 2 Output
29 Channel 3 Output Channel 4 Output
30 Channel 5 Output Channel 6 Output

” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ”
42 Channel 29 Output Channel 30 Output
43 Channel 31 Output Channel 32 Output

0C
0D
0E
”
1B
1C

1D
1E
1F
”
2A
2B

Each of these 32 status words is organized as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Slot 1
Slot 2

Slot 3
Slot 4

Slot 5

Slot 6
Slot 7

Slot 8

Slot 1
Slot 2

Slot 3
Slot 4

Slot 5
Slot 6

Slot 7
Slot 8

Odd Channels Even Channels

GM--0984--SYS Monitoring System Status 189

If a specified slot is inhibited in the traffic cop, the bit is 0. If the slot contains an
input module or an input/output module, the bit is 1. If the slot contains an output
module and the module’s COMM ACTIVE LED is ON, the bit is 0; if slot contains
an output module and the module’s COMM ACTIVE LED is OFF, the bit is 1.

Note These indicators are valid only when scan time > 30 ms.

GM--0984--SYSMonitoring System Status190

14.7 S901 RIO Communication Status
Words

RIO system communication status is given in words 44 ... 75. Two words are
used to describe each of up to 16 drops:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Busy 0

If the bit is set to 1, then the condition is TRUE.

Busy 1
Send Sequence

Not Used
Current Message Not Supported

Byte Count Underrun
Sequence Number Invalid

Function Scheduled:

Cable B
Receive Sequence

000 = Normal I/O
001 = Restart (Comm Reset)
010 = Restart (Application Reset)
011 is unassigned
100 = Inhibit
101 unassigned
110 unassigned
111 unassigned

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Command Not Supported by Drop

If the bit is set to 1, then the condition is TRUE.

Not Used
Drop Just Powered Up

Addressed Drop Did Not Respond

CRC Error From Addressed Drop

Retry Counter

Invalid Sequence Number

Character Overrun From the Addressed Drop
Not Used

GM--0984--SYS Monitoring System Status 191

14.8 The S908 Status Table

The 277 words in the S908 status table are organized in three sections—the first
11 words for controller status, the next 160 words for I/O module health, and the
last 106 words for I/O communication health:

01

02
03
04
05
06
07
08

09
0A
0B

0C
0D
0E
0F
10
11
12

AA
AB

AC
AD...AF
B0...B2
B3...B5
B6...B8

B9...BB
BC...BE

110...112
113...115

DECIMAL
WORD

HEX
WORD

1 Controller Status

2 Hot Standby Status
3 Controller Status
4 RIO Status
5 Controller Stop State
6 Number of Ladder Logic Segments
7 End-of-logic Pointer Address
8 RIO Redundancy and Timeout /

Memory Sizing Word for Panel (in
the 984-145 Compact Controller)

9 ASCII Message Status
10 Run/Load/Debug Status
11 Not used

12 Drop 1, Rack 1
13 Drop 1, Rack 2

Drop 1, Rack 3
Drop 1, Rack 4

14
15

Drop 2, Rack 1
Drop 2, Rack 2

Drop 1, Rack 516
17
18

Drop 32, Rack 4
Drop 32, Rack 5

170
171

” ” ” ” ” ” ” ” ”

172 S908 Startup Error Code
173...175
176...178
179...181
182...184

Cable A Errors
Cable B Errors
Global Communication Errors
Drop 1 Errors /
Health Status and Retry Counters
(in the Compact 984 Controllers)

185...187 Drop 2 Errors
188...190 Drop 3 Errors

272...274 Drop 31 Errors
275...277 Drop 32 Errors

GM--0984--SYSMonitoring System Status192

14.9 Accessing S908 Status Data with a
Programming Panel

When accessing the status table from your programming panel, words 1 ... 11 are
found in sequential memory locations 65 ... 6F (hex). The I/O health status table
is kept in 160 sequential memory locations; the communication status table is kept
in 106 sequential memory locations. The actual memory locations that hold these
two tables will vary with different 984 mainframe models.

Use pointers to locate the first word in the I/O module health status table and the
communication status table. The pointers are always found at the same locations
in absolute memory:

I/O module health pointer—location 46 (hex)

I/O communication pointer—location 33 (hex)

If the most significant hex digit of the pointer is > 8, add E8000 to the pointer as
follows:

Pointer Address

8xxx f0xxx
9xxx f1xxx
axxx f2xxx xxx = last three digits of the
bxxx f3xxx pointer become the last three
cxxx f4xxx digits of the address
dxxx f5xxx
exxx f6xxx For example, pointer B984 becomes
fxxx f7xxx address F3984

To find the address of an I/O health status word, subtract 0C (hex) from the status
word number, then add the result to the I/O health pointer.

To find the address of a communication status word, subtract 0AC (hex) from the
status word number, then add the result to the I/O communication pointer.

GM--0984--SYS Monitoring System Status 193

14.10 Accessing S908 Status Data with a
P965 DAP

If you are accessing the status table with a P965 DAP, words 1 ... 11 can be found
in absolute memory locations 300101 ... 300111 (decimal). The I/O health status
table is kept in 160 sequential memory locations; the communication status table
is kept in 106 sequential memory locations. The actual memory locations that
hold these two tables will vary with different 984 controllers.

Use pointers to locate the first word in the I/O module health status table and the
communication status table. The pointers are always found at the same locations
in absolute memory:

I/O module health pointer—location 300070

I/O communication pointer—location 300051

Add 300000 to the pointer as follows:

Pointer Address

xxxxx 3xxxxxx

where the last five digits (xxxxx) of the pointer become the last five digits of the address. For
example, pointer 00984 becomes address 300984.

To find the address of an I/O health status word, subtract 12 from the status word
number, then add the result to the I/O health status pointer.

To find the address of a communication status word, subtract 172 from the status
word number, then add the result to the I/O communication pointer.

GM--0984--SYSMonitoring System Status194

14.11 S908 Controller Status Words

Words 1 ... 11 display the controller status words.

Word 1 Displays the following aspects of the controller’s status:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Not Used
Battery Failed

Memory Protect OFF
Run Light OFF

AC Power ON
1 = 16 Bit User Log-
ic
0 = 24 Bit User Log-
ic

Enable Single Sweep Delay
Enable Constant Sweep

Not Used

If the bit is set to 1, then the condition is TRUE.

Word 2 Displays the Hot Standby status for 984 controllers that
use S911/R911 Modules:

1 2 3 4 5 6 7 8 11 12 13 14 15 16

S911/R911 Present and Healthy

Not Used

If the bit is set to 1, then the condition is TRUE.

Local System State

Remote System State

(see Legend)
00 = Not Used
01 = Off Line
10 = Primary
11 = Standby

11

0 = Controller Toggle Set to A
1 = Controller Toggle Set to B

0 = Controllers have Matching Logic
1 = Controllers do not have Matching Logic

(see Legend)

9 10

GM--0984--SYS Monitoring System Status 195

Word 3 Displays more aspects of the controller status:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Exiting DIM AWARENESS
Not Used

If the bit is set to 1, then the condition is TRUE.

Single Sweeps

Constant Sweep Times Exceeded
Start Command Pending

First Scan

Word 4 Displays the status of the I/O processor in the 984
controller:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IOP Memory Failure
Not Used

If the bit is set to 1, then the condition is TRUE.

IOP Loopback Failure

IOP Timeout

IOP Bad

I/O Error
000 = I/O did not respond
001 = No response on loopback
010 = Failed loopback data check
011 = Timeout while awaiting a

response
100 = I/O did not accept message

GM--0984--SYSMonitoring System Status196

Word 5 Displays the controller’s stop state conditions:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CPU Logic Solver Failed (for chassis mount

controllers) or Coil Use Table (for other
controllers)
If the bit = 1 in a chassis mount controller, the
internal diagnostics have detected a CPU fail-
ure. If the bit = 1 in any controller other than a
chassis mount, then the Coil Use table does
not match the coils in user logic.

Real Time Clock Error
Watchdog Timer Expired

Invalid Traffic Cop

If the bit is set to 1, then the condition is TRUE.

Bad Config

Coil Disabled in
Logic chksm

Invalid Node

IOP Failure

State RAM Test Failed
Start of Node Did Not Start Segment

Segment Scheduler Invalid

Illegal Peripheral Intervention
Controller in DIM AWARENESS

Extended Memory Parity Error (for chassis mount controllers) or Traffic Cop/S908
Error (for other controllers)
If the bit = 1 in a 984B Controller, an error has been detected in extended
memory; the controller will run, but the error output will be ON for XMRD/XMWT
functions. If the bit = 1 for any controller other than a chassis mount, then either a
traffic cop error has been detected or the S908 is missing from a multi-drop
configuration.

Peripheral Port Stop

RUN
Mode

Word 6 Displays the number of segments in ladder logic; a binary
number is shown:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Segments (expressed as a binary number)

Word 7 Displays the address of the end-of-logic (EOL) pointer:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

EOL Pointer Address

GM--0984--SYS Monitoring System Status 197

Word 8 In controllers that support remote I/O, word 8 uses its most
significant bit to display whether or not redundant coaxial
cables are run to the remote I/O drops, and it uses its four
least significant bits to display the remote I/O timeout
constant:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

RIO Redundant Cables? 0 = NO 1 = YES RIO Timeout Constant

In the Compact 984--145 Controller, word 8 is used to store
a numerical value that defines the upper limit of memory lo-
cations on page 0 where user logic can be placed. This
value is not user-configurable and is used only by the pro-
gramming panel.

Word 9 Uses its four least significant bits to display ASCII message
status:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Mismatch Between Number of Messages and Pointers
Invalid Message Pointer

Invalid Message
Message cksm Error

If the bit is set to 1, then the condition is TRUE.

Word 10 Uses its two least significant bits to display
RUN/LOAD/DEBUG status:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If the bit is set to 1, then the condition is TRUE.

Debug = 0
Run = 0
Load = 1

0
1
0

Word 11 is not used.

GM--0984--SYSMonitoring System Status198

14.12 S908 I/O Module Health Status
Words

Status words 12 ... 171 display I/O module health status:

12 Drop 1 Rack 1
13 Drop 1 Rack 2
14 Drop 1 Rack 3
15 Drop 1 Rack 4
16 Drop 1 Rack 5

17 Drop 2 Rack 1
18 Drop 2 Rack 2

” ” ” ” ” ” ”
170 Drop 32 Rack 4
171 Drop 32 Rack 5

Five words are reserved for each of up to 32 drops, one word for each of up to
five possible racks (I/O housings) in each drop. Each rack may contain up to 11 I/
O modules; bits 1 ... 11 in each word represent the health of the associated I/O
module in each rack.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Slot 1
Slot 2

Slot 3
Slot 4

Slot 5
Slot 6

Slot 7
Slot 8

Slot 9
Slot 10

Slot 11 Not Used

If the bit is set to 1, then the condition is TRUE.

GM--0984--SYS Monitoring System Status 199

Four conditions must be met before an I/O module can indicate good health:

The slot must be traffic copped

The slot must contain a module with the correct personality

Valid communications must exist between the module and the RIO interface at
remote drops

Valid communications must exist between the RIO interface at each remote
drop and the I/O processor in the controller

14.12.1 Converting from Word # to Drop and Rack

5
= Quotient + Remainder

Word # --12

where

Drop # = Quotient + 1
Rack # = Remainder + 1

14.12.2 Converting from Drop and Rack to Word #

Word # = (Drop # x 5) + Rack # + 6

14.12.3 Status Words for the MMI Operator Panels

The status of the 32 Element Pushbutton Panels and PanelMate units on an RIO
network can also be monitored with an I/O health status word. The Pushbutton
Panels occupy slot 4 in an I/O rack and can be monitored at bit 4 of the appropri-
ate status word. A PanelMate on RIO occupies slot 1 in rack 1 of the drop and
can be monitored at bit 1 of the first status word for the drop.

Note The ASCII Keypad’s communication status can be monitored
with the error codes in the ASCII READ/WRIT blocks (see
Section 13.5).

GM--0984--SYSMonitoring System Status200

14.13 S908 I/O Communication Status
Words

Status words 172 ... 277 contain the I/O system communication status. Words
172 ... 181 are global status words. Among the remaining 96 words, three words
are dedicated to each of up to 32 drops, depending on the type of 984 controller
you are using.

Word 172 S908 Startup Error Code. This word is always 0 when the
system is running. If an error occurs, the controller does
not start—it generates a stop state code of 10 (word 5):

Traffic Cop Validation Soft Error Codes

01 BADTCLEN Traffic Cop length
02 BADLNKNUM Remote I/O link number
03 BADNUMDPS Number of drops in Traffic Cop
04 BADTCSUM Traffic Cop checksum
10 BADDDLEN Drop descriptor length
11 BADDRPNUM I/O drop number
12 BADHUPTIM Drop holdup time
13 BADASCNUM ASCII port number
14 BADNUMODS Number of modules in drop
15 PRECONDRP Drop already configured
16 PRECONPRT Port already configured
17 TOOMNYOUT More than 1024 output points
18 TOOMNYINS More than 1024 input points
20 BADSLTNUM Module slot address
21 BADRCKNUM Module rack address
22 BADOUTBC Number of output bytes
23 BADINBC Number of input bytes
25 BADRF1MAP First reference number
26 BADRF2MAP Second reference number
27 NOBYTES No input or output bytes
28 BADDISMAP Discrete not on 16-bit boundary
30 BADODDOUT Unpaired odd output module
31 BADODDIN Unpaired odd input module
32 BADODDREF Unmatched odd module reference
33 BAD3X1XRF 1x reference after 3x register
34 BADDMYMOD Dummy module reference already used
35 NOT3XDMY 3x module not a dummy
36 NOT4XDMY 4x module not a dummy
40 DMYREAL1X Dummy, then real 1x module
41 REALDMY1X Real, then dummy 1x module
42 DMYREAL3X Dummy, then real 3x module
43 REALDMY3X Real, then dummy 3x module

Words 173 ... 175 are Cable A error words:

GM--0984--SYS Monitoring System Status 201

Word 173 High byte (bits 1 ... 8): Framing error count.
Low byte (bits 9 ... 16): DMA receiver overrun count.

Word 174 High byte: Receiver error count.
Low byte: Bad drop reception count.

Word 175 Displays the last received LAN error code:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Short Frame

Not Used

If the bit is set to 1, then the condition is TRUE.

Alignment Error
CRC Error

No End-Of-Frame
Overrun Error

Words 176 ... 178 are Cable B error words:

Word 176 High byte: Framing error count.
Low byte (bits 9 ... 16): DMA receiver overrun count.

Word 177 High byte: Receiver error count.
Low byte: Bad drop reception count.

Word 178 Last Received LAN Error Code: see Word 175 above.

Word 179 Displays global communication status:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If the bit is set to 1, then the condition is TRUE.

Not Used

Cable B Status

Cable A Status

Comm Health

Cumulative Retry Counter

Lost Communication Counter

GM--0984--SYSMonitoring System Status202

Word 180 Global Cumulative Error Counter (Cable A):
High byte (bits 1 ... 8): Detected error count.
Low byte (bits 9 ... 16): No response count.

Word 181 Global Cumulative Error Counter (Cable B):
High byte: Detected error count.
Low byte: No response count.

For controllers that support remote I/O, words 182 ... 277 are used to describe re-
mote I/O drop status; three status words are used for each drop:

Words 182 ... 184 Assigned to drop 1

Words 185 ... 187 Assigned to drop 2

etc.

Words 275 ... 277 Assigned to drop 32

Each group of RIO drop status word is organized as follows:

First Word Displays communication status:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If the bit is set to 1, then the condition is TRUE.

Cumulative Retry Counter
Lost Communications Counter

Not Used

Cable B Status
Cable A Status

Communication Health

GM--0984--SYS Monitoring System Status 203

Second Word Drop Cumulative Error Counter (Cable A)
High byte (bits 1 ... 8): At least one error has occurred in

words 173 ... 175
Low byte (bits 9 ... 16): No response count

Third Word Drop Cumulative Error Counter (Cable B)
High byte: At least one error has occurred in words

176 ... 178
Low byte: No response count

For any 984 controller where drop 1 is reserved for local I/O, status words
182 ... 184 are used as follows:

Word 182 Displays local drop status:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Always 0 Number of times a Module has
been seen as Unhealthy
Counter Rolls Over at 255

All Modules Healthy

Word 183 Used as a 16 bit I/O bus error counter

Word 184 Used as a 16 bit I/O bus retry counter

14.13.1 Converting a Word # to a Drop # or Word

3
= quotient and remainderword # -- 182

quotient + 1 = drop #
remainder + 1 = word

14.13.2 Converting a Drop # or Word to a Word #

(drop # x 3) + word + 178 = word #

GM--0984--SYS Bypassing Networks with SKP 205

Chapter 15
Bypassing Networks
with SKP

Warning SKP is the most dangerous instruction in the 984
instruction set, and it should be used carefully. If inputs and
outputs that normally effect control are unintentionally skipped
(or not skipped), the result can create hazardous conditions for
personnel and application equipment.

GM--0984--SYSBypassing Networks with SKP206

15.1 SKP

With the SKP instruction, you can bypass networks in your ladder logic program
and not solve the skipped logic. SKP functions allow you to reduce scan time
and, in effect, establish subroutines in the logic. The SKP instruction is a
one-node function block:

ON = acti-
vate
skip function

number of blocks
to be skipped

SKP

The node indicates that this is a SKP function and specifies the number of net-
works to be skipped—this number must include the network that contains the SKP
instruction. The number can be

A decimal ranging from 1 ... 999

An input register (3x)

A holding register (4x)

When the node is powered, SKP is performed on every scan. This causes the
rest of the network containing the SKP block to be skipped (this counts as one
network skipped); the CPU continues to skip networks until the total number of
networks skipped equals the value specified in the function block.

A SKP operation cannot pass the boundary of a segment. No matter how many
extra networks you schedule to be skipped, the instruction will stop if it reaches
the end of a segment.

Note A SKP instruction can be activated only if you specify in the
configurator editor that skips are allowed.

GM--0984--SYS Bypassing Networks with SKP 207

15.1.1 A Simple SKP Example

10003 00193

00116

10001

SKP

00002

10002

Rung 1

Rung 7

Network 43

Network 42

When 10001 is closed, the remainder of network 42 and all of network 43 are
skipped. The power flow display for these two networks becomes invalid, and
your system displays an information message to that effect.

Coil 00193 is still controlled by contact 10003 because the solution of coil 00193
occurs before the SKP instruction.Coil 00116 will remain in whatever state it was
in when network 43 was skipped.

GM----0984--SYS Extended Memory Capabilities 209

Chapter 16
Extended Memory
Capabilities

Extended Memory File Structure

How Extended Memory Is Stored in System Memory

Extended Memory Control Table

Extended Memory Write Function

Extended Memory Read Function

GM----0984--SYSExtended Memory Capabilities210

16.1 Extended Memory File Structure

The 984B chassis mount Controller provides an optional capability for supporting
extended memory. Extended memory is used for massive data storage in a group
of files made up of storage registers. These extended memory storage registers
use 6x reference numbers on pages 1 ... 3 in system memory.

Extended memory provides up to ten files, and each file can contain as many as
10,000 registers ranging from 60000 ... 69999:

File 1

60000
60001
60002

•
•
•

69999

File 2

60000
60001
60002

•
•
•

69999

• • •

File 10

60000
60001
60002

•
•
•

69999

Extended Memory File Structure

Three optional sizes of extended memory are available: 32K words, 64K words,
and 96K words. Each 6x register uses one word of extended memory. The total
memory available may be up to 128K words, with either 32K words or 64K words
allocated for user logic memory so that:

A 984B with 32K words of memory has no extended memory

A 984B with 64K words of memory may use all 64K for user logic or 32K of
user logic and 32K words of extended memory

A 984B with 96K words of memory may use 32K for user logic and 64K for ex-
tended memory or 64K for user logic and 32K for extended memory

A 984 with 128K words of memory may use 32K for user logic and 96K for ex-
tended memory or 64K for user logic and 64K for extended memory

GM----0984--SYS Extended Memory Capabilities 211

16.2 How Extended Memory Is Stored in
User Memory

Extended Memory consists of a bank of memory registers located on pages 1 ... 3
in system memory; these registers may be used as mass storage area for 984
holding registers or as a buffer for input registers. You can store additional state
RAM data not being used in a particular application here.

Executive Scratchpad

page F

page 2

Configuration Table

Data Exchange Code

page 0

Optional User Logic or
Extended Memory

Extended Memory

page 3

Extended Memory

24 bits

16 bits

page 1

ASCII Message Table
Loadable Instructions
Traffic Cop Table
Segment Scheduler
Status Tables
Other Diagnostics

User Logic

Executive PROM

IOP Address Space

State RAM

16 bits

The 984B can be configured for either 32K or 64K words of user logic using the
configurator editor in your panel software. If you use 64K, pages 0 and 1 (which
contain 24 bit words) are used; if you choose 32K, only page 0 is used. If page 1
is not used for optional user logic in a 984B, it may be used for Extended Memory,
along with pages 2 and 3.

Note Pages 2 and 3 contain 16 bit words, as do all pages except
pages 0 and 1 in a 24 bit machine.

GM----0984--SYSExtended Memory Capabilities212

16.3 Extended Memory Control Table

Two additional three-node instructions are included in the 984B executive firm-
ware to be used for manipulating extended memory files—XMWT for writing data
into extended memory files and XMRD for reading data from extended memory to
state RAM. Both these instructions use a table of six 4x holding registers called
the extended memory control table.

Reference Register Name Description

4x status word Contains diagnostic information about extended
memory (see illustration on next page)

4x + 1 file number Specifies which of the extended memory files is
currently in use (range: 1 ... 10)

4x + 2 start address Specifies which 6x storage register in the current
file is the starting address; 0 = 60000, 9999 = 69999

4x + 3 count Specifies the number of registers to be read or writ-
ten in a scan when the appropriate function block is
powered; range: 0 ... 9999, not to exceed number
specified in maximum registers (4x + 5)

4x + 4 offset Keeps a running total of the number of registers
transferred thus far

4x + 5 maximum registers Specifies the maximum number of registers that
may be transferred when the function block is pow-
ered (range: 0 ... 9999)

GM----0984--SYS Extended Memory Capabilities 213

16.3.1 Format of the Extended Memory Status Word

The 16 bit values in the first word in the control table provide you with diagnostic
information regarding extended memory:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Not used

0 = No file number errors parameter found
1 = file number parameter error

0 = No starting address parameter errors found
1 = starting address parameter error

0 = No count parameter errors found
1 = count parameter error

0 = No offset parameter errors found

1 = offset parameter error

0 = No maximum registers parameter errors found

1 = maximum registers parameter error

0 = State RAM OK
1 = Nonexistent state RAM

0 = offset parameter OK
1 = offset parameter too large

0 = File boundary maintained
1 = File boundary crossed

0 = Transfer in progress
1 = Transfer completed

0 = Transfer not running
1 = Busy

0 = Extended memory exists
1 = Nonexistent extended memory

0 = No parity error found
1 = Parity error in extended memory

0 = No power-up error found
1 = Power-up diagnostic error

GM----0984--SYSExtended Memory Capabilities214

16.4 Extended Memory Write Function

The XMWT instruction is used to write data from a block of input registers or hold-
ing registers in state RAM to a block of 6x registers in an extended memory file. It
is a three-node function block:

control block

1
XMWT

0 clears offset to 0
1 does not clear offset Error condition detected

0 = abort on error
1 = do not abort on

error
Passes power when XMWT complete

sourceActivates write
operation

XMWT transfer active

The top node may be a 3x input register or 4x holding register that specifies the
first register in the block of registers to be written to extended memory.

The middle node is the first of six consecutive 4x registers to be used as the ex-
tended memory control block (as described in Section 16.3). If you are in
multi-scan mode, these six registers should be unique to this function block.

The bottom node identifies the function as an extended memory write and always
contains the constant value 1, which cannot be changed.

GM----0984--SYS Extended Memory Capabilities 215

16.5 Extended Memory Read Function

The XMRD instruction is used to copy a table of 6x extended memory registers to
a table of 4x holding registers in state RAM. XMRD is a three-node function
block:

control block

1
XMRD

0 clears offset to 0
1 does not clear offset Error condition detected

0 = abort on error
1 = do not abort on

error
Passes power when XMRD complete

destination

Activates read
operation

XMRD transfer active

The top node is the first of six consecutive 4x registers to be used as the ex-
tended memory control block (as described in Section 16.3). If you are in
multi-scan mode, these six registers should be unique to this function block.

The middle node is the first 4x holding register in a table of registers that receive
the transferred data from the 6x extended memory storage registers.

The bottom node identifies the function as an extended memory read and always
contains the constant value 1, which cannot be changed.

GM--0984--SYS Modbus Plus Master Function 217

Chapter 17
Modbus Plus Master
Function

MSTR Block Overview

MSTR Function Error Codes

Read andWrite MSTR Functions

Get Local Statistics MSTR Function

Clear Local Statistics MSTR Function

Write Global Data MSTR Function

Read Global Data MSTR Function

Get Remote Statistics MSTR Function

Clear Remote Statistics MSTR Function

Network Statistics

GM--0984--SYSModbus Plus Master Function218

17.1 MSTR Block Overview

All 984 controllers that support a Modbus Plus communications capability have a
special master (MSTR) instruction with which nodes on the network can initiate
message transactions. The MSTR function allows you to initiate one of eight pos-
sible operations over the Modbus Plus network:

MSTR Function Code

Write data 1
Read data 2
Get local statistics 3
Clear local statistics 4
Write global database 5
Read global database 6
Get remote statistics 7
Clear remote statistics 8

Up to four MSTR blocks may be simultaneously active in a ladder logic program.
More than four MSTR blocks may be programmed to be enabled by the logic
flow—as one active MSTR block releases the resources it has been using and be-
comes deactivated, the next MSTR function encountered in logic may be
activated.

The MSTR instruction is a three-node function block:

Enables the selected

MSTR function

Operation
is
active

control block

data area

area size
MSTR

Operation has

terminated
unsuccessfully

Terminates an active

MSTR operation

Operation has
been completed
successfully

GM--0984--SYS Modbus Plus Master Function 219

The top node, which must be a 4x register, is the first of nine consecutive holding
registers that form the MSTR control block:

4x Identifies one of the eight MSTR operations

4x + 1 Displays error status

4x + 2 Displays length

4x + 3 Displays MSTR function-dependent information

4x + 4 The Routing 1 register, uses the bit value of the low byte to
designate the address of the destination device; if you are using
a controller with just one Mobbus Plus port, the value of the
high byte should be set to 0:

high byte

0 0 0 0 0 0 0 0

destination address

0 x x x x x x x

binary value between 1 ... 64

If you are using a controller with two Modbus Plus ports—e.g., using
two S985 cards in a chassis mount controller—the value of the high
byte for one port must be set to 0 and the high byte for the other port
must be set to 1, leaving an offset of 256 between the destination
node address and the register value:

high byte

0 0 0 0 0 0 0 1

indicating a second MBP port

destination address

0 x x x x x x x

binary value between 1 ... 64

4x + 5 The Routing 2 register

4x + 6 The Routing 3 register

4x + 7 The Routing 4 register

4x + 8 The Routing 5 register

The middle node, which must also be a 4x register, designates the first register in
the data area. For operations that provide the communication processor with da-
ta—such as a Write operation—the data area is the source of the data. For oper-
ations that acquire data from the communication processor—such as a Read op-
eration—the data area is the destination of the data.

The bottom node indicates that this is an MSTR function and specifies the maxi-
mum number of registers in the data area; area size must be a constant value
ranging from 1 ... 100.

GM--0984--SYSModbus Plus Master Function220

17.2 MSTR Function Error Codes

If an error occurs during any one of the eight MSTR operations, a hexadecimal
error code will be displayed in register 4x + 1 in the control block. The form of the
code is Mmss, where

M represents the major code

m represents the minor code

ss represents a subcode

GM--0984--SYS Modbus Plus Master Function 221

Hex Error Code Meaning

1001 User-initiated abort
2001 Invalid operation type
2002 User parameter changed
2003 Invalid length
2004 Invalid offset
2005 Invalid length + offset
2006 Invalid slave device data area
2007 Invalid slave device network area
2008 Invalid slave device network routing
2009 Route equal to your own address
200A Attempting to obtain more global data words than available
30ss* Modbus slave exception response
4001 Inconsistent Modbus slave response
5001 Inconsistent network response
6mss** Routing failure
07 Slave rejected long-duration program command

* The ss subfield in error code 30ss is:

ss Hex Value Meaning

01 Slave device does not support the requested operation
02 Nonexistent slave device registers requested
03 Invalid data value requested
04 Unassigned
05 Slave has accepted long-duration program command
06 Function can’t be performed now—a long-duration command in effect
08 ... 255 Unassigned

** The m subfield in error code 6mss is an index into the routing information indicating
where an error has been detected—a value of 0 indicates the local node, a 2 the second
device on the route, etc.

The ss subfield in error code 6mss is:

ss Hex Value Meaning

01 No response received
02 Program access denied
03 Node offline and unable to communicate
04 Exception response received
05 Router node data paths busy
06 Slave device down
07 Bad destination address
08 Invalid node type in routing path
10 Slave has rejected the command
20 Initiated transaction forgotten by slave device
40 Unexpected master output path received
80 Unexpected response received

GM--0984--SYSModbus Plus Master Function222

17.3 Read and Write MSTR Functions

An MSTR Write function transfers data from a master source device to a specified
slave destination device on the network. An MSTR Read function transfers data
from a specified slave source device to a master destination device on the net-
work. Read and Write use one data master transaction path and may be com-
pleted over multiple scans.

17.3.1 Control Block Utilization

The contents of the nine registers in the top node of the MSTR block contain the
following information when you implement a Read or Write function:

Control Block MSTR Register
Register Function Content

4x Operation type 1 = Write 2 = Read

4x + 1 Error status Displays a hex value indicating an MSTR error,
when relevant (see 17.2)

4x + 2 Length Write = number of registers to be sent to slave
Read = number of registers to be read from slave

4x + 3 Slave device Specifies starting 4x register in the slave to be
data area read from or written to (1 = 40001, 49 = 40049)

4x + 4, + 5, Routing 1, 2, 3, Designates the first through fifith routing path
+ 6, +7, +8 4, 5 addresses, respectively; the last nonzero byte in

the routing path is the destination device

If you attempt to program the MSTR function to Read or Write its own station ad-
dress, an error will be generated in the second register of the MSTR control block.
It is possible to attempt a Read/Write operation to a nonexistent register in the
slave device. The slave will detect this condition and report it—this may take sev-
eral scans.

Note You need to understand Modbus Plus routing path procedures
before programming an MSTR block. A full discussion of routing path
structures is given in Modbus Plus Network Planning and Installa-
tion Guide (GM-MBPL-001).

GM--0984--SYS Modbus Plus Master Function 223

17.4 Get Local Statistics MSTR Function

The Get local statistics function obtains operational information related to the local
node—where the MSTR function has been programmed. This operation takes
one scan to complete and does not require a data master transaction path.

17.4.1 Control Block Utilization

The contents of the first four registers in the top node of the MSTR block are used
when you implement a Get local statistics function:

Control Block MSTR Register
Register Function Content

4x Operation type 3

4x + 1 Error status Displays a hex value indicating an MSTR error,
when relevant (see 17.2)

4x + 2 Length Starting from offset, the number of words of statis-
tics from the local processor’s statistics table; the
length must be > 0 < the size of the data area

4x + 3 Offset An offset value relative to the first available word in
the local processor’s statistics table—if the offset is
specified as 1, the function obtains statistics starting
with the second word in the table

4x + 4 Routing 1 If this is the second of two local nodes, set the high
byte to a value of 1

See Section 17.10 for the listing of available network statistics.

GM--0984--SYSModbus Plus Master Function224

17.5 Clear Local Statistics MSTR
Function

The Clear local statistics function clears operational statistics relative to the local
node—where the MSTR function has been programmed. This operation takes
one scan to complete and does not require a data master transaction path.

17.5.1 Control Block Utilization

The contents of the first two registers in the top node of the MSTR block are used
when you implement a Clear local statistics function:

Control Block MSTR Register
Register Function Content

4x Operation type 4

4x + 1 Error status Displays a hex value indicating an MSTR error,
when relevant (see 17.2)

4x + 4 Routing 1 If this is the second of two local nodes, set the high
byte to a value of 1

See Section 17.10 for the listing of available network statistics.

GM--0984--SYS Modbus Plus Master Function 225

17.6 Write Global Data MSTR Function

TheWrite global data function transfers data to the comm processor in the current
node so that it can be sent over the network when the node gets the token. All
nodes on the local network link can receive this data. This operation takes one
scan to complete and does not require a data master transaction path.

17.6.1 Control Block Utilization

The contents of the first three registers in the top node of the MSTR block are
used when you implement a Write global data function:

Control Block MSTR Register
Register Function Content

4x Operation type 5

4x + 1 Error status Displays a hex value indicating an MSTR error,
when relevant (see 17.2)

4x + 2 Length Specifies the number of registers from the data area
to be sent to the comm processor; the value of the
length must be < 32 and must not exceed the size of
the data area

4x + 4 Routing 1 If this is the second of two local nodes, set the high
byte to a value of 1

GM--0984--SYSModbus Plus Master Function226

17.7 Read Global Data MSTR Function

The Read global data function gets data from the comm processor in any node on
the local network link that is providing global data. This operation may require
multiple scans to complete if no global data are currently available from the re-
quested node; if global data are currently available, the operation completes in a
single scan. No master transaction path is required.

17.7.1 Control Block Utilization

The contents of the first five registers in the top node of the MSTR block are used
when you implement a Read global data function:

Control Block MSTR Register
Register Function Content

4x Operation type 6

4x + 1 Error status Displays a hex value indicating an MSTR error,
when relevant (see 17.2)

4x + 2 Length Specifies the number of words of global data to be
requested from the comm processor designated by
the routing 1 parameter; the value of the length
must be > 0 < 32 and must not exceed the size of
the data area

4x + 3 Available words Contains the number of words available from the re-
quested node; the value is automatically updated by
internal software

4x + 4 Routing 1 The low byte specifies the address of the node
whose global data are to be returned (a value be-
tween 1 ... 64); if this is the second of two local
nodes, set the high byte to a value of 1

GM--0984--SYS Modbus Plus Master Function 227

17.8 Get Remote Statistics MSTR
Function

The Get remote statistics function obtains operational information relative to re-
mote nodes on the network. This operation may require multiple scans to com-
plete and does not require a master data transaction path.

17.8.1 Control Block Utilization

The contents of the nine registers in the top node of the MSTR block contain the
following information when you implement a Get remote statistics function:

Control Block MSTR Register
Register Function Content

4x Operation type 7

4x + 1 Error status Displays a hex value indicating an MSTR error,
when relevant (see 17.2)

4x + 2 Length Starting from an offset, the number of words of
statistics to be obtained from a remote node; the
value of the length must be > 0 < total number of
statistics available (54) and must not exceed the
size of the data area

4x + 3 Offset Specifies an offset value relative to the first available
word in the statistics table; the value must not ex-
ceed the number of statistic words available

4x + 4, + 5, Routing 1, 2, 3, Designates the first through fifith routing path
+ 6, +7, +8 4, 5 addresses, respectively; the last nonzero byte in

the routing path is the destination device

The remote comm processor always returns its complete statistics table when a
request is made, even if the request is for less than the full table. The MSTR
function then copies only the amount of words you have requested to the desig-
nated 4x registers.

Note You need to understand Modbus Plus routing path procedures
before programming an MSTR block. A full discussion of routing path
structures is given in Modbus Plus Network Planning and Installa-
tion Guide (GM-MBPL-001).

GM--0984--SYSModbus Plus Master Function228

17.9 Clear Remote Statistics MSTR
Function

The Clear remote statistics function clears operational statistics related to a re-
mote network node from the data area in the local node. This operation may re-
quire multiple scans to complete and uses a single data master transaction path.

17.9.1 Control Block Utilization

The contents of seven registers in the top node of the MSTR block contain the fol-
lowing information when you implement a Clear remote statistics function:

Control Block MSTR Register
Register Function Content

4x Operation type 8

4x + 1 Error status Displays a hex value indicating an MSTR error,
when relevant (see 17.2)

4x + 2 and
4x + 3 Not used

4x + 4, + 5, Routing 1, 2, 3, Designates the first through fifith routing path
+ 6, +7, +8 4, 5 addresses, respectively; the last nonzero byte in

the routing path is the destination device

Note You need to understand Modbus Plus routing path procedures
before programming an MSTR block. A full discussion of routing path
structures is given in Modbus Plus Network Planning and Installa-
tion Guide (GM-MBPL-001).

See Section 17.10 for the listing of available network statistics.

GM--0984--SYS Modbus Plus Master Function 229

17.10 Network Statistics

The following table presents statistics available on the Modbus Plus network. You
may acquire this information by using the appropriate MSTR logic function or by
using Modbus function code 8.

Note When you issue the Clear local or Clear remote statistics func-
tions, only words 13 ... 22 are cleared.

Modbus Plus Network Statistics

Word Byte Meaning

00 Node type I.D:
0 Unknown node type
1 Standard programmable controller node
2 Bridge MUX
3 Host
4 Bridge Plus
5 Peer I/O

01 Communications processor version. First release is version 1.00
and displays as 0100 hex

02 Network address for this station

03 MAC state variable:
0 Power up state
1 Monitor offline state
2 Duplicate offline state
3 Idle state
4 Use token state
5 Work response state
6 Pass token state
7 Solicit response state
8 Check pass state
9 Claim token state
10 Claim response state

04 Peer status (LED code); provides status of this unit
relative to the network:

0 Monitor link operation
32 Normal link operation
64 Never getting token
96 Sole station
128 Duplicate station

continued on next page

GM--0984--SYSModbus Plus Master Function230

Modbus Plus Network Statistics (continued)

Word Byte Meaning

05 Token pass counter; increments each time this station gets the token

06 Token rotation time in ms

07 LO Data master failed during token ownership bit map
HI Program master failed during token ownership bit map

08 LO Data master token owner work bit map
HI Program master token owner work bit map

09 LO Data slave token owner work bit map
HI Program slave token owner work bit map

10 LO Data master/get master response transfer request bit map
HI Data slave/get slave command transfer request bit map

11 LO Program master/get master rsp transfer request bit map
HI Program slave/get slave command transfer request bit map

12 LO Program master connect status bit map
HI Program slave automatic logout request bit map

13 LO Pretransmit deferral error counter
HI Receive buffer DMA overrun error counter

14 LO Repeated command received counter
HI No Try counter (nonexistent station)

15 LO Receiver collision-abort error counter
HI Receiver alignment error counter

16 LO Receiver CRC error counter
HI Bad packet-length error counter

17 LO Bad link-address error counter
HI Transmit buffer DMA-underrun error counter

18 LO Bad internal packet length error counter
HI Bad mac function code error counter

19 LO Communication retry counter
HI Communication failed error counter

20 LO Good receive packet success counter
HI No response received error counter

21 LO Exception response received error counter
HI Unexpected path error counter

GM--0984--SYS Modbus Plus Master Function 231

Modbus Plus Network Statistics (continued)

Word Byte Meaning

22 LO Unexpected response error counter
HI Forgotten transaction error counter

23 LO Active station table bit map, nodes 1 ... 8
HI Active station table bit map, nodes 9 ...16

24 LO Active station table bit map, nodes 17 ... 24
HI Active station table bit map, nodes 25 ... 32

25 LO Active station table bit map, nodes 33 ... 40
HI Active station table bit map, nodes 41 ... 48

26 LO Active station table bit map, nodes 49 ... 56
HI Active station table bit map, nodes 57 ... 64

27 LO Token station table bit map, nodes 1 ... 8
HI Token station table bit map, nodes 9 ... 16

28 LO Token station table bit map, nodes 17 ... 24
HI Token station table bit map, nodes 25 ... 32

29 LO Token station table bit map, nodes 33 ... 40
HI Token station table bit map, nodes 41 ... 48

30 LO Token station table bit map, nodes 49 ... 56
HI Token station table bit map, nodes 57 ... 64

31 LO Global data present table bit map, nodes 1 ... 8
HI Global data present table bit map, nodes 9 ... 16

32 LO Global data present table bit map, nodes 17 ... 24
HI Global data present table bit map, nodes 25 ... 32

33 LO Global data present table bit map, nodes 33 ... 40
HI Global data present table bit map, nodes 41 ... 48

34 LO Global data present table bit ... map, nodes 49 ... 56
HI Global data present table bit map, nodes 57 ... 64

35 LO Receive buffer in use bit map, buffer 1 ... 8
HI Receive buffer in use bit map, buffer 9 ... 16

36 LO Receive buffer in use bit map, buffer 17 ... 24
HI Receive buffer in use bit map, buffer 25 ... 32

37 LO Receive buffer in use bit map, buffer 33 ... 40
HI Station management command processed initiation counter

continued on next page

GM--0984--SYSModbus Plus Master Function232

Modbus Plus Network Statistics (concluded)

Word Byte Meaning

38 LO Data master output path 1 command initiation counter
HI Data master output path 2 command initiation counter

39 LO Data master output path 3 command initiation counter
HI Data master output path 4 command initiation counter

40 LO Data master output path 5 command initiation counter
HI Data master output path 6 command initiation counter

41 LO Data master output path 7 command initiation counter
HI Data master output path 8 command initiation counter

42 LO Data slave input path 41 command processed counter
HI Data slave input path 42 command processed counter

43 LO Data slave input path 43 command processed counter
HI Data slave input path 44 command processed counter

44 LO Data slave input path 45 command processed counter
HI Data slave input path 46 command processed counter

45 LO Data slave input path 47 command processed counter
HI Data slave input path 48 command processed counter

46 LO Program master output path 81 command initiation counter
HI Program master output path 82 command initiation counter

47 LO Program master output path 83 command initiation counter
HI Program master output path 84 command initiation counter

48 LO Program master command initiation counter
HI Program master output path 86 command initiation counter

49 LO Program master output path 87 command initiation counter
HI Program master output path 88 command initiation counter

50 LO Program slave input path C1 command processed counter
HI Program slave input path C2 command processed counter

51 LO Program slave input path C3 command processed counter
HI Program slave input path C4 command processed counter

52 LO Program slave input path C5 command processed counter
HI Program slave input path C6 command processed counter

53 LO Program slave input path C7 command processed counter
HI Program slave input path C8 command processed counter

GM--0984--SYS CKSM 233

Chapter 18
CKSM

984 slot mount and micro controllers that do not support Modbus
Plus come with a standard checksum (CKSM) instruction. The
CKSM instruction has the same opcode as the MSTR function and
is not provided in executive firmware with the 984 controllers that
support Modbus Plus.

GM--0984--SYSCKSM234

18.1 CKSM

CKSM allows you to program four types checksum calculations in ladder logic:

Straight check

Binary addition check

Cyclical redundancy check (CRC-16)

Longitudinal redundancy check (LRC)

All checksum algorithms handle both 8 bit and 16 bit data; if 8 bits are used, the
high order byte in the register must be 0. In a straight checksum calculation, all
bytes (high and low) are summed and the least significant eight bits are returned.
A binary checksum calculation is a 16 bit sum of all registers. An LRC is a
straight checksum that is then two‘s complemented. A CRC-16 calculation is a 16
bit cyclical checksum performed on the least significant bytes of the source regis-
ters.

The CKSM instruction is a three-node function block:

Calculate cksm of
source table

Calculation completesource

result and
implied register

count

length of
source table

CKSM

Error
implied register count > length or
implied register count =0

cksm select 1

cksm select 2

The top node contains the first 4x register in the source table. The checksum cal-
culation is performed on the registers in this table.

The middle node contains two 4x registers—4x stores the result of the checksum
calculation, and 4x + 1 specifies the number of registers selected from the source
table used as input to the calculation.

The value in 4x + 1 must be < length of source table

GM--0984--SYS CKSM 235

The bottom node identifies the block as CKSM and contains an integer value in
the range 1 ... 255, specifying the number of 4x registers in the source table.

The three inputs to the block are used to indicate the type of checksum calculation
to be performed:

CKSM Input
Calculation Top Mid Bottom

Straight Check ON OFF ON
Binary Addition Check ON ON ON
CRC-16 ON ON OFF
LRC ON OFF OFF

GM--0984--SYS Ladder Logic Subroutines 237

Chapter 19
Ladder Logic
Subroutines

Using Ladder Logic Subroutines

JSR

LAB

RET

A Subroutine Example

Some Cautionary Notes About Subroutines

GM--0984--SYSLadder Logic Subroutines238

19.1 Using Ladder Logic Subroutines

Several 984 instruction sets provide three standard function blocks in the EPROM
firmware that allow you to set up ladder logic-based subroutines. The JSR func-
tion jumps from the regular (scheduled) logic to a subroutine; the LAB function la-
bels the starting point of the subroutine; and the RET function returns you from the
subroutine network to the regular (scheduled) user logic program.

19.1.1 The Value of Subroutines

Ladder logic subroutines allow you to save memory space in the user logic table
in cases where you need to implement the same logic functions multiple times in a
single scan. You need only create the logic once, store it in the logic segment re-
served for subroutines, and call it from user logic with the JSR block as often as
you need it within a scan.

Subroutines can also be helpful in reducing total scan time. Portions of logic that
require only infrequent solution in logic scans can be placed in the subroutine seg-
ment and called from user logic only on those scans where it is needed.

19.1.2 Where to Store Subroutines in Ladder Logic

All ladder logic subroutines must be built in the last segment of user logic. This
segment must be removed from the segment scheduler—it is not part of the regu-
lar order-of-solve table.

Note This means that you must specify at least one more segment
than is required for regular user logic in the configuration table.

Controllers that support subroutines provide as many as 255 address locations for
subroutine ladder logic. Each subroutine must start at the beginning of a network
in the last logic segment. There is no set limit on the number of networks in the
segment.

GM--0984--SYS Ladder Logic Subroutines 239

19.2 JSR

The JSR instruction causes the logic scan to jump to a specified subroutine in the
last (unscheduled) segment of user logic. JSR is a two-node function block:

source

JSR

ON = enable
the source
subroutine

Copies current state
of
the top input

ON = error
????

The top node contains a source that indicates the subroutine to which the logic
scan is to jump. It may be specified as:

A constant value useful in the range 1 ... 255

A single holding register (4x) containing a value between 1 ... 255

The bottom node indicates that this is a JSR function and contains a string of four
question marks—you must insert the constant value 1 in this node.

Note You can use a JSR block anywhere in user logic, even within a
subroutine. The process of calling one subroutine from another sub-
routine is called nesting. The system allows you to nest up to 100
subroutines—however, we recommend that you use no more than
three nesting levels.

You may also perform a recursive form of nesting called looping,
wherein the subroutine recalls itself.

GM--0984--SYSLadder Logic Subroutines240

19.3 LAB

The LAB instruction is used to label the starting point of a subroutine in the last
(unscheduled) segment of user logic. This instruction must be programmed in
row 1, column 1 of a network in the last (unscheduled) segment of user logic.
LAB is a one-node function block:

constant
value

ON = specified

subroutine
activated

ON = errorLAB

The node indicates that this is a LAB function and contains a unique constant val-
ue identifying the subroutine you are about to run; it may range from 1 ... 255. If
more than one subroutine network has the same LAB value, the network with the
lowest number is used as the starting point for the subroutine.

Note The LAB block also functions as a default return from the sub-
routine in the preceding networks. If you have been executing a series
of subroutine networks and you encounter a network that begins with a
LAB block, the system assumes that the desired subroutine is finished,
and it returns the logic scan to the node immediately following the
most recently executed JSR block.

GM--0984--SYS Ladder Logic Subroutines 241

19.4 RET

The RET instruction may be used to conditionally return the logic scan to the node
immediately following the most recently executed JSR block. This node can be
implemented only from within a subroutine network—in the last (unscheduled)
segment of user logic. RET is a one-node function block:

00001
ON = return to
calling logic

ON = errorRET

The bottom node indicates that this is a RET function and contains the constant
value 00001.

When the ENABLE input is energized, the RET block returns the logic scan to the
node immediately following the most recently executed JSR block.

If a subroutine does not contain a RET block, either a LAB block or the end-of-log-
ic (whichever comes first) serves as the default return from the subroutine.

GM--0984--SYSLadder Logic Subroutines242

19.5 A Subroutine Example

The example below shows a series of three user logic networks, the last of which
is used for an up-counting subroutine. Segment 3 has been removed from the or-
der-of-solve table in the segment scheduler:

Segment 001
Network 00001

Network 00002

Network 00001

00001
JSR
0000110001

Segment 002
Network 00001

Segment 003

LAB
00001

ADD
00001

40256 RET
00001

00001
JSR
00001

Scheduled Logic Flow

Subroutine Segment

SUB

40257

00010

40256
SUB

40256

40256

40256

40999

GM--0984--SYS Ladder Logic Subroutines 243

When input 10001 to the JSR block in network 2 of segment 1 transitions from
OFF to ON, the logic scan jumps to subroutine #1 in network 1 of segment 3.

The subroutine will internally loop on itself ten times, counted by the ADD block.
The first nine loops end with the JSR block in the subroutine (network 1 of seg-
ment 3) sending the scan back to the LAB block. Upon completion of the tenth
loop, the RET block sends the logic scan back to the scheduled logic at the JSR
node in network 2 of segment 1.

GM--0984--SYSLadder Logic Subroutines244

19.6 Some Cautionary Notes About
Subroutines

You should always keep your subroutine logic as straightforward as possible for
debugging purposes. The power flow displayed on your programming panel is in-
valid in the subroutine networks and is therefore more difficult to troubleshoot.

Note We recommend that you debug your ladder logic programs be-
fore making them subroutines.

For transitionals to work properly within a subroutine, the subroutine must be ex-
ecuted at the appropriate time to see the state change. To use a negative transi-
tional within the subroutine, the subroutine must be called once when the contact
is ON, then called again on the scan when the contact is turned OFF. To use a
positive transitional within a subroutine, the subroutine must be called while the
contact is OFF, then called again on the scan when the contact is turned ON.

Counters also work on a state change basis—when the top input transitions from
OFF to ON. Timers do not function properly from within a subroutine unless that
subroutine is executed on every scan.

Note Multiple scan functions do not function from within a subroutine.

Caution We strongly recommend that you do not control
real-world outputs from within a ladder logic subroutine. Control
of such coils would be possible only when the subroutine was
executed.

GM--0984--SYS 984 Enhanced Instructions 245

Chapter 20
984 Enhanced
Instructions

Moving Blocks to Tables and Tables to Blocks

Capabilities of the EMTH Block

Double Precision Math Functions

Integer Math Functions

Floating Point Arithmetic Functions

A Closed Loop Control System

The PID2 Block

Top Node Values

Middle Node Values

PID2 Error Codes

Process Square Root

GM--0984--SYS984 Enhanced Instructions246

20.1 Moving Blocks to Tables and Tables
to Blocks

The block-to-table (BLKT) and table-to-block (TBLK) instructions can be thought
of as functions that combine the R→T/T→R instructions with the BLKM instruc-
tion. BLKT moves large quantities of holding registers from a fixed-source block
to a destination block within a table; TBLK moves a large number of consecutive
registers from a table to a fixed-destination block. A BLKT or a TBLK function is
accomplished in one scan. They are both three-node function blocks:

ON = move

initiated

Operation completedsource

destination
pointer

block length
BLKT/TBLK

Hold pointer

Reset pointer

Error/Move
not
possible

The top node—source—must be the first 4x holding register in the block to be
moved.

The middle node is the destination pointer; it is a movable 4x pointer that indicates
the first register in the destination block (or table). The destination block itself be-
gins with register 4x + 1 and runs to the end of the block length specified in the
bottom node.

The bottom node indicates that this is a BLKT or TBLK function and specifies a
number of 4x registers in a destination block within the table. The range is from 1
... 100; the overall size of the destination table is a function of the number of 4x
registers currently available.

Warning BLKT is a powerful function. If your logic does not
confine the pointer to a desired range, all the registers in your
984 controller may be corrupted by the data in the source node.

GM--0984--SYS 984 Enhanced Instructions 247

20.2 Capabilities of the EMTH Block

EMTH provides you with double-precision math capabilities, additional integer
math capabilities such as square root and logarithm calculations, and a set of
floating point (FP) arithmetic functions. In all, the block allows you to select 38 ex-
tended math functions using a code number in the bottom node. EMTH is a
three-node function block:

top node

middle node

function code
(1 ... 38)

EMTH

Top In

Middle In

Bottom In

Top Out

Middle Out

Bottom Out

The top node requires two consecutive registers, usually 4x holding registers but,
in the integer math cases, either 4x or 3x registers.

The middle node requires either two, four, or six consecutive registers, depending
on the function you are implementing. Use 4x holding registers.

The bottom node identifies the block as the EMTH function and provides a func-
tional selection mechanism for the block. Enter a constant value in the range
1 ... 38 to indicate the extended math function you want to employ.

Inputs to and outputs from the EMTH block may be ACTIVE or INACTIVE, de-
pending on the function called in the bottom node.

GM--0984--SYS984 Enhanced Instructions248

EMTH Functions Code Active Inputs Active Outputs

Double Precision Math
Addition 01 Top only Top, Middle
Subtraction 02 Top only Top, Middle, Bottom
Multiplication 03 Top only Top, Middle
Division 04 Top, Middle Top, Middle, Bottom

Integer Math
Square Root 05 Top only Top, Middle
Process Square Root 06 Top only Top, Middle
Logarithm 07 Top only Top, Middle
Antilogarithm 08 Top only Top, Middle

Floating Point Arithmetic
Integer-to-FP Conversion 09 Top only Top only
Integer + FP 10 Top only Top only
Integer -- FP 11 Top only Top only
Integer x FP 12 Top only Top only
Integer : FP 13 Top only Top only
FP -- Integer 14 Top only Top only
FP : Integer 15 Top only Top only
Integer-FP Comparison 16 Top only Top only
FP-to-Integer Conversion 17 Top only Top, Bottom
Addition 18 Top only Top only
Subtraction 19 Top only Top only
Multiplication 20 Top only Top only
Division 21 Top only Top only
Comparison 22 Top only Top, Middle, Bottom
Square Root 23 Top only Top only
Change Sign 24 Top only Top only
Load Value of π 25 Top only Top only
Sine in Radians 26 Top only Top only
Cosine in Radians 27 Top only Top only
Tangent in Radians 28 Top only Top only
Arcsine in Radians 29 Top only Top only
Arccosine in Radians 30 Top only Top only
Arctangent in Radians 31 Top only Top only
Radians to Degrees 32 Top only Top only
Degrees to Radians 33 Top only Top only
FP to an Integer Power 34 Top only Top only
Exponential Function 35 Top only Top only
Natural Log 36 Top only Top only
Common Log 37 Top only Top only
Report Errors 38 Top only Top, Middle

GM--0984--SYS 984 Enhanced Instructions 249

20.3 Double Precision Math Functions

operand #1

operand #2
and destination

EMTH

ON = add operands
and
place result in desig-
nated registers

ON = operation per-
formed
successfully

ON = an operand is out
of
range or invalid

1

Double Precision Addition

The top node comprises two consecutive 4x registers; each register holds a value
in the range 0000 ... 9999 for a combined value range of up to 99,999,999.

The middle node comprises six consecutive 4x registers:

4x and 4x + 1 hold the second operand value, in the range 0 ... 99,999,999

4x + 2 indicates whether an overflow condition exists (1 = overflow)

4x + 3 and 4x + 4 hold the double precision addition result

4x + 5 is not used in this calculation but must exist in state RAM

operand #1

EMTH

ON = operand #2 sub-
tracted from operand #1
and absolute value
placed in designated
registers

ON = operand #1 > operand #2

2

Double Precision Subtraction

ON = operand #1 = operand #2

ON = operand #1 < operand #2

operand #2
and destination

The top node comprises two consecutive 4x registers; each register holds a value
in the range 0000 ... 9999 for a combined value range of up to 99,999,999.

GM--0984--SYS984 Enhanced Instructions250

The middle node comprises six consecutive 4x registers:

4x and 4x + 1 hold the second operand value, in the range 0 ... 99,999,999

4x + 2 and 4x + 3 hold the double precision subtraction result

4x + 4 indicates whether or not the operands are in the valid range
(1 = out of range and 0 = in range)

4x + 5 is not used in this calculation but must exist in state RAM

operand #1

EMTH

ON = operand #1
multiplied by oper-
and #2 and result
placed in designated
registers

ON = operation performed
successfully

3

Double Precision Multiplication

ON = an operand is out of
range

operand #2
and destination

The top node comprises two consecutive 4x registers; each register holds a value
in the range 0000 ... 9999 for a combined value range of up to 99,999,999.

The middle node comprises six consecutive 4x registers:

4x and 4x + 1 hold the second operand value, in the range 0 ... 99,999,999

4x + 2, 4x + 3, 4x + 4, and 4x + 5 hold the double precision
multiplication result

GM--0984--SYS 984 Enhanced Instructions 251

operand #1

EMTH

ON = operand #1 is
divided by operand #2
and the result is placed
in designated registers

ON = operation performed
successfully

4

Double Precision Division

ON = an operand out of range

ON = operand #2 is 0

operand #2
and destination

ON = remainder stored
as
a fraction in 4x + 4
OFF = remainder stored
as an 8-digit whole num-
ber, right justified

The top node comprises two consecutive 4x registers; each register holds a value
in the range 0000 ... 9999 for a combined value range of up to 99,999,999.

The middle node comprises six consecutive 4x registers:

4x and 4x + 1 hold the second operand value, in the range 0 ... 99,999,999
(Since division by 0 is illegal, a 0 value causes an error—an error trapping rou-
tine sets the remaining middle-node registers to 0000 and turns the bottom out-
put ON.)

4x + 2 and 4x + 3 hold an eight-digit result, the quotient

4x + 4 and 4x + 5 hold the remainder—if the remainder is expressed in whole
numbers, it is eight digits long and both registers are used; if the remainder is
expressed as a decimal, it is four digits long and only register 4x + 4 is used

GM--0984--SYS984 Enhanced Instructions252

20.4 Integer Math Functions

source

EMTH

ON = block performs
standard √ operation

ON = operation performed
successfully

5

Square Root

ON = top-node value out of
range

result

The top node comprises either two consecutive 4x holding registers or one 3x in-
put register. If the source value is five to eight digits long in the range 10,000 ...
99,999,99, it is stored in the two consecutive 4x registers. If the source is less
than five digits long, in the range 0 ... 9,999, it is stored in register 4x + 1. If you
specify a 3x register in the top node, the square root calculation is done on only
register 3x; a second register is implied but not used.

The middle node comprises two consecutive 4x registers, where the result of the
standard square root operation is stored. Data are stored in a fixed-decimal for-
mat: 1234.5600. where register 4x stores the most significant data, to the left of
the first decimal point, and register 4x + 1 stores the four-digit value to the right of
the first decimal point. Numbers after the second decimal point are truncated; no
roundoff calculations are performed.

GM--0984--SYS 984 Enhanced Instructions 253

source

EMTH

ON = block performs
process √ operation

ON = operation performed
successfully

6

Process Square Root

ON = top-node value out of
range

linearized
result

The process square root function implements the standard square root function
and tailors it for closed loop analog control applications. It takes the result of the
standard square root operation, multiplies it by 63.9922—the square root of
4095—and stores that linearized result in the middle-node registers. In order to
generate values that have meaning, the value entered in the top-node 4x or 3x
register must not exceed 4095. Process square root linearizes signals from differ-
ential pressure flow transmitters so that they may be used as inputs in PID2 oper-
ations (see Section 20.8).

For example, if a value of 2000 is in a 30300 top node, then:

√2000 = 0044.72

which is then multiplied by 63.9922, yielding a result of 2861.63. This result is
placed in registers 40030 and 40031 in the middle node:

40030 = 2861
40031 = 6300

source

EMTH

ON = block performs
log(x) operation

ON = operation performed
successfully

7

Logarithm (base 10)

ON = either an error or value
out of range

result

GM--0984--SYS984 Enhanced Instructions254

The top node comprises either two consecutive 4x holding registers or one 3x in-
put register. If the source to be logged is five to eight digits long in the range
10,000 ... 99,999,99, it is stored in the two consecutive 4x registers. If the source
is less than five digits long, in the range 0 ... 9,999, it is stored in register 4x + 1. If
you specify a 3x register in the top node, the log calculation is done on only regis-
ter 3x; a second register is implied but not used.

The middle node contains a single 4x holding register where the result is stored.
The result is expressed in a fixed decimal format 1.234, and is truncated after the
third decimal position. The largest number that can be calculated is 7.999, which
is stored in the register as value 7999.

source

EMTH

ON = block performs
antilog(x) operation

ON = operation performed
successfully

8

Antilogarithm (base 10)

ON = either an error or value
out of range

result

The top node is a single 4x holding register or 3x input register. The source value
stored here is in the fixed decimal format 1.234 and must be in the range
0 ... 7.999; the largest antilog value that can be calculated is 99770006.

The result is stored in two consecutive 4x holding registers in the middle node, in
the fixed decimal format 12345678, where the most significant bits are in 4x and
the least significant bits are in 4x + 1.

GM--0984--SYS 984 Enhanced Instructions 255

20.5 Floating Point Arithmetic Functions

To make use of the FP capability, the standard four-digit integer values used in
standard 984 instructions must be converted to the IEEE floating point format. All
calculations are then performed in FP format, and the results must be converted
back to integer format.

20.5.1 The IEEE Floating Point Standard

EMTH floating point functions require values in 32-bit IEEE floating point format.
Each value has two registers assigned to it—the eight most significant bits repre-
senting the exponent and the other 23 bits (plus one assumed bit) representing
the mantissa and the sign of the value. It is virtually impossible to recognize an
FP representation on the programming panel. Therefore, all numbers should be
converted back to integer format before you attempt to read them.

20.5.2 Dealing with Negative Floating Point Numbers

Standard 984 integer math does not handle negative numbers explicitly. The only
way to identify negative values is by noting that the SUB function block has turned
the bottom output ON.

If such a negative number is being converted to floating point, perform the Inte-
ger-to-FP conversion (EMTH function #9), then use the Change Sign function
(EMTH function #24) to make it negative prior to any other FP calculations.

GM--0984--SYS984 Enhanced Instructions256

double preci-
sion

integer value

EMTH

ON = block converts in-
teger value to FP value

ON = operation performed
successfully

9

Integer-to-FP Conversion

result

The top node comprises two consecutive 4x registers that contain a double preci-
sion integer value to be converted to 32-bit FP format.

Note If an invalid integer value (value > 9999) is placed in either of
the two top-node registers, the FP conversion will be performed but an
error will be reported and logged in EMTH function #38. The result of
the conversion may not be correct.

The middle node contains four consecutive 4x registers—4x and 4x + 1 are not
used; 4x + 2 and 4x + 3 are used to store the result of the FP conversion.

Note If you want to preserve registers, you may make registers 4x
and 4x + 1 in the middle node = 4x and 4x + 1 in the top node, since
the first two middle-node registers are not used.

GM--0984--SYS 984 Enhanced Instructions 257

double preci-
sion

integer value

EMTH

ON = block adds inte-
ger value and FP value

ON = operation performed
successfully

10

Integer + FP

FP value
and result

The top node comprises two consecutive 4x registers that contain a double preci-
sion integer value to be added to a FP number.

The middle node comprises four consecutive 4x registers—4x and 4x + 1 contain
the FP number to be added in the operation, and 4x + 2 and 4x + 3 contain the FP
sum of the operation.

double preci-
sion

integer value

EMTH

ON = block subtracts
FP value from integer
value

ON = operation performed
successfully

11

Integer -- FP

FP value
and difference

The top node comprises two consecutive 4x registers that contain a double preci-
sion integer value from which an FP number is to be subtracted.

The middle node comprises four consecutive 4x registers—4x and 4x + 1 contain
the FP number that is subtracted from the integer value in the top node, and
4x + 2 and 4x + 3 contain the FP difference of the operation.

GM--0984--SYS984 Enhanced Instructions258

double preci-
sion

integer value

EMTH

ON = block multiplies
integer and FP values

ON = operation performed
successfully

12

Integer x FP

FP value
and product

The top node comprises two consecutive 4x registers that contain a double preci-
sion integer value to be multiplied by an FP number.

The middle node comprises four consecutive 4x registers—4x and 4x + 1 contain
the FP number that multiplies the integer value in the top node, and 4x + 2 and
4x + 3 contain the FP product of the operation.

double preci-
sion

integer value

EMTH

ON = block divides inte-
ger value by FP value

ON = operation performed
successfully

13

Integer : FP

FP value
and quotient

The top node comprises two consecutive 4x registers that contain a double preci-
sion integer value to be divided by an FP number.

The middle node comprises four consecutive 4x registers—4x and 4x + 1 contain
the FP number that divides the integer value in the top node, and 4x + 2 and
4x + 3 contain the FP quotient of the operation.

GM--0984--SYS 984 Enhanced Instructions 259

integer value

EMTH

ON = block subtracts
integer value from FP
value

ON = operation performed
successfully

14

FP -- Integer

and FP
difference

FP value

The top node comprises two consecutive 4x registers that contain an FP number.

The middle node comprises four consecutive 4x registers—4x and 4x + 1 contain
the integer value to be subtracted from the FP value in the top node, and 4x + 2
and 4x + 3 contain the FP difference of the operation.

EMTH

ON = block divides FP
value by integer value

ON = operation performed
successfully

15

FP Integer

and FP quotient
integer value

FP value

The top node comprises two consecutive 4x registers that contain an FP number.

The middle node comprises four consecutive 4x registers—4x and 4x + 1 contain
the integer value that divides the FP value in the top node, and 4x + 2 and 4x + 3
contain the FP quotient of the operation.

GM--0984--SYS984 Enhanced Instructions260

double preci-
sion

integer value

EMTH

ON = block compares
integer and FP values

ON = operation performed
successfully

16

Integer-FP Comparison

FP value ON = integer value > FP value
when bottom out is OFF

ON = integer value < FP value
when middle out is OFF

Middle
Output

Bottom

Output

Value
Relationship

ON OFF I > FP
OFF ON I < FP
ON ON I = FP

The top node comprises two consecutive 4x registers that contain a double preci-
sion integer value to be compared with an FP number.

The middle node comprises four consecutive 4x registers—4x and 4x + 1 contain
an FP value to be compared with the integer value in the top node, and the other
two nodes are not used.

The result of the comparison is displayed by the state of the middle and bottom
outputs.

GM--0984--SYS 984 Enhanced Instructions 261

integer value

EMTH

ON = block converts FP
value to integer value

ON = operation performed
successfully

17

FP-to-Integer Conversion

FP value

0 = positive integer value
1 = negative integer value

The top node comprises two consecutive 4x registers that contain an FP value in
32-bit FP format.

The middle node contains four consecutive 4x registers—4x and 4x + 1 are not
used; 4x + 2 and 4x + 3 contain the integer result of the conversion. This value
should be the largest integer value possible that is < the FP value—for example,
the FP value 3.5 is converted to the integer value 3, while the FP value --3.5 is
converted to the integer value --4.

Note If the resultant integer is too large for 984 double precision inte-
ger format (> 99,999,999), the conversion still occurs but an error is
logged in EMTH function #38.

Note If you want to preserve registers, you may make registers 4x
and 4x + 1 in the middle node = 4x and 4x + 1 in the top node, since
the first two middle-node registers are not used.

GM--0984--SYS984 Enhanced Instructions262

FP value 2
and sum

EMTH

ON = block performs
FP addition

ON = operation performed
successfully

18

FP Addition

FP value 1

The top node comprises two consecutive 4x registers that contain one FP value.

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
contain a second FP value; 4x + 2 and 4x + 3 contain the FP sum of the addition.

FP value 2
and difference

EMTH

ON = block subtracts
FP value 2 from FP
value 1

ON = operation performed
successfully

19

FP Subtraction

FP value 1

The top node comprises two consecutive 4x registers that contain one FP value.

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
contain a second FP value, which will be subtracted from the top-node value;
4x + 2 and 4x + 3 contain the FP difference of the subtraction.

GM--0984--SYS 984 Enhanced Instructions 263

FP value 2
and product

EMTH

ON = block multiplies
FP value 1 by FP
value 2

ON = operation performed
successfully

20

FP Multiplication

FP value 1

The top node comprises two consecutive 4x registers that contain one FP value,
which will be multiplied by the middle-node value.

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
contain a second FP value; 4x + 2 and 4x + 3 contain the FP product.

FP value 2
and quotient

EMTH

ON = block divides FP
value in top node by FP
value in middle node

ON = operation performed
successfully

21

FP Division

FP value 1

The top node comprises two consecutive 4x registers that contain one FP value,
which will be divided by the middle-node value.

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
contain the second FP value; 4x + 2 and 4x + 3 contain the FP quotient.

GM--0984--SYS984 Enhanced Instructions264

FP value 2

EMTH

ON = block compares
FP value 2 to FP value 1

ON = operation performed
successfully

22

FP Comparison

FP value 1

ON = value 1 > value 2
when bottom output is OFF

ON = value 1 < value 2
when middle output is OFF

Middle
Output

Bottom

Output

Value
Relationship

ON OFF #1 > #2
OFF ON #1 < #2
ON ON #1 = #2

The top node comprises two consecutive 4x registers that contain one FP value.

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
contain the second FP value, which will be compared to the top-node value; 4x +
2 and 4x + 3 are not used.

FP result

EMTH

ON = block performs
FP √ on FP value in
top node

ON = operation performed
successfully

23

FP Square Root

FP value

The top node comprises two consecutive 4x registers that contain an FP value.

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
are not used; 4x + 2 and 4x + 3 contain the result of the FP square root operation.

GM--0984--SYS 984 Enhanced Instructions 265

Note If you want to preserve registers, you may make registers 4x
and 4x + 1 in the middle node = 4x and 4x + 1 in the top node, since
the first two middle-node registers are not used.

-- (FP value)

EMTH

ON = block changes the
sign of FP value in top
node

ON = operation performed
successfully

24

FP Change Sign

FP value

The top node comprises two consecutive 4x registers that contain an FP value.

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
are not used; 4x + 2 and 4x + 3 contain the negative of the top node FP value.

FP value of π

EMTH

ON = block loads FP π
value to middle node

ON = operation performed
successfully

25

Load FP Value of π

not used

The top node contains two consecutive 4x registers that are not used.

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
are not used; 4x + 2 and 4x + 3 contain the FP value of π.

GM--0984--SYS984 Enhanced Instructions266

Note If you want to preserve registers, you may make registers 4x
and 4x + 1 in the middle node = 4x and 4x + 1 in the top node, since
these registers must be assigned but are not used.

sine of
FP value

EMTH

ON = block calculates
the sine of FP value in
top node

ON = operation performed
successfully

26

FP Sine of an Angle in Radians

FP value

The top node comprises two consecutive 4x registers that contain an FP value in-
dicating the value of an angle in radians. The magnitude of this value must be
< 65536.0; if not:

The sine is not computed

An invalid result is returned

An error is flagged in EMTH function #38

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
are not used; 4x + 2 and 4x + 3 contain the sine of the FP value in the top node.

Note If you want to preserve registers, you may make registers 4x
and 4x + 1 in the middle node = 4x and 4x + 1 in the top node, since
the first two middle-node registers are not used.

GM--0984--SYS 984 Enhanced Instructions 267

cosine of
FP value

EMTH

ON = block calculates
the cosine of FP value
in top node

ON = operation performed
successfully

27

FP Cosine of an Angle in Radians

FP value

The top node comprises two consecutive 4x registers that contain an FP value in-
dicating the value of an angle in radians. The magnitude of this value must be
< 65536.0; if not:

The cosine is not computed

An invalid result is returned

An error is flagged in EMTH function #38

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
are not used; 4x + 2 and 4x + 3 contain the cosine of the FP value in the top node.

Note If you want to preserve registers, you may make registers 4x
and 4x + 1 in the middle node = 4x and 4x + 1 in the top node, since
the first two middle-node registers are not used.

tangent of
FP value

EMTH

ON = block calculates
the tangent of FP value
in top node

ON = operation performed
successfully

28

FP Tangent of an Angle in Radians

FP value

GM--0984--SYS984 Enhanced Instructions268

The top node comprises two consecutive 4x registers that contain an FP value in-
dicating the value of an angle in radians. The magnitude of this value must be
< 65536.0; if not:

The tangent is not computed

An invalid result is returned

An error is flagged in EMTH function #38

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
are not used; 4x + 2 and 4x + 3 contain the tangent of the FP value in the top
node.

Note If you want to preserve registers, you may make registers 4x
and 4x + 1 in the middle node = 4x and 4x + 1 in the top node, since
the first two middle-node registers are not used.

arcsine of
FP value

EMTH

ON = block calculates
the arcsine of FP value
in top node

ON = operation performed
successfully

29

FP Arcsine of an Angle in Radians

FP value

The top node comprises two consecutive 4x registers that contain an FP value in-
dicating the sine of an angle between --π/2 ... π/2 radians. This value—the sine of
an angle—must be in the range of --1.0 ... +1.0; if not:

The arcsine is not computed

An invalid result is returned

An error is flagged in EMTH function #38

GM--0984--SYS 984 Enhanced Instructions 269

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
are not used; 4x + 2 and 4x + 3 contain the arcsine in radians of the FP value in
the top node.

Note If you want to preserve registers, you may make registers 4x
and 4x + 1 in the middle node = 4x and 4x + 1 in the top node, since
the first two middle-node registers are not used.

arc cosine of
FP value

EMTH

ON = block calculates
the arc cosine of FP
value in top node

ON = operation performed
successfully

30

FP Arc Cosine of an Angle in Radians

FP value

The top node comprises two consecutive 4x registers that contain an FP value in-
dicating the cosine of an angle between 0 ... π radians. This value must be in the
range of --1.0 ... +1.0; if not:

The arc cosine is not computed

An invalid result is returned

An error is flagged in EMTH function #38

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
are not used; 4x + 2 and 4x + 3 contain the arc cosine in radians of the FP value
in the top node.

Note If you want to preserve registers, you may make registers 4x
and 4x + 1 in the middle node = 4x and 4x + 1 in the top node, since
the first two middle-node registers are not used.

GM--0984--SYS984 Enhanced Instructions270

arc tangent of
FP value

EMTH

ON = block calculates
the arc tangent of FP
value in top node

ON = operation performed
successfully

31

FP Arc Tangent of an Angle in Radians

FP value

The top node comprises two consecutive 4x registers that contain an FP value in-
dicating the tangent of an angle between --π/2 ... π/2 radians. Any valid FP value
is allowed.

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
are not used; 4x + 2 and 4x + 3 contain the arc tangent in radians of the FP value
in the top node.

Note If you want to preserve registers, you may make registers 4x
and 4x + 1 in the middle node = 4x and 4x + 1 in the top node, since
the first two middle-node registers are not used.

FP value 2

EMTH

ON = block converts FP
value 1 to FP value 2

ON = operation performed
successfully

32

FP Conversion of Radians to Degrees

FP value 1

The top node comprises two consecutive 4x registers that contain an FP repre-
sentation of the value of an angle in radians.

GM--0984--SYS 984 Enhanced Instructions 271

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
are not used; 4x + 2 and 4x + 3 contain the FP representation of the top-node val-
ue converted to degrees.

Note If you want to preserve registers, you may make registers 4x
and 4x + 1 in the middle node = 4x and 4x + 1 in the top node, since
the first two middle-node registers are not used.

FP value 2

EMTH

ON = block converts FP
value 1 to FP value 2

ON = operation performed
successfully

33

FP Conversion of Degrees to Radians

FP value 1

The top node comprises two consecutive 4x registers that contain an FP repre-
sentation of the value of an angle in degrees.

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
are not used; 4x + 2 and 4x + 3 contain the FP representation of the top-node val-
ue converted to radians.

Note If you want to preserve registers, you may make registers 4x
and 4x + 1 in the middle node = 4x and 4x + 1 in the top node, since
the first two middle-node registers are not used.

GM--0984--SYS984 Enhanced Instructions272

and FP result

EMTH

ON = block calculates
FP value raised to pow-
er of integer value

ON = operation performed
successfully

34

FP Number Raised to an Integer Power

integer value

FP value

The top node comprises two consecutive 4x registers that contain a floating point
value.

The middle node contains four 4x registers—register 4x must be 0, register 4x + 1
contains an integer value; 4x + 2 and 4x + 3 contain the FP result of the FP value
being raised to the power of the integer value.

FP result

EMTH

ON = block calculates
the exponential value of
FP value in top node

ON = operation performed
successfully

35

FP Exponential Function

FP value

The top node comprises two consecutive 4x registers that contain an FP value in
the range --87.34 ... +88.72. If the value is out of range, the result will either be 0
or the maximum value, but no error will be flagged.

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
are not used; 4x + 2 and 4x + 3 contain the IEEE floating point format of the value
in the top node.

GM--0984--SYS 984 Enhanced Instructions 273

Note If you want to preserve registers, you may make registers 4x
and 4x + 1 in the middle node = 4x and 4x + 1 in the top node, since
the first two middle-node registers are not used.

natural log of
FP value

EMTH

ON = block calculates
the natural log of FP
value in top node

ON = operation performed
successfully

36

FP Natural Logarithm

FP value

The top node comprises two consecutive 4x registers that contain an FP value >
0. If the value < 0, an invalid result will be returned in the middle node and an er-
ror will be logged in EMTH function #38.

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
are not used; 4x + 2 and 4x + 3 contain the natural logarithm of the FP value in
the top node.

Note If you want to preserve registers, you may make registers 4x
and 4x + 1 in the middle node = 4x and 4x + 1 in the top node, since
the first two middle-node registers are not used.

GM--0984--SYS984 Enhanced Instructions274

common log
of FP value

EMTH

ON = block calculates
the common log of FP
value in top node

ON = operation performed
successfully

37

FP Common Logarithm

FP value

The top node comprises two consecutive 4x registers that contain an FP val-
ue > 0. If the value < 0, an invalid result will be returned in the middle node and
an error will be logged in EMTH function #38.

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
are not used; 4x + 2 and 4x + 3 contain the common logarithm of the FP value in
the top node.

Note If you want to preserve registers, you may make registers 4x
and 4x + 1 in the middle node = 4x and 4x + 1 in the top node, since
the first two middle-node registers are not used.

GM--0984--SYS 984 Enhanced Instructions 275

logged error
information

EMTH

ON = block retrieves a
log of error types en-
countered since last
invocation

ON = operation performed
successfully

38

FP Error Report Log

not used

1 = presence of nonzero values
in error log register
0 = all bits set to 0 in error log
register

The top node requires the assignment of two consecutive 4x registers, but they
are not used in the operation.

The middle node contains four consecutive 4x registers—registers 4x and 4x + 1
are not used; 4x + 2 contains the error log data, and 4x + 3 is set to 0.

Note If you want to preserve registers, you may make registers 4x
and 4x + 1 in the middle node = 4x and 4x + 1 in the top node, since
these registers must be assigned but are not used.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Not UsedFunction Code of
Last Error Logged

If the bit is set to 1, then the specific
error condition exists for that bit.

Exponential Function Power
Too Large

Integer/FP Conversion Error

Invalid FP Value or Operation

FP Overflow

FP Underflow

Middle-Node Register 4x + 2

GM--0984--SYS984 Enhanced Instructions276

20.6 A Closed Loop Control System

An analog closed loop control system is one in which the deviation from an ideal
process condition is measured, analyzed, and adjusted in an attempt to obtain
(and maintain) zero error in the process condition. Provided with the Enhanced
Instruction Set is a proportional-integral-derivative function block called PID2,
which allows you to establish closed loop (or negative feedback) control in ladder
logic.

20.6.1 Set Point and Process Variable

The desired (zero error) control point, which you will define in the PID2 block, is
called the set point (SP). The conditional measurement taken against SP is called
the process variable (PV). The difference between the SP and the PV is the devi-
ation or error (E). E is fed into a control calculation that produces a manipulated
variable (Mv) used to adjust the process so that PV = SP (and, therefore, E = 0).

PROCESS

CONTROL
END DEVICE

CONTROL
CALCULATION

Mv

PV

SP

--

+E

PROCESS
TRANSMITTER

PV (INPUT)
(OUTPUT)

20.6.2 Proportional Control

With proportional-only control (P), you can calculate the manipulated variable by
multiplying error by a proportional constant, K1, then adding a bias:

Mv = K1E + bias

GM--0984--SYS 984 Enhanced Instructions 277

However, process conditions in most applications are changed by other system
variables so that the bias does not remain constant; the result is offset error,
where PV is constantly offset from the SP. This condition limits the capability of
proportional-only control.

20.6.3 Proportional-Integral Control

To eliminate this offset error without forcing you to manually change the bias, an
integral function can be added to the control equation:

Mv = K1(E + K2 ∫ E∆t)
t

0

Proportional-integral control (PI) eliminates offset by integrating E as a function of
time. K1 is the integral constant expressed as rep/min. As long as E ≠ 0, the inte-
grator increases (or decreases) its value, adjusting Mv. This continues until the
offset error is eliminated.

20.6.4 Proportional-Integral-Derivative Control

You may want to add derivative functionality to the control equation to minimize
the effects of frequent load changes or to override the integral function in order to
get to the SP condition more quickly:

Mv = K1(E + K2 ∫ E∆t + K3
t

0

∆PV
∆t

)

Proportional-integral-derivative (PID) control can be used to save energy in the
process or as a safety valve in the event of a sudden, unexpected change in pro-
cess flow. K3 is the derivative time constant expressed as min. ∆PV is the
change in the process variable over a time period of ∆t.

GM--0984--SYS984 Enhanced Instructions278

20.7 The PID2 Algorithm

Modicon’s algorithm for PID2 tunes the closed loop operation in a manner similar
to traditional pneumatic and analog electronic loop controllers. It uses a rate gain
limiting (RGL) filter on the PV as it is used for the derivative term only, thereby fil-
tering out higher-frequency PV noise sources (random and process generated).

xn--1 xn+
+

PV +
--

RGL
∆x∆Pv 60(RGL -- 1)K3

RGL Ts

SP +
--

+
--E

4x13

E

Zn

100
PB

+
+

+

GE

Bias
4x8

Output
Clamp Mn

4x24x17
4x18

Mn--1
+
--

Integral
Feedback

Floc
4x16

Tloc

4x20

Preload

Mode

+
--

Integral

Clamp

In--1 In
+
+

InIn--1

In

4x + 6 8

xn

Qn

Wn

K2 Ts
600000

∆I

4x + 6 8

4x + 3, + 4, + 5

DERIVATIVE
CONTRIBUTION

(4x1 -- 4x2)
(4x11 -- 4x12)

x 4095

PROPORTIONAL
CONTRIBUTION

INTEGRAL
CONTRIBUTION

M

PID2 Algorithm Block Diagram

GM--0984--SYS 984 Enhanced Instructions 279

where:
E = error, expressed in raw analog units
SP = set point, in the range 0 ... 4095
PV = process variable, in the range 0 ... 4095
x = filtered PV
K2 = integral mode gain constant, expressed in 0.01 min--1

K3 = derivative mode gain constant, expressed in hundredths of a minute
RGL = rate gain limiting filter constant, in the range 2 ... 30
Ts = solution time, expressed in hundredths of a second
PB = proportional band, in the range 5 ... 500%
bias = loop output bias factor, in the range 0 ... 4095
M = loop output
GE = gross error, the proportional-derivative contribution to the loop output
Z = derivative mode contribution to GE
Qn = unbiased loop output
F = feedback value, in the range 0 ... 4095
I = integral mode contribution to the loop output
Ilow = anti-reset-windup low SP, in the range 0 ... 4095
Ihigh = anti-reset-windup high SP, in the range 0 ... 4095

100
PB

K1 =

Note The integral mode contribution calculation actually integrates
the difference of the output and the integral sum—this is effectively the
same as integrating the error.

GM--0984--SYS984 Enhanced Instructions280

20.8 PID2

The PID2 instruction implements an algorithm that performs proportional-inte-
gral-derivative operations. PID2 is a three-node function block:

source

destination

solution interval
PID2

Either invalid user parameter or
Loop ACTIVE but not being
solved

PV > high alarm limit

PV > low alarm limit

0 = Manual Mode
1 = Auto mode

0 = Tracking OFF

1 = Tracking ON
0 = Output increases

as E increases
1 = Output decreases

as E increases

The top source node indicates the first of 21 consecutive holding registers ranging
from 4x0 ... 4x20. The contents of registers 4x5, 4x6, 4x7, and 4x8 in the top
node determine whether the operation will be P, PI, or PID:

Function 4x5 4x6 4x7 4x8

P
PI
PID

= A non-zero value within the permissible range

The middle node contains nine additional holding registers, 4x ... 4x + 8, which are
used by the PID2 block for calculations. You do not need to load anything into
these registers.

The bottom node indicates that this is a PID2 function and contains a number
ranging from 1 ... 255, indicating how often the function should be performed. The
number represents a time value in tenths of a second—for example, the number
17 indicates that the PID function should be performed every 1.7 s.

GM--0984--SYS 984 Enhanced Instructions 281

Top Node
Register Function

4x0 Scaled PV: Loaded by the block each time it is scanned; a linear scaling
is done on register 4x13 using the high and low ranges in 4x11 and
4x12:

Scaled PV =
4x13
4095

x (4x11 -- 4x12) + 4x12

Truncate the resulting number at the decimal point—discard all digits to
the right of the decimal point, and do not round off

4x1 SP: You must specify the set point in engineering units; the value must
be > 4x11 and > 4x12

4x2 Mv: Loaded by the block every time the loop is solved; it is clamped to
a range of 0 ... 4095, making the output compatible with an analog out-
put module; the manipulated variable register may be used for further
CPU calculations such as cascaded loops

4x3 High Alarm Limit: Load a value in this register to specify a high alarm
for PV (at or above SP); enter the value in engineering units within the
range specified by 4x11 and 4x12

4x4 Low Alarm Limit: Load a value in this register to specify a low alarm
for PV (at or below SP); enter the value in engineering units within the
range specified by 4x11 and 4x12

4x5 Proportional Band: Load this register with the desired proportional
constant in the range 5 ... 500; the smaller the number, the larger the
proportional contribution; a valid number is required in this register for
PID2 to operate

4x6 Reset Time Constant: Load this register to add integral action to the
calculation; enter a value between 0000 ... 9999 to represent a range of
00.00 ... 99.99 repeats/min; the larger the number, the larger the integral
contribution; a value < 9999 or > 0000 stops the PID2 calculation

4x7 Rate Time Constant: Load this register to add derivative action to the
calculation; enter a value between 0000 ... 9999 to represent a range of
00.00 ... 99.99 repeats/min; the larger the number, the larger the deriva-
tive contribution; a value < 9999 or > 0000 stops the PID2 calculation

4x8 Bias: Load this register to add a bias to the output; the value must be
between 000 4095, and added directly to Mv

Top Node

GM--0984--SYS984 Enhanced Instructions282

Register Function

4x9 High Integral Windup Limit: Load this register with the upper limit of
the output value (between 0 ... 4095) where the anti-reset windup takes
effect; the updating of the integral sum is stopped if it goes above this
value—this is normally 4095

4x10 Low Integral Windup Limit: Load this register with the lower limit of
the output value (between 0 ... 4095) where the anti-reset windup takes
effect—this is normally 0

4x11 High Engineering Range: Load this register with the highest value for
which the measurement device is spanned—e.g., if a resistance tem-
perature device ranges from 0 ... 500 degrees C, the high engineering
range value is 500; the range must be given as a positive integer
between 0001 ... 9999, corresponding to a raw analog input value of
4095

4x12 Low Engineering Range: Load this register with the lowest value for
which the measurement device is spanned; the range must be given as
a positive integer between 0 ... 9998, and it must be less than the value
in register 4x11; it corresponds to a raw analog input value of 0

4x13 Raw Analog Measurement: The logic program loads this register with
PV; the measurement must be scaled and linear in the range 0 ... 4095

4x14 Pointer to Loop Counter Register: The value you load in this register
points to the register that counts the number of loops solved in each
scan; the entry is determined by discarding the most significant digit in
the register where the controller will count the loops solved/scan—e.g.,
if the controller does the count in register 41236, load 1236 into 4x14;
the same value must be loaded into the 4x14 register in every PID2
block in the logic program

4x15 Maximum Number of Loops Solved In a Scan: If register 4x14 con-
tains a non-zero value, you may load a value in this register to limit the
number of loops to be solved in one scan

4x16 Pointer To Reset Feedback Input: The value you load in this register
points to the holding register that contains the value of feedback (F);
drop the 4 from the feedback register and enter the remaining four digits
in register 4x16; integration calculations depend on the F value being
connected to Mv—i.e., as the PID2 output varies from 0 ... 4095, so
should F vary from 0 ... 4095

4x17 Output Clamp—High: The value entered in this register determines the
upper limit of Mv—this is normally 4095

Top Node

GM--0984--SYS 984 Enhanced Instructions 283

Register Function

4x18 Output Clamp—Low: The value entered in this register determines the
lower limit of Mv—this is normally 0

4x19 Rate Gain Limit (RGL) Constant: The value entered in this register
determines the effective degree of derivative filtering; the range is from
2 ... 30; the smaller the value, the more filtering takes place

4x20 Pointer to Track Input: The value entered in this register points to the
holding register containing the track input (T) value; drop the 4 from the
tracking register and enter the remaining four digits in register 4x20;
the value in the T register is connected to the input of the integral lag
whenever the auto bit and track bit are both true

GM--0984--SYS984 Enhanced Instructions284

Middle Node
Register Function

4x Loop Status Register: Twelve of the 16 bits in this register are used to
define loop status:

1 2 3 4 5 6 7 8 12 13 14 15 16

Rev B or higher

Sign of E in 4x + 6:
(0 = + and 1 = --)

4x14 Register Referenced by 4x15 is Valid

Loop in AUTO mode but not being solved

Wind-down Mode (for Rev. B or higher)

Loop in AUTO mode and time since last solution > solution interval

Bottom Output Status (Low Alarm)

Middle Output Status (High Alarm)

Top Output Status (Node Lockout or Parameter Error)

9 10 11

see
NOTE

Negative Values
in the equation

Bottom Input Status
(direct/reverse acting)

Middle Input Status
(tracking mode)

Top Input Status
(MAN/AUTO)

Integral Wind-
up
Limit

Integral
Windup

NOTE: Bit 16 is set after initial startup or installation of the loop. If you clear the bit,
the following actions take place in one scan:
• The loop status register is reset
• The current value in the real-time clock is stored in register 4x + 1
• Registers 4x + 3, 4x + 4, and 4x + 5 are set to zero
• The value (4x13 x 8) is stored in register 4x + 6
• Registers 4x + 7 and 4x + 8 are cleared

4x + 1 Error (E) Status Bits: This register displays PID2 error codes as de-
scribed in previous table

GM--0984--SYS 984 Enhanced Instructions 285

Middle Node
Register Function

4x + 2 Loop Timer Register: This register stores the real-time clock reading
on the system clock each time the loop is solved: the difference be-
tween the current clock value and the value stored in the register is the
elapsed time; if elapsed time > solution interval (10 times the value given
in the bottom node of the PID2 block), then the loop should be solved in
this scan

4x + 3 For Internal Use: Integral (integer portion)

4x + 4 For Internal Use: Integral—fraction 1

4x + 5 For Internal Use: Integral—fraction 2

4x + 6 Pv x 8 (Filtered): This register stores the result of the filtered analog in-
put (from register 4x14) multiplied by 8; this value is useful in derivative
control operations

4x + 7 Absolute Value of E: This register, which is updated after each loop
solution, contains the absolute value of (SP -- PV); bit 8 in register
4x + 1 indicates the sign of E

4x + 8 For Internal Use: Current solution interval

GM--0984--SYS984 Enhanced Instructions286

PID2 Error Codes
(Displayed in Middle Node Register 4x + 1)

Code Explanation Check These Registers

0000 No errors, all validations OK None
0001 Scaled SP above 9999 4x1
0002 High alarm above 9999 4x3
0003 Low alarm above 9999 4x4
0004 Proportional band below 5 4x5
0005 Proportional band above 500 4x5
0006 Reset above 99.99 r/min 4x6
0007 Rate above 99.99 min 4x7
0008 Bias above 4095 4x8
0009 High integral limit above 4095 4x9
0010 Low integral limit above 4095 4x10
0011 High engineering unit scale above 9999 4x11
0012 Low engineering unit scale above 9999 4x12
0013 High E.U. below low E.U. 4x11 and 4x12
0014 Scaled SP above high E.U. 4x1 and 4x11
0015 Scaled SP below low E.U. 4x1 and 4x12
0016* Maximum loops/scan > 9999 4x15
0017 Reset feedback pointer out of range 4x16
0018 High output clamp above 4095 4x17
0019 Low output clamp above 4095 4x18
0020 Low output clamp above high output clamp 4x17 and 4x18
0021 RGL below 2 4x19
0022 RGL above 30 4x19
0023** Track F pointer out of range 4x20 and middle input ON
0024** Track F pointer is zero 4x20 and middle input ON
0025* Node locked out (short of scan time) None

NOTE: If lockout occurs often and the parameters are all valid, increase the maxi-
mum number of loops/scan. Lockout may also occur if the counting registers in use
are not cleared as required.

0026* Loop counter pointer is zero 4x14 and 4x15
0027 Loop counter pointer out of range 4x14 and 4x15

* Activated by maximum loop feature—i.e., only if 4x15 p 0.

** Activated only if the track feature is ON—i.e., the middle input of the PID2 block is
receiving power while in AUTO mode.

GM--0984--SYS 984 Enhanced Instructions 287

20.9 A Level Control Example

Here is a simplified P&I diagram for an inlet separator in a gas processing plant.
There is a two-phase inlet stream—liquid and gas.

Condensate

Gas

Vent

Plant
Inlet

Inlet Vent

Blowdown

PV--1

LV

FCI/P
1

LC

1

LT
1

LSH
1

FCV
Inlet Block

@@@@ LT--1 = 4 ... 20 mA level transmitter
I/P--1 = 4 ... 20 mA current to pneumatic converter

LSH--1 = high level switch, normally closed
LSL--1 = low level switch, normally open

I/P--1 = Mv to control the flow into tank T--1
LC--1 = level controller

LV--1 = control valve, fail CLOSED

LSL
1

GM--0984--SYS984 Enhanced Instructions288

20.10 Ladder Logic for the PID2 Example

The liquid is dumped from the tank to maintain a constant level. The control ob-
jective is to maintain a constant level in the separator. The phases must be sepa-
rated before processing; separation is the role of the inlet separator, PV--1. If the
level controller, LSH--1, fails to perform its job, the inlet separator could fill, caus-
ing liquids to get into the gas stream; this could severely damage devices such as
gas compressors.

The level is controlled by device LC--1, a 984 controller connected to an analog in-
put module; I/P--1 is connected to an analog output module. We can implement
the control loop with the following 984 ladder logic:

30001

SUB
40113

SUB
40500

40100

40200

PID2
00030

00101

00102

00103

0 0

40102

The first SUB block is used to move the analog input from LT--1 to the PID2 ana-
log input register, 40113. The second SUB block is used to move the PID2 output
Mv to the traffic copped output I/P--1. Coil 00101 is used to change the loop from
AUTO to MANUAL mode, if desired. For AUTO mode, it should be ON.

Specify the set point in mm for input scaling (EU). The full input range will be
0 ... 4000 mm (for 0 ... 4095 raw analog). Specify the register content of the top
node in the PID2 block as follows:

GM--0984--SYS 984 Enhanced Instructions 289

40100 = Scaled PV (mm); PID2 writes this.

40101 = 2000 Scaled SP (mm). Set this to 2000 mm (half full) initially.

40102 = 0000 Loop output (0 ... 4095). PID2 writes this; keep it set to 0 just to be safe

40103 = 3500 Alarm High Set Point (mm). If the level rises above 3500 mm, coil 00102
goes ON.

40104 = 1000 Alarm Low Set Point (mm). If the level drops below 1000 mm, coil 00103
goes ON.

40105 = 0100 PB (%). The actual value used here depends on the process dynamics.

40106 = 0500 Integral constant (5.00 repeats/min). This actual value used here depends
on the process dynamics.

40107 = 0000 Rate time constant (per minute). Setting this to 0 turns off the derivative
mode.

40108 = 0000 Bias (0 ... 4095). This is set to 0, since we have a integral term.

40109 = 4095 High windup limit (0 ... 4095). Normally set to the maximum.

40110 = 0000 Low windup limit (0 ... 4095). Normally set to the minimum.

40111 = 4000 High engineering range (mm). The scaled value of the process variable
when the raw input is at 4095.

40112 = 0000 Low engineering range (mm). The scaled value of the process variable
when the raw input is at 0.

40113 = Raw analog measure (0 ... 4095). A copy of the input from the analog input
module register (30001) copied by the first SUB block in the ladder logic.

40114 = 0000 Offset to loop counter register. Zero disables this feature. Normally, this is
not used.

40115 = 0000 Max loops solved per scan—see 40114.

40116 = 0102 Pointer to reset feed back. If you leave this as zero, the PID2 function auto-
matically supplies a pointer to the loop output register. If the actual output
(40500) could be changed from the value supplied by PID2, then this regis-
ter should be set to 500 (40500) to calculate the integral properly.

40117 = 4095 Output clamp high (0 ... 4095). Normally set to maximum.

40118 = 0000 Output clamp low (0 ... 4095). Normally set to minimum.

GM--0984--SYS984 Enhanced Instructions290

40119 = 0015 Rate Game Limit Constant (2 ... 30). Normally set to about 15. The actual
value depends on how noisy the input signal is. Since we are not using de-
rivative mode, this has no effect on the PID2 function.

40120 = 0000 Pointer to track input. Used only if the PRELOAD feature is used. If the
PRELOAD is not used, this is normally 0.

The values in the registers in the 40200 destination block are all set by the PID2
block.

GM--0984--SYS 984 Loadable Instructions 291

Chapter 21
984 Loadable
Instructions

Loadable Software Packages for 984 Controllers

The 984 Hot Standby Loadable

The HSBY Status Register

An HSBY Reverse Transfer Example

CALL Blocks for the 984 Coprocessors

MBUS and PEER Transactions for Modbus II

The MBUS Get Statistics Function

Designing Custom Loadable Functions

Sequential Control Functions

Extended Math Loadables

The EARS Loadable

GM--0984--SYS984 Loadable Instructions292

21.1 Loadable Software Packages for 984
Controllers

Two types of software loadable functions are available for 984 programmable con-
trollers—function blocks that support optional controller modules, such as the co-
processing and Hot Standby capabilities, and function blocks that support special
application or programming requirements, such as drum sequencing and the
event/alarm recording system (EARS).

21.1.1 Loadable Support for Controller Option Modules

Loadable Part Controller Controller Types
Functions Number* Option Module Supported

HSBY SW-AP9X-RXA AM-R911-000 chassis mounts
SW-AP98-RXA AS-S911-800 984-680/685/780/785 slot

mounts, host based

CALL SW-AP9X-CXB AM-C986-004 chassis mounts

MBUS/PEER SW-AP9X-AXA AM-S975-100 chassis mounts
SW-AP98-AXA AM-S975-820 984-685/780/785 slot

mounts, host based

MSTR** SW-AP9X-MBP AM-S985-0x0 chassis mounts

* When the X in the above software part numbers is a T, the medium is a P190 tape;
when the X is a D, the software media are 5.25 in and 3.5 in diskettes.

** The MSTR function that is a loadable for the chassis mount controllers is functionally
identical to the MSTR block provided in firmware for the 984-385/485/685/785
Controllers.

GM--0984--SYS 984 Loadable Instructions 293

21.1.2 Other 984 Loadable Functions

Loadable Part Software Controller Types
Functions Number* Capability Supported

DRUM/ICMP SW-SAx9-001 Sequence control chassis mounts
SW-AP98-SxA slot mounts, host based

FNxx SW-AP98-GDA Custom loadable slot mounts, host based

Loadables SW-AP9x-DxA includes MATH, chassis mounts
Library** DMTH, TBLK,

BLKT, CKSM, and
PID2

PID2** SW-AP9x-2xa PID2 closed loop chassis mounts
control software

EARS SW-AP9D-EDA Event/alarm record- All 984 controllers
ing system

* When the x in the above software part numbers is a T, the medium is a P190 tape;
when the x is a D, the software media are 5.25 in and 3.5 in diskettes.

** TBLK, BLKT, CKSM, and PID2 are functionally identical to those instructions of the same
name provided in firmware for the 984-385/485/685/785 Controllers.

This chapter describes all the loadable functions that support option modules ex-
cept MSTR, which is described in Chapter 17.

It also describes the sequence control loadables (DRUM and ICMP), the EARS
function block, and the custom loadable function block model (FNxx).

The MATH and DMTH functions—which do double precision math, square root,
log, and antilog functions similar to those in EMTH (see Chapter 20)—are also de-
scribed here. For descriptions of TBLK, BLKT, and PID2, refer to Chapter 20; for
a description of the CKSM function, refer to Chapter 18.

GM--0984--SYS984 Loadable Instructions294

21.2 The 984 Hot Standby Loadable

HSBY is a loadable DX function that manages a Hot Standby control system.
This function block must be placed in network 1 of segment 1 in the application
logic for both the primary and standby controllers. This function allows you to pro-
gram a nontransfer area in system state RAM—an area that protects a serial
group of registers in the standby controller from being modified by the primary
controller.

Through the HSBY instruction you can access two registers—a command register
and a status register—that allow you to monitor and control Hot Standby opera-
tions. The status register is the third register in the nontransfer area you specify.

HSBY is a three-node function block:

Execute HSBY
(unconditionally)

Hot Standby system ACTIVE

nontransfer area

in state RAM

length of
nontransfer area

HSBY

Enable command
register

A 984 controller cannot

communicate with its
R911/S911 module

Enable nontransfer
area of state RAM

command
register

The top node contains a 4x holding register used as the HSBY command register;
eight bits in this register may be configured and controlled via your panel soft-
ware:

GM--0984--SYS 984 Loadable Instructions 295

1 2 3 4 5 6 7 8 12 13 14 15 16

Not Used

0 = Swap Modbus port 3 address during switchover
1 = Do not swap Modbus port 3 address during switchover

Not Used

0 = Swap Modbus port 2 address during switchover
1 = Do not swap Modbus port 2 address during switchover

9 10 11

0 = Swap Modbus port 1 address during switchover
1 = Do not swap Modbus port 1 address during switchover

Disable keyswitch override = 0
Enable keyswitch override = 1

Controller A in OFFLINE mode = 0
Controller A in RUN mode = 1

Controller B in OFFLINE mode = 0
Controller B in RUN mode = 1

Force standby offline if there is a logic mismatch = 0
Do not force standby offline if there is a logic mismatch = 1

Allow exec upgrade only after application stops = 0
Allow exec upgrade without stopping application = 1

The middle node is a 4x register that is the first register in the nontransfer area in
state RAM. The first three registers in the nontransfer area are special registers:
4x and 4x + 1 are the reverse transfer registers for passing information from the
standby to the primary controller, and 4x + 2 is the HSBY status register. The total
size of the nontransfer area is specified in the bottom node.

The bottom node indicates that this is an HSBY function and defines the size of
the nontransfer area in state RAM. The nontransfer area must contain at least
four registers. In a 16 bit CPU, the size may range from 4 ... 255 registers; in
24 bit CPUs, the size may range from 4 ... 8000 registers.

GM--0984--SYS984 Loadable Instructions296

21.3 The HSBY Status Register

The HSBY status register—register 4x + 2 in the nontransfer area specified in the
middle node of the block—contains six bits that describe the current status of the
primary and standby controllers:

The combined states of bits 15 and 16 tells you whether the controller you are
attached to is in primary, standby, or OFFLINE mode

The combined states of bits 13 and 14 tell you whether the other controller in
the Hot Standby system is in primary, standby, or OFFLINE mode

Bit 12 tells you whether both controllers are using identical application logic
programs

Bit 11 tells you whether the R911/S911 module in the controller you are at-
tached to has its toggle switch set to position A or position B

1 2 3 4 5 6 7 8 12 13 14 15 16

Not Used

9 10 11

This controller in OFFLINE mode:
This controller running in primary mode:
This controller running in standby mode:

0 1
10

1 1

0 1
10

1 1

The other controller in OFFLINE mode:
The other controller running in primary mode:
The other controller running in standby mode:

1
0Controllers have matching logic:

Controllers do not have matching logic:

1
0This controller’s toggle switch set to A:

This controller’s toggle switch set to B:

Register 4x + 2 in Nontransfer AreaThe HSBY Status Register—

GM--0984--SYS 984 Loadable Instructions 297

21.4 An HSBY Reverse Transfer Example

The two networks below are for a primary controller that monitors two fault lamps
and a reverse transfer that sends status data from the standby controller to the
primary controller. The first network must be network 2 of segment 1; the second
network must not be in segment 1.

BLKM
00001

00801

40102

STAT
00001

40100

00815 00816

Network 2, Must be segment 1

Network must not be in Segment 1

00813 00814

BLKM
00001

00705

40100

00715 00813

00716 00813

00208

00209

The first BLKM function transfers the HSBY status register (40102) to internal
coils (00801). The STAT block, which is enabled if the other controller is in stand-
by mode, sends one status register word from the standby controller to a reverse
transfer register (40100) in the primary controller.

GM--0984--SYS984 Loadable Instructions298

21.5 CALL Blocks for the 984
Coprocessors

A CALL instruction activates an immediate or deferred DX function from a library
of functions defined by function codes. The Copro copies the data and function
code into its local memory, processes the data, and copies the results back to
Controller memory (see Section 2.4). CALL is a three-node function block:

source table

length of
source table

CALL

function
code

Enable an

immediate
DX CALL

Immediate DX function complete

An Immediate DX CALL Block

Error in immediate DX function

984 should continue

to scan CALL block
regardless of Copro
state

source table

length of
source table

CALL

function
code

Enable a
deferred
DX CALL

Deferred DX function complete

A Deferred DX CALL Block

Error in deferred DX function

Deferred DX function active
Deferred DX
mode selected

The top node specifies as a constant or in a 4x holding register containing a func-
tion code to be executed. The codes fall into two ranges: numbers 0 ... 499 are
available for user-definable DXs, and numbers 500 ... 9999 are system DXs pro-
vided by Modicon:

GM--0984--SYS 984 Loadable Instructions 299

System Immediate DX Functions

Name Code Function

f_config 500 Obtain Copro configuration data
f_2md_fl 501 Convert a two-register long integer to 64-bit floating point
f_fl_2md 502 Convert floating point to two-register long integer
f_4md_fl 503 Convert a four-register long integer to floating point
f_fl_4md 504 Convert floating point to four-register long integer
f_1md_fl 505 Convert a one-register long integer to floating point
f_fl_1md 506 Convert floating point to one-register long integer
f_exp 507 Exponential function
f_log 508 Natural logarithm
f_log10 509 Base 10 logarithm
f_pow 510 Raise to a power
f_sqrt 511 Square root
f_cos 512 Cosine
f_sin 513 Sine
f_tan 514 Tangent
f_atan 515 Arc tangent x
f_atan2 516 Arc tangent y/x
f_asin 517 Arc sine
f_acos 518 Arc cosine
f_add 519 Add
f_sub 520 Subtract
f_mult 521 Multiply
f_div 522 Divide
f_deg_rad 523 Convert degrees to radians
f_rad_deg 524 Convert radians to degrees
f_swap 525 Swap byte positions within a register
f_comp 526 Floating point compare
f_dbwrite 527 Write Copro register database from 984
f_dbread 528 Read Copro register database from 984

System Deferred DX Functions

Name Code Function

f_config 500 Obtain Copro configuration data (not used but must be present)
f_d_dbwr 501 Write Copro register database from 984
f_d_dbrd 502 Read Copro register database from 984
f_dgets 515 Issue dgets() on comm line
f_dputs 516 Issue dputs() on comm line
f_sprintf 518 Generate a character string
f_sscanf 519 Interpret a character string
f_egets 520 IEEE-488 gets() function
f_eputs 521 IEEE-488 puts() function.
f_ectl 522 IEEE-488 error control function

A CALL block runs a deferred DX when the middle input is enabled and an imme-
diate DX when no middle input is programmed.

The 4x register in the middle node is the first in a block of registers to be passed
to the Copro for processing; the number of registers in the block is defined in the
bottom node.

GM--0984--SYS984 Loadable Instructions300

21.6 MBUS and PEER

The S975 Modbus II Interface option modules use two loadable function blocks—
MBUS and PEER. MBUS is always used to initiate a single transaction with
another device on the Modbus II network; PEER may initiate identical message
transactions with as many as 16 devices on Modbus II at one time. In an MBUS
transaction, you are able to read or write discrete or register data; in a PEER
transaction, you may only write register data.

Controllers on a Modbus II network can handle up to 16 transactions simulta-
neously. Transactions include incoming (unsolicited) messages as well as out-
going (MBUS/PEER) messages. Thus, the number of MBUS/PEER message
initiations a controller can manage at any time is (16 -- # of incoming messages).

A transaction cannot be initiated unless the S975 has enough resources for the
entire transaction to be performed. Once a transaction has been initiated, it runs
until a reply is received, an error is detected, or a timeout occurs. A second trans-
action cannot be started in the same scan that the previous transaction completes
unless the middle input is ON; a second transaction cannot be initiated by the
same MBUS/PEER block until the first transaction has completed.

21.6.1 MBUS

MBUS is a three-node function block:

data block

number of
words reserved
for data block

MBUS

control block
Enable an
MBUS
transaction

Transaction complete

Error detected in transaction
Reset

(clears system
statistics)

Repeat transaction

in same scan

Transaction in progress or
new
transaction starting

The top node is the first of seven 4x registers in the MBUS control block:

GM--0984--SYS 984 Loadable Instructions 301

Control Block Register Function

4x Address of destination device (range: 0 ... 246)

4x + 1 Not used

4x + 2 Function code for requested action:
01 Read discretes
02 Read registers
03 Write discrete outputs
04 Write register outputs
255 Get system statistics (see Section 21.7)

4x + 3 Discrete or register reference type:
0 Discrete output (0x)
1 Discrete input (1x)
3 Input register (3x)
4 Holding register (4x)

4x + 4 Reference number—e.g., if you placed a 4 in
register 4x + 3 and you place a 23 in this register,
the reference will be holding register 40023

4x + 5 Number of words of discrete or register references
to be read or written; the length limits are:
Read register 251 registers
Write register 249 registers
Read coils 7848 discretes
Write coils 7800 discretes

4x + 6 Time allowed for a transaction to be completed
before an error is declared; expressed as a multiple
of 10 ms—e.g., 100 indicates 1000 ms; the default
timeout is 250 ms

The middle node is the first 4x register in a data block to be transmitted or re-
ceived in the MBUS transaction.

The number of words reserved for the data block is entered as a constant value in
the bottom node. This number does not imply a data transaction length, but it can
restrict the maximum allowable number of register or discrete references to be
read or written in the transaction. The maximum number of words that may be
used in the specified transaction is:

251 for reading registers (one register/word)

249 for writing registers (one register/word)

490 for reading discretes using 24 bit CPUs: 255 for reading discretes using
16 bit CPUs (up to 16 discretes/word)

487 for writing discretes using 24 bit CPUs; 255 for reading discretes using
16 bit CPUs (up to 16 discretes/word)

GM--0984--SYS984 Loadable Instructions302

21.6.2 PEER

PEER is a three-node function block that writes 4x registers to multiple nodes on
the network (up to 16):

data block

number of
words to be
read/written

PEER

control block
Enable a

PEER transaction Transaction complete

Error detected in transaction

Repeat transaction

in same scan

Transaction in progress or
new
transaction starting

The top node is the first of 19 4x registers in the PEER control block:

Control Block Register Function

4x Indicates the status of the transactions at each
device, the leftmost bit being the status of device #1
and the rightmost bit the status of device #16:
0 = OK, 1 = transaction error

4x + 1 Defines the reference to the first 4x register to be
written to in the receiving device; a 0 in this field is
an invalid value and will produce an error (the
bottom output will go ON)

4x + 2 Time allowed for a transaction to be completed
before an error is declared; expressed as a multiple
of 10 ms—e.g., 100 indicates 1000 ms; the default
timeout is 250 ms

4x + 3 The Modbus port 3 address of the first of the receiv-
ing devices; address range: 1 ... 255
(0 = no transaction requested)

4x + 4 The Modbus port 3 address of the second of the
receiving devices; address range: 1 ... 255
(0 = no transaction requested)

• •
• •
• •

4x + 18 The Modbus port 3 address of the 16th of the
receiving devices (address range: 1 ... 255)

GM--0984--SYS 984 Loadable Instructions 303

The middle node is the first 4x register in a data block to be transmitted by the
PEER function.

The bottom node contains a constant value defining the number of holding regis-
ters to be written, starting with the 4x register defined in the middle node; the
range is 1 ... 249.

GM--0984--SYS984 Loadable Instructions304

21.7 The MBUS Get Statistics Function

Function code 255 in register 4x + 2 in the MBUS control block allows you to ob-
tain a copy of the Modbus II local statistics, which stores errors and system condi-
tions in a series of 46 consecutive locations. When using MBUS for a get statis-
tics operation, set the constant value in the bottom node to 46; any value less
than 46 will return an error (the bottom output will go ON), and any value greater
than 46 will reserve extra registers that cannot be used. For example:

4100
0

46
MBUS

Enable
transaction

Transaction complete

Error—length specified in bottom
node

is less than 46

Clear system
statistics

40101

Register 40101 is the first register in the MBUS control block, making register
40103 the control register that defines the MBUS function code. By entering a
value of 255 in register 40103, you implement a get statistics function. Registers
41000 ... 41045 are then filled with the following system statistics:

Type of Statistic Counter Register Type of Information

Token bus controller 41000 Number of tokens passed by this station
(TBC) 41001 Number of tokens sent by this station

41002 Number of time the TBC has failed to pass
token and has not found a successor

41003 Number of times the station has had to look
for a new successor

Software-maintained 41004 TBC-detected error frames
receive statistics 41005 Invalid request with response frames

41006 Applications message too long
41007 Media access control (MAC) address out of

range
41008 Duplicate application frames
41009 Unsupported logical link control (LLC) mes-

sage types
41010 Unsupported LLC address

GM--0984--SYS 984 Loadable Instructions 305

Type of Statistic Counter Register Type of Information

TBC-maintained 41011 Receive noise bursts (no start delimiter)
error counters 41012 Frame check sequence errors

41013 E-bit error in end delimiter
41014 Fragmented frames received (start delimiter

not followed by end delimiter)
41015 Receive frames too long
41016 Discarded frames because there is no

receive buffer
41017 Receive overruns
41018 Token pass failures

Software-maintained 41019 Retries on request with response frames
transmit errors 41020 All retries performed and no response

received from unit

Software-maintained 41021 Bad transmit request
receive errors 41022 Negative transmit confirmation

User logic transaction 41023 Message sent but no application response
errors 41024 Invalid MBUS/PEER logic

Manufacturing message 41025 Command not executable
format standard 41026 Data not available
(MMFS) errors 41027 Device not available

41028 Function not implemented
41029 Request not recognized
41030 Syntax error
41031 Unspecified error
41032 Data request out of bounds
41033 Request contains invalid 984 address
41034 Request contains invalid data type
41035 None of the above

Background statistics 41036 Invalid MBUS/PEER request
41037 Number of unsupported MMFS message

types received
41038 Unexpected response or response received

after timeout
41039 Duplicate application responses received
41040 Response from unspecified device
41041 Number of responses buffered to be pro-

cessed (in the least significant byte);
Number of MBUS/PEER requests to be
processed (in the most significant byte)

41042 Number of received requests to be pro-
cessed (in the least significant byte);
Number of transactions in process (in the
most significant byte)

41043 S975 scan time in 10 microsecond
increments

Software revision 41044 Version level of fixed software (PROMs):
major version number in most significant
byte; minor version number in least
significant byte

41045 Version of loadable software(EEPROMs):
major version number in most significant
byte; minor version number in least
significant byte

GM--0984--SYS984 Loadable Instructions306

21.8 Designing Custom Loadable
Functions

Modicon offers a custom loadable software package (SW-AP98-GDA) that allows
you to design your own function blocks for operation with slot mount controllers.
The operational unit for the custom loadable support software is a three-node
block, FNxx; the package allows you to create up to 99 unique FNxx blocks.
Within each block, you may design a large number of subfunctions—up to 8192.

first register
in subfunction

table

table length
FNxx

subfunction
ID number

Top input
(required)

Top out-
put
(optional)

Middle input
(optional)

Bottom input
(optional)

Middle output
(optional)

Bottom output
(optional)

The top node may be either a 4x holding register or a constant value; it is used to
identify a subfunction ID number. Valid ID numbers range from 0 ... 9999, and as
many as 8192 different subfunctions may be designed within a block. When multi-
ple subfunctions are designed within an FNxx block, each subfunction within the
block must have a unique ID number, but those numbers do not have to be con-
secutive.

The middle node is the first 4x register in a table of registers to be used by the
subfunction. The table may be used to pass data to the subfunction and store re-
sults. The table format may be customized for your requirements, and each sub-
function developed within the function block may have its own format.

The bottom node defines the function number, which may range from
FN01 ... FN99, and uses a constant value to define the number of 4x registers in
the subfunction table—the table length range may be from 1 ... 255 in a 16 bit
CPU and from 1 ... 999 in a 24 bit CPU.

GM--0984--SYS 984 Loadable Instructions 307

21.8.1 Programming Considerations

21.8.1.1 Programming Environment
This development package is for experienced C or Assembly Language program-
mers, and the development environment is outside the standard ladder logic pro-
gramming environment. Custom loadable function blocks may be developed on
IBM-AT or compatible computers running MS-DOS, Rev. 3.2 or greater. The re-
sulting blocks may be downloaded to a standard disk-based programming panel
and used in ladder logic programs.

21.8.1.2 Creating a Subfunction Library
Each subfunction built into an FNxx loadable block is comparable to a standard
three-node DX function and requires a certain amount of user logic memory upon
installation. A large number of subfunctions can be written and stored in a sub-
function library in the development environment, and the size of this library can be
far in excess of available memory in the target controller. Only particular subfunc-
tions for immediate use can be pulled from the library and compiled in the FNxx
function as it is built. The controller needs only enough extra memory to support
the installed subfunctions.

21.8.1.3 Naming Subfunctions
In addition to an individual ID number, each subfunction in a customized function
block is assigned a name by the programmer. The name may contain from one to
four alphabetical characters, either upper or lower case. The programmer creates
a separate file—the subfunction list file—where a subfunction ID number is linked
to each subfunction name, and the name can be used by utility tools to access
and display the subfunction and its specific characteristics.

21.8.1.4 Assigning Opcodes to Functions
Each FNxx function must be assigned an opcode that is in the valid range of Mo-
dicon opcodes and that is not used by any other function block currently installed
in the programmable controller (see Chapter 6). If you have designed multiple
custom loadable functions but intend to download only some of them together at
any one time, then you need only assign as many unique opcodes as there are
custom functions downloaded at any one time. However, you must inform the
user how to change opcodes using the lodutil utility as one function is withdrawn
and replaced by another. The fact that you are able to create so many subfunc-
tions within one function allows you to work around the finite limit of available op-
codes.

GM--0984--SYS984 Loadable Instructions308

21.9 Sequential Control Functions

Modicon provides a drum sequencer software package, for use with 984 chassis
mount controllers, which can be used in sequential control applications where si-
multaneous control of multiple devices—e.g., motors, valves, solenoids—at differ-
ent steps in a process is required. The package consists of two loadable instruc-
tions—DRUM and ICMP—along with a DOS-based user interface. The DRUM
instruction uses software to emulate a Tenor drum in ladder logic. The ICMP in-
struction is an input compare function used with DRUM to verify the correct opera-
tion of each step in the drum sequence.

21.9.1 DRUM

The DRUM function operates on a table of 4x registers containing data represent-
ing the desired status of 16 outputs for each step in a sequence. The number of
these registers associated with a DRUM block is dependent upon the number of
steps required in the sequence.

You may pre-allocate registers used to store data for each step in the sequence,
thereby allowing you to add future sequencer steps without having to modify appli-
cation logic.

DRUM blocks incorporate an output mask that allows you to selectively mask bits
in the register data before writing it to coils. This is particularly useful when all
physical sequencer outputs are not contiguous on the output module. Masked
bits are not altered by the DRUM instruction, and may be used by logic unrelated
to the sequencer. DRUM is a three-node function block:

step data
table

max # of
steps

DRUM

step pointerEnables the
DRUM sequencer

Copies the top input state

Increment the step
pointer to next step

Reset the step
pointer to 0

Last step—step pointer =
steps used register

Error (a validation
check has failed)

GM--0984--SYS 984 Loadable Instructions 309

The top node contains one 4x register used to hold the current step number. The
maximum number of steps allowed is specified in the bottom node. The value in
this register is referenced by the DRUM instruction each time it is solved. If the
middle input to the block is ON, the contents of the register in the top node are in-
cremented to the next step in the sequence before the block is solved.

The middle node contains the first 4x register in an implied register table of step
data information; the first six registers in the table hold constant and variable data
required to solve the block:

Reference Register Name Description

4x masked output data Loaded by DRUM each time the block is solved;
contains the contents of the current step data regia-
ter masked with the output mask register

4x + 1 current step data Loaded by DRUM each time the block is solved;
contains data from the step pointer; causes the
block logic to automatically calculate register offsets
when accessing step data in the step data table

4x + 2 output mask Loaded by user before using the block, DRUM will
not alter output mask contents during logic solve;
contains a mask to be applied to the data for each
sequencer step

4x + 3 machine ID number Identifies DRUM/ICMP blocks belonging to a specif-
ic machine configuration; value range: 0 ... 9999
(0 = block not configured); all blocks belonging to
same machine configuration have the same ma-
chine ID number

4x + 4 profile ID number Identifies profile data currently loaded to the se-
quencer; value range: 0 ... 9999 (0 = block not con-
figured); all blocks with the same machine ID num-
ber must have the same profile ID number

4x + 5 steps used Loaded by user before using the block, DRUM will
not alter steps used contents during logic solve;
contains between 1 ... 255 for 16 bit CPUs and
1 ... 999 for 24 bit CPUs, specifying the actual num-
ber of steps to be solved; the number must be < the
table length in the bottom node of the DRUM block

The remaining registers contain data for each step in the sequence.

The bottom node contains a constant value used to calculate the maximum num-
ber of registers allocated to the step data table; the number may range from
1 ... 255 in 16 bit CPUs and 1 .. 999 in 24 bit CPUs. The maximum number of
registers is the specified constant + 6. The specified constant must be > the value
placed in the steps used register in the middle node.

GM--0984--SYS984 Loadable Instructions310

21.9.2 ICMP

ICMP (input compare) provides logic for verifying the correct operation of each
step processed by a DRUM block. Errors detected by ICMP may be used to trig-
ger additional error-correction logic or to shut down the system. ICMP and DRUM
are synchronized through the use of a common step pointer register. As the
pointer increments, ICMP moves through its data table in lock step with DRUM.
As ICMP moves through each new step, it compares—bit for bit—the live input
data to the expected status of each point in its data table. ICMP is a three-node
function block:

step data
table

max # of
steps

ICMP

step pointerEnables the input compare
operation

Copies top input state

A cascading input, telling the
block that previous ICMP
comparisons were all good

This comparison and all pre-
vious cascaded ICMPs are
good

Error (a validation
check has failed)

The top node contains one 4x register used to hold the current step number value.
The value is referenced by ICMP each time the instruction is solved; the value in
this register must be controlled externally by a DRUM function or by other user
logic. The same register must be used in the top node of all ICMP and DRUM
blocks that are to be solved as a single sequencer.

The middle node contains the first 4x register in an implied register table of step
data information; the first eight registers in the table hold constant and variable
data required to solve the block:

Reference Register Name Description

4x raw input data Loaded by user from a group of sequential inputs
to be used by ICMP for current step

4x + 1 current step data Loaded by ICMP each time the block is solved; con-
tains a copy of data in the step pointer; causes the
block logic to automatically calculate register offsets
when accessing step data in the step data table

4x + 2 input mask Loaded by user before using the block; contains a
mask to be ANDed with raw input data for each
step—masked bits will not be compared; masked
data are put in the masked input data register

GM--0984--SYS 984 Loadable Instructions 311

Reference Register Name Description

4x + 3 masked input data Loaded by ICMP each time the block is solved; con-
tains the result of the ANDed input mask and raw
input data

4x + 4 compare status Loaded by ICMP each time the block is solved; con-
tains the result of an XOR of the masked input data
and the current step data; unmasked inputs that are
not in the correct logical state cause the associated
register bit to go to 1—non-zero bits cause a mis-
compare, and middle output will not go ON

4x + 5 machine ID number Identifies DRUM/ICMP blocks belonging to a specif-
ic machine configuration; value range: 0 ... 9999
(0 = block not configured); all blocks belonging to
same machine configuration have the same ma-
chine ID number

4x + 6 profile ID number Identifies profile data currently loaded to the se-
quencer; value range: 0 ... 9999 (0 = block not con-
figured); all blocks with the same machine ID num-
ber must have the same profile ID number

4x + 7 steps used Loaded by user before using the block, DRUM will
not alter steps used contents during logic solve;
contains between 1 ... 255 for 16 bit CPUs and
1 ... 999 for 24 bit CPUs, specifying the actual num-
ber of steps to be solved; the number must be < the
table length in the bottom node of the ICMP block

The remaining registers contain data for each step in the sequence.

The bottom node contains a constant value used to calculate the maximum num-
ber of registers allocated to the step data table; the number may range from
1 ... 255 in 16 bit CPUs and 1 .. 999 in 24 bit CPUs. The maximum number of
registers is the specified constant + 8. The specified constant must be > the value
placed in the steps used register in the middle node.

21.9.3 Cascaded DRUM/ICMP Blocks

A series of DRUM and/or ICMP blocks may be cascaded to simulate a mechani-
cal drum up to 512 bits wide. Programming the same 4x register reference into
the top node of each related block causes them to cascade and step as a grouped
unit without the need of any additional application logic. All DRUM/ICMP blocks
with the same register reference in the top node are automatically synchronized.
The must also have the same constant value in the bottom node, and must be set
to use the same value in the steps used register in the middle node.

GM--0984--SYS984 Loadable Instructions312

21.10 Extended Math Loadables

Included in the loadables library provided for chassis mount controllers are two
extended math instructions—MATH and DMTH—which provide you with double
precision math, square root, process square root, log, and antilog functions com-
parable to those in the EMTH instruction (Section 20.2).

Note The BLKM, TBLK, PID2 functions included in the loadables li-
brary are functionally identical to the functions of the same names de-
scribed in Chapter 20. The CKSM function in the loadables library is
functionally identical to the function described in Chapter 18.

21.10.1 MATH

The MATH function performs any one of four integer math operations. MATH is a
three-node function block:

operand

result

function code
(1 ... 4)

MATH

Activate the MATH
operation

Error
(invalid operand)

Operation
successful

The top node requires either two consecutive 4x registers or one 3x register. The
selected operation is performed on the value held in the register(s). The four dif-
ferent operation types (as specified by code number in the bottom node) each has
specific limits on the operand value allowed in the register(s):

For integer square root functions, the value stored in each register cannot ex-
ceed 9999, permitting a maximum stored value of 99,999,999 in the 4x regis-
ters and a maximum stored value of 9,999 in the 3x register

GM--0984--SYS 984 Loadable Instructions 313

For process square root functions, the value in the 3x or 4x register must be
< 4095; thus only one register is used

For logarithm functions, the value stored in each register cannot exceed 9999,
permitting a maximum stored value of 99,999,999 in the 4x registers and a
maximum stored value of 9,999 in the 3x register; the register value must not
be less than 1

For antilogarithm functions, the value stored in the 3x or 4x register must be in
the range 0 ... 7999 (a maximum value of 7.999 with an implied decimal point)

The middle node is the first of two consecutive 4x holding registers. The result of
the operation is stored in these two registers.

The bottom node provides the functional selection mechanism for the block. En-
ter a constant value in the range 1 ... 4 to indicate the integer math function you
want to employ:

Code Number Math Function

1 decimal square root
2 process square root
3 logarithm
4 antilogarithm

21.10.2 DMTH

The DMTH function performs any one of four double precision math operations.
DMTH is a three-node function block with input and output lines that vary depend-
ing on the selected operation:

operand #1

operand #2
and destination

DMTH

ON = add operands and
place result in designated
registers

ON = operation per-
formed
successfully

ON = an operand is out of
range or invalid
(Operation not performed)

1

Double Precision Addition

GM--0984--SYS984 Loadable Instructions314

The top node comprises two consecutive 4x registers; each register holds a value
in the range 0000 ... 9999 for a combined value range of up to 99,999,999.

The middle node comprises six consecutive 4x registers:

4x and 4x + 1 hold the second operand value, in the range 0 ... 99,999,999

4x + 2 indicates whether an overflow condition exists (1 = overflow)

4x + 3 and 4x + 4 hold the double precision addition result

4x + 5 is not used in this calculation but must exist in state RAM

operand #1

DMTH

ON = operand #2 subtracted
from operand #1 and abso-
lute value placed in desig-
nated registers

ON = operand #1 > operand #2

2

Double Precision Subtraction

ON = operand #1 = operand #2

ON = operand #1 < operand #2

operand #2
and destination

The top node comprises two consecutive 4x registers; each register holds a value
in the range 0000 ... 9999 for a combined value range of up to 99,999,999.

The middle node comprises six consecutive 4x registers:

4x and 4x + 1 hold the second operand value, in the range 0 ... 99,999,999

4x + 2 and 4x + 3 hold the double precision subtraction result

4x + 4 indicates whether the operands are in the valid range
(1 = out of range and 0 = in range)

4x + 5 is not used in this calculation but must exist in state RAM

GM--0984--SYS 984 Loadable Instructions 315

operand #1

DMTH

ON = operand #1 multiplied by
operand #2 and result placed
in designated registers

ON = operation performed
successfully

3

Double Precision Multiplication

ON = an operand is out of
range

operand #2
and destination

The top node comprises two consecutive 4x registers; each register holds a value
in the range 0000 ... 9999 for a combined value range of up to 99,999,999.

The middle node comprises six consecutive 4x registers:

4x and 4x + 1 hold the second operand value, in the range 0 ... 99,999,999

4x + 2, 4x + 3, 4x + 4, and 4x + 5 hold the double precision multiplication result

operand #1

DMTH

ON = operand #1 is divided
by operand #2 and the re-
sult is placed in designated
registers

ON = operation performed
successfully

4

Double Precision Division

ON = an operand out of
range

ON = operand #2 is 0

operand #2
and destination

ON = remainder stored as
a fraction in 4x + 4
OFF = remainder stored as
an 8-digit whole number,
right justified

The top node comprises two consecutive 4x registers; each register holds a value
in the range 0000 ... 9999 for a combined value range of up to 99,999,999.

The middle node comprises six consecutive 4x registers:

4x and 4x + 1 hold the second operand value, in the range 0 ... 99,999,999
(Since division by 0 is illegal, a 0 value causes an error—an error trapping rou-
tine sets the remaining middle-node registers to 0000 and turns the bottom out-
put ON.)

4x + 2 and 4x + 3 hold an eight-digit result, the quotient

GM--0984--SYS984 Loadable Instructions316

4x + 4 and 4x + 5 hold the remainder—if the remainder is expressed in whole
numbers, it is eight digits long and both registers are used; if the remainder is
expressed as a decimal, it is four digits long and only register 4x + 4 is used.

GM--0984--SYS 984 Loadable Instructions 317

21.11 The EARS Loadable

The EARS block is loaded to a 984 controller being used in an alarm/event re-
cording system. An EARS system requires that the 984 work in conjunction with a
man-machine interface (MMI) host device that runs a special off-line software
package. The controller monitors a specified group of events for any changes in
state and logs change data into a buffer; the data are then removed by the host
over a high speed network such as Modbus II or Modbus Plus. The two devices
comply with a defined handshake protocol that ensures that all data detected by
the 984 controller are accurately represented in the host.

21.11.1 984 Functions in an Event/Alarm Recording System

When a 984 controller is employed in an EARS environment, it is set up to main-
tain and monitor two tables of 4x registers, one containing the current state of a
set of user-defined events and one containing the history of the most recent state
of these events. Event states are stored as bit representations in the 4x regis-
ters—a bit value of 1 signifying an ON state and a bit value of 0 signifying an OFF
state. Each table can contain up to 62 registers, allowing you to monitor the
states of up to 992 events.

When the controller detects a change between the current state bit and the history
bit for an event, the EARS function block prepares a two-word message and
places it in a circular buffer where they can be off-loaded to a host MMI. This
message contains:

A time stamp representing the time span from midnight to 24:00 hours in tenths
of a second

A transition flag indicating that the event is either a positive or negative transi-
tion with respect to the event state

A number indicating which event has occurred

21.11.2 Host↔Controller Interaction

The host MMI device must be able to read and write 984 data registers via the
Modbus protocol. A handshake protocol maintains integrity between the host and
the circular buffer running in the 984; this enables the the host to receive events

GM--0984--SYS984 Loadable Instructions318

asynchronously from the buffer at a speed suitable to the host while the controller
detects event changes and load the buffer at its faster scan rate.

21.11.3 The EARS Block

EARS is a three-node function block:

implied regs
and buffer
table

of registers
used in buffer

EARS

state table
pointer and
history table

ON = Handshake performed (if
needed), validation check performed,
and EARS operations proceed

Data in the buffer

ON for one scan following
communications acknowl-
edgment from host

Buffer full—no events can
be added until host off-loads
some or until Buffer Reset

OFF = Handshake performed (if
needed) and outstanding trans-
actions are completed

Buffer Reset—event table and top
node pointers are cleared to 0

The top node contains the first of 64 consecutive 4x registers. The first two of
these registers contain values that specify the location and size of the current
state table. The the remaining 62 registers are available to contain the history
table:

4x is the indirect pointer to the current state table—e.g., if the register contains
a value of 5, then the state table begins at register 40005

4x + 1 contains a value in the range 1 ... 62 that specifies the number of regis-
ters in the current state table

4x + 2 is the first register of the history table, and the remaining registers allo-
cated to the top node may be used in the table as required; the history table
can provide monitoring for as many as 992 contiguous events (if 16 bits in all
the 62 available registers are used)

If all 62 registers are not required for the history table, the extra registers may be
used elsewhere in the program for other purposes, but they will still be found (by a
Modbus search) in the top node of the EARS block.

GM--0984--SYS 984 Loadable Instructions 319

The middle node contains the first in another series of consecutive 4x registers.
The first five registers are implied, and the rest contain the circular buffer. The cir-
cular buffer uses an even number of registers in the range 2 ... 100:

4x contains a value that defines the maximum number of registers the circular
buffer may occupy

4x + 1 contains the Q_take pointer—the pointer to the next register where the
host will go to remove data

The low byte of register 4x + 2 contains the Q_put pointer—the pointer to the
register in the circular buffer where the EARS block will begin to place the next
state-change data; the high byte of register 4x + 2 contains the last transaction
number received

4x + 3 contains the Q+count—a value indicating the number of words currently
in the circular buffer

4x + 4 contains status/error codes

4x + 5 is the first register in the circular buffer where event-change data are
stored; each detected change in event status produces two consecutive regis-
ters of information:

1 2 3 4 5 6 7 8 12 13 14 15 16

Event Number (1 ... 992)

Four Most Significant Bits of Event Time Stamp

9 10 11

Reserved

Event Data Register 1

0 = Negative Transition Event Type

1 = Positive Transition Event Type

1 2 3 4 5 6 7 8 12 13 14 15 169 10 11

Event Data Register 2

Sixteen Least Significant Bits of Event Time Stamp

GM--0984--SYS984 Loadable Instructions320

The time stamp is encoded in 20 bits as a binary weighted value that represents
the time in an increment of 0.1 s starting from midnight of the day on which the
status change was detected:

1 hour = 3,600 seconds = 36,000 tenths of a second, and
24 hours = 86,400 seconds = 864,000 tenths of a second

The following table shows binary weighted values for the time stamp, where n is
the relative bit position in the 20-bit time scheme:

Event Data Register 1 Event Data Register 2

012345678910111213141516171819

2n n 2n n 2n n

1 0
2 1
4 2
8 3
16 4
32 5
64 6
128 7

256 8
512 9
1024 10
2048 11

8192
12

16384
13

32768
14

65536

15

131072 17

4096

16

262144 18
19524288

Note The real time clock in the chassis mount controllers has a
tenth-of-a-second resolution, but the other 984s have real time clock
chips resolve only to a second. An algorithm is used in EARS to pro-
vide a best estimate of tenth-of-a-second resolution—it is accurate in
the relative time intervals between events, but it may vary slightly from
the real time clock.

The bottom node displays an even constant value in the range 2 100, which
represents the actual number of registers allocated for the circular buffer. Each
event requires two registers for data storage—therefore, if you wish to trap up to
25 events at any given time in the buffer, assign a value of 50 in the bottom node.

GM--0984--SYS Index 321

Index

Numbers
200 Series I/O

analog input modules, 43
analog output modules, 43
discrete input modules, 42
discrete output modules, 42
special purpose modules, 43

300 Series I/O
analog input modules, 49
analog output modules, 49
BCD register modules, 49
discrete input modules, 48
discrete output modules, 48

500 Series I/O
discrete input modules, 44
discrete output modules, 44
special purpose modules, 45

800 Series I/O
analog input modules, 38
discrete input modules, 37
discrete output modules, 37
intelligent modules, 40
special purpose I/O modules, 39

984 Controllers, standard architecture, 6

A
A120 Series I/O

combo module, 46
discrete input modules, 46, 47
discrete output modules, 46, 47

ADD function, 134
addition

floating point, 262
floating point and integer values, 257
integer, 134

alarm/event warning system, 317
AND function, 156
antilogarithm (base 10) calculation

using EMTH, 254
using MATH, 313

arccosine calculation, in floating point, 269

arcsine calculation, in floating point, 268
arctangent calculation, in floating point, 270
AS-MBKT-085 connectors, for Modbus Plus,
61

AS-MBKT-185 connectors, for Modbus Plus,
61

ASCII character chart, 178
ASCII communication mode, 52
ASCII device support, at remote I/O drops,
34

ASCII error status word, 176
auxiliary power supply modules, for remote
I/O drops, 41

B
battery coil assignment, in the configurator,
79

binary addition checksum, in ladder logic,
234

BLKM function, 152
BLKT function, 246
Boolean operations, 156
BROT function, 166

C
C986 Coprocessor, 22
CALL function, for 984 coprocessors, 24
CALL loadable function, 298

part numbers, 292
capacities of 984 controllers, 4
CKSM function, in ladder logic, 233
clearing bits, in a DX matrix, 164
closed loop control, 276
CMPR function, 162
coils

0x, 74
as displayed in ladder logic, 97
latched, 124
normal, 124

GM--0984--SYSIndex322

common logarithm calculation, in floating
point, 274

COMP function, 160
comparison

bit patterns in DX matrices, 162
floating point, 264
floating point and integer values, 260

complementing a bit pattern, 160
conditional segments, as defined by seg-
ment scheduler, 114

configuration parameters, 81
configuration table, 78
configurator editor, 78
constant sweep, 116
contacts

negative transitional, 121
normally closed, 120
normally open, 120
positive transitional, 121

controller performance characteristics, 4
conversion

degrees to radians, 271
floating point and integer values, 256,
261

radians to degrees, 271
coprocessor option modules

AM-C986-004, 22
AM-C996-802, 23
AM-C996-804, 23

cosine calculation, in floating point, 267
counters

down, 128
up, 128

CRC-16 checksum, in ladder logic, 234
custom loadable function design, 306

D
D908 processor, 66
Data Access Panel, AS-P965-000, 18
DCTR function, 128
deferred DX operations, with a coprocessor
option, 25, 298

degree-to-radian conversion, in floating
point, 271

derivative control, in a PID2 function, 277
disable discrete values in ladder logic, 125
discrete inputs, 1x, 74
discrete outputs, 0x, 74
distributed control processing, 66
distributed control processors

AS-D908-110, 27
AS-D908-120, 27

DIV function, 137
division

floating point, 263
floating point and integer values, 258,
259

integer, 137
DMTH loadable function, part number, 293
double precision addition

using DMTH, 314
using EMTH, 249

double precision division
using DMTH, 315
using EMTH, 251

double precision multiplication
using DMTH, 315
using EMTH, 250

double precision subtraction
using DMTH, 314
using EMTH, 249

DRUM loadable function, 308
part numbers, 293

E
E. See error measurement
EARS loadable function, 317
EARS loadable function block, part num-
bers, 293

EMTH
functional listing, 248
overview, 247

environment, for programming 984 custom
loadables, 307

error measurement, in a PID2 function, 276
event/alarm warning system, 317
examples

a default segment scheduler, 111
a Modbus II sample layout, 65
a Modbus Plus sample layout, 63
a scan time evaluation circuit, 106
CMPR matrix function, 163
COMP matrix function, 161
components of scan time, 104
Fahrenheit-to-Centigrade conversion,
139

ideal throughput, 108
momentary pushbutton switch, 120
one second timer, 131
real time clock, 132
recipe storage, 153
reporting current system status, 167
searching for bit values, 151
simple table averaging, 168

GM--0984--SYS Index 323

skipping nodes in a network, 207
standard division, 138
subroutine in ladder logic, 242
up counter, 129
using a segment scheduler to improve
throughput, 112

using a segment scheduler to increase
port service, 115

using asegment scheduler for controlled
segments, 114

using multiple networks for material han-
dling, 69

exclusive OR function, 156
exponential calculation, in floating point, 272
extended memory

control table, 212
in a 984B Controller, 210
storage in user memory, 211

F
FIFO queues, in a DX table, 148
FIN function, 148
floating point addition, 262
floating point arccosine calculation, 269
floating point arcsine calculation, 268
floating point arctangent calculation, 270
floating point common logarithm calculation,
274

floating point comparison, 264
floating point conversion

degrees to radians, 271
radians to degrees, 271

floating point cosine calculation, 267
floating point division, 263
floating point error reporting, 275
floating point exponential calculation, 272
floating point format standard, 255
floating point multiplication, 263
floating point natural logarithm calculation,
273

floating point number to integer power, 272
floating point Pi, 265
floating point sign change, 265
floating point sine calculation, 266
floating point square root, 264
floating point subtraction, 262
floating point tangent calculation, 268
floating point-integer addition, 257
floating point-integer conversion, 261
floating point-integer division, 258, 259
floating point-integer multiplication, 258
floating point-integer subtraction, 257, 259

floating point/integer comparison, 260
FNxx function block, 306
FNxx loadable function block, part number,
293

forcing OFF a discrete value in ladder logic,
125

forcing ON a discrete value in ladder logic,
125

FOUT function, 148
function codes, for the CALL instruction,
298

G
get Modbus II statistics, with MBUS, 304

H
holding registers, 4x, 74
Hot Standby function, 294
hot standby option modules

AM-R911-000, 20
AS-S911-800, 20

HSBY
command register, 295
loadable instruction, 294
part numbers, 292
status register, 296

HSBY function, for Hot Standby option mod-
ules, 20

I
I/O bits

per drop, 5
per system, 5

I/O modules
analog in, 31

200 Series, 43
300 Series, 49
800 Series, 38

analog out, 31
200 Series, 43
300 Series, 49

BCD register, 300 Series, 49
combo, A120 Series, 46
discrete in, 30

200 Series, 42
300 Series, 48
500 Series, 44
800 Series, 37
A120 Series, 46, 47

discrete out, 30
200 Series, 42

GM--0984--SYSIndex324

300 Series, 48
500 Series, 44
800 Series I/O, 37
A120 Series, 46, 47

intelligent, 31
800 Series, 40

local, 31, 32
remote, 31, 33
special purpose, 31

200 Series, 43
500 Series, 45
800 Series, 39

ICMP loadable function, 310
part numbers, 293

immediate DX operations, with a coproces-
sor option, 25

inline connectors, for Modbus Plus, 61
instruction set

enhanced set listing, 101
select standard listing, 100
standard listing, 99

instruction set compatibility, 3
integer-to-floating point conversion, 256
integral control, in a PID2 function, 277
intersegment transfer (IST), as a part of
scan time, 104

IST, 105

J
J878 Modbus Modem, 26
JSR function, 239
jump to a subroutine, 239

L
LAB function, 240
labeling the start of a subroutine, 240
ladder logic, structure, 96
latched coils, 124
loadable functions, developing your own
custom blocks, 306

loadable functions for 984 controllers, 292
logarithm (base 10) calculation

using EMTH, 254
using MATH, 313

logic elements, 98
logic solve time, 4

as a part of scan time, 104
logic solve times, 5
LRC checksum, in ladder logic, 234

M
MA-0186-100 line splitter, 21
macros, 11
manipulated variable, in a PID2 function,
276

MATH loadable function, part number, 293
MBIT function, 164
MBUS, 64
MBUS loadable function, 27, 300

part numbers, 292
Modbus

chassis mount pinouts, 54, 55, 56, 57
media, 58
network capacity, 58
nine-pin pinouts, 54, 55, 56, 57
port parameters, 52, 58

Modbus II, 64
Modbus II functions

MBUS, 300
PEER, 302

Modbus II local statistics, 304
Modbus II option modules

AM-S975-100, 26
AM-S975-820, 27

Modbus modems, AS-J878-000, 26
Modbus Plus

MSTR function, 218
network capacity, 60

Modbus Plus option modules
AM-S95-000, 27
AM-S985-020, 27
AM-S985-040, 27

MODSOFT
macros, 11
sequential function chart, 10

move functions, 142
moving a block of data, in DX tables, 152
moving registers to tables, 246
moving tables to registers, 246
MSTR function, 218

for Modbus Plus communications, 27
for Modbus Plus logical network, 61

MSTR loadable function, part number, 292
MUL function, 136
multiplication

floating point, 263
floating point and integer values, 258
integer, 136

mv. See manipulated variable

GM--0984--SYS Index 325

N
natural logarithm calculation, in floating
point, 273

negative numbers, in a floating point calcu-
lation, 255, 265

negative transitional contacts, 121
network, Modbus Plus communication, 61
node, in ladder logic, 84
nodes

in ladder logic, 96
on a Modbus Plus network, 60

normally closed contacts, 120
normally open contacts, 120

O
opcodes, 84

for enhanced and loadable functions, 90,
91

for ladder logic elements and non-DX
functions, 85

for standard DX functions, 88
in custom loadable designs, 307

OR function, 156
order-of-solve table, 108
overhead services, as a part of scan time,
105

P
P190 Programming Panels, 17
P965 Modbus DAP, 18
PEER, 64
PEER loadable function, 27, 302

part numbers, 292
performance characteristics, 4
performance characteristics for 984s, 5
Pi, loading the floating point value of, 265
PID2

algorithm, 278
function, 280

positive transitional contact, 121
power supplies for remote I/O drops, 41
primary power supply modules, for remote I/
O drops, 41

process square root calculation
using EMTH, 253
using MATH, 313

process variable, in a PID2 function, 276
programming panels

AS-P190-212, 17
AS-P190-222, 17
AS-P230-000, 16

proportional control, in a PID2 function, 276
PV. See process variable

Q
queue building functions, in a DX table, 148

R
R911 Hot Standby options, for 984 chassis
mount controllers, 20

radian-to-degree conversion, in floating
point, 271

READ function, 35
for ASCII communications, 170

reference numbering system, 74
register inputs, 3x, 74
register outputs, 4x, 74
register-to-table move, 142
remote I/O

drop interfaces, 33
support for ASCII devices, 34

reset watchdog timer routine, 115
RET function, 241
returning from a subroutine, 241
reverse transfer function, in Hot Standby
systems, 297

rotating a bit pattern, in a DX matrix, 166
RTU communication mode, 53

S
S911 Hot Standby options, for 984 slot
mount controllers, 20

S978 Dual Modbus Modem, 26
S985 Modbus Plus Adaptor, 27
S985 Modbus Plus Adaptor modules, 27
scan time, 104
scan time evaluation circuit, 106
scanning logic segments, 103
search for bit pattern, in a DX table, 150
segment scheduler, 96, 110

defining order of logic solution, 103
improving overall system performance,
114

improving overhead servicing frequency,
115

improving throughput for critical I/O, 112
segments, in ladder logic, 96
SENS function, 164
sense of a bit, 164
sequential control functions

cascaded blocks, 311

GM--0984--SYSIndex326

DRUM, 308
ICMP, 310

sequential function chart, 10
servicing I/O drops, as a part of scan time,
105

setpoint, in a PID2 function, 276
setting a bit, in a DX matrix, 164
SFC, 10
shorts

horizontal, 122
vertical, 122

sine calculation, in floating point, 266
single sweep, 117
skipping networks in ladder logic, 206
SKP function, 206
software media

for industry-standard computers, 17
for MODSOFT, 17
for P190, 17
for P230, 16

SP. See setpoint
square root, floating point, 264
square root calculation

using EMTH, 252
using MATH, 312

SRCH function, 150
STAT function, 180
state RAM, minimum configuration, 77
state RAM capacities, of 984 controllers, 5
SUB function, 135
subroutines, in ladder logic, 238
subtraction

floating point, 262
floating point and integer values, 257,
259

integer, 135
sweep functions, 116
system overhead, in user memory, 72
system status, how the STAT block works,
180

T
T.01 function, 130
T0.1 function, 130
T1.0 function, 130
table-to-register move, 144
table-to-table move, 146
tangent calculation, in floating point, 268
TBLK function, 246
terminating connectors, for Modbus Plus, 61
throughput, 108
time of day clock assignment, in the confi-
gurator, 79

timer register assignment, in the configura-
tor, 79

timers, 130
TOD assignment, in the configurator, 79
traffic cop table, 82
types of 984 controllers, 4

U
UCTR function, 128
user logic, in user memory, 73
user logic sizes, 5
user memory, 72

CMOS RAM storage, 73

W
W911 cable, for hot standby systems, 21
watchdog timer, 107
WRIT function, 35

for ASCII communications, 172

X
XMRD function, 215
XMWT function, 214
XOR function, 156

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

