
AN0007.0: MCU and Wireless MCU Energy
Modes

This application note describes strategies to reduce current con-
sumption as well as how to enter different energy modes.
Additionally, the prime number calculation code used in current consumption bench-
marking is included.

This application note includes:
• This PDF document
• Source files (zip)

• Example c-code
• Multiple IDE projects

KEY POINTS

• Lower energy consumption by altering
energy modes, peripherals, oscillators,
clocks, and compilers.

• Measure low current on starter kit using an
external source with USB connected

• See software examples to understand
different energy modes and MCU current
consumption
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1.  Device Compatibility

This application note supports multiple device families, and some functionality is different depending on the device.

MCU Series 0 consists of:
• EFM32 Gecko (EFM32G)
• EFM32 Giant Gecko (EFM32GG)
• EFM32 Wonder Gecko (EFM32WG)
• EFM32 Leopard Gecko (EFM32LG)
• EFM32 Tiny Gecko (EFM32TG)
• EFM32 Zero Gecko (EFM32ZG)
• EFM32 Happy Gecko (EFM32HG)

Wireless MCU Series 0 consists of:
• EZR32 Wonder Gecko (EZR32WG)
• EZR32 Leopard Gecko (EZR32LG)
• EZR32 Happy Gecko (EZR32HG)
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2.  Energy Saving

2.1  General

In battery-powered microcontroller applications, saving energy is essential. By reducing current consumption, the mean time between
battery charging and replacement can be significantly increased. Microcontroller software design should follow these principles to re-
duce current consumption:

• Use appropriate Energy Modes
• Exploit low energy peripherals
• Turn off unused modules / peripherals
• Disable clocks to unused modules / peripherals
• Reduce the clock frequency
• Lower the operating voltage
• Optimize code

Use of these principles is explained in the sections that follow.

2.2  Use Appropriate Energy Modes

The most effective way to save energy is to spend as little time as possible in active mode. Five tailored energy modes allow the micro-
controller to run in the most energy optimal state at any given time.

2.3  Make Use of Low Energy Peripherals

All peripherals are built with energy consumption in mind and are available in various energy modes. Whenever possible, select an
appropriate peripheral and let it do the work while the CPU goes to sleep (or performs other tasks). A few examples:

• Use the RTC and go to sleep instead of waiting in some kind of loop
• Use DMA to transfer data between memory and the U(S)ART
• Use the Low Energy Sensor Interface (LESENSE) to monitor a sensor instead of waking up and polling

See the System Overview chapter in the Reference Manual for a given device to see which peripherals are available in the different
energy modes.

2.4  Turn off Unused Modules / Peripherals

At any given time in every microcontroller application, there are modules / peripherals which are not used. Turn these off to save ener-
gy.

This also applies to the CPU itself. If the core is idle (e.g. waiting for data reception), it can be turned off and energy is saved. This is
one of the main features of the different EFM32 energy modes.

When disabling peripherals, remember to take startup and stop conditions into consideration. For example, if turned off completely, the
ADC requires some time to warm up before a conversion can be started. Similarly, a USART synchronous transfer in progress should
be allowed to complete so that the shift register of the receiver is not left in an indeterminate state.

2.5  Disable Clocks to Unused Modules / Peripherals

Even though a module / peripheral is disabled (e.g. TIMER0 is stopped), energy will still be consumed by various circuits in that module
if its clock is running. Therefore, it is important to turn off the clocks for all unused modules. This is illustrated in the example code that
accompanies this application note. Further details are provided in the Clock Management Unit (CMU) chapter of the specific device's
reference manual.
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2.6  Reduce the Clock Frequency

Current draw scales with clock frequency. In general, a certain task or peripheral should run at the lowest possible frequency. For ex-
ample, if a timer is to request interrupts every few milliseconds, it should be clocked at a few kHz rather than several MHz. This is easily
be implemented with the prescaling functionality in the CMU.

Likewise, one approach to CPU frequency selection is that it should be so low that the CPU is not idle (some margin should be added).
However, in many cases it is by better to complete the current tasks quickly and then enter a suitable energy mode until new tasks must
be handled. The different energy modes are optimized for this purpose and described in the Energy Management Unit (EMU) chapter of
the specific device's reference manual.

2.7  Lower the Operating Voltage

By lowering the operating voltage, energy consumption is further reduced. The Gecko family of microcontrollers can run with full func-
tionality on low voltages. The absolute minimum ratings be found in the data sheet for each device.
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2.8  Optimizing Code

Optimizing code usually leads to lower energy consumption by increasing the program speed and efficiency. A faster program spends
less time in active mode, and each task in a more efficient program takes fewer instructions to execute. A simple way to optimize your
code is to build it with the highest optimization settings in release mode rather than in debug mode. In the [Development Perspective]
of Simplicity Studio, go to [Project]>[Build Configurations]>[Set Active] and select [Release] for your compiler.

Compiler selection can also have an impact on energy efficiency. For example, the IAR compiler tends to generate more efficient code
than GCC. To use the IAR toolchain in Simplicity Studio, make sure IAR Embedded Workbench is installed on your computer. In the
[Development Perspective] of Simplicity Studio, go to [Project]>[Properties]>[C/C++ Build]>[Settings]. Under the [Configuration:]
drop down menu, select [IAR ARM - Release]. If you do not see this option, click [Manage Configurations...]>[New...], select the [IAR
ARM - Release], and click [OK] twice.

Next, increase IAR's optimization settings, under [Tool Settings]>[IAR C/C++ Compiler for ARM]>[Optimizations], select [High, Bal-
ance] for the [Optimization level:]. Under [IAR Linker for ARM]>[Optimizations], check all options ([Inline..., Merge..., Perform...,
Even...]), and then click [OK].

Note: As a starting point, this should lower energy consumption, but it may not be the most optimized setting for a given project. Try
different optimization settings such as [High, Speed], [High, Balance], other optimization option combinations, even other compilers,
and compare the results.
 

Figure 2.1.  Setting the Optimization Settings in Simplicity Studio when using IAR
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3.  Energy Modes

CPU activity and the availability of peripherals and clocks differ in each of the energy modes. These are discussed briefly in the section
that follow.

Functions provided by emlib make it easy to configure peripherals for low energy consumption and to switch between energy modes.

3.1  Run Mode (Energy Mode 0)

This is the default mode. In this mode, the CPU fetches and executes instructions from flash or RAM, and all peripherals may be ena-
bled.

3.2  Sleep Mode (Energy Mode 1)

In sleep mode, the clock to the CPU is disabled. All peripherals, as well as RAM and flash, are available. By using the Peripheral Reflex
System (PRS) and DMA, several operations can be performed autonomously. For example, the timer may trigger ADC conversions at a
regular interval. When conversions are complete, the results are moved by the DMA to RAM. When a given number of conversions
have been performed, the DMA may request and interrupt to wake the CPU.

Sleep mode is entered by executing either the "Wait for Interrupt (WFI)" or the "Wait for Event (WFE)" instruction.

Use the emlib function EMU_EnterEM1() to go into sleep mode.

3.3  Deep Sleep Mode (Energy Mode 2)

In deep sleep mode, no high frequency oscillators run, which means that only asynchronous and low frequency peripherals are availa-
ble. This mode further improves energy efficiency while still allowing a range of activities, including use of:
• the Low Energy Sensor Interface (LESENSE) to monitor a sensor,
• the LCD controller to drive a LCD,
• the LEUART to receive or transmit a byte of data,
• the I2C to perform address match check,
• the RTC to wake the CPU after a programmed number of ticks,
• an Analog Comparator (ACMP) to compare a voltage to a programmed threshold, and
• a GPIO to check for transitions on an I/O line.

Deep sleep mode is entered by first setting the SLEEPDEEP bit in the System Control Register (SCR) and then executing either the
"Wait for Interrupt (WFI)" or the "Wait for Event (WFE)" instruction. Use the emlib function EMU_EnterEM2() to enter deep sleep mode.

3.4  Stop Mode (Energy Mode 3)

Stop mode differs from deep sleep mode in that no oscillator (except the ULFRCO) is running.

Modules / functions, if present on a device, are generally still available in stop mode when the appropriate clock source remains active:

• I2C address check
• Watchdog
• Asynchronous pin interrupt
• Analog comparator (ACMP)
• Voltage comparator (VCMP)

Stop mode is entered the same way as deep sleep mode, except that the low frequency oscillators must be manually disabled. The
emlib function EMU_EnterEM3() handles all of this.
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3.5  Shut Off Mode (Energy Mode 4)

Shut off mode is the lowest possible energy state for an EFM32 and EZR32 Wireless MCU Series 0 microcontroller. Power is switched
off to most of the device, including internal RAM, and all clocks are disabled. Only the recovery logic, and, if explicitly enabled, GPIO
pad state, are retained. Waking from shut off mode always entails a reset. Current draw in shut off mode can be as low as 20 nA when
the reset is sourced from either the RESETn pin or via one of a small group of device-specific pins that can be explicitly enabled for this
purpose. Some devices provide alternatives to pin-based wake up; however, waking from these sources requires one of the low fre-
quency oscillators to remain enabled, increasing current draw. See the following table for the shut off mode wake up options that are
available on a given device.

Table 3.1.  Shut Off Mode Wake Up Sources
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Power-on

Reset

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

nRESET pin Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

User-specified

pin(s)

— Yes Yes Yes Yes Yes Yes Yes Yes Yes

BURTC

(Backup RTC)

— — — — Yes Yes Yes Yes Yes —

Shut off mode is entered by writing the sequence 0x2, 0x3, 0x2, 0x3, 0x2, 0x3, 0x2, 0x3, 0x2 to the EM4CTRL field in the EMU_CTRL
register of the Energy Management Unit (EMU) on EFM32 and EZR32 devices. The emlib EMU_EnterEM4() function simplifies this by
writing the shut off mode entry sequence to the device-appropriate register and bit field.

3.6  Waking Up

Wake from sleep (EM1), deep sleep (EM2), and stop (EM3) modes occurs when a module that is still active, e.g. has asynchronous
circuitry like GPIO or has an enabled clock source, requests an interrupt. Operation in run mode (EM0) resumes, first with the service
routine for the interrupt that caused the wake up and then with the normal program code at the point immediately after its entry into low-
power mode.

A reset is required to wake from shut off mode. To facilitate timed and event-based wakeups from EM4, the device provides a Backup
Real-Time Counter (BURTC) which is able to run even in EM4. Selected GPIO pins can also trigger a reset. Waking up from EM4 re-
quires some additional configuration which must be done in software before going to sleep.

Note: The Backup Real-Time Counter is not available on all devices. Consult the reference manual for the selected device for more
information.
 

3.6.1  BURTC Timed Wakeup from EM4

EFM32 and EZR32 devices with the Backup Real Time Counter (BURTC) can perform a timed wakeup from EM4. In the EMU_EM4CONF
register:
• an oscillator must be selected (if the LFRCO or LFXO is required, it must be running and stable before entering EM4),
• wakeup from the BURTC interrupt must be enabled, and
• the voltage regulator must be enabled in EM4 so that the backup domain is powered.

Likewise, the BURTC registers must be set so that:
• the BURTC is enabled in EM4,
• the compare or overflow interrupt is enabled, and
• an active clock source with optional prescaling is selected.
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3.6.2  GPIO Wake from EM4

Waking from a pin other than nRESET requires configuration of the GPIO registers as follows:
• The pin must be set to input.
• Active polarity of the reset signal must be set in GPIO_EM4WUPOL for EFM32 and EZR32 devices.
• Wake up from EM4 must be enabled in GPIO_EM4WUEN.
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4.  Clock and Oscillator Control

4.1  General

As previously mentioned, current consumption is highly dependent on clock frequency. Selecting the correct oscillator and frequency is,
therefore, a very important aspect of low energy application design and development. The following sections discuss different modes
and settings for clocks and oscillators.

4.2  Enabling Oscillators / Setting Clock Source

Oscillators are enabled and disabled through the CMU_OSCENCMD register in the CMU. Each oscillator has one enable and one disa-
ble bit in this register (e.g. LFXOEN and LFXODIS). The CMU_STATUS register holds two flags for each oscillator — enabled and
ready (e.g. LFXOENS and LFXORDY). Each enabled flag is set when the corresponding oscillator is turned on, whereas the ready flag
is set when the oscillator is ready to be used as a clock source.

Note: Until the ready flag is set, the oscillator output may be incorrect, both with respect to frequency and duty-cycle. Use of an oscilla-
tor before this flag is set can result in unpredictable or undefined device behavior.
 

Out of reset, the High Frequency RC Oscillator (HFRCO) is set as source for the CPU core and high-speed peripherals (HFCLK do-
main). No oscillator is enabled or selected for the Low Frequency Clock (LFxCLK) domains (A, B, and, if present, E).

Changing the oscillator sourced for a particular clock domain is a three step procedure:
1. Enable the desired oscillator by setting its corresponding bit in the CMU_OSCENCMD register.
2. Wait until the oscillator's ready flag in the CMU_STATUS register is set.
3. Select the new oscillator for the clock domain in question. On EFM32 and EZR32 devices, this is done using the CMU_CMD and

CMU_LFCLKSEL registers for the HFCLK and LFxCLK domains, respectively.

4.3  HFRCO Band Setting

The extreme frequency tuning range of the HFRCO is a major advantage, and should be used to minimize the energy consumption of
any application. The following frequencies may be set [MHz]: 1 - 7 - 11 - 14 - 21 - 28. Frequency band is selected using the BAND field
in the CMU_HFRCOCTRL register.

The HFRCO can be tuned to run at one of several different frequencies, the selection of which should be used to minimize energy
consumption. The available frequency bands and register bit field used to select a band differ depending on the device. See the follow-
ing table for details.

Table 4.1.  HFRCO Frequency Bands and Control Register Bit Fields

Device Frequency Bands (MHz) CMU_HFRCOCTRL Bit Field

EFM32G 1, 7,11, 14, 21, and 28 BAND

EFM32GG

EFM32LG

EFM32TG

EFM32WG

EZR32LG

EZR32WG

EFM32HG 1, 7,11, 14, and 21

EFM32ZG
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4.4  Enabling or Disabling a Module Clock

A module's clock may be enabled or disabled using the corresponding bit in the appropriate CLKEN register in the CMU. The following
registers are used to do this:
• CMU_HFCORECLKEN0: High-speed and core modules like DMA, AES, USB, external bus interface, etc.
• CMU_HFPERCLKEN0: Most peripherals (e.g. timers, ADC, USART, etc).
• CMU_LFxCLKEN0: Low energy peripherals (e.g. RTC, LEUART, LETIMER, etc).

Details on which register and bit fields are used to enable and disable module clocks are covered in the Reference Manual for a given
device.

4.5  Clock Prescaling

Clock prescaling (dividing down by a programmable factor) is available for all high frequency and many low frequency clock domains.
Even when a module is idle, portions of its logic, such as registers and the bus interface, are continuously clocked and draw current;
therefore, whenever possible, clocks should be prescaled so that continuously clocked logic runs at the minimum frequency necessary
for tasks to be completed or for a particular level of performance to be sustained.

Devices in the EFM32 and EZR32 family providing clock prescaling through four different registers: CMU_HFCORECLKDIV is used for
the CPU core and related logic like the DMA, external bus interface, etc. CMU_HFPERCLKDIV provides prescaling of the baseline
clock to all peripherals which take a high frequency clock, pretty much everything from the ADC to the USARTs, although it is not the
sole source of prescaling for these peripherals, Many high frequency peripherals, such as the TIMERs, have local prescalers, as well.
Low frequency peripherals in the LFACLK and LFBCLK domains have their own dedicated prescalers in the CMU_LFAPRESC0 and
CMU_LFBPRESC0 registers, respectively. When the Backup Real Time Counter (BURTC) is present, the PRESC field in the
BURTC_CTRL register prescales the selected BURTC clock source.
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5.  STK Low Power Measurement

5.1  General

Measuring low power on starter kits (STKs) requires a specific setup to reduce any off-chip current consumption. The following section
discusses configuration of the board and instruments to accurately achieve and read the lowest power numbers.

5.2  Setup

To measure current consumption using a bench power supply and an ammeter, do the following:

1. Program the desired software into the on-chip flash memory (see Optimized Code).
2. Power board with a stable, external source connected to the VMCU and GND pins on either the breakout or expansion headers

(see the User Manual for STK being used).

Note: User manuals can be found in the [Kit Documentation] tile of Simplicity Studio.
 

3. Use an ammeter in-circuit to measure active current.
4. Move the power switch to the BAT position.
5. Keep the USB debug interface connected so that the analog switches on the board remain powered.

Note: Current consumption measured with the Gecko STK may not be accurate when USB is connected.
 

6. Reset board.

External
Source

VMCU

Ground

Ammeter

EFM32 Starter 
Kit

BAT DBG

Figure 5.1.  STK Low Power Measurement — Setup

Note: If a standalone power supply and ammeter are not available, the [Energy Profiler] in Simplicity Studio can also be used to meas-
ure active current.
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6.  Software Examples

The example accompanying this document includes three demoes: Energy Modes, EM4 Wakeup and Prime Number. The software ex-
ample displays current demo name on LCD. Using button 1 to select the demo, and press button 0 to run the demo.

6.1  Energymodes Software Example

This example illustrates how to enter different energy modes, how to enable different oscillators, enable / disable clocks and set up
prescaling. To illustrate the importance of only enabling needed clocks and oscillators, the software starts off by turning on everything.
Then, more and more energy is saved by disabling clocks and oscillators, and by entering energy modes.

Note: When in debug mode, the MCU will not go below EM1. When running this example exit debug mode and reset the MCU after
flashing it.
 

The program goes through the following states. After each change of settings, a few seconds of waiting is inserted to make the current
consumption visible. Use the energyAware Profiler to see how the current consumption changes.

• All Clocks Enabled—Every oscillator on the EFM32 is turned on. The HFCLK source is set to HFXO, which is the fastest oscillator.
In addition, clocks to all core modules and regular peripherals are enabled.

• All Clocks Disabled—The HFCLK source is set back to HFRCO. All unused oscillators are turned off, and clocks to unused mod-
ules / peripherals are disabled.

• Core Clock Downscaled—The core clock frequency is reduced by selecting the 7 MHz frequency band. In addition, the core clock is
prescaled with factor 4, i.e. the core frequency is 1.75 MHz.

• Sleep Mode—The clock to the interface of the LE peripherals is enabled, Then the RTC is set up to issue an interrupt after a few
seconds. Then Sleep Mode is entered until the RTC wakes up the device.

• Deep Sleep Mode—The clock to the interface of the LE peripherals is enabled. Then the RTC is set up to issue an interrupt after a
few seconds. Then Deep Sleep Mode is entered.

• Stop Mode / Shut Off Mode—At the end of the program either EM3 or EM4 is entered and the program stays in this mode.

6.2  EM4 Wakeup Software Example

This example shows how to do a wake up from EM4.

It is possible to wake up by connecting pin PF1 to GND. The PF1 pin is labelled SWD on the starter kit and is found near the bottom
right corner.

It is also be shown how to make use of the 512 bytes of available memory that can be retained in EM4 for EFM32GG-STK3700 Starter
Kit. The example will repeatedly enter EM4 and sleep for few seconds. A retention register is used to keep track of the number of times
the MCU has woken up from a BURTC interrupt.

Every time the MCU wakes up, the reset cause (reset pin, GPIO or BURTC) will be printed to the LCD. The number of times woken up
(for either GPIO or BURTC) is also printed.

6.3  Prime Number Software Example

The prime number software example is used for current consumption benchmarking. The code makes the device run from the High
Frequency Crystal Oscillator (HFXO) and disables all other oscillators. It sets up the device to forever execute a prime calculation algo-
rithm from flash.
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7.  Revision History

7.1  Revision 1.10

2017-06-28

Updated formatting.

Split AN0007 into AN0007.0 and AN0007.1 for MCU/Wireless MCU Series 0 and MCU/Wireless SoC Series 1, respectively.

Added the 1. Device Compatibility section.

Added the 2.8 Optimizing Code section to 2. Energy Saving

Added the 5. STK Low Power Measurement section.

Combined all three examples into one project and simplified the example descriptions in the document.

7.2  Revision 1.09

2014-05-07

Updated example code to CMSIS 3.20.5

Changed to Silicon Labs license on code examples

Added example projects for Simplicity IDE

Removed example makefiles for Sourcery CodeBench Lite

7.3  Revision 1.08

2013-10-14

New cover layout

7.4  Revision 1.07

2013-05-08

Added software projects for ARM-GCC and Atollic TrueStudio.

7.5  Revision 1.06

2012-11-12

Adapted software projects to new kit-driver and bsp structure.

7.6  Revision 1.05

2012-08-13

Adapted software projects to new driver file structure.

7.7  Revision 1.04

2012-07-19

Added EM4 wakeup example with BURTC and data retention

Fixed a bug where Prime Example would be stuck in while loop

Added software support for Tiny and Giant Gecko STK's.
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7.8  Revision 1.03

2012-04-20

Adapted software projects to new peripheral library naming and CMSIS_V3.

7.9  Revision 1.02

2012-03-13

Fixed makefile-error for CodeSourcery projects.

7.10  Revision 1.01

2010-11-16

Changed example folder structure, removed build and src folders.

Added chip-init function.

7.11  Revision 1.00

2010-09-20

Initial revision.
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