$L F$

SF6 Circuit breaker up to 17.5 kV

Medium Voltage Distribution

LF SF6 Circuit breaker up to 17.5 kV

Your requirements

Continuity
 of service

Proven technology

Ease of installation

Our solution

For over 45 years, Schneider Electric, leverages its experience to develop SF6 circuit breakers and thus holds a unique know-how in various applications.

■ Low level of SF6 pressure

- A safety membrane which, in very rare cases of an internal arc, will open in order to let the gas flow to the back of the circuit breaker
- Keeping at 0 bar of SF6:
- The nominal performance
- The capacity to break once at least 80% of the full breaking capacity
- The capacity to withstand at least 80% of the insulating level
■ Breaking all types of current without overvoltages
- Long experience of Schneider in manufacturing MV circuit breakers in SF6 technology

■ 100,000 LF Circuit Breakers installed with over 20 years of experience

■ Compact dimensions
■ Cassette version : retrofit and new panels integration

General Presentation 6
LF circuit breakers 14 fixed version
\qquad-
LF circuit breakers withdrawable version 24
Order Forms 38
Services 42

General

 Presentation
Content

The advantages of proven technology 8
Breaking principle 9
Scope of application and some references 10
Operating conditions \& Standards 12
LF circuit breakers range panorama 13

The advantages of proven technology

Schneider Electric has developed a wide range of high performance and reliable devices operating faultlessly on all 5 continents. Continuously increasing its performance, the company maintains a very high level of innovation in its offer.

Key Benefits

Compact and simple design

- No overvoltage during breaking
- Comprehensive range

Soft breaking whitout chopping currents

- Continuous monitoring of the gas pressure inside poles

Abstract

Safety The breaking medium is sulfur hexafluoride (SF6) used at low pressure. The insulating enclosure containing the circuit breaker pole(s) is equipped with a safety membrane. In addition, the rated characteristics, breaking the rated current under the rated voltage, are generally maintained at zero relative bars of SF6.

Reliability

The motor-charged spring stored energy operating mechanism is a key factor of device reliability: Schneider Electric cumulates 45 years' experience with this type of mechanism, 1,200,000 of which are already in operation.
Schneider Electric's mastery of design and the testing of sealed systems guarantees sustained device performance for at least 30 years.

Increased endurance

The mechanical and electrical endurance of Schneider Electric SF6 breaking devices are in conformity with the most demanding specifications recommended by the IEC.
These devices therefore meet requirements for even the most exposed of networks.

Environmentally-friendly

Schneider Electric devices have been designed to ensure protection of the environment:

- the materials used, both insulating and conductive, are identified and easy to separate and recycle,
- the SF6 gas is under control from production through to the circuit-breaker's end of life. In particular it can be recovered at the end of the circuit-breaker's life and re-used after treatment in line with the new European directive, ■ an end of life manual for the product details procedures for dismantling and recycling components.

Quality Assurance

During production, each circuit breaker undergoes systematic routine tests in order to check quality and conformity:
■ pole sealing check
■ checking the correct mechanical operation of the device, plus its associated locking mechanisms
■ checking simultaneous closing of contacts

- checking power frequency insulation level
- checking main circuit resistance
- checking auxiliary circuit insulation

■ checking switching speeds

- checking the switching cycle
- measuring the switching times.

The results are recorded on the test certificate for each device which is initiated by the quality control department.

Breaking principle

General presentation

器

Breaking principle: self expansion

LF circuit breakers use the SF6 gas self expansion technique.
This technique is the result of many years' experience in SF6 technology and major research work.
It combines the effect of thermal expansion with a rotating arc to create arc blowing and quenching conditions.
The result is reduced control energy requirements and arcing contact erosion; this increases mechanical and electrical endurance.
The operating sequence of a self-expansion breaking chamber, whose moving part is driven by the mechanical operating mechanism, is as follows:

The circuit breaker is closed

On opening of the main contacts (a) the current is shunted into the breaking circuit (b)

■ On separation of the arcing contacts, an electrical arc appears in the expansion volume (c).

Electrical arc in a self-expansion breaking chamber

- The arc rotates under the effect of the magnetic field created by the coil (d) through which flows the current to be broken: \square the overpressure created by the temperature build-up of the gas in the expansion volume (c) causes a gaseous flow blowing the arc inside the tubular arcing contact (e)
\square resulting in arc quenching when the current passes through the zero point

[^0]General presentation

Our LF Circuit Breaker adapts to all electrical power distribution requirements up to 17.5 kV .

Applications

LF circuit breakers are three-pole indoor MV circuit breakers.
They are mainly used for operation and protection of public, industrial and tertiary distribution networks from 7.2 to 17.5 kV .

Through their anti-seismic qualification, they are particularly well suited to nuclear or thermal power production installations and applications in heavy industries such as the petrochemical industry. Through their compact dimensions and harmonized range, LF circuit breakers are positioned very favorably on the retrofit market.
LF Circuit breaker is a component integrated in MV switchgear used in power distribution to protect and control cables, transformer and MV substations, motors, capacitors banks, etc.

SF6 Self expansion breaking technique use in LF circuit breaker makes all current types, capacitive and inductive, without generating operating overvoltage that could damage the installation.
Therefore, it is greatly appropriate for the retrofit and upgrading of old installations.

A two thresholds pressure switch in standard to monitore the gas pressure ($0.1 \mathrm{MPa}, 0,05 \mathrm{MPa}$ / 1 bar, 0,5 bar).

Scope of application and some references

Breaker is an essential component an indoormetal-enclosed device intended for the MV section of HV/MV substations and high power MV/MV substations.

■ SF6 Circuit Breaker offers you:
ם pre-engineered and adaptable solutions tailored to your specific requirements \square significantly reduced maintenance

- local support centres throughout the world

■ LF Circuit Breaker gives you the advantages of: - continuity of service for your networks; - enhanced safety for your staff and operations - optimised investment throughout the life of your installation - the possibility of integrating your medium voltage switchboard in a monitoring and control system

LF Circuit breaker is present in all power distribution markets

Energy

- Electric power stations (thermal, nuclear)
- Auxiliary substations

■ Source substations

Industry

- Oil \& gas
- Chemical industry
- Paper mills
- Metallurgy
- Car industry
- Mining
- Cement plants...

Infrastructure

- Airports
- Ports
- Hospitals

■ Water treatment..

Marine and Navy applications

- Cruisers
- Container ships
- Tankers
- Offshore platforms, fixed and mobile
- LNG (Liquid Natural Gas)
- Navy...

LF SF6 Circuit Breaker

General presentation

Scope of application and some references

(cont.)

Industry

Algérienne des eaux
Water treatment, Degremont
Alcoa Aluminium
Croesus Mining
Rollestone Coal Pty LTD
Ciment Karadag
Volvo
Cement Lafarge
Cement Lafarge
Ford
Irak Traitement des eaux
Arab Union Contracting Company
Arcelor
Opel
Algeria (MCset)
Argentina (MCset)
Australia (MCset)
Australia (MCset)
Australia (MCset)
Azerbaijan (MCset)
Belgium (MCset)
Equator - Turkey (MCset)
France (MCset)
Germany (MCset)
Irak
Libya (MCset)
Luxemburg (MCset)
Russia (MCset)
Turkey (MCset)

Power generation

Sonelgaz	Algeria (MCset)
Moranbah Generation Facility	Australia (MCset)
China Nuclear Power programmes	China (MCset)
CEA Cadarache	France (MCset)
Enertherm	France (MCset)
Wind Turbines	France (MCset)
La Termica	Italy (MCset)
Al Fanar Electrical System	KSA (MCset)
Skagerak Nett AS Norway (MCset) EVN thermal power station Vietnam (MCset)	

Infrastructure

Oil and Gas

Girassol Mpg-Elf	Angola (MCset)
ONAL	Gabon (MCset)
Alya Co	Kazakhstan (MCset)
Tengiz Chevroil JV	Kazakhstan (MCset)
Occidental Mukhaizna LLC	Oman (MCset)
Qatar Petroleum	Qatar (MCset)
Repsol, Santander	Spain (MCset)
Syrian Gas Company	Syria (MCset)
Turkmengaz	Turkmenistan (MCset)
Abu Dhabi Oil Refining Company	United Arab Emirates (MCset)
Yemen LNG Company	Yemen (MCset)
Yemgas - Technip	Yemen (MCset)

General presentation

Operating conditions \& Standards

Operating conditions

Normal operating conditions, according to the IEC International Standards listed below, for indoor switchgear.

- Ambient air temperature:
- less than or equal to $40^{\circ} \mathrm{C}$
- less than or equal to $35^{\circ} \mathrm{C}$ on average over 24 hours
- greater than or equal to $-25^{\circ} \mathrm{C}$
- Altitude:
- less than or equal to 1000 m
- above 1000 m , a derating coefficient is applied (please consult us)
- Atmosphere
no dust, smoke or corrosive or infl ammable gas and vapor, or salt
- Humidity:
\square average relative humidity over a 24 hour period $\leq 95 \%$
\square average relative humidity over a 1 month period $\leq 90 \%$
\square average vapor pressure over a 24 hour period $\leq 2.2 \mathrm{kPa}$
- average vapor pressure over a 1 month period $\leq 1.8 \mathrm{kPa}$

Storage conditions

In order to retain all of the functional unit's qualities when stored for prolonged periods, we recommend that the equipment is stored in its original packaging, in dry conditions, and sheltered from the sun and rain at a temperature ranging from $-40^{\circ} \mathrm{C}$ up to $+70^{\circ} \mathrm{C}$

Standards

The LF range meets the following international standards:

- IEC 62271-100: High-voltage switchgear and controlgear - Alternating current circuit-breakers
■ IEC 62271-1: High-voltage switchgear and controlgear:
common specifications
■ GOST conformity: R52565-2006

LF SF6 Circuit Breaker up to 17.5 kV
General presentation

LF circuit breakers
 range panorama

One range of comprehensive and proven three-pole circuit breaker units for indoor installation using SF6 technology.

Both compact and dependable, it is ideally suited to the most demanding applications.

LF circuit breakers fixed version from 7.2 kV to 17.5 kV

LF circuit breakers withdrawable version from 7.2 kV to 17.5 kV

Rated short-circuit breaking current (Isc)
from 25 to 50 kA from 25 to 40 kA

Rated current (lr)

from 630 to 3150 A

LF circuit breakers fixed version

Contents

Presentation 16
General characteristics 17
Description of functions 19
RI stored energy operating mechanism 19 Wiring diagram
20
Opening circuit
21
Remote control
Indication and locking/interlocking 22
Dimensions 23

Presentation

LF1-LF2-LF3 circuit breakers

LF1-LF2-LF3 circuit breakers installed on a support frame

Description of the device

The LF circuit breaker comprises a basic fixed version:
■ 3 poles integrated in a "sealed pressure system" type insulating enclosure.
The sealed assembly is filled with SF6 gas at low relative pressure
($0.15 \mathrm{MPa} / 1.5$ bars) and equipped with a pressure switch
\square an RI stored energy electrical operating mechanism.
This gives the device an opening and closing speed that is independent of the operator, for both electrical and manual orders. It enables reclosing cycles to be carried out

- a front panel housing the manual operating mechanism and status indicators
- upstream and downstream terminals for the power circuit connection

■ a terminal block for connection of external auxiliary circuits.
Each device can also be fitted with the following options:

- a seismic version is available, allowing to withstand the specific parameters of earthquakes and marine applications
- a supporting frame equipped with rollers and ground fixing brackets for fixed installation
- circuit breaker locking in the open position by a keylock installed on the front plate of the operating mechanism
■ a 42-pin Harting type LV connector.

General characteristics

(cont.)
Fixed version

Electrical characteristics according to IEC 62271-100				LF3										
Rated voltage	Ur	kV 50/60 Hz		7.2				12				17.5		
Insulation voltage														
- power frequency withstand	Ud	kV 50 Hz 1 min (*)		20				28				38		
- lightning impulse withstand	Up	kV peak		60				75				95		
Rated current	Ir	A	630	-	-	-	-	-	-	-	-	-	-	-
			1250	-	-	-	-	-	-	-	\square	-	-	\square
			2000	-	-	-	-	-	-	-	-	-	-	-
			2500	-	■	■	■	\square	\square	-	■	-	\square	\square
			3150	-	■	\square	\square	\square	\square	\square	-	\square	■	\square
Short circuit current	Isc	kA		25	31.5	40	50	25	31.5	40	50	25	31.5	40
Short time withstand current	Ik/tk	kA/3s		25	31.5	40	50	25	31.5	40	50	25	31.5	40
Short-circuit making current	Ip	kA peak	50 Hz	63	79	100	125	63	79	100	125	63	79	100
			60 Hz	65	82	104	130	65	82	104	130	65	82	104
Rated switching sequence		O-3 min-CO-3 min-CO		■	■	■	\square	\square	■	■	\square	\square	\square	\square
		O-0.3 s-CO-3 min-CO		\square	-									
		O-0.3 s-CO- 15 s -CO		\square	\square	\square	■	\square	\square	\square	\square	\square	\square	-
Operating times		Opening ms		< 54										
		Breaking ms		<70										
		Closing ms		<72										
Service temperature	T	${ }^{\circ} \mathrm{C}$		-25 to +40										
Mechanical endurance		Class		M2										
		Number of switching operations		10000										
Electrical endurance		Class		E2										
Capacitive current breaking capacity		Class		C2										
(*) Ud $42 \mathrm{kV} 50 \mathrm{~Hz}, 1 \mathrm{~min}$ available in standard												■ Available-Not available		

Specific applications

Protection of generators and power station auxiliaries
All circuit breakers in the LF range break short circuit currents with an asymmetry of at least 30%.
In cases where the network constant L / R is greater than 45 ms , the asymmetry to be broken is higher; this is often the case of circuit breakers protecting nuclear or thermal power station auxiliaries or circuit breakers that are close to generator sets or large transformers.
Specific tests have been carried out:

Circuit breakers	kV	kA	Asymmetry
LF2	7.2	43.5	50%
LF3	7.2	43.5	50%
	12	40	50%
	17.5	25	100%

Switching and protection of capacitor banks

LF range circuit breakers are particularly well suited to switching and protection of capacitor banks; they are classed C2 according to standard IEC 62271-100. Tests carried out according to the standard for breaking at 400 A with making and breaking cycles in case of a capacitor bank with a making current of 20 kA .

Fixed version

Description of functions
 RI stored energy operating mechanism Wiring diagram

Operation of the RI stored energy operating mechanism

This mechanism guarantees the device an opening and closing speed unaffected by the operator, for both electric and manual orders.
It carries out the O and CO cycles and is automatically recharged by a gear motor after closing. It consists of:
■ the stored energy operating mechanism which stores in springs the energy required to open and close the device

- a gear motor electrical charging device with manual charging by lever (useful on loss of auxiliary supply)
■ manual order devices by push buttons on the front panel of the device (red and black)
■ an electrical remote closing device containing a release with an antipumping relay
■ an electrical opening device containing one or more releases, for example:
- shunt trip devices
\square Mitop, a low consumption release, used only with the self protection relay.
- an operation counter
- a position indication device by mechanical indicator (black and white)
and a module of 14 auxiliary contacts whose availability varies according
to the diagram used
■ a device for indicating "charged" operating mechanism status by mechanical indicator and electrical contact
- A two thresholds pressure switch allows to monitore the gas pressure
($0.1 \mathrm{MPa}, 0,05 \mathrm{MPa} / 1 \mathrm{bar}, 0,5 \mathrm{bar}$, relative pressure)

Wiring diagram

[^1]
Description of functions
 Opening circuit

Shunt opening release (1)

Undervoltage release (2)

Low energy release (3)

Composition

The opening circuit can be produced using the following components:
■ shunt opening release (on energizing) (YO1)
■ second shunt opening release (on energizing) (YO2)
■ undervoltage release (YM)
■ low energy release (Mitop).
Note: see the table of the releases' combinations "Order form" page.

Shunt opening release (YO1 and YO2)

Energizing this unit causes instant opening of the circuit breaker

Characteristics		
Power supply	See "Order form" page	
Threshold	V AC	0.85 to 1.1 Ur
	VDC	0.7 to 1.1 Ur
Consumption	VAC	160 VA

As an option, the tripping circuit monitoring (supervision) enables to ensure that the Circuit breaker is ready to open.

Undervoltage release (YM)

This release unit causes the systematic opening of the circuit breaker when its supply voltage drops below a value less than 35% of the rated voltage, even if this drop is slow and gradual. It can open the circuit breaker between 35% and 70% of its rated voltage. If the release unit is not supplied power, manual or electrical closing of the circuit breaker is impossible. Closing of the circuit breaker is compulsory when the supply voltage of the release unit reaches 85% of its rated voltage.

Characteristics		See "Order form" page	
Power supply		Opening	
Threshold		0.35 to 0.7 Ur	
Consumption	Triggering	V AC	0.85 Ur
		400 VA	
	Latched	V VC	100 W
		V DC	100 VA

Low energy release (Mitop)

This specific release unit comprises a low consumption unit and is specifically used with self-powered relays. The Circuit-breaker's opening time must be adjusted with the relay to a minimum value of 45 ms .

Characteristics

Power supply	Direct current
Threshold	$0.6 \mathrm{~A}<1<3 \mathrm{~A}$

Any tripping due to the Mitop release unit is momentarily indicated by an SDE type changeover contact.

Description of functions
 Remote control

Electrical motor with gearing (4)

Shunt closing release (5)

Operation counter (6)

Function

Remote control enables the remote opening and closing of the circuit breaker.

Composition

The remote control mechanism comprises:

- an electrical motor with gearing
- a shunt closing release (YF) combined with an anti-pumping device
- an operation counter.

Electrical motor with gearing (M)

The electrical motor arms and re-arms the stored energy unit as soon as the circuit breaker is closed. This allows the instant closing of the device after opening.
The arming lever is only used as a back-up operating mechanism in the case of any auxiliary power supply.
The M3 contact indicates the end of arming operations.

Characteristics		
Power supply	See "Order form" page	
Threshold	V AC/V DC	0.85 to 1.1 Ur
Consumption	VAC	380 VA
	V DC	380 W

Shunt closing release (YF)

This allows the remote closing of the circuit breaker when the operating mechanism is armed.

Characteristics	See "Order form" page	
Power supply	V AC	0.85 to 1.1 Ur
Threshold	VDC	0.85 to 1.1 Ur
Consumption	VAC	160 VA

The anti-pumping relay enables the guaranteeing of opening priority in the case of a permanent closing order. This therefore avoids the device being caught in a uncontrolled opening-closing loop.

Operation counter

The operation counter is visible on the front panel.
It displays the number of switching cycles (CO) that the device has carried out.

Description of functions
 Indication and locking/interlocking

Auxiliary contacts (7)

Keylocking kit (8)

"Open/closed" auxiliary contacts

The number of contacts available depends on the options chosen on the operating mechanism.
In the basic configuration, the circuit breaker's operating mechanism comprises a total of:

- 6 normally closed contacts (NC)
- 7 normally open contacts (NO)

■ 1 changeover contact (CHG).
The usage procedure for auxiliary contacts is given in the following table:

Options	NC contact	NO contact
	1	1
Remote control	0	1
Shunt opening release (each one) YO1/YO2	0	0
Undervoltage release YM	0	0
Low energy release (Mitop)		

In order to know the final number of available contacts, you must deduct the total number of contacts included in the circuit breaker ($6 \mathrm{NC}+7 \mathrm{NO}+1 \mathrm{CHG}$), the number of contacts used given in the table above.
E.g.: a circuit breaker equipped with a remote control and a shunt trip unit has the following available contacts:
$6 \mathrm{NC}+5 \mathrm{NO}+1 \mathrm{CHG}$.
With a undervoltage release instead of the shunt trip, this circuit breaker would have the following available contacts:
$6 \mathrm{NC}+6 \mathrm{NO}+1 \mathrm{CHG}$.

Shunt opening release combination			
1st release	Shunt opening release YO1	Undervoltage release YM	Mitop
	$6 \mathrm{CC}+5 \mathrm{NO}+1 \mathrm{CHG}$	$6 \mathrm{NC}+6 \mathrm{NO}+1 \mathrm{CHG}$	$6 \mathrm{NC}+6 \mathrm{NO}+1 \mathrm{CHG}$
2nd release	$6 \mathrm{NC}+4 \mathrm{NO}+1 \mathrm{CHG}$		
Without	Shunt opening release YO2	Undervoltage release YM	$6 \mathrm{NC}+5 \mathrm{NO}+1 \mathrm{CHG}$
Mitop	$6 \mathrm{NC}+5 \mathrm{NO}+1 \mathrm{CHG}$	$6 \mathrm{NC}+6 \mathrm{NO}+1 \mathrm{CHG}$	

Locking the circuit breaker in the "open" position

This key-operated device allows the circuit breaker to be locked in the "open" position.
The circuit breaker is locked in the open position by blocking the opening push button in the "engaged" position.
Locking is achieved using a Profalux or Ronis captive key type keylock.

Dimensions

Fixed version

LF1, LF2, LF3 circuit breakers

Device

Fixed version

Fixed version with support frame (to be ordered separately)

	LF1	LF2	LF3
B	542	602	776
Weight $(\mathrm{kg})^{*}$	135	154	217

*Maximum values, depending on ratings and options

Connections

Direct to the device

- LF1

■ LF2 < $2000 \mathrm{~A}<95 \mathrm{kV}$ impulse

- LF3 < 2500 A and $<95 \mathrm{kV}$ impulse

	LF1	LF2	LF3
C	160	180	240
D	145	165	225
E	145	165	225

Note:

- recommended connection screw M10 class 8.8.

Tightening torque: 50 Nm with contact washer.

- connectors delivered mounted on the device
- for more details refer to the dimensional drawings

LF circuit breakers

 withdrawable version
Contents

Presentation 26
General characteristics 27
Description of functions 29
Racking in 29
Connection 31
RI stored energy operating mechanism - 35
Wiring diagram
33
Opening circuit
Remote control 34
Indication and locking/interlocking 35
Safety functions 36
Dimensions 37

Presentation

LF withdrawable circuit breaker and MC cassette

Description of the device

The basic withdrawable version of the LF circuit breaker comprises:
■ the circuit breaker unit with its operating mechanism:
$\square 3$ poles integrated in a "sealed pressure system" type insulating enclosure.
The sealed assembly is filled with SF6 gas at low relative pressure ($0.15 \mathrm{MPa} / 1.5$ bars) and equipped with a pressure switch \square an RI stored energy electrical operating mechanism.
This gives the device an opening and closing speed that is independent of the operator, for both electrical and manual orders. It enables reclosing cycles to be carried out
\square a front panel housing the manual operating mechanism and status indicators.

- the components enabling it to be withdrawable:
\square the circuit breaker is equipped with racking arms and contact fingers and mounted on a racking in/out drive device with a threaded shaft activated by a handle, including all of the safety interlock systems.
\square a Harting type male LV connector allows connection of the external auxiliary circuits

Each device can optionally be fitted with:

■ locking of the circuit breaker in the following positions:
\square racked out, by a key lock installed on the drive device for disconnecting truck

- the basic MC cassette, comprising:
\square a metal structure and two guide rails
\square fixed connection fingers insulated by bushings
- metal shutters to insulate from the HV part
\square safety interlocking systems
- a female Harting type LV connector.
- MC cassette options:
\square circuit breaker racked-in or out position indicator contacts
\square a circuit breaker operating mechanism spring discharge system
\square a circuit breaker racked-in blocking mechanism
\square an extraction tool
\square an equipped door
\square a foolproof device for the circuit breaker rating
\square an earthing switch operating mechanism
(see chapter 5 in catalogue "MV switchboards components" ref. AMTED305019EN).

General characteristics

Withdrawable version

Electrical characteristics according to IEC 62271-100				Circuit breaker LF1 / Cassette MC1			
Rated voltage	Ur	kV 50/60		7.2		12	
Insulation voltage							28
- lightning impulse withstand	Up	kV peak		60		75	
Rated current	Ir	A	630	■	■	\square	\square
			1250	\square	■	\square	■
Short circuit current	Isc	kA		25	31.5	25	31.5
Short time withstand current	Ik/tk	kA/3 s, kA		25	31.5	25	31.5
Short-circuit making current	Ip	kA peak	50 Hz	63	79	63	79
			60 Hz	65	82	65	82
Rated switching sequence		O-3 min-C		\square	\square	\square	\square
		O-0.3 s-C		\square	\square	\square	\square
		O-0.3 s-C		■	\square	\square	\square
Operating times		Opening ms		< 54			
		Breaking ms		< 70			
		Closing		<72			
Service temperature	T	${ }^{\circ} \mathrm{C}$		-25 to +40			
Mechanical endurance		Class		M2			
		Number of switching operations		10000			
Electrical endurance		Class		E2			
Capacitive current breaking capacity		Class		C2			

(*) Ud 42 kV 50 Hz , 1 min available in standard

Specific applications

Protection of generators and power station auxiliaries
All circuit breakers in the LF range break short circuit currents with an asymmetry of at least 30%.
In cases where the network constant L / R is greater than 45 ms , the asymmetry to be broken is higher; this is often the case of circuit breakers protecting nuclear or thermal power station auxiliaries or circuit breakers that are close to generator sets or large transformers.
Specific tests have been carried out:

Circuit breakers	kV	kA	Asymmetry
LF2	7.2	43.5	50%
LF3	7.2	43.5	50%
$\frac{12}{17.5}$	40	50%	
	25	100%	

Switching and protection of capacitor banks

LF range circuit breakers are particularly well suited to switching and protection of capacitor banks; they are classed C2 according to standard IEC 62271-100. Tests carried out according to the standard for breaking at 400 A with making and breaking cycles in case of a capacitor bank with a making current of 20 kA .

General characteristics

(cont.)

Electrical characteristics according to IEC 62271-100				Circuit breaker LF2 / Cassette MC2								
Rated voltage	Ur	kV 50/60 Hz		7.2				12			17.5	
Insulation voltage												
- power frequency withstand	Ud	kV 50 Hz 1 min (*)		20				28			38	
- lightning impulse withstand	Up	kV peak		60				75			95	
Rated current	Ir	A	630	-	-	\square	(${ }^{* *}$)	-	-	\square	\square	\square
			1250	-	\square	\square	(${ }^{* *}$)	-	-	\square	\square	\square
			1600	-	\square	\square	- (**)	■	\square	\square	\square	\square
Short circuit current	Isc	kA		25	31.5	40	50	25	31.5	40	25	31.5
Short time withstand current	1k/tk	kA/3 s, kA/1s		25	31.5	40	50 (**)	25	31.5	40	25	31.5
Short-circuit making current	Ip	kA peak	50 Hz	63	79	100	125	63	79	100	63	79
			60 Hz	65	82	104	130	65	82	104	65	82
Rated switching sequence		O-3 min-CO-3 min-CO		-	\square	■	\square	\square	-	\square	\square	\square
		O-0.3 s-CO-3 min-CO		-	\square	-	\square	\square	\square	\square	\square	\square
		O-0.3 s-CO-15 s-CO		-	\square	\square	\square	\square	-	\square	\square	\square
Operating times		Opening ms		<54								
		Breaking ms		<70								
		Closing ms		<72								
Service temperature	T	${ }^{\circ} \mathrm{C}$		-25 to +40								
Mechanical endurance		Class		M2								
		Number of switching operations		10000								
Electrical endurance		Class		E2								
Capacitive current breaking capacity		Class		C2								

(*) Ud $42 \mathrm{kV} 50 \mathrm{~Hz}, 1$ min available in standard
Available

- Not available

Electrical characteristics according to IEC 62271-100				Circuit breaker LF3 / Cassette MC3										
Rated voltage	Ur	kV 50/60 Hz		7.2				12				17.5		
Insulation voltage														
- power frequency withstand	Ud	kV 50 Hz 1 min (*)		20				28				38		
- lightning impulse withstand	Up	kV peak		60				75				95		
Rated current	Ir	A	630	-	-	-	-	-	-	-	-	-	-	-
			1250	-	-	-	-	-	-	-	■(**)	-	-	\square
			1600	-	-	-	-	-	-	-	-	-	-	-
			2500	\square	■	\square	\square	■	\square	-	\square	\square	■	\square
			3150	\square	■	\square	-	-	■	\square	\square	\square	■	\square
Short circuit current	Isc	kA		25	31.5	40	50	25	31.5	40	50	25	31.5	40
Short time withstand current	lk/tk	kA/3 s, kA/1s		25	31.5	40	50	25	31.5	40	50	25	31.5	40
Short-circuit making current	Ip	kA peak	50 Hz	63	79	100	125	63	79	100	125	63	79	100
			60 Hz	65	82	104	130	65	82	104	130	65	82	104
Rated switching sequence		O-3 min-CO-3 min-CO		\square	■	■	■	■	■	■	■	-	■	\square
		O-0.3 s-CO-3 min-CO		\square	-									
		O-0.3 s-CO-15 s-CO		\square	\square	\square	\square	■	\square	\square	\square	\square	\square	-
Operating times		Opening ms		< 54										
		Breaking ms		<70										
		Closing ms		<72										
Service temperature	T	${ }^{\circ} \mathrm{C}$		-25 to +40										
Mechanical endurance		Class		M2										
		Number of switching operations		10000										
Electrical endurance		Class		E2										
Capacitive current breaking capacity		Class		C2										
(*) Ud $42 \mathrm{kV} 50 \mathrm{~Hz}, 1$ min available in standard (**) Rated short-circuit breaking duration (tk): 1 s													$\begin{array}{r} \text { Available } \\ \text { - Not available } \end{array}$	

Description of functions

Racking in

Operation position

Test position

Disconnected position

Assembly components

The "racking-in/out" function is achieved by:
■ the withdrawable circuit breaker with its LV connector (mobile part)
■ the cassette with its bushings (fixed part).

Circuit breaker operation

The withdrawable circuit breaker can be placed in 3 stable positions:

- service position: circuit breaker racked in and locked in position;

LV plugs connected
■ test position: circuit breaker racked out and locked in position;
LV plug connected
■ disconnected position: circuit breaker extracted and locked in this position,
LV plug disconnected.

Circuit breaker safety functions

A drive system using a threaded shaft gives easier racking and unracking.

Test position contact

This is activated when the circuit breaker is in the "test" or "service" position.
Earthing is achieved throughout the operation via the racking carriage casters. An addition earthing system can be supplied as an option.

Interlocking mechanisms

In conformity with IEC standards 62271-100 and 62271-200, the following interlocks are available:

- impossibility of racking in or out is the circuit breaker is not in the "open" position
- impossible to rack in the circuit breaker when the LV plug is not connected - impossible to disconnect the LV plug if the circuit b reaker is not racked-out.

Cubicle door interlocking mechanism (MC cassette door only)
The carriage is equipped with a device that enables interlocking between the racking out of the circuit breaker and the cubicle door:

- possible to rack in the circuit breaker only if the door is closed
- possible to open the door only if the circuit breaker is racked out.

This device must be disabled if the interlocking function is not present.

Description of functions

Racking in (cont.)

MC cassette safety functions

The MC cassette is designed to receive the LF circuit breaker and comprises the following components ensuring safety when racking-in (see details in the Installation Guide ref. $07897536 E N$).

Metal structure with two guide rails
The rails guide the LF circuit breaker during racking-in/out operations.
Fixed connection fingers insulated by bushings
The three ends of the circuit breaker, fitted with racking clusters, provide the contact with these three fingers.

Metal shutters to insulate from the MV part

Three shutters mounted on the structure stop access to the racking fingers when the circuit breaker is extracted (protection index: IP2X).

Safety interlocking systems

When carrying out maintenance operations, it is possible to:
■ padlock the shutters in the closed position
■ unlock the access mechanism to the fixed contacts.

Anti-drop function

This function ensures operator safety during circuit breaker extraction.

Compulsory MC cassette accessories

Female Harting low voltage connector

A connector with a cable can either be delivered with the circuit breaker or separately.

Panel with circuit breaker operation pictograms

A self-adhesive panel shows racking-in and out operations for the circuit breaker. This is systematically delivered when the circuit breaker is ordered either with the cassette or as a separate order.

Racking handle

The handle is used for circuit breaker racking-in/out operations and for earthing switch opening and closing operations.

Extraction tool

A standard tool allows the breaking device to be extracted from each cassette version, whatever the installation height, up to 800 mm from the ground.
■ A simplified extraction tool can be manufactured locally according to the installation height.
50 kA fixing latch
This upper lock enabling the circuit breaker to be held in the cassette in the case of a fault, is compulsory for LF2/LF3 circuit breakers with 40 and 50 kA withstand.

MC cassette options

Circuit breaker racked-in or racked-out position indicator contacts 12 contacts ($6 \mathrm{NO}+6 \mathrm{NC}$)
Circuit breaker operating mechanism spring discharge system
Circuit breaker operating mechanism springs are automatically discharged when it is extracted from the cubicle. This function avoids any risk of unwanted circuit breaker closing.
Mechanical circuit breaker racked-in lock
This option is included when the earthing switch is installed. However, it can be delivered separately if the earthing circuit breaker is not required: it takes the space and volume of the earthing switch operating mechanism.

Equipped MV access door

Possibility of delivering a fully equipped, available with or without the manual circuit breaker closing mechanism.

Foolproofing device

This enables foolproofing of the circuit breaker rating relative to the cassette rating. This system is mounted on the cassette side. The corresponding combining of the right circuit breaker rating must be carried out by the panel builder.

Earthing switch operating mechanism

This can be mounted under the cassette, for suitable interlocking between the circuit breaker and the earthing switch.
(see details in the «installation guide» 07897490EN)

Description of functions

Connection

MV connection

The customer connection is easily made at the rear of the cassette on the connection terminals integrated in the bushings
(see drilling details in the "Installation Guide" ref. 07897536EN).

LV connection

With the withdrawable circuit breaker, the LV cabling has an LV connector with: ■ a mobile part (male Harting connector) at the end of a flexible cable, fully connected to the operating mechanism terminal by a sleeve
■ a fixed part (female Harting connector) compatible with the male part mounted at the top, inside the cassette.
Interlocking function
In conformity with IEC standard 62271-200, an interlocking function prohibits:

- racking in when the LV plug is not connected

■ disconnection of the LV plug if the circuit breaker is in the racked-in position.

LV plug connection

Description of functions

RI stored energy operating mechanism Wiring diagram

Operation of the RI stored energy operating mechanism

This mechanism guarantees the device an opening and closing speed unaffected by the operator, for both electric and manual orders.
It carries out the O and CO cycles and is automatically recharged by a gear motor after closing. It consists of:
■ the stored energy operating mechanism which stores in springs the energy required to open and close the device

- a gear motor electrical charging device with manual charging by lever
(useful on loss of auxiliary supply)
- manual order devices by push buttons on the front panel of the device (red and black)
■ an electrical remote closing device containing a release with an antipumping relay
■ an electrical opening device containing one or more releases, for example:
\square shunt trip devices
\square Mitop, a low consumption release, used with self protection relay.
- an operation counter
- a position indication device by mechanical indicator (black and white)
and a module of 14 auxiliary contacts whose availability varies according to the diagram used
- a device for indicating "charged" operating mechanism status by mechanical indicator and electrical contact
- A two thresholds pressure switch allows to monitore the gas pressure ($0.1 \mathrm{MPa}, 0,05 \mathrm{MPa} / 1 \mathrm{bar}, 0,5 \mathrm{bar}$, relative pressure)

Wiring diagram

Description of functions
 Opening circuit

Shunt opening release (1)

Low energy release (3)

Composition

The opening circuit can be produced using the following components:
■ shunt opening release (on energizing) (YO1)
■ second shunt opening release (on energizing) (YO2)

- undervoltage release (YM)
- low energy release (Mitop).

Note: see the table of the releases' combinations, "Order form" page.

Shunt opening release (YO1 and YO2)

Energizing this unit causes instant opening of the circuit breaker.

Characteristics	See "Order form" page	
Power supply	VAC	
Threshold	0.85 to 1.1 Ur	
	VDC	0.7 to 1.1 Ur
Consumption	VAC	160 VA
	VDC	50 W

Undervoltage release (YM)

This release unit causes the systematic opening of the circuit breaker when its supply voltage drops below a value less than 35% of the rated voltage, even if this drop is slow and gradual. It can open the circuit breaker between 35% and 70% of its rated voltage. If the release unit is not supplied power, manual or electrical closing of the circuit breaker is impossible. Closing of the circuit breaker is possible when the supply voltage of the release unit reaches 85% of its rated voltage.

Characteristics		See "Order form" page	
Power supply		Opening	0.35 to 0.7 Ur
Threshold		Closing	0.85 Ur
Consumption	Triggering	VAC	400 VA
		VDC	100 W

Low energy release (Mitop)

This specific release unit comprises a low consumption unit and is specifically used for Sepam 100LA self-powered relays. The Circuit-breaker's opening time must be adjusted with the relay to a minimum value of 45 ms .

Characteristics

Power supply Direct current
Threshold 0.6 A <1<3 A

Any tripping due to the Mitop release unit is momentarily indicated by an SDE type changeover contact (option).

Description of functions
 Remote control

Operating mechanism

Electrical motor with gearing (4)

Shunt closing release (5)

Operation counter (6)

Function

In its basic version, the circuit breaker comprises a remote control mechanism for remote circuit breaker opening and closing.

Composition

The remote control mechanism comprises:

- an electrical motor with gearing

■ a shunt closing release (YF) combined with an anti-pumping device

- an operation counter.

Electrical motor with gearing (M)

The electrical motor carries out the automatic rearming of the stored energy unit as soon as the circuit breaker is closed. This allows the instant reclosing of the device after opening. The arming lever is only used as a backup operating mechanism
in the case of the absence of the auxiliary power supply.
The M3 contact indicates the end of arming operations.

Characteristics		
Power supply	See "Order form" page	
Threshold	V AC/V DC	0.85 to 1.1 Ur
Consumption	VAC	380 VA
	V DC	380 W

Shunt closing release (YF)

This release allows the remote closing of the circuit breaker when the operating mechanism is armed.

Characteristics		
Power supply	See "Order form" page	
Threshold	VAC	0.85 to 1.1 Ur
	VDC	0.85 to 1.1 Ur
Consumption	VAC	160 VA
	VDC	50 W

The shunt closing release is combined with an anti-pumping relay that enables priority to be given to opening in the case of a permanent closing order. This thus avoids the device being caught in an uncontrolled opening-closing cycle.

Operation counter

The operation counter is visible on the front panel.
It displays the number of switching cycles (CO) that the device has carried out.

Description of functions
 Indication and locking/interlocking

Auxiliary contacts (7)

"Open/closed" auxiliary contacts

The number of contacts available depends on the options chosen on the operating mechanism.
In the basic configuration, the circuit breaker's operating mechanism comprises a total of:

- 6 normally closed contacts (NC)
- 7 normally open contacts (NO)

■ 1 changeover contact (CHG).
The usage procedure for auxiliary contacts is given in the following table:

Options		
	NC contact	NO contact
Remote control	1	1
Shunt opening release (each one) YO1/YO2	0	1
Undervoltage release YM	0	0
Low energy release (Mitop)	0	0

In order to know the final number of available contacts, you must deduct the total number of contacts included in the circuit breaker ($6 \mathrm{NC}+7 \mathrm{NO}+1 \mathrm{CHG}$),
the number of contacts used given in the table above.
E.g.: a circuit breaker equipped with a remote control and a shunt trip unit has the following available contacts:
$6 \mathrm{NC}+5 \mathrm{NO}+1 \mathrm{CHG}$.
With a undervoltage release instead of the shunt trip, this circuit breaker would have the following available contacts:
$6 \mathrm{NC}+6 \mathrm{NO}+1 \mathrm{CHG}$

Shunt opening release combination			
1st release	Shunt opening release YO1	Undervoltage release YM	Mitop
2nd release	$6 \mathrm{NC}+5 \mathrm{NO}+1 \mathrm{CHG}$	$6 \mathrm{NC}+6 \mathrm{NO}+1 \mathrm{CHG}$	$6 \mathrm{NC}+6 \mathrm{NO}+1 \mathrm{CHG}$
Without	$6 \mathrm{NC}+4 \mathrm{NO}+1 \mathrm{CHG}$		
Shunt opening release YO2	$6 \mathrm{NC}+5 \mathrm{NO}+1 \mathrm{CHG}$		
Undervoltage release YM	$6 \mathrm{CH}+5 \mathrm{NO}+1 \mathrm{CHG}$	$6 \mathrm{NC}+6 \mathrm{NO}+1 \mathrm{CHG}$	
Mitop	6		

Contacts characteristics
Rated current
Breaking capacity

Description of functions
 Safety functions

\qquad
This table describes the safety functions available on the withdrawable version of the LF circuit breaker.
How to use the table
Each of the boxes describes the functional status of each circuit breaker position and the associated parts:

Possible statusPossible status, impossible operation
\triangle Impossible status

Parts		Circuit breaker positions					
			Insertion $-\boldsymbol{-}-\boldsymbol{\rightarrow}$ Extraction			Racking-in - - - - \rightarrow Racking-out	
		Removed		Disconnected	Test position		Service
1 - Cradle			Fool-proof protection ${ }^{(1)}$				
			Anti-drop ${ }^{(2)}$				
		No opening shutters					
		Shutters padlocking possible					
2 - LV plug	Disconnected			Door closing impossible			
	Connected	$><$			No unplugging ${ }^{(5)}$		
3 - Circuit breaker	Closed		Auto-discharge function ${ }^{(3)}$		No racking-in	$><$	No racking-out
	Open					No closing	
		Open position circuit breaker locking available ${ }^{(3)}$					
4-Switchboard door	Open				No racking-in		
	Closed				No door opening ${ }^{(4)}$		
5 - Earthing switch	Open					No earthing switch closing	
	Closed				No racking-in		\rightarrow

(1) This protection mechanism ensures that the performance levels of the circuit breaker correspond with those of the cassette. (2) Device that prevents the circuit breaker from dropping when extracted from the cassette.

The device can be either unlocked manually or when the extraction jig is put in position.
(3) Option.
(4) Interlocking device to be fitted to the cubicle door.
(5) Because the door is closed.

Dimensions

LF1, LF2, LF3 circuit breakers

Device

Basic withdrawable

C.B./Cassette	LF1/MC1	LF2/MC2	LF3/MC3
L/W	556	686	886
E (phase to phase)	145	185	240
Weight (kg)		248	297
			$344(1250 \mathrm{~A})$ $363(2500 \mathrm{~A})$

*Maximum values, depending on ratings and options

Order Forms

LF SF6 Circuit Breaker
up to 17.5 kV

Order Forms

LF fixed version 40
LF withdrawable version 41

LF1, LF2, LF3 fixed
 Order Form

Order Forms

Only one of the boxes (ticked Xor filled \square by the needed value) have to be considered between each horizontal line.

Green box X
corresponds to none priced functions.

Basic fixed circuit breaker			Quantity		
Rated voltage Ur			(kv)		
Impulse voltage Up			(kVbil)		
Short-circuit current Isc			(kA)		
Rated current Ir			(A)		
Frequency	50 Hz		60 Hz		
Colour for push buttons and indicators	IEC standard			ANSI standard	
Push buttons open/close:	Red/black	Red/green	Green/red	Red/black	
Indicator open/close:	Black/white			Green/red	
Operating mechanism charged/discharged:	White/yellow		Charged/Discharged		

Circuit breaker options

1st opening release (see possible choices in combination table below) Shunt opening release YO1

24 Vdc		220 Vdc		$220 \mathrm{Vac}(50 \mathrm{~Hz})$
30 Vdc	110 Vdc	$48 \mathrm{Vac}(50 \mathrm{~Hz})$		$120 \mathrm{Vac}(60 \mathrm{~Hz})$
48 Vdc	125 Vdc	$110 \mathrm{Vac}(50 \mathrm{~Hz})$		$240 \mathrm{Vac}(60 \mathrm{~Hz})$

2nd opening release (see possible choices in combination table below)

Shunt opening release YO2				
24 Vdc		220 Vdc		$220 \mathrm{Vac}(50 \mathrm{~Hz})$
30 Vdc	110 Vdc	$48 \mathrm{Vac}(50 \mathrm{~Hz})$		$120 \mathrm{Vac}(60 \mathrm{~Hz})$
48 Vdc	125 Vdc	$110 \mathrm{Vac}(50 \mathrm{~Hz})$		$240 \mathrm{Vac}(60 \mathrm{~Hz})$

Mitop (not available with seismic version) $240 \mathrm{Vac}(60 \mathrm{~Hz})$

Different releases combinations

Shunt opening releases YO1/YO2	1			2	1	1	
Undervoltage release YM		1			1		1
					1	1	

LF1, LF2, LF3 withdrawable

Order Form

Only one of the boxes (ticked X or filled
\qquad by the needed value) have to be considered between each horizontal line.

Green box X corresponds to none priced functions.

Services

LF SF6 Circuit Breaker
up to 17.5 kV
Services
Schneider Electric services 44
Separated components 46

Schneider Electric Services

Peace of mind througout your installation
life cycle

How can you cut costs and improve performance at the same time?

When it comes to your electrical distribution infrastructure, the answer is straightforward: get professional expertise.

Life Cycle Services

Plan

Schneider Electric helps you to plan the full design and execution of your solution, looking at securing your process and optimising your time:
■ Technical feasibility studies: Accompany customer to design solution in his given environment.
■ Preliminary design: Accelerate turn around time to come to a fi nal solution design.

Install

Schneider Electric will help you to install effi cient, reliable and safe solutions based on your plans.
■ Project Management: Designed to help you complete your projects on time and within budget.
■ Commissioning: Ensures your actual performance versus design, through on site testing \& commissioning, tools \& procedures.

Operate

Schneider Electric helps you maximise your installation uptime and control your capital expenditures through its services offering.
■ Asset Operation Solutions: The information you need to increase safety, enhance installation training performance, and optimise asset maintenance and investment.
■ Advantage Service Plans: Customised services plans which cover preventive, predictive and corrective maintenance.
■ On site Maintenance services: Extensive knowledge and experience in electrical distribution maintenance.
■ Spare parts management: Ensure spare parts availability and optimised maintenance budget of your spare parts.
■ Technical Training: To build up necessary skills and competencies. in order to properly operate your installations in safety.

Optimise

Schneider Electric propose recommendations for improved safety, availability, reliability \& quality.
■ MP4 Electrical Assessment: Define improvement \& risk management program.

Renew

Schneider Electric extends the life of your system while providing upgrades. Schneider Electric offers to take full responsibility for the end-of-life processing of old electrical equipments.

- ECOFIT ${ }^{\text {TM }}$: Keep up to date \& improve performances of your electrical installations (LV,MV, Protection Relays...).
■ MV product End of life: Recycle \& recover outdated equipment with end of life services.

Frequency of maintenance intervention

Schneider Electric equipment manufacturers recommend a schedule for maintenance activities to extend Electrical Distribution equipment performance over time. Frequencies under normal/healthy operation (minor equipment criticality and optimal environmental conditions) can be generally defined as follows:

Maintenance	Min. freq. ${ }^{(1)}$	Who			
		Manufacturer	Certified Partner	End user	
Exclusive	every 4 years	\square			
Advanced	every 2 years	\square	\square	\square	
Light	every 1 year	\square	\square	\square	

(1) Recommended under normal operating conditions (minor equipment criticality and optimal environmental conditions). However, this recommended frequency should be increased according to a) the level of criticality (low, major, critical) / b) the severity of environment conditions (i.e.corrosive, naval, offshore) following recommendations of Manufacturer's services.

LF SF6 Circuit Breaker up to 17.5 kV

ProDiag Breaker Objectives

Your priority is to enhance the reliability of your installation:

- to ensure its continuity of service,
- to minimize the time for maintenance \& repair
- to perform maintenance
- Only on the equipment requiring it and only when necessary (conditional preventive maintenance)

Results

ProDiag Breaker provides a report of the complete nature of the circuit breaker, detailing closing / opening time, contact simultaneity, bounce and resistance, mechanical closing and opening forces.
This report enables any required maintenance to be targeted and time in order to optimize the customer's maintenance plan.
prent

ProDiag Breaker

Diagnosis of MV and LV Circuit Breakers

Separated components

Services

The following components can be ordered separately and can be adapted or replaced by the customer.

Auxiliaries				
Shunt opening release			Y01 or Y02	
	24 Vdc		889705BL	
	30 Vdc		889705BL	
	48 Vdc		889705BJ	
	60 Vdc		889705BG	
	110 Vdc		889705BE	
	125 Vdc		889705BD	
	220 Vdc		889705BB	
	48 Vac	50 Hz	SPK0041SF1	
	110 Vac	50 Hz	889705BL	
	220 Vac	50 Hz	889705BH	
	120 Vac	60 Hz	889705BK	
	240 Vac	60 Hz	889705BH	
Shunt opening release - Seismic version			Y01	YO2
	24 Vdc		SPK0003SF	SPK0011SF
	30 Vdc		SPK0008SF	SPK0016SF
	48 Vdc		SPK0004SF	SPK0012SF
	60 Vdc		SPK0021SF	SPK0022SF
	110 Vdc		00891486FE	00891487FE
	125 Vdc		SPK0005SF	SPK0013SF
	220 Vdc		SPK0006SF	SPK0014SF
	48 Vac	50 Hz	SPK0007SF	SPK0015SF
	110 Vac	50 Hz	SPK0008SF	SPK0016SF
	220 Vac	50 Hz	SPK0009SF	SPK0017SF
	120 Vac	60 Hz	SPK0010SF	SPK0018SF
	240 Vac	60 Hz	SPK0009SF	SPK0017SF
Shunt closing release YF			Anti pumping Relay	Closing Release
	24 Vdc		MV261207	889705AL
	30 Vdc		MV261208	889705AK
	48 Vdc		MV261209	889705AH
	60 Vdc		MV261210	889705AG
	110 Vdc		MV261211	889705AD
	125 Vdc		MV261212	889705AD
	220 Vdc		MV261213	889705AA
	48 Vac	50 Hz	MV261215	889705AP
	110 Vac	50 Hz	MV261216	889705AL
	220 Vac	50 Hz	MV261218	889705AH
	120 Vac	60 Hz	MV261216	889705AL
	$240 \text { Vac }$	60 Hz	MV261218	889705AH
Zelio (RXM) relay adaptation kit for RI *			MV261246	

LF SF6 Circuit Breaker up to 17.5 kV

Services

Separated components

(cont.)

Auxiliaries (cont.)

24 Vdc		889772 AB
30 Vdc	889772 AC	
48 Vdc	889772 AE	
60 Vdc	889772 AF	
110 Vdc	889772 AH	
125 Vdc	889772 AJ	
220 Vdc	889772 AM	
48 Vac	50 Hz	889773 AQ
110 Vac	50 Hz	889773 AU
220 Vac	50 Hz	889773 AX
120 Vac	60 Hz	889773 AU
240 Vac	60 Hz	889773 AX

Electrical motor \& Gear reducer (Ametek) (after 1211999)

contact M1, M2, M3
AAV85908

Micro switch SE \& SQ

*: to be ordered in case of POK or APE relay type replacement

LF SF6 Circuit Breaker
up to 17.5 kV
Services

Separated components

(cont.)

Accessories (fixed version)

Cover		
	LF1	00889520FA
\%	LF2	00889520FB
	LF3	00889520FC
CB support frame		
资	LF1	00889810FA
	LF2	00889810FB
	LF3	00889810FC
Locking, interlocking		
	Open position circuit-breaker locking (without lock)	888516A
	Flat lock	AAV86887
	Tubular lock	AAV86892

LV connection (fixed version)

Male plug \& lead			
	LF1/LF2	$\mathrm{L}=1,2 \mathrm{M}$	MV261070
$\longrightarrow \sim$	LF3	$\mathrm{L}=1,2 \mathrm{M}$	MV261074
Female plug \& lead			
	All types	$\mathrm{L}=2 \mathrm{M}$	MV261071

Accessories (withdrawable version)
Front cover + red push button kits for w/o truck

Notes

TOOLS

schneider-electric.com

This international web site allows you to access all the Schneider Electric solutions and product information via:

- Comprehensive descriptions
- Range datasheets
- A download area
- Product selectors

You can also access information dedicated to your business and contact your Schneider Electric country support.

TOOLS

Web selector

This site allows you to access the Schneider Electric products in just two clicks via a comprehensive range of datasheets, with direct links to:

- Complete libraries: technical documents, catalogs, FAQs, brochures
- Selection guides from the e-catalog
- Product discovery sites and their animations

You will also find illustrated overviews, news to which you can subscribe, and a list of country contacts

Training

Training allows you to acquire the expertise (installation design, work with power on, etc.) to increase efficiency and improve customer service.

The training catalog includes beginner's courses in electrical distribution, knowledge of MV and LV switchgear, operation and maintenance of installations, and design of LV installations to give a few examples.

Schneider Electric Industries SAS
35 rue Joseph Monier
92500 Rueil-Malmaison, France
Tel : +33 (0)1 41297000
www.schneider-electric.com

30, May, 2018
AMTED397052EN

[^0]: 4
 The circuit breaker is open

[^1]: Remote control

