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EXECUTIVE SUMMARY 

Since there are many mission-critical DOD requirements for ultra-dependable 

systems, most of which must, by their nature, be distributed, it is essential to establish a 

development process that makes routine the design/construction of systems with an almost 

arbitrarily specified dependability1 and supports analysis of the costbenefit trade-offs for 

obtaining this level of dependability. 

The current state of the art in dependable system design can be summarized as: 

While hardware design principles, algorithms and techniques for design to near 

arbitrary cost and dependability specifications exist for isolated systems, they are 

either not implemented or not widely applied. 

. The management of information in arbitrarily dependable distributed systems is not 

well established, even when the designer has control over communication links. 

For geographical dispersed systems in which the designer has no control over 

communication links there currently does not exist the capability for designing and 

developing systems to arbitrary dependability specifications. 

The IS AT recommends the following research thrusts: 

1. Development and demonstration of a design methodology and environment for 

ultra-dependable, time-critical isolated systems including software and security. 

l ~ e ~ e n d a b i l i t ~  is a general term encompassing a host of "-abilitiesw including: 
reliability, availability, maintainability, diagnosability, etc. 



2 .  A project to develop an ultra-dependable, time-critical distributed system with 

development of supporting research. 



I. SCOPE 

The aim of this research is to develop the methodology needed to implement high 

performance computer systems with very high dependability. Dependability is a general 

term encompassing reliability, availability, maintainability, diagnosability , etc. The 

ultimate goal is to produce a system which neither crashes nor fails during a ten-year 

operational life. Furthermore, these systems should require less than five percent 

additional resources than contemporarily designed systems.2 The term "system" is used to 

denote a computer and the entities it controls. The system could be a single isolated 

computer complex or a distributed system. 

While spacecraft computers have been built that demonstrate survivability i.e., for 

ten years, these computers are in the range of 100 kilo operations per second (KOPS) and 

require substantial ground intervention to "work around" failures. Due to simplicity in 

hardware and software, space-borne computers exhibit Mean Time Between Crashes 

(MTBC) measured in one to two years. Conventional ground-based commercial systems 

have MTBC's in the range of 100 to 1000 hours. While contemporary space-borne 

computer systems exhibit adequate reliability, this reliability is achieved with substantial 

ground-based human intervention and up to three orders of magnitude slower processing 

performance. While commercial computers have adequate processing power, they do so at 

up to three orders of magnitude shorter MTBC and/or unavailability. Commercial systems 

dedicated to a single application (e.g. telephone switching, transaction processing) are 

closing the availability gap between space-borne and commercial  system^.^ A meaningful 

metric is t h e ' ~ e a n  Number of Instructions to Restart (MNIR) which is a function of the 

processing rate and rate of system restarts after an outage. Contemporary space-borne 

especially designed commercial systems are on the order of 10 to 10 l4 MNIR. The goal 

2 ~ o e s  not apply to long life unmaintained systems. 
3~anufac tures  of fault tolerant computers, such as Tandem and Stratus, have achieved 
MTBC's measured in years. 



should be four orders of magnitude improvement i.e., 1017 to lo1 MN[R in the next 10 

~ears .4  

A computing system progresses through many stages during it's life. These stages 

include specification, logic design, prototype debugging, manufacturing, installation, and 

field operation. Deviations from intended behavior, or errors, can occur at any stage as a 

result of incomplete specifications, incorrect implementation of a specification into a logic 

design, and assembly mistakes during prototyping or manufacturing. During the system's 

operational life, errors can result from change in the physical state or damage to hardware. 

Physical changes may be triggered by environmental factors such as fluctuations in 

temperature or power supply voltage, static discharge, and even the humidity of the 

computer earth ground loops. Inconsistent states can also be caused by operator errors and 

by design errors in hardware or software. The vast majority of prior research has been 

focused on physical hardware failure during the operational life of the system. As the scale 

of integration of hardware has increased, the corresponding failure rate per unit function 

has decreased. Transient and intermittent errors occur 10 to 100 times more frequently than 

permanent failures. Furthermore, measurements from commercial high-reliability systems 

indicate that hardware-related problems contribute less than 50% of the reliability-related 

problems. 

Thus, research needs to focus equally on all stages of the system's life as well as all 

aspects of a system (e.g., hardware, software, environment, human operators, etc.). In 

particular, design errors - whether they be in hardware andlor software - become a 

particularly elusive problem. Closely tied to the human creative process, design errors are 

difficult to predict. Gathering statistical information about the phenomena is difficult 

4 ~ s  performance increases MNIR will have to be improved just to maintain constant 
availability. 



because each design error occurs only once per system. The rapid rate of development in 

hardware technology constantly changes the set of design trade-offs, further complicating 

the study of hardware design errors. Once these systems have been designed and built, 

one is left with the challenge of verifying that the design goal has been met. For example, a 

recent aerospace project had a goal of probability of error of 10-10 per hour. This goal 

translates into more than a million years of error-free operation. One cannot observe a 

thousand systems for a thousand years to decide whether such a goal has been met. A pro- 

active validation methodology is required. 

In order to achieve the goals outlined above, a number of "break throughs" will be 

required. A partial list of potential break throughs might i n c l ~ d e : ~  

Development of techniques and practices to minimize design errors. Fault- 

avoidance techniques such as defensive programming and design verification 

techniques such as mutation testing have already been applied to hardware and 

software design. However these techniques are only marginally effective in 

detecting rarely-occurring interaction of three or four anomalous conditions that 

typify a design error. Formal proofs of correctness of cleanly decomposed formal 

specifications is another approach. Furthermore, an infra structure of CAD and 

CASE tools to be developed to support design of ultra-dependable architectures 

(hardware and software). 

New hardware architectures, software architectures, and algorithms for fault- 

detection, diagnosis, recovery, and reconfiguration in distributed systems are 

required. The current techniques rely on brute-force replication that is costly in 

either physical or design resources. Stronger links need to be forged with other 

fields of computer technology including: programming methodology, language 

5 ~ o t e  that research is under way in many of these areas. 



design, compilers, database, artifical intelligence, and security. A design 

methodology must be developed which treats multiple objectives (i.e., 

performance, programmability, dependability, and security) uniformly. Design for 

dependability should extend seamlessly through hardware, programming, system 

design, and operator interaction. 

Improved techniques for concurrent error-detection are required. Data from 

commercial systems indicate that the single biggest source of downtime is 

undetected or misdiagnosed errors.6 The use of techniques to monitor data from an 

operating system and predict failures prior to catastrophic results would allow the 

system to adapt prior to catastrophic fa i l~res .~  Techniques are required to detect 

non-classical faults (e.g., changes in timing and state behavior of component 

elements, multiple hard/soft/design errors, etc.) which occur more frequently than 

usually assumed. 

Systems must be designed: for real-time recovery and repair; and to identify and 

preserve critical state under various fault conditions. 

As computing systems become more complicated to operate, mechanisms are 

required to minimize or prevent operator mistakes. In a remote terminal 

environment, an operator may be an ordinary system user. 

6 ~ r r o r s  from all sources including hardware, software, environment, operation, 
maintenance, etc. 
7~ recent study of SUN file servers on the CMU network demonstrated that when there are 
three error log entries relating to a physical failure, there is greater than a 90% 
probability of predicting a failure an average 200 hours prior to catastrophic failure. 
However, one-third of the physical failures and no error log entries at all indicating 
either catastrophic failure or, in our case, inadequate error detection mechanisms. 



Systems must be designed/built to be immune to environmental noise and 

interferences. 

11. BACKGROUND 

There is a close tie between architecture and high dependability. Let us examine 

some of the attributes of computer and network architecture. Data processing elements can 

range from tightly-coupled, high-cooperative to self-autonomous. Many combat situations 

are based upon autonomous units operating on self-initiative. Prior to a battle, a foot 

soldier or fighter pilot will be briefed and drilled on the plan for battle. Communications 

during the phase can be very intense with exchange of information, opinions, and intuition. 

During the actual combat, however, communications are undesirable whether due to 

security and detection, or due to the chaos of the battlefield. Decisions are made locally 

based upon knowledge of the battle plan and limited inputs from locally-available sensors 

(in the case of a soldier, his eyes and ears). Not much research has been performed into 

systems which change modes between high and low available communications bandwidth. 

Thus research should be done in both types of systems as well as a hybrid system which 

switches between both modes. While the communications between nodes in the network 

may be highly variable, we can assume high performance communications internal to a 

network node. These network nodes should also be a hybrid of various forms of 

computations. 



Table 1 illustrates four types of computations as a function of the grain size - the 

period between synchronization events for multiprocessors or processing elements. 

Synchronization is necessary in parallel processing to initialize the task, parcel out work, 

and merge results. 

Table 1 - Simplified taxonomy of parallel architectures as a 

function of inter-computation communication interval 

Grain Size Construction for Parallelism Synchronization Interval 

(Inst ructions) 

Fine Parallelism inherent in single 1 

instruction or data stream 

Medium 

Coarse 

Very Coarse 

Parallel processing or 

multi-tasking within a 

single process 

Multiprocessing of concurrent 

processes in a multiprocessing 

environment 

Distributed processing across 

network nodes to form single 

computing environment 

loo - 1000 

10,000 - 1 million 



The very coarse grain size corresponds to a network. The individual computing 

nodes should be able to support fine, medium, and coarse grain computations. Medium 

and coarse grain computations can be handled by multiprocessors. Fine grain computation 

requires specialized processors such as systolic or array processors. A unified architecture 

supporting fine, medium, and coarse grain computations would be versatile enough to 

handle the widest range of anticipated applications. 

There is little or no experience with such a unified architecture. Existing systems 

handle one, or at most two, grain sizes. Most experience has been with very coarse or fine 

grain size. Multicomputers such as Tandem and Stratus are tuned to very coarse grain size. 

Dedicated signal or array processors handle fine grain size. Commercial multiprocessors 

should process medium and coarse grain sizes. 

Over the past two decades there has been a steady growth in the number of fault- 

tolerant systems. The Bell System's Electronic Switching System (ESS) is a pioneer in 

this area. Introduced in 1965, ESS-1 required over ten years of field experience to reach 

it's goal of three minutes downtime per year. A study of causes of downtime attributed 

20% to hardware, 15% to software, 35% to insufficient error detection or incorrect error 

diagnosis, and 30% to operational (e.g. human) mistakes. In 1976 Tandem introduced a 

highly available commercial transaction processing system. In a study conducted by Jim 

Gray from 1985 to 1987 over 80% of the Tandem customers experienced no unscheduled 

outages during those two-years. Mean time to system outage was in excess of four years. 

Table 2 summarizes experiences in the ESS, Tandem, and some commercial systems. 



Table 2 - Sources of Outage 

ESS* Japanese Tandem Tandem Commercial 
I Lg./Med. Systems 

[Toy '871 [Users] [Gray '851 [Gray '871 [Users] 
[I9851 119881 

Hardware .2 ** .18 .19 .45 

Software .15 ** .26 .43 .20 

Maintenance - * * .25 .13 .05 

Operations .65 . l l  .17 .13 .15 

Procedural Errors .3 

Recovery Deficiencies .35 

Environment - .13 

*Fraction of downtime 

** 0.75 for all three areas including all vendor-supplied items including hardware, 

software, and maintenance. The report did not break the vendor source of outage into its 

constituent parts. 

As we can see, the source of outage is distributed among the areas identified in the 

missing potential "break throughs" list in Section 1. These successes have come in 

dedicated application areas (e.g. telephone switching and transaction processing) in which 

there are many aspects of the application which contribute to a clean fault-tolerant 

architecture. The Pluribus IMP for the DARPAnet is a good example of a dedicated 

system. A store and forward node in a switching network only requires good error- 

detection mechanisms. The rest of the network buffers the information and if a Pluribus 

should fail, it need only reconfigure itself into a working system and the rest of the network 

will retry their accesses. Thus to a first order approximation the Pluribus IMP need not 

worry about data loss during reconfiguration since this information will be supplied by the 



rest of the distributed system. More general purpose techniques are required - techniques 

that are not so dependent upon the characteristics of the application. However, a system 

that utilizes the characteristics of an application has a higher dependability potential at less 

cost than a general purpose system which knows nothing about the structure of its 

application. Therefore, the ultra-dependable architecture/system can take the advantages of 

applicaton dependencies, e.g., an image processor system may not require the same degree 

of dependability as a commercial control system. 

A number of research groups have targeted reliability as a major thrust. A partial 

list includes 

Center for Dependable Systems (CDS). A group of researchers at CMU looking at 

hardware/softwa.re theory/practice of dependable system design. Data collection, 

modelling, and validation techniques have been developed. Dan Siewiorek is 

Director. 

Center for Reliable Computing (CRC). A group of researchers at Stanford 

University focusing on testing and on-line error detection. Statistical studies of 

SLAC facilities have been performed. Ed McCluskey is Director. 

UCLNJPL. Looking back to the early 19605, the JPLAJCLA cooperation has had 

a direct impact upon the architecture of unmanned deep space probes. It's ultra- 

reliable systems have severe volume, power, and weight restrictions. Dave 

Rennels and A1 Avizienis are the primary contacts at UCLA. 

University of Newcastle upon Tyne. Brian Randall has a group working on 

software approaches to high dependability. In partricular, attention has focused 

upon minimizing software design errors. 



University of Texas. Jacob Abraham and Mirek Malek have explored issues in 

algorithm-specific error detection, testing, and parallel architectures. 

There are many other organizations that either have one or two researchers or had a 

large group that is no longer active that have contributed to the theory of high dependability 

systems. Some of these organizations include SRI (Jack Goldberg is still very active), 

Johns Hopkins (Gerry Masson), University of Michigan (John Hayes 'and John Myers), 

University of Illinois (Ravi Iyer), Draper Labs (Jay Lala), IBM (M.Y. Hsiao, T. Basil 

Smith), NASA Langley's AirLab facility, Ballistic Missile Defense Architectural Research 

Center, etc. There is growing interest in high dependability abroad (i.e., Japan, France, 

and Germany). 

I11 RESEARCH OPPORTUNITIES 

A substantial amount of research and development is required in the area of fault- 

tolerant architectures. The techniques built into contemporary systems have their origin in 

the 1960's. These techniques are based upon the brute force of replication. Duplication 

has been used in cold (e.g. unpowered spares in satellites), warm (e.g. checkpointing or 

shadowing in Tandem), and hot (e.g. simultaneous processing ESS, Stratus) standby 

configurations. Duplication is only as effective as the ability of added hardware and/or 

software to correctly detect and diagnose the faulty unit. Triplication and voting removes 

the necessity to diagnose and has been used in both hardware (e.g. August Systems) and 

software (e.g. Space Shuttle computers). Reconsider the sources of unavailability found in 

the ESS studies. Replication only addresses the 20 percent of unavailability due to 



hardware and a portion of the 35 percent due to detection and diagnosis inefficiencies.* 

Not only are new architectural concepts required, but also research into reducing: errors in 

software, inadequate error detection/diagnosis, and operational mistakes. Consequently 

research is required into the methodology of design. Here we mean design in its most 

general terms, encompassing hardware, operating system, application software, and 

operating procedures. Reliability and fault tolerance needs to be designed in from the start. 

This is why new commercial vendors (e.g. Tandem) can be successful while existing 

vendors have a difficult time retro-fitting these features. Cost-effective solutions often 

depend on what is already existing in the design. Furthermore, applications often have 

characteristics which can be used to advantage. For example, real-time systems (such as 

telephone switching) do not need to store sensor data for long periods of time. The real- 

time data quickly re-initializes the data base. The system merely needs to establish a 

working configuration. This is in contrast to a transactions-processing system where the 

data base has to be correct, even through system crashes. 

During the system design process there is a large gap between designers and 

modelers. The modeler develops mathematical models which require abilities beyond those 

possessed by designers (such as "fail fast" processors). Furthermore, modelers use 

abstract parameters (such as coverage - the probability that given an error, the system 

correctly detects, diagnoses, and recovers from it) that are difficult or impossible to derive 

from designs. Thus research is required to develop sophisticated Computer-Aided Design 

(CAD) tools for dependability analysis. These tools are to read data from the design data 

base and produce dependability (i.e., reliability, availability, maintainability, 

diagnosability, etc.) estimates upon requests. Due to the partial and inconsistent state of the 

-- 

It should be noted that a NASA fault-injection study indicated that a duplex computer 
detected only 60 percent of the injected faults since the applications program did not 
exercise all of the hardware. A common assumption is that duplication detects 100 
percent of failures. 



evolving design data base, these CAD tools must be able to make educated estimates 

required for the mathematical models. Furthermore, these tools should be capable of 

detailed analysis or simulation to derive complex metrics such as coverage. There tools 

exist only in fledgling form today with no tools integrated into a design data base. 

Since characteristics of the application will be used for enhancing fault tolerance, a 

fault simulator to handle actual application code in different redundancy architectures needs 

to be developed. Consider duplication. The application code can use watchdog timers to 

detect errors or comparison to an active copy. The simulator should answer questions such 

as the effectiveness, in a mathematical sense, of each approach to fault detection as well as 

the manifestation of undetected faults. The manifestations of undetected faults could be 

used to drive a higher level simulator which predicts the effectiveness of the whole system. 

Algorithms and heuristics for control in distributed systems need to be developed. 

Not only will delays in communication be uncertain, but data may be lost or even 

contradictory. Since the system must operate in real time, effective means of detecting 

overload and shedding load must be developed. Contemporary operating systems either do 

not deal with these problems or only deal with them in an extremely limited way. A 

substantial amount of basic research is required in this area. A few hand-crafted ad hoc 

fault tolerant distributed systems have been developed. However there is no cohesive 

theory on how to design systems with distributed state (e.g., information) that may be too 

time consuming to collect into one place or may not be accessible due to partitioning. 

Demonstration of system-effectiveness will be a major concern. Unclassified 

algorithms which represent typical work loads should be made available to researchers. If 

the exact algorithms cannot be made available, a representation of the computational 



resources and their interdependencies (such as represented by a data flow graph) could 

serve as a synthetic work load. 

A testing strategy needs to be developed. Strategies should be based upon 

observation of the system during normal processing. The historic approach of running 

diagnostics is inadequate for uncovering the unexpected. In addition to normal system 

workload some random stress should be added to the system to accelerate the discovery of 

unexpected phenomena. Research to support the testing activity includes on-line error 

detectors both in hardware and software, random stimulus generation, logging of detected 

anomalies, and an automatic on-line analysis of the system at its peak processing rate since 

systems are more prone to error when heavily stressed. 

In order to demonstrate the effectiveness of the above verifications and validation 

(V&V) process, a testbed should be developed. The effectiveness of the V&V 

methodology could be demonstrated by applying it to existing commercial fault-tolerant 

systems. 

Substantial work needs to be done in the areas of security, fault tolerance, and 

parallel processing. Security and fault tolerance are mutually supportive concepts. It is not 

possible to have a secure system that is not reliable, while on the other hand the integrity 

checking of security is yet another means of error detection which can be used to improve 

fault tolerance. There is very little practical experience programming parallel processors for 

a large, single, homogeneous application. The extra dimension of parallelism increases the 

difficulty of validating the system. In addition, error detection and recovery mechanisms 

represent an added complexity that must also be ~alidated.~ 

Redundancy management code is frequently more complex than the application code. 
Furthermore, it is substantially more difficult to debug than real time interrupt-driven 
code since an error can occur any physical place at any time. 



Finally, there should be a technology assessment program which provides 

information on expected capabilities of technology to the system designers. This includes 

sensor, communications, and data processing technologies. In particular, non-silicon 

technologies such as gallium arsenide, electro-optics, and magnetic materials should be 

explored for their unique capabilities such as resistance to radiation, high bandwidth, 

andfor high densities. 

IV. IMPACT 

The culmination of this research could produce systems which never fail during 

their life expectancy. Dependency on computing system has grown so great that it is 

becoming difficult or impossible to return to less sophisticated mechanisms. When an 

airline seat selection computer "crashes", the airline can no longer revert to assigning seats 

from a manual checklist; since the addition of round trip check-in service, there is no way 

of telling which seats have been assigned to passengers who have not yet checked in 

without consulting the computer. More and more of the ways that the United States 

conducts business have become intimately intertwined with computer technology. Note 

that we have become dependent upon electrical grids and telephone information networks 

that are constantly available. We need to develop a national-wide information utility which 

is constantly available. Todays computer networks have taken fledgling steps in this 

direction. However, as we grow more interconnected, we must place safeguards to 

prevent the equivalent of a "northeast blackout". Even innocent actions such the broadcast 

of cartoons through chained mailing distribution lists can bring a sophisticated network to 

it's knees. Malicious actions such as computer viruses can have potentially damaging 

consequences. However, a virus can be viewed as a generalized "error" from which 

mechanisms in a high reliability system would provide safeguards. 



Dependability is synergistic with several other aspects of computer science 

including inconnectivity, security, productivity, and ease of use. There are several 

advantages of a high dependability program to DoD: 

Increase the availability of weapons systems which is presently unacceptably low 

Construction of systems with very long unattended lifetime (e.g., 

inaccessible systems). 

Construction of systems which survive extreme levels of damage or severe security 

attacks. 

Eventually, all computers will be highly dependable. However, industry will not 

likely develop techniques appropriate to DoD requirements. An initiative in high 

dependability systems could make DARPA a leader in meeting the challenges of the new 

found awareness in systems that never fail. Currently most DoD systems managers focus 

on performance/functionality rather than sacrifice resources on what are perceived as rare 

events (with possibly homble consequences). 

V. CONCLUSION AND RECOMMENDATION 

It is suggested that a program be developed composed of three phases. The first 

phase of approximately two years duration should consist of small contracts to individual 

universities and companies to provide the basic technology in areas such as parallel 

processing, security, and testing. The second phase of approximately three years duration 



should include teams of contractors to develop system concepts in simulators to verify 

those concepts. Below is a representative list of research projects for the first two phases. 

Phase 1 - Basic Techno lo~ ie~  

Architecture 

New architectures based on multiple modes of available communications 

bandwidth. 

New fault- tolerant techniques. 

Interaction of security and reliability. 

Distributed management in the face of errors. 

Design and evaluation of effectiveness of error detectors and error diagnosis. 

Design for recoverability 

Computer-Aided Design (CAD) tools for evaluating dependability and synthesizing 

fault tolerant tecnhiques integrated with more traditional CAD and CASE (Computer 

Aided Software Engineering) tools. 

Fault Tolerant software techniques. 

Expert systems to "operate" and diagnose systems. 



Applications 

Programming experience in real-time, distributed, hybrid systems. Especially 

multiprocessors. 

Techniques to minimize operational (procedural) mistakes. 

Heuristics for autonomous operation. 

Verifications and Validation 

Develop simulation techniques for generating rarely occurring sequences so that 

design functionality and error recovery can be verified. 

Demonstrate methodology on an existing architecture. 

Phase 2 - Svstem's Concents 

Architecture 

Develop a simulator for entire system. 

Measure performance. 

Inject faults into simulator to measure effectiveness of architecture, measure 

performance in the presence of errors. 

Use a commercial fault- tolerant architecture for fault injection studies. 



Verification and Validation 

Develop a simulator for combinations of application code and fault-tolerant 

architectures. Develop a method for evaluating these combinations. The results 

would be input to system models. 

Measure with and without faults the synthetic workloadloperating 

system/comrnercial architecture produced above. 

The final phase is a mission-oriented demonstration that should last five years and 

be composed of two subphases. The first subphase of two years duration is a system 

architecture development supported by a detailed simulation upon which application 

software can be run. The second subphase includes actual construction with off-the-shelf 

chips, boards, and software required to assemble a complete prototype. The prototype 

should be heavily instrumented both in hardware and software to not only facilitate system 

debugging, but also to aid in system tuning and identification of system bottlenecks. There 

should be at least two system contract teams in this phase with each team composed of 

several industrial and university members. A subset of each contractor group should be 

devoted to devising test cases not only for their own architecture, but also for the other 

contract group's architecture. These competing "tiger teams" will provide an independent 

test of each prototype's capability. "Tiger teams" have been very effective in the past in 

probing the capabilities of secure systems. It may even be desirable to have small contracts 

with independent groups that are not part of the prototype development to serve as "tiger 

teams" developing tests for the prototypes prior to prototype acceptance. 


