
mikroC

Develop your applications quickly and easily with the world's
most intuitive C compiler for PIC Microcontrollers (families
PIC12, PIC16, and PIC18).

Highly sophisticated IDE provides the power you need with the
simplicity of a Windows based point-and-click environment.

With useful implemented tools, many practical code examples,
broad set of built-in routines, and a comprehensive Help, mikroC
makes a fast and reliable tool, which can satisfy needs of experi-
enced engineers and beginners alike.

C Compiler for Microchip PIC microcontrollers

mikroElektronika
Development tools - Books - Compilers
w w w . m i k r o e l e k t r o n i k a . c o . y u

Us
er
’s
 m

an
ua
l

M a k i n g i t s i m p l e

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

ii MikroElektronika: Development tools - Books - Compilers

page

DISCLAIMER:
mikroC and this manual are owned by mikroElektronika and are protected by copyright law
and international copyright treaty. Therefore, you should treat this manual like any other copy-
righted material (e.g., a book). The manual and the compiler may not be copied, partially or
as a whole without the written consent from the mikroEelktronika. The PDF-edition of the
manual can be printed for private or local use, but not for distribution. Modifying the manual
or the compiler is strictly prohibited.

HIGH RISK ACTIVITIES
The mikroC compiler is not fault-tolerant and is not designed, manufactured or intended for
use or resale as on-line control equipment in hazardous environments requiring fail-safe per-
formance, such as in the operation of nuclear facilities, aircraft navigation or communication
systems, air traffic control, direct life support machines, or weapons systems, in which the fail-
ure of the Software could lead directly to death, personal injury, or severe physical or envi-
ronmental damage ("High Risk Activities"). mikroElektronika and its suppliers specifically dis-
claim any express or implied warranty of fitness for High Risk Activities.

LICENSE AGREEMENT:
By using the mikroC compiler, you agree to the terms of this agreement. Only one person
may use licensed version of mikroC compiler at a time.
Copyright © mikroElektronika 2003 - 2005.

This manual covers mikroC version 2.1 and the related topics. Newer versions may contain
changes without prior notice.

COMPILER BUG REPORTS:
The compiler has been carefully tested and debugged. It is, however, not possible to
guarantee a 100 % error free product. If you would like to report a bug, please contact us at
the address office@mikroelektronika.co.yu. Please include next information in your bug
report:

- Your operating system
- Version of mikroC
- Code sample
- Description of a bug

CONTACT US:
mikroElektronika
Voice: + 381 (11) 30 66 377, + 381 (11) 30 66 378
Fax: + 381 (11) 30 66 379
Web: www.mikroelektronika.co.yu
E-mail: office@mikroelektronika.co.yu

Reader’s note

PIC, PICmicro and MPLAB is a Registered trademark of Microchip company. Windows is a
Registered trademark of Microsoft Corp. All other trade and/or services marks are the
property of the respective owners.

MikroElektronika: Development tools - Books - Compilers

Table of Contents

CHAPTER 1 mikroC IDE

CHAPTER 2 Building Applications

CHAPTER 3 mikroC Reference

CHAPTER 4 mikroC Libraries

mikroC User’s manual

CHAPTER 1: mikroC IDE 1

Quick Overview 1
Code Editor 3
Code Explorer 6
Debugger 7
Error Window 11
Statistics 12
Integrated Tools 15
Keyboard Shortcuts 19

CHAPTER 2: Building Applications 21

Projects 22
Source Files 23

Search Paths 23
Managing Source Files 24

Compilation 26
Output Files 26
Assembly View 26

Error Messages 27

CHAPTER 3: mikroC Language Reference 29

PIC Specifics 30
mikroC Specifics 32

ANSI Standard Issues 32
Predefined Globals and Constants 33
Accessing Individual Bits 33
Interrupts 34
Linker Directives 35

Lexical Elements 36
Tokens 38
Constants 39

Integer Constants 39
Floating Point Constants 41
Character Constants 42
String Constants 44
Enumeration Constants 45
Pointer Constants 45
Constant Expressions 45

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

iv MikroElektronika: Development tools - Books - Compilers

page

Keywords 46
Identifiers 47
Punctuators 48
Objects and Lvalues 52
Scope and Visibility 54
Name Spaces 56
Duration 57
Types 59
Fundamental Types 60

Arithmetic Types 60
Enumeration Types 62
Void Type 64

Derived Types 65
Arrays 65
Pointers 68
Pointer Arithmetic 70
Structures 74
Unions 79
Bit Fields 80

Types Conversions 82
Standard Conversions 82
Explicit Typecasting 84

Declarations 85
Linkage 87
Storage Classes 89
Type Qualifiers 91
Typedef Specifier 92
asm Declaration 93
Initialization 94

Functions 95
Function Declaration 95
Function Prototypes 96
Function Definition 97
Function Calls 98

Operators 100
Precedence and Associativity 100
Arithmetic Operators 102
Relational Operators 104
Bitwise Operators 105
Logical Operators 107
Conditional Operator ? : 109
Assignment Operators 110
sizeof Operator 112

MikroElektronika: Development tools - Books - Compilers v
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Expressions 113
Statements 115

Labeled Statements 115
Expression Statements 116
Selection Statements 116
Iteration Statements 119
Jump Statements 122
Compound Statements (Blocks) 124

Preprocessor 125
Preprocessor Directives 125
Macros 126
File Inclusion 130
Preprocessor Operators 131
Conditional Compilation 132

CHAPTER 4: mikroC Libraries 135

Built-in Routines 136
Library Routines 138

ADC Library 139
CAN Library 141
CANSPI Library 153
Compact Flash Library 162
EEPROM Library 172
Ethernet Library 174
Flash Memory Library 186
I2C Library 188
Keypad Library 193
LCD Library (4-bit interface) 197
LCD8 Library (8-bit interface) 203
Graphic LCD Library 208
Manchester Code Library 219
Multi Media Card Library 224
OneWire Library 233
PS/2 Library 237
PWM Library 240
RS-485 Library 243
Secure Digital Library 249
Software I2C Library 254
Software SPI Library 258
Software UART Library 260
Sound Library 264

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

vi MikroElektronika: Development tools - Books - Compilers

page

SPI Library 266
USART Library 271
USB HID Library 275
Util Library 280
ANSI C Ctype Library 281
ANSI C Math Library 285
ANSI C Stdlib Library 291
ANSI C String Library 295
Conversions Library 299
Trigonometry Library 303

MikroElektronika: Development tools - Books - Compilers vii
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

viii MikroElektronika: Development tools - Books - Compilers

page

CHAPTER

MikroElektronika: Development tools - Books - Compilers

1

mikroC IDE

mikroC is a powerful, feature rich development tool for PICmicros. It is designed
to provide the customer with the easiest possible solution for developing applica-
tions for embedded systems, without compromising performance or control.

PIC and C fit together well: PIC is the most popular 8-bit chip in the world, used
in a wide variety of applications, and C, prized for its efficiency, is the natural
choice for developing embedded systems. mikroC provides a successful match
featuring highly advanced IDE, ANSI compliant compiler, broad set of hardware
libraries, comprehensive documentation, and plenty of ready-to-run examples.

QUICK OVERVIEW

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

2 MikroElektronika: Development tools - Books - Compilers

page

mikroC allows you to quickly develop and deploy complex applications:

- Write your C source code using the highly advanced Code Editor

- Use the included mikroC libraries to dramatically speed up the development:
data acquisition, memory, displays, conversions, communications…

- Monitor your program structure, variables, and functions in the Code Explorer.
Generate commented, human-readable assembly, and standard HEX compatible
with all programmers.

- Inspect program flow and debug executable logic with the integrated Debugger.
Get detailed reports and graphs on code statistics, assembly listing, calling tree…

- We have provided plenty of examples for you to expand, develop, and use as
building bricks in your projects.

Code
Explorer

Error
Window

Watch
Window

Code
Editor

Breakpoints
Window

Code
Assistant

MikroElektronika: Development tools - Books - Compilers 3
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

The Code Editor is an advanced text editor fashioned to satisfy the needs of pro-
fessionals. General code editing is same as working with any standard text-editor,
including familiar Copy, Paste, and Undo actions, common for Windows environ-
ment.

Advanced Editor features include:

- Adjustable Syntax Highlighting
- Code Assistant
- Parameter Assistant
- Code Templates (Auto Complete)
- Auto Correct for common typos
- Bookmarks and Goto Line

You can customize these options from the Editor Settings dialog. To access the
settings, choose Tools > Options from the drop-down menu, or click the Tools
icon.

CODE EDITOR

Tools Icon.

Code Assistant [CTRL+SPACE]

If you type a first few letter of a word and then press CTRL+SPACE, all the valid
identifiers matching the letters you typed will be prompted in a floating panel (see
the image). Now you can keep typing to narrow the choice, or you can select one
from the list using the keyboard arrows and Enter.

Parameter Assistant [CTRL+SHIFT+SPACE]

The Parameter Assistant will be automatically invoked when you open a parenthe-
sis "(" or press CTRL+SHIFT+SPACE. If name of a valid function precedes the
parenthesis, then the expected parameters will be prompted in a floating panel. As
you type the actual parameter, the next expected parameter will become bold.

Code Template [CTR+J]

You can insert the Code Template by typing the name of the template (for
instance, whileb), then press CTRL+J, and the Code Editor will automatically
generate the code. Or you can click a button from the Code toolbar and select a
template from the list.

You can add your own templates to the list. Just select Tools > Options from the
drop-down menu, or click the Tools Icon from Settings Toolbar, and then select
the Auto Complete Tab. Here you can enter the appropriate keyword, description,
and code of your template.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

4 MikroElektronika: Development tools - Books - Compilers

page

Auto Correct

The Auto Correct feature corrects common typing mistakes. To access the list of
recognized typos, select Tools > Options from the drop-down menu, or click the
Tools Icon, and then select the Auto Correct Tab. You can also add your own pref-
erences to the list.

Comment/Uncomment

The Code Editor allows you to comment or uncomment selected block of code by
a simple click of a mouse, using the Comment/Uncomment icons from the Code
Toolbar.

Bookmarks

Bookmarks make navigation through large code easier.

CTRL+<number> : Go to a bookmark
CTRL+SHIFT+<number> : Set a bookmark

Goto Line

Goto Line option makes navigation through large code easier. Select Search >
Goto Line from the drop-down menu, or use the shortcut CTRL+G.

MikroElektronika: Development tools - Books - Compilers 5
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Comment /
Uncomment Icon.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

6 MikroElektronika: Development tools - Books - Compilers

page

The Code Explorer is placed to the left of the main window by default, and gives a
clear view of every declared item in the source code. You can jump to a declara-
tion of any item by clicking it, or by clicking the Find Declaration icon. To expand
or collapse treeview in Code Explorer, use the Collapse/Expand All icon.

Also, two more tabs are available in Code Explorer. QHelp Tab lists all the avail-
able built-in and library functions, for a quick reference. Double-clicking a routine
in QHelp Tab opens the relevant Help topic. Keyboard Tab lists all the available
keyboard shortcuts in mikroC.

CODE EXPLORER

Collapse/Expand
All Icon.

MikroElektronika: Development tools - Books - Compilers 7
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

The source-level Debugger is an integral component of mikroC development envi-
ronment. It is designed to simulate operations of Microchip Technology's
PICmicros and to assist users in debugging software written for these devices.

The Debugger simulates program flow and execution of instruction lines, but does
not fully emulate PIC device behavior: it does not update timers, interrupt flags,
etc.

After you have successfully compiled your project, you can run the Debugger by
selecting Run > Debug from the drop-down menu, or by clicking the Debug Icon .
Starting the Debugger makes more options available: Step Into, Step Over, Run to
Cursor, etc. Line that is to be executed is color highlighted.

Debug [F9]
Start the Debugger.

Run/Pause Debugger [F6]
Run or pause the Debugger.

Step Into [F7]
Execute the current C (single– or multi–cycle) instruction, then halt. If the instruc-
tion is a routine call, enter the routine and halt at the first instruction following the
call.

Step Over [F8]
Execute the current C (single– or multi–cycle) instruction, then halt. If the instruc-
tion is a routine call, skip it and halt at the first instruction following the call.

Step Out [Ctrl+F8]
Execute the current C (single– or multi–cycle) instruction, then halt. If the instruc-
tion is within a routine, execute the instruction and halt at the first instruction fol-
lowing the call.

Run to cursor [F4]
Executes all instructions between the current instruction and the cursor position.

DEBUGGER

Start Debugger

Step Into

Step Over

Step Out

Pause Debugger

Run to Cursor

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

8 MikroElektronika: Development tools - Books - Compilers

page

Toggle Breakpoint [F5]
Toggle breakpoint at current cursor position. To view all the breakpoints, select
Run > View Breakpoints from the drop-down menu. Double clicking an item in
window list locates the breakpoint.

Watch Window

Variables

The Watch Window allows you to monitor program items while running your pro-
gram. It displays variables and special function registers of PIC MCU, their
addresses and values. Values are updated as you go through the simulation.

Double clicking one of the items opens a window in which you can assign a new
value to the selected variable or register and change number formatting.

Toggle
Breakpoint.

Stopwatch Window

The Stopwatch Window displays the current count of cycles/time since the last
Debugger action. Stopwatch measures the execution time (number of cycles) from
the moment the Debugger is started, and can be reset at any time. Delta represents
the number of cycles between the previous instruction line (line where the
Debugger action was performed) and the active instruction line (where the
Debugger action landed).

Note: You can change the clock in the Stopwatch Window; this will recalculate
values for the newly specified frequency. Changing the clock in the Stopwatch
Window does not affect the actual project settings – it only provides a simulation.

MikroElektronika: Development tools - Books - Compilers 9
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Call Stack Window

The Call Stack Window keeps track of depth and order of nested routine calls in
program simulation. Check the Nested Calls Limitations for more information.

Note: Real scenarios may differ from the simulation, depending on runtime
program parameters.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

10 MikroElektronika: Development tools - Books - Compilers

page

MikroElektronika: Development tools - Books - Compilers 11
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

In case that errors were encountered during compiling, the compiler will report
them and won't generate a hex file. The Error Window will be prompted at the
bottom of the main window by default.

The Error Window is located under the message tab, and displays location and
type of errors compiler has encountered. The compiler also reports warnings, but
these do not affect the output; only errors can interefere with generation of hex.

Double click the message line in the Error Window to highlight the line where the
error was encountered.

Consult the Error Messages for more information about errors recognized by the
compiler.

ERROR WINDOW

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

12 MikroElektronika: Development tools - Books - Compilers

page

After successful compilation, you can review statistics of your code. Select Project
> View Statistics from the drop-down menu, or click the Statistics icon. There are
six tab windows:

Memory Usage Window
Provides overview of RAM and ROM memory usage in form of histogram.

Procedures (Graph) Window
Displays functions in form of histogram, according to their memory allotment.

STATISTICS

Statistics Icon.

MikroElektronika: Development tools - Books - Compilers 13
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Procedures (Locations) Window
Displays how functions are distributed in microcontroller’s memory.

Procedures (Details) Window
Displays complete call tree, along with details for each function:

size, start and end address, calling frequency, return type, etc.

RAM Window
Summarizes all GPR and SFR registers and their addresses. Also displays symbol-
ic names of variables and their addresses.

ROM Window
Lists op-codes and their addresses in form of a human readable hex code.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

14 MikroElektronika: Development tools - Books - Compilers

page

MikroElektronika: Development tools - Books - Compilers 15
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

USART Terminal
mikroC includes the USART (Universal Synchronous Asynchronous Receiver
Transmitter) communication terminal for RS232 communication. You can launch
it from the drop-down menu Tools > Terminal or by clicking the Terminal icon.

ASCII Chart
The ASCII Chart is a handy tool, particularly useful when working with LCD dis-
play. You can launch it from the drop-down menu Tools > ASCII chart.

INTEGRATED TOOLS

7 Segment Display Decoder
The 7seg Display Decoder is a convenient visual panel which returns decimal/hex
value for any viable combination you would like to display on 7seg. Click on the
parts of 7 segment image to get the desired value in the edit boxes. You can launch
it from the drop-down menu Tools > 7 Segment Display.

EEPROM Editor
EEPROM Editor allows you to easily manage EEPROM of PIC microcontroller.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

16 MikroElektronika: Development tools - Books - Compilers

page

mikroBootloader

mikroBootloader can be used only with PICmicros that support flash write.

1. Load the PIC with the appropriate hex file using the conventional programming
techniques (e.g. for PIC16F877A use p16f877a.hex).

2. Start mikroBootloader from the drop-down menu Tools > Bootoader.
3. Click on Setup Port and select the COM port that will be used. Make sure that

BAUD is set to 9600 Kpbs.
4. Click on Open File and select the HEX file you would like to upload.
5. Since the bootcode in the PIC only gives the computer 4-5 sec to connect, you

should reset the PIC and then click on the Connect button within 4-5 seconds.
6. The last line in then history window should now read “Connected”.
7. To start the upload, just click on the Start Bootloader button.
8. Your program will written to the PIC flash. Bootloader will report an errors that

may occur.
9. Reset your PIC and start to execute.

The boot code gives the computer 5 seconds to get connected to it. If not, it starts
running the existing user code. If there is a new user code to be downloaded, the
boot code receives and writes the data into program memory.

The more common features a bootloader may have are listed below:

- Code at the Reset location.
- Code elsewhere in a small area of memory.
- Checks to see if the user wants new user code to be loaded.
- Starts execution of the user code if no new user code is to be loaded.
- Receives new user code via a communication channel if code is to be loaded.
- Programs the new user code into memory.

Integrating User Code and Boot Code
The boot code almost always uses the Reset location and some additional program
memory. It is a simple piece of code that does not need to use interrupts; therefore,
the user code can use the normal interrupt vector at 0x0004. The boot code must
avoid using the interrupt vector, so it should have a program branch in the address
range 0x0000 to 0x0003. The boot code must be programmed into memory using
conventional programming techniques, and the configuration bits must be pro-
grammed at this time. The boot code is unable to access the configuration bits,
since they are not mapped into the program memory space.

MikroElektronika: Development tools - Books - Compilers 17
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

18 MikroElektronika: Development tools - Books - Compilers

page

Below is the complete list of keyboard shortcuts available in mikroC IDE. You can
also view keyboard shortcuts in Code Explorer window, tab Keyboard.

IDE Shortcuts

F1 Help
CTRL+N New Unit
CTRL+O Open
CTRL+F9 Compile
CTRL+F11 Code Explorer on/off
CTRL+SHIFT+F5 View breakpoints

Basic Editor shortcuts

F3 Find, Find Next
CTRL+A Select All
CTRL+C Copy
CTRL+F Find
CTRL+P Print
CTRL+R Replace
CTRL+S Save unit
CTRL+SHIFT+S Save As
CTRL+V Paste
CTRL+X Cut
CTRL+Y Redo
CTRL+Z Undo

Advanced Editor shortcuts

CTRL+SPACE Code Assistant
CTRL+SHIFT+SPACE Parameters Assistant
CTRL+D Find declaration
CTRL+G Goto line
CTRL+J Insert Code Template
CTRL+<number> Goto bookmark
CTRL+SHIFT+<number> Set bookmark
CTRL+SHIFT+I Indent selection
CTRL+SHIFT+U Unindent selection
CTRL+ALT+SELECT Select columns

KEYBOARD SHORTCUTS

Debugger Shortcuts

F4 Run to Cursor
F5 Toggle breakpoint
F6 Run/Pause Debugger
F7 Step into
F8 Step over
F9 Debug
CTRL+F2 Reset

MikroElektronika: Development tools - Books - Compilers 19
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

20 MikroElektronika: Development tools - Books - Compilers

page

CHAPTER

MikroElektronika: Development tools - Books - Compilers

2

Building
Applications

Creating applications in mikroC is easy and intuitive. Project Wizard allows you to
set up your project in just few clicks: name your application, select chip, set flags,
and get going.

mikroC allows you to distribute your projects in as many files as you find appro-
priate. You can then share your mikroCompiled Libraries (.mcl files) with other
developers without disclosing the source code. The best part is that you can use
.mcl bundles created by mikroPascal or mikroBasic!

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

22 MikroElektronika: Development tools - Books - Compilers

page

mikroC organizes applications into projects, consisting of a single project file
(extension .ppc) and one or more source files (extension .c). You can compile
source files only if they are part of a project.

Project file carries the following information:

- project name and optional description,
- target device,
- device flags (config word) and device clock,
- list of project source files with paths.

New Project

The easiest way to create project is by means of New Project Wizard, drop-down
menu Project > New Project. Just fill the dialog with desired values (project name
and description, location, device, clock, config word) and mikroC will create the
appropriate project file. Also, an empty source file named after the project will be
created by default.

Editing Project

Later, you can change project settings from drop-down menu Project > Edit
Project. You can rename the project, modify its description, change chip, clock,
config word, etc. To delete a project, simply delete the folder in which the project
file is stored.

Add/Remove Files from Project

Project can contain any number of source files (extension .c). The list of relevant
source files is stored in the project file (extension .ppc). To add source file to
your project, select Project > Add to Project from drop-down menu. Each added
source file must be self-contained, i.e. it must have all the necessary definitions
after preprocessing. To remove file(s) from your project, select Project > Remove
from Project from drop-down menu.

Note: For inclusion of header files, use the preprocessor directive #include.

PROJECTS

New Project.

Edit Project.

Add to Project.

Remove from
Project.

Source files containing C code should have the extension .c. List of source files
relevant for the application is stored in project file with extension .ppc, along
with other project information. You can compile source files only if they are part
of a project.

Use the preprocessor directive #include to include headers. Do not rely on pre-
processor to include other source files — see Projects for more information.

Search Paths

Paths for source files (.c)

You can specify your own custom search paths. This can be configured by select-
ing Tools > Options from drop-down menu and then tab window Advanced.

In project settings, you can specify either absolute or relative path to the source
file. If you specify a relative path, mikroC will look for the file in following loca-
tions, in this particular order:

1. the project folder (folder which contains the project file .ppc),
2. your custom search paths,
3. mikroC installation folder > “uses” folder.

MikroElektronika: Development tools - Books - Compilers 23
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

SOURCE FILES

Paths for Header Files (.h)

Header files are included by means of preprocessor directive #include. If you
place an explicit path to the header file in preprocessor directive, only that location
will be searched.

If #include directive was used with the <header_name> version, the search is
made successively in each of the following locations, in this particular order:

1. mikroC installation folder > “include” folder,
2. your custom search paths.

The "header_name" version specifies a user-supplied include file; mikroC will
look for the header file in following locations, in this particular order:

1. the project folder (folder which contains the project file .ppc),
2. mikroC installation folder > “include” folder,
3. your custom search paths.

Managing Source Files

Creating a new source file

To create a new source file, do the following:

Select File > New from drop-down menu, or press CTRL+N, or click the New
File icon. A new tab will open, named “Untitled1”. This is your new source file.
Select File > Save As from drop-down menu to name it the way you want.

If you have used New Project Wizard, an empty source file, named after the proj-
ect with extension .c, is created automatically. mikroC does not require you to
have source file named same as the project, it’s just a matter of convenience.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

24 MikroElektronika: Development tools - Books - Compilers

page

New File.

Opening an Existing File

Select File > Open from drop-down menu, or press CTRL+O, or click the Open
File icon. The Select Input File dialog opens. In the dialog, browse to the location
of the file you want to open and select it. Click the Open button.
The selected file is displayed in its own tab. If the selected file is already open, its
current Editor tab will become active.

Printing an Open File

Make sure that window containing the file you want to print is the active window.
Select File > Print from drop-down menu, or press CTRL+P, or click the Print
icon. In the Print Preview Window, set the desired layout of the document and
click the OK button. The file will be printed on the selected printer.

Saving File

Make sure that window containing the file you want to save is the active window.
Select File > Save from drop-down menu, or press CTRL+S, or click the Save
icon. The file will be saved under the name on its window.

Saving File Under a Different Name

Make sure that window containing the file you want to save is the active window.
Select File > Save As from drop-down menu, or press SHIFT+CTRL+S. The New
File Name dialog will be displayed. In the dialog, browse to the folder where you
want to save the file. In the File Name field, modify the name of the file you want
to save. Click the Save button.

Closing a File

Make sure that tab containing the file you want to close is the active tab. Select
File > Close from drop-down menu, or right click the tab of the file you want to
close in Code Editor. If the file has been changed since it was last saved, you will
be prompted to save your changes.

Open File Icon.

Print File Icon.

Save File Icon.

MikroElektronika: Development tools - Books - Compilers 25
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Save File As.

Close File.

When you have created the project and written the source code, you will want to
compile it. Select Project > Build from drop-down menu, or click Build Icon, or
simply hit CTRL+F9.

Progress bar will appear to inform you about the status of compiling. If there are
errors, you will be notified in the Error Window. If no errors are encountered,
mikroC will generate output files.

Output Files

Upon successful compilation, mikroC will generate output files in the project fold-
er (folder which contains the project file .ppc). Output files are summarized
below:

Intel HEX file (.hex)
Intel style hex records. Use this file to program PIC MCU.

Binary mikro Compiled Library (.mcl)
Binary distribution of application that can be included in other projects.

List File (.lst)
Overview of PIC memory allotment: instruction addresses, registers, routines, etc.

Assembler File (.asm)
Human readable assembly with symbolic names, extracted from the List File.

Assembly View

After compiling your program in mikroC, you can click View Assembly Icon or
select Project › View Assembly from drop-down menu to review generated assem-
bly code (.asm file) in a new tab window. Assembly is human readable with sym-
bolic names. All physical addresses and other information can be found in
Statistics or in list file (.lst).

If the program is not compiled and there is no assembly file, starting this option
will compile your code and then display assembly.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

26 MikroElektronika: Development tools - Books - Compilers

page

View Assembly
Icon.

Compile Icon.

COMPILATION

Error Messages

- Specifier needed
- Invalid declarator
- Expected '(' or identifier
- Integer const expected
- Array dimension must be greater then 0
- Local objects cannot be extern
- Declarator error
- Bad storage class
- Arguments cannot be of void type
- Specifer/qualifier list expected
- Address must be greater than 0
- Identifier redefined
- case out of switch
- default label out of switch
- switch exp. must evaluate to integral type
- continue outside of loop
- break outside of loop or switch
- void func cannot return values
- Unreachable code
- Illegal expression with void
- Left operand must be pointer
- Function required
- Too many chars
- Undefined struct
- Nonexistent field
- Aggregate init error
- Incompatible types
- Identifier redefined
- Function definition not found
- Signature does not match
- Cannot generate code for expression
- Too many initializers of subaggregate
- Nonexistent subaggregate
- Stack Overflow: func call in complex expression
- Syntax Error: expected %s but %s found
- Array element cannot be function
- Function cannot return array

MikroElektronika: Development tools - Books - Compilers 27
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

ERROR MESSAGES

- Inconsistent storage class
- Inconsistent type
- %s tag redefined
- Illegal typecast
- %s is not a valid identifier
- Invalid statement
- Constant expression required
- Internal error %s
- Too many arguments
- Not enough parameters
- Invalid expresion
- Identifier expected, but %s found
- Operator [%s] not applicable to this operands [%s]
- Assigning to non-lvalue [%s]
- Cannot cast [%s] to [%s]
- Cannot assign [%s] to [%s]
- lvalue required
- Pointer required
- Argument is out of range
- Undeclared identifier [%s] in expression
- Too many initializers
- Cannot establish this baud rate at %s MHz clock

Compiler Warning Messages

- Highly inefficent code: func call in complex expression
- Inefficent code: func call in complex expression

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

28 MikroElektronika: Development tools - Books - Compilers

page

CHAPTER

MikroElektronika: Development tools - Books - Compilers

3

mikroC Language
Reference

C offers unmatched power and flexibility in programming microcontrollers.
mikroC adds even more power with an array of libraries, specialized for PIC HW
modules and communications. This chapter should help you learn or recollect C
syntax, along with the specifics of programming PIC microcontrollers. If you are
experienced in C programming, you will probably want to consult mikroC
Specifics first.

In order to get the most from your mikroC compiler, you should be familiar with
certain aspects of PIC MCU. This knowledge is not essential, but it can provide
you a better understanding of PICs’ capabilities and limitations, and their impact
on the code writing.

Types Efficiency

First of all, you should know that PIC’s ALU, which performs arithmetic opera-
tions, is optimized for working with bytes. Although mikroC is capable of han-
dling very complex data types, PIC may choke on them, especially if you are
working on some of the older models. This can dramatically increase the time
needed for performing even simple operations. Universal advice is to use the
smallest possible type in every situation. It applies to all programming in general,
and doubly so with microcontrollers.

When it comes down to calculus, not all PICmicros are of equal performance. For
example, PIC16 family lacks hardware resources to multiply two bytes, so it is
compensated by a software algorithm. On the other hand, PIC18 family has HW
multiplier, and as a result, multiplication works considerably faster.

Nested Calls Limitations

Nested call represents a function call within function body, either to itself (recur-
sive calls) or to another function. Recursive calls, as form of cross-calling, are
unsupported by mikroC due to the PIC’s stack and memory limitations.

mikroC limits the number of non-recursive nested calls to:

- 8 calls for PIC12 family,
- 8 calls for PIC16 family,
- 31 calls for PIC18 family.

The number of allowed nested calls decreases by one if you use any of the follow-
ing operators in the code: * / %. It further decreases by one if you use interrupt
in the program. If the allowed number of nested calls is exceeded, compiler will
report stack overflow error.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

30 MikroElektronika: Development tools - Books - Compilers

page

PIC SPECIFICS

PIC16 Specifics

Breaking Through Pages

In applications targeted at PIC16, no single routine should exceed one page (2,000
instructions). If routine does not fit within one page, linker will report an error.
When confront with this problem, maybe you should rethink the design of your
application – try breaking the particular routine into several chunks, etc.

Limits of Indirect Approach Through FSR

Pointers with PIC16 are “near”: they carry only the lower 8 bits of the address.
Compiler will automatically clear the 9th bit upon startup, so that pointers will
refer to banks 0 and 1. To access the objects in banks 3 or 4 via pointer, user
should manually set the IRP, and restore it to zero after the operation. The stated
rules apply to any indirect approach: arrays, structures and unions assignments,
etc.

Note: It is very important to take care of the IRP properly, if you plan to follow
this approach. If you find this method to be inappropriate with too many variables,
you might consider upgrading to PIC18.

Note: If you have many variables in the code, try rearranging them with linker
directive absolute. Variables that are approached only directly should be moved
to banks 3 and 4 for increased efficiency.

MikroElektronika: Development tools - Books - Compilers 31
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

ANSI Standard Issues

Divergence from the ANSI C Standard

mikroC diverges from the ANSI C standard in few areas. Some of these modifica-
tions are improvements intenteded to facilitate PIC programming, while others are
result of PICmicro hardware limitations:

Function cross-calling and recursion are unsupported due to the PIC’s limitations
of no easily-usable stack and limited memory.

Pointers to variables and pointers to constants are not compatible, i.e. no assigning
or comparison is possible between the two.

Function calls from within interrupts are a special case. See Interrupts.

mikroC treats identifiers declared with const qualifier as “true constants” (C++
style). This allows using const objects in places where ANSI C would expect a
constant expression. If aiming at portability, use the traditional preprocessor
defined constants. See Type Qualifiers and Constants.

Tags scope is specific. Due to separate name space, tags are virtually removed
from normal scope rules: they have file scope, but override any block rules.

Ellipsis (...) in formal argument lists is unsupported.

mikroC allows C++ style single–line comments using two adjacent slashes (//).

Features under construction: pointers to functions, and anonymous structures.

Implementation-defined Behavior

Certain sections of the ANSI standard have implementation-defined behavior. This
means that the exact behavior of some C code can vary from compiler to compiler.
Throughout the help are sections describing how the mikroC compiler behaves in
such situations. The most notable specifics include: Floating-point Types, Storage
Classes, and Bit Fields.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

32 MikroElektronika: Development tools - Books - Compilers

page

mikroC SPECIFICS

Predefined Globals and Constants

To facilitate PIC programming, mikroC implements a number of predefined glob-
als and constants.

All PIC SFR registers are implicitly declared as global variables of volatile
unsigned short. These identifiers have external linkage, and are visible in the
entire project. When creating a project, mikroC will include an appropriate .def
file, containing declarations of available SFR and constants (such as T0IE, INTF,
etc). Identifiers are all in uppercase, identical to nomenclature in Microchip
datasheets. For the complete set of predefined globals and constants, look for
“Defs” in your mikroC installation folder, or probe the Code Assistant for specific
letters (Ctrl+Space in Editor).

Device Clock Constants

There are two built-in constants related to device clock: ___FOSC and ___FCY.
Constant ___FOSC equals the frequency that is provided by an external oscillator,
while ___FCY is the operating frequency of PIC. Both constants can be used any-
where in the code, and are automatically updated as you change target PIC in your
project. Source files that use these constants are recompiled any time the clock is
changed in IDE.

Accessing Individual Bits

mikroC allows you to access individual bits of 8-bit variables, types char and
unsigned short. Simply use the direct member selector (.) with a variable,
followed by one of identifiers F0, F1, … , F7. For example:

// If RB0 is set, set RC0:
if (PORTB.F0) PORTC.F0 = 1;

There is no need for any special declarations; this kind of selective access is an
intrinsic feature of mikroC and can be used anywhere in the code. Identifiers
F0–F7 are not case sensitive and have a specific namespace.

Provided you are familiar with the particular chip, you can access bits by their
name:

INTCON.TMR0F = 0; // Clear TMR0F

MikroElektronika: Development tools - Books - Compilers 33
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Interrupts

Interrupts can be easily handled by means of reserved word interrupt. mikroC
implictly declares function interrupt which cannot be redeclared. Its prototype is:

void interrupt(void);

Write your own definition (function body) to handle interrupts in your application.
mikroC saves the following SFR on stack when entering interrupt and pops them
back upon return:

PIC12 and PIC16 family: W, STATUS, FSR, PCLATH
PIC18 family: FSR (fast context is used to save WREG, STATUS, BSR)

Note: mikroC does not support low priority interrupts; for PIC18 family, interrupts
must be of high priority.

Function Calls from Interrupt

You cannot call functions from within interrupt routine, but you can make a
function call from embedded assembly in interrupt. For this to work, the called
function (func1 in further text) must fulfill the following conditions:

1. func1 does not use stack (or the stack is saved before call, and restored after),
2. func1 must use global variables only.

The stated rules also apply to all the functions called from within func1.

Note: mikroC linker ignores calls to functions that occur only in interrupt assem-
bler. For linker to recognize these functions, you need to make a call in C code,
outside of interrupt body.

Here is a simple example of handling the interrupts from TMR0 (if no other
interrupts are allowed):

void interrupt() {
counter++;
TMR0 = 96;
INTCON = $20;

}//~

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

34 MikroElektronika: Development tools - Books - Compilers

page

Linker Directives

mikroC uses internal algorithm to distribute objects within memory. If you need to
have variable or routine at specific predefined address, use linker directives
absolute and org.

Directive absolute

Directive absolute specifies the starting address in RAM for variable. If variable is
multi-byte, higher bytes are stored at consecutive locations. Directive absolute is
appended to the declaration of variable:

int foo absolute 0x23;

// Variable will occupy 2 bytes at addresses 0x23 and 0x24;

Be careful when using absolute directive, as you may overlap two variables by
mistake. For example:

char i absolute 0x33;
// Variable i will occupy 1 byte at address 0x33

long jjjj absolute 0x30;
// Variable will occupy 4 bytes at 0x30, 0x31, 0x32, 0x33,
// so changing i changes jjjj highest byte at the same time

Directive org

Directive org specifies the starting address of routine in ROM.

Directive org is appended to the function definition. Directives applied to non-
defining declarations will be ignored, with an appropriate warning issued by link-
er. Directive org cannot be applied to an interrupt routine.

Here is a simple example:

void func(char par) org 0x200 {
// Function will start at address 0x200

nop;
}

MikroElektronika: Development tools - Books - Compilers 35
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

These topics provide a formal definition of the mikroC lexical elements. They
describe the different categories of word-like units (tokens) recognized by a lan-
guage.

In the tokenizing phase of compilation, the source code file is parsed (that is, bro-
ken down) into tokens and whitespace. The tokens in mikroC are derived from a
series of operations performed on your programs by the compiler and its built-in
preprocessor.

A mikroC program starts as a sequence of ASCII characters representing the
source code, created by keystrokes using a suitable text editor (such as the mikroC
editor). The basic program unit in mikroC is the file. This usually corresponds to a
named file located in RAM or on disk and having the extension .c.

Whitespace

Whitespace is the collective name given to spaces (blanks), horizontal and vertical
tabs, newline characters, and comments. Whitespace can serve to indicate where
tokens start and end, but beyond this function, any surplus whitespace is discard-
ed. For example, the two sequences

int i; float f;

and

int i;
float f;

are lexically equivalent and parse identically to give the six tokens.

The ASCII characters representing whitespace can occur within literal strings, in
which case they are protected from the normal parsing process (they remain as
part of the string).

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

36 MikroElektronika: Development tools - Books - Compilers

page

LEXICAL ELEMENTS

Comments

Comments are pieces of text used to annotate a program, and are technically
another form of whitespace. Comments are for the programmer’s use only; they
are stripped from the source text before parsing. There are two ways to delineate
comments: the C method and the C++ method. Both are supported by mikroC.

C comments

C comment is any sequence of characters placed after the symbol pair /*. The
comment terminates at the first occurrence of the pair */ following the initial /*.
The entire sequence, including the four comment-delimiter symbols, is replaced by
one space after macro expansion.

In mikroC,

int /* type */ i /* identifier */;

parses as:

int i;

Note that mikroC does not support the nonportable token pasting strategy using
/**/. For more on token pasting, refer to Preprocessor topics.

C++ comments

mikroC allows single-line comments using two adjacent slashes (//). The com-
ment can start in any position, and extends until the next new line. The following
code,

int i; // this is a comment
int j;

parses as:

int i;
int j;

MikroElektronika: Development tools - Books - Compilers 37
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Token is the smallest element of a C program that is meaningful to the compiler.
The parser separates tokens from the input stream by creating the longest token
possible using the input characters in a left–to–right scan.

mikroC recognizes following kinds of tokens:

- keywords,
- identifiers,
- constants,
- operators,
- punctuators (also known as separators).

Token Extraction Example

Here is an example of token extraction. Let’s have the following code sequence:

inter = a+++b;

First, note that inter would be parsed as a single identifier, rather than as the
keyword int followed by the identifier er.

The programmer who wrote the code might have intended to write

inter = a + (++b)

but it won’t work that way. The compiler would parse it as the following seven
tokens:

inter // identifier
= // assignment operator
a // identifier
++ // postincrement operator
+ // addition operator
b // identifier
; // semicolon separator

Note that +++ parses as ++ (the longest token possible) followed by +.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

38 MikroElektronika: Development tools - Books - Compilers

page

TOKENS

Constants or literals are tokens representing fixed numeric or character values.

mikroC supports:

- integer constants,
- floating point constants,
- character constants,
- string constants (strings literals),
- enumeration constants.

The data type of a constant is deduced by the compiler using such clues as numer-
ic value and the format used in the source code.

Integer Constants

Integer constants can be decimal (base 10), hexadecimal (base 16), binary (base
2), or octal (base 8). In the absence of any overriding suffixes, the data type of an
integer constant is derived from its value.

Long and Unsigned Suffixes

The suffix L (or l) attached to any constant forces the constant to be represented
as a long. Similarly, the suffix U (or u) forces the constant to be unsigned. You
can use both L and U suffixes on the same constant in any order or case: ul, Lu,
UL, etc.

In the absence of any suffix (U, u, L, or l), constant is assigned the “smallest” of
the following types that can accommodate its value: short, unsigned short,
int, unsigned int, long int, unsigned long int.

MikroElektronika: Development tools - Books - Compilers 39
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

CONSTANTS

Otherwise:

If the constant has a U or u suffix, its data type will be the first of the following
that can accommodate its value: unsigned short, unsigned int, unsigned
long int.

If the constant has an L or l suffix, its data type will be the first of the following
that can accommodate its value: long int, unsigned long int.

If the constant has both U and L suffixes, (ul, lu, Ul, lU, uL, Lu, LU, or UL), its
data type will be unsigned long int.

Decimal Constants

Decimal constants from -2147483648 to 4294967295 are allowed. Constants
exceeding these bounds will produce an “Out of range” error. Decimal constants
must not use an initial zero. An integer constant that has an initial zero is interpret-
ed as an octal constant.

In the absence of any overriding suffixes, the data type of a decimal constant is
derived from its value, as shown below:

< -2147483648 Error: Out of range!
-2147483648 .. -32769 long
-32768 .. -129 int
-128 .. 127 short
128 .. 255 unsigned short
256 .. 32767 int
32768 .. 65535 unsigned int
65536 .. 2147483647 long
2147483648 .. 4294967295 unsigned long

> 4294967295 Error: Out of range!

Hexadecimal Constants

All constants starting with 0x (or 0X) are taken to be hexadecimal. In the absence
of any overriding suffixes, the data type of an hexadecimal constant is derived
from its value, according to the rules presented above. For example, 0xC367 will
be treated as unsigned int.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

40 MikroElektronika: Development tools - Books - Compilers

page

Binary Constants

All constants starting with 0b (or 0B) are taken to be binary. In the absence of any
overriding suffixes, the data type of an binary constant is derived from its value,
according to the rules presented above. For example, 0b11101 will be treated as
short.

Octal Constants

All constants with an initial zero are taken to be octal. If an octal constant contains
the illegal digits 8 or 9, an error is reported. In the absence of any overriding suf-
fixes, the data type of an octal constant is derived from its value, according to the
rules presented above. For example, 0777 will be treated as int.

Floating Point Constants

A floating-point constant consists of:

- Decimal integer,
- Decimal point,
- Decimal fraction,
- e or E and a signed integer exponent (optional),
- Type suffix: f or F or l or L (optional).

You can omit either the decimal integer or the decimal fraction (but not both). You
can omit either the decimal point or the letter e (or E) and the signed integer expo-
nent (but not both). These rules allow for conventional and scientific (exponent)
notations.

Negative floating constants are taken as positive constants with the unary operator
minus (-) prefixed.

mikroC limits floating-point constants to range
±1.17549435082E38 .. ±6.80564774407E38.

mikroC floating-point constants are of type double. Note that mikroC’s imple-
mentation of ANSI Standard considers float and double (together with the
long double variant) to be the same type.

MikroElektronika: Development tools - Books - Compilers 41
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Character Constants

A character constant is one or more characters enclosed in single quotes, such as
'A', '+', or '\n'. In C, single-character constants have data type int. Multi-
character constants are referred to as string constants or string literals. For more
information refer to String Constants.

Escape Sequences

The backslash character (\) is used to introduce an escape sequence, which allows
the visual representation of certain nongraphic characters. One of the most com-
mon escape constants is the newline character (\n).

A backslash is used with octal or hexadecimal numbers to represent the ASCII
symbol or control code corresponding to that value; for example, '\x3F' for the
question mark. You can use any string of up to three octal or any number of hexa-
decimal numbers in an escape sequence, provided that the value is within legal
range for data type char (0 to 0xFF for mikroC). Larger numbers will generate the
compiler error “Numeric constant too large”.

For example, the octal number \777 is larger than the maximum value allowed
(\377) and will generate an error. The first nonoctal or nonhexadecimal character
encountered in an octal or hexadecimal escape sequence marks the end of the
sequence.

Note: You must use \\ to represent an ASCII backslash, as used in operating sys-
tem paths.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

42 MikroElektronika: Development tools - Books - Compilers

page

The following table shows the available escape sequences in mikroC:

MikroElektronika: Development tools - Books - Compilers 43
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Sequence Value Char What it does

\a 0x07 BEL Audible bell

\b 0x08 BS Backspace

\f 0x0C FF Formfeed

\n 0x0A LF Newline (Linefeed)

\r 0x0D CR Carriage Return

\t 0x09 HT Tab (horizontal)

\v 0x0B VT Vertical Tab

\\ 0x5C \ Backslash

\' 0x27 ' Single quote
(Apostrophe)

\" 0x22 " Double quote

\? 0x3F ? Question mark

\O any O = string of up to 3
octal digits

\xH any H = string of hex dig-
its

\XH any H = string of hex dig-
its

String Constants

String constants, also known as string literals, are a special type of constants
which store fixed sequences of characters. A string literal is a sequence of any
number of characters surrounded by double quotes:

"This is a string."

The null string, or empty string, is written like "". A literal string is stored inter-
nally as the given sequence of characters plus a final null character. A null string is
stored as a single null character.

The characters inside the double quotes can include escape sequences, e.g.

"\t\"Name\"\\\tAddress\n\n"

Adjacent string literals separated only by whitespace are concatenated during the
parsing phase. For example:

"This is " "just"

" an example."

is an equivalent to

"This is just an example."

Line continuation with backslash

You can also use the backslash (\) as a continuation character to extend a string
constant across line boundaries:

"This is really \

a one-line string."

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

44 MikroElektronika: Development tools - Books - Compilers

page

Enumeration Constants

Enumeration constants are identifiers defined in enum type declarations. The iden-
tifiers are usually chosen as mnemonics to assist legibility. Enumeration constants
are of int type. They can be used in any expression where integer constants are
valid.

For example:

enum weekdays {SUN = 0, MON, TUE, WED, THU, FRI, SAT};

The identifiers (enumerators) used must be unique within the scope of the enum
declaration. Negative initializers are allowed. See Enumerations for details of
enum declarations.

Pointer Constants

A pointer or the pointed-at object can be declared with the const modifier.
Anything declared as a const cannot be have its value changed. It is also illegal
to create a pointer that might violate the nonassignability of a constant object.

Constant Expressions

A constant expression is an expression that always evaluates to a constant and
consists only of constants (literals) or symbolic constants. It is evaluated at com-
pile-time and it must evaluate to a constant that is in the range of representable
values for its type. Constant expressions are evaluated just as regular expressions
are.

Constant expressions can consist only of the following: literals, enumeration con-
stants, simple constants (no constant arrays or structures), sizeof operators.

Constant expressions cannot contain any of the following operators, unless the
operators are contained within the operand of a sizeof operator: assignment,
comma, decrement, function call, increment.

You can use a constant expression anywhere that a constant is legal.

MikroElektronika: Development tools - Books - Compilers 45
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Keywords are words reserved for special purposes and must not be used as normal
identifier names.

Beside standard C keywords, all relevant SFR are defined as global variables and
represent reserved words that cannot be redefined (for example: TMR0, PCL, etc).
Probe the Code Assistant for specific letters (Ctrl+Space in Editor) or refer to
Predefined Globals and Constants.

Here is the alphabetical listing of keywords in C:

asm enum signed
auto extern sizeof
break float static
case for struct
char goto switch
const if typedef
continue int union
default long unsigned
do register void
double return volatile

else short while

Also, mikroC includes a number of predefined identifiers used in libraries. You
could replace these by your own definitions, if you plan to develop your own
libraries. For more information, see mikroC Libraries.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

46 MikroElektronika: Development tools - Books - Compilers

page

KEYWORDS

Identifiers are arbitrary names of any length given to functions, variables, symbol-
ic constants, user-defined data types, and labels. All these program elements will
be referred to as objects throughout the help (not to be confused with the meaning
of object in object-oriented programming).

Identifiers can contain the letters a to z and A to Z, the underscore character “_”,
and the digits 0 to 9. The only restriction is that the first character must be a letter
or an underscore.

Case Sensitivity

mikroC identifiers are not case sensitive at present, so that Sum, sum, and suM rep-
resent an equivalent identifier. However, future versions of mikroC will offer the
option of activating/suspending case sensitivity. The only exceptions at present are
the reserved words main and interrupt which must be written in lowercase.

Uniqueness and Scope

Although identifier names are arbitrary (within the rules stated), errors result if the
same name is used for more than one identifier within the same scope and sharing
the same name space. Duplicate names are legal for different name spaces regard-
less of scope rules. For more information on scope, refer to Scope and Visibility.

MikroElektronika: Development tools - Books - Compilers 47
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

IDENTIFIERS

The mikroC punctuators (also known as separators) include brackets, parentheses,
braces, comma, semicolon, colon, asterisk, equal sign, and pound sign. Most of
these punctuators also function as operators.

Brackets

Brackets [] indicate single and multidimensional array subscripts:

char ch, str[] = "mikro";

int mat[3][4]; /* 3 x 4 matrix */
ch = str[3]; /* 4th element */

Parentheses

Parentheses () are used to group expressions, isolate conditional expressions,
and indicate function calls and function parameters:

d = c * (a + b); /* override normal precedence */
if (d == z) ++x; /* essential with conditional statement */
func(); /* function call, no args */
void func2(int n); /* function declaration with parameters */

Parentheses are recommended in macro definitions to avoid potential precedence
problems during expansion:

#define CUBE(x) ((x)*(x)*(x))

For more information, refer to Expressions and Operators Precedence.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

48 MikroElektronika: Development tools - Books - Compilers

page

PUNCTUATORS

Braces

Braces { } indicate the start and end of a compound statement:

if (d == z) {
++x;
func();

}

The closing brace serves as a terminator for the compound statement, so a semi-
colon is not required after the }, except in structure declarations. Often, the semi-
colon is illegal, as in

if (statement)
{ ... }; /* illegal semicolon! */

else
{ ... };

For more information, refer to Compound Statements.

Comma

The comma (,) separates the elements of a function argument list:

void func(int n, float f, char ch);

The comma is also used as an operator in comma expressions. Mixing the two
uses of comma is legal, but you must use parentheses to distinguish them. Note
that (exp1, exp2) evalutates both but is equal to the second:

/* call func with two args */
func(i, j);

/* also calls func with two args! */
func((exp1, exp2), (exp3, exp4, exp5));

MikroElektronika: Development tools - Books - Compilers 49
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Semicolon

The semicolon (;) is a statement terminator. Any legal C expression (including the
empty expression) followed by a semicolon is interpreted as a statement, known as
an expression statement. The expression is evaluated and its value is discarded. If
the expression statement has no side effects, mikroC might ignore it.

a + b; /* evaluate a + b, but discard value */
++a; /* side effect on a, but discard value of ++a */
; /* empty expression or a null statement */

Semicolons are sometimes used to create an empty statement:

for (i = 0; i < n; i++) ;

For more information, see Statements.

Colon

Use the colon (:) to indicate a labeled statement. For example:

start: x = 0;
...

goto start;

Labels are discussed in Labeled Statements.

Asterisk (Pointer Declaration)

The asterisk (*) in a declaration denotes the creation of a pointer to a type:

char *char_ptr; /* a pointer to char is declared */

You can also use the asterisk as an operator to either dereference a pointer or as
the multiplication operator:

i = *char_ptr;

For more information, see Pointers.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

50 MikroElektronika: Development tools - Books - Compilers

page

Equal Sign

The equal sign (=) separates variable declarations from initialization lists:

int test[5] = {1, 2, 3, 4, 5};
int x = 5;

The equal sign is also used as the assignment operator in expressions:

int a, b, c;
a = b + c;

For more information, see Assignment Operators.

Pound Sign (Preprocessor Directive)

The pound sign (#) indicates a preprocessor directive when it occurs as the first
nonwhitespace character on a line. It signifies a compiler action, not necessarily
associated with code generation. See Preprocessor Directives for more informa-
tion.

and ## are also used as operators to perform token replacement and merging
during the preprocessor scanning phase. See Preprocessor Operators.

MikroElektronika: Development tools - Books - Compilers 51
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Objects

An object is a specific region of memory that can hold a fixed or variable value
(or set of values). To prevent confusion, this use of the word object is different
from the more general term used in object-oriented languages. Our definiton of the
word would encompass functions, variables, symbolic constants, user-defined data
types, and labels.

Each value has an associated name and type (also known as a data type). The
name is used to access the object. This name can be a simple identifier, or it can
be a complex expression that uniquely references the object.

Objects and Declarations

Declarations establish the necessary mapping between identifiers and objects.
Each declaration associates an identifier with a data type.

Associating identifiers with objects requires each identifier to have at least two
attributes: storage class and type (sometimes referred to as data type). The mikroC
compiler deduces these attributes from implicit or explicit declarations in the
source code. Commonly, only the type is explicitly specified and the storage class
specifier assumes automatic value auto.

Generally speaking, an identifier cannot be legally used in a program before its
declaration point in the source code. Legal exceptions to this rule (known as for-
ward references) are labels, calls to undeclared functions, and struct or union tags.

The range of objects that can be declared includes:

variables; functions; types; arrays of other types; structure, union, and enumeration
tags; structure members; union members; enumeration constants; statement labels;
preprocessor macros.

The recursive nature of the declarator syntax allows complex declarators. You’ll
probably want to use typedefs to improve legibility if constructing complex
objects.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

52 MikroElektronika: Development tools - Books - Compilers

page

OBJECTS AND LVALUES

Lvalues

An lvalue is an object locator: an expression that designates an object. An example
of an lvalue expression is *P, where P is any expression evaluating to a non-null
pointer. A modifiable lvalue is an identifier or expression that relates to an object
that can be accessed and legally changed in memory. A const pointer to a constant,
for example, is not a modifiable lvalue. A pointer to a constant can be changed
(but its dereferenced value cannot).

Historically, the l stood for “left”, meaning that an lvalue could legally stand on
the left (the receiving end) of an assignment statement. Now only modifiable lval-
ues can legally stand to the left of an assignment operator. For example, if a and b
are nonconstant integer identifiers with properly allocated memory storage, they
are both modifiable lvalues, and assignments such as a = 1 and b = a + b are
legal.

Rvalues

The expression a + b is not an lvalue: a + b = a is illegal because the expres-
sion on the left is not related to an object. Such expressions are sometimes called
rvalues (short for right values).

MikroElektronika: Development tools - Books - Compilers 53
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Scope

The scope of identifier is the part of the program in which the identifier can be
used to access its object. There are different categories of scope: block (or local),
function, function prototype, and file. These depend on how and where identifiers
are declared.

Block Scope
The scope of an identifier with block (or local) scope starts at the declaration point
and ends at the end of the block containing the declaration (such a block is known
as the enclosing block). Parameter declarations with a function definition also
have block scope, limited to the scope of the function body.

File Scope
File scope identifiers, also known as globals, are declared outside of all blocks;
their scope is from the point of declaration to the end of the source file.

Function Scope
The only identifiers having function scope are statement labels. Label names can
be used with goto statements anywhere in the function in which the label is
declared. Labels are declared implicitly by writing label_name: followed by a
statement. Label names must be unique within a function.

Function Prototype Scope
Identifiers declared within the list of parameter declarations in a function proto-
type (not part of a function definition) have function prototype scope. This scope
ends at the end of the function prototype.

Tag Scope
Structure, union, and enumeration tags are somewhat specific in mikroC. Due to
separate name space, tags are virtually removed from normal scope rules: they
have file scope, but override any block rules. Thus, deeply nested declaration of
structure is identical to an equivalent global declaration. As a consequence, once
that you have defined a tag, you cannot redefine it in any block within file.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

54 MikroElektronika: Development tools - Books - Compilers

page

SCOPE AND VISIBILITY

Visibility

The visibility of an identifier is that region of the program source code from which
legal access can be made to the identifier’s associated object.

Scope and visibility usually coincide, though there are circumstances under which
an object becomes temporarily hidden by the appearance of a duplicate identifier:
the object still exists but the original identifier cannot be used to access it until the
scope of the duplicate identifier is ended.

Technically, visibility cannot exceed scope, but scope can exceed visibility. Take a
look at the following example:

void f (int i) {
int j; // auto by default
j = 3; // int i and j are in scope and visible

{ // nested block
double j; // j is local name in the nested block
j = 0.1; // i and double j are visible;

// int j = 3 in scope but hidden
}

// double j out of scope
j += 1; // int j visible and = 4

}
// i and j are both out of scope

MikroElektronika: Development tools - Books - Compilers 55
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Name space is the scope within which an identifier must be unique. C uses four
distinct categories of identifiers:

Goto label names
These must be unique within the function in which they are declared.

Structure, union, and enumeration tags
These must be unique within the block in which they are defined. Tags declared
outside of any function must be unique.

Structure and union member names
These must be unique within the structure or union in which they are defined.
There is no restriction on the type or offset of members with the same member
name in different structures.

Variables, typedefs, functions, and enumeration members
These must be unique within the scope in which they are defined. Externally
declared identifiers must be unique among externally declared variables.

Duplicate names are legal for different name spaces regardless of scope rules.

For example:

int blue = 73;

{ // open a block
enum colors { black, red, green, blue, violet, white } c;
/* enumerator blue hides outer declaration of int blue */

struct colors { int i, j; };
// ILLEGAL: colors duplicate tag

double red = 2;
// ILLEGAL: redefinition of red

}

blue = 37; // back in int blue scope

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

56 MikroElektronika: Development tools - Books - Compilers

page

NAME SPACES

Duration, closely related to storage class, defines the period during which the
declared identifiers have real, physical objects allocated in memory. We also dis-
tinguish between compile-time and run-time objects. Variables, for instance, unlike
typedefs and types, have real memory allocated during run time. There are two
kinds of duration: static and local.

Static Duration

Memory is allocated to objects with static duration as soon as execution is under-
way; this storage allocation lasts until the program terminates. Static duration
objects usually reside in fixed data segments allocated according to the memory
model in force. All globals have static duration. All functions, wherever defined,
are objects with static duration. Other variables can be given static duration by
using the explicit static or extern storage class specifiers.

In mikroC, static duration objects are not initialized to zero (or null) in the absence
of any explicit initializer.

An object can have static duration and local scope – see the example on the fol-
lowing page.

Local Duration

Local duration objects are also known as automatic objects. They are created on
the stack (or in a register) when the enclosing block or function is entered. They
are deallocated when the program exits that block or function. Local duration
objects must be explicitly initialized; otherwise, their contents are unpredictable.

The storage class specifier auto can be used when declaring local duration vari-
ables, but is usually redundant, because auto is the default for variables declared
within a block.

An object with local duration also has local scope, because it does not exist out-
side of its enclosing block. The converse is not true: a local scope object can have
static duration.

MikroElektronika: Development tools - Books - Compilers 57
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

DURATION

Here is an example of two objects with local scope, but with different duration:

void f() {
/* local duration var; init a upon every call to f */
int a = 1;

/* static duration var; init b only upon 1st call to f */
static int b = 1;

/* checkpoint! */
a++;
b++;

}

void main() {
/* At checkpoint, we will have: */
f(); // a=1, b=1, after first call,
f(); // a=1, b=2, after second call,
f(); // a=1, b=3, after third call,

// etc.
}

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

58 MikroElektronika: Development tools - Books - Compilers

page

C is strictly typed language, which means that every object, function, and expres-
sion need to have a strictly defined type, known in the time of compilation. Note
that C works exclusively with numeric types.

The type serves:

- to determine the correct memory allocation required initially,
- to interpret the bit patterns found in the object during subsequent accesses,
- in many type-checking situations, to ensure that illegal assignments are trapped.

mikroC supports many standard (predefined) and user-defined data types, includ-
ing signed and unsigned integers in various sizes, floating-point numbers in vari-
ous precisions, arrays, structures, and unions. In addition, pointers to most of these
objects can be established and manipulated in memory.

The type determines how much memory is allocated to an object and how the pro-
gram will interpret the bit patterns found in the object’s storage allocation. A given
data type can be viewed as a set of values (often implementation-dependent) that
identifiers of that type can assume, together with a set of operations allowed on
those values. The compile-time operator, sizeof, lets you determine the size in
bytes of any standard or user-defined type.

The mikroC standard libraries and your own program and header files must pro-
vide unambiguous identifiers (or expressions derived from them) and types so that
mikroC can consistently access, interpret, and (possibly) change the bit patterns in
memory corresponding to each active object in your program.

Type Categories

The fudamental types represent types that cannot be separated into smaller parts.
They are sometimes referred to as unstructured types. The fundamental types are
void, char, int, float, and double, together with short, long, signed, and
unsigned variants of some of these.

The derived types are also known as structured types. The derived types include
pointers to other types, arrays of other types, function types, structures, and
unions.

MikroElektronika: Development tools - Books - Compilers 59
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

TYPES

Arithmetic Types

The arithmetic type specifiers are built from the following keywords: void, char,
int, float, and double, together with prefixes short, long, signed, and
unsigned. From these keywords you can build the integral and floating-point
types. Overview of types is given on the following page.

Integral Types

Types char and int, together with their variants, are considered integral data
types. Variants are created by using one of the prefix modifiers short, long,
signed, and unsigned.

The table below is the overview of the integral types – keywords in parentheses
can be (and often are) omitted.

The modifiers signed and unsigned can be applied to both char and int. In
the absence of unsigned prefix, signed is automatically assumed for integral types.
The only exception is the char, which is unsigned by default. The keywords
signed and unsigned, when used on their own, mean signed int and
unsigned int, respectively.

The modifiers short and long can be applied only to the int. The keywords
short and long used on their own mean short int and long int, respective-
ly.

Floating-point Types

Types float and double, together with the long double variant, are consid-
ered floating-point types. mikroC’s implementation of ANSI Standard considers all
three to be the same type.

Floating point in mikroC is implemented using the Microchip AN575 32-bit for-
mat (IEEE 754 compliant).

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

60 MikroElektronika: Development tools - Books - Compilers

page

FUNDAMENTAL TYPES

Below is the overview of arithmetic types:

MikroElektronika: Development tools - Books - Compilers 61
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Type Size Range

(unsigned) char 8-bit 0 .. 255

signed char 8-bit - 128 .. 127

(signed) short (int) 8-bit - 128 .. 127

unsigned short (int) 8-bit 0 .. 255

(signed) int 16-bit -32768 .. 32767

unsigned (int) 16-bit 0 .. 65535

(signed) long (int) 32-bit -2147483648 .. 2147483647

unsigned long (int) 32-bit 0 .. 4294967295

float 32-bit ±1.17549435082E-38 ..
±6.80564774407E38

double 32-bit ±1.17549435082E-38 ..
±6.80564774407E38

long double 32-bit ±1.17549435082E-38 ..
±6.80564774407E38

Enumerations

An enumeration data type is used for representing an abstract, discreet set of val-
ues with appropriate symbolic names.

Enumeration Declaration

Enumeration is declared like this:

enum tag {enumeration-list};

Here, tag is an optional name of the enumeration; enumeration-list is a list
of discreet values, enumerators. The enumerators listed inside the braces are also
known as enumeration constants. Each is assigned a fixed integral value. In the
absence of explicit initializers, the first enumerator is set to zero, and each suc-
ceeding enumerator is set to one more than its predecessor.

Variables of enum type are declared same as variables of any other type. For
example, the following declaration

enum colors {black, red, green, blue, violet, white} c;

establishes a unique integral type, colors, a variable c of this type, and a set of
enumerators with constant integer values (black = 0, red = 1, ...). In C, a
variable of an enumerated type can be assigned any value of type int – no type
checking beyond that is enforced. That is:

c = red; // OK
c = 1; // Also OK, means the same

With explicit integral initializers, you can set one or more enumerators to specific
values. The initializer can be any expression yielding a positive or negative integer
value (after possible integer promotions). Any subsequent names without initializ-
ers will then increase by one. These values are usually unique, but duplicates are
legal.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

62 MikroElektronika: Development tools - Books - Compilers

page

The order of constants can be explicitly re-arranged. For example:

enum colors { black, // value 0
red, // value 1
green, // value 2
blue=6, // value 6
violet, // value 7
white=4 }; // value 4

Initializer expression can include previously declared enumerators. For example,
in the following declaration:

enum memory_sizes { bit = 1, nibble = 4 * bit,
byte = 2 * nibble, kilobyte = 1024 * byte };

nibble would acquire the value 4, byte the value 8, and kilobyte the value
8192.

Anonymous Enum Type

In our previous declaration, the identifier colors is the optional enumeration tag
that can be used in subsequent declarations of enumeration variables of type
colors:

enum colors bg, border; // declare variables bg and border

As with struct and union declarations, you can omit the tag if no further variables
of this enum type are required:

/* Anonymous enum type: */
enum {black, red, green, blue, violet, white} color;

Enumeration Scope

Enumeration tags share the same name space as structure and union tags.
Enumerators share the same name space as ordinary variable identifiers. For more
information, consult Name Spaces.

MikroElektronika: Development tools - Books - Compilers 63
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Void Type

void is a special type indicating the absence of any value. There are no objects of
void; instead, void is used for deriving more complex types.

Void Functions

Use the void keyword as a function return type if the function does not return a
value. For example:

void print_temp(char temp) {
Lcd_Out_Cp("Temperature:");
Lcd_Out_Cp(temp);
Lcd_Chr_Cp(223); // degree character
Lcd_Chr_Cp('C');

}

Use void as a function heading if the function does not take any parameters.
Alternatively, you can just write empty parentheses:

main(void) { // same as main()
...

}

Generic Pointers

Pointers can be declared as void, meaning that they can point to any type. These
pointers are sometimes called generic.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

64 MikroElektronika: Development tools - Books - Compilers

page

The derived types are also known as structured types. These types are used as ele-
ments in creating more complex user-defined types.

Arrays

Array is the simplest and most commonly used structured type. Variable of array
type is actually an array of objects of the same type. These objects represent ele-
ments of an array and are identified by their position in array. An array consists of
a contiguous region of storage exactly large enough to hold all of its elements.

Array Declaration

Array declaration is similar to variable declaration, with the brackets added after
identifer:

type array_name[constant-expression]

This declares an array named as array_name composed of elements of type.
The type can be scalar type (except void), user-defined type, pointer, enumera-
tion, or another array. Result of the constant-expression within the brackets
determines the number of elements in array. If an expression is given in an array
declarator, it must evaluate to a positive constant integer. The value is the number
of elements in the array.

Each of the elements of an array is numbered from 0 through the number of ele-
ments minus one. If the number is n, elements of array can be approached as
variables array_name[0] .. array_name[n-1] of type.

Here are a few examples of array declaration:

#define MAX = 50

int vector_one[10]; /* an array of 10 integers */
float vector_two[MAX]; /* an array of 50 floats */
float vector_three[MAX - 20]; /* an array of 30 floats */

MikroElektronika: Development tools - Books - Compilers 65
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

DERIVED TYPES

Array Initialization

Array can be initialized in declaration by assigning it a comma-delimited sequence
of values within braces. When initializing an array in declaration, you can omit the
number of elements – it will be automatically determined acording to the number
of elements assigned. For example:

/* An array which holds number of days in each month: */
int days[12] = {31,28,31,30,31,30,31,31,30,31,30,31};

/* This declaration is identical to the previous one */
int days[] = {31,28,31,30,31,30,31,31,30,31,30,31};

If you specify both the length and starting values, the number of starting values
must not exceed the specified length. Vice versa is possible, when the trailing
“excess” elements will be assigned some encountered runtime values from memo-
ry.

In case of array of char, you can use a shorter string literal notation. For example:

/* The two declarations are identical: */
const char msg1[] = {'T', 'e', 's', 't', '\0'};
const char msg2[] = "Test";

For more information on string literals, refer to String Constants.

Arrays in Expressions

When name of the array comes up in expression evaluation (except with operators
& and sizeof), it is implicitly converted to the pointer pointing to array’s first
element. See Arrays and Pointers for more information.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

66 MikroElektronika: Development tools - Books - Compilers

page

Multi-dimensional Arrays

An array is one-dimensional if it is of scalar type. One-dimensional arrays are
sometimes referred to as vectors.

Multidimensional arrays are constructed by declaring arrays of array type. These
arrays are stored in memory in such way that the right most subscript changes
fastest, i.e. arrays are stored “in rows”. Here is a sample 2-dimensional array:

float m[50][20]; /* 2-dimensional array of size 50x20 */

Variable m is an array of 50 elements, which in turn are arrays of 20 floats each.
Thus, we have a matrix of 50x20 elements: the first element is m[0][0], the last
one is m[49][19]. First element of the 5th row would be m[0][5].

If you are not initializing the array in the declaration, you can omit the first dimen-
sion of multi-dimensional array. In that case, array is located elsewhere, e.g. in
another file. This is a commonly used technique when passing arrays as function
parameters:

int a[3][2][4]; /* 3-dimensional array of size 3x2x4 */

void func(int n[][2][4]) { /* we can omit first dimension */
//...
n[2][1][3]++; /* increment the last element*/

}//~

void main() {
//...
func(a);

}//~!

You can initialize a multi-dimensional array with an appropriate set of values
within braces. For example:

int a[3][2] = {{1,2}, {2,6}, {3,7}};

MikroElektronika: Development tools - Books - Compilers 67
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Pointers

Pointers are special objects for holding (or “pointing to”) memory addresses. In C,
address of an object in memory can be obtained by means of unary operator &. To
reach the pointed object, we use indirection operator (*) on a pointer.

A pointer of type “pointer to object of type” holds the address of (that is, points to)
an object of type. Since pointers are objects, you can have a pointer pointing to a
pointer (and so on). Other objects commonly pointed at include arrays, structures,
and unions.

A pointer to a function is best thought of as an address, usually in a code segment,
where that function’s executable code is stored; that is, the address to which con-
trol is transferred when that function is called.

Although pointers contain numbers with most of the characteristics of unsigned
integers, they have their own rules and restrictions for declarations, assignments,
conversions, and arithmetic. The examples in the next few sections illustrate these
rules and restrictions.

Note: Currently, mikroC does not support pointers to functions, but this feature
will be implemented in future versions.

Pointer Declarations

Pointers are declared same as any other variable, but with * ahead of identifier.
Type at the beginning of declaration specifies the type of a pointed object. A point-
er must be declared as pointing to some particular type, even if that type is void,
which really means a pointer to anything. Pointers to void are often called gener-
ic pointers, and are treated as pointers to char in mikroC.

If type is any predefined or user-defined type, including void, the declaration

type *p; /* Uninitialized pointer */

declares p to be of type “pointer to type”. All the scoping, duration, and visibility
rules apply to the p object just declared. You can view the declaration in this way:
if *p is an object of type, then p has to be a pointer to such objects.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

68 MikroElektronika: Development tools - Books - Compilers

page

Note: You must initialize pointers before using them! Our previously declared
pointer *p is not initialized (i.e. assigned a value), so it cannot be used yet.

Note: In case of multiple pointer declarations, each identifier requires an indirect
operator. For example:

int *pa, *pb, *pc;

/* is same as: */

int *pa;
int *pb;
int *pc;

Once declared, though, a pointer can usually be reassigned so that it points to an
object of another type. mikroC lets you reassign pointers without typecasting, but
the compiler will warn you unless the pointer was originally declared to be point-
ing to void. You can assign a void pointer to a non-void pointer – refer to Void
Type for details.

Null Pointers

A null pointer value is an address that is guaranteed to be different from any valid
pointer in use in a program. Assigning the integer constant 0 to a pointer assigns a
null pointer value to it. Instead of zero, the mnemonic NULL (defined in the stan-
dard library header files, such as stdio.h) can be used for legibility. All pointers
can be successfully tested for equality or inequality to NULL.

For example:

int *pn = 0; /* Here's one null pointer */
int *pn = NULL; /* This is an equivalent declaration */

/* We can test the pointer like this: */
if (pn == 0) { ... }

/* .. or like this: */
if (pn == NULL) { ... }

MikroElektronika: Development tools - Books - Compilers 69
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Pointer Arithmetic

Pointer arithmetic in C is limited to:

- assigning one pointer to another,
- comparing two pointers,
- comparing pointer to zero (NULL),
- adding/subtracting pointer and an integer value,
- subtracting two pointers.

The internal arithmetic performed on pointers depends on the memory model in
force and the presence of any overriding pointer modifiers. When performing
arithmetic with pointers, it is assumed that the pointer points to an array of
objects.

Arrays and Pointers

Arrays and pointers are not completely independent types in C. When name of the
array comes up in expression evaluation (except with operators & and sizeof), it
is implicitly converted to the pointer pointing to array’s first element. Due to this
fact, arrays are not modifiable lvalues.

Brackets [] indicate array subscripts. The expression

id[exp]

is defined as

*((id) + (exp))

where either:

id is a pointer and exp is an integer, or
id is an integer and exp is a pointer.

The following is true:

&a[i] = a + i
a[i] = *(a + i)

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

70 MikroElektronika: Development tools - Books - Compilers

page

According to these guidelines, we can write:

pa = &a[4]; // pa points to a[4]
x = *(pa + 3); // x = a[7]
y = *pa + 3; // y = a[4] + 3

Also, you need to be careful with operator precedence:

*pa++; // is equal to *(pa++), increments the pointer!
(*pa)++; // increments the pointed object!

Following examples are also valid, but better avoid this syntax as it can make the
code really illegible:

(a + 1)[i] = 3;
// same as: *((a + 1) + i) = 3, i.e. a[i + 1] = 3

(i + 2)[a] = 0;
// same as: *((i + 2) + a) = 0, i.e. a[i + 2] = 0

Assignment and Comparison

You can use a simple assignment operator (=) to assign value of one pointer to
another if they are of the same type. If they are of different types, you must use a
typecast operator. Explicit type conversion is not necessary if one of the pointers is
generic (of void type).

Assigning the integer constant 0 to a pointer assigns a null pointer value to it. The
mnemonic NULL (defined in the standard library header files, such as stdio.h)
can be used for legibility.

Two pointers pointing into the same array may be compared by using relational
operators ==, !=, <, <=, >, and >=. Results of these operations are same as if they
were used on subscript values of array elements in question:

int *pa = &a[4], *pb = &a[2];

if (pa > pb) { ...
// this will be executed as 4 is greater than 2

}

MikroElektronika: Development tools - Books - Compilers 71
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

You can also compare pointers to zero value – this tests if pointer actually points
to anything. All pointers can be successfully tested for equality or inequality to
NULL:

if (pa == NULL) { ... }
if (pb != NULL) { ... }

Note: Comparing pointers pointing to different objects/arrays can be performed at
programmer’s responsibility — precise overview of data’s physical storage is
required.

Pointer Addition

You can use operators +, ++, and += to add an integral value to a pointer. The
result of addition is defined only if pointer points to an element of an array and if
the result is a pointer pointing into the same array (or one element beyond it).

If a pointer is declared to point to type, adding an integral value to the pointer
advances the pointer by that number of objects of type. Informally, you can think
of P+n as advancing the pointer P by (n*sizeof(type)) bytes, as long as the
pointer remains within the legal range (first element to one beyond the last ele-
ment). If type has size of 10 bytes, then adding 5 to a pointer to type advances
the pointer 50 bytes in memory. In case of void type, size of the step is one byte.

For example:

int a[10]; // array a containing 10 elements of int
int *pa = &a[0]; // pa is pointer to int, pointing to a[0]

*(pa + 3) = 6; // pa+3 is a pointer pointing to a[3],
// so a[3] now equals 6

pa++; // pa now points to the next element of array, a[1]

There is no such element as “one past the last element”, of course, but a pointer is
allowed to assume such a value. C “guarantees” that the result of addition is
defined even when pointing to one element past array. If P points to the last array
element, P+1 is legal, but P+2 is undefined.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

72 MikroElektronika: Development tools - Books - Compilers

page

This allows you to write loops which access the array elements in a sequence by
means of incrementing pointer — in the last iteration you will have a pointer
pointing to one element past an array, which is legal. However, applying the indi-
rection operator (*) to a “pointer to one past the last element” leads to undefined
behavior.

For example:

void f (some_type a[], int n) {
/* function f handles elements of array a; */
/* array a has n elements of some_type */

int i;
some_type *p = &a[0];

for (i = 0; i < n; i++) {
/* .. here we do something with *p .. */

p++; /* .. and with the last iteration p exceeds
the last element of array a */

}
/* at this point, *p is undefined! */

}

Pointer Subtraction

Similar to addition, you can use operators -, --, and -= to subtract an integral
value from a pointer.

Also, you may subtract two pointers. Difference will equal the distance between
the two pointed addresses, in bytes.

For example:

int a[10];
int *pi1 = &a[0], *pi2 = &[4];
i = pi2 - pi1; // i equals 8
pi2 -= (i >> 1); // pi2 = pi2 - 4: pi2 now points to a[0]

MikroElektronika: Development tools - Books - Compilers 73
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Structures

A structure is a derived type usually representing a user-defined collection of
named members (or components). The members can be of any type, either funda-
mental or derived (with some restrictions to be noted later), in any sequence. In
addition, a structure member can be a bit field type not allowed elsewhere.

Unlike arrays, structures are considered single objects. The mikroC structure type
lets you handle complex data structures almost as easily as single variables.

Note: mikroC does not support anonymous structures (ANSI divergence).

Structure Declaration and Initialization

Structures are declared using the keyword struct:

struct tag { member-declarator-list };

Here, tag is the name of the structure; member-declarator-list is a list of
structure members, actually a list of variable declarations. Variables of structured
type are declared same as variables of any other type.

The member type cannot be the same as the struct type being currently declared.
However, a member can be a pointer to the structure being declared, as in the fol-
lowing example:

struct mystruct { mystruct s;}; /* illegal! */
struct mystruct { mystruct *ps;}; /* OK */

Also, a structure can contain previously defined structure types when declaring an
instance of a declared structure. Here is an example:

/* Structure defining a dot: */
struct Dot {float x, y;};

/* Structure defining a circle: */
struct Circle {

double r;
struct Dot center;

} o1, o2; /* declare variables o1 and o2 of circle type */

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

74 MikroElektronika: Development tools - Books - Compilers

page

Note that you can omit structure tag, but then you cannot declare additional
objects of this type elsewhere. For more information, see the “Untagged
Structures” below.

Structure is initialized by assigning it a comma-delimited sequence of values with-
in braces, similar to array. Referring to declarations from the previous example:

/* Declare and initialize dots p and q: */
struct Dot p = {1., 1.}, q = {3.7, -0.5};

/* Initialize already declared circles o1 and o2: */
o1 = {1, {0, 0}}; // r is 1, center is at (0, 0)
o2 = {4, { 1.2, -3 }}; // r is 4, center is at (1.2, -3)

Incomplete Declarations

Incomplete declarations are also known as forward declarations. A pointer to a
structure type A can legally appear in the declaration of another structure B before
A has been declared:

struct A; // incomplete
struct B {struct A *pa;};
struct A {struct B *pb;};

The first appearance of A is called incomplete because there is no definition for it
at that point. An incomplete declaration is allowed here, because the definition of
B doesn’t need the size of A.

Untagged Structures and Typedefs

If you omit the structure tag, you get an untagged structure. You can use untagged
structures to declare the identifiers in the comma-delimited struct-id-list to
be of the given structure type (or derived from it), but you cannot declare addition-
al objects of this type elsewhere.

It is possible to create a typedef while declaring a structure, with or without a tag:

typedef struct { ... } Mystruct;
Mystruct s, *ps, arrs[10];

MikroElektronika: Development tools - Books - Compilers 75
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Structure Assignment

Variables of same structured type may be assigned one to another by means of
simple assignment operator (=). This will copy the entire contents of the variable
to destination, regardless of the inner complexitiy of a given structure.

Note that two variables are of same structured type only if they were both defined
by the same instruction or were defined using the same type identifier. For exam-
ple:

/* a and b are of the same type: */
struct {int m1, m2;} a, b;

/* But c and d are _not_ of the same type although
their structure descriptions are identical: */

struct {int m1, m2;} c;
struct {int m1, m2;} d;

Size of Structure

You can get size of the structure in memory by means of operator sizeof. Size of
the structure does not necessarily need to be equal to the sum of its members’
sizes. It is often greater due to certain limitations of memory storage.

Structures and Functions

A function can return a structure type or a pointer to a structure type:

mystruct func1(); // func1() returns a structure
mystruct *func2(); // func2() returns pointer to structure

A structure can be passed as an argument to a function in the following ways:

void func1(mystruct s); // directly
void func2(mystruct *sptr); // via pointer

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

76 MikroElektronika: Development tools - Books - Compilers

page

Structure Member Access

Structure and union members are accessed using the following two selection oper-
ators:

. (period)
-> (right arrow)

The operator . is called the direct member selector and it is used to directly access
one of the structure’s members. Suppose that the object s is of struct type S. Then
if m is a member identifier of type M declared in s, the expression

s.m // direct access to member m

is of type M, and represents the member object m in s.

The operator -> is called the indirect (or pointer) member selector. Suppose that
ps is a pointer to s. Then if m is a member identifier of type M declared in s, the
expression

ps->m // indirect access to member m;
// identical to (*ps).m

is of type M, and represents the member object m in s. The expression ps->m is a
convenient shorthand for (*ps).m.

For example:

struct mystruct {
int i; char str[10]; double d;

} s, *sptr = &s;
.
.
.

s.i = 3; // assign to the i member of mystruct s
sptr -> d = 1.23; // assign to the d member of mystruct s

The expression s.m is an lvalue, provided that s is an lvalue and m is not an array
type. The expression sptr->m is an lvalue unless m is an array type.

MikroElektronika: Development tools - Books - Compilers 77
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Accessing Nested Structures

If structure B contains a field whose type is structure A, the members of A can be
accessed by two applications of the member selectors:

struct A {
int j; double x;

};
struct B {

int i; struct A a; double d;
} s, *sptr;

//...

s.i = 3; // assign 3 to the i member of B
s.a.j = 2; // assign 2 to the j member of A
sptr->d = 1.23; // assign 1.23 to the d member of B
sptr->a.x = 3.14; // assign 3.14 to x member of A

Structure Uniqueness

Each structure declaration introduces a unique structure type, so that in

struct A {
int i,j; double d;

} aa, aaa;

struct B {
int i,j; double d;

} bb;

the objects aa and aaa are both of type struct A, but the objects aa and bb are of
different structure types. Structures can be assigned only if the source and destina-
tion have the same type:

aa = aaa; /* OK: same type, member by member assignment */
aa = bb; /* ILLEGAL: different types */

/* but you can assign member by member: */
aa.i = bb.i;
aa.j = bb.j;
aa.d = bb.d;

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

78 MikroElektronika: Development tools - Books - Compilers

page

Unions

Union types are derived types sharing many of the syntactic and functional fea-
tures of structure types. The key difference is that a union allows only one of its
members to be “active” at any given time, the most recently changed member.

Note: mikroC does not support anonymous unions (ANSI divergence).

Union Declaration

Unions are declared same as structures, with the keyword union used instead of
struct:

union tag { member-declarator-list };

Unlike structures’ members, the value of only one of union’s members can be
stored at any time. Let’s have a simple example:

union myunion { // union tag is 'myunion'
int i;
double d;
char ch;

} mu, *pm = μ

The identifier mu, of type union myunion, can be used to hold a 2-byte int, a
4-byte double, or a single-byte char, but only one of these at any given time.

Size of Union

The size of a union is the size of its largest member. In our previous example, both
sizeof(union myunion) and sizeof(mu) return 4, but 2 bytes are unused
(padded) when mu holds an int object, and 3 bytes are unused when mu holds a
char.

Union Member Access

Union members can be accessed with the structure member selectors (. and ->),
but care is needed. Check the example on the following page.

MikroElektronika: Development tools - Books - Compilers 79
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Referring to declarations from the previous example:

mu.d = 4.016;
Lcd_Out_Cp(FloatToStr(mu.d)); // OK: displays mu.d = 4.016
Lcd_Out_Cp(IntToStr(mu.i)); // peculiar result

pm->i = 3;
Lcd_Out_Cp(IntToStr(mu.i)); // OK: displays mu.i = 3

The second Lcd_Out_Cp is legal, since mu.i is an integral type. However, the bit
pattern in mu.i corresponds to parts of the previously assigned double. As such,
it probably does not provide a useful integer interpretation.

When properly converted, a pointer to a union points to each of its members, and
vice versa.

Bit Fields

Bit fields are specified numbers of bits that may or may not have an associated
identifier. Bit fields offer a way of subdividing structures into named parts of user-
defined sizes.

mikroC implementation of bit fields requires you to set aside a structure for the
purpose, i.e. you cannot have a structure containing bit fields and other objects.
Bit fields structure can contain up to 8 bits.

You cannot take the address of a bit field.

Note: If you need to handle specific bits of 8-bit variables (char and unsigned
short) or registers, you don’t need to declare bit fields. Much more elegant solu-
tion is to use mikroC’s intrinsic ability for individual bit access — see Accessing
Individual Bits for more information.

Bit Fields Declaration

Bit fields can be declared only in structures. Declare a structure normally, and
assign individual fields like this (fields need to be unsigned):

struct tag { unsigned bitfield-declarator-list; }

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

80 MikroElektronika: Development tools - Books - Compilers

page

Here, tag is an optional name of the structure; bitfield-declarator-list is
a list of bit fields. Each component identifer requires a colon and its width in bits
to be explicitly specified. Total width of all components cannot exceed one byte (8
bits).

As an object, bit fields structure takes one byte. Individual fields are packed with-
in byte from right to left. In bitfield-declarator-list, you can omit identi-
fier(s) to create artificial “padding”, thus skipping irrelevant bits.

For example, if we need to manipulate only bits 2–4 of a register as one block, we
could create a structure:

struct {
unsigned : 2, // Skip bits 0 and 1, no identifier here
mybits : 3; // Relevant bits 2, 3, and 4

// Bits 5, 6, and 7 are implicitly left out
} myreg;

Here is an example:

typedef struct {
prescaler : 2; timeronoff : 1; postscaler : 4;} mybitfield;

which declares structured type mybitfield containing three components:
prescaler (bits 0 and 1), timeronoff (bit 2), and postscaler (bits 3, 4, 5,
and 6).

Bit Fields Access

Bit fields can be accessed in same way as the structure members. Use direct and
indirect member selector (. and ->). For example, we could work with our
previously declared mybitfield like this:

// Declare a bit field TimerControl:
mybitfield TimerControl;

void main() {
TimerControl.prescaler = 0;
TimerControl.timeronoff = 1;
TimerControl.postscaler = 3;
T2CON = TimerControl;

}

MikroElektronika: Development tools - Books - Compilers 81
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

C is strictly typed language, with each operator, statement and function demanding
appropriately typed operands/arguments. However, we often have to use objects of
“mismatching” types in expressions. In that case, type conversion is needed.
Conversion of object of one type is changing it to the same object of another type
(i.e. applying another type to a given object). C defines a set of standard conver-
sions for built-in types, provided by compiler when necessary.

Conversion is required in following situations:

- if statement requires an expression of particular type (according to language
definition), and we use an expression of different type,

- if operator requires an operand of particular type, and we use an operand of
different type,

- if a function requires a formal parameter of particular type, and we pass it an
object of different type,

- if an expression following the keyword return does not match the declared
function return type,

- if intializing an object (in declaration) with an object of different type.

In these situations, compiler will provide an automatic implicit conversion of
types, without any user interference. Also, user can demand conversion explicitly
by means of typecast operator. For more information, refer to Explicit
Typecasting.

Standard Conversions

Standard conversions are built in C. These conversions are performed automatical-
ly, whenever required in the program. They can be also explicitly required by
means of typecast operator (refer to Explicit Typecasting).

The basic rule of automatic (implicit) conversion is that the operand of simpler
type is converted (promoted) to the type of more complex operand. Then, type of
the result is that of more complex operand.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

82 MikroElektronika: Development tools - Books - Compilers

page

TYPES CONVERSIONS

Arithmetic Conversions

When you use an arithmetic expression, such as a+b, where a and b are of differ-
ent arithmetic types, mikroC performs implicit type conversions before the expres-
sion is evaluated. These standard conversions include promotions of “lower” types
to “higher” types in the interests of accuracy and consistency.

Assigning a signed character object (such as a variable) to an integral object
results in automatic sign extension. Objects of type signed char always use
sign extension; objects of type unsigned char always set the high byte to zero
when converted to int.

Converting a longer integral type to a shorter type truncates the higher order bits
and leaves low-order bits unchanged. Converting a shorter integral type to a longer
type either sign-extends or zero-fills the extra bits of the new value, depending on
whether the shorter type is signed or unsigned, respectively.

Note: Conversion of floating point data into integral value (in assignments or via
explicit typecast) produces correct results only if the float value does not exceed
the scope of destination integral type.

First, any small integral types are converted according to the following rules:

1. char converts to int
2. signed char converts to int, with the same value
3. short converts to int, with the same value, sign-extended
4. unsigned short converts to unsigned int, with the same value, zero-filled
5. enum converts to int, with the same value

After this, any two values associated with an operator are either int (including
the long and unsigned modifiers), or they are float (equivalent with double
and long double in mikroC).

1. If either operand is float, the other operand is converted to float
2. Otherwise, if either operand is unsigned long, the other operand is converted

to unsigned long
3. Otherwise, if either operand is long, the other operand is converted to long
4. Otherwise, if either operand is unsigned, the other operand is converted to

unsigned
5. Otherwise, both operands are int

MikroElektronika: Development tools - Books - Compilers 83
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

The result of the expression is the same type as that of the two operands.

Here are several examples of implicit conversion:

2+3.1 // = 2. + 3.1 = 5.1
5/4*3. // = (5/4)*3. = 1*3. = 1.*3. = 3.0
3.*5/4 // = (3.*5)/4 = (3.*5.)/4 = 15./4 = 15./4. = 3.75

Pointer Conversions

Pointer types can be converted to other pointer types using the typecasting mecha-
nism:

char *str;
int *ip;
str = (char *)ip;

More generally, the cast (type*) will convert a pointer to type “pointer to type”.

Explicit Types Conversions (Typecasting)

In most situations, compiler will provide an automatic implicit conversion of types
where needed, without any user interference. Also, you can explicitly convert an
operand to another type using the prefix unary typecast operator:

(type) object

For example:

char a, b;

/* Following line will coerce a to unsigned int: */
(unsigned int) a;

/* Following line will coerce a to double,
then coerce b to double automatically,
resulting in double type value: */

(double) a + b; // equivalent to ((double) a) + b;

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

84 MikroElektronika: Development tools - Books - Compilers

page

Introduction to Declarations

Declaration introduces one or several names to a program – it informs the compil-
er what the name represents, what is its type, what are allowed operations with it,
etc. This section reviews concepts related to declarations: declarations, definitions,
declaration specifiers, and initialization.

The range of objects that can be declared includes:

- Variables
- Constants
- Functions
- Types
- Structure, union, and enumeration tags
- Structure members
- Union members
- Arrays of other types
- Statement labels
- Preprocessor macros

Declarations and Definitions

Defining declarations, also known as definitions, beside introducing the name of
an object, also establish the creation (where and when) of the object; that is, the
allocation of physical memory and its possible initialization. Referencing declara-
tions, or just declarations, simply make their identifiers and types known to the
compiler.

Here is an overview. Declaration is also a definition, except if:

- it declares a function without specifying its body,
- it has an extern specifier, and has no initializator or body (in case of func.),
- it is a typedef declaration.

There can be many referencing declarations for the same identifier, especially in a
multifile program, but only one defining declaration for that identifier is allowed.

MikroElektronika: Development tools - Books - Compilers 85
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

DECLARATIONS

Let’s have an example:

/* Here is a nondefining declaration of function max; */
/* it merely informs compiler that max is a function */
int max();

/* Here is a definition of function max: */
int max(int x, int y) {

return (x>=y) ? x : y;
}

int i; /* Definition of variable i */
int i; /* Error: i is already defined! */

Declarations and Declarators

A declaration is a list of names. The names are sometimes referred to as declara-
tors or identifiers. The declaration begins with optional storage class specifiers,
type specifiers, and other modifiers. The identifiers are separated by commas and
the list is terminated by a semicolon.

Declarations of variable identifiers have the following pattern:

storage-class [type-qualifier] type var1 [=init1], var2 [=init2],
...;

where var1, var2,... are any sequence of distinct identifiers with optional initial-
izers. Each of the variables is declared to be of type; if omitted, type defaults to
int. Specifier storage-class can take values extern, static, register, or
the default auto. Optional type-qualifier can take values const or
volatile. For more details, refer to Storage Classes and Type Qualifiers.

Here is an example of variable declaration:

/* Create 3 integer variables called x, y, and z and
initialize x and y to the values 1 and 2, respectively: */

int x = 1, y = 2, z; // z remains uninitialized

These are all defining declarations; storage is allocated and any optional initializ-
ers are applied.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

86 MikroElektronika: Development tools - Books - Compilers

page

Linkage

An executable program is usually created by compiling several independent trans-
lation units, then linking the resulting object files with preexisting libraries. The
term translation unit refers to a source code file together with any included files,
but less any source lines omitted by conditional preprocessor directives. A problem
arises when the same identifier is declared in different scopes (for example, in dif-
ferent files), or declared more than once in the same scope.

Linkage is the process that allows each instance of an identifier to be associated
correctly with one particular object or function. All identifiers have one of two
linkage attributes, closely related to their scope: external linkage or internal link-
age. These attributes are determined by the placement and format of your declara-
tions, together with the explicit (or implicit by default) use of the storage class
specifier static or extern.

Each instance of a particular identifier with external linkage represents the same
object or function throughout the entire set of files and libraries making up the
program. Each instance of a particular identifier with internal linkage represents
the same object or function within one file only.

Linkage Rules

Local names have internal linkage; same identifier can be used in different files to
signify different objects. Global names have external linkage; identifier signifies
the same object throughout all program files.

If the same identifier appears with both internal and external linkage within the
same file, the identifier will have internal linkage.

Internal Linkage Rules:

1. names having file scope, explicitly declared as static, have internal linkage,
2. names having file scope, explicitly declared as const and not explicitly,

declared as extern, have internal linkage,
3. typedef names have internal linkage,
4. enumeration constants have internal linkage .

MikroElektronika: Development tools - Books - Compilers 87
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

External Linkage Rule:

1. names having file scope, that do not comply to any of previously stated internal
linkage rules, have external linkage.

The storage class specifiers auto and register cannot appear in an external
declaration. For each identifier in a translation unit declared with internal linkage,
no more than one external definition can be given. An external definition is an
external declaration that also defines an object or function; that is, it also allocates
storage. If an identifier declared with external linkage is used in an expression
(other than as part of the operand of sizeof), then exactly one external definition
of that identifier must be somewhere in the entire program.

mikroC allows later declarations of external names, such as arrays, structures, and
unions, to add information to earlier declarations. Here's an example:

int a[]; // No size
struct mystruct; // Tag only, no member declarators

.

.

.
int a[3] = {1, 2, 3}; // Supply size and initialize
struct mystruct {

int i, j;
}; // Add member declarators

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

88 MikroElektronika: Development tools - Books - Compilers

page

Storage Classes

Associating identifiers with objects requires each identifier to have at least two
attributes: storage class and type (sometimes referred to as data type). The mikroC
compiler deduces these attributes from implicit or explicit declarations in the
source code.

Storage class dictates the location (data segment, register, heap, or stack) of the
object and its duration or lifetime (the entire running time of the program, or dur-
ing execution of some blocks of code). Storage class can be established by the
syntax of the declaration, by its placement in the source code, or by both of these
factors:

storage-class type identifier

The storage class specifiers in mikroC are:

auto
register
static
extern

Auto

Use the auto modifer to define a local variable as having a local duration. This is
the default for local variables and is rarely used. You cannot use auto with glob-
als. See also Functions.

Register

By default, mikroC stores variables within internal microcontroller memory. Thus,
modifier register technically has no special meaning. mikroC compiler simply
ignores requests for register allocation.

MikroElektronika: Development tools - Books - Compilers 89
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Static

Global name declared with static specifier has internal linkage, meaning that it
is local for a given file. See Linkage for more information.

Local name declared with static specifier has static duration. Use static with
a local variable to preserve the last value between successive calls to that function.
See Duration for more information.

Extern

Name declared with extern specifier has external linkage, unless it has been pre-
viously declared as having internal linkage. Declaration is not a definition if it has
extern specifier and is not initialized. The keyword extern is optional for a
function prototype.

Use the extern modifier to indicate that the actual storage and initial value of a
variable, or body of a function, is defined in a separate source code module.
Functions declared with extern are visible throughout all source files in a pro-
gram, unless you redefine the function as static.

See Linkage for more information.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

90 MikroElektronika: Development tools - Books - Compilers

page

Type Qualifiers

Type qualifiers const and volatile are optional in declarations and do not actu-
ally affect the type of declared object.

Qualifier const

Qualifier const implies that the declared object will not change its value during
runtime. In declarations with const qualifier, you need to initialize all the objects
in the declaration.

Effectively, mikroC treats objects declared with const qualifier same as literals or
preprocessor constants. Compiler will report an error if trying to change an object
declared with const qualifier.

For example:

const double PI = 3.14159;

Qualifier volatile

Qualifier volatile implies that variable may change its value during runtime
indepent from the program. Use the volatile modifier to indicate that a variable
can be changed by a background routine, an interrupt routine, or an I/O port.
Declaring an object to be volatile warns the compiler not to make assumptions
concerning the value of the object while evaluating expressions in which it occurs
because the value could change at any moment.

MikroElektronika: Development tools - Books - Compilers 91
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Typedef Specifier

Specifier typedef introduces a synonym for a specified type. You can use type-
def declarations to construct shorter or more meaningful names for types already
defined by the language or for types that you have declared. You cannot use the
typedef specifier inside a function definition.

The specifier typedef stands first in the declaration:

typedef <type-definition> synonym;

The typedef keyword assigns the synonym to the <type-definition>. The
synonym needs to be a valid identifier.

Declaration starting with the typedef specifier does not introduce an object or
function of a given type, but rather a new name for a given type. That is, the
typedef declaration is identical to “normal” declaration, but instead of objects, it
declares types. It is a common practice to name custom type identifiers with start-
ing capital letter — this is not required by C.

For example:

// Let's declare a synonym for "unsigned long int":
typedef unsigned long int Distance;

// Now, synonym "Distance" can be used as type identifier:
Distance i; // declare variable i of unsigned long int

In typedef declaration, as in any declaration, you can declare several types at once.
For example:

typedef int *Pti, Array[10];

Here, Pti is synonym for type “pointer to int”, and Array is synonym for type
“array of 10 int elements”.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

92 MikroElektronika: Development tools - Books - Compilers

page

asm Declaration

C allows embedding assembly in the source code by means of asm declaration.
Declarations _asm and __asm are also allowed in mikroC, and have the same
meaning. Note that you cannot use numerals as absolute addresses for SFR or
GPR variables in assembly instructions. You may use symbolic names instead
(listing will display these names as well as addresses).

You can group assembly instructions by the asm keyword (or _asm, or __asm):

asm {
block of assembly instructions

}

C comments (both single-line and multi-line) are allowed in embedded assembly
code. Assembly-style comments starting with semicolon are not allowed.

If you plan to use a certain C variable in embedded assembly only, be sure to at
least initialize it in C code; otherwise, linker will issue an error. This does not
apply to predefined globals such as PORTB.

For example, the following code will not be compiled, as linker won’t be able to
recognize variable myvar:

unsigned myvar;
void main() {

asm {
MOVLW 10 // just a test
MOVLW test_main_global_myvar_1

}
}

Adding the following line (or similar) above asm block would let linker know that
variable is used:

myvar := 0;

Note: mikroC will not check if the banks are set appropriately for your variable.
You need to set the banks manually in assembly code.

MikroElektronika: Development tools - Books - Compilers 93
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Initialization

At the time of declaration, you can set the initial value of a declared object, i.e.
initialize it. Part of the declaration which specifies the initialization is called the
initializer.

Initializers for globals and static objects must be constants or constant expressions.
The initializer for an automatic object can be any legal expression that evaluates to
an assignment-compatible value for the type of the variable involved.

Scalar types are initialized with a single expression, which can optionally be
enclosed in braces. The initial value of the object is that of the expression; the
same constraints for type and conversions apply as for simple assignments.

For example:

int i = 1;
char *s = "hello";
struct complex c = {0.1, -0.2};
// where 'complex' is a structure (float, float)

For structures or unions with automatic storage duration, the initializer must be
one of the following:

- an initializer list,
- a single expression with compatible union or structure type. In this case, the

initial value of the object is that of the expression.

For more information, refer to Structures and Unions.

Also, you can initialize arrays of character type with a literal string, optionally
enclosed in braces. Each character in the string, including the null terminator, ini-
tializes successive elements in the array. For more information, refer to Arrays.

Automatic Initialization

mikroC does not provide automatic initialization for objects. Uninitialized globals
and objects with static duration will take random values from memory.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

94 MikroElektronika: Development tools - Books - Compilers

page

Functions are central to C programming. Functions are usually defined as subpro-
grams which return a value based on a number of input parameters. Return value
of a function can be used in expressions – technically, function call is considered
an operator like any other.

C allows a function to create results other than its return value, referred to as side
effects. Often, function return value is not used at all, depending on the side
effects. These functions are equivalent to procedures of other programming lan-
guages, such as Pascal. C does not distinguish between procedure and function –
functions play both roles.

Each program must have a single external function named main marking the entry
point of the program. Functions are usually declared as prototypes in standard or
user-supplied header files, or within program files. Functions have external linkage
by default and are normally accessible from any file in the program. This can be
restricted by using the static storage class specifier in function declaration (see
Storage Classes and Linkage).

Note: Check the PIC Specifics for more info on functions’ limitations on PIC
micros.

Function Declaration

Functions are declared in your source files or made available by linking precom-
piled libraries. Declaration syntax of a function is:

type function_name(parameter-declarator-list);

The function_name must be a valid identifier. This name is used to call the
function; see Function Calls for more information. The type represents the type
of function result, and can be any standard or user-defined type. For functions that
do not return value, you should use void type. The type can be omitted in global
function declarations, and function will assume int type by default.

Function type can also be a pointer. For example, float* means that the func-
tion result is a pointer to float. Generic pointer, void* is also allowed. Function
cannot return array or another function.

MikroElektronika: Development tools - Books - Compilers 95
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

FUNCTIONS

Within parentheses, parameter-declarator-list is a list of formal arguments
that function takes. These declarators specify the type of each function parameter.
The compiler uses this information to check function calls for validity. If the list is
empty, function does not take any arguments. Also, if the list is void, function
also does not take any arguments; note that this is the only case when void can be
used as an argument’s type.

Unlike with variable declaration, each argument in the list needs its own type
specifier and a possible qualifier const or volatile.

Function Prototypes

A given function can be defined only once in a program, but can be declared sev-
eral times, provided the declarations are compatible. If you write a nondefining
declaration of a function, i.e. without the function body, you do not have to specify
the formal arguments. This kind of declaration, commonly known as the function
prototype, allows better control over argument number and type checking, and
type conversions.

Name of the parameter in function prototype has its scope limited to the prototype.
This allows different parameter names in different declarations of the same func-
tion:

/* Here are two prototypes of the same function: */

int test(const char*) // declares function test
int test(const char*p) // declares the same function test

Function prototypes greatly aid in documenting code. For example, the function
Cf_Init takes two parameters: Control Port and Data Port. The question is,
which is which? The function prototype

void Cf_Init(char *ctrlport, char *dataport);

makes it clear. If a header file contains function prototypes, you can that file to get
the information you need for writing programs that call those functions. If you
include an identifier in a prototype parameter, it is used only for any later error
messages involving that parameter; it has no other effect.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

96 MikroElektronika: Development tools - Books - Compilers

page

Function Definition

Function definition consists of its declaration and a function body. The function
body is technically a block – a sequence of local definitions and statements
enclosed within braces {}. All variables declared within function body are local to
the function, i.e. they have function scope.

The function itself can be defined only within the file scope. This means that func-
tion declarations cannot be nested.

To return the function result, use the return statement. Statement return in
functions of void type cannot have a parameter – in fact, you can omit the
return statement altogether if it is the last statement in the function body.

Here is a sample function definition:

/* function max returns greater one of its 2 arguments: */

int max(int x, int y) {
return (x>=y) ? x : y;

}

Here is a sample function which depends on side effects rather than return value:

/* function converts Descartes coordinates (x,y)
to polar coordinates (r,fi): */

#include <math.h>

void polar(double x, double y, double *r, double *fi) {
*r = sqrt(x * x + y * y);
*fi = (x == 0 && y == 0) ? 0 : atan2(y, x);
return; /* this line can be omitted */

}

MikroElektronika: Development tools - Books - Compilers 97
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Function Calls

A function is called with actual arguments placed in the same sequence as their
matching formal parameters. Use a function-call operator ():

function_name(expression_1, ... , expression_n)

Each expression in the function call is an actual argument. Number and types of
actual arguments should match those of formal function parameters. If types dis-
agree, implicit type conversions rules apply. Actual arguments can be of any com-
plexity, but you should not depend on their order of evaluation, because it is not
specified.

Upon function call, all formal parameters are created as local objects initialized by
values of actual arguments. Upon return from a function, temporary object is cre-
ated in the place of the call, and it is initialized by the expression of return state-
ment. This means that function call as an operand in complex expression is treated
as the function result.

If the function is without result (type void) or you don’t need the result, you can
write the function call as a self-contained expression.

In C, scalar parameters are always passed to function by value. A function can
modify the values of its formal parameters, but this has no effect on the actual
arguments in the calling routine. You can pass scalar object by the address by
declaring a formal parameter to be a pointer. Then, use the indirection operator *
to access the pointed object.

Argument Conversions

When a function prototype has not been previously declared, mikroC converts
integral arguments to a function call according to the integral widening (expan-
sion) rules described in Standard Conversions. When a function prototype is in
scope, mikroC converts the given argument to the type of the declared parameter
as if by assignment.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

98 MikroElektronika: Development tools - Books - Compilers

page

If a prototype is present, the number of arguments must match. The types need to
be compatible only to the extent that an assignment can legally convert them. You
can always use an explicit cast to convert an argument to a type that is acceptable
to a function prototype.

Note: If your function prototype does not match the actual function definition,
mikroC will detect this if and only if that definition is in the same compilation unit
as the prototype. If you create a library of routines with a corresponding header
file of prototypes, consider including that header file when you compile the
library, so that any discrepancies between the prototypes and the actual definitions
will be caught.

The compiler is also able to force arguments to the proper type. Suppose you have
the following code:

int limit = 32;
char ch = 'A';
long res;

extern long func(long par1, long par2); // prototype

main() {
//...
res = func(limit, ch); // function call

}

Since it has the function prototype for func, this program converts limit and ch
to long, using the standard rules of assignment, before it places them on the stack
for the call to func.

Without the function prototype, limit and ch would have been placed on the
stack as an integer and a character, respectively; in that case, the stack passed to
func would not match in size or content what func was expecting, leading to
problems.

MikroElektronika: Development tools - Books - Compilers 99
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Operators are tokens that trigger some computation when applied to variables and
other objects in an expression.

mikroC recognizes following operators:

- Arithmetic Operators
- Assignment Operators
- Bitwise Operators
- Logical Operators
- Reference/Indirect Operators (see Pointer Arithmetic)
- Relational Operators
- Structure Member Selectors (see Structure Member Access)

- Comma Operator , (see Comma Expressions)
- Conditional Operator ? :

- Array subscript operator [] (see Arrays)
- Function call operator () (see Function Calls)

- sizeof Operator

- Preprocessor Operators # and ## (see Preprocessor Operators)

Operators Precedence and Associativity

There are 15 precedence categories, some of which contain only one operator.
Operators in the same category have equal precedence with each other.

Table on the following page sums all mikroC operators.

Where duplicates of operators appear in the table, the first occurrence is unary, the
second binary. Each category has an associativity rule: left-to-right or right-to-left.
In the absence of parentheses, these rules resolve the grouping of expressions with
operators of equal precedence.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

100 MikroElektronika: Development tools - Books - Compilers

page

OPERATORS

MikroElektronika: Development tools - Books - Compilers 101
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Precedence Operands Operators Associativity

15 2 () [] . -> left-to-right

14 1 ! ~ ++ -- + - *
& (type) sizeof

right-to-left

13 2 * / % left-to-right

12 2 + - left-to-right

11 2 << >> left-to-right

10 2 < <= > >= left-to-right

9 2 == != left-to-right

8 2 & left-to-right

7 2 ^ left-to-right

6 2 | left-to-right

5 2 && left-to-right

4 2 || left-to-right

3 3 ?: left-to-right

2 2 = *= /= %= += -=
&= ^= |= <<= >>=

right-to-left

1 2 , left-to-right

Arithmetic Operators

Arithmetic operators are used to perform mathematical computations. They have
numerical operands and return numerical results. Type char technically represents
small integers, so char variables can used as operands in arithmetic operations.

All of arithmetic operators associate from left to right.

Note: Operator * is context sensitive and can also represent the pointer reference
operator. See Pointers for more information.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

102 MikroElektronika: Development tools - Books - Compilers

page

Operator Operation Precedence

+ addition 12

- subtraction 12

* multiplication 13

/ division 13

%
returns the remainder of integer division (can-
not be used with floating points) 13

+ (unary) unary plus does not affect the operand 14

- (unary) unary minus changes the sign of operand 14

++
increment adds one to the value of the
operand 14

--
decrement subtracts one from the value of the
operand 14

Binary Arithmetic Operators

Division of two integers returns an integer, while remainder is simply truncated:

/* for example: */
7 / 4; // equals 1
7 * 3 / 4; // equals 5

/* but: */
7. * 3./ 4.; // equals 5.25 as we are working with floats

Remainder operand % works only with integers; sign of result is equal to the sign
of first operand:

/* for example: */
9 % 3; // equals 0
7 % 3; // equals 1
-7 % 3; // equals -1

We can use arithmetic operators for manipulating characters:

'A' + 32; // equals 'a' (ASCII only)
'G' - 'A' + 'a'; // equals 'g' (both ASCII and EBCDIC)

Unary Arithmetic Operators

Unary operators ++ and -- are the only operators in C which can be either prefix
(e.g. ++k, --k) or postfix (e.g. k++, k--).

When used as prefix, operators ++ and -- (preincrement and predecrement) add or
subtract one from the value of operand before the evaluation. When used as suffix,
operators ++ and -- add or subtract one from the value of operand after the evalu-
ation.

For example:

int j = 5; j = ++k;
/* k = k + 1, j = k, which gives us j = 6, k = 6 */

int j = 5; j = k++;
/* j = k, k = k + 1, which gives us j = 5, k = 6 */

MikroElektronika: Development tools - Books - Compilers 103
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Relational Operators

Use relational operators to test equality or inequality of expressions. If the expres-
sion evaluates to true, it returns 1; otherwise it returns 0.

All relational operators associate from left to right.

Relational Operators Overview

Relational Operators in Expressions

Precedence of arithmetic and relational operators was designated in such a way to
allow complex expressions without parentheses to have expected meaning:

a + 5 >= c - 1.0 / e // i.e. (a + 5) >= (c - (1.0 / e))

Always bear in mind that relational operators return either 0 or 1. Consider the fol-
lowing examples:

8 == 13 > 5 // returns 0: 8==(13>5), 8==1, 0
14 > 5 < 3 // returns 1: (14>5)<3, 1<3, 1
a < b < 5 // returns 1: (a<b)<5, (0 or 1)<5, 1

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

104 MikroElektronika: Development tools - Books - Compilers

page

Operator Operation Precedence

== equal 9

!= not equal 9

> greater than 10

< less than 10

>= greater than or equal 10

<= less than or equal 10

Bitwise Operators

Use the bitwise operators to modify the individual bits of numerical operands.

Bitwise operators associate from left to right. The only exception is the bitwise
complement operator ~ which associates from right to left.

Bitwise Operators Overview

Note: Operator & can also be the pointer reference operator. Refer to Pointers for
more information.

Bitwise operators &, |, and ^ perform logical operations on appropriate pairs of
bits of their operands. For example:

0x1234 & 0x5678; /* equals 0x1230 */

/* because ..

0x1234 : 0001 0010 0011 0100
0x5678 : 0101 0110 0111 1000

& : 0001 0010 0011 0000

.. that is, 0x1230 */

MikroElektronika: Development tools - Books - Compilers 105
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Operator Operation Precedence

&
bitwise AND; returns 1 if both bits are 1, oth-
erwise returns 0 9

|
bitwise (inclusive) OR; returns 1 if either or
both bits are 1, otherwise returns 0 9

^
bitwise exclusive OR (XOR); returns 1 if the
bits are complementary, otherwise 0 10

~ bitwise complement (unary); inverts each bit 10

>>
bitwise shift left; moves the bits to the left,
see below 10

<<
bitwise shift right; moves the bits to the right,
see below 10

/* Similarly: */

0x1234 | 0x5678; /* equals 0x567C */
0x1234 ^ 0x5678; /* equals 0x444C */
~ 0x1234; /* equals 0xEDCB */

Bitwise Shift Operators

Binary operators << and >> move the bits of the left operand for a number of posi-
tions specified by the right operand, to the left or right, respectively. Right operand
has to be positive.

With shift left (<<), left most bits are discarded, and “new” bytes on the right are
assigned zeros. Thus, shifting unsigned operand to left by n positions is equivalent
to multiplying it by 2n if all the discarded bits are zero. This is also true for signed
operands if all the discarded bits are equal to sign bit.

000001 << 5; /* equals 000040 */
0x3801 << 4; /* equals 0x8010, overflow! */

With shift right (>>), right most bits are discarded, and the “freed” bytes on the
left are assigned zeros (in case of unsigned operand) or the value of the sign bit
zeros (in case of signed operand). Shifting operand to right by n positions is equiv-
alent to dividing it by 2n.

0xFF56 >> 4; /* equals 0xFFF5 */
0xFF56u >> 4; /* equals 0x0FF5 */

Bitwise vs. Logical

Be aware of the principle difference between how bitwise and logical operators
work. For example:

0222222 & 0555555; /* equals 000000 */
0222222 && 0555555; /* equals 1 */

~ 0x1234; /* equals 0xEDCB */
! 0x1234; /* equals 0 */

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

106 MikroElektronika: Development tools - Books - Compilers

page

Logical Operators

Operands of logical operations are considered true or false, that is non-zero or
zero. Logical operators always return 1 or 0. Operands in a logical expression
must be of scalar type.

Logical operators && and || associate from left to right. Logical negation operator
! associates from right to left.

Logical Operators Overview

Precedence of logical, relational, and arithmetic operators was chosen in such a
way to allow complex expressions without parentheses to have expected meaning:

c >= '0' && c <= '9'; // reads as: (c>='0') && (c<='9')
a + 1 == b || ! f(x;) // reads as: ((a+1)== b) || (!(f(x)))

Logical AND (&&) returns 1 only if both expressions evaluate to be nonzero, oth-
erwise returns 0. If the first expression evaluates to false, the second expression is
not evaluated. For example:

a > b && c < d; // reads as: (a>b) && (c<d)
// if (a>b) is false (0), (c<d) will not be evaluated

Logical OR (||) returns 1 if either of the expressions evaluate to be nonzero, oth-
erwise returns 0. If the first expression evaluates to true, the second expression is
not evaluated. For example:

a && b || c && d; // reads as: (a && b) || (c && d)
// if (a&&b) is true (1), (c&&d) will not be evaluated

MikroElektronika: Development tools - Books - Compilers 107
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Operator Operation Precedence

&& logical AND 5

|| logical OR 4

! logical negation 14

Logical Expressions and Side Effects

General rule with complex logical expressions is that the evaluation of consecutive
logical operands stops the very moment the final result is known. For example, if
we have an expression:

a && b && c

where a is false (0), then operands b and c will not be evaluated. This is very
important if b and c are expressions, as their possible side effects will not take
place!

Logical vs. Bitwise

Be aware of the principle difference between how bitwise and logical operators
work. For example:

0222222 & 0555555 /* equals 000000 */
0222222 && 0555555 /* equals 1 */

~ 0x1234 /* equals 0xEDCB */
! 0x1234 /* equals 0 */

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

108 MikroElektronika: Development tools - Books - Compilers

page

Conditional Operator ? :

The conditional operator ? : is the only ternary operator in C. Syntax of the con-
ditional operator is:

expression1 ? expression2 : expression3

Expression1 evaluates first. If its value is true, then expression2 evaluates
and expression3 is ignored. If expression1 evaluates to false, then expres-
sion3 evaluates and expression2 is ignored. The result will be the value of
either expression2 or expression3 depending upon which evaluates. The fact
that only one of these two expressions evaluates is very important if you expect
them to produce side effects!

Conditional operator associates from right to left.

Here are a couple of practical examples:

/* Find max(a, b): */
max = (a > b) ? a : b;

/* Convert small letter to capital: */
/* (no parentheses are actually necessary) */
c = (c >= 'a' && c <= 'z') ? (c - 32) : c;

Conditional Operator Rules

Expression1 must be a scalar expression; expression2 and expression3
must obey one of the following rules:

1. Both of arithmetic type; expression2 and expression3 are subject to the
usual arithmetic conversions, which determines the resulting type.

2. Both of compatible struct or union types. The resulting type is the structure or
union type of expression2 and expression3.

3. Both of void type. The resulting type is void.

MikroElektronika: Development tools - Books - Compilers 109
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

4. Both of type pointer to qualified or unqualified versions of compatible types.
The resulting type is a pointer to a type qualified with all the type qualifiers of
the types pointed to by both operands.

5. One operand is a pointer, and the other is a null pointer constant. The resulting
type is a pointer to a type qualified with all the type qualifiers of the types
pointed to by both operands.

6. One operand is a pointer to an object or incomplete type, and the other is a
pointer to a qualified or unqualified version of void. The resulting type is that
of the non-pointer-to-void operand.

Assignment Operators

Unlike many other programming languages, C treats value assignment as an oper-
ation (represented by an operator) rather than instruction.

Simple Assignment Operator

For a common value assignment, we use a simple assignment operator (=) :

expression1 = expression2

Expression1 is an object (memory location) to which we assign value of
expression2. Operand expression1 has to be a lvalue, and expression2 can
be any expression. The assignment expression itself is not an lvalue.

If expression1 and expression2 are of different types, result of the expres-
sion2 will be converted to the type of expression1, if necessary. Refer to Type
Conversions for more information.

Compound Assignment Operators

C allows more comlex assignments by means of compound assignment operators.
Syntax of compound assignment operators is:

expression1 op= expression2

where op can be one of binary operators +, -, *, /, %, &, |, ^, <<, or >>.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

110 MikroElektronika: Development tools - Books - Compilers

page

Thus, we have 10 different compound assignment operators: +=, -=, *=, /=,
%=, &=, |=, ^=, <<=, and >>=. All of these associate from right to left. Spaces
separating compound operators (e.g. + =) will generate error.

Compound assignment has the same effect as

expression1 = expression1 op expression2

except the lvalue expression1 is evaluated only once. For example,

expression1 += expression2

is the same as

expression1 = expression1 + expression2

Assignment Rules

For both simple and compound assignment, the operands expression1 and
expression2 must obey one of the following rules:

1. expression1 is a qualified or unqualified arithmetic type and expression2
is an arithmetic type.

2. expression1 has a qualified or unqualified version of a structure or union
type compatible with the type of expression2.

3. expression1 and expression2 are pointers to qualified or unqualified
versions of compatible types, and the type pointed to by the left has all the
qualifiers of the type pointed to by the right.

4. Either expression1 or expression2 is a pointer to an object or incomplete
type and the other is a pointer to a qualified or unqualified version of void.
The type pointed to by the left has all the qualifiers of the type pointed to by the
right.

5. expression1 is a pointer and expression2 is a null pointer constant.

MikroElektronika: Development tools - Books - Compilers 111
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Sizeof Operator

Prefix unary operator sizeof returns an integer constant that gives the size in
bytes of how much memory space is used by its operand (determined by its type,
with some exceptions).

Operator sizeof can take either a type identifier or an unary expression as an
operand. You cannot use sizeof with expressions of function type, incomplete
types, parenthesized names of such types, or with an lvalue that designates a bit
field object.

Sizeof Applied to Expression

If applied to expression, size of the operand is determined without evaluating the
expression (and therefore without side effects). Result of the operation will be the
size of the type of the expression’s result.

Sizeof Applied to Type

If applied to a type identifier, sizeof returns the size of the specified type. Unit
for type size is the sizeof(char) which is equivalent to one byte. Operation
sizeof(char) gives the result 1, whether the char is signed or unsigned.

sizeof(char) /* returns 1 */
sizeof(int) /* returns 2 */
sizeof(unsigned long) /* returns 4 */

When the operand is a non-parameter of array type, the result is the total number
of bytes in the array (in other words, an array name is not converted to a pointer
type):

int i, j, a[10];
//...
j = sizeof(a[1]); /* j = sizeof(int) = 2 */
i = sizeof(a); /* i = 10*sizeof(int) = 20 */

If the operand is a parameter declared as array type or function type, sizeof
gives the size of the pointer. When applied to structures and unions, sizeof gives
the total number of bytes, including any padding. Operator sizeof cannot be
applied to a function.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

112 MikroElektronika: Development tools - Books - Compilers

page

An expression is a sequence of operators, operands, and punctuators that specifies
a computation. Formally, expressions are defined recursively: subexpressions can
be nested without formal limit. However, the compiler will report an out-of-mem-
ory error if it can’t compile an expression that is too complex.

In ANSI C, the primary expressions are: constant (also referred to as literal), iden-
tifier, and (expression), defined recursively.

Expressions are evaluated according to certain conversion, grouping, associativity,
and precedence rules that depend on the operators used, the presence of parenthe-
ses, and the data types of the operands. The precedence and associativity of the
operators are summarized in Operator Precedence and Associativity. The way
operands and subexpressions are grouped does not necessarily specify the actual
order in which they are evaluated by mikroC.

Expressions can produce an lvalue, an rvalue, or no value. Expressions might
cause side effects whether they produce a value or not.

Comma Expressions

One of the specifics of C is that it allows you to use comma as a sequence opera-
tor to form the so-called comma expressions or sequences. Comma expression is a
comma-delimited list of expressions – it is formally treated as a single expression
so it can be used in places where an expression is expected. The following
sequence:

expression_1, expression_2;

results in the left-to-right evaluation of each expression, with the value and type of
expression_2 giving the result of the whole expression. Result of expres-
sion_1 is discarded.

MikroElektronika: Development tools - Books - Compilers 113
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

EXPRESSIONS

Binary operator comma (,) has the lowest precedence and associates from left to
right, so that a, b, c is same as (a, b), c. This allows us to write sequences
with any number of expressions:

expression_1, expression_2, ... expression_n;

this results in the left-to-right evaluation of each expression, with the value and
type of expression_n giving the result of the whole expression. Results of other
expressions are discarded, but their (possible) side-effect do occur.

For example:

result = (a = 5, b /= 2, c++);
/* returns preincremented value of variable c, but also

intializes a, divides b by 2, and increments c */

result = (x = 10, y = x + 3, x--, z -= x * 3 - --y);
/* returns computed value of variable z,

and also computes x and y */

Note

Do not confuse comma operator (sequence operator) with the comma punctuator
which separates elements in a function argument list and initializator lists. Mixing
the two uses of comma is legal, but you must use parentheses to distinguish them.

To avoid ambiguity with the commas in function argument and initializer lists, use
parentheses. For example,

func(i, (j = 1, j + 4), k);

calls function func with three arguments (i, 5, k), not four.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

114 MikroElektronika: Development tools - Books - Compilers

page

Statements specify the flow of control as a program executes. In the absence of
specific jump and selection statements, statements are executed sequentially in the
order of appearance in the source code.

Statements can be roughly divided into:

- Labeled Statements
- Expression Statements
- Selection Statements
- Iteration Statements (Loops)
- Jump Statements
- Compound Statements (Blocks)

Labeled Statements

Every statement in program can be labeled. Label is an identifier added before the
statement like this:

label_identifier : statement;

There is no special declaration of a label – it just “tags” the statement.
Label_identifier has a function scope and label cannot be redefined within
the same function.

Labels have their own namespace: label identifier can match any other identifier in
the program.

A statement can be labeled for two reasons:

1. The label identifier serves as a target for the unconditional goto statement,

2. The label identifier serves as a target for the switch statement. For this
purpose, only case and default labeled statements are used:

case constant-expression : statement
default : statement

MikroElektronika: Development tools - Books - Compilers 115
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

STATEMENTS

Expression Statements

Any expression followed by a semicolon forms an expression statement:

expression;

mikroC executes an expression statement by evaluating the expression. All side
effects from this evaluation are completed before the next statement is executed.
Most expression statements are assignment statements or function calls.

The null statement is a special case, consisting of a single semicolon (;). The null
statement does nothing, and is therefore useful in situations where the mikroC syn-
tax expects a statement but your program does not need one. For example, null
statement is commonly used in “empty” loops:

for (; *q++ = *p++ ;);
/* body of this loop is a null statement */

Selection Statements

Selection or flow-control statements select from alternative courses of action by
testing certain values. There are two types of selection statements in C: if
and switch.

If Statement

Use if to implement a conditional statement. Syntax of if statement is:

if (expression) statement1 [else statement2]

When expression evaluates to true, statement1 executes. If expression is
false, statement2 executes. The expression must evaluate to an integral
value; otherwise, the condition is ill-formed. Parentheses around the expression
are mandatory.

The else keyword is optional, but no statements can come between the if and
the else.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

116 MikroElektronika: Development tools - Books - Compilers

page

Nested if statements

Nested if statements require additional attention. General rule is that the nested
conditionals are parsed starting from the innermost conditional, with each else
bound to the nearest available if on its left:

if (expression1) statement1
else if (expression2)

if (expression3) statement2
else statement3 /* this belongs to: if (expression3) */

else statement4 /* this belongs to: if (expression2) */

Note: The #if and #else preprocessor statements (directives) look similar to the
if and else statements, but have very different effects. They control which
source file lines are compiled and which are ignored. See Preprocessor for more
information.

Switch Statement

Use the switch statement to pass control to a specific program branch, based on a
certain condition. Syntax of switch statement is:

switch (expression) {
case constant-expression_1 : statement_1;

.

.

.
case constant-expression_n : statement_n;
[default : statement;]

}

First, the expression (condition) is evaluated. The switch statement then
compares it to all the available constant-expressions following the keyword
case. If the match is found, switch passes control to that matching case, at
which point the statement following the match evaluates. Note that
constant-expressions must evaluate to integer. There cannot be two same
constant-expressions evaluating to same value.

Parantheses around expression are mandatory.
.

MikroElektronika: Development tools - Books - Compilers 117
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Upon finding a match, program flow continues normally: following instructions
will be executed in natural order regardless of the possible case label. If no case
satisfies the condition, the default case evaluates (if the label default is speci-
fied).

For example, if variable i has value between 1 and 3, following switch would
always return it as 4:

switch (i) {
case 1: i++;
case 2: i++;
case 3: i++;

}

To avoid evaluating any other cases and relinquish control from the switch, ter-
minate each case with break.

Conditional switch statements can be nested – labels case and default are
then assigned to the innermost enclosing switch statement.

Here is a simple example with switch. Let’s assume we have a variable with only
3 different states (0, 1, or 2) and a corresponding function (event) for each of these
states. This is how we could switch the code to the appopriate routine:

switch (state) {
case 0: Lo(); break;
case 1: Mid(); break;
case 2: Hi(); break;
default: Message("Invalid state!");

}

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

118 MikroElektronika: Development tools - Books - Compilers

page

Iteration Statements

Iteration statements let you loop a set of statements. There are three forms of itera-
tion statements in C: while, do, and for.

While Statement

Use the while keyword to conditionally iterate a statement. Syntax of while
statement is:

while (expression) statement

The statement executes repeatedly until the value of expression is false. The test
takes place before statement executes. Thus, if expression evaluates to false
on the first pass, the loop does not execute.

Parentheses around expression are mandatory.

Here is an example of calculating scalar product of two vectors, using the while
statement:

int s = 0, i = 0;
while (i < n) {

s += a[i] * b[i];
i++;

}

Note that body of a loop can be a null statement. For example:

while (*q++ = *p++);

MikroElektronika: Development tools - Books - Compilers 119
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Do Statement

The do statement executes until the condition becomes false. Syntax of do state-
ment is:

do statement while (expression);

The statement is executed repeatedly as long as the value of expression
remains non-zero. The expression is evaluated after each iteration, so the loop
will execute statement at least once.

Parentheses around expression are mandatory.

Note that do is the only control structure in C which explicitly ends with semi-
colon (;). Other control structures end with statement which means that they
implicitly include a semicolon or a closing brace.

Here is an example of calculating scalar product of two vectors, using the do
statement:

s = 0; i = 0;
do {

s += a[i] * b[i];
i++;

} while (i < n);

For Statement

The for statement implements an iterative loop. Syntax of for statement is:

for ([init-exp]; [condition-exp]; [increment-exp]) statement

Before the first iteration of the loop, expression init-exp sets the starting vari-
ables for the loop. You cannot pass declarations in init-exp.

Expression condition-exp is checked before the first entry into the block;
statement is executed repeatedly until the value of condition-exp is false.
After each iteration of the loop, increment-exp increments a loop counter.
Consequently, i++ is functionally the same as ++i.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

120 MikroElektronika: Development tools - Books - Compilers

page

All the expressions are optional. If condition-exp is left out, it is assumed to be
always true. Thus, “empty” for statement is commonly used to create an endless
loop in C:

for (; ;) {...}

The only way to break out of this loop is by means of break statement.

Here is an example of calculating scalar product of two vectors, using the for
statement:

for (s = 0, i = 0; i < n; i++) s += a[i] * b[i];

You can also do it like this:

/* valid, but ugly */
for (s = 0, i = 0; i < n; s += a[i] * b[i], i++);

but this is considered a bad programming style. Although legal, calculating the
sum should not be a part of the incrementing expression, because it is not in the
service of loop routine. Note that we used a null statement (;) for a loop body.

MikroElektronika: Development tools - Books - Compilers 121
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Jump Statements

A jump statement, when executed, transfers control unconditionally. There are four
such statements in mikroC: break, continue, goto, and return.

Break Statement

Sometimes, you might need to stop the loop from within its body. Use the break
statement within loops to pass control to the first statement following the inner-
most switch, for, while, or do block.

Break is commonly used in switch statements to stop its execution upon the first
positive match. For example:

switch (state) {
case 0: Lo(); break;
case 1: Mid(); break;
case 2: Hi(); break;
default: Message("Invalid state!");

}

Continue Statement

You can use the continue statement within loops (while, do, for) to “skip the
cycle”. It passes control to the end of the innermost enclosing end brace belonging
to a looping construct. At that point the loop continuation condition is re-evaluat-
ed. This means that continue demands the next iteration if loop continuation con-
dition is true.

Goto Statement

Use the goto statement to unconditionally jump to a local label — for more infor-
mation on labels, refer to Labeled Statements. Syntax of goto statement is:

goto label_identifier;

This will transfer control to the location of a local label specified by
label_identifier. The label_identifier has to be a name of the label
within the same function in which the goto statement is. The goto line can come
before or after the label.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

122 MikroElektronika: Development tools - Books - Compilers

page

You can use goto to break out from any level of nested control structures. But,
goto cannot be used to jump into block while skipping that block’s initializations
– for example, jumping into loop’s body, etc.

Use of goto statement is generally discouraged as practically every algorithm can
be realized without it, resulting in legible structured programs. One possible appli-
cation of goto statement is breaking out from deeply nested control structures:

for (...) {
for (...) {
...

if (disaster) goto Error;
...
}

}
.
.
.

Error: /* error handling code */

Return Statement

Use the return statement to exit from the current function back to the calling
routine, optionally returning a value. Syntax is:

return [expression];

This will evaluate the expression and return the result. Returned value will be
automatically converted to the expected function type, if needed. The expres-
sion is optional; if omitted, function will return a random value from memory.

Note: Statement return in functions of void type cannot have an expression –
in fact, you can omit the return statement altogether if it is the last statement in
the function body.

MikroElektronika: Development tools - Books - Compilers 123
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Compound Statements (Blocks)

A compound statement, or block, is a list (possibly empty) of statements enclosed
in matching braces {}. Syntactically, a block can be considered to be a single
statement, but it also plays a role in the scoping of identifiers. An identifier
declared within a block has a scope starting at the point of declaration and ending
at the closing brace. Blocks can be nested to any depth up to the limits of memory.

For example, for loop expects one statement in its body, so we can pass it a com-
pound statement:

for (i = 0; i < n; i++) {
int temp = a[i];
a[i] = b[i];
b[i] = temp;

}

Note that, unlike other statements, compound statements do not end with semi-
colon (;), i.e. there is never a semicolon following the closing brace.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

124 MikroElektronika: Development tools - Books - Compilers

page

Preprocessor is an integrated text processor which prepares the source code for
compiling. Preprocessor allows:

- inserting text from a specifed file to a certain point in code,
- replacing specific lexical symbols with other symbols,
- conditional compiling which conditionally includes or omits parts of code.

Note that preprocessor analyzes text at token level, not at individual character
level. Preprocessor is controled by means of preprocessor directives and pre-
processor operators.

Preprocessor Directives

Any line in source code with a leading # is taken as a preprocessing directive (or
control line), unless the # is within a string literal, in a character constant, or
embedded in a comment. The initial # can be preceded or followed by whitespace
(excluding new lines).

The null directive consists of a line containing the single character #. This line is
always ignored.

Preprocessor directives are usually placed at the beginning of the source code, but
they can legally appear at any point in a program. The mikroC preprocessor
detects preprocessor directives and parses the tokens embedded in them. Directive
is in effect from its declaration to the end of the program file.

mikroC supports standard preprocessor directives:

(null directive) #if
#define #ifndef
#elif #ifndef
#else #include
#endif #line
#error #undef

Note: #pragma directive is under construction.

MikroElektronika: Development tools - Books - Compilers 125
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

PREPROCESSOR

Line Continuation with Backslash

If you need to break directive into multiple lines, you can do it by ending the line
with a backslash (\):

#define MACRO This directive continues to \
the following line.

Macros

Macros provide a mechanism for token replacement, prior to compilation, with or
without a set of formal, function-like parameters.

Defining Macros and Macro Expansions

The #define directive defines a macro:

#define macro_identifier <token_sequence>

Each occurrence of macro_identifier in the source code following this control
line will be replaced in the original position with the possibly empty
token_sequence (there are some exceptions, which are noted later). Such
replacements are known as macro expansions. The token_sequence is some-
times called body of the macro. An empty token sequence results in the removal of
each affected macro identifier from the source code.

No semicolon (;) is needed to terminate a preprocessor directive. Any character
found in the token sequence, including semicolons, will appear in the macro
expansion. The token_sequence terminates at the first non-backslashed new
line encountered. Any sequence of whitespace, including comments in the token
sequence, is replaced with a single-space character.

After each individual macro expansion, a further scan is made of the newly
expanded text. This allows for the possibility of nested macros: The expanded text
can contain macro identifiers that are subject to replacement. However, if the
macro expands into what looks like a preprocessing directive, such a directive will
not be recognized by the preprocessor. Any occurrences of the macro identifier
found within literal strings, character constants, or comments in the source code
are not expanded

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

126 MikroElektronika: Development tools - Books - Compilers

page

A macro won’t be expanded during its own expansion (so #define MACRO
MACRO won’t expand indefinitely).

Let’s have an example:

/* Here are some simple macros: */
#define ERR_MSG "Out of range!"
#define EVERLOOP for(; ;)

/* which we could use like this: */

main() {
EVERLOOP {

...
if (error) {Lcd_Out_Cp(ERR_MSG); break;}
...

}
}

Attempting to redefine an already defined macro identifier will result in a warning
unless the new definition is exactly the same token-by-token definition as the
existing one. The preferred strategy where definitions might exist in other header
files is as follows:

#ifndef BLOCK_SIZE
#define BLOCK_SIZE 512

#endif

The middle line is bypassed if BLOCK_SIZE is currently defined; if BLOCK_SIZE
is not currently defined, the middle line is invoked to define it.

MikroElektronika: Development tools - Books - Compilers 127
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Macros with Parameters

The following syntax is used to define a macro with parameters:

#define macro_identifier(<arg_list>) token_sequence

Note there can be no whitespace between the macro_identifier and the “(”.
The optional arg_list is a sequence of identifiers separated by commas, not
unlike the argument list of a C function. Each comma-delimited identifier plays
the role of a formal argument or placeholder.

Such macros are called by writing

macro_identifier(<actual_arg_list>)

in the subsequent source code. The syntax is identical to that of a function call;
indeed, many standard library C “functions” are implemented as macros.
However, there are some important semantic differences.

The optional actual_arg_list must contain the same number of comma-delim-
ited token sequences, known as actual arguments, as found in the formal
arg_list of the #define line – there must be an actual argument for each for-
mal argument. An error will be reported if the number of arguments in the two
lists is different.

A macro call results in two sets of replacements. First, the macro identifier and the
parenthesis-enclosed arguments are replaced by the token sequence. Next, any for-
mal arguments occurring in the token sequence are replaced by the corresponding
real arguments appearing in the actual_arg_list. As with simple macro defini-
tions, rescanning occurs to detect any embedded macro identifiers eligible for
expansion.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

128 MikroElektronika: Development tools - Books - Compilers

page

Here is a simple example:

// A simple macro which returns greater of its 2 arguments:
#define _MAX(A, B) ((A) > (B)) ? (A) : (B)

// Let's call it:
x = _MAX(a + b, c + d);

/* Preprocessor will transform the previous line into:
x = ((a + b) > (c + d)) ? (a + b) : (c + d) */

It is highly recommended to put parentheses around each of the arguments in
macro body – this will avoid possible problems with operator precedence.

Undefining Macros

You can undefine a macro using the #undef directive.

#undef macro_identifier

Directive #undef detaches any previous token sequence from the macro_iden-
tifier; the macro definition has been forgotten, and the macro_identifier is
undefined. No macro expansion occurs within #undef lines.

The state of being defined or undefined is an important property of an identifier,
regardless of the actual definition. The #ifdef and #ifndef conditional direc-
tives, used to test whether any identifier is currently defined or not, offer a flexible
mechanism for controlling many aspects of a compilation.

After a macro identifier has been undefined, it can be redefined with #define,
using the same or a different token sequence.

MikroElektronika: Development tools - Books - Compilers 129
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

File Inclusion

The preprocessor directive #include pulls in header files (extension .h) into the
source code. Do not rely on preprocessor to include source files (extension .c) —
see Projects for more information.

The syntax of #include directive has two formats:

#include <header_name>
#include "header_name"

The preprocessor removes the #include line and replaces it with the entire text
of the header file at that point in the source code. The placement of the #include
can therefore influence the scope and duration of any identifiers in the included
file.

The difference between the two formats lies in the searching algorithm employed
in trying to locate the include file.

If #include directive was used with the <header_name> version, the search is
made successively in each of the following locations, in this particular order:

1. mikroC installation folder > “include” folder,
2. your custom search paths.

The "header_name" version specifies a user-supplied include file; mikroC will
look for the header file in following locations, in this particular order:

1. the project folder (folder which contains the project file .ppc),
2. mikroC installation folder > “include” folder,
3. your custom search paths.

Explicit Path

If you place an explicit path in the header_name, only that directory will be
searched. For example:

#include "C:\my_files\test.h"

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

130 MikroElektronika: Development tools - Books - Compilers

page

Note: There is also a third version of #include directive, rarely used, which
assumes that neither < nor " appears as the first non-whitespace character follow-
ing #include:

#include macro_identifier

It assumes a macro definition exists that will expand the macro identifier into a
valid delimited header name with either of the <header_name> or
"header_name" formats.

Preprocessor Operators

The # (pound sign) is a preprocessor directive when it occurs as the first non-
whitespace character on a line. Also, # and ## perform operator replacement and
merging during the preprocessor scanning phase.

Operator #

In C preprocessor, character sequence enclosed by quotes is considered a token
and its content is not analyzed. This means that macro names within quotes are not
expanded.

If you need an actual argument (the exact sequence of characters within quotes) as
result of preprocessing, you can use the # operator in macro body. It can be placed
in front of a formal macro argument in definition in order to convert the actual
argument to a string after replacement.

For example, let’s have macro LCD_PRINT for printing variable name and value
on LCD:

#define LCD_PRINT(val) Lcd_Out_Cp(#val ": "); \
Lcd_Out_Cp(IntToStr(val));

(note the backslash as a line-continuation symbol)

MikroElektronika: Development tools - Books - Compilers 131
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Now, the following code,

LCD_PRINT(temp)

will be preprocessed to this:

Lcd_Out_Cp("temp" ": "); Lcd_Out_Cp(IntToStr(temp));

Operator ##

Operator ## is used for token pasting: you can paste (or merge) two tokens togeth-
er by placing ## in between them (plus optional whitespace on either side). The
preprocessor removes the whitespace and the ##, combining the separate tokens
into one new token. This is commonly used for constructing identifiers.

For example, we could define macro SPLICE for pasting two tokens into one iden-
tifier:

#define SPLICE(x,y) x ## _ ## y

Now, the call SPLICE(cnt, 2) expands to identifier cnt_2.

Note: mikroC does not support the older nonportable method of token pasting
using (l/**/r).

Conditional Compilation

Conditional compilation directives are typically used to make source programs
easy to change and easy to compile in different execution environments. mikroC
supports conditional compilation by replacing the appropriate source-code lines
with a blank line.

All conditional compilation directives must be completed in the source or include
file in which they are begun.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

132 MikroElektronika: Development tools - Books - Compilers

page

Directives #if, #elif, #else, and #endif

The conditional directives #if, #elif, #else, and #endif work very similar to
the common C conditional statements. If the expression you write after the #if
has a nonzero value, the line group immediately following the #if directive is
retained in the translation unit.

Syntax is:

#if constant_expression_1
<section_1>

[#elif constant_expression_2
<section_2>]

...
[#elif constant_expression_n
<section_n>]

[#else
<final_section>]

#endif

Each #if directive in a source file must be matched by a closing #endif direc-
tive. Any number of #elif directives can appear between the #if and #endif
directives, but at most one #else directive is allowed. The #else directive, if
present, must be the last directive before #endif.

The sections can be any program text that has meaning to the compiler or the pre-
processor. The preprocessor selects a single section by evaluating the
constant_expression following each #if or #elif directive until it finds a
true (nonzero) constant expression. The constant_expressions are subject to
macro expansion.

If all occurrences of constant-expression are false, or if no #elif directives
appear, the preprocessor selects the text block after the #else clause. If the
#else clause is omitted and all instances of constant_expression in the #if
block are false, no section is selected for further processing.

MikroElektronika: Development tools - Books - Compilers 133
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Any processed section can contain further conditional clauses, nested to any
depth. Each nested #else, #elif, or #endif directive belongs to the closest pre-
ceding #if directive.

The net result of the preceding scenario is that only one code section (possibly
empty) will be compiled.

Directives #ifdef and #ifndef

You can use the #ifdef and #ifndef directives anywhere #if can be used. The
#ifdef and #ifndef conditional directives let you test whether an identifier is
currently defined or not. The line

#ifdef identifier

has exactly the same effect as #if 1 if identifier is currently defined, and the
same effect as #if 0 if identifier is currently undefined. The other directive,
#ifndef, tests true for the “not-defined” condition, producing the opposite
results.

The syntax thereafter follows that of the #if, #elif, #else, and #endif.

An identifier defined as NULL is considered to be defined.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

134 MikroElektronika: Development tools - Books - Compilers

page

CHAPTER

MikroElektronika: Development tools - Books - Compilers

4

mikroC Libraries

mikroC provides a number of built-in and library routines which help you develop
your application faster and easier. Libraries for ADC, CAN, USART, SPI, I2C, 1-
Wire, LCD, PWM, RS485, numeric formatting, bit manipulation, and many other
are included along with practical, ready-to-use code examples.

mikroC compiler provides a set of useful built-in utility functions. Built-in func-
tions do not require any header files to be included; you can use them in any part
of your project.

Currently, mikroC includes following built-in functions:

Delay_us
Delay_ms
Delay_Cyc
Clock_Khz

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

136 MikroElektronika: Development tools - Books - Compilers

page

BUILT-IN ROUTINES

Prototype void Delay_us(const time_in_us);

Description Creates a software delay in duration of time_in_us microseconds (a constant). Range
of applicable constants depends on the oscillator frequency.

Example Delay_us(10); /* Ten microseconds pause */

Delay_us

Prototype void Delay_ms(const time_in_ms);

Description Creates a software delay in duration of time_in_ms milliseconds (a constant). Range of
applicable constants depends on the oscillator frequency.

Example Delay_ms(1000); /* One second pause */

Delay_ms

MikroElektronika: Development tools - Books - Compilers 137
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Delay_Cyc(char Cycles_div_by_10);

Description Creates a delay based on MCU clock. Delay lasts for 10 times the input parameter in
MCU cycles. Input parameter needs to be in range 3 .. 255.

Note that Delay_Cyc is library function rather than a built-in routine; it is presented in
this topic for the sake of convenience.

Example Delay_Cyc(10); /* Hundred MCU cycles pause */

Delay_Cyc

Prototype unsigned Clock_Khz(void);

Returns Device clock in KHz, rounded to the nearest integer.

Description Returns device clock in KHz, rounded to the nearest integer.

Example clk = Clock_Khz();

Clock_Khz

Prototype void Vdelay_ms(unsigned time_in_ms);

Description Creates a software delay in duration of time_in_ms milliseconds (a variable).
Generated delay is not as precise as the delay created by Delay_ms.

Example pause = 1000;
// ...
Vdelay_ms(pause); // ~ one second pause

Vdelay_ms

mikroC provides a set of libraries which simplifies the initialization and use of
PIC MCU and its modules. Library functions do not require any header files to be
included; you can use them anywhere in your projects.

Currently available libraries are:

- ADC Library
- CAN Library
- CANSPI Library
- Compact Flash Library
- Conversions Library
- EEPROM Library
- Ethernet Library
- Flash Memory Library
- Graphic LCD Library
- I2C Library
- Keypad Library
- LCD Library
- LCD8 Library
- Manchester Code Library
- Multi Media Card Library
- OneWire Library
- PS/2 Library
- PWM Library
- RS-485 Library
- Secure Digital Library
- Software I2C Library
- Software SPI Library
- Software UART Library
- Sound Library
- USART Library
- USB HID Library
- Util Library
- ANSI C Standard Libraries
- Conversions Library
- Trigonometry Library

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

138 MikroElektronika: Development tools - Books - Compilers

page

LIBRARY ROUTINES

ADC (Analog to Digital Converter) module is available with a number of PIC
MCU models. Library function Adc_Read is included to provide you comfortable
work with the module.

MikroElektronika: Development tools - Books - Compilers 139
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

ADC Library

Prototype unsigned Adc_Read(char channel);

Returns 10-bit unsigned value read from the specified ADC channel.

Description Initializes PIC’s internal ADC module to work with RC clock. Clock determines the
time period necessary for performing AD conversion (min 12TAD).

Parameter channel represents the channel from which the analog value is to be
acquired. For channel-to-pin mapping please refer to documentation for the appropriate
PIC MCU.

Requires PIC MCU with built-in ADC module. You should consult the Datasheet documentation
for specific device (most devices from PIC16/18 families have it).

Before using the function, be sure to configure the appropriate TRISA bits to designate
the pins as input. Also, configure the desired pin as analog input, and set Vref (voltage
reference value).

The function is currently unsupported by the following PICmicros: P18F2331,
P18F2431, P18F4331, and P18F4431.

Example unsigned tmp;
...
tmp = Adc_Read(1); /* read analog value from channel 1 */

Adc_Read

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

140 MikroElektronika: Development tools - Books - Compilers

page

Library Example

/* This code snippet reads analog value from channel 2 and displays
it on PORTD (lower 8 bits) and PORTB (2 most significant bits). */

unsigned temp_res;

void main() {
ADCON1 = 0x80; // Configure analog inputs and Vref
TRISA = 0xFF; // PORTA is input
TRISB = 0x3F; // Pins RB7, RB6 are outputs
TRISD = 0; // PORTD is output

do {
temp_res = Adc_Read(2); // Get results of AD conversion
PORTD = temp_res; // Send lower 8 bits to PORTD
PORTB = temp_res >> 2; // Send 2 most significant bits to RB7, RB6

} while(1);
}

4MHz

+5V

+5V

PIC16F877A

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

+5V

LD7

LD6

LD5

LD4

LD3

LD2

LD1

LD0

330R

330R

330R

330R

330R

330R

330R

330R

LB7

LB6

330R

330R1
0

K
R

e
s
e

t

Hardware Connection

mikroC provides a library (driver) for working with the CAN module.

CAN is a very robust protocol that has error detection and signalling, self–check-
ing and fault confinement. Faulty CAN data and remote frames are re-transmitted
automatically, similar to the Ethernet.

Data transfer rates vary from up to 1 Mbit/s at network lengths below 40m to 250
Kbit/s at 250m cables, and can go even lower at greater network distances, down
to 200Kbit/s, which is the minimum bitrate defined by the standard. Cables used
are shielded twisted pairs, and maximum cable length is 1000m.

CAN supports two message formats:

Standard format, with 11 identifier bits, and
Extended format, with 29 identifier bits

Note: CAN routines are currently supported only by P18XXX8 PICmicros.
Microcontroller must be connected to CAN transceiver (MCP2551 or similar)
which is connected to CAN bus.

Note: Be sure to check CAN constants necessary for using some of the functions.
See page 145.

CANSetOperationMode
CANGetOperationMode
CANInitialize
CANSetBaudRate
CANSetMask
CANSetFilter
CANRead
CANWrite

Following routines are for the internal use by compiler only:

RegsToCANID
CANIDToRegs

MikroElektronika: Development tools - Books - Compilers 141
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

CAN Library

Library Routines

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

142 MikroElektronika: Development tools - Books - Compilers

page

Prototype void CANSetOperationMode(char mode, char wait_flag);

Description Sets CAN to requested mode, i.e. copies mode to CANSTAT. Parameter mode needs to
be one of CAN_OP_MODE constants (see CAN constants).

Parameter wait_flag needs to be either 0 or 0xFF:
If set to 0xFF, this is a blocking call – the function won’t “return” until the requested
mode is set. If 0, this is a non-blocking call. It does not verify if CAN module is
switched to requested mode or not. Caller must use function CANGetOperationMode
to verify correct operation mode before performing mode specific operation.

Requires CAN routines are currently supported only by P18XXX8 PICmicros. Microcontroller
must be connected to CAN transceiver (MCP2551 or similar) which is connected to
CAN bus.

Example CANSetOperationMode(CAN_MODE_CONFIG, 0xFF);

CANSetOperationMode

Prototype char CANGetOperationMode(void);

Returns Current opmode.

Description Function returns current operational mode of CAN module.

Requires CAN routines are currently supported only by P18XXX8 PICmicros. Microcontroller
must be connected to CAN transceiver (MCP2551 or similar) which is connected to
CAN bus.

Example if (CANGetOperationMode() == CAN_MODE_NORMAL) { ... };

CANGetOperationMode

MikroElektronika: Development tools - Books - Compilers 143
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void CANInitialize(char SJW, char BRP, char PHSEG1, char PHSEG2,
char PROPSEG, char CAN_CONFIG_FLAGS);

Description Initializes CAN. All pending transmissions are aborted. Sets all mask registers to 0 to
allow all messages.

Filter registers are set according to flag value:

if (CAN_CONFIG_FLAGS & CAN_CONFIG_VALID_XTD_MSG != 0)
// Set all filters to XTD_MSG

else if (config & CONFIG_VALID_STD_MSG != 0)
// Set all filters to STD_MSG

else
// Set half the filters to STD, and the rest to XTD_MSG

Parameters:

SJW as defined in 18XXX8 datasheet (1–4)
BRP as defined in 18XXX8 datasheet (1–64)
PHSEG1 as defined in 18XXX8 datasheet (1–8)
PHSEG2 as defined in 18XXX8 datasheet (1–8)
PROPSEG as defined in 18XXX8 datasheet (1–8)
CAN_CONFIG_FLAGS is formed from predefined constants (see CAN constants).

Requires CAN must be in Config mode; otherwise the function will be ignored.

Example init = CAN_CONFIG_SAMPLE_THRICE &
CAN_CONFIG_PHSEG2_PRG_ON &
CAN_CONFIG_STD_MSG &
CAN_CONFIG_DBL_BUFFER_ON &
CAN_CONFIG_VALID_XTD_MSG &
CAN_CONFIG_LINE_FILTER_OFF;

...
CANInitialize(1, 1, 3, 3, 1, init); // initialize CAN

CANInitialize

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

144 MikroElektronika: Development tools - Books - Compilers

page

Prototype void CANSetBaudRate(char SJW, char BRP, char PHSEG1, char PHSEG2,
char PROPSEG, char CAN_CONFIG_FLAGS);

Description Sets CAN baud rate. Due to complexity of CAN protocol, you cannot simply force a bps
value. Instead, use this function when CAN is in Config mode. Refer to datasheet for
details.

Parameters:

SJW as defined in 18XXX8 datasheet (1–4)
BRP as defined in 18XXX8 datasheet (1–64)
PHSEG1 as defined in 18XXX8 datasheet (1–8)
PHSEG2 as defined in 18XXX8 datasheet (1–8)
PROPSEG as defined in 18XXX8 datasheet (1–8)
CAN_CONFIG_FLAGS is formed from predefined constants (see CAN constants)

Requires CAN must be in Config mode; otherwise the function will be ignored.

Example init = CAN_CONFIG_SAMPLE_THRICE &
CAN_CONFIG_PHSEG2_PRG_ON &
CAN_CONFIG_STD_MSG &
CAN_CONFIG_DBL_BUFFER_ON &
CAN_CONFIG_VALID_XTD_MSG &
CAN_CONFIG_LINE_FILTER_OFF;

...
CANSetBaudRate(1, 1, 3, 3, 1, init);

CANSetBaudRate

MikroElektronika: Development tools - Books - Compilers 145
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void CANSetMask(char CAN_MASK, long value, char CAN_CONFIG_FLAGS);

Description Function sets mask for advanced filtering of messages. Given value is bit adjusted to
appropriate buffer mask registers.

Parameters: CAN_MASK is one of predefined constant values (see CAN constants);
value is the mask register value; CAN_CONFIG_FLAGS selects type of message to filter,
either CAN_CONFIG_XTD_MSG or CAN_CONFIG_STD_MSG.

Requires CAN must be in Config mode; otherwise the function will be ignored.

Example // Set all mask bits to 1, i.e. all filtered bits are relevant:

CANSetMask(CAN_MASK_B1, -1, CAN_CONFIG_XTD_MSG);

/* Note that -1 is just a cheaper way to write 0xFFFFFFFF.
Complement will do the trick and fill it up with ones. */

CANSetMask

Prototype void CANSetFilter(char CAN_FILTER, long value,
char CAN_CONFIG_FLAGS);

Description Function sets mask for advanced filtering of messages. Given value is bit adjusted to
appropriate buffer mask registers.

Parameters: CAN_MASK is one of predefined constant values (see CAN constants);
value is the filter register value; CAN_CONFIG_FLAGS selects type of message to filter,
either CAN_CONFIG_XTD_MSG or CAN_CONFIG_STD_MSG.

Requires CAN must be in Config mode; otherwise the function will be ignored.

Example /* Set id of filter B1_F1 to 3: */
CANSetFilter(CAN_FILTER_B1_F1, 3, CAN_CONFIG_XTD_MSG);

CANSetFilter

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

146 MikroElektronika: Development tools - Books - Compilers

page

Prototype char CANRead(long *id, char *data, char *datalen, char
*CAN_RX_MSG_FLAGS);

Returns Message from receive buffer or zero if no message found.

Description Function reads message from receive buffer. If at least one full receive buffer is found, it
is extracted and returned. If none found, function returns zero.

Parameters: id is message identifier; data is an array of bytes up to 8 bytes in length;
datalen is data length, from 1–8; CAN_RX_MSG_FLAGS is value formed from constants
(see CAN constants).

Requires CAN must be in mode in which receiving is possible.

Example char rcv, rx, len, data[8]; long id;
rcv = CANRead(id, data, len, 0);

CANRead

Prototype char CANWrite(long id, char *data, char datalen, char
CAN_TX_MSG_FLAGS);

Returns Returns zero if message cannot be queued (buffer full).

Description If at least one empty transmit buffer is found, function sends message on queue for
transmission. If buffer is full, function returns 0.

Parameters: id is CAN message identifier. Only 11 or 29 bits may be used depending
on message type (standard or extended); data is array of bytes up to 8 bytes in length;
datalen is data length from 1–8; CAN_TX_MSG_FLAGS is value formed from constants
(see CAN constants).

Requires CAN must be in Normal mode.

Example char tx, data; long id;
tx = CAN_TX_PRIORITY_0 & CAN_TX_XTD_FRAME;
CANWrite(id, data, 2, tx);

CANWrite

There is a number of constants predefined in CAN library. To be able to use the
library effectively, you need to be familiar with these. You might want to check
the example at the end of the chapter.

CAN_OP_MODE

CAN_OP_MODE constants define CAN operation mode. Function
CANSetOperationMode expects one of these as its argument:

#define CAN_MODE_BITS 0xE0 // Use it to access mode bits
#define CAN_MODE_NORMAL 0
#define CAN_MODE_SLEEP 0x20
#define CAN_MODE_LOOP 0x40
#define CAN_MODE_LISTEN 0x60
#define CAN_MODE_CONFIG 0x80

CAN_CONFIG_FLAGS

CAN_CONFIG_FLAGS constants define flags related to CAN module configuration.
Functions CANInitialize and CANSetBaudRate expect one of these (or a bitwise
combination) as their argument:

#define CAN_CONFIG_DEFAULT 0xFF // 11111111

#define CAN_CONFIG_PHSEG2_PRG_BIT 0x01
#define CAN_CONFIG_PHSEG2_PRG_ON 0xFF // XXXXXXX1
#define CAN_CONFIG_PHSEG2_PRG_OFF 0xFE // XXXXXXX0

#define CAN_CONFIG_LINE_FILTER_BIT 0x02
#define CAN_CONFIG_LINE_FILTER_ON 0xFF // XXXXXX1X
#define CAN_CONFIG_LINE_FILTER_OFF 0xFD // XXXXXX0X

#define CAN_CONFIG_SAMPLE_BIT 0x04
#define CAN_CONFIG_SAMPLE_ONCE 0xFF // XXXXX1XX
#define CAN_CONFIG_SAMPLE_THRICE 0xFB // XXXXX0XX

#define CAN_CONFIG_MSG_TYPE_BIT 0x08
#define CAN_CONFIG_STD_MSG 0xFF // XXXX1XXX
#define CAN_CONFIG_XTD_MSG 0xF7 // XXXX0XXX

// continues..

MikroElektronika: Development tools - Books - Compilers 147
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

CAN Constants

// ..continued

#define CAN_CONFIG_DBL_BUFFER_BIT 0x10
#define CAN_CONFIG_DBL_BUFFER_ON 0xFF // XXX1XXXX
#define CAN_CONFIG_DBL_BUFFER_OFF 0xEF // XXX0XXXX

#define CAN_CONFIG_MSG_BITS 0x60
#define CAN_CONFIG_ALL_MSG 0xFF // X11XXXXX
#define CAN_CONFIG_VALID_XTD_MSG 0xDF // X10XXXXX
#define CAN_CONFIG_VALID_STD_MSG 0xBF // X01XXXXX
#define CAN_CONFIG_ALL_VALID_MSG 0x9F // X00XXXXX

You may use bitwise AND (&) to form config byte out of these values. For exam-
ple:

init = CAN_CONFIG_SAMPLE_THRICE & CAN_CONFIG_PHSEG2_PRG_ON &
CAN_CONFIG_STD_MSG & CAN_CONFIG_DBL_BUFFER_ON &
CAN_CONFIG_VALID_XTD_MSG & CAN_CONFIG_LINE_FILTER_OFF;

//...
CANInitialize(1, 1, 3, 3, 1, init); // initialize CAN

CAN_TX_MSG_FLAGS

CAN_TX_MSG_FLAGS are flags related to transmission of a CAN message:

#define CAN_TX_PRIORITY_BITS 0x03
#define CAN_TX_PRIORITY_0 0xFC // XXXXXX00
#define CAN_TX_PRIORITY_1 0xFD // XXXXXX01
#define CAN_TX_PRIORITY_2 0xFE // XXXXXX10
#define CAN_TX_PRIORITY_3 0xFF // XXXXXX11

#define CAN_TX_FRAME_BIT 0x08
#define CAN_TX_STD_FRAME 0xFF // XXXXX1XX
#define CAN_TX_XTD_FRAME 0xF7 // XXXXX0XX

#define CAN_TX_RTR_BIT 0x40
#define CAN_TX_NO_RTR_FRAME 0xFF // X1XXXXXX
#define CAN_TX_RTR_FRAME 0xBF // X0XXXXXX

You may use bitwise AND (&) to adjust the appropriate flags. For example:

/* form value to be used with CANSendMessage: */
send_config = CAN_TX_PRIORITY_0 && CAN_TX_XTD_FRAME &

CAN_TX_NO_RTR_FRAME;
//...
CANSendMessage(id, data, 1, send_config);

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

148 MikroElektronika: Development tools - Books - Compilers

page

CAN_RX_MSG_FLAGS

CAN_RX_MSG_FLAGS are flags related to reception of CAN message. If a particular
bit is set; corresponding meaning is TRUE or else it will be FALSE.

#define CAN_RX_FILTER_BITS 0x07 // Use it to access filter bits
#define CAN_RX_FILTER_1 0x00
#define CAN_RX_FILTER_2 0x01
#define CAN_RX_FILTER_3 0x02
#define CAN_RX_FILTER_4 0x03
#define CAN_RX_FILTER_5 0x04
#define CAN_RX_FILTER_6 0x05
#define CAN_RX_OVERFLOW 0x08 // Set if Overflowed; else clear
#define CAN_RX_INVALID_MSG 0x10 // Set if invalid; else clear
#define CAN_RX_XTD_FRAME 0x20 // Set if XTD msg; else clear
#define CAN_RX_RTR_FRAME 0x40 // Set if RTR msg; else clear
#define CAN_RX_DBL_BUFFERED 0x80 // Set if msg was

// hardware double-buffered

You may use bitwise AND (&) to adjust the appropriate flags. For example:

if (MsgFlag & CAN_RX_OVERFLOW != 0) {
... // Receiver overflow has occurred; previous message is lost.

}

CAN_MASK

CAN_MASK constants define mask codes. Function CANSetMask expects one of
these as its argument:

#define CAN_MASK_B1 0
#define CAN_MASK_B2 1

CAN_FILTER

CAN_FILTER constants define filter codes. Function CANSetFilter expects one of
these as its argument:

#define CAN_FILTER_B1_F1 0
#define CAN_FILTER_B1_F2 1
#define CAN_FILTER_B2_F1 2
#define CAN_FILTER_B2_F2 3
#define CAN_FILTER_B2_F3 4
#define CAN_FILTER_B2_F4 5

MikroElektronika: Development tools - Books - Compilers 149
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

150 MikroElektronika: Development tools - Books - Compilers

page

Library Example

unsigned short aa, aa1, len, aa2;
unsigned char data[8];
long id;
unsigned short zr, cont, oldstate;

//........

void main() {
PORTC = 0;
TRISC = 0;
PORTD = 0;
TRISD = 0;
aa = 0;
aa1 = 0;
aa2 = 0;

// Form value to be used with CANSendMessage
aa1 = CAN_TX_PRIORITY_0 &

CAN_TX_XTD_FRAME &
CAN_TX_NO_RTR_FRAME;

// Form value to be used with CANInitialize
aa = CAN_CONFIG_SAMPLE_THRICE &

CAN_CONFIG_PHSEG2_PRG_ON &
CAN_CONFIG_STD_MSG &
CAN_CONFIG_DBL_BUFFER_ON &
CAN_CONFIG_VALID_XTD_MSG &
CAN_CONFIG_LINE_FILTER_OFF;

data[0] = 0;

// Initialize CAN
CANInitialize(1,1,3,3,1,aa);

// Set CAN to CONFIG mode
CANSetOperationMode(CAN_MODE_CONFIG,0xFF);

id = -1;

// continues ..

MikroElektronika: Development tools - Books - Compilers 151
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

// .. continued

// Set all mask1 bits to ones
CANSetMask(CAN_MASK_B1,ID,CAN_CONFIG_XTD_MSG);

// Set all mask2 bits to ones
CANSetMask(CAN_MASK_B2,ID,CAN_CONFIG_XTD_MSG);

// Set id of filter B1_F1 to 3
CANSetFilter(CAN_FILTER_B2_F3,3,CAN_CONFIG_XTD_MSG);

// Set CAN to NORMAL mode
CANSetOperationMode(CAN_MODE_NORMAL,0xFF);

PORTD = 0xFF;
id = 12111;
CANWrite(id,data,1,aa1); // Send message via CAN

while (1) {
oldstate = 0;
zr = CANRead(&id, data , &len, &aa2);
if ((id == 3) & zr) {

PORTD = 0xAA;
PORTC = data[0]; // Output data at PORTC
data[0]++ ;

// If message contains two data bytes, output second byte at PORTD
if (len == 2) PORTD = data[1];

data[1] = 0xFF;
id = 12111;
CANWrite(id, data, 2,aa1); // Send incremented data back

}
}

}//~!

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

152 MikroElektronika: Development tools - Books - Compilers

page

R
X

D
V

re
f

R
S

T
X

-C
A

N

G
N

D

V
C

C

C
A

N
H

C
A

N
L

S
h

ie
ld

e
d

p
a

ir,
le

s
s

th
a

n
3

0
0

m
lo

n
g

+
5

V

+
5

V

P
IC

1
8
F
4
5
8

R
A

0
/A

N
0

/C
v

re
f

R
A

2
/A

N
2

/V
re

f-

R
A

3
/A

N
3

/V
re

f+

R
A

4
/T

O
C

K
I

R
A

5
/A

N
4

/S
S

/L
V

D
IN

R
E

0
/

R
D

/
A

N
5

/

R
E

1
/

W
R

/C
1

O
U

T
A

N
6

/

R
E

2
/

C
S

/C
2

O
U

T
A

N
7

/

V
d

d

V
s

s

O
S

C
1

/C
L

K
I

O
S

C
2

/C
L

K
O

/R
A

6

R
C

0
/T

1
O

S
O

/T
1

C
K

I

R
C

1
/T

1
O

S
I

R
C

3
/S

C
K

/S
C

L

R
D

0
/P

S
P

0
/C

1
IN

+

R
D

1
/P

S
P

1
/C

1
IN

-

M
C

L
R

/V
p

p

R
C

2
/C

C
P

1

R
A

1
/A

N
1

R
B

7
/P

G
D

R
B

6
/P

G
C

R
B

5
/P

G
M

R
B

4

R
B

3
/C

A
N

R
X

R
B

2
/C

A
N

T
X

/IN
T

2

R
B

1
/IN

T
1

R
B

0
/IN

T
0

V
d

d

V
s

s

R
D

6
/P

S
P

6
/P

1
C

R
D

7
/P

S
P

7
/P

1
D

R
D

5
/P

S
P

5
/P

1
B

R
D

4
/P

S
P

4
/

E
C

C
P

1
/P

1
A

R
C

7
/R

X
/D

T

R
C

6
/T

X
/C

K

R
C

5
/S

D
O

R
C

4
/S

D
I/S

D
A

R
D

3
/P

S
P

3
/C

2
IN

-

R
D

2
/P

S
P

2
/C

2
IN

+

10K

Reset

+
5

V

+
5

V

P
IC

1
8
F
4
5
8

R
A

0
/A

N
0

/C
v

re
f

R
A

2
/A

N
2

/V
re

f-

R
A

3
/A

N
3

/V
re

f+

R
A

4
/T

O
C

K
I

R
A

5
/A

N
4

/S
S

/L
V

D
IN

R
E

0
/

R
D

/
A

N
5

/

R
E

1
/

W
R

/C
1

O
U

T
A

N
6

/

R
E

2
/

C
S

/C
2

O
U

T
A

N
7

/

V
d

d

V
s

s

O
S

C
1

/C
L

K
I

O
S

C
2

/C
L

K
O

/R
A

6

R
C

0
/T

1
O

S
O

/T
1

C
K

I

R
C

1
/T

1
O

S
I

R
C

3
/S

C
K

/S
C

L

R
D

0
/P

S
P

0
/C

1
IN

+

R
D

1
/P

S
P

1
/C

1
IN

-

M
C

L
R

/V
p

p

R
C

2
/C

C
P

1

R
A

1
/A

N
1

R
B

7
/P

G
D

R
B

6
/P

G
C

R
B

5
/P

G
M

R
B

4

R
B

3
/C

A
N

R
X

R
B

2
/C

A
N

T
X

/IN
T

2

R
B

1
/IN

T
1

R
B

0
/IN

T
0

V
d

d

V
s

s

R
D

6
/P

S
P

6
/P

1
C

R
D

7
/P

S
P

7
/P

1
D

R
D

5
/P

S
P

5
/P

1
B

R
D

4
/P

S
P

4
/

E
C

C
P

1
/P

1
A

R
C

7
/R

X
/D

T

R
C

6
/T

X
/C

K

R
C

5
/S

D
O

R
C

4
/S

D
I/S

D
A

R
D

3
/P

S
P

3
/C

2
IN

-

R
D

2
/P

S
P

2
/C

2
IN

+

10K

Reset

10R

P
C

A
8
2
C

2
5
0

o
r

M
C

P
2
5
5
1

R
X

D
V

re
f

R
S

T
X

-C
A

N

G
N

D

V
C

C

C
A

N
H

C
A

N
L

10R

+
5

V

+
5

V

P
C

A
8
2
C

2
5
0

o
r

M
C

P
2
5
5
1

Hardware Connection

SPI module is available with a number of PICmicros. mikroC provides a library
(driver) for working with the external CAN modules (such as MCP2515 or
MCP2510) via SPI.

In mikroC, each routine of CAN library has its CANSPI counterpart with identical
syntax. For more information on the Controller Area Network, consult the CAN
Library. Note that the effective communication speed depends on the SPI, and is
certainly slower than the “real” CAN.

Note: CANSPI functions are supported by any PIC MCU that has SPI interface on
PORTC. Also, CS pin of MCP2510 or MCP2515 must be connected to RC0.
Example of HW connection is given at the end of the chapter.

Note: Be sure to check CAN constants necessary for using some of the functions.
See page 145.

CANSPISetOperationMode
CANSPIGetOperationMode
CANSPIInitialize
CANSPISetBaudRate
CANSPISetMask
CANSPISetFilter
CANSPIRead
CANSPIWrite

Following routines are for the internal use by compiler only:

RegsToCANSPIID
CANSPIIDToRegs

MikroElektronika: Development tools - Books - Compilers 153
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

CANSPI Library

Library Routines

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

154 MikroElektronika: Development tools - Books - Compilers

page

Prototype void CANSPISetOperationMode(char mode, char wait_flag);

Description Sets CAN to requested mode, i.e. copies mode to CANSTAT. Parameter mode needs to
be one of CAN_OP_MODE constants (see CAN constants, page 145).

Parameter wait_flag needs to be either 0 or 0xFF: If set to 0xFF, this is a blocking
call – the function won’t “return” until the requested mode is set. If 0, this is a non-
blocking call. It does not verify if CAN module is switched to requested mode or not.
Caller must use function CANSPIGetOperationMode to verify correct operation mode
before performing mode specific operation.

Requires CANSPI functions are supported by any PIC MCU that has SPI interface on PORTC.
Also, CS pin of MCP2510 or MCP2515 must be connected to RC0.

Example CANSPISetOperationMode(CAN_MODE_CONFIG, 0xFF);

CANSPISetOperationMode

Prototype char CANSPIGetOperationMode(void);

Returns Current opmode.

Description Function returns current operational mode of CAN module.

Example if (CANSPIGetOperationMode() == CAN_MODE_NORMAL) { ... };

CANSPIGetOperationMode

MikroElektronika: Development tools - Books - Compilers 155
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void CANSPIInitialize(char SJW, char BRP, char PHSEG1, char
PHSEG2, char PROPSEG, char CAN_CONFIG_FLAGS);

Description Initializes CANSPI. All pending transmissions are aborted. Sets all mask registers to 0
to allow all messages.

Filter registers are set according to flag value:

if (CAN_CONFIG_FLAGS & CAN_CONFIG_VALID_XTD_MSG != 0)
// Set all filters to XTD_MSG

else if (config & CONFIG_VALID_STD_MSG != 0)
// Set all filters to STD_MSG

else
// Set half the filters to STD, and the rest to XTD_MSG

Parameters:

SJW as defined in 18XXX8 datasheet (1–4)
BRP as defined in 18XXX8 datasheet (1–64)
PHSEG1 as defined in 18XXX8 datasheet (1–8)
PHSEG2 as defined in 18XXX8 datasheet (1–8)
PROPSEG as defined in 18XXX8 datasheet (1–8)
CAN_CONFIG_FLAGS is formed from predefined constants (see CAN constants, page
145).

Requires CANSPI must be in Config mode; otherwise the function will be ignored.

Example init = CAN_CONFIG_SAMPLE_THRICE &
CAN_CONFIG_PHSEG2_PRG_ON &
CAN_CONFIG_STD_MSG &
CAN_CONFIG_DBL_BUFFER_ON &
CAN_CONFIG_VALID_XTD_MSG &
CAN_CONFIG_LINE_FILTER_OFF;

...
CANSPIInitialize(1, 1, 3, 3, 1, init); // initialize CANSPI

CANSPIInitialize

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

156 MikroElektronika: Development tools - Books - Compilers

page

Prototype void CANSPISetBaudRate(char SJW, char BRP, char PHSEG1, char
PHSEG2, char PROPSEG, char CAN_CONFIG_FLAGS);

Description Sets CANSPI baud rate. Due to complexity of CANSPI protocol, you cannot simply
force a bps value. Instead, use this function when CANSPI is in Config mode. Refer to
datasheet for details.

Parameters:

SJW as defined in 18XXX8 datasheet (1–4)
BRP as defined in 18XXX8 datasheet (1–64)
PHSEG1 as defined in 18XXX8 datasheet (1–8)
PHSEG2 as defined in 18XXX8 datasheet (1–8)
PROPSEG as defined in 18XXX8 datasheet (1–8)
CAN_CONFIG_FLAGS is formed from predefined constants (see CAN constants)

Requires CANSPI must be in Config mode; otherwise the function will be ignored.

Example init = CAN_CONFIG_SAMPLE_THRICE &
CAN_CONFIG_PHSEG2_PRG_ON &
CAN_CONFIG_STD_MSG &
CAN_CONFIG_DBL_BUFFER_ON &
CAN_CONFIG_VALID_XTD_MSG &
CAN_CONFIG_LINE_FILTER_OFF;

...
CANSPISetBaudRate(1, 1, 3, 3, 1, init);

CANSPISetBaudRate

MikroElektronika: Development tools - Books - Compilers 157
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void CANSPISetMask(char CAN_MASK, long value, char
CAN_CONFIG_FLAGS);

Description Function sets mask for advanced filtering of messages. Given value is bit adjusted to
appropriate buffer mask registers.

Parameters: CAN_MASK is one of predefined constant values (see CAN constants);
value is the mask register value; CAN_CONFIG_FLAGS selects type of message to filter,
either CAN_CONFIG_XTD_MSG or CAN_CONFIG_STD_MSG.

Requires CANSPI must be in Config mode; otherwise the function will be ignored.

Example // Set all mask bits to 1, i.e. all filtered bits are relevant:

CANSPISetMask(CAN_MASK_B1, -1, CAN_CONFIG_XTD_MSG);

/* Note that -1 is just a cheaper way to write 0xFFFFFFFF.
Complement will do the trick and fill it up with ones. */

CANSPISetMask

Prototype void CANSPISetFilter(char CAN_FILTER, long value,
char CAN_CONFIG_FLAGS);

Description Function sets mask for advanced filtering of messages. Given value is bit adjusted to
appropriate buffer mask registers.

Parameters: CAN_MASK is one of predefined constant values (see CAN constants);
value is the filter register value; CAN_CONFIG_FLAGS selects type of message to filter,
either CAN_CONFIG_XTD_MSG or CAN_CONFIG_STD_MSG.

Requires CANSPI must be in Config mode; otherwise the function will be ignored.

Example /* Set id of filter B1_F1 to 3: */
CANSPISetFilter(CAN_FILTER_B1_F1, 3, CAN_CONFIG_XTD_MSG);

CANSPISetFilter

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

158 MikroElektronika: Development tools - Books - Compilers

page

Prototype char CANSPIRead(long *id, char *data, char *datalen, char
*CAN_RX_MSG_FLAGS);

Returns Message from receive buffer or zero if no message found.

Description Function reads message from receive buffer. If at least one full receive buffer is found, it
is extracted and returned. If none found, function returns zero.

Parameters: id is message identifier; data is an array of bytes up to 8 bytes in length;
datalen is data length, from 1–8; CAN_RX_MSG_FLAGS is value formed from constants
(see CAN constants).

Requires CANSPI must be in mode in which receiving is possible.

Example char rcv, rx, len, data[8]; long id;
rcv = CANSPIRead(id, data, len, 0);

CANSPIRead

Prototype char CANSPIWrite(long id, char *data, char datalen, char
CAN_TX_MSG_FLAGS);

Returns Returns zero if message cannot be queued (buffer full).

Description If at least one empty transmit buffer is found, function sends message on queue for
transmission. If buffer is full, function returns 0.

Parameters: id is CANSPI message identifier. Only 11 or 29 bits may be used depend-
ing on message type (standard or extended); data is array of bytes up to 8 bytes in
length; datalen is data length from 1–8; CAN_TX_MSG_FLAGS is value formed from
constants (see CAN constants).

Requires CANSPI must be in Normal mode.

Example char tx, data; long id;
tx = CAN_TX_PRIORITY_0 & CAN_TX_XTD_FRAME;
CANSPIWrite(id, data, 2, tx);

CANSPIWrite

MikroElektronika: Development tools - Books - Compilers 159
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Library Example

The code is a simple demonstration of CANSPI protocol. It is a simple data exchange between 2
PIC’s, where data is incremented upon each bounce. Data is printed on PORTC (lower byte) and
PORTD (higher byte) for a visual check.

char data[8],aa, aa1, len, aa2;
long id;
char zr;
const char _TRUE = 0xFF;
const char _FALSE = 0x00;

void main(){
TRISB = 0;
Spi_Init(); // Initialize SPI module
TRISC.F2 = 0; // Clear (TRISC,2)
PORTC.F2 = 0; // Clear (PORTC,2)
PORTC.F0 = 1; // Set (PORTC,0)
TRISC.F0 = 0; // Clear (TRISC,0)
PORTD = 0;
TRISD = 0;
aa = 0;
aa1 = 0;
aa2 = 0;

// Form value to be used with CANSPIInitialize
aa = CAN_CONFIG_SAMPLE_THRICE &

CAN_CONFIG_PHSEG2_PRG_ON &
CAN_CONFIG_STD_MSG &
CAN_CONFIG_DBL_BUFFER_ON &
CAN_CONFIG_VALID_XTD_MSG;

PORTC.F2 = 1; // Set (PORTC,2)

// Form value to be used with CANSPISendMessage
aa1 = CAN_TX_PRIORITY_0 &

CAN_TX_XTD_FRAME &
CAN_TX_NO_RTR_FRAME;

PORTC.F0 = 1; // Set (PORTC,0)

// continues ..

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

160 MikroElektronika: Development tools - Books - Compilers

page

// .. continued

// Initialize external CAN module
CANSPIInitialize(1,1,3,3,1,aa);

// Set CANSPI to CONFIG mode
CANSPISetOperationMode(CAN_MODE_CONFIG,_TRUE);
ID = -1;

// Set all mask1 bits to ones
CANSPISetMask(CAN_MASK_B1,id,CAN_CONFIG_XTD_MSG);

// Set all mask2 bits to ones
CANSPISetMask(CAN_MASK_B2,id,CAN_CONFIG_XTD_MSG);

// Set id of filter B1_F1 to 12111
CANSPISetFilter(CAN_FILTER_B2_F4,12111,CAN_CONFIG_XTD_MSG);

// Set CANSPI to NORMAL mode
CANSPISetOperationMode(CAN_MODE_NORMAL,_TRUE);

while (1) {
zr = CANSPIRead(&id , &Data , &len, &aa2); // Receive data, if any
if (id == 12111 & zr) {

PORTB = data[0]++ ; // Output data on PORTB
id = 3;
Delay_ms(500);

// Send incremented data back
CANSPIWrite(id,&data,1,aa1);

// If message contains 2 data bytes, output second byte at PORTD
if (len == 2) PORTD = data[1];

}
}

}//~!

MikroElektronika: Development tools - Books - Compilers 161
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

+5V

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

4
M

H
z

+5V

PIC16F877A

MCP2510

TX-CAN

CLKOUT

TX0RTS

CS

RST

Vdd

OSC2 INT

RX-CAN

TX1RTS

TX2RTS

OSC1

Vss RX1BF

RX0BF

SCK

SI

SO

8MHz

+5V

+5V

PCA82C250

RXD Vref

RSTX-CAN

GND

VCC

CANH

CANL+5V

Shielded pair, less

than 300m long

1
0

R

1
0

K

1
0

0
K

1
0

0
K

1
0

0
K

R
e
s
e
t

Hardware Connection

Compact Flash Library provides routines for accessing data on Compact Flash
card (abbrev. CF further in text). CF cards are widely used memory elements,
commonly found in digital cameras. Great capacity (8MB ~ 2GB, and more) and
excellent access time of typically few microseconds make them very attractive for
microcontroller applications.

In CF card, data is divided into sectors, one sector usually comprising 512 bytes
(few older models have sectors of 256B). Read and write operations are not per-
formed directly, but successively through 512B buffer. Following routines can be
used for CF with FAT16, and FAT32 file system. Note that routines for file han-
dling can be used only with FAT16 file system.

Important! Before write operation, make sure you don’t overwrite boot or FAT
sector as it could make your card on PC or digital cam unreadable. Drive mapping
tools, such as Winhex, can be of a great assistance.

Cf_Init
Cf_Detect
Cf_Total_Size
Cf_Enable
Cf_Disable
Cf_Read_Init
Cf_Read_Byte
Cf_Read_Word
Cf_Write_Init
Cf_Write_Byte
Cf_Write_Word

Cf_Find_File
Cf_File_Write_Init
Cf_File_Write_Byte
Cf_Read_Sector
Cf_Write_Sector
Cf_Set_File_Date
Cf_File_Write_Complete

Function Cf_Set_Reg_Adr is for compiler internal purpose only.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

162 MikroElektronika: Development tools - Books - Compilers

page

Compact Flash Library

Library Routines

MikroElektronika: Development tools - Books - Compilers 163
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Cf_Init(char *ctrlport, char *dataport);

Description Initializes ports appropriately for communication with CF card. Specify two different
ports: ctrlport and dataport.

Example Cf_Init(&PORTB, &PORTD);

Cf_Init

Prototype unsigned long Cf_Total_Size(void);

Returns Card size in kilobytes.

Description Returns size of Compact Flash card in kilobytes.

Requires Ports must be initialized. See Cf_Init.

Example size = Cf_Total_Size();

Cf_Total_Size

Prototype char Cf_Detect(void);

Returns Returns 1 if CF is present, otherwise returns 0.

Description Checks for presence of CF card on ctrlport.

Example // Wait until CF card is inserted:
do nop; while (Cf_Detect() == 0);

Cf_Detect

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

164 MikroElektronika: Development tools - Books - Compilers

page

Prototype void Cf_Enable(void);

Description Enables the device. Routine needs to be called only if you have disabled the device by
means of Cf_Disable. These two routines in conjuction allow you to free/occupy data
line when working with multiple devices. Check the example at the end of the chapter.

Requires Ports must be initialized. See Cf_Init.

Example Cf_Enable();

Cf_Enable

Prototype void Cf_Read_Init(long address, char sectcnt);

Description Initializes CF card for reading. Parameter address specifies sector address from where
data will be read, and sectcnt is the number of sectors prepared for reading operation.

Requires Ports must be initialized. See Cf_Init.

Example Cf_Read_Init(590, 1);

Cf_Read_Init

Prototype void Cf_Disable(void);

Description Routine disables the device and frees the data line for other devices. To enable the
device again, call Cf_Enable. These two routines in conjuction allow you to free/occu-
py data line when working with multiple devices. Check the example at the end of the
chapter.

Requires Ports must be initialized. See Cf_Init.

Example Cf_Disable();

Cf_Disable

MikroElektronika: Development tools - Books - Compilers 165
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype char Cf_Read_Byte(void);

Returns Returns byte from CF.

Description Reads one byte from CF.

Requires CF must be initialized for read operation. See Cf_Read_Init.

Example PORTC = Cf_Read_Byte(); // Read byte and display it on PORTC

Cf_Read_Byte

Prototype void Cf_Write_Init(long address, char sectcnt);

Description Initializes CF card for writing. Parameter address specifies sector address where data
will be stored, and sectcnt is total number of sectors prepared for write operation.

Requires Ports must be initialized. See Cf_Init.

Example Cf_Write_Init(590, 1);

Cf_Write_Init

Prototype unsigned Cf_Read_Word (void);

Returns Returns word (16-bit) from CF.

Description Reads one word from CF.

Requires CF must be initialized for read operation. See Cf_Read_Init.

Example PORTC = Cf_Read_Word(); // Read word and display it on PORTC

Cf_Read_Word

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

166 MikroElektronika: Development tools - Books - Compilers

page

Prototype void Cf_Write_Byte(char data);

Description Writes one byte (data) to CF. All 512 bytes are transferred to a buffer.

Requires CF must be initialized for write operation. See Cf_Write_Init.

Example Cf_Write_Byte(100);

Cf_Write_Byte

Prototype void Cf_Write_Word(int data);

Description Writes one word (data) to CF. All 512 bytes are transferred to a buffer.

Requires CF must be initialized for write operation. See Cf_Write_Init.

Example Cf_Write_Word(1000);

Cf_Write_Word

Prototype void Cf_Find_File(char find_first, char *file_name);

Description Routine looks for files on CF card. Parameter find_first can be non-zero or zero; if
non-zero, routine looks for the first file on card, in order of physical writing. Otherwise,
routine “moves forward” to the next file from the current position, again in physical
order. If file is found, routine writes its name and extension in the string file_name. If
no file is found, the string will be filled with zeroes.

Requires Ports must be initialized. See Cf_Init.

Example Cf_Find_File(1, file);
if (file[0] <> 0) { ... // if first file found, handle it

Cf_Find_File

MikroElektronika: Development tools - Books - Compilers 167
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Cf_File_Write_Byte(char data);

Description Adds one byte (data) to file. You can supply ASCII value as parameter, for example 48
for zero.

Requires CF must be initialized for file write operation. See Cf_File_Write_Init.

Example // Write 50,000 zeroes (bytes) to file:
for (i = 0; i < 50000; i++) Cf_File_Write_Byte(48);

Cf_File_Write_Byte

Prototype void Cf_Read_Sector(int sector_number, unsigned short *buffer);

Description Reads one sector (sector_number) into buffer.

Requires CF must be initialized for file write operation. See Cf_Init.

Example Cf_Read_Sector(22, data);

Cf_Read_Sector

Prototype void Cf_File_Write_Init(void);

Description Initializes CF card for file writing operation (FAT16 only).

Requires Ports must be initialized. See Cf_Init.

Example Cf_File_Write_Init();

Cf_File_Write_Init

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

168 MikroElektronika: Development tools - Books - Compilers

page

Prototype void Cf_File_Write_Complete(char filename[8], char *extension);

Description Finalizes writing to file. Upon all data has be written to file, use this function to close
the file and make it readable. Parameter filename must be 8 chars long in uppercase.

Requires CF must be initialized for file write operation. See Cf_File_Write_Init.

Example Cf_File_Write_Complete("MY_FILE1","txt");

Cf_File_Write_Complete

Prototype void Cf_Write_Sector(int sector_number, unsigned short *buffer);

Description Writes value from buffer to CF sector at sector_number.

Requires CF must be initialized for file write operation. See Cf_Init.

Example Cf_Write_Sector(22, data);

Cf_Write_Sector

Prototype void Cf_Set_File_Date(int year, char month,day,hours,min,sec);

Description Writes system timestamp to a file. Use this routine before finalizing a file; otherwise,
file will be appended a random timestamp.

Requires CF must be initialized for file write operation. See Cf_File_Write_Init.

Example // April 1st 2005, 18:07:00
Cf_Set_File_Date(2005,4,1,18,7,0);

Cf_Set_File_Date

MikroElektronika: Development tools - Books - Compilers 169
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Library Example

The following example writes 512 bytes at sector no.590, and then reads the data and prints on
PORTC for a visual check.

unsigned i;

void main() {
TRISC = 0; // PORTC is output
Cf_Init(PORTB, PORTD); // Initialize ports

do nop;
while (!Cf_Detect()); // Wait until CF card is inserted

Delay_ms(500);
Cf_Write_Init(590, 1); // Initialize write at sector address 590

// Write 512 bytes to sector (590)
for (i = 0; i < 512; i++) Cf_Write_Byte(i + 11);

PORTC = 0xFF;
Delay_ms(1000);
Cf_Read_Init(590, 1); // Initialize read at sector address 590

// Read 512 bytes from sector (590)
for (i = 0; i < 512; i++) {

PORTC = Cf_Read_Byte(); // Read byte and display on PORTC
Delay_ms(1000);

}
}

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

170 MikroElektronika: Development tools - Books - Compilers

page

Next example waits until the CF card is inserted, and when plugged, it creates 5 text files on the
card. Each file will be appended the same timestamp.

unsigned short index;
unsigned i1;
char *fname, *ext;

void Init(void) {
TRISC = 0; // PORTC is output
Cf_Init(PORTB, PORTD); // Initialize ports

do nop;
while (!Cf_Detect()); // Wait until CF card is inserted

Delay_ms(50); // Wait until the card is stabilized
} //~

void main() {
ext = "TXT";
index = 0; // Index of file to be written

while (index < 5) {
PORTC = 0;
Init();
PORTC = index;

Cf_File_Write_Init(); // Initialization for writing to new file

i1 = 0;

// Write 50,000 bytes to file
while (i1 < 50000) {

Cf_File_Write_Byte(48 + index);
i1++;

}

fname = "MY_TEST1"; // Name must be 8 character long in uppercase
fname[8] = 48 + index; // Ensure that files have different name

Cf_Set_File_Date(2005,1,1,0,0,0); // Append a timestamp
Cf_File_Write_Complete(fname, ext); // Close the file

index++;
}
PORTC = 0xFF;

} //~!

MikroElektronika: Development tools - Books - Compilers 171
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

+
5
V

C
o
m

p
a
c
t

F
la

s
h

C
o
n
n
e
c
to

r

(T
O

P
V

IE
W

)

C
o
m

p
a
c
t

F
la

s
h

C
a
rd

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
62
5 2
1

2
22
3

2
4

1
7

1
81
9

2
0

2
6

2
7

2
8

2
93
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
15
0 4
6

4
74
8

4
9

4
2

4
34
4

4
5

4
M

H
z

+
5
V

+
5
V

P
IC

1
6
F
8
7
7
A

R
A

0
/A

N
0

R
A

2
/A

N
2

/V
re

f-

R
A

3
/A

N
3

/V
re

f+

R
A

4
/T

O
C

K
I

R
A

5
/A

N
4

R
E

0
/R

D
/A

N
5

R
E

1
/W

R
/A

N
6

R
E

2
/C

S
/A

N
7

V
d

d

V
s
s

O
S

C
1

O
S

C
2

R
C

O
/T

1
O

S
O

R
C

1
/T

1
O

S
I

R
C

3

R
D

0
/P

S
P

0

R
D

1
/P

S
P

1

M
C

L
R

/V
p

p
/T

H
V

R
C

2
/C

C
P

1

R
A

1
/A

N
1

R
B

7
/P

G
D

R
B

6
/P

G
C

R
B

5

R
B

4

R
B

3
/P

G
M

R
B

2

R
B

1

R
B

0
/I

N
T

V
d

d

V
s
s

R
D

6
/P

S
P

6

R
D

7
/P

S
P

7

R
D

5
/P

S
P

5

R
D

4
/P

S
P

4

R
C

7
/R

X
/D

T

R
C

6
/T

X
/C

K

R
C

5

R
C

4

R
D

3
/P

S
P

3

R
D

2
/P

S
P

2

10K

Reset

+
5
V

10K

HW Connection

EEPROM data memory is available with a number of PICmicros. mikroC includes
library for comfortable work with EEPROM.

Eeprom_Read
Eeprom_Write

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

172 MikroElektronika: Development tools - Books - Compilers

page

EEPROM Library

Library Routines

Prototype char Eeprom_Read(char address);

Returns Returns byte from the specified address.

Description Reads data from the specified address. Parameter address is of byte type, which means
it can address only 256 locations. For PIC18 micros with more EEPROM data locations,
it is programmer’s responsibility to set SFR EEADRH register appropriately.

Requires Requires EEPROM module.

Ensure minimum 20ms delay between successive use of routines Eeprom_Write and
Eeprom_Read. Although PIC will write the correct value, Eeprom_Read might return
an undefined result.

Example char take;
...
take = Eeprom_Read(0x3F);

Eeprom_Read

MikroElektronika: Development tools - Books - Compilers 173
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Eeprom_Write(char address, char data);

Description Writes data to the specified address. Parameter address is of byte type, which means it
can address only 256 locations. For PIC18 micros with more EEPROM data locations, it
is programmer’s responsibility to set SFR EEADRH register appropriately.

Be aware that all interrupts will be disabled during execution of EEPROM_Write rou-
tine (GIE bit of INTCON register will be cleared). Routine will set this bit on exit.

Requires Requires EEPROM module.

Ensure minimum 20ms delay between successive use of routines Eeprom_Write and
Eeprom_Read. Although PIC will write the correct value, Eeprom_Read might return
an undefined result.

Example Eeprom_Write(0x32);

Eeprom_Read

unsigned short i = 0, j = 0;

void main() {
PORTB = 0;
TRISB = 0;

j = 4;
for (i = 0; i < 20u; i++)

Eeprom_Write(i, j++);

for (i = 0; i < 20u; i++) {
PORTB = Eeprom_Read(i);
Delay_ms(500);

}
}//~!

Library Example

This library is designed to simplify handling of the underlying hardware
(RTL8019AS). However, certain level of knowledge about the Ethernet and
Ethernet-based protocols (ARP, IP, TCP/IP, UDP/IP, ICMP/IP) is expected from
the user. The Ethernet is a high–speed and versatile protocol, but it is not a simple
one. Once you get used to it, however, you will make your favorite PIC available
to a much broader audience than you could do with the RS232/485 or CAN.

Eth_Init
Eth_Set_Ip_Address
Eth_Inport
Eth_Scan_For_Event
Eth_Get_Ip_Hdr_Len
Eth_Load_Ip_Packet
Eth_Get_Hdr_Chksum
Eth_Get_Source_Ip_Address
Eth_Get_Dest_Ip_Address
Eth_Arp_Response
Eth_Get_Icmp_Info
Eth_Ping_Response
Eth_Get_Udp_Source_Port
Eth_Get_Udp_Dest_Port
Eth_Get_Udp_Port
Eth_Set_Udp_Port
Eth_Send_Udp
Eth_Load_Tcp_Header
Eth_Get_Tcp_Hdr_Offset
Eth_Get_Tcp_Flags
Eth_Set_Tcp_Data
Eth_Tcp_Response

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

174 MikroElektronika: Development tools - Books - Compilers

page

Ethernet Library

Library Routines

MikroElektronika: Development tools - Books - Compilers 175
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Eth_Init(char *addrP, char *dataP, char *ctrlP,
char pinReset, char pinIOW, char pinIOR);

Description Performs initialization of Ethernet card and library. This includes:
- Setting of control and data ports;
- Initialization of the Ethernet card (also called the Network Interface Card, or NIC);
- Retrieval and local storage of the NIC’s hardware (MAC) address;
- Putting the NIC into the LISTEN mode.

Parameter addrP is a pointer to address port, which handles the addressing lines.
Parameter dataP is pointer to data port. Parameter ctrlP is the control port. Parameter
pinReset is the reset/enable pin for the ethernet card chip (on control port). Parameter
pinIOW is the I/O Write request control pin. Parameter pinIOR is the I/O read request
control pin.

Requires As specified for the entire library (please see top of this page).

Example Eth_Init(&PORTB, &PORTD, &PORTE, 2, 1, 0);

Eth_Init

Prototype void Eth_Set_Ip_Address(char ip1, char ip2, char ip3, char ip4);

Description Sets the IP address of the connected and initialized Ethernet network card. The
arguments are the IP address numbers, in IPv4 format (e.g. 127.0.0.1).

Requires This function should be called immediately after the NIC initialization (see Eth_Init).
You can change your IP address at any time, anywhere in the code.

Example // Set IP address 192.168.20.25
Eth_Set_Ip_Address(192u, 168u, 20u, 25u);

Eth_Set_Ip_Address

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

176 MikroElektronika: Development tools - Books - Compilers

page

Prototype unsigned short Eth_Inport(unsigned short address);

Returns One byte from the specified address.

Description Retrieves a byte from the specified address of the Ethernet card chip.

Requires The card (NIC) must be properly initialized. See Eth_Init.

Example udp_length |= Eth_Inport(NIC_DATA);

Eth_Set_Inport

Prototype unsigned Eth_Scan_For_Event(unsigned short *next_ptr);

Returns Type of the ethernet packet received. Two types are distinguished: ARP (MAC-IP
address data request) and IP (Internet Protocol).

Description Retrieves sender’s MAC (hardware) address and type of the packet received. The
function argument is an (internal) pointer to the next data packet in RTL8019’s buffer,
and is of no particular importance to the end user.

Requires The card (NIC) must be properly initialized. See Eth_Init. Also, the function must be
called in a proper sequence, i.e. right after the card init, and IP address/UDP port init.

Example Eth_Init(&PORTB, &PORTD, &PORTE, 2, 1, 0);
Eth_Set_Ip_Address(192u, 168u, 20u, 25u);
Eth_Set_Udp_Port(10001);
do { // Main block of every Ethernet example

event_type = Eth_Scan_For_Event(&next_ptr);
if (event_type) {

switch (event_type) {case ARP: Arp_Event(); break;
case IP : Ip_Event();}

Eth_Outport(CR, 0x22);
Eth_Outport(BNDRY, next_ptr);

}
} while (1);

Eth_Scan_For_Event

MikroElektronika: Development tools - Books - Compilers 177
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Eth_Load_Ip_Packet(void);

Description Loads various IP packet data into PIC’s Ethernet variables.

Requires The card (NIC) must be properly initialized. See Eth_Init. Also, a proper sequence of
calls must be obeyed (see the Ip_Event function in the supplied Ethernet example).

Example Eth_Load_Ip_Packet();

Eth_Load_Ip_Packet

Prototype unsigned short Eth_Get_Ip_Hdr_Len(void);

Returns Header length of the received IP packet.

Description Returns header length of the received IP packet. Before other data based upon the IP
protocol (TCP, UDP, ICMP) can be analyzed, the sub-protocol data must be properly
loaded from the received IP packet.

Requires The card (NIC) must be properly initialized. See Eth_Init. The function must be
called in a proper sequence, i.e. immediately after determining that the packet received
is the IP packet.

Example // Receive IP Header
opt_len = Eth_Get_Ip_Hdr_Len() - 20;

Eth_Get_Ip_Hdr_Len

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

178 MikroElektronika: Development tools - Books - Compilers

page

Prototype void Eth_Get_Dest_Ip_Address(void);

Description Loads the IP address of the received IP packet for which the packet is designated.

Requires The card (NIC) must be properly initialized. See Eth_Init. Also, a proper sequence of
calls must be obeyed (see the Ip_Event function in the supplied Ethernet example).

Example Eth_Get_Dest_Ip_Address();

Eth_Get_Dest_Ip_Address

Prototype void Eth_Get_Hdr_Chksum(void);

Description Loads and returns the header checksum of the received IP packet.

Requires The card (NIC) must be properly initialized. See Eth_Init. Also, a proper sequence of
calls must be obeyed (see the Ip_Event function in the supplied Ethernet example).

Example Eth_Get_Hdr_Chksum();

Eth_Get_Hdr_Chksum

Prototype void Eth_Get_Source_Ip_Address(void);

Description Loads and returns the IP address of the sender of the received IP packet.

Requires The card (NIC) must be properly initialized. See Eth_Init. Also, a proper sequence of
calls must be obeyed (see the Ip_Event function in the supplied Ethernet example).

Example Eth_Get_Source_Ip_Address();

Eth_Get_Source_Ip_Address

MikroElektronika: Development tools - Books - Compilers 179
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Eth_Ping_Response(void);

Description An automated ICMP (Ping) response. User should call this function when answerring to
an ICMP/IP event.

Requires As specified for the entire library.

Example Eth_Ping_Response();

Eth_Ping_Response

Prototype void Eth_Get_Icmp_Info(void);

Description Loads ICMP protocol information (from the header of the received ICMP packet) and
stores it to the PIC’s Ethernet variables.

Requires The card (NIC) must be properly initialized. See Eth_Init. Also, this function must be
called in a proper sequence, and before the Eth_Ping_Response.

Example Eth_Get_Icmp_Info();

Eth_Get_Icmp_Info

Prototype void Eth_Arp_Response(void);

Description An automated ARP response. User should simply call this function once he detects the
ARP event on the NIC.

Requires As specified for the entire library.

Example Eth_Arp_Response();

Eth_Arp_Response

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

180 MikroElektronika: Development tools - Books - Compilers

page

Prototype unsigned Eth_Get_Udp_Dest_Port(void);

Returns Returns the destination port of the received UDP packet.

Description The function returns the destination port of the received UDP packet. The second
information contained in the UDP packet header is the destination port (socket) to which
the packet is targeted.

Requires This function must be called in a proper sequence, i.e. immediately after calling the
Eth_Get_Udp_Source_Port function.

Example udp_dest_port = Eth_Get_Udp_Dest_Port();

Eth_Get_Udp_Dest_Port

Prototype unsigned Eth_Get_Udp_Source_Port(void);

Returns Returns the source port (socket) of the received UDP packet.

Description The function returns the source port (socket) of the received UDP packet. After the
reception of valid IP packet is detected and its type is determined to be UDP, the UDP
packet header must be interpreted. UDP source port is the first data in the UDP header.

Requires This function must be called in a proper sequence, i.e. immediately after interpretation
of the IP packet header (at the very beginning of UDP packet header retrieval).

Example udp_source_port = Eth_Get_Udp_Source_Port();

Eth_Get_Udp_Source_Port

MikroElektronika: Development tools - Books - Compilers 181
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Eth_Set_Udp_Port(unsigned udp_port);

Description Sets up the default UDP port, which will handle user requests. The user can decide,
upon receiving the UDP packet, which port was this packet sent to, and whether it will
be handled or rejected.

Requires As specified for the entire library.

Example Eth_Set_Udp_Port(10001);

Eth_Set_Udp_Port

Prototype unsigned short Eth_Get_Udp_Port(void);

Returns Returns the UDP port (socket) number that is set for the PIC’s Ethernet card.

Description The function returns the UDP port (socket) number that is set for the PIC's Ethernet
card. After the UDP port is set at the beginning of the session (Eth_Set_Udp_Port), its
number is later used to test whether the received UDP packet is targeted at the port we
are using.

Requires The network card must be properly initialized (see Eth_Init), and the UDP port
propely set (see Eth_Set_Udp_Port). This library currently supports working with
only one UDP port (socket) at a time.

Example if (udp_dest_port == Eth_Get_Udp_Port()) {
... // Respond to action

}

Eth_Get_Udp_Port

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

182 MikroElektronika: Development tools - Books - Compilers

page

Prototype void Eth_Load_Tcp_Header(void);

Description Loads various TCP Header data into PIC’s Ethernet variables.

Requires This function must be called in a proper sequence, i.e. immediately after retrieving the
source and destination port (socket) of the TCP message.

Example // retrieve 'source port'
tcp_source_port = Eth_Inport(NIC_DATA) << 8;
tcp_source_port |= Eth_Inport(NIC_DATA);
// retrieve 'destination port'
tcp_dest_port = Eth_Inport(NIC_DATA) << 8;
tcp_dest_port |= Eth_Inport(NIC_DATA);

// We only respond to port 80 (HTML requests)
if (tcp_dest_port == 80u) {

Eth_Load_Tcp_Header(); // retrieve TCP Header data (most of it)
//...

}

Eth_Load_Tcp_Header

Prototype void Eth_Send_Udp(char *msg);

Description Sends the prepared UDP message (msg), of up to 16 bytes (characters).

Unlike ICMP and TCP, the UDP packets are generally not generated as a response to the
client request. UDP provides no guarantees for message delivery and sender retains no
state on UDP messages once sent onto the network. This is why UDP packets are simply
sent, instead of being a response to someone’s request.

Requires As specified for the entire library. Also, the message to be sent must be formatted as a
null-terminated string. The message length, including the trailing “0”, must not exceed
16 characters.

Example Eth_Send_Udp(udp_tx_message);

Eth_Send_Udp

MikroElektronika: Development tools - Books - Compilers 183
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype unsigned short Eth_Get_Tcp_Flags(void);

Returns Returns the flags data from the header of the received TCP packet.

Description The function returns the flags data from the header of the received TCP packet. TCP
flags show various information, e.g. SYN (syncronize request), ACK (acknowledge
receipt), and similar. It is upon these flags that, for example, a proper HTTP communi-
cation is established.

Requires This function must be called after the Eth_Load_Tcp_Header, since it initializes the
private variables used for this function.

Example flags = Eth_Get_Tcp_Flags();

Eth_Get_Tcp_Flags

Prototype unsigned short Eth_Get_Tcp_Hdr_Offset(void);

Returns Returns the length (or offset) of the TCP packet header in bytes.

Description The function returns the length (or offset) of the TCP packet header in bytes. Upon
receiving a valid TCP packet, its header is to be analyzed in order to respond properly
(e.g. respond to other's request, merge several packets into the message, etc.). The head-
er length is important to know in order to be able to extract the information contained in
it.

Requires This function must be called after the Eth_Load_Tcp_Header, since it initializes the
private variables used for this function.

Example // calculate offset (TCP header length)
tcp_options = Eth_Get_Tcp_Hdr_Offset() - 20;

Eth_Get_Tcp_Hdr_Offset

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

184 MikroElektronika: Development tools - Books - Compilers

page

Prototype void Eth_Tcp_Response(void);

Description Performs user response to TCP/IP event. User specifies data to be sent, depending on the
request received (HTTP, HTTPD, FTP, etc). This is performed by the function
Eth_Set_Tcp_Data.

Requires Hardware requirements are as specified for the entire library. Prior to using this func-
tion, user must prepare the data to be sent through TCP; see Eth_Set_Tcp_Data.

Example Eth_Tcp_Response();

Eth_Tcp_Response

Prototype void Eth_Set_Tcp_Data(const unsigned short *data);

Description Prepares data to be sent on HTTP request. This library can handle only HTTP requests,
so sending other TCP-based protocols, such as FTP, will cause an error. Note that
TCP/IP was not designed with 8-bit MCU’s in mind, so be gentle with your HTTP
requests.

Requires As specified for the entire library.

Example // Let's prepare a simple HTML page in our string:
const char httpPage1[] =

"HTTP/1.0 200 OK\nContent-type: text/html\n"
"<html>\n" "<body>\n"
"<h1>Hello world!</h1>\n"
"</body>\n" "</html>";

//...
Eth_Set_Tcp_Data(httpPage1);
//...

Eth_Set_Tcp_Data

MikroElektronika: Development tools - Books - Compilers 185
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Library Example

Check the supplied Ethernet example in the Examples folder.

BD3
BD2
GND
BD1
BD0

GND
SD15
SD14
Vdd

SD13
SD12
SD11
SD10
SD9

SD8

IOCS16B
INT7
INT6
INT5
INT4

OSCI
TX+
TX-
Vdd
LD

HD
GND
SD7
SD6

SD5
SD4
SD3
SD2
SD1

SD0

IOCHRDY
AEN

RSTDRV
SMEMWB
SMEMRB

IN
T

3
IN

T
2

IN
T

1
IN

T
0

S
A

0

V
d
d

S
A

1
S

A
2

S
A

3

S
A

4
S

A
5

S
A

6
S

A
7

G
N

D

S
A

8

S
A

9
V

d
d

S
A

1
0

A
S

1
1

S
A

1
2

B
D

4
B

D
5

B
D

6
B

D
7

E
E

C
S

B
C

S
B

B
A

1
4

B
A

1
5

B
A

1
6

B
A

1
7

V
d

d
B

A
1

8
B

A
1

9
B

A
2

0

B
A

2
1

J
P

A
U

I
L

E
D

2
L

E
D

1
L

E
D

0

RTL8019AS

U5

S
A

1
3

S
A

1
4

S
A

1
5

S
A

1
6

S
A

1
7

L
E

D
B

N
C

T
P

IN
+

T
P

IN
-

V
d

d
R

X
+

S
A

1
8

S
A

1
9

G
N

D
IO

R
B

IO
W

B

R
X

-
C

D
+

C
D

-
G

N
D

O
S

C
O

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

8
0

7
9

7
8

7
7

7
6

7
5

7
4

7
3

7
2

7
1

7
0

6
9

6
8

6
7

6
6

6
5

6
4

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

+5V

0.1u

+5V
1K

1K

1K

+5V

0.1u

+5V

0.1u

R
B

0

R
B

1

R
B

2

R
B

3

R
B

4

RES

IOW

IOR

+5V

+5V+5V
1K

RD0

RD1

RD2

RD3

RD4

RD5

RD6

RD7

20MHz

0.1u

+5V

0.1u 0.1u
2KV

0.1u
2KV

0.1u

200

T1 : FL1012

8

7

3

2

6

1

9

10

14

15

11

16

R
B

4

R
J
4
5

J2

8

7
6
5
4
3
2
1

HW Connection

This library provides routines for accessing microcontroller Flash memory. Note
that prototypes differ for PIC16 and PIC18 families.

Flash_Read
Flash_Write

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

186 MikroElektronika: Development tools - Books - Compilers

page

Flash Memory Library

Library Routines

Prototype unsigned Flash_Read(unsigned address); // for PIC16
char Flash_Read(long unsigned address); // for PIC18

Returns Returns data byte from Flash memory.

Description Reads data from the specified address in Flash memory.

Example Flash_Read(0x0D00);

Flash_Read

Prototype void Flash_Write(unsigned address, unsigned data); // for PIC16
void Flash_Write(unsigned long address, char *data); // for PIC18

Description Writes chunk of data to Flash memory. With PIC18, data needs to be exactly 64 bytes in
size. Keep in mind that this function erases target memory before writing Data to it.
This means that if write was unsuccessful, previous data will be lost.

Example // Write consecutive values in 64 consecutive locations
char toWrite[64];

// initialize array:
for (i = 0; i < 63; i++) toWrite[i] = i;
Flash_Write(0x0D00, toWrite);

Flash_Write

The example demonstrates simple data exchange via USART. When PIC MCU
receives data, it immediately sends the same data back. If PIC is connected to the
PC (see the figure below), you can test the example from mikroC terminal for
RS232 communication, menu choice Tools > Terminal.

MikroElektronika: Development tools - Books - Compilers 187
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

char i = 0, j = 0;
long addr;
unsigned short dataRd;
unsigned short dataWr[64] =

{1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,
1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,
1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,
1,2,3,4};

void main() {
PORTB = 0;
TRISB = 0;
PORTC = 0;
TRISC = 0;

addr = 0x00000A30; // valid for P18F452
Flash_Write(addr, dataWr);

addr = 0x00000A30;
for (i = 0; i < 64; i++) {

dataRd = Flash_Read(addr++);
PORTB = dataRd;
Delay_ms(500);

}

}//~!

Library Example

I²C full master MSSP module is available with a number of PIC MCU models.
mikroC provides I2C library which supports the master I²C mode.

Note: This library supports module on PORTB or PORTC, and will not work with
modules on other ports. Examples for PICmicros with module on other ports can
be found in your mikroC installation folder, subfolder “Examples”.

I2C_Init
I2C_Start
I2C_Repeated_Start
I2C_Is_Idle
I2C_Rd
I2C_Wr
I2C_Stop

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

188 MikroElektronika: Development tools - Books - Compilers

page

I2C Library

Library Routines

Prototype void I2C_Init(long clock);

Description Initializes I²C with desired clock (refer to device data sheet for correct values in
respect with Fosc). Needs to be called before using other functions of I2C Library.

Requires Library requires MSSP module on PORTB or PORTC.

Example I2C_Init(100000);

I2C_Init

MikroElektronika: Development tools - Books - Compilers 189
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype char I2C_Start(void);

Returns If there is no error, function returns 0.

Description Determines if I²C bus is free and issues START signal.

Requires I²C must be configured before using this function. See I2C_Init.

Example I2C_Start();

I2C_Start

Prototype void I2C_Repeated_Start(void);

Description Issues repeated START signal.

Requires I²C must be configured before using this function. See I2C_Init.

Example I2C_Repeated_Start();

I2C_Repeated_Start

Prototype char I2C_Is_Idle(void);

Returns Returns 1 if I²C bus is free, otherwise returns 0.

Description Tests if I²C bus is free.

Requires I²C must be configured before using this function. See I2C_Init.

Example if (I2C_Is_Idle()) {...}

I2C_Is_Idle

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

190 MikroElektronika: Development tools - Books - Compilers

page

Prototype char I2C_Rd(char ack);

Returns Returns one byte from the slave.

Description Reads one byte from the slave, and sends not acknowledge signal if parameter ack is 0,
otherwise it sends acknowledge.

Requires START signal needs to be issued in order to use this function. See I2C_Start.

Example temp = I2C_Rd(0); // Read data and send not acknowledge signal

I2C_Rd

Prototype char I2C_Wr(char data);

Returns Returns 0 if there were no errors.

Description Sends data byte (parameter data) via I²C bus.

Requires START signal needs to be issued in order to use this function. See I2C_Start.

Example I2C_Write(0xA3);

I2C_Wr

Prototype void I2C_Stop(void);

Description Issues STOP signal.

Requires I²C must be configured before using this function. See I2C_Init.

I2C_Stop

This code demonstrates use of I²C Library functions. PIC MCU is connected
(SCL, SDA pins) to 24c02 EEPROM. Program sends data to EEPROM (data is
written at address 2). Then, we read data via I2C from EEPROM and send its
value to PORTD, to check if the cycle was successful (see the figure below how to
interface 24c02 to PIC).

MikroElektronika: Development tools - Books - Compilers 191
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

void main(){
PORTB = 0;
TRISB = 0;

I2C_Init(100000);
I2C_Start(); // Issue I2C start signal
I2C_Wr(0xA2); // Send byte via I2C (command to 24cO2)
I2C_Wr(2); // Send byte (address of EEPROM location)
I2C_Wr(0xF0); // Send data (data to be written)
I2C_Stop();

Delay_ms(100);

I2C_Start(); // Issue I2C start signal
I2C_Wr(0xA2); // Send byte via I2C (device address + W)
I2C_Wr(2); // Send byte (data address)
I2C_Repeated_Start(); // Issue I2C signal repeated start
I2C_Wr(0xA3); // Send byte (device address + R)
PORTB = I2C_Rd(0u); // Read the data (NO acknowledge)
I2C_Stop();

}

Library Example

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

192 MikroElektronika: Development tools - Books - Compilers

page

4
M

H
z

+5V

+5V

1

2

3

4

8

7

6

5

A0

A1

NC

GND

Vcc

WP

SCL

SDA

24C04

+5V

+5V
PIC16F877A

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

1
0
K

1
0
K

1
0
K

R
e
s
e
t

HW Connection

mikroC provides library for working with 4x4 keypad; routines can also be used
with 4x1, 4x2, or 4x3 keypad. Check the connection scheme at the end of the
topic.

Keypad_Init
Keypad_Read
Keypad_Released

MikroElektronika: Development tools - Books - Compilers 193
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Keypad Library

Library Routines

Prototype void Keypad_Init(char *port);

Description Initializes port to work with keypad. The function needs to be called before using other
routines of the Keypad library.

Example Keypad_Init(&PORTB);

Keypad_Init

Prototype unsigned Keypad_Read(void);

Returns 1..16, depending on the key pressed, or 0 if no key is pressed.

Description Checks if any key is pressed. Function returns 1 to 16, depending on the key pressed, or
0 if no key is pressed.

Requires Port needs to be appropriately initialized; see Keypad_Init.

Example kp = Keypad_Read();

Keypad_Read

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

194 MikroElektronika: Development tools - Books - Compilers

page

Prototype unsigned Keypad_Released(void);

Returns 1..16, depending on the key.

Description Call to Keypad_Released is a blocking call: function waits until any key is pressed
and released. When released, function returns 1 to 16, depending on the key.

Requires Port needs to be appropriately initialized; see Keypad_Init.

Example kp = Keypad_Released();

Keypad_Released

MikroElektronika: Development tools - Books - Compilers 195
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

The following code can be used for testing the keypad. It supports keypads with 1 to 4 rows and 1
to 4 columns. The code returned by the keypad functions (1..16) is transformed into ASCII codes
[0..9,A..F]. In addition, a small single-byte counter displays the total number of keys pressed in
the second LCD row.

unsigned short kp, cnt;
char txt[5];

void main() {
cnt = 0;
Keypad_Init(&PORTC);
Lcd_Init(&PORTB); // Initialize LCD on PORTC
Lcd_Cmd(LCD_CLEAR); // Clear display
Lcd_Cmd(LCD_CURSOR_OFF); // Cursor off

Lcd_Out(1, 1, "Key :");
Lcd_Out(2, 1, "Times:");

do {
kp = 0;

//--- Wait for key to be pressed
do

//--- un-comment one of the keypad reading functions
kp = Keypad_Released();
//kp = Keypad_Read();

while (!kp);

cnt++;

//--- prepare value for output
if (kp > 10)

kp += 54;
else

kp += 47;

//--- print it on LCD
Lcd_Chr(1, 10, kp);
WordToStr(cnt, txt);
Lcd_Out(2, 10, txt);

} while (1);
}//~!

Library Example

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

196 MikroElektronika: Development tools - Books - Compilers

page

4MHz

+5V

+5V

PIC16F877A

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

+5V

1
0
K

R
e

s
e

t

T1

T5

T9

T13

T2

T6

T10

T14

T3

T7

T11

T15

T4

T8

T12

T16

HW Connection

mikroC provides a library for communicating with commonly used LCD (4-bit
interface). Figures showing HW connection of PIC and LCD are given at the end
of the chapter.

Note: Be sure to designate port with LCD as output, before using any of the fol-
lowing library functions.

Lcd_Config
Lcd_Init
Lcd_Out
Lcd_Out_Cp
Lcd_Chr
Lcd_Chr_Cp
Lcd_Cmd

LCD Library (4-bit interface)

Library Routines

Prototype void Lcd_Config(char *port, char RS, char EN, char WR, char D7,
char D6, char D5, char D4);

Description Initializes LCD at port with pin settings you specify: parameters RS, EN, WR, D7 .. D4
need to be a combination of values 0–7 (e.g. 3,6,0,7,2,1,4).

Example Lcd_Config(PORTD,1,2,0,3,5,4,6);

Lcd_Config

MikroElektronika: Development tools - Books - Compilers 197
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

198 MikroElektronika: Development tools - Books - Compilers

page

Prototype void Lcd_Init(char *port);

Description Initializes LCD at port with default pin settings (see the connection scheme at the end of
the chapter): D7 -> PORT.7, D6 -> PORT.6, D5 -> PORT.5, D4 -> PORT.4,
E -> PORT.3, RS -> PORT.2.

Example Lcd_Init(PORTB);

Lcd_Init

Prototype void Lcd_Out(char row, char col, char *text);

Description Prints text on LCD at specified row and column (parameter row and col). Both string
variables and literals can be passed as text.

Requires Port with LCD must be initialized. See Lcd_Config or Lcd_Init.

Example Lcd_Out(1, 3, "Hello!"); // Print "Hello!" at line 1, char 3

Lcd_Out

Prototype void Lcd_Out_Cp(char *text);

Description Prints text on LCD at current cursor position. Both string variables and literals can be
passed as text.

Requires Port with LCD must be initialized. See Lcd_Config or Lcd_Init.

Example Lcd_Out_Cp("Here!"); // Print "Here!" at current cursor position

Lcd_Out_Cp

MikroElektronika: Development tools - Books - Compilers 199
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Lcd_Chr(char row, char col, char character);

Description Prints character on LCD at specified row and column (parameters row and col).
Both variables and literals can be passed as character.

Requires Port with LCD must be initialized. See Lcd_Config or Lcd_Init.

Example Lcd_Out(2, 3, 'i'); // Print 'i' at line 2, char 3

Lcd_Chr

Prototype void Lcd_Chr_Cp(char character);

Description Prints character on LCD at current cursor position. Both variables and literals can be
passed as character.

Requires Port with LCD must be initialized. See Lcd_Config or Lcd_Init.

Example Lcd_Out_Cp('e'); // Print 'e' at current cursor position

Lcd_Chr_Cp

Prototype void Lcd_Cmd(char command);

Description Sends command to LCD. You can pass one of the predefined constants to the function.
The complete list of available commands is shown on the following page.

Requires Port with LCD must be initialized. See Lcd_Config or Lcd_Init.

Example Lcd_Cmd(Lcd_Clear); // Clear LCD display

Lcd_Cmd

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

200 MikroElektronika: Development tools - Books - Compilers

page

LCD Commands

LCD Command Purpose

LCD_FIRST_ROW Move cursor to 1st row

LCD_SECOND_ROW Move cursor to 2nd row

LCD_THIRD_ROW Move cursor to 3rd row

LCD_FOURTH_ROW Move cursor to 4th row

LCD_CLEAR Clear display

LCD_RETURN_HOME
Return cursor to home position, returns a shifted display to original posi-
tion. Display data RAM is unaffected.

LCD_CURSOR_OFF Turn off cursor

LCD_UNDERLINE_ON Underline cursor on

LCD_BLINK_CURSOR_ON Blink cursor on

LCD_MOVE_CURSOR_LEFT Move cursor left without changing display data RAM

LCD_MOVE_CURSOR_RIGHT Move cursor right without changing display data RAM

LCD_TURN_ON Turn LCD display on

LCD_TURN_OFF Turn LCD display off

LCD_SHIFT_LEFT Shift display left without changing display data RAM

LCD_SHIFT_RIGHT Shift display right without changing display data RAM

MikroElektronika: Development tools - Books - Compilers 201
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Library Example (default pin settings)

Hardware Connection

char *text = "mikroElektronika";

void main() {
TRISB = 0; // PORTB is output
Lcd_Init(&PORTB); // Initialize LCD connected to PORTB
Lcd_Cmd(Lcd_CLEAR); // Clear display
Lcd_Cmd(Lcd_CURSOR_OFF); // Turn cursor off
Lcd_Out(1, 1, text); // Print text to LCD, 2nd row, 1st column

}//~!

1
R/W D4ERS D3D2D1D0 D7D6D5VeeVddVss

+5V

L
C

D
c
o

n
tr

a
s
t

PIN1 PIN7PIN0 PIN6PIN5PIN4PIN3PIN2

PIC MCU

any port (with 8 pins)

PIC

PIN7

PIN6

PIN5

PIN4

PIN3

PIN2

PIN1

PIN0

LCD

D7

D6

D5

D4

RS

E

m i k r o e l E k t r o n i k a

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

202 MikroElektronika: Development tools - Books - Compilers

page

Library Example (custom pin settings)

Hardware Connection

char *text = "mikroElektronika";

void main() {
TRISD = 0; // PORTD is output
Lcd_Config(&PORTD,1,2,0,3,5,4,6); // Initialize LCD on PORTD
Lcd_Cmd(Lcd_CURSOR_OFF); // Turn off cursor
Lcd_Out(1, 1, text); // Print Text at LCD

}

1
R/W D4ERS D3D2D1D0 D7D6D5VeeVddVss

+5V

L
C

D
c
o

n
tr

a
s
t

PIN1 PIN7PIN0 PIN6PIN5PIN4PIN3PIN2

PIC MCU

PORTD

PIC

PIN7

PIN6

PIN5

PIN4

PIN3

PIN2

PIN1

PIN0

LCD

D7

D6

D5

D4

RS

E m i k r o e l E k t r o n i k a

MikroElektronika: Development tools - Books - Compilers 203
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

mikroC provides a library for communicating with commonly used 8-bit interface
LCD (with Hitachi HD44780 controller). Figures showing HW connection of PIC
and LCD are given at the end of the chapter.

Note: Be sure to designate Control and Data ports with LCD as output, before
using any of the following functions.

Lcd8_Config
Lcd8_Init
Lcd8_Out
Lcd8_Out_Cp
Lcd8_Chr
Lcd8_Chr_Cp
Lcd8_Cmd

LCD8 Library (8-bit interface)

Library Routines

Prototype void Lcd8_Config(char *ctrlport, char *dataport, char RS,
char EN, char WR, char D7, char D6, char D5, char D4, char D3,
char D2, char D1, char D0);

Description Initializes LCD at Control port (ctrlport) and Data port (dataport) with pin settings
you specify: Parameters RS, EN, and WR need to be in range 0–7; Parameters D7 .. D0
need to be a combination of values 0–7 (e.g. 3,6,5,0,7,2,1,4).

Example Lcd8_Config(PORTC,PORTD,0,1,2,6,5,4,3,7,1,2,0);

Lcd8_Config

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

204 MikroElektronika: Development tools - Books - Compilers

page

Prototype void Lcd8_Init(char *ctrlport, char *dataport);

Description Initializes LCD at Control port (ctrlport) and Data port (dataport) with default pin set-
tings (see the connection scheme at the end of the chapter):

E -> ctrlport.3, RS -> ctrlport.2, R/W -> ctrlport.0, D7 -> dataport.7, D6 -> dataport.6,
D5 -> dataport.5, D4 -> dataport.4, D3 -> dataport.3, D2 -> dataport.2, D1 -> dataport.1,
D0 -> dataport.0

Example Lcd8_Init(PORTB, PORTC);

Lcd8_Init

Prototype void Lcd8_Out(char row, char col, char *text);

Description Prints text on LCD at specified row and column (parameter row and col). Both string
variables and literals can be passed as text.

Requires Ports with LCD must be initialized. See Lcd8_Config or Lcd8_Init.

Example Lcd8_Out(1, 3, "Hello!"); // Print "Hello!" at line 1, char 3

Lcd8_Out

Prototype void Lcd8_Out_Cp(char *text);

Description Prints text on LCD at current cursor position. Both string variables and literals can be
passed as text.

Requires Ports with LCD must be initialized. See Lcd8_Config or Lcd8_Init.

Example Lcd8_Out_Cp("Here!"); // Print "Here!" at current cursor position

Lcd8_Out_Cp

MikroElektronika: Development tools - Books - Compilers 205
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Lcd8_Chr(char row, char col, char character);

Description Prints character on LCD at specified row and column (parameters row and col).
Both variables and literals can be passed as character.

Requires Ports with LCD must be initialized. See Lcd8_Config or Lcd8_Init.

Example Lcd8_Out(2, 3, 'i'); // Print 'i' at line 2, char 3

Lcd8_Chr

Prototype void Lcd8_Chr_Cp(char character);

Description Prints character on LCD at current cursor position. Both variables and literals can be
passed as character.

Requires Ports with LCD must be initialized. See Lcd8_Config or Lcd8_Init.

Example Lcd8_Out_Cp('e'); // Print 'e' at current cursor position

Lcd8_Chr_Cp

Prototype void Lcd8_Cmd(char command);

Description Sends command to LCD. You can pass one of the predefined constants to the function.
The complete list of available commands is on the page 186.

Requires Ports with LCD must be initialized. See Lcd8_Config or Lcd8_Init.

Example Lcd8_Cmd(Lcd_Clear); // Clear LCD display

Lcd8_Cmd

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

206 MikroElektronika: Development tools - Books - Compilers

page

Library Example (default pin settings)

Hardware Connection

char *text = "mikroElektronika";

void main() {
TRISB = 0; // PORTB is output
TRISC = 0; // PORTC is output
Lcd8_Init(&PORTB, &PORTC); // Initialize LCD at PORTB and PORTC
Lcd8_Cmd(Lcd_CURSOR_OFF); // Turn off cursor
Lcd8_Out(1, 1, text); // Print text on LCD

}

1
R/W D4ERS D3D2D1D0 D7D6D5VeeVddVss

+5V

L
C

D
c
o

n
tr

a
s
t

PIN1 PIN7PIN0 PIN6PIN5PIN4PIN3PIN2

PIC MCU

any port (with 8 pins)

m i k r o e l E k t r o n i k a

Data PortControl Port

PIN0 PIN3PIN2

RS

E

R/W

MikroElektronika: Development tools - Books - Compilers 207
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Library Example (custom pin settings)

Hardware Connection

char *text = "mikroElektronika";

void main() {
TRISB = 0; // PORTB is output
TRISD = 0; // PORTD is output

// Initialize LCD at PORTB and PORTD with custom pin settings
Lcd8_Config(&PORTB,&PORTD,3,2,0,0,1,2,3,4,5,6,7);

Lcd8_Cmd(Lcd_CURSOR_OFF); // Turn off cursor
Lcd8_Out(1, 1, text); // Print text at LCD

}

1
R/W D4ERS D3D2D1D0 D7D6D5VeeVddVss

+5V

L
C

D
c
o

n
tr

a
s
t

PIN1 PIN7PIN0 PIN6PIN5PIN4PIN3PIN2

PIC MCU

any port (with 8 pins)

m i k r o e l E k t r o n i k a

Data PortControl Port

PIN0 PIN3PIN2

RS

E

R/W

mikroC provides a library for drawing and writing on Graphic LCD. These rou-
tines work with commonly used GLCD 128x64, and work only with the PIC18
family.

Note: Be sure to designate port with GLCD as output, before using any of the fol-
lowing functions.

Basic routines:

Glcd_Init
Glcd_Disable
Glcd_Set_Side
Glcd_Set_Page
Glcd_Set_X
Glcd_Read_Data
Glcd_Write_Data

Advanced routines:

Glcd_Fill
Glcd_Dot
Glcd_Line
Glcd_V_Line
Glcd_H_Line
Glcd_Rectangle
Glcd_Box
Glcd_Circle
Glcd_Set_Font
Glcd_Write_Char
Glcd_Write_Text
Glcd_Image
Glcd_Partial_Image

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

208 MikroElektronika: Development tools - Books - Compilers

page

GLCD Library

Library Routines

MikroElektronika: Development tools - Books - Compilers 209
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Glcd_Init(unsigned char *ctrl_port, char cs1, char cs2, char
rs, char rw, char rst, char en, unsigned char *data_port);

Description Initializes GLCD at lower byte of data_port with pin settings you specify. Parameters
cs1, cs2, rs, rw, rst, and en can be pins of any available port. This function needs to
be called befored using other routines of GLCD library.

Example Glcd_Init(PORTB, PORTC, 3, 5, 7, 1, 2);

Glcd_Init

Prototype void Glcd_Disable(void);

Description Routine disables the device and frees the data line for other devices. To enable the
device again, call any of the library routines; no special command is required.

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd_Disable();

Glcd_Disable

Prototype void Glcd_Set_Side(unsigned short x);

Description Selects side of GLCD, left or right. Parameter x specifies the side: values from 0 to 63
specify the left side, and values higher than 64 specify the right side. Use the functions
Glcd_Set_Side, Glcd_Set_X, and Glcd_Set_Page to specify an exact position on
GLCD. Then, you can use Glcd_Write_Data or Glcd_Read_Data on that location.

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd_Select_Side(0);

Glcd_Set_Side

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

210 MikroElektronika: Development tools - Books - Compilers

page

Prototype void Glcd_Set_Page(unsigned short page);

Description Selects page of GLCD, technically a line on display; parameter page can be 0..7.

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd_Set_Page(5);

Glcd_Set_Page

Prototype void Glcd_Set_X(unsigned short x_pos);

Description Positions to x dots from the left border of GLCD within the given page.

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd_Set_X(25);

Glcd_Set_X

Prototype unsigned short Glcd_Read_Data(void);

Returns One word from the GLCD memory.

Description Reads data from from the current location of GLCD memory. Use the functions
Glcd_Set_Side, Glcd_Set_X, and Glcd_Set_Page to specify an exact position on
GLCD. Then, you can use Glcd_Write_Data or Glcd_Read_Data on that location.

Requires Reads data from from the current location of GLCD memory.

Example tmp = Glcd_Read_Data();

Glcd_Read_Data

MikroElektronika: Development tools - Books - Compilers 211
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Glcd_Write_Data(unsigned short data);

Description Writes data to the current location in GLCD memory and moves to the next location.

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd_Write_Data(data);

Glcd_Write_Data

Prototype void Glcd_Fill(unsigned short pattern);

Description Fills the GLCD memory with byte pattern. To clear the GLCD screen, use
Glcd_Fill(0); to fill the screen completely, use Glcd_Fill($FF).

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd_Fill(0); // Clear screen

Glcd_Fill

Prototype void Glcd_Dot(unsigned short x, unsigned short y, char color);

Description Draws a dot on the GLCD at coordinates (x, y). Parameter color determines the dot
state: 0 clears dot, 1 puts a dot, and 2 inverts dot state.

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd_Dot(0, 0, 2); // Invert the dot in the upper left corner

Glcd_Dot

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

212 MikroElektronika: Development tools - Books - Compilers

page

Prototype void Glcd_Line(int x1, int y1, int x2, int y2, char color);

Description Draws a line on the GLCD from (x1, y1) to (x2, y2). Parameter color determines
the dot state: 0 draws an empty line (clear dots), 1 draws a full line (put dots), and 2
draws a “smart” line (invert each dot).

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd_Line(0, 63, 50, 0, 2);

Glcd_Line

Prototype void Glcd_V_Line(unsigned short y1, unsigned short y2, unsigned
short x, char color);

Description Similar to GLcd_Line, draws a vertical line on the GLCD from (x, y1) to
(x, y2).

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd_V_Line(0, 63, 0, 1);

Glcd_V_Line

Prototype void Glcd_H_Line(unsigned short x1, unsigned short x2, unsigned
short y, char color);

Description Similar to GLcd_Line, draws a horizontal line on the GLCD from (x1, y) to
(x2, y).

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd_H_Line(0, 127, 0, 1);

Glcd_H_Line

MikroElektronika: Development tools - Books - Compilers 213
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Glcd_Rectangle(unsigned short x1, unsigned short y1,
unsigned short x2, unsigned short y2, char color);

Description Draws a rectangle on the GLCD. Parameters (x1, y1) set the upper left corner,
(x2, y2) set the bottom right corner. Parameter color defines the border: 0 draws an
empty border (clear dots), 1 draws a solid border (put dots), and 2 draws a “smart” bor-
der (invert each dot).

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd_Rectangle(10, 0, 30, 35, 1);

Glcd_Rectangle

Prototype void Glcd_Box(unsigned short x1, unsigned short y1, unsigned
short x2, unsigned short y2, char color);

Description Draws a box on the GLCD. Parameters (x1, y1) set the upper left corner, (x2, y2)
set the bottom right corner. Parameter color defines the fill: 0 draws a white box (clear
dots), 1 draws a full box (put dots), and 2 draws an inverted box (invert each dot).

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd_Box(10, 0, 30, 35, 1);

Glcd_Box

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

214 MikroElektronika: Development tools - Books - Compilers

page

Prototype void Glcd_Circle(int x, int y, int radius, char color);

Description Draws a circle on the GLCD, centered at (x, y) with radius. Parameter color defines the
circle line: 0 draws an empty line (clear dots), 1 draws a solid line (put dots), and 2
draws a “smart” line (invert each dot).

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd_Circle(63, 31, 25, 2);

Glcd_Circle

Prototype void Glcd_Set_Font(const char *font, unsigned short font_width,
unsigned short font_height);

Description Sets font for routines Glcd_Write_Char and Glcd_Write_Text. Parameter font
needs to formatted in an array of byte.

Parameters font_width and font_height specify the width and height of characters
in dots. Font width should not exceed 128 dots, and font height shouldn’t exceed 8 dots.

You can create your own fonts by following the guidelines given in file
“GLcd_Fonts.c”. This file contains the default fonts for GLCD, and is located in your
installation folder, “Extra Examples” > “GLCD”.

Requires GLCD needs to be initialized. See Glcd_Init.

Example // Use the array "myfont_5x8" with custom 5x8 font:
Glcd_Set_Font(myfont_5x8, 5, 8);

Glcd_Set_Font

MikroElektronika: Development tools - Books - Compilers 215
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Glcd_Write_Text(char *text, unsigned short x, unsigned short
page, unsigned short color);

Description Prints text at page (one of 8 GLCD lines, 0..7), x dots away from the left border of
display. Parameter color defines the “fill”: 0 prints a “white” letters (clear dots), 1
prints solid letters (put dots), and 2 prints “smart” letters (invert each dot).

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd_Write_Text("Hello world!", 0, 0, 1);

Glcd_Write_Text

Prototype void Glcd_Write_Char(unsigned short character, unsigned short x,
unsigned short page, char color);

Description Prints character at page (one of 8 GLCD lines, 0..7), x dots away from the left bor-
der of display. Parameter color defines the “fill”: 0 prints a “white” letter (clear dots),
1 prints a solid letter (put dots), and 2 prints a “smart” letter (invert each dot).

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd_Write_Char('C', 0, 0, 1);

Glcd_Write_Char

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

216 MikroElektronika: Development tools - Books - Compilers

page

Prototype void Glcd_Partial_Image(unsigned short x1, unsigned short y1,
unsigned short x2, unsigned short y2, unsigned short color,
const char *image);

Description Displays partial bitmap image on the GLCD. Parameter image should be formatted as
an array of 1024 bytes. Parameters (x1, y1) set the upper left corner, and (x2, y2) set
the lower right corner of the clip. Parameter color defines the fill: 0 draws a “white”
image (clear dots), 1 draws a “black” image (put dots), and 2 draws an inverted image
(invert each dot).

Use the mikroC’s integrated Bitmap-to-LCD editor (menu option Tools > Graphic LCD
Editor) to convert image to a constant array suitable for display on GLCD.

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd_Partial_Image(0, 0, 32, 64, 1, my_image);

Glcd_Partial_Image

Prototype void Glcd_Image(const char *image);

Description Displays bitmap image on the GLCD. Parameter image should be formatted as an array
of integers. Use the mikroC’s integrated Bitmap-to-LCD editor (menu option Tools >
BMP2LCD) to convert image to a constant array suitable for display on GLCD.

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd_Image(my_image);

Glcd_Image

MikroElektronika: Development tools - Books - Compilers 217
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Library Example

The following drawing demo tests advanced routines of GLCD library.

unsigned short j, k;

void main() {
Glcd_Init(PORTB, 2, 0, 3, 5, 7, 1, PORTD);

do {
// Draw circles
Glcd_Fill(0); // Clear screen
Glcd_Write_Text("Circles", 0, 0, 1);
j = 4;
while (j < 31) {

Glcd_Circle(63, 31, j, 2);
j += 4;

}
Delay_ms(4000);

// Draw boxes
Glcd_Fill(0); // Clear screen
Glcd_Write_Text("Rectangles", 0, 0, 1);
j = 0;
while (j < 31) {

Glcd_Box(j, 0, j + 20, j + 25, 2);
j += 4;

}
Delay_ms(4000);

// Draw Lines
Glcd_Fill(0); // Clear screen
Glcd_Write_Text("Lines", 0, 0, 1);
for (j = 0; j < 16; j++) {

k = j*4 + 3;
Glcd_Line(0, 0, 127, k, 2);

}
for (j = 0; j < 31; j++) {

k = j*4 + 3;
Glcd_Line(0, 63, k, 0, 2);

}
Delay_ms(4000);

} while (1);
}//~!

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

218 MikroElektronika: Development tools - Books - Compilers

page

118
K

G
N

D

V
c
c

V
e

e

R
S

R
/W

ED
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

+ 5V

10k

10

KS0108 GLCD Test

"Hello world"

mikroElektronika

C
S

2

R
E

S
E

T

V
O

U
T

C
S

1

GND

Hardware Connection

mikroC provides a library for handling Manchester coded signals. Manchester
code is a code in which data and clock signals are combined to form a single self-
synchronizing data stream; each encoded bit contains a transition at the midpoint
of a bit period, the direction of transition determines whether the bit is a 0 or a 1;
second half is the true bit value and the first half is the complement of the true bit
value (as shown in the figure below).

Notes: Manchester receive routines are blocking calls (Man_Receive_Config,
Man_Receive_Init, Man_Receive). This means that PIC will wait until the
task is performed (e.g. byte is received, synchronization achieved, etc). Routines
for receiving are limited to a baud rate scope from 340 ~ 560 bps.

Man_Receive_Config
Man_Receive_Init
Man_Receive
Man_Send_Config
Man_Send_Init
Man_Send

MikroElektronika: Development tools - Books - Compilers 219
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Manchester Code Library

1 0

Manchester RF_Send_Byte format

Bi-phase coding

0 0 0 0 0 011 1 1 1

Example of transmission

St1 St2 Ctr B7 B6 B5 B4 B3 B2 B1 B0

2.4ms

Library Routines

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

220 MikroElektronika: Development tools - Books - Compilers

page

Prototype void Man_Receive_Config(char *port, char rxpin);

Description The function prepares PIC for receiving signal. You need to specify the port and
rxpin (0–7) of input signal. In case of multiple errors on reception, you should call
Man_Receive_Init once again to enable synchronization.

Example Man_Receive_Config(&PORTD, 6);

Man_Receive_Config

Prototype void Man_Receive_Init(char *port);

Description The function prepares PIC for receiving signal. You need to specify the port; rxpin is
pin 6 by default. In case of multiple errors on reception, you should call
Man_Receive_Init once again to enable synchronization.

Example Man_Receive_Init(&PORTD);

Man_Receive_Init

Prototype void Man_Receive(char *error);

Returns Returns one byte from signal.

Description Function extracts one byte from signal. If signal format does not match the expected,
error flag will be set to 255.

Requires To use this function, you must first prepare the PIC for receiving. See
Man_Receive_Config or Man_Receive_Init.

Example temp = Man_Receive(error);
if (error) { ... /* error handling */ }

Man_Receive

MikroElektronika: Development tools - Books - Compilers 221
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Man_Send_Config(char *port, char txpin);

Description The function prepares PIC for sending signal. You need to specify port and txpin
(0–7) for outgoing signal. Baud rate is const 500 bps.

Example Man_Send_Config(&PORTD, 0);

Man_Send_Config

Prototype void Man_Receive_Init(char *port);

Description The function prepares PIC for sending signal. You need to specify port for outgoing
signal; txpin is pin 0 by default. Baud rate is const 500 bps.

Example Man_Send_Init(&PORTD);

Man_Send_Init

Prototype void Man_Send(unsigned short data);

Description Sends one byte (data).

Requires To use this function, you must first prepare the PIC for sending. See
Man_Send_Config or Man_Send_Init.

Example unsigned short msg;
...
Man_Send(msg);

Man_Send

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

222 MikroElektronika: Development tools - Books - Compilers

page

Library Example

unsigned short error, ErrorCount, IdleCount, temp, LetterCount;

void main() {
ErrorCount = 0;
TRISC = 0; // Error indicator
PORTC = 0;
Man_Receive_Config(&PORTD, 6); // Synchronize receiver
Lcd_Init(&PORTB); // Initialize LCD on PORTB

while (1) { // Endless loop
IdleCount = 0; // Reset idle counter
do {

temp = Man_Receive(error); // Attempt byte receive
if (error)

ErrorCount++
else

PORTC = 0;
if (ErrorCount > 20) { // If there are too many errors

ErrorCount = 0; // syncronize the receiver again
PORTC = 0xAA; // Indicate error
Man_Receive_Init(&PORTD); // Synchronize receiver

}
IdleCount++;
if (IdleCount > 18) { // If nothing received after some time

IdleCount = 0; // try to synchronize again
Man_Receive_Init(&PORTD); // Synchronize receiver
}

} while (temp != 0x0B); // End of message marker
if (error != 255) { // If no error then write the message

Lcd_Cmd(LCD_CLEAR);
LetterCount = 0;
while (LetterCount < 17) { // Message is 16 chars long

LetterCount++;
temp = Man_Receive(error);
if (error != 255)

Lcd_Chr_Cp(temp)
else {

ErrorCount++; break;
}

}
temp = Man_Receive(error);
if (temp != 0x0E)

ErrorCount++;
} // end if

} // end while
}//~!

MikroElektronika: Development tools - Books - Compilers 223
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Hardware Connection

4MHz

+5V

+5V

PIC16F877A

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

1
0

K

R
e

s
e

t

R T 4

Vcc

I n A

GND

Antenna

Transmitter RF Module

+5V

4MHz

+5V

+5V

PIC16F877A

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

1
0

K

R
e

s
e

tR R 3

Receiver RF Module

Antenna

+5V

mikroC provides a library for accessing data on Multi Media Card via SPI
communication.

Notes:
- Library works with PIC18 family only;
- Library functions create and read files from the root directory only;
- Library functions populate both FAT1 and FAT2 tables when writing to files, but

the file data is being read from the FAT1 table only; i.e. there is no recovery if
T1 table is corrupted.

Mmc_Init
Mmc_Read_Sector
Mmc_Write_Sector
Mmc_Read_Cid
Mmc_Read_Csd

Mmc_Fat_Init
Mmc_Fat_Assign
Mmc_Fat_Reset
Mmc_Fat_Rewrite
Mmc_Fat_Append
Mmc_Fat_Read
Mmc_Fat_Write
Mmc_Set_File_Date

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

224 MikroElektronika: Development tools - Books - Compilers

page

Prototype unsigned short Mmc_Init(char *port, char pin);

Returns Returns 0 if MMC card is present and successfully initialized, otherwise returns 1.

Description Initializes MMC through hardware SPI communication, with chip select pin being given
by the parameters port and pin; communication port and pins are designated by the
hardware SPI settings for the respective MCU. Function returns 1 if MMC card is pres-
ent and successfully initialized, otherwise returns 0.

Example while (Mmc_Init()) ; // Loop until MMC is initialized

Mmc_Init

Multi Media Card Library

Library Routines

MikroElektronika: Development tools - Books - Compilers 225
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype unsigned short Mmc_Read_Sector(unsigned long sector, char *data);

Returns Returns 0 if read was successful, or 1 if an error occurred.

Description Function reads one sector (512 bytes) from MMC card at sector address sector. Read
data is stored in the array data. Function returns 0 if read was successful, or 1 if an
error occurred.

Requires Library needs to be initialized, see Mmc_Init.

Example error = Mmc_Read_Sector(sector, data);

Mmc_Read_Sector

Prototype unsigned short Mmc_Write_Sector(unsigned long sector,char *data);

Returns Returns 0 if write was successful; returns 1 if there was an error in sending write com-
mand; returns 2 if there was an error in writing.

Description Function writes 512 bytes of data to MMC card at sector address sector. Function
returns 0 if write was successful, or 1 if there was an error in sending write command,
or 2 if there was an error in writing.

Requires Library needs to be initialized, see Mmc_Init.

Example error = Mmc_Write_Sector(sector, data);

Mmc_Write_Sector

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

226 MikroElektronika: Development tools - Books - Compilers

page

Prototype unsigned short Mmc_Read_Cid(unsigned short *data_for_registers);

Returns Returns 0 if read was successful, or 1 if an error occurred.

Description Function reads CID register and returns 16 bytes of content into
data_for_registers.

Requires Library needs to be initialized, see Mmc_Init.

Example error = Mmc_Read_Cid(data);

Mmc_Read_Cid

Prototype unsigned short Mmc_Read_Csd(unsigned short *data_for_registers);

Returns Returns 0 if read was successful, or 1 if an error occurred.

Description Function reads CSD register and returns 16 bytes of content into
data_for_registers.

Requires Library needs to be initialized, see Mmc_Init.

Example error = Mmc_Read_Csd(data);

Mmc_Read_Csd

MikroElektronika: Development tools - Books - Compilers 227
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype unsigned short Mmc_Fat_Init(unsigned short *port, unsigned short
pin);

Returns Returns 0 if MMC card is present and successfully initialized, otherwise returns 1.

Description Initializes hardware SPI communication; designated CS line for communication is RC2.
The function returns 0 if MMC card is present and successfully initialized, otherwise
returns 1.

This function needs to be called before using other functions of MMC FAT library.

Example // Loop until MMC FAT is initialized at RC2
while (Mmc_Fat_Init(&PORTC, 2)) ;

Mmc_Fat_Init

Prototype void Mmc_Fat_Assign(char *filename);

Description This routine designates (“assigns”) the file we’ll be working with. Function looks for the
file specified by the filename in the root directory. If the file is found, routine will ini-
tialize it by getting its start sector, size, etc. If the file is not found, an empty file will be
created with the given name. The filename must be 8 + 3 characters in uppercase.

Requires Library needs to be initialized; see Mmc_Fat_Init.

Example // Assign the file "EXAMPLE1.TXT" in the root directory of MMC.
// If the file is not found, routine will create one.
Mmc_Fat_Assign("EXAMPLE1TXT");

Mmc_Fat_Assign

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

228 MikroElektronika: Development tools - Books - Compilers

page

Prototype void Mmc_Fat_Reset(unsigned long *size);

Description Function resets the file pointer (moves it to the start of the file) of the assigned file, so
that the file can be read. Parameter size stores the size of the assigned file, in bytes.

Requires Library needs to be initialized; see Mmc_Fat_Init.

Example Mmc_Fat_Reset(&filesize);

Mmc_Fat_Reset

Prototype void Mmc_Fat_Rewrite(void);

Description Function resets the file pointer and clears the assigned file, so that new data can be writ-
ten into the file.

Requires Library needs to be initialized; see Mmc_Fat_Init.

Example Mmc_Fat_Rewrite();

Mmc_Fat_Rewrite

Prototype void Mmc_Fat_Append(void);

Description The function moves the file pointer to the end of the assigned file, so that data can be
appended to the file.

Requires Library needs to be initialized; see Mmc_Fat_Init.

Example Mmc_Fat_Append();

Mmc_Fat_Append

MikroElektronika: Development tools - Books - Compilers 229
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Mmc_Fat_Read(unsigned short *data);

Description Function reads the byte at which the file pointer points to and stores data into parameter
data. The file pointer automatically increments with each call of Mmc_Fat_Read.

Requires File pointer must be initialized; see Mmc_Fat_Reset.

Example Mmc_Fat_Read(&mydata);

Mmc_Fat_Read

Prototype void Mmc_Fat_Write(char *fdata, unsigned data_len);

Description Function writes a chunk of data_len bytes (fdata) to the currently assigned file, at
the position of the file pointer.

Requires File pointer must be initialized; see Mmc_Fat_Append or Mmc_Fat_Rewrite.

Example Mmc_Fat_Write(txt, 21);
Mmc_Fat_Write("Hello\nworld", 1);

Mmc_Fat_Write

Prototype void Mmc_Set_File_Date(unsigned year, char month, char day,
char hours, char min, char sec);

Description Writes system timestamp to a file. Use this routine before each writing to the file; other-
wise, file will be appended a random timestamp.

Requires File pointer must be initialized; see Mmc_Fat_Append or Mmc_Fat_Rewrite.

Example // April 1st 2005, 18:07:00
Mmc_Set_File_Date(2005, 4, 1, 18, 7, 0);

Mmc_Set_File_Date

MikroElektronika: Development tools - Books - Compilers 230
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Library Example

The following code tests MMC library routines. First, we fill the buffer with 512 “M” characters
and write it to sector 56; then we repeat the sequence with character “E” at sector 56. Finally, we
read the sectors 55 and 56 to check if the write was successful.

unsigned i;
unsigned short tmp;
unsigned short data[512];

void main() {

Usart_Init(9600);

// Wait until MMC is initialized
while (Mmc_Init(&PORTC, 2)) ;

// Fill the buffer with the 'M' character
for (i = 0; i <= 511; i++) data[i] = "M";

// Write it to MMC card, sector 55
tmp = Mmc_Write_Sector(55, data);

// Fill the buffer with the 'E' character
for (i = 0; i <= 511; i++) data[i] = "E";

// Write it to MMC card, sector 56
tmp = Mmc_Write_Sector(56, data);

/** Now to check sectors 55 and 56 **/

// Read from sector 55
tmp = Mmc_Read_Sector(55, data);

// Send 512 bytes from buffer to USART
if (tmp == 0)

for (i = 0; i < 512; i++) Usart_Write(data[i]);

// Read from sector 56
tmp = Mmc_Read_Sector(56, data);

// Send 512 bytes from buffer to USART
if (tmp == 0)

for (i = 0; i < 512; i++) Usart_Write(data[i]);

}//~!

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

231 MikroElektronika: Development tools - Books - Compilers

page

Library Example

The following program tests MMC FAT routines. It creates 5 different files in the root of MMC
card, and fills them with some data. You can check the file dates which should be different.

char FAT_ERROR[20] = "FAT16 not found";
char file_contents[50] = "XX MMC/SD FAT16 library by Anton Rieckert";
char filename[14] = "MIKRO00xTXT"; // File names
unsigned short tmp, character, loop;
long i, size;

void main() {
PORTB = 0;
TRISB = 0;
Usart_Init(19200); // Set up USART for reading the files
if (!Mmc_Fat_Init(&PORTC, 2)) { // Try to find the FAT

tmp = 0;
while (FAT_ERROR[tmp])

Usart_Write(FAT_ERROR[tmp++]);
}
for (loop = 1; loop <= 5; loop++) { // We want 5 files on our MMC card

filename[7] = loop + 64; // Set number 1, 2, 3, 4 or 5
Mmc_Fat_Assign(&filename); // If file not found, create new file
Mmc_Fat_Rewrite(); // Clear the file, start with new data
file_contents[0] = loop / 10 + 48;
file_contents[1] = loop % 10 + 48;
Mmc_Fat_Write(file_contents, 41); // Write data to the assigned file
Mmc_Fat_Append(); // Add more data to file
Mmc_Fat_Write(file_contents, 41); // Write data to file
Delay_ms(200);

}
// Now if we want to add more data to those same files
for (loop = 1; loop <= 5; loop++) {

filename[7] = loop + 64;
Mmc_Fat_Assign(&filename); // Assign a file
Mmc_Fat_Append();
Mmc_Set_File_Date(2005,6,21,10,loop,0);
Mmc_Fat_Write(" for mikroElektronika 2005\r\n", 30);
Mmc_Fat_Append();
Mmc_Fat_Write(file_contents, 41);
Mmc_Fat_Reset(&size); // To read file, returns file size
for (i = 1; i <= size; i++) { // Write whole file to USART

Mmc_Fat_Read(&character);
Usart_Write(character);

}
Delay_ms(200);

}
}//~!

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

232 MikroElektronika: Development tools - Books - Compilers

page

Hardware Connection

3
K

3
2
K

2

3
K

3
2
K

2

3
K

3
2
K

2

IC1

MC33269-3.3

IN OUT

GND

+5V

+3V3

+

1
0
0
n
F +

2
2
u
F

Data_OUT

GND

CLK

+3V3

GND

Data_IN

/CS

MMC

SV1

4MHz

+5V

+5V

PIC18F458

RA0/AN0/Cvref

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4/SS/LVDIN

RE0/ RD/AN5/

RE1/ WR/C1OUTAN6/

RE2/ CS/C2OUTAN7/

Vdd

Vss

OSC1/CLKI

OSC2/CLKO/RA6

RC0/T1OSO/T1CKI

RC1/T1OSI

RC3/SCK/SCL

RD0/PSP0/C1IN+

RD1/PSP1/C1IN-

MCLR/Vpp

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5/PGM

RB4

RB3/CANRX

RB2/CANTX/INT2

RB1/INT1

RB0/INT0

Vdd

Vss

RD6/PSP6/P1C

RD7/PSP7/P1D

RD5/PSP5/P1B

RD4/PSP4/
ECCP1/P1A

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA

RD3/PSP3/C2IN-

RD2/PSP2/C2IN+

1
0
K

R
e
s
e
t

Back view

1 2 3 4 5 6 7

MMC

OneWire library provides routines for communication via OneWire bus, for exam-
ple with DS1820 digital thermometer. This is a Master/Slave protocol, and all the
cabling required is a single wire. Because of the hardware configuration it uses
(single pullup and open collector drivers), it allows for the slaves even to get their
power supply from that line.

Some basic characteristics of this protocol are:

- single master system,
- low cost,
- low transfer rates (up to 16 kbps),
- fairly long distances (up to 300 meters),
- small data transfer packages.

Each OneWire device also has a unique 64-bit registration number (8-bit device
type, 48-bit serial number and 8-bit CRC), so multiple slaves can co-exist on the
same bus.

Note that oscillator frequency Fosc needs to be at least 4MHz in order to use the
routines with Dallas digital thermometers.

Ow_Reset
Ow_Read
Ow_Write

MikroElektronika: Development tools - Books - Compilers 233
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

OneWire Library

Library Routines

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

234 MikroElektronika: Development tools - Books - Compilers

page

Prototype char Ow_Reset(char *port, char pin);

Returns Returns 0 if DS1820 is present, 1 if not present.

Description Issues OneWire reset signal for DS1820. Parameters port and pin specify the location
of DS1820.

Requires Works with Dallas DS1820 temperature sensor only.

Example Ow_Reset(&PORTA, 5); // reset DS1820 connected to the RA5 pin

Ow_Reset

Prototype char Ow_Read(char *port, char pin);

Returns Data read from an external device over the OneWire bus.

Description Reads one byte of data via the OneWire bus.

Example tmp = Ow_Read(&PORTA, 5);

Ow_Read

Prototype void Ow_Write(char *port, char pin, char par);

Description Writes one byte of data (argument par) via OneWire bus.

Example Ow_Write(&PORTA, 5, 0xCC);

Ow_Write

MikroElektronika: Development tools - Books - Compilers 235
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Library Example

unsigned temp;
unsigned short j;

void Display_Temperature(unsigned int temp) {
//...

}

void main() {
ADCON1 = 0xFF; // Configure RA5 pin as digital I/O
PORTA = 0xFF;
TRISA = 0x0F; // PORTA is input
PORTB = 0;
TRISB = 0; // PORTB is output

// Initialize LCD on PORTB and prepare for output

do {

OW_Reset(&PORTA,5); // Onewire reset signal
OW_Write(&PORTA,5,0xCC); // Issue command SKIP_ROM
OW_Write(&PORTA,5,0x44); // Issue command CONVERT_T
Delay_us(120);

OW_Reset(&PORTA,5);
OW_Write(&PORTA,5,0xCC); // Issue command SKIP_ROM
OW_Write(&PORTA,5,0xBE); // Issue command READ_SCRATCHPAD
Delay_ms(400);

j = OW_Read(&PORTA,5); // Get temperature LSB
temp = OW_Read(&PORTA,5); // Get temperature MSB
temp <<= 8; temp += j; // Form the result
Display_Temperature(temp); // Format and display result on LCD
Delay_ms(500);

} while (1);

}//~!

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

236 MikroElektronika: Development tools - Books - Compilers

page

Hardware Connection

+125

-55

OC
DS1820

G
N

D

D
Q

V
dd

4MHz

+5V

E

RS

PIC16F877A

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

+5V

D7

D6

D5

D4

+5V

L
C

D
c
o
n
tr

a
s
t

+5V

1
R/W D4ERS D3D2D1D0 D7D6D5VeeVddVss

m i k r o e l E k t r o n i k a

4K
7

R
e

s
e

t
1

0
K

mikroC provides a library for communicating with common PS/2 keyboard.The
library does not utilize interrupts for data retrieval, and requires oscillator clock to
be 6MHz and above.

Ps2_Init
Ps2_Config
Ps2_Key_Read

MikroElektronika: Development tools - Books - Compilers 237
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

PS/2 Library

Library Routines

Prototype void Ps2_Init(unsigned short *port);

Description Initializes port for work with PS/2 keyboard, with default pin settings. Port pin 0 is
Data line, and port pin 1 is Clock line.

You need to call either Ps2_Init or Ps2_Config before using other routines of PS/2
library.

Requires Both Data and Clock lines need to be in pull-up mode.

Ps2_Init

Prototype void Ps2_Config(char *port, char clock, char data);

Description Initializes port for work with PS/2 keyboard, with custom pin settings. Parameters
data and clock specify pins of port for Data line and Clock line, respectively. Data
and clock need to be in range 0..7 and cannot point to the same pin.

You need to call either Ps2_Init or Ps2_Config before using other routines of PS/2
library.

Requires Both Data and Clock lines need to be in pull-up mode.

Example Ps2_Config(&PORTB, 2, 3);

Ps2_Config

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

238 MikroElektronika: Development tools - Books - Compilers

page

Prototype char Ps2_Key_Read(char *value, char *special, char *pressed);

Returns Returns 1 if reading of a key from the keyboard was successful, otherwise 0.

Description The function retrieves information about key pressed.

Parameter value holds the value of the key pressed. For characters, numerals, punctua-
tion marks, and space, value will store the appropriate ASCII value. Routine “recog-
nizes” the function of Shift and Caps Lock, and behaves appropriately.

Parameter special is a flag for special function keys (F1, Enter, Esc, etc). If key
pressed is one of these, special will be set to 1, otherwise 0.

Parameter pressed is set to 1 if the key is pressed, and 0 if released.

Requires PS/2 keyboard needs to be initialized; see Ps2_Init or Ps2_Config.

Example // Press Enter to continue:
do {

if (Ps2_Key_Read(&value, &special, &pressed)) {
if ((value == 13) && (special == 1)) break;

}
} while (1);

Ps2_Key_Read

MikroElektronika: Development tools - Books - Compilers 239
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Library Example

This simple example reads values of keys pressed on PS/2 keyboard and sends them via USART.

unsigned short keydata, special, down;

void main() {
CMCON = 0x07; // Disable analog comparators (comment this for PIC18)
INTCON = 0; // Disable all interrupts
Ps2_Init(&PORTA); // Init PS/2 Keyboard on PORTA
Delay_ms(100); // Wait for keyboard to finish

do {
if (Ps2_Key_Read(&keydata, &special, &down)) {

if (down && (keydata == 16)) {// Backspace
// ...do something with a backspace...

}
else if (down && (keydata == 13)) {// Enter

Usart_Write(13);
}
else if (down && !special && keydata) {

Usart_Write(keydata);
}

}
Delay_ms(10); // debounce

} while (1);
}//~!

CCP module is available with a number of PICmicros. mikroC provides library
which simplifies using PWM HW Module.

Note: These routines support module on RC2, and won’t work with modules on
other ports. You can find examples for PICmicros with module on other ports in
mikroC installation folder, subfolder “Examples”. Also, mikroC does not support
enhanced PWM modules.

Pwm_Init
Pwm_Change_Duty
Pwm_Start
Pwm_Stop

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

240 MikroElektronika: Development tools - Books - Compilers

page

PWM Library

Library Routines

Prototype void Pwm_Init(long freq);

Description Initializes the PWM module with duty ratio 0. Parameter freq is a desired PWM fre-
quency in Hz (refer to device data sheet for correct values in respect with Fosc).

Pwm_Init needs to be called before using other functions from PWM Library.

Requires You need a CCP module on PORTC to use this library. Check mikroC installation fold-
er, subfolder “Examples”, for alternate solutions.

Example Pwm_Init(5000); // Initialize PWM module at 5KHz

Pwm_Init

MikroElektronika: Development tools - Books - Compilers 241
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Pwm_Change_Duty(char duty_ratio);

Description Changes PWM duty ratio. Parameter duty_ratio takes values from 0 to 255, where 0
is 0%, 127 is 50%, and 255 is 100% duty ratio. Other specific values for duty ratio can
be calculated as (Percent*255)/100.

Requires You need a CCP module on PORTC to use this library. To use this function, module
needs to be initalized – see Pwm_Init.

Example Pwm_Change_Duty(192); // Set duty ratio to 75%

Pwm_Change_Duty

Prototype void Pwm_Start(void);

Description Starts PWM.

Requires You need a CCP module on PORTC to use this library. To use this function, module
needs to be initalized – see Pwm_Init.

Example Pwm_Start();

Pwm_Start

Prototype void Pwm_Stop(void);

Description Stops PWM.

Requires You need a CCP module on PORTC to use this library. To use this function, module
needs to be initalized – see Pwm_Init.

Example Pwm_Stop();

Pwm_Stop

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

242 MikroElektronika: Development tools - Books - Compilers

page

Hardware Connection

Library Example

4MHz

+5V

+5V

PIC16F877A

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

330R

1
0

K

R
e

s
e

t

/*The example changes PWM duty ratio on pin RC2 continually. If LED is connected
to RC2, you can observe the gradual change of emitted light. */

char i = 0, j = 0;

void main() {
PORTC = 0xFF; // PORTC is output
Pwm_Init(5000); // Initialize PWM module at 5KHz
Pwm_Start(); // Start PWM

while (1) {
// Slow down, allow us to see the change on LED:
for (i = 0; i < 20; i++) Delay_us(500);
j++;
Pwm_Change_Duty(j); // Change duty ratio

}
}

RS-485 is a multipoint communication which allows multiple devices to be con-
nected to a single signal cable. mikroC provides a set of library routines to provide
you comfortable work with RS-485 system using Master/Slave architecture.
Master and Slave devices interchange packets of information, each of these pack-
ets containing synchronization bytes, CRC byte, address byte, and the data. Each
Slave has its unique address and receives only the packets addressed to it. Slave
can never initiate communication. It is programmer’s responsibility to ensure that
only one device transmits via 485 bus at a time.

RS-485 routines require USART module on PORTC. Pins of USART need to be
attached to RS-485 interface transceiver, such as LTC485 or similar. Pins of trans-
ceiver (Receiver Output Enable and Driver Outputs Enable) should be connected
to PORTC, pin 2 (check the figure at end of the chapter).

Note: Address 50 is the common address for all Slaves (packets containing
address 50 will be received by all Slaves). The only exceptions are Slaves with
addresses 150 and 169, which require their particular address to be specified in the
packet.

RS485Master_Init
RS485Master_Receive
RS485Master_Send
RS485Slave_Init
RS485Slave_Receive
RS485Slave_Send

MikroElektronika: Development tools - Books - Compilers 243
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

RS-485 Library

Library Routines

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

244 MikroElektronika: Development tools - Books - Compilers

page

Prototype void RS485Master_Init(void);

Description Initializes PIC MCU as Master in RS-485 communication.

Requires USART HW module needs to be initialized. See USART_Init.

Example RS485Master_Init();

RS485Master_Init

Prototype void RS485Master_Receive(char *data);

Description Receives any message sent by Slaves. Messages are multi-byte, so this function must be
called for each byte received (see the example at the end of the chapter). Upon receiving
a message, buffer is filled with the following values:

data[0..2] is the message,
data[3] is number of message bytes received, 1–3,
data[4] is set to 255 when message is received,
data[5] is set to 255 if error has occurred,
data[6] is the address of the Slave which sent the message.

Function automatically adjusts data[4] and data[5] upon every received message.
These flags need to be cleared from the program.

Requires MCU must be initialized as Master in RS-485 communication in order to be assigned an
address. See RS485Master_Init.

Example unsigned short msg[8];
...
RS485Master_Receive(msg);

RS485Master_Receive

MikroElektronika: Development tools - Books - Compilers 245
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void RS485Master_Send(char *data, char datalen, char address);

Description Sends data from buffer to Slave(s) specified by address via RS-485; datalen is a
number of bytes in message (1 <= datalen <= 3).

Requires MCU must be initialized as Master in RS-485 communication in order to be assigned an
address. See RS485Master_Init.

It is programmer’s responsibility to ensure (by protocol) that only one device sends data
via 485 bus at a time.

Example unsigned short msg[8];
...
RS485Master_Send(msg, 3, 0x12);

RS485Master_Send

Prototype void RS485Slave_Init(char address);

Description Initializes MCU as Slave with a specified address in RS-485 communication. Slave
address can take any value between 0 and 255, except 50, which is common address
for all slaves.

Requires USART HW module needs to be initialized. See USART_Init.

Example RS485Slave_Init(160); // Initialize MCU as Slave with address 160

RS485Slave_Init

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

246 MikroElektronika: Development tools - Books - Compilers

page

Prototype void RS485Slave_Receive(char *data);

Description Receives message addressed to it. Messages are multi-byte, so this function must be
called for each byte received (see the example at the end of the chapter). Upon receiving
a message, buffer is filled with the following values:

data[0..2] is the message,
data[3] is number of message bytes received, 1–3,
data[4] is set to 255 when message is received,
data[5] is set to 255 if error has occurred,
data[6] is the address of the Slave which sent the message.

Function automatically adjusts data[4] and data[5] upon every received message.
These flags need to be cleared from the program.

Requires MCU must be initialized as Slave in RS-485 communication in order to be assigned an
address. See RS485Slave_Init.

Example unsigned short msg[8];
...
RS485Slave_Read(msg);

RS485Slave_Receive

Prototype void RS485Slave_Send(char *data, char datalen);

Description Sends data from buffer to Master via RS-485; datalen is a number of bytes in mes-
sage (1 <= datalen <= 3).

Requires MCU must be initialized as Slave in RS-485 communication in order to be assigned an
address. See RS485Slave_Init.

It is programmer’s responsibility to ensure (by protocol) that only one device sends data
via 485 bus at a time.

Example unsigned short msg[8];
...
RS485Slave_Send(msg, 2);

RS485Slave_Send

MikroElektronika: Development tools - Books - Compilers 247
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Library Example

The example demonstrates working with PIC as Slave nod in RS-485 communication. PIC
receives only packets addressed to it (address 160 in our example), and general messsages with
target address 50. The received data is forwarded to PORTB, and sent back to Master.

unsigned short dat[8]; // buffer for receiving/sending messages
char i = 0, j = 0;

void interrupt() {
/* Every byte is received by RS485Slave_Read(dat);

If message is received without errors,
data[4] is set to 255 */

if (RCSTA.OERR) PORTD = 0x81;
RS485Slave_Read(dat);

}//~

void main() {

TRISB = 0;
TRISD = 0;
Usart_Init(9600); // Initialize usart module
RS485Slave_Init(160); // Initialize MCU as Slave with address 160
PIE1.RCIE = 1; // Enable interrupt
INTCON.PEIE = 1; // on byte received
PIE2.TXIE = 0; // via USART (RS485)
INTCON.GIE = 1;
PORTB = 0;
PORTD = 0;
dat[4] = 0; // Ensure that msg received flag is 0
dat[5] = 0; // Ensure that error flag is 0

do {
if (dat[5]) PORTD = 0xAA; // If there is error, set PORTD to $AA
if (dat[4]) { // If message received:

dat[4] = 0; // Clear message received flag
j = dat[3]; // Number of data bytes received
for (i = 1; i < j; i++)

PORTB = dat[--i]; // Output received data bytes
dat[0]++; // Increment received dat[0]
RS485Slave_Write(dat, 1); // Send it back to Master

}
} while (1);

}//~!

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

248 MikroElektronika: Development tools - Books - Compilers

page

Hardware Connection

+

+

MAX232

C1+

V+

C1-

C2+

C2-

V-

T2out

R2in R2out

T2in

T1in

R1out

R1in

T1out

GND

Vcc
+

+

RX

TX

RTS

GND

+5V

RS232 to RS485 converter

Shielded pair

less than 300m

long

LTC485

R0

DE

DI GND

A

B

Vcc

RE

LTC485

R0

DE

DI GND

A

B

Vcc

RE
4

M
H

z

+5V

+5V

+5V

+5V

PIC16F877A

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

Connecting PC and PIC via

RS485 communication line

Up to 32 devices can

be connected to

RS485 line

4
.7

u
F

4
.7

u
F

4
.7

u
F

4.7uF

R
e
s
e
t

1
0
K

1
0
K

6
2
0
R

6
2
0
R

Secure Digital (SD) is a flash memory memory card standard, based on the older
Multi Media Card (MMC) format. SD cards are currently available in sizes of up
to and including 2 GB, and are used in cell phones, mp3 players, digital cameras,
and PDAs.

mikroC provides a library for accessing data on SD Card via SPI communication.

Note: Secure Digital Library works only with PIC18 family.

Sd_Init
Sd_Read_Sector
Sd_Write_Sector
Sd_Read_Cid
Sd_Read_Csd

MikroElektronika: Development tools - Books - Compilers 249
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Secure Digital Library

Library Routines

Prototype unsigned short Sd_Init(unsigned short *port, unsigned short pin);

Returns Returns 0 if SD card is present and successfully initialized, otherwise returns 1.

Description Initializes hardware SPI communication; parameters port and pin designate the CS line
used in the communication (parameter pin should be 0..7). The function returns 0 if SD
card is present and successfully initialized, otherwise returns 1. Sd_Init needs to be
called before using other functions of this library.

Example error = Sd_Init(&PORTC, 2); // Init with CS line at RC2

Sd_Init

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

250 MikroElektronika: Development tools - Books - Compilers

page

Prototype unsigned short Sd_Read_Sector(unsigned long sector, char *data);

Returns Returns 0 if read was successful, or 1 if an error occurred.

Description Function reads one sector (512 bytes) from SD card at sector address sector. Read
data is stored in the array data. Function returns 0 if read was successful, or 1 if an
error occurred.

Requires Library needs to be initialized, see Sd_Init.

Example error = Sd_Read_Sector(sector, data);

Sd_Read_Sector

Prototype unsigned short Sd_Write_Sector(unsigned long sector,char *data);

Returns Returns 0 if write was successful; returns 1 if there was an error in sending write com-
mand; returns 2 if there was an error in writing.

Description Function writes 512 bytes of data to SD card at sector address sector. Function returns 0
if write was successful, or 1 if there was an error in sending write command, or 2 if
there was an error in writing.

Requires Library needs to be initialized, see Sd_Init.

Example error = Sd_Write_Sector(sector, data);

Sd_Write_Sector

MikroElektronika: Development tools - Books - Compilers 251
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype unsigned short Sd_Read_Cid(unsigned short *data_for_registers);

Returns Returns 0 if read was successful, or 1 if an error occurred.

Description Function reads CID register and returns 16 bytes of content into
data_for_registers.

Requires Library needs to be initialized, see Sd_Init.

Example error = Sd_Read_Cid(data);

Sd_Read_Cid

Prototype unsigned short Sd_Read_Csd(unsigned short *data_for_registers);

Returns Returns 0 if read was successful, or 1 if an error occurred.

Description Function reads CSD register and returns 16 bytes of content into
data_for_registers.

Requires Library needs to be initialized, see Sd_Init.

Example error = Sd_Read_Csd(data);

Sd_Read_Csd

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

252 MikroElektronika: Development tools - Books - Compilers

page

Library Example

The following code tests SD library routines. First, we fill the buffer with 512 “M” characters and
write it to sector 56; then we repeat the sequence with character “E” at sector 56. Finally, we read
the sectors 55 and 56 to check if the write was successful.

unsigned i;
unsigned short tmp;
unsigned short data[512];

void main() {

Usart_Init(9600);

// Initialize ports
tmp = Sd_Init(&PORTC, 2);

// Fill the buffer with the 'M' character
for (i = 0; i <= 511; i++) data[i] = 'M';

// Write it to SD card, sector 55
tmp = Sd_Write_Sector(55, data);

// Fill the buffer with the 'E' character
for (i = 0; i <= 511; i++) data[i] = 'E'

// Write it to SD card, sector 56
tmp = Sd_Write_Sector(56, data);

/** Now to check sectors 55 and 56 **/

// Read from sector 55
tmp = Sd_Read_Sector(55, data);

// Send 512 bytes from buffer to USART
if (tmp == 0)

for (i = 0; i < 512; i++) Usart_Write(data[i]);

// Read from sector 56
tmp = Sd_Read_Sector(56, data);

// Send 512 bytes from buffer to USART
if (tmp == 0)

for (i = 0; i < 512; i++) Usart_Write(data[i]);

}//~!

MikroElektronika: Development tools - Books - Compilers 253
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Hardware Connection

3
K

3
2
K

2

3
K

3
2
K

2

3
K

3
2
K

2

IC1

MC33269-3.3

IN OUT

GND

+5V

+3V3

+

1
0
0
n
F +

2
2
u
F

Data_OUT

GND

CLK

+3V3

GND

Data_IN

/CS

SD

4MHz

+5V

+5V

PIC18F458

RA0/AN0/Cvref

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4/SS/LVDIN

RE0/ RD/AN5/

RE1/ WR/C1OUTAN6/

RE2/ CS/C2OUTAN7/

Vdd

Vss

OSC1/CLKI

OSC2/CLKO/RA6

RC0/T1OSO/T1CKI

RC1/T1OSI

RC3/SCK/SCL

RD0/PSP0/C1IN+

RD1/PSP1/C1IN-

MCLR/Vpp

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5/PGM

RB4

RB3/CANRX

RB2/CANTX/INT2

RB1/INT1

RB0/INT0

Vdd

Vss

RD6/PSP6/P1C

RD7/PSP7/P1D

RD5/PSP5/P1B

RD4/PSP4/
ECCP1/P1A

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA

RD3/PSP3/C2IN-

RD2/PSP2/C2IN+

1
0
K

R
e
s
e
t

mikroC provides routines which implement software I²C. These routines are hard-
ware independent and can be used with any MCU. Software I2C enables you to
use MCU as Master in I2C communication. Multi-master mode is not supported.

Note: This library implements time-based activities, so interrupts need to be dis-
abled when using Soft I²C.

Soft_I2C_Config
Soft_I2C_Start
Soft_I2C_Read
Soft_I2C_Write
Soft_I2C_Stop

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

254 MikroElektronika: Development tools - Books - Compilers

page

Software I2C Library

Library Routines

Prototype void Soft_I2C_Config(char *port, const char SDI, const char SD0,
const char SCK);

Description Configures software I²C. Parameter port specifies port of MCU on which SDA and SCL
pins are located. Parameters SCL and SDA need to be in range 0–7 and cannot point at
the same pin.

Soft_I2C_Config needs to be called before using other functions from Soft I2C
Library.

Example Soft_I2C_Config(PORTB, 1, 2);

Soft_I2C_Config

MikroElektronika: Development tools - Books - Compilers 255
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Soft_I2C_Start(void);

Description Issues START signal. Needs to be called prior to sending and receiving data.

Requires Soft I²C must be configured before using this function. See Soft_I2C_Config.

Example Soft_I2C_Start();

Soft_I2C_Start

Prototype char Soft_I2C_Read(char ack);

Returns Returns one byte from the slave.

Description Reads one byte from the slave, and sends not acknowledge signal if parameter ack is 0,
otherwise it sends acknowledge.

Requires START signal needs to be issued in order to use this function. See Soft_I2C_Start.

Example tmp = Soft_I2C_Read(0); //Read data, send not-acknowledge signal

Soft_I2C_Read

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

256 MikroElektronika: Development tools - Books - Compilers

page

Prototype char Soft_I2C_Write(char data);

Returns Returns 0 if there were no errors.

Description Sends data byte (parameter data) via I²C bus.

Requires START signal needs to be issued in order to use this function. See Soft_I2C_Start.

Example Soft_I2C_Write(0xA3);

Soft_I2C_Write

Prototype void Soft_I2C_Stop(void);

Description Issues STOP signal.

Requires START signal needs to be issued in order to use this function. See Soft_I2C_Start.

Example Soft_I2C_Stop();

Soft_I2C_Stop

MikroElektronika: Development tools - Books - Compilers 257
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Library Example

/* The example demonstrates use of Software I²C Library.
PIC MCU is connected (SCL, SDA pins) to PCF8583 RTC (real-time clock).
Program sends date data to RTC. */

void main() {

Soft_I2C_Config(&PORTD, 4,3); // Initialize full master mode

Soft_I2C_Start(); // Issue start signal
Soft_I2C_Write(0xA0); // Address PCF8583
Soft_I2C_Write(0); // Start from word at address 0 (config word)
Soft_I2C_Write(0x80); // Write 0x80 to config. (pause counter...)
Soft_I2C_Write(0); // Write 0 to cents word
Soft_I2C_Write(0); // Write 0 to seconds word
Soft_I2C_Write(0x30); // Write 0x30 to minutes word
Soft_I2C_Write(0x11); // Write 0x11 to hours word
Soft_I2C_Write(0x30); // Write 0x24 to year/date word
Soft_I2C_Write(0x08); // Write 0x08 to weekday/month
Soft_I2C_Stop(); // Issue stop signal

Soft_I2C_Start(); // Issue start signal
Soft_I2C_Write(0xA0); // Address PCF8530
Soft_I2C_Write(0); // Start from word at address 0
Soft_I2C_Write(0); // Write 0 to config word (enable counting)
Soft_I2C_Stop(); // Issue stop signal

}//~!

mikroC provides library which implement software SPI. These routines are hard-
ware independent and can be used with any MCU. You can easily communicate
with other devices via SPI: A/D converters, D/A converters, MAX7219, LTC1290,
etc.

Note: These functions implement time-based activities, so interrupts need to be
disabled when using the library.

Soft_Spi_Config
Soft_Spi_Read
Soft_Spi_Write

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

258 MikroElektronika: Development tools - Books - Compilers

page

Software SPI Library

Library Routines

Prototype void Soft_Spi_Config(char *port, const char SDI, const char SD0,
const char SCK);

Description Configures and initializes software SPI. Parameter port specifies port of MCU on which
SDI, SDO, and SCK pins will be located. Parameters SDI, SDO, and SCK need to be in
range 0–7 and cannot point at the same pin.

Soft_Spi_Config needs to be called before using other functions from Soft SPI
Library.

Example This will set SPI to master mode, clock = 50kHz, data sampled at the middle of interval,
clock idle state low and data transmitted at low to high edge. SDI pin is RB1, SDO pin
is RB2 and SCK pin is RB3:

Soft_Spi_Config(PORTB, 1, 2, 3);

Soft_Spi_Config

MikroElektronika: Development tools - Books - Compilers 259
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype char Soft_Spi_Read(char buffer);

Returns Returns the received data.

Description Provides clock by sending buffer and receives data.

Requires Soft SPI must be initialized and communication established before using this function.
See Soft_Spi_Config.

Example tmp = Soft_Spi_Read(buffer);

Soft_Spi_Read

Prototype void Soft_Spi_Write(char data);

Description Immediately transmits data.

Requires Soft SPI must be initialized and communication established before using this function.
See Soft_Spi_Config.

Example Soft_Spi_Write(1);

Soft_Spi_Write

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

260 MikroElektronika: Development tools - Books - Compilers

page

Library Example

This is a sample program which demonstrates the use of the Microchip's MCP4921 12-bit D/A converter
with PIC mcu's. This device accepts digital input (number from 0..4095) and transforms it to the output
voltage, ranging from 0..Vref. In this example the D/A is connected to PORTC and communicates with
PIC through the SPI. The reference voltage on the mikroElektronika's DAC module is 5 V. In this exam-
ple, the entire DAC’s resolution range (12bit ? 4096 increments) is covered, meaning that you’ll need to
hold a button for about 7 minutes to get from mid-range to the end-of-range.

const char _CHIP_SELECT = 1, _TRUE = 0xFF;
unsigned value;

void InitMain() {
Soft_SPI_Config(&PORTB, 4,5,3);
TRISB &= ~(_CHIP_SELECT); // ClearBit(TRISC,CHIP_SELECT);
TRISC = 0x03;

}//~
// DAC increments (0..4095) --> output voltage (0..Vref)
void DAC_Output(unsigned valueDAC) {

char temp;
PORTB &= ~(_CHIP_SELECT); // ClearBit(PORTC,CHIP_SELECT);
temp = (valueDAC >> 8) & 0x0F; // Prepare hi-byte for transfer
temp |= 0x30; // It's a 12-bit number, so only
Soft_Spi_Write(temp); // lower nibble of high byte is used
temp = valueDAC; // Prepare lo-byte for transfer
Soft_Spi_Write(temp);
PORTB |= _CHIP_SELECT; // SetBit(PORTC,CHIP_SELECT);

}//~

void main() {
InitMain();
DAC_Output(2048); // When program starts, DAC gives
value = 2048; // the output in the mid-range
while (1) { // Main loop

if ((Button(&PORTC,0,1,1)==_TRUE) // Test button on B0 (increment)
&& (value < 4095)) {

value++ ;
} else {

if ((Button(&PORTC,1,1,1)==_TRUE) // If RB0 is not active then test
&& (value > 0)) { // RB1 (decrement)
value-- ;

}
}
DAC_Output(value); // Perform output
Delay_ms(100); // Slow down key repeat pace

}
}//~!

mikroC provides library which implements software UART. These routines are
hardware independent and can be used with any MCU. You can easily communi-
cate with other devices via RS232 protocol – simply use the functions listed
below.

Note: This library implements time-based activities, so interrupts need to be dis-
abled when using Soft UART.

Soft_Uart_Init
Soft_Uart_Read
Soft_Uart_Write

MikroElektronika: Development tools - Books - Compilers 261
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Software UART Library

Library Routines

Prototype void Soft_Uart_Init(unsigned short *port, unsigned short rx,
unsigned short tx, unsigned short baud_rate, char inverted);

Description Initalizes software UART. Parameter port specifies port of MCU on which RX and TX
pins are located; parameters rx and tx need to be in range 0–7 and cannot point at the
same pin; baud_rate is the desired baud rate. Maximum baud rate depends on PIC’s
clock and working conditions. Parameter inverted, if set to non-zero value, indicates
inverted logic on output.

Soft_Uart_Init needs to be called before using other functions from Soft UART
Library.

Example Soft_Uart_Init(&PORTB, 1, 2, 9600, 0);

Soft_Uart_Init

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

262 MikroElektronika: Development tools - Books - Compilers

page

Prototype unsigned short Soft_Uart_Read(unsigned short *error);

Returns Returns a received byte.

Description Function receives a byte via software UART. Parameter error will be zero if the
transfer was successful. This is a non-blocking function call, so you should test the
error manually (check the example below).

Requires Soft UART must be initialized and communication established before using this func-
tion. See Soft_Uart_Init.

Example // Here’s a loop which holds until data is received:

do
data = Soft_Uart_Read(&error);

while (error);

// Now we can work with it:
if (data) {...}

Soft_Uart_Read

Prototype void Soft_Uart_Write(char data);

Description Function transmits a byte (data) via UART.

Requires Soft UART must be initialized and communication established before using this func-
tion. See Soft_Uart_Init.

Be aware that during transmission, software UART is incapable of receiving data – data
transfer protocol must be set in such a way to prevent loss of information.

Example char some_byte = 0x0A;
...
Soft_Uart_Write(some_byte);

Soft_Uart_Write

The example demonstrates simple data exchange via software UART. When PIC
MCU receives data, it immediately sends the same data back. If PIC is connected
to the PC (see the figure below), you can test the example from mikroC terminal
for RS232 communication, menu choice Tools > Terminal.

MikroElektronika: Development tools - Books - Compilers 263
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Library Example

unsigned short data = 0, ro = 0;
unsigned short *er;

void main() {
er = &ro;

// Init (8 bit, 2400 baud rate, no parity bit, non-inverted logic)
Soft_Uart_Init(&PORTB, 1, 2, 2400, 0);

do {
do {

data = Soft_Uart_Read(er); // Receive data
} while (*er);
Soft_Uart_Write(data); // Send data via UART

} while (1);
}//~!

mikroC provides a Sound Library which allows you to use sound signalization in
your applications. You need a simple piezo speaker (or other hardware) on desig-
nated port.

Sound_Init
Sound_Play

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

264 MikroElektronika: Development tools - Books - Compilers

page

Sound Library

Library Routines

Prototype void Sound_Init(char *port, char pin);

Description Prepares hardware for output at specified port and pin. Parameter pin needs to be within
range 0–7.

Example Sound_Init(PORTB, 2); // Initialize sound on RB2

Sound_Init

Prototype void Sound_Play(char period_div_10, unsigned num_of_periods);

Description Plays the sound at the specified port and pin (see Sound_Init). Parameter period_div_10
is a sound period given in MCU cycles divided by ten, and generated sound lasts for a
specified number of periods (num_of_periods).

Requires To hear the sound, you need a piezo speaker (or other hardware) on designated port.
Also, you must call Sound_Init to prepare hardware for output.

Example To play sound of 1KHz: T = 1/f = 1ms = 1000 cycles @ 4MHz. This gives us our first
parameter: 1000/10 = 100. Play 150 periods like this:

Sound_Play(100, 150);

Sound_Play

The example is a simple demonstration of how to use sound library for playing
tones on a piezo speaker. The code can be used with any MCU that has PORTB
and ADC on PORTA. Sound frequencies in this example are generated by reading
the value from ADC and using the lower byte of the result as base for T (f = 1/T).

MikroElektronika: Development tools - Books - Compilers 265
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Library Example

int adcValue;

void main() {

PORTB = 0; // Clear PORTB
TRISB = 0; // PORTB is output
INTCON = 0; // Disable all interrupts
ADCON1 = 0x82; // Configure VDD as Vref, and analog channels
TRISA = 0xFF; // PORTA is input
Sound_Init(PORTB, 2); // Initialize sound on RB2

while (1) { // Play in loop:
adcValue = ADC_Read(2); // Get lower byte from ADC
Sound_Play(adcValue, 200); // Play the sound

}
}

SPI module is available with a number of PIC MCU models. mikroC provides a
library for initializing Slave mode and comfortable work with Master mode. PIC
can easily communicate with other devices via SPI: A/D converters, D/A convert-
ers, MAX7219, LTC1290, etc. You need PIC MCU with hardware integrated SPI
(for example, PIC16F877).

Note: This library supports module on PORTB or PORTC, and will not work with
modules on other ports. Examples for PICmicros with module on other ports can
be found in your mikroC installation folder, subfolder “Examples”.

Spi_Init
Spi_Init_Advanced
Spi_Read
Spi_Write

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

266 MikroElektronika: Development tools - Books - Compilers

page

SPI Library

Library Routines

Prototype void Spi_Init(void);

Description Configures and initializes SPI with default settings. SPI_Init_Advanced or
SPI_Init needs to be called before using other functions from SPI Library.

Default settings are: Master mode, clock Fosc/4, clock idle state low, data transmitted on
low to high edge, and input data sampled at the middle of interval.

For custom configuration, use Spi_Init_Advanced.

Requires You need PIC MCU with hardware integrated SPI.

Example Spi_Init();

Spi_Init

MikroElektronika: Development tools - Books - Compilers 267
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype void Spi_Init_Advanced(char master, char data_sample, char
clock_idle, char transmit_edge);

Description Configures and initializes SPI. Spi_Init_Advanced or SPI_Init needs to be called
before using other functions of SPI Library.

Parameter mast_slav determines the work mode for SPI; can have the values:

MASTER_OSC_DIV4 // Master clock=Fosc/4
MASTER_OSC_DIV16 // Master clock=Fosc/16
MASTER_OSC_DIV64 // Master clock=Fosc/64
MASTER_TMR2 // Master clock source TMR2
SLAVE_SS_ENABLE // Master Slave select enabled
SLAVE_SS_DIS // Master Slave select disabled

The data_sample determines when data is sampled; can have the values:

DATA_SAMPLE_MIDDLE // Input data sampled in middle of interval

DATA_SAMPLE_END // Input data sampled at the end of interval

Parameter clock_idle determines idle state for clock; can have the following values:

CLK_IDLE_HIGH // Clock idle HIGH
CLK_IDLE_LOW // Clock idle LOW

Parameter transmit_edge can have the following values:

LOW_2_HIGH // Data transmit on low to high edge
HIGH_2_LOW // Data transmit on high to low edge

Requires You need PIC MCU with hardware integrated SPI.

Example This will set SPI to master mode, clock = Fosc/4, data sampled at the middle of interval,
clock idle state low and data transmitted at low to high edge:

Spi_Init_Advanced(MASTER_OSC_DIV4, DATA_SAMPLE_MIDDLE,
CLK_IDLE_LOW, LOW_2_HIGH)

Spi_Init_Advanced

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

268 MikroElektronika: Development tools - Books - Compilers

page

Prototype char Spi_Read(char buffer);

Returns Returns the received data.

Description Provides clock by sending buffer and receives data at the end of period.

Requires SPI must be initialized and communication established before using this function. See
Spi_Init_Advanced or Spi_Init.

Example short take, buffer;
...
take = Spi_Read(buffer);

Spi_Read

Prototype void Spi_Write(char data);

Description Writes byte data to SSPBUF, and immediately starts the transmission.

Requires SPI must be initialized and communication established before using this function. See
Spi_Init_Advanced or Spi_Init.

Example Spi_Write(1);

Spi_Write

The code demonstrates how to use SPI library functions. Assumed HW configura-
tion is: max7219 (chip select pin) connected to RC1, and SDO, SDI, SCK pins are
connected to corresponding pins of max7219.

MikroElektronika: Development tools - Books - Compilers 269
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Library Example

//------------------- Function Declarations
void max7219_init1();
//-------------------------------- F.D. end

char i;

void main() {
Spi_Init(); // Standard configuration
TRISC &= 0xFD;
max7219_init1(); // Initialize max7219
for (i = 1; i <= 8u; i++) {

PORTC &= 0xFD; // Select max7219
Spi_Write(i); // Send i to max7219 (digit place)
Spi_Write(8 - i); // Send i to max7219 (digit)
PORTC |= 2; // Deselect max7219

}
TRISB = 0;
PORTB = i;

}//~!

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

270 MikroElektronika: Development tools - Books - Compilers

page

HW Connection

M
A

X
7
2
1
9

D
O

U
T

S
E

G
D

S
E

G
D

P

S
E

G
E

S
E

G
C

IS
E

T

S
E

G
G

S
E

G
B

S
E

G
F

D
IN

D
IG

0

D
IG

4

G
N

D

D
IG

6

D
IG

2

D
IG

7

D
IG

3

G
N

D

D
IG

5

V
+

D
IG

1

L
O

A
D

S
E

G
A

C
L

K

4MHz

+
5

V

8
.
8

.
8

.
8

.
8

.
8

.
8

.
8

.

P
IC

1
6
F
8
7
7
A

R
A

0
/A

N
0

R
A

2
/A

N
2

/V
re

f-

R
A

3
/A

N
3

/V
re

f+

R
A

4
/T

O
C

K
I

R
A

5
/A

N
4

R
E

0
/R

D
/A

N
5

R
E

1
/W

R
/A

N
6

R
E

2
/C

S
/A

N
7

V
d

d

V
s
s

O
S

C
1

O
S

C
2

R
C

O
/T

1
O

S
O

R
C

1
/T

1
O

S
I

R
C

3

R
D

0
/P

S
P

0

R
D

1
/P

S
P

1

M
C

L
R

/V
p

p
/T

H
V

R
C

2
/C

C
P

1

R
A

1
/A

N
1

R
B

7
/P

G
D

R
B

6
/P

G
C

R
B

5

R
B

4

R
B

3
/P

G
M

R
B

2

R
B

1

R
B

0
/I

N
T

V
d

d

V
s
s

R
D

6
/P

S
P

6

R
D

7
/P

S
P

7

R
D

5
/P

S
P

5

R
D

4
/P

S
P

4

R
C

7
/R

X
/D

T

R
C

6
/T

X
/C

K

R
C

5

R
C

4

R
D

3
/P

S
P

3

R
D

2
/P

S
P

2

+
5

V

8g

a

b

c

d

f
g

d
p

e

f
K

a
b c

d
p

K
d

e

Reset

10K

1
0
K

USART hardware module is available with a number of PICmicros. mikroC
USART Library provides comfortable work with the Asynchronous (full duplex)
mode.You can easily communicate with other devices via RS232 protocol (for
example with PC, see the figure at the end of the topic – RS232 HW connection).
You need a PIC MCU with hardware integrated USART, for example PIC16F877.
Then, simply use the functions listed below.

Note: USART library functions support module on PORTB, PORTC, or PORTG,
and will not work with modules on other ports. Examples for PICmicros with
module on other ports can be found in “Examples” in mikroC installation folder.

Usart_Init
Usart_Data_Ready
Usart_Read
Usart_Write

Note: Certain PICmicros with two USART modules, such as P18F8520, require
you to specify the module you want to use. Simply append the number 1 or 2 to a
function name. For example, Usart_Write2();

MikroElektronika: Development tools - Books - Compilers 271
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

USART Library

Library Routines

Prototype void Usart_Init(const long baud_rate);

Description Initializes hardware USART module with the desired baud rate. Refer to the device data
sheet for baud rates allowed for specific Fosc. If you specify the unsupported baud rate,
compiler will report an error.

Usart_Init needs to be called before using other functions from USART Library.

Requires You need PIC MCU with hardware USART.

Example Usart_Init(2400); // Establish communication at 2400 bps

Usart_Init

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

272 MikroElektronika: Development tools - Books - Compilers

page

Prototype char Usart_Data_Ready(void);

Returns Function returns 1 if data is ready or 0 if there is no data.

Description Use the function to test if data is ready for transmission.

Requires USART HW module must be initialized and communication established before using
this function. See Usart_Init.

Example int receive;
...
// If data is ready, read it:
if (Usart_Data_Ready()) receive = Usart_Read;

Usart_Data_Ready

Prototype char Usart_Read(void);

Returns Returns the received byte. If byte is not received, returns 0.

Description Function receives a byte via USART. Use the function Usart_Data_Ready to test if
data is ready first.

Requires USART HW module must be initialized and communication established before using
this function. See Usart_Init.

Example int receive;
...
// If data is ready, read it:
if (Usart_Data_Ready()) receive = Usart_Read;

Usart_Read

The example demonstrates simple data exchange via USART. When PIC MCU
receives data, it immediately sends the same data back. If PIC is connected to the
PC (see the figure below), you can test the example from mikroC terminal for
RS232 communication, menu choice Tools > Terminal.

MikroElektronika: Development tools - Books - Compilers 273
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype char Usart_Write(char data);

Description Function transmits a byte (data) via USART.

Requires USART HW module must be initialized and communication established before using
this function. See Usart_Init.

Example int chunk;
...
Usart_Write(chunk); /* send data chunk via USART */

Usart_Write

Library Example

unsigned short i;

void main() {

// Initialize USART module (8 bit, 2400 baud rate, no parity bit..)
Usart_Init(2400);

do {
if (Usart_Data_Ready()) { // If data is received

i = Usart_Read(); // Read the received data
Usart_Write(i); // Send data via USART

}
} while (1);

}//~!

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

274 MikroElektronika: Development tools - Books - Compilers

page

SUB-D 9-pin connector

+

+

+

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

serial cable

(1 to 1)

Receive data (Rx)

Send data (Tx)

+

MAX232

C1+

V+

C1-

C2+

C2-

V-

T2out

R2in R2out

T2in

T1in

R1out

R1in

T1out

GN

D

Vcc

+5V

4
.7

u
F

4.7uF

4
.7

u
F

4
.7

u
F

4MHz

+5V

+5V

PIC16F877A

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI

RA5/AN4

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1

OSC2

RCO/T1OSO

RC1/T1OSI

RC3

RD0/PSP0

RD1/PSP1

MCLR/Vpp/THV

RC2/CCP1

RA1/AN1

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD6/PSP6

RD7/PSP7

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5

RC4

RD3/PSP3

RD2/PSP2

1
0

K

R
e

s
e

t

Hardware Connection

Universal Serial Bus (USB) provides a serial bus standard for connecting a wide
variety of devices, including computers, cell phones, game consoles, PDAs, etc.

mikroC includes a library for working with human interface devices via Universal
Serial Bus. A human interface device or HID is a type of computer device that
interacts directly with and takes input from humans, such as the keyboard, mouse,
graphics tablet, and the like.

Hid_Enable
Hid_Read
Hid_Write
Hid_Disable

MikroElektronika: Development tools - Books - Compilers 275
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

USB HID Library

Library Routines

Prototype void Hid_Enable(unsigned *readbuff, unsigned *writebuff);

Description Enables USB HID communication. Parameters readbuff and writebuff are the Read
Buffer and the Write Buffer, respectively, which are used for HID communication.

This function needs to be called before using other routines of USB HID Library.

Example Hid_Enable(&rd, &wr);

Hid_Enable

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

276 MikroElektronika: Development tools - Books - Compilers

page

Prototype unsigned short Hid_Read(void);

Returns Number of characters in Read Buffer received from Host.

Description Receives message from host and stores it in the Read Buffer. Function returns the num-
ber of characters received in Read Buffer.

Requires USB HID needs to be enabled before using this function. See Hid_Enable.

Example get = Hid_Read();

Hid_Read

Prototype void Hid_Write(unsigned *writebuff, unsigned short len);

Description Function sends data from wrbuff to host. Write Buffer is the same parameter as used in
initialization. Parameter len should specify a length of the data to be transmitted.

Requires USB HID needs to be enabled before using this function. See Hid_Enable.

Example Hid_Write(&wr, len);

Hid_Write

Prototype void Hid_Disable(void);

Description Disables USB HID communication.

Requires USB HID needs to be enabled before using this function. See Hid_Enable.

Example Hid_Disable();

Hid_Disable

MikroElektronika: Development tools - Books - Compilers 277
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Library Example

The following example continually sends sequence of numbers 0..255 to the PC via Universal
Serial Bus.

unsigned short m, k;
unsigned short userRD_buffer[64];
unsigned short userWR_buffer[64];

void interrupt() {
asm CALL _Hid_InterruptProc
asm nop

}//~

void Init_Main() {
// Disable all interrupts
// Disable GIE, PEIE, TMR0IE, INT0IE,RBIE
INTCON = 0;
INTCON2 = 0xF5;
INTCON3 = 0xC0;
// Disable Priority Levels on interrupts
RCON.IPEN = 0;
PIE1 = 0; PIE2 = 0; PIR1 = 0; PIR2 = 0;

// Configure all ports with analog function as digital
ADCON1 |= 0x0F;

// Ports Configuration
TRISA = 0; TRISB = 0; TRISC = 0xFF; TRISD = 0xFF; TRISE = 0x07;
LATA = 0; LATB = 0; LATC = 0; LATD = 0; LATE = 0;

// Clear user RAM
// Banks [00 .. 07] (8 x 256 = 2048 Bytes)
asm {

LFSR FSR0, 0x000
MOVLW 0x08
CLRF POSTINC0, 0
CPFSEQ FSR0H, 0
BRA $ - 2

}

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

278 MikroElektronika: Development tools - Books - Compilers

page

// Timer 0
T0CON = 0x07;
TMR0H = (65536-156) >> 8;
TMR0L = (65536-156) & 0xFF;
INTCON.T0IE = 1; // Enable T0IE
T0CON.TMR0ON = 1;

}//~

/** Main Program Routine **/

void main() {
Init_Main();
Hid_Enable(&userRD_buffer, &userWR_buffer);

do {
for (k = 0; k < 255; k++) {

// Prepare send buffer
userWR_buffer[0] = k;

// Send the number via USB
Hid_Write(&userWR_buffer, 1);

}
} while (1);

Hid_Disable();
}//~!

MikroElektronika: Development tools - Books - Compilers 279
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

HW Connection

4MHz

+5V

+5V

PIC18F4550

RA0/AN0

RA2/AN2/Vref-

RA3/AN3/Vref+

RA4/TOCKI /
C1OUT/RCV

RA5/AN4/SS/
HLVDIN/C2OUT

RE0/AN5/CK1SPP

RE1/AN6/CK2SPP

RE2/AN7/OESPP

Vdd

Vss

OSC1/CLKI

OSC2/CLKO/RA6

RC0/T1OSO/T13CKI

RC1/T1OSI/CCP2/UOE

Vusb

RD0/SPP0

RD1/SPP1

MCLR/Vpp/RE3

RC2/CCP1/P1A

RA1/AN1

RB7/KBI3/PGD

RB6/KBI2/PGC

RB5/KBI1/PGM

RB4/AN11/
KBI0/CSSPP

RB3/AN9/CCP2/VPO

RB2/AN8/INT2/VMO

RB1/AN10/INT1/
SCK/SCL

RB0/AN12/INT0/
FLT0/SDI/SDA

Vdd

Vss

RD6/SPP6/P1C

RD7/SPP7/P1D

RD5/SPP5/P1B

RD4/SPP4

RC7/RX/DT/SDO

RC6/TX/CK

RC5/D+/VP

RC4/D-/VM

RD3/SPP3

RD2/SPP2

1
0
K

R
e
s
e
t

GND

Vcc

D-

D+

CN4

USB B

+5V

1
0

0
n

F

1
0

0
n

F

Util library contains miscellaneous routines useful for project development.

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

280 MikroElektronika: Development tools - Books - Compilers

page

Util Library

Prototype char Button(char *port, char pin, char time, char active_state);

Returns Returns 0 or 255.

Description Function eliminates the influence of contact flickering upon pressing a button (debounc-
ing).

Parameters port and pin specify location of the button; parameter time specifies the
minimum time pin has to be in active state in order to return TRUE; parameter
active_state can be either 0 or 1, and it determines if button is active upon logical
zero or logical one.

Example Example reads RB0, to which the button is connected; on transition from 1 to 0 (release
of button), PORTD is inverted:

do {
if (Button(&PORTB, 0, 1, 1)) oldstate = 1;
if (oldstate && Button(&PORTB, 0, 1, 0)) {

PORTD = ~PORTD;
oldstate = 0;

}
} while(1);

Button

mikroC provides a set of standard ANSI C library functions for testing and map-
ping characters.

Note: Not all of the standard functions have been included. Functions have been
implemented according to the ANSI C standard, but certain functions have been
modified in order to facilitate PIC programming.

isalnum
isalpha
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
toupper
tolower

MikroElektronika: Development tools - Books - Compilers 281
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

ANSI C Ctype Library

Library Routines

Prototype char isalnum(char character);

Description Function returns 1 if the character is alphanumeric (A-Z, a-z, 0-9), otherwise returns
zero.

isalnum

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

282 MikroElektronika: Development tools - Books - Compilers

page

Prototype char iscntrl(char character);

Description Function returns 1 if the character is a control character or delete (decimal 0-31 and
127), otherwise returns zero.

iscntrl

Prototype char isdigit(char character);

Description Function returns 1 if the character is a digit (0-9), otherwise returns zero.

isdigit

Prototype char isgraph(char character);

Description Function returns 1 if the character is a printable character, excluding the space (deci-
mal 32), otherwise returns zero.

isgraph

Prototype char isalpha(char character);

Description Function returns 1 if the character is alphabetic (A-Z, a-z), otherwise returns zero.

isalpha

MikroElektronika: Development tools - Books - Compilers 283
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype char isprint(char character);

Description Function returns 1 if the character is printable (decimal 32-126), otherwise returns
zero.

isprint

Prototype char ispunct(char character);

Description Function returns 1 if the character is punctuation (decimal 32-47, 58-63, 91-96, 123-
126), otherwise returns zero.

ispunct

Prototype char isspace(char character);

Description Function returns 1 if the character is white space (space, CR, HT, VT, NL, FF), other-
wise returns zero.

isspace

Prototype char islower(char character);

Description Function returns 1 if the character is a lowercase letter (a-z), otherwise returns zero.

islower

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

284 MikroElektronika: Development tools - Books - Compilers

page

Prototype char isxdigit(char character);

Description Function returns 1 if the character is a hex digit (0-9, A-F, a-f), otherwise returns
zero.

isxdigit

Prototype char toupper(int character);

Description If the character is a lowercase letter (a-z), function returns an uppercase letter.
Otherwise, function returns an unchanged input parameter.

toupper

Prototype char tolower(int character);

Description If the character is an uppercase letter (A-Z), function returns a lowercase letter.
Otherwise, function returns an unchanged input parameter.

tolower

Prototype char isupper(char character);

Description Function returns 1 if the character is an uppercase letter (A-Z), otherwise returns 0.

isupper

mikroC provides a set of standard ANSI C library functions for floating point
math handling.

Note: Functions have been implemented according to the ANSI C standard, but
certain functions have been modified in order to facilitate PIC programming.

acos
asin
atan
atan2
ceil
cos
cosh
exp
fabs
floor
frexp
ldexp
log
log10
modf
pow
sin
sinh
sqrt
tan
tanh

MikroElektronika: Development tools - Books - Compilers 285
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

ANSI C Math Library

Library Routines

Prototype double acos(double x);

Description Function returns the arc cosine of parameter x; that is, the value whose cosine is x.
Input parameter x must be between -1 and 1 (inclusive). The return value is in radians,
between 0 and pi (inclusive).

acos

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

286 MikroElektronika: Development tools - Books - Compilers

page

Prototype double asin(double x);

Description Function returns the arc sine of parameter x; that is, the value whose sine is x. Input
parameter x must be between -1 and 1 (inclusive). The return value is in radians,
between -pi/2 and pi/2 (inclusive).

asin

Prototype double atan(double x);

Description Function computes the arc tangent of parameter x; that is, the value whose tangent is x.
The return value is in radians, between -pi/2 and pi/2 (inclusive).

atan

Prototype double atan2(double x);

Description This is the two argument arc tangent function. It is similar to computing the arc tangent
of y/x, except that the signs of both arguments are used to determine the quadrant of
the result, and x is permitted to be zero. The return value is in radians, between -pi and
pi (inclusive).

atan2

Prototype double ceil(double num);

Description Function returns value of parameter num rounded up to the next whole number.

ceil

MikroElektronika: Development tools - Books - Compilers 287
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype double cos(double x);

Description Function returns the cosine of x in radians. The return value is from -1 to 1.

cos

Prototype double cosh(double x);

Description Function returns the hyperbolic cosine of x, defined mathematically as (ex+e-x)/2. If
the value of x is too large (if overflow occurs), the function fails.

cosh

Prototype double exp(double x);

Description Function returns the value of e — the base of natural logarithms — raised to the power
of x (i.e. ex).

exp

Prototype double fabs(double num);

Description Function returns the absolute (i.e. positive) value of num.

fabs

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

288 MikroElektronika: Development tools - Books - Compilers

page

Prototype double floor(double num);

Description Function returns value of parameter num rounded down to the nearest integer.

floor

Prototype double frexp(double num, int *exp);

Description Function splits a floating-point value num into a normalized fraction and an integral
power of 2. Return value is the normalized fraction, and the integer exp is stored in the
object pointed to by exp.

frexp

Prototype double ldexp(double num, int exp);

Description Function returns the result of multiplying the floating-point number num by 2 raised to
the power exp (i.e. returns x*2exp).

ldexp

Prototype double log(double x);

Description Function returns the natural logarithm of x (i.e. loge(x)).

log

MikroElektronika: Development tools - Books - Compilers 289
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype double log10(double x);

Description Function returns the base-10 logarithm of x (i.e. log10(x)).

log10

Prototype double modf(double num, double *whole);

Description Function returns the signed fractional component of num, placing its whole number
component into the variable pointed to by whole.

modf

Prototype double pow(double x, double y);

Description Function returns the value of x raised to the power of y (i.e. xy). If the x is negative,
function will automatically cast the y into unsigned long.

pow

Prototype double sin(double x);

Description Function returns the sine of x in radians. The return value is from -1 to 1.

sin

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

290 MikroElektronika: Development tools - Books - Compilers

page

Prototype double sinh(double x);

Description Function returns the hyperbolic sine of x, defined mathematically as (ex-e-x)/2. If the
value of x is too large (if overflow occurs), the function fails.

sinh

Prototype double sqrt(double num);

Description Function returns the non negative square root of num.

sqrt

Prototype double tan(double x);

Description Function returns the tangent of x in radians. The return value spans the allowed range of
floating point in mikroC.

tan

Prototype double tanh(double x);

Description Function returns the hyperbolic tangent of x, defined mathematically as
sinh(x)/cosh(x).

tan

mikroC provides a set of standard ANSI C library functions of general utility.

Note: Not all of the standard functions have been included. Functions have been
implemented according to the ANSI C standard, but certain functions have been
modified in order to facilitate PIC programming.

abs
atof
atoi
atol
div
ldiv
labs
max
min
rand
srand
xtoi

MikroElektronika: Development tools - Books - Compilers 291
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

ANSI C Stdlib Library

Library Routines

Prototype int abs(int num);

Description Function returns the absolute (i.e. positive) value of num.

abs

Prototype double atof(char *s)

Description Function converts the input string s into a double precision value, and returns the value.
Input string s should conform to the floating point literal format, with an optional white-
space at the beginning. The string will be processed one character at a time, until the
function reaches a character which it doesn’t recognize (this includes a null character).

atof

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

292 MikroElektronika: Development tools - Books - Compilers

page

Prototype int atoi(char *s);

Description Function converts the input string s into an integer value, and returns the value. Input
string s should consist exclusively of decimal digits, with an optional whitespace and a
sign at the beginning. The string will be processed one character at a time, until the
function reaches a character which it doesn’t recognize (this includes a null character).

atoi

Prototype long atol(char *s)

Description Function converts the input string s into a long integer value, and returns the value.
Input string s should consist exclusively of decimal digits, with an optional whitespace
and a sign at the beginning. The string will be processed one character at a time, until
the function reaches a character which it doesn’t recognize (this includes a null charac-
ter).

atol

Prototype div_t div(int numer, int denom);

Description Function computes the result of the division of the numerator numer by the denominator
denom; function returns a structure of type div_t comprising quotient (quot) and
remainder (rem).

div

MikroElektronika: Development tools - Books - Compilers 293
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype ldiv_t ldiv(long numer, long denom);

Description Function is similar to the div function, except that the arguments and the result struc-
ture members all have type long.

Function computes the result of the division of the numerator numer by the denominator
denom; function returns a structure of type div_t comprising quotient (quot) and
remainder (rem).

ldiv

Prototype long labs(long num);

Description Function returns the absolute (i.e. positive) value of a long integer num.

labs

Prototype int max(int a, int b);

Description Function returns greater of the two integers, a and b.

max

Prototype int min(int a, int b);

Description Function returns lower of the two integers, a and b.

min

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

294 MikroElektronika: Development tools - Books - Compilers

page

Prototype int rand(void);

Description Function returns a sequence of pseudo-random numbers between 0 and 32767. Function
will always produce the same sequence of numbers unless srand() is called to seed the
starting point.

rand

Prototype void srand(unsigned seed);

Description Function uses the seed as a starting point for a new sequence of pseudo-random num-
bers to be returned by subsequent calls to rand(). No values are returned by this func-
tion.

srand

Prototype int xtoi(char *s);

Description Function converts the input string s consisting of hexadecimal digits into an integer
value. Input parametes s should consist exclusively of hexadecimal digits, with an
optional whitespace and a sign at the beginning. The string will be processed one char-
acter at a time, until the function reaches a character which it doesn’t recognize (this
includes a null character).

xtoi

mikroC provides a set of standard ANSI C library functions useful for manipulat-
ing strings and arrays of char.

Note: Not all of the standard functions have been included. Functions have been
implemented according to the ANSI C standard, but certain functions have been
modified in order to facilitate PIC programming.

memcmp
memcpy
memmove
memset
strcat
strchr
strcmp
strcpy
strlen
strncat
strncpy
strspn

MikroElektronika: Development tools - Books - Compilers 295
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

ANSI C String Library

Library Routines

Prototype int *memcmp(void *s1, void *s2, int n);

Description Function compares the first n characters of objects pointed to by s1 and s2, and returns
zero if the objects are equal, or returns a difference between the first differing characters
(in a left-to-right evaluation). Accordingly, the result is greater than zero if the object
pointed to by s1 is greater than the object pointed to by s2, and vice versa.

memcmp

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

296 MikroElektronika: Development tools - Books - Compilers

page

Prototype void *memcpy(void *s1, void *s2, int n);

Description Function copies n characters from the object pointed to by s2 into the object pointed to
by s1. Objects may not overlap. Function returns the value of s1.

memcmp

Prototype void *memmove(void *s1, void *s2, int n);

Description Function copies n characters from the object pointed to by s2 into the object pointed to
by s1. Unlike with memcpy(), memory areas s1 and s2 may overlap. Function returns
the value of s1.

memmove

Prototype void *memset(void *s, int c, int n)

Description Function copies the value of character c (converted to char) into each of the first n
characters of the object pointed by s. Function returns the value of s.

memset

Prototype char *strcat(char *s1, char *s2);

Description Function appends the string s2 to the string s1, overwriting the null character at the end
of s1. Then, a terminating null character is added to the result. Strings may not overlap,
and s1 must have enough space to store the result. Function returns a resulting string
s1.

strcat

MikroElektronika: Development tools - Books - Compilers 297
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype char *strchr(char *s, char c);

Description Function locates the first occurrence of character c in the string s. Function returns a
pointer to the c, or a null pointer if c does not occur in s. The terminating null character
is considered to be a part of the string.

strchr

Prototype char strcmp(char *s1, char *s2);

Description Function compares strings s1 and s2, and returns zero if the strings are equal, or returns
a difference between the first differing characters (in a left-to-right evaluation).
Accordingly, the result is greater than zero if s1 is greater than s2, and vice versa.

strcmp

Prototype char *strcpy(char *s1, char *s2);

Description Function copies the string s2 into the string s1. If successful, function returns s1. The
strings may not overlap.

strcpy

Prototype unsigned strlen(char *s);

Description Function returns the length of the string s (the terminating null character does not count
against string’s length).

strlen

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

298 MikroElektronika: Development tools - Books - Compilers

page

Prototype char *strncat(char *s1, char *s2, int n);

Description Function appends not more than n characters from the string s2 to s1. The initial char-
acter of s2 overwrites the null character at the end of s1. A terminating null character is
always appended to the result. Function returns s1.

strncat

Prototype char *strncpy(char *s1, char *s2, int n);

Description Function copies not more than n characters from string s2 to s1. The strings may not
overlap. If s2 is shorter than n characters, then s1 will be padded out with null charac-
ters to make up the difference. Function returns the resulting string s1.

strncpy

Prototype int strspn(char *s1, char *s2);

Description Function returns the length of the maximum initial segment of s1 which consists entire-
ly of characters from s2. The terminating null character character at the end of the string
is not compared.

strspn

mikroC Conversions Library provides routines for converting numerals to strings,
and routines for BCD/decimal conversions.

You can get text representation of numerical value by passing it to one of the fol-
lowing routines:

ByteToStr
ShortToStr
WordToStr
IntToStr
LongToStr
FloatToStr

Following functions convert decimal values to BCD (Binary Coded Decimal) and
vice versa:

Bcd2Dec
Dec2Bcd
Bcd2Dec16
Dec2Bcd16

MikroElektronika: Development tools - Books - Compilers 299
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Conversions Library

Library Routines

Prototype void ByteToStr(unsigned short number, char *output);

Description Function creates an output string out of a small unsigned number (numerical value
less than 0x100). Output string has fixed width of 3 characters; remaining positions on
the left (if any) are filled with blanks.

Example unsigned short t = 24;
char *txt;
//...
ByteToStr(t, txt); // txt is " 24" (one blank here)

ByteToStr

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

300 MikroElektronika: Development tools - Books - Compilers

page

Prototype void ShortToStr(short number, char *output);

Description Function creates an output string out of a small signed number (numerical value less
than 0x100). Output string has fixed width of 4 characters; remaining positions on the
left (if any) are filled with blanks.

Example short t = -24;
char *txt;
//...
ByteToStr(t, txt); // txt is " -24" (one blank here)

ShortToStr

Prototype void WordToStr(unsigned number, char *output);

Description Function creates an output string out of an unsigned number (numerical value of
unsigned type). Output string has fixed width of 5 characters; remaining positions on
the left (if any) are filled with blanks.

Example unsigned t = 437;
char *txt;
//...
WordToStr(t, txt); // txt is " 437" (two blanks here)

WordToStr

Prototype void IntToStr(int number, char *output);

Description Function creates an output string out of a signed number (numerical value of int
type). Output string has fixed width of 6 characters; remaining positions on the left (if
any) are filled with blanks.

Example int j = -4220;
char *txt;
//...
IntToStr(j, txt); // txt is " -4220" (one blank here)

IntToStr

MikroElektronika: Development tools - Books - Compilers 301
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Prototype unsigned short Bcd2Dec(unsigned short bcdnum);

Returns Returns converted decimal value.

Description Converts 8-bit BCD numeral bcdnum to its decimal equivalent.

Example unsigned short a;
...
a = Bcd2Dec(0x52); // equals 52

Bcd2Dec

Prototype void LongToStr(long number, char *output);

Description Function creates an output string out of a large signed number (numerical value of
long type). Output string has fixed width of 11 characters; remaining positions on the
left (if any) are filled with blanks.

Example long jj = -3700000;
char *txt;
//...
LongToStr(jj, txt); // txt is " -3700000" (three blanks here)

LongToStr

Prototype void FloatToStr(float number, char *output);

Description Function creates an output string out of a floating-point number. The output string
contains a normalized format of the number (mantissa between 0 and 1) with sign at the
first position. Mantissa has fixed format of six digits, 0.ddddd; i.e. there will always be
5 digits following the dot. The output string must be at least 13 characters long.

Example float ff = -374.2;
char *txt;
//...
FloatToStr(ff, txt); // txt is "-0.37420e3"

FloatToStr

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

302 MikroElektronika: Development tools - Books - Compilers

page

Prototype unsigned Dec2Bcd(unsigned decnum);

Returns Returns converted BCD value.

Description Converts 16-bit decimal value decnum to BCD.

Example unsigned a;
...
a = Dec2Bcd16(4660); // equals 1234

Dec2Bcd16

Prototype unsigned Bcd2Dec16(unsigned bcdnum);

Returns Returns converted decimal value.

Description Converts 16-bit BCD numeral bcdnum to its decimal equivalent.

Example unsigned a;
...
a = Bcd2Dec16(1234); // equals 4660

Bcd2Dec16

Prototype unsigned short Dec2Bcd(unsigned short decnum);

Returns Returns converted BCD value.

Description Converts 8-bit decimal value decnum to BCD.

Example unsigned short a;
...
a = Dec2Bcd(52); // equals 0x52

Dec2Bcd

mikroC implements fundamental trigonometry functions. These functions are
implemented as lookup tables, and return the result as integer, multiplied by 1000
and rounded up.

SinE3
CosE3

MikroElektronika: Development tools - Books - Compilers 303
page

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

Trigonometry Library

Library Routines

Prototype int SinE3(unsigned angle_deg);

Returns Function returns the sine of input parameter, multiplied by 1000 (1E3) and rounded up
to the nearest integer. The range of return values is from -1000 to 1000.

Description Function takes parameter angle_deg which represents angle in degrees, and returns its
sine multiplied by 1000 and rounded up to the nearest integer. The function is imple-
mented as a lookup table; maximum error obtained is ±1.

Example res = SinE3(45); // result is 707

SinE3

Prototype int CosE3(unsigned angle_deg);

Returns Function returns the cosine of input parameter, multiplied by 1000 (1E3) and rounded
up to the nearest integer. The range of return values is from -1000 to 1000.

Description Function takes parameter angle_deg which represents angle in degrees, and returns its
cosine multiplied by 1000 and rounded up to the nearest integer. The function is imple-
mented as a lookup table; maximum error obtained is ±1.

Example res = CosE3(196); // result is -193

CosE3

mikroC - C Compiler for Microchip PIC microcontrollers

mikroC
making it simple...

304 MikroElektronika: Development tools - Books - Compilers

page

If you are experiencing problems with any of our products or you just want addi-
tional information, please let us know.

Technical Support for compiler

If you are experiencing any trouble with mikroC, please do not hesitate to con-
tact us - it is in our mutual interest to solve these issues.

Discount for schools and universities

mikroElektronika offers a special discount for educational institutions. If you
would like to purchase mikroC for purely educational purposes, please contact
us.

Problems with transport or delivery

If you want to report a delay in delivery or any other problem concerning distri-
bution of our products, please use the link given below.

Would you like to become mikroElektronika's distributor?

We in mikroElektronika are looking forward to new partnerships. If you would
like to help us by becoming distributor of our products, please let us know.

Other

If you have any other question, comment or a business proposal, please contact
us:

mikroElektronika
Admirala Geprata 1B
11000 Belgrade
EUROPE

Phone: + 381 (11) 30 66 377, + 381 (11) 30 66 378
Fax: + 381 (11) 30 66 379
E-mail: office@mikroelektronika.co.yu
Website: www.mikroelektronika.co.yu

Contact us:

	Reader's Note
	Table of Contents
	Chapter 1: mikroC IDE
	Quick Overview
	Code Editor
	Code Explorer
	Debugger
	Error Window
	Statistics
	Integrated Tools
	Keyboard Shortcuts

	Chapter 2: Building Applications
	Projects
	Source Files
	Compilation
	Error Messages

	Chapter 3: mikroC Language Specifics
	PIC Specifics
	Types Efficiency
	Nested Calls Limitations
	PIC16 Specifics

	mikroC Specifics
	ANSI Standard Issues
	Predefined Globals and Constants
	Accessing Individual Bits
	Interrupts
	Linker Directives

	Lexical Elements
	Whitespace
	Comments

	Tokens
	Constants
	Integer Constants
	Floating Point Constants
	Character Constants
	String Constants
	Enumeration Constants
	Pointer Constants
	Constant Expressions

	Keywords
	Identifiers
	Punctuators

	Objects
	Scope and Visibility
	Name Spaces
	Duration

	Types
	Fundamental Types
	Arithmetic Types
	Enumerations
	Void Type

	Derived Types
	Arrays
	Pointers
	Pointer Arithmetic
	Structures
	Unions
	Bit Fields

	Types Conversions
	Standard Conversions
	Explicit Types Conversions (Typecasting)

	Declarations
	Introduction to Declarations
	Linkage
	Storage Classes
	Type Qualifiers
	typedef Specifier
	asm Declaration
	Initialization

	Functions
	Function Declaration
	Function Prototypes
	Function Definition
	Function Calls
	Argument Conversions

	Operators
	Operators Precedence and Associativity
	Arithmetic Operators
	Relational Operators
	Bitwise Operators
	Logical Operators
	Conditional Operator ? :
	Assignment Operators
	sizeof Operator

	Expressions
	Comma Expressions

	Statements
	Labeled Statements
	Expression Statements
	Selection Statements
	Iteration Statements
	Jump Statements
	Compound Statements (Blocks)

	Preprocessor
	Preprocessor Directives
	Macros
	Macros with Parameters
	Undefining Macros

	File Inclusion
	Preprocessor Operators
	Conditional Compilation

	Chapter 4: mikroC Libraries
	Built-in Routines
	Library Routines
	ADC Library
	CAN Library
	CAN Constants

	CANSPI Library
	Compact Flash Library
	EEPROM Library
	Ethernet Library
	Flash Memory Library
	I2C Library
	Keypad Library
	LCD Library (4-bit interface)
	LCD8 Library (8-bit interface)
	GLCD Library
	Manchester Code Library
	Multi Media Card Library
	OneWire Library
	PS/2 Library
	PWM Library
	RS-485 Library
	Secure Digital Library
	Software I2C Library
	Software SPI Library
	Software UART Library
	Sound Library
	SPI Library
	USART Library
	USB HID Library
	Util Library
	ANSI C Ctype Library
	ANSI C Math Library
	ANSI C Stdlib Library
	ANSI C String Library
	Conversions Library
	Trigonometry Library

