
DISK OPERATING SYSTEM
DOS.

User's Guide

Version 2 (upgraded to 2.3)

March, 1977

Model Code No. 50216

DATAPOINT CORPORATION

The leader in dispersed data processing ™

DISK OPERATING SYSTEM
DOS.

User's Guide

Version 2 (Upgraded to 2.3)

March, 1977

Model Code No. 50216

PREFACE

The purpose of this User's Guide is to provide the user of a

Datapoint DOS that information required to generate a system, make

effective use of the available commands, and to make user-written

programs compatible with the DOS.

This manual applies to all Version 2.3 and above "dot-series"

Disk Operating Systems, such as DOS.A, DOS.B, etc. This manual

replaces the previous Version 2 User's Guide and Version 2

System's Guide.

i

TABLE OF CONTENTS

1. INTRODUCTION
1.1 Hardware Support Required
1.2 Software Configurations Available
1.3 Program Compatibility

2. OPERATOR COMMANDS

3. EQUIPMENT CARE
3.1 Environment
3.2 Processor
3.3 Disks and Disk Drives
3.4 Other Peripherals

4. DISK FILES
4.1 File Names
4.2 File Creation
4.3 File Deletion
4.4 File Protection

5. SYSTEM GENERATION
5.1 Initial Generation

5.1.1 Formatting
5.1.2 Cassette System Generation

5.2 Partial Generation
5.3 UPGRADE/X
5.4 Scratch Disk Generation
5.5 Generation Cassettes and Emergencies

6. GENERAL COMMAND CHARACTERISTICS
6.1 General Command Format
6.2 Signon Messages
6.3 Common Error Messages

7. APP COMMAND
7.1 Purpose
7.2 Use

8. AUTO COMMAND

9. AUTOKEY COMMAND
9.1 Introduction to AUTOKEY
9.2 The Hardware Auto-Restart Facility
9.3 Automatic Program Execution Using AUTO

ii

page
1-1
1-1
1-2
1-2

2-1

3-1
3-1
3-2
3-2
3-2

4-1
4-1
4-2
4-3
4-3

5-1
5-1
5-1
5-2
5-3
5-4
5-5
5-5

6-1
6-1
6-1
6-2

7-1
7-1
7-1

8-1

9-1
9-1
9-1
9-2

9.4 Auto-Restart Facilities Using AUTOKEY
9.5 A Simple Example
9.6 A More Complicated Example
9.7 Special Considerations
9.8 AUTOKEY and DATASHARE

10. BACKUP COMMAND
10.1 Purpose
10.2 Use
10.3 Mirror Image Copy
10.4 Reorganizing Files

10.4.1 Copying DOS to Output Disk
10.4.2 Deleting Named Files
10.4.3 Copying Named Files

10.5 Use of KEYBOARD and DISPLAY Keys
10.6 Error Messages
10.7 Reorganizing Files for Faster Processing
10.8 BACKUP with CHAIN
10.9 Clicks during Copying
10.10 Special Considerations for BACKUP

11. BLOKEDIT COMMAND
11 . 1 Purpose
11.2 File Descriptions

11.2.1 Command Statement Lines
11.2.2 Source File
11.2.3 New File

11.3 Using BLOKEDIT
11.4 Messages

11.4.1 Informative Messages
11.4.2 Fatal Errors
11.4.3 Selectively Fatal Errors

12. BUILD COMMAND
12.1 Purpose
12.2 Use
12.3 A Simple Example

13. CAT COMMAND
13. 1 Purpose
13.2 Use

14. CHAIN COMMAND
14.1 Introduction
14.2 Tag Definition
14.3 Compilation Phase Directives

14.3.1 IF Directive
14.3.2 ELSE/XIF Directives

iii

9-2
9-3
9-4
9-7
9-7

10-1
10-1
10-1
10-2
10-3
10-3
10-3
10-4
10-4
10-4
10-5
10-6
10-6
10-6

11-1
11-1
11-1
11-2
11-3
11-3
11-4
11-4
11-6
11-6
11-7

12-1
12-1
12-1
12-2

13-1
13-1
13-1

14-1
14-1
14-2
14-3
14-3
14-4

14.4 Tag Value Substitution
14;5 BEGIN/END Directives
14.6 ABORT Directives
14.7 Comments
14.8 Complex CHAIN Example
14.9 Resuming An Aborted CHAIN
14.10 Notes On Usage of CHAIN

15. CHANGE COMMAND

16. COpy COMMAND
16.1 Purpose
16.2 Use

17. DOSGEN COMMAND
17 . 1 Purpose
17 . 2 Use
17.3 Special Considerations

18. DUMP COMMAND
18.1 Purpose
18.2 Use
18.3 Informational Messages Provided
18.4 Level One Commands To DUMP
18.5 Level Two Commands To DUMP
18.6 Level Three Commands To DUMP
18.7 Level Four Commands To DUMP
18.8 Level Five Commands to DUMP
18.9 Error Messages

19. THE DUMP93XO COMMAND
19.1 Use
19.2 The primary command handler
19.3 Using DUMP93XO with a Local Printer
19.4 Screen Display format
19.5 The Screen Dump Command Handler
19.6 Cassette Operations
19.7 Drive Numbers
19.8 Error Messages

20. EDIT COMMAND
20.1 Introduction
20.2 Operation

20.2.1 DOS Initialization
20.2.2 Files
20.2.3 Parameter List

20.2.3.1 Margin Bell
20.2.3.2 Tab Key Character

iv

14-5
14-6
14-7
14-8

14-10
14-13
14-14

15-1

16-1
16-1
16-1

17 -1
17-1
17 -1
17-2

18 -1
18-1
18 -1
18-2
18-4
18-4
18-5
18-6
18-6
18-7

19 -1
19-1
19-3
19-3
19-5
19-6
19-8

19-10
19-10

20-1
20-1
20-1
'20-1
20-1
20-2
20-2
20-3

20.2.3.3 Mode
20.2.3.4 Update
20.2.3.5 Key-click

20.2.4 Examples
20.2.5 Data Entry
20.2.6 Data Retrieval
20.2.7 EDITOR Command Format

20.3 Basic EDITOR Commands
20.4 Modificatiori Commands

20.4.1 DELETE Command
20.4.2 MODIFY Command

20.4.2.1 Line Modification
20.4.2.2 Field Modification

20.5 File Search Commands
20.6 Miscellaneous Commands
20.7 Recovery Procedures

20.7.1 Bypassing Errors or End of File
20.7.2 File Recovery

20.8 Glossary
20.9 Command List

21. ENCODE/DECODE COMMANDS
21 . 1 Purpose
21.2 Use

22. FILES COMMAND
22.1 Command Description
22.2 Default Messages
22.3 File Descriptions
22.4 Error Messages

23. FIX COMMAND
23.1 Purpose
23.2 Operation
23.3 Commands
23.4 Error Messages

24. FREE COMMAND
24.1 Purpose
24.2 Use

25. INDEX COMMAND
25.1 Introductionn
25.2 System Requirements
25.3 Operation

25.3.1 Parameters
25.4 Choosing A Record Key
25.5 Preprocessing the File

v

20-3
20-3
20-4
20-4
20-5
20-6
20-6
20-7
20-9
20-9

20-10
20-10
20-11
20-13
20-14
20-15
20-16
20-16
20-16
20-20

21-1
21-1
21-1

22-1
22-1
22-2
22-3
22-4

23-1
23-1
23-1
23-1
23-3

24-1
24-1
24-1

25-1
25-1
25-1
25-2
25-2
25-3
25-4

25.5.1 Invoking Reformat
25.5.2 Considerations for Unattended Indexing

25.6 INDEX Messages .
25.7 lSI File Formats
25.8 Examples of the Use of INDEX

26. THE INIT9370 COMMAND
26.1 Use
26.2 Error messages

27. KILL COMMAND

28. LIST COMMAND
28. 1 Purpose
28.2 Parameters
28.3 INPUT File Specification
28.4 Starting Point
28.5 OUTPUT File Specification
28.6 Output Device
28.7 Output Format
28.8 Format Control
28.9 Operator Controls
28.10 Error Conditions

29. MANUAL COMMAND

30. MIN COMMAND
30. 1 Purpos e
30.2 Tape Formats

30.2.1 Single File Tapes
30.2.2 Double File Tapes
30.2.3 Multiple Numbered-File Tapes
30.2.4 Multiple Named-File Tapes

30.3 Parameters
30.3.1 Single File Tapes
30.3.2 Double File Tapes
30.3.3 Multiple Numbered-File Tapes
30.3.4 CTOS Tapes
30.3.5 MOUT With Directory Tapes
30.3.6 Options

30.4 Errors

31. MOUT COMMAND
31.1 Purpose
31.2 Parameters
31 .3 Options
31.4 File Names
31.5 Writing

vi

25-4
25-4
25-5
25-7
25-9

26-1
26-1
26-2

27 -1

28-1
28-1
28-1
28-2
28-2
28-3
28-3
28-4
28-4
28-5
28-5

29-1

30-1
30-1
30-1
30-1
30-1
30-2
30-2
30-2
30-2
30-4
30-4
30-5
30-5
30-6
30-8

31-1
31-1
31-1
31-2
31-5
31-7

31.6 Verifying

32. NAME COMMAND

33. PUTIPL COMMAND

34. PUTVOLID COMMAND

35. REFORMAT COMMAND
35.1 Introduction
35.2 Operation
35.3 Output File Formats
35.4 Reasons for Reformatting
35.5 Reformat Messages
35.6 Text File Formats

36. THE REPAIR COMMAND
36.1 Applications of REPAIR
36.2 When to use REPAIR
36.3 Understanding REPAIR

36.3.1 Preliminary reading
36.4 Minimal Operator Interface

36.4.1 Executing REPAIR
36.4.2 Sign-on' and drive, number specification
36.4.3 Cylinder Lockout
36.4.4 Directory check monitor
36.4.5 Directory Er~ors
36.4.6 Retrieval Information Blocks check
36.4.7 Retrieval Information Blocks Erro~s
36.4.8 End of RIB check
36.4.9 Cluster allocation phase, Pass 1
36.4.10 Cluster allocation phase, Pass 2
36.4.11 Cluster allocation phase, pass 3
36.4.12 Cluster Allocation Conflicts
36.4.13 System Table Replacement
36.4.14 Termination of REPAIR

36.5 Medial Operator Interface
36.5.1 Executing REPAIR
36.5.2 Sign-on and drive number specification
36.5.3 Cylinder lockout
36.5.4 Directory check monitor
36.5.5 Directory er~ors

36.5;5.1 Delete e~rors
36.5.5.1.1 One ent~y deleted
36.5.5.1.2 Delete Incomplete

36.5.5.2 RIB Address Errors
36.5.5.2.1 RIB Address Invalid
36.5.5.2.2 RIB Addresses not equal

vii

31-8

32-1

33-1

34-1

35-1
35-1
35-1
35-3
35-3
35-4
35-7

36-1
36-2
36-2
36-3
36-4
36-4
36-4
36-5
36-5
36-6
36-7
36-7
36-8
36-8
36-9
36-9

36-10
36-10
36-11
36-12
36-12
36-13
36-14
36-14
36-14
36-15
36-16
36-17
36-19
36-20
36-20
36-22

36.5.5.3 File protection not same
36.5.5.4 Name-Extension not equal

36.5.6 Retrieval Information Blocks check
36.5.7 Retrieval Information Blocks errors

36.5.7.1 A simple case
36.5.7.2 A Complex Case

36.5.8 End of RIB check
36.5.9 Cluster allocation phase, Pass 1
36.5.10 Cluster allocation phase, Pass 2
36.5.11 Cluster allocation phase, Pass 3
36.5.12 Cluster allocation conflicts

36.5.12.1 Cluster allocation phase, Pass 3 Messages
36.5.12.1.1 Left side of screen
36.5.12.1.2 Right side of screen

36.5.13 System table replacement
36.5.14 Termination of REPAIR

36.6 Cylinder Lockout with REPAIR
36.7 CAT errors and directory read/write errors

36.7.1 Cluster allocation table read errors
36.7.2 Cluster Allocation Table is destroyed
36.7.3 Cluster Allocation Table Copies Do Not Match
36.7.4 Directory Read Errors

37. REWIND COMMAND

38. SAPP COMMAND

39. SORT COMMAND
39.1 Introduction
39.2 General Information
39.3 Fundamental SORT Concepts

39.3.1 File Formats
39.3.2 The Key Options
39.3.3 How to Sort a File

39.4 The Other Options
39.4.1 Generalized Command Statement Format
39.4.2 Keys-overlapping and in Backwards Order
39.4.3 Collating Sequence File
39.4.4 Ascending and Descending sequences
39.4.5 Input/output File Format Options
39.4.6 Limited output format option
39.4.7 TAG file output format option
39.4.8 KEYTAG File Output Format Option
39.4.9 HARDCOPY output option
39.4.10 Primary/Secondary sorting considerations
39.4.11 Key File Drive Number
39.4.12 Disk space requirements
39.4.13 LINK into SORT from programs

viii

36-23
36-24
36-25
36-26
36-30
36-31
36-32
36-32
36-32
36-32
36-33
36-34
36-34
36-36
36-38
36-39
36-39
36-43
36-44
36-46
36-48
36-49

37-1

38-1

39-1
39-1
39-1
39-2
39-2
39-3
39-4
39-4
39-4

39-10
39-10
39-12
39-12
39-12
39-16
39-19
39-19
39-20
39-21
39-21
39-22

39.5 The use of CHAIN with SORT
39.5.1 How to Set up a chain file for SORT
39.5.2 Naming a repetitive SORT procedure
39.5.3 Using CHAIN to cause a merge

39.6 SORT Execution-Time Messages

40. SUR COMMAND
40.1 Purpose
40.2 About Subdirectories

40.2.1 Creation of Subdirectories
40.2.2 Deletion of Subdirectories
40.2.3 Being "in a Subdirectory"
40.2.4 Scope of a File Name
40.2.5 About Subdirectory SYSTEM

39-26
39-26
39-27
39-27
39-28

40.2.6 Files vs. the User Being "in a Subdirectory"
40.2.7 Getting a File into a Subdirectory

40-1
40-1
40-1
40-2
40-2
40-3
40-3
40-4
40-4
40-5
40-5
40-5
40-5
40-6
40-6
40-6

40.3 Usage
40.3.1 Establishing a "Current Subdirectory"
40.3.2 Creating a Subdirectory
40.3.3 Deleting a Subdirectory
40.3.4 Renaming a Subdirectory
40.3.5 Displaying Subdirectories

41. UBOOT COMMAND

42. UTILITY/SYS

43. SYSTEM DESCRIPTION
43.1 System Philosophy
43.2 System Structure

44. SYSTEM STRUCTURE
44.1 Disk Structure

44.1.1 Introduction

41-1

42-1

43-1
43-1
43-1

44.1.2 Disk Space Management: CAT and Lockout CAT
44.1.3 Files: HDI, Directory Mapping Bytes, Directory,
44.1.4 Sector Identification

44-1
44-1
44-1
44-2

R44-3
44-4
44-5
44-5
44-5

44.1.5 Addressing Byte Structures
44.1.5.1 PDA - Physical Disk Address
44.1.5.2 RIB Address/Protection
44.1.5.3 Segment Descriptor - used in RIB to define a

segment.
44.1.5.4 Physical File Numer - used to access

and HDI
44.2 Disk Data Formats
44.3 Memory Mapping
44.4 Memory Tables

44.4.1 Entry Point Tables

ix

44-6
directory

44-6
44-7
44-8
44-9
44-9

~

44.4.2 Logical File Table
44.5 Disk Overlays
44.6 The Command Interpreter

45. INTERRUPT HANDLING
45.1 Interrupt Mechanism
45.2 Interrupt Scheduler
45.3 Active Processes
45.4 Timing Considerations
45.5 DOS Interrupt Routines

45.5.1 SETI$
45.5.2 CLRI$
45.5.3 CS$
45.5.4 TP$

45.6 Programming Considerations
45.6.1 Background Code
45.6.2 Foreground Code

46. SYSTEM ROUTINES
46.1 Parameterization
46.2 Exit Conditions
46.3 Error Handling
46.4 Foreground Routines

46.4.1 CS$ - Change Process State
46.4.2 TP$ - Terminate Process
46.4.3 SETI$ - Initiate Foreground Process
46.4.4 CLRI$ - Terminate Foreground Process

46.5 Loader Routines
46.5.1 BOOT$ - Reload the Operating System
46.5.2 RUNX$ - Load and Run a File by Number
46.5.3 LOADX$ - Load a File by Number
46.5.4 INCHL - Increment the Hand L Registers
46.5.5 DECHL - Decrement the Hand L Registers
46.5.6 GETNCH - Get the Next Disk Buffer Byte
46.5.7 DR$ - Read a Sector into the Disk Buffer
46.5.8 DW$ - Write a Sector from the Disk Buffer
46.5.9 DSKWAT - Wait for Disk Ready

46.6 File Handling Routines
46.6.1 PREP$ - Open or Create a File
46.6.2 OPEN$ - Open an Existing File
46.6.3 LOAD$ - Load a File
46.6.4 RUN$ - Load and Run a File
46.6.5 CLOSE$ - Close a File
46.6.6 CHOP$ - Delete Space in a File
46.6.7 PROTE$ - Change the Protection on a File
46.6.8 POSIT$ - Position to a Record within a File
46.6.9 READ$ - Read a Record into the Buffer
46.6.10 WRITE$ - Write a Record from the Buffer

x

44-9
44-11
44-12

45-1
45-1
45-1
45-3
45-4
45-5
45-5
45-5
45-5
45-6
45-6
45-6
45-7

46-1
46-1
46-1
46-2
46-2
46-2
46-3
46-3
46-3
46-4
46-4
46-4
46-5
46-5
46-5
46-6
46-6
46-7
46-8
46-8
46-9

46-10
46-10
46-11
46-11
46-13
46-13
46-14
46-14
46-15

46.6.11 GET$ - Get the Next Buffer Character
46.6.12 GETR$ - Get an Indexed Buffer Character
46.6.13 PUT$ - Store into the Next Buffer Position
46.6.14 PUTR$ ~ Store into an Indexed Buffer Position
46.6.15 BSP$ - Backspace One Physical S~ctor
46.6.16 BLKTFR - Transfer a Block of Memory
46.6.17 TRAP$ - Set an Error Condition Trap
46.6.18 EXIT$ - Reload the Operating System
46.6.19 ERROR$ -- Reload the Operating System
46.6.20 WAIT$ -- DOS Wait-a-While "NOP" Routine

46.7 Keyboard and Display Routines
46.7.1 DEBUG$ - Enter the Debugging Tool
46.7.2 KEYIN$ - Obtain a Line from the Keyboard
46.7.3 DSPLY$ - Display a Line on the Screen

47. DOS FUNCTION FACILITY (DOSFNC)
47.1 FUNC1 - Retrieve Directory and C.A.T. Addresses
47.2 FUNC2 - Retrieve Directory Sector or Filename
47.3 FUNC3 - Retrieve R.I.B. Information
47.4 FUNC4 - Retrieve DOS Configuration Information
47.5 FUNC5 - Request Access to System Tables

46-16
46-16
46-17
46-18
46-18
46-18
46-19
46-21
46-22
46-22
46-23
46-23
46-26
46-27

47-1
47-2
47-5
47-7
47-9

47-10
47.6 FUNC6 - Keyboard I Display Interface Routines
47.7 FUNC7 - Test the Disk Buffer Memory
47.8 FUNC8 - Timed Pause

Function47-11
47-14
47-15

47.9 FUNC9 - Non-Sharable Resource Status Request
47.10 FUNC10 - Qualify for Execution in Fixed Partition
47.11 FUNC11 RAM Screen Loader
47.12 FUNC12 - Unassigned DOS Function
47.13 Overlay Loader (FUNC-13,14,15)
47.14 FUNC-13 Overlay Lookup By Name
47.15 FUNC-14 LOAD ABSOLUTE LIBRARY MEMBER
47.16 FUNC-15 RELOCATABLE LOADER

48. CASSETTE HANDLING ROUTINES
48.1 TPBOF$ - Position to the Beginning of a File
48.2 TPEOF$ - Position to the End of a File
48.3 TRW$ - Physically Rewind a Cassette
48.4 TBSP$ - Physically Backspace One
48.5 TWBLK$ - Write an Unformatted Block
48.6 TR$ - Read a Numeric CTOS Record
48.7 TREAD$ - TR$ and Wait for the Last Character
48.8 TW$ - Write a Numeric CTOS Record
48.9 TWRIT$ - TW$ and Wait for the Last Character
48.10 TFMR$ - Read the Next File Marker
48.11 TFMW$ - Write a File Marker Record
48.12 TTRAP$ - Set an Error" Condition Trap
48.13 TWAIT$ - Wait for 1/0 Completion
48.14 TCHK$ - Get 1/0 Status

xi

47-16
47-18
47-19
47-20
47-21
47-23
47-24
47-25

48-1
48-2
48-2
48-3
48-3
48-3
48-4
48-4
48-5
48-5
48-6
48~6
48-7
48-8
48-8

49. COMMAND INTERPRETER ROUTINES 49-1
49.1 CMDINT - Return & Scan MCR$ line 49-1
49.2 DOS$ - Return & Display Sign On 49-2
49.3 NXTCMD - Return & Say "READY" 49-2
49.4 CMDAGN - Return & Give Message 49-2
49.5 GETSYM - Get Next Symbol from MCR$ 49-3
49.6 GETCH - Get the Next Character from MCR$ 49-3
49.7 GETAEN - Get Auto-Execute Physical File Number 49-4
49.S PUTAEN - Set or Clear a File to be Auto-Executed 49-4
49.9 GETLFB - Open the User-Specified Data File 49-5
49.10 PUTCHX - Store the Character in "A" 49-5
49.11 PUTCH - Alternate Version of PUTCHX 49-6
49.12 PUTNAM - Format a Filename from Directory 49-6
49.13 MOVSYM - Obtain the Symbol Scanned by GETSYM 49-7
49.14 GETDBA - Obtain Disk Controller Buffer Address 49-7
49.15 SCANFS - Scan Off File Specification 49-7
49.16 TCWAIT - Test controller memory & wait 49-S

50. USER SUPPORTED INPUT/OUTPUT

51. ERROR MESSAGES

52. ROUTINE ENTRY POINTS

53. DOS QUESTIONS AND ANSWERS

54. 5500 ROMGUIDE
54.1 System ROM Functions

54.1.1 Introduction
54.1.2 Startup Procedure
54.1.3 Saving the Machine State
54.1.4 Display Format
54.1.5 The Command Interpreter
54.1.6 Command Syntax
54.1.7 Input Command List
54.1.S DEBUG Command Summary

Appendix A. DOS.A AND DOS.E
A.1 Planning for DOS.A/DOS.E

A.1.1 DOS.A Physical Configuration
A.1.2 DOS.E Physical Configuration

A.2 Disk Drives
A.3 Disk Media
A.4 Loading and unloading Disk Cartridges
A.5 Switches and Indicators
A.6 Care and Handling of Disk Cartridges
A.7 Care and Maintenance of the 9350 Drives

xii

50-1

51-1

52-1

53-1

54-1
54-1
54-1
54-1
54-2
54-2
54-3
54-3
54-4
54-8

A-1
A-1
A-1
A-2
A-2
A-2
A-2
A-3
A-4
A-5

A.8 Head Crashes
A.8.1 Prevention of Head Crashes
A.8.2 Recognition of a Head Crash
A.8.3 What to Do if You Have a Head Crash

A.9 Preparing Disk Packs for Use
A.10 Disk Organization under DOS.A/DOS.E

A.10.1 Logical Drive Mapping
A.10.2 Size of a Logical Drive
A.10.3 Cluster Mapping
A.10.4 Segments under DOS.A
A.10.5 Maximum File Size
A.10.6 Cluster Allocation Table and Directory

A.11 Internal DOS Parameterization
A.11.1 Physical Disk Address Format
A.11.2 Hardware Address Structure

Appendix B. DOS.B
B.1 Planning for DOS.B
B.2 File Storage Capacity under DOS.B
B.3 Disk Drives
B.4 Disk Media
B.5 Loading and unloading Disk Packs

B.5.1 Models 9370-9373
B.5.2 Model 9374/9375

B.6 Switches and indicators
B.6.1 Models 9370-9373

B.6.1.1 Memorex Drives
B.6. 1.2 "Telex" Drives
B.6.1.3 Common Features

B.6.2 Model 9374/9375
B.7 Care and Handling of Disk Packs
B.8 Care and Maintenance of the 9370 Drives
B.9 Head Crashes
B.10 Preparing Disk Packs for Use
B.11 Disk Organization under DOS.B

B.11.1 Logical Drive Mapping
B.11.2 Size of a Logical Drive
B.11.3 Cluster Mapping
B.11.4 Segments under DOS.B
B.11.5 Maximum File Size
B.11.6 Cluster Allocation Table and Directory

B.12 Internal DOS Parameterization
B.12.1 Physical Disk Address Format
B.12.2 Hardware Address Structure

Appendix C. INTRODUCTION TO DOS.C
C.1 Planning for DOS.C
C.2 Performance of DOS.C

xiii

A-5
A-6
A-6
A-7
A-7
A-8
A-8
A-8
A-8
A-9
A-9

A-10
A-11
A-11
A-11

B-1
B-1
B-1
B-2
B-2
B-2
B-2
B-3
B-4
B-4
B-4
B-5
B-5
B-6
B-7
B-7
B-9
B-9

B-10
B-10
B-11
B-11
B-12
B-12
B-13
B-14
B-14
B-14

C-1
C-1
C-2

C.3 Disk Drives
C.4 Disk Media
C.5 Loading and Unloading Diskettes
C.6 Drive Numbering and Switches
C.7 Care and Handling of Diskettes
C.B Preparing Diskettes for Use
C.9 Suggested Disk Organization Techniques
C.l0 Disk Organization under DOS.C

C.l0.l Radius Spiraling and Sector Skewing
C.l0.2 Size of a Diskette
C.l0.3 Cluster Mapping
C.l0.4 Segments under DOS.C
C.l0.5 Maximum File Size
C. 10.6 Cluster Allocation Table and Directory

C.ll Internal DOS Parameterization
C.ll.l Physical Disk Address Format

Appendix D. DOS.D
D.l Planning for DOS.D
D.2 File Storage Capacity under DOS.D
D.3 Disk Drives
D.4 Disk Media
D.5 Disk Organization under DOS.D

D.5.1 Logical Drive Mapping
D.5.2 Size of a Logical Drive

D.5.2.1 Models 9370-9373
D.5.2.2 Models 9374/9375

D.5.3 Cluster Mapping
D.5.4 Segments under DOS.D
D.5.5 Maximum File Size
D.5.6 Cluster Allocation Table and Directory

D.6 Internal DOS Parameterization
D.6.1 Physical Disk Address Format

Appendix E. COMPARSION CHART FOR DOS'S

Appendix F. DISK DATA FORMATS
F.l Disk Data Formats
F.2 OBJECT File Format for Disk
F.3 Relocatable Code Formats

F.3.1 Directory
F.3.2 Program Identification
F.3.3 Object Text

F.3.3.1 Memory Location
F.3.3.2 Absolute Text
F.3.3.3 Complex Relocatable References
F.3.3.4 Simple Relocatable References

F.3.4 External Definitions

xiv

C-3
C-3
C-3
C-5
C-5
C-6
C-7
C-B
C-B

C-l0
C-l0
C-ll
C-ll
C-12
C-13
C-13

D-l
D-l
D-l
D-2
D-2
D-2
D-2
D-3
D-3
D-4
D-4
D-4
D-5
D-5
D-6
D-6

E-l

F-l
F-l
F-l
F-3
F-4
F-5
F-5
F-6
F-6
F-7
F-B

F-l0

F.3.5 External and Forward References (4096 maximum)
F.3.6 Transfer Address

F.4 Format of Library Files
F.4.1 Directory
F.4.2 Members
F.4.3 Library Type Chart

F.5 DATABUS Code File Format
F.6 DATAFORM Data File Format
F.7 MULTIFORM File Format
F.8 TEXT File Format
F.9 lSI File Format
F.10 SORT TAG File Format

xv

F-11
F-11
F-12
F-12
F-13
F-14

, F-14
F-14
F-15
F-16
F-17
F-19

CHAPTER 1. INTRODUCTION

Datapoint Corporation's Disk Operating System (DOS) is a
comprehensive system of facilities for sophisticated data
management.

DOS provides the operator with a powerful set of system
commands by which the operator can control data movement and
processing from the system console. These commands allow the
system operator to accomplish things which could be subst~ntially
more difficult on other computing systems. Sorting a large file,
for instance, can generally be accomplished in one single command
line. In spite of the simplicity of operation, a wide range of
features is provided.

To the programmer, DOS offers a set of facilities to simplify
and generalize his task and file management problems. Concepts
like dynamic disk space allocation allow programs to efficiently
operate without regard to the amount of space required for the
data files they are using. In addition, the disk file structure
used by DOS allows for direct random access to data files. DOS
also makes use of fully space-compressed text files.

These features, combined with the ability to support up to
200 million bytes of high-speed random access disk storage,
provide a full range of data processing capabilities.

1.1 Hardware Support Required

The minimal configuration required to run DOS is a Datapoint
1100, 2200, or 5500 computer, with a minimum 16K of memory, and
one (9350, 9370, or 9380 series) disk storage unit. For backup
and support purposes, users with the Diskette 1100 computer are
required to have at least one system with more than one diskette
drive. Configurations based on the other processors can operate
with only a single disk drive unit in conjunction with the
integral tape cassettes, but for backup and system support
purposes a two-drive system is a recommended minimum.

The two 5500-only DOS, DOS.D.and DOS.E, support a minimum of
two physical disk drives.

Users running single physical drive 9350, 9370, and 9380
configurations are supported under DOS.A, DOS.B, and DOS.C

CHAPTER 1. INTRODUCTION 1-1

respectively.

1.2 Software Configurations Available

DOS is provided in several different versions. Different
versions are used depending upon the type of disk in use at an
installation. Specific versions are .indicated by a letter after a
period in the name of DOS. As an example, the following versions
of DOS are currently defined:

DOS.A -- Supports 9350 series disk drives on Datapoint 2200
and 5500 series computers.

DOS.B -- Supports 9370 series disk drives on Datapoint 2200
and 5500 series computers.

DOS.C -- Supports 9380 series disk drives on Datapoint 1100,
2200 and 5500 series computers.

DOS.D -- Supports 9370 series disk drives (with 16 buffer
disk controller) on 48K Datapoint 5500 series computers.

DOS.E -- Supports 9350 series disk drives (~ith 16 buffer
disk controller) on 48K Datapoint 5500 series computers.

1.3 Program Compatibility

This manual describes the compatible set of facilities
available to the DOS user within the Disk Operating System.
Programs written in any of the supported higher level languages
(DATASHARE, RPG II, BASIC, etc.) will generally run unmodified on
any of the DOS. Most programs written in assembler language will
also run under any of the dot-series DOS, without reassembly.

Basically, in only a few cases will a program need to be
changed when it is transferred from one DOS to another. The need
for program modification will usually stem from one or more of the
following types of situations, which should be avoided whenever
possible:

1) Programs which make assumptions regarding the size of
file~. .For example, programs originally written for the 9350
series disks might assume that the size of the biggest possible
file could be expressed as four ASCII digits. Under DOS.D, this
assumption is invalid since files under DOS.D may be over 38,000
data sectors long ..

1-2 DISK OPERATING SYSTEM

2) Programs which make assumptions regarding the physical
structuring of the data on the disks. For example, each DOS
allocates space on the disk in segments of different sizes, and
places its system tables in different locations on the disk.

3) Programs which generate or modify physical disk addresses
themselves. Since the disks are each organized somewhat
differently to take advantage of the particular characteristics of
the specific type of drives involved, the physical disk address
formats naturally vary among different DOS.

4) Programs which rely upon other characteristics of a DOS
which are not documented in this manual. A possible situation
would be where a programmer might look at the values in the
registers following the return from a system routine and
determine, for instance, that some routine always seemed to return
with the value "1" in one of the registers. If he then constructs
his program in such a manner that it will not function correctly
if the "1" is not present upon return from the routine, then he is
likely to find that his program may not work properly on a
different DOS.

All of the above situations, except for the first, will
usually only occur in assembler language programs operating at the
very lowest levels. Programmers who require this level of
detailed knowledge about the DOS will find the information
'specific to each DOS, in the Appendix for the DOS they are using.

CHAPTER 1. INTRODUCTION 1-3

CHAPTER 2. OPERATOR COMMANDS

All Datapoint computers include, as a standard feature, an
integral CRT display through which the internal computer
communicate with the operator. The system console also includes a
typewriter-style keyboard which the operator uses to communicate
with the computer. The DOS is normally controlled by commands
entered at this system console.

When DOS first becomes ready for commands, it displays a
signon message on the CRT and says "READY". Upon completion of
any job the DOS generally again displays "READY". Whenever the
ready message is shown, the operator may key in a command, which
will be displayed on the bottom line of the CRT as it is keyed in.
While typing a command, the BACKSPACE key will erase one character
for correction, and the CANCEL key will erase the entire line.

A command line specifies first what job is to be performed,
then any disk files or special system directives, then options for
the job. The command programs provided with DOS are described in
this manual; the information that must be entered for each command
is specified in the chapter about that command. A command line is
always terminated with the ENTER key.

In general, a command line is entered as:

<field>,<field>,<field>,<field>;[options]

Each <field> indicates a DOS file name specification (see the Disk
Files chapter) or possibly a special field such as a subdirectory
name. The first <field> on the line always specifies the program
that will be run. Special attention must be given to the
separators between fields on the command line. The most common
separators are space and comma. For readability the first two
fields are usually separated by a space and subsequent fields are
separated by a comma. A command then usually looks like:

SORT ACCTFILE,SRTFILE,:DR3;2-11

In this example the first field, the program to be executed, is
"SORT". The second field is "ACCTFILE", the third is "SRTFILE",
and the fourth is ":DR3". All of these fields provide information
to the SORT program. A semi-colon (;) is a special separator
which always separates <field> entries from [options]. In the
above example the options field is "2-11". Slash (I) and colon

CHAPTER 2. OPERATOR COMMANDS 2-1

(:) are special separators used within a file name.

Aside
characters
comma. In
valid part
separator.

from the separators noted above, most special
(#,=,?,$,@,etc.) act as separators just like space or
general, any character that is not a syntactically
of a file name will be interpreted as a field

The command example above could have been entered as:

SORT@ACCTFILE=SRTFILE$:DR3;2-11

The use of special characters is not recommended since the
resulting command line is very confusing for human interpretation.

As already noted, the first field on the command line
specifies the program to be executed. For any command this first
field must be given, any other fields mayor may not be needed for
a particular command. The command program must be a loadable
object file, loading above 01400, or the program load will fail
and the DOS will simply return to "READY" condition. If the
program specified to be run cannot be found, the DOS displays the
message "WHAT?" and waits for another command. If desired, the
program name specification can be preceded by an asterisk (*) or a
colon (:), indicating the command is to be located in UTILITY/SYS
in preference to a separate command file (See Command Interpreter
section).

Fields on the command line are often order dependent. If a
command is being used which accepts several fields, one of which
is not wanted, skip that field by entering two separators with
nothing between them.

SORT ACCTFILE,,:DR3;2-11

By using two commas, ":DR3" is recognized as the fourth field on
the line, with the third field being null.

When the command line is discussed in this manual, the first
field is called the "command"; subsequent fields before the
semi-colon are called "<filespec>" or some similiar term;
characters following the semi-colon are called "options" or
"parameters".

2-2 DISK OPERATING SYSTEM

CHAPTER 3. EQUIPMENT CARE

Computers, disk drives, printers, and other data processing
equipment are delicate devices. They must be operated correctly
and given a degree of care to continue to perform correctly.
Datapoint prints "A Guide for Operating Datapoint Equipment",
model code #60252, which gives detailed instructions on the
operation of Datapoint equipment. It is recommended that any
installation without trained computer operators obtain this
manual.

3.1 Environment

Datapoint systems must be installed in an area with adequate
air conditioning. Datapoint processors can stand a fairly wide
range of temperatures, but disk drives should have a temperature
range of 60 to 80 degrees F. (15.5 to 26.7 degrees C.). The
temperature tolerance varies with the type of drive in use
(diskette drives can stand a much wider temperature range) but the
60-80 degree range is safest. Humidity must be kept low enough to
avoid condensation (below 80%) but high enough to avoid excessive
static electricity problems.

The machine area must be reasonably clean and dust-free.
Fanatic cleanliness is not necessary, but dust, cigarette ashes,
spilled liquids, and so forth can seriously affect machine
operation.

Processors and peripherals require fairly "clean" power to
avoid erratic operation. Machine room power should be supplied
from a completely separate transformer if possible. Be sure
devices such as adding machines and power tools are not connected
to the same power leads as computer equipment. The electric
motors in these devices cause severe power line noise and will
seriously affect machine operation. If necessary, isolation
transformers are available to supply clean power for Datapoint
equipment.

CHAPTER 3. EQUIPMENT CARE 3-1

3.2 Processor

The only user maintenance on the processor is to dust and
clean the cabinet, CRT screen, and keyboard occassionally and to
clean the cassette decks. The cassette decks are especially
sensitive to grime: dirty decks can cause read/write errors and
can even destroy tapes. The decks are cleaned in the same way
audio cassette decks are cleaned. Use tape head cleaner and a
cotton swab to clean the tape heads and capstans; use a dry,
lint-free cloth or swab to clean the pinch rollers. The cassette
decks should be cleaned as necessary depending on use; normally
every two or three months, as often as weekly if the decks get
very heavy use.

Be sure the ventilation slots on the top and rear of the
processor are never blocked, as impeded air flow will cause
overheating.

3.3 Disks and Disk Drives

Be sure all operators know how to insert and remove disks in
the disk drives. Disks must be stored properly in an environment
similar to that for the equipment. Consult the appendices of this
manual, or the Guide for Operating Datapoint Equipment, or the
Datapoint Product Specifications (green sheets) for details on
dIsk handling.

The disk drives must not be subjected to bumps or jolts or
head misalignment can occur. Physical location of the drives must
allow adequate air circulation for cooling purposes.

3.4 Other Peripherals

All peripherals should be dusted occasionally in keeping with
the necessary environment cleanliness. Aside from printers, most
Datapoint peripherals require practically no user maintenance.
For any necessary care, consult the Guide for Operating Datapoint
Equipment, the green sheets, or your Datapoint service
representative.

3-2 DISK OPERATING SYSTEM

Printer ribbons must be changed periodically to maintain
print quality. Cloth ribbons left in use for too long can
disintegrate, requiring a very messy clean-up of inky lint when
the ribbon is finally changed, so check the ribbon occasionally.
To avoid paper jams on printers, be sure the paper is aligned
correctly when loaded, and be sure the paper has a free path into
the printer and as it emerges to the paper tray.

CHAPTER 3. EQUIPMENT CARE 3-3

CHAPTER 4. DISK FILES

On all DOS-supported disks, information is stored in sectors,
each of which contains 256 bytes of information. Sectors
containing related information are organized in a single
structured group called a file. All information on a disk will
generally be organized in files, except for certain system tables.

4.1 File Names

From the console, files are identified by a NAME, EXTENSION,
and LOGICAL DRIVE NUMBER. The NAME consists of up to eight
alphanumeric characters (no special characters). Typical file
names would include:

EDIT
EMPLOYEE
23NOV76

PAYROLL
JUL1075
X1

The EXTENSION must start with a letter and may be followed by up
to two alphanumeric characters. If an extension is used in a file
name, it is separated from the NAME by a slash (I). The extension
further identifies the file and usually indicates the. type of
information contained in the file. A "TXT" extension means text
and usually implies data or program source code. "ABS" implies
program object code (absolute code) loadable by the system loader.
"CMD" implies an object code file to be used as a command program
from the system console. Other common extensions are: REL, lSI,
DBC, OVn, SYS, PRT, BAS, and LEX.

The LOGICAL DRIVE NUMBER specifies on which logical drive the
file is (or will be) located. The drive specification is
identified by a leading colon (:) and has the form ":DRn" or ":Dn"
or ":<volid>". When the ":DRn" or ":Dn" forms are used, the "n"
is a number indicating the logical drive number as assigned at
system installation. The ":<volid>" form allows logical volume
identification, regardless of the physical drive on which the disk
is located. "<volid>" is an eight character identifier placed on
a disk by the PUTVOLID program.

The complete form of a file name is thus

NAME/EXTENSION:DRIVE

CHAPTER 4. DISK FILES 4-1

When a file name is entered as part of a command, all three parts
of the name are not usually needed, though they can be specified.
The presence or absence of a part of the file name is determined
by the special separators "I" and "." Syntactically correct file
name entries are:

NAME/ABS:DRO
NAME/REL
NAME:DO
NAME

IABS:DR1
ITXT
:D2
NAME:DOSD1

If a portion of the file name is not used, DOS applies default
values; the default value used depends on the location of the name
on the command line, and on the command in use.

The first field on any command line is the command program to
be run. For this field, a NAME must be given, the default
extension is CMD, and the default drive is any drive. (An "any
drive" default usually means a search of all drives, starting with
drive 0). If the command name is preceeded by an asterisk (*) or
a colon (:), the default extension and all-drive search do not
apply, as the leading character indicates the given name is to be
located as a member of UTILITY/SYS (an "absolute library"), rather
than searched for as a file.

The default values for file names given as parameters to a
command are described separately for each command.

4.2 File Creation

Files are always created implicitly. That is, the operator
never specifically instructs the system to create a given file.
Any command that writes to an output file will write into an
existing file or will automatically create a new file if
necessary.

A file to be created will be created on the drive specified
in its file name field or specified in default values applied to
its name. When a file is being created on a specific drive, files
with the same name and extension on other drives are unaffected.
If no drive is specified in the name or by default, the file is
created on any drive which has free space, the search for
available space starting on drive O. "Available space" means one
free space in th~ drive's directory, in which to place the name of
the new file, and at least one cluster of free space on the disk,
in which to place the data the file will contain. (A "cluster" is
the smallest unit of disk space that can be assigned to a file;

4-2 DISK OPERATING SYSTEM

clusters are defined in the chapter on System Structure).

4.3 File Deletion

Deletion of a file is performed explicitly by operator
command, using the KILL command described later. No other
programs delete an existing file, although procedures such as
system generation and backup naturally destroy all files on the
output disk.

4.4 File Protection

DOS files can be given three types of protection: write
protection, delete protection, and no protection. If a file is
write protected, it can be neither written upon nor deleted. If a
file is delete protected it cannot be deleted, although it can be
written over, effectively destroying any data previously in it.
If a file has no protection it can of course be modified in any
manner. The CHANGE command is used to set the protection of a
file.

CHAPTER 4. DISK FILES 4-3

CHAPTER 5. SYSTEM GENERATION

Before a disk can be used with DOS it must first be prepared
by writing onto it basic system tables. Also, a surface
verification must be performed so any bad areas of the disk
surface will not be used. On a new installation, the system
utility programs must be placed onto the disk for use. All these
operations constitute system generation.

5.1 Initial Generation

Datapoint distributes DOS in two forms: as a set of cassette
tapes or as a completely generated disk. Users who receive the
complete disks need not perform the cassette generation described
below, as it has already been performed on their disk. Anyone
requiring additional working disks should generate them as
outlined in Scratch Disk Preparation.

5.1.1 Formatting

Before a disk can be written or read on any drive, it must be
appropriately formatted. Cartridge disks for use on Datapoint
drives (9350 series) require no formatting because they use
hardware formatting -- the sector formatting is inherent to the
disk. Datapoint diskettes (9380 series) are formatted when
received and do not require a special formatting process before
they can be used. The mass storage disks (9370 series) require a
special formatting process before they can be used.

The first tape of the DOS generation cassettes for mass
storage operating systems (DOS.B and DOS.D) is a formatting
program. Simply insert the cassette in the rear cassette deck and
depress RESTART (on a 5500 processor, RUN must be depressed
simultaneously). The tape will rewind and then load the
formatting program INIT9370. This program will ask for a specific
physical (not logical) drive number containing the disk to be
formatted. After receiving a reply, the program will ask if the
operator is certain the drive number is correct and the disk in it
is scratch, since formatting destroys any information previously
on the disk. Formatting will then proceed. When finished the
program will display a message indicating the pack is completely
formatted.

CHAPTER 5. SYSTEM GENERATION 5-1

For additional information on the formatting program, see the
chapter on INIT9370.

5.1.2 Cassette System Generation

The first tape of the DOS generation cassettes (second tape,
for DOS.B and DOS.D) is the actual generation cassette. To use
this cassette load it into the rear cassette deck and depress
RESTART (on 5500 processors, RUN must be depressed
simultaneously). The tape will rewind and then load the DOS
generation program. Loading takes about a minute. When the
program has loaded it will display a sign-on message and ask what
logical drive is to be generated. The drive specified must be
on-line with a ready disk in it.

Following drive selection the program will ask if a full
generation is desired. To get a full DOS generation, answer Y;
for a partial gen (useful only for upgrades from an older version
DOS) answer N. Partial generation is described below. Following
selection of full generation, the program will ask to be sure the
disk in the selected drive is scratch, containing no valuable
files that would be destroyed by generation.

After the verification question, the program performs a
surface test on the cylinders used by DOS for its system tables
and operating files. If this test fails, the disk is considered
unusable and error messages will so indicate. After a short pause
for the above test, the program will ask if any cylinders are to
be locked out. The normal answer to this qu~stion is N, since
locked-out cylinders cannot be used by DOS. If it is desired to
lock out any cylinders for special use, consult the DOSGEN chapter
for a description of cylinder lockout.

The next step in system generation is a quick surface
verification of the entire disk. The program clicks once for each
cylinder tested and passed. If an error is encountered, the
program displays the cylinder number in which the error occurred,
beeps, and flags the cylinder in the Lockout CAT so the DOS will
not use it.

Following surface verification the basic system tables are
built on disk and the system programs are loaded from the tape.
Programs loaded are SYSTEMO/SYS - SYSTEM7/SYS, CAT/CMD, MIN/CMD,
and UBOOT/CMD. .

NOTE: For initial generation of mass storage disks, be sure
to repeat the above procedure twice, once for each logical drive

5-2 DISK OPERATING SYSTEM

on the disk.

After loading the system programs, system generation is
complete except for loading utilites, and the new DOS is brought
up ready for commands. As soon as the system is ready (easy to
tell since the message on the CRT is "READY") enter the command
UBOOT to produce a boot tape for the DOS. UBOOT will ask for a
blank tape in the front cassette deck and will then write and
verify a boot block on that tape. It is wise to make at least two
boot tapes at this time, since the boot tape is the only way to
start up DOS. Any time it is necessary to start DOS (after the
processor has been turned off, after loading a different set of
disks, etc.) simply place the boot tape in the rear deck and
depress RESTART (and RUN on 5500's) to boot the operating system.

To completely finish system generation, the system programs
and utilities must be loaded. These files are contained on the
second and third tapes of the system generation cassettes (third
and fourth tapes for DOS.B and DOS.D). To load the commands
simply place each cassette in turn into the front cassette deck
and enter the command

MINjAO:Dn

where n is the drive number being generated. When the files on
these two tapes have been copied to disk, generation is finished.

The generation cassettes for DOS.C include a fourth tape of
system commands, containing all the programs in UTILITY/SYS (see
the appropriate chapter in this manual) as separate files. These
files are provided as a convenience so that only desired programs
can be placed on a system diskette, leaving free space on the
diskette for other use.

5.2 Partial Generation

The DOS generation tape program has an option to perform a
partial generation for purposes of upgrading an older version of
DOS to the present version. To use partial generation load the
gen tape and specify the drive to be generated. When the program
asks if a full generation is desired answer N. The program will
ask a couple of verification questions to be sure it should just
replace the system and command files, and will then do so.

During partial generation, new system tables are built on the
disk being upgraded and the eight system files SYSTEMO/SYS through
SYSTEM7/SYS are replaced by new files from the tape. The old

CHAPTER 5. SYSTEM GENERATION 5-3

utility programs must be deleted and new programs loaded from tape
before partial generation is complete.

When performing a partial generation on a DOS. 1.1, 2.1, or
2.2 disk, it will be necessary to replace the old MIN/CMD with the
new command from the generation tape before the utilities tapes
can be loaded. (The old MIN cannot recognize the file format of
UTILITY/SYS.) To replace MIN, load the generation cassette in the
front deck and run MIN (the old command already on disk). MIN
will identify the tape as "CTOS SYSTEM TAPE FORMAT" and will scan
the tape to find the CTOS catalog. When the catalog is located,
the files on the tape will be displayed and MIN will ask

LOAD B?

Skip the file named B by answering "N", skip CAT in the same
manner, then answer "Y" to load MIN. The program will ask for a
DOS file name; the name given should be "MIN/CMD". MIN will ask
to be sure the existing command should be overwritten, answer "Y"
to the OVERWRITE? question. Once MIN/CMD has been loaded, enter
an asterisk to end the program when it asks if file number 20
should be loaded.

After MIN/CMD has been replaced, use the new MIN to load the
utility tapes in the normal manner.

Following a partial generation, it is a good idea to BACKUP
the upgraded disk with reorganization. The reorganization removes
any fragmentation in system files and allows an operator to easily
delete undesired old files. Until the old command files have been
deleted, be sure to enter a leading * on each command so as to use
the new utilities from UTILITY/SYS.

Partial generation is not valid between some versions of DOS
(notably Version 1 DOS.B and any newer version). Check with your
Datapoint System Engineer before attempting an upgrade by partial
generation.

5.3 UPGRADE/X

A disk-based upgrade facility is available in a file called
UPGRADE/X, 'X being the letter specification of the DOS in use.
UPGRADE is a standard text tile to be used as a chain procedure by
the command

CHAIN UPGRADE/X;OUTPUT=:Dn

5-4 DISK OPERATING SYSTEM

where n is the drive number containing the disk to be upgraded.

The UPGRADE procedure copies the eight system files from the
new version disk (which should be in drive zero) to the specified
drive. SYSTEM7/SYS is copied by use of MOUT and MIN to preserve
the subdirectory structure on the old disk. The other files are
copied by the COpy utility. After the system files are copied,
old utilities on the output disk are deleted and new utilities are
copied from the input disk. The program PUTIPL is then run to
place the necessary IPL blocks on the output disk.

Since UPGRADE is a text file, it can be edited to modify the
chain procedure followed, to adjust to special needs. Any
modifications performed should be very carefully considered to
assure a good upgrade. System conversions are a complex process
and any errors can result in an unusable disk or lost data.

As with partial generation from cassette, use of UPGRADE is
not valid for all possible versions of DOS. Check with your
Datapoint System Engineer before using UPGRADE for a disk
conversion.

5.4 Scratch Disk Generation

Any disk to be used in a DOS system must be generated to
contain the necessary system tables and basic system files.
Scratch disks or new system disks are best produced by use of the
DOSGEN program described later in this manual. DOSGEN is a
totally disk based program and performs much more quickly than
cassette generation. If necessary or desired, the DOS generation
cassette can be used to produce a new disk, as described above in
Initial Generation.

5.5 Generation Cassettes and Emergencies

If all boot tapes at an installation are lost or destroyed,
there is suddenly no way to access perfectly good disks. New boot
tapes can be made by loading the DOS generation cassette in the
rear deck and pressing RESTART, then holding down the KEYBOARD key
while the tape loads. After about 30 seconds a READY message will
appear on the screen from the CTOS (Cassette Tape Operating
System), which has just been loaded. Enter the command "RUN B"
and CTOS will load and run the program called "B", which is UBOOT,
producing a new boot tape for the DOS.

CHAPTER 5. SYSTEM GENERATION 5-5

The generation tapes also provide an excellent backup copy of
all system utilities and of the system files themselves. The
system files are on the DOS generation tape as files #21 through
#30 (SYSTEMO/SYS through SYSTEM7/SYS respectively). The
availability of such backups can be invaluable in event of massive
data loss on system disks.

5-6 DISK OPERATING SYSTEM

CHAPTER 6. GENERAL COMMAND CHARACTERISTICS

Some features of the commands supplied with the DOS apply to
most DOS commands. These characteristics and messages are
discussed briefly in this chapter.

6.1 General Command Format

As mentioned in a previous chapter, DOS commands are entered
as a command line. The general format of the command line is:

command [<file spec>][,<file spec>][,<file spec>] ... [joptions]

The item referred to as "command" is always required on a
command line. This defines the command being issued to the
system.

The items referred to as "<file spec>" represent one or more
specifications for files. These files generally are input,
output, scratch, or other files to be used by the command program.
Usually the first such specification represents input file(s), and
the following specifications represent output or scratch file(s).

A square bracket convention is used here, as well as
elsewhere throughout most Datapoint documentation, to indicate
fields whose presence is optional. The corner bracket convention
(as in <file spec» represents replacement fields where the
replacement field name is contained within the corner brackets.
After the replacement is made, the corner brackets themselves do
not appear in the resulting line.

The field indicated by "options", separated from the file
specification fields by a semicolon, generally contains one or
more option letters, which are defined for each specific command.

6.2 Signon Messages

Upon entering a system command, the command program being
invoked will generally display a message identifying itself. If
the command is specific to one single DOS, the signon message will
also identify which DOS the command is designed to execute under.
The main purpose of the signon message is to allow the operator to
determine, in the event of some difficulty, whether a superceded

CHAPTER 6. GENERAL COMMAND CHARACTERISTICS 6-1

version of the command is in use.

6.3 Common Error Messages

Several error messages are common to many of the DOS
commands. These error messages, and their meanings, include the
following.

WRONG DOS. This message indicates that the version of the
command program being run was intended to run on a specific
version of the DOS, and that version is not the same as the DOS
that is running. This message generally occurs either as a result
of accidentally copying a command from one DOS to a different one,
or attempting to use an obsolete version of a command under a
newer DOS (usually caused by an incomplete upgrade).

INVALID DRIVE. This message appears when one of the drive
specifications given by the operator is invalid. Either the drive
specification was not of the correct format, or the drive number
specified exceeds the range available under the resident DOS.

NAME IN USE. This message occurs when the command's
continued execution would necessarily result in a conflict of file
name with an already existing file.

NAME REQUIRED. This message generally occurs when one of the
file names required on the command line was not specified by the
operator.

NO SUCH NAME. This message indicates that a file specified
on the command line could not be found. Generally the name as
specified is simply misspelled or otherwise incorrectly entered.
However, sometimes this message will occur because the file
desired is not in the current subdirectory (described later).

NO! THAT FILE IS PROTECTED. This message indicates that a
request was made to modify a file that was write or delete
protected.

WHAT? This message means that the command name (the first
item on the command line being processed) is illegal. This
usually indicates that either it is not a valid command, or that
the command specified is not in the current subdirectory.

6-2 DISK OPERATING SYSTEM

CHAPTER 7. APP COMMAND

7.1 Purpose

The APP command appends two object files together creating a
third. Object files are files containing absolute object code in
a format that can be loaded by the DOS loader.

7.2 Use

APP <file spec>,[<file spec>],<file spec>

The APP command appends the second object file after the
first and puts the result into the third file. Note that neither
of the input files are disturbed. If extensions are not supplied,
ABS is assumed. The first two files (if a second is specified)
must exist. If the third file does not already existl it will be
created. The first file's transfer address is discarded and the
new file is terminated by the transfer address of the second file.
The transfer address of an object file is defined as the entry
point of the program contained in the file.

Omitting the second file specification causes the first file
to be copied into the third file. For example:

APP DOG"CAT

will copy the file DOG/ABS into the file CAT/ABS.

The first and third file specifications are required. If
either is omitted the message

NAME REQUIRED

will be displayed. The second and third file specifications must
not be the same.

Because the APP command recognizes the actual end of the
object module contained in a file, APPing an object file, similiar
to the example above, is one technique for releasing excessive
unused space at the end of an object file.

CHAPTER 7. APP COMMAND 7-1

CHAPTER 8. AUTO COMMAND

AUTO - Set Auto Execution

AUTO <file spec>

The AUTO command establishes the indicated program to be
automatically executed upon the loading of DOS. (Specifically,
upon execution starting at the DOS$ entry pOint.) If no extension
is supplied, ABS is assumed. If there is already a file set for
auto execution, the message

AUTO WAS SET TO NAME/EXTENSION (PFN).

will be displayed (where PFN is the physical file number).
Regardless, the name specified will be recorded in the DOS table
location reserved for the auto-execution information. A check is
made to see if the file is an object file and if the file is on
drive zero. If the specified file does not exist, the message

NO SUCH NAME

will be displayed. Note that if a program has been set to
auto-execute, its execution can be inhibited by depression of the
KEYBOARD key when DOS is loaded.

If no file spec is given in the commmand line, then the
setting of the file to be auto-executed is not changed. However,
if a file spec was present, then the message:

AUTO NOW SET TO NAME/EXTENSION (PFN).

will be displayed after the new auto-execution setting has been
made.

If no <file spec) is entered and AUTO is not set, the message

NAME REQUIRED

will be displayed.

Note that the AUTO command does not make provlslon for file
specifications to be given to the program which is to be
automatically executed. This makes it impossible to use AUTO for
programs requiring or accepting such parameters. AUTO also does

CHAPTER 8. AUTO COMMAND 8-1

not place anything in MCR$ (defined later). Therefore, programs
which use overlays with the same name (but different extension) as
the program will not run. For more information, refer to the
chapter describing the AUTO KEY command.

Auto-execution mode is cleared with the MANUAL command,
described in a later chapter.

Programs contained in absolute libraries (UTILITY/SYS for
example) cannot be "AUTO'd" directly. Use the AUTOKEY command
described below, then "AUTO AUTOKEY/CMD".

8-2 DISK OPERATING SYSTEM

CHAPTER 9. AUTOKEY COMMAND

9.1 Introduction to AUTO KEY

Many users allow their Datapoint computers to run in an
unattended mode. This allows large data processing tasks, perhaps
ru.nning via the DOS command chaining facility (see CHAIN}, to be
run during the evening hours when no operator is present. (An
example might be the creation of several new index files for one
or more large, ISAM-accessed data bases). However, the momentary
power failures which data processing users are being forced to
contend with during times of shortage, thunderstorms and the like
can bring down any computer not having special, uninterruptible
power supplies. When this happens to a computer running in
unattended mode, the office staff will generally return the next
morning to find their computer sitting idle and its work
unfinished.

The Datapoint computers are all equipped with an
automatic-restart facility which can be used to cause them to
automatically resume their processing tasks following such an
interruption. The purpose of the AUTOKEY (and AUTO) commands is
to provide a software mechanism for users who wish to handle such
unusual circumstances and provide for the restarting of a
processing task.

9.2 The Hardware Auto-Restart Facility

There are two small tabs on the back edge (directly opposite
from where the tape is visible) of each cassette tape. The
leftmost of these (as you look at the top side of the cassette) is
the write protect tab, which prevents writing on the topmost side
of the tape. The right-hand tab is the auto-restart tab.

Users who frequently use both sides of cassettes will
probably immediately notice that if one turns over the tape, the
assignments of these two tabs switch around, the tab which had
been write protect now being auto restart and vice versa. This in
fact is precisely what happens.

If the auto-restart tab on the rear cassette is punched out
(or slid to the side), then the computer will automatically

CHAPTER 9. AUTO KEY COMMAND 9-1

re-boot, just like it does when RESTART is depressed, whenever the
processor goes to STOP. Assuming that the rear cassette drive
contains a DOS boot tape, this will cause DOS to come up and give
its familiar message, "READY".

Diskette 1100 and 1150 users qre provided with
switch-selectable auto restart. The computer will either halt or
automatically restart upon being stopped, depending upon the
setting of an internal switch. This switch can be set by a
Datapoint representative (System Engineer or Customer Engineer)
upon request.

9.3 Automatic Program Execution Using AUTO

In order to provide a mechanism for programs to resume
automatically following an interruption (such as a DATASHARE
system, for instance, which might be running unattended) DOS has a
comparable facility to enable a program to be automatically
executeq whenever DOS comes up. (Note that any loading and
running the DOS, whether by an auto-restart, pressing the RESTART
key, or under program control, will activate this facility).

The AUTO command is used to establish a program to receive
control when DOS-comes up. This setting can be cleared with the
MANUAL command. For some applications, the AUTO and MANUAL
commands are adequate to allow a programmed restart of a lengthy
data processing task. However, some programs require parameters
be specified on the command line, and these are obviously not
present if no command line has been provided.

9.4 Auto-Restart Facilities Using AUTOKEY

AUTOKEY is simply a command program which can be AUTO'd. The
way in which it works is very simple. If it is run via the DOS
auto-restart facility, AUTOKEY supplies a command line just as if
the same one line were entered at the system console. If AUTOKEY
is run from the system console (or likewise from an active CHAIN),
it simply displays the command line it is currently configured to
supply and offers the user the option of changing that stored
command line.

The command line supplied to AUTOKEY could do anything
specifiable in one command line to the DOS; DATASHARE could be
brought up, a SORT invoked, a user's own special restart program
started or even a CHAIN begun. AUTOKEY, when used with AUTO,
MANUAL, and CHAIN can therefore provide a very powerful facility.

9-2 DISK OPERATING SYSTEM

9.5 A Simple Example

To specify a command line to be used during automatic system
restart, simply enter:

AUTOKEY

at the system console. AUTOKEY will display a signon message and
display the current autokey line if there is one. It then asks if
this line is to be changed. If "N" is answered, AUTOKEY simply
returns to the DOS and the DOS "READY" message is displayed. If
"Y" is answered, AUTOKEY requests the new command line to be
configured and then returns to the DOS and "READY".

Alternatively, if the user wishes to simply specify a new
command line to be configured regardless of the current setting of
the AUTOKEY command line, he can merely place the new command line
after the "AUTOKEY" that invokes the AUTOKEY command.

As a simple example, assume that XYZ Company has several of
their sales offices on-line to their home office DATASHARE system,
which is running completely unattended. Lightning strikes a
powerline outside of XYZ Company's home office, and power is cut
off for 15 seconds. As soon as power is restored, their Datapoint
5500 computer re-boots its DOS (since the right-hand tab on the
boot tape has been punched out) and warmstarts the DATASHARE
system. One command sequence to accomplish this would look like
the following:

AUTOKEY
DOS.nn AUTOKEY COMMAND
NO AUTOKEY LINE CONFIGURED.
CHANGE THE AUTOKEY LINE? Y
ENTER NEW AUTOKEY LINE:
DS3
READY
AUTO AUTOKEY/CMD
AUTO NOW SET TO AUTOKEY/CMD (nnn)
READY

An alternate form of the above would be the following:

AUTOKEY DS3
DOS.nn AUTOKEY COMMAND
NO AUTOKEY LINE CONFIGURED.
ENTER NEW AUTOKEY LINE:
DS3 <--- (this is supplied automatically)
READY

CHAPTER 9. AUTOKEY COMMAND 9-3

AUTO AUTOKEY/CMD
AUTO NOW SET TO AUTOKEY/CMD (nnn)
READY

Once a program has been set for auto-execution, the only way
one can bypass it is to hold down the KEYBOARD key while the DOS
is coming up. This action bypasses the auto-executed program and
enters the normal command interpreter. The user then can use the
MANUAL command to clear the auto-execution option.

9.6 A More Complicated Example

The following example uses many of the features of other
facilities in the Datapoint system besides simply AUTOKEY.
Explaining all of these in detail is beyond the scope of this
section. The intention here is just to demonstrate the
sophistication possible using AUTOKEY in conjunction with the
other facilities within the DOS.

Let's assume that XYZ Company is running an eight-port
Datashare system. Each of the company's seven sales offices
around the country has a Datapoint 1100 computer which is
connected up to the home office Datashare system as a port. (The
eighth port is used by the home office's secretary, Susie.)
During the day, each of the seven sales offices makes inquiries of
the central inventory, price, and model code files through a
system of Datashare programs, and another Datashare program lets
them key orders into a file called "ORDERSn" where n i~ their port
number. At the end of each business day, XYZ Company wants to
process these orders. First they put the seven files all into one
large file, sort it, and use a Datashare program to make
corresponding entries into the master order file. The master
order file is then reformatted and the index reconstructed. The
final step is to create a second copy of the master order file
onto magnetic tape, which will then be saved for backup purposes.

Since the operation just described is fairly lengthy, one of
the programmers at XYZ Company decided to allow it to run
unattended after everyone has gone home. They even set up Susie's
MASTER program so that it automatically takes down the Datashare
system and starts up the end-of-day processing one-half hour after
the company's Los Angeles sales office (two time zones behind the
Chicago main office) closes for the afternoon. When the daily
processing is completed, Datashare is brought back up again so
that it will be up by the time the first people start arriving at
the New York sales office the next morning, an hour before the
Chicago main office opens.

9-4 DISK OPERATING SYSTEM

In the event of an unanticipated power failure, the system
will recover and bring itself back up, resuming operations at the
last checkpoint established by AUTOKEY. Notice that the system is
also left in a state such that after the chain completes,
Datashare will automatically restart in the event of any possible
system failure. (NOTE: Datapoint 9350 disk systems using Diablo
disk drives will initialize with hardware in "WRITE PROTECT" mode
after power interruption.)

The following chain file ("OVERNITE/TXT") accomplishes the
preceding, assuming that sUbdirectory "SYSTEM" is used throughout
the chain. The chain file could be modified easily to eliminate
this assumption. However, the chain file can be made almost
arbitrarily complicated; the point here is simply to show one of
many possible techniques for handling unattended operations which
wish to restart automatically in the case of some failure. Notice
that the chain file might have to be modified depending on the
particular version of DSCON an installation is using.

II IFS S1
II. FIRST SET UP FOR AUTO RESTART IF REQUIRED.
AUTOKEY CHAIN OVERNITE;S1
AUTO AUTOKEY/CMD
BUILD NULL;!
!
II. NEXT APPEND TOGETHER THE SEVEN FILES.
SAPP ORDERS1,ORDERS2,SCRATCH
SAPP SCRATCH,ORDERS3,SCRATCH
SAPP SCRATCH,ORDERS4,SCRATCH
SAPP SCRATCH,ORDERS5,SCRATCH
SAPP SCRATCH,ORDERS6,SCRATCH
SAPP SCRATCH,ORDERS7,SCRATCH
II. NOW SCRATCH CONTAINS THE DAILY FILES.
AUTOKEY CHAIN OVERNITE;S2
II XIF
II IFS S1,S2
II. PHASE TWO SORTS FILE "SCRATCH" INTO "ORDERDAY".
SORT SCRATCH,ORDERDAY;1-5
II. NEXT CHECKPOINT HAVING BUILT "ORDERDAY".
AUTOKEY CHAIN OVERNITE;S3
II XIF
II IFS S1,S2,S3
II. PHASE THREE PROCESSES THE FILE WITH A DS3 PROGRAM.
DSCON
Y
N
Y
Y

CHAPTER 9. AUTO KEY COMMAND 9-5

1
DS3 PROCESS

The program PROCESS/DBC ends with ROLLOUT "CHAIN NULL" to end the
program and continue the chain.

II. THE MASTER ORDER FILE "ORDERMAS" NOW IS UPDATED.
AUTOKEY CHAIN OVERNITE;S4
II XIF
II IFS S1,S2,S3,S4
II. PHASE FOUR REFORMATS THE MASTER ORDER FILE.
REFORMAT ORDERMAS,SCRATCH:WORK2;R
II. "SCRATCH" NOW IS A REFORMATTED COpy OF "ORDERMAS".
AUTOKEY CHAIN OVERNITE;S5
II XIF
II IFS S1,S2,S3,S4,S5
II. PHASE FIVE COPIES "SCRATCH" BACK TO "ORDERMAS"
COpy SCRATCH:WORK2,ORDERMAS
II. "ORDERMAS" IS NOW READY FOR INDEXING.
AUTOKEY CHAIN OVERNITE;S6
II XIF
II IFS S1,S2,S3,S4,S5,S6
II. PHASE SIX RECREATES THE INDEX FOR "ORDERMAS"
INDEX ORDERMAS;1-16
II. THE INDEX HAS NOW BEEN REBUILT.
AUTOKEY CHAIN OVERNITE;S7
II XIF
II IFS S1,S2,S3,S4,S5,S6,S7
II. NOW DUMP MASTER FILE TO 9-TRACK MAGNETIC TAPE.
TAPE ORDERMAS/TXT,I/E
B .
o
200X4
X
* II. NOW THE BACKUP COpy OF "ORDERMAS" IS ON TAPE.
AUTOKEY CHAIN OVERNITE;S8
IIXIF
IIIFS 31,S2,S3,S4,S5,S6,S7,S8
DSCON
Y
N
N
8

9-6 DISK OPERATING SYSTEM

Y
AUTOKEY DS3
II. AND START UP DATASHARE FOR NEXT DAY.
DS3
II XIF

9.7 Special Considerations

When building long chain files that allow for automatic
restart, several considerations must be made. Among these are
that a file must not be changed in such a way that the change
cannot be repeated if the previous checkpoint is actually· used.
To accomplish this, frequently the file being updated must be
copied out to a scratch file, and the scratch file then updated.
Following the completion of the update is when another checkpoint
would be taken: following that the next phase would copy the
updated file back over the original. Note that a checkpoint (i.e.
resetting the AUTOKEY command line) would have to be before the
creation of the dummy copy to be updated; putting a checkpoint
between the creation of the copy to update and the actual updating
process could result in the updating of a partially updated copy.
A little thought when choosing places to update the AUTOKEY
command line is called for to ensure that the chain may be resumed
from any of them without incorrect results.

9.8 AUTOKEY and DATASHARE

Some users who make frequent use of the DATASHARE ROLLOUT
feature will notice that AUTO-ing AUTOKEY with the AUTOKEY command
line set to DSBACK will mean that whenever any port rolls out to
any program or chain of programs, Datashare is automatically
brought back up when that program or chain of programs finishes,
regardless of whether or not DSBACK was included at the end of the
port's chain file.

CHAPTER 9. AUTO KEY COMMAND 9-7

CHAPTER 10. BACKUP COMMAND

10.1 Purpose

The BACKUP command provides for making copies of DOS disks.
The user can make either an exact mirror image copy of the input
disk or can select reorganization, which will group files by
extension and file name, remove unnecessary segmentation and allow
deletion of unnecessary files. Reorganization also allows copying
of DOS disks onto disks with locked out cylinders that differ from
those on the input disk. Some special considerations apply for
specific disk configuration.
NOTE: BACKUP always copies the volume-id (VOLID) to the output
disk.

10.2 Use

A disk backup is initiated by the operator entering the
following command:

BACKUP <input drive>,<output drive>

Input drive and output drive are specified as :DRn, or :Dn,
or :<volid>. The drive selected as the INPUT DRIVE MUST BE WRITE
PROTECTED; that is, it must be in "read only" mode or have its
"protect" light on for 9370 and 9350 series drives respectively.
The requirement for the input drive to be write protected is
absent on the 9380 series flexible diskettes. The program will
respond by displaying the message:

DRIVE n SCRATCH?

If the disk on drive n is scratch (note that BACKUP deals
with logical drives), enter a "Y". Any other reply will cause

- the program to return to DOS. If you do reply "Y", the program
will display the message:

ARE YOU SURE?

If you are absolutely sure that you want to write over the
output disk, type "Y" again and press the enter key. Any other
reply will cause the program to return to DOS. If the output

CHAPTER 10. BACKUP COMMAND 10-1

(logical) disk has not been DOSGENed or the DOS file structure on
it has been damaged, the message:

DOSGEN YOUR DISK FIRST

will appear and control returns to DOS. If the output (logical)
disk has been DOSGENed and seems in reasonable shape, the
following message is displayed:

FILE REORGANIZATION?

If different cylinders are locked out on the input and output
disks (if the disks' lockout CATs do not match), a mirror image
BACKUP is not possible so the "FILE REORGANIZATION?" question is
bypassed. Instead, a message appears specifying that
reorganization is required and BACKUP with reorganization proceeds
as described below.

If you wish to reorganize the files being transferred to the
output disk, enter a "Y" in response to the reorganization
question. In this case, see the section on reorganizing files for
further instructions.

If you do not wish to reorganize your files and desire a
mirror image copy of your input disk, enter an "N" in response to
the reorganization question.

10.3 Mirror Image Copy

If you have typed "N" in response to the file reorganization
question, the program will ask the question:

DO YOU WANT THE OUTPP'T' COPY VERIFIED?

This question should
answer given has no effect
The question is maintained
not need to be modified.

The program then asks:

"ays be answered "Y". At present the
~e output is always write-verified.

;0 chain procedures invoking BACKUP do

DO YOU WANT TO COPY UNALLOCATED CLUSTERS?

Type "Y" and press the enter key if you want all data on the
disk copied regardless of whether or not it is in an area
all06ated by DOS. This option is preferred in cases where you
suspect that your DOS files may be partially destroyed or the

10-2 DISK OPERATING SYSTEM

output disk has never been fully initialized with data. Also use
this mirror image copy if you have the 9374 disk system and one of
the drive's heads gets misaligned. Backup will use the offset
feature to try and retrieve your data. If BACKUP uses the track
offset it will slow the program down but it could save your data.

Type "N" and press the enter key if you wish to copy your
disk as quickly as possible without copying unused areas of the
input disk. "Y" and "N" are the only replies allowed.

10.4 Reorganizing Files

If you have typed "Y" in response to the file reorganization
question, the program will copy the System files, sort the
Directory names, and allow the operator to delete files before
copying the files to the disk copy.

Backup with reoganization to drive 0 is not possible.

10.4.1 Copying DOS to Output Disk

Various program status messages will appear during the
copying of DOS. System tables are initialized and then the
SYSTEMn/SYS files are copied to the output disk.

10.4.2 Deleting Named Files

When all directory names have been sorted into file extension
followed by file name sequence the following question will be
displayed:

DELETE ANY FILES DURING REORGANIZATION?

Type "N" and press the enter key if all files are to be
copied. Type "Y" and press the enter key if you wish to delete
any files. If you reply "Y" a message asking which files are NOT
to be copied will appear. The lower screen will be filled by a
numbered list of files for you to choose from. Type the number or
range of numbers (nn or nn-nn) found next to names of individual
files you wish deleted. Type "ALL" and press the enter key if you
wish to delete all of the files in the list. The files selected
for deletion will be erased from the list. When all desired
deletions have been made from a list, type "." and press the enter
key to advance to the next list of file names.

CHAPTER 10. BACKUP COMMAND 10-3

When all file name lists have been examined, the program will
advance to the copy named files phase.

10.4.3 Copying Named Files

Files with names in the system directory are copied in
alphameric file extension, file name sequence. The name of each
file is displayed as it is copied. All files are written as close
together as possible with a minimum of segmentation.

10.5 Use of KEYBOARD and DISPLAY Keys

The KEYBOARD and DISPLAY keys may be pressed any time
messages are being displayed. Depressing the DISPLAY key will
hold the current display until the key is released. Depressing
the KEYBOARD key will cause the program to terminate and return to
DOS.

10.6 Error Messages

During the execution of BACKUP the following error messages
may appear:

*** PLEASE PROTECT YOUR INPUT DISK ***
Action: Write-disable the input drive.

INVALID DRIVE SPECIFICATION!

Action: Retype the BACKUP command with correct <input-drive> and
<output-drive> specification.

ILLEGAL OUTPUT DRIVE!

Action: <input-drive> and <output-drive> have been specified as
the same drive! Retype BACKUP command with correct specification.

BAD CLUSTER ALLOC TABLE!

Action: A bad Cluster Allocation Table has been detected on the
input disk. The Cluster Allocation Table may be able to be fixed
using the REPAIR command.

CYLINDER 0 OF BACKUP DISK IS UNUSABLE!

10-4 DISK OPERATING SYSTEM

Action: Your scratch disk cannot be used for a system disk due to
surface defects in cylinder O. Use another output disk and start
over.

SYSTEMn ISYS IS MISSING!

Action: Your DOS disk cannot be reorganized due to a missing
system file. Catalog the missing system file on your input disk
and start over.

PARITY- :DRn address

Action: An irrecoverable parity error has been detected on drive n
during the BACKUP operation. The address is shown for each error.
If drive n is your output disk, DOSGEN must be rerun to lockout
the bad addresses or use a different scratch disk for mirror image
copy. If drive n is your input disk, new parity will be computed
and the record will be copied. Note the error address and check
for errors when copy is complete.

FORWARD OFFSET TRACK BEING USED

REVERSE OFFSET TRACK BEING USED

Action: On a 9374 disk system a parity error has been detected on
the input drive and offset tracking is being used to try to
recover the data. There will be 10 attempts on both sides of the
track.

10.7 Reorganizing Files for Faster Processing

After a DOS disk has been used for awhile, the file structure
becomes fragmented and related files become scattered. The more
the disk is used the more total system performance is degraded due
to increased disk access time. System degradation is especially
noticeable when DATASHARE is being used. File reorganization
using the BACKUP program is one way to clean up DOS disks and
improve their efficiency.

BACKUP reorganization improves system efficiency by making
the following changes:

. File segments are consolidated

• Files are packed more closely together

CHAPTER 10. BACKUP COMMAND 10-5

· Related files are clustered together

· Unused trash files are removed (optionally)

· Files are rewritten reducing marginal parity errors

10.8 BACKUP with CHAIN

Because BACKUP requires that its input drives be write
protected, does not abort if parity errors occur during the
backup, and may ask different questions depending upon the
condition of the input and output disks, BACKUP generally should
not be invoked from a CHAIN. Since the BACKUP operation is so
critical to the protection of important files, an operator should
monitor the entire backup operation.

10.9 Clicks during Copying

A click occurs each time an unused sector is copied
(reorganization mode only). A file which, when copied, results in
a lot of clicks (more than a dozen, perhaps) can probably be
reduced in size, without any data loss, by using APP or SAPP as
appropriate.

10.10 Special Considerations for BACKUP

When using BACKUP on the 11-platter 9370 disk packs, it is
important to remember that each disk is two logical drives. Since
BACKUP deals with logical drives, BACKUP must be run twice, once
from each logical drive, to backup an entire physical disk.

Also, BACKUP will not allow backing up from one logical drive
to the other one on the same disk. There is no real backup value,
since the two copies would be physically on one pack.

With the 9374 and 9354 disk drives,it is important to
remember that the drive contains a fixed platter that is a
separate logical drive. BACKUP between the fixed and removable
platters is possible.

10-6 DISK OPERATING SYSTEM

CHAPTER 11. BLOKEDIT COMMAND

11.1 Purpose

The BLOKEDIT command provides for DOS text file manipulation.
The command copies lines of text from any DOS text file(s) to
create a new text file.

The BLOKEDIT command is useful for such things as:

New program source file generation by copying
routines from existing program source files;

Existing program source file re-arranging by
copying the lines of source-code into a new
sequence (into a new source file).

Re-arranging lines or paragraphs of a SCRIBE
file into a new file.

In this Chapter, the following applies:

Text file means a DOS text file as defined in
the REFORMAT chapter.

Line means one line of a text file as displayed
by the DOS LIST program.

11.2 File Descriptions

BLOKEDIT deals only with text files. For any given
application there will be one text file called the COMMAND FILE
which will hold the controlling commands for BLOKEDIT. Optionally
the controlling commands may be entered directly to BLOKEDIT via
the keyboard by defaulting the command file parameter. There will
be one or more text files called SOURCE FILES from which lines of
text will be copied. And there will be one text file called the
NEW FILE which will be the desired end result for the application.

CHAPTER 11. BLOKEDIT COMMAND 11-1

11.2.1 Command Statement Lines

The command statements are the controlling factor for a
BLOKEDIT execution. The command statements specify which source
files will be used and which lines of text will be copied from
them. If the command statements are to be read from a command
file it must be generated by the DOS. EDIT command, or DOS. BUILD
command, etc., before BLOKEDIT can be used.

There are three kinds of statement lines that are meaningful
to BLOKEDIT: COMMENT lines, COMMAND lines, and QUOTED lines.

A COMMENT line is a line which has a first character of
period.

This is an example of COMMENT LINES:

. THESE THREE LINES ARE COMMENT LINES.

As in program source files, a comment line may have
explanatory notes or nothing at all following the period.

A COMMAND LINE is a line which has a SOURCE FILE NAME and/or
source file LINE NUMBERS, or begins with a double quote symbol
(") .

The following are some example command lines:

FILENAME/EXT:DRO
1-100
350-377
150/TXT

NAME THE SOURCE FILE
COPY LINES 1 THRU 100
COpy LINES 350 THRU 377
NAME THE SOURCE FILE

A command line must have a first character of an upper-case
alphabetic character, or a digit, or a double quote symbol.

A command line that begins with an upper-case alphabetic
character indicates that a new SOURCE FILE is being named. A new
source file can be named only by putting the name of the file at
the very beginning of the command line. Optionally, the extension
and/or drive number for the file may be included with the source
file name. If the source file name begins with a digit the file
extension must be given.

A command line that begins with a digit indicates that the
command line will have one or more numbers, which are the numbers

11-2 DISK OPERATING SYSTEM

of the lines to be copied from the source file previously
specified into the new file.

A command line that begins with a double quote symbol
indicates the beginning/ending of QUOTED LINES. The only
information used by BLOKEDIT in a command line that begins with a
(") is the (") itself, therefore the rest of the line can be used
for comments.

A QUOTED LINE is a line between a pair of command lines which
begin with a double quote symbol.

This is an example of QUOTED LINES:

" THIS IS THE BEGINNING OF QUOTED LINES COMMAND LINE.
INCMNT HL COUNT POINT TO COUNTER

L~ LOAD TO "A" REGISTER
AD INCREMENT BY 1
Lm RESTORE TO MEMORY

" THIS IS THE ENDING OF QUOTED LINES COMMAND LINE.

There may be more than one quoted line between the command
lines that begin with ("). A quoted line will be copied directly
from the command file or keyboard to the new file. Quoted lines
enable a BLOKEDIT user to include original lines of text in a new
file along with lines copied from source files.

11.2.2 Source File

The SOURCE FILE is a text file from which lines will be
copied. Source files are named in the command lines for a
BLOKEDIT application, and the lines to be copied from the source
file will also be specified in the command lines. It will be
useful to have a listing of a source file with line numbers, as
produced by the LIST command, when creating the command statement
lines for a BLOKEDIT application.

11.2.3 New File

The NEW FILE is a text file produced by the BLOKEDIT command.
The new file is named at BLOKEDIT execution time by the second
file specification entered on the command line.

CHAPTER 11. BLOKEDIT COMMAND 11-3

11.3 Using BLOKEDIT

Before the BLOKEDIT command can be used one must create a
command file, unless the command statements are to be entered via
the keyboard. When the BLOKEDIT command is to be executed, the
operator must enter the following command line:

BLOKEDIT [<file spec>],<file spec>

The first file specification refers to the command file, if not
specified the commands will be entered via the keyboard. The
second file specification names the new (output) file. If no
extension is supplied with the first file specification, TXT is
assumed. If no extension is supplied with the second file
specification, the extension given or assumed for the first file
is used. If no drive is given for the first file, all drives are
searched. If no drive is given for the second file, the drive
given or assumed for the first file is used. The specified output
file must not exist on any drive on line.

11.4 Messages

This section describes the operator messages that BLOKEDIT
may display on the CRT screen during execution. Some of the
messages are monitor messages to keep the operator informed of the
progress of the program, while other messages are error messages.
If the keyboard was selected as input to BLOKEDIT, the user will
be prompted by the "Please enter BLOKEDIT command Enter * to
exit." message when input is required. The character * will
terminate BLOKEDIT and return to DOS.

The general format of the CRT display screen varies depending
on the source of the BLOKEDIT command statements.

If the command statements are being read from a command file
the format of the display is!

11-4 DISK OPERATING SYSTEM

I DOS.VER. TEXT FILE BLOCKEDIT DATE OUTPUT FILE IS XXXXX/XX \
PROCESSING COMMAND LINE nnn CURRENT SOURCE IS XXXXXXX/XXX:DR

Error Message Displayed Here If Necessary

\ __ 1

If the command statements are being entered via the CRT keyboard,
the format is:

I DOS.VER. TEXT FILE BLOCKEDIT DATE OUTPUT FILE IS XXXXXXX/XX \
PROCESSING COMMAND LINE nnn CURRENT SOURCE FILE IS -NONE-I :DR

PLEASE ENTER A BLOKEDIT COMMAND ENTER * TO EXIT

f
f
f
f
f
f

f f
f f
f f
f f

\--1

As BLOKEDIT commands are entered on line 12, they are rolled thru
lines 9-4.

CHAPTER 11. BLOKEDIT COMMAND 11-5

11.4.1 Informative Messages

PROCESSING COMMAND LINE .. CURRENT SOURCE FILE IS .. I .. :DR.

This message is the BLOKEDIT monitor message. This message
is displayed while BLOKEDIT is writing lines of text to the new
file. The monitor message displays the command file line number
currently being processed and the name, extension, and drive
number of the last named source file.

SOURCE FILE WENT TO E.O.F.

This messge is displayed if the source file from whi6h lines
were being copied ended before the specified lines were finished.

BLOKEDIT TRANSFER COMPLETE
OUTPUT FILE WAS name LINE COUNT WAS nnn

This message is displayed when all of the command file lines have
been executed. The number of lines in the new file is displayed
following the second line.

11.4.2 Fatal Errors

If BLOKEDIT detects a fatal error in the command statement
line the monitor message is rolled up the screen, an appropriate
error message is displayed, and the DOS entry ERROR$ is called.

NEW FILE NAME REQUIRED

This message is displayed if the operator did not name a new
file when the BLOKEDIT command was called.

COMMAND FILE DRIVE INVALID

This message is displayed if the operator specified for the
command file a drive number that is invalid.

NEW FILE DRIVE INVALID

This message is displayed if the operator specified for the
new file a drive number that is invalid.

COMMAND AND NEW FILE NAMES MUST NOT BE IDENTICAL

This message is displayed if the operator specified command
file and new file names the same and the extension and the drives

11-6 DISK OPERATING SYSTEM

for the files were specified or assumed to be the same.
Defaulting of extensions and drives is described in an earlier
paragraph.

COMMAND FILE NOT FOUND

This message is displayed if the command file name was not
found on the .dri ve (s) speci fi ed or assumed.

This message is displayed if the specified output file was
found on the drive(s) specified or assumed. BLOKEDIT will not
write into an existing file if commands are being read from a
command file. If commands are being entered to BLOKEDIT via the
KEYBOARD, the operator is given the option to overwrite the
existing file.

***NEW FILE NAME IN USE, OVERWRITE IT? ***
[Answer with a Yes or No]

If the operator answers Yes (Y) the file is overwritten.
If the reply is No (N) BLOKEDIT returns control to DOS.

BAD FILE SPECIFICATION

This message is displayed if the first character of a command
file line, other than a quoted line, is an upper-case alpha
character but the DOS file specification was not recognizeable.

11.4.3 Selectively Fatal Errors

These errors are fatal when BLOKEDIT is reading a command
file, and informative when commands are being entered via the
keyboard.

SOURCE FILE NOT FOUND

This message is displayed if the source file specified could
not be found. It is probably either misspelled or in a different
subdirectory.

BAD LINE NUMBER SPECIFICATION

This message is displayed if a command file line other than a
quoted line began with a digit but contained an unrecognizable
line number specification.

CHAPTER 11. BLOKEDIT COMMAND 11-7

Here are some examples of valid line numbers:

4
999999
100-364

A single digit is acceptable.
A line number may have up to six digits.
First and last line to be selected are
separated by a dash.

34,55-78,100-147 Commas separate line specifications.

Here are some examples of invalid line numbers:

1A

1234567
17-34-77

Only "-", ",", or space after a digit,
unless the line is a source file
name beginning with a digit. If it is,
an extension must be given.
Number has more than six digits.
Only two numbers separated by "_H.

LINE NUMBER ZERO IS NOT VALID

This message is displayed if a line number of zero is
specifed in a command line. It is ignored if entered via the
keyboard.

START LINE NO. > END LINE NO

This message is displayed if the first number of a line
number pair is larger than the second number of the pair, as in:
235-176. It is ignored if entered via the keyboard.

BAD DATA IN SOURCE FILE LINE nnn *

This message is displayed if BLOKEDIT discovers non-ASCII
characters in a source file. The line number will be displayed
following the message. If commands are being entered via the
keyboard the source file is reselected, and next command is
requested.

NO VALID SOURCE FILE FOR TRANSFER

This message is displayed if BLOKEDIT discovers line numbers
to be transfered from a source file when there is no open source
file.

11-8 DISK OPERATING SYSTEM

FORMAT OR RANGE ERROR ON SOURCE FILE

This message is displayed if DOS discovers a file which can
not be read. If commands are being entered via the keyboard the
source file will be de-selected, and next command requested.

CHAPTER 11. BLOKEDIT COMMAND 11-9

CHAPTER 12. BUILD COMMAND

12.1 Purpose

BUILD provides an alternative means to create a text file
without having to use the standard DOS editor. BUILD is useful
for rapid generation of very short text files, such as tWG and
three line CHAIN files. Also, BUILD is usable from within a
CHAIN.

12.2 Use

The BUILD command is invoked by entering the command line:

BUILD <file spec>[;<end character>]

The file specification defines the ou· ~ file. This output
file specification is always required. If the named file does not
exist, it is created. The default extension is ITXT.

The end character is optional. If no end character is
specified on the command line, BUILD terminates upon receiving a
null input line (a null input line is a line consisting of only an
ENTER; a blank line is not a null line).

BUILD accepts input lines from the keyboard and writes each
one to the output file. When BUILD is ready to accept an input
line it displays a colon (:) as a prompting character. Each input
line BUILD receives is tested for the presence of the specified
end character, if any, as the first character entered. If the end
character is present as the only character of the entered line,
the end line is discarded (it is not written to the output file),
and an end of file mark is written to the output file and the
output file closed by returning to DOS.

Entering an end character followed by a string will pass the
string to the output line without the end character ... and will
not terminate BUILD. This action allows entering CHAIN commands
into a chain file being written by BUILD from within an active
CHAIN.

CHAPTER 12. BUILD COMMAND 12-1

12.3 A Simple Example

Suppose that the operator wishes to construct a simple CHAIN
file to establish a program to be auto-executed, so that the
auto-execute request can be accomplished later with a Single
command line entered at the keyboard. All that is required is to
enter at the system console:

BUILD <chain file spec>;*
AUTOKEY <program name>
AUTO AUTOKEY/CMD
*
Upon recelvlng the "I" input line, BUILD closes the output

file and terminates. Note that in the two places where the "I"
appears, any enterable character could have been used. (This
allows nesting calls to BUILD, which can be very useful in the
BUILDing of chain files). After the BUILD command is finished,
the output file named on the BUILD command line contains the
following two lines:

AUTOKEY <program name>
AUTO AUTOKEY/CMD

It is also possible, through BUILD nesting, to create chain
files which during execution of the chain construct other chain
files and execute them automatically upon completion of the first
chain (since any statement of a chain file is allowed to be a
CHAIN command).

The references to CHAIN made here may be premature, since
CHAIN is discussed in a later chapter, but are included because
BUILD and CHAIN can be of great usefulness when used together in
this manner.

The KEYBOARD and DI~ ~ keys may be pressed any time
messages are being displaJ The keys will be effective just
prior to the display of th .ompting ":". Depressing the DISPLAY
key will hold the current display until the key is released.
Depressing the KEYBOARD key will cause the program to terminate
and return to DOS.

12-2 DISK OPERATING SYSTEM

CHAPTER 13. CAT COMMAND

13.1 Purpose

The CAT command selectively displays filenames in the DOS
directory or in a library directory. One may choose to display all
cataloged filenames on all drives online or specific filenames on
specific drives.

13.2 Use

The CAT command is invoked by entering the command line:

CAT [<name>][</ext>][:DR<n>][,L]

where: <name> specifies the filename or a portion of the
filename, <ext> specifies the extension or a portion of the
extension, <n> specifies the logical disk drive number, and L
specifies list only those files in the current subdirectory.

To display a library directory enter:

CAT <library name>*

To display the UTILITY/SYS directory enter:

CAT *
Directory entries are displayed in the form:

NAME/EXTENSION (PFN)P

where PFN is the physical file number in octal (0-0377) and P is
the protection on the file; D for deletion, W for write, and blank
for none. If the file displayed is in a subdirectory other than
system, the directory entry is displayed in the form

NAME/EXTENSION-(PFN)P

with the dash indicating a subdirectory entry. All drives are
searched, unless a specific drive is requested, and as each drive
is scanned, the line

CHAPTER 13. CAT COMMAND 13-1

---- DRIVE n VOLUME ID (volid) SUBDIRECTORY (subdirectory name):

is displayed. This line is not displayed if the drive is not on
line, or if no files from it are to be displayed.

Depressing the DISPLAY key causes the catalog display to
pause as long as the key is held. Depressing the KEYBOARD key
causes the catalog display to terminate. If the CAT command is
parameterized by only an extension, only files of that extension
will be displayed. If the CAT command is parameterized by only a
name, only fil~s of that name (all extensions) will be displayed.
If the CAT command is parameterized bya name and an extension,
only files of that root name and extension (all drives) will be
displayed. If the CAT command is parameterized by only the drive
number, only files on that drive will be displayed. If only a
portion of the filename is entered, all files beginning with the
letters specified will be displayed. For example, entering:

CAT IT

would cause the display of all files on all on-line drives whose
extensions start with "IT".

Entering:

CAT MA:WORK2

would cause the display of all files on symbolic drive "WORK2"
whose file names start with "MA".

13-2 DISK .OPERATING SYSTEM

CHAPTER 14. CHAIN COMMAND

14.1 Introduction

The CHAIN command enables a user to create and execute
procedure files. The chain file should contain the commands to
invoke all required programs, and all inputs required by the
invoked programs. Basically, CHAIN replaces the DOS Keyboard
Entry Routine with one that reads lines from a procedure file each
time the Keyboard Entry Routine (KEYIN$) is called. Each time any
program would normally request a line to be entered from the
keyboard, it will be read from the Procedure File. This reading
of lines from a-Procedure File is transparent to the executing
program. When the last line of the Procedure File has been re~d,
and a new DOS command is desired by the system, DOS is reloaded
and commands are accepted from the keyboard.

The CHAIN command has two separate functions which are
performed at different times. They are Compilation and Execution
phase.

Compilation Phase

CHAIN executes a compilation phase in which statements are
read from the chain input file. During this phase all compile
time decisions are made and micro substitution is done. The
result of this phase is a Procedure File named CHAINP/SYS. This
Procedure File consists only of statements needed for the
execution phase. The procedure file name will contain the
partition number, instead of a "PH, if CHAIN is. run under PS.

Execution Phase

The execution phase of CHAIN is the interface to the
operating system and the control of retrieval of information from
the Procedure File. During the execution phase, CHAIN/OV1
overlays the DOS KEYIN$ routine with a disk read routine that fits
in the same space. After CHAIN/OV1 has been loaded the first line
is read from the Procedure File and given to DOS as input.

When a routine calls KEYIN$ for a line, CHAINJOV1 fetches a
line from the Procedure File. The return from CHAIN/OV1 appears
the same as it would from KEYIN$. The HL and DE registers are the

CHAPTER 14. CHAIN COMMAND

same as if the line had been entered by the user from the
keyboard. If the line read is longer than the maximum specified
by the calling program the program is aborted and the chain
abondoned. The same is true if a program is requesting a line and
the procedure file is at end of file.

When a program invoked by the CHAIN Procedure File terminates
by jumping to the DOS EXIT$ or NXTCMD the CHAIN/OV1 routine reads
the next statement, if present, from the Procedure File. If the
end of file is reached when DOS is requesting another command, the
CHAIN is determined to be finished. At this time, normal
termination of CHAIN, the procedure file is deleted and commands
can be entered via the keyboard.

14.2 Tag Definition

The CHAIN command line can contain both tag names and/or tag
names and values for the tags. These parameters follow the
semicolon (;) on the command line which invokes CHAIN. The tag
names can be from one to eight characters in length and may have
values from one to seventy characters in lenght. A tag must
contain only letters or digits. The value of a tag may contain
any valid character except comma (,), equals (=) or pound sign
(#). The character restriction depends on the syntax being used.

A tag is defined by just its presence on the CHAIN command
line. Tags may have a value given to them by one of the following
syntaxes:

CHAIN DOIT;LIST,DATE=30NOV76,TIME=1500hr

CHAIN DOIT;LIST,DATE#30NOV76#,TIME#1500hr#

(New Syntax)

(Old Syntax)

Both syntax structures are supported and the results of the
two CHAIN commands is identical. The tag LIST has been defined
but has a null value; DATE has the value of 30NOV76 and TIME has
the value of 1500hr.

CHAIN allows two uses to be made of tags:

1.) A tag can be tested to determine whether it was defined
on the CHAIN command line.

2.) The value of the tag can be substituted on CHAIN input
statements before the line is written to the Procedure File.

14-2 DISK OPERATING SYSTEM

14.3 Compilation Phase Directives

All CHAIN directives are denoted by the characters II as the
first two on a line. Any number of spaces (including zero) are
scanned until the CHAIN directive is reached. The first thing
after the II must be a valid CHAIN directive else an error message
is issued and CHAIN is aborted. The following is a list of these
statements.

IIIFS
IIIFC
IIXIF
IIELSE
IIBEGIN
IIEND
II.
11*
IIABORT
IIABTIF

14.3.1 IF Directive

IF SET (TAG DEFINED)
IF CLEAR (TAG NOT DEFINED)
END OF IF
REVERSE EFFECT OF IF
BRACKETS A GROUP OF
IF/ELSE/XIF STATEMENTS
EXECUTION TIME COMMENT
EXECUTION TIME BREAKPOINT
ABORT CHAIN COMPILATION
CONDITIONALLY ABORT CHAIN EXECUTION
COMPILATION TIME COMMENT. (Note that the II's
are not present)

The IF directive has two variations, IFS and IFC, which are
IF SET and IF CLEAR. The IFS directive proves positive if the tag
named appeared on the CHAIN command line, and negative if the tag
was omitted.

For example:
IIIFS LIST

will prove positive if LIST was mentioned in the CHAIN command
line, and negative if the tag does not exist. The opposite of
this is true for the IFC directive.

For example:
IIIFC LIST

will prove positive if LIST was omitted and negative if it
appeared on the CHAIN command line.

Simple logical operations can be performed on IF directives.
The tags to be used are 'separated by logical operators. The
logical OR is indicated by 'I' (vertical bar) or ',' (comma). The
logical AND is indicated by '&' (ampersand) or '.' (period). For
example the following lines are in the file DOlT:

CHAPTER 14. CHAIN COMMAND 14-3

IIIFS DATE&TIME:QUICK or IIIFS DATE. TIME, QUICK"
SNAP TEST SNAP TEST

If DATE AND TIME OR QUICK are defined on the CHAIN command line
the SNAP test line will be included in the procedure file. CHAIN
DOITjDATE=30NOV76,TIME=1500hr or CHAIN DOITjQUICK or CHAIN
DOITjDATE,TIME will all result in a true logical condition and the
SNAP line will be included.

IF directives are only evaluated if lines are being included.
If one IF directive has proven negative and has inhibited the use
of lines, all following IF directives will be ignored until either
an ELSE or XIF statement is found.

For example:
IIIFS DATE
IIIFS TIME
SNAP TEST
IIXIF

If DATE was not defined, all lines until the II XIF will be
ignored. In this example the IIIFS TIME statement would not be
evaluated and the SNAP TEST would not be included even if TIME was
defined.

14.3.2 ELSE/XIF Directives

CHAIN has two directives that will alter the inclusion of
lines from an IF directive. The first is the XIF directive. It
will unconditionally terminate the range of the last IF directiv~.
The second is the ELSE directive; it will reverse the reSults of
the last IF directivej that is to say, if lines were being skipped
because the last IF proved negative, an ELSE would cause lines to
be included.

Example, the DOlT file contains the following lines:

IIIFS LIST
SNAP TESTjL
IIELSE
SNAP TEST
IIXIF
IIIFS TAPE
MOUTjD,30NOV76,V
TEST lABS
* IIXIF

14-4 DISK OPERATING SYSTEM

If CHAIN is invoked by 'CHAIN DOITiLIST' the procedure file
will contain

SNAP TESTiL

If invoked by 'CHAIN DOITjTAPE', the procedure file will contain

SNAP TEST
MOUTiD,30NOV76,V
TEST/ABS
*

14.4 Tag Value Substitution

A tag value is substituted whenever a pair of 'I' symbols are
found with a syntactically valid tag name between them. The value
substituted is the tag value given in the CHAIN command line.

An example: Contents of a file called DOlT

SNAP TEST i XL
TEST PROGRAM ASSEMBLED ON #DATE# -- #TIME#

SNAP #NAME#iXL
#NAME# PROGRAM ASSEMBLED ON #DATE# -- #TIME#

If CHAIN is invoked by
"CHAIN DOITiTIME=2400hr,DATE=29NOV76,NAME=TEST2" the procedure
file will contain

SNAP TESTiXL
TEST PROGRAM ASSEMBLED ON 29NOV76 -- 2400hr

SNAP TEST2iXL
TEST2 PROGRAM ASSEMBLED ON 29NOV76 -- 2400hr

CHAPTER 14. CHAIN COMMAND 14-5

If a tag is mentioned in the CHAIN command line but given no
value and if the value is to be used for substitution, a null
value is substituted for the #tag# within the line. The effect is
that the#tag# characters disappear from the line. For example,
if CHAIN was invoked by "CHAIN DOIT;DATE=29NOV76,NAME=TEST2" the
procedure file will contain

SNAP TEST;XL
TEST PROGRAM ASSEMBLED ON 29NOV76 -
SNAP TEST2;XL
TEST2 PROGRAM ASSEMBLED ON 29NOV76 --

14.5 BEGINIEND Directives

The BEGIN and END statements allow groups of IF/ELSE/XIF
statements to be parenthesized. A counter called the BEGINIEND
counter is initialized to zero when compilation of a procedure
begins. If the use of procedural lines is turned off and a BEGIN
operator is encountered, then the BEGINIEND counter is
incremented. If an END operator is encountered, then the
BEGINIEND counter is decremented unless it is already zero. The
ELSE and XIF operators have no effect if the BEGIN lEND counter is
not equal to zero. For example:

II IFS FLAG1
ASM TEST 1 ; XL
TEST PROGRAM ONE
II ELSE
II BEGIN
II IFS FLAG2
ASM TEST2;XL
TEST PROGRAM TWO
// ELSE
ASM TESTTEST;XL
TEST TESTER
/1 XIF
II END
II XIF
// IFS FLAG3.FLAG27
LIST SCRATCH;L
THE SCRATCH FILE AT FLAG 27
// XIF

The 6th through the 12th lines will not be used if FLAG1
exists, notwithstanding the fact that there is an ELSE and XIF
operator within those lines, because the BEGINIEND pair prevented

14-6 DISK OPERATING SYSTEM

these statements from having any effect.

14.6 ABORT Directives

The IIABORT statement will cause CHAIN to return to DOS if it
is processed. For example:

IIIFC TIMEIDATE
.**** TIME AND DATE ARE BOTH REQUIRED
IIABORT
IIXIF

If the Procedure File is invoked with TIME or DATE missing, the
error message comment line would be displayed, and the compilation
of the input file would ABORT.

The IIABTIF statement will conditionally cause the execution
phase of CHAIN to ABORT. This statement causes DOSFLAG to be
examined and if bit 7 (ABTIF) is on, the chaining will abort. Bit
7 of DOSFLAG is the abnormal program completion bit. If errors
have been found during the execution of the last program the ABTIF
bit should be set. For example, the procedure file contains:

KILL TESTFILE/CMD
Y
IIABTIF
KILL OUTPUT/TXT
y

If the file TESTFILE/CMD is not found by KILL, it will set the
ABTIF bit. When the IIABTIF statement is processed the abnormal
program completion bit will be checked, and in this case it will
be on, so the CHAIN will be aborted.

CHAPTER 14. CHAIN COMMAND 14-7

14.7 Comments

CHAIN allows for two types of comment lines within the
procedural file. One type is the execution time comment. This
type may appear only before a DOS command entry and will not
appear until just before that command is to be executed. An
execution time comment can appear only just before a command
because at any other place in a procedure file, the comment would
be presented as keyboard response to an executing program.
Comments can be placed at the end of a procedure, since this
location is equivalent to immediately prior to a command. For
example, the procedure file containing:

II. ASSEMBLY OF THE TEST PROGRAM
ASM TEST; XL
TEST PROGRAM

would cause the first line to be displayed before the assembly was
executed. A variation on the execution time comment is the
operator break point. For example, the procedure file containing:

11* INSERT TAPE Z12548 INTO THE FRONT CASSETTE DECK
MOUT ;LV
TEST
DATAITXT
*

would cause a BEEP and the first line to be displayed. At this
point the machine would wait for the operator to depress either
the KEYBOARD or DISPLAY key and then continue with the MOUT
process.

The second type of comment line is a compilation time
comment. This line is not included in the procedure but is
displayed on the screen immediately after it is read from the
procedural file. This is useful in communicating to the operator
what procedure is about to be followed by CHAIN.

Both types of comment lines will be ignored (not displayed or
written) just as other procedure lines if a test has proven
negative and an ELSE or XIF operator has not been reached. For
example, if the following procedure file MAKETEST was created:

ASSEMBLY OF TEST PROGRAM
II IFS LIST

YOU ARE GOING TO GET A LISTING
ASM TEST; XL
TEST PROGRAM

14-8 DISK OPERATING SYSTEM

II ELSE
YOU AREN'T GOING TO GET A LISTING

ASM TEST

and the CHAIN command:

CHAIN MAKELIST;LIST

was given, then only the lines:

ASSEMBLY OF TEST PROGRAM
· YOU ARE GOING TO GET A LISTING

will appear on the screen before the procedure is executed. If,
however, the CHAIN command:

CHAIN MAKETEST

was given, then only the lines:

· ASSEMBLY OF TEST PROGRAM
· YOU AREN'T GOING TO GET A LISTING

will appear on the screen before the procedure is executed.

CHAPTER 14. CHAIN COMMAND 14-9

14.8 Complex CHAIN Example

As an example of a complex CHAIN operation, consider the
following procedure file, RUNTEST. This file is part of a series
of CHAIN procedures for program generation and testing. RUNTEST
builds a procedure file for program assembly; the resulting
procedure file would be run by a later CHAIN.

RUNTEST recognizes several tags:

14-10

P5500 - mention of this tag indicates a 5500 processor
will be used for assembly.

REL mention of this tag, along with P5500 will cause
the relocatable assembler to be used.

FLAG the substitution value for this tag will be tag
tested for list control on the output procedure
file.

PROG the substitution value for this tag will be a tag
to provide program name in the output procedure
file.

DATE the substitution value for this tag will provide
the assembly date in the output procedure file.

DISK OPERATING SYSTEM

Complex CHAINing example:

TEST FOR 5500 PROCESSOR FLAG

· IIIFC P5500
IIBEGIN

· BEGIN PROCEDURE FOR 2200 ASSEMBLY

BUILD ASMIT;*

· NOTE HOW BEGINNING INPUT LINE TO BUILD/CMD WITH THE TERMINATION CHARACTER
· ALLOWS ENTERING CHAIN COMMANDS TO THE OUTPUT FILE. THE LINE IMMEDIATELY
· BELOW IS WRITTEN OUT AS "IIIFS #FLAG#"; IF IT HAD NOT BEGUN WITH "*", IT
· WOULD HAVE BEEN INTERPRETED AS A CHAIN DIRECTIVE FOR THE CURRENT CHAIN.
· *IIIFS #FLAG#
11 ASSEMBLY LISTING BE SURE PRINTER IS READY
ASM5 1/#PROG##; LX
##PROG## ASSEMBLY #DATE#
*IIELSE
ASM5 1N/PROG##
*IIXIF
*
IIEND

· THIS "IIELSE~ INSTRUCTION REVERSES THE EFFECT OF THE "IIIFC P5500" ABOVE

IIELSE
IIBEGIN

· BEGIN PROCEDURE FOR 5500 ASSEMBLY USING SNAP/1 OR SNAP/2 BASED ON "REL"
FLAG.

· THE "BEGIN" ABOVE CAUSES THE "XIF"S AND "ELSE"S IN THE FOLLOWING SECTION
· TO AFFECT ON'LY DIRECTIVES AT THE SAME BEGIN/END LEVEL, AND NOT THE
· "IIELSE" DIRECTIVE ABOVE, WHICH CONTROLS THE ENTIRE 5500 ASSEMBLY
· SECTION.

BUILD SNAPIT;*
* I I IF S 1IFLAG#
11 ASSEMBLY LISTING BE SURE PRINTER IS READY

· THE FOLLOWING DIRECTIVES ARE RECOGNIZED DURING CHAIN COMPILATION AND
· CONTROL SELECTION OF LINES TO FOLLOW THE BUILD COMMAND ABOVE.

· IIIFS REL

CHAPTER 14. CHAIN COMMAND 14-11

SNAP2 ##PROG##;LX
IIELSE
SNAP ##PROG##;LX
IIXIF
##PROG## ASSEMBLY #DATE#
*IIELSE
IIIFS REL
SNAP2 flftPROGft#
IIELSE
SNAP fNtPROGflfl
IIXIF
*IIXIF
IIIFS REL

· AGAIN TEST IF RELOCATABLE ASSEMBLER IS DESIRED. IF SO, ADD LINK COMMAND.

*IIIFS fIFLAG#
LINK flftPROGflfl; L
LINK MAP FOR ##PROG##
*IIELSE
LINK fFfIPROGflfl
*IIXIF
IIXIF
*
· PROCEDURE IS EFFECTIVELY FINISHED AT THIS POINT, BUT IT IS ESSENTIAL TO
· PROVIDE AN "END" DIRECTIVE TO MATCH THE UNMATCHED "BEGIN" ABOVE, AND
· AN "XIF" TO TERMINATE THE "ELSE" IMMEDIATELY PRIOR TO THE "BEGIN".

· IIEND
IIXIF

RESULT OF "CHAIN RUNTEST;P5500,REL,FLAG=LIST,PROG=NAME,DATE=21JAN77"

IIIFS LIST
11* ASSEMBLY LISTING BE SURE PRINTER IS READY
SNAP2 #NAME#;LX
#NAME# ASSEMBLY 21JAN77
IIELSE
SNAP2 flNAMEfl
IIXIF
IIIFS LIST
LINK fINAMEfl; L
LINK MAP FOR #NAME#
IIELSE
LINK flNAMEfl
IIXIF

14-12 DISK OPERATING SYSTEM

RESULT OF "CHAIN RUNTEST;FLAG=PRINT,PROG=PROG,DATE"

IIIFS PRINT
11* ASSEMBLY LISTING
ASM5 #PROG#jLX
#PROG# ASSEMBLY
IIELSE
ASM5 #PROG#
IIXIF

BE SURE PRINTER IS READY

14.9 Resuming An Aborted CHAIN

Before the CHAIN overlay fetches the next DOS command it
stores in the CHAINP/SYS file pointers for the line to be used.
If something goes wrong during the DOS command which follows and
the procedure is aborted, CHAIN still knows where it was in the
CHAINP/SYS file when the problem occurred. Since CHAIN does not
delete the CHAINP/SYS file unless the procedure completes
successfully, it can pick up where it stopped in the CHAINP/SYS
file if the operator can correct the condition which caused the
procedure to abort in the first place. Often, the reason for the
abort is something correctable like the disk running out of files.
In this case, the operator need only correct the condition and
then enter:

CHAIN *
and the procedure will pick up with the command which failed
before. This action can generally be applied even if\the RESTART
key has been depressed. Thus, one can recover from jammed paper
in a printer half way through a listing by simply depressing
RESTART, fixing the printer, and then entering the CHAIN *
command.

If the failing command cannot ever succeed, it may be
bypassed by entering the command:

CHAIN/OV1

This simply restarts the chain with the next available line
in the procedure. If the next line had been intended as a keyin
line for the failed program (as opposed to a DOS command line) the
chain will generally immediately abort again. However, by
restarting the chain in this manner, repeatedly if necessary, the
invalid step can usually be bypassed and chaining resumed.

NOTE: CHAIN/OV1 only works if the area from MCR$+80 through

CHAPTER 14. CHAIN COMMAND 14-13

MCR$+100 has not been disturbed.

14.10 Notes On Usage of CHAIN

CHAIN only replaces the DOS keyboard entry routine (KEYIN$).
Therefore, only programs that use this routine for input will
receive their input from the chain file. Programs which have
their own input routines, like the Editor, can be invoked from a
chain file but editing must be done manually by the operator. The
CHAIN program itself can be called from within a CHAIN file. The
chain is aborted when a CHAIN-invoked program makes an exit to DOS
that implies that an error of some kind has been made. The error
message given by the program will generally remain on the screen
after the chain is aborted.

Some programs can go through a rather complex set of requests
for input which can make them hard to use with the CHAIN program
without making a mistake. For this reason, most DOS programs
allow almost all options to be specified on the command line and
keep the variation in the number of keyin requests to a mlnlmum.
It is good practice for all programs to be written with this in
mind to facilitate their use with CHAIN.

An additional item to keep in mind is the fact that some DOS
programs use their own keyboard entry routine as well as the one
provided by the DOS. This enables the program to avoid the use of
the CHAIN procedural lines when special operator intervention is
required.

14-14 DISK OPERATING SYSTEM

CHAPTER 15. CHANGE COMMAND

CHANGE - Change a file's protection

CHANGE <file spec>jp

The CHANGE command enables one to write protect, delete
protect, or clear the protection of a disk file. If a file is
delete or write protected, a KILL command (or program generated
KILL) cannot affect it. If a file is write protected, it cannot
be written into by the standard system routines.

The option parameter "p" is used above to indicate the
protection for the file specified. Protection can be specified
as:

For example:

D - delete protect
W - write protect
X - clear protection.

CHANGE NAME/EXTENSIONjD
CHANGE NAME/EXTENSION:DR2;X

will delete protect the file in the first case, and remove all
protection in the second case. If a first specification is not
given, the message

NAME REQUIRED.

will be displayed. If the file indicated by the first file
specification cannot be found, the message

NO SUCH NAME.

will be displayed. If the option parameter does not follow the
above syntax rules, the message

INVALID PROTECTION SPECIFICATION.

will be displayed.

CHAPTER 15. CHANGE COMMAND 15-1

CHAPTER 16. COPY COMMAND

16.1 Purpose

It is frequently useful to make a copy of a disk file. It
may be desired, for example, to make a copy on a separate volume
for backup or distribution purposes.

Another feature of the COPY command will optionally allow a
user to selectively update (replace) an existing file, or create
(add) a new file to receive the copy. These options used in
combination with the CHAIN utility provide an easy method of
updating and maintaining DOS disks and diskettes.

The COpy command does not make assumptions about the format
of the sectors being copied, but merely copies the file
sector-for-sector. It can copy most types of disk files which
previously were not possible to copy using the SAPP and APP
commands. Some particular types of files are still unmovable,
however. The outstanding example are INDEX files, usually with
extension IISI. These cannot be moved because index files
contain, internal to themselves, pointers indicating their actual
physical location on the disk volume, which are made invalid when
the file is moved to another place on the disk.

16.2 Use

The COpy command is invoked by entering at the system
console:

COPY <file spec>,<file spec>
COpy <file spec>,<file spec>;R
COPY <file spec>,<file spec>;A

UNCONDITIONAL:

Unconditional copy
Replace only
Add only

This option will cause the first specified file to be copied
into the second one. Attributes of the first file, such as
its protection, are copied to the second file as well.

CHAPTER 16. COPY COMMAND 16-1

REPLACE:

ADD:

This option will copy a file only to an existing file. If
the output file does not exist no copy of data takes place
and an informative message is given, "file-name NOT COPIED".

This option will copy a file only if the output file does not
already exist. If the output file does exist no copy of data
takes place and an informative message is given "file-name
NOT COPIED".

The only portion of the operands that is specifically
required is the name of the input file. The extension of the
input file, if none is specified, is assumed to be ITXT. If a
drive specification is entered for the input file, then only that
specific drive is searched for the indicated file. If no drive
specification for the input file is given, all drives are
searched. If the name of the output file is omitted, it is
assumed to be the same as that of the input file. If the output
file's extension is not given, it is also assumed to be the same
as that of the input file. All drives are searched for the output
file unless a particular drive is specified.

Example, to copy file PAYROLL/TXT from symbolic drive "WORK2"
to symbolic drive "WORK1"

COpy PAYROLL:WORK2, :WORK1

Example, to make another copy of PROGRAM/ABS on drive zero,
but to be named MYPROG.

COPY PROGRAM/ABS,MYPROG:DRO

Example, to make another copy of PAYROLL/TXT drive 0, on
drive 1 only if it does not already exist on drive 1.

COpy PAYROLL:DRO, :DR1jA

Example, to update (replace only) TREK/ABS, a file on drive °
from a newer version on drive 1.

COpy TREK/ABS:DR1, :DROjR

People who experience parity errors in one of their data
files can frequently recover their data using COPY. Since the
COPY program merely comments about parity errors encountered and
does not abort when one occurs, the data copied will occasionally

16-2 DISK OPERATING SYSTEM

be correct (or almost correct) even if a parity error occurs and
can be used to recover the data in the original file.
Alternatively, using the COpy program to write the file on top of
itself (therefore without changing the file) by simply specifying
the input file and no output file, a user can frequently clear
soft (and occasionally what seem to be hard) parity errors
occurring in an important data file. (Of course, no important
file should be updated in place unless a copy of the file exists
somewhere for recovery purposes in the event of a failure).

The COpy command issues a click each time an unused sector is
copied. If more than a dozen or so clicks occur at the end of
copying a file, it usually indicates that the file is larger than
necessary to contain the data in it. In this case, moving the
file using APP or SAPP can sometimes help to reduce its size.
Clicks ocurring during the copying (before the end of the file)
indicate sectors containing DOS format errors, possibly implying a
sector accidentally destroyed by some faulty program.

CHAPTER 16. COPY COMMAND 16-3

CHAPTER 17. DOSGEN COMMAND

17.1 Purpose

Before any disk can be used by DOS, certain tables and other
information must be placed onto it to establish the basis that DOS
requires for the support of its file structure. These tables
include the skeleton of the DOS directory, (where the names of the
files contained on the disk are stored), as well as a map showing
which places on the disk are bad and should not be used.

The purpose of the DOSGEN command is to provide the user with
a simple way of accomplishing this preparation.

17.2 Use

To DOSGEN a disk enter:

DOSGEN <drive spec>

The drive spec is a standard DOS drive specification which
specifies which drive contains the disk to be prepared for DOS
use. Since the directory initialization process will effectively
KILL any files that might be on the disk, the command asks several
times to make sure that the operator is aware of the potential
seriousness of the operation he has invoked.

After the operator has acknowledged that he does not mind the
overwriting of the new disk, the command asks if any cylinders on
the volume are to be locked out. Normally, the answer to this
question is NO. However, by answering YES, it is possible to cause
the DOS to lock out one or more cylinders of the disk from DOS
access. This can be useful in some special applications where it
is desired to not allow DOS programs access to a file stored in
unusual format. If the user does wish to lock out any cylinders,
he may do so by specifying one or more cylinder numbers, in the
format:

12,14,16,25-28,40

The above example would cause cylinders 12, 14, 16, 25, 26,
27, 28, and 40 to be locked out. Note that the cylinder numbers

CHAPTER 17. DOSGEN COMMAND 17-1

to be locked out are given in decimal as opposed to octal.

After the operator has specified that no, or which, cylinders
are to be locked out, the DOSGEN command checks for bad sectors on
the disk and issues a message indicating any cylinders it finds
which contain bad sectors. Any cylinders found bad are
automatically locked out and will not be used by DOS. The
remainder of the operation is completely automatic and indicates
its completion with the familiar DOS message, "READY".

Upon completion of the DOS generation process, the only files
on the new disk are the eight system files SYSTEMO/SYS through
SYSTEM7/SYS and the CAT command.

17.3 Special Considerations

It is important to remember that on disk packs for use with
DOS systems recognizing more than one logical drive per physical
disk pack, for example the 9370 series disk system, two DOSGENs
must be done before the physical pack is fully initialized. This
allows the user to DOSGEN either logical disk on the pack without
disturbing files he wishes to keep that may be stored on the other
logical disk.

Another important thing to remember is that both the 9370 and
9380 series disks must be formatted before DOSGEN can be used on
them. Diskettes (for the 9380 series drives) come pre-formatted
from the manufacturer; disk packs for the 9370 series drives do
not. It is therefore necessary to format all disk packs for the
9370-series drives using the program INIT9370 before attempting to
use DOSGEN on them. A diskette that has been formatted with
tracks locked out (error mapped) cannot be DOSGENed.

17-2 DISK OPERATING SYSTEM

CHAPTER 18. DUMP COMMAND

18.1 Purpose

Occasionally while writing into files on disk (in particular,
during the program debugging stage) it is useful to be able to
verify that the formatting of the information into the st~ndard
text format is being done correctly. Or, perhaps an assembler
language program (lABS file) that previously loaded correctly no
longer will, as indicated by DOS just coming back up when the
program is run.

The DUMP command provides a simplified mechanism for
examining the entire contents of physical sectors on the disk.
The display includes both the octal and ASCII contents of every
byte on the sector. No examination for control bytes of any kind
is made, allowing the user to see the precise contents of every
physical location in the disk sector.

18.2 Use

The DUMP command is invoked by entering:

DUMP

or

DUMP <file spec>

The DUMP command operates with basically five separate levels
of control. These levels are:

LEVEL ONE - Logical drive level
LEVEL TWO - File level
LEVEL THREE - Logical record number level
LEVEL FOUR - Physical disk address level
LEVEL FIVE - Disk directory level

The (optional) entry file andlor drive specifications on the
command line allow the first one or two input levels in DUMP to be
automatically bypassed.

CHAPTER 18. DUMP COMMAND 18-1

When the DUMP command is used, the top line on the display is
the primary control line. Input is accepted on this line. This
line is broken into four basic areas, one corresponding with each
of the first four control levels. The primary control level at
any given time during the operation of the DUMP command can be
determined by the position of the flashing cursor on the control
line.

For example, if the flashing cursor is positioned after the
"DRIVE:" legend on the control line, the DUMP command is operating
at level one. If the cursor is positioned after the "FILE:"
legend on the control line, the DUMP command is operating at level
two, etc.

18.3 Informational Messages Provided

The second line on the display is primarily used for sector
informational messages. These serve both to indicate any special
significance of the sector just read and to describe any unusual
occurrences associated with reading the sector. These messages
are generally self-explanatory. Among the messages that can be
displayed are the following, along with an explanation of the
meaning of each.

RETRIEVAL INFORMATION BLOCK (RIB). This message indicates
that the sector being displayed is the primary RIB for the
currently opened file.

RETRIEVAL INFORMATION BLOCK BACKUP. Each RIB is maintained
in duplicate for backup purposes and to allow recovery in the
event of a program erroneously destroying the primary RIB. This
message indicates that the sector being displayed is the secondary
RIB for the currently opened file.

CLUSTER ALLOCATION TABLE. This message indicates that the
sector being displayed is the primary Cluster Allocation Table
(normally referred to as the CAT) for the current logical drive.

CLUSTER ALLOCATION TABLE BACKUP. This message indicates that
the sector being displayed is the secondary, backup CAT for the
current logical drive. The CAT is also maintained in duplicate
just as is the RIB.

LOCKOUT CLUSTER ALLOCATION TABLE. Associated with each
logical drive is a sector that indicates which areas have been
locked out, prohibiting their use by DOS. This message indicates
that the sector being displayed is the Lockout CAT for the current

18-2 DISK OPERATING SYSTEM

logical drive.

LOCKOUT CLUSTER ALLOCATION TABLE BACKUP. This message
indicates that the sector being displayed is the secondary, backup
copy of the sector.

SYSTEM DIRECTORY SECTOR. This message indicates that the
sector being displayed is one of the DOS directory sectors. The
directory sector number (in decimal and in octal) immediately
follows the message.

USER DATA SECTOR. This message indicates that the sector is
not recognized as one of the above special system sectors.

DISK SECTOR CRCC ERROR. This message indicates that the
sector requested for display either was not found on the disk or
that a CRCC error repeatedly occurred during the read operation.
The sector displayed is the data as it was read from the disk,
unless the sector was not found.

DISK OFFLINE. This message indicates that the currently
specified logical drive is not on lirie.

DISK SECTOR FORMAT ERROR. This message is displayed when
DUMP notices that the sector being displayed does not correspond
to standard DOS file conventions (the first byte of each sector is
its physical file number, and the two following bytes are the
logical record number). The appearance of this message does not
necessarily indicate that the sector of the file has been
destroyed, since unwritten sectors at the end of a file and older
version DATASHARE object code files normally will fall into this
class. It merely means that if the sector were read with the DOS
READ$ routine, a format trap would occur.

SECTOR OUT OF RANGE. This message is displayed if the sector
requested (by logical record number) is not within the range of
the currently opened file.

FILE NOT FOUND. This message indicates that the file
requested could not be found. This does not necessarily mean that
the file does not exist. For example, the file could be in a
non-current subdirectory. If the user has not requested
non-specific volume mode (to be described), this message might
mean simply that the file desired is on a different logical drive.

INVALID PHYSICAL ADDRESS. This message indicates that the
physical disk, address specified is invalid.

CHAPTER 18. DUMP COMMAND 18-3

The remainder of the display contains the contents of the
current half of the sector most recently read. The display is
arranged as eight groups of sixteen bytes each. Each of these
groups is preceded by the three octal digit offset of that group
within the sector. Each sixteen byte group consists of the octal
and ASCII contents of each of the sixteen bytes in that group.
Each byte's cbntents form a column one character wide and four
lines high, where the first three lines are the value of the byte,
in octal, and the fourth line is the ASCII value of that
character. Notice that the character is not examined for special
significance before it is displayed, so that computers having the
high speed RAM display option (which is strongly recommended for
all DOS systems) may display characters other than the normal
ASCII set.

18.4 Level One Commands To DUMP

When the flashing cursor indicates that DUMP is functioning
at level one, the following commands are accepted:

<enter> - The CAT on the current drive is displayed and
control is transferred to level two. In addition, the
non-specific drive mode is enabled.

number - The drive number indicated becomes the currently
selected drive. The CAT from that drive is displayed and control
is transferred to level two. Non-specific drive mode is disabled.

* - DUMP command returns control to the DOS.
> - The second half of the current sector is displayed.
< - The first half of the current sector is displayed.

18.5 Level Two Commands To DUMP

When the flashing cursor indicates that the DUMP command is
functioning at control level two, the following commands are
accepted:

<enter> - If a file is currently opened, the secondary RIB
for the file is displayed and control is transferred to level
three. If no file is opened, control is transferred to level
four.

name/ext - The named file is opened on the current drive, or
any drive if non-specific drive mode is enabled. The primary RIB
for the file is displayed and control is transferred to level
three.

pfn - The file indicated by the octal physical file number
given is opened on the current drive. The primary RIB for the

18-4 DISK. OPERATING SYSTEM

file is displayed and control transfers to level three.
I - The current physical file number is incremented and the

new file thus indicated is opened. If no file corresponding to
that physical file number exists on the current drive, the PFN is
incremented repeatedly until a file corresponding to the PFN is
found. The primary RIB for the file is displayed and control is
transferred to level three.

D - D works just like the I command above except that instead
of incrementing the PFN, it is decremented.

#pfn - The directory sector containing the entry
corresponding to the file indicated by the specified physical file
number is displayed; then control is transferred to level five.
Since only the last four bits of the PFN are relevant, the pfn
specifier is equivalent to a relative directory sector number.
These directory sector numbers are always specified in octal.

* - Return control to level one.
> - Show the second half of the current sector.
< - Show the first half of the current sector.

18.6 Level Three Commands To DUMP

When the cursor indicates that DUMP is functioning at level
three, the LRN level, the following commands are accepted.

<enter> - The current sector is shown and control is
transferred to level four.

number - Access and display the record indicated by the LRN
specified. If the number given has a leading zero, it is assumed
to be odtal; otherwise it is assumed to be decimal. The number
specified is the user (as opposed to system) LRN. The system LRN,
the value in bytes one and two in the sector, is always two
greater than the user LRN. The two numbers displayed at level
three in the control line are the user LRN in decimal (the one
with leading zeros suppressed) and octal (the one in parentheses,
with leading zeros).

I - Increment the current logical record number, access it
and display the sector.

D - Decrement the current logical record number, access it
and display the sector.

* - Return to the File level of control (level two).
> - Show the second half of the current sector.
< - Show the first half of the current sector.

CHAPTER 18. DUMP COMMAND 18-5

18.7 Level Four Commands To DUMP

Level four of the DUMP command requires more detailed
understanding of DOS physical disk addresses, and as such is not
usually as useful as the LRN level. However, when access to a
specific sector on the disk is desired, it can be achieved using
DUMP level four. It is important to realize that the physical .
disk addresses specified are logical physical disk addresses, i.e.
the same format as is given to the DR$ and DW$ routines in the
DOS. They are not necessarily the same as actual physical
locations on the disk. For example, with DOS.C for the 9380
series diskettes, the logical disk addresses are remapped onto the
diskette into different hard physical sector numbers than those
indicated by the logical physical disk address. The important
thing to understand here is that the disk addresses used in the
level four control of DUMP are those that would be used to
parameterize DR$ and DW$.

The commands accepted at level four of DUMP are as follows.

msb,lsb - Access and display the sector indicated at the
given physical disk address on the current logical drive. The
first field (most significant byte) is assumed to be in decimal
unless a leading zero is supplied. The second field (least
significant byte) is always considered to be in octal, regardless
of whether a leading zero is supplied or not. The second field is
separated from the first by a comma. The physical disk address
given by the user is assumed to be valid. If it is not of the
proper format, undefined results may occur. Users who are not
sure of their understanding of DOS internal physical disk
addresses should not use level four of DUMP.

*- R~turn control to level two if no file is opened, or
level three otherwise.

> - Show the second half of the current sector.
< - Show the first half of the current sector.

18.8 Level Five Commands to DUMP

When the flashing cursor indicates that the DUMP command is
operating at control level five (system directory sector level),
the following commands are accepted:

number - Show the directory sector indicated by the low order
four bits of the number specified. Since only the low order four
bits of the number are used, it is not an error to specify simply
the physical file number (PFN) of the file whose directory entry
is to be examined. A leading zero indicates the number is in

18-6 DISK OPERATING SYSTEM

octal, otherwise decimal is assumed.

I - The current directory sector number is incremented and
the corresponding directory sector is displayed.

D - The current directory sector number is decremented and
the corresponding directory sector is displayed.

* - Return control to level two.

> - Show the second half of the current directory sector.

< - Show the first half of the current directory sector.

18.9 Error Messages

Only one error message is issued by the DUMP command. It is:

ERROR IN DOS FUNCTION. DUMP ABORTED.

If this error message occurs, it means that the DOS FUNCTIONs
are probably incorrect on the disk, generally indicating that the
disk in the booted drive has not been completely (or correctly)
DOSGENed. If this is the case, SYSTEM7/SYS should be loaded using
the latest copy of DOS as distributed by Datapoint.

CHAPTER 18. DUMP COMMAND 18-7

CHAPTER 19. THE DUMP93XO COMMAND

DUMP93XO represents one of three programs: DUMP9350,
DUMP9370, DUMP9380. Each program functions on only one of the
Datapoint type disks, 9350 series, 9370 series, or 9380 series
repectively. In the following chapter, characteristics of a
particular program or disk will be indicated by the specific drive
type. Features common to all programs will be indicated by
reference to "DUMP93XO", so the "X" can be at any time read as
"5", "7", or "8". The examples that follow are primarily set for
DUMP9370 use, since the 9370 disk uses the most complex address
format. In general, the examples apply equally well to 9350 or
9380 disks, ignoring the head address used in the 9370 command.
The DUMP93XO command enables the programmer to inspect, record, or
load physical disk sectors. DUMP93XO is intended to be used only
for extremely low-level disk examination and by trained systems
personnel. Most users will find the facilities provided by the
DUMP command to be more useful for general disk examination
purposes.

19.1 Use

DUMP93XO can be invoked from an active DOS by keying in at
the system console:

DUMP93XO

Since DUMP93XO is a completely self-contained program, it can
be run from an LGO cassette tape (unlike most DOS commands which
rely on one or more of the DOS routines for their execution). In
this mode, DUMP93XO can occasionally be useful in helping to
determine the problem when the DOS will not boot up from some
disk. If ~ user intends to use DUMP93XO in this way, he should
take care to make an LGO tape and store it safely away somewhere,
before he needs it.

DUMP93XO can output physical disk records (sectors) to a
local printer, the cassette deck, or to the screen, and can load
sectors to disk from the cassette deck.

There are two command handlers in DUMP93XO. The primary
command handler controls all DUMP93XO functions except the screen
dump. The screen dump requires its own syntax because it is an
interactive, and more flexible, facility.

CHAPTER 19. THE DUMP93XO COMMAND 19-1

All commands to DUMP93XO employ the same conceptual
structure, though elements of commands may be implicit as well as
explicit. The full explicit format for commands is:

DUMP9370:
DUMP9350:
DUMP9380:

Z AAA,BBB,CCC DDD,EEE,FFF
Z AAA,CCC DDD,FFF
Z AAA,CCC DDD,FFF

where Z is the command
AAA is
BBB is
CCC is
DDD is
EEE is
FFF is

the
the
the
the
the
the

starting cylinder number
starting head on cylinder AAA(DUMP9370 only)
starting sector on that track
ending cylinder number
ending head on cylinder DDD(DUMP9370 only)
ending sector on that track

Notice that all disk addresses are "hard" physical disk
addresses, as opposed to DOS staridard-format (or "logical")
physical disk addresses. All numbers input to DUMP93XO are octal.
Consult the appropriate appendix for a description of the physical
addressing of the type of disk in use.

P
S
CD
CL
If

*
A
E
o
@

The command codes of the primary command handler are:

Print on the local printer
Screen dump
Cassette dump
Cassette load
Jump to DOS DEBUG
Return to DOS command interpreter
ASCII mode (for printer or screen dump)
EBCDIC ~ode (for printer or screen dump) (DUMP9380 only)
Octal mode (for printer or screen dump)
Physical drive number

The command codes of the screen dump command handler are:

* Return to the primary command handler
If Jump to DOS DEBUG
I Increment the (cylinder,head,sector) address
D Decrement the (cylinder,head,sector) address
C Cylinder address mode
H Head address mode (9370 only)
S Sector address mode
A ASCII display mode
E EBCDIC display mode (9380 only)
o Octal display mode

19-2 DISK OPERATING SYSTEM

The following operating instructions discuss the commands and
their applications, with some examples, in more detail.

19.2 The primary command handler

As soon as DUMP93XO has fully loaded, it displays its signon
message on the screen. When the cursor appears at the lower left
corner of the screen the primary command handler is ready to
accept commands.

19.3 Using DUMP93XO with a Local Printer

P - Print on the local printer

DUMP93XO will print only to a 132 column local printer,
address 0303. The 256 byte disk records (sectors) are listed 32
bytes per line, 8 lines per sector. Preceding each 8 line block
of print is a short line giving the physical disk address of the
printed sector. One sector or the entire disk may be dumped to
the printer by a P command. After the last sector is printed the
page is ejected to top of the next page.

Unless otherwise specified, the bytes are printed in octal,
with a space separating each byte, except every eighth byte is
delimited by a period. If the DUMP93XO command is in the ASCII
mode (set with the A command) characters that are valid ASCII
characters will be printed in ASCII. Lower-case ASCII alphabetic
characters are indicated by a preceding underscore (_). If the
DUMP9380 command is in the EBCDIC mode, bytes that are valid
EBCDIC characters will be printed in EBCDIC, lower case characters
preceded by an underscore.

COMMAND EXAMPLES:

P 000,000,000 000,000,000

would dump to the printer the disk records from cylinder 000, head
000, sector 000, thru cylinder 000, head 000, sector 000. In
other words, print only the one sector with the disk address
000,000,000.

Note from the following examples that the parameter fetching
subroutine will make certain assumptions about information not
explicitly given.

P 0,0,0 0,23,27

CHAPTER 19. THE DUMP93XO COMMAND 19-3

would dump to the printer the disk records from cylinder 000, head
000, sector 000, thru cylinder 000, head 023, sector 027. In
other words, dump to the printer all of the sectors on cylinder
zero. Note that it is not necessary to supply leading zeros in an
address.

For 9350 series disks, the equivalent command, dump all of
cylinder 0, is

P 0,0 0,67

For 9380 series disks, the equivalent command is

P 0,0 0,14

P 0 0

would do exactly the same thing as the previous example. When
only the first number is given between spaces, it is taken to be a
cylinder address, with a sector and head address of 000 assumed
for the beginning cylinder. For 9370 disks, a head address of 023
and a sector address of 027 are assumed for the ending cylinder
address. For 9350 disks, a sector address of 067 is assumed for
the ending address. For 9380 disks, a sector address of 014 is
assumed for the ending address.

P 4

would dump to the printer the disk records from cylinder 004, head
000, sector 000, thru cylinder 004, head 023, sector 027. In
other words, all of the sectors on cylinder 4. When only one
cylinder address is given, it is taken to be both the beginning
and ending cylinder address. For 9350 series, the command would
dump from cylinder 004, sector 000, through 004, sector 067. For
9380 series, the command would dump from cylinder 004,_ sector 000,
through cylinder 004, sector 014.

P 67 70,7

would be assumed to mean: P 067,000,000 070,007,027 ,

or for 9350's
or fo~ 9380's

P 067,000
P 067,000

070,007
070,007

19-4 DISK OPERATING SYSTEM

19.4 Screen Display format

S - Screen dump

DUMP93XO can display on the CRT one disk physical record
(sector) at a time, in octal or ASCII (or EBCDIC for 9380). The
address of the sector displayed is controlled in a manner
analogous to the display of bytes in memory by the DOS debugging
fqcility.

A special display format is utilized to enable all 256 bytes
of a sector to be displayed on the screen at one time. Below is a
diagram of what a screen dump of a sector would look like; given
the CYL,HED,SEC address = 44,0,6 and each byte in the example
sector is its location within the sector; (i.e., starting at the
beginning of the sector, the bytes are (in octal) 000, 001, 002,
003, ... , 0377:

04~ C2C0010020030040050060C7 010011012013014015016017 020021022023024025026027
000-03003103203303~035036037 040041042043044045046047 050051052053054055056057
006 050061062063064065066067 070071072073074075076077

100101102103104105106107 110111112113114115116117 120121122123124125126127
- i :3 C 1 3 1 1 3'2 1 331 311 1 35 1 3 IS 1 37 1110 PI 1 1112 1113 1111~ 11~ '_1 1116 1117 150 1 5 1 1 521 53 15 111 55 156 157

16J161162163164165166167 170171172173174175176177
200201202203204205206207 210211212213214215216217 220221222223224225226227

-230231232233234235236237 240241242243244245246247 250251252253254255256257
260251262263264265266267 270271272273274275276277

_300301302303304305306 3°7 310311312313314315316317 320~21322323324325326327
330331332333334335336337 340341342343344345346347 350351352353354355356357
360361362363364365366367 370371372373374375376377

Note from the diagram that:

The displayed sector address is in the upper left-hand corner
of the screen. For 9350 disks, the cylinder and sector address is
shown. For 9370 disks, the cylinder, head, and sector address is
shown. For 9380 disks, the cylinder, physical sector, and logical
sector address is shown. Each portion of the address is on one
line; stated sequence above is top to bottom.

Each group of 10(octal) bytes is displayed in a contiguous
block of digi ts.

Each block of 100(octal) bytes begins at the left side of the
screen, preceded by an underscore (_).

Each block of 100(octal) bytes consists of 10(octal) groups
of 10(octal) contiguous bytes; 3, 3, and 2 groups to a screen
line, for the three lines required to display 100(octal) bytes.

The screen displays 400(octal) bytes, which is one disk
sector, 256(decimal) bytes.

To further break down the screen and enable quick location

CHAPTER 19. THE DUMP93XO COMMAND 19-5

and reading of individual bytes, the first digit of every second
byte is flashed on and off. Thus, each group of eight bytes is
divided into four units of two bytes.

COMMAND EXAMPLES:

S 044,014,006

would mean: display cylinder 44, head 014, sector 6 on the
screen. This command can only be given to the primary
command handler, and after it is executed DUMP93XO will be
under the control of the screen dump command handler.

19.5 The Screen Dump Command Handler

Note that as in the DOS debugging facility, the command codes
entered are not displayed, the command is merely immediately
executed. .

*

I

Return to the primary command handler. The screen will be
rolled up, the cursor turned on, and keyed commands will be
displayed as they are entered at the lower left corner of the
screen.
NOTE that the SHIFT key must be depressed at the same time as
the asterisk (*) key.

Jump to the DOS debugging facility. # will not work if
DUMP93XO was loaded from an LGO tape.
NOTE that the SHIFT key must be depressed at the same time as
the pound sign (#) key.

Increment the cylinder, head, or sector address and display
the sector at the new address. The new disk address will be
displayed at the top left corner of the screen.

If the C (Cylinder address mode) command is in force when an I
command is given, the cylinder address will be incremented by
one, the head and sector addresses will not change. Cylinder
address wrap-around occurs at 0312-~000 (0114->000 for
DUMP9380). Incrementing by cylinder address is useful for
scanning quickly thru a large file by steps of 4 (9380) or 8
(9350,9370) clusters per increment.

If the H (Head address mode) command is in force when an I
command is given, the head number will be incremented by one.
If the head address was 023, it will wrap around to head zero
and the cylinder address will be incremented by one. Note that

19-6 DISK OPERATING SYSTEM

the head address will increment across both the two logical
packs on the physical drive. H is operative only under
DUMP9370.

If the S (Sector address mode) command is in force when an I
command is given, the sector address will be incremented by
one. If the sector was the last on the track (014 for 9380,
067 for 9350, 027 for 9370), then the head and/or cylinder
address is incremented by one and the sector address is set to
zero. If the cylinder address was the last on the disk, it
will be set to zero. Incrementing by sector enables scanning
sector by sector thru a file and inspection of the exact data
on each disk record. Files which span logical cylinders or
are non-contiguous on the disk (which includes most large
files) will require more detailed understanding by the user of
the DOS file structure (in order to avoid incrementing out of
the file's allocated space) and are usually better examined
using the DUMP command.

D Decrement the cylinder, head, or sector address and display
the sector at the new address. Except for the direction of
address change, the D command is functionally like the I
command.

C Cylinder address mode. This command causes subsequent I or D
commands to alter the cylind~r address. Optionally, a
cylinder address may be keyed in before striking the C key;
the current cylinder address will be replaced by the entered
value before the disk record is read and displayed. The
entered digits will be displayed at the lower left corner of
the screen. Note that the address must be an octal address.
If more than three digits are entered DUMP93XO will BEEP and
the procedure must be re-begun. If the address entered is not
a valid cylinder address (e.g., greater than 0312) the C
command will be in force but the cylinder address will not be
changed. Also note that only the eight least significant bits
of the value entered will be taken for the address (an entered
value of 444 would be interpreted as 044).

H Head address mode. This command causes subsequent I or D
commands to alter the head number. Except for the fact that
the H command modifies head addresses and sets head mode, it
is similar to the C command. (DUMP9370 only.)

S Sector address mode. This command causes succeeding I or D
commands to alter the sect~r address. Optionally, a sector
address may be keyed in before striking the S key. The
address option is functionally similar to the C command.

CHAPTER 19. THE DUMP93XO COMMAND 19-7

Sector address mode is the assumed mode of operation when the
program is started.

A ASCII display mode. This command causes the bytes to be
displayed in ASCII instead of OCTAL on the screen, for all
bytes that have valid ASCII bit configurations .. This is
useful for examining text files on disk. Note that the ASCII
mode will carryover to the P (print) command of the primary
command handler unless changed by a subsequent a command.

E EBCDIC display mode (9380 only). This command causes the
bytes to be displayed in EBCDIC instead of OCTAL on the
screen, for all bytes that have valid EBCDIC bit
configurations. This is useful for examining the index track
(track zero) on a diskette, and for text files on IBM
formatted diskettes. While DUMP9380 is in EBCDIC mode, sector
addresses used are taken as physical sector numers. During
ASCII or Octal modes the addresses are taken as logical sector
numbers and are re-mapped to take sector skewing and radius
spiraling into account (see Appendix C).

a OCTAL display mode. This command causes the bytes to be
displayed in OCTAL instead of ASCII. OCTAL mode is the
assumed mode of operation when the program is started.

19.6 Cassette Operations

CD - Cassette Dump
CL - Cassette Load

DUMP93XO can write to the front cassette deck the contents of
specified disk sectors, and can read DUMP93XO tapes from the front
deck to load specified sectors.

COMMAND EXAMPLES:

CD 000,000,000 000,002,027

would mean: dump the sectors from cylinder 000, head 000, sector
000, thru cylinder 000, head 2, sector 027 to the cassette in the
front deck. In other words, dump the first three tracks of the
disk to cassette. The CD command will dump from one sector to 500
sectors (all that will fit on a cassette), in contiguous sectors.
The disk addresses given (explicitly or implicitly) must .be from
lesser to greater (e.g. CD 40,0,0 36,0,27 would be invalid because
the second address is less than the first address). If any fault
is found in the addresses given, the message:

19-8 DISK OPERATING SYSTEM

PARAMETER ERROR

will be displayed and the machine will BEEP. Refer to the
discussion of the P (print) command for examples of explicit and
implicit addresses in commands. If the command is correct, the
message:

FRONT DECK SCRATCH ?

will be displayed. A reply of "Y" will cause the cassette dump to
proceed, while a reply of "X" will cause an exit to the primary
command handler. Any other reply will cause the question to be
repeated. When the front deck is. ready, the cassette dump will
rewind the tape and begin dumping the specified sectors to tape as
individual 256-byte records. When all of the sectors have been
written, the tape is rewound and checked sector by sector against
the sectors on disk. If the tape data does not match the disk
data exactly, the cassette dump will abort with the message:

TAPE/DISK VERIFY FAILURE

and exit to the primary command handler. If the tape is correct,
it is rewound and control is returned to the primary command
handler.

CL 0 ,2

means: load the disk sectors addressed 000,000,000 thru 000,02,027
from the front cassette. Not more than 500 sectors may be
specified to be loaded from a cassette. The cassette load read
routines expect to find records of exactly 256 bytes on the tape
for at least as many records as there are sectors to be loaded.
If a record that does not meet the specifications is encountered
before the last sector has been loaded, the cassette load will
abort with the message

BAD DUMP TAPE

and return control to the primary command handler. It is not
necessary that the records on the tape be written to the same disk
addresses as from which they were read. Therefore, the CD and CL
commands provide a means of moving sectors from place to place on
one disk, or from one disk to another.

WARNING: Loading these sectors dQes not affect the C.A.T.
Directory, or RIBs on a disk. Therefore, if the sectors are not
loaded carefully into a matching file, they will be unallocated,
unreferenced and probably cause FORMAT errors if read.

CHAPTER 19. THE DUMP93XO COMMAND 19-9

It is not necessary that a CL read all of the records that
may be on a cassette, only that there are at least as many records
on the cassette as there are sectors to be loaded. When the
specified sectors have been loaded, the tape is rewound and the
tape records are re-read and matched against the loaded sectors on
the disk. If the data on the tape does not match the data on the
disk, the cassette load routine will abort with the message:

TAPE/DISK VERIFY FAILURE

and exit to the primary command handler. If everything is
correct, the cassette load routine rewinds the front tape and
returns control to the primary command handler.

19.7 Drive Numbers

When DUMP93XO begins execution it assumes that it is to deal
with the disk in drive zero. The @ command instructs DUMP93XO to
deal with the disk in the specified physical drive.

COMMAND EXAMPLE:

@ 1

would mean: succeeding commands will refer to the disk in phvsical
drive 1. The @ 1 command will remain in force until another @
command addresses a different physical drive. Note that the
address parameter for the @ command consists of one and only one
digit.

19.8 Error Messages

Some of the error messages produced by DUMP93XO and their
meanings are explained below.

PARAMETER ERROR

Occurs if an invalid command and/or disk address is given to
the primary command handler. Note that all disk addresse~ must be
expressed in octal.

SO MUCH ?

Occurs if a command is given to dump more than 10 cylinders
to the printer. Note that one cylinder will fill 32 printer pages

19-10 DISK OPERATING SYSTEM

(8 pages for 9350, 2 pages for 9380), and ten cylinders would
represent a very large file. Respond "N" if you really don't want
the printer to print out that many pages of paper. Otherwise, "Y"
will cause the printing to proceed.

CASSETTE TOO SMALL

Occurs if a command is given to dump too many cylinders to
cassette.

TAPE/DISK VERIFY FAILURE

Occurs during the tape-against-disk check phase of a cassette
dump or cassette load if the data on the tape does not match
exactly the data on disk. The tape is rewound and the dump or
load should be retried.

BAD DUMP TAPE

Occurs if a tape record is read that does not conform to the
DUMP93XO tape record format. If it occurs during a cassette load,
no data from the bad tape record is written to disk.

DISK NOT ON LINE

This message is self-explanatory.

DISK PROTECTED

Occurs if the disk is protected and a cassette load command
is given. Nothing will be written to the disk as long as the READ
ONLY indicator is on.

C.R.C. ERROR

Occurs if a hardware read or write error persists after three
attempts to accomplish the read/write unless the read error occurs
during a printer dump command (so that data on bad sectors can be
hard-copy recorded and examined). If a C.R.C. error occurs during
a printer dump, the machine will beep.

BEEP (Audio signal)

The machine will BEEP if an invalid command is entered from
the keyboard. Also see C.R.C. ERROR.

SEEK INCOMPLETE

CHAPTER 19. THE DUMP93XO COMMAND 19-11

(9370 only)

This occurs if the disk controller SEEK INCOMPLETE status bit
is set. This bit is set if a cylinder seek operation does not
finish within 100 milliseconds. When this occurs, it generally
indicates a hardware malfunction.

COMMAND ERROR

(9350 only)

This occurs if the disk controller COMMAND ERROR status bit
is set. The DUMP9350 program should be reloaded if this happens.
If it happens again, something is wrong with the processor, the
I/O bus, the d~sk controller, or the disk drive.

SECTOR NOT FOUND

(9370 only)

This occurs if the disk controller SECTOR NOT FOUND status
bit is set. This usually occurs as a result of the formatting
information ona disk (as written by INIT9370) being incomplete or
incorrect, but could also indicate a software or hardware
malfunction.

(9350 only)

Same as COMMAND ERROR.

(9380 only)

Occurs if the disk controller SECTOR NOT FOUND status bit is
set. This usually occurs as a result of the formatting
information on a disk being incomplete or incorrect, but could
also indicate a software or hardware malfunction.

19-12 DISK OPERATING SYSTEM

CHAPTER 20. EDIT COMMAND

20.1 Introduction

The DOS Editor is used to create and to update source data
files on the disk. The editor, through the use of initialization
parameters, will enable the creation of files in a variety of
formats: text files, assembler code files, DATABUS source code
files, or many user designed data files.

A GLOSSARY of the many terms and phrases used throughout this
chapter is provided in the Glossary at the end of the chapter. A
list of commands and brief definitions is provided in the Command
List Section. Caution: Although virtually any Datapoint format
file may be "edited", files structured with respect to physical
records or those containing strings longer than 79 characters may
have this organization collapsed as the editor compresses the file
into sequential format. In such cases the editor should not be
used.

The editor does not truncate trailing blanks at the end of
lines unless it is in "COMMENT" mode.

20.2 Operation

20.2.1 DOS Initialization

The EDIT program, is parameterized as follows:

EDIT <f1>[,<f2>][,<f3>][jparameter list]

20.2.2 Files

<f1> is the source file, [<f2>] is the scratch file and
[<f3>] is the configuration overlay file. The source file <f1> is
assumed to have an extension of 'TXT' if none is provided. If
there is no file of the specified name, one will be created. If no
scratch file [<f2>] is specified, a file 'SCRATCH/TXT' will be
used. The configuration file [<f3>] is assumed to be EDIT/OV1

CHAPTER 20. EDIT COMMAND 20-1

unless otherwise specified. The default extension for the
configuration file is JOV1'.

If parameters are indicated by the presence of the
semi-colon, the question:

RECORD PARAMETERS?

will be displayed. If 'N' is entered, the editor will begin
execution with the indicated parameters and the configuration file
will not be changed. If 'Y' is entered, the question:

NEW TABS?

will be asked. If 'Y' is entered, the standard tab initialization
line of numbers will be displayed (see :T command description).
After the new tabs are entered, the parameter information and
tabstops are recorded in [<f3>J.

If no parameter list is provided, [<f3>J, if present, is
automatically loaded, causing the -recorded parameters to be used.

20.2.3 Parameter List

A parameter list, indicated by the SEMI-COLON (j) following
the file specifications may be included. That list may include up
to seven parameters which are order independent. The possible
parameters are:

[j[marginJ[tab keyJ[modeJ[shift][line][update][key-click]

If no param~ter list is provided, Assembler mode with a margin at
75 and SPACE bar for tabbing is assumed.

20.2.3.1 Margin Bell

A number in the parameter list will be taken to be the margin
designatorj this causes the margin 'bell' to ring at the
designated margin. (Text may always be input up to column 79
regardless of the margin setting.)

For Example j30 will cause the bell to ring in column 30.

20-2 DISK OPERATING SYSTEM

20.2.3.2 Tab Key Character

A tab key character encountered in the parameter list, i.e.,
a non-alpha, non-numeric, non-colon, will replace the assumed tab
key character. (SPACE in Assembler, DATABUS and Comment mode,
SEMI-COLON in Text mode.)

For example, A will cause the caret key (A) to replace the
assumed character as the tab key.

20.2.3.3 Mode

A new set of assumptions will be used if one of the 'mode'
parameters is set. If no mode is listed or 'A' is typed,
Assembler mode will be used. DATABUS or DATAFORM (D) mode simply
changes the tab stops. Comment mode (C) changes the nature of the
DELETE and SCRATCH commands to facilitate adding or changing
comments on assembly code files and also truncates trailing
spaces.

Text mode (T) sets no tabstops, does no shift inversion and
enables the word wrap around feature (see the glossary). To
activate line truncation instead of word wrap around in Text mode,
enter 'L' in the parameter list. To enable shift key inversion
(see glossary) in Text mode, enter the parameter'S' in the list.
Text mode is especially useful for generating SCRIBE input files.

See the glossary for complete definitions of the various
modes.

20.2.3.4 Update

During editing, the source file is transferred into the
scratch file as the text is updated. The physical source file may
be used as the scratch file as the edit proceeds. When the edit
is terminated, the physical source file is updated.

To inhibit source file update, the 'ONE-PASS' parameter '0'
may be set in the parameter list. A flag is set which prevents
writing on the physical source file. Then, at the completion of
the edit, the scratch file will contain the updated information
and the source file will be unchanged.

CHAPTER 20. EDIT COMMAND 20-3

20.2.3.5 Key-click

If the 'K' parameter is set, a click will sound each time a
key is struck.

20.2.4 E~amples

To perform standard Assembler code editing, enter the
command:

EDIT <source>

To edit a file for input to the text processor, SCRIBE, enter the
command:

EDIT ~ource>;T

To change the margin bell to ring at column 35 (e.g. for labels)
enter the command:

EDIT <source>;35T

The parameters would set the bell and use the Text mode
assumptions. Note that the parameters are order independent;
therefore, the command:

EDIT <source>;T35

would achieve the same results.

To generate a second, slightly different, file (without
updating the original file), enter the command:

EDIT <source>,<new

If the file is Assembler
'T'; if DATABUS, replace

e>;OT

, instead of text, simply omit the
;)y 'D'.

A second file, with the same name as <f1> but with a
different extension, may be used as the scratch file by entering:

EDIT <f1>,I<extension>

Once the initial command (and parameter list) has been
entered, the DOS Editor signon message will appear on the screen.
This message will be rolled up and the screen cleared with the
cursor left on the 'command line'. From this position data may be

20-4 DISK OPERATING SYSTEM

entered, lines may be fetched from the source file, or editor
commands may be entered.

20.2.5 Data Entry

To enter text, simply type on the bottom line; when the ENTER
key is pressed the screen rolls up one line. The command line is
once again blank and the cursor is at the beginning of the command
line, ready to accept more input.

If word wrap around is enabled, when a SPACE is typed within
the last 10 columns of the line or typing proceeds past the end of
the line, the editor automically will roll up the screen and begin
a new line. If a non-space character is typed into the last
column, the last word on the line is removed and, after the screen
is rolled up, that word is placed on the command line, where data
entry may proceed.

When typing on a 'screen line' (as the result of a command),
the ENTER key causes the cursor to return to the command line. To
continue data entry at the same screen area, the Pseudo-ENTER key
may be used. This key (DEL shifted) causes (in all but command
mode), a new blank line to be inserted at that point on the screen
so that data entry may proceed.

If word wrap around is enabled, and data is being entered on
a screen line, a new line will automatically be inserted at that
point when, as on the bottom line, a space is entered within the
last 10 columns or a character is typed past column 79.

The BACKSPACE key erases the last character and moves the
cursor back one position. The CANCEL key erases the line back to
the previous tabstop (this action would erase the entire line if
no tabs are set).

Typing the tab key character causes the cursor to move to the
next tab stop to the right. If there are no tab stops to the
right of the cursor, the tab key character is accepted as a normal
data character.

CHAPTER 20. EDIT COMMAND 20-5

20.2.6 Data Retrieval

To fetch data from the source file, press the KEYBOARD and
DISPLAY keys simultaneously. As long as the two keys are
depressed, data will be fetched, displayed on the command line and
rolled up the screen. If end of file is reached, no more data is
fetched and the machine beeps.

To fetch a single line, the shifted DEL key may be pressed
(in the first column of the command line). Using this key insures
that only one input line will be fetched.

20.2.7 EDITOR Command Format

The text appearing on the eleven screen lines (i.e. the lines
above the command line) may be edited using a set of 'commands'.
A 'pointer' (» in the left hand column of the screen indicates
the line which the command will affect.

To move the pointer up, press the KEYBOARD key. To move the
pointer down, press the DISPLAY key. The pointer wraps around
from the top to the bottom and vice versa.

Commands allow the user to delete a single line (:D) or part
of the screen (:SC and :SB), insert (:1) a new line between the
current lines on the screen and modify (:M) parts of a line by
replacing text or inserting new text. Commands are also available
to search the file for specific text (:F and :L) or for the end of
the file (:EO or :E*).

An edi,tor command is always preceeded Qy ~ COLON (:). To
enter a command, type, in the first column of the command line, a
colon and the appropriate command character and any necessary
parameters. The command is always typed with the machine in lower
case; thus, with shift inversion on (as in Assembler, Databus and
Comment modes), the command character will appear upper case;
while with shift inversion off (as in Text mode), it will appear
lower case.

20-6 DISK OPERATING SYSTEM

20.3 Basic EDITOR Commands

The following commands are a few basic editor commands. The
user can get started without worrying about complex command forms.
Remember that the 'pointer' on the screen indicates the line
affected by the command.

:D - DELETE - in all but Comment mode this command deletes
the entire pointed line. (In Comment mode, only the comment field
is deleted. The CANCEL key may however be used to delete the
preceeding fields in the line.)

The cursor is left on the now null line where new text may be
entered. If no replacement text is needed, pressing the ENTER key
in the first column of the pointed line returns the cursor to the
command line. Trailing blanks will not generally be truncated.

Pseudo-ENTER may be used to generate additional lines at this
area of the screen. Word wrap around, if enabled, will apply to
text entered on a deleted line. Pressing the ENTER key will return
the cursor to the command line.

See the section on modification for more information about
the pseudo-ENTER key.

:E* - EOF without display - searches for the end of the file
and, when it is reached, displays the last eleven lines of text.
The search may be aborted by pressing the KEYBOARD and DISPLAY
keys simultaneously.

:EO - EOF with display - causes the data to be displayed on
the screen continuously until end of file is reached. The search
may be aborted at any time by pressing the KEYBOARD and DISPLAY
keys simultaneously.

:F <old text> - FIND match - the screen is cleared and the
input file is searched for a line starting with.the specified <old
text>. Leading spaces in <old text> are significant and should be
entered if needed (note that this command should be typed exactly
:F<SPACE><old text».

A FIND will wrap entirely around the file (or up to the end
of file if the one-pass option is set). If the requested text is
not found, the last line on the screen when the FIND was executed
will be displayed. A FIND may be aborted by pressing the KEYBOARD
and DISPLAY keys simultaneously.

:I - INSERT - Perform a line insert at the ·pointed line.

CHAPTER 20. EDIT COMMAND 20-7

This command causes the lines from the top of the screen to the
pointed line, inclusive, to be rolled up and a blank line to be
inserted. The cursor is left at the beginning of the new blank
line where data entry may proceed.

If the pointed line or the line immediately below it is empty
no insert will occur, and the null line will be used as the
inserted line where data entry may proceed.

To make complex changes to a line already on the screen, the
operator may INSERT a line immediately below the original and then
retype the line - with changes. The original line may then be
DELETED.

The pseudo-ENTER key may be used to generate additional lines
at the same point on the screen.

:L - LOCATE next - typed exactly :L<ENTER>, clears the screen
and finds the next line of text. If positioned at the end of the
file, the 'next' line will be the first line of the" file.

:L <old text> - LOCATE match - similar to FIND match except
that the locate command searches for imbedded text matching <old
text>. Leading spaces should be supplied if meaningful.

For additional forms of the FIND and LOCATE commands see the
'FILE SEARCH' section.

:M <old text><command separator><new text> - MODIFY - a
modify command allows the operator to replace <old text> by <new
text>, insert <new text> after <old text> or append (i.e.,
truncate and add) <new text> after <old text>. For the various
forms of this command see the MODIFY Command section.

:SC - SCRATCH above - in all but Comment mode this command
erases the lines from the top of the screen down to the pointed
line, inclusive. (In Comment mode, only the comment fields are
erased.)

The cursor is left on the pointed line where data entry may
proceed.

:SB - SCRATCH below - in all but Comment mode this command
erases the lines from the pointed line to the bottom of the
screen, inclusive. (In Comment mode, only the comment fields are
erased.)

The cursor is left on the pOinted line, where data entry may

20-8 DISK OPERATING SYSTEM

proceed.

:E - END - the end command causes the remainder of the
logical source file to be copied to the logical scratch file and
then, if the logical scratch is not the physical input file, the
scratch file is copied back to the source file.

The command line will be left on the screen as long as the copy
from source to scratch is in progress; it is erased during the
final copy from scratch back to source.

The end may be aborted as long as the command line is still
displayed, by pressing the KEYBOARD and DISPLAY keys
simultaneously. When the final copy is completed, control is
returned to DOS.

Note that if the one-pass option was selected in the
parameter list, no copy from scratch back to source will be
performed.

:E/ - END/DEL - this command causes the remainder of the
source file to be deleted (the lines currently on the screen will
be written out), and, if the logical scratch file is not the
physical source file, the scratch file is copied back to the
source file. When the file is completely updated, the system is
reloaded.

No copy back is done if the one-pass option is set.

20.4 Modification Commands

Modification of a line may be achieved in a variety of ways.
The DELETE command enables the user to remove leading information
while the MODIFY command may be used to replace imbedded
information, insert text into a line or field, or truncate and add
new text at a specified point or in a specified field.

20.4.1 DELETE Command

:D <old text> - DELETE through - this command deletes all
characters from the left edge of the pointed line through (and
including) the specified <old text>. The remaining characters
will be left justified and re-displayed. The cursor returns
automatically to the command line.

CHAPTER 20. EDIT COMMAND 20-9

20.4.2 MODIFY Command

The general form of the MODIFY command is:

:M[#] [old text]<sep>[new text]

where [#] is an optional number which extends the meaning of the
command (see Field Modification below) and <sep> is the command
separator which defines the action of the command. Both [old
text] and [new text] fields are optional. If [old text] is
omitted, the command will take effect at the left most edge of the
pointed line (or at the left edge of the specified field) .. If the
[new text] field is omitted, a null field will be used to execute
the modification.

·20.4.2.1 Line Modification

The following descriptions are of the line modification
version of the MODIFY command

:M [old text] < [new text] - MODIFY (replace) - replace the
specified [old text] by the specified [new text]. The less than
character «) is a command separator which indicates replacement
and, therefore, the [old text] may not contain this character. If
[new text] field is omitted, the old text will simply be deleted
and the line will be compressed to the left.

For example, to modify the text line:

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG'S BACK.

The command: :M BROWN<RED
redisplayed like this:

would cause the line to be

THE QUICK RED FOX JUMPED OVER THE LAZY DOG'S BACK.

The command: :M.< 1234 TIMES. to the original line would
generate a line like:

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG'S BACK 1234
TIMES.

If the replacement causes the line to become longer than 19
characters, the trailing word, in text mode only, will be wrapped
around and a new line will be inserted containing the entire last
word. If the [new text] is shorter than the [old text] it
replaces, the line will be shortened.

20-10 DISK OPERATING SYSTEM

After the pointed line is redisplayed, the cursor is returned
to the command line.

:M [old text] > [new text] - MODIFY (insert) - the command
separator greater than (» causes the [new text] to be inserted in
the pointed line immediately after the [old text].

If the line becomes longer than 79 characters, and word wrap
around is not in effect, the trailing characters are truncated.
If, however, word wrap around is on, the trailing characters and
last word are inserted on a new line.

:M [old text] \ [new text] or

:M [old text] [new text] - MODIFY (append) - the vertical
bar (I) or backslash (\) command separators cause everything in
the pointed line, past the [old text], to be replaced by the [new
text].

As in all MODIFY commands, if the pointed line becomes longer
than 79 characters, truncation occurs if word wrap around is not
enabled.

:M - MODIFY repeat - typed exactly :M<ENTER>, uses the <old
text> <sep> <new text> from the last MODIFY command. This is
useful when making the same change repeatedly.

:M* - MODIFY display - display the expression entered for the
last MODIFY. After the saved command is displayed, the cursor is
turned off and the operator must press ENTER to proceed. No
MODIFY is actually performed.

20.4.2.2 Field Modification

In field modification mode, the MODIFY command acts only on a
specific field and does not expand or contract the entire line but
maintains the integrity of all fields before and after the
affected field.

A field is the area between two consecutive tabs. Field one
is between the left margin and the first tab.

:M<#> [old text]<sep>[new text] - MODIFY field - where the
pound sign <#> is a number from 1 to 10 designating the field to
be modified (or the starting point to search for matching [old
text]). In Assembler mode, field 1 is the label, field 2 is the op
code, field 3 is the expression and field 4 is the comment. This

CHAPTER 20. EDIT COMMAND 20-11

command may be executed in any of the previous Modify forms.
However, modification is performed within the specified field
only. As long as the text being modified is unique, field 1 may
be specified, since the field number indicates only where to start
looking for matching text. (Note that if the field number is
omitted, line modification is assumed.)

Thus, a replacement or append shorter than the original field
will be blank filled and subsequent fields will maintain their
position and content. An insertion longer than the specified
field will be truncated (with the exception of the last field
whenever word wrap around is in effect).

For example, in Assembler mode, the line:

LABEL OP EXP COMMENT

the label may be deleted by the command:

: M 1 \

with the resultant line:

OP EXP COMMENT

Or, the expression field (EXP) could be changed to EXP+1 without
disturbing the comment field position, by the command:

:M3 EXP>+1

which generates:

LABEL OP EXP+1 COMMENT

To add a comment to a line previously containing none or to
replace an existing comment field, enter:

:M4 \<new comment>

NOTE: When using the repeat form of the MODIFY command, the
field number may need to be supplied. The field number is not
saved with the rest of the modify expression, as can be seen from
the :M* display.

20-12 DISK OPERATING SYSTEM

20.5 File Search Commands

The FIND and LOCATE commands have several forms and have been
separated from the basic command set to better describe them.

Manual, operator controlled, searches may be performed by
depressing the KEYBOARD and DISPLAY keys simultaneously to cause
data to be fetched from the file and displayed (as long as the
keys are pressed) on the screen. To fetch a single line use the
Pseudo-ENTER key (DEL shifted). The :EO command performs the same
function automatically, i.e., it causes lines to be fetched and
displayed until the end of file is reached. To abort a :EO
command, press the KEYBOARD and DISPLAY keys simultaneously.

To find the end of a file without displaying the entire file
(since the display is time consuming) use the :E* command. This
will search for the end of file and display the last eleven lines
of data.

:F <old text> - FIND match - the screen is cleared and the
input file is searched for a line starting with the specified <old
text>. Leading spaces in <old text> are significant and should be
entered if needed. (Note that this command should be typed exactly
:F<SPACE><old text».

A FIND will wrap entirely around the file (or up to the end
of file if the one-pass option is set). If the requested text is
not found, the last line on the screen when the FIND was executed
will be displayed. A FIND may be aborted by pressing the KEYBOARD
and DISPLAY keys simultaneously.

The <old text> specified for a FIND (or LOCATE) command is
saved. The saved match may be redisplayed or used again.

:F<SPACE> - FIND same match - if the FIND command is
followed by exactly one space and the ENTER key, the previous FIND
(or LOCATE) <old text> will be used for this FIND. Several
occurrences of the same text may be searched out in this manner.

:F* - FIND display - the asterisk (*) after the FIND command
causes the <old text> of the previous FIND or LOCATE command to be
displayed. The cursor is turned off and the operator must press
ENTER to proceed. No FIND is performed.

:L - LOCATE next - typed exactly :L<ENTER>, clears the screen
and finds the next line of text. If positioned at the end of the
file, the 'next' line will be the first line of the file.

CHAPTER 20. EDIT COMMAND 20-13

:L <old text> - LOCATE match - similar to FIND match except
that the locate command searches for imbedded text matching <old
text>. Leading spaces should be supplied if meaningful.

:L<SPACE> - LOCATE same match - typed exactly
:L<SPACE><ENTER>, uses the <old tex~> specifiBd by either the
previous LOCATE or FIND command to perform a search.

:L* - LOCATE display - display the <old text> entered for the
previous LOCATE or FIND command. As in the FIND display, the
cursor is turned off and the operator must press ENTER to
continue. No LOCATE is actually performed.

20.6 Miscellaneous Commands

:A - APPEND - copies the pOinted line to the bottom of the
screen and rolls the screen up one line.

:B - BYPASS - fetch a line from the file, bypassing end of
file or record format error (which would normally be treated as an
end of file). Subsequent lines (if not also record format errors)
may then be fetched by the normal mechanisms. This command is
intended as a recovery tool for use only if the file has been
accidentally shortened or contains badly formatted records.

:C - COpy - copies the pointed line to the bottom of the
screen, deletes the pointed line and rolls the screen up one line.
This command cannot be executed on the top screen line.

The cursor is left on the now null pointed line. Text may be
entered at'this point (the Pseudo-ENTER and word wrap around, if
enabled, will apply). When the ENTER key is finally pressed, the
pointer is automatically moved to the following screen line so
that a group of lines may be easily copied to another part of the
screen.

:T - TAB set - this
stops during execution.
command causes a line of
of the screen.

command enables the user to reset the tab
(Not available in Comment mode.) The
numbers to be displayed across the bottom

The operator should space over to each position where a
tabstop is desired and type any non-blank character. These tab
stops are meaningful during data entry and field modification
(:M#) since data within a field may be modified without disturbing
the rest of the line. A maximum of 10 tab stops may be set.

20-14 DISK OPERATING SYSTEM

:RH - RPG Header - sets tab stops for RPG header
specification at columns 6 and 15.

:RF - RPG File - sets tab stops forRPG file description
specification at columns 6, 15, 24, 33, 40, 54, 66 and 70.

:RE - RPG Extension - sets tab stops for RPG extension
specification at columns 6, 11, 19, 27, 33, 36, 40, 46, 52 and 58.

:RL - RPG Line - sets tab stops for RPG line counter
specification at columns 6, 15 and 20.

:RI - RPG Input - sets tab stops for RPG input specification
at columns 6, 15, 21, 44, 53, 59 and 65.

:RC - RPG Calculation - sets tab stops for RPG calculation
specification at columns 6, 18, 28, 33, 43, 49, 54 and 60.

:RO - RPG Output - sets tab stops for RPG output
specification at columns 6, 15, 23, 32, 38, 40 and 45.

:RS - RPG Summary - sets tab stops for RPG summary
specification at columns 6, 14 and 23.

:X - TEXT - this command enables word wrap around and
disables shift key inversion and space insertion after leading
periods. It automatically enters the tab set command (:T), so
that tab stops may be cleared by the operator. The tab key
character is not changed; therefore, the :<tab key> command must
be used to set a new tab key character if one is desired.

:<tab key> - change tab key character to any non-alpha,
non-numeric, non-COLON, non-ENTER character typed after a leading
colon on the command line.

20.7 Recovery Procedures

A 'FORMAT TRAP' occurs when a record not belonging to the
current file is encountered. This can be caused either by a
physical misalignment of the disk read head or because a record
has erroneously been written into that file by some other program.

A 'RANGE TRAP' occurs when the physical limit of the file is
reached and no end of file is present.

CHAPTER 20. EDIT COMMAND 20-15

20.7.1 Bypassing Errors or End of File

When a format or range error occurs, an appropriate message
appears on the command line and the cursor is turned off. In
order to proceed, the operator must first press the DISPLAY key.
The effect of either a format or range trap is the same as an end
of file and no further data will be read from the file.

To read past a format error or past an end of file, use the
BYPASS command, :B, repeatedly if necessary.

20.7.2 File Recovery

If the source file is lost (e.g., erroneously KILLed), the
scratch file may contain a useful copy. Since the scratch file
(SCRATCH/TXT) usually contains a copy of the last file edited, it
may be used to recover only that file.

20.8 Glossary

Assembler mode - assumed mode of execution. Tab stops at 9, 15
and 30 (may be changed during execution). The space bar
is assumed as the tab key character (this may be changed
in parameter list or during execution). Shift key
inversion and no word wrap around are assumed. Leading
period (.) generates period space (.) for comment lines.
Pseudo-ENTER does line-insert.

Command - characters typed at the left edge of the command line
following a COLON (:) which have special meaning to the
editor.

Command line - the twelfth line of the screen where most data is
entered, lines are fetched and commands are typed.

Command separator - the character in a MODIFY command which
indicates what is to be done (> means insert, < means
replace and \ or I mean append).

Comment field - in assembler code the area of the screen from
columns 30 to 79 which is generally used for programmer
comme~ts.

Comment mode - assumed if 'C' in parameter list. Facilitates
changing or adding comments to assembler code. Tab stops

20-16 DISK OPERATING SYSTEM

at 9, 15 and 30 (may not be changed during execution).
The space bar is assumed to be the tab key character
(this may be changed in parameter list or during
execution). Shift key inversion and no word wrap around
are assumed. Leading period (.) generates period space
(.) for comment lines. Pseudo-ENTER positions to
comment field of following line and deletes the comment.
Delete and Scratch commands affect only the comment
field. Trailing blanks are truncated when data is
output.

CONFIGURATION FILE - A file, default name of EDIT/OV1, which
automatically provides default options to EDIT.

DATABUS mode - assumed if 'D' in parameter list. Tab stops at 9
and 15 (may be changed during execution). The space bar
is assumed to be the tab key character (this may be
changed in the parameter list or during execution).
Shift key inversion and no word wrap around are assumed.
Leading period (.) generates period space (.) for
comment lines. Pseudo-ENTER does line-insert. Input
lines are blank filled and trailing blanks are truncated
on output.

Field number - a digit used in the MODIFY command to designate
characters between two tab stops. Field '1' is always
from column 1 to the first tabstop; thus, in Assembler
mode, '1' designates the label field, '2' the opcode
field, '3' the expression field and '4' the comment
field. During field modification, trailing fields are
preserved.

Format trap - bad record encountered on disk. See 'Recovery
Procedures'.

Line insert - results from an INSERT command, data entry or
modification when word wrap around is in effect or a
Pseudo-ENTER key in any mode other than Comment. The
lines above the pointed line are rolled up and a new,
blank line is generated at the pointed line.

Logical scratch file - current output file.

Logical source file - current input file.

New text - a group of characters, typed immediately after a
command separator in a modify command, which will become
part of the line being modified.

CHAPTER 20. EDIT COMMAND 20-17

Old text - a group of characters, including spaces, which are
searched for, either in the pointed line (as in the
MODIFY command) or in the file (as in the FIND or LOCATE
commands).

One-pass option - assumed if '0' in parameter list. The one-pass
option does not update the physical source file. The
FIND, LOCATE and END, END/DEL commands will not write
back into the input file if this option is set.

Parameter list - initialization information provided when the
editor is first executed. Following file specifications,
a SEMI-COLON (;) indicates the presence of a parameter
list. The mode, one-pass option, tab character, margin
bell column and (in text mode) 'no shift inversion' (S)
and 'no word wrap around' (L) may be set.

Pointed line - a pointer (» in the left hand margin is used to
reference lines for modification by command. The line to
the right of the pointer is the pointed line.

Physical scratch file - specified (or implied SCRATCH/TXT) output
file.

Physical source file - specified input file.

Pseudo-ENTER - the key marked DEL
as the Pseudo-ENTER key.
of the command line, one
from the source file.

(always shifted) is referred to
If pressed in the first column

line of text will be fetched

In comment mode, if pressed on any but the bottom screen
line or command line, it will cause the cursor to be
positioned to the comment field of the following line and
that field will be erased.

In all other modes, the Pseudo-ENTER key causes a new
line to be inserted so that data entry may proceed in the
same area of the screen. If pressed on the last screen
line, the Pseudo-ENTER key simply places the cursor on
the command line.

Range trap' - attempt to read past the end of allocated space on
the input file - see 'Recovery Procedures' in the
previous section.

Scratch file - at any point in time, the logical scratch file is
the output file. It may, however, physically be the

20-18 DISK OPERATING SYSTEM

original input or the assigned 'scratch' file.

Screen line - any of the eleven lines on the screen which may be
referenced by the command pointer. The command line is
not, therefore, included.

Shift key inversion - reverse the function of the shift key for
all alpha characters so that, in lower case, alpha
characters will appear upper case.

Source file - originally this is the input file specified at
initial execution. The term source file refers to the
current input file; thus, at any point in time, the
logical source file may be either the specified input
file or the file specified as the scratch file.

Text mode - assumed by a 'T' in the parameter list. No tab stops
are set (tabs may be set during execution). The
SEMI-COLON (;) is the assumed tab character (the tab key
character may be changed in the parameter list or during
execution). No shift key inversion is performed (this
may be selected in the parameter list). Word wrap around
is performed (this feature may be turned off by an 'L' in
the parameter list).

Word - a word is defined as any group of less than 50 characters
preceeded by a space.

Word wrap around - a feature of text mode. During data entry a
space within the last 10 columns of the screen causes an
immediate carriage return. If this occurs on a screen
line, a line insert is performed so that data entry may
proceed at the same area of the screen. If a character
is typed over the last column of the screen, the last
word is removed, a line insert performed and the removed
word is placed at the beginning of the inserted line
where data entry may proceed. If a modify command causes
the line to become longer than 79 characters, the
trailing characters, including the last word on the line,
will be moved to a new line which will be inserted below
the original line. Control will then return to the
command line.

CHAPTER 20. EDIT COMMAND 20-19

20.9 Command List

:A APPEND pointed line to command line and roll up

:B BYPASS end of file

:C COPY pointed line to command line and roll up

:D DELETE entire line

:D <old text> DELETE from left thru <old text>

:E

:EO

:E/

:E*

END edit - copy remainder of file and update source

EOF display - fetch and display data until end of
file

END/DELETE update without copying remainder

EOF search - find end of file and display last full
screen

:F <old text> FIND match - search file for matching leading text

:F<SPACE>

:F*

:1

:L

FIND repeat - use previous find/locate <old text>

FIND display - display previous find/locate <old
text>

INSERT a blank line below pointed line

LOCATE next - clear screen and get next line

:L <old text> LOCATE match - search file for matching imbedded
text

:L<SPACE>

:L*

LOCATE repeat - use previous find/locate <old text>

LOCATE display - display previous find/locate <old
text>

LINE MODIFICATION

:M [old text]<[new text] - MODIFY replace old text by new text,
adjusting the entire line

20-20 DISK OPERATING SYSTEM

:M [old text]>[new text] - MODIFY insert new text after old text,
adjusting the entire line

:M [old text]\[new text] or :M [old text]l[new text] - MODIFY
append new text after old text adjusting the entire
line

FIELD MODIFICATION

:M<#> [old text]<[new text] - field MODIFY replace old text within
specified field with new text without disturbing the
remainder of the line.

:M<#> [old text]>[new text] - field MODIFY insert old text after
new text within specified field, without disturbing
the remainder of the line.

:M<#> [old text]\[new text] or :M<#> [old text]1 [new text] - field
MODIFY append the new text after the old text within
the specified field without disturbing the remainder
of the line.

:M*

: M[liJ

:RH

: RF

: RE

: RL

: RI

:RC

: RO

MODIFY display the previous modify [old]<sep>[new]

field MODIFY repeats the previous modify
[old]<sep>[new]

RPG HEADER - sets tab stops at columns 6 and 15.

RPG FILE - sets the stops at columns 15, 24, 33, 40,
54, 66, and 70.

RPG EXTENSION - sets tab stops at columns 6, 11, 19,
27,33,36,40,46,52, and 58.

RPG LINE - sets tab stops at columns 6, 15, and 20.

RPG INPUT - sets tab stops at columns 6, 15, 21, 44,
53, 59, and 65.

RPG CALCULATIONS - sets atab stops at columns 6, 18,
28, 33, 43, 49, 54, and 60.

RPG OUTPUT - sets tab stops at columns 6, 15, 23,
32,38,40, and 45.

CHAPTER 20. EDIT COMMAND 20-21

:RS RPG SUMMARY - sets tab stops at columns 6, 14, and
23.

:SB SCRATCH BELOW deletes the pointed line and all
screen lines below it

:SC StRATCH ABOVE deletes the pointed line and all
screen lines above it

:T TAB SET permits the user to set up to ten tab stops

:X TEXT mode switches to text mode with word wrap
around and no shift key inversion.

: (character> changes the tab key character to (character>.

20-22 DISK OPERATING SYSTEM

CHAPTER 21. ENCODE/DECODE COMMANDS

21.1 Purpose

The ENCODE command is used to convert disk files containing
data in any format into 19 character records containing only ASCII
characters. Data in encoded format can be copied or transmitted
by all Datapoint programs.

The DECODE command is used to translate encoded data files
back into an exact duplicates of the original disk files.

21.2 Use

ENCODE <file spec>,[<file spec>]

The ENCODE command converts the first file into encoded
format and writes the data into the second file. If extensions
are not supplied, ABS is assumed for the first file and ENC is
assumed for the second file. If the second file is not specified,
the name of the first file with an extension of ENC is assumed.
The second file will be created if it does not already exist.
Encoded data creates a file 50 percent larger than the original.

DECODE <file spec>,[<file spec>]

The DECODE command converts the first file from encoded
format back into binary and writes the data into the second file.
If extensions are not supplied, ENC is assumed for the first file
and ABS is assumed for the second file. If the second file is not
specified, the name of the first file with an extension of ABS is
assumed. The second file will be created if it does not already
exist.

INPUT FILE MUST BE SPECIFIED!

will be displayed if the first file specification is omitted.

INPUT FILE DOES NOT EXIST!

CHAPTER 21. ENCODE/DECODE COMMANDS 21-1

will be displayed if the first file specified cannot be found in
the DOS directory.

OUTPUT WOULD DESTROY INPUT FILE!

will be displayed if the first and second file specifications are
identical.

INPUT FILE CONTAINS BAD DATA!

will be displayed if an encoded data file cannot be decoded into
its original binary form.

ENCODE reads and converts binary data until either a valid
text end-of-file is read or allocated file space is exausted.
Data in encoded form is always terminated with a valid text
end-of-file.

21-2 DISK OPERATING SYSTEM

CHAPTER 22. FILES COMMAND

FILES is a program which selectively prints or displays DOS
file descriptions in file name sequence.

One may select information pertaining to all DOS files or to
only those files with names and/or extensions beginning with the
characters specified by the operator. Selected directory entries
are sorted into ascending file name sequence. If desired,
information from associated Retrieval Information Blocks
(described in the chapter on System Structure) is also extracted
for each directory entry. Extracted data is interpreted and
displayed on the screen, listed on a Local or Servo printer, or
written to a disk file.

22.1 Command Description

To execute the FILES program, type in the name FILES followed
by selection criteria and display options (if option codes are to
be used):

FILES [<filename>][/<ext>][:DRn],[<subdir>] [,<output-file>][;optior

<filename> Select entries for files with names beginning
with the 1-8 characters specified.

<ext>: Select entries for files with name extensions
starting with the 1-3 characters specified.

:DRn Specifies the disk drive to be selected.
If this field is omitted, drive 0 will be
selected.

<subdir> Specifies the named subdirectory from which
to select entries.

<output-file> Specifies the disk file to which the
selected entries will be written, if disk
file output is specified.

CHAPTER 22. FILES COMMAND 22-1

options: The following option codes are available, and
may be entered in any order:

N - Suppress file allocation map.
D - Display on CRT.
L - List on local printer.
S - List on servo printer.
F - Write output to disk as DOS text-type

file.

If options are keyed and D, L, S
assumed. D, L, S, and F options
can be sent to only one device.
file spec> is not present in the
by the message:

and F are omitted, then D is
are mutually exclusive; output
If F is keyed and the <output
command line, one is requested

DOS OUTPUT FILE SPEC:

22.2 Default Messages

If no option codes are entered, the following messages will
be displayed on the CRT:

SUPPRESS FILE ALLOCATION MAP?

If "Y" or "YES" is entered in response to this message, the
display of file allocation information from Retrieval Information
Blocks (RIB) will be suppressed. If any other response is
entered, file allocation information will be displayed for each
selected file.

After the user has replied to the map selection message, the
program will test to see if the there is a servo printer connected
to the processor. If a servo printer is attached and ready, the
following message will be displayed:

LIST ON SERVO PRINTER?

If the user enters a "Y" or "YES" in response to this
message, the servo printer will be selected to display output. If
any other response is entered or the program cannot find an
available servo printer, the program will test to see if a local
printer is connected and ready for printing. If the program finds

22-2 DISK OPERATING SYSTEM

that a local printer is available, the following message will be
displayed:

LIST ON LOCAL PRINTER?

If the user enters "Y" or "YES" in response to this message,
the local printer will be selected for output. If a printer has
been selected for output, the following message will be displayed:

ENTER HEADING:

Up to 32 characters can be entered, which will be displayed
at the top of each page of printed output.

If no printer is available, or if the operator has rejected
printer output, the program will ask for disk output:

WRITE OUTPUT ON DISK?

If the user enters ~Y" or "YES", output will be written to a
disk file, otherwise output will be displayed on the CRT. If disk
output is selected, an output file name will be requested unless
one was provided on the command line.

22.3 File Descriptions

File descriptions are sorted into ascending file name
sequence for easy reference and displayed or printed in the
following format:

FILENAME/EXT (PFN) DW

DW flags following the Physical File Number (PFN) indicate if
the file is delete protected CD), or write protected (W). If the
file allocation map was not suppressed, messages describing the
file's size and location will be included in the file description.
When allocation map information is printed or displayed, the
program displays totals lines specifying the total number of files
listed and the total number of sectors in those files. Disk
output never has totals lines.

Depressing the DISPLAY key during display or printing of file
descriptions will cause the program to pause until the key is
released. Depressing the KEYBOARD key will cause the program to
terminate and return control to the operating system. ,

Allocation map information describes each segment in the file

CHAPTER 22. FILES COMMAND 22-3

by glvlng the cylinder and cluster starting address of the segment
and its length in sectors. One line is displayed for each
segment. See the chapter on System Structure and the Appendix for
the appropriate DOS for a description of disk space allocation.

22.4 Error Messages

* PARITY ERROR *
FILES can not continue due to an irrecoverable parity error

encountered while trying to read data from the disk.

* DRIVE OFFLINE *
FILES is unable to connect to the disk drive selected by the

operator (drive a if not otherwise specified).

FILE(S) NOT FOUND.

No Directory entries have been found that meet the user's
selection criteria.

INVALID DRIVE

An invalid drive specification was entered.

CONFLICTING OPTIONS SPECIFIED

Options specify output on more than one device.

UNRECOGNIZABLE OPTION CODE

An unrecognizable code has been entered in the option field.

PRINTER NOT AVAILABLE

An optitin code specifies a printer that does not respond when
tested for status.

22-4 DISK OPERATING SYSTEM

CHAPTER 23. FIX COMMAND

23.1 Purpose

The FIX program can be used to modify bytes of DOS-Ioadable
object code in an absolute code file. This program can be very
dangerous and should be used only by qualified assembler language
programmers or by someone folowing specific directions provided by
Datapoint.

23.2 Operation

To invoke FIX, enter the command:

FIX <file spec>

The program will display a sign-on message and will then
display an initial line of six zeros, two spaces, and three more
zeros on the bottom CRT line. (The zeros represent the current
address and its contents.)

000000 000

The screen is then rolled up. The program then waits for a
command from the operator. The <file spec> must specify a
DOS-Ioadable object file. If no extension is provided, lABS is
assumed. ,

Commands are in the form [number][character] where the number
is assumed to be octal. If the number is omitted, a value of zero
is used. Commands are terminated by the enter key. Following a
command, the current address and its contents are re-displayed.

23.3 Commands

The following is a list of command characters with their
effect:

ENTER - Set current address.

If no block of object code is currently in

CHAPTER 23. FIX COMMAND 23-1

memory (as at the beginning of execution or after a block
has been rewritten), search the object file forward until
a block containing the given location is found, then
display the contents of that location. If the address
does not exist in the object file, the current address is
left at zero.

- If a block of code is in memory and the location given is
within the limits of the block, the contents of the
location will be displayed.

If a block is in memory and the location given is not
within the block limits, the current address will be set
to the minimum or maximum address of that block, its
contents will be displayed and a beep will sound. To
access the desired address the current block must first
be aborted (A) or transferred (T).

M - Change the contents of the current address to the number

I

given.

Increment the current address (up to the maximum address
in the current block).

- Change contents of current address to number given and
automatically increment the current address and display
the contents of the resulting location.

D - Decrement the current address (down to the minimum
address in the current block).

T - Transfer the modified block back to disk - rewriting it
in place. After the block is written, the current
address is set back to zero, so that all searches always
start from the beginning of the file. No modification is
made to the stored file until a T command is executed.

A - Abort processing the current block, set the current
address back to zero.

o OR * - Return to the operating system - if there is a block of
object code in memory, it is not written back into the
file.

If the command character is not one of the above, it is
ignored and regarded as if only the ENTER KEY had been pressed.

23-2 DISK OPERATING SYSTEM

23.4 Error Messages

If the <filespec> is not an absolute object code file, the
message

RECORD FORMAT ERROR

is displayed.

If the file specified on the command line is not found, the
message

NO SUCH NAME

is displayed.

CHAPTER 23. FIX COMMAND 23-3

CHAPTER 24. FREE COMMAND

24.1 Purpose

As a disk becomes full, it is useful to know how many
256-byte sectors remain available for allocation. Another useful
bit of knowledge on the larger disks is how many empty slots in
the directory remain for the allocation of file names. The FREE
command displays these two values.

24.2 Use

The FREE command accepts a drive specification. It may be
entered simply as:

FREE

which will cause the FREE space and files for all the on-line
drives to be displayed. It may also be entered as:

FREE :<drive spec)

which will display the FREE space and files for only drive n.

The command scans all drives that it finds on-line and
displays (1) the number of available file names (representing
possible files to be created) and (2) the number of available
sectors that it finds on each.

Holding down the DISPLAY key will cause FREE to pause.
Pressing the KEYBOARD key will cause FREE to terminate and return
to the operating system.

CHAPTER 24. FREE COMMAND 24-1

CHAPTER 25. INDEX COMMAND

25.1 Introductionn

The DOS INDEX command (with the DOS SORT Command) is used to
create the tree structure required by programs using the indexed
sequential access method (ISAM), to create a Key tag file from the
INDEX file, to create the INDEX file from a Key tag file, or to
recreate the INDEX file.

The INDEX command has the capability of creating index files
from any DOS text-type files. The indexed access method can then
rapidly access records in this file either in sequential or random
order. Records in files to be indexed must contain a record key
up to 118 characters long contained in the first 249 bytes of each
record.

It is possible to build many independent indices to permit
access to records of the same file by many separate, unrelated
keys. There are no restrictions on the number of indices that may
be built, or on the relationship or lack of relationship among the
various keys used.

25.2 System Requirements

INDEX runs under the DOS operating system. In addition, INDEX
uses the DOS SORT command, which must be resident on an online
disk at the time INDEX is used. If the INDEX command is to
pre-process the text file, the REFORMAT command must be available.
(See the Section on PREPROCESSING the file). If the INDEX command
is to be used to recreate the tree structure file, the NAME
command must be available.

If possible, INDEX will invoke the FASTSORT program, instead
of the normal DOS SORT. Only if a 5500 processor is in use and PS
is not active will INDEX look for FASTSORT. Under any other
conditions it loads SORT. If FASTSORT is not available, INDEX
uses SORT. FASTSORT is released separately.

CHAPTER 25. INDEX COMMAND 25-1

25.3 Operation

When the Index command is to be executed, the operator must
enter:

INDEX <filespec>[,<filespec>J[,<filespec>J[,<drive>J;<parametel's>

where only the first file specification and key field description
are mandatory, and specify the file to be indexed. Default
extension is ITXT. The second file specification is the name of
the INDEX file to be created. If no file is specified, the name
of the first file is used with default extension of IISI. If no
drive is specified, the INDEX file will be placed on the same
drive as the file to be indexed. INDEX files may have any names
at all - and be located on physically different drives from the
file being indexed. However, high-level languages using ISAM
files (DATABUS, for example) assume the INDEX file will have the
normal IISI extension, and if the file open is drive directed the
IISI and ITXT files must be on the same drive.

The third file specification is for the
file. The third file name will also default
first file with a default extension of ITAG.
specification, which may only specify drive,
put its intermediate work files. Otherwise,
optimize drive selection.

25.3.1 Parameters

intermediate tag
to the name of the

The fourth file
tells SORT where to
SORT will attempt to

In addition to the parameters that INDEX itself recognizes,
the us~r may specify any parameters acceptable to the REFORMAT
utility (if preprocessing is to be done), or a pri~ary record
specification to be passed to SORT, or Mnnn or Q options to
FASTSORT. Parameters recognized by INDEX arB as follows:

K Create a Key tag file from·the IISI file.
I Create an IISI file from the Key tag" file.
X Recreate the IISI file, handling insertions and

deletions.
F Preprocess the input file with REFORMAT.
E Index in EBCDIC collating sequence.

mmm-nnn -- Key specification

The Key tag file is a standard text file containing the
pointer and key of each record to be indexed. The format is
explained in the SORT chapter. The file may be LISTed, EDITed or
transmitted. This last feature allows the IISI file to be created

25-2 DISK OPERATING SYSTEM

at a remote site without invoking SORT.

The format of the key is mmm-nnn [,mmm-nnn] [,mmm-nnn] ...
where mmm is the beginning character position of the key field in
each logical record and nnn is the ending position of the key
field. Note that each record must have a unique key.

The primary record specification is an option that allows the
user to create the ISAM index file from a subset of the data file.
The format of the primary record specification is PNNNTC. The P
must always appear. The field following P, denoted by NNN,
represents the column in each logical record where a one position
field exists that differentiates records in the file. The
location of this one character field must be less than or equal to
249. The T can have one of two values. It can be either an equal
sign (=) or a pound sign (#). If the former, it means create the
ISAM index file from all records that contain the ASCII character
C in position NNN. If it is a pound sign, it means that the ISAM
file will be created from all records that do not contain the
value of C in position NNN.

In general the parameters for INDEX can be specified in any
order and may optionally be separated from each other by a blank
or a comma. The only exception to this is when a primary record
specification exists, it must precede the key field specification
and be separated from the key by a blank or a comma.

25.4 Choosing A Record Key

Since the speed of access to an indexed file varies according
to how much file space and thus how many levels of index are
required for the index tree, the choice of what to use for a
record key becomes highly important. Of course, you must choose a
key which will uniquely determine the record you wish to access,
but you should scrupulously avoid including information in the key
which is not absolutely necessary. For example, a file could be
keyed according to automobile license plate numbers. Typically,
these numbers will include a hyphen or other punctuation, which
could easily be excluded from the record's key. The indexed
access method will perform more efficiently if all non-significant
characters are removed from the record's key.

CHAPTER 25. INDEX COMMAND 25-3

25.5 Preprocessing the File

In file structures such as an indexed file where records are
randomly inserted and deleted, the file tends to become
non-optimum for searching. In addition, due to the method with
which the indexed access method inserts records, each inserted
record exists in a separate disk sector~ This means that for
records that are 80 characters long, two-thirds of the disk space
for each additional record is wasted. This results in a reduction
of the performance of the indexed access method.

In order to reclaim space vacated by deleted records and
padding bytes in inserted records, the file may be processed by
the REFORMAT utility prior to indexing.

25.5.1 Invoking Reformat

The INDEX utility will automatically invoke REFORMAT if the
"F" option is present when INDEX is invoked. You must have
specified the options that REFORMAT will need to process the file.

Note that if multiple indices are to be created, reformatting
need only be specified for the first INDEX step, and MUST not be
specified later if it was not specified in the first step.
Although REFORMAT will not destroy the file, specifying
reformatting may invalidate any previously built indices.

Basically, you must tell REFORMAT what format the records of
the file are to have after preprocessing. You may select record
compression, space and record compression, or blocking. Since the
reformatting is done in-place, the REFORMAT option cannot enlarge
the file which is to be indexed. For additional details on the
REFORMAT utility, see the REFORMAT section of this guide.

25.5.2 Considerations for Unattended Indexing

Users who use the INDEX command from a CHAIN file (see the
section on the CHAIN command for more details) and used AUTOKEY to
restart their chain in the event of a failure should generally
avoid using REFORMAT directly from INDEX. The reason why is that
REFORMAT as invoked by INDEX uses the REFORMAT-in-place mode of
the REFORMAT command. (The reason for this is that it is faster
to do so, and also allows the indexing with reformatting of a file
which is too big to REFORMAT in the available scratch space on a
single-drive, almost full disk). Although REFORMAT is very
careful not to damage the file being processed, if the file is

25-4 DISK OPERATING SYSTEM

actually in the process of being reformatted when a power failure
occurs, the results can be undesirable.

This potential problem during unattended INDEX chaining can
be avoided by setting a checkpoint (see the AUTOKEY command
description for details), copying the original file to a scratch
file, setting another checkpoint, reformatting the scratch file
back into the original (using the COpy mode of REFORMAT), setting
a further checkpoint, and finally INDEXing the file using INDEX.
In this way there is always an undamaged file with which execution
can resume if necessary.

25.6 INDEX Messages

The Index command displays several messages on the operator's
console. They are listed below with explanations, in the sequence
in which they may appear.

DOS. VER 2 INDEX COMMAND - date
This is the signon message that gives the user the
version of DOS required and the date of the INDEX
command .

. INFILE NAME MISSING.
This indicates that the user has omitted the first,
and required, file specification.

KEYTAG FILE BEING BUILT.
This indicates that INDEX is now creating the ASCII
KEYTAG file requested with the "K" option.

SORT COMMAND MISSING.
This indicates that INDEX needs to invoke the SORT
command but could not find it on any of the on-line
drives.

FILE PREPROCESSING WILL BE DONE BY REFORMAT COMMAND.
This indicates that the user has requested
preprocessing of his file by the REFORMAT command.

REFORMAT COMMAND MISSING.
This indicates that INDEX needs to invoke the REFORMAT
command but could not find it on any of the on-line
drives.

REFORMAT COMMAND LINE:

CHAPTER 25. INDEX COMMAND 25-5

This is the parameter list passed to the REFORMAT
command.

INDEX WILL USE EBCDIC SORT.
The user has requested an index using the EBCDIC
collating sequence.

SORT COMMAND LINE:
This is the parameter list passed to the SORT command.

REFORMAT UNLOADABLE!
This indicates that there is something wrong with the
REFORMAT command object file. It needs to be
reloaded.

SORT UNLOADABLE!
This indicates that there is something wrong with the
SORT command object file. It needs to be reloaded.

BUILDING LOWEST LEVEL INDEX.
This indicates that INDEX is now creating the lowest
level of the index file.

NULL INDEX FILE CREATED.
This indicates that an empty tag file was created by
SORT. The index file created is usable by programs
using ISAM for adding records.

LONG KEY ENCOUNTERED AND TRUNCATED.
This indicates that the tag file contained a key that
was longer than 118 characters. It was truncated to
118 characters.

DUPLICATE KEY: <key>
Two keys in the tag file were found to be identical
and the first 60 characters of the key are displayed.
INDEX will continue so as to display any other
duplicate keys that may be found.

INDEX TERMINATED BY DUPLICATE KEYS.
Duplicate keys have b~en found·and so the index file
has been deleted. The tag file is not deleted and
since it is in standard text format, it may be EDITed
to remove or modify the duplicate key and tag. Or a
program (e.g. in DATABUS) may be written to display
the records containing the duplicate keys so the user
may resolve the ambiguity. INDEX may then be
reinvoked using the "I" option.

25-6 DISK OPERATING SYSTEM

BUILDING -NEXT- LEVEL INDEX.
This indicates that the lower level of the index file
has been completed and the next level is now being
created.

DONE.
The creation of ·the index file is now completed.

Other error messages may be generated by REFORMAT or SORT.
See the appropriate chapter for an explanation.

25.7 lSI File Formats

The DOS indexed file structure consists of a multi-level
radix tree structure based on the record keys, and contains
pointers to the location of the keyed records. Note that since
many of these pointers are physical disk addresses, the lSI file
cannot be moved without re-invoking INDEX. The text file may be
moved so long as it is unchanged in any way. Moving the lSI file
will destroy it.

The different levels of indices all have the same content,
except for the lowest level index. Index levels are built up
until an intermediate level of index will fit in a single disk
sector. This becomes the highest level of index. This
requirement is the reason for the 118 character limitation on key
length.

The lSI files have the following format:

Offset Length

000 003

003 Onn

Onn+4 Onn

Description

PFN and LRN bytes as per DOS convention -
see the chapter on SYSTEM STRUCTURE.
This is a KEY entry where nn is key length+7
for a lowest level index, and key length+3
for a higher level index. The first sector
of an lSI file after the RIBs is a special
header record.
This is the second KEY entry in the sector.
There must be at least two KEY entries per
sector.

CHAPTER 25. INDEX COMMAND 25-7

Note that as many key entries are put in a
sector as will fit without splitting across
a sector boundary.

Each KEY entry for an intermediate level index has the
following format:

Offset Length Description

000 KEYLEN The highest key in the next lower level
index sector.

KL 001 Octal 012 - This indicates the end of the
key and that this is a higher level index
entry.

KL+1 002 PDA (MSB,LSB) of the entry in the next lower
level of index.

KL+3 001 Octal 0371 - This indicates that this is the
last entry in this sector.

Each KEY entry for a lowest level index entry has the
following format:

Offset Length

000 KEYLEN
KL 001

KL+1 003

KL+4 003

KL+7 001

Description

The key for this particular record.
Octal 015 - This indicates that this is a
lowest level index entry and delimits the
end of the key.
Buffer Offset, and the physical disk address
for the logically next lowest level index
entry.
Buffer Offset, and logical record number of
the text file record having this key.
Octal 0377 - Indicates that this is the end
of the lowest level index.

The first data sector in an lSI file is a header record used
to locate the file from which the index was built. In this way,
it is only necessary to specify the name of the index to
DATASHARE.

Offset Length

000 003

Description

PFN and LRN indicators as per DOS
convention. See the System Structure
Chapter.

25-8 DISK OPERATING SYSTEM

003 013 Name of the data file that goes with this
index file.

016 003 PFN, and RIB PDA of this file. This field
is used to check that the index file has not
been moved.

021 003 PFN, and RIB PDA of the file indexed.
027 003 Buffer address and LRN of the last record

used in the data file.
032 003 Buffer address and LRN of the first free

index entry.

25.8 Examples of the Use of INDEX

First, a simple example in which only a single lSI file is
created, with the same name and on the same device as the text
file it indexes. The file is a list of bad checks presented at a
local grocery chain, and now each store has a DATASHARE terminal
to inquire on the current status of each deadbeat. Thus, while
the file is accessed often, additions and deletions are fairly
infrequent, so the file will not be reformatted. The file is keyed
by bank number (8 digits) and account number (7 digits)
concatenated and in positions 1 to 15 of each record.

In order to create the index file, the operator must type:

INDEX DEADBEAT; 1-15

The INDEX program will then create a file DEADBEAT/lSI which
DATASHARE can use to access the DEADBEAT/TXT file.

Now, this same grocery chain has expanded its operations, so
it desires to include more information on the location and date of
each NSF check presented. Therefore, they have expanded the file
to include the old key in positions 1 to 15, a store location
number in positions 16 to 18, and a date field in positions 19 to
24. As an afterthought, the manager decides to tack on the name
of the person passing the bad check in positions 193 to 216.

CHAPTER 25. INDEX COMMAND 25-9

In order to create the indices required for access by any of
these keys, the operator must type:

INDEX DEADBEAT,BANK;1-15
INDEX DEADBEAT,DATE;19-24
INDEX DEADBEAT,STORE;16-18
INDEX DEADBEAT,NAME;193-216

The INDEX program will create four files with names BANK/lSI,
DATE/lSI, STORE/lSI, and NAME/lSI. Each file is logically
separate, yet all are on the same volume as DEADBEAT/TXT.

Now the store owners have uncovered a hitch - first, the
number of bad checks is becoming so large, there is no room on one
disk for all the index files and the text file. In addition,
access has been slowing way down as the frequency of additions and
deletions increases. The store owners have called Datapoint to
complain, and their local systems engineer has told them they need
to reformat the files when 'they re-index, and has sold them
another disk drive.

The operator now types:

INDEX DEADBEAT,BANK/ISI:DR1;FR1-15
INDEX DEADBEAT,DATE/ISI:DR1;19-24
INDEX DEADBEAT,STORE/ISI:DR1;16-18
INDEX DEADBEAT,NAME/ISI:DR1;193-216

Note that the reformatting is done only once at the
beginning. If reformatting had not been done when the first index
was built, ~t could not be correctly done later without
invalidating the previously built indices.

Now, several years later, the grocery chain has expanded and
has a large disk system at their main store. The owners are doing
so much processing that there is not the time to run the above
INDEX programs as each one invokes SORT. However, they wish to
keep access time to the minimum. Also, the DEADBEAT file is so
large that numerous additions and deletions hardly affect the
size.

Every night the operator now types:

25-10

INDEX BANK;X
INDEX DATE;X
INDEX STORE;X
INDEX NAME;X

DISK OPERATING SYSTEM

which recreates the index files. Then during weekly processing,
the operator does the processing above which invokes REFORMAT.

The store owners have wisely dispersed some of their data
processing to their branch stores. So each night the operator
also types:

INDEX BANKiK
INDEX DATEiK
INDEX STOREiK
INDEX NAMEiK

which creates tag files of the four indices. The operator then
transmits DEADBEAT/TXT, BANK/TAG, DATA/TAG, STORE/TAG, and
NAME/TAG to each of the branch stores. The operator at the branch
store, after receiving these files, types:

INDEX DEADBEAT,BANK,BANKiI
INDEX DEADBEAT,DATE,DATEiI
INDEX DEADBEAT,STORE,STOREiI
INDEX DEADBEAT,NAME,NAMEiI

which creates a local set of indices without invoking SORT.

Note: In the above example that created a BANK tag file, the
command line with defaults is:

INDEX BANK/TXT,BANK/ISI,BANK/TAGiK

As only the /ISI and /TAG files are needed for creation of the tag
file, the same results could have been achieved by typing:

INDEX ,BANK,BANKiK

CHAPTER 25. INDEX COMMAND 25-11

CHAPTER 26. THE INIT9370 COMMAND

When a new disk pack is received, it is not immediately
usable in the 9370 series drives until it has been formatted. The
formatting process, which causes track and sector identifying
information to be written over the entire disk surface, is
performed by the INIT9370 command. This command is useful only on
9370 series disks!

26.1 Use

The INIT9370 command is unusual among DOS commands in that it
is one of the few that can be run in a stand-alone mode: that is,
without being run under the DOS. This feature is required in
particular for the first time a user generates a DOS system disk,
when he has no alternative but to start with INIT9370 running from
an LGO cassette.

To invoke INIT9370 from a working DOS (normally useful only
for users with two-drive systems), the operator enters at the
system console:

INIT9370

With an LGO cassette, the operator places the cassette in the
rear cassette deck and presses the RESTART key (and RUN key on a
5500 processor). Once the program has initially loaded, it
functions the same regardless of whether it has been loaded from
cassette or disk.

After being loaded, INIT9370 asks which physical (not
logical) drive contains the disk to be formatted and asks the user
for confirmation that it is all right to destroy the previous
contents of the disk, if any. After the command is satisfied that
the user knows what is about to happen, it proceeds to format the
disk. The process takes about three and a half minutes.

CHAPTER 26. THE INIT9370 COMMAND 26-1

26.2 Error messages

If the INIT9370 command encounters any sort of error
indication before or during the formatting process, it will wait
for a while to see if the problem will go away on its own. (A
typical example would be if the disk to be formatted has not yet
come on line when the INIT9370 command begins execution). If the
problem persists, the program will display a comment on the CRT
display indicating that it is waiting on the disk, describe the
status of the disk as indicated by the controller, attempt some
corrective actions that may help to clear the situation, and
inform the operator of what corrective action has been taken.
This is repeated until the problem is successfully cleared up.

26-2 DISK OPERATING SYSTEM

CHAPTER 21. KILL COMMAND

KILL - Delete a file from the directory

KILL [<file spec>]

The KILL command deletes the specified file from the system
if the file is not protected. If the file is protected in any
way, the message

NO!

will be displayed. If the file specification i~ not given on the
command line (file names which contain special characters cannot
be given on the command line), the request for the file name:

WHAT FILE? EXAMPLE: SCRATCH ITXT:DR1 #143 :DR1
I : DR

will appear. The user must keyin an eight character filename
(including trailing spaces), a slash, a three character extension
(including trailing spaces), a colon, the letter "D" and the drive
number on which the file resides. If the entire filename
specification is not entered properly, the message:

NO SUCH NAME.

will appear. A file can be specified by physical file number by
entering "I", followed by the octal PFN, followed by 8 spaces and
the drive specification. If the specified file cannot be found
(both a name and an exterision mus~·always be supplied unless using
PFN), the message:

NO SUCH NAME.

will be. displayed. If the file is found and is not protected, the
message:

THAT FILE IS <filename> ON DRIVE n

will appear. Then the operator must additionally answer the
message:

ARE YOU SURE?

CHAPTER 21. KILL COMMAND 21-1

with a 'yt before the actual deletion of the file is achieved.
After the deletion has occurred the following message is
displayed:

* FILE DELETED *

27-2 DISK OPERATING SYSTEM

CHAPTER 28. LIST COMMAND

28.1 Purpose

The LIST command will list any DOS standard format text file
on the screen or a local or servo printer.

The command can be used for such things as:

A quick scan of a file by displaying it on the screen
(LISTing a file is faster than EDITing it);

Producing a hardcopy listing of a file for permanent records;

Listing a file for use in preparation of a BLOKEDIT COMMAND
FILE.

In this chapter, the following terms apply:

Text file means a file with records containing only ASCII
characters, except for space-compression bytes and the
End-Of-Record and End-Of-File marks. Files created by EDIT
and those produced by DATASHARE are normally in the class of
text files.

Line means one record of a text file. When displayed on the
screen, only the first 72 characters of a record will be
displayed; when listed on a local or servo printer only the
first 124 characters will be printed. (The remaining eight
characters contain a line number.)

Record means the user logical record number (LRN). The first
LRN of a file is zero.

28.2 Parameters

When the LIST program is to be executed, the operator must
type:

LIST <filespec> [,<spec2>][,<filespec2>][;options]

CHAPTER 28. LIST COMMAND 28-1

L
S
D
X
F
P
Q
Nn
I

,...

Available options are:

list on Local printer
list on Servo printer
Display on CRT
suppress line numbers
list Formatted print file
output formatted Print file
Queue formatted print file, appending to an existing file
set Number of lines per page to n
list in Indexed sequence

Options may be entered in any sequence and should be
separated by commas.

28.3 INPUT File Specification

The file specification «filespec» must refer to a DOS text
file. If no extension is supplied with the file name, an
extension is assumed depending on the options given. A default
extension of TXT is assumed unless the option "I" or "F" is used.
The option "I" (list a file using its index) causes a default
extension of lSI and the option "F" (list a file with format
control bytes) causes a default ext~nsion of PRT. If no drive is
supplied with the file specification, all drives will be searched
for the filename/ext. If <filespec) is omitted, the message

NAME REQUIRED.

is displayed. If the file indicated by <filespec) is not found on
an online volume, the message

NO SUCH NAME.

is displayed.

28.4 Starting Point

The operator may specify a line number, or logical record
number, in the file at which the list should begin by including an
optional second parameter <spec2). For example:

LIST <filespec),L400

would list the specified file beginning with line 400 of the file.

28-2 DISK OPERATING SYSTEM

If the line number specification exceeds the number of lines in
the file, LIST returns to DOS after displaying the message:

FILE EXHAUSTED BEFORE LINE FOUND.

LIST <filespec>,R18

would directly access logical record 18 of the specified file and
list, starting at line number 1. If range or format errors occur,
the error type is indicated and another record number is
requested.

For instance, if the record number specification exceeds the
number of records, the message

RANGE - NEXT RECORD NUMBER:

is displayed.

The DEFAULT value for the second parameter is line 1 and
record O.

28.5 OUTPUT File Specification

If the options "P" (write to a p~int file on disk) or "Q"
('QUEUED' write to a disk print file starting at the end-of-file
mark) are used, then the third parameter (filespec2) may be used
to specify the output file. If the filename is not given, it is
assumed to be the same as the input file name. If the extension
is not given, it is assumed to be PRT.

Output from either the "P" or "Q" option is a text file with
print control characters as described in the Format Control
section. The file will be paged with headings; line numbers will
be included unless suppressed by the "X" option.

28.6 Output Device

The operator may specify an output device other than the CRT
display by including an optional parameter of "S" (servo printer),
"L" (local printer), "P", or "Q". For example:

LIST <filespec>,L400;S

would list the specified file on the Datapoint servo printer

CHAPTER 28. LIST COMMAND 28-3

starting at line 400 or

LIST <filespec>;L

would list the specified file on a Datapoint local printer
beginning at line number one.

For either print or disk output LIST will request a heading,
which will be placed at the top of every page of output.

The DEFAULT output device is the CRT display which may be
specified by entering a "D".

28.7 Output Format

A parameter is available to suppress line numbers. If the
tXt is entered, lines of up to 132 characters will be printed.
For example:

LIST <filespec>;SX

would put the output on the servo printer without line numbers,

LIST <filespec>;X

would display the listing, showing 80 characters per line on the
CRT.

Any paged output (from the "L","S","P", or "Q" options) is
normally listed at 54 lines per page. The "Nn" option can be used
to change the number of lihes per page, n being the desired
lines/page ~ount.

28.8 Format Control

The parameter "F" is available to allow the handling of print
files (those with a format character in the first column of each
line). If "F" is entered, the file will be listed without line
numbers, page numbers, or headings, since all these items should
already be in the print file. The following format characters
cause the indicated a6tion to be taken before the line is printed.

- Skip to top of form

+ - Suppress line feed

28-4 DISK OPERATING SYSTEM

(space) - Single line feed

o - Double line feed

Triple line feed

Any other character in the first column will be handled as a space
(single line feed) and discarded.

28.9 Operator Controls

The listing consists of a continuous stream of the listed
file's text. To cause the listing to pause, the operator may hold
down the DISPLAY key. To abort the listing, the operatot may

"depress the KEYBOARD key.

28.10 Error Conditions

If printer output was specified and the requested printer is
not available, LIST beeps and displays the message:

PRINTER NOT READY

If the printer is made ready, listing will proceed. The KEYBOARD
key may be depressed to abort the LIST at this point if necessary.

LIST checks to be sure the text end-of-file is exactly six
zeroes and a three (see Text File Formats in the REFORMAT
chapter).

If the EOF is not exactly correct, LIST displays the message:

INVALID END OF FILE.

LIST can be used to test for a bad EOF since most text-handling
programs are not so particular about EOF format.

When <spec2) has been entered to start LIST at a particular
record number, LIST traps FORMAT or RANGE errors and allows ~ new
starting location to be entered. In any ~ther usage, LIST does
not trap FORMAT or RANGE errors and any such errors are fatal.

CHAPTER 28. LIST COMMAND 28-5

CHAPTER 29. MANUAL COMMAND

MANUAL - Clear Auto Execution

MANUAL

If the auto-execution name has not been set the message

AUTO NOT SET.

will be displayed. Otherwise, the System Table location reserved
for the auto-execution information will be cleared and the message

AUTO CLEARED.

will be displayed.

CHAPTER 29. MANUAL COMMAND 29-1

CHAPTER 30. MIN COMMAND

30.1 Purpose

The Multiple In (MIN) command is useful for reading multiple
files (source, object, and Datashare object) from the front
cassette drive to disk. It will handle all standard single file
(OUT and SOUT), double file (SaBa), and multiple file (LGO, CTOS,
and MOUT with or without a directory) tape formats.

30.2 Tape Formats

Multiple In will automatically process the tape format by the
following conventions if an option is given.

30.2.1 Single File Tapes

An OUT (object out) tape format has a file mark zero, a file
mark one, an object file with entry point, and a file mark 0177.
An object file has an address with the MSB and LSB in the fourth
and fifth bytes of each record. Their complements are in the
sixth and seventh bytes. The remainder of each record is filled
with octal characters (ranging from 0 to 0377).

A SOUT (source out) tape format has a file mark zero, a
source file, a file mark one, and a file mark 0177. A source file
consists of records containing only ASCII characters, except for
space compression bytes, physical end-of-record bytes, and logical
end-of-record bytes.

30.2.2 Double File Tapes

A SaBa (source and object out) tape is the combination of a
SOUT and OUT tape. It has a file mark zero, a source file, a file
mark one, an object file with entry point, and a file mark 0177.

CHAPTER 30. MIN COMMAND 30-1

30.2.3 Multiple Numbered-File Tapes

An LGO (load and go) tape has a loader, a file mark zero, a
string of files (the first being an object file and the rest may
be source, object, Databus Code, and Relocatable Code intermixed)
separated by sequential file marks, and a file mark 040.

A MOUT (multiple out) tape without directory has a file mark
zero, a string of files (may be source, object, and Datashare
object intermixed) separated by sequential file marks, and file
marks 040 and 0177. Single and double file tapes are included in
this category if options are not used.

30.2.4 Multiple Named-File Tapes

A CTOS (cassette tape operating system) tape has a loader, a
file mark zero, a CTOS object file with entry point, a file mark
one, a catalog object file, a string of files separated by
sequential (though not necessarily contiguous) file marks, and a
file mark 040.

A MOUT (multiple out) tape with directory has a file mark
zero, a tape directory, a string of files separated by sequential
file marks, and file marks 040 and 0177. The directory is a
source format file containing a date entry seven bytes long
(DDMMMYY) and 31 file name entries each eleven bytes long (eight
bytes for the name and three bytes for the extension). The
entries are separated by end-of-string bytes (octal 015). This
makes it convenient for display under CTOS LIST or to load to disk
and list.

30.3 Parameters

30.3.1 Single File Tapes

For OUT, and SOUT tape formats, the file specifications may
be included on the command line in the following manner:

MIN [<file spec>J;<option>

where <option> is an'S' for SOUT tape formats.

File specifications are of the form FILENAME/EXT:DRH. If the
drive is not given, all drives online will be searched starting at

30-2 DISK OPERATING SYSTEM

drive zero. If the extension is not given, the assumed extension
(TXT, ABS, DBC, or REL) will depend on the file format. MIN will
identify the tape format. If the file name has not been entered
on the command line, the program will ask:

LOAD FILE #XX (format)?

where XX indicates the file number on the cassette and format
indicates the type of file (SOURCE, OBJECT, DATABUS CODE, or
RELOCATABLE CODE). If the file is to be loaded, the response Y
(yes) will cause the message:

DOS FILE NAME:

to be displayed on the same line. If the response is N (no), the
operator will be asked for the next file (if any). If the
response is *, control is returned to DOS. If no name is entered,
the message:

NAME REQUIRED

will appear. If the filename specified already exists, the
message:

NAME IN USE. WRITE OVER?

will appear. The answer N (no) will ca~se the filename request to
be displayed again. The answer Y (yes) will cause the disk
resident fi~e to be overwritten. If the file to be overwrittten
is write protected, the message:

WRITE PROTECTED OVERWRITE?

will appear. If the response is not Y, the filename request will
be displayed again. If the response is Y, the protection is
changed from write protect to delete protect and the disk resident
file is overwritten. When a file has been loaded from the
cassette the message:

LOADED

will appear to the right of the filename. The message:

MULTIPLE IN COMPLETED

indicates the successful completion of the program.

CHAPTER 30. MIN COMMAND

30.3.2 Double File Tapes

The file specifications for a SOBO tape may be entered on the
command line in the following manner:

MIN [<file spec>][,<file spec>]jB

File specifications are of the form discussed above. If the
second file name is not given, the first name with the assumed
extension of ABS will be used. If the extension is not given with
the first name, TXT will be assumed. If the filename has not been
entered on the command line, MIN will operate in the same 'manner
as described in the section on single file tapes above for each
file on the cassette, displaying the messages in the same order
for both files.

30.3.3 Multiple Numbered-File Tapes

LGO tapes and MOUT tapes without a directory are both handled
in the same manner. MIN is first executed as:

MIN

An LGO tape will then be identified as:

LGO TAPE FORMAT

In the case of multiple files, MIN will operate in the same
manner as described in the section on single file tapes above for
loading a file without entering the name on the command line. The
questions described will be asked for each file on the tape until
end of file has been encountered on the tape or an * is entered in
response to the "load" question. MIN bypasses the loader on a LGO
tape before searching for the file. If the file is not found, the
message:

FILE NOT FOUND

will appear and MIN will be terminated. If the file is found and
the file name is not entered on the command line, the file name
will be requested as in single-file tapes.

30-4 DISK OPERATING SYSTEM

30.3.4 eTaS Tapes

A eTaS tape will be identified as:

eTaS SYSTEM TAPE FORMAT

The system then searches for the catalog (tape file #1). The
eTaS file is fairly long so it takes a while. If the catalog file
is not an object file or is an object file that loads into memory
somewhere other than 017406 or 017410, the message:

BAD CATALOG

will appear and the remainder of the tape will be processed as a
multiple numbered-~ile tape starting at tape file #2. If a good
catalog is found, it will then be displayed as:

CATALOG: <file 1> <file 2> <:file 3> <file 4> ...

Then the operator will be asked:

DO YOU WANT TO LOAD <file 1> ?

The .entire process is identical to the multiple numbered-file
tapes above except the first fourteen files are referred to by
name. The filename may be expanded by the operator from the six
character name allowed by CTOS to the eight character name allowed
by DOS plus the extension. A filename is requested if the reply
is 'Y'.

30.3.5 MOUT' With Directory Tapes

These tapes are processed in a manner very similar to CTOS
tapes. The tape is first identified as:

MOUT TAPE FORMAT

Next the date will be displayed:

DATE: DD MMM YY

Then the directory will be displayed:

DIRECTORY: <file 11 ext> <file 21 ext> <file 31 ext>. . .

Then the operator will be asked:

CHAPTER 30. MIN COMMAND 30-5

LOAD <file 1/ext> ?

All the responses are the same as above except that the file
name will not be requested. A drive response is also available.
Entering "DRn" or "<VaLID>" will imply "YES" and force the file to
drive n. The program will cycle until the end-of-tape file mark
(040 or 0177) is read at which point the message:

MULTIPLE IN COMPLETED

will be displayed.

30.3.6 Options

Tape file modifications may prevent MIN from automatically
determining the tape format. In this event, the options 'L' (for
LGO), 'C' (for CTOS), or 'D' (for Directory) are available. Also,
option 'N' (for No directory) will tell the system that it is
handling a MOUT tape without a directory, which allows entering
the file names manually if the directory entry names are not
desired. This option also allows entering the directory to disk.
Options are entered following a semi-colon.

These options are merely test overrides. If, for instance a
tape, starts with a recognizable file mark, a loader won't even be
tested for and therefore entering the 'L' option is meaningless.

Unfortunately, MIN cannot differentiate an OUT, SOUT, or SaBa
tape from a MOUT without directory tape. To speed the processing,
the options'S' (for SOUT) and 'B' (for SaBa) are available. Once
again, if the tape doesn't resemble aSOUT tape, for instance,
entering an'S' is meaningless.

MIN accepts a drive specification option ":DRn" or ":Dn" to
force the disk files to a specific drive. Note that this drive
specification is an option appearing in the option list following
the semicolon, not part of any file specification. Drive
specification may be necessary to avoid overwriting existing files
on other drives or to force MIN to place the files on a drive
other than drive O.

If the tape is a MOUT tape with a directory, the options 'A'
(for All), '0' (for Overwrite), 'Q' (for modifying the extension
with Q's) are available. Using the option 'A' will load all files
on the tape. However, if the file already exists, the operator
will be asked if overwriting is desired and if not, for a new file
name. Entering the '0' option in conjunction with the 'A' will

30-6 DISK OPERATING SYSTEM

force overwriting of existing files (unless write protected). If
while processing in the 'All Overwrite' mode a write protected
file is encountered, the message:

WRITEPROTECTED

will appear and processing will continue with the next file.
Entering the 'Q' option in conjunction with the 'A' will put as
many Q's into the directory extension as necessary to create a new
filename/ext if the original one already exists. If the original
filename/ext exists, the message:

EXISTING FILE

will appear to the right before the modification to the extension
is performed. If the filename/QQQ already exists, the message:

Q OPTION EXHAUSTED

will appear to the right and the file will be skipped.

The option 'N' followed by an octal number allows that
specific file to be loaded. For example, entering:

MIN FILE/TXTjN12

will load the tape file following file mark 12 (octal) to disk as
'FILE/TXT'. The default extension will be 'TXT' for source, 'ABS'
for object, 'DBC' for Databus Code object files, and 'REL' for
Relocatable Code files depending on the tape file format. If a
non-octal number is entered (e.g. N8) the message:

NUMBER NOT OCTAL

will appear and MIN will be terminated. If an unrecognizable
record format is encountered, the message:

UNRECOGNIZABLE TAPE RECORD FORMAT

will appear and MIN will be terminated. MIN bypasses the loader
on a LGO tape before searching for the file. If the file
specified is not found, the message:

FILE NOT FOUND

will appear and MIN will be terminated. If the file is found and
the file name was not entered on the command line, the file name
will be requested as in single-file tapes.

CHAPTER 30. MIN COMMAND 30-7

The options 'L', 'C', 'N', 'S', and 'B' are mutually
exclusive. Only one may be entered. The 'A' may be entered with
or without the 'D' and with none of the other above options. '0'
and 'Q' are mutually exclusive and may only be entered in
conjunction with the 'A'. If any of these restrictions is
violated 6r a character other than those above entered, the
message:

BAD OPTION PARAMETER

will appear and the program will be aborted.

30.4 Errors

If the tape format is not one of the eight standard formats
outlined above in the Tape Formats section (e.g. it starts with a
file mark two) the message:

INVALID TAPE FORMAT

will appear and the processing will be aborted. If the end of
tape is detected while processing, the message:

END OF TAPE

will appear and the processing will be aborted. If a parity error
is encountered in an object or Datashare file on tape, the
message:

***PARITY ERROR-FILE DELETED**'

will appear, the file name will be removed from the disk
directory, and processing will skip to the next file. If a parity
error is encountered in a source file on tape, the message:

PARITY ERROR-RECORD MODIFIED

will appear, a 253 byte disk record will be written with percent
signs in the first five positions of the record data, and
processing will be continued with the next record.

30 .. 8 DISK OPERATING SYSTEM

CHAPTER 31. MOUT COMMAND

31.1 Purpose

The Multiple Out (MOUT) command is useful for writing
multiple (up to 32, or 31 if a directory is used) disk files
(source, object, and Datashare) out to the front cassette drive.

An additional feature is the ablity to create a tape file
directory as file #0 on the tape. The directory is a source
format file, that is, it consists entirely of ASCII characters
except for space compression bytes, physical end-of-record marks,
and logical end-of-record marks. The directory contains a date
entry seven bytes long (DDMMMYY) and 31 file name entries each
eleven bytes long (eight bytes for the name and three bytes for
the extension). The entries are separated by end-of-string bytes
(octal 015). This makes it convenient to list under CTOS LIST or
to load to disk and list. The directory is also used by the MIN
program to enter files to disk. MOUT creates the directory in
memory before the tape writing starts even if it is not to be
written to tape. The writing of a full tape (over 500 records)
takes about 10 minutes, which shows the advantage of entering all
the names before writing begins.

Another feature is the option to automatically verify a tape
following its creation. Or a previously written directory tape
may be verified in an 'only verify' mode. If this mode is
requested, the system will read the directory on the cassette tape
in the front drive (if a valid directory is not found, the system
will request file names from the operator) and verification will
be performed against the indicated files.

31.2 Parameters

File specifications and/or options may be entered on the
command line in the following manner:

MOUT [<file spec),<file spec), ...][joptions]

File specifications are of the form FILENAME/EXT:DR#. If the
drive is not given, all online drives will be searched starting at
drive zero. If the extension is not given, ABS is assumed. File

CHAPTER 31. MOUT COMMAND 31-1

specs are separated by anything (including multiple spaces) except
letters, numbers, slash (I), or colon (:).

31.3 Options

Options (which follow a semi-colon and may be spaced or
separated by commas) are 'L' for a loader format tape, 'D' for a
directory format tape, 'V' for verification of the created tape,
and 'X' for verification only.

If a loader is to be written, the first file (file 10) must
be an object file. There are no restrictions on files other than
10.

The directory option ('D') will write a tape directory as
file 10. The first item within the directory is the date entered
DDMMMYY. Note: the month is entered as three alpha characters.
The date may be entered following the option letter (e.g.
D12JAN74). If the date is not entered, it will be requested.

The verify option ('V') will verify all the files on the
created tape. Verification consists of making a byte for byte
comparison between the data on the disk and the data on the tape.
If verification fails, the tape will be rewritten and verification
tried one more time.

The verify only option ('X') will cause the first tape file
to be read from the front deck. If it is a directory (first seven
characters of DDMMMYY format), the remaining files will be
automatically verified using the directory entries. If it is a
loader, it will be verified and file names requested for the
remaining files as they are verified. An 'N' may be entered
immediately preceding the 'X' to force the system not to recognize
the directory. This would be done if manually entering file names
is desired (for instance, the directory names don't match the disk
file names). If there is neither a directory or loader, file
names are requested as the files are verified.

If the semi-colon is entered with no entry following, it will
be interpreted that the tape will not have a loader, a directory,
or any verification.

Entering 'D' and 'L' together or entering anything with 'X'
other than 'N', or entering some letter other than 'D', 'L', lV',
'X', or 'N' will result in the message:

BAD OPTION PARAMETER. MOUT DISCONTINUED.

31-2 DISK OPERATING SYSTEM

and the Multiple Out will be aborted.

If file names and/or options are not entered on the command
line, MOUT will ask for them as required. If options were not
entered, the first question will be:

DO YOU WANT A LOADER?

Replies other than 'Y' or 'N' will be answered by:

WHAT?

and a repeat of the question. If the reply is 'N', the next
question is:

DO YOU WANT A DIRECTORY?

Again, if the reply is other than 'Y' or 'N', it will be answered
by:

WHAT?

and a repeat of the question. If the reply is 'Y', the next
request is:

ENTER THE DATE (DDMMMYY):

where the month is entered as three alpha characters. If the day
is not in the range of 00 to 39, the month not alpha, or the year
not in the range of 70 to 99, the response:

BAD DATE

will appear and again the request for the date. The next question
is:

DO YOU WANT TO VERIFY THE TAPE?

If the reply is not 'Y' or 'N', the response:

WHAT?

will appear followed by a repeat of the question. If the reply is
'Y' and the replies to the loader and directory questions were
'N', the question:

DO YOU WANT TO ONLY VERIFY THE TAPE?

CHAPTER 31. MOUT COMMAND 31-3

will then be asked. If the reply is other than 'Y' or 'N', the
response

WHAT?

will appear followed by a repeat of the question. If only
verification is requested, the first tape record on the front tape
deck is read in. If it is a directory (the first seven characters
of DDMMMYY format), the remaining tape files will be automatically
verified using the directory entries. If it is a loader, the
message:

LGO TAPE FORMAT

will appear. The message:

LOADER IS BEING VERIFIED

will then appear as the loader is being verified. If the loader
verifies correctly, the message:

LOADER OK

will appear to the right. Otherwise, the message:

BAD LOADER

will appear. After checking the loader, or if the tape has
neither a loader pr directory, the message:

CASSETTE FILE #XX (format) DOS FILE NAME:

will appear where XX is the file number and (format) is (SOURCE),
(OBJECT), (DATABUS CODE), or (RELOCATABLE CODE) depending on the
file format. If nothing is entered, the message:

NAME REQUIRED

will appear and the request will be repeated. If an asterisk (*)
is entered, MIN will terminate and return to DOS. If a
greater-than sign (» is entered, the'program will skip to the
next file. If a less-than sign «) is entered, the program will
backspace to the prior file (bypassing null files). If the
program finds the beginning of the tape, it will beep and then
move forward to the first file. If a name is entered, the default
extension is 'TXT' for source, 'ABS' for object, and 'DBC' for
Datashare object depending on the file format. If the drive

31-4 DISK OPERATING SYSTEM

number is not entered, all online drives will be searched starting
at drive zero. If a drive number greater than DOS allows is
given, the message:

BAD DRIVE

will appear and the request repeated. If the file is not found,
the message:

FILE NOT FOUND

will appear and the request repeated. If the disk file is found,
it will be matched byte by byte against the disk file. If the
files completely match, the message:

FILE OK

will appear to the right and processing continues with the next
file. If an error is detected, the appropriate message will
appear and processing continues with the next file. Null files
are bypassed. Processing continues until an end-of-tape mark
(file mark 040 or 0177) is read at which time the message:

VERIFICATION PHASE COMPLETED

will appear and MOUT will be terminated.

31.4 File Names

If the file names are not given in the command line, the
operator will be asked for the file names one at a time. The
request is of the form:

CASSETTE FILE XX DOS NAME:

where XX is the file number. Possible replies to the file name
query include:

a) the file specifications as discussed above,
b) a pound sign (I) which will bump the file number to 20

octal if not already there (only allowed on loader tapes to
initiate numbered files on a CTOS tape),

c) a dollar sign ($) which will cause a null file (tape file
mark only) to be written to tape and the file spec of
NULL/NUL to be entered in the directory,

d) an asterisk (*) which will indicate no more files are to be
entered and the tape writing started (writing is postponed

CHAPTER 31. MOUT COMMAND 31-5

until the directory is complete), and
e) OS which will abort the program. The message:

MULTIPLE OUT DISCONTINUED will appear and control is
returned to DOS. (To dump OS/ABS, enter 'OS/ABS').

If the operator fails to enter a name, the message:

NAME REQUIRED

will appear and the name request will be repeated. If the drive
is given and is not in the range valid for DOS, the message:

BAD DRIVE

will appear followed by a re-request of the name. If the file is
not found, the message:

FILE NOT FOUND

will appear followed by a re-request of the name. If the file is
found, the format (object, source, or Datashare) will be
determined by the system. If the tape is a loader tape and file
#0 is not an object file, the message:

FILE FOLLOWING LOADER NOT OBJECT

will appear along with a re-request of the file name. This
message may also be displayed if the reply to the file name query
for file #0 is a pound sign. Otherwise the messages: .

OBJECT FILE

or:

SOURCE FILE

or:

DATABUS CODE FILE

or:

RELOCATABLE CODE FILE

or:

NULL FILE

31-6 DISK OPERATING SYSTEM

will appear to the right of the file name. If the pound sign is
entered for a tape that does not have a loader, the message:

NOT LGO TAPE

will appear with a re-request of the file name. If 32 files (or
31 on a directory tape) are entered, the message:

THAT'S THE END OF THE LINE

will appear and the tape writing is started automatically.

31.5 Writing

Once the tape writing has started, the system will keep the
operator informed of its progress. As a loader is being written,
the message:

LOADER IS BEING WRITTEN

will appear. As a directory is being written, the message:

DIRECTORY IS BEING WRITTEN

will appear. While files (including null files) are being
written, the message:

FILE <filename/ext> IS BEING WRITTEN

will appear. When the writing is completed, the message:

WRITING PHASE COMPLETED

will appear.

If a non-object record is sensed in an object file while
writing to tape, the message:

FILE CONTAINS NON-OBJECT RECORD

will appear and the next
including the file mark.
without a file. If this
to display the message:

file is written over the bad tape file
This will leave a directory entry

should happen, it will cause verification

NON-SEQUENTIAL FILE MARK

CHAPTER 31. MOUT COMMAND 31-7

and the tape rewritten.

If a non-source record is sensed in a source file while
writing to tape, the message:

INCORRECTLY FORMATTED SOURCE RECORD

will appear. The file is ended at this point without writing the
bad record and the next tape file will start immediately
following. If this should happen, it will cause verification to
display the message:

INCORRECTLY FORMATTED DISK RECORD

or:

TAPE EOF BEFORE DISK EOF

and the tape rewritten.

If MOUT runs out of tape, the message:

END OF TAPE ENCOUNTERED WHILE WRITING filename/ext

will appear, an end of tape marker written at the end of the
previous tape file, and the unwritten files will be removed from
the directory (if there is one). Processing then will be
continued with verification.

31.6 Verifying

If verification is requested, the system will keep the
operator informed of its progress. As a loader is being verified,
the message:

LOADER IS BEING VERIFIED

will appear. As a directory is being verified, the message:

DIRECTORY IS BEING VERIFIED

will appear. While files (including null files) are being
verified, the message:

FILE filename/ext IS BEING VERIFIED

will appear. When the verification is completed, the message:

31-8 DISK OPERATING SYSTEM

VERIFICATION PHASE COMPLETED

will appear. If verification is requested for a tape having no
directory, the message:

NOT DIRECTORY TAPE

is displayed. Then the message:

CASSETTE FILE #XX(format) DOS FILE NAME:

will appear. The filename should be entered. Responses are
discussed in the section under OPTIONS.

A variety of error messages may be displayed during the
verification phase. Most of them are self-explanatory. They
include:

BAD LOADER

BAD DIRECTORY

TAPE FILE DOES NOT MATCH DISK FILE

INCORRECTLY FORMATTED DISK RECORD

DISK FILE CONTAINS NON-OBJECT RECORD.

DISK FILE CONTAINS NON-TEXT RECORD.

NON":'SEQUENTIAL FILE MARK.

TAPE FILE MARK READ BEFORE TAPE OBJECT EOF.

TAPE OBJECT EOF NOT FOLLOWED BY TAPE FILE MARK.

DISK EOF BEFORE TAPE EOF

TAPE EOF BEFORE DISK EOF

If an error is detected, the program will then either rewrite
the tape (if it has just been created) or skip to the next file
(if in the 'verify only' mode). If it rewrites the tape, the
message:

I'M NOW REWRITING THE TAPE

CHAPTER 31. MOUT COMMAND 31-9

will appear. The system will rewrite once before quitting
completely at which point the message:

VERIFICATION UNSUCCESSFUL

will appear and the processing terminated.

If a problem arises that causes an abnormal end (e.g. end of
tape), the message:

MULTIPLE OUT DISCONTINUED

will appear, otherwise the message:

MULTIPLE OUT COMPLETED

will signal the successful end of the program.

ERROR D ON DECK 2

will signal parity errors on the cassette and control is returned
to DOS.

31-10 DISK OPERATING SYSTEM

CHAPTER 32. NAME COMMAND

NAME - Change the name of a file

NAME <file spec1>,[<file spec2>][,<subdirectory name>]

NAME will allow the user to change the name of a file, the
extension of a file, or the subdirectory in which a file resides.
The content of the file is unchanged. The first file
specification refers to the current file name and the second file
specification is the new name and/or extension to be assigned. If
no extension is supplied in the first file specification, ABS is
assumed. If no extension is supplied in the second file
specification, the extension of the first file is assumed. If no
extensions are supplied, both files will be assumed to have
extensions of ABS. The drive number should only be specified in
the first file specification.

If the NAME command is used to move a file from one
subdirectory to another the second file specification may be
omitted (unless the filename and/or extension are to be changed)
and the subdirectory name denoting the subdirectory into which the
file is to be placed is the third specification:

NAME <file spec1>,,<subdirectory name>

In both uses of the NAME command, two specifications are required.
If either name is not given, the message

NAME REQUIRED.

will be displayed. If the second name is already defined on the
drive that contains the first file, the message

NAME IN USE.

will be displayed. Note that the drive specification on the
second name is ignored. If the first name is not found on an
online disk, the message

NO SUCH NAME.

will be displayed. If the subdirectory name keyed is not found

CHAPTER 32. NAME COMMAND 32-1

on the disk containing the file to be renamed, the message

NO SUCH SUBDIRECTORY.

will be displayed. If the third parameter is not specified, the
file is "brought into" the current subdirectory at the completion
of the renaming process.

32-2 DISK OPERATING SYSTEM

CHAPTER 33. PUTIPL COMMAND

The PUTIPL command writes an IPL (Initial Program Loader)
block and DOS boot blocks to the disk.

PUTIPL <:DRIVE>

If the drive number is not specified in the command line, PUTIPL
will display the following:

LOGICAL DRIVE TO BE WRITTEN (O-max OR "*" TO EXIT TO DOS):

Respond with the drive number that you want to write to.

CHAPTER 33. PUTIPL COMMAND 33-1

CHAPTER 34. PUTVOLID COMMAND

The PUTVOLID command writes a symbolic volume identification
(VOLID) onto a disk.

PUTVOLID <VOLID><:DRIVE>;<OWNER ID>

Where VOLID is 1 to 8 characters in length, DRIVE is the logical
drive to be written to, and OWNER ID is any information the user
wants.

If only a dri~e number is entered, the existing VOLID for that
drive will be displayed.

CHAPTER 34. PUTVOLID COMMAND 34-1

CHAPTER 35. REFORMAT COMMAND

35.1 Introduction

The DOS REFORMAT command is used to change the internal disk
format of text-type (non-object) files. Additionally, it can
recover disk space left unused when files are updated by the
DATASHARE indexed sequential access method. REFORMAT can compress
a file in place on disk provided that such compression does not
entail the writing of a physical disk sector prior to the time
that sector is read. REFORMAT maintains logical consistency in
such cases and will not write on a disk file until it has checked
to be sure it can complete its job successfully.

35.2 Operation

When the REFORMAT program is to be executed, the operator
must type:

REFORMAT <file-spec>[,<file-spec>][;<parameters>]

where only the first file specification is mandatory, and
specifies the file to be reformatted. If the second file
specification is given, it must be distinct from the first.
Reformatting in place is requested by omitting the second file
specification.

The parameter list describes the format the output file is to
take, and whether REFORMAT is to free any disk space that might be
vacated by the reformatting process. In addition, the user can
specify that REFORMAT is to pad short records, and either truncate
or segment long records. REFORMAT will produce three different
kinds of output files: record compressed, space and record
compressed, or blocked records (see the section on TEXT FILE
FORMATS). Note that REFORMAT will not produce blocked space
compressed records or space compressed non record compressed files
although such files can be used as input to the REFORMAT program.
If no parameters are given, the output file is blocked one record
per sector.

CHAPTER 35. REFORMAT COMMAND 35-1

Parameters passed to REFORMAT may be separated by spaces or
commas. The valid parameters are as follows:

Parameter Description

B<n> The output file will be blocked. This implies no space
or record compression, with <n> logical records per
physical sector.

C The output file will be space and record ~ompressed.
The number of logical records per physical sector will
be indeterminate.

R The output file will be record compressed, but no space
compression will be done. In general, the number of
logical records per physical sector will be
indeterminate.

L<n> The length of each logical record will be adjusted to
<n> characters. Note that if the logical records are
space compressed, this will not make the physical length
of the records <n> characters. If the logical record is
shorter than <n> characters, it will be padded with
blanks to the proper length. If the logical record is
longer than <n> characters, the action taken depends on
the T and S parameter.

T (Only valid if L parameter is given) Truncate the
logical record if it is longer than <n> characters.

S (Only valid if L parameter is given) If the length of
the logical record is greater than <n> characters,
segment it into (q) logical records each of length <n>,
padding if necessary. The number (q) is defined as input
length divided by <n> rounded upward to the next
integer.

If neither S or T is specified, and an input record of
length greater than <n> is found, a message is issued
and REFORMAT gives up.

D If reformatting is done in place and this parameter is
specified, any disk space vacated by the reformatting
process will be returned to the operating system for
re-use.

35-2 DISK OPERATING SYSTEM

35.3 Output File Formats

The REFORMAT utility permits you to select essentially three
different output file formats. It will produce blocked files that
are not space compressed, record compressed files that are not
space compressed, and files that are both record and space
compressed. In addition, it has a subcommand to permit you to
specify the logical length of the output records. Use of this
subcommand will guarantee that each record has exactly the same
logical length. Note that if the output format does not specify
space compression, the physical length of each record will be
identical. This is especiall~ useful for telecommunications
disciplines that require records of fixed length.

If you have set a fixed logical length for output records,
there are two subcommands available to tell REFORMAT what to do
with records whose logical length exceeds the specified output
length. You may select either truncation of the input record, or
you may segment it into two (or more) output records, each of the
logical length specified.

35.4 Reasons for Reformatting

Several uses of REFORMAT deserve special mention. First, a
random disk file is structured to have one logical record per
physical sector. Often, however, it is convenient to create a
random file through the use of the general purpose editor - which
record and space compres~es its output. REFORMAT can then
reprocess the file into the correct format for DATASHARE or
DATABUS random access.

Secondly, when a file is accessed with DATASHARE indexed
sequential access method, any additions or deletions result in an
increase in the physical size of the file. The reason for this is
that any inserted records are placed at the physical end of the
file, and each one consumes at least one entire physical sector,
regardless of its logical length. Similarly, deleted records are
simply overstored with octal 032 (logical delete) characters, and
the space they vacate is not reused. REFORMAT recognizes this
condition, and will recover such vacated space. Note that ISAM
read-only or update-only (no additions or deletions) files do not
usually need reformatting.

CHAPTER 35. REFORMAT COMMAND

35.5 Reformat Messages

The REFORMAT utility program produces several messages on the
operator's console. The contents and where necessary, meaning of
those messages follow:

DOS. VER 2 REFORMAT COMMAND - date
Self-explanatory sign on message.

COMMAND LINE ERROR: 015 missing
This is an internal error and should be reported to
Datapoint.

PROGRAM ERROR - EXCESS FILE SPACE NOT DEALLOCATED
TO PREVENT POSSIBLE LOSS OF DATA

REFORMAT has detected an invalid end of file mark. In
order to prevent the possible loss of data which might
be after the invalid end of file indicator, space
allocated but unused is not freed.

EXCESS FILE SPACE NOT DEALLOCATED; OUTPUT FILE IS
DELETE PROTECTED.

Self-explanatory.

OUTPUT FILE IS WRITE PROTECTED AND CANNOT BE
WRITTEN INTO OR SHORTENED.

You have requested REFORMAT to output to a
write-protected file.

INVALID OPTIONS SPECIFIED
You have given REFORMAT an invalid parameter list.
This message is followed by the valid options you may
specify.

ILLEGAL, CONFLICTING OR DUPLICATE OPTIONS
You have specified two mutually exclusive options.

YOU SPECIFIED BOTH SEGMENTATION AND TRUNCATION.
YOU CANNOT HAVE BOTH

Self-explanatory.

BLOCKING FACTOR CONTAINS INVALID NON-NUMERIC DIGITS
Self-explanatory.

BLOCKING FACTOR REQUIRED BUT MISSING OR ZERO FOUND
You specified blocking but omitted the blocking
factor.

35-4 DISK OPERATING SYSTEM

LOGICAL RECORD LENGTH REQUIRED BUT MISSING OR ZERO FOUND
You must specify the logical record length of the
output file if you wish to have fixed length output
records.

YOU HAVE ILLEGALLY ENTERED A SPECIFICATION FOR
A THIRD FILE

REFORMAT recognizes only two file specifications.

HOW DO YOU EXPECT TO FIT THAT MANY RECORDS IN A
256 BYTE SECTOR?

Self-explanatory.

LOGICAL RECORD LENGTH, IF SPECIFIED, MUST
BE <= 250 BYTES.

Self-explanatory.

YOUR BLOCKING FACTOR IS TOO LARGE FOR THE SIZE
OF THE RECORDS YOU HAVE.

Self-explanatory.

YOUR LOGICAL RECORD LENGTH IS TOO SMALL FOR THE
SIZE OF THE RECORDS YOU HAVE

While processing the input file, REFORMAT came across
a record that was larger than the specified logical
record length. Since you specified neither
segmentation nor truncation, this is recognized as an
error.

SPECIFIED OUTPUT FILE FORMAT ENLARGES PRESENT
INPUT FILE. FILES CANNOT BE ENLARGED DURING
REFORMAT-IN-PLACE. REFORMAT IN-PLACE REQUEST
REFUSED.

Self-explanatory.

YOU SPECIFIED AN OUTPUT FILE THAT ENDED UP
BEING YOUR INPUT FILE. TO REFORMAT IN-PLACE
DO NOT SPECIFY ANY OUTPUT FILE.

Self-explanatory.

CHAPTER 35. REFORMAT COMMAND 35-5

OUTPUT FILE NOT FOUND ON DRIVE X.
OUTPUT FILE FOUND ON DRIVE Y.
OUTPUT FILE WILL BE CREATED ON DRIVE Z.

These messages only occur if no specific drive was
indicated for the output file. The first message
appears followed by either,the second or third.
REFORMAT could not find the output file on the same
drive as the input file. It either found one on a
different drive, or created one on the displayed
drive. If the output file is created, it is always
created on the same drive as the one the input file is
on.

REFORMAT IN-PLACE REQUESTED.
PRESCAN IN PROGRESS. ,

REFORMAT is checking to make sure it can properly
process the file inplace.

FILE ALREADY WAS IN THE SPECIFIED FORMAT
Self-explanatory.

COPYING WITH REFORMATTING IN PROGRESS
Self-explanatory.

REFORMAT-IN-PLACE IS IN PROGRESS.
DO NOT DISTURB!!!

Self-explanatory.

NAME REQUIRED
Either you gave only an extension or drive for the
input file, or you specified the output file first,
followed by the input file.

INVALID DEVICE
An invalid drive was specified for the input file.

NO SUCH NAME
The input file specified cannot be found.

INVALID DRIVE SPECIFICATION
The drive specification entered for one of the file
specifications was not in a valid format.

35-6 DISK OPERATING SYSTEM

35.6 Text File Formats

Under Datapoint Corporation's Disk Operating System, text
files consist of legal ASCII characters, which make up the text
itself, and various control characters with special meanings. It
is illegal to have the control characters in the text portion of
the file. According to DOS convention, any character between 000
and 037 is considered a control character.

Each physical record of a text file is a logical disk sector,
and contains 256 characters. The first three and last two
characters are reserved for control functions; hence, the maximum
space available in a single physical record is 251 bytes. The
format·of a logical sector is as follows:

Offset Length

000 001

001 002

003 373

376 002

Description

Physical file number of this file. For a
detailed description of physical file
organization, see the chapter on System
Structure.

Logical record number. This refers to logical
physical records, and is not related to text
records within the file.

Text. 251 bytes of text and control characters,
depending upon the format of the file.

Two characters reserved.

The text part of each file is considered a logical stream,
crossing sector boundaries without being logically discontinuous.
Demarcations of logical record boundaries are made solely by
control characters imbedded within the text itself. There are
essentially five control characters found in files generated by
DOS: 000 <NUL> used for end of file indication, 003 used to
denote the end of medium (a sector boundary) but not the end of a
logical record, 011 <CMP> used to denote space compression, 015
<ENT> used to denote the end of a logical record, and 032
used to denote deleted data.

CHAPTER 35. REFORMAT COMMAND 35-7

Under DOS each file is treated as a single, continuous stream
of data. Physical records bear no relation to the logical
structure of the data contained in them. In this way, a
proliferation of different file structures, and the special
routines needed to treat such special cases has been avoided.
This does not mean that there cannot be a relation between
physical and logical structure, it simply means that such a
relationship is incidental to a particular file, and need not be
treated as a special case. For example, random access to a data
file is defined in the DATABUS language. Files to be accessed in
this manner are structured in such a way that one logical record
corresponds exactly with one physical record. This structure is
not inherent in the makeup of a random file, in fact, such files
can be treated exactly as any other text file.

The basis for this treatment of text files is the logical
record. A logical record starts at the beginning of a file, or
immediately after the end of a previous logical record. It
consists of ASCII data and is of no pre-determined length.
Instead, the record is terminated with a single ENT character. In
this way, complications arising from a multitude of record types
are entirely avoided.

If the logical record contains any CMP characters, it is said
to be space-compressed. The character immediately following the
CMP character is a space count, and the pair represent the number
of ASCII blanks removed when the record was compressed. Since the
character following CMP is always assumed to be a space count, CMP
can never occur as the next-to-last text character in a physical
sector, since the EM character following it would be lost.

If the file is organized so that each physical sector
contains exactly the same integral number of logical records, with
no logical record spanning an EM character, the file is said to be
blocked. If the file is not blocked, then it is said to be record
compressed. Note that for a blocked file all sectors except
possibly the last one in the file contain the same number of
logical records while for record compressed files the number of
logical records per physical sector is indeterminate.

Under DOS conventions, a valid end of file mark consists of
exactly six NUL characters, followed by an EM character:

000 000 000 000 000 000 003

This mark must begin at a sector boundary. All information after
a valid end of file mark in the sector is indeterminate.

35-8 DISK OPERATING SYSTEM

CHAPTER 36. THE REPAIR COMMAND

The purpose of REPAIR is to repair a malfunctioning or
non-functioning DOS disk pack. The performance of the DOS is
directly related to th~ correctness of disk-resident system
tables. Errors in these tables can cause DOS difficulties ranging
from occasional mysterious losses of data to complete inability of
the DOS to function on the pack. REPAIR finds, identifies to the
operator, and attempts to correct errors in the system tables.

REPAIR, once activated by an operator, is capable of seeking
errors and determining corrective measures on its own. However,
there are operator interfaces which exist to give a human operator
the power to monitor and control the program's progress. The
program constantly displays on the screen information about what
it is doing. If errors are discovered, the operator will be asked
if the error should be corrected on disk. Thus, the operator has
control over any changes made to disk and may suppress any
correction suggested Qy the program.

REPAIR consists of three phases: the Cluster Allocation Table
and Directory check phase, the Retrieval Information Blocks check
phase, and the Cluster Allocation Table regeneration phase. In
general terms, the program progresses from simple error analysis
to quite involved error analysis during its execution. Beginning
with the cylinders-to-be-locked-out information supplied by the
Lockout CAT on disk and supplemented by the operator, each program
phase progresses according to information developed or verified
during preceding checks.

The amount of interface and systems expertise required of the
operator ranges from almost zero to very much, and is directly
proportional to two things: how badly the pack is damaged, and
whether the operator wants to try to save files with errors. If
the operator merely permits REPAIR to delete every file found to
be in error, the result would be guaranteed to be error-free
disk-resident system tables, and the operator would not need to
understand any details of the DOS. Sometimes, however, it will be
easier for the operator to take notes and refer to the appropriate
DOS documentation in order to save a file, rather than delete the
file and then have to re-create it.

REPAIR is a completely self-contained program and does not
require a working DOS to run. REPAIR can be executed as a COMMAND
from the DOS or from an LGO cassette. REPAIR carries its own

CHAPTER 36. THE REPAIR COMMAND 36-1

copies of the standard basic DOS 1/0 routines (DR$, DW$, KEYIN$,
DSPLY$), the DOS interrupt handler, and the DOS DEBUG$ routine.

36.1 Applications of REPAIR

There are three general classes of errors that can cause a
DOS to work improperly:

1. Errors in the data within ~ file. Example: An
incorrectly written object code record in a program object file
will make the program unloadable and thus unexecutable.

2. Errors in the DOS system files. Example:
DOS system files were inadvertently damaged, as by
overwritten, then sooner or later some part of the
function properly.

3. Errors in the disk system tables. Example:
Allocation Table is overwritten.

If one of the
being partially
DOS would not

The Cluster

Far and away the most commonly occurring class of error is
class 3. (Incidentally, the most common error is the one given
for the example: a destroyed C.A.T.). Also, class 1 and class 2
errors most often occur because of previously existing class 3
errors.

REPAIR will not find or fix class 1 or 2 errors. Once those
errors have occurred the file with the error should be reloaded to
disk. If the user is interested in fixing these kinds of errors
he should ~efer to later sections in this chapter and other
appropriate DOS documentation.

REPAIR can fix almost all class 3 errors, and thus can fix
almost all of the problems that commonly occur with a disk pack.

36.2 When to use REPAIR

There are three times to run the REPAIR program:

1. Regular disk-pack checking. It never hurts to run REPAIR
after every few hours of disk use, in order to catch errors that
may be developing that haven't been noticed.

2. Unexplained strange things start happening. If you ever
see the message:

36-2 DISK OPERATING SYSTEM

FAILURE IN SYSTEM DATA

it is time to run REPAIR. If other error messages are displayed
by the DOS, such as:

RECORD FORMAT ERROR

and there seems to be no reason that the error should have
occured, REPAIR may find the reason. If files or records in files
disappear or get scrambled, it is probably a good idea to run
REPAIR to see if errors have developed in the system tabl~s.

3. The DOS will not run at all. Many times if the DOS will
not "boot" it is because 1) The CAT has been destroyed -
specifically, the auto-execute PFN (the last byte in the sector)
is not 000 (REPAIR will always reset the auto-execute PFN to 000
when it writes the regenerated GAT to disk); or 2) The directory
(one or more sectors) has been destroyed; or 3) One or more of
the RIBs for the system files have been destroyed.

36.3 Understanding REPAIR

This chapter is divided into two major sections for two
levels of reference:

1. Minimal operator interface.

The first major section is for users who wish to use REPAIR
to make their pack work again as quickly and with as little effort
as possible. To use REPAIR, one does not have to understand very
much about the DOS or the structure of the data on disk.

2. Medial operator interface.

The second major section is a rather comprehensive discussion
of the various messages and options provided by the REPAIR
program, and is for users who wish to be able to take advantage of
the file-saving options available with REPAIR.

The second major section also discusses a variety of things
that can go wrong on a disk pack and how REPAIR can be used to
deal with those problems. This is for users who are interested in
understanding the DOS system disk data structure for its own sake,
with emphasis, of course, on problems that can occur.

CHAPTER 36. THE REPAIR COMMAND 36-3

36.3.1 Preliminary reading

At absolute minimum, anyone who wants to use the REPAIR
program must understand some basic DOS concepts. The REPAIR user
must have a concept of what a DOS FILE is, and should be
acquainted with the use of the OPERATOR COMMANDS (entered at the
DOS system console) and FILE NAMES. The user must understand the
concept of FILE DELETION. The user must also know what DRIVE
NUMBER means.

If possible, the REPAIR user should read and understand the
section "Disk Structure". To use and understand REPAIR to the
maximum extent, the user should understand terms such as:
cylinder, sector, cluster allocation table, retrieval information
block, segment descriptor, and cluster.

36.4 Minimal Operator Interface

This section is for those who wish to use REPAIR to make
their disk work again as quickly and with as little effort as
possible. To use this section requires no knowledge of the DOS
beyond the concept of files. It does require the ability to read
through and understand the following step-by-step instructions.

In the most ultimately simple case, the user will not want to
lock out any cylinders (a cook-book process -- you don't have to
know what a cylinder is), and the REPAIR program will not find any
errors. The main structure of the following example is built on
such a case: however, places in the example where there may be
variations are noted and where in the chapter to find explanations
of the variations is also noted.

36.4.1 Executing REPAIR

If REPAIR is catalogued on the disk (as REPAIR/CMD), and if
the DOS is capable of loading and executing it, the fastest and
easiest way to get REPAIR started is by simply keying the command
at the system console:

REPAIR

REPAIR may also be executed by placing a LOAD-AND-GO (LGO)
tape of REPAIR in the back cassette deck and pressing RESTART key
(and RUN key simultaneously on the 5500).

In either case, the pack to be checked must be placed in a

36-4 DISK OPERATING SYSTEM

drive connected to the computer and brought on line.

In the following examples, a pictogram of the state of the
CRT display will be given followed by a brief explanation and
instructions for the operator.

Note that a pound sign (#) in one of the bottom two lines of the
pictogram represents the cursor position. The cursor will be
flashing when the operator is required to respond to the
information on the screen.

36.4.2 Sign-on and drive number specification
.. --- ~.".---.-------~-.--.-------- .• --.-,-.---.--... ---~ .. -.- ... -... --~-- ~--- -.-. --.--

1

DATAPOINT DOS. REPAIR

\

I
I
I
I
I
I

I I
I I
I I
I I
I I
I I
I I
I :

I DRIVE NUMBER: # I \ __ 1

The screen appears as above when REPAIR has been loaded and
execution has begun.

The operator must enter the logical number of the drive
holding the disk pack that is to be REPAIRed.

36.4.3 Cylinder Lockout

/
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I DRIVE NUMBER: 0

DATAPOINT DOS.

: LOCKOUT CAT: FORMAT LOOKS OK.

REPAIR

I DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ?

\

\--------------------------------------~------------------

CHAPTER 36. THE REPAIR COMMAND 36-5

The screen may appear as above when REPAIR is ready to accept
cylinder lockout. Cylinder lockout is a way of reserving disk
space from DOS use. If cylinders ar,e to be locked out, there will
generally be a sticker or label on the case of the disk pack with
the numbers of the cylinders to be reserved. If there are
cylinders to be locked out refer to the Cylinder Lockout with
REPAIR Section.

If no cylinders are to be locked out, enter "N".

36.4.4 Directory check monitor

/ \
I
I

i
I
I

: 0 0
: 0 0 :
I 0 0 :
I I
I I

: DRIVE NUMBER 0 :
: LOCKOUT CAT: FORMAT LOOKS OK. :
I DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N :
I WORKING CAT: FORMAT LOOKS OK. :

\--~------------------/
The screen appears as above when the cylinder lockout option

has not been taken and the CAT and Directory check phase has
begun. Specifically, note the vertical numbers at the right
center of the screen: these numbers monitor the cycling of the
directory check. If something besides these numbers appears on
the screen after the cylinder lockout is completed, refer to the
CAT errors and Directory read/write errors Section.

No operator response is required.

36-6 DISK OPERATING SYSTEM

36.4.5 Directory Errors

/ \
DIRECTORY ENTRY COPY: DELETE INCOMPLETE

; 3 0 0 I

: 7 0 2 :
: C K D 7 6 a :
t I
I I
I I
I I
I I
I I

\--/
The screen will appear as above (in general -- specific words

will vary) if REPAIR finds an error in the directory.

For explanation of the messages refer to the Directory Errors
section of Medial Interface below.
To delete the erroneous file enter the number corresponding to
DELETE BOTH (in this example, 2=DELETE BOTH).

36.4.6 Retrieval Information Blocks check

/'
I RIB MASTER: (PFN 000) RIB COPY: I
I

* I
I * I
I * I
I * I
I * I
I * 0 0 I
I 0 0 I
I 0 0 I
I
I
I
I

\

The screen appears as above during the Retrieval Information
Blocks check. The vertical numbers at the right of the screen
monitor the cycling of the RIB check. The column of asterisks is
displayed only while a RIB is actually being checked. If a pack
does not have many files on it the asterisks will not appear
during most of the RIB check. .

CHAPTER 36. THE REPAIR COMMAND 36-7

\
I
I
I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I
I

/

No operator response is required.

36.4.7 Retrieval Information Blocks Errors

I ,
PFN ERROR LRN ERROR * PFN ERROR LRN ERROR I
4TH BYTE NOT 0371 * 4TH BYTE NOT 0377 I
1ST SEG.DES. ERROR * 1ST SEGiDES. ERROR I

I MULTIPLE ALLOCATION 00001 * MULTIpLE ALLOCATION 00001 I
: CYL.ADR.OVERFLOWCYL.ERROR * CYL.AOR.OVERFLOW CIL.ERROR I
I RIB TERMINATOR ERROR * RIB TERMINATOR ERROR :
I 0320 3 I
: 0012 7 I
I 1003SYSTEMO 8Y87 :
I I
I I

I DELETE THE FILE ? , t
I I
I I , ____________________________ ----___________________________________ 1

The screen will appear as above (in general - specific words
will vary) if REPAIR finds an error in a RIB.

For explanation of the messages refer to the RIB Errors
section of Medial Interface below.

To delete the erroneous file enter "I".

36.4.8 End of RIB check

I----------------------------------~----------------------\
OOCO FILES HAVE RIB FORMAT ERRORS.
0025 FILES HAVE NO RIB FORMAT ERRORS.

,
I , ,

CLUSTER ALLOCATION PHASE, PAS~ 1. PFN I

\---,
The screen appears as above when the RIB check phase is

finished. The messages at the top of the screen are a summary of
the information accumulated during the RIB check phase. The
message near the bottom of the screen is notification to the
operator that REPAIR is ready to begin the cluster allocation
phase.

36-8 DISK OPER_TING SYSTEM

To proceed, depress the (ENTER) key~ If no RIB format errors
remain on the disk, pressing (ENTER) is not required.

36.4.9 Cluster allocation phase, Pass 1

/

i
I
I
I
I
I
I
I
I

0000 FILES HAVE RIB FORMAT ERRORS.
0025 FILES HAVE NO RIB FORMAT ERRORS.

I CLUSTER ALLOCATION PHASE, PASS 1. PFN 000
I
I
I ,
I
I

o 0
a 0
o 0

\--------------------------------~----------~--------------------
The screen appears as above during the first pass of the

cluster allocation phase. The vertical numbers at the right of
the screen are the pass cycle monitor.

No operator response is required.

36.4.10 Cluster allocation phase, Pass 2

/

I
I

I
I
I
I
I
I
I

0000 FILES HAVE RIB FORMAT ERRORS.
0025 FILES HAVE NO RIB FORMAT ERRORS.

I CLUSTER ALLOCATION PHASE, PASS 1. PFN 000
I CLUSTER ALLOCATION PHASE, PASS 2. PFN 000
I
I
I
I

a 0
0 0
0 0

\

\.
I
I
I
I
I
I
I
I
I ,
I
I
I
I
I
I
I
I
I
I
I
I
I

. I

\--~--------------/

The screen
phase, pass 2.
monitor numbers
2 begins.

appears as above during the cluster allocation
The bottom message is displayed and the cycle
at the right of the screen are restarted when pass

No operator response is required.

CHAPTER 36. THE REPAIR COMMAND 36-9

36.4.11 Cluster allocation phase, pass 3

I------------------------------~-----------------------\
OelOO FILES WITH ALLOCATION CONFLICTS.

: 00000 CLlJSTEnS IN TlJOSE fILES.
I
I
I
I
I
I
I
I
I

I 0 0
I 0 0
: CLI.!SER ALLOCATION PHASE, PASS 1. PFN 000 0 0
I CLUSTER ALLOCATION PHASE, PASS 2. PFN 000 I ! CLUSTER ALLOCATION PHASE, PASS 3. # I
I I

\--1
The screen appears as above at the end of the cluster

allocation phase, pass 2. The messages at the top of the screen
are a summary of the information gathered during cluster
allocation phase pass 1 and 2. The message at the bottom of the
screen indicates that REPAIR is ready to'begin the cluster
allocation phase pass 3.

To proceed, depress the <ENTER> key. If no allocation
conflicts are present, it is not necessary to press <ENTER>.

36.4.12 Cluster Allocation Conflicts

I \
I PFN 200 PFN 220 :
10030 3 0030 3 :
10060 7 0060 7 I
: 304 1 SIN C M D 7 364 1 SOU T C M D 7 :
: # OF CLUSTERS IN FILE: 00001 # OF CLUSTERS IN FILE: 00002 I
: # OF CONFLICTING FILES: 002 CONFLICTING FILE # 001 :
: # OF CONFLICTING CLUSTERS: 00001 # OF CONFLICTING CLUSTERS: 00001 :
: # OF CORRECT PFN/LRN: 00004 OF 00006 # OF CORRECT PFN/LRN: 00000 OF 00006 :
I I
I I
I I
I I

: ENTER: DELETE FILE: l=LEFT, 2=RIGHT, 3=BOTH; 4=NO CHANGE: # I
I I
I I

\---1
The screen will appear as above (in general, specific words

will vary) if REPAIR finds that two or more files are trying to
u~e the same space on disk.

For explanation of the messages refer to Cluster Allocation

36-10 DISK OPERATING SYSTEM

Conflicts in Medial Interface below.

To delete the files in error enter "3".

36.4.13 System Table Replacement

I \
00000 CLUSTERS IN THOSE FILES.

CLUSTER ALLOCATION PHASE, PASS 1. PFN 000
CLUSTER ALLOCATION PHASE, PASS 2. PFN 000
CLUSTER ALLOCATION PHASE, PASS 3.

WRITE NEW C.A.T. TO DISK? #

o 0
o 0
a 0

I __1

REPAIR will compare its generated CAT with the one on disk.
If they match, the message:

COMPUTED C.A.T. MATCHES DISK

will appear. Otherwise, the message on the last line of the
screen above will appear.

To overwrite the CAT on disk enter "Y". To prevent overwrite
of the CAT on disk enter "N". If no errors have been discovered
by REPAIR, the operator should enter "Y".

REPAIR will then compare its Lockout CAT with the one on
disk. If they match, the message:

COMPUTED LOCKOUT C.A.T. MATCHES DISK

will appear. Otherwise a message will appear asking ~f the
Lockout CAT is to be written back to the disk.

To overwrite the L6ckout CAT on disk (ma~ing any additional
cylinders locked out during the primary stages of REPAIR
permanent) enter "Y". To prevent overwrite of the Lockout CAT on
disk enter "N". If no errors in the Lockout CAT have been
discovered by REPAIR and no additional cylinders were locked out,
the operator should enter "Y".

REPAIR will firially generate a Hash~d Directory Index and

CHAPTER 36. THE REPAIR COMMAND 36-11

compare it with the one on disk. If they match, the message:

COMPUTED H.D.I. MATCHES DISK

will appear. Otherwise a message will appear asking if the Hashed
Directory Index is to be written back to disk; Enter a "Y" if so,
on "N" if not. The H.D.I. check is not performed on a diskette
system.

/

I
I
I
I

. I
I

I CLUSTER ALLOCATION PHASE, PASS 1. PFN 000
I CLUSTRR ALLOCATION PHASE, PASS 2. PFN 000
I CLUSTER ALLOCATION PHASE, PASS 3.
I
I
I
I
I
I
I
I
I
I

WRITE NEW C.A.T. TO DISK? N
WRITE NEW LOCKOut CAT TO DISK ? N
COMPUTED H.D.I. MATCHES DISK
DISK REPAIR DONE.

o 0
o 0
o a

,--

,

The message on the last line of the screen above will appear
when the REPAIR program is finished checking the disk. The REPAIR
program will attempt to re~load the DOS when it is finished if it
was loaded from DOS.

No operator response is required.

36.5 Medial Operator Interface

This section is a rather comprehensive discussion of the
various messages and options provided by REPAIR, and is for those
who wish to be able to take advantage of the file-saving options
available with REPAIR. To use this section will require that the
operator gain an understanding of whatever error(s) REPAIR finds
that the he wishes to repair. For example, if the only errors on
the user's disk are in the directory, it is not neoessary to study
Retrieval Information Blocks or Cluster Allocation.

This section follows the section numbering scheme of the
previous section, Minimal Operator Interface.

When a facet of REPAIR operation is discussed more

36-12 DISK OPERATING SYSTEM

appropriately elsewhere, the discussion is not repeated in this
section, but the reader js referred to the section containing the
discussion. When the section referenced is the corresponding
section under Minimal Operator Interface, this section will simply
say "See Minimal Interface fl •

To use this section requires that the user have a copy of and
understand the use of either of the DOS commands, DUMP or
DUMP93XO. The ability to use the Assembler may be mandatory in
some cases.

This section assumes that the REPAIR program is used as an
error-finding tool, and that the user, with the aid of one of the
DUMP programs and special programs he may create, can fix errors
that develop on the disk. A specific example is the case of a
file with bad RIBs. REPAIR can tell the operator that the file's
RIBs contain errors. Either DUMP program can be used to determine
the magnitude of the damage to the RIBs, and, if necessary, where
the filets records actually are on disk. If necessary, the user
can create a simple Assembly language program to re-create the
file's RIBs on disk. Sometimes it will be less effort to
re-create a file's RIBs than to re-create the file itself.

36.5.1 Executing REPAIR

If REPAIR is cataloged on the disk (as REPAIR/CMD), and if
the DOS is capable of loading and executing it, the fastest and
easiest way to get REPAIR started is by simply keying the command
at the system console:

REPAIR

REPAIR may also be executed by placing a LOAD-AND-GO (LGO)
tape of REPAIR in the rear cassette deck and pressing RESTART.

In either case, the pack to be checked must be placed in a
dri ve connect~ed to the computer and brought on line.

Note.that a pound sign (I) in one of the bottom two lines of
the pictogram represents the cursor position. The cursor ~ill be
flashing when the operator is required to respond to the
information on the screen.

CHAPTER 36. THE REPAIR COMMAND 36-13

36.5.2 Sign-on and drive number specification

See Minimal Interface for illustration.

After the operator has ente~ed the number of the drive
holding the pack to be REPAIRed, REPAIR will wait for that drive
to come ready before proceeding to do cylinder lockout.

36.5.3 Cylinder lockout

The Cylinder Lockout with REPAIR Section is a discus~ion with
examples of the cylinder lockout process.

Cylinders are locked out because they give read/write errors
or because by system design they are to be reserved for some
special use.

If the user is not sure whether cylinders have been locked
out on a disk pack (and the Lockout CAT and backup have. both been
destroyed), either of the DUMP programs can be used to look at the
cylinders on disk.

Cylinders that have been reserved for special use can
generally be recognized by the formatting of their sectors.
Sectors that have not been used by the normal DOS routines will
not have the special DOS header information .in the first three
bytes. The first byte is the PFN (Physical File Number) of the
file, and the second an4 third bytes give the LRN (Logical Record
Number) of the record in the file. For records that have been
written by the normal DOS, each cluster will have the same first
byte, and the second and third bytes will be incremented by one
(LSP, MSP).

36.5.4 Directory check monitor

See Minimal Interface for illustration.

The directory check monitor is the means by which REPAIR
indicates its progress to the operator. Specifically, the
directory check monitor constantly displays the disk address of
the current directory entry being checked. Tbis display is in the
form of two vertically displayed octal numbers at the right of the
screen. The first number is a directory sector number indicator,
and the second number is the buffer page address of the directory
entry being checked.

36-14 DISK OPERATING SYSTEM

If the directory check monitor stops and no other messages
are displayed, then the REPAIR program was loaded to memory
improperly or something is wrong with the hardware.

If a page in the directory has been accidentally overwritten
by a record from a file, then REPAIR will find many errors in that
directory page. If while executing REPAIR the operator notices
that there are quite a few errors in the directory, he can note
the directory page address as shown by the directory check
monitor. (The left number of the directory check monitor is the
physical sector number of the directory page). Using either of
the disk dump programs the operator can look at the bad directory
page(s).

If the damage is only to one copy of the directory (the usual
case) then REPAIR can recover the directory. However, the
operator may wish to use either DUMP command to look at the
directory to see if, by examining the data there, he can determine
if an error in a user program has caused the directory to be
overwritten. Clues to such events can be gleaned by noting the
first byte of the record (which would be a file PFN), for example.

36.5.5 Directory errors

The directory is a table of entries for files on the pack.
There are two copies of the directory, the MASTER and the COPY.
There are 16 pages to each copy of the directory, each page holds
entries for up to 16 files. (One disk physical sector is one
directory logical page). Thus, the directory has a MASTER and a
COpy entry for up to 256 files.

The REPAIR program checks the directory one file at a time.
That is, the MASTER and the COpy of a directory entry are checked
at the same time.

If an error in the MASTER or the COpy entry or both is
detected, REPAIR will display:

1. A brief error description at the top of the screen,

2. The MASTER and COPY entry across the lower center of the
screen,

3. An option message near the bottom of the screen.

The error description will indicate whether the error is in
the MASTER or the COPY entry or both, and will define the type of

CHAPTER 36. THE REPAIR COMMAND 36-15

error.

Note that although directory entries for a file may have
several types of errors at the same time, REPAIR will only deal
with one error type at a time.

The directory entries are displayed under their respective
headings- MASTER: and COPY:. The first four bytes and the last
byte of each entry are always displayed in vertical octal. The
5th thru 15th bytes (being the file name and extension) of each
entry are displayed in ASCII except for bytes in those fields
which cannot be displayed in ASCII on the CRT display; those
bytes will be converted to vertical octal.

The option message at the bottom of the screen will enable
the operator, by selecting and entering a digit, to correct the
MASTER entry with information from the COPY entry, to correct the
COPY entry with information from the MASTER entry, to delete both
entries (and thus the file), or to make specific changes to one or
both entries, or to make no change at all to either entry.

Below are examples of the various directory errors that may
occur and discussions of the respective messages. The first
example is the most complete; the other directory error routines
work basically the same way but their examples are not as
expanded.

Note that for the examples concerning the directory MASTER,
the same messages (transposing the words COpy and MASTER) apply to
the directory COPY.

36.5.5.1 Delete errors

Delete errors include those where the directory entry master
is deleted and the copy is not deleted, or the directory entry
master is partially deleted.

36-16 DISK OPERATING SYSTEM

36.5.5.1.1 One entry deleted

I

I
I
I
I
I
I
I
I

DIRECTORY ENTRY MASTER: DELETED

MAS T E R :

I 3 3 3 3 3 3 3 3 3 3 333 3 3 3
: 7 7 7 7 7 777 7 7 7 7 777 7
177 7 7 7 7 7 7 7 7 7 7 7 7 7 7

a 3 3 0
006 a

COP Y

204 1 CAT
I
I
I
I
I
I

ENTER: l=COPY-)MASTER, 2=DELETE BOTH, 3=NO CHANGE: #

3 0 0
7 0 2

C N D 7 6 0

\--.----------
The screen will appear as above if REPAIR finds a file for

which the directory MASTER entry is deleted (filled with 0377's)
but the directory COPY is not.

The operator has three options:

\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

1. Enter "1" to .Q.QQY the COpy entry to the MASTER entry, thus
saving the file's name in the directory;

2. Enter "Z-" to delete both entries, and thus the file;

3. Enter "3" to take no action on the file's entries and
continue the directory check.
---\

I I

I DIRECTORY ENTRY MASTER: DELETED I
I I
I I
I I
I I
I I

\ MASTER: COpy !
I I

\3333333333333333 0330 3 001
:7777777777777777 0060 7 021
\ 777 7 7 7 7 7 7 7 7 777 7 7 2 a 4 1 CAT C M D 7 6 0 !
I I
I I

: ENTER: l=COPY->MASTER, 2=DELETE BOTH, 3=NO CHANGE: :
I *** ARE YOU SURE ? *** # I

,--1
The message on the last line of the screen above will appear

when the operator has selected and entered one of the digits given
in the option message. REPAIR will always make sure the operator
entered what he intended to, before proceeding to carry out the
function.

CHAPTER 36. THE REPAIR COMMAND 36-17

To carry out the function selected enter "Y". If "N" is
entered the option message will be re-displayed.

/ \

MAS T E R COP Y

0 3 3 0 3 0 3 3 0 3
0 0 6 a 7 a 0 r a 7 a a 0
2 0 4 1 CAT C M D 7 2 a 4 1 CAT C M D 7 0 2

6 0
i ENTER: 1=COPY-)MASTER, 2=DELETE BOTH, 3=NO CHANGE:
I *** ARE YOU SURE ? *** Y I
I DONE. I

\

The screen will appear as above if the operator has replied
"1" to the message above and replied "Y" to the message "*** ARE
YOU SURE? ***fl. When REPAIR does an entry to entry copy, both
entries are re-displayed to show the operator the results of the
copy, and the message: "DONE." is displayed at the bottom of the
screen.

No further operator response is required.
/
: DIRECTORY ENTRY MASTER: DELETED
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

MAS T E R

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
7 7 7 7 7 7 7 7 7 777 777 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

COP Y :

333 3 3 3 3 3 3 3 3 3 3 333
7 7 7 7 7 7 7 77 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 777

ENTER: l=COPY-)MASTER, 2=DELETE BOTH, 3=NO CHANGE: 2
*** ARE YOU SURE ? *** Y
DONE.

o 0
o 2
6 0

\--The screen will appear as above if the operator has replied
"2" to the message above and replied "Y" to the message "*** ARE
YOU SURE ? ***" When REPAIR deletes the entries from the
directory, the entries are re-displayed to show the operator that
the delete has been accomplished, and the message: "DONE." is
displayed at the bottom of the screen.

No further operator response is required.

36-18 DISK OPERATING SYSTEM

\

/

I
I
I
I ,
I
I
I

11 A S T E R

: 3 333 3 3 3 333 3 333 3 3
: 7 7 7 7 7 7 7 777 777 7 7 7
: 777 7 7 7 7 7 7 7 7 777 7 7

COP Y

o 330
o 0 6 0
204 1 CAT

I
I
I
I
I
I

ENTER: 1=COPY->MASTER, 2=DELETE BOTH, 3=NO CHANGE: 3
*** ARE YOU SURE ? *** Y

C

3 0 0
7 0 2

M D 7 6 0

\----------------------------------~--------------------------------
The screen will appear as above if the operator has replied

"3" to the message above and replied "Y" to the message ~"*** ARE
YOU SURE? ***". REPAIR will make no change to the entries and
will resume the directory check.

No further operator response is required.

36.5.5.1.2 Delete Incomplete

/
DIRECTORY ENTRY MASTER: DELETE INCOMPLETE

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
f
I
I

M A S T E R

3 333 3 3
7 7 7 777
7'(7777 T

ENTER: 1=COPY->HASTER,

3 0 3 3 0
7 0 o 6 0

C M D 7 2 o 4 1

2=DELETE BOTH, 3=NO

COP Y

CAT

CHANGE: /I

3 0 0
7 0 2

C M D 7 6 0

\--
The screen will appear as above if REPAIR finds a file for

which the directory MASTER entry is partially deleted (partially
filled with 0377's) but the directory COPY is not.

The operator options and REPAIR actions are the same as for
one entry deleted, see the preceding section.

CHAPTER 36. THE REPAIR COMMAND 36-19

\
I , ,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

/

\

I
I
I

/

36.5.5.2 RIB Address Errors

RIB Address errors include invalid RIB addresses or unequal
RIB addresses between the directory MASTER and COPY.

36.5.5.2.1 RIB Address Invalid

/ \
I DIRECTORY ENTRY MASTER: R.I.B. ADDRESS INVALID
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

0 330
0 060
0 041

ENTER:

MAS T E R

3
7

CAT C M D 7

1=COPY->MASTER, 2=DELETE

COP Y

0 3 3 0
0 o 6 0
2 o 4 1 CAT

BOTH, 3=NO CHANGE: iF

3 0 0
7 0 2

C M D 7 6 0
I
I
I
I
I
I

\ /

The screen will appear as above if REPAIR finds a directory
MASTER entry with an invalid RIB address.

In this example, the RIB address of the directory MASTER is
invalid because the cylinder address is 000.

The RIB address is the first byte and the top two digits of
the second byte of a directory entry. The first byte is the
cylinder address and to be valid must be an octal number in the
range 001 thru the maximum cylinder number for the DOS in use
(DOS.A - 0312, DOS.B - 0312, DOS.C - 0114, DOS.D - 0374, DOS.E -
0312). The top two digits of the second byte define the cluster
number and to be valid must be one of the following:

00, 04, 10, 14, 20, 24, 30, 34

For diskette systems, the valid two digits are only:

00, 10, 20, 30

The operator has three options:-

1. Enter ".1" to .Q.QQY the COPY entry RIB address to the MASTER
entry RIB address;

2. Enter "£" to delete both entries, and thus the file;

36-20 DISK OPERATING SYSTEM

3. Enter "3" to take no action on the file's entries and
resume the directory check.

/
I DIRECTORY ENTRY MASTER: H.I.B. ADDRESS INVALID
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

MAS T E R

0 3 3 0
0 0 6 0
0 0 4 1- C A T

ENTER: 1=COPY->MASTER,
*** ARE YOU SURE ? ***

COP Y

3 0 3 3 0
7 0 o 6 0

C M D 7 2 o 4 1 CAT

2=DELETE BOTH, 3=NO CHANGE:
41

3
7

C M D 7

\
I
I
I
I
I
I
I
I
I
I
I
I

0 0 I
I

0 2 I
I

6 0 I
I
I
I
I
I
I
I

\---/

The message on the last line of the screen above will appear
if the operator has replied "1" to the message above.

To carry out the function selected enter "Y".
/ \

DIRECTORY ENTRY MASTER: R.I.B. ADDRESS INVALID

MAS T E R

o 330
o c 6 0
004 1 CAT

3
7

C M D 7

COP Y

o 330
o 0 6 0
204 1 CAT

ENTER: 1=COPY->MASTER, 2=DELETE BOTH, 3=NO CHANGE:
MOVE ENTIRE ENTRY ? #

3
7

C M D 7

o 0
o 2
6 0

\~---
The message on the last line of the screen above will appear

if the operator replied "Y" to the message ,,*** ARE YOU SURE ?
***"

Ente~ "N" to have REPAIR copy the RIB address (only) from the
COpy entry to the MASTER entry. Enter "Y" to have REPAIR copy the
entire COPY entry to the MASTER entry.

The "MOVE ENTIRE ENTRY?" option is given to give the
operator the ability to correct many types of errors in an
erroneous entry at one time, rather than correct each error as it
is found. If the operator can recognize a severly destroyed entry
the first time he sees it, this option can enable him to repair
the directory more quickly.

CHAPTER 36. THE REPAIR COMMAND 36-21

36.5.5.2.2 RIB Addresses not equal

/
i DIRECTORY ENTRY MASTER & COPY: R.I.B. ADDRESSES NOT EQUAL
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

a 3 3
0 0 6
2 0 4

ENTER:

MAS T E R

a
0
1 CAT

1=MASTER->COPY,

COP Y

3 a 3 ':l a oJ

7 a a 6 a
C M D 7 3 a 4 1 CAT

2=COPY->MASTER, 3=DELETE BOTH, 4=NO

3 0 0
7 a 2

C M D 7 6 0

CHANGE: 1/

\--
The screen will appear as above if REPAIR finds a file with

directory entries with RIB addresses that are both valid but not
equal.

\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

/

In this example, the RIB address in the MASTER is 002,300 and
in the COPY is 003,300.

The operator has four options:

1. Enter "1" to QQQ.Y the MASTER entry RIB address to the COPY
entry RIB address;

2. Enter ".2." to QQQ.Y the COPY entry RIB address to the MASTER
entry RIB address;

3. Enter ".3." to delete both entries, and thus the file;

4. Enter ".!:!." to take no action on the file's entries and
resume the directory check.

If it is not obvious by visual inspection of the directory
entries which is in error, the operator should note the RIB
address as given by each directory entry, and enter "4". If
REPAIR later discovers PFN arid LRN errors in the actual RIBs for
the file (see Retrieval Information Blocks Errors), then the
operator can be fairly sure the directory MASTER entry for the
file is in error, since only the directory MASTER entry is used to
determine the RIB address of a file for the RIB check phas~ of
REPAIR.

If the operator wants to make very sure which, if either, of

36-22 DISK OPERATING SYSTEM

the directory entries is correct, he can use the DUMP or DUMP93XO
commands to look at the file after REPAIR has finished execution.

When it is determined which directory entry for the file has
the correct RIB address, the operator can execute REPAIR again,
this time entering "1" dr "2"" as apprdpriate to correct the
erroneous directory entry.

If neither entry is'correct, and it would be easier to modify
the directory entries for the file than to delete them and
re-create the file, refer to the available DOS documentation for
details on ways to modify the directory sectors on disk.

36.5.5.3 File protection not same

/

ENTRY MASTER: WRITE PROTECTION
ENTRY COPY: NO PROTECTION

M A S T E R :

0 3 3 0 3 0
0 o 6 0 7 0
2 3 4 1 CAT C M D 7 2

COP Y

3 3 0 3 0 0
o 6 0 7 0 2
o 4 1 C A T C M D 7 6 0

The screen will appear as above if REPAIR finds a file with
directory entries with protection not the same.

In this example, the directory MASTER entry has WRITE
protection indicated for the file, while the directory COPY entry
has no protection indicated for the file. Note: where the bits
for both WRITE and DELETE protection are set, WRITE protection has
precedence, since WRITE protection implies DELETE protection.

Th~ protection indication is iri the bottom two bits (bottom
digit) of the second byte ofa directory entry. If the upper bit
of the two is set on (the digit is 2) then the directory entry
indicates that the file is DELETE protected. If the bottom bit is
set on (the digit is 1 or 3) then the directory entry indicates
that the file is WRITE protected. If neither of the two bits is
set on (the "digit is 0) then the directory entry indicates NO
protection for the file, that is, that the file is unprotected.

The operato~ has five options:

CHAPTER 36. THE REPAIR COMMAND 36-23

1. f;nter "1" . .li..2.·g~let§ bpth entries, and thus the file;

2. Enter "l" 19,..take JlQ. iPtj,Ol) on the file's entries and
resume the directory check;

3. tint§r "..3. " J4Q. Hi both entries to indicate NO protection;

4. f;Dt~r ".!l" iQ. m both entries to indicate
protection;

5. t;nti r ".5. " hw both entries to indicate
protection.

36.5.5.4 Name-Extension not equal

/
DIRRCTORY ENTRY MASTER & COPY: NAME~EXTENSION NOT EQUAL

i
I.

1
I
I
I
I

MAS T E R

I 0 3 ·3 0 3
: 0 0 6 0 7
: 204 1 CAT X X X X X C M D 7 ..
I

COP Y

o 330
o 0 6 0
204 1 CAT

DELETE

WRITE

3
7

C H D 7

o 0
o 2
6 0

\

I ENTER: 1~MASTER->COPY, 2=COPY->MASTER, 3=DELETE BOTH, 4:NO CHANGE: , I
I I
I I

\~--------~~~--__ i_. ____ ~ __ --__________ ~ ____ --________ --__ /

The s6reen will appear as above if REPAIR finds a file with
directory entries that. do pot have tbe same NAME/EXTENSION.

The NAME/EXTENSION of • directory entry is located in bytes 5
through .15inclus1vely .. The NAME/EXTENSION of a directory entry
(and the file) is the normal means by which the file is identified
and manipulated, especially from the DOS system console.

Note that REPAIR does not seek or identify as erroneous files
with NAME/EXTENSIONS that contain non-ASCII characters, since by
DOS rules ndn~ASCII 6haracters are perfectly legal in the
NAME/EXTENSION field.

Tbeoperator ha:s four options:

1. ~nt'r "1"1.Q. ~ the MASTER entry NAME/EXTENSION to the
COpy .ntry NAME/EXTENSION;

2 .~nter "2." iQ..s.ru1.I. the COpy entry NAME/EXTENSION to the

36-24 DISK OPERATING SYSTEM

MASTER entry NAME/EXTENSION;

3. Enter "3." to delete both entries, and thus the file;

4. Enter ".!t" to take no action on the file's entries and
resume the directory check.

36.5.6 Retrieval Information Blocks check

I \
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

RIB MASTER: (PFN 000)
* It

*
*
*
*

RIB COPY:

o 0
o 0
o 0

\------------~--
The screen appears as above during the Retrieval Information

Blocks check.

REPAIR checks Retrieval Information Blocks (RIBs) for all
files in the directory with a valid RIB address, in th~ order of
the 1i1es' occurrence in the directory. The three-digit octal
number after "PFN" in the top line will ind1cate the actual
Physical File Number currently being checked. The two
vertically-displayed octal numbers at the right of the screen
provide the same information as the directory check monitor
described previously.

I

There are two RIBs for each file, a MASTER and a COPY. The
RIB MASTER is the very first record in the file and the RIB COpy
is the second record in the file. Each RIB uses one full 256-byte
disk sector. Refer to the System Structure Chapter for a
description of the structure of the RIBs.

If REPAIR detects any errors in the RIB MASTER a message
describing the class of error will be displayed in the portion of
the screen under the heading "RIB MASTER:". If REPAIR detects any
errors in the RIB COPY a message will be displayed in the portion
of the screen under the heading "RIB COPY:".

The PFN indicator and the cycle mOnitor numbers are

CHAPTER 36. THE REPAIR COMMAND

incremented and displayed for each entry in the directory. The
column of asterisks is displayed only while the RIBs for a file
are actually being ,checked.

36.5.7 Retrieval Information Blocks errors

/ \
RIB MASTER: (PFN 0(0) rnn COPY: I

l ~~N ERROR LRN ERROR * PFN ERROR LRN ERROR I
I 4T:, BYTE NOT 0377 * 4TH BYTE NOT 0377 I
: 1ST SEG.DES. ERROR * 1ST SEG.DES. ERROR I
! MULTIPLE ALLOCATION 00001 * MULTIPLE ALLOCATION 00001 I
! CYL.ADR.OVERFLOW CYL.ERROR * CYL.ADR.OVERFLOW CYL.ERROR :
: RIB TERMINATOR ERROR * RIB TERMINATOR ERROR I
I I
I I
I I
I I
I I
I I
I I
I I

I I
\--------------------------~--/

The screen will appear as above if REPAIR finds errors in the
RIB MASTER or COpy for a file. Note that all of the messages
given in the example above will not necessarily appear. The
pictogram above shows the screen as it would appear while the RIB
check was in progress. The next pictogram shows the state of the
screen when the RIB check has finished and has displayed the
file's directory MASTER entry and is ready for operator response.

Below is a discussion of each of the messages in the screen
above. In the above pictogram all possible messages are shown in
their respective positions for both the RIB MASTER and the RIB
COPY. Note that since the RIB MASTER ahd COpy have the same
formats, (indeed, normally they are exact duplicates of each
other, except for their Logical Record Number [LRN]) they can have
the same errors.

There are two types of errors that a RIB may have: simple and
complex. If REPAIR finds only one simple error in only one of the
RIBs then the operator will be given the option of having REPAIR
correct the error. If multiple simple errors or any complex
errors are detected then the errors are too serious for REPAIR to
cope with, and will only give the operator a choice between
deleting the file or making no change at all. Even with multiple
or complex errors the file may be saveable.

PFN ERROR

36-26 DISK OPERATING SYSTEM

This message is displayed if the first byte of the RIB is not
the file's Physical File Number (PFN). This is a simple error and
is correctable under the conditions given above.

LRN ERROR

This message is displayed for the RIB MASTER if the Logical
Record Number (LRN) is not zero, and for the RIB COPY if the LRN
is not one. This is a simple error and is correctable under the
conditions given above.

This message is displayed if the 4th byte of the RIB is not
0377. When the DOS object code loader loads a program into memory
it skips over disk records with a 0377 in the 4th byte: since the
RIBs of a file are not part of the object code of a file their
fourth byte should always be 0377 so the loader will not attempt
to load them to memory. This is a simple error and is correctable
under the conditions given above.

1ST SEG.DES. ERROR

Expanded: First Segment Descriptor Error. This message is
displayed if the first segment descriptor of the RIB does not
point to itself. Since the RIBs are the first two records in any
file, they will always be in the first cluster. The first segment
descriptor must pOint to the beginning of the file, which is the
cluster where the RIBs are.

MULTIPLE ALLOCATION 00001

This message is displayed if REPAIR discovers that, according
to the RIB's segment descriptors, two or more segments of the file
overlap. Specifically, segment descripto~s identify clusters on
the disk which belong to the given file. If one or mo~e of these
clusters is indicated as belonging to more than one segment, then
there is mulitple allocation of clusters. The five digit octal
number indicates how many clusters are multiply allocated.

CYL.ADR.OVERFLOW

This message is displayed if REPAIR discovers a segment
descriptor which indicates that a segment ove~runs the physical
end of the disk. Of course it is not actually possible for a file
to extend beyond the upper limit of the disk space, but it is
possible fo~ a segment desc~iptor to er~oneously indicate this.
For example, a segment descriptor might say, in effect: "This

CHAPTER 36. THE REPAIR COMMAND 36-27

segment begins at the last cluster on the disk and extends for ten
clusters" .

~.ERROR

This message is displayed if REPAIR discovers a segment
descriptor with a cylinder address that is either 0 (always
reserved for the Cluster Allocation Table and the Directory) or
greater than the maximum cylinder number allowed by the DOS (DOS.A
- 0312, DOS.B - 0312, DOS.C - 0114, DOS.D - 0374, DOS.E - 0312).

BlR TERMINATOR ERROR

This message is displayed if REPAIR discovers a RIB that has
an incorrect terminator. The logical end of a RIB is indicated by
either the actual physical end of the disk record or a pair of
0377'8. An 0377 in the first byte of a segment descriptor but a
non-0377 in the second byte defines a TERMINATOR ERROR.
/

I
I
I.
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I

PFN ERROR

I DELETE THE FILE ? #

o 2 3 0
o 0 6 0
204 1

*
*
*
*
*
*

3
7

C HAN G E C M D 7

\

\----~--
The screen will appear as above when REPAIR has completed the

RIB check for a file whose RIBs had only one simple error. Note
that the screen is rolled up one line so that the heading
containing the PFN is no longer displayed. However the directory
MASTER entry for the file, containing the NAME/EXTENSION for the
file, is displayed under the error message area. -

To simply have REPAIR delete the file enter llyn. To attempt
to save the file enter "N".

36-28 DISK OPERATING SYSTEM

/ \

0 2 3
0 0 6
2 0 4

I DELETE THE FILE ? N

0
0
1 C HAN

*
*
*
*
*

G E

3
7

C M .D 7

I WRITE CORRECTION TO DISK ? # I

\--~---------------------/
The message on the last line of the screen above will appear

if the operator replied "Nfl to the message above.

Enter "Y" to have REPAIR write the correct RIB information to
the RIB in error and resume the RIB check.
I

0 2 3 0
0 0 6 0
2 0 4 1 C K A

DELETE THE FILE ? N
WRITE CORRECTION TO DISK ? N
FILE SPACE WILL NOT BE ALLOCATED.#

*
*
*
*

N G E

3
7

C M D 7

The message on the last line of the screen above will appear
if the operator replied "N" to the message above. REPAIR will not
allocate space (by setting the appropriate bits in the CAT) for a
file if there is any uncorrected/uncorrectable error in either of
the RIBs.

REPAIR will wait until the operator depresses the ENTER key
before resuming the RIB check.

CHAPTER 36. THE REPAIR COMMAND

\

I \.
: * :
I * I
I * I
I * I
I 0230 3 :
: 0060 7 I
I 2041CHANGE CMD7 :
I I
I I
I I
I I

I RIBS' SEGMENT DESCRIPTORS NOT EQUAL. I
I DELETE THE FILE ? # I \ ___ 1

The messages on the last two lines of the screen above will
appear if the RIB MASTER and COPY tor a file individually have no
format errors but do not describe the same segments for the file.

Enter "Y" to delete the file from the directory. Enter "N"
to make no change to the file and resume the RIB check.

NOTE that whether or not the file is deleted REPAIR will not
allocate any space on disk for the file (refer to the pictogram
and discussion above). The consequence of this is that, although
the file will still be accessable, the space it occupies is marked
as available for allocation to some other file. As a result, the
remains of the file on disk are almost certain to be overwritten
by some other file sooner or later.

Complex RIB errors can come in infinitely many kinds and
combinations. The REPAIR diagnostics will describe specific
errors, but if the user is considering fixing a RIB he must
examine the RIB himself and determine what is wrong .with it and
how toco~rect it. Sometimes this will involve examining records
on disk and determining whether or· not the records belong to the
file and how theyshou.1d. be. organized in th.e RIBs segment
descriptors. Because of the ~otential 60mplexity of this
operation the current version of REPAIR does not attempt the
analysis necessary to re-construct a .RIB with complex errors .

36.5.7.1 A simple case

A relatively simple-to-fix case might go like this:

1. REPAIR would find a file with simple and complex errors in
the RIB MASTER.

2. The user would use either disk dump program to look at the

36-30. DISK OPERATINGSrSTEM

RIBs and determine that the RIB MASTER had somehow been completely
destroyed, but the format of the RIB COpy seemed to be correct.

3. Using the information in the segment descriptors of the
RIB COpy, the user would determine that the COPY was correct.

4. The user could then use the DUMP93XO CASSETTE DUMP command
to dump the RIB COpy to cassette, then use the DUMP93XO CASSETTE
LOAD command to load the record to the RIB MASTER.

5. The user would run REPAIR again. This time REPAIR would
find that the RIB MASTER for the file had one simple error,
namely, that the LRN was incorrect. REPAIR could correct this
error.

6. The original error is thus corrected.

36.5.7.2 A Complex Case

The worst case of RIB damage could be corrected in the
following manner:

,; REPAIR would find a file with simple and complex errors in
both the RIB MASTER and COPY.

2. The user would use either disk dump program to look at the
RIBs and determine that the RIBs had somehow been completely
destroyed, but that the file following the RIBs was not damaged.
(This can happen when a program incautiously uses DOS logical file
O.)

3. Using either disk dump program the user would locate and
map all of the file's SEGMENTS on disk.

4. From the information about the file's segments, the user
would re-construct the file's RIBs, and write a program to write
the RIBs to disk.

5. As a check on the above, REPAIR would be run to insure
that the new RIBs for the file did not indicate an allocation
conflict with another file.

6. The error is thus corrected.

CHAPTER 36. THE REPAIR COMMAND 36-31

36.5.8 End of RIB check

See Minimal Interface for illustration.

When all of the RIBs for all of the files on the disk have
been checked REPAIR will count the number of files with
uncorrected RIB format errors and the number of files with no RIB
format errors and will display the counts on the screen. The
files that do have RIB format errors will not be allocated space
on disk and will not be processed in the cluster allocation phase
(below) .

36.5.9 Cluster allocation phase, Pass 1

See Minimal Interface for illustration.

The cluster allocation phase of REPAIR re-constructs in
memory the CAT from the information in the RIBs of files that have
no RIB format errors. The cluster allocation phase consists of
three passes. The first pass makes one pass through all the files
on the pack with no RIB format errors and builds in memory two
CATs: one for all files that have no space (cluster allocation)
conflicts with other files and a second for files which do have
cluster allocation conflicts.

36.5.10 Cluster allocation phase, Pass 2

See Minimal Interface for illustration.

The second pass of the cluster allocation phase makes another
pass through all the files allocated to the first CAT and finds
any that may have conflicts with space allocated to the second
CAT, and removes those files' space allocation from the first CAT
and allocates their space to the second CAT.

36.5.11 Cluster allocation phase, Pass 3

See Minimal Interface for illustration.

The third pass of the cluster allocation phase does an
analysis on any two files with disk space (cluster allocation)
conflicts with each other and displays the results of the analysis
on the screen (see next section). If no files have cluster
allocation conflicts REPAIR proceed to System Table Replacement.

36-32 DISK OPERATING SYSTEM

36.5.12 Cluster allocation conflicts

/--
PFN 200 PFN 220 \
0030 3 0030 I
0060 7 0060 3 I
3041SIN CMD7 34 7 I

OF CLUSTERS IN FILE: 00001 0 1 SOU T C M D 7 I
OF CONFLICTING FILES: 002 # OF CLUSTERS IN FILE: 00002 I
OF CO CONFLICTING FILE # 001 I

NFLICTING CLUSTERS: 00001 # OF CONFLICTING CLUSTERS: 00001
OF CORRECT PFN/LRN: 00004 OF 00006 # OF CORRECT PFN/LRN: 00000 OF 00006

ENTER: DELETE FILE: 1=LEFT, 2=RIGHT, 3=BOTHj 4=NO CHANGE: #

The screen appears as above (in general, specific words will
vary) if REPAIR finds two files with cluster allocation conflicts
- that is, if two files have, according to their respective RIBs,
been allocated in whole or in part the same clusters on disk.

The possible combinations of file cluster allocation
conflicts is myriad. One file may have conflicts with only one
other file. One file may have conflicts with many other files.
Many files may have conflicts with many files in different
combinations of numbers.

REPAIR handles any possible combination of files with cluster
allocation conflicts by dealing with only two files at a time. As
in the above example, the directory MASTER entry (and some
additional information) for a file is displayed on the left of the
screen, and the directory MASTER entry (and some additional
information) for a file that has cluster allocation conflicts with
it is displayed on the right of the screen.

As long as the file on the left of the screen is not deleted,
all of the files that have cluster allocation conflicts with it
will be displayed in turn on the right of the screen. When all of
the cluster allocation conflicts with the file on the left of the
screen have been dealt with, then the next file with cluster
allocation conflicts will be displayed on the left of the screen,
and all files that have cluster allocation conflicts with it will
be displayed in turn on the right of the screen, and so on until
all files that have cluster allocation conflicts have been dealt
with.

The information displayed for the two files having cluster

CHAPTER 36. THE REPAIR COMMAND 36-33

allocation conflicts is to guide the operator in deciding among
the four options given by REPAIR. For explanation of the messages
see the next section.

REPAIR corrects a cluster allocation conflict by deleting one
of the files involved. If many files are involved in cluster
allocation conflicts then the operator will probably want to enter
"4" after each display so that he can accumulate the information
necessary to decide which files should be deleted and which should
be retained (that is, REPAIR will be executed twice, once ,to
gather all the information about cluster allocation conflicts and
once to actually delete files).

Specifically, the operator has four options:

1. Enter "1" to delete the file indicated on the left of the
screen;

2. Enter "Z" to delete the file indicated on the right' of the
screen;

3. Enter "3" to delete both of the files;,

4. Enter ".!!." to take no action on either of the files and
resume the CLUSTER ALLOCATION PHASE, PASS 3.

36.5.12.1 Cluster allocation phase, Pass 3 Messages

The explanations below describe the information given in the
respective messages and how the operator can interpret the
information.

36.5.12.1.1 Left side of screen

This message gives the PHYSICAL FILE NUMBER of the file whose
directory MASTER entry is displayed immediately below it.

The PFN is a means of identifying the file besides the
NAME/EXTENSION given in the directory entry. Additionally, the
PFN of a file tells the file's relative location in the'directory
(refer to the System Structure Chapter for a discussion of the
directory). This information can be useful, especially with a
relatively new disk pack, in indicating which files are older and

36-34 DISK OPERATING SYSTEM

which are newer.

DIRECTORY MASTER entry

The directory entry for a file provides the fundamental means
of identifying the file on the disk. The directory entry contains
information as follows:

The physical disk address of the beginning of the file is
given in the first byte and the higher two digits of the second
byte. The first byte is the cylinder address and the top three
bits of the second byte are the cluster number. Since the RIBs
are the first two records in the file, this address points to the
file's RIBs.

The protection of the file is given in the bottom digit of the
second byte. 1 or 3 = write protection, 2 = delete protection.

The old logical record number limit field is given in the third
(LSB) and fourth (MSB) byte of the file, as a 16-bit binary
number. This field is currently unused by the "dot-series" DOS,
which normally set it to zero when a file is created.

The NAME/EXTENSION of the file is given in the 5th through 12th
bytes and the 13th through 15th bytes respectively.

The last byte of the directory entry is the number of the DOS
sUbdirectory on that logical drive containing the file.

OF CLUSTERS IN FILE: 00000

This message gives the number of clusters in the file as a
5-digit octal number.

Besides giving the operator an indication of the size of the
file, it can be compared to the number of clusters in the file
involved in cluster allocation conflicts (below), to give a
relative indication of what percent of the file may be in error.

OF CONFLICTING FILES: 000

This message gives the number of files (in octal) that
conflict with the file displayed on the left of the screen.

If the number is very large, and the file not very important
to the operator, then the operator may decide to delete the file
rather than look at all of the files that have cluster allocation
conflicts with it.

CHAPTER 36. THE REPAIR COMMAND 36-35

Q[CONFLICTING CLUSTERS: 00000

This message gives the number (in octal) of clusters that are
in conflict for the entire file. If the file has conflicts with
many files then this number will almost always be larger than the
corresponding number on the right side of the display.

The number of conflicting clusters for a file can give the
operator a quantitative indication of possible damage to the file.

OF CORRECT PFN/LRN: 00000 Qf 00000

This message gives the number of records in the file that
have the correct DOS header information in them (being the PFN in
the first byte of the physical record and the LRN in the second
and third bytes of the record) for the clusters that ~ in
conflic t wi.. th other files, . and the number of records in the
clusters that are in conflict. Both of the numbers are in octal.

If a record in a contested cluster does not have the correct
PFN/LRN information, then it has probably been overwritten by a
record of a file that also claims the cluster.

This message gives the operator an indication of actual
damage to the file. If the number of correct PFN/LRN is high,
then there is little damage to the file and the RIB for the file
is probably correct. If the number of correct PFN/LRN is very
low, then the file has probably been overwritten by another file
and/or the file's RIB is incorrect.

36.5.12.1.2 Right side of screen

Same as for left side of screen.

DIRECTORY MASTER entry

Same as for left side of screen.

OF CLUSTERS IN~: 00000

Same as for left side of screen.

CONFLICTING FILE # 000

36-36 DISK OPERATING SYSTEM

This message provides a counter (in octal) to help the
operator keep track of each file among several with which the file
on the left of the screen has cluster allocation conflicts. This
number can never exceed the # Q[CONFLICTING FILES: 000 count.

Q[CONFLICTING CLUSTERS: 00000

This message gives the number (in octal) of clusters that are
in conflict between the files indicated on the left and right of
the screen.

Q[CORRECT PFN/LRN: 00000 Q[00000

This message gives the number of records in the file that
have the correct DOS header information in them (PFN and LRN) for
the clusters that are in confli~t with the file indicated on the
left Qf the screen, and the number of records in the clusters that
are in conflict. Both of these numbers are in octal.

Refer to the discussion under this message for the left side
of the screen. The user will need to be aware of the structure of
the files being examined.

The user may wish to use either disk dump program to inspect
the actual data on disk before deleting one or both of two files
with cluster allocation conflicts.

For a file with cluster allocation conflicts, one of five
things may be true:

1. The file may have correct RIBs and all correct records.
(That is, the error is in the file(s) having the cluster
allocation conflict with this file.)

2. The file may have incorrect RIBs.

3. The file's space has been erroneously allocated to
another file, and is occupied by the other file.

4. Another file has erroneously been allocated the file's
space, and its space is occupied by this file.

5. Any combinaton of (2), (3) and (4) above.

Either disk dump program can be used to look at the RIBs of
files with cluster allocation conflicts. From the information
given by the segment descriptors either disk dump program can be
used to look at where the file's records should be on disk. If

CHAPTER 36. THE REPAIR COMMAND 36-37

the records for the file are where they should be according to the
RIB, then the file possibly has no errors.

NOTE:

For files such as Indexed DATASHARE files (physically
random access as opposed to ISAM access files), all of
the space allocated to ~ file will not necessarily be
used.

The user will need to be aware of the structure of the
files being examined.

From the information gathered by examination of the actual
data on disk, the user can determine whether a file has errors and
if so, whether corrections should be made, and if so, what
corrections. In some cases the user may want to change a file's
RIB to relocate the file on disk. This, of course, would require
careful study of the real allocation of space on the disk and
regeneration of the file's RIBs.

36.5.13 System table replacement

See Minimal Interface for illustration.

The CLUSTER ALLOCATION TABLE that will be written to disk is
a combination of the CAT for files that had no cluster allocation
conflicts and the CAT for files that had cluster allocation
conflicts but that the operator did not wish to delete. The
allocation for files with cluster allocation conflicts is retained
so that if a new file is created it will not take space that is
being used by one of the un-deleted but erroneous files, thus
compounding cluster allocation conflicts.

Files that will still exist in the directory but will not
have space allocated to them will be:

Files with an invalid RIB address in their directory MASTER entry;
Files with any uncorrected error in either RIB

The reason disk space is not allocated to these files is that
if REPAIR cannot find the RIB for a file or if the RIB has
uncorrected errors then REPAIR has no way of knowing where the
file's clusters should be located. Any files of this class are
best transferred to cassette (if possible) and KILLed before any
new data is loaded to disk.

36-38 DISK OPERATING SYSTEM

36.5.14 Termination of REPAIR

See Minimal Interface for illustration.

When the REPAIR program has finished execution and has been
run from DOS it will return to DOS. Otherwise it goes into a dead
loop; that is, it executes a JUMP to self. This is so that the
processor will be "locked up" by the REPAIR program until the
operator takes some specific action, such as putting a LGO program
or DOS boot cassette in the rear deck and depressing RESTART. If
the auto-restart tab were punched out of the cassette in the rear
deck and REPAIR executed a HALT instruction upon completion, then
the computer would attempt .to load and execute the cassette in the
rear deck, which the operator may not wish to happen.

36.6 Cylinder Lockout with REPAIR

This section describes the mechanics of locking out
cylinders. To accomplish this with the REPAIR program does not
require an understanding of the cylinder concept.

Any cylinders that are reserved (locked out) on a disk should
be recorded on a sticker or label on the case of the pack. In
addition, the cylinders to be locked out are recorded internally
on the disk itself in the Lockout CAT and its backup. The list of
cylinders to be locked out might look something like:

FLAGGED CYLINDERS (or TRACKS):
40-50

167
200-202

Obviously, the cylinder numbers locked out cannot exceed the
maximum cylinder number allowed on the DOS in use. The following
example assumes a cartridge disk system; operation would be
identical for any other system. Remember that the numbers used
for cylinder lockout are decimal, rather than octal as used in
most other portions of REPAIR. The following example shows how a
list of cylinders as above would be locked out in the REPAIR
program.

CHAPTER 36. THE REPAIR COMMAND 36-39

/ \

DATAPOINT DOS. REPAIR

DRIVE NUMBER: a
LOCKOUT CAT: FORMAT LOOKS OK.
DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? #

The screen appears as above when REPAIR is ready to accept
cylinder lockout instructions. The instructions serve as
additional cylinders to be locked out. REPAIR will not normally
allow cylinders which have been previously locked out to be
"unlocked". When REPAIR finishes execution and optionally
rewrites the Lockout CATs, the cylinders locked out will be those
originally locked out plus those specified by the operator in the
following steps.

/
I
I
I
I
I

To lock out cylinders, the operator must enter "Y".

: DATAPOINT DOS. REPAIR
I
I
I
I
I
I
I
I
I
I

I DRIVE NUMBER: a

\

I LOCKOUT CAT: FORMAT LOOKS OK. I

I *** ARE YOU SURE ? *** # I
\--,/

REPAIR will make sure the operator wants to lock out
cylinders before accepting cylinder numbers to be locked out.

36-40 DISK OPERATING SYSTEM

To lock out cylinders, the operator must enter "Y".

/---\

DATA POINT DOS. REPAIR

DRIVE NU~BER: 0
LOCKOUT CAT: FORMAT LOOKS OK.
*** ARE YOU SURE ? *** Y
CYLINDER NUMBER<S> <1-202>: #

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

--/

The screen will appear as above when REPAIR is ready to
accept the first cylinder(s) to be locked out.

If the operator were locking out the cylinders listed above,
he would enter 40-50 and press ENTER.

/
I
I
I
I
I
I
I
I
I
I
I
I
I
I

: DRIVE NUMBER: 0

DATAPOINT DOS. REPAIR
\

: LOCKOUT CAT: FORMAT LOOKS OK. I

I *** ARE YOU SURE ? *** Y I

I CYLINDER NUMBER<S> <1-202>: 40-50 :
: CYLINDER NUMBER<S> <1-202>: # I
\--'/

CHAPTER 36. THE REPAIR COMMAND 36-41

The screen appears as above when REPAIR has accepted the
previous cylinder lock-out and is ready for the next cylinder
number(s).

According to the above sample list, the operator would now
enter 167.

/----------~--
I \
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

: DRIVE NUMBER: 0 :
: LOCKOUT CAT: FORMAT LOOKS OK. :
: *** ARE YOU SURE? *** Y :
: CYLINDER NUMBER<S> <1-202>: 40-50 :
: CYLINDER NUMBER<S> <1-202>: 167 :
I CYLINDER NUMBER<S> <1-202>: , :
\ I --1

The screen appears as above when REPAIR has accepted the
previous lock-out and is ready to accept the next cylinder
number(s).

According to the above list the operator must now enter
200-202.

36-42 DISK OPERATING SYSTEM

1--;
I
I
I
I

I I
I I
I I
I I
I I
I I

I DRIVE NUMBER: a :
I LOCKOUT CAT: FORMAT LOOKS OK. :
I *** ARE YOU SURE ? *** Y :
I CYLINDER NUMBER<S> <1-202>: 40-50 :
I CYLINDER NUMBER<S> <1-202>: 167 :
: CYLINDER NUMBER<S> <1-202>: 200-202 \
: ~YLINDER NUMBER<S> <1-202>: # I

\--1

The screen appears as above when REPAIR has accepted the
previous lock-out and is ready to accept the next cylinder
number(s).

According to the above example the operator has no more
cylinders to lock out. At this point then, the operator would
merely depress the ENTER key to signal REPAIR that no more
cylinders are to be locked out. REPAIR would proceed immediately
to the cluster allocation table and directory check phase.

36.7 CAT errors and. directory read/write errors

This section describes messages displayed by the REPAIR
program when it discovers an error (of any kind) in the CLUSTER
ALLOCATION TABLEs (CATs) or a read or write error in the
directory.

These errors are the first type of error checked for by
REPAIR. A format (logic) error in one or more of the CATs is not
fatal (will not cause REPAIR to abort), but will be noted to the
operator. An uncorrectable read or write error in any of the CATs
or the directory is fatal, because the disk pack is in very

CHAPTER 36. THE REPAIR COMMAND 36-43

serious trouble if hardware errors occur in any of these tables.

REPAIR does not consider a read error in the CAT or DIRECTORY
fatal until either an attempt to clear the error by writing back
to disk has failed or the operator has instructed REPAIR not to
attempt the write. A write error to the CAT or DIRECTORY is
always fatal.

There is a working (MASTER) and a backup (COpy) version of
the Working CAT, th~ Lockout CAT, and the directory.

The examples that follow are given in the sequence of their
potential occurrence in REPAIR execution.

Important notice: Similar sequences are used for errors in
the Lockout CAT and its backup as for the Working CAT and its
backup. In this chapter, only the Working CAT sequence is used as
an example, since both are directly comparable. The messages for
both sequences are largely identical to save space. The user can
tell at any time whether the messages refer to the Working or
Lockout CATs by looking for the header "LOCKOUT CAT:" or "WORKING
CAT:" more or less directly preceding the message.

36.7.1 Cluster allocation table read errors

Note that although this example concerns the CAT MASTER, the
same messages (substituting the word COPY for MASTER) apply to the
CAT COPY.
/ ,
I
I
I
I
I
I

: DRIVE NUMBER: 0

DATAPOINT DOS. REPAIR

: LOCKOUT CAT: FORMAT LOOKS OK.
: DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
: WORKING CAT:
: C.A.T. MASTER READ ERROR
: WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? #

,--
The messages on the last two lines of the screen above will

appear when the REPAIR program has detected a read error in the
CAT MASTER. Notice how in this case, the header "WORKING CAT:"
implies that the read error has occurred in the Working CAT MASTER
as opposed to the Lockout CAT MASTER.

36-44 DISK OPERATING SYSTEM

To have REPAIR attempt to clear the read error enter Y;
otherwise enter N.

/ --,

DRIVE NUMBER: a
LOCKOUT CAT: FORMAT LOOKS OK.
DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
WOR~ING CAT:
C.A.T. MASTER READ ERROR I

WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? Y :
READ ERROR CLEARED. I

,---1
The message on the last line of the screen above will appear

when the operator has replied "Y" to the message above and the
attempt to clear the read error was successful.

I

•

No further operator response is required.
---,

DRIVE NUMBER: 0
LOCKOUT CAT: FORMAT LOOKS OK.
DO YOU WANT TO LOCK OUT ADDITONAL CYLINDERS ? N
WORKING CAT:
C.A.T. MASTER READ ERROR
WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? N
READ ERROR UNCORRECTABLE. I

__ T_H_E,_P_,_~C_K __ I_S __ N_O_T __ F_I_X_AB_L_E ___ . __ 1
The messages on the last two lines of the screen above will

appear if the operator replies "N" to the message above or if the
write to disk did not clear the read error. The REPAIR program
will not accept any further commands. To get any other program
running on the computer the operator must press the RESTART key.

No operator response is required.

CHAPTER 36. THE REPAIR COMMAND 36-45

1
DAl'APOINT DOS. IlEPAIR

\
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DRIVE NUMBER: 0 :
LOCKOUT CAT: FORMAT LOOKS OK. :
DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N :
WORKING CAT: FORMAT LOOKS OK. I
THE C.A.T. MASTER HAS DEVELOPED A READ ERROR :

I THE PACK IS NOT FIXABLE. : \ __ 1

The messages on the last two lines of the screen above will
appear if a read error occurs when REPAIR reads the CAT MASTER for
the second time during the CAT check. This read error is
automatically considered fatal because it is evidence of a
transient hardware error in the CAT.

No operator response is required.

36.7.2 Cluster Allocation Table is destroyed

Note that although this example concerns the CAT MASTER, the
same messages (transposing the words COpy and MASTER) apply to the
CAT COPY.
/ \
I DATAPOINT DOS. REPAIR :
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

: DRIVE NUMBER: 0 :
I LOCKOUT CAT: FORMAT LOOKS OK. :
I DO YOU vlANT TO LOCK OUT ADDITIONAL CYLINDERS ? N I
: WORKING CAT: I
I THE C.A.T. MASTER IS DESTROYED :
: WRITE C.A.T. COpy INTO C.A.T. MASTER? # I
\--1

The messages on the last two lines of the screen above will
appear when the REPAIR program has discovered that the CAT MASTER
is destroyed but the CAT COPY appears to be valid.

To have REPAIR copy the CAT COPY into the CAT MASTER, enter
"Y". Otherwise, enter "N".

36-46 DISK OPERATING SYSTEM

/

DRIVE NUMBER: 0
LOCKOUT CAT: FORMAT LOOKS OK.
DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
WDRKING CAT:

: THE C.A.T. MASTER IS DESTROYED
: WRITE C.A.T. COPY INTO C.A.T. MASTER? Y
: DONE.

,--
The message on the last line of the

when the operator has replied "I" to the
write to the CAT MASTER was successful.
check the directory

No operator response required.

/

DRIVE NUMBER: 0
LOCKOUT CAT: FORMAT LOOKS OK.

screen above will appear
message above and the
REPAIR will proceed to

DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
WORKING CAT:
THE C.A.T. MASTER IS DESTROYED
WRITE C.A.T. COPY INTO C.A.T. MASTER? Y
DISK WRITE ERROR FOR C.A.T. MASTER.

I THE PACK IS NOT FIXABLE.

,--
The messages on the last two lines of the screen above will

appear if a write error occurs when REPAIR tries to write to the
CAT MASTER. The REPAIR program will not accept any further
commands. To get any other program running on the computer the
operator must press the RESTART key.

No operator response is required.

CHAPTER 36. THE REPAIR COMMAND 36-47

\

\

I

DRIVE NUHBER: 0
LOCKOUT CAT: FORMAT LOOKS OK.
DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
WORKING CAT:
THE C.A.T. MASTER IS DESTROYED
THE C.A.T. MASTER & COpy ARE DESTROYED
THE C.A.T. MASTER & COPY WILL HAVE TO BE RECONSTRUCTED FROM THE R.I.B. 'S

\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I __ 1

The messages on the last three lines of the screen above will
appear if REPAIR discovers that both copies of the CAT are
destroyed. After the messages are displayed REPAIR will proceed
to check the directory At the conlusion of REPAIR simply write the
new CAT to disk to correct the error.

No operator response is required.

36.7.3 Cluster Allocation Table Copies Do Not Match

I \
I DATAPOINT DOS. REPAIR I I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

I DRIVE NUMBER: 0 I
I LOCKOUT CAT: FORMAT LOOKS OK. I
I DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N I
I WORKING CAT: I
I C.A.T. MASTER & COPY DO NOT MATCH I

I THE C.A.T. MASTER & COpy WILL HAVE TO BE RECONSTRUCTED FROM THE R.I.B. 'S :

\--1
The messages on the last two lines of the screen will appear

when REPAIR has discovered that the CAT MASTER and COPY versions
do not agree with each other. Since it is not possible for REPAIR
to choose which version is correct at this point, it will proceed
to check the DIRECTORY. At the conclusion of REPAIR, simply write
the new CAT to disk to correct the error.

No operator response is required.

36-48 DISK OPERATING SYSTEM

36.7.4 Directory Read Errors

. Note that although this example concerns the directory
MASTER, the same messages (transposing the words COPY and MASTER)
apply to the directory COPY.

I
DATAPOINT DOS. REPAIR

DRIVE NUMBER: 0
LOCKOUT CAT: FORMAT LOOKS OK.
DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS
WORKING CAT: FORMAT LOOKS OK.
DIRECTORY PAGE MASTER READ ERROR
WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? #

?

\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

N I
I
I
I
I
I
I
I

I

The messages on the last two lines of the screen above will
appear when REPAIR has detected a read error in the directory
MASTER.

To have REPAIR attempt to clear the read error enter "Y",
otherwise enter "N".

I \
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

: DRIVE NUMBER: 0 :
: LOCKOUT CAT: FORMAT· LOOKS OK. :
: DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N :
I WORKING CAT: FORMAT LOOKS OK. :
: DIRECTORY PAGE MASTER READ ERROR :
I WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? Y I
: WRITE COPY PAGE TO MASTER PAGE ? # : \ __ --------------1

The message on the last line of the screen above will appear
if the operator has replied "Y" to the message above.

To have REPAIR copy the directory COPY page to the directory
MASTER page enter "Y", otherwise enter "N". If "N" is entered the
directory check will continue.

CHAPTER 36. THE REPAIR COMMAND 36-49

I ,
1 1
1 1
1 ,I
1 1
1 1
1 1
1 1
1 1

I DRIVE NUMBER: 0 I
I LOCKOUT CAT: FORMAT LOOKS OK. :
I DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N I
I WORKING CAT: FORMAT LOOKS OK. I
: DIRECTORY PAGE MASTER READ ERROR i
I WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? Y i
: WRITE COpy PAGE TO MASTER PAGE ? Y i
I DONE. I , __ 1

The message on the last line of the screen above will appear
when the write to the directory MASTER has been successful. The
directory check will continue.

I

No further operator response is required.

DRIVE NUMBER: 0
LOCKOUT CAT: FORMAT LOOKS OK.
DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
WORKING CAT: FORMAT LOOKS OK.
DIRECTORY PAGE MASTER READ ERROR
WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? Y
WRITE COpy PAGE TO MASTER PAGE ? Y
DIRECTORY PAGE MASTER WRITE ERROR
THE PACK IS NOT FIXABLE.

\

The messages on the last two lines of the screen above will
appear if the operator replied "Y" to the message above and REPAIR
detected a write error when it attempted to write to the directory
MASTER. The REPAIR program will not accept any further commands.
To get ariother program running on the computer the operator must
press the RESTART key.

No operator response is required.

36-50 DISK OPERATING SYSTEM

/ ,

DRIVE NUMBER: 0 I
~OCKOUT CAT: FORMAT LOOKS OK. I
DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N I
WORKING CAT: FORMAT LOOKS OK. I
DIRECTORY PAGS MASTER READ ERROR I
W~ITE TO DISK TO ATTEMPT TO CLEAR ERROR ? Y I
~~ITE COPY PAGE TO MASTER PAGE? Y I

I DIRECTORY PAGE MASTER READ ERROR I
I THE PACK IS NOT FIXABLE. I
,--,/

The messages of the last two lines of the screen above will
appear if the operator replied "Y" to the message above and REPAIR
detected a read error when it attempted to re-read the directory
MASTER page it had just written.

No operator response is required.

/

DRIVE NU~BER: 0
: LOCKOUT CAT: FORMAT LOOKS OK.
: DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
: WORKING CAT: FORMAT LOOKS OK.
I tIRECTORY PAGE MASTER READ ERROR

\

: WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? Y I
: WRITE COpy PAGE TO MASTER PAGE ? Y :
I DIRECTORY COPY PAGE HAS DEVELOPED A READ ERROR :
: THE PACK IS NOT FIXABLE. :

,--/
The messages on the last two lines of the screen above will

appear if the operator replied "Y" to the message above and REPAIR
detected a read error when it attempted to re-read the directory
COpy to compare it against the directory MASTER page just written
and re-read.

No operator response is required.

CHAPTER 36. THE REPAIR COMMAND 36-51

/

DRIVE NUt1BER: 0
LOCKOUT CAT: FORMAT LOOKS OK.
DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS
WORKING CAT: FORMAT LOOKS OK.
DIRECTORY PAGE MASTER READ ERROR

I WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? Y
I WRITE COPY PAGE TO MASTER PAGE ? Y
I DIRECTORY PAGE MASTER & COpy DO NOT MATCH
I THE PACK IS NOT FIXABLE.

? N

,--
The messages on the last two lines of the screen above will

appear if the operator replied "Y" to the message above but the
directory page MASTER and COpy did not match after the page copy
had been made. This error is automatically considered fatal
because it is evidence of a hardware error in the directory.

/
I
I
I
I
I
I
I
I

No operator response is required.

I DRIVE NUMBER: 0
I LOCKOUT CAT: FORMAT LOOKS OK.
I DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
I WORKING CAT: FORMAT LOOKS OK.
I DIRECTORY PAGE MASTER READ ERROR
: WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? Y
I DIRECTORY PAGE COPY ALSO GIVES READ ERROR
I WRITE TO DiSK TO ATTEMPT TO CLEAR ERROR ? #

,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

/

,

,--
The messages on the last two lines of the screen above will

appear if the operator replies "Y" to the message above and REPAIR
detects a read error in the directory COPY page.

To have REPAIR attempt to clear the read error enter "Y",
otherwise enter "N". If the write is successful REPAIR will
continue with the directory check.

36-52 DISK OPERATING SYSTEM

I ---\
t
t
t
I

: DRIVE NUMBER: 0
: LOCKOUT CAT: FORMAT LOOKS OK.
I DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
I WORKING CAT: FORMAT LOOKS OK.
I DIRECTORY PAGE MASTER READ ERROR
I WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? Y
I DIRECTORY PAGE COPY READ ERROR
I WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? Y
I READ ERROR UNCORRECTABLE.
I THE PACK IS NOT FIXABLE. I

\,---
The messages on the last two li~es of the screen above will

appear if the operator replied "N" ~o the message above or if the
write to disk did not clear the read error.

No operator response is required.

CHAPTER 36. THE REPAIR COMMAND 36-53

I

CHAPTER 37. REWIND COMMAND

REWIND - Rewind the cassette tape.

REWIND [REAR or DECK1]

The cassette in the front deck is rewound unless "REAR" or
"DECK1" is specified. If no cassette is in place in the deck, the
rewind will proceed but only after a cassette is put into place.
The cassette can be fully wound onto the clear leader at the very
end of the tape, since the rewind command starts by slewing the
tape backwards for a few seconds first. This both takes up any
slack that may be present in the cassette before the high-speed
rewind starts, and also ensures that the tape is not on the clear
leader when the actual rewind begins.

CHAPTER 37. REWIND COMMAND 37-1

CHAPTER 38. SAPP COMMAND

SAPP - Append two source files creating a third

SAPP <file spec>,[<file spec>J,<file spec>

The SAPP command appends the second source file after the
first and puts the result into the third file. If extensions are
not supplied, TXT is assumed. The first two files must exist. If
the third file does not already exist, a new file will be created.
The first file's end of file record is discarded and the copy is
terminated by the end of file mark in the second file.

Omitting the second file specification causes the first file
to be copied into the third file. Note that neither the first or
second file is changed.

The first and third file specifications are required. If
either is omitted the message

NAME REQUIRED

will be displayed.

The second and third file specifications must not be the
same.

CHAPTER 38. SAPP COMMAND 38-1

CHAPTER 39. SORT COMMAND

39.1 Introduction

The Disk Operating System SORT enables any Datapoint Disk
user to initiate file sorts directly from the keyboard.

Using a multi-train radix sort technique, the Datapoint
processor achieves speeds comparable with much larger systems.
The list of options also compares favorably with much more
extensive systems. Nevertheless, since it uses the full dynamic
nature of the Disk Operating System, it is extremely easy to
operate. (Users who have spent several hours figuring out how to
set up the myriad of SORT work datasets required, even for the
simplest sorts, by other sort packages know what we're talking
about.)

For more sophisticated uses, SORT may be called from other
programs through CHAIN. Using CHAIN also enables complicated sort
options to be reduced to a single file name then callable either
from the keyboard or another program. CHAIN also extends the
SORT package to operate as a merge, as well.

39.2 General Information

SORT attempts to optimize its speed by placing its work files
on a drive separate from the input or output files. Unless
otherwise directed, SORT opens its work files on the
highest-numered disk on-line, excluding the disk containing the
input file. Both SORT work files are always placed on the same
drive. If SORT selects a drive with insufficient space, it will
abort. It may than be necessary to drive-direct its work files.

CHAPTER 39. SORT COMMAND 39-1

39.3 Fundamental SORT Concepts

39.3.1 File Formats

All Datapoint systems use a universal text file structure
recognized by Databus, Datashare, RPG II, Basic, Scribe, Editor,
Assembler, Terminal emulators, etc. Therefore,any text file
generated by or for any of the above, may be sorted. The file to
be sorted must be on disk, however.

There are two sub-formats a Datapoint file can have: Blocked
or Sequential. Blocked files are required to have a single
'string' or 'record' of data per physical disk record. The
maximum record size for blocked records is 249 bytes (plus
end-of-record and end-of-sector control bytes for a total of 251
bytes). Sequential records have no fixed relationship to physical
disk records and are written as densely as possible in the given
file space. Nonetheless, blocked files can be read sequentially
in the identical way that sequential files are read. In fact,
both types of files, when read sequentially, are
indistinguishable. Blocked files are used for achieving random
access to records. They generally require more disk space than
sequential files for the same amount of data.

Space compression implies that the logical position and the
physical position of a character in a record may differ. SORT
will always expand the spaces to determine the logical position of
a character.

When sorting, consider that the result of the sort is not a
restructuring of the original file. It is a NEW file which is a
restructured COPY of the original file. The original file is
never changed.

Therefore, SORT produces a file which is a sorted version of
the original. This gives the user the added opportunity of
specifying the type of file to be output regardless of the input
file format (with one restriction - see the section on
Input/Output File Format Options).

39-2 DISK OPERATING SYSTEM

39.3.2 The Key Options

The KEY of a sort is the FIELD or that part of the record
which is to ORDER the sequence of records. For instance, it can
be a person's name, state, employee number, amount in debt or any
aspect of the data base identifiable by a fixed position in the
record, based upon the column count from the beginning of the
record.

Consider the following record (column count scale below for
reference only):

Mule, Francis A. 242219 123 BARN SAN ANTONIO TX
123456789012345678901234567890123456789012345678901234567890

The name begins in column 1 and goes to 22. The employee number
spans columns 24-29. The street address is 31-42. The city is
43-58. The State is 59-60

If each person had a record in the file exactly in the above
format, SORT could order the sequence of records in the file by
any of the above fields. For instance, to get an alphabetical
list of the records by name, the key would be 1 to 22 (hereafter
referred to as 1-22). The key for sequencing the file in order of
employee number would be 24-29. The key for ordering the records
by state then city and then employee number would be
59-60,43-58,24-29.

Any portion of the record can be used as a key. Care must be
taken when selecting a key to include no more characters than
necessary, since each character added to the key slows down the
sort.

The key specified for SORT is concatenated to a single
string, then sorted character-by-character, with the left-most
character being of most significance. It is very important to
realize the effect of a right-to-left character sort. To appear
in the "right" sequence numeric fields must be right-justified,
character fields must be left-justified. If signed numeric fields
are sorted, the sign should be moved to the left-most position and
the magnitude right-justified; otherwise the resulting sorted
sequence will contain positive and negative values in no
discernible order, since the "-" and "+" signs are just another
character to SORT. A full explanation of character sort concepts
is beyond the scope of this manual. Interested users should
consult an appropriate information science textbook.

CHAPTER 39. SORT COMMAND 39-3

39.3.3 How to Sort a File

Sorting a file is done from the keyboard of the DOS. All the
operator must know is the name of the file to be sorted, the name
desired for the sorted output file, and the columns containing the
key.

For instance, the keyboard issued command for the above
example to sort on the name field (1-22), would be:

SORT EMPLFILE,SORTFILE;1-22

This is assuming that the name of that file was EMPLFILE. It
is also the operator's decision as to what the resultant sorted
file is called, as the command could have easily been:

SORT EMPLFILE,EMPSORT;1-22

as well. The second file named is where the resultant sorted
output will be placed.

More complicated keys may be stated as well and the command
to sort by state and then name would be:

SORT EMPLFILE,SORTFILE;59-60,1-22

That is all there is to simplified sorting.

Testing SORT for yourself is simple. Most systems have a
source code file for a Databus or Assembly language program on the
disk. Such programs can be sorted by op-code and provide an
interesting analysis of the usage of each instruction type:

SORT INFILE,OUTFILE;9-12

39.4 The Other Options

39.4.1 Generalized Command Statement Format

The following is the generalized statement format for the
Datapoint DOS SORT:

SORT IN,OUT[,:DRk][,SEQ][;[[F][O][R][H][GNNNTC][N]][K1] ... [,On][,Kn]]

Information contained within a pair of square brackets

39-4 DISK OPERATING SYSTEM

[] is optional; information within brackets is
order-dependent. Commas may be used to delimit parameters.
(NOTE that commas MUST be used to delimit sort-key groups.)
The first four fields (those ahead of the semi-colon) are
considered to be file specification fields. The fields
following the semicolon are considered to be sort key
parameters. Default conditions are listed below. Typical
statements obeying this format are:

(1) SORT INFILE,OUTFILE
(2) SORT INFILE,OUTFILEj1-3,7-20
(3) SORT INFILE,OUTFILE;ID1-3
(4) SORT INFILE,OUTFILEjIDL7-20
(5) SORT INFILE,OUTFILEjLH11-20
(6) SORT INFILE,OUTFILE, ,SEQFILE
(7) SORT INFILE,OUTFILE, :DRO,SEQFILE/SEQ:DR1

All the above statements will invoke a sort. Each will
provide different results. However, notice that in (1)
there are no other parameters than the file specifiers.
That is because all the specifiable parameters have a
default value in case there is no specification for it.

The following list defines the parameters which can be
specified:

IN This specifies the input file. This file
must exist on disk.

OUT This specifies the output file. This
specification is optional IF AND ONLY IF the
'L' AND 'H' options are used. If an output
file is specified AND no' disk dri ve is
specified AND the file exists on a drive
on-line to the system then the output file
will over-write the existing file. If an
output file is specified AND no disk drive
is specified AND no file of that name exists
on a drive on-line to the system THEN a file
of the given name will be created on the
same drive as the input file.

:DRk This specifies the drive for the sort key
file. This is only a working scratch file
needed during the sort. SORT will attempt
to pick the optimum drive on which to put
the work file on a multi-drive system.

CHAPTER 39. SORT COMMAND 39-5

Experience or special considerations may
cause the user to want to specify a work
drive.

SEQ .•........... NON-ASCII COLLATING SEQUENCE FILE
This specifies the file which contains the
collating sequence to be used. If omitted,
ASCII will be assumed.

F ••.••.••••••••• FORMAT.
This parameter specifies the output file
format: blocked or space compressed
(standard editor output format). If the user
specifies I (and the input file is also
blocked), then the output file will be left
blocked.

Without typing the 'I', the output file will
be record compressed no matter what the
input file. If and only if the input file
is a blocked file, you may include the 'I'
parameter and cause the output file to be
blocked.

0 •..•.•.•.•••..• ORDER.
This parameter specifies the output file
collating sequence: Ascending or
Descending. The actual character entered is
'A' or 'D'. The default value is 'A'.

Without typing the 'D', the collating
sequence order is considered ASCENDING.
Including the 'D' parameter will cause the
collating sequence to operate in DESCENDING
order. Note that if some keys are to be
sorted in ascending order and other keys in
descending order, the "On" specification
described below should precede each key
whose order differs from the order" of the
key preceeding it. However, if all keys are
to be ordered in the same sequence, this
parameter need only be specified once.

R .•............• RECORD FORMAT.
This parameter specifies a special output
record format: Limited output file format
or Tag file or Key tag file output. The
actual character entered is 'L' or 'T' or

39-6 DISK OPERATING SYSTEM

'K'. The default value is no special output
record format; that is, neither 'L' nor 'T'
nor 'K', so that the records in the output
file will be exact copies (FULL IMAGE
RECORDS) of the records in the input file.

Normally the sort transfers all of the
records of the input file to the output
file. It is possible, not only to transfer
part of each record, but to select only
certain records or to include constant
literals in each record as well. Including
the 'L' parameter in the list of parameters
will cause another question to be asked
wherein you may specify the limitations and
constants. See the section on Limited
Output Format Option.

By entering the 'T' character an output file
is generated which consists only of binary
record number and buffer byte pointers to
the input file records. See the section on
Tag File Output Format Option.

By entering the 'K' character a standard
text format output file is generated which
consists of records containing a 5 byte user
logical record number, a 3 byte buffer
address, and the key. These records are
space-compressed and have trailing spaces
truncated. See the section on Key tag File
Output Format Option.

H .•.•.•....... .. HARDCOPY OUTPUT.
This parameter specifies that the output of
the SORT will be listed on a printer. The
actual character entered is 'H'. The
default value is no hardcopy output.

Without typing the 'H' no printing will
occur and SORT will require that an output
file be named. If the 'H' parameter is
given and an output file is named then SORT
will list the output to a printer and will
generate an output file. If the 'H'
parameter is given and no output file is
named then SORT will list the output to a
printer and no disk file output will be

CHAPTER 39. SORT COMMAND 39-7

generated.

If the 'H' parameter is given then the 'L'
parameter must precede the 'H' parameter.

SORT will print to a local printer or a
servo printer. See the section on Hardcopy
Output Option.

G GROUP INDICATOR

39-8

This parameter specifies that the input file
consists of Primary and Secondary records
and specifies which Group is to be sorted.
The actual character entered is 'P' for
primary or'S' for secondary. There is no
default value.

If the 'G' option is entered then the NNNTC
options must also be entered.

In a file with Primary and Secondary
records, a string of records with a Primary
record as the first record and Secondary
records following it is considered one
block, or group, of records.

When the file is sorted on Primary records
the output file has the blocks of records
re-ordered so that the Primary records are
in the sorted sequence; no change is made
in the sequence of the Sec6ndary records
following each Primary record. When the file
is sorted on Secondary records and the first
key specified is in ascending sequence, the
output file has the blocks of records in the
same order as in the input file, but the
Secondary records within each block are in
the sorted sequences.

When the file is sorted on Secondary records
and the first key specified is in descending
sequence, the output file has the blocks of
records in reversed order as the input file,
but the Secondary records within each block
are in the sorted sequence.

SORT has no provision for the sorting of
Primary and Secondary records in the same

DISK OPERATING SYSTEM

SORT run.

NNN NUMERIC position of Primary/Secondary flag.
This parameter specifies the character
position for the character (the 'c'
parameter) indicating whether the record is
a Primary or Secondary record. The number
must be specified if the option is taken and
must fall in the range 1 to 249.

T •.............. TyPE of evaluation.
This parameter specifies equivalence or
inequivalence of the group indicator
character; that is, whether the character in
the record will be equal to or not equal to
the character specified. The actual
character entered is '=' for equal or '#'
for not equal. There is no default
character, '=' or '#' must be given if the
option is taken.

If '=' is given then if the character in the
NNNth position of an input file record is
EQUAL to the group indicator character -
indicated by 'c' below -- then the record is
a member of the specified sort group -
indicated by 'G' above. Otherwise, it is
not a member of the specified group.

C CHARACTER, group indicator
This parameter specifies the actual test
character for determination of a record's
membership in the sort group. The actual
character entered is any member of the
available character set -- this means any
combination of eight bits -- except 015.
There is no default character: the character
immediately following the 'T' parameter is
taken to be the 'c' parameter -- except a
015.

N This parameter specifies no space
compression on output. This applies to Full
Image and Limited Output files. It does not
apply for blocked or Tag files. If the
input file is space-compressed, the 'N'
parameter will cause the output file to be
non-compressed. If the input file is not

CHAPTER 39. SORT COMMAND 39-9

space-compressed, the output file will not
be compressed, regardless of the N
parameter.

K 1 SSS-EEE
This is the first sort key specification. If
no key is specified, the SORT will assume
1-10,i.e. the first ten characters of the
record.
SSS is the starting key position.
EEE is the ending key position. The key is
limited to 118 characters and must be
contained within the first 249 characters of
the record.

On This specifies the order for the nth key
(ascending and descending are indicated by
'A' or 'D'). If omitted the order used on
the previous key is assumed.

Kn SSS-EEE
The nth sort key specification. The maximum
number of keys is that which can be typed
without exceeding the input line.

39.4.2 Keys-overlapping and in Backwards Order

The key specification need not be only forward. A
specification of 17-12 will cause the 6 delimited characters to be
a key but in the order of 17,16,15,14,13,12. This is extremely
valuable, clearly, in data which has the most significant digit or
character last.

Key specifications may also be overlapping: 1-20,30-15
overlaps 15 to 20. When this occurs, the system will optimize the
sort and save time over re-sorting on those columns again.

39.4.3 Collating Sequence File

By specifying a sequence file, the user may substitute any
collating sequence for the standard ASCII character set. The
sequence file may have any name, but the extension must /SEQ (SEQ
is the default extension). If the disk drive number on which the
file resides is omitted, SORT defaults to the same drive from
which the SORT itself was loaded. This table may be supplied by
the user but must meet certain requirements to be loaded:

39-10 DISK OPERATING SYSTEM

1. It must be an absolute object file.
2. It must begin loading at location 027400.
3. The first eleven bytes must contain the file name and the

extension must be SEQ. (Full 8 - character file name with
trailing blanks, then extension.)

4. The table itself must begin loading at location 027400 and
occupy 256 bytes (overstoring the file name described in
3). For instance, the source for the EBCDIC sequence file
begins:

SET 027400
DC 'EBCDIC SEQ'
SET 027400
DC 0,1,2,3,4,5,6,7,

5. If the file is not found on the specified disk drive the
following message is displayed:

SEQUENCE FILE NOT FOUND

6. If the file is found but is not an absolute object file
the following message is displayed:

SEQUENCE FILE FORMAT ERROR A

7. If the file format appears valid, the file will be loaded
using DOS routine LOADX$. LOADX$ will return an error
code if the load is unsuccessful. The following display
will notify the user of the error:

SEQUENCE FILE FORMAT ERROR n

where n=O if file does not exist
1 if disk drive is off-line
2 if directory parity fault
3 if RIB parity fault
4 if file parity fault
5 if off end of physical file
6 if record of illegal format

CHAPTER 39. SORT COMMAND 39-11

39.4.4 Ascending and Descending sequences

Changing the collating sequence from ascending to descending
is the same as 'reversing' the file, or placing the last first,
etc. Sorting a telephone directory in ascending sequence on name
produces the familiar order. Should it be sorted in descending
sequence, then Mr. Zyk would be first and Mr. Aardvark would be
last. The order of collation, when alphabetic, numeric, and
punctuation characters all can occur in a column together, follows
the character set order. The sequence may be specified for each
sort key. However, it need not be specified if it is the same as
the key which preceeds it. Therefore, it is possible to sort
portions of the key in ascending order and portions in descending
order.

39.4.5 Input/output File Format Options

SORT accesses each file sequentially. Due to the techniques
used in the Datapoint standard file structure, the sequential
reading technique will provide SORT with all of the records in the
file whether the file was originally blocked or sequential.
Therefore, the file format options only allow specification of the
output file's format.

If the input file is blocked, that is one logical record or
string per physical disk record, then you have a choice Df output
formats (F option). If 'I' is chosen, that is blocked, then each
output disk record will contain an exact copy of the appropriate
input file record. If 'I' is not specified, then the input file,
reordered, will be reblocked and appear, generally much more
compactly, in the output file in record-compressed sequential
format.

If the input file is sequential in its original format, then
there is only one choice for the output format; the output file
format for a sort on an input file which is sequential must be
sequential.

39.4.6 Limited output format option

In many cases, especially when making reports, directories
etc. from the data base, it isn't necessary to have the entire
record transferred from the input file to the output file during a
sort. For instance, an entire personnel data base can be sorted
by name to produce an internal company telephone directory.
However, it is obvious that all that is needed is the name and

39-12. DISK OPERATING SYSTEM

telephone number, NOT all the other payroll information.
Therefore, SORT permits transferring only that part of the data
base desired.

The following is the generalized statement format for the
limited output specification which is entered as a second line of
parameters:

«SSS[-EEE]~*~'QQQ')[/(P~NNNTC)]>[,<DUPLICATE OF PRECEEDING>] ...

Where different items within parentheses are separated
by A. Only one item within a pair of parentheses may be
specified. Items within square brackets [] are optional and
items within corner brackets <> may be repeated and must be
separated by commas.

The following list defines the parameters which can be
specified:

SSS STARTING position within input record.
EEE ENDING position within input record.

These parameters specify the character
positions within the input record to be
copied to the output record. The EEE
specification is optional; if it is not
specified then only one character, the
character at SSS, will be copied from the
input record to the output record. The SSS
and EEE options must fall in the range 1 to
249.

* •............. ASCII TAG output.
This parameter specifies that an ASCII
pointer to the input record appear in the
output record. The ASCII pointer points to
the input file logical record number and the
byte in that physical disk record containing
the first byte of the input file logical
record. If the 'I' parameter was specified
in the SORT options then, since the byte in
the physical disk record containing the first
byte of the input file logical record will
always be '1', the '1' will not appear. The
ASCII pointer is a DATASHARE compatible,
leading-zero and space-compressed ASCII
number. The number of digits for the logical
record number pointer is five; the largest
number that can be represented is 65,535.

CHAPTER 39. SORT COMMAND 39-13

The number of digits for the byte pointer (if
it is generated; that is, the 'I' parameter
was not specified) is three; the largest
number that can be represented is 250.

QQQ QUOTED character string.
This parameter specifies an actual string of
quoted characters that is to be copied into
the output record. The quoting symbol is the
single quote 'mark. The string may include
any characters except the ' mark itself and
015, and must be less than 90 characters
long.

P PRIMARY record to be source.
This parameter specifies that the information
specified by the prior set of START/END
positions is to be extracted from the primary
record for the current record block, rather
than the present (secondary) record. This
parameter has no effect when an output record
is being generated from a primary record.

NNN NUMERIC position of evaluation character.
This parameter specifies the character
position for the character (the 'c' parameter
below) indicating whether the information
specified by the prior set of START/END
positions is to be copied from the input
record to the output record. The number must
fall in the range 1 to 249.

T•.. TYPE of evaluation.
This parameter specifies the equivalence or
inequivalence of the evaluation character;
that is, whether the character in the input
record should be EQUAL to or NOT EQUAL to the
evaluation charater. The actual character
entered is '=' for equal or '#' for not
equal. If the evaluation is satisfied, then
the information specified by the prior set of
START/END positions will be copied to the
output record.

C CHARACTER, record evaluation.

39-14

This parameter specifies the actual test
character for record evaluation. The actual
character entered is any character except

DISK OPERATING SYSTEM

015.

In the same manner that the key of the records is
specified by fixed column number, i.e. 1-10 for the first
ten characters, the limited output feature specifies that
part of the records to be transferred. Should the response
1-10 be given to the limited output format request, only the
first ten characters of each record will be transferred to
the output file. The limited output format specifier
operates in the same manner as the specification of multiple
discontiguous sort key fields. For instance, 1-10,50-70
would transfer thirty-one characters from each record of the
input file to the output file. The eleventh character in
the output record would be the fiftieth character of the
input record, etc.

To invoke the limited output format option, the
operator includes the 'L' parameter in the specifier list.
If and only if the L is specified during the SORT call, will
there be a second question asked of the operator on the next
line:

LIMITED OUTPUT FILE FORMAT:

This question requires at least one non-trivial field
specification or constant (see next paragraph). The number
of field and constant specifications is only limited by that
which can fit on the keyed in line.

To permit even more utility in report generation, SORT
allows inclusion of constants in the output record that
didn't occur in the input record. For instance, assume that
the personnel data base was a full record of about 240
characters and that the employee's name appears in columns
80 to 110 and his telephone number was in columns 171 to
180. To make a telephone directory in alphabetical order,
one could answer the following to the limited file output
format request:

80-110,' - ',171-180

Note that this would put out the name followed by one
space, a hyphen, one more space and the number. Any number
of input file fields and constants can be placed in the
output file up to the limit of the line on which the
specification is typed.

Often not every record of the input file is needed in

CHAPTER 39. SORT COMMAND 39-15

the output file. Limited output allows selection of records
from the input file, based on character evaluation on one
character position. For example, if a primary/secondary
file is being sorted and only the primary records are
desired in the output file, the command could appear as:

SORT INFILE,OUTFILE;LP1=*,2-10
LIMITED OUTPUT FILE FORMAT:
1-85/1=*

Columns 1-85 of the input record will be written to the
output file if column 1 is an *.

Limited output can be used to make more complex
selections. If it is desired to output records containing a
o in column 5 OR a 1 in column 6, the command would be:

SORT INFILE,OUTFILE;L5-8,12-15
LIMITED OUTPUT FILE FORMAT:
1-85/5=0,1-85/6=1

To output records containing a 0 in column 5 AND a 1 in
column 6 would require two SORTs, the first using a limited
output to test column 5 and using only a 1-character key, to
make the SORT as fast as possible. The second SORT would
use a limited output testing column 6 and would be given a
sort key to correctly order the output file.

There is no relationship between the primary /
secondary specification on the command line and the
conditional output specification on the limited output
format line.

Also note that the output file requires proportionally
less room than the input file when limi ted. Oft en this fact
can be put to use when the disk file space is nearly
exhausted and a sort is required.

39.4.7 TAG file output format option

For some applications it is useful to have a data file sorted
into several different sequences. However, to have several copies
of a file on disk merely to have it in different sequences
consumes a lot of disk space, and indeed if the file is a very
large file many copies of it may not fit onto one or even four
di sk packs.

39-16 DISK OPERATING SYSTEM

This problem could be avoided if there were a way to index
into the one main file in any of several different sequences. The
index pointers could exist as a file, and the index entry for each
record in the main file would only have to be three bytes long -
two bytes for the LRN (Logical Record Number) and one byte for the
BUFPTR (Buffer Pointer -- a pointer to the beginning of the actual
desired record within the disk physical buffer).

SORT provides for the generation of such an indexing file, a
TAG file, by the 'T' variation of the 'R' option. A TAG file may
be generated for either a sequential or blocked file, and will
have the same format for either file. The format of a TAG file is
simple:

1. For each record in the input file, the TAG file will have a
three byte binary pointer to the first byte of the record.

2. The format of the pointer is:
Byte 1: MSPLRN (Most Significant Portion of LRN),
Byte 2: LSPLRN (Least Significant Portion of LRN),
Byte 3: BUFPTR (Buffer Pointer).

3. The three-byte binary pointers are blocked 83 to a physical
disk record.

4. The Physical-End-Of-Record mark is an 003 and the rest ODD's.

5. The End-Of-File mark is: beginning at the first byte in the
physical record, six ODD's, one 003, and the rest ODD's.

TAG files may be used by assembly language programs or by RPG
II (as Record Address files).

For users writing their own Assembly language code to use a
TAG file, it is important to know that the MSPLRN and LSPLRN are
together a 16-bit binary pointer to the DOS LOGICAL RECORD NUMBER
of the input file, as opposed to the USER LOGICAL RECORD NUMBER.
The difference is this: The DOS LOGICAL RECORD NUMBER of a file
points to the actual Nth record (starting with zero, the primary
RIB) in the file, whereas the USER LOGICAL RECORD NUMBER of a file
points to the Nth DATA RECORD (starting with the zeroth data
record) in the file. Thus a DOS LRN of zero points to the very
first record of the file, which is the master copy of the RIB, a
DOS LRN of one points to the second record of the file which is
the RIB copy, a DOS LRN of two points to the third record of the
file (which is the FIRST DATA RECORD of the file and the USER
LOGICAL RECORD NUMBER zero), and so on. The LRN given in the TAG
file can NOT be used with the POSIT$ routine unless it is biased

CHAPTER 39. SORT COMMAND 39-17

by -2. It is much easier to simply place the LRN from the TAG
file directly into the LOGICAL FILE TABLE ENTRY for the file that
is indexed.

The case with the BUFFER POINTER byte is similar to the LRN
pointer bytes. The BUFFER POINTER byte from the tag file is the
DOS BUFFER POINTER as opposed to the USER BUFFER POINTER. The
difference is this: the DOS BUFFER POINTER points to the actual
Nth byte of a disk buffer (starting with zero), whereas the USER
BUFFER POINTER points to the Nth DATA BYTE in the disk buffer; the
beginning (zeroth) DATA BYTE in the buffer is the fourth byte in
the buffer; the first three bytes are reserved for the DOS. Thus,
a DOS BUFPTR of zero points to the very first byte in the buffer,
which is the PFN (Physical File Number) of the file, a DOS BUFPTR
of one points to the second byte in the buffer, which is the DOS
LSPLRN, a DOS BUFPTR of two points to the third byte in the
buffer, which is the DOS MSPLRN, a DOS BUFPTR of three points to
the fourth byte of the buffer (which is the very first DATA BYTE
in the buffer), and so on. The BUFPTR given in the TAG file can
NOT be used with the GETR$ or PUTR$ routines unless it is biased
by -3. It is much easier to simply place the BUFPTR from the TAG
file directly into the LOGICAL FILE TABLE ENTRY for the file that
is indexed.

If the TAG file option is specified then the LIMITED OUTPUT
FILE FORMAT or the HARDCOPY OUTPUT can NOT be specified.

If a TAG file is generated when the 'P' (PRIMARY SORT) option
is specified then TAG file pointers will be generated only to the
PRIMARY records in the input file.

If a TAG file is generated when the'S' (SECONDARY SORT)
option is specified then TAG file pointers will be generated that
point to each PRIMARY record of the input file (in their original
sequence) each primary tag being followed by pointers to the
SECONDARY records in the record block in their sorted sequence.

When a TAG file is generated for 'P' or'S' sorts, no
indication is given in the TAG file pointer as to whether the
pointer points to a primary or a secondary record; it is up to the
user's program to check the records in the indexed file to
determine when a record block begins or ends.

39-18 DISK OPERATING SYSTEM

39.4.8 KEYTAG File Output Format Option

Requesting a Key tag file output will cause a file (default
extension "TXT") to be created. This GEDIT- compatible text file
contains the record pointers and the key. The record pointers
(first 8 bytes of the rcord) consist of a 5 byte logical record
number (range 0 to 65,535) and a 3 byte buffer address. The
~cord number is the user logical record number, that is,-zero
po~ntst6.thefrrst -data sector. Therefore, the user logical
record number, converted to bInary, may be used with the POSIT$
routine. The buffer address is the buffer pointer, that is, one
points to the first data byte in a sector. It may be biased by 2
and placed directly into the Logical File Table, or if biased by
-1, used by the GETR$ routine. This Key tag file output is the
Key tag file used by INDEX. .

If a sequence file (e.g., EBCDIC/SEQ) is used, the key
produced by this option will be translated to that sequence. .If
the .un~tra.nslated)eey ;is desired , a Key tag file may be created
(slower) by. reque.sting ASCII TAG output from the Limited Output
F~rma_t.'-9pt!9JT~: "

39.4.9 HARDCOPY output option

Many times it is desired to have a hardcopy (printed) output
from a SORT instead of or in addition to the creation of a disk
output file. This can be easily accomplished with SORT by
specifying the 'H' (HARDCOPY) option along with the 'L' (LIMITED
OUTPUT STRING) option. The 'H' option is essentially an expansion
of the 'L' option bec~use disk data files are almost never
suitable for full image output to a printer; decimal points need
to be inserted into dollar and cents amounts, dashes need to be
inserted into part numbers, and spaces need to be placed between
dollar amounts and part numbers to columnate the data, and so on.
If it is desired to list output records in full image format, it
is only neccessary to give:

1 - n

(where n is the maximum printable character on printer) as the
limited output string specification.

Sort will not send a line of over 132 characters to a
printer. If the limited output specification designates a longer
output record, then the full specified formatting will be applied
to the disk output file (if any), but only the first 132
characters of the record will be printed.

CHAPTER 39. SORT COMMAND 39-19

If the following special characters are imbedded in the
output record, they will be interpreted as indicated:

015 = End-Of-Record and Carriage-Return/Line Feed.
012 = Line Feed.
014 = Form Feed.

SORT will support either a local printer (address 0303) or a
servo printer (address 0132). If a servo printer is on-line at
the beginning of the FINAL MERGE then it is used as the output
printer device; else a local printer will be used. If bo~h
printers are available on a system, selection between one or the
other cannot be forced by parameterization; if output is desired
to the local printer then the servo printer must be turned off.

39.4.10 Primary/Secondary sorting considerations

If the 'P' (PRIMARY) or'S' (SECONDARY) SORT option is used
then the input file must have a PSPSPS format in order for
SORT to work as expected, where P is one primary record and S is
one or more secondary records. The first record in the file
should always be a primary record, and the last record should be a
secondary record. There should always be at least one secondary
record following each primary record. Tertiary and further level
records cannot be accommodated by SORT.

In some cases it may be possible to successfully sort a file
using the 'P' or'S' options even if the file does not faithfully
follow the above rules. However, the user must exercise great
caution if he is to successfully "fudge" a system as complex as
SORT. Pitfalls will be many. For example, if a file has the
format PPPPSPSPS ... , and a sort is done using the'S' option, the
output file will probably not contain the first three primary
records at all. This case occurs because when sorting using the
's' option, pointers are generated for only the secondary records,
prefixed by a pointer to the record preceeding the first secondary
record of a record block. Since no secondary pointers were ever
generated for the first three primary records, they are simply
lost. It should be easy for the user to imagine what would happen
to a file if a tertiary sort were attempted.

39-20 DISK OPERATING SYSTEM

39.4.11 Key File Drive Number

There are three file systems associated with a sort. The
first is, of course, the input file. The second is the output
file. The third is the keyfile system. (The user only uses the
output file - the keyfile system is a scratch file used by the
system during sorting). There are actually two files which get
opened during the sort for the keyfile system. They are
*SORTKEY/SYS and *SORTMRG/SYS. These two files can grow to
considerable sizes during the sorting procedure since they are
proportional to the number of records and the size of the key
field.

There are two considerations for the location of the keyfile
system. The first is the problem of room. The keyfile must be on
a drive with sufficient room to hold it. The second is speed.
The greatest increase in speed occurs in removing the keyfile
system from the same drive as the input file. Greater speeds can
occur if it is, as well, not on the same drive as the output file.
Normally the SORT does a pretty good job of determining the best
location of the two keyfile files and it shouldn't be necessary to
specify anything for this. However, under comple~ circumstances,
it may be desirable for the operator to specify the drive number
for the keyfile. Should this be the case, the user should type in
the <:DRk) specification as indicated in the general command
format in the Generalized Command Statement Format section.

39.4.12 Disk space requirements

A formula for determining the room in physical disk records
that will be required for the SORT work files is:

2N(L+P+3)
R = ----------- + 4T

S

where: R = Room in physical disk records (sectors) required on
disk.

N = Number of logical records in input file for which keys
will be generated:
= number of records in file if not sorting on 'PI or
'S' .
= number of primary records in file if sorting on 'pl.
= number of secondary records in file if sorting on
'S' .

L = Length of the sort key in bytes.
P = 3 if sorting on secondary records,

CHAPTER 39. SORT COMMAND 39-21

o if not sorting on secondary records.
T = number of sort key trains.
S = bytes per block of physical space available to the user

(nominally 253 bytes)

The value of T can be computed approximately, as:

T =
5700

39.4.13 LINK into SORT from programs

There are three ways in which a SORT can be initiated:

1. From the keyboard via the DOS COMMAND HANDLER;
2. By using the DOS CHAIN command;
3. By loading and linking to SORT/CMD from an assembly

language program.

Datashare,users can invoke SORT by using the rollout
facility to start or continue a chain (see CHAIN and the DATASHARE
User's Guide for more details).

The following detailed information is provided for users
writing system-level programs in assembler language, since
Datapoint does not release a source listing of the SORT program.
Normal usage of SORT requires no knowledge of the following
information.

Sort reserves for the user a nominal amount of storage normally
occupied by the DOS DEBUG$ routine. The specific memory locations
saved are 06144 through 06377. This permits the user to partially
overlay his program with the SORT utility and regain control at
the completion of the sort. Additionally, the next page of
storage, 06400-06777, is available to the user if full image
output records are to be generated. The DOS interrupt handler is
disabled during the sort but is re-enabled upon completion of the
sort. Of course, if the user has a foreground process running
before and after the sort, the process must be controlled from
within the memory not used by SORT, or when foreground is
re-enabled it will vector to whatever SORT left in memory.

The steps to call SORT from an assembler program are as
follows:

1. Close files 1, 2, and 3 if open.

39-22 DISK OPERATING SYSTEM

2. Set MCR$ (01400-01543) with the command string terminated
by a 015.

3. Load the SORT utility.
4. PUSH the stack.
5. Point HL to a parameter table with the format:

PTABLE DA LIMSTG
DA HEDING
DA EXITAD

6. RETURN

Where:

LIMSTG = the limited output specification string, terminated by a
015. If there is to be no limitation output specification,
put O. If there is a LIMSTG, it must exist entirely within
the range 06144-06377. The LIMSTG must be exactly the
characters as they would be entered from the keyboard.
Examples follow.

HEDING = the hardcopy heading string, terminated by a 015. If
there is to be no hardcopy output, put O. If there is a
hardcopy heading string, it must exist entirely within the
range 06144-06377. The HEDING must be exactly the
characters as they would be entered from the keyboard.
Examples follow.

EXITAD = the first memory location to be executed upon successful
completion of the sort. If the sort is to return to the
DOS upon completion, put O. If there is a specific exit
address, it must exist within the range 06144-06377.
Normally, the instructions at the exit address will load
and run the program to be run after the sort, or will
re-load a control program of the user's own control system.

A simple example of loading and running sort from an
assembler program would be:

1. SRTCMD
2.SRTNAH
3.PTABLE
4.
5.

6.RUNSRT

DC
DC
DA
DA
DA

LC

'SORT
'SORT

° ° o

INFILE,OUTFILE' ,015 SORT CMD STRING
CMD' NAME OF SORT UTILITY ON DISK

NO LIMITATION STRING
NO HARDCOPY HEADING
NO SPECIAL EXIT ADDRESS

SRTNAM-SRTCMD MOVE THE SORT COMMAND STRING

CHAPTER 39. SORT COMMAND 39-23

7. DE MCR$ TO MCR$
8. HL SRTCMD
9. CALL BLKTFR

10. LC -1 LOAD THE SORT UTILITY
1 1 . DE SRTNAM
12. CALL LOAD$
13. PUSH PUSH THE SORT STARTING

ADDRESS
14. HL PTABLE POINT TO THE PARAMETER TABLE
15 . RET RUN SORT

The above sequence of instructions could be located anywhere in
memory, except lines 13 thru 15 must obviously reside in a portion
of memory from 06144 thru 06377 to avoid being overlayed when the
SORT utility is loaded from disk. The above instructions
exemplify the simplest possible case of linking to SORT, in that
only the SORT command and an input file and an output file are
specified, all other options are defaulted. The above
instructions have the same effect as calling SORT by entering the
line:

SORT INFILE,OUTFILE

to the DOS COMMAND HANDLER.

Here is a line-by-line explanation of the instructions:

Line 1 defines the SORT command string. This is accomplished
by a simple DC statement of a quoted ASCII string followed by a
015. The quoted ASCII characters are exactly the same that would
be keyed in to the DOS Command Handler if the sort were being
initiated from the keyboard. The 015 is the string delimiter and
is the same character that is placed after a string by the KEYIN$
routine when the "ENTER" key is depressed. The SORT command
string can be up to 100 characters long including the 015 because
the MCR$ area is 100 bytes long. Note that this is nineteen
characters more than can be specified from the keyboard.

Line 2 defines the name of the SORT utility main overlay.
Notice that the complete name of the SORT given here must be
exactly the name as listed in the DOS directory of files. The
eleven ASCII characters in a file name specification include an
eight character filename and a three character extension. Since
the filename of SORT is only four characters, it must be followed
by four spaces before the extension of "CMD" can be given.

39-24 DISK OPERATING SYSTEM

Line 3 defines the beginning of the six-byte parameter table.
The first two bytes of the parameter table specify the address of
the beginning of the Limited Output Specification string. In this
example there is to be no limited output specification string, so
an address of 0 is given.

Line 4 defines the address of the beginning of the HARDCOPY
HEADING string. In this example there is to be no hardcopy
output, so an address of 0 is given.

Line 5 defines the address of the Exit Address, or the
address to which the SORT is to exit when it is successfully
completed. (If something goes wrong during the sort, exit is to
the DOS.) In this example there is to be no special exit address,
so an addess of a is given.

Line 6 begins the actual process of calling SORT from the
program. Lines 6 thru 9 move the SRTCMD string from wherever it
is in memory to the MCR$ area.

Line 10 specifies that SORT is to be loaded from wherever it
is found in the disk drives that are on-line to the system. Refer
to the chapter on System Routines if you are not familiar with the
DOS LOAD$ routine.

Line 11 points to the name of the SORT utility main overlay
in memory, given in SRTNAM, line 2.

Line 12 calls the DOS LOAD$ routine which finds the SORT main
overlay program on disk and loads it into memory, leaving the
starting address in HL.

Line 13 puts the starting address of SORT on the P-counter
Stack.

Line 14 points to the Parameter Table, lines 3, 4, and 5.
The way that SORT knows that it is being run by the DOS Command
Handler or by a user program is by comparing the values of the HL
contents with the entry point of SORT. If the values are equal,
as they are immediately following a LOAD$, then SORT asks for a
Limited Output Specification string and a Hardcopy Heading string
if they are specified in the SORT COMMAND string. If the values
are not equal, then SORT checks the memory pointed by HL for the
location of the Limited Output Specification string, the Hardcopy
Heading string, and an Exit Address.

Line 15 effects the actual transfer of execution to the SORT
utility. Since the starting address of the SORT was PUSHed onto

CHAPTER 39. SORT COMMAND 39-25

the P-counter stack, a RETurn instruction JuMPs to the SORT
starting address.

39.5 The use of CHAIN with SORT

The reader should first familiarize himself with CHAIN by
thoroughly reading the CHAIN Section.

CHAIN is a systSm whereby the operator of a Datapoint DOS may
pre-define a procedure sequence of his own programs, system
commands and utilities (including keyboard answers to questions
requested by these programs) and have them called and sequentially
executed by a single name. This feature is especially powerful
when using SORT since there may be a repetitive sequence of
routines with complex parameterizations which could make good use
of simplification.

A Datashare program can link to SORT by executing a ROLLOUT
instruction to a user-built CHAIN file which includes the SORT
command line and, if specified, the Limited Output specification
line and a Hardcopy Heading line, followed by the DSBACK program
to re-load the Datashare.

39.5.1 How to Set up a chain file for SORT

The author of a chain file only needs to remember that ALL
questions that the system requests INCLUDING those initiated by
the executing programs MUST BE ANSWERED from the chain file just
as though they would be typed in from the keyboard.

For instance, the initiation of a sort

"SORT INFILE,OUTFILE;I3-42"

could be done through chain. To do this, use EDIT or BUILD to
type in that exact sequence of characters into a file. Note that
the file will, in this case, consist of a single line as typed
above. The file can be any name, but for purposes of simplifying
the explanation, it shall be referred to as "CHAINFIL". If
"CHAINFIL" consists of that single line, and if the operator types
the command "CHAIN CHAINFIL" to the DOS, the SORT specified above
would be initiated. If the 'L' specification were included in the
statement above~ then SORT would ask for another line of
information. In this case, the file "CHAINFIL" would have to have
two lines in it with the first being the SORT command and the

39-26 DISK OPERATING SYSTEM

second being the limited output file format specification.

39.5.2 Naming a repetitive SORT procedure

Frequently there are sorts and printouts and other procedures
which occur together and for which a name invoking the procedure
would be a great simplification.

For instance, in the telephone directory example ~bove, the
process of sorting the file into a limited output file and then
listing it on a local printer could be procedurized as follows:

SORT EMPFILE,TELFILE;LBO-110
80-110,' - ',171-1BO
LIST TELFILE;XL
TELEPHONE DIRECTORY FOR XXXXXXXXXX CORPORATION

Note that there are four statements. The first is the SORT
command. The second is the answer to the limited format initiated
by the 'L' in the SORT command. The third is the DOS LIST command
with the specifiers of 'X' which says 'without line numbers' and
the 'L' which means local printer. Then there is a forth line
which the LIST command requests - the heading. This question must
also be answered in the chain file. If the above four statements
were placed in a file by the Editor (or by any other means) and
then CHAIN were invoked with that file specified, the result would
be a printed telephone directory from the personnel files.

39.5.3 Using CHAIN to cause a merge

Consider a situation wherein a system has a master file
called 'MASTER' and a file of records to be added, in sequence, to
the master file called 'ADDFILE'. To merge these two files in
sorted sequence at the end of each day would normally require a
sequence of keyed in operations which are somewhat complicated and
error prone. CHAIN can cause an effective MERGE and assign it a
single name as follows:

SAPP MASTER,ADDFILE,MASTER
SORT MASTER,SCRATCH;1-20
KILL MASTER/TXT
Y
NAME SCRATCH/TXT,MASTER/TXT

CHAPTER 39. SORT COMMAND 39-27

Note that the procedure:
1) appends the ADDFILE to the MASTER file.
2) Sorts the extended MASTER file into a SCRATCH file.
3-5) Renames the SCRATCH file as the new MASTER file. Thus, it is
apparent that a merge can be effectively achieved using SORT and
by using chain to pre-define the procedure.

39.6 SORT Execution-Time Messages

This section describes the operator messages that SORT may
display on the CRT screen during execution. Some of the messages
are monitor messages to keep the operator informed of the progress
of the program, while other messages are error messages.

DOS. VER. n.n SORT COMMAND - date

This message is the SORT sign-on.

SORT OVERLAY MISSING.

This message is displayed if the SORT/OV1 file is not on the
same drive as the SORT/CMD file.

INPUT FILE REQUIRED.

This message is displayed if no filename was specified for the
first file specification. This would happen if a command line
such as:

SORT ,OUTFILE or SORT ITXT,OUTFILE

were entered.

OUTPUT FILE REQUIRED.

This message is displayed if no filename was specified for the
second file specification AND if the 'L' and 'H' options were
not specified.

BAD DEVICE SPECIFICATION.

This message is displayed if a drive specification in a file
specification was not entered in a valid format.

OUTPUT FILE SAME AS INPUT.

39-28 DISK OPERATING SYSTEM

This message is displayed if the FILENAME and EXTENSION of the
INPUT file and the OUTPUT file are the same, and the DRIVE
NUMBER for each file is the same or not specified for EACH
file.

INPUT FILE NOT FOUND.

This message is displayed if the INPUT file could not be found
on any drive on-line to the system if no drive was specified,
or on the drive given if a drive was specified. If no
extension is supplied in the file specification an extension of
TXT will be assumedj in this case if a file FILENAME/TXT is not
on-line or on the drive specified then the INPUT file will not
be found.

INPUT FILE RIB ERROR.

This message is displayed if a read parity error occurs when
the INPUT file's RIB is checked to determine the INPUT file's
length.

KEY FILE SPECIFICATION ERROR.

This message is displayed if a FILENAME or EXTENSION is given
for the KEY DRIVE specification.

KEY FILE DEVICE SPECIFICATION ERROR.

This message is displayed if the drive specification for the
KEY file is not a valid drive spec.

SORT KEY FILE PLACED ON DRIVE #

This message is displayed if the KEY DRIVE was not specified on
a multi-drive system. The message is to notify the operator of
the location of the KEY file. The # stands for a valid drive
number.

OPTION FIELD ERROR.

This message is displayed if a semicolon (j) is entered at the
end of the SORT command line but is not followed by any option
specifications.

CHAPTER 39. SORT COMMAND 39-29

OPTION SPECIFICATION DUPLICATION.

This message is displayed if a command line such as:

SORT INFILE,OUTFILEjDLA

were entered. The 'D' and 'A' options are both variations of
the ORDER option, and obviously both cannot occur
simultaneously.

HARDCOPY ONLY IF LIMITED OUTPUT SPECIFIED.

This message is displayed if the 'H' option is specified but
the 'L' option was not given previously.

ILLEGAL HEADER SPECIFICATION.

This message is displayed if the 'P' or'S' option is given but
is immediately followed by the 015 byte -- the "ENTER" key.

ILLEGAL HEADER KEY EVALUATION.

This message is displayed if the character immediately
following the 'PNNN' or 'SNNN' option is not ,-, or '#'.

ILLEGAL SORT KEY SPECIFICATION.

This message is displayed if a key position of 0 or greater
than 249 was specified, or if a key position was not terminated
by , or - or 015, or if a two-position key was not terminated
by , or 015.

SORT KEY TOO LONG.

This message is displayed if the total sort key is longer than
118 characters long.

OVERLAPPING SORT KEY SPECIFICATIONS---SORT OPTIMIZED.

This message is displayed if the same record positions were
specified for more than one sort key group. SORT does not

39-30 DISK OPERATING SYSTEM
r

repeat duplicate positions in sort key generation and thus
saves processing and disk read/write time.

OVERLAPPING SORT AND HEADER KEYS---SORT OPTIMIZED.

This message is displayed if the same record position is
specified as a sort key position and a header indication
position. The position is removed as a sort key position and
the key is thus shortened. The effect is as for the previous
message.

LIMITED OUTPUT FILE FORMAT:

This message is displayed if SORT has accepted the SORT command
line including all option specifications and if the 'L' option
has been given. The operator must enter the limited output
specification line.

NULL LIMITATION SPECIFICATION.

This message is displayed if the 'L' option was given but the
limitation specification was only 015 -- the "ENTER" key. If
the 'L' option is given then a non-empty limited output
specification string must also be given.

INVALID LIMITATION SPECIFICATION.

This message is displayed if the limited output specification
does not fit the syntax given in the section on Limited Output
Format Option. Usually the fault is that a comma was not
placed between option specification groups, or double quotes "
were used instead of single quotes '

ENTER THE HARDCOPY HEADING:

This message is displayed when the limited output specification
has been accepted and if the 'H' option was given. The
operator must enter from a to 79 characters of information
which will be printed at the top of each page printed during
SORT output generation.

CHAPTER 39. SORT COMMAND 39-31

SEQUENCE FILE NAME REQUIRED

This message is displayed when the sequence file field is blank
and the file specification fields have not been terminated with
a semi-colon or an end of line designator.

SEQUENCE FILE NOT FOUND

This message is displayed when SORT requests the sequence file
be OPENed and DOS cannot locate the file on the disk drive
indicated. Note that if the drive is not specified, the drive
on which the SORT/CMD resides is implied.

SEQUENCE FILE FORMAT ERROR A

This message is displayed when SORT determines that the
sequence file specified is not an absolute object file.

SEQUENCE FILE FORMAT ERROR n

This message is displayed when SORT receives an error return
from LOADX$ when an attempt is made to load the sequence file.
The value of n may be 0-6 and is defined as follows:

0 If file does not exist
1 If disk drive is off-line
2 If directory parity error
3 If RIB parity fault
4 If file parity fault
5 If off end of physical file
6 If record of illegal format

LIMITATION SPECIFICATION OVERFLOW

This message indicates that limited output parameters entered
require more memory (256 bytes) than allocated by SORT.

INTERNAL ERROR -- GET SYSTEM HELP !!!

This message indicates a probable hardware error occurred
during a limited output string sort. SORT cannot continue
executing.

39-32 DISK OPERATING SYSTEM

THE FOLLOWING MESSAGES MAY BE DISPLAYED DURING SORT
INITIALIZATION IF SORT WERE LINKED TO BY AN ASSEMBLY LANGUAGE
PROGRAM:

INVALID LIMITATION STRING ADDRESS.

INVALID HARDCOPY HEADING STRING ADDRESS.

INVALID USER EXIT ADDRESS.

One of these messages is displayed if the corresponding entry
in the parameter table linkage data was not either ° or in the
range 06144-06377 inclusive.

LFT ENTRIES 1->3 NOT CLOSED WHEN SORT ENTERED.

This message is displayed if the user left one of the logical
files 1, 2, or 3 open upon linking to the SORT utility.

LIMITATION STRING MISSING.

This message is displayed if the 'L' option was given in the
SORT command string but the pointer to the limited output
format string in the parameter table linkage data was 0,
indicating no limited output format string specified.

HARDCOPY HEADING STRING MISSING.

This message is displayed if the 'H' option was given in the
SORT command string but the pointer to the hardcopy heading
string in the parameter table linkage data was 0, indicating no
hardcopy heading string specified.

THE FOLLOWING MESSAGES ARE DISPLAYED AFTER THE SORT
INITIALIZATION IS COMPLETED:

BUILDING SORT KEY TRAIN n.

This message is displayed when all parameter specifications
have been accepted and SORT has started the extraction of the
sort keys from records of the INPUT file and is writing them to

CHAPTER 39. SORT COMMAND 39-33

the *SORTKEY/SYS file.

SORT KEY FILE OVERFLOW.

This message is displayed if there was not adequate room on the
KEY DRIVE to hold the *SORTKEY/SYS file. If *SORTKEY/SYS file
overflow occurs the file is deleted from the disk before the
message is displayed.

NULL OUTPUT FILE.

This message is displayed if no sort key records were
generated. A null output file (first record EOF) is prepared
before SORT ends.

INTERMEDIATE SORT PASS n.

This message is generated during sorting of the sort key trains
on the *SORTKEY/SYS file. The only actual sorting done during
a sort is that which can be done on the initial sort key
trains, which .are made short enough that they will fit in
memory. After the sorting of the keys within each initial
train, the trains are merged sixteen abreast into larger
trains, repeatedly until only one train remains.

INTERMEDIATE MERGE PASS n, TRAIN n.

This message is displayed if more than sixteen sort key trains
exist during a merge pass. The intermediate merge pass number
is the Nth iteration of the merge process. The train number is
the number of the train being output by the merge pass. If
more than one train is output by an intermediate merge pass
then at least one more intermediate merge pass will be
required. If more than sixteen trains are output by an
intermediate merge pass then at least two more intermediate
merge passes will be required, and so on.

FINAL MERGE: SORT TRAIN n.

This message is displayed during the generation of the output
file from the data in the now fully sorted and merged sort key
file and from the records in the INPUT file. The sort train
number corresponds to the current state of progress as measured

39-34 DISK OPERATING SYSTEM

against the number of trains generated by the next to the last
intermediate merge pass.

MERGE FILE OVERFLOW

This message indicates not enough disk space is available for
the merge file.

OUTPUT FILE OVERFLOW

This message indicates not enough disk space is available for
the output file.

CHAPTER 39. SORT COHMAND 39-35

CHAPTER 40. SUR COMMAND

40.1 Purpose

When a specific disk is used for more than one purpose, some
inconveniences occasionally turn up. Assume for a moment that a
user has a disk which he is using for program generation on each
of two more or less unrelated projects. When he uses the CAT
command, for instance, he will normally see a whole range of
files, some of which are not related to the project he may be
currently interested in. Or, he may begin editing a new file on
the disk, only to find that another user of the same disk may have
already had a file of that name. At times like this, it would be
convenient to logically partition the directory so that a user
would only have a portion of it, the portion he is currently
interested in, available to him at one time.

A more concrete example is the DOS itself and its various
commands. Obviously Datapoint's DOS.A, DOS.B, and DOS.C bear a
strong resemblance to each other. The DOS and most of the command
files are configured at assembly time through conditional assembly
and equates to support a given disk controller and specific file
structure. The result is several different object code files, all
with a lABS extension, for each single source file with a ITXT
extension. Yet it is desirable for a number of reasons to keep
all of the object code files for all the DOS and commands on a
single drive.

Without the DOS subdirectory facility, it is not permitted to
have two files on a given logical drive with the same name.

40.2 About Subdirectories

The use of the SUR (Subdirectory Utility Routine) command
allows the user to logically partition the directory on a given
disk into several smaller subdirectories. Each such subdirectory
can then contain zero or more files, up to the combined maximum of
256 files per logical drive. Each subdirectory on a disk has a
unique name. Two subdirectories always exist on all drives;
these are called SYSTEM and MAIN. The names for the other
subdirectories are assigned by the user as he establishes them,
and follow the same rules as for any standard DOS file name. As a

CHAPTER 40. SUR COMMAND 40-1

subdirectory is created, the name specified by the user is related
to a unique number which is referred to as the subdirectory
number. The relationship between subdirectory names and
subdirectory numbers is not unlike the relationship between DOS
file names and physical file numbers. A given subdirectory may
have different numbers on different drives, even though the
subdirectory name is the same.

It is important to realize that subdirectories are not a way
of getting more than 256 files on a drive. This they cannot do.
The thing that subdirectories are good for is partitioning the
directory and restricting the scope of a file name. This" allows
several files of the same name to exist on one disk at the same
time, without causing the DOS to become confused as to which is
the one to be referenced at any time. The way the DOS achieves
this is that each of the files is in a "different subdirectory",
and hence is uniq~e1y identified even though the name and
extension may be identical.

40.2.1 Creation of Subdirectories

Subdirectories are created with the SUR command. All that is
required is to specify a name for the proposed subdirectory and
request its creation. Creation of a subdirectory does not
actually result in any real change to the directory on disk at
all; all it does is to cause the specified name to be entered
into a table in SYSTEM7/SYS (yes, that's why SYSTEM7 isn't write
protected), kept on disk, which relates each subdirectory name
with its subdirectory number. The user is allowed to specify
which drive he wishes to create the subdirectory on; if he does
not indicate a specific drive, the named subdirectory is placed
onto all on-line drives if possible.

40.2.2 Deletion of Subdirectories

Subdirectories are deleted with the SUR command. The user
specifies the name of the subdirectory he wishes to remove and
requests its deletion. Deletion of a subdirectory does not result
in KILLing the files within the range of that subdirectory. If a
subdirectory to be deleted contains one or more files, the files
are first moved from that subdirectory to the one called MAIN
before the named subdirectory is deleted. The user is allowed to
specify from which drives the subdirectory is to be deleted; if he
does not indicate a specific drive, the named subdirectory is
deleted from all on-line drives on which it appears.
NOTE: Subdirectories may not be deleted while PS is running.

40-2 DISK OPERATING SYSTEM

40.2.3 Being nin a Subdirectory"

The user can define at any time which of the subdirectories
on each of his disks contain the current files he is interested
in. This is done with the SUR command by specifying the name of
the sUbdirectory containing the files of current interest. This
action causes him to be placed "into" the named subdirectory on
the drive specified. (If no specific drive is mentioned, he will
be placed "into" the subdirectory specified on all on-line drives
containing a sUbdirectory with the given name). It is appropriate
to point out that the current subdirectory on each drive need not
have the same name; for example, the user could easily be in
subdirectory PROGRAMS on drive zero and in subdirectory DATABASE
on drive one at the same time.

Once in a specific subdirectory on a drive, that state does
not normally change until the user requests being placed into a
different subdirectory (again via the SUR command) or re-boots the
DOS. Rebooting the DOS causes t,he user to be placed into the
subdirectory named SYSTEM on all drives.

40.2.4 Scope of a File Name

When a program accesses a file under DOS, it tells DOS the
name and extension of the file it is 160king for and either
indicates one specific drive which the DOS is to search for the
file, or requests that the DOS look on all on-line drives. In
order for the DOS to "find" the given file, the DOS must find a
file whose name and extension exactly match the ones specified by
the requesting program. If no such file can be found, the DOS
returns indicating that the specified file cannot be found and
therefore probably does not exist.

When subdirectories are in use, this matching of name and
extension is expanded so that in addition to a file's name and
extension matching those specified by the requesting program, the
file must also be within either the current subdirectory (for that
drive) or the one called SYSTEM in order to be "found".

Therefore the scope of a file name can be more or less
defined via the following: when a user is in subdirectory X on
drive Y, files can be "seen" by his program only if they are in
either sUbdirectory X or subdirectory SYSTEM. Files in any other
sUbdirectory will not appear to exist.

CHAPTER 40. SUR COMMAND 40-3

40.2.5 About Subdirectory SYSTEM

It has been shown that files in the subdirectory named SYSTEM
are special in that they can be accessed regardless of which
subdirectory the user is "in" on a specific drive. Likewise, a
special situation also occurs when the user is "in" the
subdirectory named SYSTEM. When the subdirectory named SYSTEM is
the current subdirectory on a given drive, all files on that drive
are accessible regardless of which subdirectory they themselves
are actually in.

A little caution must be used when a user is in subdirectory
SYSTEM on a disk with multiple files of the same name and
extension. The caution is that, although each of the files is
still associated with one and only one subdirectory, all of the
files on a disk are available when the user is "in" the SYSTEM
subdirectory. The result is that in this situation, one of the
files of the desired name and extension will be referenced; which
one is referenced is, however, undefined. Therefore, good
practice dictates that if a user has more than one file with the
same name and extension on some drive, that he make a point of
always knowing which subdirectory he is in (and that it is not
SYSTEM) if it matters to him which of his files he references.

40.2.6 Files vs. the User Being "in a Subdirectory"

It is important not to confuse the two distinct concepts of a
file being in a subdirectory as opposed to that of [a user] "being
in a subdirectory".

A file being in a specific subdirectory is a way of saying
that the file cannot be accessed when the current subdirectory is
neither that specific subdirectory nor SYSTEM. This relationship,
that of a file being in a specific subdirectory, is retained more
or less permanently; if a file is,placed in subdirectory SUBDIR1
today on a disk, the disk can be removed and stored on a shelf;
if tomorrow the disk is taken down from the shelf and re-mounted,
that file will still be in subdirectory SUBDIR1.

A user being in a specific subdirectory is a way of saying
that the sUbdirectory in question is "the current subdirectory" on
one or more logical drives. The "current subdirectory" on a drive
is less permanent and reflects the use of the SUR command since
the previous time the DOS was bootstrapped.

40-4 DISK OPERATING SYSTEM

40.2.7 Getting a File into a Subdirectory

In general, there are three ways to get a file into a given
subdirectory. The easiest and probably most common of these is
automatic. Whenever a file is created, it is always placed into
the current subdirectory on the drive on which it is created.

Once a file has been thus created, it can be moved between
subdirectories with the NAME command. The NAME command can take a
file within the scope of the current subdirectory and put it into
the current sUbdirectory if it is not already (which is useful if
either the source or destination subdirectory is SYSTEM) or can
place it into any other subdirectory the user might wish to put it
into.

40.3 Usage

The SUR command is parameterized as follows:

SUR [<name>][/<function>][:DR<n>][,<new name>]

The function performed by SUR is determined by the absence or
value of the <function> field and the name field, as described
below.

40.3.1 Establishing a "Current Subdirectory"

If the function field is not given, SUR establishes the named
sUbdirectory as the current subdirectory on all drives on which
the named subdirectory exists. If the named subdirectory does
not exist on one or more drives, the current subdirectory on any
such drives is unaffected. If a specific drive is mentioned,
then only the current subdirectory on the specified drive is
subject to change.

40.3.2 Creating a Subdirectory

If the function field is INEW, SUR creates the named
subdirectory on all drives on which the named subdirectory does
not exist. The current subdirectory is not affected by the
operation. If a specific drive is mentioned, then the named
subdirectory is only created on the specified drive.

CHAPTER 40. 'SUR COMMAND 40-5

40.3.3 Deleting a Subdirectory

If the function field is IDEL, SUR deletes the named
subdirectory on any drives on which the named subdirectory exists.
If any files are in the named subdirectory, they are moved to
subdirectory MAIN before the named subdirectory is deleted. If
the sUbdirectory being deleted is the current subdirectory on that
drive, the current subdirectory is also changed to MAIN.
Subdirectories SYSTEM and MAIN cannot be deleted. If a specific
drive is mentioned, then the named subdirectory is only deleted
from the specified drive.

40.3.4 Renaming a Subdirectory

If the function field is IREN, SUR renames the named
subdirectory on any drives on which the named subdirectory exists,
to the name specified in the new subdirectory name field. If any
files are in the named subdirectory, they will be in the
subdirectory specified by the new subdirectory name field upon
completion of the operation. Subdirectories SYSTEM and MAIN
cannot be renamed. If a specific drive is mentioned, then the
name of the named subdirectory is changed only on that specified
drive.

40.3.5 Displaying Subdirectories

If the subdirectory name field is not given, SUR displays the
names of all subdirectories on all on-line drives. The format of
the listing is similar to that provided for file names by the CAT
command. The number in parentheses to the right of each
subdirectory name is the subdirectory number associated with that
name (in octal); an asterisk indicates the current subdirectory
on each drive. If a specific drive is mentioned, then only the
subdirectories present on the specified drive are displayed.

40-6 DISK OPERATING SYSTEM

CHAPTER 41. UBOOT COMMAND

The UBOOT command writes a DOS bootblock onto the cassette
tape in the front tape deck.

The UBOOT command then rereads the bootblock to insure that
the cassette is good. In addition, the bootblock checks its own
parity immediately upon loading and halts if it finds it has not
been loaded properly.

If the machine halts upon booting repeatedly and other boot
tapes work on the same machine, then the boot tape which causes
the boot operation to halt is not a good tape and should be
replaced.

The boot tape created by UBOOT reads an IPL (Initial Program
Loader) block from disk. The IPL block then reads and executes
the DOS bootb~ock (from disk). The IPL and bootblock are put on
disk by DOSGEN and PUTIPL.

The UBOOT tape is capable of loading any version 2.3 DOS from
any type of disk. If there are multiple types of disks on your
system, they will be scanned in the fo~lowing order:

1. Mass storage disks
2. Cartridge disks
3. Floppy disks

Logical drive zero will be tested on each of the disks. If drive
zero is off-line, depressing the "DISPLAY" key will cause a scan
of ALL on-line drives. This means that if drive zero is "down",
you can generally continue running. When a disk is found that
contains a good IPL, it will be selected as the "BOOT DRIVE";
henceforth overlays will be loaded off it. Commands will also be
loaded from the booted drive first (default).

CHAPTER 41. UBOOT COMMAND 41-1

CHAPTER 42. UTILITY/SYS

Most of the DOS commands have been put in an absolute library
named "UTILITY/SYS". This has the following advantages:

1. Free up some directory and data space.
2. Makes most of the utility programs available o~ any disk,

i.e., UTILITY/SYS can be on any drive on-line.
3. Assures the user that the most current DOS commands will

be used.

Using the librarian utility program (LIBSYS 1.1), many user
programs could also be added to UTILITY/SYS. A few guidelines for
programs that can be members of "UTILITY/SYS":

1. Programs should start at 017000 or higher.
2. Programs that use overlays should use DOS function 13 and

14 to access the library.

If you have placed your own programs into UTILITY/SYS, do not
overwrite UTILITY/SYS on a partial gen. Instead, MIN the new
UTILITY/SYS using a different file name, then use LIBSYS as
follows:

MIN
(filename UTILITY/NEW)
LIBSYS UTILITY/SYS
REPLACE UTILITY/NEW
END
KILL UTILITY/NEW
YES

To display the members in UTILITY/SYS, enter:

CAT *

Note: the CAT command also displays th~ directory of any library
(see CAT command).

When keyboard commands are entered, the specified command
will automatically be located as either a separate disk file or a
member of UTILITY/SYS. Normally a separate file name is first
checked, then the library member. To reverse the normal
precedence put a leading * or : in front of the command name. For
example:

CHAPTER 42. UTILITY/SYS 42-1

*CHANGE SCRATCH/TXT;X
or

:CHANGE SCRATCH/TXT;X

See the chapter on the Command Interpreter for details on
selection of a command from the disk directory or from
UTILITY/SYS.

42-2 DISK OPERATING SYSTEM

CHAPTER 43. SYSTEM DESCRIPTION

43.1 System Philosophy

The objective of DOS is to allow maximum use of the
capabilities of a Datapoint disk system with a minimum of effort.
The DOS disk structure provides dynamic space allocation and fully
random file access capability on all supported disk types. Also
provided are an extensive set of utility programs to perform many
basic data processing functions. In all system utilities the
operator commands are as simple as possible while providing a
versatile program capability. Error codes and program messages
are mostly presented in English, avoiding complex,
incomprehensible messages.

Datapoint DOS is a facilities oriented system. It provides
utility programs for general use, and extensive system routines
for use in assembler coding. DOS is not a supervisory system; it
imposes practically no overhead. The DOS facilities provide a base
for Datashare, BASIC, and most other Datapoint languages and
systems.

43.2 System Structure

DOS occupies only the lower BK of memory in the processor.
Of this BK, only the lower 2.BK is necessary for the support of
the disks. The first 76B bytes of memory (0 - 01377) contain the
object code loader, entry point table, and interrupt handler.
Object code may be loaded from 01400 upwards, overlaying much of
DOS. If object code is loaded below 01400, the code overstores
the loader or entry points and results are unpredictable.

The operating system debug facility and the keyboard and
display routines reside between 2.BK and 4K, the cassette driver
routines from 4K to 5.4K, and the command interpreter from 5.4K to
BK. It is recommended that user programs start at 017000 (octal).

To achieve its small size in memory, DOS uses disk-resident
overlays for the disk file opening, closing, and allocation
routines. Most of the system error messages also reside in an
overlay, allowing fully descriptive messages without using a
prohibitive amount of memory. A set of short utility routines

CHAPTER 43. SYSTEM DESCRIPTION 43-1

(DOS Functions) uses a separate overlay area.

The operating system uses a single disk controller with at
least one physical disk drive attached. Each "on-line" drive-- a
drive containing a disk ready to read -- is assumed to contain a
valid DOS disk, which will have all necessary system tables and
files present and in correct format. This assumption on the part
of the system requires caution on the part of the operator if a
disk not fitting this description is mounted. If, for instance, a
disk has been mounted to be DOSGENed, the operator must not run
any programs that will attempt to use the disk before it has been
genned, or an abort will occur indicating system data failure.

DOS is designed to be run interactively by an operator at the
processor console. The operator generally enters commands from
the keyboard, which the operating system interprets and executes.
During execution, status information needed by the executing
program is requested from the operator via CRT messages expecting
a keyed response.

A DOS utility program (CHAIN) allows execution of predefined
processes automatically in a non-interactive fashion, so no
operator attention is required. Other utility programs extend
this automatic capability such that the system can be made almost
completely operator independent if desired.

43-2 DISK OPERATING SYSTEM

CHAPTER 44. SYSTEM STRUCTURE

44.1 Disk Structure

44.1.1 Introduction

Any disk used with DOS is a self-contained information
structure. A disk contains up to 256 files, each of which is
described in system tables on the disk and which resides
completely on the one disk. No system information on a disk
references any other disk.

The basic structure of disk storage is the file. Files on
Datapoint DOS consist of up to 38,400 sectors, or as many sectors
as fit on a logical disk, whichever is smaller. The space
occupied by a file is mapped in its Retrieval Information Block
(RIB), which is the first sector of the file. The Directory
stores the name of each file and provides a pointer to locate the
RIB, thus completely defining a file.

Space for files is allocated in clusters, a cluster being the
smallest allocatable unit of disk space. In general, each
cylinder of a disk is divided into 8 equal clusters. On diskette
systems a cylinder has only 4 clusters. Thus a cluster consists
of 3, 6, or 24 sectors on diskette, cartridge, and mass storage
systems respectively. The sectors constituting a cluster are
always contiguous and never cross the boundary of a cylinder or
head. The Cluster Allocation Table (CAT) and the Lockout CAT
maintain a record of clusters in use or unavailable for use and
clusters free for use.

The RIB maps the file space in segmentsja segment is a set
of contiguous clusters. A file then consists of a set of segments
located randomly on the disk, each segment being a small block of
clusters. Within this space, the file is logically continuous,
there being no logical discontinuity at the boundary of a segment.

Each sector within a file carries its own identification.
The first byte of a sector contains the Physical File Number (PFN)
of the file to which it belongs. The PFN uniquely identifies a
file. The second and third bytes contain the Logical Record

CHAPTER 44. SYSTEM STRUCTURE 44-1

Number (LRN) of the sector. The LRN is a count of sectors in the
file, starting with 0 at the first sector, and incrementing by one
for each successive sector.

All major tables discussed in this section -- the CAT,
Lockout CAT, HDI, Directory, and RIB -- are all kept in duplicate.
The backup copy of each of the tables helps prevent data loss in
event of a read/write error to a system sector.

44.1.2 Disk Space Management: CAT and Lockout CAT

The Lockout CAT indicates locked out cylinders -- cylinders
which will not be used by the DOS. Cylinders are automatically
locked out at DOS generation if they are found bad by the surface
verification. Cylinders may be manually specified for lockout
during system generation or during REPAIR. Cylinder 0 is always
locked out for system use. Each byte of the Lockout CAT
represents a cylinder: byte O=cyl 0, byte 1=cyl 1, byte 2=cyl 2,
etc. The byte value is 0377 (017 on diskettes) if the cylinder is
locked out, and is 000, otherwise.

The CAT indicates available space for the DOS; CAT updates
are performed automatically as space allocation or deallocation is
performed. As in the Lockout CAT, each byte of the CAT represents
a cylinder. Each bit of a byte represents a cluster of the
cylinder: bit 7=cluster 0, bit 6=cluster 1, etc. (For diskettes,
bits 7-4 are zero, bit 3=cluster 0, bit 2=cluster 1, bit 1=cluster
2, and bit O=cluster 3). If a bit is set (1), the cluster it
represents is either in use by a file or locked out; if a bit is
clear (0), the cluster is free.

The CAT and Lockout CAT observe some fixed format rules:

Byte 0 is always 0377
Byte 1 through n may be any value as described above

(n is the number of cylinders on the disk)
Bytes n+1 through 0376 are 0377 (except for directory

mapping bytes, if used.)
Byte 0377 is any value. This is the auto-execute PFN and

is normally zero.

44-2 DISK OPERATING SYSTEM

44.1.3 Files: HDI, Directory Mapping Bytes, Directory, RIB

The Hashed Directory Index (HDI) provides access to, and
controls allocation of, the Directory. Each byte of the HDI
represents a directory entry, offset from the beginning of the
index by PFN. Thus, byte O=PFN 0, byte 1=PFN 1, byte 2=PFN 2,
etc. If the value of the byte is 0377 the directory entry it
represents is not in use. When a PFN is in use, a hash code
(value 0-0376) generated from the file name is placed in the byte.
This value indicates the PFN is in use, and is used to speed
directory searching when a file is being loacated by name.

Directory Mapping Bytes are a less sophisticated means of
Directory access and control, used in DOS.B version 1 and in
diskette operating systems. The mapping bytes are bytes 0357-0376
of the CAT. Each byte represents a directory sector (0-15) and
the value in the byte represents the number of entries (0-16) in
use in that sector.

The Directory is 16 sectors (logically referenced as 0-15)
containing 256 directory entries, 16 entries per sector. A
directory entry contains the name, protection, and subdirectory of
a file; it also points to the file's RIB. Directory entry format:

Bytes 0-1 are the RIB address/protection. (See
"Addressing Byte Structures".)

Bytes 2-3 are unused (normally zero)
Bytes 4-11 are the file name. A file name is usually

ASCII characters as described in the DISK FILES
chapter under File Names, padded with blanks to
be eight characters long, but may be any values.

CHAPTER 44. SYSTEM STRUCTURE 44-3

Bytes 12-14 are the file extension. Same format rules
as file name.

Byte 15 is the subdirectory number, usually 0377,
indicating subdirectory SYSTEM.

A Retrieval Information Block (RIB) maps a file's domain on
disk. A file is composed of segments, each segment being composed
of contiguous clusters. The RIB contains up to 126 segment
descriptors which completely describe the clusters allocated to a
file.

LRN
LSB MSB

Each segment descriptor (SD) is two bytes long (see "Addressing
Byte Structures"). A segment descriptor of 0377,0377 indicates
the end of the RIB. The fourth byte of a RIB is always 0377. The
RIB is always the first sector of the file; the RIB copy is the
second sector and is identical to the RIB except that its LRN is
1.

44.1.4 Sector Identification

Every sector of a file contains in its first byte the PFN of
the file. The next two bytes are the Logical Record Number (LRN),
stored least significant byte first. The PFN and LRN are
primarily intended as validation fields when a file record is
read. When a file record is written, the PFN and LRN are set
correctly; reading a record with a PFN that does not match or an
out-of-sequence LRN constitutes a Record Format Error.

Not every sector in the space allocated to a file has this
PFN and LRN data. Only sectors that have been used for the file
have this informatin set. Unused sectors may have anything in the
first three bytes.

44-4 DISK OPERATING SYSTEM

44.1.5 Addressing Byte Structures

44.1.5.1 PDA - Physical Disk Address

MSB

cylinder
address

LSB

17161511 4 13121110 I

~Lse~tor
number
cluster
number

The cluster number references a cluster within a cylinder;
values are 0-7 except for diskette systems which use values
0,2,4,6 for clusters 0,1,2,3 respectively. The sector number
references a sector within a cluster.

Note: This is the DOS "PDA" and must not be confused with
the hardware disk addressing of any particular controller.

44.1.5.2 RIB Address/Protection

Used in a directory entry to point to beginning of file.
MSB LSB

7[6IS14[EI10 i
cylinder
address

I protection
I (l=protected) L= delete protection

(l=protected)
unassigned
cluster number

The cylinder address and cluster number, with an assumed
sector number of zero, is the PDA of the first sector of the file.

CHAPTER 44. SYSTEM STRUCTURE 44-5

44.1.5.3 Segment Descriptor - used in RIB to define a segment.

MSB

1 7 16 1S 14 1EITQJ
cylinder
address

LSB

number of
clusters minus 1
cluster number

The cylinder address and cluster number, with an assumed
sector number of zero, is the PDA of the first sector of the
segment. The length of the segment in clusters is given by the
low-order five bits of the lsb; length can be 1-32 clusters
(except DOS.B, 1-10).

44.1.5.4 Physical File Numer - used to access directory and HDI

directory sector number
~ ________ directory entry number

The directory sector number specifies a sector of the
directory (0-15). The directory entry number (0-15) specifies an
entry within a sector.

Note: Since directory entries are 020 bytes long, if the
low-order four bits of the PFN are set to 0, the resulting value
is the byte location of the beginning of the specified directory
entry. For example, PFN 0304 references the directory entry
beginning at byte 0300 (entry number 014) of sector 4 of the
directory.

44-6 DISK OPERATING SYSTEM

44.2 Disk Data Formats

The DOS itself does not deal with the user's data below the
record level. It only keeps track of where the records are,
allowing the user to format the data in any manner he pleases.
The user is presented with records that are 253 bytes long, the
first three bytes of each sector being reserved for system sector
identification as described above. The DOS and its utility
programs do make a number of assumptions concerning file structure
however, and system operation is much simpler if all files are
structured to match these assumptions.

DOS makes assumptions about the structure of text files and
about absolute object code files. The structure expected for text
files under DOS is described in the chapter on REFORMAT. Any file
to be processed by the standard text-handling facilities of DOS
must have the standard text format described.

If a file is to be loaded by the system loader, it must be an
object code file in the following format:

load load N bytes of
000 address address N object code data block 0377

lsb msb complement

L~ LHL L
~~------------------~ ----------------------~/ L one data block

Note that this is the format of output files from Datapoint
assemblers. Any number of data blocks may appear in a record.
The leading byte of a data block will always be either 0,
indicating a block follows, or 0377, indicating end of record.
The special case of N being zero is used to indicate end of file,
in which case the HL given is taken to be the starting address of
the program loaded.

CHAPTER 44. SYSTEM STRUCTURE 44-7

logical EC

44.3 Memory Mapping

The DOS occupies memory as shown by the following map:

COMMAND
OVERLAYS

01 7000

COMMAND
INTERPRETER

01 2400

CASSETTE
DRIVERS

01 0000 (4K)

DOS FUNCTIONS
07 400

DEBUG

06000
KEYIN & DISPLAY

05 400

FILE HANDLING
OVERLAYS

04 000 (2Kl

DISK FILE
HANDLING ROUTINES

02 000
DATA AREA

01 400
ENTRY POINTS &.

INTERRUPT HANDLER 01 000

SYSTEM LOADER

a

44-8 DISK OPERATING SYSTEM

44.4 Memory Tables

44.4.1 Entry Point Tables

Three entry point tables exist within the DOS. These tables
consist of a group of jumps to the various routines made available
to the user. These jumps allow the system to be changed without
requiring the user to modify his programs. To assure
compatability between operating systems and for future versions of
DOS, any calls to system routines should use the documented entry
points only.

The first entry pOint table is located between 01000 and
01377. It contains entry points to the routines in the loader
(the loader itself, the basic disk read and write drivers, and the
interrupt handler) and to the DOS file handling routines. It also
contains in-line routines to increment and decrement the HL
registers.

The second entry point table is located between 010000 and
010066 and contains entry points to the cassette handling
routines.

The third entry point table is located between 013400 and
013452 and contains entry points to routines within the command
interpreter. The availability of the command interpreter routines
makes small command tasks easy to implement.

See the chapters on System Routines and Routine Entry Points
for details on the routine functions and entry point locations.

44.4.2 Logical File Table

The major working table in the system is called the Logical
File Table (LFT) and is located from 01544 through 01643. It
contains all of the information required by the file handling
routines for every file which is currently open (a maximum of
three files may be open at anyone time - logical files one, two,
and three). Once the user has opened a file by its symbolic name,
he deals with it by the logical file number under which it was
opened. The Logical File Number (LFN) specifies which LFT and
which disk buffer memory page are to be used for a file.

CHAPTER 44. SYSTEM STRUCTURE 44-9

The LFT contains for each entry the following information in
the order shown (the number in parentheses is the number of bytes
used for the item):

PFN

PDN

LRN

BLRN

CSD

RIBCYL
RIBSEC

MAXLRN

LRNLIM

BUFADR

XXXXXX

(1) - Physical File Number, PFN of the file
referenced by this LFT

(1) - Logical Drive Number (bits 3 - 0)
Protection (bit 7 set indicates delete
protection, bit 6 set indicates write
protection) New Space Allocated flag (bit 5)
set if new space has been allocated to this
file.

(2) - Next Logical Record Number, system LRN of next
sequential sector

(2) - Base LRN, first LRN in current segment (system
LRN)

(2) - Current Segment Descriptor
The CSD and BLRN describe the current file
segment and allow quick calculation of the PDA
to be read/written by treating the LRN as an
offset from BLRN. If the desired LRN is not in
the current segment, the RIB is re-read and a
new current segment established.

(1) - Physical Disk Address of RIB, MSB
(1) - Physical Disk Address of RIB, LSB

Storing the RIB PDA allows quickly locating the
RIB when it must be accessed for getting a new
segment descriptor, for allocation updates, or
for file closing.

(2) - Largest system LRN referenced (read, written,
or positioned to) since the file was opened.
Used for space deallocation at close if new
space allocated flag is set.

(2) - Largest LRN allowed. Obsolete field, now
unused.

(1) - Current controller buffer byte address, used
for byte transfers to or from the disk
controller buffer.

(1) - Unused

16 bytes total

There are actually four LFT entries (01544-01563,
01564-01603, 01604-01623, 01624-01643) to correspond to LFNs zero
through three. The LFN used for a file specifies which buffer
page to use for the disk transfer operation. LFN 0 uses buffer
page zero (or 4, 8, or 12), LFN 1 uses buffer page one (or 5, 9,
or 13), and so on. The larger buffer page numbers are available

44-10 DISK OPERATING SYSTEM

on 4K disk controllers and are specified by the high-order bits of
the LFN given to the system routine used. Not all routines
recognize the page-select feature of LFN, check the description of
each routine in System Routines.

Buffer page zero is a special case and is reserved for system
use because the DOS needs a buffer into which it can read the RIB
if it is necessary to determine a new current segment when a given
access is made. This need is only critical on writes, when the
buffer contains the information to be written to the disk. On
reads, the user's data will always be the last item to be read and
and page zero may be used. Always be careful in use of buffer
page zero, however, since an access involving a different logical
file may cause logical file zero's disk buffer to be loaded with a
RIB. Also, the zeroth disk controller buffer is always used by
the system loader in transferring data to memory. Page zero is
used so that an overlay may be loaded or another program can be
chained to without disturbing any of the standard (one through
three) logical files. LFN zero has one final peculiarity, CLOSEs
have no effect when issued on LFN zero. Neither space
deallocation nor updating of the protection field occur when
logical file zero is closed.

The DOS loader uses a set of locations in memory between 4
and 022 to perform the functions of an LFT entry during the
loading process. It knows, however, that an object file is always
sequential and does not have to have the accessing generalization
of the main file handling routines. The file handling routines
also use these low memory locations for temporary storage :of a
specified LFT entry to eliminate having to continually index into
the LFT. Also, since the basic disk read and write routines use
location 5 to indicate which drive is to be used, having the LFT
temporarily stored in the low memory locations automatically
selects the correct drive for use.

44.5 Disk Overlays

DOS uses disk overlays to reduce its main memory
requirements. The overlays are in disk files SYSTEM1/SYS through
SYSTEM7/SYS. The memory-resident DOS is stored in the disk file
SYSTEMO/SYS. These eight files must reside in PFN's 0 through 7,
the PFN corresponding to the number in the file name.

CHAPTER 44. SYSTEM STRUCTURE 44-11

The system overlay files load into memory between 04000 and
05400 and are loaded by the system as needed. The functions of
the overlays are:

SYSTEM1/SYS - PREP - create a new file
SYSTEM2/SYS - CLOSE - close a file
SYSTEM3/SYS - OPEN - open an existing file
SYSTEM4/SYS - ALLOC - allocate more space for a file
SYSTEM5/SYS - ABORT - display an error message
SYSTEM6/SYS - SCREEN - initialize a RAM display screen

SYSTEM7/SYS is the DOS Fuction overlay and is described in
the DOS Function section of the chapter on System Routines. The
DOS Functions are short overlay routines and load into a separate
area of memory. Also, the first sector of SYSTEM7/SYS is used to
store subdirectory names (see the SUR command).

When DOS needs an overlay file, it searches for the file on
the booted drive.

44.6 The Command Interpreter

The command interpreter resides in locations 013400 through
017777. The command interpreter receives command lines from the
keyboard, as described in the chapter on Operator Commands,
storing the command line in memory in the Monitor Communication
Region (MCR$, location 01400 through 01543). When the line is
terminated (ENTER key~ 015), the stored command line is scanned
and the indicated command program is loaded and executed.

While the command interpreter is waiting for character entry
from the keyboard, it runs a test on the disk buffer memory. As
soon as a character is ready from the keyboard, the disk buffer
memory test is terminated and the normal keyin routine is entered.
Even just sriking the CANCEL key will terminate the disk buffer
memory test. If an error is detected by the disk buffer memory
test, the message "DISK BUFFER FAULT" is displayed and the screen
is 'rolled up one line.

When the command interpreter is intially entered via the
entry point DOS$ it will execute the program set for
auto-execution if there is one. If the KEYBOARD key is depressed,
auto-execution is not performed. The autoed program will also~be
run any time the system returns to DOS$; exit routines EXIT$ and
ERROR$ return via this entry point.

When a command line has been entered, the command interpreter

44-12 DISK OPERATING SYSTEM

must attempt to locate and load the specified command program. If
the command is obviously bad (a null entry line) the interpreter
immediately displays "WHAT?" and waits for a new line. A pound
sign (I) for invoking DEBUG is also treated as a special case,
causing the interpreter to immediately go to DEBUG. Normally the
first field on the command line will be normalized to the form
shown below and the file thus specified will be searched for. The
sequence of searching for a requested program depends on the
format of the command line.

If the operator entered a leading "*" or ":" as part of the
command name, a flag called UTILSW (UTILi ty SWi tch) is 'set,
incicating that the specified command is to be located as a member
of UTILITY/SYS. If a drive specification was entered as part of
the command name, the search goes only to the specified drive, as
indicated in the sequence shown below.

The first test the interpreter performs is to check the drive
specification entered, if any. If the drive specification is
invalid, an error message is displayed and a new command line
requested. If the drive specified is valid, or if no drive was
specified, the interpreter searches for the command as outlined
below.

1. If a drive was specified:
a. If UTILSW is set:

(1) Open UTILITY/SYS on the specified drive. If the
file is missing or if the specified command is
not a member, say "WHAT?", else run the program.

b. If UTILSW is not set:
(1) Attempt to open the command file on the specified

drive. If successful, run the program. Else:
(2) If no extension was specified in the command

name, open UTILITY/SYS on the specified drive and
search for the command as a member of the
library. Else:

(3) "WHAT?" and get another command.
2. If no drive was specified:

a. If UTILSW is set:
(1) Open UTILITY/SYS on the booted drive and search

for the command as a member of the library.
Else:

(2) Try to open command as a file on booted drive.
Else:

(3) Check for command in UTILITY/SYS on any drive.
Else:

(4) Try to open comand as a file on any drive. Else:
(5) "WHAT?" and get another command.

CHAPTER 44. SYSTEM S~RUCTURE 44-13

b. If UTILSW is not set:
(1) Try to open command as a file on booted drive.

Else:
(2) If no extension was specified in the command

name, open UTILITY/SYS on the booted drive and
check for the command as a member of the library.
Else:

(3) Try to open command as a file on any drive. Else:
(4) If no extension was specified in the command

name, open UTILITY/SYS on any drive and check for
the command as a member of the library. Else:

(5) "WHAT?" and get another command.

The command interpreter uses lexical scanning routines to
interpret the entered command line. These routines are available
for user programs and are described in the chapter on System
Routines. The command interpreter scans up to four file
specifications from the command line. The file name scan is
terminated by a semicolon (;) or end-of-string (015). The file
specifications are entered in a normalized symbolic form into the
corresponding logical file table entries (0 through 3). The
normalized form is not the same as normal LFT information, the LFT
area simply provides convenient storage for the file
specifications. If desired (and it usually is), the open routine
can open a file using the LFT in which the file name used for the
open is stored. The format of the normalized form is shown here:

DRCODE (1) - Drive select code: logical drive number in
binary, no drive spec (0377), invalid drive
spec (0376)

0377 (1)

FILENAME (8)

- PDN location of normal LFT, set to 0377 to
indicate the LFT is closed.

- File name specified, padded with trailing
spaces to 8 characters. Eight spaces if no
name given.

FILEEXT

DRSPEC
..

(3) - File extension specified. Three spaces if no
extension entered.

(3) - Logical drive specification (spaces if no
spec) .

When a program receives control from the command interpreter,
LFT's one through three (zero was used to load the program itself)
contain normalized entries as indicated above, and MCR$ still
contains the command as entered, so the program can retrieve
information from its command line. If a program is auto-executed,
none of this command line information is available, so any program
which tests for information as provided above can not be
auto-executed. Conversely, any program intended for

44-14 DISK OPERATING SYSTEM

auto-execution must not look for command information. The command
AUTOKEY is provided to allow automatic execution of programs
requiring command line information.

CHAPTER 44. SYSTEM STRUCTURE 44-15

CHAPTER 45. INTERRUPT HANDLING

45.1 Interrupt Mechanism

Datapoint 1100, 2200, and 5500 processors feature a
one-millisecond timed interrupt. Every millisecon~, a flip-flop
indicating "interrupt pending" is set; the setting of this
flip-flop occurs independently of processor instruction cycling.
At the beginning of an instruction fetch cycle the status of the
interrupt pending flip-flop is checked. If the flip-flop is set,
a CALL to the interrupt vector location occurs and the flip-flop
is cleared. On 1100 and 2200 processors, the interrupt vector
location is address O. On 5500's the interrupt vector location is
address 0167444, which normally immediately performs a jump to
location O. While interrupts are active, location zero is a jump
to the interrupt scheduler.

The execution of the CALL ends hardware control of the
interrupt. Any interrupt service performed, task scheduling, or
prioritizing is under software control.

The machine instruction DI (Disable Interrupts) prohibits
recognition of the interrupt pending flip-flop, thereby preventing
any interrupt calls until recognition of the flip-flop is
reactivated by an EI (Enable Interrupts) instruction.

45.2 Interrupt Scheduler

DOS provides an interrupt scheduler loaded as part of the
system boot operation. The scheduler resides between 01201 and
01376 and remains memory-resident. Normal system operation never
overstores this scheduler. The basic coding of the scheduler is
shown below. The code shown is intended as an example of the
structure of the scheduler and is not the exact code used within
DOS.

CHAPTER 45. INTERRUPT HANDLING 45-1

INTRPT

INTO
INT1
INT2
INT3

RETURN

INTSCN
.
INT4

INT5

INT6

INT7

INTRET

DI
BETA
CALL
CALL
CALL
CALL
MLA
AD
LMA
AD
LLA
PUSH
RET

DC

CALL
JMP
CALL
Jt1P
CALL
JMP
CALL
XRA
MSA
ALPHA
EI
RET

RETURN
RETURN
RETURN
RETURN
*INTSCN
6

INT4-6

o

RETURN
INTRET
RETURN
INTRET
RETURN
INTRET
RETURN

*INTSCN

Disable interrupts
Use BETA mode
Perform each of processes 0

through
three

Rotate to the next
one of processes
}~ through 7

HL => CALL address
Jump to the

next CALL

Rotation counter storage

CALLs for the rotating
process slots

Reset the scan pointer
after calling process 7

back to ALPHA mode
Enable interrupts
Back to the background

All processing performed on an interrupt call is called
"foreground", the processing interrupted is referred t'o as
"background". Foreground processing begins with the DI
instruction labeled INTRPT above and ends with the RET instruction
terminating the schedule~. The above scheduler illustrates the
fundamental rules of foreground code on a Datapoint processor:

1. Interrupts must be disabled during foreground. The
scheduler disables interrupts initially and does not
enable interrupts until immediately before terminating.
Any foreground processes must not enable interrupts.

2. Foreground processing is performed in BETA mode,
background processing in ALPHA mode. The scheduler sets
the machine modes; foreground processes should not change
the mode.

3. Foreground processes are CALLed routines and must return

45-2 DISK OPERATING SYSTEM

with the stack in the same condition as on entry. Each
CALL instruction INTO through INT7 can be used to call a
foreground routine. The scheduler itself uses a simple
RET to return to background processing; if any foreground
routine modified the stack, the scheduler could exit to
the wrong location. Even if the scheduler manages to
return properly, the background process uses the same
stack (there is only one stack) and any modification
performed by foreground routines could be fatal to the
background processing.

4. Register contents on entry to foreground processing may be
undefined. Normally the BETA mode registers and condition
flags will be the same on entry to foreground as they were
at the conclusion of foreground processing on the previous
interrupt, so contents on entry can be considered as
known. Under PS, however, the BETA mode registers and
condition flags are not preserved, since they are used by
PS and by the other partition. Even when PS is not in
use, register contents cannot be predicted if there is a
possibility of multiple foreground routines being active.
If a single routine is active, registers may be preserved;
if another routine or two is made active, they may modify
the registers used by the first routine, effectively
destroying any expected contents.

45.3 Active Processes

Each of the labeled CALLs in the scheduler, INTO - INT7, is
called a foreground "process" or, sometimes, an interrupt "slot",
and is referenced by number 0 through 7.

Normally each foreground process is inactive, since each CALL
invokes only a return to the scheduler. A process is made active
by overstoring the address RETURN following the process CALL with
the entry address of a desired foreground routine. The address so
stored is called the "state" of the foreground process. (Two DOS
routines, SETI$ and CS$, set the state of a process.) Thus if the
address PRINT is stored Isb, msb in INT1+1 and INT1+2 (the address
area following the CALL at INT1) the state of foreground process 1
is PRINT. Once a process has been made active -- given a state -
it can again be made inactive by storing the adress RETURN back
into the two bytes following the CALL. (Two DOS routines, CLRI$
and TP$, terminate processes in this manner.) While a process is
active, the routine it calls will be performed once every
interrupt cycle, or every fourth cycle depending on the slot
number used.

CHAPTER 45. INTERRUPT HANDLING 45-3

The scheduler is structured to provide four "one-millisecond"
processes and four "four-millisecond" processes. The
"one-millisecond" and "four- millisecond" designations refer to
the length of time between sequential executions of the process.
Interrupt slots 0-3 are one-millisecond processes; each process is
executed every time an interrupt occurs. Interrupt slots 4-7 are
four-millisecond processes; one of the four is executed every time
an interrupt occurs, so anyone process is executed only every
fourth millisecond.

45.4 Timing Considerations

The greatest constraint on foreground routines is timing,
mainly the total length of time required to execute. Since an
interrupt occurs every millisecond, the total amount of time spent
in foreground must be less than 1000 microseconds. Thus the
amount of time spent executing each active foreground routine and
the interrupt scheduler itself (130 microseconds on a 2200) must
total less than a millisecond. If the time spent in foreground is
more than a millisecond, the interrupt pending flag will already
be set when the interrupt scheduler executes its final RET, so an
interrupt call will immediately occur and no background processing
will be performed.

Also, if more than one millisecond is spent in foreground,
interrupts can be dropped. The interrupt pending flag has only
off and on values. If an interrupt signal occurs and the flag was
already set, it simply stays set and the occurrence of the
interrupt pulse has no effect -- the interrupt is,lost. If, for
example, 1200 microseconds is being spent in for~ground on each
interrupt, only 5 interrupt calls will occur in a 6 millisecond
time interval. One interrupt was lost because the flag was
already set when its signal occurred. In a similar fashion,
interrupts can be lost if interrupts are disabled for too long in
background.

Another timing concern is "jitter". Jitter describes the
variation in interrupt timing: it is not exactly one millisecond
between interrupt calls. The timing variation occurs mainly
because of time spent in background with interrupts disabled. If
background processing disables interrupts for 200 microseconds
(200 microseconds of jitter) it could be 1200 microseconds between
interrupt calls if the interrupt pending flag were set immediately
after interrupts became disabled. An additional source of jitter
is time spent in foreground processes. Any variation in the
execution time of process 0 appears as jitter to process 1.

45-4 DISK OPERATING SYSTEM

Jitter must be taken into account when designing any program
structure. If an external device is being serviced by interrupts
and the device presents a character for input every 1.4
milliseconds, jitter must not exceed 400 microseconds. If the
jitter were over 400 microseconds, a character could appear ready
and then be overstored by the next character before an interrupt
occurred to service the device. A good guideline is 200
microseconds maximum for the user's code.

45.5 DOS Interrupt Routines

DOS provides four utility routines for interrupt processing.
Use of these routines simplifies interrupt process coding and
helps assure DOS compatibility. For full descriptions of
parameterization of these routines, see the chapter on System
Routines.

45.5.1 SETI$

SETI$ changes the state of a foreground process. SETI$ is
usable only from background and is generally used to initiate a
previously inactive process. The routine accepts a specified
address and stores the address following the CALL instruction of a
specified interrupt slot. Even if the process was previously
active, the new state is stored over the old state.

45.5.2 CLRI$

CLRI$ terminates a foreground process. The address of RETURN
(see sample scheduler above) is stored following the CALL of the
specified process number. Any routine active from that interrupt
slot is then inactive. CLRI$ is used from background.

45.5.3 CS$

CS$, like SETI$, changes the state of a foreground process,
but is used from foreground. A call to CS$ affects only the
process performing the call. CS$ changes the state of the process
to the address of the instruction following the "CALL CS$" and
returns -- not to the invoking routine -- but to the interrupt
scheduler. Due to the stack manipulations performed by CS$ it
must be called only from the outermost stack level of a foreground
routine; it must not be called from a routine called by the main
routine. CS$ does not enable interrupts.

CHAPTER 45. INTERRUPT HANDLING 45-5

45.5.4 TP$

TP$ terminates a foreground process, like CLRI$, but is
itself called from foreground. TP$ affects only the foreground
process from which it is called, setting the state of that process
to RETURN to deactivate the process, and returning to the
scheduler. Like CS$, TP$ ~ust be called only from the outermost
stack level of a foreground routine. TP$ does not enable
interrupts.

45.6 Programming Considerations

45.6.1 Background Code

If interrupt processing is to be used, the mainline program
code must be written "interruptable" with the realization it may
be interrupted anytime interrupts are not disabled. For most
processing, no particular concern is necessary, since if the
interrupt processes are coded correctly the stack, registers, and
condition flags are unchanged after interrupt processing so the
background code will never notice the interruption. Coding for 1/0
device handling is the most critical part of interruptable code,
since during interrupt processing the selected 1/0 device can
change.

Interrupts must be disabled any time the currently selected
1/0 deVice is critical: between addressing the device and testing
status, between addressing the device and issuing a command, etc.
At the same time, interrupts must not be disabled for too long a
time, due to introducing excessive jitter or even dropping
interrupts. It is especially important to be certain interrupts
are enabled for at least one instruction cycle in any wait loop
least interrupts be delayed for the duration of the loop.

If the background code uses BETA mode, interrupts must be
disabled all the time BETA mode is in use. If an interrupt occurs
while in BETA mode, the registers and condition codes will be
modified by the scheduler and foreground routines and results on
the background program could be disastrous. Background code
should not generally use BETA mode.

All DOS utility routines are written completely interruptable
and disable interrupts for a maximum of 200 microseconds. DOS
routines return with interrupts enabled.

45-6 DISK OPERATING SYSTEM

45.6.2 Foreground Code

Duration of foreground routines is of primary concern. If a
routine is too long to execute in a single interrupt cycle, split
its operation using CS$ or successive four-millisecond processes.
Foreground routines should never use a wait loop; they should
return, using the delay of background processing to wait for the
next interrupt.

Additionally, foreground routines:

1. Must not enable interrupts.
2. Must exit with the stack in the same condition as on

entry.
3. Must not use mode instructions.
4. Should not assume register conditions have been preserved.

Be sure to terminate foreground processes when they are no
longer needed. A process left active uses up machine time. When
a program finishes any active foreground processes remain active.
These foreground processes at best slow down the system, and may
cause CALLs to locations that have been overstored with other
code, causing unpredictable results. Be sure to terminate all
foreground processes at program exit.

DOS itself uses foreground processing in only a few
instances: the cassette driver routines, the DEBUG P-counter
display, and the delay function (DOSFUNC 8).

CHAPTER 45. INTERRUPT HANDLING 45-7

CHAPTER 46. SYSTEM ROUTINES

46.1 Parameterization

Parameters are passed to the subroutines through the
registers. In the discussion of these parameters, the following
abbreviations will be used:

also:

LFN - Logical File Number times 16 (16, 32, or 48)
LRN - Logical Record Number (the user's LRN)
PFN - Physical File Number
LFT - Logical File Table

Drive Number - indicates a logical drive number (0 through N,
where N is the maximum number of logical drives
supported by the DOS in use). In some routines, 0377
is used to indicate that all drives are to be checked.

Name- the address of a field containing exactly eleven bytes.
The first eight bytes are the file name and the last .
three bytes are the file extension by command
interpreter convention. The name characters may be any
eight bit combinations except the first character must
not be a 0377. The command interpreter requires that
all characters be letters or digits.

46.2 Exit Conditions

If a routine fails to perform as expected, some indication
must be made that the expected action did not occur. This
indication is given by the condition flags in the processor being
set in a special manner or by control being transferred to a trap
location instead of returned via the subroutine mechanism. The
'Exit conditions' section of each subroutine description shows the
register contents and condition flags of interest when the routine
returns.

CHAPTER 46. SYSTEM ROUTINES 46-1

46.3 Error Handling

Minor errors are indicated by the Exit Condition of the
routine called. Major errors cause a trap -- an automatic grab of
program control by the operating system. The trap for each type
of error transfers control to a specified location, which will
display an appropriate error message.

Minor errors are always non-fatal; the program can test the
Exit Conditions and determine what action to take. Major errors
can be fatal or non-fatal. When a trap occurs, the system will
simply display a message and restore itself, causing a fatal
program error. Many major error traps can be intercepted by the
program and given special treatment, as described in the section
on TRAP$ below.

46.4 Foreground Routines

The chapter on Interrupt Handling contains a complete
discussion on the functioning and use of the foreground handling
and should be consulted for an understanding of the following
routines.

46.4.1 CS$ - Change Process State

CS$ changes a foreground routine's state. It is called by
the executing foreground routine and causes its execution address
to be changed to the address following the CALL CS$. Execution
will not continue at the new address until the next interrupt
occurs. CS$ is normally called from the outermost stack level
(level 0) of an active foreground process. Calls to CS$ from
deeper stack levels of the routine must be very carefully planned
and are 'not recommended.

Entry point:

Parameters:

01033

on subroutine stack - see the Chapter on Interupt
Handling

Exit conditions: return is made to the scheduler

46-2 DISK OPERATING SYSTEM

46.4.2 TP$ - Terminate Process

TP$ d ~~~vates the process called by
a return instruction in the process call.
called. TP$ is invoked from the outermost
of an active foreground process.

Entry point: 01036

storing the address of
TP$ is jumped to, not
stack level (level 0)

Parameters: on the stack - see the Chapter on Interrupt
Handling

Exit conditions: no exit, return to Interrupt Scheduler

46.4.3 SETI$ - Initiate Foreground Process

SETI$ activates the interrupt process specified by the number
in the C register (0-7) by storing the address given in the D and
E register into the CALL instruction for that process and enables
the interrupt handler (stores JMP INTRPT in location 0).
Interrupt processes zero through three are executed every
millisecond while four through seven are executed every fourth
millisecond.

Entry point: 01041

Parameters: C = process number (0-7)
DE = address of foreground process

Exit conditions: B,D,E unchanged
H,L = 0

46.4.4 CLRI$ - Terminate Foreground Process

CLRI$ deactivates a foreground process by storing the address
of a return instruction into the process call specified by the
number in the C register (0-7) and enables the interrupt handler
(stores JMP INTRPT in location 0).

Entry point: 01044

Parameters: C = process number (0-7)

Exit conditions: B unchanged
H,L = 0

CHAPTER 46. SYSTEM ROUTINES 46-3

46.5 Loader Routines

There are two levels of disk handling routines. This section
describes the lower level routines which reside in the loader and
require numbers physically describing the drive, cylinder, sector,
buffer, and file. The section on File Handling Routines describes
the upper level routines.

INCHL and DECHL are described in this section only because
they are used by the DOS at all levels and because these two
routines are loaded as part of the bootblock. In general, the
other routines described in this section are not used by typical
user programs; most user programs will be better served by the
higher level routines described in the section on File Handling
Routines.

46.5.1 BOOT$ - Reload the Operating System

BOOT$ loads and executes the operating system (PFN 0 on the
booted drive). This action does not affect the interrupt handling
facility between 01000 and 01377. Since BOOT$ requires that the
operating system always be loaded from specifically the booted
drive, BOOT$ should normally only be used in cases where EXIT$ is
unusable, for example if the disk handling routines have been
overstored. BOOT$ does not close any files before reloading the
DOS.

Entry point: 01000

Parameters: none

Exit conditions: does not return

46.5.2 RUNX$ - Load and Run a File by Number

RUNX$ loads the physical file specified and begins its
execution. If the file cannot be loaded, a jump to BOOT$ occurs.

Entry point:, 01003

Parameters: A = PFN
C = Drive Number

Exit conditions: does not return

46-4 DISK OPERATING SYSTEM

46.5.3 LOADX$ - Load a File by Number

LOADX$ loads the physical file specified and returns with the
starting address in HL if the load was successful.

Entry point: 01006

Parameters: A = PFN
C = Drive Number

Exit conditions: Carry false: HL = Starting address of file
Carry true: A=O if file does not exist

1 if drive off line
2 if directory parity fault
3 if RIB parity fault
4 if file parity fault
5 if off end of physical file
6 if record of illegal format

46.5.4 INCHL - Increment the Hand L Registers

INCHL increments the sixteen bit value in the HL registers by
one. If the routine is entered at INCHL+2, the sixteen bit value
in the HL registers will be incremented by the number in the A
register.

Entry point: 01011 (01013 for increment by A)

Parameters: HL = number to be incremented
A = increment value if INCHL+2 used

Exit conditions: HL incremented
A equal to the H-register
B,C,D,E unchanged
CARRY condition undefined

46.5.5 DECHL - Decrement the Hand L Registers

DECHL decrements the sixteen bit value in the HL registers by
one. If the routine is entered at DECHL+2, the sixteen bit value
in the HL registers will be decremented by negative the number in
the A register (e.g., for decrement by 2, A is set to -2).

Entry point: 01022 (01024 for decrement by -A)

Parameters: HL = number to be decremented

CHAPTER 46. SYSTEM ROUTINES 46-5

A = decrement value if DECHL+2 used

Exit conditions: HL decremented
A equal to the H-register
B,C,D,E unchanged

46.5.6 GETNCH - Get the Next Disk Buffer Byte

GETNCH gets the character from the physical disk buffer
location pointed to by low memory location DOSPTR (location 026)
from the disk buffer currently selected, and then increments the
contents of the location DOSPTR.

Entry point: 01047

Parameters: DOSPTR = disk buffer address (0-255)

Exit conditions: A = character from disk buffer
(DOSPTR) = (DOSPTR)+1
B,C,D,E,H,L all unchanged

46.5.7 DR$ - Read a Sector into the Disk Buffer

DR$ causes a sector to be transferred from the disk to one of
the disk controller buffers. The drive number is given in the
least significant bits (the others are ignored) of location
TFT+PDN (5). (The number of bits ignored depends upon the
particular DOS in use). The physical disk address (LSB) is given
in the E register and the physical disk address (MSB) is given in
the D register. The disk controller buffer number times sixteen
is given in the B register. Interrupts are disabled by this
routine a maximum of 100 microseconds.

Compatibility note: Here the user should be reminded that
the physical disk address format will vary; the user's program
should not make assumptions regarding this format if the program
is to be transportable between different DOS. The most
significant byte is generally a cylinder number, and the least
significant byte is a sector address within a cylinder. This
least significant byte especially will vary among DOS. In
general, the only safe way to insure a valid, proper physical disk
address (PDA) is to get it as a returned item from a system
routine (POSIT$ or one of the DOS FUNCTIONs, to be described
later). User program generation of or manipulation of physical
disk addresses is strongly discouraged.

46-6 DISK OPERATING SYSTEM

DR$ tries between four and ten times to read a record
(depending upon the disk drive type in use), if parity faults are
detected, before giving an abnormal exit status. Note that since
this routine is used by all of the higher level routines, all disk
reads performed by the disk operating system try to read a record
that shows parity problems that same numbe~ of times before giving
up.

Entry point:

Parameter:

01052

B = 16 times buffer number
D = physical disk address (MSB)
E = physical disk address (LSB)
TFT+PDN (at loc 5) = logical drive number

Exit conditions: B,D,E,TFT & PDN all unchanged
Carry false if read successful
Carry true and Zero false if drive off line
Carry true and Zero true if parity fault

46.5.8 DW$ - Write a Sector from the Disk Buffer

DW$ causes the contents of one of the disk controller buffers
to be transferred to a sector on the disk. If the write
protection on the specified drive is enabled, DW$ will beep
continuously until the protection is disabled.

There are two types of write protection in the disk operating
system. The first type is a physical protection that is part of
the disk drive hardware which will cause DW$ to beep if set. The
second type of write protection is a logical protection that is
connected with each file on a disk. A bit exists in the directory
entry for each file which, if set, will prevent the higher level
routines (for example, WRITE$) from calling the DW$ routine. It
is important not to confuse these two types of write protection.
All references to write protection that follow refer to the
logical protection on each file and not to the physical protection
on the drive itself.

In DOS, DW$ uses the write/verify mode of the disk
controller. This implies that all writes made by these disk
operating systems use this mode of writing. As in the DR$
routine, several tries will be made if parity faults occur before
abnormal exit will occur. In all other respects, DW$ is similar
to DR$.

Entry point: 01055

CHAPTER 46. SYSTEM ROUTINES 46-7

Parameters: B = 16 times buffer number
D = physical disk address (MSB)
E = physical disk addres~ (LSB)
TFT+PDN (at loc 5) = drive number

Exit conditions: B,D,E,~FT & PDN unchanged
Carry false if write successful
Carry true and Zero false if drive off line
Carry true and Zero true if parity fault

46.5.9 DSKWAT - Wait for Disk Ready

DSKWAT waits for disk ready, controller ready, no disk I/O
transfer in progress, and drive online to all be true. If the
drive is not online, return is made with the carry flag true, the
zero flag false, and interrupts enabled. Otherwise, exit is made
with interrupts disabled. This routine is obsolete and is not
available under ~ systems (~.g. PS). Therefore, it should no
longer be used.

Entry point: 01060

Parameters: none (drive checked is the selected drive)

Exit conditions: explained above
B,C,D,E,H,L unchanged

46.6 File Handling Routines

A file is dealt with as a logically contiguous and randomly
accessible space. The file being used is specified by its
symbolic name or by its PFN. The LRN being dealt with within that
file is determined by a two-byte number kept within the system
(LRN in the LFT). When a file is opened, the LRN is set to two.

Always note the distinction between SYSTEM LRN and USER LRN .
. The LRN in the LFT is the system LRN. System LRN zero is the

primary RIB for the file and system LRN one is the RIB backup.
System LRN two is user data sector zero. All logical record
numbers supplied to system routines (e.g. POSIT$) are user logical
record numbers. These numbers are converted to system logical
record numbers before being used by the DOS or placed into the
LFT. In the routine descriptions below, "LRN" refers to the user
LRN unless otherwise specified.

After each record access (READ$ or WRITE$), LRN is

46-8 DISK OPERATING SYSTEM

incremented. Thus, for sequential accesses, the user does not
actually specify which record he is dealing with. However, a
routine named POSIT$ allows the LRN to be changed to any value
between zero and the upper limit on the file, providing a random
access facility. (This upper limit depends upon the DOS in use).

All of the logical file handling routines automatically
create or verify the PFN and LRN of the file sector being handled
(see Disk Structure).

It must be noted that READ$ and WRITE$ provide sequential
processing of file sectors, but do not automatically handle the
Datapoint sequential text file format. All necessary
end-of-record (015) and end-of-sector (003) bytes must be placed
in the disk buffer under program control; the system routines do
not provide these control bytes. Likewise, the CLOSE$ routine
does not provide any end-of-file mark. To provide a valid text
EOF, the user program must write an EOF byte by byte. For
Datapoint file formats see the chapter on REFORMAT for text file
format and the section on Disk Data Formats for object code
format.

46.6.1 PREP$ - Open or Create a File

PREP$ searches the directory or directories specified for the
given name. If the name is found, the file is simply opened for
use as the specified logical file number. Otherwise, a new file
having the name specified will be created. If a new file is

.created, an end of file by GEDIT convention (six zeros followed by
an 003) is written in logical record zero. Whether the file is
simply opened or is created, the information describing it is
stored in the LFT entry specified so that all subsequent
references to that file by its LFN will be able to deal with the
correct locations on the disk. If the LFT entry specified is
already in use when PREP$ is called, the file that the entry
specifies will be closed (see the section on CLOSE$) and then the
new file opened in its place.

DE is the address of an 11-byte string which is the name of
the file being specified (as explained before under the section on
PARAMETERIZATION).

Entry point: 01063

CHAPTER 46. SYSTEM ROUTINES 46-9

Parameters: B = LFN
C = Drive Number or 0377
DE= Points to name string

Exit conditions: B = LFNj other registers indeterminate

Traps: SPACE if a new file must be created and
no space is left or no more directory
entries are available

OFF-LINE If the DRIVE specified is off-line.

46.6.2 OPEN$ - Open an Existing File

OPEN$ is similar to PREP$ except for the action taken if the
file specified does not exist. In this case, return is made with
the Carry condition true (return is made with it false if the file
exists). In addition, a file may be opened by PFN. To specify
the PFN of the desired file, set the D register to zero and load E
with the PFN. Action taken to open by PFN is the same as that
taken if a name is specified.

Entry point:

Parameters:

01066

B = LFN
C = Drive number or 0377
DE ; Pointer to file name or

D = O,E = PFN

Exit conditions: B = LFNj other registers indeterminate
Carry true if the file is non-existent

Traps: none

46.6.3 LOAD$ - Load a File

LOAD$ opens the specified file as logical file zero and then
calls the system loader to load it into memory. Exit is made with
the Carry condition set if the file is non-existent, or if the
drive specified (if any) is off line. If the load is successful,
return is made with the starting address in the Hand L registers.

Entry point: 01071

Parameters: same as for OPEN$ (except B not required)

Exit conditions: B = LFN (always zero)

46-10 DISK OPERATING SYSTEM

HL = starting address if good load
Carry true if file non-existent or drive off-line

Traps: OFFLIN
RPARIT
RANGE
FORMAT

drive went off line after loading began
file contains parity fault
loader ran off end of file
record of bad loader format

46.6.4 RUN$ - Load and Run a File

RUN$ opens the specified file as logical file zero and then
calls the system loader to load it into memory. Return is made to
following the call if the name specified cannot be found in the
directory or directories specified. If any loading errors occur,
the operating system is reloaded. Otherwise, control is
transferred to the starting address given by the loader.

Entry point: 01074

Parameters: same as for OPEN$
(except that B is not required)

Exit conditions: returns if name not in directory
operating system reloaded if bad load
otherwise, control is passed to the
starting address of the new file.

Traps: none

46.6.5 CLOSE$ - Close a File

When new space is allocated for a file, a large contiguous
piece (up to one full segment) is taken in an effort to keep the
file as physically contiguous as possible. When this allocati6n
takes place, a flag in the LFT, called the new space allocated
flag, is set. The LFT also contains a number which is the largest
LRN referenced while the file was open. When CLOSE$ is called,
the file is physically truncated after the largest LRN referenced,
if the new space allocated flag is set. Thus, if only a few
records of the new space allocated have been used, the rest of the
space is freed for use in other files. However, if all of the
space is used, the file will consist of a large amount of
physically contiguous space. Note that if CHOP$ was called with
the D register set to -1 (0377), and the LRN in the LFT has not
been changed, a call to CLOSE$ will delete the entire file and
remove its entry from the directory.

CHAPTER 46. SYSTEM ROUTINES 46-11

After the file has been truncated, if necessary, CLOSE$ then
writes the copies of the protection bits and old file length limit
field that are in LFT entry back into the directory. Therefore,
one only needs to change these entries in the LFT and then close
the file to have them changed in the directory. This is the basis
for the functioning of the CHOP$ and PROTE$ routines. Since the
protection bits and old file length limit field are not changed on
the disk until the CLOSE$ routine is called, if one changes these
numbers and then, for some reason, reloads the system without
calling the CLOSE$ routine (by depressing RESTART before the file
is closed, for example) the disk will retain the old values.

NOTE: If you want to de-allocate file space (CHOP$) following
a 'protection change (PROTE$), you must CLOSE and re-OPEN the file.

DE NAME FILE NAME
LC -1 DRIVE
CALL OPEN$ OPEN THE FILE
LC 1 CHANGE PROTECTION
CALL PROTE$ CHANGE PROTECTION
CALL CLOSE$ NOW, SET THE PROTECTION
DE NAME RE-OPEN THE FILE
LC -1
CALL OPEN$
DE -1 CHOP THE FILE
CALL CHOP$
CALL CLOSE$ AND DELETE IT.

NAME DC 'SCRATCH TXT' FILE NAME TO BE DELETED

After the protection and file length limit have been stored
in the directory, CLOSE$ then vacates the LFT entry specified by
storing an 0311 in the second byte of the entry (this is the drive
number and 0311 denotes that the LFT entry is not in use). CLOSE$
simply returns if the LFT entry lS not in use.

Entry point: 01011

Parameters: B = LFN (16,32,48; 0 => NOP)

Exit conditions: B = LFN; other registers indeterminate

46-12 DISK OPERATING SYSTEM

Traps: none

46.6.6 CHOP$ - Delete Space in a File

CHOP$ sets the LFT entry to deallocate file space following
the given LRN. If the CLOSE$ routine is called after the call to
CHOP$ without the LRN being changed, the space after the specified
LRN will be physically deleted from the file, making it free again
for allocation by the system. Note that if the D register is set
to -1 (0377) upon entry to CHOP$, calling the CLOSE$ routine will
completely delete the file from the system (removing its entry
from the directory as well as freeing all of its space). When an
entry is deleted from the directory, all sixteen bytes of the
directory for that entry are set to 0377 (value set by the system
generation program for unused directory entries).

Remember that calling CHOP$ only affects the LFT entry and
that no physical change on the file is effected until CLOSE$ is
called.

Entry point: 01102

Parameters: B = LFN
DE = LRN if D not 0377
D = -1 (0377) to delete entire file

Exit conditions: B = LFN; other registers indeterminate

Traps: RANGE
DVIOLA
WVIOLA

DE not less than MAXLRN referenced
delete protection is set
write protection is set

46.6.7 PROTE$ - Change the Protection on a File

PROTE$ changes the file protection bit and/or upper file
length limit copies that are kept in the LFT. The protection
bits, given in the C register, are changed only if the least
significant bit of the C register is a one. The old upper file
length limit field is changed only if the sign bit of D is one on
entry. The~efore, setting the number to zero prevents the limit
field from being changed. Note that the file length field is
obsolete and is no longer used by the DOS; it is maintained for
future use.

Remember that calling PROTE$ only affects the LFT entry and

CHAPTER 46. SYSTEM ROUTINES 46-13

that no physical change on the file is effected until CLOSE$ is
called.

Entry point:

Parameters:

01105

B = LFN
C = new protection:

CO = 1 for protection change
C6 = 1 for write protection
C7 = 1 for delete protection

DE = new LRN limit field; 0 for no change

Exit conditions: B = LFN; other registers indeterminate

Traps: none

46.6.8 POSIT$ - Position to a Record within a File

POSIT$ positions the file logically to the user LRN given. If
the user LRN given is -1, the current value in the LFT is used for
positioning the head and the LFT entry is not changed. Note that
positioning to user LRN zero performs a logical 'rewind' of
sequential files.

Entry point: 01110

Parameters: B = LFN
DE = LRN (use LRN from LFT if DE = -1)

Exit conditions: B = LFN

Traps:

D = Physical
E = Physical
ZERO FALSE:
ZERO TRUE:

Disk Address (MSB)
Disk Address (LSB)
DE are valid, position was valid

DE are invalid, specified sector not
in allocated space

other
none

registers indeterminate

46.6.9 READ$ - Read a Record into the Buffer

READ$ causes the record pointed to by the LRN in the LFT
entry specified by the LFN given, to be transferred from the disk
to the disk controller buffer that corresponds to the LFN given.
The LRN is incremented by one after the read if it was successful.
READ$ perorms four to ten retries, if a parity fault is detected
before giving a parity trap. Attempting to read a record that is

46-14 DISK OPERATING SYSTEM

not physically allocated will cause the 'RANGE' trap.

Entry point: 01113

Parameters: B = LFN

Exit conditions: B = LFN; other registers indeterminate
LRN = LRN + 1 if successful

Traps: RANGE
RPARIT
FORMAT
OFFLIN

LRN out of range
record unreadable
PFN or LRN in record incorrect
dri ve off line

46.6.10 WRITE$ - Write a Record from the Buffer

WRITE$ first takes the PFN and LRN values from the
appropriate LFT and stores them into the first three bytes of the
disk controller buffer that corresponds to the LFN given. It then
transfers that buffer to the disk sector specified by the LRN.
The LRN is incremented after the write if it is successful. Note
that all system routines use DW$ in writing records and hence try
up to ten times to obtain a good write, if a parity fault is
detected, before giving the trap.

If WRITE$ tries to write a record beyond the space already
allocated to the file, it will automatically try to allocate more
space. If the space is available, it is allocated and the write
occurs. If there is no more physical space on the disk or if
there are no more entries in the RIB available for the new segment
descriptor, a 'SPACE' trap is given.

Entry point: 01116

Parameters: B = LFN

Exit conditions: B = LFN; other registers indeterminate
LRN = LRN + 1 if successful

Traps: WVIOLA
WPARIT
OFFLIN
RANGE
SPACE

file is write protected
write/verify failure
drive off line
LRN < 0
explained above

CHAPTER 46. SYSTEM ROUTINES 46-15

46.6.11 GET$ - Get the Next Buffer Character

The LFT contains an entry called BUFADR (not to be confused
with loco 026 used by GETNCH) which points to a character in the
disk controller buffer that corresponds to the given LFN. Each
buffer contains 256 characters but since the system uses the first
three bytes in each sector to store the PFN and the LRN of each
record, the user has only 253 bytes available.

Whenever READ$, WRITE$, or POSIT$ are executed, they set
BUFADR to point to the third byte in the disk controller buffer
(by setting the BUFADR field of the LFT entry to a three).
Whenever GET$ is called, the byte pointed to by this pOinter is
fetched from the disk controller buffer and the pointer is
incremented. If the byte being returned is not a valid user data
byte (i.e. BUFADR was 0,1,or 2 on entry) then carry is true on
return, and register A contains the specified byte of the buffer
(which will be PFN or one of the LRN bytes.) Note that the next
buffer is not read automatically from the disk; the pointer simply
ends-around. Upon the first call of GET$ which returns carry
true, the PFN will be obtained since it is contained in buffer
location zero. A byte may also be accessed by simply setting
BUFADR to the desired location.

Entry point: 01121

Parameters: B = LFN

Exit conditions: A = the byte obtained from the buffer
All other registers preserved
Carry true if location 0, 1,or 2 accessed

Traps: none

46.6.12 GETR$ - Get an Indexed Buffer Character

GETR$ is similar to GET$ except that it uses the logical
buffer address supplied in the C register instead of the physical
buffer address in the LFT for the address of the disk buffer byte
to return. Calling GETR$ has no effect on the buffer pointer kept
in the LFT. The physical buffer location is obtained by adding
three to the value given in the C register to skip past the system
data in the first three bytes in the disk buffer. Thus the user
is presented with a logical space within a record that is
addressed from ° through 252. Normally, GETR$ exits with the
value in the C register incremented by one and the carry condition
false. However, if the C register is between 253 and 255

46-16 DISK OPERATING SYSTEM

(inclusive) upon entry, it will not be incremented and exit will
be made with the carry condition true. In either case, the buffer
byte located by the C register value plus three is returned in the
A register. Therefore, the user may obtain any buffer byte with
GETR$ but must remember to supply an address which is the physical
buffer address minus three and remember not to assume that the C
register will be incremented if he plans to access one of the
first three physical bytes.

Entry point: 01124

Parameters: B = LFN
C = buffer location

Exit conditions: A = byte obtained

Traps:

C = C + 1 if carry false
Carry true if 252 < C < 256
All other registers preserved

none

46.6.13 PUT$ - store into the Next Buffer Position

PUT$ is similar to GET$ except that the byte presented in the
A register on entry is stored into the buffer. Also, on return
register A contains the physical address of the next byte to be
accessed in the disk buffer. Carry is true if the byte stored was
stored into the last physical location in the buffer. Here a
reminder is appropriate: remember that in standard, EDIT-format
records, the last two bytes (at least) of the buffer are not used,
and an 03 occurring earlier in the sector indicates
logical-end-of-sector. (A complete description of the format for
DOS text files can be found in the chapter describing the REFORMAT
command.)

Entry point:

Parameters:

01127

A = the byte to be stored in the buffer
B = LFN

Exit conditions: A as described above (physical address of next
byte)

All other registers preserved
Carry true if location 255 was stored into

Traps: none

CHAPTER 46. SYSTEM ROUTINES 46-17

46.6.14 PUTR$ - Store into an Indexed Buffer Position

PUTR$ is identical to GETR$ except that the byte presented in
the A register is stored into the buffer.

Entry point:

Parameters:

01132

A = byte to be written
B = LFN
C = logical buffer location

Exit conditions: C = C + 1 if carry false
Carry true if 252 < C < 256
All other registers preserved

Traps: none

46.6.15 BSP$ - Backspace One Physical Sector

BSP$ decrements the LRN in the LFT entry specified by the LFN
given and then executes POSIT$. No check is made to prevent BSP$
from backing into a RIB. However, if one calls BSP$ and attempts
to backspace back beyond system LRN 0 (user LRN -2, which is the
master RIB) ZERO TRUE will be returned (as for POSIT$).

Entry point: 01135

Parameters: B = LFN

Exit conditions: B = LFN; other registers indeterminate
ZERO FALSE: valid backspace

Traps:

ZERO TRUE: invalid backspace (attempt to
backspace past master RIB)

none

46.6.16 BLKTFR - Transfer a Block of Memory

BLKTFR moves the number of bytes specified in the C register
(0 causes transfer of 256 bytes) from the memory location starting
where HL points to the memory location starting where DE points.
Note that since exit is made with HL and DE pointing after the
last byte moved and C equal to zero, transfers of more than 256
bytes may be made by first setting C to zero, calling BLKTFR
enough times to make the residual number of bytes to transfer less
than 256, setting C to the residual number of bytes to be

46-18 DISK OPERATING SYSTEM

transferred, and then calling BLKTFR one last time. For example:

HL
DE
LC
CALL
CALL
LC
CALL

SOURCE
DEST
o
BLKTFR
BLKTFR
25
BLKTFR

will cause 537 bytes to be transferred from SOURCE to DEST.

Entry point:

Parameters:

01143

C = number of bytes to be moved
(0 moves 256 bytes)

HL = source address
DE = destination address

Exit conditions: HL = HL + C (HL + 256 if C = 0)
DE = DE + C (DE + 256 if C = 0)
B = unchanged
C = zero

Traps: none

46.6.17 TRAP$ - Set an Error Condition Trap

There are eight non-fatal error conditions, concerning the
disk operating system file handling facilities, that may be
trapped by the user. If tpe trap corresponding to a certain error
is not set by this routine, the system displays a pertinent
message and reloads the system. If the trap is set, control is
transferred to the address specified when the trap was set, with
the subroutine return address stack in the state it had before the
calling of the file handling routine that caused the error
condition.

The only disk errors that cannot be trapped are those
associated with the system tables on the disk. The occurrence of
these errors causes the message

FAILURE IN SYSTEM DATA

to be displayed. The other errors that cannot be trapped have to
do with: the LFT entry not being open when a routine which tried
to use data from the entry was called, invalid logical file

CHAPTER 46. SYSTEM ROUTINES 46-19

numbers, invalid drive numbers, invalid trap numbers, and invalid
physical file numbers.

If a trap occurs during a call to READ$ or WRITE$, the
logical record number (LRN) in the logical file table (LFT) is NOT
incremented; if the user wishes to continue processing records
past the one which caused the trap, he must increment the LRN in
the LFT himself first.

TRAP$ sets the trap whose number is given in the C register
to the address supplied in the D register (MSB) and E register
(LSB). The trap is cleared by calling TRAP$ with D and E equal to
zero. The trap is also cleared when the error condition occurs,
at which time the B register will be ~oaded with the Logical File
Number involved and control transferred to the indicated address.

In the following table, the mnemonic given after the trap
number is the one used in the previous routine explanations. The
capitalized lines are the messages displayed if the trap is not
set.

0 - RPARIT - PARITY FAILURE DURING READ
A parity fault while reading a data record causes this
trap.

1 - WPARIT - PARITY FAILURE DURING WRITE
A parity fault while writing a data record causes this
trap.

2 - FORMAT - RECORD FORMAT ERROR
The physical file number or logical record number in the
record read not matching the ones contained in the logical
file table entry causes this trap. The physical position
of a record is obtained from information in the retrieval
information block and the PFN and LRN in the record are
only checked to ensure that the drive is functioning
correctly and that the user is not trying to read a record
he has not written. This trap has nothing to do with the
253 data bytes provided to the user.

3 - RANGE - RECORD NUMBER OUT OF RANGE
During a read, an access below zero or to a record above
the currently allocated space causes this trap. During a
write, an access below zero causes this trap.

4 - WVIOLA - WRITE PROTECT VIOLATION

46-20

An attempt to write on, delete, or shorten a file with the
write protection bit set causes this trap.

DISK OPERATING SYSTEM

5 - DVIOLA - DELETE PROTECT VIOLATION
An attempt to delete or shorten a file with the delete
protection bit set causes this trap.

6 - SPACE - FILE SPACE FULL
An attempt to allocate more space when either the disk is
full or no more segment descriptor slots in the RIB are
available causes this trap.

7 - OFFLIN - DRIVE OFF LINE
An attempt to use a drive that is either physically absent
or not online causes this trap.

Note that the causes given for the various traps are the
causes for DOS to issue the appropriate messages. Some of the DOS
Command programs also cause the issuance of some of these messages
for related reasons. For example, several DOS Utilities indicate
a RECORD FORMAT ERROR if the sector formatting of a file being
processed does not follow GEDIT (or DOS EDITOR) standards. In
such cases the above details are sometimes not valid descriptions
of the problem; in this example the 253 data bytes encountered may
be the cause of the record format error.

Note also that FORMAT and RANGE traps are frequently the
result of sequentially reading or otherwise processing a file
which has no valid EOF, resulting in the program running off the
logical end of the file.

Entry pOint:

Parameters:

01146

DE = trap address
C = trap number

Exit conditions: register contents indeterminate

Traps: none

46.6.18 EXIT$ - Reload the Operating System

EXIT$ closes any logical files (one through three) that are
open and then reloads the operating system. EXIT$ is the normal
exit for all DOS programs.

If MCR$ (01400) contains exactly two forward arrows "»"
followed by a command line, followed by an 015, the command
interpreter ~ill be reloaded, and the command line in MCR$ is

CHAPTER 46. SYSTEM ROUTINES 46-21

scanned and executed. This technique is useful if your program
started at a location lower than 017000, and you want to execute
another program after your program completes. For example, after
your program completes, you may want to invoke the DOS. CHAIN
command to perform additional processing on your data file.
Before ending your program, move a character string to MCR$ like
this:

»CHAIN PROC1(015)

then, JMP EXIT$.

Entry point: 01151

Parameters: none

Exit conditions: no exit

Traps: none

46.6.19 ERROR$ -- Reload the Operating System

ERROR$ is identical to EXIT$ in all respects except for the
fact that jumping to ERROR$ will abort an active CHAIN (refer to
the CHAIN command in this manual for more details). A user
program would exit through ERROR$ if an error of severity
suggesting aborting a CHAIN occurred.

Entry point: 01140

Parameters: none

Exit conditions: no exit

Traps: none

46.6.20 WAIT$ -- DOS Wait-a-While "NOP" Routine

This routine, after being called, returns with all registers,
condition codes, and the stack preserved; in effect a "NOP".
Normally, the return is immediate. This routine should be used in
loops which wait for time non-critical conditions to occur (e.g.
waiting for the keyboard operator to release the DISPLAY key). 1/0
status, including in particular the device addressed, is subject
to change on return.

46-22 DISK OPERATING SYSTEM

Entry point: 01170

Parameters: none

Exit Conditions: Registers and condition codes unchanged

Traps: None

46.7 Keyboard and Display Routines

46.7.1 DEBUG$ - Enter the Debugging Tool

The debugging tool enables the programmer to load files by
number, examine and modify memory locations, set break points, and
e~ecute sections of his program. This facility greatly simplifies
the task of debugging machine language programs.

The debugging tool can be entered from the command
interpreter by entering a single pound sign (#) on the command
line or from the user's program by jumping to the entry point.
When debug is executing, two numbers are displayed vertically in
the last column of the screen. The five-digit top number is an
address and the three-digit bottom number is the content of that
address. After these numbers are displayed, input is requested
from the keyboard as indicated by a flashing cursor. Commands to
the debugger are given in the form <n>X where <n> is any number of
octal digits and X is a command character. The command is
executed immediately upon depression of the command character key
without waiting for the ENTER key (the ENTER character is a
command in itself).

All keys that are not recognized are ignored with a beep
signaling the rejection. The BACKSPACE key is ignored but since
commands use only the lower eight or sixteen bits of <n>, errors
in the entry of numbers can be corrected by striking several zeros
and then entering the correct digits. Alternatively, the CANCEL
key causes the current input line to be erased without changing
the current address. Although display stops if the cursor runs
off the screen during input, characters are still accepted.

The debugger maintains a current address that is usually
displayed as the five digit number at the right of the screen.
There are times, however, when the five digits at the right of the
screen do not reflect the current address and caution must be
exercised to avoid confusion as to the value of the current

CHAPTER 46. SYSTEM ROUTINES 46-23

address. The ENTER key is normally used to change the current
address, but depressing it without preceding it with any digits
will cause the current address to be displayed. Therefore, if
there is any doubt about the number being displayed on the screen,
simply depressing the ENTER key will ensure that the current
address is being displayed.

Whenever the debugger is entered either from a jump to the
entry point or from a return from a break point or call command, a
beep is given and the state of all of the alpha mode registers and
condition flags is saved. The value initially displayed is the
top of the stack at entry, unless DEBUG was entered from a DOS
DEBUG breakpoint; in this case the address displayed is the
address where the breakpoint was set. In all cases, the stack is
preserved as at entry and the current address is set to the
address displayed at entry. This display enables the user to tell
exactly the state of his program when the debugger was entered.
Whenever a memory location is called or jumped to, the state of
all of the alpha mode registers and condition flags is restored
from the values saved at entry. Since these values are saved in
memory, the programmer can simply modify these locations to change
the values used to initialize the state of the alpha machine
before control is transferred.

The major debugging technique is the setting of break points
at critical places in the program and the execution of portions of
the program while checking the values of the registers and
critical memory locations at each break. The debugger sets a
break point by storing a jump instruction, to a special entry
point in itself, in the current address and the following two
locations. (Notice that setting break points less than three
bytes apart is therefore not a good idea.) Before the jump is
stored, the content of the memory locations to be used is saved in
a table in the debugger. When the break point is reached, the
memory locations are restored with their original contents. A
maximum of four break points may be active at anyone time. A
command is provided for insuring that all break points have been
restored. When a break point is executed, the current address is
set to the first byte of the break pOint jump instruction. Since
the J command causes a jump to the current address if no digits
precede it, one can continue execution of the routine that was
broken by simply depressing the J key. Execution will continue
with the first byte that was overstored by the break point jump
with the state of the alpha machine exactly like it was before the
break occurred. Thus, the programmer can set a break point, start
execution, examine the registers when the break occurs (since
register viewing does not change the current address) and then
depress the J key to continue execution. This technique allows

46-24 DISK OPERATING SYSTEM

him to practically single step his program.

ENTRY POINT: 01154

COMMANDS:

B - Set a break point at the location given or, if no number is
given, at the current address. Caution should be exercised to
insure that the current address is pointing to the desired
location if it is used.

C - Execute a call to the number given or, if no number is given,
to the current address. The alpha machine state is loaded
from the values saved in the debugger before the call is
executed. A return to the call causes the debugger to be
re-entered and the alpha machine state to be saved.

D Decrement the current address (any digits given are ignored).

G - Get the physical file specified from the disk. Care must be
exercised that a file is not loaded that will overlay the
debugger (locations 0-01377 and 06000-07377). If the file
does not exist or contains a record of illegal loader format,
a beep will be given. The first digit of the last four
entered is the logical drive number from which the file is to
be loaded. The following three digits are the physical file
number. For example, 02003G will load SYSTEM3/SYS from drive
two. To load PFN 0115 from drive 0, simply enter 115G.

I - Increment the current address (any digits given are ignored).

J - Execute a jump to the number given or, if no number is given,
to the current address. The alpha machine state is loaded
from the values saved in the debugger before the jump is
executed.

M - Modify the contents of the current address. The least
significant eight bits of the octal number given before the
command character are used for the new memory value. If no
digits are given, a zero is assumed.

P - Turn on the P-counter display (to the left of the current
address). This display is a foreground driven routine which
takes the value of the P-counter when the interrupt occurred
and displays it vertically. This implies that the value shown
is the background P-counter at 32 millisecond sample points.
When the display is active, simultaneous depression of the
KEYBOARD and DISPLAY keys will cause the debugger to be

CHAPTER 46. SYSTEM ROUTINES 46-25

entered regardless of what is currently being executed in the
background. When such entry occurs, the current address
points to the location where the background program was
interrupted so that execution can be resumed with the J
command.

R - Display the saved alpha mode register value. The registers
are referenced by number (O-A, 1-B, 2-C, 3-D, 4-E, 5-H, 6-L,
and 7-Conditions). The condition code is stored with bits
7=Carry, 6=Sign, bits 5 through 2 always zero, 1=(-Zero and
-Sign), and O=(-Zero and -Parity). (The easiest way to
understand this is to realize that the condition code as
displayed, added to itself, results in restoring all four
conditions to their entry values.) When a register is
displayed, the address shown is the memory location used to
store the value of that register. This does not, however,
affect the current address. The registers may be initialized
for a C or J command by simply storing into the memory
locations displayed when the registers are displayed.

x - Turn off the P-counter display.

- Clear all break points. The current address will reflect the
location of the last point cleared .

. - Perform the M command followed by the I command.

CANCEL - Erase the entered number without changing the current
address.

ENTER - Change the current address to the digits entered. If no
digits are entered, the current address in effect will be
displayed.

46.7.2 KEYIN$ - Obtain a Line from the Keyboard

KEYIN$ obtains a string of characters from the keyboard,
displaying them on the screen and storing them in memory as they
are entered. When KEYIN$ is called, the cursor is turned on and
characters requested. Backspacing off the beginning of the line,
entering more than the specified maximum number of characters, or
running off the screen is prevented. The routine turns off the
cursor and returns when the ENTER key is depressed.

46-26 DISK UPERATING SYSTEM

Entry point: 01157

Parameters: C = maximum number of characters accepted
(including ENTER)
D = initial horizontal cursor position
E = vertical cursor position
HL= starting location of input buffer

Exit conditions: String terminated by 015
HL= pointing to the 015
D = horizontal position of ENTER
E = unchanged
C = 0
B = undefined

46.7.3 DSPLY$ - Display a Line on the Screen

DSPLY$ displays a string of characters stored in memory on
the screen. Certain characters denote control functions according
to the following table:

003 - end or string
011 - new horizontal position follows
013 - new vertical position follows
015 - end of string with CR/LF
021 - erase to end of frame
022 - erase to end of line
023 - roll up one line

If the string to be displayed starts with either or both
horizontal or vertical cursor controls, then either or both of the
corresponding values need not be in D or E at entry. If the
cursor is not positioned on the screen with DE or 011 and 013 the
results of 021, 022, or 023 are undefined.

Entry point:

Parameters:

01162

D = initial horizontal cursor position
E = initial vertical cursor position
HL points to string in memory

Exit conditions: DE = cursor position after the last
character displayed

HL = byte after the string terminator
A,B,C undefined

CHAPTER 46. SYSTEM ROUTINES 46-27

CHAPTER 47. DOS FUNCTION FACILITY (DOSFNC)

The page of memory located between 07400 and 07777 contains a
special loader and overlay area. This "loader" can load anyone
of up to 255 DOS overlays, each up to 124 bytes long. The loader
resides in the first half of the page and the overlays all load
into the second half of the same page. The overlays reside on
disk in physical file 7, called SYSTEM7/SYS. The design of the
DOS FUNCTION loader is such that overlays are loaded only if
necessary; i.e. if the same overlay is called several times in
sequence, it is not reloaded each time. The overlays provide the
DOS assembly language programmer with many useful utility
functions. Parameterization of DOS FUNCTIONs varies with the
individual functions, the only basic requirement being that on
entry to the DOS FUNCTION loader, the A register contains the
function number (1-255). Use of functions not yet installed will
produce indeterminate results, but may result in format traps,
range traps, processor halts, and the like. DOS FUNCTIONs are
normally loaded from the SYSTEM7/SYS on drive zero.

Upon the first call to DOSFNC (the DOS FUNCTION loader),
SYSTEM7/SYS is opened as LFO and the LFT entry saved within the
DOS FUNCTION loader. Upon subsequent calls to DOSFNC, the entry
is simply moved back into the LFT, eliminating the need to re-open
SYSTEM7/SYS each time a function is loaded. The file is only
closed by reloading DOS, either by depressing RESTART or by a
program passing control to BOOT$, EXIT$, or ERROR$.

Since new DOS functions will be added as necessary the
following descriptions should not be considered exhaustive.

Entry point: 07400

Parameters: A = Function number (1-0377)
Others required by individual functions

Exit conditions: Defined separately for each function.

CHAPTER 47. DOS FUNCTION FACILITY (DOSFNC) 47-1

47.1 FUNC1 - Retrieve Directory and C.A.T. Addresses

Uniform attributes for all subfunctions

On entry, A = function number (1)
C = subfunction number (0,1,2,3,4,5,6,7)

On exit, B,C,H,L all unchanged
CARRY FALSE: function completed successfully
CARRY TRUE: invalid subfunction number

All other entry/exit parameters and conditions are
described seperately for each individual subfunction.

DOS FUNCTION: SUBFUNCTION: o

Return the
On entry,

address of a specified directory sector in DE.

On exit,

DOS FUNCTION:

B = directory sector number (0-15) OR
PFN of entry in the directory sector
A indeterminate
DE = PDA of specified directory sector.

SUBFUNCTION: 1

Return the two byte physical disk address for each of the 16
master directory sectors, into a 32-byte work area provided by the
user.

On entry,
On exit,

47-2

HL => 32-byte work area to receive the PDA's
ALL REGISTERS RESTORED
user-provided work area contains 16 PDA's,
one corresponding to each prime directory
sector, in ascending order. (LSB,MSB)

DISK OPERATING SYSTEM

DOS FUNCTION: SUBFUNCTION: 2

Return the two-byte physical disk address of each of the 16
directory sector backups, in ascending order, into a 32-byte
user-provided work area.
On entry, HL => 32-byte work area to receive the PDA's
On exit, all registers restored

DOS FUNCTION:

user-provided work area contains 16 PDA's,
one corresponding to each backup directory
sector, in ascending order. (LSB,MSB)

SUBFUNCTION: 3

Return
table (CAT)
On entry,
On exi t,

the physical disk address
in the DE register pair.

no further conditions

of the cluster allocation

A indeterminate
DE = PDA of prime CAT

DOS FUNCTION: SUBFUNCTION: 4

Return the physical disk address of the backup cluster
allocation table (CAT) in the DE register pair.
On entry, no further conditions
On exit, A indeterminate

DE = PDA of backup CAT

DOS FUNCTION: SUBFUNCTION: 5

Return the physical disk address of the lockout CAT
On entry, no further conditions
On exit, A indeterminate

DE = PDA of lockout CAT

DOS FUNCTION: SUBFUNCTION: 6

Return
On entry,
On exit,

the physical disk address of the lockout CAT backup
no further conditions
A indeterminate
DE = PDA of lockout CAT backup

CHAPTER 47. DOS FUNCTION FACILITY (DOSFNC) 47-3

DOS FUNCTION: SUBFUNCTION: 7

Return the address of a backup directory sector (in DE)
On entry, B = backup directory sector number (0-15)

OR PFN of a file entry contained therein
On exit, A indeterminate

DE = PDA of backup directory sector

47-4 DISK OPERATING SYSTEM

47.2 FUNC2 - Retrieve Directory Sector or Filename

Uniform attributes for all sub functions

On entry,

On exit,

A = function number (2)
C = subfunction number (0,1,2)
ALL REGISTERS RESTORED
CARRY TRUE: error or invalid subfunction number

All other entry/exit parameters and conditions are
described separately for each individual subfunction.

DOS FUNCTION: 2 SUBFUNCTION: °
Read in the directory sector containing the 16-byte directory

entry corresponding to the PFN given, on a specified logical
drive.

On entry,

On exit,

DOS FUNCTION:

B = LFN as per DOS standard; (0, 16, 32, 48)
D = PDN (logical drive number of file)
E = PFN
CARRY FALSE: selected directory sector is in

buffer specified, which is the
selected buffer upon exit.

CARRY TRUE: indicates I/O error.
Further defined as follows:

ZERO FALSE: specified drive is off-line
ZERO TRUE: unable to read sector due to CRCC

error during read, or unrecoverable
failure to find sector.

2 SUBFUNCTION:

Get the 16-byte directory entry corresponding to a specified
PFN on a given logical drive.

On entry, B = LFN as per DOS standard; (0, 16, 32, 48)
D = PDN (logical drive number of file)
E = PFN
HL => 16 byte area to receive the entry

CHAPTER 47. DOS FUNCTION FACILITY (DOSFNC) 47-5

On exit,

DOS FUNCTION:

CARRY FALSE: entry is in user's area
CARRY TRUE: indicates I/O error.

Further defined as follows:
ZERO FALSE: specified drive is off-line
ZERO TRUE: unable to read sector due to CRCC

error during read, or unrecoverable
failure to find sector.

2 SUBFUNCTION: 2

Get name/ext (pfn) for a specified numbered file on a
specified logical drive. (Same basic format as used by DOS CAT
command) .

On entry,

On exit,

B = LFN as per DOS standard; (0, 16, 32, 48)
D = PDN (logical drive number of file)
E = PFN
HL => 20 byte area to receive the entry
CARRY FALSE: user's 20-byte area contains

the name; extension and PFN of the
specified file, for example:
EDIT/CMD (037)
where the right paren is followed
by an 003.
UNLESS ZERO TRUE:

implies that the file number
specified does not exist.

CARRY TRUE: indicates I/O error.
Further defined as follows:

ZERO FALSE: specified drive is off-line
ZERO TRUE: unable to read sector due to CRCC

error during read, or unrecoverable
failure to find sector.

NOTICE: the use of THIS SUBFUNCTION ONLY (of those in DOS
FUNCTION 2) requires that the DOS command interpreter
be present (the command interpreter resides from
013400-017000).

47-6 DISK OPERATING SYSTEM

47.3 FUNC3 - Retrieve R.I.B. Information

Uniform attributes for all subfunctions:

On entry, A = function number (3)
C = subfunction number (0,1,2,3)

All other entry and exit parameters and conditions are
described separately for each individual subfunction.

DOS FUNCTION: 3 SUBFUNCTION: o

Return the number of sectors allocated to a file on disk.

On entry,

On exit,

DOS FUNCTION:

B = drive number (like C as provided for OPEN$)
DE = proper OPEN$ parameters defining the file

to be accessed.
CARRY FALSE: function completed successfully

HL = length of file (MSB,LSB) in sectors
RIB for file specified is in LFO
disk buffer.

CARRY TRUE: indicates an error occurred, anyone of:

3

OPEN failed on file specified;
unable to read RIB;
parity or drive off-line.

SUBFUNCTION:

Get the RIB for a specified file into the LFO disk buffer

On entry,

On exit,

B = drive number (like C as provided for OPEN$)
DE = proper OPEN$ parameters defining the file

to be accessed.
ALL REGISTERS RESTORED
CARRY FALSE: function completed successfully

RIB for file specified is in
LFO disk buffer

CARRY TRUE: indicates an error occurred, anyone of:
OPEN failed on file specified;
unable to read RIB;
parity or drive off-line.

CHAPTER 47. DOS FUNCTION FACILITY (DOSFNC) 47-7

DOS FUNCTION: 3 SUBFUNCTION: 2

Read a RIB for a file, given the first two bytes of the
directory entry

On entry,

On exit,

DOS FUNCTION:

B = drive number (like C as provided for OPEN$)
D = RIB pointer, (MSB) from directory, or LFT
E = RIB pointer, (LSB) from directory, or LFT
ALL REGISTERS RESTORED
CARRY FALSE: function completed successfully

RIB for file specified is in,
LFO disk buffer

CARRY TRUE, ZERO FALSE: specified drive off-line
CARRY TRUE, ZERO TRUE: parity error during read.

3 SUBFUNCTION: 3

Return segment descriptor information from a RIB

On entry,

On exit,

47-8

RIB is in LFO disk buffer
BUFADR field in LFO LFT entry points to
segment descriptor
HL, LFO buffer unchanged.
CARRY TRUE: function completed successfully.

A = starting cyl. number for segment
B = starting cluster number for segment
DE = number of sectors in the segment
BUFADR points to next segment
descriptor; RIB undisturbed

CARRY FALSE: implies BUFADR pointed after LOGICAL
end of RIB;
BUFADR contents undefined.

DISK OPERATING SYSTEM

47.4 FUNC4 - Retrieve DOS Configuration Information

Uniform attributes for all subfunctions:

On entry,

On exit,

A = function number (4)
C = subfunction number (O,n)
A = DOS configuration value
CARRY FALSE: function completed successfully
CARRY TRUE: possibly invalid subfunction number.

Different subfunction numbers return different DOS
configuration bytes. These values, returned in A, are numeric
items which change in value depending upon which DOS is running.
The subfunction numbers, along with the significance of the
returned value, are:

o - Letter of this DOS (A,B,C,D,etc.)
1 - DOS Version ('2' typ.)
2 - DOS Revision ('3' typ.)
3 - Total number cylinders on disk (203 typ.)
4 - Maximum Logical Drive (3,15 typ)
5 - Year of Compilation (77 typ)
6 - Day of Compilation (49 typ)
7 - Cluster Mask (0340 typ)
8 - Increment Cluster number (040 typ)
9 - Sector Mask (037 typ)
10 - Maximum Sector Number in PDA (23 typ)
11 - Number of Sectors/Cluster (3,6,24 typ)
12 - Number of Clusters/Cylinder (4,8 typ)
13 - Number of Clusters/Track (1,4 typ)
14 - Number of Functions in SYSTEM7 (24 typ)
15-24 (Unused)
25 - Get VOLID address into (DE)
26 - Internal DOS address for DF11

CHAPTER 47. DOS FUNCTION FACILITY (DOSFNC) 47-9

47.5 FUNC5 - Request Access to System Tables

This function is used when running under the Partition
S~pervisor (PS). This function must be called before and after
any changes are made to the system tables on any drive.

Uniform attributes for all subfunctions:

On entry, A = function number (5)
C = subfunction number (0,1)

All other entry and exit parameters and conditions are described
seperately for each individual subfunction.

DOS FUNCTION: 5 SUBFUNCTION: a

Request exclusive update permission to system table sectors
on disk

On entry,
On exit,

DOS FUNCTION:

D = physical drive (PDN) of drive
CARRY FALSE: function completed successfully

exclusive use of specified drive
guaranteed.

CARRY TRUE: indicates an error occurred.

5 SUBFUNCTION:

Release exclusive update authority for system table sectors
on disk.

On entry,
On exi t,

47-10

D = physical drive (PDN) of drive
CARRY FALSE: function completed successfully

exclusive use of specified drive
released.

CARRY TRUE: indicates an error occurred.

DISK OPERATING SYSTEM

47.6 FUNC6 - Keyboard / Display Interface Routines Function

Uniform attributes for all subfunctions:

On entry,

On exi t,

DOS FUNCTION:

A = function number (6)
C = subfunction number (0-11)
CARRY TRUE: illegal subfunction
All other entry and exit parameters and
conditions are described sepatately for
each individual subfunction.

6 SUBFUNCTION: o

Check the status of the KEYBOARD and DISPLAY keys

On entry,
On exit,

DOS FUNCTION:

no further
SIGN TRUE:

conditions

PARITY TRUE:
ALL REGISTERS

KEYBOARD key pressed
DISPLAY key pressed

RESTORED

6 SUBFUNCTION:

Check for character ready

On entry,
On exit,

DOS FUNCTION:

no further conditions
ZERO TRUE: No character present
ZERO FALSE: Ready to get character
ALL REGISTERS RESTORED

6 SUBFUNCTION: 2

Get a Character from the Keyboard

On entry,
On exit,

(DE) = Horizontal, Vertical Screen Coordinates
ZERO TRUE: No character present
ALL REGISTERS RESTORED
ZERO FALSE: Got the character in (A)
ALL OTHER REGISTERS RESTORED

DOS FUNCTION: 6 SUBFUNCTION: 3

Write the Character in (B) to the Screen

On entry,

On exit,

(DE) = Horizontal, Vertical Screen Coordinates
(B) = Character to be written to Screen
CARRY TRUE: (D) or (E) are out of range

CHAPTER 47. DOS FUNCTION FACILITY (DOSFNC) 47 -11

DOS FUNCTION:

ALL REGISTERS RESTORED
CARRY FALSE: The Character was written
ALL REGISTERS RESTORED

6 SUBFUNCTION: 4

Return the HOME-UP Position in (DE)

On entry,
On exi t,

DOS FUNCTION:

no further conditions
(DE) = Address of Top Line / Left Column of CRT
ALL OTHER REGISTERS RESTORED

6 SUBFUNCTION: 5

Return the HOME-DOWN Position in (DE)

On entry,
On exit,

DOS FUNCTION:

no further conditions
(DE) = Address of Bottom Line / Left Column of CRT
ALL OTHER REGISTERS RESTORED

6 SUBFUNCTION: 6

Turn on the Cursor

On entry,
On exi t,

DOS FUNCTION:

(DE) = Horizontal, Vertical Screen Coordinates
ALL REGISTERS RESTORED

6 SUBFUNCTION: 7

Rollup the Screen 1 line

On entry,
On exit,

DOS FUNCTION:

(DE) = Horizontal, Vertical Screen Coordinates
ALL REGISTERS RESTORED

6 SUBFUNCTION: 8

Erase from Cursor Position to End of Frame

On entry,
On exit,

47-12

(DE) = Horizontal, Vertical Screen Coordinates
ALL REGISTERS RESTORED

DISK OPERATING SYSTEM

DOS FUNCTION: 6 SUBFUNCTION: 9

Erase from Cursor Position to End of Line

On entry,
On exi t,

DOS FUNCTION:

(DE) = Horizontal, Vertical Screen Coordinates
ALL REGISTERS RESTORED

6 SUBFUNCTION: 10

Rolldown the Screen 1 line

On entry,
On exit,

DOS FUNCTION:

(DE) = Horizontal, Vertical Screen Coordinates
CARRY TRUE: Illegal operation for this device
ALL REGISTERS RESTORED
CARRY FALSE: The screen was rolled down 1 line.
ALL REGISTERS RESTORED

6 SUBFUNCTION: 11

Turn off the Cursor

On entry,
On exit,

(DE) = Horizontal, Vertical Screen Coordinates
ALL REGISTERS RESTORED

CHAPTER 47. DOS FUNCTION FACILITY (DOSFNC) 47-13

47.7 FUNC7 - Test the Disk Buffer Memory

Disk buffer memory test function

This DOS FUNCTION performs a rotating, cycling test of the
disk controller buffer memories. It returns upon the keyboard
becoming READ READY, or upon encountering a buffer failure,
whichever occurs first.

On entry,
On exit,

47-14

Doesn't matter.
ALL REGISTERS UNCHANGED
ZERO TRUE: buffer memory test completed normally
ZERO FALSE: failure indicated in buffer memories

DISK OPERATING SYSTEM

47.8 FUNC8 - Timed Pause

Pause function

This DOS FUNCTION provides the user program with a timed
pause. The requested pause may be up to over four hours long.

On entry,

On exit,

B = foreground process number to use (0-7)
CDE = number of milliseconds to pause

(C = most signifigant, E = least signifigant)
ALL REGISTERS UNCHANGED

Note that if foreground process numbers 4-7 are used, the
wait time is effectively multiplied by four, allowing a maximum
wait time in excess of eighteen hours. Also note that the time
required to start up the DOS FUNCTION is not considered part of
the time paused. Since the DOS FUNCTION mayor may not be
resident when called, this function may wait longer than the
quantity in CDE and therefore must not be used for timing really
critical, short term intervals.

CHAPTER 47. DOS FUNCTION FACILITY (DOSFNC) 47-15

~7.9 FUNCg - Non-Sharable Resource Status Request

This DOS FUNCTION is used to allocate and de-allocate a
system resource. Typically, this function is used when a program
is going to run under the Partition Supervisor (PS). The use of
this function will prevent conflicting use of 1/0 devices by the
programs running in the two partitions. For example, the DOS
utilities that use the printer (LIST, FILES, etc.) all call this
function before they use the printer. Then, if a DATASHARE print
statement is executed in the other partition, the listings will
not be intermixed.

Uniform attributes for all subfunctions:

On entry, A = function number (9)
C = subfunction number (0,1)

All other entry and exit parameters and conditions are described
separately for each individual subfunction.

DOS FUNCTION: 9 SUBFUNCTION: o

Propose to use a non-shareable system resource (printer, tape
dri ve, etc.).

On entry,

On Exit,

47-16

B = Resource Number
o - Local Line Printer
1 - Servo Printer
2 - (Un-defined)
3 - (Un-defined)
4 - Cassette Tape Decks
5 - 7 or 9 Track Tape
6 - Multiport Comm Box 1 (all ports)
7 - Multiport Comm Box 2 (all ports)

CARRY TRUE, ZERO TRUE: Permission to use granted.
CARRY TRUE, ZERO FALSE: Error
CARRY FALSE, ZERO TRUE: Already allocated, same

partition - in this case, go ahead and use
the device, but DO NOT deallocate it when
finished (subfunction 1).

CARRY FALSE, ZERO FALSE: Already allocated, other
partition.

DISK OPERATING SYSTEM

DOS FUNCTION: 9 SUBFUNCTION:

Release non-sharable resource for use by next party. This
subfunction should be called after a process receiving access to a
resource using subfunction zero has received CARRY TRUE, ZERO TRUE
return, and finishes using the resource it wanted to use.

The only status returned by subfunction one that is likely to
change upon waiting is CARRY FALSE, ZERO FALSE. In this case, the
program wishing to release the resource should wait, perhaps five
seconds (use function 8), and then retry the request. Any other
status is not subject to change.

Note that this subfunction can NOT be used to test for
printer busy, since if an invoking program in the same partition
had allocated the device, the test would release it, possibly
resulting in losing the device to a competing partition. This
would be an error and must not be allowed to occur.

INDEFINITE POSTPONEMENT can be prevented by always allocating
non-sharable resources in DECENDING numerical sequence (when more
than one non-sharable resource is needed at the same time).

On entry,
On exit,

all parameters identical to those for subfunction O.
CARRY TRUE: error
CARRY FALSE, ZERO TRUE: normally released
CARRY FALSE, ZERO FALSE: was in use by different

partition, therefore not released.

CHAPTER 47. DOS FUNCTION FACILITY (DOSFNC) 47-17

47.10 FUNC10 - Qualify for Execution in Fixed Partition

This function is used to qualify a program to run in a
"fixed" partition under the Partition Supervisor (PS), and to
provide DOSIPS partition configuration information.

Uniform attributes for all subfunctions:

On entry, A = function number (10)
C = subfunction number (0,1)

All other entry and exit parameters and conditions are described
separately for each individual subfunction.

DOS FUNCTION: 10 SUBFUNCTION: 0

Authorize invoking program to execute in a fixed type
partition.

On entry,
On exi t,

DOS FUNCTION:

C = subfunction number (0)
No conditions significant

10 SUBFUNCTION:

Provide DOSIPS configuration information.

On entry,
On exi t,

47-18

C = subfunction number (1)
HL => Configuration list (which may not be modified)

guaranteed only until the next call to any
system routine; list format described below.

BYTE 0: Partition ID.

BYTE 1:
BYTE 2:
BYTE 3:
BYTE 4:

Space if not running under PS, otherwise,
a unique identifier.
Region Size - in number of K (16, 48, etc)
Number of Disk Buffers (4, 16, etc)
. 1 Implies Fixed Parti tion
Multipart IIO Bus Address for console on port
(0 => console on port not active)

BYTE 5: Multipart port select code of console port
(only if byte 4 is non-zero).

DISK OPERATING SYSTEM

47.11 FUNC11 RAM Screen Loader

Uniform attributes for all subfunctions:

On entry, A = function number (11)
C = subfunction number (0,1,2)

All other entry and exit parameters and conditions are described
separately for each individual subfunction.

DOS FUNCTION: 11 SUBFUNCTION: 0

Load one or more character combinations into the RAM display
character generator.

On entry, B = default first character to be loaded
HL = starting address of character set definition

list

The list consists of consecutive entries of either five or six
bytes each. The first byte, if present, indicates the 7-bit
character combination whose bit pattern definition follows. The
presence of the first byte is indicated by its sign bit being set.
If the first byte of the first entry is not present, the 7-bit
character combination in the B register is used instead. The
definition list may contain any mixture of six byte and five byte
entries. The end of the list is indicated by an 0200. This
implies that the bit combination displayed for a binary zero
cannot be imbedded in a list, but can only appear at its
beginning; null lists are not allowed. The five data bytes
following represent the five columns of bits for each displayed
character and can each have values of a (a blank column) to 0177
(a vertical line). The 0100 bit is at the top of the character
displayed; the 1 bit is on the bottom row of the displayed
character.

On exi t, CARRY FALSE, ZERO FALSE implies RAM display not
present

CARRY FALSE, ZERO TRUE indicates normal
completion

CARRY TRUE indicates error (should not occur)

CHAPTER 47. DOS FUNCTION FACILITY (DOSFNC) 47-19

DOS FUNCTION: 11 SUBFUNCTION:

Load a single character combination to RAM display

On entry, B = default character to be loaded
HL = address of five or six byte bit pattern
definition

The first byte, if present, takes precedence
over the character indicated by the B
register. Presence of the first byte is
indicated by the sign bit being set.

On exit, CARRY FALSE, ZERO FALSE implies RAM display not
present
CARRY FALSE, ZERO TRUE indicates normal
completion

DOS FUNCTION: 11 SUBFUNCTION: 2

Subfunction two requests reloading of the standard character
set on program termination. Calling this subfunction will result
in the standard DOS character set being reloaded upon the next
entry to DOS$. Entry to the DOS at DOS$ is the result of transfer
of control to EXIT$, BOOT$, ERROR$ as well as DOS$. Return to the
DOS via NXTCMD, CMDAGN, and CMDINT do not result in the display
being immediately reloaded, (but it still will be upon subsequent
entry at DOS$ as described).

47.12 FUNC12 - Unassigned DOS Function

This DOS function is unused.

47-20 DISK OPERATING SYSTEM

47.13 Overlay Loader (FUNC-13,14,15)

DOS functions 13 and 14 are used to load "overlay libraries".
Using these functions, one need only have a single directory entry
for a program and its associated overlays (called "members"). The
overlay library format is described in detail in the library
utility program user's guide (LIBSYS), since that program is
responsible for creating and maintaining libraries. Program
libraries can be absolute or relocatable code.

Function 13 performs a library lookup by name.

Function 14 actually performs the library load from an
absolute library.

Function 15 performs the library load from a
relocatable library.

Below is an example of how to use these DOS functions to load
an absolute program overlay. In the example, the "root" program
has several overlays; the root program was invoked from the
keyboard by entering "FLX/ABS".

HL
DE
LC
CALL

. To lookup the
NAMLOD LA

DE
HL
CALL
JTC
JUMP

LFT+LFO
SAVELFT
16
BLKTFR

member named
13
OVLNAM
SAVELFT
DOSFNC
ABORT
LOAD

Save opened LFT entry
(FLX/ABS)
16 bytes

"FLXOAW":
Prepare to lookup by name

Lookup by name
True Carry is error.
(DE contains LRN if Carry False)

CHAPTER 47. DOS FUNCTION FACILITY (DOSFNC) 47-21

· To
LOAD

actually load
LA

SAVELFT
FLXOAW

HL
CALL
JTC

PUSH
RET

SK
DC

the absolute
14
SAVELFT
DOSFNC
ABORT

16
'FLXOAW

file (and execute it):
Prepare to load the file

Load starting at LRN (DE)
True Carry is error.
(HL is transfer address if Carry
Push entry point onto stack
and transfer control there

LFT save area
8-byte name

Note: all lookups (FUNC13) should be done first, and then all
loads (FUNC14 or FUNC15) so functions will not be reloaded
as often.

47-22 DISK OPERATING SYSTEM

False)

47.14 FUNC-13 Overlay Lookup By Name

Return the LRN of library member <name>, pointed to by (DE)
into (DE).

On entry,

On exit,

A = function number (13)
DE => address of 8-byte file name
HL => 16-byte save area of user opened LFT

(not LFO)
CARRY TRUE: Name not found
Otherwise:

A = Library Type-(see LIBSYS user's guide)
BC = Undefined
DE = LRN (LSB,MSB) of library member
HL = Entry value of (DE)+8

CHAPTER 47. DOS FUNCTION FACILITY (DOSFNC) 47-23

47.15 FUNC-14 LOAD ABSOLUTE LIBRARY MEMBER

Load the absolute member beginning at LRN given in (DE).

On entry,

On exit,

47-24

A = function number (14)
DE = LRN (LSB,MSB) of member to be loaded.
HL => 16-byte save area of user opened LFT

(not LFO)
CARRY TRUE: Unloadable file
Otherwise:

A,B,C,D,E Undefined
HL = Transfer address of member

DISK OPERATING SYSTEM

47.16 FUNC-15 RELOCATABLE LOADER

Uniform attributes for all subfunctions:

On entry

DOS FUNCTION:

A = function number (15)
B = LFN of Opened Relocatable Library
C = subfunction number (0 or 1)
All other entry and exit parameters and
conditions are described separately for
each individual subfunction.

15 SUBFUNCTION: o

Return the size of relocatable member into (DE)

On entry DE => LRN o of library member (from DOSFNC-13 typically)
On exit CARRY TRUE: Invalid Library Format

Otherwise:
A,C,H,L Undefined
B = Entry value
DE = Program length (LSB,MSB)

DOS FUNCTION: 15 SUBFUNCTION: 1

Load a relocatable library member.

On entry

On exit

HL => Address of Parameter List
DE => LRN a of library member (from DOSFNC-13 typically)
CARRY TRUE: Link Error Occurred
Otherwise:
A,C = Undefined
B = Unchanged
DE => Next available address
HL => Transfer address

CHAPTER 47. DOS FUNCTION FACILITY (DOSFNC) 47-25

Parameter Table for DOS FUNCTION 15 SUBFUNCTION 1:
0-1 Origin Address (LSB,MSB)
2-3 Address of External ReferencewoFk. area terminated by 000 ..

0377,0377 => No work area, i.e.,no external references.
Example:RPT 20

DC 'bbbbbbbb',*-1
DC 0

4-5 Address of External Definition work area terminated by 000.
0377,0377 => No work area,i.e.,no external definitions.
Example: RPT.· 20

DC 'bbbbbbbb',*-1
DC 0

6-7 LRN (LSB,MSB) of Relocatable Module.
Note: Subfunction 1 over-writes the DOS DEBUG area (06000-07377)

47-26 DISK OPERATING SYSTEM

CHAPTER 48. CASSETTE HANDLING ROUTINES

Standard record formats, identifiers, and file marker record
conventions on cassettes are established by the Cassette Tape
Operating System. Routines capable of dealing with cassettes in a
manner compatible with CTOS are provided as part of the Disk
Operating System to enhance its overall capability. For detailed
information on cassette format and organization, see the Cassette
Tape Operating System Manual.

All of the DOS cassette routines are foreground driven and,
with the debugging facility and DOS Function 8, are the only
routines within the system which make use of the foreground
handling facility. Being foreground driven, however, does not
alter the manner in which the routines are handled since all
interfacing between the background and foreground is handled by
the system. It does allow increased speed of operation with the
cassettes since the user may be processing one record while the
next is being read from or written to the tape. This is evident
in the way the DOS slews the tape when transferring information
between it and the disk.

Some of the cassette handling routines initiate foreground
action and then return immediately to the user while others wait
for I/O completion. All of the routines wait for any uncompleted
I/O to finish before starting something new. Note that in the
cases of reading or writing on the same deck, requesting the next
operation before the completion of the first will cause the tape
to automatically slew instead of stopping between records. This
is only in the case of a read followed by another read or a write
followed by another write on the same deck. The only cases where
caution must be exercised is in the read and write routines which
return immediately after starting the I/O operation. If the user
does not wait for the transfer to complete, he could try to use
the data before it is read or change the data before it is
written. In the second case, records with incorrect parity will
usually be generated. Routines are provided, however, which
automatically wait for the transfer to complete, relieving the
user of having to concern himself with the fact that the routines
are foreground driven if he has no need for the advantages.

The various error conditions associated with cassette
handling can be trapped by the user. If the trap is not set, an
error message similar to the error message generated by CTOS is
displayed and the DOS reloaded. If the trap has been set, the

CHAPTER 48. CASSETTE HANDLING ROUTINES 48-1

address specified will be jumped to and the trap cleared. The
traps are identified in the error message by a letter similar to
the CTOS identification. In the relevant cases, the same letter
is used in the DOS as is used in the CTOS. In the following
routine descriptions the relevant Letter will be given in the
'Traps' section.

Most of the cassette routines are parameterized by a deck
number given in the B register. This number is a zero for the
rear deck and a one for the front deck. The cassette handler
routines use interrupt slot 1 for their foreground pr0cess.

48.1 TPBOF$ - Position to the Beginning of a File

TPBOF$ positions the cassette in the specified deck to the
specified file. The search for the file marker of the desired
file is started with backward motion of the tape. It a marker of
lower value than the file number requested or the beginning of the
tape is encountered, the search will be reversed to forward motion
of the tape. If then a marker of larger value than the file
number requested, the end of the'tape, or a record of
unrecognizable format is encountered, an error G will be given.
Otherwise, the file is left positioned before the first data
record.

Entry point: 010000

Parameters: B = deck number
C = physical file number (0-0177)

Exit conditions: none

Traps: D
G

unrecognizable record found
file could not be found

48.2 TPEOF$ - Position to d~ End of a File

TPEOF$ moves the tape forward until the next file mark is
found. It then backspaces the tape one record to leave it at the
end of the current file.

Entry point: 010005
-

Parameters: B = deck number

48-2 DISK OPERATING SYSTEM

Exit conditions: none

Traps: D
E

unrecognizable record found
end of tape encountered

48.3 TRW$ - Physically Rewind a Cassette

TRW$ rewinds the cassette on the selected deck by first
slewing backwards to ensure that the tape is not on the trailer
and then performing a hardware rewind.

Entry point: 010012

Parameters: B = deck number

Exit conditions: none

Traps: none

48.4 TBSP$ - Physically Backspace One

TBSP$ simply executes a hardware backspace function. No
checking is performed on the data passed over. However,
backspacing onto clear leader causes an end of tape trap.

Entry point: 010017

Parameters: B = deck number

Exit conditions: none

Traps: E beginning of tape encountered

48.5 TWBLK$ - Write an Unformatted Block

TWBLK$ writes the specified number of bytes (0-255; 0 causes
256 to be written) from the memory buffer specified onto the
cassette in the deck specified. Only the bytes specified will be
written on the tape.

Entry point: 010024

Parameters: B = deck number
C = number of bytes to write (0 for 256)

CHAPTER 48. CASSETTE HANDLING ROUTINES 48-3

HL points to start of buffer

Exit conditions: none

Traps: E
Z

end of tape encountered
premature deck ready status

48.6 TR$ - Read a Numeric CTOS Record

TR$ reads a record of CTOS numeric format into the memory
locations specified. The length of the record is stored in the
specified memory location and the data bytes are stored in the
locations that follow. Return is made from TR$ as soon as the
read operation is started but the user cannot use the data until
the operation has been completed (see TCHK$). One way to check
for operation completion is to call TR$ again with a different
buffer as its parameter. Return from the second call will be made
as soon as the first operation is completed .. This is the
mechanism via which multiple buffering is normally achieved. Note
that tape motion will not cease if TR$ is called within five
milliseconds of the end of the previous record.

If parity problems arise, TR$ tries up to 5 times to read the
tape before giving a parity failure trap. Other traps given are
end of tape and end of file. If an end of file trap is given, the
tape is positioned before the file marker.

Entry point: 010031

Parameters: B = deck number
HL points to data storage location

Exit conditions: none

Traps: D
E
F

parity failure
end of tape encountered
end of file encountered

48.7 TREAD$ - TR$ and Wait for the Last Character

TREAD$ performs the TR$ function and then waits for the last
character to be read from the tape. This routine should be used
when multiple buffering is not being performed since it relieves
the user from having to explicitly wait for the last character to
be read.

48-4 DISK OPERATING SYSTEM

Entry point: 010034

Parameters: same as for TR$

Exit conditions: none

Traps: same as for TR$

48.8 TW$ - Write a Numeric CTOS Record

TW$ writes the specified memory locations in a record of
standard CTOS numeric format. It uses (for parity generation) the
three locations preceeding the memory location specified which
contains the number of bytes to be written and is followed by that
number of data bytes.

TW$ returns as soon as the write operation is started. The
user must be careful not to change any of the memory locations
given as parameters before the last byte has been transferred.
This can be achieved by either calling TCHK$ and waiting for
completion status or calling TW$ with the next buffer if multiple
buffering is being used. Note that tapa motion will not cease if
TW$ is called before the middle of the IRG is reached from the
previous write (140 milliseconds after the last character is
written when using a 1.5 ips deck).

Entry point: 010031

Parameters: same as for TR$

Exit conditions: none

Traps: E
Z

end of tape encountered
premature deck ready status

48.9 TWRIT$ - TW$ and Wait for the Last Character

TWRIT$ executes the TW$ routine and then waits for the last
byte to be written on the tape. This routine should be used when
multiple buffering is not being performed since it relieves the
user from having to explicitly wait for the last byte to be
written.

Entry point: 010042

Parameters: same as for TR$

CHAPTER 48. CASSETTE HANDLING ROUTINES 48-5

Exit conditions: none

Traps: same as for TW$

48.10 TFMR$ - Read the Next File Marker

TFMR$ reads the tape until a file marker record is found. A
trap occurs if a record is encountered that is neither a file
marker nor a eTOS numeric data record.

Entry pOint: 010045

Parameters: B = deck number

Exit conditions: e = PFN of marker found

Traps:

Tape positioned after marker record

D
E

unrecognizable record found
end of tape encountered

48.11 TFMW$ - Write a File Marker Record

TFMW$ writes a file marker record that contains the number
specified.

Entry point: 010050

Parameters: B = deck number
e = PFN to be written

Exit conditions: none

48-6 DISK OPERATING SYSTEM

Traps: E
Z

end of tape encountered
premature deck ready status

48.12 TTRAP$ - Set an Error Condition Trap

TTRAP$ allows the user to trap the various errors associated
with cassette I/O. If the trap is not set, an error message of the
form

*** ERROR X ON DECK Y ***
will be displayed, where X is one of the letters shown below and Y
is a 1 for the rear deck and a 2 for the front deck. The trap is
specified by a number according to the foliowing table:

3 - D - parity error
4 - E - end of tape
5 - F - end of file
6 - G - unfindable file

In addition, error Z (cannot be trapped) indicates that the deck
ready status bit came true while a record was being written. This
status implies that the write routine fell behind in writing
characters and most probably indicates that the foreground
interrupt handling was disrupted in some fashion (interrupts were
disabled too long or an interrupt driven routine was running which
imposed too much overhead). It may also be caused by the tape
being write protected (left rear tab punch out).

Traps can be cleared by setting their addresses to zero.
When the event which causes a trap occurs, that trap is cleared
and control passed to the address indicated with the deck number
in the B register (0 for rear and 1 for front deck).

Entry point: 010053

Parameters: C = trap number (above)
DE= trap address (0 clears trap)

Exit conditions: none

Traps: none

CHAPTER 48. CASSETTE HANDLING ROUTINES 48-7

48.13 TWAIT$ - Wait for 1/0 Completion

TWAIT$ waits for any tape operation active to complete. This
does not mean that physical motion has stopped since TR$ and TW$
indicate 1/0 completion when the last character has been
transferred. It does mean that all data is free to be processed by
the user. TWAIT$ also executes any traps pending upon the
completion status being set.

Entry point: 010056

Parameters: none

Exit conditions: B, C, D, and E registers preserved

Traps: any trap pending will be executed

48.14 TCHK$ - Get 1/0 Status

TCHK$ sets the tape demand flag in the carry condition flag
and loads the tape handling status in the A register. The
handling status codes are as follows:

000 - PBOF in progress
002 - PEOF in progress
004 - Rewind in progress
006 - Record read in progress
010 - Backspace in progress
012 - File mark read in progress
014 - Record write in progress

377 - Normal completion
206 - Parity error
210 - End of tape
212 - End of file
214 - File not found
262 - Premature deck ready status

48-8 DISK OPERATING SYSTEM

Normal use of the cassette routines will not require the user to
deal with these status codes or even use the TCHK$ routine. They
are provided here to facilitate understanding the listing of the
routines.

Entry point: 010061

Parameters: none

Exit conditions: Carry condition = demand flag
A = status code (above)

Traps: none

CHAPTER 48. CASSETTE HANDLING ROUTINES 48-9

CHAPTER 49. COMMAND INTERPRETER ROUTINES

This section deals with a series of routines within the
command interpreter. Note that these routines are only available
for use if the user program does not overlay the command
interpreter, which resides in locations 012400-016777.

The first four of these entry points are really more like
"exit points", since they are places in the DOS to which users may
return in place of EXIT$. The primary advantage to using them in
place of EXIT$ is that none of these four entry points result in
the DOS being reloaded, a process which takes significant time.
Note that since they do not reload the DOS, programs which exit
through CMDINT, DOS$, CMDAGN, or NXTCMD must not have overstored
any part of the DOS; i.e. they should run completely in locations
017000 upwards. Also, these nexit points" do not clear any traps
that the user may have set; therefore the user should clear any
traps he has set before exiting in this manner. If this is not
done, the system will most likely go astray upon the first
subsequent occurrence of a trapped situation.

Most of the other routines documented in this section are
routines which are used by one or more of the DOS command programs
supplied either on the DOS Generation or DOS Utilities tapes.
Since these routines are pointed to by the command interpreter's
entry point table and are used by some of the DOS commands, they
are documented here primarily for the sake of completeness.

49.1 CHDINT - Return & Scan HCR$ line

CMDINT closes files 1-3 if necessary and processes MCR$ just
as it would a command line entered by an operator at the keyboard.
(This results in executing the program indicated by the command
line.)

Entry point: 01165

Parameters: MCR$ (an 80 byte area of memory starting at 01400)
should contain a string resembling a command line
terminated with a 015.

Exit conditions: Does not return

CHAPTER 49. COMMAND INTERPRETER ROUTINES 49-1

49.2 DOS$ - Return & Display Sign On

DOS$ first loads the RAM screen, if there is one, with the
character set contained in SYSTEM6/SYS (or CHARSET/SYS if it
exists). Once the RAM display has been loaded, it is not loaded
until either another bootstrap from cassette, or the appropiate
DOS function is invoked by a DOS program. DOS$ then causes a
program which has been AUTO'd to be executed. If no programs are
set for auto-execution, the DOS sign-on is displayed, files 1-3
are closed if necessary, and the familiar "READY" message,
displayed. Note again that any traps set by the user program
(e.g. via TRAP$) are not cleared unless the DOS is reloaded. This
implies that if a user program sets any of the traps and wishes to
return via DOS$, NXTCMD, or CMDAGN, it must first clear any traps
it has set to prevent the DOS from going astray. DOS$ is the
normal starting point of the DOS when a bootstrap operation or a
jump to BOOT$, EXIT$, or ERROR$ occurs.

Entry point: 013400

Parameters: none

Exit conditions: Does not return

49.3 NXTCMD - Return & Say "READY"

NXTCMD causes files 1-3 to be closed and displays the
familiar DOS "READY" message.

Entry point: 013403

Parameters: none

Exit conditions: Does not return

49.4 CMDAGN - Return & Give Message

CMDAGN causes files 1-3 to be closed and displays a
user-supplied message before returning to the command interpreter.

Entry point: 013406

Parameters: HL = address of DSPLY$-format string
DE unused; string should position cursor

Exit conditions: Does not return

49-2 DISK OPERATING SYSTEM

DOS CHAIN facility aborts if active

49.5 GETSYM - Get Next Symbol from MCR$

GETSYM causes the next sequential symbol in MCR$ to be
scanned off and stored in an 8-byte field called SYMBOL located at
013472. The starting byte scanned in MCR$ is pointed to by INPTR,
a byte at location 013455. (INPTR is the LSB of the current byte
in MCR$.) The symbol (leading spaces are ignored) must contain
only upper case alphabetic or numeric characters. The first
illegal character encountered terminates the scan; the illegal,
terminating character is stored for the user's inspection (at
SYMBOL+8) and SYMBOL is padded on the right with spaces if
necessary. If the symbol is longer than eight characters, the
first eight only are used; remaining characters, through the
terminator, are scanned but not stored. (The terminator is stored
at SYMBOL+8 in any case.) On exit, INPTR points after the
terminating character unless the terminator is an 015 or a
semicolon, in which case INPTR points to the terminator.

Entry point: 013411

Parameters: INPTR => current byte in MCR$, LSB

Exit conditions: SYMBOL = 8-byte symbol as described above
A, SYMBOL+8 = terminator character
INPTR => byte after symbol terminator in MCR$

(except as noted above)
All other registers indeterminate

49.6 GETCH - Get the Next Character from MCR$

GETCH obtains the next character from the Monitor
Communication Region (MCR$) and returns it in A. The address of
the character to be returned is obtained by using the most
significant byte of the address of MCR$ (which is contained within
one page) and the contents of INPTR (location 013455) as the LSB.
On exit, if zero is true, A = 015 or a semicolon, and INPTR is not
incremented (INPTR is never bumped past an 015 or a semicolon); if
zero is false, A is not an 015 or a semicolon and INPTR is
incremented.

Entry point: 013414

Parameters: INPTR = LSB of address of byte (see above)

CHAPTER 49. COMMAND INTERPRETER ROUTINES 49-3

Exit conditions: A = character from MCR$
ZERO TRUE/FALSE as described above
B = entry value of INPTR
C,D,E unchanged

49.7 GETAEN - Get Auto-Execute Physical File Number

GETAEN returns the physical file number of the file (on the
logical drive specified in C) which is set to be auto-executed by
the DOS.

Entry point: 013417

Parameters: C = Logical Drive

Exit conditions: Carry true if I/O error reaJing the CAT
otherwise, A = auto-execute PFN (O=none)

Zero true if a-e PFN not set
Zero false if A is valid a-e PFN

All other registers indeterminate

49.8 PUTAEN - Set or Clear a File to be Auto-Executed

PUTAEN either sets or clears the auto-execute PFN stored in
the CAT on the disk in the logical drive specified in C. The
change becomes effective upon the next time DOS is entered at
DOS$, either by depressing the RESTART key, the auto-restart tab
being punched out of the rear cassette and the processor halted,
or jumping to EXIT$, ERROR$, BOOT$, or DOS$.

Entry point:

Parameters:

013422

A = PFN to be auto-executed (0 to clear)
C = Logical Drive

Exit conditions: All registers indeterminate
Carry true if I/O error updating CAT

49-4 DISK OPERATING SYSTEM

49.9 GETLFB - Open the User-Specified Data File

GETLFB opens logical file specified in B using the file name,
extension, and drive select code, stored in the indicated LFT
entry, in the normalized form described in the section on the
Command Interpreter. The extension, if blank, is assumed to be
"ABS". Note: The logical drive specification field is ignored,
since the drive select code field is used instead. If an error
occurs, carry is true on return and HL points to a DSPLY$ format
string complete with cursor positioning bytes and one of the
following messages:

NAME REQUIRED. (first byte of name field is blank)
INVALID DEVICE. (select code = 0376; :DRn wrong)
NO SUCH NAME. (file not found; the file must exist)

Each of the above messages is preceeded by control bytes:
011,0,013,11,023 and followed by an 015. If carry is false upon
return, the file named has been successfully opened as the
requested logical file number.

Entry point: 013425

Parameters: B = LFN
In LFT specified by LFN; see above

Exit conditions: Carry false if file successfully opened
All registers indeterminate
Carry true and HL => message if OPEN failed

49.10 PUTCHX - Store the Character in nAn

PUTCHX stores the A register at the memory location pointed
to by HL, increments HL, and decrements a byte counter maintained
in E.

Entry pOint:

Parameters:

013433

HL = address where A is to be stored
A = byte to be stored at HL
E count to be decremented

Exit conditions: B,C,D unchanged
E = entry value - 1
HL = entry value + 1

CHAPTER 49. COMMAND INTERPRETER ROUTINES 49-5

49.11 PUTCH - Alternate Version of PUTCHX

PUTCH is like PUTCHX except it starts by setting the most
significant bit of A to zero and that if A then contains a space
(040) it immediately returns zero true; in which case A is not
stored, HL not incremented, and E not decremented.

Entry point: 013430

Parameters: same as PUTCHX

Exit conditions: same as PUTCHX except as described above

49.12 PUTNAM - Format a Filename from Directory

PUTNAM is a routine which extracts a name, extension and
physical file number for a directory entry and puts them into a
place in the command interpreter called "NAME" (located at 013513;
the field is 19 bytes long and followed by an 03.) Since this
routine is used by the CAT command, the format of the names
produced by PUTNAM should be familiar to all DOS users.

Note that on entry, only the most significant 4 bits of Care
used, and that CURLOC (location 013463) is to contain the two-byte
PDA of the directory sector (LSB,MSB).

Entry point:

Parameters:

013436

the directory sector in the disk buffer
B = LFN indicating which buffer
C = PFN of entry being extracted
CURLOC = PDA of directory sector

Exit conditions: CURLOC unchanged
disk buffer unchanged
B unchanged
all other registers indeterminate
ZERO TRUE: file does not exist

49-6 DISK OPERATING SYSTEM

49.13 MOVSYM - Obtain the Symbol Scanned by GETSYM

MOVSYM moves the eight-byte SYMBOL described in the section
on GETSYM into the eight-byte area pointed to by DE.

Entry pOint: 013441

Parameters: D,E = address of user's eight-byte area

Exit conditions: B unchanged. All other registers
indeterminate.

49.14 GETDBA - Obtain Disk Controller Buffer Address

GETDBA extracts the current disk buffer address in the format
acceptable to GETR$ from one of the four LFT entries. It does
this by getting the BUFADR from the specified LFT entry and
subtracting three from it. On return, H is the address MSB
pointing into the command interpreter data area.

Entry point: 013444

Parameters: B = LFN (0,16,32,48)

Exit conditions: A = BUFADR as described above
H as described above
B,C,D,E unchanged

49.15 SCANFS - Scan Off File Specification

SCANFS scans a file specification of the form
FILENAME/EXT:Drive (as discussed under FILE names) pointed to by
HL into a 16 byte area pointed to by DE. The area pointed to by
DE is treated as an LFT entry, that is, the first byte is a drive
select code (0376 meaning invalid drive spec, 0377 meaning
unspecified drive spec, or the binary drive number), the second
byte is 0377 indicating the file is closed, bytes 3 thru 10 are
the file name (blank if not given), bytes 11 thru 13 are the
extension (blank if not given), and bytes 14 thru 16 are the
normalized drive spec (blank if not given). The scanned drive
spec may be 2 to 7 characters long; the first character must be
"D", the second may be "R", and the remalnlng must be digits.
Therefore ":DO" and ":DR00014" are both legal representations.
The normalized represention consists of a "D" followed by "R" and
the single digit given or "D" followed by the two digits given;
for instance, the above examples in normalized form would be "DRO"

CHAPTER 49. COMMAND INTERPRETER ROUTINES 49-7

and "D14" respectively. Scanning a VOLID results in the correct
drive number being stored in the normalized drive spec field. The
scan is terminated by any non-alphanumeric character other than
" :" or "I".

Entry Point: 013447

Parameters: DE => "LFT TABLE" entry
HL => string to be scanned

Exit Conditions: DE => byte following "LFT TABLE" entry
HL => byte after terminator (unless 015 or
in which case it points to terminator)

49.16 TeWAIT - Test controller memory & wait

". " ,

TCWAIT is the point in the COMMAND INTERPRETER where it loops
testing the disk controller buffer memory while waiting for a
command to be keyed in. It is only to be used by the CHAIN
command to trap programs returning to DOS.

Entry Point: 013452

Parameters: none

Exit Condition: does not return

49-8 DISK OPERATING SYSTEM

CHAPTER 50. USER SUPPORTED INPUTIOUTPUT

When the user desires to use 1/0 devices other than the
keyboard, display, disk, or cassettes, he will use a routine that
is not part of the operating system. Many of these devices (for
instance, the communications channel) will be serviced by
foreground processes which run with interrupts disabled. However,
if the user does access an 1/0 device from a background process,
he must realize that as long as interrupts are enabled,' some other
device can be addressed by a foreground routine. For this reason,
the user must disable interrupts between the time he addresses his
device and the time he uses it. To reduce the amount of
foreground processing real time jitter (discussed earlier) as much
as possible, the aim in writing background 1/0 routines should be
to minimize the amount of time that interrupts are disabled. This
implies that devices accessed from background programs must be
addressed every time they are used. For example:

GETEYT EI Enable interrupts in case
LA DEVADR looping
DI Disable interrupts
EX ADR Address the device
IN Get the device status
ND 2 Check for required bits
JTZ GETEYT Wait if not set
EX DATA Else get the byte
EI Enable interrupts after
IN the data input
RET

Note that a little cheating on time was done in the interest of
program length. Since the INPUT in DATA mode was done without
enabling interrupts, re-disabling them and re-addressing the
device was not necessary. One should be judicious in the trade
off employed in exercising this freedom.

Note: The user must not do 1/0 to the disk controller from
foreground-driven routines or results can be unpredictable. The
DOS disk drivers allow user foreground routines to get control in
the midst of a disk 1/0 operation, under the assumption that the
foreground routine will not do anything to the disk controller
which would confuse it.

CHAPTER 50. USER SUPPORTED INPUTIOUTPUT 50-1

CHAPTER 51. ERROR MESSAGES

PARITY FAILURE DURING READ
A parity fault occurred while a disk data record was
being read.

PARITY FAILURE DURING WRITE
A parity fault occurred while a disk data record was
being written.

RECORD FORMAT ERROR
The physical file number or logical record number in the
record read did not match the values contained in the
logical file table.

RECORD NUMBER OUT OF RANGE
The record accessed had a logical record number less than
zero or, during reads, was outside the physical space
allocated to the file.

WRITE PROTECT VIOLATION
An attempt was made to write on a file that had its write
protection bit set.

DELETE PROTECT VIOLATION
An attempt was made to delete a file that had either its
write or delete protection bit set.

FILE SPACE FULL
An attempt was made to allocate space when either the
disk was physically full or no more segment descriptor
slots were available in the RIB for the given file.

DRIVE OFF LINE
The drive went off line after the file was opened.

LOGICAL FILE NOT OPEN
An attempt was made to use an entry in the logical file
table that was not opened for use with some file.

INVALID LOGICAL FILE NUMBER
A routine was called with the logical file number
parameter not zero through three.

CHAPTER 51. ERROR MESSAGES 51-1

INVALID DRIVE NUMBER
A routine was called with the drive number not zero
through the defined drive number limit (or 0377, if
allowed) .

INVALID TRAP NUMBER
The TRAP$ routine was called with a trap number not
between zero and seven.

FAILURE IN SYSTEM DATA
An unrecoverable parity error occurred while the system
was dealing with one of the disk tables or a retrieval
information block, or a RIB with incorrect format was
accessed.

INVALID PHYSICAL FILE NUMBER
A physical file number reserved for the system was
illegally referenced.

INTERNAL SYSTEM ERROR
The error message routine was parameterized with an
invalid error message number!

ERROR X ON DECK Y
A cassette routine error has occurred. The X indicates
the type of error according to the following table:

D - parity error
E - end of tape
F - end of file
G - unfindable file
Z - write failure

51-2 DISK OPERATING SYSTEM

CHAPTER 52. ROUTINE ENTRY POINTS

These entry points are contained in a file called DOS/EPT.

Loader Routines

01000
01003
01006
01047
01052
01055
01060
01173

BOOT$
RUNX$
LOADX$
GETNCH
DR$
DW$
DSKWAT
mvNV$

reload the operating system
load and run a file by number
load a file by number
get the next disk buffer byte
read a sector into the disk buffer
write a sector from the disk buffer
wait for disk ready
DW$ without write verify 2.3 only

Time-critical Scheduling Routines

01033
01036
01041
01044

CS$
TP$
SETI$
CLRI$

change process state
terminate process
initiate foreground process
terminate foreground process

Symbolic File Handling Routines

01063
01066
01071
01074

PREP$
OPEN$
LOAD$
RUN$

open or create a file
open an existing file
load a file by name
load and run a file by name

Logical File Handling Routines

01077
01102
01105
01110
01113
01116
01121
01124
01127
01132
01135

CLOSE$
CHOP$
PROTE$
POSIT$
READ$
WRITE$
GET$
GETR$
PUT$
PUTR$
BSP$

close a file
delete space in a file
change the protection on a file
position to a record within a file
read a record into the buffer
write a record from the buffer
get the next buffer character
get an indexed buffer character
store into the next buffer position
store into an indexed buffer position
backspace one record

CHAPTER 52. ROUTINE ENTRY POINTS 52-1

Generalized Processing Routines

01011
01022
01140
01143
01146
01151
01170
07400

INCHL
DECHL
ERROR$
BLKTFR
TRAP$
EXIT$
WAIT$
DOSFNC

increment HL
decrement HL
close all files, exit chain, and reload DOS
transfer a block of memory
set a disk error condition trap
reload the operating system
DOS wait-a-while "NOP" routine
DOS function loader

Keyboard and Display Routines

01154
01157
01162

DEBUG$
KEYIN$
DSPLY$

enter the debugging tool
obtain a line from the keyboard
display a line on the screen

Cassette Handling Routines

010000
010005
010012
010017
010024
010031
010034
010037
010042
010045
010050
010053
010056
010061

TPBOF$
TPEOF$
TRW$
TBSP$
TWBLK$
TR$
TREAD$
TW$
TWRIT$
TFMR$
TFMW$
TTRAP$
TWAIT$
TCHK$

position to the beginning of a file
posi ti on to the end of a fi Ie
physically rewind a cassette
physically backspace one record
write an unformatted block
read a numeric CTOS record
TR$ and wait for last character
write a numeric CTOS record
TW$ and wait for last character
read the next file marker record
write a file marker record
set a cassette error trap
wait for 1/0 completion
get 1/0 status

COMMAND INTERPRETER UTILITY ROUTINES

01165
013400
013403
013406
013411
013414
013417
013422
013425
013430
013433
013436

Ct-1DINT
DOS$
NXTCMD
CMDAGN
GETSYM
GETCH
GETAEN
PUTAEN
GETLFB
PUTCH
PUTCHX
PUTNAM

return to command interpreter & scan MCR$ line
return to command interpreter & display sign on
return to command interpreter & say "READY"
return to command interpreter & give message
get the next symbol from MCR$
get the next character from MCR$
get the auto execute PFN
set the auto execute DFN
open the user-specified file (LFN in B)
store the nonblank character in the A register
store the character in the A register
format a filename from a directory block

52-2 DISK OPERATING SYSTEt-1

013441
013444
013447
013452
013455
01200
000053
01400
01544

MOVSYM
GETDBA
SCANFS
TCWAIT
INPTR
DOSFLAG2
BOOTDRIV
MCR$
LFT

obtain the symbol scanned off by GETSYM
obtain the disk controller buffer address
scan off a file specification
test controller memory and wait for command
byte pointer for use with GETCH
DOS FLAG byte #2 2.3 only
drive DOS was booted from
Monitor Communication Region
Logical File Table

Internal DOS Equivalences

00004
00005
00026
00027
00030
01377
4
0<4
1<4
2<4
3<4

DOSPFN
DOSPDN
DOSPTR
SDFLAG
SDNR
DOSFLAG
TFT
LFO
LF1
LF2
LF3

PFN for use by DR$ and DW$
PDN for use by DR$ and DW$
BUFPTR used by GETNCH
Sub-directory existance flag
sub-directory numbers (1 per drive)
DOS flag byte
temporary file table
logical file #0
logical file #1
logical file #2
logical file #3

LOGICAL FILE TABLE DESCRIPTION

0 PFN
1 PDN
2 LRN
4 BLRN
6 CSD
8 RIBCYL
9 RIB SEC
10 MAXLRN
12 LRNLIM
14 BUFADR
15 XXXXXX

DOS MEMORY MAPPING

000000
001000
004000
005400
005572
006000
07400
010000

LDRAD$
DOSAD$
OVLAD$
DSPAD$
KEYAD$
DEBAD$
FLDAD$
CASAD$

(1) PHYSICAL FILE NUMBER
(1) PHYSICAL DRIVE NUMBER AND PROTECTION
(2) NEXT LRN TO BE DEALT WITH
(2) FIRST LRN WITHIN CURRENT SEGMENT
(2) CURRENT SEGMENT DESCRIPTOR
(1) PDA (MSB) OF RIB
(1) PDA (LSB) OF RIB
(2) LARGEST LRN REFERENCED
(2) RESERVED FIELD (INITIALLY
(1) CURRENT CONTROLLER BUFFER
(1) NOT USED

SYSTEM LOADER
DOS RESIDENT
DOS OVERLAYS
CRT WRITE ROUTINE
KEYBOARD READ ROUTINE
DISK DEBUG
DOS FUNCTIONS PAGE
CASSETTE TAPE DRIVERS

ZERO)
ADDRESS

CHAPTER 52. ROUTINE ENTRY POINTS 52-3

013400
017000
000053

CMDAD$
COVAD$
BOOTDRIV

COMMAND INTERPRETER
COMMAND INTERPRETER OVERLAYS
DRIVE DOS WAS BOOTED FROM

DOS Keyboard/Display Routine Control Byte Equates

3
011
013
015
021
022
023
11
o
79
o

DOS

1<7
1<6
1<5
1<4
1<3
1<2
1 < 1
1<0

FLAG

EOS
H
V
EOL
ECF
ECL
R
BL
TL
RC
LC

byte

ABTIF

til

NET ACT
UBOOT
CHACT
IS55AVL
PSACT
RAMAVL
ROMBOOT

end of string, no CR/LF
horizontal position follows
vertical position follows
end of line, CR/LF
erase cursor to end of frame
erase cursor to end of line
roll screen up one line
number of bottom line on screen
number of top line on screen
number of rightmost column on screen
number of leftmost column on screen

(location 01377)

1 ••• abnormal program completion
• 1 •• INTERNET facility active
• • 1 • disk was booted from disk
• •• 1 chaining active

1 ••• 5500 instructions available
• 1 •• PS active
• • 1 • RAM display available
• •• 1 BOOTSTRAP loaded from ROM

52-4 DISK OPERATING SYSTEM

CHAPTER 53. DOS QUESTIONS AND ANSWERS

Q. When I write my program, where should I place it in memory?
A. The best address to specify in your SET statement in an

assembly language program is 017000. This allows your program
full access to the routines in the DOS command interpreter and
allows your program to return to the DOS through the NXTCMD and
CMDAGN entry points. If the 8.5 K remaining above 017000 is
inadequate for your program's needs, you could perhaps start
your program at 010000 (assuming your program will not be using
the DOS cassette handling routines or command interperter
routines.)

Q. Where should I put the data areas used by my program, at the
beginning or at the end?

A. Experience in programming the Datapoint computers has found
that generally it is best to put program data areas before the
program itself. One advantage of this approach stems from the
fact that programs can often be made shorter if most or all of
the most commonly used data items are contained within one page
of memory, eliminating the need to reload the H register as
often. Since programs typically start on a page boundary, this
automatically means that the first 256 bytes of your data area
will be in one common page. Another advantage of this approach
is that a person reading a program is frequently aided by
seeing the program's data area and error messages, etc., before
he plunges into the code itself. This placement also reduces
the number of forward references the assembler must contend
with. But don't forget to specify the entry point on your
"END" statement! The default entry point is to the first byte
of code generated. Yours wouldn't be the first program to
start executing your data area!

Q.When my program gets control from the DOS, do I need to save
the registers so I can restore them before returning to it?

A. No. Under the DOS the saving and restoring of the system's
registers by user programs is not necessary.

CHAPTER 53. DOS QUESTIONS AND ANSWERS 53-1

Q. Talking about returning to the DOS, how should my program do
that?

A. When a user program finishes, the normal termination is by
jumping to EXIT$.

Q. Does it matter if my program returns to the DOS (to EXIT$,
NXTCMD, CMDAGN, o~ wherever) with the stack at a different
level than when my program started? In other words, if my
program calls several levels down into subroutines and the
subroutine jumps to EXIT$, will that mess things all· up?

A. No. Since the stack wraps around, the level is always relative
and it makes no difference what is in the stack when the user
returns control to the DOS.

Q. What is the best way to pass parameters to my subroutines? Is
there any official convention for this?

A. There is no "official convention" for parameter passing.
However, experience with programming under the DOS suggests
that passing ,parameters in the registers as typified by the DOS
file handling routine parameterization is both efficient and
convenient to use. The DOS convention that abnormal returns
from subroutines are indicated by carry being true on exit (and
further information indicated by the zero condition being true
or false) also has proven to be a very handy technique, and one
which user programs can probably make profitable example of.

Q. Can I update my data files with EDIT?
A. Most data files cannot be EDITed. EDIT produces a space and

record compressed output, regardless of input file format.
Also, EDIT will segment records longer than 79 bytes into two
or more records. Only if your data file is compressed and has
79 byte (or smaller) records can EDIT be used on it. In
general, do not EDIT a data file; write an update program.

Q. What's going on when I run a program and nothing happens; the
machine just comes back with READY?

A. This is the system's normal action when it finds an unloadable
program. Something - a parity error, a non-object record -
made the program unloadable. Try COPYing the program to clear
any parity errors. APP the program to test for non-object
records. It may be necessary to re-assemble the program or get
a new object file from tape or another disk.

Q. I just got a disk that is completely shot; DOSGEN flags every
cylinder.

53-2 DISK OPERATING SYSTEM

A. Sometimes you can receive the wrong type of disk, due to
ordering errors or packaging errors at the manufacturer. If a
disk fails to work., pull it out and inspect it.

On mass storage (11-platter) disk packs, look at the
bottom platter. The disks Datapoint uses have one index notch
on the edge of the platter. Some disks have hard sectoring and
will have 24 notches along the edge of the platter. If a
Datapoint drive gets one of these disks it thinks every
revolution is 24 revolutions! Also check the filter in the
center of the pack. The filter must be in place or dirt will
get in the drive; it must be clean or there won't be enough air
flow to float the r/w heads correctly.

On a cartridge disk, look at the metal spindle in the
center of the bottom side of the pack. There should be 25
notches along the edge of the spindle, evenly spaced except for
one pair close together. If the spindle doesn't look right,
the drive can't handle it.

On diskettes there isn't much inspection possible. Verify
that the diskette is a 128-byte sector, IBM compatile diskette
and that it wasn't put into the drive upside-down.

CHAPTER 53. DOS QUESTIONS AND ANSWERS 53-3

CHAPTER 54. 5500 ROMGUIDE

54.1 System ROM Functions

54.1.1 Introduction

The DATAPOINT 5500 DEBUG is a ROM resident program whose
immediate accessibility creates a flexible interface between User
and machine. This guide is intended to provide the 5500 User with
that information essential to the use of the ROM-DEBUG. With this
powerful hardware feature the User should quickly develop an
aggressive debugging tool.

54.1.2 Startup Procedure

There are four methods of entry to DEBUG:

(1) Forcing entry through manual intervention.
(2) Entry through a BREAKPOINT set by DEBUG.
(3) Entry through a BREAKPOINT imbedded in the User

Program.
(4) Entry as the consequence of a RETURN from a DEBUG Call

Command.

TO FORCE ENTRY INTO DEBUG, DEPRESS IN SEQUENCE: DISPLAY,
RUN, RESTART; keeping each key depressed until all three are down.
Then release RUN. This will bring up the DEBUG display and
commands may be entered.

Note that depression of the DISPLAY key during the transition
from Boot Block read-in to execution during REBOOT will also cause
entry into DEBUG.

CHAPTER 54. 5500 ROMGUIDE 54-1

54.1.3 Saving the Machine State

When DEBUG is entered through console intervention, most of
the User's program state is undisturbed. What is not saved is the
state of the interrupt enable flip-flop (interrupts are disabled),
the state of the base register or sector table (these two are not
changed upon entry to DEBUG), the state of the ALPHA/BETA Mode
flip-flop (all registers are saved), the state of the I/O system
(what device is addressed and the state of its status/data select
flip-flop), and the bottom two stack locations.

What gets saved are the ALPHA/BETA Mode registers and
condition code flip-flops, the Program Counter (PC) and 016 Stack
locations.

for:
Note that there exist default values upon exit from DEBUG

(1) ALPHA/BETA Mode flip-flop
(2) Currently addressed device and its Status/Data Mode

flip-flop

These can be set using DEBUG commands ('A', 'G' and 'R').

54.1.4 Display Format

The 5500-DEBUG display consists of four lines and occupies
the bottom-right corner of the screen.

AAAAAA
* NNN
MMMMMM

nnnnnnn*

CURADR
ASCII,8 BIT OCTAL C[CURADR]
LSB,MSB ADDRESS FORMED AT CURADR.
COMMAND INTERPRETER

The first (top) line shows the current sixteen bit address.

The second line contains both an ASCII (One character shown as *)
and an 8-bit octal (Three characters shown as NNN) representation
of the contents of the current address byte.

The third line contains an octal representation of the 16-bit
value whose LSB is at CURADR and whose MSB is at CURADR+1. (This
is the address format used by JMP, CALL and DA mnemonics).

54-2 DISK OPERATING SYSTEM

54.1.5 The Command Interpreter

The bottom line of the display is an interpreter used to edit
and input commands to DEBUG. The blinking cursor signifies that
the Command Interpreter is awaiting user input.

Data is entered serially into the input display buffer. The
cursor is displaced to the right successively as this occurs. The
Backspace key erases the character most recently entered, shifting
the entry cursor to the left one space. The cancel key deletes
the entire entry.

All commands are single characters. Commands which accept
input arguments are preceded by the argument, which is entered in
octal. Not all commands require an input argument. The last
character input to the interpreter must be a legal command.
Illegal input is ignored, evoking a BEEP from the 5500. Commands
are executed upon their entry into the interpreter (no ENTER key
is required), with the current contents of the entry line being
cleared. Upon command completion the cursor reappears, awaiting
further input.

54.1.6 Command Syntax

This explanation of the command syntax uses the following
notation:

nnnn •.. Indicates an optional sequence of octal digits not to
exceed the number of n's given.

12345

If input argument contains more than eight bits of
significance special results will occur. In general what
will happen is that two bytes of memory will be affected
by the command, either a register pair or a memory
address in LSB,MSB format.

There exists a set of special commands whose accidental
execution is inhibited by the requirement that they
contain this unique argument.

CHAPTER 54. 5500 ROMGUIDE 54-3

54.1.7 Input Command List

nnn A Address the given or current I/O device. N~ check is
made on address format. STATUS is displayed as
C[CURADR]. NOTE that the CURRENT Device is readdressed
and put into the mode last accessed (Data mode if 'F'
or 'G' have been executed subsequent to last 'A'
command) prior to resumption of execution through Call,
Exit, Jump or User Exit Commands if the last I/O DEBUG
command executed is A.

nnnnnn B Set a BREAKPOINT at the given or current address. Upon
BPT execution the state of the machine is saved, the
memory location at which the BPT was set is restored to
its original value and the corresponding BPT table
entry is cleared.

The following notes reference the use of the 'B'
command.

Overlay BREAKPOINT will not loop. That is: It is not
possible to successively set a BREAKPOINT in the same
memory location in order to iterate the execution of a
program loop. To iterate BREAKPOINT through looping
sequence requires 'double Breakpoint'. Twenty
BREAKPOINTs can be active at anyone time. Note that
BPT's DISABLE INTERRUPTS and leave them disabled prior
to resumption of execution through Call, Exit, Jump or
User Exit commands. This is done to enable testing of
Foreground routines with DEBUG. If it becomes
necessary to use DEBUG with Interrupts Enabled, the
user can place an EI instruction in a main loop of his
program. Note that it is impossible for the machine to
determirte its I rrent register (ALPHA/BETA) mode.
Therefore the: command mode flip-flop is set to
ALPHA when a BE s encountered. If User wishes to
test code writt. ~n BETA Mode it is necessary that he
manu~lly put the Machine in BETA Mode (With 'R'
Command) prior to resumption of execution through Call,
Exit, Jump or User Exit commands. Similarly, he may
have to address the proper I/O device (with A) and
perhaps put it into DATA Mode (with G) before
continuing executio from a breakpoint. Note that DEBUG
will not set a BREAKPOINT over another BREAKPOINT.

nnnnnn C Call the given or current address. The Machine State
is restored before execution control is passed to the

54-4 DISK OPERATING SYSTEM

Subroutine. A RETURN from the Called Subroutine causes
re-entry into DEBUG and hence, causes the Machine State
to again be saved.

D Decrement the current address value. Any Input
Argument will be ignored.

E Continue execution from a forced or BREAKPOINT entry
into DEBUG. Machine State is restored prior to
resumption of execution. The interrupts are left
disabled. The register mode is set to the last R value
(initialized to ALPHA Mode upon BPT or on forced
entry), the base register and sector table are not
changed, and the 1/0 device is addressed and optionally
set to DATA mode. Note that this command does not
depend on any Display Parameters. Prior DATAPOINT
Debug software used CURADR as an exit address pointer.

nnn F Fetch next data byte from current or given 1/0 device.
Command will automatically put device in DATA Mode and
the device will subsequently be put in data mode when
the E command is given.

nnn G Go to data mode in the current or given 1/0 device when
the E command is given.

H * Not Used. *

I Increment the current address value. Any Input
Argument will be ignored.

nnnnnn J Jump to the given or current address. Machine State is
restored prior to resumption of execution.

12345K Set ASCII keyin mode. Will allow ASCII data to be
entered into CURADR in auto-increment mode (i.e. will
update CURADR). BACKSPACE moves CURADR back and
displays its contents. DELete moves CURADR forward and
displays its contents. CANCEL causes a return to
normal mode.

L Link to the address pointed to by the Current Address.
CURADR is replaced by line 3 (the 16-bit LSB,MSB
address formed at CURADR,CURADR+1). The remaining
display parameters are updated appropriately. Note
that initial display state upon entry into DEBUG can be
regenerated by performing the'S' command, followed
immediately by the 'L' command.

CHAPTER 54. 5500 ROMGUIDE 54-5

(nnn)nnn M Modify the contents of the current address location.
If the value of the Input Argument exceeds eight bits
of significance, two memory locations will be modified,
treating the input argument as an address in LSB,MSB
Format for JMP and DA. (A CLICK is sounded to notify
the operator of this action.)

N * Not Used. *
o * Not Used. *

nnnnnn P Load the Base Register with the 8-bit value (nnnnnn -
0100000)

12345Q Load the Sector Table. CURADR => Table whose first
byte equals the number of entries to be loaded. The
following bytes contain arguments to be loaded into the
Sector Table.

R Switch Alpha/Beta Mode register display. The ASCII
character displayed after command execution tells the
current display mode: A=ALPHA, B=BETA.

nn S Display the specified stack item (up to 015 Octal).

12345T

nnn
nnn
nnn
nnn
nnn

nnnnnn

Note: P, 0 => 014 Octal after RESTART. (Since RESTART
PUSHes P onto the top of the STACK.)

Start memory test. Displays Memory Size and Pass
Counter in right-bottom corner of screen. Maintains
running display of Test Failures.

U User mode execute. Command sets USER Flag then
executes 'E' Command.

V
W
X
Y
Z

EX COM4 DEV must be Addressed with A command.
EX WRITE STATUS is displayed
EX COM1 after command issue.
EX COM2 'nnn' is the current output byte.
EX COM3

Set Current Address to nnnnnn. Command has no efect
unless it is preceeded by an Input Argument.

<Cancel> Cancel entry line.

<BSP> Backspace on entry line.

(nnn)nnn . Modify the contents and then increment the current

54-6 DISK OPERATING SYSTEM

address. If Input Argument has more than eight bits of
significance, two memory locations are modified,
treating the argument as an address in LSB,MSB Format.
(a CLICK is sounded).

(nnn)nnn ~ Modify the contents and then increment the current
address. If input argument is null, the last non-null
value given is used. If 'last value' exceeded eight
bits of significance, two memory locations will be
modified. (a CLICK is sounded).

(nnn)nnn
nnn

(nnn)nnn
nnn

(nnn)nnn
nnn

(nnn)nnn
nnn

Clear all active (DEBUG set) breakpoints, restoring
values.

a
b

c
d
e
h
I
x
f

Display register and pair (with modify option).
If Input Argument exceeds eight bits, the command
modifies a register
pair. Pairs must be modified as indicated.
(LSB register specifies a pair e.g. L for HL)
Note that to get these command letters
(lower case) the shift key must be depressed
when the command key is struck.

Condition flags: 7=>C; 6=>S; 1=>-Z&-S; O=>-Z&-P. The
bit pattern which displays the condition flags will
replicate the previous state when added to itself.
This is probably the easiest way to determine the
actual values for Z and P.

CHAPTER 54. 5500 ROMGUIDE 54-7

54.1.8 DEBUG Command Summary

nnn A - Address the given or last I/O device
nnnnnn B - Set a break point at the given or current address
nnnnnn C - Call the given or current address

D - Decrement the current address
E - Continue execution

nnn F - Fetch the next data byte from current I/O device
nnn G - Go to data mode in the current I/O device

I - Increment the current address
nnnnnn J - Jump to the given or current address

K - Set ASCII keyin mode (12345K)
L - Link to the address pointed to by the current address

(nnn)nnn M - Modify the contents of the location ponted to by the
current address

nnnnnn P - Load the page basing register
Q - Load the sector table
R - Switch from alpha to beta mode or vice versa

nn S - Display the specified stack item
T - Start memory test (' 12345T')
U - User mode execute

nnn V - EX COM4 to last I/O device
nnn W - EX WRITE to last I/O device
nnn X - EX COM1 to last I/O device
nnn Y - EX COM2 to last I/O device
nnn Z - EX COM3 to last I/O device

(nnn)nnn a - Display or update the contents of the A-register
nnn b - Display or update the contents of the B-register

(nnn)nnn c - Display or update the contents of the C-register
nnn d - Display or update the contents of the D-register

(nnn)nnn e - Display or update the contents of the E-register
f - Display the flags (adding the number to itself will

restore the flags)
nnn h - Display or update the contents of the H-register

(nnn)nnn 1 - Display or update the contents of the L-register
nnn x - Display or update the contents of the X-register

(nnn)nnn . - The equivalent of an M followed by an I
nnnnnn <enter> - Change the current address

- Clear breakpoints
(nnn)nnn A _ Modify and Increment using last value

54-8 DISK OPERATING SYSTEM

ROM DEBUG DISPLAY
AAAAAA - The current address (i~

octal) AAAAAAA
X NNN

X - The contents of location MMMMMM
AAAAAA (in ASCII)
or the contents of the specified register (in ASCII)

NNN - The contents of location AAAAAA (in c~tal)
- or the contents of the specified register (in octal)

MMMMMM - The contents of locations AAAAAA+1 and AAAAAA
respectively, concatenated into one octal number

- or the contents of a register pair concatenated into one
octal number (XA, BC, DE, HL)

CHAPTER 54. 5500 ROMGUIDE 54-9

APPENDIX A. DOS.A AND DOS.E

DOS.A and DOS.E are two Disk Operating Systems supporting
Datapoint computers operating in conjunction with up to four 9350
series cartridge disk drives.

A.1 Planning for DOS.A/DOS.E

DOS.A and DOS.E are both alike in many respects. Both use
the 9350-series disk cartridge drives, and they are each almost
identical to the other operationally. The primary operational
difference between DOS.A and DOS.E is that DOS.E will support the
Datapoint Partition Supervisor, PS, released separately.
Operating under PS, DOS.E permits the concurrent execution of more
than one partition.

A.1.1 DOS.A Physical Configuration

DOS.A operates in either Datapoint 2200 or 5500 series
processors with at least 16K of memory and one or more 9350-series
disk drives. Use of a single 9350-series drive is possible, but a
multi-drive system should be available for backup and support
purposes. Some consideration must be given to the question of
copying files from one disk to another, and most .systems
incorporating the 9350-series disks will have files large enough
to make it impractical to transfer them from one disk cartridge to
another one cassetteful at a time.

An option which should be considered during the systems
planning phase is the High Speed, or so-called "RAM" Display
Option. This option is strongly recommended, as it can
substantially increase total system throughput (especially on
batch-processing oriented systems) at a very small additional
cost. This option is field-installable, and is standard equipment
on Datapoint 5500 series computers.

APPENDIX A. DOS.A AND DOS.E A-1

A.1.2 DOS.E Physical Configuration

DOS.E differs form DOS.A in that DOS.E requires a 48K
Datapoint 5500 computer and two, three, or four 9350~series disk
drives attached to a 9357 disk control unit. This enhanced
cartridge disk controller contains four times the amount of high
speed cache memory contained in the older 9350-series controller,
as well as additional hardware features to facilitate the
multiprogrammed environment available under PS/DOS.E. (Older
9350-series disk controllers can be easily field-upgraded to 9357
levels.)

A.2 Disk Drives

DOS.A and DOS.E support a maximum of four 9350-series
cartridge disk drive units. These outstandingly reliable disk
drives, the standards in their field, have established an enviable
record for availability and percentage uptime that few other
cartridge disk units even hope to achieve.

A.3 Disk Media

The Datapoint 9350-series disk drives use a single platter
disk cartridge, media-compatible with the IBM 2315 disk cartridge.
Data is recorded in 203 concentric circles on each of the two
recording surfaces. Each such circle is referred to as a track.

The disk itself is enclosed within a plastic cartridge which
helps to protect it from bumps, jolts, and contaminants while it
is not in place in the disk drive. This cartridge and the care
taken in its handling and storage are of prime importance in
helping to eliminate disk errors and parity failures that
contamination can cause.

A.4 Loading and unloading Disk Cartridges

Loading and unloading cartridges from the 9350-series drives
is simplicity itself. At the top of the front side of the drive
is the cartridge access door. Pulling out and down on the handle
opens this door. The cartridge is inserted into the cavity with
the "tongue" of the cartridge on top and entering first. When the
cartridge is fully inserted, the cartridge access door is closed
and the rocker switch marked "LOAD/RUN" is swi tched to the "RUN"
position. When the switch is moved to "RUN", the following things
occur:

A-2 DISK OPERATING SYSTEM

1) The cartridge access door is locked closed.

2) The indicator lamp marked "LOAD" on the front panel of the
drive is extinguished;

3) The disk pack accelerates to its rated speed of 1500 rpm,
at which time the indicator lamp marked "READY" lights up.
When this lamp lights up, it indicates that the disk has
come on-line to the Datapoint computer.

Removing a cartridge which is no longer needed from a drive
is a simple reversal of the above steps. First, the "LOAD/RUN"
switch is moved to the "LOAD" position. The drive immediately
goes off-line to the computer and is swiftly braked to a smooth
stop. When the disk comes to a full and complete stop, the door
is unlocked and the "LOAD" indicator lamp comes on. At this time,
the cartridge access door can be opened with a gentle tug, after
which the cartridge simply slips right out. The cartridge should
be stored in a suitable storage rack; it should never be left in a
place where it might slip and fall onto a hard surface, such as a
floor.

A.5 Switches and Indicators

The uncluttered and modern appearance of the Datapoint
computers in conjunction with the 9350-series disks permit their
use in a wide range of environments, even front-office use if so
desired. Few disk-based systems offer such a versatility of
placement.

The current cartridge disk drive, manufactured by Wangco,
uses a small cluster of controls in the lower right-hand corner of
the disk drive front panel. There is a thumbwheel switch for
physical drive number selection, which is set at installation and
should not be moved thereafter. The rocker switch marked "RUN"
and "LOAD" controls disk loading as described above; the "READY",
"LOAD" indicator lamp is immediately below this switch. The
leftmost controls are a pair of rocker switches marked "PROT CART"
and "PROT FIXED". These switches control the write protection
status of the cartridge disk and the fixed disk inside the drive.
When the indicator lamp behind one of these switches is lit, the
corresponding disk is write-protected. The protection can be
changed at any time by changing the switch position.

The older cartridge drive, manufactured by Diablo, has only
one single rocker switch, (the LOAD/RUN switch which has been
previously described) and four color-coded indicator lamps. The

APPENDIX A. DOS.A AND DOS.E A-3

first of these, a white lamp marked "LOAD" comes on to indicate
that the drive is ready to have a disk cartridge inserted or
removed. The second lamp, a yellow one marked "READY" indicates
that the cartridge in place has corne up to speed and is on-line.
The third lamp, an orange one marked "CHECK", is an error
indication. This lamp is rarely if ever seen illuminated. If it
does light up, taking the drive offline and back may help
(switching the LOAD/RUN switch to LOAD and back). If that does
not work, try· powering down the entire system and then turning it
back on again, using the main power switches. If the CHECK
condition still is not cleared, call the Datapoint Customer
Support Center for technical assistance. The fourth red lamp is
marked "PROTECT", and when it is illuminated the computer cannot
write on the disk in that drive. The disk is protected each time
it is brought to RUN status. Depressing the PROTECT button
extinguishes the indicator lamp and write-enables the disk. The
disk can be re-protected only by switching the LOAD/RUN switch to
LOAD and back to RUN.

A.6 Care and Handling of Disk Cartridges

Disk cartridges for the 9350-series disk drives are precision
assemblies and must be treated with some care. It is highly
important that they not be dropped, mishandled, or contaminated
with dust or other pollutants. The cartridges should be stored in
an appropriate storage rack, in an area free from dust and in an
environment similar to that where the drives are installed
(preferably in the same room with the computer). Users should be
very careful to never allow anything to contact the oxide surface
·of the disk itself.

If the cartridges are shipped by common carrier, they should
be repackaged in their original, protective shipping carton and
marked "FRAGILE". Disk cartridges should never be mailed by
Parcel Post. Upon receipt of a disk cartridge, if there is any
evidence of damage the cartridge should not be used until it has
been inspected and approved for use by a Datapoint customer
engineer.

In addition, any cartridge which has been in a non-computer
room environment should be allowed to equalize temperatures in the
room with the computer for 24 hours before use if at all possible
before attempting to read or write data on the cartridge. In an
emergency, placing the cartridge onto a drive and letting it spin
up and run for about an hour will usually be adequate, but this
procedure should be considered an emergency measure only.

A-4 DISK OPERATING SYSTEM

A little care in handling disk cartridges will repay itself
several times over in reliable and trouble free service with long
life from your disk cartridges.

A.7 Care and Maintenance of the 9350 Drives

Although the 9350 series disk drives are tolerant of
contamination levels that would take other drives out of service
entirely, they can do their best only when taken proper care of.
As with the disk cartridges themselves, cleanliness is of great
importance. All efforts should be made to keep the room as
dust-free as possible. Since the read/write heads fly so very
close to the disk surface, just about 100 millionths of an inch
away from the oxide surface, even such small particles in the air
as those present in cigarette smoke are apt to cause troubles
sooner or later. Any dust that may collect around the disk drives
should be regularly cleaned away.

In addition to this user maintenance, the user should also
ensure that his local Datapoint customer engineer performs the
preventive maintenance procedures outlined in the 9350 series disk
drive maintenance manual. These preventive maintenance procedures
can be compared to changing the oil and oil filter in the family
automobile. An automobile will perform all right for a while
without regular oil and filter changes, but sooner or later it
will extract a heavy penalty for not having been taken better care
of. The same characteristic holds true for disk drives as well.

A.8 Head Crashes

Each of the two heads in the 9350-series disk drive is held
against the disk oxide surface by a spring which pushes the head
toward the surface with a force of approximately 350 grams. The
disk, on the other hand, is spinning at approximately 50 miles per
hour relative to the head. The head and disk are kept apart by a
micro-cushion of air only about 100 millionths of an inch thick.
A head crash occurs when this lubricating air film fails. The
main causes of head crashes are foreign particles in the
lubricating film, contamination buildup on the surfaces of the
disk or read/write heads, or a defective disk surface.

When a head crash occurs, the head rubs directly against the
oxide surface of the disk, which frequently loosens more oxide,
resulting in further and more severe crashes, and things go
progressively downhill from there. Due to the severity of a head
crash, not just because of the loss of data on a disk but also due

APPENDIX A. DOS.A AND DOS.E A-5

to the degree of damage to the heads on the drive, it is important
to recognize the symptoms of a head crash. In this manner a disk
experiencing a head crash can usually be discovered and stopped
before the crash reaches catastrophic proportions.

A.B.l Prevention of Head Crashes

There are three main things that a user can do to help
minimize the likelihood of a head crash. These include:

1) Preventive maintenance. Establish a preventiv~
maintenance schedule with your Datapoint customer engineer
and stick to it. Make sure that this preventive
maintenance gets done. Particularly important is
attention to the head/arm assemblies, air filtration
system and moving parts.

2) Proper handling and storage of disk cartridges. Disks
should be carefully stored in an area free from dust,
smoke, and other contamination. Any disks whose
cartridges are cracked or broken should be replaced
immediately. Disk cartridges should be handled carefully
to avoid bumping or dropping. Never insert a dropped
cartridge into a drive! Give it to a CE for inspection.

3) Keep the cartridge access door closed. Never leave it
open. The longer it is open, the greater the
susceptibility to contamination.

A.B.2 Recognition of a Head Crash

In spite of all precautions, chances are that most users will
experience a head crash sooner or later. Being able to identify
it quickly when it happens can help to minimize the damage. A
head crash may be indicated by one or more of the following
symptoms:

1) Repetitive hard read or write parity errors. Because of
the propagation effect of a head crash, do not move any
disk with massive hard parity errors to another drive. If
errors persist, then the possibility of a head crash
exists and must be investigated.

2) Audible tinkling sound. An audible tinkling sound from
the disk, which may progress to a screech, probably
indicates a head crash.

A-6 DISK OPERATING SYSTEM

3) Visible damage to the di sk surface. Any sc ra tch on the
recording portion of the disk surface where the aluminum
substrate is exposed. Concentric adjacent scratches of
any length. A single scratch of over approximately three
inches in length. Imbedded particles or an accumulation
of loose oxide on the surface. Any of these can indicate
that a head crash has occurred.

A.8.3 What to Do if You Have a Head Crash

If you suspect that you have had a head crash, call the
Datapoint customer support center at once. In the meantime,
observe the following precautions:

1) The disk which was mounted on the drive when the crash
occurred should be considered suspect and should not be
mounted on any other drive until it has been inspected by
the Customer Engineer and approved for use.

2) The drive which experienced the crash should not be used
until it has been thoroughly checked by the Customer
Engineer. Other disks which are probably okay can be
damaged by a drive which has had a crash, since the same
drive is apt to crash again with any subsequent disk
placed in it until it has been properly serviced.

3) Head crashes should be considered to be contagious. A
disk which has crashed may have loose oxide or other
irregularities on its surface. If the disk is placed into
a different drive, these contaminants are apt to very
quickly result in a crash occurring on the new drive as
well. Since the loose oxide or whatever can build up on
the heads of the drive as well as the disk itself, the
drive can carry the contaminants of a bad disk over to any
number of good disks subsequently used on it, and these
can in turn contaminate other drives.

A.9 Preparing Disk Packs for Use

When a disk cartridge is first received from the
manufacturer, it is completely demagnetized. However, unlike the
other Datapoint Corporation disk drives, on the 9350 series drives
the position of the sectors on the disk surface are determined by
the sector timing slots around the edge of the disk's hub.
Therefore, no special preparation of the disk (other than the
DOSGEN process itself which is always required) is necessary

APPENDIX A. DOS.A AND DOS.E A-7

before a new cartridge can be used by the DOS.

A.10 Disk Organization under DOS.A/DOS.E

This section describes the logical organization of the data
on the disk when operating under DOS.A/DOS.E and how it relates to
the general DOS file concepts as described in the chapter on
System Structure. In this chapter it is assumed that the user is
familiar with these concepts and has read and is familiar with the
basic DOS file structuring.

A.10.1 Logical Drive Mapping

Under DOS.A, each physical disk cartridge corresponds with
precisely one logical drive. Since the 9350-series disk
controller is only capable of attaching four 9350-series disk
drives, that means that only four logical drives (numbered 0, 1,
2, and 3) are legal under DOS.A.

A.10.2 Size of a Logical Drive

Each logical drive is two tracks on each of 203 cylinders of
the physical disk cartridge. This results in 406 tracks of 24
sectors each, or a total of 9,744 total sectors on a disk
cartridge. Since cylinder zero is reserved for system tables,
only 9,696 sectors fall into allocatable file space and therefore
only 9,696 sectors are available for storage under the DOS.A file
management scheme. Of these, almost 100 sectors are required for
the minimum DOS.A system, the eight DOS.A system files
(SYSTEMO/SYS through SYSTEM7/SYS). This leaves on the order of
9500 sectors for user data once the DOS.A proper and a few of the
basic commands have been loaded.

A.10.3 Cluster Mapping

Because there are eight bits per byte in the cluster
allocation table (or CAT for short), and it is desirable to
maintain one byte in the CAT per cylinder of available space on
the drive, each cylinder on a logical drive (containing 48
sectors, total) is broken into eight groups, each one containing
six physically contiguous sectors. Each such group is called a
cluster. The first four clusters per cylinder are recorded on
track zero of the cylinder, and th.e second four clusters of that
cylinder are recorded on the other side of the disk, which is

A-8 DISK OPERATING SYSTEM

track one, of the same cylinder.

Due to the fact that space is always allocated in terms of an
integral number of clusters, this implies that the minimum file
size under DOS.A is six sectors and that file size will always be
a multiple of this number.

A.10.4 Segments under DOS.A

Disk space under Datapoint Corporation's DOS is always
allocated in contiguous chunks of clusters called segments. When
space is allocated, the largest segment on the disk (up to the
maximum possible sized segment) is allocated, to keep the file as
free of fragmentation as possible. By limiting the allocation
size to the size of a full segment, the problem of allocating all
available space on a disk to a first scratch file before a second
one is subsequently opened is minimized. If several scratch files
are opened and space in them is allocated at regular intervals,
the resultant segments will be interleaved, resulting in minimized
access time as the heads randomly access throughout the scratch
area. The desire to make segment size small (to minimize file
space conflicts and help to optimize use of space on the disk) and
yet large (to maximize processing speed, maximize file size and
minimize the number of RIB accesses) resulted in a segment size of
thirty-two clusters. This compromise results in a 192-sector
segment (thirty-two clusters of six contiguous sectors each)
allowing easy addressability of a maximum size file while still
allowing the segment size information to be kept within five bits
as required for RIB compatibility with the other versions of DOS.

A.10.5 Maximum File Size

Under DOS.A, the maximum file size available is about 9,600
sectors. This is because there are 9,696 allocatable sectors of
which almost 100 are used for the DOS.A system files. In
practice, the user should not ever construct a system which pushes
against the limits of available file size on a disk, since this
fails to allow for future growth and expansion of his system.
Another consideration is that if any tracks need to be locked out
on the disk cartridge due to surface defects, then there may not
be enough space left on the disk for his file.

Files bigger than about 9,000 sectors should be kept on
larger disk systems, such as 9370 series disks under DOS.B or
other appropriate DOS. If files larger than that size must be
kept under DOS.A, then the files should be segmented into two or

APPENDIX A. DOS.A AND DOS.E A-9

more distinct files and logically concatenated at the user program
level, the same as would be necessary for files larger than about
800 sectors on the 9380 series diskettes.

A.10.6 Cluster Allocation Table and Directory

Each disk cartridge used under DOS.A has its own, completely
self-contained directory and file structure, just as for all
Datapoint Corporation DOS. There are sixteen directory sectors on
each disk cartridge, located in consecutive sectors starting at
sector six on track zero of cylinder zero. Therefore, . the sectors
go from sector six to sector 025 (octal). The cluster allocation
table is at sector zero of track zero, cylinder zero. The lockout
cluster allocation table is at sector one of track zero, cylinder
zero. The hashed directory index. is at sector two of track zero,
cylinder zero. The backup copies of each of these are in the
corresponding locations of tr~ck one of cylinder zero.

The Hashed Directory Index, maintained by the DOS, resides in
sector two of track zero, cylinder zero. This table enables
directory lookups to go about four times faster than was possible
under DOS 1.2. The technique works as follows:

Given an eleven byte file name and extension, an
arithmetic/logical operation upon the file name results in an
eight-bit quantity referred to as a hash code. This code is
essentially a condensation of the 11 bytes of file name and
extension information into only one byte. Obviously, the
information is not complete; there are only 256 distinct
eight-bit hash codes possible, while there are literally billions
of legal file names and extensions. However, the condensation of
information is such that looking at the hashed directory index
allows the DOS to substantially restrict the range of directory
sectors it must examine when doing a directory lookup. Each hash
code for the file names in the directory is stored into the hashed
directory index, offset by the physical file number (PFN) of the
file with the corresponding name and extension.

Note that there is a calculated danger in the hashed
directory approach. The danger is that if the hashed directory
index is overwritten or otherwise destroyed accidentally, files
may become inaccessable even though they are clearly shown (by
doing a CAT command on the disk, for example) to be present. When
this occurs on a disk, the technique to repair the disk is the
REPAIR command. When the REPAIR command is almost finished,
specify that the Hashed Directory Index is to be rewri tten to the
disk. This causes the HDI tobe regenerated·from the actual disk

A-10 DISK OPERATING SYSTEM

directory and rewritten. In general, the Hashed Directory Index
is rarely if ever destroyed in actual disk usage, and contributes
greatly to overall system performance if many directory lookups
are being done.

A.11 Internal DOS Parameterization

This section describes the DOS.A-dependent details of the
parameterization of DOS.A system routines.

A.11.1 Physical Disk Address Format

Under DOS.A, physical disk addresses are presented (for
example, as input to the DR$ and DW$ routines) in a two-byte
format quite similar to that used under the other DOS. The most
significant byte (which is traditionally placed in the D register)
is the cylinder number, just like for DOS.B and DOS.C. The less
significant byte (usually placed in the E register) has its most
significant three bits representing a cluster number within the
cylinder (any combination of these three bits is valid) and the
least significant five bits representing a relative sector number
within the specified cluster. Only the values zero through five
are valid for the least significant five bits, since there are
only six sectors per cluster.

A.11.2 Hardware Address Structure

The hardware disk address for 9350 disks also requires two
bytes. One byte specifies cylinder number. The other byte
specifies a sector number, 0 - 027 on the bottom surface, 040-067
on the top surface. This hardware address is used only for the
DUHP9350 program and internally to the DOS routines DR$ and DW$.

APPENDIX A. DOS.A AND DOS.E A-11

APPENDIX B. DOS.B

DOS.B is Datapoint Corporation's Disk Operating System
supporting Datapoint 2200 and 5500 series computers operating in
conjunction with up to two 9370 series disk drives.

B.1 Planning for DOS.B

The recommended configuration for a DOS.B system includes 16K
or more of memory in the 2200 or 5500 series computers. Use of a
single 9370-series drive is possible, but the user should at least
have access to a double-drive system for backup purposes. Some
consideration must be given to the question of copying files from
one disk pack to another, and users of the 9370-series "Mass
Storage" disk systems will typically have files far too big to
consider transferring from one disk to another one cassetteful at
a time.

Another option which should be strongly considered is the
High Speed, or so-called "RAM" Display Option. This option can
substantially increase total system throughput (especially on
batch-processing oriented systems) at a very small additional
cost. The RAM Display option is field-installable, and is
standard equipment on Datapoint 5500 series computers.

B.2 File Storage Capacity under DOS.B

Under DOS.B, each 9370-series disk unit is dealt with as two
logical drives. Each of these two logical drives contains 38,976
sectors of 256 bytes each and can store up to 256 files. Of
these, about 250 sectors and about ten files are used by the
operating system and a few basic commands, leaving about 10
million bytes of usable space per logical drive, or up to roughly
20 million bytes of storage total for each disk storage unit in
the configuration.

Other features of DOS.B include a large maximum file size:
up to 30,237 data sectors in a single DOS.B file (not including
the end-of-file mark and two RIBs).

APPENDIX B. DOS.B B-1

B.3 Disk Drives

Datapoint DOS.B supports one or two 9370-series disk drives
attached to one 9370-series disk controller. These drives are
high-performance, random access disk units. They are the equal in
every way to drives in constant daily use on the very largest
mainframe computer systems, and offer substantially better
performance than is available with the disks being used on many
medium-scale mainframe computer systems.

B.4 Disk Media

The Datapoint 9370 series comprises two different types of
drives. Models 9370-9373 use an 11-platter disk pack,
media-compatible with the IBM 2316 disk storage module. On these
packs data is recorded in 203 concentric circles on each of the 20
recording surfaces. Each such circle is referred to as a track.
Models 9374 and 9375 use a single-platter disk which records data
on 408 tracks (DOS uses only 406 of these).

The disk pack is enclosed within a plastic enclosure when it
is not in place in the drive. This cover is intended to help keep
the disk free from dust, pollen, smoke and other contaminants and
is of prime importance in helping to eliminate disk errors and
parity failures that contamination can cause.

B.5 Loading and unloading Disk Packs

B.5.1 Models 9370-9373

On the right side of the top of the 9370-series disk drives
is the disk access cover. While holding the disk pack by the top
center handle, remove the bottom portion of the disk pack
enclosure by turning the bottom knob with the other hand. Then
raise the disk access cover and carefully lower the disk pack into
the cavity, still holding the disk pack by the top handle. When
the pack has fully seated onto the spindle, turn the disk pack top
center handle fully clockwise, until firm resistance is met. It
is important that the pack be solidly in place before removing the
top cover. After the pack has been properly mounted, the top
cover should be slowly and carefully removed by lifting it
straight upwards. Avoid letting the cover tilt and wedge against
the edges of the disk platters as it is being drawn upwards as
this can affect the precision alignment of the disk pack. The

B-2 DISK OPERATING SYSTEM

access cover should be closed as soon as the disk pack cover has
been fully removed, and the top and bottom halves of the disk pack
protective cover should be immediately put back together to keep
out dust and other contaminants.

To remove a disk pack, first place the "START/STOP" switch on
the operator control panel of the drive to the STOP position.
This immediately takes the drive off line and activates dynamic
braking circuits in the drive which will brake the pack to a
smooth but rapid stop in about twelve seconds. The disk access
cover on top of the drive must not be opened before the pack has
come to a full and complete stop. When this has occurred, raise
the disk access cover and carefully lower the top portion of the
disk pack cover down onto the pack. Be certain not to' get it
skewed since if the cover wedges against the edges of the platters
it is possible to affect the critical surface-to-surface alignment
of the pack, which will damage it. When the cover is fully
lowered onto the pack, turn the handle in the center of the top of
the cover counterclockwise until a distinct click is heard. This
click indicates that the pack has been released from the drive
spindle and may now be removed. Lift the disk pack and top cover
together carefully out of the drive and immediately reattatch the
bottom cover to the base of the pack, locking it firmly in place
by a twist of the knob in the center of the bottom portion of the
canister. The pack should be stored horizontally on a shelf
(never on edge!) and in a position where it is not apt to be
dropped or pushed accidentally over an edge. If another disk is
not to be mounted immediately into the drive the pack was just
removed from, the disk access cover should be closed right away to
help prevent the entrance of dust, smoke or other contaminants
into the drive mechanism and access arm assembly.

B.5.2 Model 9374/9375

At the top of the front panel of the drive is a handle for
access. Pull forward and down on this handle to release the
drive, then slide the entire drive forward to expose the cavity in
which the disk fits. The disk pack itself has a handle on the top
of the case. To open the disk pack, place the handle folded flat
against the case and slide the lock button to the left, then -
holding the lock button on - lift the handle to its full vertical
position. This action releases magnetic clamps and allows the
bottom of the disk cover to falloff. Lower the disk into the
cavity in the drive, being sure it is fully seated. Now lower the
handle on the top of the disk container. Invert the bottom of the
disk pack cover and place it on top of the disk, inside the drive.
It is essential the disk pack bottom cover be placed in the drive,

APPENDIX B. DOS.B B-3

since the disk will not pun if the cover is not present. Finally,
slide the drive back into its cabinet, closing the access door.

Removing a disk is the exact reverse of inserting it. To
remove the disk from the cavity in the drive, the lock button on
the handle must be held to the left, just as for opening the disk
cover.

B.6 Switches and indicators

B.6.1 Models 9370-9373

Two types of drives are repesented in these model codes; both
use the same controller and the same disk packs. Older drives
were manufactured by Memorex; the drives now shipped by Datapoint
are "Telex" drives, manufactured by ISS.

B.6.1.1 Memorex Drives

The large physical drive number (just to the right of the
READ-WRITE/READ ONLY switch) lights up when the heads are loaded
onto the disk surface and typically at this time the drive will be
on line.

The smaller numbers to the right serve as an indication of
the position of the heads as they perform cylinder seeks to
positions nearer or farther from the center of the disk pack. The
exact physical cylinder number to which the heads are positioned
at any given time can be determined by adding together the numbers
which are illuminated, giving a cylinder number in decimal; the
cylinder number in octal can be determined by noting which of the
eight number positions are illuminated and considering those
illuminated to be "1" bits and those not illuminated to be "0"
bits. The bits then can be converted easily to a three-digit octal
number by grouping them in groups of 2,3,3: a technique familiar
to users conversant with octal.

The words "READ ONLY" illuminate to indicate that the drive
is in the so-called "Write Protected" mode. In this mode, the
computer cannot write anything onto the disk in that drive, but
can only read the information already on the pack. This light is
the indication of whether a drive is write-protected or not, and
does not always immediately reflect the position of the read-only
switch. See "Common Features" below.

B-4 DISK OPERATING SYSTEM

The words "FILE UNSAFE" light up when the safety circuits in
the drive detect one or more of about a dozen different conditions
that they consider would endanger the data on the disk pack if
continued disk operation were attempted. The FILE UNSAFE
condition can be caused by (among other things) unusually severe
power surges, and infrequently by a program going completely
haywire and giving flagrantly illegal commands to the disk drives.
If this light comes on during use of the system, the first remedy
to try is to push the switch marked "START/STOP" to the "STOP"
position. After the disk has come to a complete, braked stop
(which should take about twelve seconds), push the switch back to
the "START" position. If the problem which caused the FILE UNSAFE
condition to occur was spurious, the drive will power back up
normally and come on-line again in about sixty seconds. If the
FILE UNSAFE condition occurs again (usually immediately upon
completion of the sixty-second power-up delay) and repeatedly, it
probably indicates a hardware malfunction and time to call the
Datapoint Customer Support Center.

B.6.1.2 "Telex" Drives

The controls and indicators on Telex drives are essentially
identical to those on the Memorex drives. When the drive is
on-line, a green indicator light comes on indicating "FILE READY".
There are no indicator lights for head position; cylinder position
of the heads can be read on a vernier scale mounted on the top of
the access arm assembly and visible through the top of the loading
cover. A white indicator lamp indicates "READ ONLY" when the
drive is protected, and, as on the Memorex drives, the read/write
status of the drive does not immediately reflect the setting of
the READ/WRITE - READ ONLY switch (see "Common Features" below). A
red indicator lamp indicating "SELECT LOCK" is equivalent to the
"FILE UNSAFE" indicator on the older drives.

B.6.1.3 Common Features

Changing the setting of the READ WRITE/READ ONLY switch only
affects the drive if the drive is deselected. Therefore, this
switch should be normally kept in the READ-WRITE position except
for special purposes, and should usually be returned to the
READ-WRITE position as soon as possible after the special purpose
is completed. If the DOS command interpreter is active (as
indicated by the familiar DOS "READY" message) and the READ ONLY
lamp and the READ-WRITE/READ ONLY switch do not concur (indicating
that that drive is selected), simply entering a blank from the
system console is a simple technique to ensure that the drive

APPENDIX B. DOS.S B-5

becomes deselected so that the revised setting of the READ ONLY
switch will take effect.

The other switch on the operator control panel on the
9370-series drive (marked ENABLE/DISABLE) is for use only by the
customer engineer and should always be left in the position marked
ENABLE. This switch, when set to DISABLE, takes the drive off
line (although the drive ready indicator stays illuminated). The
switch is only active when the drive is de-selected, and this is
the reason why the switch should not be used casually. If drive
zero, for example, is DISABLEd and then the computer is
bootstrapped, drive zero will not be de-selected at least until
the DOS. has completely booted itself up. And until the drive is
de-selected, turning the switch to the ENABLE position has no
effect. The only solution for this problem if it occurs is to
completely power down the entire system and bring it back up again
with the switch in the ENABLE position. So in general, it is a
good idea to keep this switch set to ENABLE and let it go at that.

B.6.2 Model 9374/9375

The 9374 disk drives are controlled by a small cluster of
switches in the lower right-hand corner of the front panel of each
drive. A thumbwheel switch sets the physical device number; this
switch is set at installation and should not be reset thereafter.

A LOAD/RUN rocker switch controls loading the disk. An
indicator light below the rocker switch indicates if the drive is
in LOAD, ready for a disk to be removed or inserted, or in RUN,
on-line to the processor.

A pair of rocker switches labeled PROT CART and PROT FIXED
control write protection of the removable disk pack and the fixed
platter within the drive. When one of these switches is
illuminated the corresponding disk is write protected. The
protection setting of either disk can be changed at any time by
using the PROT switch. When a disk is first spun up (first
brought to READY status) both disks will be write protected for at
least three minutes to ensure thermal stabilization. If the drive
is cold, the write-protect delay could be longer. The delay for
thermal stabilization is necessary because the 9374 disk is a very
high-density storage medium.

B-6 DISK OPERATING SYSTEM

B.7 Care and Handling of Disk Packs

Disk packs for the 9370 series disk drives are preclslon,
high-technology assemblies and must be treated as such. It is of
extreme importance that they not be mishandled, dropped, or
contaminated with dust or other pollutants. The packs should be
stored strictly horizontally (not on edge) on a shelf clean from
dust and in an environment similar to that where the drives are
installed (preferably in the same room with the computer).

On the bottom of each l1-platter disk pack is a fine nylon
filter, normally white. This filter should be replaced at least
once per year, or more often if indicated by discloration or
airborne debris.

If the packs are shipped by common carrier, they should be
repackaged in their original shipping carton and marked "FRAGILE".
Disk packs should never by mailed by Parcel Post.

In addition, any pack which has been in a non-computer room
environment should be allowed to equalize temperatures in the room
with the computer for 24 hours before use if at all possible
before attempting to read or write data on the pack. In an
emergency, placing the pack onto a drive and letting it spfh up
and run for about an hour will usually be adequate, but this
procedure should be considered an emergency measure only.

A little care in handling disk packs will repay itself
several times over in reliable and trouble free service with long
life from your disk packs.

B.8 Care and Maintenance of the 9370 Drives

The 9370 series disk drives are full scale mainframe computer
peripherals and deserve to be taken care of. As with the disk
packs, cleanliness is of paramount importance. All efforts should
be made to keep the room as dust-free as possible. Since the
read/write heads fly so very close to the disk surface, just 80
millionths of an inch away from the oxide on the ll-platter packs,
even such small particles in the air as those present in cigarette
smoke may cause troubles eventually. The drawing in this section,
reproduced here courtesy of Memorex Corporation, graphically
depicts the relative proportions of disk head flying height and
common office pollutants, and should help to explain why the need
for cleanliness and good housekeeping practices is so important.

APPENDIX B. DOS.B B-7

Disc
Cross, Section

SMOKE PARTICLE
250 MICRO IN .

. 000250··

Users of the system should be careful to close the disk access
cover (or slide the drive back in the cabinet) as soon as the pack
loading or unloading is complete and keep disk packs in their
protective covers at all times to prevent contamination. If disk
pack canisters become soiled, they should be cleaned carefully
with a mild detergent solution and carefully wiped dry. Users
should be very careful to never allow anything to contact the
oxide surface of the disk pack itself.

In addition to this user maintenance, the user should also
ensure that the preventive maintenance procedures outlined in the

B-8 DISK OPERATING SYSTEM

9370 series disk drive maintenance manual are performed.

B.9 Head Crashes

Each of the heads in the 9370-series drive is held against
the disk surface by a spring which pushes the head toward the
surface with a force of about 350 grams. The disk on the other
hand is spinning at about 80 miles per hour relative to the heads.
The thing which keeps the head and disk apart is a micro-cushion
of air only eighty millionths of an inch thick. A head crash
occurs when this lubricating air film fails. The main causes of
head crashes are foreign particles in the lubricating film,
contamination buildup on the surfaces of the disk or read/write
heads, or a defective disk surface.

When a head crash occurs, the head rubs against the oxide
surface of the disk, which frequently loosens more oxide,
resulting in further and more severe crashes, and things go
progressively downhill from there. Due to the severity of a head
crash, not just because of the loss of data on a disk but also due
to the degree of damage to the heads on the drive, it is important
to recognize the symptoms of a head crash. In this manner a disk
experiencing a head crash can usually be discovered and stopped
before the crash reaches catastrophic proportions.

For a description of symptoms of a head crash and appropriate
prventive and restorative action, see Appendix A under "Head
Crashes".

B.10 Preparing Disk Packs for Use

When a disk pack is first received from the manufacturer, it
is completely demagnetized and is not usable until it has been
formatted. The formatting process writes the entire surface of
the disk pack with track and sector addresses which later allow
the controller to identify where a given sector is on the surface
of the disk.

When this information is later read by the DOS, any errors
discovered in the formatting information are treated in the same
way as a parity error in the written sector information itself,
thus resulting in up to nine or ten re-tries before returning with
a parity error indication. Sometimes, if the parity error
indicated by the DOS is due to an error developing in the
formatting information on the disk, the parity error on the disk
can be completely eliminated by using the BACKUP command to save

APPENDIX B. DOS.B B-9

as much of the information on the pack as possible and then
reformatting the pack. (After reformatting the pack, any data
that had been on the pack is destroyed and it must be DOSGENed
like a new one). Even what at first appear to be "hard" parity
errors can occasionally be cleared this way.

Formatting information is written onto the disk using the
INIT9370 command, either from a working DOS or from a LOAD & GO
cassette. (NOTE: although in general the commands from the DOS
cannot be run without the DOS being active, INIT9370 is one of the
few exceptions). Following successful completion of the INIT9370
command program, the disk pack it was used on can be DOSGENed
(twice, once for each of the two logical drives) and will normally
not need to be re-formatted again for the duration of its
lifetime.

B.11 Disk Organization under DOS.B

This chapter describes the logical organization of the data
on the disk when operating under DOS.B and how it relates to the
general DOS file concepts as described in the chapter on System
Structure. In this section it is assumed that the user is
familiar with these concepts and has read and is familiar with the
ba~ic DOS file structuring.

B.11.1 Logical Drive Mapping

Under DOS.B each physical volume is broken into two logical
drives. This is done for reasons of addressing. It is simply not
possible to address all of the sectors on an entire 9370 disk
volume using only two bytes of physical disk address, and the two
byte physical disk address is central to all of Datapoint
Corporation DOS's operations. It is not practical to change this
characteristic without making changes which would result in
invalidating many user-written programs and many large systems
which run under the DOS. Therefore the disk was broken into two
halves, and one bit of the effective physical disk address is
taken from the logical drive number.

For the 9374 drives the removable disk is one logical drive,
and the fixed disk is a second 10gi6al drive.

The first eight recording surfaces on the 11-platter disk
(heads are numbered from zero to nineteen starting at the top of
the disk drive) correspond to logical heads zero to seven on the
even logical drive, and the next eight recording surfaces on the

B-10 DISK OPERATING SYSTEM

disk correspond to logical heads zero to seven on the odd logical
drive (physical heads eight through fifteen). Physical heads
sixteen through nineteen (and the corresponding recording surfaces
on the disk pack) are not used by DOS.B.

B.11.2 Size of a Logical Drive

Each logical drive is eight tracks on each of 203 cylinders
of the physical dri ve. This resul ts in 1624 tracks of 24 se'ctors
each, or a total of 38,976 total sectors on a logical drive. Of
these, about 38,400 remain when the DOS has been generated, the
system tables constructed on the disk, and a few basic commands
loaded. The 9374 disks are addressed using the same structure of
203 cylinders, 24 sectors per track. Physically the 9374 disks
have 406 cylinders with 48 sectors per track, but the disk
controller itself provides an interface between the physical and
logical structure, so the processor "sees" a drive structured just
like a 9370 drive.

B.11.3 Cluster Mapping

Because there are eight bits per byte in the cluster
allocation table (or CAT for short), and it is desirable to
maintain one byte in the CAT per cylinder of available space on
the drive, each track on a logical drive represents one DOS
cluster, and is represented in the CAT by exactly one bit. Since
the DOS uses eight tracks per logical cylinder, this results in
exactly eight clusters per cylinder of twenty four sectors each.

Due to the fact that space is always allocated in terms of an
integral number of clusters, this implies that the minimum file
size under DOS.B is twenty-four sectors and that file size will
always be a multiple of this number. It turns out that choosing a
full track as the smallest allocatable unit of space has other
advantages as well from a system standpoint, since it allows some
programs (like DOS.B COPY) to make several simplifying assumptions
about the data in a file which enables them to copy data and
reference information in a file substantially more easily and
efficiently than would be otherwise possible.

APPENDIX B. DOS.B B-11

B.11.4 Segments under DOS.B

Space under Datapoint Corporation's DOS is always allocated
in contiguous chunks of clusters called segments. When space is
allocated, the largest segment on a drive up to the maximum
possible sized segment is allocated, to keep the file as free of
fragmentation as possible. By limiting the allocation size to the
size of a full segment, the problem of allocating all available
space on a disk to a first scratch file before a second one is
subsequently opened is minimized. If several scratch files are
opened and space in them is allocated at regular intervals, the
resultant segments will be interleaved, resulting in minimized
access time as the heads randomly access throughout the scratch
area. The desire to make segment size small (to minimize file
space conflicts and help to optimize use of space on the drive)
and yet large (to maximize processing speed, maximize file size
and minimize the number of RIB accesses) resulted in a segment
size of ten clusters. This compromise results in a 240-sector
segment (ten clusters or tracks of 24 sectors each) allowing a
maximum file size of over 30,000 sectors while still allowing
internal disk address and segment size calculations to be done
using faster single precision arithmetic techniques.

B.11.5 Maximum File Size

Under DOS.B, the maximum size file available is 30,238 data
sectors. This number is the result of 126 segment descriptors in
the RIB, each of which points at one segment of 10 tracks of 24
sectors each:

24 sectors x 10 tracks x 126 segments = 30,240 total sectors

Since the first two sectors of each file under the DOS are
used for the RIB and its copy, that leaves 30,238 sectors
available to the user for the storage of his data. Files longer
than this number will have to be segmented or logically
concatenated at the user program level, the same as would be
necessary for files larger than about 9600 sectors on the 9350
series disks.

B-12 DISK OPERATING SYSTEM

B.11.6 Cluster Allocation Table and Directory

Each logical drive under DOS.B contains its own directory and
cluster allocation table, just as for all Datapoint Corporation
DOS. There are sixteen directory sectors on each logical drive,
located in consecutive sectors starting at sector five on logical
track zero of cylinder zero. Therefore, the sectors go from
sector five to sector 024 (octal). The cluster allocation table
is at sector zero of logical track zero, cylinder zero. The
lockout cluster allocation table is at sector one of logical track
zero, cylinder zero. The backup sectors for all of these are in
the corresponding locations on logical track one of the same
cylinder.

The Hashed Directory Index, maintained by the DOS, resides in
sector two of track zero, cylinder zero. This table enables
directory lookups to go about four times faster (on full disk
directories) than was possible under DOS.B Version 1. The
technique works as follows:

Given an eleven byte file name and extension, an
arithmetic/logical operation upon the file name results in an
eight-bit quantity referred to as a hash code. This code is
essentially a condensation of the 11 bytes of file name and
extension information into only one byte. Obviously, the
information is not complete; there are only 256 distinct eight-bit
hash codes possible, while there are literally billions of legal
file names and extensions. However, the condensation of
information is such that looking at the hashed directory index
allows the DOS to substantially restrict the range of directory
sectors it must examine when doing a directory lookup. Each hash
code for the file names in the directory is stored into the hashed
directory index, offset by the physical file number (PFN) of the
file with the corresponding name and extension.

Note that there is a calculated danger in the hashed
directory approach. The danger is that if the hashed directory
index is overwritten or otherwise destroyed accidentially, files
may become inaccessable even though they are clearly shown (by
doing a CAT command on the disk, for example) to be present. When
this occurs on a disk the technique to repair the disk is the
REPAIR command. When the REPAIR command is almost finished,
simply specify that the Hashed Directory Index is to be rewritten
to the disk. This causes the HDI to be regenerated from the
actual disk directory and rewritten. In general, the Hashed
Directory Index is rarely if ever destroyed in actual disk usage,
and contributes greatly to overall system performance if many
directory lookups are being done.

APPENDIX B. DOS.B B-13

B.12 Internal DOS Parameterization

This section describes the DOS-dependent details of the
parameterization of DOS.B system routines.

B.12.1 Physical Disk Address Format

Under DOS.B, physical disk addresses are represented in a
two-byte format in a manner quite similar to that used under the
other DOS. The most significant byte (which is traditionally
placed in the D register) is the cylinder number. The less
significant byte (usually placed in the E register) has its most
significant three bits representing a cluster number within the
cylinder (or logical track number in the specific case of DOS.B)
and the least significant five bits representing the sector number
within the specified cluster. Since there are 24 sectors in a
cluster, the five bit sector number has a valid range of 0-027.

B.12.2 Hardware Address Structure

The 9370 series drives use three bytes for hardware
addressing. The cylinder number is one byte (range 0-0312), the
head number is a second byte (range 0-023), and the sector number
a third byte (range 0-027).

B-14 DISK OPERATING SYSTEM

APPENDIX C. INTRODUCTION TO DOS.C

DOS.C is Datapoint Corporation's Disk Operating System
supporting Datapoint 1100, 2200 and 5500 computers operating in
conjunction with up to four 9380 series diskette drives.

C.1 Planning for DOS.C

The recommended configuration for a DOS.C system includeB 16K
of memory in the 1100 or 2200 series computers and 16K or more in
5500 series computers. Use of a single 9380-series drive is
possible, but the user should at least have access to a
double-drive system for backup purposes. Some consideration must
be given to the question of copying files from one diskette to
another. Users with 2200 and 5500 series computers (having
cassette tape drives) can use cassettes if necessary as a standard
exchange medium for file transfers (except for files bigger than
about 450 sectors, too large to fit on a single side of a
cassette). Those with Diskette 1100 series computers do not have
cassette tape drives and hence must use diskettes as their file
transfer medium. Since DOS.C software is distributed on diskettes
by Datapoint Corporation, the user will need to have at least a
two drive system to copy the software from the diskette received
from Datapoint to his working diskette(s). Single drive systems
should be considered only by those intending to use them as
satellite systems (example: data entry stations) and planning on
having at least one other system with two or more drives (for
program development and file processing applications).

Another option which should be strongly considered is the
High Speed, or so-called "RAM" Display option. This option can
substantially increase total system throughput and responsiveness
(especially in applications displaying a lot of text on the
screen, such as data entry) at a very small additional cost. The
RAM Display is field-installable (although less expensive when
factory-installed), and is standard equipment on Datapoint 5500
and Diskette 1100 series computers.

APPENDIX C. INTRODUCTION TO DOS.C C-1

C.2 Performance of DOS.C

Users who are currently using Datapoint computers in
cassette-based systems will find substantial improvements in
performance when they upgrade to DOS.C. The 9380 series diskette
drives are several times faster than cassettes for ordinary
sequential data transfers; random-access type operations (such as
sorting and ISAM file access) can easily be two orders of
magnitude faster than is attained using tape cassettes.

Users who are currently using competitive diskette-based
equipment will generally find that total system performance of
Datapoint systems will exceed that which they are accustomed to.
This improvement is due to the generally superior data handling
techniques and file structuring as used in Datapoint's DOS. These
characteristics stem from the fact that instead of employing a
lower-performance cassette-style file structure as a base for the
operating system, Datapoint chose instead to adapt the same
advanced and dynamic disk file access techniques as used in its
other DOS to the new diskette media. The result is a degree of
software sophistication previously unavailable in
business-oriented systems of this size.

The obvious side benefit of this DOS compatibility is that
not only is virtually all of the Datapoint DOS software library
available to diskette users but that most user programs which were
written originally for other Datapoint DOS systems will run
unmodified (except for possible file size limitations and timing
differences due to the slower access times of the 9380 series disk
drives) under DOS.C.

In addition to the increased speed of access of the 9380
series drives as compared to cassettes, another big advantage is
that the total amount of storage available on a diskette-based
system is about four times the amount usable on cassette systems,
even when both cassette drives are in use.

It should be recognized that DOS.C is not expected to
eliminate the usefulness of larger capacity, higher performance
disks. Many users will have applications which are too involved
or too large for the 9380 series diskette drives. Users who need
very large data files or very high speed random access to disk
storage will find the performance they are looking for in the
other versions of Datapoint DOS.

C-2 DISK OPERATING SYSTEM

C.3 Disk Drives

Datapoint DOS.C supports up to four 9380-series flexible
diskette drives through their integral disk controller unit. The
disk controller contains 1024 bytes of high speed, random access
memory which buffers four sectors between the disk drives and the
Datapoint computer, enabling greater I/O device autonomy and
improved overall system performance.

C.4 Disk Media

The Datapoint 9380-series flexible diskette drives use a
flexible diskette for data storage. This diskette is media and
format-compatible with the IBM 3741-style flexible diskette.

Data is recorded in 77 concentric circles on only one side of
the diskette (as per the IBM standards for diskette data
interchange). Each such circle is referred to as a track.
Although each such track on the diskette actually contains 26
physical records of 128 bytes each, these are paired up by the
Datapoint 9380 series diskette controller (an integral part of the
diskette system) so that to the Datapoint computer each track
appears to consist of 13 records (called sectors) of 256 bytes
each. In Datapoint DOS documentation, unless explicitly indicated
to the contrary, the term sector always refers to a 256-byte
logical sector, and it is strictly incidental that this sector is
broken into two physical 128 byte records for transfer to and from
the diskette media.

The diskette is permanently enclosed within a durable plastic
cover. This cover provides for easy insertion of the diskette
into the diskette drives and provides structural rigidity for the
media when it is not in use. In addition, the plastic cover
provides a degree of environmental protection for the diskette and
its oxide surface from damage caused by careless handling.

C.5 Loading and Unloading Diskettes

Upon observation of a diskette, three holes through the
plastic diskette cover will be noted. Each of these holes allows
one to see a portion of the oxide-coated surface of the diskette
itself.

The large, round hole in the center of the cover is used by
the diskette drive for the hub which clamps to the diskette and
turns the diskette within the cover.

APPENDIX C. INTRODUCTION TO DOS.C C-3

The longer, narrower radial slot towards one edge of the
enclosure is the slot through which the read/write head in the
diskette drive contacts the diskette's oxide coating "for data
transfer operations.

The smaller round hole present on the diskette is the hole
through which the index hole, a hole in the diskette proper about
the diameter of a pencil lead, is sensed by the controller and
used for timing and control purposes.

The reason for the description of these holes is that they
provide the definitive reference for indicating the proper
direction of insertion of the diskette media into the 9380 series
drives. When the diskette is properly inserted, the edge of the
diskette with the long slot is inserted first. The smaller hole
(the one through which the index hole is sensed) will be the last
of the three holes in the cover to enter the drive, and it will be
positioned toward the tabletop rather than downwards toward the
floor.

The diskette loading slot is covered by a long, narrow
handle. A rectangular pushbutton to the side of the handle is
pushed to open the handle for diskette insertion and removal.
When inserting the diskette, it will meet with a spring resistance
after being inserted about 3/4 into the drive. Press the diskette
gently into place until the spring catches and the diskette stays
in place without being held in with the finger. Be careful not to
push the diskette too far into the drive, as this can cause the
innermost edge of the diskette's plastic cover to be wedged
between some metal projections on the diskette drive which could
possibly result in damage to the diskette. After the diskette is
in place, pull the door/handle to the left until it latches
closed. As the door is pulled closed, the hub engages the
diskette, bringing it to its rated rotational speed of 360 rpm
(and then online) almost immediately.

To remove a diskette, first ensure that all input/output
activity on the diskette has completed. (This is necessary since
it is possible to open the drive door, which takes the diskette
offline, in the middle of a write operation; this can result in
improper data being written onto the diskette.) Then press the
button to the left of the door/handle. The door will open and the
diskette will emerge in much the same way toast pops out of a
toaster. Upon removing the diskette from the drive, it should be
immediately placed in its protective paper envelope to help
protect the surface from abrasive contaminants and other elements
which could damage it.

C-4 DISK OPERATING SYSTEM

C.6 Drive Numbering and Switches

Diskette drives are normally installed in the cabinet
starting from the left. These drives are numbered 0, 1, 2, and 3
respectively from left to right. These numbers constitute the
physical drive number. In the case of DOS.C, the same number is
also sometimes referred to as the DOS logical drive number, or
frequently just drive number.

The main power switch for the diskette unit is located on the
underside of the tabletop and to the left side of the diskette
drives, positioned toward the front of the cabinet. Sliding this
switch towards the rear of the diskette drive cabinet turns the
diskette unit on, and sliding the switch towards the user turns
the diskette unit off. This switch should normally always be left
in the ON position.

There are no other controls or switches intended for use by
the user on the 9380-series diskette drives.

C.7 Care and Handling of Diskettes

Diskettes are sturdy media which will give long and
trouble-free service if they are handled with reasonable care.

1) Diskettes should always be stored in their protective
paper envelopes when not inserted in a drive. These
envelopes should then be stored in the protective boxes in
which the diskettes are received from the manufacturer.

2) Do not force too many diskettes into one box. They should
not be placed under heavy pressure, as this can warp the
diskette media, possibly causing read/write errors.

3) Diskettes should not be rolled, folded or otherwise
subjected to strains which could crease the media.

4) Never touch the oxide coating of the diskette through the
holes in the plastic cover. Human skin has oils on it
which will attract and retain dust and other abrasive
contaminants if these oils get onto the diskette's
surface. In addition, contact between hard surfaces and
the diskette oxide can scrape away the
information-carrying oxide from the diskette surface; this
will usually result in unrecoverable errors on the
diskette.

APPENDIX C. INTRODUCTION TO DOS.C C-5

5) Diskettes should not be subjected to strong magnetic
fields.

6) When mailing diskettes, they should either be placed
between two sheets of corrugated cardboard (for rigidity
and protection while going through the mails) or placed in
some suitable protective carrier. Many diskette media
manufacturers sell mailers specifically designed for use
in sending diskettes, either singly or in multiples,
through the mail.

7) Diskettes can generally be taken through airport security
x-ray and metal detecting equipment without danger of
damage to the information recorded on the diskette.

C.8 Preparing Diskettes for Use

When a diskette is first received from the media
manufacturer, it contains formatting information recorded across
the entire usable surface of the diskette. This information is
provided to allow the controller to identify where a given sector
is on the surface of the disk, and also allows the controller to
verify proper head positioning in the drive mechanism. Normal
reading and writing on the diskette does not destroy the
formatting information contained thereon.

Only diskettes in 3740 format (128 byte sectors) are usable
by DOS.C. Diskettes that have been reformatted with bad tracks
flagged and alternate tracks substituted cannot be used. Also,
diskettes in System 32 format (256 byte sectors) or I.B.M. 3600
format (512 byte sectors) cannot be used.

Diskettes cannot be used by DOS.C until they have been
generated with the DOSGEN program described earlier. Datapoint
DOS uses its own unique file structure which is capable of more
sophisticated data and file manipulation than the standard IBM
file structure which is intended for data entry and not for actual
computer data processing. This more sophisticated file structure
is what results in the need for DOSGEN before a diskette can be
used by DOS. C .

A special note regarding disks which are to be used in drive
zero is appropriate. All of the newer releases of DOS commands
use DOS FUNCTIONs (as described in the DOS USER'S GUIDE). These
functions are resident on the diskette in the file SYSTEM7/SYS.
When updated versions of DOS.C and associated utilities are
received from Datapoint Corporation, the file SYSTEM7/SYS may also

C-6 DISK OPERATING SYSTEM

have one or more new DOS FUNCTIONs resident. Therefore, wholesale
copying of DOS commands from newly received diskettes to older
diskettes with older versions of SYSTEM7/SYS will frequently
result in commands which either work or do not work depending on
whether the older or newer version of SYSTEM7/SYS is present on
the disk in drive zero. Therefore the user should generally keep
his DOS commands disk more or less intact and not use a newly
released diskette to supply commands to previously DOSGENed
diskettes; instead, he should freshly generate as many system
diskettes (including whichever DOS commands he intends to use) as
he needs.

C.9 Suggested Disk Organization Techniques

Due to the relatively small capacity of the flexible
diskette, careful consideration should be given to which files
should be put on which diskettes. Users with single drives for
data entry and related applications will have little choice in
such matters. However, for users with multi-drive systems being
used for program development, the following convention is
suggested:

1) DOS system diskettes. These diskettes contain the system
files (as do all diskettes for use with DOS.C) and
whichever DOS commands the user intends to use. Usually
this diskette will be used in drive zero during program
generation, debugging and other DOS system-type functions
and because of this will contain all of the DOS itself,
DOS commands and latest set of DOS FUNCTIONs as released
by Datapoint. This diskette will also frequently contain
the editor scratch file, SCRATCH/TXT.

2) Source program diskettes. These diskettes can be
considered as library file diskettes. These diskettes
contain programs, Dataform forms, and other user text
files used, for example, during program generation. Once
these programs are finalized, they can be copied to DOS
System diskettes or User System diskettes as appropriate.

3) User system diskettes. These diskettes are similar in
intent to DOS System diskettes-but differ in that they are
intended more for specific application use rather than for
general program development and debugging. These
diskettes will usually be used with Databus 1100, Scribe,
DOSBASIC, or Dataform and/or have large numbers of
user-written application programs on them. These disks
will usually not contain the more specialized DOS commands

APPENDIX C. INTRODUCTION TO DOS.C C-7

(and other files) such as DUMP9380, REPAIR, DOS/EPT,
MASSACRE, APP, CHANGE, DUMP and the like.

4) Data file diskettes. These diskettes contain primarily
user data files. Typical characteristics of files on this
type of diskette: non-executable, user information;
SCRIBE text; other things which are user-entered (or
generated) but not programs as such.

5) Scratch diskettes. These diskettes are diskettes
containing no important files. These diskettes are
suggested for use in transferring files from one diskette
to another, and to provide diskettes containing large
unallocated areas for use as scratch files by programs
using scratch files (for example, SORT and EDIT commands).

As support for the above five basic types of diskettes, the
following color-coding convention is suggested for diskette
labels:

red - DOS System diskettes
green - User System diskettes
blue - Text files (source programs and SCRIBE text)
yellow - Data files
grey - Scratch diskettes

For best results, users should use only diskette media
provided by those manufacturers recommended by Datapoint
Corporation.

C.10 Disk Organization under DOS.C

This chapter describes the logical organization of the data
on the disk when operating under DOS.C and how it relates to the
general DOS file concepts as described in the chapter on System
Structure. In this chapter it is assumed that the user is
familiar with the basic DOS file structuring.

C.10.1 Radius Spiraling and Sector Skewing

Under DOS.C, the sectors on the diskette are logically
renumbered to allow substantially increased performance over what
would be possible otherwise. Program loading, in particular, goes
about three times faster than would be possible if this were not
done. Tbis renumbering of the sectors on the track is referred to
as sector skewing. This sector skewing takes the form of placing

C-8 DISK OPERATING SYSTEM

logically sequential sectors about four sectors apart on a track
of the diskette. Thus logical sector zero on track zero would
appear in physical sector zero; logical sector one would appear in
physical sector five; logical sector two would appear in physical
sector ten; and so forth.

In addition to rearranging the order of the sectors on a
track of the diskette, the starting points (logical sectors zero
on each track) do not line up along a straight-line radius as do
the physical sectors zero. Instead, the starting point for
nUMbering sectors on a track spirals inwards. Therefore, the
logical radius line (sectors zero, for example) forms a spiral on
the diskette surface, and hence the term radius spiraling. The
intention behind radius spiraling is twofold: one, it allows for
head seek time between adjacent tracks while rapidly scanning
through a data file (in addition to the processing time lag
provided by the normal sector skewing); two, it allows searching
the directory (which is along a logical radius of the diskette, as
will be described later) about three times faster than would
otherwise occur. Together with sector skewing, radius spiraling
aids in achieving much higher overall system performance than is
obtainable on most competitive diskette based systems.

Use the chart below to convert from the logical to physical
sector. First divide the decimal track number by 4. The
remainder gives the appropriate column. Run down the left side to
the logical sector and across to the appropriate column to get the
physical sector number.

LOGICAL REMAINDER OF TRACK/4
SECTOR 0 1 2 3

0 (0) 0 05 012 02
1 (01) 05 012 02 07
2 (02) 012 02 07 014
3 (03) 02 07 014 04
4 (04) 07 014 04 o 11
5 (05) 014 04 011 01
6 (06) 04 011 01 06
7 (07) 011 01 06 013
8 (010) 01 06 013 03
9 (011) 06 013 03 010
10 (012) 013 03 010 0
11 (013) 03 010 0 05
12 (014) 010 0 05 012

Note that physical sector addresses are never used by DOS.
Even in DUMP9380 the sector address entered is taken as a logical

APPENDIX C. INTRODUCTION TO DOS.C C-9

sector address except when in EBCDIC mode, when it is considered a
physical sector address.

C~10~2 Size of a Diskette

There are 77 tracks on a diskette, each of which contains
logically thirteen 256-byte sectors (physically twenty-six
128-byte sectors). This yields a total of 1001 sectors, or a
grand total of 256,256 bytes of storage capacity. The first track
on the diskette (the one nearest the edge of the diskette) is not
used by DOS.C, in order to help provide compatibility with IBM
equipment. Additionally, the logical last sector on each track
(sector 12 if one counts starting at 0) is not used by DOS.C for
data, for reasons which will be described in subsequent sections.
Subtracting these two unallocatable areas results in a total
allocatable file space of 912 sectors. About ninety sectors of
these are used by the DOS for its system files, leaving about 825
sectors for user files, a user file capacity of over 200,000
bytes. This constitutes about twice the capacity of a tape
cassette on each diskette. Due to the higher data storage
efficiency attained by Datapoint software, most users will find
that the total number of records stored on a Datapoint format
diskette will be as large as, and in most cases substantially
larger than, the number achieved on competitive systems.

C~10~3 Cluster Mapping

Under DOS.C, each track of the diskette consists of 4
clusters of three sectors each. This implies that one cluster or
three sectors is the smallest allocatable unit of space on a
diskette, and that all files are multiples of three sectors in
length.

In the cluster allocation table, the four clusters on each
track are represented by the low-order four bits of each byte. As
in other Datapoint DOS, a one bit represents that the
corresponding cluster is allocated and a zero bit indicates that
the corresponding cluster is available for allocation. The
high-order four bits of each byte in the CATs are reserved for
future use in DOS.C, and are currently always set to zero.

C-10 DISK OPERATING SYSTEM

C.10.4 Segments under DOS.C

The use of a three sector cluster has numerous advantages on
the diskette. One which should be immediately apparent is that
the amount of space wasted due to always allocating an integral
number of clusters is reduced to only an average of one and a half
sectors per file. Perhaps a less obvious advantage results from
the manner in which the Datapoint DOS allocates disk space to
files. During space allocation, the DOS will allocate the first
contiguous, maximum-size segment it can find as an initial (or
secondary) allocation. Since a segment consists of up to 32
clusters (there are five bits of cluster number information in
each segment descriptor), this results in files being initially
allocated 96 sectors, assuming that the space on the diskette is
sufficiently unfragmented to allow such an allocation. Making
this initial allocation smaller than the 192 and 240 sectors as
used in some of the other Datapoint DOS allows for several scratch
files to be opened on a diskette which already has a few files on
it, as each newly opened file will take a smaller bite out of that
portion of space remaining unallocated. Making the full segment
size much smaller than 96 sectors quickly increases the amount of
overhead required to index through the file (since the number of
RIB accesses required increases) and decreases performance.

C.10.5 Maximum File Size

Under DOS.C, the maximum file size attainable depends upon
the amount of space used on the diskette for system files, but
using the current size of DOS.C as an example indicates that at
least 800 sectors should be available for user file allocation on
a normal data file diskette. Users having only a single diskette
drive and therefore having several programs on the diskette in
addition to the DOS will have a corresponding reduction in the
maximum size of data files they may have. Users whose files
exceed the capacity of one diskette will need to segment their
files at the user program level much as they would do on a
cassette system when a file exceeded the capacity of a single
cassette.

APPENDIX C. INTRODUCTION TO DOS.C C-11

C.10.6 Cluster Allocation Table and Directory

Under DOS.C, the use of four three-sector clusters per track
results in one unused sector per track. This restriction arises
from the facts that (1) all clusters under Datapoint DOS must
contain the same number of sectors and no cluster may span a track
boundary; and (2) a 13-sector cluster is not practical because it
results in excessive amounts of wasted space at the end of each
file on the diskette. Since these 76 sectors on the diskette
(remember that track zero is not used) are not available for
allocation as file space, they are partially put to use for
storage of DOS system tables: four cluster allocation table
sectors and thirty-two directory sectors. These system tables are
positioned in the following manner:

Track
Tracks
Tracks
Track
Track
Track
Track
Tracks

o - Unused; for IBM compatibility
1-16 - Directory copy, for backup purposes

17-32 - Primary DOS directory
33 - Working Cluster Allocation Table
34 - Working Cluster Allocation Table backup
35 - Lockout Cluster Allocation Table
36 - Lockout Cluster Allocation Table backup

37-76 - Reserved for future DOS use

Again recall that each of the above sectors is in logical
sector 12 of the track indicated.

In the Cluster Allocation Tables, bytes 239-254 are used for
the Directory Mapping bytes. These sixteen bytes each contain
either an 0377 or the number of files currently allocated in the
corresponding one of the sixteen directory sectors. These bytes
are updated automatically by the DOS whenever a file is created or
deleted, and are updated by the DOS occasionally if they are found
to be inaccurate. The purpose of these directory mapping bytes is
to provide improved speed of directory lookups and to allow faster
creation of files. They are of the greatest benefit to users who
have several drives in their system where relatively few files
exist on each drive. The intention is to eliminate the need to
read in directory sectors while looking for a file if those
sectors are known to not contain any active directory entries, and
likewise when looking for an empty slot for use by a new file to
eliminate having to read sectors known to have all sixteen
directory entries in use.

C-12 DISK OPERATING SYSTEM

C.11 Internal DOS Parameterization

This section describes the DOS-dependent details of the
parameterization of DOS.C system routines.

C.11.1 Physical Disk Address Format

Under DOS.C, physical disk addresses are represented in a
two-byte format in a manner quite similar to that used under the
other DOS. The most significant byte (which is traditionally
placed in the D register) is the cylinder number. The less
significant byte (usually placed in the E register) has its most
significant two bits representing a cluster number within the
track (all combinations of these two bits are valid since there
are four clusters per track) and the least significant two bits
representing the sector number within the specified cluster.
Because there are only three sectors per cluster, only binary
values 00, 01 and 10 are valid for these low-order bits. (The
only exception to this rule is that a least significant PDA byte
of 0303 permits access to the unallocatable sector on each track,
that sector used for system table sectors). (For compatibility
reasons, the most significant three bits can be considered the
cluster number, yielding clusters numbered 0, 2, 4, and 6).

The unused bits of the least significant physical disk
address byte (that is, the center four bits) should always be set
to zero.

APPENDIX C. INTRODUCTION TO DOS.C C-13

APPENDIX D. DOS.D

DOS.D is Datapoint Corporation's Disk Operating System
supporting 48K Datapoint 5500 series computers operating in
conjunction with from two to eight 9370 series disk drives. In
addition to the interactive/batch operation as provided in all
standard Datapoint Corporation DOS, DOS.D additionally supports
Datapoint's Partition Supervisor (called PS, released separately)
which provides for the simultaneous execution of multiple DOS
programs.

D.1 Planning for DOS.D

The minimum configuration for a DOS.D system requires a 48K
Datapoint 5500 series computer, a 9370 disk controller and drive
and at least one 9371 disk extension unit. If more storage is
desired, up to seven 9371 disk extension units may be included,
for a total of eight disk storage units.

D.2 File Storage Capacity under DOS.D

Under DOS.D, each 9370-9373 model disk unit is dealt with as
two logical drives. Each of these two logical drives contains
48,576 sectors of 256 bytes each and can store up to 256 files.
Of these, about 250 sectors and about ten files are used by the
operating system and a few basic commands, leaving about 12.4
million bytes of usable space per logical drive, or up to roughly
25 million bytes of storage total for each disk storage unit in
the configuration. Using the 9374/9375 disk drives, file storage
is somewhat less due to the capacity of the disks used. For these
drives, each logical drive contains 38,976 sectors and provides
about 10 million bytes of usable space per logical drive, or
roughly 20 million bytes of storage per disk unit.

Other features of DOS.D include a large maximum file size:
up to 38,397 data. sectors in a single DOS.D file (not including
the end-of-file mark and two RIBs) ..

This availability of up to almost 200 million bytes of fast,
random access online storage expands the range of applications for
Datapoint 5500 dispersed data processing systems into areas
heretofore not practical for anything less than a mainframe
computing system due to large-scale data base requirements. In

APPENDIX D. DOS.D D-1

conjunction with Datapoint's highly successful Datashare package
and partitioned operation under PS, Datapoint offers a total
business data processing solution of a scope and power that could
scarcely have been dreamt of when the initial 2200 was introduced
only six or seven short years ago.

D.3 Disk Drives

Datapoint DOS.D supports from two to eight 9370-series disk
drives attached to one 9370-series disk controller. These drives
are high-performance, random access disk units. They are the
equal in every way to drives in constant daily use on the very
largest mainframe computer systems, and offer substantially better
performance than is available with the disks being used on many
medium-scale mainframe computer systems.

D.4 Disk Media

See Appendix B for information on the 9370-series disk drives
and disk packs.

D.5 Disk Organization under DOS.D

This chapter describes the logical organization of the data
on the disk when operating under DOS.D and how it relates to the
general DOS file concepts as described in the chapter on System
Structure. In this chapter it is assumed that the user is
familiar with these concepts and has read and is familiar with the
basic DOS file structuring.

D.5.1 Logical Drive Mapping

Under DOS.D each physical volume is broken into two logical
drives. This is done for reasons of addressing. It is simply not
possible to address all of the sectors on an entire 9370 disk
volume using only two bytes of physical disk address, and the two
byte physical disk address is central to all of Datapoint
Corporation DOS's operations. It is not practical to change this
characteristic without making changes which would result in
invalidating many user-written programs and many large systems
which run under the DOS. Therefore the disk was broken into two
halves, and one bit of the effective physical disk address is
taken from the logical drive number. For the 9374 drives the
removable disk is one logical drive, and the fixed disk is a

D-2 DISK OPERATING SYSTEM

second logical drive.

When using the 2316-type disk pack, each logical drive
appears to be 253 cylinders (numbered 0-252 decimal) of eight
24-sector tracks each. The first eight recording surfaces on the
disk pack (heads on the 9370 drive are numbered from zero to
nineteen starting at the top of the disk drive) correspond to the
first 203 cylinders on the first logical drive (the even-numbered
one). The next eight recording surfaces on the disk pack
correspond to the first 203 cylinders on the second logical drive
(the odd-numbered one). The first 203 cylinders on each logical
drive is referred to as primary addressing soace. Mapping of disk
space within primary addressing space is done in an algorithm
identical to that used under DOS.B.

Physical heads sixteen and seventeen (and the corresponding
recording surfaces on the disk pack) correspond to logical
cylinders 203-252 on the even logical drive; heads eighteen and
nineteen correspond to logical cylinders 203-252 on the odd
logical drive. These cylinders of each logical drive are referred
to as the extended addressing space. Since DOS.D assumes that
each cylinder consists of eight tracks, each of logical cylinders
203 through 252 are mapped across four physical cylinders of two
tracks each from the center of the pack outward. In this way,
disk space within primary and extended addressing space can be
dealt with by DOS.D in a uniform way at all but the very lowest
levels of the disk read/write driver.

Using the 9374/9375 disk drive, there is no extended
addressing space, only 203 cylinders of 8 24-sector tracks each.
The disk platter itself has 406 cylinders of 2 48-secto~ tracks
each, but the disk controller provides address conversion so the
physical structure is transparent to the processor.

D.5.2 Size of a Logical Drive

D.5.2.1 Models 9370-9373

Each logical drive is eight tracks on each of 253 cylinders.
This results in 2024 tracks of 24 sectors each, or a total of
48,576 total sectors on a logical drive. Of these, about 48,000
remain when the DOS has been generated, the system tables
constructed on the disk, and a few basic commands loaded.

APPENDIX D. DOS.D D-3

D.5.2.2 Models 9374/9375

Each logical drive is eight tracks on each of 203 cylinders,
yielding 1624 tracks of 24 sectors each, or 38,976 sectors on a
drive. Of these total sectors, about 38,400 remain when the DOS
has been generated, the system tables constructed, and a few basic
commands loaded. There is one unused cylinder on each
platter-logical cylinder 203, physically cylinders 406 and 407.
These innermost cylinders are not normally addressable and are not
even formatted by INIT9370. A test program for long-term
reliability testing is planned which will require exclusive use of
these cylinders.

D.5.3 Cluster Mapping

Because there are eight bits per byte in the cluster
allocation table (or CAT for short), and it is desirable to
maintain one byte in the CAT per cylinder of available space on
the drive, each track on a logical drive represents one DOS
cluster, and is represented in the CAT by exactly one bit. Since
the DOS uses eight tracks per logical cylinder, this results in
exactly eight clusters per cylinder of twenty four sectors each.

Due to the fact that space is always allocated in terms of an
integral number of clusters, this implies that the minimum file
size under DOS.D is twenty-four sectors and that file size will
always be a multiple of this number. It turns out that choosing a
full track as the smallest allocatable unit of space has other
advantages as well from a system standpoint, since it allows some
programs (like COPY) to make several simplifying assumptions about
the data in a file which enables th~m to copy data and reference
information in a file substantially more readily and efficiently
than would be otherwise possible.

D.5.4 Segments under DOS.D

Space under Datapoint Corporation's DOS is always allocated
in contiguous chunks of clusters called segments. When space is
allocated, the largest segment on a drive up to the maximum
possible sized segment is allocated, to keep the file as free of
fragmentation as possible. By limiting the allocation size to the
size of a full segment, the problem of allocating all available
space on a disk to a first scratch file before a second one is
subsequently opened is minimized. If several scratch files are
opened and space in them is allocated at regular intervals, the
resultant segments will be interleaved, resulting in minimized

D-4 DISK OPERATING SYSTEM

access time as the heads randomly access throughout the scratch
area. The desire to make segment size small (to minimize file
space conflicts and help to optimize use of space on the drive)
and yet large (to maximize processing speed, maximize file size
and minimize the number of RIB accesses) resulted in a segment
size of thirty-two clusters. This compromise results in a
768-sector segment (ten clusters of eight tracks of 24 sectors
each) allowing a maximum file size of over 38,000 sectors.

D.5.5 Maximum File Size

Under DOS.D, the maximum file size available is 38,397 data
sectors. This number is the result of 126 segment descriptors in
the RIB, each of which points at one segment of 32 tracks of 24
sectors each:

24 sectors x 32 tracks x 126 segments = 38,400 total sectors

Since the first two sectors of each file under the DOS are
used for the RIB and its copy, and the last sector of most files
for an end-of-file mark, that leaves 38,397 sectors available to
the user for the storage of his data. Files longer than this
number will have to be segmented or logically concatenated at the
user program level, the same as would be necessary for files
larger than about 9600 sectors on the 9350 series disks.

D.5.6 Cluster Allocation Table and Directory

Each logical drive under DOS.D contains its own directory and
cluster allocation table, just as for all Datapoint Corporation
DOS. There are sixteen directory sectors on each logical drive,
located in consecutive sectors starting at sector seven on logical
track zero of cylinder zero. Therefore, the sectors go from
sector seven to sector 026 (octal). The cluster allocation table
is at sector zero of logical track zero, cylinder zero. The
lockout cluster allocation table is at sector one of logical track
zero, cylinder zero. The hashed directory index is at sector two
of track zero, cylinder zero. The backup copies of each of these
are in the corresponding locations of logical track one of the
same cylinder.

The Hashed Directory Index, maintained by the DOS, resides in
sector two of track zero, cylinder zero. This table enables
directory lookups to go about four times faster (on full disk
directories) than was possible under DOS.B Version 1. The
technique works as follows:

APPENDIX D. DOS.D D-5

Given an eleven byte file name and extension, an
arithmetic/logical operation upon the file name results in an
eight-bit quantity referred to as a hash code. This code is
essentially a condensation of the 11 bytes of file name and
extension information into only one byte. Obviously, the
information is not complete; there are only 256 distinct
eight-bit hash codes possible, while there are literally billions
of legal file names and extensions. However, the condensation of
information is such that looking at the hashed directory index
allows the DOS to substantially restrict the range of directory
sectors it must examine when doing a directory lookup. Each hash
code for the file names in the directory is stored into the hashed
directory index, offset by the physical file number (PFN) of the
file with the corresponding name and extension.

Note that there is a calculated danger in the hashed
directory approach. The danger is that if the hashed directory
index is overwritten or otherwise destroyed accidentally, files
may become inaccessable even though they are clearly shown (by
doing a CAT command on the disk, for example) to be present. When
this occurs on a disk the technique to repair the disk is the
REPAIR command. When the REPAIR command is almost finished,
simply specify that the Hashed Directory Index is to be rewritten
to the disk. This causes the HDI to be regenerated from the
actual disk directory and rewritten. In general, the Hashed
Directory Index is rarely if ever destroyed in actual disk usage,
and contributes greatly to overall system performance if many
directory lookups are being done.

D.6 Internal DOS Parameterization

This section describes the DOS-dependent details of the
parameterization of DOS.B system routines.

D.6.1 Physical Disk Address Format

Under DOS.D physical disk addresses are represented in a
two-byte format in a manner quite similar to that used under the
other DOS. The most significant byte (which is traditionally
placed in the 0 register) is the cynlinder number. The less
significant byte (usually placed in the E register) has its most
significant three bits representing a cluster number within the
cylinder (or logical track number in the specific case of DOS.D)
and the least significant five bits representing the sector number
within the speclfied cluster.

0-6 DISK OPERATING SYSTEM

APPENDIX E. COMPARSION CHART FOR DOS'S

min.processor req.
min. disk controller

buffers required
max drives/system
platters/phy. drv.
surfaces used

cylinders used

tracks used

sectors/track
sectors/drive

bytes/sector
bytes/drive

user sectors
user bytes.
sectors/cluster
clusters/track
clusters/cylinder
max.clusters/seg.
max.sectors/seg.
max.segments/file
max. sectors/file

(including RIB's)
directory search

DOS.A

16K 2200
1K

4
1
2

203

406

24
9,744

256
2,494,464

9,600
2,457,600
6
4
8
32
192
126
9600

HDI

DOS.B

16K 2200
4K

2
11 or 2
8 or 2
[16] or [4]
(20)
203

1,624
[3,248]
(4,060)
24
38,976
[77,952]
(97,440)
256
9,977,856
[19,955,712]
(24,944,640)
38,400
9,830,400
24
1
8
10
240
126
30,240

HDI

DOS.C

16K 1100
1K

4
1
1

76
(77)
76

13
1,001

256
256,256

800
204,800
3
4
4
32
96
126
800

DMB

Except as noted otherwise, each item is a logical value for one
logical drive. Any item enclosed in square brackets [] is a logical value
for a physical drive if more than one logical drive is present on a
physical drive. Any item enclosed in parentheses () is a physical value
for a physical drive if it differs significantly from the number actually
used under the DOS.

Right-hand values under DOS.B and DOS.D (following the "or") are

APPENDIX E. COMPARSION CHART FOR DOS'S E-1

values for 9374/9375 drives, when different from the values for the
9370/9372 drives. In all cases, physical values (values in parentheses)
refer to the 9370/9372 drives; the physical value for 9374/9375 drives is
always the same as the logical value for a full physical drive (value
enclosed in square brackets).

E-2 DISK OPERATING SYSTEM

min.processor req.
min.disk controller

buffers required
max drives/system
platters/phys drv.
surfaces used

cylinders used

tracks used

sectors/track
sectors/drive

bytes/sector
bytes/drive

user sectors

user bytes

sectors/cluster
clusters/track
clusters/cylinder
max.clusters/seg.
max.sectors/seg.
max. segments/file
max. sectors/file

(including RIB's)
directory search

DOS.D

48K 5500
4K

8
11 or 2
10 or 2
[20J or [4J

253 or 203

2,024 or 1624
[4,048J or [3248J

24
48,576 or 38,976
[97,152J or [77,952J

256
12,435,456
or 9,977,856
[24,870,912J
or [19,955,712J
48,000
or 38,400
[96,000J
or [76,800J
12,288,000
or 9,830,400
[24,576,000J
or [19,660,800J
24
1
8
32
768
126
38,400

HDI

DOS.E

48K 5500
4K

4
1
2

203

406

24
9,744

256
2,494,464

9,600

2,457,600

6
4
8
32
192
126
9600

HDI

APPENDIX E. COMPARSION CHART FOR DOS'S E-3

DOS.A DOS.B DOS.C DOS.D DOS.E

Type of 9350 9370 9380 9370 9350
Disk Drive 9354 9374 9374 9354

Number of 1-4 1-2 1-4 2-8 2-4
Drives (min-max)

Haximum 4 4 4 16 4
Logical Drives

Type of Scotch Scotch IBH 128-byte Scotch Scotch
Disk 92-204 911-0 911-0 92-204

or or soft-sectored or or
equivalent equi valentdis,ket te, or equivalent equivalent

for 9370 equivalent for 9370
19372 19372

Datapoint Datapoint
Hodel Hodel
80428 80428
for 9374 for 9374

E-4 DISK OPERATING SYSTEM

DOS.A DOS.B DOS.C DOS.D DOS.E

PDA of CAT 0,0 0,0 041,0303 0,0 0,0

PDA of CAT 0,040 0,040 042,0303 0,040 0,040
Backup

PDA of Lockout 0, 1 0, 1 043,0303 0, 1 0, 1
CAT

PDA of Lockou t 0,041 0,041 044,0303 0,041 0,041
CAT Backup

PDA of HDI 0,2 0,2 NA 0,2 0,2

PDA of HDI 0,042 0,042 NA 0,042 0,042
Backup

Directory cylinder 0 cylinder Osector cylinder O,cylinder °
Location sectors 6 sectors 5 014 of sectors 7 sectors 6

to 025 to 024 each cylinder to 026 to 025
from 021 to
040

Directory Backup cylinder ° cylinder Osector 014 cylinder ° cylinder °
Location sectors 046 sectors of each sectors sectors 04

to 065 045 cylinder 047 to 065
to 064 from 1 to 020 to 066

APPENDIX E. COMPARSION CHART FOR DOS'S E-5

APPENDIX F. DISK DATA FORMATS

F.1 Disk Data Formats

The DOS itself does not deal with the user's data below the
record level. It only keeps track of where the records are,
allowing the user to format the data in any manner he pleases.
The user is presented with records that are 253 bytes long. The
system keeps the physical file number in the first physical
location of each sector and the system logical record number of
the given record in the second (LSB) and third (MSB) physical
locations of each sector. This is done to insure that the record
obtained is the record desired. The last 253 bytes may contain
anything the user chooses. There are, however, some assumptions
made by the DOS and the programs supplied with it that deal with
disk data. These assumptions fall into several classes described
below. The two types normally of greatest interest are object
records and symbolic data records. Object records include all
records that are to be loaded into memory by the DOS loader.
Symbolic data records include all records that are to be handled
by the standard data handling programs. These programs include
the general purpose editor, the assembler, DATASHARE, RPG II,
DOSBASIC, and the DATABUS programs (both source lines for the
various compilers and data records handled by the resulting
programs).

F.2 OBJECT File Format for Disk

Object files contain binary data which can be loaded using
the system loader and then executed. Multiple logical records can
be grouped into one physical block.

BYTE
1
2
3
4
5
6

CONTENTS
o => object record-or-0377 => end of block
H - load address for record
L
-H - complement of load address
-L
count of data bytes following

End of file is indicated when the count byte has a value of
zero. For the end-of-file record, the value of HL is the entry

APPENDIX F. DISK DATA FORMATS F-1

point address to jump to. The object file created by the ASSEMBLER
has a system loader object format.

Logical Record Number Byte # Description

LRN 0 (RIB)

LRN (RIB COPY)

LRN 2

o
1
2
3
4
5
5

Physical File Number
Logical Record Number (LSB)
Logical Record Number (MSB)
0377
Segment Descriptor

Segment Descriptor 2

2N+2 Segment Descriptor N
2N+3
2N+4 0377
2N+5 0377

o
1
2
3
4
5
6

7

8
9

n+9
n+10
n+11
n+12

n+13

n+14
n+15

Physical File Number
Logical Record Number (LSB)
Logical Record Number (MSB)
o - indicating data block
Starting address of block (LSB)
Starting address of block (MSB)
One's complement of LSB of starting
address
One's complement of MSB of starting
address
Block length (n)
Beginning of data

0 - Next data block
Starting address of
Starting address of
One's complement of
address
One's complement of
address
Block length (m)

·Beginning of block

block (LSB)
block (MSB)
LSB of starting

MSB of starting

data

F-2 DISK OPERATING SYSTEM

LRN 3

LRN N

n+m+15- Next data block

o
1
2
3

o

0377 - End of Record

Physical File Number
Logical Record Number (LSB)
Logical Record Number (MSB)
o - Next data block

o - Last data block
Transfer address (LSB)
Transfer address (MSB)
One's complement of the LSB of the
transfer address
One's complement of the MSB of the
transfer address
o - block length equal to zero signifies
end-of-file

F.3 Relocatable Code Formats

Relocatable object code is initially assumed to be starting
at location 010000 until a "select new PAB" or "select new
location" code is encountered.

Each sector containing relocatable code starts with a one
byte header containing sector contents code. The relocatable code
in each sector is followed by a byte containing binary zero.

Sector contents code~ are:

0200 Directory
0201 Program Identification
0202 Object Text
0203 External Definitions
0204 External References

APPENDIX F. DISK DATA FORMATS F-3

0205 Transfer Address

Relocatable code files are in library form as follows:

---I
I_-Directory

I
------------------------------------- I

P ___ I Program Identification :<--
0: -------------------------------------
i :
n :
t :

Object Text

e: -------------------------------------
r -->: External Definitions

External References

Transfer Address

p
o
i

: n
: t
: e
: r
I
I
I
I
I
I
I

------------------------------------- I ---I Program Identification :<------
I
I
I
I

F.3.1 Directory

etc

<-------Directory Entry------>
---------------------~---------------------------------: Next Directory LRN : Program Name :
: LSB : MSB: :

Program LRN
LSB : MSB

<--------2---------> <-----8------> <------2------>
bytes bytes bytes

I
I

: etc ..

A directory entry is required for each object program in a
library. The first sector of the object code library is reserved
as a directory for the first twenty-four programs in the library.
If the library contains more than twenty-four programs, a pointer
is generated that points to the LRN of the next directory sector
(the sector following the twenty-fourth object program). The last
directory sector used has a pointer set to 0377, 0377.

F-4 DISK OPERATING SYSTEM

F.3.2 Program Identification

<----------PAB Entries----~---->

I LRN I Program-name I PAB I PAB-name IAddresslLength I
I LSB I MSB I I flags I I LSB I MSB I LSB I MSB I etc

<--2--> <------8-----> <-1-> <----8--~> <--2--> <--2-->
bytes bytes byte bytes bytes bytes

LRN is a pointer to the first sector following object text
(the first external definition sector, or the first external
reference sector, or the transfer address if there are no
definitions or references).

The program name is an eight character name of the program,
as reflected in the program id record.

Each PAB (program address block) defines a separate address
counter used to assign memory locations. Up to fifteen PAB's can
be defined for each program (PAB numbers 1-15). Flag bits are used
to indicate relocatability and page sensitivity.

PAB flags:

: 7 654 321 0 I

\ \ \ \ \ _
\ \'\ \ _-
_-

\ \ _--
\ _--
_----

F.3.3 Object Text

bits 0-2 are unassigned
COMMON PAB
PAB must not cross page boundry
PAB must start on page boundry
PAB is relocatable
PAB assigned

Relocatable object text is interspersed with control bytes
used by the linkage editor in creating absolute code.

APPENDIX F. DISK DATA FORMATS F-5

F.3.3.1 Memory Location

Codes 0160 and 0161 are used to define starting memory
locations.

Select New PAB

0160 PAB

PAB defines the number of the Program Address Block to be
used for the object code that follows. If the PAB is not in use,
the new location will be zero.

Select New Location

0161 LSB MSB

LSB and MSB define the new location in the current PAB of the
next byte of object code.

F.3.3.2 Absolute Text

Codes 0001-0077 precede code and data that does not require
relocation.

Absolute Text

1-0077 1-63 absolute text bytes
--------------------------------- - - - -

The code is a count of the number of absolute text bytes that
follow.

F-6 DISK OPERATING SYSTEM

F.3.3.3 Complex Relocatable References

Codes 0100-0157 are used to define operators and operands of
complex expressions that are evaluated by the linkage editor
during relocation. Complex expressions are in encoded Polish
Postfix notation.

Push Relocatable Location on Stack

: 0100+PAB : LSB MSB

PAB, LSB and MSB define the assembled memory location.

Push External Reference on Stack

: 0120+MSB: LSB

MSB and LSB are an index to an external reference entry.

Push Binary Value on Stack

0140 LSB MSB

LSB and MSB are a 16 bit binary integer.

APPENDIX F. DISK DATA FORMATS F-7

Operators:

< > . OR. . XOR .

0141 0142 0143 0144

.AND. + *
0145 0146 0147 0150

/ Negate .MOD.

0151 0152 0153

Codes 0141-0153 are expression operators.

EQQ Result of Evaluation from Stack:

Pop LSB Pop MSB Pop LSB-MSB Pop MSB-LSB
---------- ---------- ---------- ----------

0154 0155 0156 0157
---------- ---------- ---------- ----------

Codes 0154-0157 terminate evaluation of complex expressions
and indicate the form of the absolute code to be generated.

F.3.3.4 Simple Relocatable References

Codes 0200-0377 are used for simple relocatable references
consisting of a single relocatable symbol or relocatable symbol
plus a non-relocatable displacement. Codes for simple relocation
can be decoded as follows:

: 765 4 3 2 1 0 :

\\\\\
\ \ \ \

\ \ \
\ _
_--

F-8

bits 0-3 are part of relocation definition
external reference
inverted address (MSB-LSB)
16 bit address
simple relocatable memory reference

DISK OPERATING SYSTEM

LSB Reference

: 0200+PAB: LSB

LSB defines the relocatable memory location.

MSB Reference

: 0240+PAB : LSB ~1SB

PAB, LSB and MSB define the relocatable memory location. A
full sixteen bit address must be given in case a carry occurs
between LSB and MSB during relocation.

LSB-MSB Reference

: ·0300+PAB : LSB }1SB

PAB, LSB and MSB define the relocatable memory location.

MSB-LSB Reference

: 0340+PAB : LSB . ~1SB

PAB, MSB and LSB define the relocatable memory location.

LSB External Reference

: 0220+MSB: LSB

MSB and LSB are an index to an external/forward reference
entry table.

APPENDIX F. DISK DATA FORMATS F-9

MSB Exterrial Reference

I 0260+MSB I LSB

MSB and LSB are an index to an external/forward reference
entry table.

LSB-MSB External Reference

I 0320+MSB I LSB

MSB and LSB are an index to an external/forward reference
entry table.

MSB-LSB External Reference

I 0360+MSB I LSB

MSB and LSB are an index to an external/forward reference
entry table.

F.3.4 External Definitions

External name I PAB or 0200 I LSB I MSB I

<----------8---------> <-----1-----> <-1-> <-1->
bytes byte byte byte

External definitions are external symbols made available to
other relocatable modules. External references made by other
relocatable modules are linked to external definitions as
discussed in Chapter 1. The location of each relocatable external
definition is defined by PAB, LSB and MSB. A flag (0200), LSB and
MSB define non-relocatable external definition values. Up to

·twenty-two external definitions can be defined in each external
definition sector. All external definition sectors for a given
program must be contiguous, and not intermixed with external
reference sectors.

F-10 DISK OPERATING SYSTEM

F.3.5 External and Forward References (4096 maximum)

External Reference

ASCII Symbol

<-------------------8--------------------->
bytes

Forward reference

0200 PAB LSB MSB Unused

<--1--> <--1--> <--1--> <--1--> <---4---->
byte byte byte byte bytes

A forward reference is defined as a reference whose value is
unknown at some given time in the relocatable module's creation,
but whose value is known later, and then is plugged into ~he
forward reference table.

All external reference/forward definition sectors must be
contiguous.

F.3.6 Transfer Address

PAB LSB MSB

<----1----> <----1----> <----1---->
byte byte byte

PAB, LSB and MSB define the starting location in the program.
If PAB=0377, a starting location was not specified.

APPENDIX F. DISK DATA FORMATS F-11

F.4 Format of Library Files

The Library is constructed from two types of entries,
Directory Entries and members.

F.4.1 Directory

The first entry of the library file must be the first
Directory Entry. Additional directory entries are formatted as
required and linked into the directory chain. Each directory has
two major parts:

1) The directory header which is 7 bytes. The format is as
follows:

: 0377 :

0200

0100

LSB

MSB

LSB

MSB

Directory Unique Code
2 Bytes long

Type of library (see library type chart)

Pointer to next directory entry LRN
0377,0377 if last one.

Pointer to end of file sector, (LRN)
(only valid in first directory).

2) Member name entries, each one is 10 bytes long.

LSB

MSB

F-12

Memer name 8 bytes long
in ASCII code

Starting LRN
of this member

DISK OPERATING SYSTEM

One directory entry can contain a maximum of 24 member names. All
unused member name entries will be set to 0377's. A deleted
member will be set to 0377's.

An entire directory entry:

lDirectory Header
1
1

F.4.2 Members

Member
Name 1

LRNlMemberlLRNl lMemberlLRNl03771
lName 21 lName nl

The members are the second type entry of the library. Each
member is pointed to by the member name pointer in one of the
directory entries. Each member is terminated by an end of member
(EOM) code. The EOM is indicated by a sector which contains six
bytes of 000 followed by 010.
NOTE: EOM indicates only the end of this member not the end of
the library.

A simple library file format

lABCDl lMember Al 1 1
1 1

Directory EOM

I EF I lMember El

Directory EOM

lMember Cl

lMember Fl

-1-1
II

EOM

II
II

lMember Dl

EOM EOM

APPENDIX F. DISK DATA FORMATS

II
II

EOM

lMember Bl

F-13

1 1
1 1

EOM

F.4.3 Library Type Chart

If the library contained more than 24 members another
directory entry would be placed into the chain of directories.

The following is the bit chart for library types

1-
• 1

1 ••
. 11 111

Reserved
Absolute
Relocatable
Undefined

F.5 DATABUS Code File Format

DATABUS files contain code produced by the DATABUS compiler
for use by its interpreter. All blocks are 251 bytes long.

BYTE CONTENTS

1 040 - DATABUS code file indicator
2 H - load address
3 L
4 -H - complement of load address
5 -L

End of file is ind~cated by bytes 1 through 6 being binary
zeros, followed by a binary three.

F.6 DATAFORM Data File Format

Every record created by a DATAFORM form is stored
consecutively on the disk terminated with a 015 designated as the
end of logical record character. Disk sector boundaries are
transversed by placing a 003 to represent the end of physical
record. An end of file mark is six zeros followed by a 003
beginning at the start of the next unused sector. This complies
with Datapoint's DOS text file structure. However, other
characters immediately following the 003 are necessary re,cord
descriptors to allow record form linkages and the record backspace
feature to be implemented in DATAFORM. The first character
following the end of physical record character, 003, represents
the form number that created the first logical record starting in
that sector, biased by 4. The character immediately following is
the absolute address in the sector of the first character of the

F-14 DISK OPERATING SYSTEM

logical record. (Note that the first data character of every
sector starts at address 003.) There must be a similar pair of
characters describing every logical record that starts in that
sector. These character pairs must be in that sector and in
consecutive order. (i.e. The first pair relates to the first
record, the second pair to the second record, etc.) The remainder
of the sector, if unused, is filled with zeros. DATAFORM 1100
Version 1 may use the entire 253 bytes available in the sector.
However, DATAFORM Version 2 does not use the last two bytes of
every sector, only 251 bytes are used.

F.7 MULTIFORM File Format

The first sector of a Multiform file contains information
concerning the file name, form library relating to the data, and
end of file position. The format of this header sector is
described below. The first byte of a sector has a sector address
of zero.

SECTOR ADDRESS

0- 2
3

4- 11
12- 14
15- 16

17- 24
25- 27
28-251

252
253

254-255

DESCRIPTION

Reserved for DOS
Contains a byte value of 003
First 8 characters of the data file name
Three characters of the data file extension
LRN of the last sector which has data written to
it. Must be in LSB,MSB format
First 8 characters of the form file name
Three characters of the form file extension
Not care conditions
Contains a byte value of 000
Contains a byte value of 003
Reserved for DOS

All records are now written consecutively in a non-space
compressed format. Each record is terminated by an 015. The end
of the physical record is indicated by an 003. Bytes after the
003 contain special information that Multiform uses. This
information is right justified in the sector, whi~h will be
described from right to left.

APPENDIX F. DISK DATA FORMATS F-15

SECTOR ADDRESS

253

252

251

DESCRIPTION

Contains a byte value equal to the number of
records that start in that sector plus the value
3.

Each record that starts in the sector has two
bytes that describe its position and the form
that created it.

Contains a byte value equal to the form number
of the form that relates to the last record that
starts in the sector.

The true sector position of the last record that
starts in this sector.

The next preceeding byte pair describes the next to the last
record that starts in that sector in the same format as described
above. These byte pairs are repeated for every record that starts
in that sector. The end of physical record preceeds these record
description byte pairs by no more than one character. The
exception to this is the last sector in the file which contains
data. In this case, immediately preceeding the record description
byte pairs will be a byte whose value is the true sector address
of the end of physical record character. Note, if no record
begins in this sector, sector byte address 253 will contain an 003
and the preceeding byte will have the sector address of the end of
physical record character. The next sector in the file will
contain the standard DOS end-of-file mark.

F.B TEXT File Format

TEXT files typically contain data, source statements, or
whatever is meaningful to the user. The requirement is that the
data contained in the text file must be equal to or greater than
040 (space). The only bytes less than 040 which are allowed are
the following:

CONTROL BYTE SYMBOL MEANING

000 NULL. The NULL control byte is used in the
indication of the end of the file.

003 END-OF-MEDIUM. No more meaningful data is contained

F-16 DISK OPERATING SYSTEM

011<cnt>

015

032

in this block. The EM is NOT a data byte but must
be within the block.

SPACE COMPRESSION. The byte following the 011 is a
binary count of spaces which have been compressed.
<cnt> can be between 2 and 255, inclusive. The
011<cnt> sequence MUST not be split across block
(sector) boundaries.

END-OF-RECORD. The EOR, also the Enter [ENT] or
Carriage Return character, indicates the end of the
logical record. It is NOT a data byte.

DELETE. The DEL byte indicates the data byte is
deleted. The DEL is NOT a data byte. Entire
records (including the EOR indicator) can be deleted
by over-writing them with DEL bytes.

There is no explicit maximum size for a logical, record. A
logical record can span as many blocks (sectors) as necessary,
within the capacity of the device. A physical block must be less
than or equal to 251 bytes, this includes any necessary EOR bytes
and the trailing EM byte. Text files can be either compressed or
non-compressed. Compressed implies both space and record
compressed, using the CMP and EOR control bytes, and filling the
block to the maximum of 251 bytes. Non-compressed format has no
space or record compression, there is a one for one correlation
between logical record and physical block, and the maximum size of
the record is 251 bytes, including the EOR and EM control bytes.

End of file is indicated by bytes 1 through 6 being binary
zeros <NUL>, followed by a binary three .

F.9 lSI File Format

The indexed file is a normal GEDIT-compatible text file.
The ISAM file is of the following format:
First record - header record

0-10 - indexed file name of form filenameext
11 - PFN of the ISAM file
12 - the sector of the ISAM file RIB
13 - the cylinder of the ISAM file RIB
14 - PFN of the indexed file
15 - the sector of the indexed file RIB
16 - the cylinder of the indexed file RIB
17-18 - OBSOLETE
19 - OBSOLETE

APPENDIX F. DISK DATA FORMATS F-17

20-22 - last record used in data file (BUFADR, LRN LSB, LRN MSB)
23-25 - next free entry in ISAM file (BUFADR, LRN LSB, LRN MSB)

Second sector - highest level
of intermediate level form but contained within a single sector

Third+ sectors - lowest level
of form:

KEY/015/NEXBUF/NEXSEC/NEXCYL/RECBUF/RECLSB/RECMSBIIKEY .••.
as key cannot be split over sector boundary,
sector is filled with 0377's

KEY - uncompressed ASCII key with trailing spaces truncated
o -> first record
0377 -> last record

NEXBUF - buffer address of the next key, 0 implies next sequential
NEXSEC - sector address of the next key
NEXCYL - cylinder address of the next key
RECBUF - buffer address of the indexed record
RECLSB - logical record number LSB of the indexed record
RECMSB - logical record number MSB of the indexed record

N+ sectors - intermediate levels
of form: ,

KEY/012/NEXSEC/NEXCYLIIKEY ..•
as key cannot be split over sector boundary, sector is filled
0377'

KEY - uncompressed ASCII key with trailing spaces truncated
o -> first record
0377 -> last record

NEXSEC - sector address of the next-l ower-level key
NEXCYL - cylinder address of the next-lower-level key

The ASCII key tag file is of the format:
RECLRN/RECBUF/KEY/0151IKEY • .•

RECLRN - 5 byte ASCII decimal logical record number of the indexed
key

RECBUF - 3 byte ASCII decimal buffer address of the key
the ASCII decimal numbers have leading blanks

KEY - compressed ASCII key with trailing spaces truncated

F-18 DISK OPERATING SYSTEM

Manual Name __ __

Manual Number. ______________________________________ __

READER'S COMMENTS

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for
improvement.

Name __ Date ________________________________ ___

Organization __ _

Street __ __

City _________________________ State. ___________ Zip Code ______________________ _

All comments and suggestions become the property of Datapoint.

Fold Here

FOld Here and Staple

BUSINESS REPLY MAIL
No Postage Necessary if mailed in the United States

Postage will be paid by:

DATAPOINT CORPORATION
Product Marketing
8400 Datapoint Drive
San Antonio, Texas 78284

First Class
Permit
5774

San Antonio
Texas

- ~. .: ?

DATAPOINT CORPORt\TION

The leader in dispersed data processing ™
~ .

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	01-01
	01-02
	01-03
	02-01
	02-02
	03-01
	03-02
	03-03
	04-01
	04-02
	04-03
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-01
	06-02
	07-01
	08-01
	08-02
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	12-01
	12-02
	13-01
	13-02
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	15-01
	16-01
	16-02
	16-03
	17-01
	17-02
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	20-17
	20-18
	20-19
	20-20
	20-21
	20-22
	21-01
	21-02
	22-01
	22-02
	22-03
	22-04
	23-01
	23-02
	23-03
	24-01
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	25-07
	25-08
	25-09
	25-10
	25-11
	26-01
	26-02
	27-01
	27-02
	28-01
	28-02
	28-03
	28-04
	28-05
	29-01
	30-01
	30-02
	30-03
	30-04
	30-05
	30-06
	30-07
	30-08
	31-01
	31-02
	31-03
	31-04
	31-05
	31-06
	31-07
	31-08
	31-09
	31-10
	32-01
	32-02
	33-01
	34-01
	35-01
	35-02
	35-03
	35-04
	35-05
	35-06
	35-07
	35-08
	36-01
	36-02
	36-03
	36-04
	36-05
	36-06
	36-07
	36-08
	36-09
	36-10
	36-11
	36-12
	36-13
	36-14
	36-15
	36-16
	36-17
	36-18
	36-19
	36-20
	36-21
	36-22
	36-23
	36-24
	36-25
	36-26
	36-27
	36-28
	36-29
	36-30
	36-31
	36-32
	36-33
	36-34
	36-35
	36-36
	36-37
	36-38
	36-39
	36-40
	36-41
	36-42
	36-43
	36-44
	36-45
	36-46
	36-47
	36-48
	36-49
	36-50
	36-51
	36-52
	36-53
	37-01
	38-01
	39-01
	39-02
	39-03
	39-04
	39-05
	39-06
	39-07
	39-08
	39-09
	39-10
	39-11
	39-12
	39-13
	39-14
	39-15
	39-16
	39-17
	39-18
	39-19
	39-20
	39-21
	39-22
	39-23
	39-24
	39-25
	39-26
	39-27
	39-28
	39-29
	39-30
	39-31
	39-32
	39-33
	39-34
	39-35
	40-01
	40-02
	40-03
	40-04
	40-05
	40-06
	41-01
	42-01
	42-02
	43-01
	43-02
	44-01
	44-02
	44-03
	44-04
	44-05
	44-06
	44-07
	44-08
	44-09
	44-10
	44-11
	44-12
	44-13
	44-14
	44-15
	45-01
	45-02
	45-03
	45-04
	45-05
	45-06
	45-07
	46-01
	46-02
	46-03
	46-04
	46-05
	46-06
	46-07
	46-08
	46-09
	46-10
	46-11
	46-12
	46-13
	46-14
	46-15
	46-16
	46-17
	46-18
	46-19
	46-20
	46-21
	46-22
	46-23
	46-24
	46-25
	46-26
	46-27
	47-01
	47-02
	47-03
	47-04
	47-05
	47-06
	47-07
	47-08
	47-09
	47-10
	47-11
	47-12
	47-13
	47-14
	47-15
	47-16
	47-17
	47-18
	47-19
	47-20
	47-21
	47-22
	47-23
	47-24
	47-25
	47-26
	48-01
	48-02
	48-03
	48-04
	48-05
	48-06
	48-07
	48-08
	48-09
	49-01
	49-02
	49-03
	49-04
	49-05
	49-06
	49-07
	49-08
	50-01
	51-01
	51-02
	52-01
	52-02
	52-03
	52-04
	53-01
	53-02
	53-03
	54-01
	54-02
	54-03
	54-04
	54-05
	54-06
	54-07
	54-08
	54-09
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	E-02
	E-03
	E-04
	E-05
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	F-18
	replyA
	replyB
	xBack

