| -

DISK OPERATING SYSTEM
DOS.
User’'s Guide

|
Version 2 (upgraded to 2.3)
| March, 1977

Model Code No. 50216

DATAPOINT CORPORATION

The leader indispersed data processing ™

DISK OPERATING SYSTEM
DOS.

User's Guide

Version 2 (Upgraded to 2.3)

March, 1977

Model Code No. 50216

PREFACE

The purpose of this User's Guide is to provide the user of a
Datapoint DOS that information required to generate a system, make
effective use of the available commands, and to make user—writtén

programs compatible with the DOS.

This manual applies to all Version 2.3 and above "dot-series™"
Disk Operating Systems, such as DOS.A, D0S.B, etc. This manual
replaces the previous Version 2 User's Guide and Version 2

System's Guide.

—~— ooy on U1uTuT Ul Ul FE S S wwww

OO \O

TABLE OF CONTENTS

INTRODUCTION

.1 Hardware Support Required

.2 Software Configurations Available
.3 Program Compatibility

OPERATOR COMMANDS

EQUIPMENT CARE
.1 Environment

.2 Processor

.3 Disks and Disk Drives

.4 Other Peripherals

DISK FILES
.1 File Names
.2 File Creation

.3 File Deletion

.4 File Protection

SYSTEM GENERATION

.1 Initial Generation

5.1.1 Formatting
5.1.2 Cassette System Generation

.2 Partial Generation

.3 UPGRADE/X

.4 Scratch Disk Generation

.5 Generation Cassettes and Emergencies

GENERAL COMMAND CHARACTERISTICS
.1 General Command Format

.2 Signon Messages

.3 Common Error Messages

APP COMMAND
.1 Purpose
.2 Use

AUTO COMMAND
AUTOKEY COMMAND
.1 Introduction to AUTOKEY

.2 The Hardware Auto-Restart Facility
.3 Automatic Program Execution Using AUTO

ii

page
1-1
1-1
1-2
1-2

N
|
—a

I
NN — —

1
WW N = =

[}
VIUTEWN =

OOV O UtTuortutu1r o1 ol Ut Ul
! |
[N JEEE S WY

I
—_

OO O\ o ~N
[} I
[N P N WY —_

WO WO O WO

10.

10.
10.

10

10.

10
10

11.

—_
P a—l

—_— =3
—_ 3

.4 Auto-Restart Facilities Using AUTOKEY
.5 A Simple Example

.6 A More Complicated Example

.7 Special Considerations

.8 AUTOKEY and DATASHARE

BACKUP COMMAND

.1 Purpose

2 Use

3 Mirror Image Copy

.4 Reorganizing Files

10.4.1 Copying DOS to Output Disk
10.4.2 Deleting Named Files

10.4.3 Copying Named Files

5 Use of KEYBOARD and DISPLAY Keys
.6 Error Messages

.7 Reorganizing Files for Faster Processing
10.
10.
10.

8 BACKUP with CHAIN
9 Clicks during Copying
10 Special Considerations for BACKUP

BLOKEDIT COMMAND
.1 Purpose
.2 File Descriptions
1.2.1 Command Statement Lines
1.2.2 Source File
1.2.3 New File
ing BLOKEDIT
ssages
1 Informative Messages
2 Fatal Errors
.3 Selectively Fatal Errors

1
1
1

.3 Us
L Me
11.4,
1.4,
11.4
BUILD COMMAND

.1 Purpose

.2 Use

.3 A Simple Example

CAT COMMAND
.1 Purpose
.2 Use

CHAIN COMMAND
.17 Introduction
.2 Tag Definition
.3 Compilation Phase Directives
14.3.1 IF Directive
14.3.2 ELSE/XIF Directives

iii

[I I I | | IO T T B |
N OO EFWWN = — —

NI T O QS W T U S S s Y
R U U MY (U UK WU WY QU W N

_

n
11

_

12-1
12-2

13-1
13-1
13-1

P

=
1

FLWWN - —

14,
14,
14,

14

4.
14.

19.

19.
19.

19.
19.
19.
19.
19.

20.

20.
20.

y
5
6
.7 Comments
8
9
1

Tag Value Substitution
BEGIN/END Directives
ABORT Directives

Complex CHAIN Example

Resuming An Aborted CHAIN
0 Notes On Usage of CHAIN
CHANGE COMMAND

COPY COMMAND

.1 Purpose
.2 Use

DOSGEN COMMAND

.1 Purpose
.2 Use
.3 Special Considerations

DUMP COMMAND

Purpose

Use :
Informational Messages Provided
Level One Commands To DUMP
Level Two Commands To DUMP
Level Three Commands To DUMP
Level Four Commands To DUMP
Level Five Commands to. DUMP
Error Messages

HE DUMP93X0 COMMAND
Use
The primary command handler
Using DUMP93X0 with a Local Printer
Screen Display format
The Screen Dump Command Handler
Cassette Operations
Drive Numbers
Error Messages

O~ OUl =W — 3 W ooVl W —

EDIT COMMAND

1 Introduction

2 Operation

20.2.1 DOS Initialization

20.2.2 Files

20.2.3 Parameter List
20.2.3.1 Margin Bell
20.2.3.2 Tab Key Character

iv

20.
20.

20
20
20

20.
20.

21.
21
21

22.
22

23.

25.
25.

25

25
25

20.2.3.3 Mode
20.2.3.4 Update
20.2.3.5 Key-click
20.2.4 Examples
20.2.5 Data Entry
20.2.6 Data Retrieval
20.2.7 EDITOR Command Format
3 Basic EDITOR Commands
4 Modification Commands
20.4.1 DELETE Command
20.4.2 MODIFY Command
20.4.2.1 Line Modification
20.4.2.2 Field Modification

.5 File Search Commands
.6 Miscellaneous Commands
.T Recovery Procedures

20.7.1 Bypassing Errors or End of File
20.7.2 File Recovery

8 Glossary

9 Command List

ENCODE/DECODE COMMANDS

.1 Purpose
.2 Use

FILES COMMAND

.1 Command Description
22.
22.
22.

2 Default Messages
3 File Descriptions
4 Error Messages

FIX COMMAND

.1 Purpose

.2 Operation

.3 Commands

.4 Error Messages

FREE COMMAND

.1 Purpose
.2 Use

INDEX COMMAND
1 Introductionn
2 System Requirements

.3 Operation

25.3.1 Parameters
.4 Choosing A Record Key
.5 Preprocessing the File

20-3
20-3
20-4
20-4
20-5
20-6
20-6
20-T7
20-9
20-9
20-10
20-10
20-11
20-13
20-14
20-15
20-16
20-16
20-16
20-20

21-1
21-1
21-1

22-1
22-1
22-2
22-3
22-4

23=-1
23-1
23-1
23-1
23-3

24-1
24-1
24-1

25-1
25=-1
25-1
25=-2
25=2
25-3
25-4

25
25

25.

26.

26.

26
27 .
28.

28.
28.
28.
28.
28.

28

28.
28.

28.

29.
30.

30.
.2 Tape

30

30.

UlEwn —

25.5.1

25.5.2 Considerations for Unattended Indexing
.6 INDEX Messages
.7 ISI File Formats

Invoking Reformat

8 Examples of the Use of INDEX

THE INIT9370 COMMAND

1 Use

.2 Error messages

KILL COMMAND

LIST COMMAND
Purpose
Parameters
INPUT File Specification
Starting Point
QUTPUT File Specification

Qutput Format
Format Control
Operator Controls
0 Error Conditions

1
2
3
it
5
.6 OQutput Device
7
8
9
1

MANUAL

COMMAND

MIN COMMAND
1 Purpose

30.2.1
30.2.2

Formats
Single File Tapes
Double File Tapes

30.2.3 Multiple Numbered-File Tapes

30.2.4

Multiple Named-File Tapes

3 Parameters

30.3.1 Single File Tapes

30.3.2 Double File Tapes

30.3.3 Multiple Numbered-File Tapes
30.3.4 CTOS Tapes

30.3.5 MOUT With Directory Tapes
30.3.6 Options

.4 Errors

MOUT COMMAND

File

Purpose
Parameters
Options

Names

Writing

vi

25-4
25-1
25-5
25-7
25-9

26-1
26-1
26-2

27-1

28-1
28-1
28-1
28-2
28-2
28-3
28-3
28-4
28-4
28-5
28-5

29-1

30-1
30-1
30-1
30-1
30-1
30-2
30-2
30-2
30-2
30-4
30-4
30-5
30-5
30-6
30-8

31-1
31-1
31-1
31-2
31-5
31-7

31.

32.
33.
34,
35.

35.
35.
35.
35.
35.
35.

36.

36.
.2 When to use REPAIR
.3 Understanding REPAIR

36.

36

36.

6 Verifying

NAME COMMAND
PUTIPL COMMAND
PUTVOLID COMMAND

REFORMAT COMMAND
Introduction

Operation

Qutput File Formats
Reasons for Reformatting
Reformat Messages

Text File Formats

OVt EWN —

THE REPAIR COMMAND
1 Applications of REPAIR

36.3.1 Preliminary reading
4 Minimal Operator Interface

36.4.1 Executing REPAIR

36.4.2 Sign-on and drive number specification
36.4.3 Cylinder Lockout

36.4.4 Directory check monitor

36.4.5 Directory Errors

36.4.6 Retrieval Information Blocks check
36.4.7 Retrieval Information Blocks Errors
36.4.8 End of RIB check

36.4.9 Cluster allocation phase, Pass 1
36.4.10 Cluster allocation phase, Pass 2
36.4.11 Cluster allocation phase, pass 3
36.4.12 Cluster Allocation Conflicts
36.4.13 System Table Replacement

36.4.14 Termination of REPAIR

5 Medial Operator Interface
36.5.1 Executing REPAIR
36.5.2 Sign-on and drive number specification
36.5.3 Cylinder lockout
36.5.4 Directory check monitor
36.5.5 Directory errors
36.5.5.1 Delete errors
36.5.5.1.1 One entry deleted
36.5.5.1.2 Delete Incomplete
36.5.5.2 RIB Address Errors
36.5.5.2.1 RIB Address Invalid
36.5.5.2.2 RIB Addresses not equal

vii

31-8
32-1
33-1
34-1

35-1
35-1
35-1
35-3
35-3
35-4
35-7

36-1
36-2
36-2
36-3
36-4
36-4
36-4
36-5
36-5
36-6
36-7
36-7
36-8
36-8
36-9
36-9
36-10
36-10
36-11
36-12
36-12
36-13
36-14
36-14
36-14
36-15
36-16
36-17
36-19
36-20
36-20
36-22

36.

.T CAT errors and directory read/write errors

37.
38.
39.

39.
39.
39.

39

36
36

36
36
36
36
36

36

36.5.5.3 File protection not same

3
.5
.5

3
3
.5

.5
.5
.5
.5

6.5.5.4 Name-Extension not equal

.6 Retrieval Information Blocks check
.7 Retrieval Information Blocks errors
6.5.7.1 A simple case

6.5.7.2 A Complex Case

.8 End of RIB check

.9 Cluster allocation phase, Pass 1
.10 Cluster allocation phase, Pass 2
.11 Cluster allocation phase, Pass 3
.12 Cluster allocation conflicts

36.5.12.1 Cluster allocation phase, Pass 3 Messages

.5

36.5.12.1.1 Left side of screen
36.5.12.1.2 Right side of screen
.13 System table replacement

36.5.14 Termination of REPAIR
6 Cylinder Lockout with REPAIR

36.7.1 Cluster allocation table read errors

36.7.2 Cluster Allocation Table is destroyed

36.7.3 Cluster Allocation Table Copies Do Not Match
36.7.4 Directory Read Errors

REWIND COMMAND

SAPP COMMAND

SORT COMMAND

1 Introduction

2 General Information

3 Fundamental SORT Concepts
39.3.1 File Formats

39.3.2 The Key Options
39.3.3 How to Sort a File

ETrEFrFEEEEEEEEEEREE

.4 The Other Options
39.
39.
39.
39.
39.
39.
39.
39.
39.
39.
39.
39.
39.

Generalized Command Statement Format
Keys-overlapping and in Backwards Order
Collating Sequence File

Ascending and Descending sequences
Input/output File Format Options
Limited output format option

TAG file output format option

KEYTAG File Output Format Option
HARDCOPY output option

.10 Primary/Secondary sorting considerations
.11 Key File Drive Number

.12 Disk space requirements

.13 LINK into SORT from programs

OWOOJO0OWWUJT =W —

viii

36-23
36-2k
36-25
36-26
36-30
36-31
36-32
36-32
36-32
36-32
36-33
36-34
36-34
36-36
36-38
36-39
36-39
36-143
36414
36-L6
36-48
36-49

37-1
38-1

39-1
39-1
39-1
39-2
39-2
39-3
39-4
39-4
39-14
39-10
39-10
39-12
39-12
39-12
39-16
39-19
39-19
39-20
39-21
39-21
39-22

39

40.

40.

4o

4o.

b1,

42,
L3,

43.

by,

by,

by,
by,

.5 The use of CHAIN with SORT

39.5.1 How to Set up a chain file for SORT
39.5.2 Naming a repetitive SORT procedure
39.5.3 Using CHAIN to cause a merge

.6 SORT Execution-Time Messages

SUR COMMAND

4o.
40.
40.
40.
40.
4o.
4o

w
.
LWWWWW B PPN NN

40.
4o.
40.
40.
40.

.
U= =0 1O Ul =W N —

0]

1 Purpose
.2 About Subdirectories

Creation of Subdirectories

Deletion of Subdirectories

Being "in a Subdirectory"

Scope of a File Name

About Subdirectory SYSTEM

Files vs. the User Being "in a Subdirectory"
Getting a File into a Subdirectory

Establishing a "Current Subdirectory"
Creating a Subdirectory

Deleting a Subdirectory

Renaming a Subdirectory

Displaying Subdirectories

UBOOT COMMAND

UTILITY/SYS

SYSTEM DESCRIPTION

SYSTEM

.
.

by,

1

.1 System Philosophy
2 System Structure

STRUCTURE
Structure
Introduction
Disk Space Management: CAT and Lockout CAT
Files: HDI, Directory Mapping Bytes, Directory,
Sector Identification :
Addressing Byte Structures
.5.1 PDA - Physical Disk Address
.5.2 RIB Address/Protection

5.3 Segment Descriptor - used in RIB to define a
segment.

4 Physical File Numer - used to access directo
and HDI

.
5.

2 Disk Data Formats

.3 Memory Mapping

4 Memory Tables

44.4.1 Entry Point Tables

ix

39-26
39-26
39-27
39-27
39-28

40-1
4o-1
4o-1
40-2
4o-2
40-3
40-3
40-14
40~
40-5
40-5
40-5
40-5
40-6
40-6
40-6

41-1
42-1

43-1
43-1
43-1

-
41
-1
Bl
R4L-3
By
44-5
445
44-5

B4-6

ry
44-6
yy_7
44-8
44-9
44-9

Ly

45,

45,

45,
45
45,

45

46

46.

Uh 4,2 Logical File Table

.5 Disk Overlays
yu,

6 The Command Interpreter

INTERRUPT HANDLING
Interrupt Mechanism
Interrupt Scheduler
Active Processes
Timing Considerations
DOS Interrupt Routines
45.,5.1 SETI$

45.5.2 CLRI$

45.5.3 CS$

45.5.4 TP$

U E=wh -

.6 Programming Considerations

45.6.1 Background Code
45.6.2 Foreground Code

SYSTEM ROUTINES

.1 Parameterization

.2 Exit Conditions

.3 Error Handling

.4 Foreground Routines

46.4.1 CS$ - Change Process State

46.4.2 TP$ - Terminate Process

46.4.3 SETI$ - Initiate Foreground Process
46.4.4 CLRI$ - Terminate Foreground Process

.5 Loader Routines

46.5.1 BOOT$ - Reload the Operating System
46.5.2 RUNX$ - Load and Run a File by Number
46.5.3 LOADX$ - Load a File by Number

46.5.4 INCHL - Increment the H and L Registers
46.5.5 DECHL - Decrement the H and L Registers
46.5.6 GETNCH - Get the Next Disk Buffer Byte
46.5.7 DR$ - Read a Sector into the Disk Buffer
46.5.8 DW$ - Write a Sector from the Disk Buffer
46.5.9 DSKWAT - Wait for Disk Ready

6 File Handling Routines

46.6.1 PREP$ - Open or Create a File

46.6.2 OPEN$ - Open an Existing File

46.6.3 LOAD$ - Load a File

46.6.4 RUN$ - Load and Run a File

46.6.5 CLOSE$ - Close a File

U6.6.6 CHOP$ - Delete Space in a File

46.6.7 PROTE$ - Change the Protection on a File
46.6.8 POSIT$ - Position to a Record within a File
46.6.9 READ$ - Read a Record into the Buffer
46.6.10 WRITE$ - Write a Record from the Buffer

4h4-9
By-11
B4-12

45-1
451
1451
45-3
45-1
45-5
45-5
45-5
45-5
45-6
45-6
15-6
45-7

46-1
16-1
46~ 1
46-2
46-2
46-2
46-3
46-3
46-3
46-1
1614
461
46-5
46-5
46-5
16-6
46-6
46-7
46-8
46-8
46-9

46-10

46-10

Uo-11

46-11

4613

46-13

46-14

4614

146-15

46.

b7,

48.

46.6.11 GET$ - Get the Next Buffer Character

46.6.12 GETR$ - Get an Indexed Buffer Character
46.6.13 PUT$ - Store into the Next Buffer Position
46.6.14 PUTR$ = Store into an Indexed Buffer Position
46.6.15 BSP$ - Backspace One Physical Sector

46.6.16 BLKTFR - Transfer a Block of Memory

46.6.17 TRAP$ - Set an Error Condition Trap

46.6.18 EXIT$ - Reload the Operating System

46.6.19 ERROR$ -- Reload the Operating System

46.6.20 WAIT$ -- DOS Wait-a-While "NOP" Routine

7 Keyboard and Display Routines

46.7.1 DEBUG$ - Enter the Debugging Tool

46.7.2 KEYIN$ - Obtain a Line from the Keyboard
46.7.3 DSPLY$ - Display a Line on the Screen

DOS FUNCTION FACILITY (DOSFNC)

FUNC1 - Retrieve Directory and C.A.T. Addresses
FUNC2 - Retrieve Directory Sector or Filename
FUNC3 - Retrieve R.I.B. Information

FUNC4 - Retrieve DOS Configuration Information
FUNC5 - Request Access to System Tables

FUNC7 - Test the Disk Buffer Memory
FUNC8 - Timed Pause

FUNC9 - Non-Sharable Resource Status Request
FUNC10 - Qualify for Execution in Fixed Partition
FUNC11 RAM Screen Loader

FUNC12 - Unassigned -DOS Function

Overlay Loader (FUNC-13,14,15)

FUNC-13 Overlay Lookup By Name

FUNC-14 LOAD ABSOLUTE LIBRARY MEMBER

FUNC-15 RELOCATABLE LOADER

OWoOJOoOUuUTEFEWN —

N Y G G
Ul EWND - O

CASSETTE HANDLING ROUTINES

TPBOF$ - Position to the Beginning of a File
TPEOF$ - Position to the End of a File

TRW$ - Physically Rewind a Cassette

TBSP$ - Physically Backspace One

TWBLK$ - Write an Unformatted Block

TR$ - Read a Numeric CTOS Record

TREAD$ - TR$ and Wait for the Last Character
TW$ - Write a Numeric CTOS Record

TWRIT$ - TW$ and Wait for the Last Character

O oOoO13O0Ul&HEWwh =

.10 TFMR$ - Read the Next File Marker
.11 TFMW$ - Write a File Marker Record
.12 TTRAP$ - Set an Error Condition Trap
.13 TWAIT$ - Wait for I/0 Completion

.14 TCHK$ - Get I/0 Status

xi

46-16
46-16
ho-17
46-18
46-18
46-18
46-19
46-21
46-22
46-22
46-23
46-23
4e-26
4e-27

W7-1
4hr-2
47-5
b7
47-9
47-10

FUNC6 - Keyboard / Display Interface Routines Functioni47-11

47-14
47-15
47-16
47-18
47-19
47-20
47-21
47-23
hr-24
h7-25

48-1
48-2
48-2
48-3
48-3
48-3
48-4
48-4
48-5
48-5
48-6
48-6
48-7
48-8
48-8

49.

50.

51.

52.

53.

54,
54,

O O3 OOUl =W) —

C

-
o

.
]
.
1
o

OMMAND INTERPRETER ROUTINES

CMDINT - Return & Scan MCR$ line

DOS$ - Return & Display Sign On

NXTCMD - Return & Say "READY"

CMDAGN - Return & Give Message

GETSYM - Get Next Symbol from MCR$

GETCH -~ Get the Next Character from MCR$
GETAEN - Get Auto-Execute Physical File Number
PUTAEN - Set or Clear a File to be Auto-Executed
GETLFB - Open the User-Specified Data File
PUTCHX - Store the Character in "A"

1 PUTCH - Alternate Version of PUTCHX

2 PUTNAM - Format a Filename from Directory

3 MOVSYM - Obtain the Symbol Scanned by GETSYM

4 GETDBA - Obtain Disk Controller Buffer Address
5 SCANFS - Scan Off File Specification
6 TCWAIT - Test controller memory & wait

USER SUPPORTED INPUT/OUTPUT

E
R
D

5
1

RROR MESSAGES
OUTINE ENTRY POINTS
0S QUESTIONS AND ANSWERS

500 ROMGUIDE
System ROM Functions

4.1.1 Introduction

4.1.2 Startup Procedure

4.1.3 Saving the Machine State
4,1.4 Display Format

4.1.5 The Command Interpreter
4,1.6 Command Syntax

4,1.7 Input Command List

4,1.8 DEBUG Command Summary

Appendix A. DOS.A AND DOS.E
A.1 Planning for DOS.A/DOS.E

= e = > e

~NOUlT =W

A.
A.

1.1 DOS.A Physical Configuration

1.2 DOS.E Physical Conflguratlon
Disk Drives
Disk Media
Loading and unloading Disk Cartridges
Switches and Indicators
Care and Handling of Disk Cartridges
Care and Maintenance of the 9350 Drives

xii

49-1
49-1
49-2
49-2
49-2
49-3
49-3
49-1
49-4
49-5
49-5
49-6
49-6
49-7
49-7
49-7
49-8

50-1
51-1
52-1
53-1

51— 1
51
5l 1
541
542
54-2
54-3
54-3
5141

Ul
=
| I I I |
e o]

ﬁ>n>b>ﬁ>;;>ﬂ>ﬁ>:‘>ﬁ>:l>
UFEFWMNhMPDNON - — =

A.8 Head Crashes

A.8.1 Prevention of Head Crashes

A.8.2 Recognition of a Head Crash

A.8.3 What to Do if You Have a Head Crash
A.9 Preparing Disk Packs for Use
A.10 Disk Organization under DOS.A/DOS.E

A.10.1 Logical Drive Mapping

A.10.2 Size of a Logical Drive

A.10.3 Cluster Mapping

A.10.4 Segments under DOS.A

A.10.5 Maximum File Size

A.10.6 Cluster Allocation Table and Directory
A.117 Internal DOS Parameterization

A.11.1 Physical Disk Address Format

A.11.2 Hardware Address Structure

Appendix B. DOS.B

B.1 Planning for DOS.B

B.2 File Storage Capacity under DOS.B
B.3 Disk Drives

B.4 Disk Media

B.5 Loading and unloading Disk Packs

B.5.1 Models 9370-9373
B.5.2 Model 9374/9375
B.6 Switches and indicators
B.6.1 Models 9370-9373
B.6.1.1 Memorex Drives
B.6.1.2 "Telex" Drives
B.6.1.3 Common Features
B.6.2 Model 9374/9375
B.7 Care and Handling of Disk Packs
B.8 Care and Maintenance of the 9370 Drives
B.9 Head Crashes
B.10 Preparing Disk Packs for Use
B.1 isk Organization under DOS.B
1 Logical Drive Mapping
2 Size of a Logical Drive
3 Cluster Mapping
4 Segments under DOS.B
.5
.6
e
.1

» a ° .

Maximum File Size

Cluster Allocation Table and Directory
rnal DOS Parameterization

Physical Disk Address Format
2.2 Hardware Address Structure

t

[\)';S —_ e

0
1D
B.1
B.1
B.1
B.1
B.1
B.1
2 I
B.1
A

Appendix C. INTRODUCTION TO DOS.C

C.1 Planning for DOS.C
C.2 Performance of DOS.C

xiii

1
_, ek, OV WOV OO OYOWUI

1 D>D>:>:K>D>:;>D>:J>B>3>B>

b>h>::>3>
_]

I 11
EEFLOMNON—2 D20 00VOTI1TOUUITEEFWMNHNDNDND 2 —

lwwwwwwww?mmwwwwwww

wwmwwt,nmwww
R N NP T G Gk I Gt o T |

[eXeXe!
|
NN —m -

3 Disk Drives

4 Disk Media

5 Loading and Unloading Diskettes

6 Drive Numbering and Switches

7 Care and Handling of Diskettes

8 Preparing Diskettes for Use

9 Suggested Disk Organization Techniques
10 Disk Organization under DOS.C

C.10.1 Radius Spiraling and Sector Skewing
C.10.2 Size of a Diskette

C.10.3 Cluster Mapping

.10.4 Segments under DOS.C

.10.5 Maximum File Size

Internal DOS Parameterization
.11.1 Physical Disk Address Format

Q—-000

Appendix D. DOS.D
D.1 Planning for DO0S.D
D.2 File Storage Capacity under DOS.D
D.3 Disk Drives
D.4 Disk Media
D.5 Disk Organization under DOS.D
D.5.1 Logical Drive Mapping
D.5.2 Size of a Logical Drive
D.5.2.1 Models 9370-9373
D.5.2.2 Models 9374/9375
D.5.3 Cluster Mapping
D.5.4 Segments under DOS.D
D.5.5 Maximum File Size
D.5.6 Cluster Allocation Table and Directory
D.6 Internal DOS Parameterization
D.6.1 Physical Disk Address Format

Appendix E. COMPARSION CHART FOR DOS'S

Appendix F. DISK DATA FORMATS
F.1 Disk Data Formats
F.2 OBJECT File Format for Disk
FF.3 Relocatable Code Formats
F.3.1 Directory '
F.3.2 Program Identification
F.3.3 Object Text

F.3.3.1 Memory Location

F.3.3.2 Absolute Text

F.3.3.3 Complex Relocatable References

F.3.3.4 Simple Relocatable References
F.3.4 External Definitions

xiv

.10.6 Cluster Allocation Table and Directory

[
WWN = 2 OO0 0O UTUuTwww

I o000
!

[CEPEPEPEPEPN®!
|
B e T T W N |

| I T T N R B | | JUN R N R B B |
OOOWUTUTELEZEWLWPDMNDMNOND —m —

vAviviviviviviviviviviviwlvlwlw)
1

[I R R I |
—

|
OO OVl IZW = —a—

e e e R I R M B R W =
1

T}
— 1

F.3.5 External and Forward References (4096 maximum)

F.3.6 Transfer Address

F.4 Format of Library Files

F.4.1 Directory

F.4.2 Members

F.4.3 Library Type Chart
F.5 DATABUS Code File Format
F.6 DATAFORM Data File Format
F.7 MULTIFORM File Format
F.8 TEXT File Format
F.9 ISI File Format
F.10 SORT TAG File Format

XV

*11'1:1*11"1']"!1?'1]’11"11"11'1]"1
N S S o G T YUPSEE S WY
OOV EEEWNHON - -

CHAPTER 1. INTRODUCTION

Datapoint Corporation's Disk Operating System (DOS) is a
comprehensive system of facilities for sophisticated data
management.

DOS provides the operator with a powerful set of system
commands by which the operator can control data movement and
processing from the system console. These commands allow the
system operator to accomplish things which could be substantially
more difficult on other computing systems. Sorting a large file,
for instance, can generally be accomplished in one single command
line. In spite of the simplicity of operation, a wide range of
features is provided.

To the programmer, DOS offers a set of facilities to simplify
and generalize his task and file management problems. Concepts
like dynamic disk space allocation allow programs to efficiently
operate without regard to the amount of space required for the
data files they are using. In addition, the disk file structure
used by DOS allows for direct random access to data files. DOS
also makes use of fully space-compressed text files.

These features, combined with the ability to support up to
200 million bytes of high-speed random access disk storage,
provide a full range of data processing capabilities.

1.1 Hardware Support Required

The minimal configuration required to run DOS is a Datapoint
1100, 2200, or 5500 computer, with a minimum 16K of memory, and
one (9350, 9370, or 9380 series) disk storage unit. For backup
and support purposes, users with the Diskette 1100 computer are
required to have at least one system with more than one diskette
drive. Configurations based on the other processors can operate
with only a single disk drive unit in conjunction with the
integral tape cassettes, but for backup and system support
purposes a two-drive system is a recommended minimum.

The two 5500-only DOS, DOS.D and DOS.E, support a minimum of
two physical disk drives.

Users running single physical drive 9350, 9370, and 9380
configurations are supported under DOS.A, DOS.B, and DOS.C

CHAPTER 1. INTRODUCTION 1-1

respectively.

1.2 Software Configurations Available

DOS is provided in several different versions. Different
versions are used depending upon the type of disk in use at an
installation. Specific versions are indicated by a letter after a
period in the name of DOS. As an example, the following versions
of DOS are currently defined:

DOS.A -- Supports 9350 series disk drives on Datap01nt 2200
and 5500 series computers.

DOS.B -- Supports 9370 series disk drives on Datapoint 2200
and 5500 series computers.

DOS.C -~ Supports 9380 series disk drives on Datapoint 1100,
2200 and 5500 series computers.

DOS.D =-- Supports 9370 series disk drives (with 16 buffer
disk controller) on 48K Datapoint 5500 series computers.

DOS.E -- Supports 9350 series disk drives (with 16 buffer
disk controller) on 48K Datapoint 5500 series computers.

1.3 Program Compatibility

This manual describes the compatible set of facilities
available to the DOS user within the Disk Operating System.
Programs written in any of the supported higher level languages
(DATASHARE, RPG II, BASIC, etc.) will generally run unmodified on
any of the D0OS. Most programs written in assembler language will
also run under any of the dot-series DOS, without reassembly.

Basically, in only a few cases will a program need to be
changed when it ‘is transferred from one DOS to another. The need
for program modification will usually stem from one or more of the
following types of situations, which should be avoided whenever
possible:

1) Programs which make assumptions regarding the size of
files. For example, programs originally written for the 9350
series disks might assume that the size of the biggest possible
file could be expressed as four ASCII digits. Under DOS.D, this
assumption is invalid since files under DOS.D may be over 38 OOO
data sectors long.

1-2 DISK OPERATING SYSTEM

2) Programs which make assumptions regarding the physical
structuring of the data on the disks. For example, each DOS
allocates space on the disk in segments of different sizes, and
places its system tables in different locations on the disk.

3) Programs which generate or modify physical disk addresses
themselves. Since the disks are each organized somewhat
differently to take advantage of the particular characteristics of
the specific type of drives involved, the physical disk address
formats naturally vary among different DOS.

4) Programs which rely upon other characteristics of a DOS
which are not documented in this manual. A possible situation
would be where a programmer might look at the values in the
registers following the return from a system routine and
determine, for instance, that some routine always seemed to return
with the value "1" in one of the registers. If he then constructs
his program in such a manner that it will not function correctly
if the "1" is not present upon return from the routine, then he is
likely to find that his program may not work properly on a
different DOS.

A1l of the above situations, except for the first, will
usually only occur in assembler language programs operating at the
very lowest levels. Programmers who require this level of
detailed knowledge about the DOS will find the information
specific to each DOS, in the Appendix for the DOS they are using.

CHAPTER 1. INTRODUCTION 1-3

CHAPTER 2. OPERATOR COMMANDS

A1l Datapoint computers include, as a standard feature, an
integral CRT display through which the internal computer
communicate with the operator. The system console also includes a
typewriter-style keyboard which the operator uses to communicate
with the computer. The DOS is normally controlled by commands
entered at this system console.

When DOS first becomes ready for commands, it displays a
signon message on the CRT and says "READY". ©Upon completion of
any job the DOS generally again displays "READY". Whenever the
ready message 1s shown, the operator may key in a command, which
will be displayed on the bottom line of the CRT as it is keyed in.
While typing a command, the BACKSPACE key will erase one character
for correction, and the CANCEL key will erase the entire line.

A command line specifies first what job is to be performed,
then any disk files or special system directives, then options for
the job. The command programs provided with DOS are described in
this manual; the information that must be entered for each command
is specified in the chapter about that command. A command line is
always terminated with the ENTER key.

In general, a command line is entered as:
<field>,<field>,<field>,<field>;[options]

Each <field> indicates a DOS file name specification (see the Disk
Files chapter) or possibly a special field such as a subdirectory
name. The first <field> on the line always specifies the program
that will be run. Special attention must be given to the
separators between fields on the command line. The most common
separators are space and comma. For readability the first two
fields are usually separated by a space and subsequent fields are
separated by a comma. A command then usually looks like:

SORT ACCTFILE,SRTFILE, :DR3;2-11

In this example the first field, the program to be executed, 1is
"SORT". The second field is "ACCTFILE", the third is "SRTFILE",
and the fourth is ":DR3". All of these fields provide information
to the SORT program. A semi-colon (;) is a special separator
which always separates <field> entries from [options]. 1In the
above example the options field is "2-11". Slash (/) and colon

CHAPTER 2. OPERATOR COMMANDS 2-1

(:) are special separators used within a file name.

Aside from the separators noted above, most special
characters (#,=,7,$,@,etc.) act as separators just like space or
comma. In general, any character that is not a syntactically
valid part of a file name will be interpreted as a field
separator. The command example above could have been entered as:

SORT@ACCTFILE=SRTFILE$:DR3;2-11

The use of special characters is not recommended since the
resulting command line is very confusing for human interpretation.

As already noted, the first field on the command line
specifies the program to be executed. For any command this first
field must be given, any other fields may or may not be needed for
a particular command. The command program must be a loadable
object file, loading above 01400, or the program load will fail
and the DOS will simply return to "READY" condition. If the
program specified to be run cannot be found, the DOS displays the
message "WHAT?" and waits for another command. If desired, the
program name specification can be preceded by an asterisk (¥) or a
colon (:), indicating the command is to be located in UTILITY/SYS
in preference to a separate command file (See Command Interpreter
section).

Fields on the command line are often order dependent. If a
command is being used which accepts several fields, one of which
is not wanted, skip that field by entering two separators with
nothing between them.

SORT ACCTFILE,,:DR3;2-11

By using two ¢ommas, ":DR3" is recognized as the fourth field on
the line, with the third field being null.

When the command line is discussed in this manual, the first
field is called the "command"; subsequent fields before the
semi-colon are called "<filespec>" or some similiar term;
characters following the semi-colon are called "options" or
"parameters", ‘

2-2 DISK OPERATING SYSTEM

CHAPTER 3. EQUIPMENT CARE

Computers, disk drives, printers, and other data processing
equipment are delicate devices. They must be operated correctly
and given a degree of care to continue to perform correctly.
Datapoint prints "A Guide for Operating Datapoint Equipment",
model code #60252, which gives detailed instructions on the
operation of Datapoint equipment. It 1s recommended that any
installation without trained computer operators obtain this
manual.

3.1 Environment

Datapoint systems must be installed in an area with adequate
air conditioning. Datapoint processors can stand a fairly wide
range of temperatures, but disk drives should have a temperature
range of 60 to 80 degrees F. (15.5 to 26.7 degrees C.). The
temperature tolerance varies with the type of drive in use
(diskette drives can stand a much wider temperature range) but the
60-80 degree range is safest. Humidity must be kept low enough to
avoid condensation (below 80%) but high enough to avoid excessive
static electricity problems.

The machine area must be reasonably clean and dust-free.
Fanatic cleanliness is not necessary, but dust, cigarette ashes,
spilled liquids, and so forth can seriously affect machine
operation.

Processors and peripherals require fairly "clean" power to
avoid erratic operation. Machine room power should be supplied
from a completely separate transformer if possible. Be sure
devices such as adding machines and power tools are not connected
to the same power leads as computer equipment. The electric
motors in these devices cause severe power line noise and will
seriously affect machine operation. If necessary, isolation
transformers are available to supply clean power for Datapoint
equipment.

CHAPTER 3. EQUIPMENT CARE 3-1

3.2 Processor

The only user maintenance on the processor is to dust and
clean the cabinet, CRT screen, and keyboard occassionally and to
clean the cassette decks. The cassette decks are especially
sensitive to grime: dirty decks can cause read/write errors and
can even destroy tapes. The decks are cleaned in the same way
audio cassette decks are cleaned. Use tape head cleaner and a
cotton swab to clean the tape heads and capstans; use a dry,
lint-free cloth or swab to clean the pinch rollers. The cassette
decks should be cleaned as necessary depending on use; normally
every two or three months, as often as weekly if the decks get
very heavy use.

Be sure the ventilation slots on the top and rear of the
processor are never blocked, as impeded air flow will cause
overheating.

3.3 Disks and Disk Drives

Be sure all operators know how to insert and remove disks in
the disk drives. Disks must be stored properly in an environment
similar to that for the equipment. Consult the appendices of this
manual, or the Guide for Operating Datapoint Equipment, or the
Datapoint Product Specifications (green sheets) for details on
disk handling.

The disk drives must not be subjected to bumps or jolts or
head misalignment can occur. Physical location of the drives must
allow adequate air circulation for cooling purposes.

3.4 Other Peripherals

All peripherals should be dusted occasionally in keeping with
the necessary environment cleanliness. Aside from printers, most
Datapoint peripherals require practically no user maintenance.

For any necessary care, consult the Guide for Operating Datapoint
Equipment, the green sheets, or your Datapoint service
representative.

3-2 DISK OPERATING SYSTEM

Printer ribbons must be changed periodically to maintain
print quality. Cloth ribbons left in use for too long can
disintegrate, requiring a very messy clean-up of inky lint when
the ribbon is finally changed, so check the ribbon occasionally.
To avoid paper jams on printers, be sure the paper is aligned
correctly when loaded, and be sure the paper has a free path into
the printer and as it emerges to the paper tray.

CHAPTER 3. EQUIPMENT CARE 3-3

CHAPTER 4. DISK FILES

On all DOS-supported disks, information is stored in sectors,
each of which contains 256 bytes of information. Sectors
containing related information are organized in a single
structured group called a file. All information on a disk will
generally be organized in files, except for certain system tables.

4.1 File Names

From the console, files are identified by a NAME, EXTENSION,
and LOGICAL DRIVE NUMBER. The NAME consists of up to eight
alphanumeric characters (no special characters). Typical file
names would include:

EDIT PAYROLL
EMPLOYEE JUL1075
23N0OV76 X1

The EXTENSION must start with a letter and may be followed by up
to two alphanumeric characters. If an extension is used in a file
name, it is separated from the NAME by a slash (/). The extension
further identifies the file and usually indicates the type of
information contained in the file. A "TXT" extension means text
and usually implies data or program source code. "ABS" implies
program object code (absolute code) loadable by the system loader.
"CMD" implies an object code file to be used as a command program
from the system console. Other common extensions are: REL, ISI,
bBC, OVn, SYS, PRT, BAS, and LEX.

The LOGICAL DRIVE NUMBER specifies on which logical drive the
file is (or will be) located. The drive specification is
identified by a leading colon (:) and has the form ":DRn" or ":Dn"
or ":<volid>". When the ":DRn" or ":Dn" forms are used, the "n"
is a number indicating the logical drive number as assigned at
system installation. The ":<volid>" form allows logical volume
identification, regardless of the physical drive on which the disk
is located. "<volid>" is an eight character identifier placed on
a disk by the PUTVOLID program.

The complete form of a file name is thus

NAME/EXTENSION:DRIVE

CHAPTER 4. DISK FILES 41

When a file name is entered as part of a command, all three parts
of the name are not usually needed, though they can be specified.
The presence or absence of a part of the file name is determined

by the special separators "/" and ":". Syntactically correct file
name entries are:

NAME/ABS:DRO /ABS:DR1

NAME/REL /TXT
NAME:DO :D2
NAME NAME:DOSD1

If a portion of the file name is not used, DOS applies default
values; the default value used depends on the location of the name
on the command line, and on the command in use.

The first field on any command line is the command program to
be run. For this field, a NAME must be given, the default
extension is CMD, and the default drive is any drive. (An "any
drive" default usually means a search of all drives, starting with
drive 0). If the command name is preceeded by an asterisk (*) or
a colon (:), the default extension and all-drive search do not
apply, as the leading character indicates the given name is to be
located as a member of UTILITY/SYS (an "absolute library"), rather
than searched for as a file.

The default values for file names given as parameters to a
command are described separately for each command.

4.2 File Creation

Files are always created implicitly. That is, the operator
never specifically instructs the system to create a given file.
Any command that writes to an output file will write into an
existing file or will automatically create a new file if
necessary.

A file to be created will be created on the drive specified
in its file name field or specified in default values applied to
its name. When a file is being created on a specific drive, files
with the same name and extension on other drives are unaffected.
If no drive is specified in the name or by default, the file is
created on any drive which has free space, the search for
available space starting on drive 0. "Available space" means one
free space in the drive's directory, in which to place the name of
the new file, and at least one cluster of free space on the disk,
in which to place the data the file will contain. (A "cluster" is
the smallest unit of disk space that can be assigned to a file;

h-2 DISK OPERATING SYSTEM

clusters are defined in the chapter on System Structure).

4.3 File Deletion

Deletion of a file is performed explicitly by operator
command, using the KILL command described later. No other
programs delete an existing file, although procedures such as

system generation and backup naturally destroy all files on the
output disk.

4.4 File Protection

DOS files can be given three types of protection: write
protection, delete protection, and no protection. If a file is
write protected, it can be neither written upon nor deleted. If a
file is delete protected it cannot be deleted, although it can be
written over, effectively destroying any data previously in it.

If a file has no protection it can of course be modified in any

manner. The CHANGE command is used to set the protection of a
file.

CHAPTER 4. DISK FILES 4-3

CHAPTER 5. SYSTEM GENERATION

Before a disk can be used with DOS it must first be prepared
by writing onto it basic system tables. Also, a surface
verification must be performed so any bad areas of the disk
surface will not be used. On a new installation, the system
utility programs must be placed onto the disk for use. All these
operations constitute system generation.

5.1 Initial Generation

Datapoint distributes DOS in two forms: as a set of cassette
tapes or as a completely generated disk. Users who receive the
complete disks need not perform the cassette generation described
below, as it has already been performed on their disk. Anyone
requiring additional working disks should generate them as
outlined in Scratch Disk Preparation.

5.1.1 Formatting

Before a disk can be written or read on any drive, it must be
appropriately formatted. Cartridge disks for use on Datapoint
drives (9350 series) require no formatting because they use
hardware formatting -- the sector formatting is inherent to the
disk. Datapoint diskettes (9380 series) are formatted when
received and do not require a special formatting process before
they can be used. The mass storage disks (9370 series) require a
special formatting process before they can be used.

The first tape of the DOS generation cassettes for mass
storage operating systems (DOS.B and D0S.D) is a formatting
program. Simply insert the cassette in the rear cassette deck and
depress RESTART (on a 5500 processor, RUN must be depressed
simultaneously). The tape will rewind and then load the
formatting program INIT9370. This program will ask for a specific
physical (not logical) drive number containing the disk to be
formatted. After receiving a reply, the program will ask if the
operator is certain the drive number is correct and the disk in it
is scratch, since formatting destroys any information previously
on the disk. Formatting will then proceed. When finished the
program will display a message indicating the pack is completely
formatted.

CHAPTER 5. SYSTEM GENERATION 5-1

For additional information on the formattlng program, see the
chapter on INIT9370.

5.1.2 Cassette System Generation

The first tape of the DOS generation cassettes (second tape,
for DOS.B and DO0S.D) is the actual generation cassette. To use
this cassette load it into the rear cassette deck and depress
RESTART (on 5500 processors, RUN must be depressed
simultaneously). The tape will rewind and then load the DOS
generation program. Loading takes about a minute. When the
program has loaded it will display a sign-on message and ask what
logical drive is to be generated. The drive specified must be
on-line with a ready disk in it.

Following drive selection the program will ask if a full
generation is desired. To get a full DOS generation, answer Y;
for a partial gen (useful only for upgrades from an older version
DOS) answer N. Partial generation is described below. Following
selection of full generation, the program will ask to be sure the
disk in the selected drive is scratch, containing no valuable
files that would be destroyed by generation.

After the verification question, the program performs a
surface test on the cylinders used by DOS for its system tables
and operating files. If this test fails, the disk is considered
unusable and error messages will so indicate. After a short pause
for the above test, the program will ask if any cylinders are to
be locked out. The normal answer to this question is N, since
locked-out cylinders cannot be used by DOS. If it is desired to
lock out any cylinders for special use, consult the DOSGEN chapter
for a description of cylinder lockout.

The next step in system generation is a quick surface
verification of the entire disk. The program clicks once for each
cylinder tested and passed. 1If an error is encountered, the
program displays the cylinder number in which the error occurred,
beeps, and flags the cylinder in the Lockout CAT so the DOS will
not use it.

Following surface verification the basic system tables are
built on disk and the system programs are loaded from the tape.
Programs loaded are SYSTEMO/SYS - SYSTEM7/SYS, CAT/CMD, MIN/CMD,
and UBOOQOT/CMD.

NOTE: For initial generation of mass storage disks, be sure
to repeat the above procedure twice, once for each logical drive

5-2 DISK OPERATING SYSTEM

on the disk.

After loading the system programs, system generation is
complete except for loading utilites, and the new DOS is brought
up ready for commands. As soon as the system is ready (easy to
tell since the message on the CRT is "READY") enter the command
UBOOT to produce a boot tape for the DOS. UBOOT will ask for a
blank tape in the front cassette deck and will then write and
verify a boot block on that tape. It is wise to make at least two
boot tapes at this time, since the boot tape is the only way to
start up DOS. Any time it is necessary to start DOS (after the
processor has been turned off, after loading a different set of
disks, etec.) simply place the boot tape in the rear deck and
depress RESTART (and RUN on 5500's) to boot the operating system.

To completely finish system generation, the system programs
and utilities must be loaded. These files are contained on the
second and third tapes of the system generation cassettes (third
and fourth tapes for DOS.B and D0S.D). To load the commands
simply place each cassette in turn into the front cassette deck
and enter the command

MIN;AO:Dn

where n is the drive number being generated. When the files on
these two tapes have been copied to disk, generation is finished.

The generation cassettes for DOS.C include a fourth tape of
system commands, containing all the programs in UTILITY/SYS (see
the appropriate chapter in this manual) as separate files. These
files are provided as a convenience so that only desired programs
can be placed on a system diskette, leaving free space on the
diskette for other use.

5.2 Partial Generation

The DOS generation tape program has an option to perform a
partial generation for purposes of upgrading an older version of
DOS to the present version. To use partial generation load the
gen tape and specify the drive to be generated. When the program
asks if a full generation is desired answer N. The program will
ask a couple of verification questions to be sure it should just
replace the system and command files, and will then do so.

During partial generation, new system tables are built on the

disk being upgraded and the eight system files SYSTEMO/SYS through
SYSTEM7/SYS are replaced by new files from the tape. The old

CHAPTER 5. SYSTEM GENERATION 5-3

utility programs must be deleted and new programs loaded from tape
before partial generation is complete.

When performing a partial generation on a DOS. 1.1, 2.1, or
2.2 disk, it will be necessary to replace the old MIN/CMD with the
new command from the generation tape before the utilities tapes
can be loaded. (The old MIN cannot recognize the file format of
UTILITY/SYS.) To replace MIN, load the generation cassette in the
front deck and run MIN (the old command already on disk). MIN
will identify the tape as "CTOS SYSTEM TAPE FORMAT" and will scan
the tape to find the CTOS catalog. When the catalog is located,
the files on the tape will be displayed and MIN will ask

LOAD B?

Skip the file named B by answering "N", skip CAT in the same
manner, then answer "Y" to load MIN. The program will ask for a
DOS file name; the name given should be "MIN/CMD". MIN will ask
to be sure the existing command should be overwritten, answer "Y"
to the OVERWRITE? question. Once MIN/CMD has been loaded, enter
an asterisk to end the program when it asks if file number 20
should be loaded.

After MIN/CMD has been replaced, use the new MIN to load the
utility tapes in the normal manner.

Following a partial generation, it is a good idea to BACKUP
the upgraded disk with reorganization. The reorganization removes
any fragmentation in system files and allows an operator to easily
delete undesired old files. Until the old command files have been
deleted, be sure to enter a leading * on each command so as to use
the new utilities from UTILITY/SYS.

Partial generation is not valid between some versions of DOS
(notably Version 1 DOS.B and any newer version). Check with your

Datapoint System Engineer before attempting an upgrade by partial
generation.

5.3 UPGRADE/X

A disk-based upgrade facility is available in a file called
UPGRADE/X, X being the letter specification of the DOS in use.
UPGRADE is a standard text file to be used as a chain procedure by
the command

CHAIN UPGRADE/X;O0UTPUT=:Dn

5-4 ‘DISK OPERATING SYSTEM

where n is the drive number containing the disk to be upgraded.

The UPGRADE procedure copies the eight system files from the
new version disk (which should be in drive zero) to the specified
drive. SYSTEMT7/SYS is copied by use of MOUT and MIN to preserve
the subdirectory structure on the old disk. The other files are
copied by the COPY utility. After the system files are copied,
0ld utilities on the output disk are deleted and new utilities are
copied from the input disk. The program PUTIPL is then run to
place the necessary IPL blocks on the output disk.

Since UPGRADE is a text file, it can be edited to modify the
chain procedure followed, to adjust to special needs. Any
modifications performed should be very carefully considered to
assure a good upgrade. System conversions are a complex process
and any errors can result in an unusable disk or lost data.

As with partial generation from cassette, use of UPGRADE is
not valid for all possible versions of DOS. Check with your
Datapoint System Engineer before using UPGRADE for a disk
conversion.

5.4 Scratch Disk Generation

Any disk to be used in a DOS system must be generated to
contain the necessary system tables and basic system files.
Scratch disks or new system disks are best produced by use of the
DOSGEN program described later in this manual. DOSGEN is a
totally disk based program and performs much more quickly than
cassette generation. If necessary or desired, the DOS generation
cassette can be used to produce a new disk, as described above in
Initial Generation.

5.5 Generation Cassettes and Emergencies

If all boot tapes at an installation are lost or destroyed,
there is suddenly no way to access perfectly good disks. New boot
tapes can be made by loading the DOS generation cassette in the
rear deck and pressing RESTART, then holding down the KEYBOARD key
while the tape loads. After about 30 seconds a READY message will
appear on the screen from the CTOS (Cassette Tape Operating
System), which has just been loaded. Enter the command "RUN B"
and CTOS will load and run the program called "B", which is UBOOT,
producing a new boot tape for the DOS.

CHAPTER 5. SYSTEM GENERATION 5-5

The generation tapes also provide an excellent backup copy of
all system utilities and of the system files themselves. The
system files are on the DOS generation tape as files #21 through
#30 (SYSTEMO/SYS through SYSTEM7/SYS respectively). The
availability of such backups can be invaluable in event of massive
data loss on system disks.

5-6 DISK OPERATING SYSTEM

CHAPTER 6. GENERAL COMMAND CHARACTERISTICS

- Some features of the commands supplied with the DOS apply to
most DOS commands. These characteristics and messages are
discussed briefly in this chapter.

6.1 General Command Format

As mentioned in a previous chapter, DOS commands are entered
as a command line. The general format of the command line is:

command [<file spec>][,<file spec>][,<file spec>]...[;options]

The item referred to as "command" is always required on a
command line. This defines the command being issued to the
systemn.

The items referred to as "<file spec>" represent one or more
specifications for files. These files generally are input,
output, scratch, or other files to be used by the command program.
Usually the first such specification represents input file(s), and
the following specifications represent output or scratch file(s).

A square bracket convention is used here, as well as
elsewhere throughout most Datapoint documentation, to indicate
fields whose presence is optional. The corner bracket convention
(as in <file spec>) represents replacement fields where the
replacement field name is contained within the corner brackets.
After the replacement is made, the corner brackets themselves do
not appear in the resulting line.

The field indicated by "options", separated from the file
specification fields by a semicolon, generally contains one or
more option letters, which are defined for each specific command.

6.2 Signon Messages

Upon entering a system command, the command program being
invoked will generally display a message identifying itself. If
the command is specific to one single DOS, the signon message will
also identify which DOS the command is designed to execute under.
The main purpose of the signon message is to allow the operator to
determine, in the event of some difficulty, whether a superceded

CHAPTER 6. GENERAL COMMAND CHARACTERISTICS 6-1

version of the command is in use.

6.3 Common Error Messages

Several error messages are common to many of the DOS
commands. These error messages, and their meanings, include the
following.

WRONG DOS. This message indicates that the version of the
command program being run was intended to run on a specific
version of the DOS, and that version is not the same as the DOS
that is running. This message generally occurs either as a result
of accidentally copying a command from one DOS to a different one,
or attempting to use an obsolete version of a command under a
newer DOS (usually caused by an incomplete upgrade).

INVALID DRIVE. This message appears when one of the drive
specifications given by the operator is invalid. Either the drive
specification was not of the correct format, or the drive number
specified exceeds the range available under the resident DOS.

NAME IN USE. This message occurs when the command's
continued execution would necessarily result in a conflict of file
name with an already existing file.

NAME REQUIRED. This message generally occurs when one of the
file names required on the command line was not specified by the
operator.

NO SUCH NAME. This message indicates that a file specified
on the command line could not be found. Generally the name as
specified is simply misspelled or otherwise incorrectly entered.
However, sometimes this message will occur because the file
desired is not in the current subdirectory (described later).

NO! THAT FILE IS PROTECTED. This message indicates that a
request was made to modify a file that was write or delete
protected.

WHAT? This message means that the command name (the first
item on the command line being processed) is illegal. This
usually indicates that either it is not a valid command, or that
the command specified is not in the current subdirectory.

6-2 DISK OPERATING SYSTEM

CHAPTER 7. APP COMMAND

7.1 Purpose

The APP command appends two object files together creating a
third. Object files are files containing absolute object code in
a format that can be loaded by the DOS loader.

7.2 Use
APP <file spec>,[<file spec>],<file spec>

The APP command appends the second object file after the
first and puts the result into the third file. Note that neither
of the input files are disturbed. If extensions are not supplied,
ABS is assumed. The first two files (if a second is specified)
must exist. If the third file does not already exist, it will be
created. The first file's transfer address is discarded and the
new file is terminated by the transfer address of the second file.
The transfer address of an object file is defined as the entry
point of the program contained in the file.

Omitting the second file specification causes the first file
to be copied into the third file. For example:

APP DOG,,CAT
will copy the file DOG/ABS into the file CAT/ABS.

The first and third file specifications are required. If
either is omitted the message

NAME REQUIRED

will be displayed. The second and third file specifications must
not be the same.

Because the APP command recognizes the actual end of the
object module contained in a file, APPing an object file, similiar
to the example above, is one technique for releasing excessive
unused space at the end of an object file.

CHAPTER 7. APP COMMAND T7-1

CHAPTER 8. AUTO COMMAND

AUTO - Set Auto Execution
AUTO <file spec>

The AUTO command establishes the indicated program to be
automatically executed upon the loading of DOS. (Specifically,
upon execution starting at the DOS$ entry point.) If no extension
is supplied, ABS is assumed. If there is already a file set for
auto execution, the message

AUTO WAS SET TO NAME/EXTENSION (PFN).

will be displayed (where PFN is the physical file number).
Regardless, the name specified will be recorded in the DOS table
location reserved for the auto-execution information. A check is
made to see if the file is an object file and if the file is on
drive zero. If the specified file does not exist, the message

NO SUCH NAME
will be displayed. Note that if a program has been set to
auto-execute, its execution can be inhibited by depression of the
KEYBOARD key when DOS is loaded.

If no file spec is given in the commmand line, then the
setting of the file to be auto-executed is not changed. However,
if a file spec was present, then the message:

AUTO NOW SET TO NAME/EXTENSION (PFN).

will be displayed after the new auto-execution setting has been
made.

If no <file spec> is entered and AUTO is not set, the message
NAME REQUIRED
will be displayed.
Note that the AUTO command does not make provision for file
specifications to be given to the program which is to be

automatically executed. This makes it impossible to use AUTO for
programs requiring or accepting such parameters. AUTO also does

CHAPTER 8. AUTO COMMAND 8-1

not place anything in MCR$ (defined later). Therefore, programs
which use overlays with the same name (but different extension) as
the program will not run. For more information, refer to the
chapter describing the AUTOKEY command.

Auto-execution mode is cleared with the MANUAL command,
described in a later chapter.

Programs contained in absolute libraries (UTILITY/SYS for
example) cannot be "AUTO'd" directly. Use the AUTOKEY command
described below, then "AUTO AUTOKEY/CMD".

8-2 DISK OPERATING SYSTEM

CHAPTER 9. AUTOKEY COMMAND

9.1 Introduction to AUTOKEY

Many users allow their Datapoint computers to run in an
unattended mode. This allows large data processing tasks, perhaps
running via the DOS command chaining facility (see CHAIN), to be
run during the evening hours when no operator is present. (An
example might be the creation of several new index files for one
or more large, ISAM-accessed data bases). However, the momentary
power failures which data processing users are being forced to
contend with during times of shortage, thunderstorms and the like
can bring down any computer not having special, uninterruptible
power supplies. When this happens to a computer running in
unattended mode, the office staff will generally return the next
morning to find their computer sitting idle and its work
unfinished.

The Datapoint computers are all equipped with an
automatic-restart facility which can be used to cause them to
automatically resume their processing tasks following such an
interruption. The purpose of the AUTOKEY (and AUTO) commands 1is
to provide a software mechanism for users who wish to handle such
unusual circumstances and provide for the restarting of a :
processing task.

9.2 The Hardware Auto-Restart Facility

There are two small tabs on the back edge (directly opposite
from where the tape is visible) of each cassette tape. The
leftmost of these (as you look at the top side of the cassette) is
the write protect tab, which prevents writing on the topmost side
of the tape. The right-hand tab is the auto-restart tab.

Users who frequently use both sides of cassettes will
probably immediately notice that if one turns over the tape, the
assignments of these two tabs switch around, the tab which had
been write protect now being auto restart and vice versa. This in
fact is precisely what happens.

If the auto-restart tab on the rear cassette is punched out
(or slid to the side), then the computer will automatically

CHAPTER 9. AUTOKEY COMMAND 9-1

re-boot, Jjust like it does when RESTART is depressed, whenever the
processor goes to STOP. Assuming that the rear cassette drive
contains a DOS boot tape, this will cause DOS to come up and give
its familiar message, "READY".

Diskette 1100 and 1150 users are provided with
switch-selectable auto restart. The computer will either halt or
automatically restart upon being stopped, depending upon the
setting of an internal switch. This switch can be set by a
Datapoint representative (System Engineer or Customer Engineer)
upon request.

9.3 Automatic Program Execution Using AUTO

In order to provide a mechanism for programs to resume
automatically following an interruption (such as a DATASHARE
system, for instance, which might be running unattended) DOS has a
comparable facility to enable a program to be automatically
executed whenever DOS comes up. (Note that any loading and
running the DOS, whether by an auto-restart, pressing the RESTART
key, or under program control, will activate this facility).

The AUTO command is used to establish a program to receive
control when DOS comes up. This setting can be cleared with the
MANUAL command. For some applications, the AUTO and MANUAL
commands are adequate to allow a programmed restart of a lengthy
data processing task. However, some programs require parameters
be specified on the command line, and these are obviously not
present if no command line has been provided.

9.4 Auto-Restart Facilities Using AUTOKEY

AUTOKEY is simply a command program which can be AUTO'd. The
way in which it works is very simple. If it is run via the DOS
auto-restart facility, AUTOKEY supplies a command line just as if
the same one line were entered at the system console. If AUTOKEY
is run from the system console (or likewise from an active CHAIN),
it simply displays the command line it is currently configured to
supply and offers the user the option of changing that stored
command 1line.

The command line supplied to AUTOKEY could do anything
specifiable in one command line to the DOS; DATASHARE could be
brought up, a SORT invoked, a user's own special restart program
started or even a CHAIN begun. AUTOKEY, when used with AUTO,
MANUAL, and CHAIN can therefore provide a very powerful facility.

9-2 DISK OPERATING SYSTEM

9.5 A Simple Example

To specify a command line to be used during automatic system
restart, simply enter:

AUTOKEY

at the system console. AUTOKEY will display a signon message and
display the current autokey 1line if there is one. It then asks if
this line is to be changed. If "N" is answered, AUTOKEY simply
returns to the DOS and the DOS "READY" message is displayed. If
"Y" is answered, AUTOKEY requests the new command line to be
configured and then returns to the DOS and "READY".

Alternatively, if the user wishes to simply specify a new
command line to be configured regardless of the current setting of
the AUTOKEY command line, he can merely place the new command line
after the "AUTOKEY" that invokes the AUTOKEY command.

As a simple example, assume that XYZ Company has several of
their sales offices on-line to their home office DATASHARE system,
which is running completely unattended. Lightning strikes a
powerline outside of XYZ Company's home office, and power is cut
off for 15 seconds. As soon as power is restored, their Datapoint
5500 computer re-boots its DOS (since the right-hand tab on the
boot tape has been punched out) and warmstarts the DATASHARE
system. One command sequence to accomplish this would look like
the following:

AUTOKEY

DOS.nn AUTOKEY COMMAND
NO AUTOKEY LINE CONFIGURED.

CHANGE THE AUTOKEY LINE? Y

ENTER NEW AUTOKEY LINE:

DS3

READY

AUTO AUTOKEY/CMD

AUTO NOW SET TO AUTOKEY/CMD (nnn)
READY

An alternate form of the above would be the following:

AUTOKEY DS3

DOS.nn AUTOKEY COMMAND

NO AUTOKEY LINE CONFIGURED.

ENTER NEW AUTOKEY LINE:

DS3 <--- (this is supplied automatically)
READY

CHAPTER 9. AUTOKEY COMMAND 9-3

AUTO AUTOKEY/CMD
AUTO NOW SET TO AUTOKEY/CMD (nnn)
READY

Once a program has been set for auto-execution, the only way
one can bypass it is to hold down the KEYBOARD key while the DOS
is coming up. This action bypasses the auto-executed program and
enters the normal command interpreter. The user then can use the
MANUAL command to clear the auto-execution option.

9.6 A More Complicated Example

The following example uses many of the features of other
facilities in the Datapoint system besides simply AUTOKEY.
Explaining all of these in detail is beyond the scope of this
section. The intention here is just to demonstrate the
sophistication possible using AUTOKEY in conjunction with the
other facilities within the DOS.

Let's assume that XYZ Company is running an eight-port
Datashare system. Each of the company's seven sales offices
around the country has a Datapoint 1100 computer which is
connected up to the home office Datashare system as a port. (The
eighth port is used by the home office's secretary, Susie.)

During the day, each of the seven sales offices makes inquiries of
the central inventory, price, and model code files through a
system of Datashare programs, and another Datashare program lets
them key orders into a file called "ORDERSn" where n is their port
number. At the end of each business day, XYZ Company wants to
process these orders. First they put the seven files all into one
large file, sort it, and use a Datashare program to make
corresponding entries into the master order file. The master
order file is then reformatted and the index reconstructed. The
final step is to create a second copy of the master order file
onto magnetic tape, which will then be saved for backup purposes.

Since the operation just described is fairly lengthy, one of
the programmers at XYZ Company decided to allow it to run
unattended after everyone has gone home. They even set up Susie's
MASTER program so that it automatically takes down the Datashare
system and starts up the end-of-day processing one-half hour after
the company's Los Angeles sales office (two time zones behind the
Chicago main office) closes for the afternoon. When the daily
processing is completed, Datashare is brought back up again so
that it will be up by the time the first people start arriving at
the New York sales office the next morning, an hour before the
Chicago main office opens.

9-4 DISK OPERATING SYSTEM

In the event of an unanticipated power failure, the system
will recover and bring itself back up, resuming operations at the
last checkpoint established by AUTOKEY. Notice that the system is
also left in a state such that after the chain completes,
Datashare will automatically restart in the event of any possible
system failure. (NOTE: Datapoint 9350 disk systems using Diablo
disk drives will initialize with hardware in "WRITE PROTECT" mode
after power interruption.)

The following chain file ("OVERNITE/TXT") accomplishes the
preceding, assuming that subdirectory "SYSTEM" is used throughout
the chain. The chain file could be modified easily to eliminate
this assumption. However, the chain file can be made almost
arbitrarily complicated; the point here is simply to show one of
many possible techniques for handling unattended operations which
wish to restart automatically in the case of some failure. Notice
that the chain file might have to be modified depending on the
particular version of DSCON an installation is using.

// IFS S1

//. FIRST SET UP FOR AUTO RESTART IF REQUIRED.
AUTOKEY CHAIN OVERNITE;S1

AUTO AUTOKEY/CMD

BUILD NULLj;!

!

//. NEXT APPEND TOGETHER THE SEVEN FILES.
SAPP ORDERS1,0RDERS2,SCRATCH
SAPP SCRATCH,ORDERS3,SCRATCH
SAPP SCRATCH,ORDERS4,SCRATCH
SAPP SCRATCH,ORDERS5,SCRATCH

SAPP SCRATCH,ORDERS6,SCRATCH
SAPP SCRATCH,ORDERS7,SCRATCH

//. NOW SCRATCH CONTAINS THE DAILY FILES.

AUTOKEY CHAIN OVERNITE;S2

// XIF

// IFS $1,S2

//. PHASE TWO SORTS FILE "SCRATCH" INTO "ORDERDAY".
SORT SCRATCH,ORDERDAY;1-5

//. NEXT CHECKPOINT HAVING BUILT "ORDERDAY".
AUTOKEY CHAIN OVERNITE;S3

// XIF

// IFS $1,S82,83

//. PHASE THREE PROCESSES THE FILE WITH A DS3 PROGRAM.
DSCON

o

CHAPTER 9. AUTOKEY COMMAND 9-5

1
DS3 PROCESS

The program PROCESS/DBC ends with ROLLOUT "CHAIN NULL"™ to end the
program and continue the chain.

//. THE MASTER ORDER FILE "ORDERMAS" NOW IS UPDATED.
AUTOKEY CHAIN OVERNITE;S4

// XIF

// IFS S1,S82,S3,S4

//. PHASE FOUR REFORMATS THE MASTER ORDER FILE.
REFORMAT ORDERMAS,SCRATCH:WORK2;R

//. "SCRATCH" NOW IS A REFORMATTED COPY OF "ORDERMAS".
AUTOKEY CHAIN OVERNITE;S5

// XIF

// IFS S$1,S82,S83,S4,S5

//. PHASE FIVE COPIES "SCRATCH" BACK TO "ORDERMAS"
COPY SCRATCH:WORK2,0RDERMAS

//. "ORDERMAS" IS NOW READY FOR INDEXING.

AUTOKEY CHAIN OVERNITE;S6

// XIF

// IFS S1,S82,S83,S4,S5,S6

//. PHASE SIX RECREATES THE INDEX FOR "QRDERMAS"
INDEX ORDERMAS;1-16

//. THE INDEX HAS NOW BEEN REBUILT.

AUTOKEY CHAIN OVERNITE;ST

// XIF

// IFS s1,S2,S83,S4,85,S6,S7

//. NOW DUMP MASTER FILE TO 9-TRACK MAGNETIC TAPE.
TAPE ORDERMAS/TXT,I/E

L |

0

200X 4

X

*

//. NOW THE BACKUP COPY OF "ORDERMAS" IS ON TAPE.
AUTOKEY CHAIN OVERNITE;S8

//XIF

//IFS S1,S2,S3,S4,85,36,S7,S8

DSCON

0= =<

9-6 DISK OPERATING SYSTEM

Y

AUTOKEY DS3

//. AND START UP DATASHARE FOR NEXT DAY.
DS3.

// XIF

9.7 Special Considerations

When building long chain files that allow for automatic
restart, several considerations must be made. Among these are
that a file must not be changed in such a way that the change
cannot be repeated if the previous checkpoint is actually used.

To accomplish this, frequently the file being updated must be
copied out to a scratch file, and the scratch file then updated.
Following the completion of the update is when another checkpoint
would be taken: following that the next phase would copy the
updated file back over the original. Note that a checkpoint (i.e.
resetting the AUTOKEY command line) would have to be before the
creation of the dummy copy to be updated; putting a checkpoint
between the creation of the copy to update and the actual updating
process could result in the updating of a partially updated copy.
A little thought when choosing places to update the AUTOKEY
command line is called for to ensure that the chain may be resumed
from any of them without incorrect results.

9.8 AUTOKEY and DATASHARE

Some users who make frequent use of the DATASHARE ROLLOUT

feature will notice that AUTO-ing AUTOKEY with the AUTOKEY command
line set to DSBACK will mean that whenever any port rolls out to

any program or chain of programs, Datashare is automatically
brought back up when that program or chain of programs finishes,
regardless of whether or not DSBACK was included at the end of the
port's chain file.

CHAPTER 9. AUTOKEY COMMAND 9-7

CHAPTER 10. BACKUP COMMAND

10.1 Purpose

The BACKUP command provides for making copies of DOS disks.
The user can make either an exact mirror image copy of the input
disk or can select reorganization, which will group files by
extension and file name, remove unnecessary segmentation and allow
deletion of unnecessary files. Reorganization also allows copying
of DOS disks onto disks with locked out cylinders that differ from
those on the input disk. Some special considerations apply for
specific disk configuration.
NOTE: BACKUP always copies the volume-id (VOLID) to the output
disk.

10.2 Use

A disk backup is initiated by the operator entering the
following command:

BACKUP <input drive>,<output drive>

Input drive and output drive are specified as :DRn, or :Dn,
or :<volid>. The drive selected as the INPUT DRIVE MUST BE WRITE
PROTECTED; that is, it must be in "read only" mode or have its
"protect" light on for 9370 and 9350 series drives respectively.
The requirement for the input drive to be write protected is
absent on the 9380 series flexible diskettes. The program will
respond by displaying the message:

DRIVE n SCRATCH?

If the disk on drive n is scratch (note that BACKUP deals
with logical drives), enter a "Y" . Any other reply will cause
the program to return to D0OS. If you do reply "Y", the program
will display the message:

ARE YOU SURE?
If you are absolutely sure that you want to write over the

output disk, type "Y" again and press the enter key. Any other
reply will cause the program to return to DOS. If the output

CHAPTER 10. BACKUP COMMAND 10-1

(logical) disk has not been DOSGENed or the DOS file structure on
it has been damaged, the message:

DOSGEN YOUR DISK FIRST

will appear and control returns to DOS. If the output (logical)
disk has been DOSGENed and seems in reasonable shape, the
following message is displayed:

FILE REORGANIZATION?

If different cylinders are locked out on the input and output
disks (if the disks' lockout CATs do not match), a mirror image
BACKUP is not possible so the "FILE REORGANIZATION?" question is
bypassed. Instead, a message appears specifying that
reorganization is required and BACKUP with reorganization proceeds
as described below.

If you wish to reorganize the files being transferred to the
output disk, enter a "Y" in response to the reorganization
question. In this case, see the section on reorganizing files for
further instructions.

If you do not wish to reorganize your files and desire a
mirror image copy of your input disk, enter an "N" in response to
the reorganization question.

10.3 Mirror Image Copy

If you have typed "N" in response to the file reorganization
question, the program will ask the question:

DO YOU WANT THE OUTPI'"T COPY VERIFIED?

This question should ‘ays be answered "Y". At present the
answer given has no effect he output is always write-verified.
The question is maintained » chain procedures invoking BACKUP do
not need to be modified.

The program then asks:

DO YOU WANT TO COPY UNALLOCATED CLUSTERS?

Type "Y" and press the enter key if you want all data on the
disk copied regardless of whether or not it is in an area

allocated by DOS. This option is preferred in cases where you
suspect that your DOS files may be partially destroyed or the

10-2 DISK OPERATING SYSTEM

output disk has never been fully initialized with data. Also use
this mirror image copy if you have the 9374 disk system and one of
the drive's heads gets misaligned. Backup will use the offset
feature to try and retrieve your data. If BACKUP uses the track
offset it will slow the program down but it could save your data.

Type "N" and press the enter key if you wish to copy your
disk as quickly as possible without copying unused areas of the
input disk. "Y" and "N" are the only replies allowed.

10.4 Reorganizing Files

If you have typed "Y" in response to the file reorganization
question, the program will copy the System files, sort the
Directory names, and allow the operator to delete files before
copying the files to the disk copy.

Backup with reoganization to drive 0 is not possible.

10.4.1 Copying DOS to Output Disk

Various program status messages will appear during the
copying of DOS. System tables are initialized and then the
SYSTEMn/SYS files are copied to the output disk.

10.4.2 Deleting Named Files

When all directory names have been sorted into file extension
followed by file name sequence the following question will be
displayed:

DELETE ANY FILES DURING REORGANIZATION?

Type "N" and press the enter key if all files are to be
copied. Type "Y" and press the enter key if you wish to delete
any files. If you reply "Y" a message asking which files are NOT
to be copied will appear. The lower screen will be filled by a
numbered list of files for you to choose from. Type the number or
range of numbers (nn or nn-nn) found next to names of individual
files you wish deleted. Type "ALL" and press the enter key if you
wish to delete all of the files in the list. The files selected
for deletion will be erased from the list. When all desired
deletions have been made from a list, type "." and press the enter
key to advance to the next list of file names.

CHAPTER 10. BACKUP COMMAND 10-3

When all file name lists have been examined, the program will
advance to the copy named files phase.

10.4.3 Copying Named Files
Files with names in the system directory are copied in
alphameric file extension, file name sequence. The name of each

file is displayed as it is copied. All files are written as close
together as possible with a minimum of segmentation.

10.5 Use of KEYBOARD and DISPLAY Keys

The KEYBOARD and DISPLAY keys may be pressed any time
messages are being displayed. Depressing the DISPLAY key will
hold the current display until the key is released. Depressing
the KEYBOARD key will cause the program to terminate and return to
DOS.
10.6 Error Messages

During the execution of BACKUP the following error messages
may appear:

¥%¥%¥ PLEASE PROTECT YOUR INPUT DISK ¥*#%
Action: Write-disable the input drive.
INVALID DRIVE SPECIFICATION!

Action: Retype the BACKUP command with correct <input-drive> and
<output-drive> specification.

ILLEGAL OUTPUT DRIVE!

Action: <input-drive> and <output-drive> have been specified as
the same drive! Retype BACKUP command with correct specification.

BAD CLUSTER ALLOC TABLE!
Action: A bad Cluster Allocation Table has been detected on the
input disk. The Cluster Allocation Table may be able to be fixed
using the REPAIR command.

CYLINDER O OF BACKUP DISK IS UNUSABLE!

10-4 DISK OPERATING SYSTEM

Action: Your scratch disk cannot be used for a system disk due to
surface defects in cylinder 0. Use another output disk and start
over.

SYSTEMn /SYS IS MISSING!

Action: Your DOS disk cannot be reorganized due to a missing
system file. C(Catalog the missing system file on your input disk
and start over.

PARITY- :DRn address

Action: An irrecoverable parity error has been detected on drive n
during the BACKUP operation. The address is shown for each error.
If drive n is your output disk, DOSGEN must be rerun to lockout
the bad addresses or use a different scratch disk for mirror image
copy. If drive n is your input disk, new parity will be computed
and the record will be copied. Note the error address and check
for errors when copy is complete.

FORWARD OFFSET TRACK BEING USED
REVERSE OFFSET TRACK BEING USED

Action: On a 9374 disk system a parity error has been detected on
the input drive and offset tracking is being used to try to
recover the data. There will be 10 attempts on both sides of the
track. ‘

10.7 Reorganizing Files for Faster Processing

After a DOS disk has been used for awhile, the file structure
becomes fragmented and related files become scattered. The more
the disk is used the more total system performance is degraded due
to increased disk access time. System degradation is especially
noticeable when DATASHARE is being used. File reorganization
using the BACKUP program is one way to clean up DOS disks and
improve their efficiency.

BACKUP reorganization improves system efficiency by making
the following changes:

File segments are consolidated

Files are packed more closely together

CHAPTER 10. BACKUP COMMAND 10-5

Related files are clustered together
Unused trash files are removed (optionally)

. Files are rewritten reducing marginal parity errors

10.8 BACKUP with CHAIN

Because BACKUP requires that its input drives Dbe write
protected, does not abort if parity errors occur during the
backup, and may ask different questions depending upon the
condition of the input and output disks, BACKUP generally should
not be invoked from a CHAIN. Since the BACKUP operation is so
critical to the protection of important files, an operator should
monitor the entire backup operation.

10.9 Clicks during Copying

A click occurs each time an unused sector is copied
(reorganization mode only). A file which, when copied, results in
a lot of clicks (more than a dozen, perhaps) can probably be
reduced in size, without any data loss, by using APP or SAPP as
appropriate.

10.10 Special Considerations for BACKUP

When using BACKUP on the 11-platter 9370 disk packs, it is
important to remember that each disk is two logical drives. Since
BACKUP deals with logical drives, BACKUP must be run twice, once
from each logical drive, to backup an entire physical disk.

Also, BACKUP will not allow backing up from one logical drive
to the other one on the same disk. There is no real backup value,
since the two copies would be physically on one pack.

With the 9374 and 9354 disk drives,it is important to
remember that the drive contains a fixed platter that is a
separate logical drive. BACKUP between the fixed and removable
platters is possible.

10-6 DISK OPERATING SYSTEM

CHAPTER 11. BLOKEDIT COMMAND

11.1 Purpose

The BLOKEDIT command provides for DOS text file manipulation.
The command copies lines of text from any DOS text file(s) to
create a new text file.

The BLOKEDIT command is useful for such things as:

New program source file generation by copying
routines from existing program source files;

Existing program source file re-arranging by
copying the lines of source-code into a new
sequence (into a new source file).

Re-arranging lines or paragraphs of a SCRIBE
file into a new file.

In this Chapter, the following applies:

Text file means a DOS text file as defined in
the REFORMAT chapter.

Line means one line of a text file as displayed
by the DOS LIST program.

11.2 File Descriptions

BLOKEDIT deals only with text files. For any given
application there will be one text file called the COMMAND FILE
which will hold the controlling commands for BLOKEDIT. Optionally
the controlling commands may be entered directly to BLOKEDIT via
the keyboard by defaulting the command file parameter. There will
be one or more text files called SQURCE FILES from which lines of
text will be copied. And there will be one text file called the
NEW FILE which will be the desired end result for the application.

CHAPTER 11. BLOKEDIT COMMAND 11-1

117.2.1 Command Statement Lines

The command statements are the controlling factor for a
BLOKEDIT execution. The command statements specify which source
files will be used and which lines of text will be copied from
them. If the command statements are to be read from a command
file it must be generated by the DOS. EDIT command, or DOS. BUILD

command, etc., before BLOKEDIT can be used.

There are three kinds of statement lines that are meaningful
to BLOKEDIT: COMMENT lines, COMMAND lines, and QUOTED lines.

A COMMENT line is a line which has a first character of
period.

This is an example of COMMENT LINES:
THESE THREE LINES ARE COMMENT LINES.
As in program source files, a comment line may have
explanatory notes or nothing at all following the period.
A COMMAND LINE is a line which has a SOURCE FILE NAME and/or

source file LINE NUMBERS, or begins with a double quote symbol
(n).

The following are some example command lines:

FILENAME/EXT:DRO NAME THE SOURCE FILE
1-100 COPY LINES 1 THRU 100
350-377 COPY LINES 350 THRU 377
150/ TXT NAME THE SOURCE FILE

A command line must have a first character of an upper-case
alphabetic character, or a digit, or a double quote symbol.

A command line that begins with an upper-case alphabetic
character indicates that a new SOURCE FILE is being named. A new
source file can be named only by putting the name of the file at
the very beginning of the command line. Optionally, the extension
and/or drive number for the file may be included with the source
file name. If the source file name begins with a digit the file
extension must be given.

A command line that begins with a digit indicates that the
command line will have one or more numbers, which are the numbers

11=-2 DISK OPERATING SYSTEM

of the lines to be copied from the source file previously
specified into the new file.

A command line that begins with a double quote symbol
indicates the beginning/ending of QUOTED LINES. The only
information used by BLOKEDIT in a command line that begins with a
(") is the (") itself, therefore the rest of the line can be used
for comments.

A QUOTED LINE is a line between a pair of command lines which
begin with a double quote symbol.

This is an example of QUOTED LINES:

" THIS IS THE BEGINNING OF QUOTED LINES COMMAND LINE.

INCMNT HL COUNT POINT TO COUNTER
LAM LOAD TO "A"™ REGISTER
AD 1 INCREMENT BY 1
LMA RESTORE TO MEMORY

" THIS IS THE ENDING OF QUOTED LINES COMMAND LINE.

There may be more than one quoted line between the command
lines that begin with ("). A quoted line will be copied directly
from the command file or keyboard to the new file. Quoted lines
enable a BLOKEDIT user to include original lines of text in a new
file along with lines copied from source files.

11.2.2 Source File

The SOURCE FILE is a text file from which lines will be
copied. Source files are named in the command lines for a
BLOKEDIT application, and the lines to be copied from the source
file will also be specified in the command lines. It will be
useful to have a listing of a source file with line numbers, as
produced by the LIST command, when creating the command statement
lines for a BLOKEDIT application.

11.2.3 New File
The NEW FILE is a text file produced by the BLOKEDIT command.

The new file is named at BLOKEDIT execution time by the second
file specification entered on the command line.

CHAPTER 11. BLOKEDIT COMMAND 11=3

11.3 Using BLOKEDIT

Before the BLOKEDIT command can be used one must create a
command file, unless the command statements are to be entered via
the keyboard. When the BLOKEDIT command is to be executed, the
operator must enter the following command line:

BLOKEDIT [<file spec>],<file spec>

The first file specification refers to the command file, if not
specified the commands will be entered via the keyboard. The
second file specification names the new (output) file. If no
extension is supplied with the first file specification, TXT is
assumed. If no extension is supplied with the second file
specification, the extension given or assumed for the first file
is used. If no drive is given for the first file, all drives are
searched. If no drive is given for the second file, the drive
given or assumed for the first file is used. The specified output
file must not exist on any drive on line.

11.4 Messages

This section describes the operator messages that BLOKEDIT
-may display on the CRT screen during execution. Some of the
messages are monitor messages to keep the operator informed of the
progress of the program, while other messages are error messages.
If the keyboard was selected as input to BLOKEDIT, the user will
be prompted by the "Please enter BLOKEDIT command Enter ¥ to
exit." message when input is required. The character ¥ will
terminate BLOKEDIT and return to DOS.

The general format of the CRT display screen varies depending
on the source of the BLOKEDIT command statements.

If the command statements are being read from a command file
the format of the display is:

11-4 DISK OPERATING SYSTEM

DOS.VER. TEXT FILE BLOCKEDIT DATE OUTPUT FILE IS XXXXX/XX
PROCESSING COMMAND LINE nnn CURRENT SOURCE IS XXXXXXX/XXX:DR

Error Message Displayed Here If Necessary

S e

If the command statements are being entered via the CRT keyboard,
the format is:

/ DOS.VER. TEXT FILE BLOCKEDIT DATE OUTPUT FILE IS XXXXXXX/XX
PROCESSING COMMAND LINE nnn CURRENT SOURCE FILE IS -NONE-/ :DR

PLEASE ENTER A BLOKEDIT COMMAND ENTER * TO EXIT

As BLOKEDIT commands are entered on line 12, they are rolled thru
lines 9-4.

CHAPTER 11. BLOKEDIT COMMAND 11=5

11.4.1 Informative Messages

PROCESSING COMMAND LINE .. CURRENT SOURCE FILE IS ../..:DR.

This message is the BLOKEDIT monitor message. This message
is displayed while BLOKEDIT is writing lines of text to the new
file. The monitor message displays the command file line number
currently being processed and the name, extension, and drive
number of the last named source file.

SOURCE FILE WENT TO E.O.F.

This messge is displayed if the source file from which lines
were being copied ended before the specified lines were finished.

BLOKEDIT TRANSFER COMPLETE
OQUTPUT FILE WAS name LINE COUNT WAS nnn

This message is displayed when all of the command file lines have
been executed. The number of lines in the new file is displayed
following the second line.

11.4.2 Fatal Errors
If BLOKEDIT detects a fatal error in the command statement
line the monitor message is rolled up the screen, an appropriate

error message is displayed, and the DOS entry ERROR$ is called.

¥¥X*NEW FILE NAME REQUIRED¥**¥

This message is displayed if the operator did not name a new
file when the BLOKEDIT command was called.

¥**COMMAND FILE DRIVE INVALID*¥#¥

This message is displayed if the operator specified for the
command file a drive number that is invalid.

#¥%*NEW FILE DRIVE INVALID¥**¥

This message is displayed if the operator specified for the
new file a drive number that is invalid.

¥%¥*COMMAND AND NEW FILE NAMES MUST NOT BE IDENTICAL**%*

This message is displayed if the operator specified command
file and new file names the same and the extension and the drives

11-6 DISK OPERATING SYSTEM

for the files were specified or assumed to be the same.
Defaulting of extensions and drives is described in an earlier
paragraph.

¥*¥COMMAND FILE NOT FOUND*¥**

This message is displayed if the command file name was not
found on the drive(s) specified or assumed.

¥%¥*NEW FILE NAME IN USE¥*¥¥

This message is displayed if the specified output file was
found on the drive(s) specified or assumed. BLOKEDIT will not
write into an existing file if commands are being read from a
command file. If commands are being entered to BLOKEDIT via the
KEYBOARD, the operator is given the option to overwrite the
existing file.

¥%¥¥NEW FILE NAME IN USE, OVERWRITE IT? ¥#*¥
[Answer with a Yes or No]

If the operator answers Yes (Y) the file is overwritten.
If the reply is No (N) BLOKEDIT returns control to DOS.

*%¥BAD FILE SPECIFICATION¥***

This message is displayed if the first character of a command
file line, other than a quoted line, is an upper-case alpha
character but the DOS file specification was not recognizeable.

11.4.3 Selectively Fatal Errors
These errors are fatal when BLOKEDIT is reading a command
file, and informative when commands are being entered via the

keyboard. :

#¥SOURCE FILE NOT FOUND¥*#¥

This message is displayed if the source file specified could
not be found. It is probably either misspelled or in a different
subdirectory.

¥*%*BAD LINE NUMBER SPECIFICATION¥**

This message is displayed if a command file line other than a
quoted line began with a digit but contained an unrecognizable
line number specification.

CHAPTER 11. BLOKEDIT COMMAND 11=7

Here are some examples of valid line numbers:

y A single digit is acceptable.
999999 A line number may have up to six digits.
100-364 First and last line to be selected are

separated by a dash.
34,55-78,100-147 Commas separate line specifications.

Here are some examples of invalid line numbers:

1A Only "-", ", " or space after a digit,
unless the line is a source file
name beginning with a digit. If it is,
an extension must be given.

1234567 Number has more than six digits.

17=34=77 Only two numbers separated by "-".

#¥*LINE NUMBER ZERO IS NOT VALID**¥

This message is displayed if a line number of zero is
specifed in a command line. It is ignored if entered via the
keyboard.

¥%*START LINE NO. > END LINE NO¥**

This message is displayed if the first number of a line
number pair is larger than the second number of the pair, as in:
235-176. It is ignored if entered via the keyboard.

¥*¥BAD DATA IN SOURCE FILE LINE nnn ¥*#%

This message is displayed if BLOKEDIT discovers non-ASCII
characters in a source file. The line number will be displayed
following the message. If commands are being entered via the
keyboard the source file is reselected, and next command is
requested.

¥¥NO VALID SOURCE FILE FOR TRANSFER¥*

This message is displayed if BLOKEDIT discovers line numbers
to be transfered from a source file when there is no open source
file.

11-8 DISK OPERATING SYSTEM

*¥FORMAT OR RANGE ERROR ON SOURCE FILE¥**

This message is displayed if DOS discovers a file which can
not be read. If commands are being entered via the keyboard the
source file will be de-selected, and next command requested.

CHAPTER 11. BLOKEDIT COMMAND 11-9

CHAPTER 12. BUILD COMMAND

12.1 Purpose

BUILD provides an alternative means to create a text file
without having to use the standard DOS editor. BUILD is useful
for rapid generation of very short text files, such as two and
three line CHAIN files. Also, BUILD is usable from within a
CHAIN.

12.2 Use
The BUILD command is invoked by entering the command line:
BUILD <file spec>[;<end character>]
The file specification defines the ou * file. This output

file specification is always required. If the named file does not
exist, it is created. The default extension is /TXT.

The end character is optional. If no end character is
specified on the command line, BUILD terminates upon receiving a
null input line (a null input line is a line consisting of only an
ENTER; a blank line is not a null line).

BUILD accepts input lines from the keyboard and writes each
one to the output file. When BUILD is ready to accept an input
line it displays a colon (:) as a prompting character. Each input
line BUILD receives is tested for the presence of the specified
end character, if any, as the first character entered. If the end
character is present as the only character of the entered line,
the end line is discarded (it is not written to the output file),
and an end of file mark is written to the output file and the
output file closed by returning to DOS.

Entering an end character followed by a string will pass the
string to the output line without the end character ... and will
not terminate BUILD. This action allows entering CHAIN commands
into a chain file being written by BUILD from within an active
CHAIN.

CHAPTER 12. BUILD COMMAND 12-1

12.3 A Simple Example

Suppose that the operator wishes to construct a simple CHAIN
file to establish a program to be auto-executed, so that the
auto-execute request can be accomplished later with a single
command line entered at the keyboard. All that is required is to
enter at the system console:

BUILD <chain file spec>;¥
AUTOKEY <program name>

AUTO AUTOKEY/CMD
*

Upon receiving the "¥" input line, BUILD closes the output
file and terminates. Note that in the two places where the "#¥n
appears, any enterable character could have been used. (This
allows nesting calls to BUILD, which can be very useful in the
BUILDing of chain files). After the BUILD command is finished,
the output file named on the BUILD command line contains the
following two lines:

AUTOKEY <program name>
AUTO AUTOKEY/CMD

It is also possible, through BUILD nesting, to create chain
files which during execution of the chain construct other chain
files and execute them automatically upon completion of the first
chain (since any statement of a chain file is allowed to be a
CHAIN command).

The references to CHAIN made here may be premature, since
CHAIN is discussed in a later chapter, but are included because
BUILD and CHAIN can be of great usefulness when used together in
this manner.

The KEYBOARD and DIS 7 keys may be pressed any time
messages are being displa) The keys will be effective Jjust
prior to the display of th compting ":". Depressing the DISPLAY
key will hold the current display until the key is released.
Depressing the KEYBOARD key will cause the program to terminate
and return to DOS.

12-2 DISK OPERATING SYSTEM

CHAPTER 13. CAT COMMAND

13.1 Purpose

The CAT command selectively displays filenames in the DOS
directory or in a library directory. One may choose to display all
cataloged filenames on all drives online or specific filenames on
specific drives.

13.2 Use
The CAT command is invoked by entering the command line:
CAT [<name>][</ext>][:DR<n>][,L]
where: <name> specifies the filename or a portion of the
filename, <ext> specifies the extension or a portion of the
extension, <n> specifies the logical disk drive number, and L
specifies list only those files in the current subdirectory.
To display a library directory enter:
CAT <library name>¥
To display the UTILITY/SYS directory enter:
CAT *
Directory entries are displayed in the form:
NAME/EXTENSION (PFN)P
where PFN is the physical file number in octal (0-0377) and P is
the protection on the file; D for deletion, W for write, and blank
for none. If the file displayed is in a subdirectory other than
system, the directory entry is displayed in the form
NAME/EXTENSION-(PFN)P
with the dash indicating a subdirectory entry. All drives are

searched, unless a specific drive is requested, and as each drive
is scanned, the line

CHAPTER 13. CAT COMMAND 13-1

-~== DRIVE n VOLUME ID (volid) SUBDIRECTORY (subdirectory name):

is displayed. This line is not displayed if the drive 1is not on
line, or if no files from it are to be displayed.

Depressing the DISPLAY key causes the catalog display to
pause as long as the key is held. Depressing the KEYBOARD key
causes the catalog display to terminate. If the CAT command 1is
parameterized by only an extension, only files of that extension
will be displayed. If the CAT command is parameterized by only a
name, only files of that name (all extensions) will be displayed.
If the CAT command is parameterized by a name and an extension,
only files of that root name and extension (all drives) will be
displayed. If the CAT command is parameterized by only the drive
number, only files on that drive will be displayed. If only a
portion of the filename is entered, all files beginning with the
letters specified will be displayed. For example, entering:

CAT /T

would cause the display of all files on all on-line drives whose
extensions start with "/T".

Entering:
CAT MA:WORK2

would cause the display of all files on symbollo drive "WORK2"
whose file names start with "MA". .

13=2 DISK OPERATING SYSTEM

CHAPTER 14. CHAIN COMMAND

14.1 Introduction

The CHAIN command enables a user to create and execute
procedure files. The chain file should contain the commands to
invoke all required programs, and all inputs required by the
invoked programs. Basically, CHAIN replaces the DOS Keyboard
Entry Routine with one that reads lines from a procedure file each
time the Keyboard Entry Routine (KEYIN$) is called. Each time any
program would normally request a line to be entered from the
keyboard, it will be read from the Procedure File. This reading
of lines from a Procedure File is transparent to the executing
program. When the last line of the Procedure File has been read,
and a new DOS command is desired by the system, DOS is reloaded
and commands are accepted from the keyboard.

The CHAIN command has two separate functions which are
performed at different times. They are Compilation and Execution
phase. IR : :

Compilation Phase

CHAIN executes a compilation phase in which statements are
read from the chain input file. During this phase all compile
time decisions are made and micro substitution is done. The
result of this phase is a Procedure File named CHAINP/SYS. This
Procedure File consists only of statements needed for the
execution phase. The procedure file name will contain the
partition number, instead of a "P", if CHAIN is. run under PS.

Execution Phase

The execution phase of CHAIN is the interface to the
operating system and the control of retrieval of information from
the Procedure File. During the execution phase, CHAIN/OV1
overlays the DOS KEYIN$ routine with a disk read routine that fits
in the same space. After CHAIN/OV1 has been loaded the first line
is read from the Procedure File and given to DOS as input.

When a routine calls KEYIN$ for a line, CHAIN/OV1 fetches a

line from the Procedure File. The return from CHAIN/OV1 appears
the same as it would from KEYIN$. The HL and DE registers are the

CHAPTER 14, CHAIN COMMAND 14-1

same as if the line had been entered by the user from the
keyboard. If the line read is longer than the maximum specified
by the calling program the program is aborted and the chain
abondoned. The same is true if a program is requesting a line and
the procedure file is at end of file.

When a program invoked by the CHAIN Procedure File terminates
by jumping to the DOS EXIT$ or NXTCMD the CHAIN/OV1 routine reads
the next statement, if present, from the Procedure File. If the
end of file is reached when DOS is requesting another command, the
CHAIN is determined to be finished. At this time, normal
termination of CHAIN, the procedure file is deleted and commands
can be entered via the keyboard.

14.2 Tag Definition

The CHAIN command line can contain both tag names and/or tag
names and values for the tags. These parameters follow the
semicolon (;) on the command line which invokes CHAIN. The tag
names can be from one to eight characters in length and may have
values from one to seventy characters in lenght. A tag must
contain only letters or digits. The value of a tag may contain
any valid character except comma (,), equals (=) or pound sign
(#). The character restriction depends on the syntax being used.

A tag is defined by just its presence on the CHAIN command
line. Tags may have a value given to them by one of the following
syntaxes:

CHAIN DOIT;LIST,DATE=30NOV76,TIME=1500hr (New Syntax)
CHAIN DOIT;LIST,DATE#30NOV76#,TIME#1500hr# (01d Syntax)

Both syntax structures are supported and the results of the
two CHAIN commands is identical. The tag LIST has been defined
but has a null value; DATE has the value of 30NOV76 and TIME has
the value of 1500hr.

CHAIN allows two uses to be made of tags:

1.) A tag can be tested to determine whether it was defined
on the CHAIN command line.

2.) The value of the tag can be substituted on CHAIN input
statements before the line is written to the Procedure File.

14-2 DISK OPERATING SYSTEM

14.3 Compilation Phase Directives

A1l CHAIN directives are denoted by the characters // as the
first two on a line. Any number of spaces (including zero) are
scanned until the CHAIN directive is reached. The first thing
after the // must be a valid CHAIN directive else an error message
is issued and CHAIN is aborted. The following is a list of these
statements.

//IFS IF SET (TAG DEFINED)

//1IFC IF CLEAR (TAG NOT DEFINED)

//XIF END OF IF

//ELSE REVERSE EFFECT OF IF

//BEGIN BRACKETS A GROUP OF

//END IF/ELSE/XIF STATEMENTS

/7. EXECUTION TIME COMMENT

/ /¥ EXECUTION TIME BREAKPOINT

//ABORT ABORT CHAIN COMPILATION

//ABTIF CONDITIONALLY ABORT CHAIN EXECUTION
. COMPILATION TIME COMMENT. (Note that the //'s

are not present)

14.3.1 IF Directive

The IF directive has two variations, IFS and IFC, which are
IF SET and IF CLEAR. The IFS directive proves positive if the tag
named appeared on the CHAIN command line, and negative if the tag
was omitted.

For example:
//IFS LIST

will prove positive if LIST was mentioned in the CHAIN command
line, and negative if the tag does not exist. The opposite of
this is true for the IFC directive.

For example:
//IFC LIST

will prove positive if LIST was omitted and negative if it
appeared on the CHAIN command line.

Simple logical operations can be performed on IF directives.
The tags to be used are separated by logical operators. The
logical OR is indicated by '|' (vertical bar) or ',' (comma). The
logical AND is indicated by '&' (ampersand) or '.' (period). For
example the following lines are in the file DOIT:

CHAPTER 14. CHAIN COMMAND 14-3

//IFS DATE&TIME|QUICK or //IFS DATE.TIME,QUICK
SNAP TEST SNAP TEST

If DATE AND TIME OR QUICK are defined on the CHAIN command line
the SNAP test line will be included in the procedure file. CHAIN
DOIT;DATE=30NOV76,TIME=1500hr or CHAIN DOIT;QUICK or CHAIN
DOIT;DATE,TIME will all result in a true logical condition and the
SNAP line will be included.

IF directives are only evaluated if lines are being included.
If one IF directive has proven negative and has inhibited the use
of lines, all following IF directives will be ignored until either
an ELSE or XIF statement is found.

For example:
//IFS DATE
//1IFS TIME
SNAP TEST
//X1IF

If DATE was not defined, all lines until the // XIF will be
ignored. In this example the //IFS TIME statement would not be
evaluated and the SNAP TEST would not be included even if TIME was
defined.

14.3.2 ELSE/XIF Directives

CHAIN has two directives that will alter the inclusion of
lines from an IF directive. The first is the XIF directive. It
will unconditionally terminate the range of the last IF directive.
The second is the ELSE directive; it will reverse the results of
the last IF directive; that is to say, if lines were being skipped
because the last IF proved negative, an ELSE would cause lines to
be included.

Example, the DOIT file contains the following lines:

//IFS LIST

SNAP TEST;L
//ELSE

SNAP TEST

//XIF

//IFS TAPE

MOUT ; D, 30NOV76,V
TEST/ABS

*

//XIF

14-4 DISK OPERATING SYSTEM

If CHAIN is invoked by 'CHAIN DOIT;LIST' the procedure file
will contain

SNAP TEST;L
If invoked by 'CHAIN DOIT;TAPE', the procedure file will contain
SNAP TEST

MOUT ; D, 30NOV76,V
TEST/ABS
*

14.4 Tag Value Substitution

A tag value is substituted whenever a pair of '#' symbols are
found with a syntactically valid tag name between them. The value
substituted is the tag value given in the CHAIN command line.

An example: Contents of a file called DOIT

SNAP TEST;XL
TEST PROGRAM ASSEMBLED ON #DATE# -- #TIME#

SNAP #NAME# ;XL
#NAME# PROGRAM ASSEMBLED ON #DATE# -- #TIME#

If CHAIN is invoked by
"CHAIN DOIT;TIME=2400hr,DATE=29NOV76,NAME=TEST2" the procedure
file will contain

SNAP TEST;XL
TEST PROGRAM ASSEMBLED ON 29NOV76 -- 2400hr

SNAP TESTZ2;XL
TEST2 PROGRAM ASSEMBLED ON 29NOV76 -- 2400hr

CHAPTER 14. CHAIN COMMAND 14-5

If a tag is mentioned in the CHAIN command line but given no
value and if the value is to be used for substitution, a null
value is substituted for the #tag# within the line. The effect is
that the #tag# characters disappear from the line. For example,
if CHAIN was invoked by "CHAIN DOIT;DATE=29NOV76,NAME=TEST2" the
procedure file will contain

SNAP TEST;XL
TEST PROGRAM ASSEMBLED ON 29NOV76 --
SNAP TEST2;XL
TEST2 PROGRAM ASSEMBLED ON 29NOV76 --

14.5 BEGIN/END Directives

The BEGIN and END statements allow groups of IF/ELSE/XIF
statements to be parenthesized. A counter called the BEGIN/END
counter 1is initialized to zero when compilation of a procedure
begins. If the use of procedural lines is turned off and a BEGIN
operator is encountered, then the BEGIN/END counter is
incremented. If an END operator is encountered, then the
BEGIN/END counter is decremented unless it is already zero. The
ELSE and XIF operators have no effect if the BEGIN/END counter is
not equal to zero. For example:

// IFS FLAG1

ASM TEST1;XL

TEST PROGRAM ONE

// ELSE

// BEGIN

// IFS FLAG2

ASM TEST2;XL

TEST PROGRAM TWO

// ELSE

ASM TESTTEST;XL
TEST TESTER |

// XIF

// END

// XIF

// IFS FLAG3.FLAG27
LIST SCRATCH;L

THE SCRATCH FILE AT FLAG 27
// XIF

The 6th through the 12th lines will not be used if FLAG1

exists, notwithstanding the fact that there is an ELSE and XIF
operator within those lines, because the BEGIN/END pair prevented

14-6 DISK OPERATING SYSTEM

these statements from having any effect.

14.6 ABORT Directives

The //ABORT statement will cause CHAIN to return to DOS if it
is processed. For example:

//IFC TIME|DATE

L¥¥%¥ TTIME AND DATE ARE BOTH REQUIRED
//ABORT

//XIF

If the Procedure File is invoked with TIME or DATE missing, the
error message comment line would be displayed, and the compilation
of the input file would ABORT.

The //ABTIF statement will conditionally cause the execution
phase of CHAIN to ABORT. This statement causes DOSFLAG to be
examined and if bit 7 (ABTIF) is on, the chaining will abort. Bit
7 of DOSFLAG is the abnormal program completion bit. If errors
have been found during the execution of the last program the ABTIF
bit should be set. For example, the procedure file contains:

KILL TESTFILE/CMD
Y
//ABTIF

KILL OUTPUT/TXT
Y .

If the file TESTFILE/CMD is not found by KILL, it will set the
ABTIF bit. When the //ABTIF statement is processed the abnormal
program completion bit will be checked, and in this case it will
be on, so the CHAIN will be aborted.

CHAPTER 14. CHAIN COMMAND 14-7

14,7 Comments

CHAIN allows for two types of comment lines within the
procedural file. One type is the execution time comment. This
type may appear only before a DOS command entry and will not
appear until just before that command is to be executed. An
execution time comment can appear only just before a command
because at any other place in a procedure file, the comment would
be presented as keyboard response to an executing program.
Comments can be placed at the end of a procedure, since this
location is equivalent to immediately prior to a command. For
example, the procedure file containing:

//. ASSEMBLY OF THE TEST PROGRAM
ASM TEST;XL
TEST PROGRAM

would cause the first line to be displayed before the assembly was
executed. A variation on the execution time comment is the
operator break point. For example, the procedure file containing:

//% INSERT TAPE Z12548 INTO THE FRONT CASSETTE DECK

MOUT ;LV
TEST
DATA/TXT
*

would cause a BEEP and the first line to be displayed. At this
point the machine would wait for the operator to depress either
the KEYBOARD or DISPLAY key and then continue with the MOUT
process.

The second type of comment line is a compilation time
comment. This line is not included in the procedure but is
displayed on the screen immediately after it is read from the
procedural file. This is useful in communicating to the operator
what procedure is about to be followed by CHAIN.

Both types of comment lines will be ignored (not displayed or
written) just as other procedure lines if a test has proven
negative and an ELSE or XIF operator has not been reached. For
example, if the following procedure file MAKETEST was created:

. ASSEMBLY OF TEST PROGRAM
// IFS LIST

. YOU ARE GOING TO GET A LISTING
ASM TEST;XL

TEST PROGRAM

14-8 DISK OPERATING SYSTEM

// ELSE
. YOU AREN'T GOING TO GET A LISTING
ASM TEST
and the CHAIN command:
CHAIN MAKELIST;LIST

was given, then only the lines:

ASSEMBLY OF TEST PROGRAM
YOU ARE GOING TO GET A LISTING

will appear on the screen before the procedure is executed.

however, the CHAIN command:
CHAIN MAKETEST
was given, then only the lines:

ASSEMBLY OF TEST PROGRAM
YOU AREN'T GOING TO GET A LISTING

If,

will appear on the screen before the procedure is executed.

CHAPTER 14. CHAIN COMMAND

14-9

14.8 Complex CHAIN Example

As an example of a complex CHAIN operation, consider the
following procedure file, RUNTEST. This file is part of a series
of CHAIN procedures for program generation and testing. RUNTEST
builds a procedure file for program assembly; the resulting
procedure file would be run by a later CHAIN.

RUNTEST recognizes several tags:

P5500 -
REL -

FLAG

PROG

DATE

mention of this tag indicates a 5500 processor
will be used for assembly.

mention of this tag, along with P5500 will cause
the relocatable assembler to be used.

the substitution value for this tag will be tag
tested for list control on the output procedure
file.

the substitution value for this tag will be a tag
to provide program name in the output procedure
file.

the substitution value for this tag will provide
the assembly date in the output procedure file.

14-10 DISK OPERATING SYSTEM

. Complex CHAINing example:

TEST FOR 5500 PROCESSOR FLAG

//IFC P5500
//BEGIN |

BEGIN PROCEDURE FOR 2200 ASSEMBLY
BUILD ASMIT;*

NOTE HOW BEGINNING INPUT LINE TO BUILD/CMD WITH THE TERMINATION CHARACTER
ALLOWS ENTERING CHAIN COMMANDS TO THE OUTPUT FILE. THE LINE IMMEDIATELY
BELOW IS WRITTEN OUT AS "//IFS #FLAG#"; IF IT HAD NOT BEGUN WITH "*" IT
WOULD HAVE BEEN INTERPRETED AS A CHAIN DIRECTIVE FOR THE CURRENT CHAIN.

¥//IFS #FLAG#

*¥//% ASSEMBLY LISTING - BE SURE PRINTER IS READY
ASM5 ##PROG##;LX '

##PROG## ASSEMBLY #DATE#

*//ELSE

ASM5 ##PROG##

*//XIF

*

//END
THIS "//ELSE"™ INSTRUCTION REVERSES THE EFFECT OF THE "//IFC P5500" ABOVE

//ELSE,
//BEGIN

. BEGIN PROCEDURE FOR 5500 ASSEMBLY USING SNAP/1 OR SNAP/2 BASED ON "REL"
. FLAG.
THE "BEGIN" ABOVE CAUSES THE "XIF"S AND "ELSE"S IN THE FOLLOWING SECTION
TO AFFECT ONLY DIRECTIVES AT THE SAME BEGIN/END LEVEL, AND NOT THE
"//ELSE" DIRECTIVE ABOVE, WHICH CONTROLS THE ENTIRE 5500 ASSEMBLY
SECTION.

BUILD SNAPIT;*®
*//IFS #FLAG#
*//% ASSEMBLY LISTING - BE SURE PRINTER IS READY

THE FOLLOWING DIRECTIVES ARE RECOGNIZED DURING CHAIN COMPILATION AND
CONTROL SELECTION OF LINES TO FOLLOW THE BUILD COMMAND ABOVE.

//IFS REL

CHAPTER 14. CHAIN COMMAND 14-11

SNAP2 ##PROG##;LX
//ELSE

SNAP ##PROG##;LX
//XIF

##PROG## ASSEMBLY #DATE#
*//ELSE

//IFS REL

SNAP2 ##PROG##
//ELSE

SNAP ##PROG##
//XIF

*//XIF

//IFS REL

AGAIN TEST IF RELOCATABLE ASSEMBLER IS DESIRED. IF SO, ADD LINK COMMAND.

¥//IFS #FLAG#

LINK ##PROG##;L

LINK MAP FOR ##PROG##
¥//ELSE

LINK ##PROG##

*¥//XIF

//XIF

¥

PROCEDURE IS EFFECTIVELY FINISHED AT THIS POINT, BUT IT IS ESSENTIAL TO
PROVIDE AN "END" DIRECTIVE TO MATCH THE UNMATCHED "BEGIN" ABOVE, AND
AN "XIF"™ TO TERMINATE THE "ELSE"™ IMMEDIATELY PRIOR TO THE "BEGIN".

/ JEND
//XIF

RESULT OF "CHAIN RUNTEST;P5500,REL,FLAG=LIST,PROG=NAME,DATE=21JANTT"

//IFS LIST :
//%* ASSEMBLY LISTING - BE SURE PRINTER IS READY
SNAP2 #NAME#;LX

#NAME# ASSEMBLY 21JANTT
//ELSE

SNAP2 #NAME#

//XIF

//IFS LIST

LINK #NAME#;L

LINK MAP FOR #NAME#
//ELSE

LINK #NAME#

//X1IF

14-12 DISK OPERATING SYSTEM

RESULT OF "CHAIN RUNTEST;FLAG=PRINT,PROG=PROG,DATE"

//IFS PRINT

//%* ASSEMBLY LISTING - BE SURE PRINTER IS READY
ASM5 #PROG#;LX

#PROG# ASSEMBLY

//ELSE

ASM5 #PROG#

//XIF

14.9 Resuming An Aborted CHAIN

Before the CHAIN overlay fetches the next DOS command it
stores in the CHAINP/SYS file pointers for the line to be used.
If something goes wrong during the DOS command which follows and
the procedure is aborted, CHAIN still knows where it was in the
CHAINP/SYS file when the problen occurred. Since CHAIN does not
delete the CHAINP/SYS file unless the procedure completes
successfully, it can pick up where it stopped in the CHAINP/SYS
file if the operator can correct the condition which caused the
procedure to abort in the first place. O0ften, the reason for the
abort is something correctable like the disk running out of files.
In this case, the operator need only correct the condition and
then enter:

CHAIN ¥

and the procedure will pick up with the command which failed
before. This action can generally be applied even if 'the RESTART
key has been depressed. Thus, one can recover from jammed paper
in a printer half way through a listing by simply depressing
RESTART, fixing the printer, and then entering the CHAIN ¥
command.

If the failing command cannot ever succeed, it may be
bypassed by entering the command:

CHAIN/OV1

This simply restarts the chain with the next available line
in the procedure. If the next line had been intended as a keyin
line for the failed program (as opposed to a DOS command line) the
chain will generally immediately abort again. However, by
restarting the chain in this manner, repeatedly if necessary, the
invalid step can usually be bypassed and chaining resumed.

NOTE: CHAIN/OV1 only works if the area from MCR$+80 through

CHAPTER 14. CHAIN COMMAND 14-13

MCR$+100 has not been disturbed.

14.10 Notes On Usage of CHAIN

CHAIN only replaces the DOS keyboard entry routine (KEYIN$).
Therefore, only programs that use this routine for input will
receive their input from the chain file. Programs which have
their own input routines, like the Editor, can be invoked from a
chain file but editing must be done manually by the operator. The
CHAIN program itself can be called from within a CHAIN file. The
chain is aborted when a CHAIN-invoked program makes an exit to DOS
that implies that an error of some kind has been made. The error
message given by the program will generally remain on the screen
after the chain is aborted.

Some programs can go through a rather complex set of requests
for input which can make them hard to use with the CHAIN program
without making a mistake. For this reason, most DOS programs
allow almost all options to be specified on the command line and
keep the variation in the number of keyin requests to a minimum.
It is good practice for all programs to be written with this in
mind to facilitate their use with CHAIN.

An additional item to keep in mind is the fact that some DOS
programs use their own keyboard entry routine as well as the one
provided by the DOS. This enables the program to avoid the use of
the CHAIN procedural lines when special operator intervention is
required.

14-14 DISK OPERATING SYSTEM |

CHAPTER 15. CHANGE COMMAND

CHANGE - Change a file's protection
CHANGE <file spec>;p

The CHANGE command enables one to write protect, delete
protect, or clear the protection of a disk file. If a file is
delete or write protected, a KILL command (or program generated
KILL) cannot affect it. If a file is write protected, it cannot
be written into by the standard system routines.

The option parameter "p" is used above to indicate the
protection for the file specified. Protection can be specified
as:

D - delete protect
W - write protect
X - clear protection.

For example:

CHANGE NAME/EXTENSION;D
CHANGE NAME/EXTENSION:DR2;X

will delete protect the file in the first case, and remove all
protection in the second case. If a first specification is not
given, the message

NAME REQUIRED.

will be displayed. If the file indicated by the first file
specification cannot be found, the message

NO SUCH NAME.

will be displayed. If the option parameter does not follow the
above syntax rules, the message

INVALID PROTECTION SPECIFICATION.

will be displayed.

CHAPTER 15. CHANGE COMMAND 15=1

CHAPTER 16. COPY COMMAND

16.1 Purpose

It is frequently useful to make a copy of a disk file. It
may be desired, for example, to make a copy on a separate volume
for backup or distribution purposes.

Another feature of the COPY command will optionally allow a
user to selectively update (replace) an existing file, or create
(add) a new file to receive the copy. These options used in
combination with the CHAIN utility provide an easy method of
updating and maintaining DOS disks and diskettes.

The COPY command does not make assumptions about the format
of the sectors being copied, but merely copies the file
sector-for-sector. It can copy most types of disk files which
previously were not possible to copy using the SAPP and APP
commands. Some particular types of files are still unmovable,
however. The outstanding example are INDEX files, usually with
extension /ISI. These cannot be moved because index files
contain, internal to themselves, pointers indicating their actual
physical location on the disk volume, which are made invalid when
the file is moved to another place on the disk.

16.2 Use

The COPY command is invoked by entering at the system
console:

COPY <file spec>,<file spec> Unconditional copy

COPY <file spec>,<file spec>;R Replace only

COPY <file spec>,<file spec>;A Add only
UNCONDITIONAL:

This option will cause the first specified file to be copied
into the second one. Attributes of the first file, such as
its protection, are copied to the second file as well.

CHAPTER 16. COPY COMMAND 16-1

REPLACE:
This option will copy a file only to an existing file. If
the output file does not exist no copy of data takes place
and an informative message is given, "file-name NOT COPIED".
ADD:
This option will copy a file only if the output file does not
already exist. If the output file does exist no copy of data
takes place and an informative message is given "file-name
NOT COPIED".

The only portion of the operands that is specifically
required is the name of the input file. The extension of the
input file, if none is specified, is assumed to be /TXT. If a
drive specification is entered for the input file, then only that
specific drive is searched for the indicated file. If no drive
specification for the input file is given, all drives are
searched. If the name of the output file is omitted, it is
assumed to be the same as that of the input file. If the output
file's extension is not given, it is also assumed to be the same
as that of the input file. All drives are searched for the output
file unless a particular drive is specified.

Example, to copy file PAYROLL/TXT from symbolic drive "WORK2"
to symbolic drive "WORK1"

COPY PAYROLL:WORK2, :WORK1

Example, to make another copy of PROGRAM/ABS on drive zero,
but to be named MYPROG.

COPY PROGRAM/ABS,MYPROG:DRO

Example, to make another copy of PAYROLL/TXT drive 0, on
drive 1 only if it does not already exist on drive 1.

COPY PAYROLL:DRO,:DR1;A

Example, to update (replace only) TREK/ABS, a file on drive 0
from a newer version on drive 1.

COPY TREK/ABS:DR1,:DRO;R

People who experience parity errors in one of their data
files can frequently recover their data using COPY. Since the
COPY program merely comments about parity errors encountered and
does not abort when one occurs, the data copied will occasionally

16-2 DISK OPERATING SYSTEM

be correct (or almost correct) even if a parity error occurs and
can be used to recover the data in the original file.
Alternatively, using the COPY program to write the file on top of
itself (therefore without changing the file) by simply specifying
the input file and no output file, a user can frequently clear
soft (and occasionally what seem to be hard) parity errors
occurring in an important data file. (Of course, no important
file should be updated in place unless a copy of the file exists
somewhere for recovery purposes in the event of a failure).

The COPY command issues a click each time an unused sector is
copied. If more than a dozen or so clicks occur at the end of
copying a file, it usually indicates that the file is larger than
necessary to contain the data in it. 1In this case, moving the
file using APP or SAPP can sometimes help to reduce its size.
Clicks ocurring during the copying (before the end of the file)
indicate sectors containing DOS format errors, possibly implying a
sector accidentally destroyed by some faulty program.

CHAPTER 16. COPY COMMAND 16-3

CHAPTER 17. DOSGEN COMMAND

17.1 Purpose

Before any disk can be used by DOS, certain tables and other
information must be placed onto it to establish the basis that DOS
requires for the support of its file structure. These tables
include the skeleton of the DOS directory, (where the names of the
files contained on the disk are stored), as well as a map showing
which places on the disk are bad and should not be used.

The purpose of the DOSGEN command is to provide the user with
a simple way of accomplishing this preparation.

17.2 Use
To DOSGEN a disk enter:
DOSGEN <drive spec>

The drive spec is a standard DOS drive specification which
specifies which drive contains the disk to be prepared for DOS
use. Since the directory initialization process will effectively
KILL any files that might be on the disk, the command asks several
times to make sure that the operator is aware of the potential
seriousness of the operation he has invoked.

After the operator has acknowledged that he does not mind the
overwriting of the new disk, the command asks if any cylinders on
the volume are to be locked out. Normally, the answer to this
question is NO. However, by answering YES, it is possible to cause
the DOS to lock out one or more cylinders of the disk from DOS
access. This can be useful in some special applications where it
is desired to not allow DOS programs access to a file stored in
unusual format. If the user does wish to lock out any cylinders,
he may do so by specifying one or more cylinder numbers, in the
format:

12,14,16,25-28,140

The above example would cause cylinders 12, 14, 16, 25, 26,
27, 28, and Y40 to be locked out. Note that the cylinder numbers

CHAPTER 17. DOSGEN COMMAND 17-1

to be locked out are given in decimal as opposed to octal.

After the operator has specified that no, or which, cylinders
are to be locked out, the DOSGEN command checks for bad sectors on
the disk and issues a message indicating any cylinders it finds
which contain bad sectors. Any cylinders found bad are
automatically locked out and will not be used by DOS. The
remainder of the operation is completely automatic and indicates
its completion with the familiar DOS message, "READY".

Upon completion of the DOS generation process, the only files
on the new disk are the eight system files SYSTEMO/SYS through
SYSTEMT7/SYS and the CAT command.

17.3 Special Considerations

It is important to remember that on disk packs for use with
DOS systems recognizing more than one logical drive per physical
disk pack, for example the 9370 series disk system, two DOSGENs
must be done before the physical pack is fully initialized. This
allows the user to DOSGEN either logical disk on the pack without
disturbing files he wishes to keep that may be stored on the other
logical disk.

Another important thing to remember is that both the 9370 and
9380 series disks must be formatted before DOSGEN can be used on
them. Diskettes (for the 9380 series drives) come pre-formatted
from the manufacturer; disk packs for the 9370 series drives do
not. It is therefore necessary to format all disk packs for the
9370-series drives using the program INIT9370 before attempting to
use DOSGEN on them. A diskette that has been formatted with
tracks locked out (error mapped) cannot be DOSGENed.

17=2 DISK OPERATING SYSTEM

CHAPTER 18. DUMP COMMAND

18.1 Purpose

Occasionally while writing into files on disk (in particular,
during the program debugging stage) it is useful to be able to
verify that the formatting of the information into the standard
text format is being done correctly. Or, perhaps an assembler
language program (/ABS file) that previously loaded correctly no
longer will, as indicated by DOS Jjust coming back up when the
program is run.

The DUMP command provides a simplified mechanism for
examining the entire contents of physical sectors on the disk.
The display includes both the octal and ASCII contents of every
byte on the sector. No examination for control bytes of any kind
is made, allowing the user to see the precise contents of every
physical location in the disk sector.

18.2 Use
The DUMP command is invoked by entering:
DUMP

or
DUMP <file spec>

The DUMP command operates with basically five separate levels
of control. These levels are:

LEVEL ONE - Logical drive level

LEVEL TWO - File level

LEVEL THREE - Logical record number level
LEVEL FOUR - Physical disk address level
LEVEL FIVE - Disk directory level

The (optional) entry file and/or drive specifications on the

command line allow the first one or two input levels in DUMP to be
automatically bypassed.

CHAPTER 18. DUMP COMMAND 18-1

When the DUMP command is used, the top line on the display is
the primary control line. Input is accepted on this line. This
line is broken into four basic areas, one corresponding with each
of the first four control levels. The primary control level at
any given time during the operation of the DUMP command can be
determined by the position of the flashing cursor on the control
line.

For example, if the flashing cursor is positioned after the
"DRIVE:" legend on the control line, the DUMP command is operating
at level one. If the cursor is positioned after the "FILE:"
legend on the control line, the DUMP command is operating at level
two, etec.

18.3 Informational Messages Provided

The second line on the display is primarily used for sector
informational messages. These serve both to indicate any special
significance of the sector Jjust read and to describe any unusual
occurrences associated with reading the sector. These messages
are generally self-explanatory. Among the messages that can be
displayed are the following, along with an explanation of the
meaning of each.

RETRIEVAL INFORMATION BLOCK (RIB). This message indicates
that the sector being displayed is the primary RIB for the ’
currently opened file.

RETRIEVAL INFORMATION BLOCK BACKUP. Each RIB is maintained
in duplicate for backup purposes and to allow recovery in the
event of a program erroneously destroying the primary RIB. This
message indicates that the sector being displayed is the secondary
RIB for the currently opened file.

CLUSTER ALLOCATION TABLE. This message indicates that the
sector being displayed is the primary Cluster Allocation Table
(normally referred to as the CAT) for the current logical drive.

CLUSTER ALLOCATION TABLE BACKUP. This message indicates that
the sector being displayed is the secondary, backup CAT for the
current logical drive. The CAT is also maintained in duplicate
just as is the RIB.

LOCKOUT CLUSTER ALLOCATION TABLE. Associated with each
logical drive is a sector that indicates which areas have been

locked out, prohibiting their use by D0OS. This message indicates
that the sector being displayed is the Lockout CAT for the current

18-2 DISK OPERATING SYSTEM

logical drive.

LOCKOUT CLUSTER ALLOCATION TABLE BACKUP. This message
indicates that the sector being displayed is the secondary, backup
copy of the sector.

SYSTEM DIRECTORY SECTOR. This message indicates that the
sector being displayed is one of the DOS directory sectors. The
directory sector number (in decimal and in octal) immediately
follows the message.

USER DATA SECTOR. This message indicates that the sector is
not recognized as one of the above special system sectors.

DISK SECTOR CRCC ERROR. This message indicates that the
sector requested for display either was not found on the disk or
that a CRCC error repeatedly occurred during the read operation.
The sector displayed is the data as it was read from the disk,
unless the sector was not found.

DISK OFFLINE. This message indicates that the currently
specified logical drive is not on line.

DISK SECTOR FORMAT ERROR. This message is displayed when
DUMP notices that the sector being displayed does not correspond
to standard DOS file conventions (the first byte of each sector is
its physical file number, and the two following bytes are the
logical record number). The appearance of this message does not
necessarily indicate that the sector of the file has been
destroyed, since unwritten sectors at the end of a file and older
version DATASHARE object code files normally will fall into this
class. It merely means that if the sector were read with the DOS
READ$ routine, a format trap would occur.

SECTOR OUT OF RANGE. This message is displayed if the sector
requested (by logical record number) is not within the range of
the currently opened file.

FILE NOT FQUND. This message indicates that the file
requested could not be found. This does not necessarily mean that
the file does not exist. For example, the file could be in a
non-current subdirectory. If the user has not requested
non-specific volume mode (to be described), this message might
mean simply that the file desired is on a different logical drive.

INVALID PHYSTICAL ADDRESS. This message indicates that the
physical disk address specified is invalid.

CHAPTER 18. DUMP COMMAND 18-3

The remainder of the display contains the contents of the
current half of the sector most recently read. The display is
arranged as eight groups of sixteen bytes each. Each of these
groups 1is preceded by the three octal digit offset of that group
within the sector. Each sixteen byte group consists of the octal
and ASCII contents of each of the sixteen bytes in that group.
Each byte's contents form a column one character wide and four
lines high, where the first three lines are the value of the byte,
in octal, and the fourth line is the ASCII value of that
character. Notice that the character is not examined for special
significance before it is displayed, so that computers having the
high speed RAM display option (which is strongly recommended for
all DOS systems) may display characters other than the normal
ASCII set.

18.4 Level One Commands To DUMP

When the flashing cursor indicates that DUMP is functioning
at level one, the following commands are accepted:

<enter> - The CAT on the current drive is displayed and
control is transferred to level two. 1In addition, the
non-specific drive mode is enabled.

number - The drive number indicated becomes the currently
selected drive. The CAT from that drive is displayed and control
is transferred to level two. Non-specific drive mode is disabled.

¥ - DUMP command returns control to the DOS.

> - The second half of the current sector is displayed.

< -~ The first half of the current sector is displayed.

18.5 Level Two Commands To DUMP

When the flashing cursor indicates that the DUMP command is
functioning at control level two, the following commands are
accepted:

<enter> - If a file is currently opened, the secondary RIB
for the file is displayed and control is transferred to level
three. If no file is opened, control is transferred to level
four. :

name/ext - The named file is opened on the current drive, or
any drive if non-specific drive mode is enabled. The primary RIB
for the file is displayed and control is transferred to level
three.

pfn - The file indicated by the octal physical file number
given is opened on the current drive. The primary RIB for the

18-1 DISK OPERATING SYSTEM

file 1s displayed and control transfers to level three.

I - The current physical file number is incremented and the
new file thus indicated is opened. If no file corresponding to
that physical file number exists on the current drive, the PFN 1is
incremented repeatedly until a file corresponding to the PFN is
found. The primary RIB for the file is displayed and control 1is
transferred to level three.

D - D works just like the I command above except that instead
of incrementing the PFN, it is decremented.

#pfn - The directory sector containing the entry
corresponding to the file indicated by the specified physical file
number is displayed; then control is transferred to level five.
Since only the last four bits of the PFN are relevant, the pfn
specifier is equivalent to a relative directory sector number.
These directory sector numbers are always specified in octal.

¥ - Return control to level one.

> - Show the second half of the current sector.

< - Show the first half of the current sector.

18.6 Level Three Commands To DUMP

When the cursor indicates that DUMP is functioning at level
three, the LRN level, the following commands are accepted.

<enter> - The current sector is shown and control is
transferred to level four.

number - Access and display the record indicated by the LRN
specified. If the number given has a leading zero, it 1s assumed
to be octal; otherwise it is assumed to be decimal. The number
specified is the user (as opposed to system) LRN. The system LRN,
the value in bytes one and two in the sector, is always two
greater than the user LRN. The two numbers displayed at level
three in the control line are the user LRN in decimal (the one
with leading zeros suppressed) and octal (the one in parentheses,
with leading zeros).

I - Increment the current logical record number, access it
and display the sector.

D - Decrement the current logical record number, access 1t
and display the sector.

¥ - Return to the File level of control (level two).

> - Show the second half of the current sector.

< - Show the first half of the current sector.

CHAPTER 18. DUMP COMMAND 18-5

18.7 Level Four Commands To DUMP

Level four of the DUMP command requires more detailed
understanding of DOS physical disk addresses, and as such is not
usually as useful as the LRN level. However, when access to a
specific sector on the disk is desired, it can be achieved using
DUMP 1level four. It is important to realize that the physical
disk addresses specified are logical physical disk addresses, i.e.
the same format as is given to the DR$ and DW$ routines in the
DOS. They are not necessarily the same as actual physical
locations on the disk. For example, with DOS.C for the 9380
series diskettes, the logical disk addresses are remapped onto the
diskette into different hard physical sector numbers than those
indicated by the logical physical disk address. The important
thing to understand here is that the disk addresses used in the
level four control of DUMP are those that would be used to
parameterize DR$ and DW$.

The commands accepted at level four of DUMP are as follows.

msb,1lsb - Access and display the sector indicated at the
given physical disk address on the current logical drive. The
first field (most significant byte) is assumed to be in decimal
unless a leading zero is supplied. The second field (least
significant byte) is always considered to be in octal, regardless
of whether a leading zero is supplied or not. The second field is
separated from the first by a comma. The physical disk address
given by the user is assumed to be valid. If it is not of the
proper format, undefined results may occur. Users who are not
sure of their understanding of DOS internal physical disk
addresses should not use level four of DUMP.

' ¥ - Return control to level two if no file is opened, or

level three otherwise.

> - Show the second half of the current sector.

< - Show the first half of the current sector.

18.8 Level Five Commands to DUMP

When the flashing cursor indicates that the DUMP command 1is
operating at control level five (system directory sector level),
the following commands are accepted:

number - Show the directory sector indicated by the low order
four bits of the number specified. Since only the low order four
bits of the number are used, it is not an error to specify simply
the physical file number (PFN) of the file whose directory entry
is to be examined. A leading zero indicates the number is 1in

18-6 DISK OPERATING SYSTEM

octal, otherwise decimal is assumed.

I - The current directory sector number is incremented and
the corresponding directory sector is displayed.

D - The current directory sector number is decremented and
the corresponding directory sector is displayed.

¥ - Return control to level two.
> - Show the second half of the current directory sector.

< - Show the first half of the current directory sector.

18.9 Error Messages

Only one error message is issued by the DUMP command. It is:
ERROR IN DOS FUNCTION. DUMP ABORTED.

If this error message occurs, it means that the DOS FUNCTIONs
are probably incorrect on the disk, generally indicating that the
disk in the booted drive has not been completely (or correctly)
DOSGENed. If this is the case, SYSTEM7/SYS should be loaded using
the latest copy of DOS as distributed by Datapoint.

CHAPTER 18. DUMP COMMAND 18-7

CHAPTER 19. THE DUMP93X0 COMMAND

DUMP93X0 represents one of three programs: DUMP9350,
DUMP9370, DUMP9380. Each program functions on only one of the
Datapoint type disks, 9350 series, 9370 series, or 9380 series
repectively. In the following chapter, characteristics of a
particular program or disk will be indicated by the specific drive
type. Features common to all programs will be indicated by
reference to "DUMP93X0", so the "X" can be at any time read as
ngn o onrn. or "8", The examples that follow are primarily set for
DUMP9370 use, since the 9370 disk uses the most complex address
format. 1In general, the examples apply equally well to 9350 or
9380 disks, ignoring the head address used in the 9370 command.
The DUMP93X0 command enables the programmer to inspect, record, or
load physical disk sectors. DUMP93X0 is intended to be used only
for extremely low-level disk examination and by trained systems
personnel. Most users will find the facilities provided by the
DUMP command to be more useful for general disk examination
purposes.

19.1 Use

DUMP93X0 can be invoked from an active DOS by keying in at
the system console:

DUMP93X0

Since DUMP93X0 is a completely self-contained program, it can
be run from an LGO cassette tape (unlike most DOS commands which
rely on one or more of the DOS routines for their execution). In
this mode, DUMP93X0 can occasionally be useful in helping to
determine the problem when the DOS will not boot up from some
disk. If a user intends to use DUMP93X0 in this way, he should
take care to make an LGO tape and store it safely away somewhere,
before he needs it.

DUMP93X0 can output physical disk records (sectors) to a
local printer, the cassette deck, or to the screen, and can load
sectors to disk from the cassette deck.

There are two command handlers in DUMP93X0. The primary
command handler controls all DUMP93X0 functions except the screen

dump. The screen dump requires its own syntax because it is an
interactive, and more flexible, facility.

CHAPTER 19. THE DUMP93X0 COMMAND 19-1

All commands to DUMP93X0 employ the same conceptual
structure, though elements of commands may be implicit as well as
explicit. The full explicit format for commands is:

DUMP9370: Z AAA,BBB,CCC DDD,EEE,FFF
DUMP9350: Z AAA,CCC DDD,FFF
DUMP9380: Z AAA,CCC DDD,FFF

where Z is the command

AAA is the starting cylinder number

BBB is the starting head on cylinder AAA(DUMP9370 only)
CCC 1is the starting sector on that track

DDD is the ending cylinder number

EEE 1is the ending head on cylinder DDD(DUMP9370 only)
FFF 1s the ending sector on that track

Notice that all disk addresses are "hard" physical disk
addresses, as opposed to DOS standard-format (or "logical")
physical disk addresses. All numbers input to DUMP93X0 are octal.
Consult the appropriate appendix for a description of the physical
addressing of the type of disk in use.

The command codes of the primary command handler are:

P Print on the local printer

S Screen dump

CD Cassette dump

CL Cassette load

Jump to DOS DEBUG

* Return to DOS command interpreter

A ASCII mode (for printer or screen dump)
E EBCDIC mode (for printer or screen dump) (DUMP9380 only)
0 Octal mode (for printer or screen dump)
@ Physical drive number
The command codes of the screen dump command handler are:
* Return to the primary command handler
Jump to DOS DEBUG
I Increment the (cylinder,head,sector) address
D Decrement the (cylinder,head,sector) address
C Cylinder address mode
H Head address mode (9370 only)
S Sector address mode
A ASCII display mode
E EBCDIC display mode (9380 only)
0 Octal display mode

19-2 DISK OPERATING SYSTEM

The following operating instructions discuss the commands and
their applications, with some examples, in more detail.

19.2 The primary command handler

As soon as DUMP93X0 has fully loaded, it displays its signon
message on the screen. When the cursor appears at the lower left
corner of the screen the primary command handler is ready to
accept commands.

19.3 Using DUMP93X0 with a Local Printer
P - Print on the local printer

DUMP93X0 will print only to a 132 column local printer,
address 0303. The 256 byte disk records (sectors) are listed 32
bytes per line, 8 lines per sector. Preceding each 8 line block
of print is a short line giving the physical disk address of the
printed sector. One sector or the entire disk may be dumped to
the printer by a P command. After the last sector is printed the
page is ejected to top of the next page.

Unless otherwise specified, the bytes are printed in octal, -
with a space separating each byte, except every eighth byte is
delimited by a period. If the DUMP93X0 command is in the ASCII
mode (set with the A command) characters that are valid ASCII
characters will be printed in ASCII. Lower-case ASCII alphabetic
characters are indicated by a preceding underscore (_). If the
DUMP9380 command is in the EBCDIC mode, bytes that are valid
EBCDIC characters will be printed in EBCDIC, lower case characters
preceded by an underscore. ’

COMMAND EXAMPLES:
p 000,000,000 000,000,000

would dump to the printer the disk records from cylinder 000, head
000, sector 000, thru cylinder 000, head 000, sector 000. In
other words, print only the one sector with the disk address
000,000,000.

Note from the following examples that the parameter fetching
subroutine will make certain assumptions about information not
explicitly given.

P 0,0,0 0,23,27

CHAPTER 19. THE DUMP93X0 COMMAND | 19-3

would dump to the printer the disk records from cylinder 000, head
000, sector 000, thru cylinder 000, head 023, sector 027. In
other words, dump to the printer all of the sectors on cylinder
zero. Note that it is not necessary to supply leading zeros in an
address.

For 9350 series disks, the equivalent command, dump all of
cylinder 0, is ‘

P 0,0 0,67

For 9380 series disks, the equivalent command is
P 0,0 0,14
POO

would do exactly the same thing as the previous example. When
only the first number is given between spaces, it is taken to be a
cylinder address, with a sector and head address of 000 assumed
for the beginning cylinder. For 9370 disks, a head address of 023
and a sector address of 027 are assumed for the ending cylinder
address. For 9350 disks, a sector address of 067 is assumed for
the ending address. For 9380 disks, a sector address of 014 is
assumed for the ending address.

P 4

would dump to the printer the disk records from cylinder 004, head
000, sector 000, thru cylinder 004, head 023, sector 027. In
other words, all of the sectors on cylinder 4. When only one
cylinder address is given, it is taken to be both the beginning
and ending cylinder address. For 9350 series, the command would
dump from cylinder 004, sector 000, through 004, sector 067. For
9380 series, the command would dump from cylinder 004, sector 000,
through cylinder 004, sector 014.

P 67 70,7
would be assumed to mean: P 067,000,000 070,007,027 ,

or for 9350's P 067,000 070,007
or for 9380's P 067,000 070,007

19-4 DISK OPERATING SYSTEM

19.4 Screen Display format

S - Screen dump

DUMP93X0 can display on the CRT one disk physical record

(sector) at a time,

in octal or ASCII (or EBCDIC for 9380).

The

address of the sector displayed is controlled in a manner
analogous to the display of bytes in memory by the DOS debugging

facility.

A special display format is utilized to enable all 256 bytes

of a sector to be displayed on the screen at one time.
diagram of what a screen dump of a sector would look like;

the CYL,HED,SEC address
sector is its location wi
beginning of the sector,

003,. . ., 0377:
OLL_Q000010020030040050060C7
000 03003103233303Lo2ﬁo3oo37
005 0A3061062063064065066067
_EOO?O.1321031041C5’Oo107
130121132133134135136137
1801561302103 1641657 bb1‘7
_2002012022032042052062C

2302312322332342352?6237
260261262263264265266267
~300301302303304305306307
330331332333334335336337
360361362363364365366367

Below is a
given

44 0,6 and each byte in the example

thin the sector;

010011012013014015016017
04004 10420430440450L46047
070071072073074075076077
110111112113114115116117
THCTU T TH2 I H3THR TS ThOTAT
170171172173174175176177
210211212213214215216217
24024 1242243244245246247
270271272273274275276271
310311312313314315316317
34034 1342343344345346347
370371372373374375376377

Note from the diagram that:

(i.e.,
the bytes are (in octal) 000,

starting at the
001, 002,

020021022023024025026027
050051052053054055056057

120121122723124125126127
150151152153154155156 157

220221222223224225226227
250251252253254255256257

320321322323324325326327
350351352353354355356357

The displayed sector address is in the upper left-hand corner

of the screen. For 9350
shown. For 9370 disks,
shown. For 9380 disks,
sector address is shown.
line;

the cylinder,
the cylinder,

disks,
head,

Each portion of the

stated sequence above is top to bottom.

physical sector,

the cylinder and sector address is
and sector address is

and logical
address is on one

Each group of 10(octal) bytes is displayed in a contiguous

block of digits.

Each block of 100(octal) bytes begins at the left side of the

screen,

preceded by an underscore (_).

Each block of 100(octal) bytes consists of 10(octal) groups

of 10(octal) contiguous bytes;

line,

3, 3,

and 2 groups to a screen
for the three lines required to display 100(octal) bytes.

The screen displays 400(octal) bytes, which is one disk

sector,

256(decimal) bytes.

To further break down the screen and enable quick location

CHAPTER 19.

THE DUMP93XO0

COMMAND 19-5

and reading of individual bytes, the first digit of every second
byte is flashed on and off. Thus, each group of eight bytes is
divided into four units of two bytes.

COMMAND EXAMPLES:
S 044,014,006

would mean: display cylinder 44, head 014, sector 6 on the
screen. This command can only be given to the primary
command handler, and after it is executed DUMP93X0 will be
under the control of the screen dump command handler.

19.5 The Screen Dump Command Handler

Note that as in the DOS debugging facility, the command codes
entered are not displayed, the command is merely immediately
executed.

* Return to the primary command handler. The screen will be
rolled up, the cursor turned on, and keyed commands will be
displayed as they are entered at the lower left corner of the
screen.

NOTE that the SHIFT key must be depressed at the same time as
the asterisk (¥*) key.

Jump to the DOS debugging facility. # will not work if
DUMP93X0 was loaded from an LGO tape.
NOTE that the SHIFT key must be depressed at the same time as
the pound sign (#) key.

I Increment the cylinder, head, or sector address and display
the sector at the new address. The new disk address will be
displayed at the top left corner of the screen.

If the C (Cylinder address mode) command is in force when an I
command is given, the cylinder address will be incremented by
one, the head and sector addresses will not change. Cylinder
address wrap-around occurs at 0312->000 (0114->000 for
DUMP9380). Incrementing by cylinder address is useful for
scanning quickly thru a large file by steps of 4 (9380) or 8
(9350,9370) clusters per increment.

If the H (Head address mode) command is in force when an I
command is given, the head number will be incremented by one.
If the head address was 023, it will wrap around to head zero
and the cylinder address will be incremented by one. Note that

19-6 DISK OPERATING SYSTEM

the head address will increment across both the two logical
packs on the physical drive. H is operative only under
DUMP9370.

If the S (Sector address mode) command is in force when an I
command is given, the sector address will be incremented by
one. If the sector was the last on the track (014 for 9380,
067 for 9350, 027 for 9370), then the head and/or cylinder
address is incremented by one and the sector address is set to
zero. If the cylinder address was the last on the disk, it
will be set to zero. Incrementing by sector enables scanning
sector by sector thru a file and inspection of the exact data
on each disk record. Files which span logical cylinders or
are non-contiguous on the disk (which includes most large
files) will require more detailed understanding by the user of
the DOS file structure (in order to avoid incrementing out of
the file's allocated space) and are usually better examined
using the DUMP command.

Decrement the cylinder, head, or sector address and display
the sector at the new address. Except for the direction of
address change, the D command is functionally 1like the I
command.

Cylinder address mode. This command causes subsequent I or D
commands to alter the cylinder address. Optionally, a
cylinder address may be keyed in before striking the C key;
the current cylinder address will be replaced by the entered
value before the disk record is read and displayed. The
entered digits will be displayed at the lower left corner of
the screen. Note that the address must be an octal address.
If more than three digits are entered DUMP93X0 will BEEP and
the procedure must be re-begun. If the address entered is not
a valid cylinder address (e.g., greater than 0312) the C
command will be in force but the cylinder address will not be
changed. Also note that only the eight least significant bits
of the value entered will be taken for the address (an entered
value of 444 would be interpreted as 044).

Head address mode. This command causes subsequent I or D
commands to alter the head number. Except for the fact that
the H command modifies head addresses and sets head mode, it
is similar to the C command. (DUMP9370 only.)

Sector address mode. This command causes succeeding I or D
commands to alter the sector address. Optionally, a sector
address may be keyed in before striking the S key. The
address option is functionally similar to the C command.

CHAPTER 19. THE DUMP93X0 COMMAND 19-17

Sector address mode is the assumed mode of operation when the
program is started.

A ASCII display mode. This command causes the bytes to be
displayed in ASCII instead of OCTAL on the screen, for all
bytes that have valid ASCII bit configurations.. This is
useful for examining text files on disk. Note that the ASCII
mode will carry over to the P (print) command of the primary
command handler unless changed by a subsequent O command.

E EBCDIC display mode (9380 only). This command causes the
bytes to be displayed in EBCDIC instead of OCTAL on the
screen, for all bytes that have valid EBCDIC bit
configurations. This 1is useful for examining the index track
(track zero) on a diskette, and for text files on IBM
formatted diskettes. While DUMP9380 is in EBCDIC mode, sector
addresses used are taken as physical sector numers. During
ASCII or Octal modes the addresses are taken as logical sector
numbers and are re-mapped to take sector skewing and radius
spiraling into account (see Appendix C).

0 OCTAL display mode. This command causes the bytes to be
displayed in OCTAL instead of ASCII. OCTAL mode is the
assumed mode of operation when the program is started.

19.6 Cassette Operations

CD - Cassette Dump -
CL - Cassette Load

DUMP93X0 can write to the front cassette deck the contents of
specified disk sectors, and can read DUMP93X0 tapes from the front
deck to load specified sectors.

COMMAND EXAMPLES:
¢cb 000,000,000 000,002,027

would mean: dump the sectors from cylinder 000, head 000, sector
000, thru cylinder 000, head 2, sector 027 to the cassette in the
front deck. 1In other words, dump the first three tracks of the
disk to cassette. The CD command will dump from one sector to 500
sectors (all that will fit on a cassette), in contiguous sectors.
The disk addresses given (explicitly or implicitly) must be from
lesser to greater (e.g. CD 40,0,0 36,0,27 would be invalid because
the second address is less than the first address). If any fault
is found in the addresses given, the message:

19-8 DISK OPERATING SYSTEM

PARAMETER ERROR

will be displayed and the machine will BEEP. Refer to the
discussion of the P (print) command for examples of explicit and
implicit addresses in commands. If the command is correct, the
message:

FRONT DECK SCRATCH ?

will be displayed. A reply of "Y" will cause the cassette dump to
proceed, while a reply of "X" will cause an exit to the primary
command handler. Any other reply will cause the question to be
repeated. When the front deck is ready, the cassette dump will
rewind the tape and begin dumping the specified sectors to tape as
individual 256-byte records. When all of the sectors have been
written, the tape is rewound and checked sector by sector against
the sectors on disk. If the tape data does not match the disk
data exactly, the cassette dump will abort with the message:

TAPE/DISK VERIFY FAILURE

and exit to the primary command handler. If the tape is correct,
it is rewound and control is returned to the primary command
handler.

CL 0,2

means: load the disk sectors addressed 000,000,000 thru 000,02,027
from the front cassette. Not more than 500 sectors may be
specified to be loaded from a cassette. The cassette load read
routines expect to find records of exactly 256 bytes on the tape
for at least as many records as there are sectors to be loaded.

If a record that does not meet the specifications is encountered
before the last sector has been loaded, the cassette load will
abort with the message

BAD DUMP TAPE

and return control to the primary command handler. It is not
necessary that the records on the tape be written to the same disk
addresses as from which they were read. Therefore, the CD and CL
commands provide a means of moving sectors from place to place on
one disk, or from one disk to another.

WARNING: Loading these sectors does not affect the C.A.T.
Directory, or RIBs on a disk. Therefore, if the sectors are not

loaded carefully into a matching file, they will be unallocated,
unreferenced and probably cause FORMAT errors if read.

CHAPTER 19. THE DUMP93X0 COMMAND 19

1
Nej

It is not necessary that a CL read all of the records that
may be on a cassette, only that there are at least as many records
on the cassette as there are sectors to be loaded. When the
specified sectors have been loaded, the tape is rewound and the
tape records are re-read and matched against the loaded sectors on
the disk. If the data on the tape does not match the data on the
disk, the cassette load routine will abort with the message:

TAPE/DISK VERIFY FAILURE

and exit to the primary command handler. If everything is
correct, the cassette load routine rewinds the front tape and
returns control to the primary command handler.

19.7 Drive Numbers

When DUMP93X0 begins execution it assumes that it is to deal
with the disk in drive zero. The @€ command instructs DUMP93X0 to
deal with the disk in the specified physical drive.

COMMAND EXAMPLE:

@ 1
would mean: succeeding commands will refer to the disk in physical
drive 1. The @ 1 command will remain in force until another @
command addresses a different physical drive. Note that the

address parameter for the @ command consists of one and only one
digit.

19.8 Error Messages

Some of the error messages produced by DUMP93X0 and their
meanings are explained below.

PARAMETER ERROR

Occurs if an invalid command and/or disk address is given to
the primary command handler. Note that all disk addresses must be
expressed in octal.

SO MUCH °?

Occurs if a command is given to dump more than 10 cylinders
to the printer. Note that one cylinder will fill 32 printer pages

19-10 DISK OPERATING SYSTEM

(8 pages for 9350, 2 pages for 9380), and ten cylinders would
represent a very large file. Respond "N" if you really don't want
the printer to print out that many pages of paper. Otherwise, "Y"
will cause the printing to proceed.

CASSETTE TOO SMALL

Occurs if a command is given to dump too many cylinders to
cassette.

TAPE/DISK VERIFY FAILURE

Occurs during the tape-against-disk check phase of a cassette
dump or cassette load if the data on the tape does not match
exactly the data on disk. The tape is rewound and the dump or
load should be retried.

BAD DUMP TAPE
Occurs if a tape record is read that does not conform to the

DUMP93X0 tape record format. If it occurs during a cassette load,
no data from the bad tape record is written to disk.

DISK NOT ON LINE
This message is self-explanatory.

DISK PROTECTED

Occurs if the disk is protected and a cassette load command
is given. Nothing will be written to the disk as long as the READ
ONLY indicator is on.

C.R.C. ERROR

Occurs if a hardware read or write error persists after three
attempts to accomplish the read/write unless the read error occurs
during a printer dump command (so that data on bad sectors can be

hard-copy recorded and examined). If a C.R.C. error occurs during
a printer dump, the machine will beep.

BEEP (Audio signal)

The machine will BEEP if an invalid command is entered from
the keyboard. Also see C.R.C. ERROR.

SEEK INCOMPLETE

CHAPTER 19. THE DUMP93X0 COMMAND 19-11

(9370 only)

This occurs if the disk controller SEEK INCOMPLETE status bit
is set. This bit is set if a cylinder seek operation does not
finish within 100 milliseconds. When this occurs, it generally
indicates a hardware malfunction.

COMMAND ERROR
(9350 only)

This occurs if the disk controller COMMAND ERROR status bit
is set. The DUMP9350 program should be reloaded if this happens.
If it happens again, something is wrong with the processor, the
I/0 bus, the disk controller, or the disk drive.

SECTOR NOT FOUND
(9370 only)

This occurs if the disk controller SECTOR NOT FOUND status
bit is set. This usually occurs as a result of the formatting
information on a disk (as written by INIT9370) being 1ncomplete or
incorrect, but could also indicate a software or hardware
malfunctlon

(9350 only)

Same as COMMAND ERROR.

(9380 only)

Occurs if the disk controller SECTOR NOT FOUND status bit is
set. This usually occurs as a result of the formatting

information on a disk being incomplete or incorrect, but could
also indicate a software or hardware malfunction.

19-12 DISK OPERATING SYSTEM

CHAPTER 20. EDIT COMMAND

20.1 Introduction

The DOS Editor is used to create and to update source data
files on the disk. The editor, through the use of initialization
parameters, will enable the creation of files in a variety of
formats: text files, assembler code files, DATABUS source code
files, or many user designed data files.

A GLOSSARY of the many terms and phrases used throughout this
chapter is provided in the Glossary at the end of the chapter. A
list of commands and brief definitions is provided in the Command
List Section. Caution: Although virtually any Datapoint format
file may be "edited", files structured with respect to physical
records or those containing strings longer than 79 characters may
have this organization collapsed as the editor compresses the file
into sequential format. In such cases the editor should not be
used.

The editor does not truncate trailing blanks at the end of
lines unless it is in "COMMENT" mode.

20.2 Operation

20.2.1 DOS Initialization

The EDIT program, is parameterized as follows:

EDIT <f1>[,<f2>][,<f3>][;parameter list]

20.2.2 Files

<f1> is the source file, [<f2>] is the scratch file and
[<f3>] is the configuration overlay file. The source file <f1> is
assumed to have an extension of 'TXT' if none is provided. If
there is no file of the specified name, one will be created. If no
scratch file [<f2>] is specified, a file 'SCRATCH/TXT' will be
used. The configuration file [<Kf3>] is assumed to be EDIT/O0V1

CHAPTER 20. EDIT COMMAND 20-1

unless otherwise specified. The default extension for the
configuration file is '0OV1'. ‘

If parameters are indicated by the presence of the
semi-colon, the question:

RECORD PARAMETERS?

will be displayed. 1If 'N' is entered, the editor will begin
execution with the indicated parameters and the configuration file
will not be changed. If 'Y' is entered, the question:

NEW TABS?

will be asked. If 'Y' is entered, the standard tab initialization
line of numbers will be displayed (see :T command description).
After the new tabs are entered, the parameter information and
tabstops are recorded in [<Kf3>].

If no parameter list is provided, [<f3>], if present, is
automatically loaded, causing the -recorded parameters to be used.
20.2.3 Parameter List

A parameter list, indicated by the SEMI-COLON (;) following
the file specifications may be included. That list may include up
to seven parameters which are order independent. The possible

parameters are:

[;[margin]{tab keyl[mode][shift]l[line]lupdate]llkey-click]
If no parameter list is provided, Assembler mode with a margin at
‘75 and SPACE bar for tabbing is assumed.
20.2.3.1 Margin Bell
A number in the parameter list will be taken to be the margin
designator; this causes the margin 'bell' to ring at the
designated margin. (Text may always be input up to column 79

regardless of the margin setting.)

For Example ;30 will cause the bell to ring in column 30.

20-2 DISK OPERATING SYSTEM

20.2.3.2 Tab Key Character

A tab key character encountered in the parameter list, i.e.,
a non-alpha, non-numeric, non-colon, will replace the assumed tab
key character. (SPACE in Assembler, DATABUS and Comment mode,
SEMI-COLON in Text mode.)

For example, "~ will cause the caret key (") to replace the
assumed character as the tab key.

20.2.3.3 Mode

A new set of assumptions will be used if one of the 'mode'
parameters is set. If no mode is listed or 'A' is typed,
Assembler mode will be used. DATABUS or DATAFORM (D) mode simply
changes the tab stops. Comment mode (C) changes the nature of the
DELETE and SCRATCH commands to facilitate adding or changing
comments on assembly code files and also truncates trailing
spaces.

Text mode (T) sets no tabstops, does no shift inversion and
enables the word wrap around feature (see the glossary). To
activate line truncation instead of word wrap around in Text mode,
enter 'L' in the parameter list. To enable shift key inversion
(see glossary) in Text mode, enter the parameter 'S' in the list.
Text mode is especially useful for generating SCRIBE input files.

See the glossary for complete definitions of the various
modes.

20.2.3.4 Update

During editing, the source file is transferred into the
scratch file as the text is updated. The physical source file may
be used as the scratch file as the edit proceeds. When the edit
is terminated, the physical source file is updated.

To inhibit source file update, the 'ONE-PASS' parameter '0O’
may be set in the parameter list. A flag is set which prevents
writing on the physical source file. Then, at the completion of
the edit, the scratch file will contain the updated information
and the source file will be unchanged.

CHAPTER 20. EDIT COMMAND 20-3

20.2.3.5 Key=-click

If the 'K' parameter is set, a click will sound each time a
key is struck.
20.2.4 Examples

To perform standard Assembler code editing, enter the
command:

EDIT <source>

To edit a file for input to the text processor, SCRIBE, enter the
command:

EDIT <source>;T

To change the margin bell to ring at column 35 (e.g. for labels)
enter the command:

EDIT <source>;35T
The parameters would set the bell and use the Text mode

assumptions. Note that the parameters are order independent;
therefore, the command:

EDIT <source>;T35

would achieve the same results.

To generate a second, slightly different, file (without
updating the original file), enter the command:

EDIT <source>,<new e>;0T

If the file is Assembler > instead of text, simply omit the
'T'; if DATABUS, replace)y 'D'.

A second file, with the same name as <f1> but with a
different extension, may be used as the scratch file by entering:

EDIT <f1>,/<extension>

Once the initial command (and parameter list) has been
entered, the DOS Editor signon message will appear on the screen.
This message will be rolled up and the screen cleared with the
cursor left on the 'command line'. From this position data may be

20-4 DISK OPERATING SYSTEM

entered, lines may be fetched from the source file, or editor
commands may be entered.

20.2.5 Data Entry

To enter text, simply type on the bottom line; when the ENTER
key is pressed the screen rolls up one line. The command line 1is
once again blank and the cursor is at the beginning of the command
line, ready to accept more input.

If word wrap around is enabled, when a SPACE is typed within
the last 10 columns of the line or typing proceeds past the end of
the line, the editor automically will roll up the screen and begin
a new line. If a non-space character is typed into the last
column, the last word on the line is removed and, after the screen
is rolled up, that word is placed on the command line, where data
entry may proceed.

When typing on a 'screen line' (as the result of a command),
‘the ENTER key causes the cursor to return to the command line. To
continue data entry at the same screen area, the Pseudo-ENTER key
may be used. This key (DEL shifted) causes (in all but command
mode), a new blank line to be inserted at that point on the screen
so that data entry may proceed.

If word wrap around is enabled, and data is being entered on
a screen line, a new line will automatically be inserted at that
point when, as on the bottom line, a space is entered within the
last 10 columns or a character is typed past column 79.

The BACKSPACE key erases the last character and moves the
cursor back one position. The CANCEL key erases the line back to
the previous tabstop (this action would erase the entire line if
no tabs are set).

Typing the tab key character causes the cursor to move to the
next tab stop to the right. If there are no tab stops to the
right of the cursor, the tab key character is accepted as a normal
data character.

CHAPTER 20. EDIT COMMAND 20-5

20.2.6 Data Retrieval

To fetch data from the source file, press the KEYBOARD and
DISPLAY keys simultaneously. As long as the two keys are
depressed, data will be fetched, displayed on the command line and
rolled up the screen. If end of file is reached, no more data is
fetched and the machine beeps.

To fetch a single line, the shifted DEL key may be pressed
(in the first column of the command line). Using this key insures
that only one input line will be fetched.

20.2.7 EDITOR Command Format

The text appearing on the eleven screen lines (i.e. the lines
above the command line) may be edited using a set of 'commands'.
A 'pointer' (>) in the left hand column of the screen indicates
the line which the command will affect.

To move the pointer up, press the KEYBOARD key. To move the
-pointer down, press the DISPLAY key. The pointer wraps around
from the top to the bottom and vice versa.

Commands allow the user to delete a single line (:D) or part
of the screen (:SC and :3SB), insert (:I) a new line between the
current lines on the screen and modify (:M) parts of a line by
replacing text or inserting new text. Commands are also available
to search the file for specific text (:F and :L) or for the end of
the file (:EOQ or :E¥).

An editor command is always preceeded by a COLON (:). To
enter a command, type, in the first column of the command line, a
colon and the appropriate command character and any necessary
parameters. The command is always typed with the machine in lower
case; thus, with shift inversion on (as in Assembler, Databus and
Comment modes), the command character will appear upper case;
while with shift inversion off (as in Text mode), it will appear
lower case. :

20-6 DISK OPERATING SYSTEM

20.3 Basic EDITOR Commands

The following commands are a few basic editor commands. The
user can get started without worrying about complex command forms.
Remember that the 'pointer' on the screen indicates the line
affected by the command.

:D - DELETE - in all but Comment mode this command deletes
the entire pointed line. (In Comment mode, only the comment field
is deleted. The CANCEL key may however be used to delete the
preceeding fields in the line.)

The cursor is left on the now null line where new text may be
entered. If no replacement text is needed, pressing the ENTER key
in the first column of the pointed line returns the cursor to the
command line. Trailing blanks will not generally be truncated.

Pseudo-ENTER may be used to generate additional lines at this
area of the screen. Word wrap around, if enabled, will apply to
text entered on a deleted line. Pressing the ENTER key will return
the cursor to the command 1line.

See the section on modification for more information about
the pseudo-ENTER key.

:E¥ - EOF without display - searches for the end of the file
and, when it is reached, displays the last eleven lines of text.
The search may be aborted by pressing the KEYBOARD and DISPLAY
keys simultaneously. '

:EO - EOF with display - causes the data to be displayed on
the screen continuously until end of file is reached. The search
‘may be aborted at any time by pressing the KEYBOARD and DISPLAY
keys simultaneously. '

:F <old text> - FIND match - the screen is cleared and the
input file is searched for a line starting with the specified <old
text>. Leading spaces in <old text> are significant and should be
entered if needed (note that this command should be typed exactly
:F<SPACE><o0ld text>).

A FIND will wrap entirely around the file (or up to the end
of file if the one-pass option is set). If the requested text is
not found, the last line on the screen when the FIND was executed
will be displayed. A FIND may be aborted by pressing the KEYBOARD
and DISPLAY keys simultaneously.

:I - INSERT - Perform a line insert at the pointed 1line.

CHAPTER 20. EDIT COMMAND 20-7

This command causes the lines from the top of the screen to the
pointed line, inclusive, to be rolled up and a blank line to be
inserted. The cursor is left at the beginning of the new blank
line where data entry may proceed.

If the pointed line or the line immediately below it is empty
no insert will occur, and the null line will be used as the
inserted line where data entry may proceed.

To make complex changes to a line already on the screen, the
operator may INSERT a line immediately below the original and then
retype the line - with changes. The original line may then be
DELETED.

The pseudo-ENTER key may be used to generate additional lines
at the same point on the screen.

:L - LOCATE next - typed exactly :L<ENTER>, clears the screen
and finds the next line of text. If positioned at the end of the
file, the 'next' line will be the first line of the file.

:L <old text> - LOCATE match - similar to FIND match except
that the locate command searches for imbedded text matching <old
text>. Leading spaces should be supplied if meaningful.

For additional forms of the FIND and LOCATE commands see the
'FILE SEARCH' section.

:M <old text><command separator><new text> - MODIFY - a
modify command allows the operator to replace <old text> by <new
text>, insert <new text> after <old text> or append (i.e.,
truncate and add) <new text> after <old text>. For the various
forms of this command see the MODIFY Command section.

:SC - SCRATCH above - in all but Comment mode this command
erases the lines from the top of the screen down to the pointed
line, inclusive. (In Comment mode, only the comment fields are
erased.)

The cursor is left on the pointed line where data entry may
proceed.

:SB - SCRATCH below - in all but Comment mode this command
erases the lines from the pointed line to the bottom of the
screen, inclusive. (In Comment mode, only the comment fields are
erased.)

The cursor is left on the pointed line, where data entry may

20-8 DISK OPERATING SYSTEM

proceed.

:E - END - the end command causes the remainder of the
logical source file to be copied to the logical scratch file and
then, if the logical scratch is not the physical input file, the
scratch file is copied back to the source file.

The command line will be left on the screen as long as the copy
from source to scratch is in progress; it is erased during the
final copy from scratch back to source.

The end may be aborted as long as the command line is still
displayed, by pressing the KEYBOARD and DISPLAY keys
simultaneously. When the final copy is completed, control is
returned to DOS.

Note that if the one-pass option was selected in the
parameter list, no copy from scratch back to source will be
performed.

:E/ - END/DEL - this command causes the remainder of the
source file to be deleted (the lines currently on the screen will
be written out), and, if the logical scratch file is not the
physical source file, the scratch file is copied back to the
source file. When the file is completely updated, the system is
reloaded.

No copy back is done if the one-pass option is set.

20.4 Modification Commands

Modification of a line may be achieved in a variety of ways.
The DELETE command enables the user to remove leading information
while the MODIFY command may be used to replace imbedded
information, insert text into a line or field, or truncate and add
new text at a specified point or in a specified field.

20.4,1 DELETE Command

:D <old text> - DELETE through - this command deletes all
characters from the left edge of the pointed line through (and
including) the specified <old text>. The remaining characters
will be left justified and re-displayed. The cursor returns
automatically to the command line.

CHAPTER 20. EDIT COMMAND 20-9

20.4.2 MODIFY Command
The general form of the MODIFY command is:
:M[#] [o0ld text]<sep>[new text]

where [#] is an optional number which extends the meaning of the
command (see Field Modification below) and <sep> is the command
separator which defines the action of the command. Both [old
text] and [new text] fields are optional. If [old text] is
omitted, the command will take effect at the left most edge of the
pointed line (or at the left edge of the specified field). If the
[new text] field is omitted, a null field will be used to execute
the modification.

"20.4,.2.1 Line Modification

The following descriptions are of the line modification
version of the MODIFY command

:M [o0ld text] < [new text] - MODIFY (replace) - replace the
specified [old text] by the specified [new text]. The less than
character (<) is a command separator which indicates replacement
and, therefore, the [0ld text] may not contain this character. If
[new text] field is omitted, the old text will simply be deleted
and the line will be compressed to the left.

For example, to modify the text line:
THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG'S BACK.

The command: :M BROWNKRED would cause the line to be
redisplayed like this:

THE QUICK RED FOX JUMPED OVER THE LAZY DOG'S BACK.

The command: :M .< 1234 TIMES. to the original line would
generate a line like:

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG'S BACK 1234
TIMES.

If the replacement causes the line to become longer than 79
characters, the trailing word, in text mode only, will be wrapped
around and a new line will be inserted containing the entire last
word. If the [new text] is shorter than the [o0ld text] it
replaces, the line will be shortened.

20-10 DISK OPERATING SYSTEM

After the pointed line is redisplayed, the cursor is returned
to the command line.

:M [old text] > [new text] - MODIFY (insert) - the command
separator greater than (>) causes the [new text] to be inserted in
the pointed line immediately after the [old text].

If the line becomes longer than 79 characters, and word wrap
around is not in effect, the trailing characters are truncated.
If, however, word wrap around is on, the trailing characters and
last word are inserted on a new line.

:M [old text] \ [new text] or

:M [o0ld text] | [new text] - MODIFY (append) - the vertical
bar (!) or backslash (\) command separators cause everything in
the pointed line, past the [o0ld text], to be replaced by the [new
text].

As in all MODIFY commands, if the pointed line becomes longer
than 79 characters, truncation occurs if word wrap around is not
enabled.

:M - MODIFY repeat - typed exactly :M<ENTER>, uses the <old
text> <sep> <new text> from the last MODIFY command. This is
useful when making the same change repeatedly.

:M*¥ - MODIFY display - display the expression entered for the
last MODIFY. After the saved command is displayed, the cursor is
turned off and the operator must press ENTER to proceed. No
MODIFY is actually performed.

20.4.2.2 Field Modification

In field modification mode, the MODIFY command acts only on a
specific field and does not expand or contract the entire line but
maintains the integrity of all fields before and after the
affected field.

A field is the area between two consecutive tabs. Field one
is between the left margin and the first tab.

:M<#> [0ld text]<sep>[new text] - MODIFY field - where the
pound sign <#> is a number from 1 to 10 designating the field to
be modified (or the starting point to search for matching [old

text]). In Assembler mode, field 1 is the label, field 2 is the op
code, field 3 is the expression and field 4 is the comment. This

CHAPTER 20. EDIT COMMAND 20-11

command may be executed in any of the previous Modify forms.
However, modification is performed within the specified field
only. As long as the text being modified is unique, field 1 may
be specified, since the field number indicates only where to start
looking for matching text. (Note that if the field number is
omitted, line modification is assumed.)

Thus, a replacement or append shorter than the original field
will be blank filled and subsequent fields will maintain their
position and content. An insertion longer than the specified
field will be truncated (with the exception of the last field
whenever word wrap around is in effect).

For example, in Assembler mode, the line:

LABEL OP EXP COMMENT
the label may be deleted by the command:
M1\

with the resultant line:

OP EXP COMMENT

Or, the expression field (EXP) could be changed to EXP+1 without
disturbing the comment field position, by the command:

:M3 EXP>+1
which generates:

LABEL OP EXP+1 COMMENT

To add a comment to a line previously containing none or to
replace an existing comment field, enter:

:M4 \<new comment>
NOTE: When using the repeat form of the MODIFY command, the
field number may need to be supplied. The field number is not

saved with the rest of the modify expression, as can be seen from
the :M¥ display.

20-12 -DISK OPERATING SYSTEM

20.5 File Search Commands

The FIND and LOCATE commands have several forms and have been
separated from the basic command set to better describe them.

Manual, operator controlled, searches may be performed by
depressing the KEYBOARD and DISPLAY keys simultaneously to cause
data to be fetched from the file and displayed (as long as the
keys are pressed) on the screen. To fetch a single line use the
Pseudo-ENTER key (DEL shifted). The :EO command performs the same
function automatically, i.e., it causes lines to be fetched and
displayed until the end of file is reached. To abort a :EO
command, press the KEYBOARD and DISPLAY keys simultaneously.

To find the end of a file without displaying the entire file
(since the display is time consuming) use the :E¥ command. This
will search for the end of file and display the last eleven lines
of data.

:F <old text> - FIND match - the screen is cleared and the
input file is searched for a line starting with the specified <old
text>. Leading spaces in <old text> are significant and should be
entered if needed. (Note that this command should be typed exactly
:F<SPACE><o0ld text>).

A FIND will wrap entirely around the file (or up to the end
of file if the one-pass option is set). If the requested text is
not found, the last line on the screen when the FIND was executed
will be displayed. A FIND may be aborted by pressing the KEYBOARD
and DISPLAY keys simultaneously.

The <old text> specified for a FIND (or LOCATE) command is
saved. The saved match may be redisplayed or used again.

:F<SPACE> - FIND same match - if the FIND command is
followed by exactly one space and the ENTER key, the previous FIND
(or LOCATE) <old text> will be used for this FIND. Several
occurrences of the same text may be searched out in this manner.

:F¥ - FIND display - the asterisk (¥) after the FIND command
causes the <old text> of the previous FIND or LOCATE command to be
displayed. The cursor is turned off and the operator must press
ENTER to proceed. No FIND is performed.

:L - LOCATE next - typed exactly :L<ENTER>, clears the screen

and finds the next line of text. If positioned at the end of the
file, the 'next' line will be the first line of the file.

CHAPTER 20. EDIT COMMAND 20-13

:L <old text> - LOCATE match - similar to FIND match except
that the locate command searches for imbedded text matching <old
text>. Leading spaces should be supplied if meaningful.

:L<SPACE> -~ LOCATE same match - typed exactly
:LK<SPACE><ENTER>, uses the <old text> specified by either the
previous LOCATE or FIND command to perform a search.

:L¥ - LOCATE display - display the <old text> entered for the
previous LOCATE or FIND command. As in the FIND display, the
cursor is turned off and the operator must press ENTER to
continue. No LOCATE is actually performed.

20.6 Miscellaneous Commands

A - APPEND - copies the pointed line to the bottom of the
screen and rolls the screen up one line.

:B - BYPASS - fetch a line from the file, bypassing end of
file or record format error (which would normally be treated as an
end of file). Subsequent lines (if not also record format errors)
may then be fetched by the normal mechanisms. This command is
intended as a recovery tool for use only if the file has been
accidentally shortened or contains badly formatted records.

:C - COPY - copies the pointed line to the bottom of the
screen, deletes the pointed line and rolls the screen up one line.
This command cannot be executed on the top screen line.

The cursor is left on the now null pointed line. Text may be
entered at this point (the Pseudo-ENTER and word wrap around, if
enabled, will apply). When the ENTER key is finally pressed, the
pointer is automatically moved to the following screen line so
that a group of lines may be easily copied to another part of the
screen.,

:T - TAB set - this command enables the user to reset the tab
stops during execution. (Not available in Comment mode.) The
command causes a line of numbers to be displayed across the bottom
of the screen.

The operator should space over to each position where a
tabstop is desired and type any non-blank character. These tab
stops are meaningful during data entry and field modification
(:M#) since data within a field may be modified without disturbing
the rest of the line. A maximum of 10 tab stops may be set.

20-14 DISK OPERATING SYSTEM

:RH - RPG Header - sets tab stops for RPG header
specification at columns 6 and 15.

:RF - RPG File - sets tab stops for RPG file description
specification at columns 6, 15, 24, 33, 40, 54, 66 and 70.

:RE - RPG Extension - sets tab stops for RPG extension
specification at columns 6, 11, 19, 27, 33, 36, 40, 46, 52 and 58.

:RL - RPG Line - sets tab stops for RPG line counter
specification at columns 6, 15 and 20.

:RI - RPG Input - sets tab stops for RPG input specification
at columns 6, 15, 21, 44, 53, 59 and 65.

:RC - RPG Calculation - sets tab stops for RPG calculation
specification at columns 6, 18, 28, 33, 43, 49, 54 and 60.

:RO - RPG Output - sets tab stops for RPG output
specification at columns 6, 15, 23, 32, 38, 40 and 45.

:RS - RPG Summary - sets tab stops for RPG summary
specification at columns 6, 14 and 23.

:X - TEXT - this command enables word wrap around and
disables shift key inversion and space insertion after leading
periods. It automatically enters the tab set command (:T), so
that tab stops may be cleared by the operator. The tab key
character is not changed; therefore, the :<tab key> command must
be used to set a new tab key character if one is desired.

:<tab key> - change tab key character to any non-alpha,
non-numeric, non-COLON, non-ENTER character typed after a leading
colon on the command line.

20.7 Recovery Procedures

A 'FORMAT TRAP' occurs when a record not belonging to the
current file is encountered. This can be caused either by a
physical misalignment of the disk read head or because a record
has erroneously been written into that file by some other program.

A 'RANGE TRAP' occurs when the physical limit of the file is
reached and no end of file is present.

CHAPTER 20. EDIT COMMAND 20-15

20.7.1 Bypassing Errors or End 6f File

When a format or range error occurs, an appropriate message
appears on the command line and the cursor is turned off. 1In
order to proceed, the operator must first press the DISPLAY key.
The effect of either a format or range trap is the same as an end
of file and no further data will be read from the file.

To read past a format error or past an end of file, use the
BYPASS command, :B, repeatedly if necessary.

20.7.2 File Recovery

If the source file is lost (e.g., erroneously KILLed), the -
scratch file may contain a useful copy. Since the scratch file
(SCRATCH/TXT) usually contains a copy of the last file edited, it
may be used to recover only that file.

20.8 Glossary

Assembler mode - assumed mode of execution. Tab stops at 9, 15
and 30 (may be changed during execution). The space bar
is assumed as the tab key character (this may be changed
in parameter list or during execution). Shift key
inversion and no word wrap around are assumed. Leading
period (.) generates period space (.) for comment lines.
Pseudo-ENTER does line-insert.

Command - characters typed at the left edge of the command line
following a COLON (:) which have special meaning to the
editor.

Command line - the twelfth line of the screen where most data is
entered, lines are fetched and commands are typed.

Command separator - the character in a MODIFY command which
indicates what is to be done (> means insert, < means
replace and \ or | mean append).

Comment field - in assembler code the area of the screen from
columns 30 to 79 which is generally used for programmer
comments.

Comment mode - assumed if 'C' in parameter list. Facilitates
changing or adding comments to assembler code. Tab stops

20-16 DISK OPERATING SYSTEM

at 9, 15 and 30 (may not be changed during execution).
The space bar is assumed to be the tab key character
(this may be changed in parameter list or during
execution). Shift key inversion and no word wrap around
are assumed. Leading period (.) generates period space
(.) for comment lines. Pseudo-ENTER positions to
comment field of following line and deletes the comment.
Delete and Scratch commands affect only the comment
field. Trailing blanks are truncated when data is
output.

CONFIGURATION FILE - A file, default name of EDIT/0OV1, which
automatically provides default options to EDIT.

DATABUS mode - assumed if 'D' in parameter list. Tab stops at 9
and 15 (may be changed during execution). The space bar
is assumed to be the tab key character (this may be
changed in the parameter list or during execution).
Shift key inversion and no word wrap around are assumed.
Leading period (.) generates period space (.) for
comment lines. Pseudo-ENTER does line-insert. Input
lines are blank filled and trailing blanks are truncated
on output.

Field number - a digit used in the MODIFY command to designate
characters between two tab stops. Field '1' is always
from column 1 to the first tabstop; thus, in Assembler
mode, '1' designates the label field, '2' the opcode
field, '3' the expression field and '4' the comment
field. During field modification, trailing fields are
preserved.

Format trap - bad record encountered on disk. See 'Recovery
Procedures'.

Line insert - results from an INSERT command, data entry or
modification when word wrap around is in effect or a
Pseudo-ENTER key in any mode other than Comment. The
lines above the pointed line are rolled up and a new,
blank line is generated at the pointed line.

Logical scratch file - current output file.
Logical source file - current input file.
New text - a group of characters, typed immediately after a

command separator in a modify command, which will become
part of the line being modified.

CHAPTER 20. EDIT COMMAND 20-17

0ld text

One-pass

- a group of characters, including spaces, which are
searched for, either in the pointed line (as in the
MODIFY command) or in the file (as in the FIND or LOCATE
commands) .

option - assumed if 'O' in parameter list. The one-pass
option does not update the physical source file. The
FIND, LOCATE and END, END/DEL commands will not write
back into the input file if this option is set.

Parameter list - initialization information provided when the

editor is first executed. Following file specifications,
a SEMI-COLON (;) indicates the presence of a parameter
list. The mode, one-pass option, tab character, margin
bell column and (in text mode) 'no shift inversion' (S)
and 'no word wrap around' (L) may be set.

Pointed line - a pointer (>) in the left hand margin is used to

Physical

Physical

reference lines for modification by command. The line to
the right of the pointer is the pointed line.

scratch file - specified (or implied SCRATCH/TXT) output
file.

source file - specified input file.

Pseudo-ENTER - the key marked DEL (always shifted) is referred to

as the Pseudo-ENTER key. If pressed in the first column
of the command line, one line of text will be fetched
from the source file.

In comment mode, if pressed on any but the bottom screen
line or command line, it will cause the cursor to be
positioned to the comment field of the following line and
that field will be erased.

In all other modes, the Pseudo-ENTER key causes a new
line to be inserted so that data entry may proceed in the
same area of the screen. If pressed on the last screen
line, the Pseudo-ENTER key simply places the cursor on
the command line.

Range trap - attempt to read past the end of allocated space on

the input file - see 'Recovery Procedures' in the
previous section.

Scratch file - at any point in time, the logical scratch file is

20-18

the output file. It may, however, physically be the

DISK OPERATING SYSTEM

original input or the assigned 'scratch' file.

Screen line - any of the eleven lines on the screen which may be
referenced by the command pointer. The command line is
not, therefore, included.

Shift key inversion - reverse the function of the shift key for
all alpha characters so that, in lower case, alpha
characters will appear upper case.

Source file - originally this is the input file specified at
initial execution. The term source file refers to the
current input file; thus, at any point in time, the
logical source file may be either the specified input
file or the file specified as the scratch file.

Text mode - assumed by a 'T' in the parameter list. No tab stops
are set (tabs may be set during execution). The
SEMI-COLON (;) is the assumed tab character (the tab key
character may be changed in the parameter 1list or during
execution). No shift key inversion is performed (this
may be selected in the parameter list). Word wrap around
is performed (this feature may be turned off by an 'L' in
the parameter list).

Word - a word is defined as any group of less than 50 characters
preceeded by a space.

Word wrap around - a feature of text mode. During data entry a
space within the last 10 columns of the screen causes an
immediate carriage return. If this occurs on a screen
line, a line insert is performed so that data entry may
proceed at the same area of the screen. If a character
is typed over the last column of the screen, the last
word is removed, a line insert performed and the removed
word is placed at the beginning of the inserted line
where data entry may proceed. If a modify command causes
the line to become longer than 79 characters, the
trailing characters, including the last word on the line,
will be moved to a new line which will be inserted below
the original line. Control will then return to the
command line.

CHAPTER 20. EDIT COMMAND 20-19

20.9 Command List

tA
:B
:C
:D
:D <old text>
:E

:EO

:E/

(E¥

+F <old text>
+F<SPACE>

(F¥

I
:L

:L <old text>

:L<SPACE>

(L¥

APPEND pointed line to command line and roll up
BYPASS end of file

COPY pointed line to command line and roll up
DELETE entire 1line

DELETE from left thru <old text>

END edit - copy remainder of file and update source

EQOF display - fetch and display data until end of
file

END/DELETE update without copying remainder

EOF search - find end of file and display last full
screen :

FIND match - search file for matching leading text

FIND repeat - use previous find/locate <old text>

FIND display - display previous find/locate <old
text>

INSERT a blank line below pointed line

LOCATE next - élear screen and get next line

LOCATE match - search file for matching imbedded
text

LOCATE rebeat - use previous find/locate <old text>

LOCATE display - display previous find/locate <old
text>

LINE MODIFICATION

:M [o0ld text]<[new text] - MODIFY replace old text by new text,

20-20

adjusting the entire 1line

DISK OPERATING SYSTEM

:M [o0ld text]>[new text] - MODIFY insert new text after old text,
adjusting the entire 1line

:M [o0ld text]\[new text] or :M [o0ld text]|[new text] - MODIFY
append new text after old text adjusting the entire

M

ML

line

FIELD MODIFICATION

[old text]<[new text] - field MODIFY replace old text within
specified field with new text without disturbing the
remainder of the line.

[0ld text]>[new text] - field MQODIFY insert old text after

new
the

text within specified field, without disturbing
remainder of the 1line.

:M<#> [old text]\[new text] or :M<#> [old text]i[new text] - field
MODIFY append the new text after the old text within

M

‘M[#]

+RH

:RF

:RE

:RL

¢RI

:RC

: RO

the

specified field without disturbing the remainder

of the line.

MODIFY display the previous modify [old]<sep>[new]

field MODIFY repeats the previous modify

[old]<sep>[new]

RPG HEADER - sets tab stops at columns 6 and 15.

RPG FILE - sets the stops at columns 15, 24, 33, 40,
54, 66, and T70.

RPG EXTENSION - sets tab stops at columns 6, 11, 19,
27, 33, 36, 40, 46, 52, and 58.

RPG LINE - sets tab stops at columns 6, 15, and 20.
RPG INPUT - sets tab stops at columns 6, 15, 21, U4k,
53, 59, and 65.

RPG CALCULATIONS - sets atab stops at columns 6, 18,
28, 33’ u3, 49, 54, and 60.

RPG OUTPUT - sets tab stops at columns 6, 15, 23,
32, 38, 40, and 45.

CHAPTER 20. EDIT COMMAND 20-21

:RS RPG SUMMARY - sets tab stops at columns 6, 14, and

23.

:SB SCRATCH BELOW deletes the pointed line and all
screen lines below it

:SC SCRATCH ABOVE deletes the pointed line and all
screen lines above it

: T TAB SET permits the user to set up to ten tab stops

X TEXT mode switches to text mode with word wrap

around and no shift key inversion.

:<character> changes the tab key character to <character>.

20=-22 DISK OPERATING SYSTEM

CHAPTER 21. ENCODE/DECODE COMMANDS

21.1 Purpose

The ENCODE command is used to convert disk files containing
data in any format into 79 character records containing only ASCII
characters. Data in encoded format can be copied or transmitted
by all Datapoint programs.

The DECODE command is used to translate encoded data files
back into an exact duplicates of the original disk files.

21.2 Use

ENCODE <file spec>,[<file spec>]

The ENCODE command converts the first file into encoded
format and writes the data into the second file. If extensions
are not supplied, ABS is assumed for the first file and ENC is
assumed for the second file. If the second file is not specified,
the name of the first file with an extension of ENC is assumed.
The second file will be created if it does not already exist.
Encoded data creates a file 50 percent larger than the original.

DECODE <file spec>,[<file spec>]

The DECODE command converts the first file from encoded
format back into binary and writes the data into the second file.
If extensions are not supplied, ENC is assumed for the first file
and ABS is assumed for the second file. If the second file is not
specified, the name of the first file with an extension of ABS is
assumed. The second file will be created if it does not already
exist.

INPUT FILE MUST BE SPECIFIED!
will be displayed if the first file specification is omitted.

INPUT FILE DOES NOT EXIST!

CHAPTER 21. ENCODE/DECODE COMMANDS 21-1

will be displayed if the first file specified cannot be found in
the DOS directory.

OUTPUT WOULD DESTROY INPUT FILE!

will be displayed if the first and second file specifications are
identical.

INPUT FILE CONTAINS BAD DATA!

will be displayed if an encoded data file cannot be decoded into
its original binary form.

ENCODE reads and converts binary data until either a valid
text end-of-file is read or allocated file space is exausted.

Data in encoded form is always terminated with a valid text
end-of-file.

21=2 DISK OPERATING SYSTEM

CHAPTER 22. FILES COMMAND

FILES is a program which selectively prints or displays DOS
file descriptions in file name sequence.

One may select information pertaining to all DOS files or to
only those files with names and/or extensions beginning with the
characters specified by the operator. Selected directory entries
are sorted into ascending file name sequence. If desired,
information from associated Retrieval Information Blocks
(described in the chapter on System Structure) is also extracted
for each directory entry. Extracted data is interpreted and
displayed on the screen, listed on a Local or Servo printer, or
written to a disk file.

22.1 Command Description

To execute the FILES program, type in the name FILES followed
by selection criteria and display options (if option codes are to
be used):

FILES [<filename>][/<ext>][:DRn],[<subdir>] [,<output-file>][;optior

<filename> Select entries for files with names beginning
with the 1-8 characters specified.

<ext>: Select entries for files with name extensions
starting with the 1-3 characters specified.

:DRn Specifies the disk drive to be selected.
If this field is omitted, drive 0 will be
selected.

<{subdir> Specifies the named subdirectory from which

to select entries.
<output-file> Specifies the disk file to which the

selected entries will be written, if disk
file output is specified.

CHAPTER 22. FILES COMMAND 22=-1

options: The following option codes are available, and
may be entered in any order:

- Suppress file allocation map.

- Display on CRT.

List on local printer.

- List on servo printer.

- Write output to disk as DOS text-type
file.

mhnttou =
I

If options are keyed and D, L, S and F are omitted, then D is
assumed. D, L, S, and F options are mutually exclusive; output
can be sent to only one device. If F is keyed and the <output
file spec> is not present in the command line, one is requested
by the message:

DOS OUTPUT FILE SPEC:

22.2 Default Messages

If no option codes are entered, the following messages will
be displayed on the CRT:

SUPPRESS FILE ALLOCATION MAP?

If "Y" or "YES" is entered in response to this message, the
display of file allocation information from Retrieval Information
Blocks (RIB) will be suppressed. If any other response is
entered, file allocation information will be displayed for each
selected file.

After the user has replied to the map selection message, the
program will test to see if the there is a servo printer connected
to the processor. If a servo printer is attached and ready, the
following message will be displayed:

LIST ON SERVO PRINTER?

If the user enters a "Y" or "YES" in response to this
message, the servo printer will be selected to display output. If
any other response is entered or the program cannot find an
available servo printer, the program will test to see if a local
printer is connected and ready for printing. If the program finds

22=2 DISK OPERATING SYSTEM

“that a local printer is available, the following message will be
displayed:

LIST ON LOCAL PRINTER?

If the user enters "Y" or "YES" in response to this message,
the local printer will be selected for output. If a printer has
been selected for output, the following message will be displayed:

ENTER HEADING:

Up to 32 characters can be entered, which will be displayed
at the top of each page of printed output.

If no printer is available, or if the operator has rejected
printer output, the program will ask for disk output:

WRITE OUTPUT ON DISK?

If the user enters "Y" or "YES", output will be written to a
disk file, otherwise output will be displayed on the CRT. If disk
output is selected, an output file name will be requested unless
one was provided on the command line.

22.3 File Descriptions

File descriptions are sorted into ascending file name
sequence for easy reference and displayed or printed in the
following format:

FILENAME/EXT (PFN) DW

DW flags following the Physical File Number (PFN) indicate if
the file is delete protected (D), or write protected (W). If the
file allocation map was not suppressed, messages describing the
file's size and location will be included in the file description.
When allocation map information is printed or displayed, the
program displays totals lines specifying the total number of files
listed and the total number of sectors in those files. Disk
output never has totals lines.

Depressing the DISPLAY key during display or printing of file
descriptions will cause the program to pause until the key is
released. Depressing the KEYBOARD key will cause the program to
terminate and repurn control to the operating system.

Allocation map information describes each segment in the file

CHAPTER 22. FILES COMMAND 22-3

by giving the cylinder and cluster starting address of the segment
and its length in sectors. One line is displayed for each
segment. See the chapter on System Structure and the Appendix for
the appropriate DOS for a description of disk space allocation.

22.4 Error Messages

* PARITY ERROR *

FILES can not continue due to an irrecoverable parity error
encountered while trying to read data from the disk.

¥ DRIVE OFFLINE #¥

FILES is unable to connect to the disk drive selected by the
operator (drive 0 if not otherwise specified).

FILE(S) NOT FOUND.

No Directory entries have been found that meet the user's
selection criteria.

INVALID DRIVE

An invalid drive specification was entered.

CONFLICTING OPTIONS SPECIFIED

Options specify output on more than one device.
UNRECOGNIZABLE OPTION CODE

An unrecognizable code has been entered in the option field.
PRINTER NOT AVAILABLE

An option code specifies a printer that does not respond when
tested for status.

22-4 DISK OPERATING SYSTEM

CHAPTER 23. FIX COMMAND

23.1 Purpose

The FIX program can be used to modify bytes of DOS-loadable
object code in an absolute code file. This program can be very
dangerous and should be used only by qualified assembler language
programmers or by someone folowing specific directions provided by
Datapoint.

23.2 Operation
To invoke FIX, enter the command:
FIX <file spec>

The program will display a sign-on message and will then
display an initial line of six zeros, two spaces, and three more
zeros on the bottom CRT line. (The zeros represent the current
address and its contents.) ‘

000000 000

The screen is then rolled up. The program then waits for a
command from the operator. The <file spec> must specify a
DOS-loadable object file. If no extension is provided, /ABS is
assumed.

Commands are in the form [number][character] where the number
is assumed to be octal. If the number is omitted, a value of zero

is used. Commands are terminated by the enter key. Following a
command, the current address and its contents are re-displayed.

23.3 Commands

The following is a list of command characters with their
effect:

ENTER -~ Set current address.

- If no block of object code is currently in

CHAPTER 23. FIX COMMAND 23-1

O OR * -

memory (as at the beginning of execution or after a block
has been rewritten), search the object file forward until
a block containing the given location is found, then
display the contents of that location. If the address
does not exist in the object file, the current address is
left at zero.

If a block of code is in memory and the location given is
within the limits of the block, the contents of the
location will be displayed.

If a block is in memory and the location given is not
within the block limits, the current address will be set
to the minimum or maximum address of that block, its
contents will be displayed and a beep will sound. To
access the desired address the current block must first
be aborted (A) or transferred (T).

Change the contents of the current address to the number
given.

Increment the current address (up to the maximum address
in the current block).

Change contents of current address to number given and
automatically increment the current address and display
the contents of the resulting location.

Decrement the current address (down to the minimum
address in the current block).

Transfer the modified block back to disk - rewriting it
in place. After the block is written, the current
address is set back to zero, so that all searches always
start from the beginning of the file. No modification is
made to the stored file until a T command is executed.

Abort processing the current block, set the current
address back to zero.

Return to the operating system - if there is a block of
object code in memory, it is not written back into the
file.

If the command character is not one of the above, it is
ignored and regarded as if only the ENTER KEY had been pressed.

23=2

DISK OPERATING SYSTEM

23.4 Error Messages

If the <filespec> is not an absolute object code file, the
message

RECORD FORMAT ERROR
is displayed.

If the file specified on the command line is not found, the
message

NO SUCH NAME

is displayed.

CHAPTER 23. FIX COMMAND 23-3

CHAPTER 24. FREE COMMAND

24.1 Purpose

As a disk becomes full, it is useful to know how many
256-byte sectors remain available for allocation. Another useful
bit of knowledge on the larger disks is how many empty slots in
the directory remain for the allocation of file names. The FREE
command displays these two values.

24.2 Use

The FREE command accepts a drive specification. It may be
entered simply as:

FREE

which will cause the FREE space and files for all the on-line
drives to be displayed. It may also be entered as:

FREE :<drive spec>
which will display the FREE space and files for only drive n.

The command scans all drives that it finds on-line and
displays (1) the number of available file names (representing
possible files to be created) and (2) the number of available
sectors that it finds on each.

Holding down the DISPLAY key will cause FREE to pause.

Pressing the KEYBOARD key will cause FREE to terminate and return
to the operating system.

CHAPTER 24. FREE COMMAND 24-1

CHAPTER 25. INDEX COMMAND

25.1 Introductionn

The DOS INDEX command (with the DOS SORT Command) is used to
create the tree structure required by programs using the indexed
sequential access method (ISAM), to create a Keytag file from the
INDEX file, to create the INDEX file from a Keytag file, or to
recreate the INDEX file.

The INDEX command has the capability of creating index files
from any DOS text-type files. The indexed access method can then
rapidly access records in this file either in sequential or random
order. Records in files to be indexed must contain a record key
up to 118 characters long contained in the first 249 bytes of each
record.

It is possible to build many independent indices to permit
access to records of the same file by many separate, unrelated
keys. There are no restrictions on the number of indices that may
be built, or on the relationship or lack of relationship among the
various keys used.

25.2 System Requirements

INDEX runs under the DOS operating system. In addition, INDEX
uses the DOS SORT command, which must be resident on an online
disk at the time INDEX is used. If the INDEX command is to
pre-process the text file, the REFORMAT command must be available.
(See the Section on PREPROCESSING the file). If the INDEX command
is to be used to recreate the tree structure file, the NAME
command must be available.

If possible, INDEX will invoke the FASTSORT program, instead
of the normal DOS SORT. Only if a 5500 processor is in use and PS
is not active will INDEX look for FASTSORT. Under any other
conditions it loads SORT. If FASTSORT is not available, INDEX
uses SORT. FASTSORT is released separately.

CHAPTER 25. INDEX COMMAND 25=-1

25.3 Operation

When the Index command is to be executed, the operator must
enter: : :

INDEX <filespec>[,<filespec>][,<filespec>][,<drive>];<parameters>

where only the first file specification and key field description
are mandatory, and specify the file to be indexed. Default
extension is /TXT. The second file specification is the name of
the INDEX file to be created. 1If no file is specified, the name
of the first file is used with default extension of /ISI. If no
drive is specified, the INDEX file will be placed on the same
drive as the file to be indexed. INDEX files may have any names
at all - and be located on physically different drives from the
file being indexed. However, high-level languages using ISAM
files (DATABUS, for example) assume the INDEX file will have the
normal /ISI extension, and if the file open is drive directed the
/ISI and /TXT files must be on the same drive.

The third file specification is for the intermediate tag
file. The third file name will also default to the name of the
first file with a default extension of /TAG. The fourth file
specification, which may only specify drive, tells SORT where to
put its intermediate work files. Otherwise, SORT will attempt to
optimize drive selection.

25.3.1 Parameters

In addition to the parameters that INDEX itself recognizes,
the user may specify any parameters acceptable to the REFORMAT
utility (if preprocessing is to be done), or a primary record
specification to be passed to SORT, or Mnnn or Q options to
FASTSORT. Parameters recognized by INDEX are as follows:

-- Create a Keytag file from the /ISI file.
Create an /ISI file from the Keytag file.
-- Recreate the /ISI file, handling insertions and
deletions.
Preprocess the input file with REFORMAT.
-- Index in EBCDIC collating sequence.
mmm-nnn -- Key specification

<H R
|
!

tx1
I
1

The Keytag file is a standard text file containing the
pointer and key of each record to be indexed. The format is
explained in the SORT chapter. The file may be LISTed, EDITed or

transmitted. This last feature allows the /ISI file to be created

25=-2 DISK OPERATING SYSTEM

at a remote site without invoking SORT.

The format of the key is mmm-nnn [,mmm-nnn] [,mmm-nnn]...
where mmm is the beginning character position of the key field in
each logical record and nnn is the ending position of the key
field. Note that each record must have a unique key.

The primary record specification is an option that allows the
user to create the ISAM index file from a subset of the data file.
The format of the primary record specification is PNNNTC. The P
must always appear. The field following P, denoted by NNN,
represents the column in each logical record where a one position
field exists that differentiates records in the file. The
location of this one character field must be less than or equal to
249. The T can have one of two values. It can be either an equal
sign (=) or a pound sign (#). If the former, it means create the
ISAM index file from all records that contain the ASCII character
C in position NNN. If it is a pound sign, it means that the ISAM
file will be created from all records that do not contain the
value of C in position NNN.

In general the parameters for INDEX can be specified in any
order and may optionally be separated from each other by a blank
or a comma. The only exception to this is when a primary record
specification exists, it must precede the key field specification
and be separated from the key by a blank or a comma.

25.4 Choosing A Record Key

Since the speed of access to an indexed file varies according
to how much file space and thus how many levels of index are
required for the index tree, the choice of what to use for a
record key becomes highly important. Of course, you must choose a
key which will uniquely determine the record you wish to access,
but you should scrupulously avoid including information in the key
which is not absolutely necessary. For example, a file could be
keyed according to automobile license plate numbers. Typically,
these numbers will include a hyphen or other punctuation, which
could easily be excluded from the record's key. The indexed
access method will perform more efficiently if all non-significant
characters are removed from the record's key.

CHAPTER 25. INDEX COMMAND 25-3

25.5 Preprocessing the File

In file structures such as an indexed file where records are
randomly inserted and deleted, the file tends to become
non-optimum for searching. In addition, due to the method with
which the indexed access method inserts records, each inserted
record exists in a separate disk sector. This means that for
records that are 80 characters long, two-thirds of the disk space
for each additional record is wasted. This results in a reduction
of the performance of the indexed access method.

In order to reclaim space vacated by deleted records and
padding bytes in inserted records, the file may be processed by
the REFORMAT utility prior to indexing.

25.5.1 Invoking Reformat

The INDEX utility will automatically invoke REFORMAT if the
"F" option is present when INDEX is invoked. You must have
specified the options that REFORMAT will need to process the file.

Note that if multiple indices are to be created, reformatting
need only be specified for the first INDEX step, and MUST not be
specified later if it was not specified in the first step.
Although REFORMAT will not destroy the file, specifying
reformatting may invalidate any previously built indices.

Basically, you must tell REFORMAT what format the records of
the file are to have after preprocessing. You may select record
compression, space and record compression, or blocking. Since the
reformatting is done in-place, the REFORMAT option cannot enlarge
the file which is to be indexed. For additional details on the
REFORMAT utility, see the REFORMAT section of this guide.

25.5.2 Considerations for Unattended Indexing

Users who use the INDEX command from a CHAIN file (see the
section on the CHAIN command for more details) and used AUTOKEY to
restart their chain in the event of a failure should generally
avoid using REFORMAT directly from INDEX. The reason why is that
REFORMAT as invoked by INDEX uses the REFORMAT-in-place mode of
the REFORMAT command. (The reason for this is that it is faster
to do so, and also allows the indexing with reformatting of a file
which is too big to REFORMAT in the available scratch space on a
single-drive, almost full disk). Although REFORMAT is very
careful not to damage the file being processed, if the file 1is

25-4 DISK OPERATING SYSTEM

actually in the process of being reformatted when a power failure
occurs, the results can be undesirable.

This potential problem during unattended INDEX chaining can
be avoided by setting a checkpoint (see the AUTOKEY command
description for details), copying the original file to a scratch
file, setting another checkpoint, reformatting the scratch file
back into the original (using the COPY mode of REFORMAT), setting
a further checkpoint, and finally INDEXing the file using INDEX.
In this way there is always an undamaged file with which execution
can resume if necessary.

25.6 INDEX Messages

The Index command displays several messages on the operator's
console. They are listed below with explanations, in the sequence
in which they may appear.

DOS. VER 2 INDEX COMMAND - date
This is the signon message that gives the user the
version of DOS required and the date of the INDEX
command.

INFILE NAME MISSING.
This indicates that the user has omitted the first,
and required, file specification.

KEYTAG FILE BEING BUILT.
This indicates that INDEX is now creating the ASCII
KEYTAG file requested with the "K" option.

SORT COMMAND MISSING.
This indicates that INDEX needs to invoke the SORT
command but could not find it on any of the on-line
drives.

FILE PREPROCESSING WILL BE DONE BY REFORMAT COMMAND.
This indicates that the user has requested
preprocessing of his file by the REFORMAT command.

REFORMAT COMMAND MISSING.
This indicates that INDEX needs to invoke the REFORMAT
command but could not find it on any of the on-line
drives.

REFORMAT COMMAND LINE:

CHAPTER 25. INDEX COMMAND 25-5

25-6

‘This is the parameter list passed to the REFORMAT
command.

INDEX WILL USE EBCDIC SORT.
The user has requested an index using the EBCDIC
collating sequence.

SORT COMMAND LINE:
This is the parameter list passed to the SORT command.

REFORMAT UNLOADABLE!
This indicates that there is something wrong with the
REFORMAT command object file. It needs to be
reloaded.

SORT UNLOADABLE!
This indicates that there is something wrong with the
SORT command object file. It needs to be reloaded.

BUILDING LOWEST LEVEL INDEX.
This indicates that INDEX is now creating the lowest
level of the index file.

NULL INDEX FILE CREATED. .
This indicates that an empty tag file was created by
SORT. The index file created is usable by programs
using ISAM for adding records.

LONG KEY ENCOUNTERED AND TRUNCATED.
This indicates that the tag file contained a key that
was longer than 118 characters. It was truncated to
118 characters.

DUPLICATE KEY: <key>
Two keys in the tag file were found to be identical
and the first 60 characters of the key are displayed.
INDEX will continue so as to display any other
duplicate keys that may be found.

INDEX TERMINATED BY DUPLICATE KEYS.
Duplicate keys have been found and so the index file
has been deleted. The tag file is not deleted and
since it is in standard text format, it may be EDITed
to remove or modify the duplicate key and tag. Or a
program (e.g. in DATABUS) may be written to display
the records containing the duplicate keys so the user
may resolve the ambiguity. INDEX may then be
reinvoked using the "I" option.

DISK OPERATING SYSTEM

BUILDING -NEXT- LEVEL INDEX.
This indicates that the lower level of the index file
has been completed and the next level is now being
created.

DONE.
The creation of the index file is now completed.

Other error messages may be generated by REFORMAT or SORT.
See the appropriate chapter for an explanation.

25.7 ISI File Formats

The DOS indexed file structure consists of a multi-level
radix tree structure based on the record keys, and contains
pointers to the location of the keyed records. Note that since
many of these pointers are physical disk addresses, the ISI file
cannot be moved without re-invoking INDEX. The text file may be
moved so long as it is unchanged in any way. Moving the ISI file
will destroy it.

The different levels of indices all have the same content,
except for the lowest level index. Index levels are built up
until an intermediate level of index will fit in a single disk
sector. This becomes the highest level of index. This
requirement is the reason for the 118 character limitation on key
length.

The ISI files have the following format:

Offset Length Description
000 003 PFN and LRN bytes as per DOS convention -
see the chapter on SYSTEM STRUCTURE.
003 Onn This is a KEY entry where nn is key length+7

for a lowest level index, and key length+3

for a higher level index. The first sector
of an ISI file after the RIBs is a special

header record.

Onn+4 Onn This is the second KEY entry in the sector.
There must be at least two KEY entries per
sector.

.

CHAPTER 25. INDEX COMMAND 25=-17

Note that as many key entries are put in a
sector as will fit without splitting across
a sector boundary.

Each KEY entry for an intermediate level index has the
following format:

Offset Length Description

000 KEYLEN The highest key in the next lower level
index sector.

KL 001 Octal 012 - This indicates the end of the
key and that this is a higher level index
entry.

KL+1 002 PDA (MSB,LSB) of the entry in the next lower
level of index.

KL+3 001 Octal 0377 - This indicates that this is the

last entry in this sector.

Each KEY entry for a lowest level index entry has the
following format:

Offset Length Description

000 KEYLEN The key for this particular record.

KL 001 Octal 015 - This indicates that this is a
lowest level index entry and delimits the
end of the key.

KL+1 003 Buffer 0ffset, and the physical disk address
for the logically next lowest level index
entry.

KL+4 003 Buffer Offset, and logical record number of
the text file record having this key.

KL+7 001 Octal 0377 - Indicates that this is the end

of the lowest level index.

The first data sector in an ISI file is a header record used
to locate the file from which the index was built. In this way,
it is only necessary to specify the name of the index to
DATASHARE.

Offset Length Description

000 003 PFN and LRN indicators as per DOS
convention. See the System Structure
Chapter.

25-8 DISK OPERATING SYSTEM

003 013 Name of the data file that goes with this
index file.

016 003 PFN, and RIB PDA of this file. This field
is used to check that the index file has not
been moved.

021 003 PFN, and RIB PDA of the file indexed.

027 003 Buffer address and LRN of the last record
used in the data file.

032 003 Buffer address and LRN of the first free

index entry.

25.8 Examples of the Use of INDEX

First, a simple example in which only a single ISI file is
created, with the same name and on the same device as the text
file it indexes. The file is a list of bad checks presented at a
local grocery chain, and now each store has a DATASHARE terminal
to inquire on the current status of each deadbeat. Thus, while
the file is accessed often, additions and deletions are fairly
infrequent, so the file will not be reformatted. The file is keyed
by bank number (8 digits) and account number (7 digits)
concatenated and in positions 1 to 15 of each record.

In order to create the index file, the operator must type:
INDEX DEADBEAT;1-15

The INDEX program will then create a file DEADBEAT/ISI which
DATASHARE can use to access the DEADBEAT/TXT file.

Now, this same grocery chain has expanded its operations, so
it desires to include more information on the location and date of
each NSF check presented. Therefore, they have expanded the file
to include the old key in positions 1 to 15, a store location
number in positions 16 to 18, and a date field in positions 19 to
24, As an afterthought, the manager decides to tack on the name
of the person passing the bad check in positions 193 to 216.

CHAPTER 25. INDEX COMMAND - 25-9

In order to create the indices required for access by any of
these keys, the operator must type:

INDEX DEADBEAT,BANK;1-15
INDEX DEADBEAT,DATE;19-24
INDEX DEADBEAT,STORE;16-18
INDEX DEADBEAT,NAME;193-216

The INDEX program will create four files with names BANK/ISI,
DATE/ISI, STORE/ISI, and NAME/ISI. Each file is logically
separate, yet all are on the same volume as DEADBEAT/TXT.

Now the store owners have uncovered a hitch - first, the
number of bad checks is becoming so large, there is no room on one
disk for all the index files and the text file. 1In addition,
access has been slowing way down as the frequency of additions and
deletions increases. The store owners have called Datapoint to
complain, and their local systems engineer has told them they need
to reformat the files when they re-index, and has sold them
another disk drive.

The operator now types:

INDEX DEADBEAT,BANK/ISI:DR1;FR1-15
INDEX DEADBEAT,DATE/ISI:DR1;19-24
INDEX DEADBEAT,STORE/ISI:DR1;16-18
INDEX DEADBEAT,NAME/ISI:DR1;193-216

Note that the reformatting is done only once at the
beginning. If reformatting had not been done when the first index
was built, it could not be correctly done later without
invalidating the previously built indices.

Now, several years later, the grocery chain has expanded and
has a large disk system at their main store. The owners are doing
so much processing that there is not the time to run the above
INDEX programs as each one invokes SORT. However, they wish to
keep access time to the minimum. Also, the DEADBEAT file is so
large that numerous additions and deletions hardly affect the
size.

Every night the operator now types:

INDEX BANK;X
INDEX DATE;X
INDEX STORE;X
INDEX NAME;X

25-10 DISK OPERATING SYSTEM

which recreates the index files. Then during weekly processing,
the operator does the processing above which invokes REFORMAT.

The store owners have wisely dispersed some of their data
processing to their branch stores. So each night the operator
also types:

INDEX BANK ;K
INDEX DATE;K
INDEX STORE;K
INDEX NAME;K

which creates tag files of the four indices. The operator then
transmits DEADBEAT/TXT, BANK/TAG, DATA/TAG, STORE/TAG, and
NAME/TAG to each of the branch stores. The operator at the branch
store, after receiving these files, types:

INDEX DEADBEAT,BANK,BANK;I
INDEX DEADBEAT,DATE,DATE;I .

INDEX DEADBEAT,STORE,STORE;I
INDEX DEADBEAT,NAME,NAME;I

which creates a local set of indices without invoking SORT.

Note: 1In the above example that created a BANK tag file, the
command line with defaults is:

INDEX BANK/TXT,BANK/ISI,BANK/TAG;K

As only the /ISI and /TAG files are needed for creation of the tag
file, the same results could have been achieved by typing:

INDEX ,BANK,BANK;K

CHAPTER 25. INDEX COMMAND 25-11

CHAPTER 26. THE INIT9370 COMMAND

When a new disk pack is received, it is not immediately
usable in the 9370 series drives until it has been formatted. The
formatting process, which causes track and sector identifying
information to be written over the entire disk surface, is
performed by the INIT9370 command. This command is useful only on
9370 series disks!

26.1 Use

The INIT9370 command is unusual among DOS commands in that it
is one of the few that can be run in a stand-alone mode: that is,
without being run under the DOS. This feature is required in
particular for the first time a user generates a DOS system disk,
when he has no alternative but to start with INIT9370 running from
an LGO cassette.

To invoke INIT9370 from a working DOS (normally useful only
for users with two-drive systems), the operator enters at the
system console:

INIT9370

With an LGO cassette, the operator places the cassette in the
rear cassette deck and presses the RESTART key (and RUN key on a
5500 processor). Once the program has initially loaded, it
functions the same regardless of whether it has been loaded from
cassette or disk.

After being loaded, INIT9370 asks which physical (not
logical) drive contains the disk to be formatted and asks the user
for confirmation that it is all right to destroy the previous
contents of the disk, if any. After the command is satisfied that
the user knows what is about to happen, it proceeds to format the
disk. The process takes about three and a half minutes.

CHAPTER 26. THE INIT9370 COMMAND 26-1

26.2 Error messages

If the INIT9370 command encounters any sort of error
indication before or during the formatting process, it will wait
for a while to see if the problem will go away on its own. (A
typical example would be if the disk to be formatted has not yet
come on line when the INIT9370 command begins execution). If the
problem persists, the program will display a comment on the CRT
display indicating that it is waiting on the disk, describe the
status of the disk as indicated by the controller, attempt some
corrective actions that may help to clear the situation, and
inform the operator of what corrective action has been taken.
This is repeated until the problem is successfully cleared up.

26-2 DISK OPERATING SYSTEM

CHAPTER 27. KILL COMMAND

KILL - Delete a file from the directory
KILL [<file spec>]

The KILL command deletes the specified file from the system

if the file is not protected. If the file is protected in any
way, the message

NO!

will be displayed. If the file specification is not given on the
command line (file names which contain special characters cannot
be given on the command line), the request for the file name:

WHAT FILE? EXAMPLE: SCRATCH /TXT:DR1 #143 :DR1
/ :DR

will appear. The user must keyin an eight character filename
(including trailing spaces), a slash, a three character extension
(including trailing spaces), a colon, the letter "D" and the drive
number on which the file resides. If the entire filename
specification is not entered properly, the message:

NO SUCH NAME.

will appear. A file can be specified by physical file number by
entering "#", followed by the octal PFN, followed by 8 spaces and
the drive specification. If the specified file cannot be found
(both a name and an extension must_ always be supplied unless using
PFN), the message:

NO SUCH NAME.

will be displayed. If the file is found and is not protected, the
message:

THAT FILE IS <filename> ON DRIVE n

will appear. Then the operator must additionally answer the
message: ‘ ‘

ARE YOU SURE?

CHAPTER 27. KILL COMMAND 27-1

with a 'Y' before the actual deletion of the file is achieved.
After the deletion has occurred the following message is
displayed:

*# FILE DELETED ¥

27=2 DISK OPERATING SYSTEM

28.1

CHAPTER 28. LIST COMMAND

Purpose

The LIST command will list any DOS standard format text file

on the screen or a local or servo printer.

The command can be used for such things as:

A quick scan of a file by displaying it on the screén
(LISTing a file is faster than EDITing it);

Producing a hardcopy listing of a file for permanent records;

Listing a file for use in preparation of a BLOKEDIT COMMAND
FILE.

In this chapter, the following terms apply:

28.2

type:

Text file means a file with records containing only ASCII
characters, except for space-compression bytes and the :
End-0f-Record and End-0f-File marks. Files created by EDIT
and those produced by DATASHARE are normally in the class of
text files.

Line means one record of a text file. When displayed on the
screen, only the first 72 characters of a record will be
displayed; when listed on a local or servo printer only the
first 124 characters will be printed. (The remaining eight
characters contain a line number.)

Record means the user logical record number (LRN). The first
LRN of a file is zero.

Parameters

When the LIST program is to be executed, the operator must

LIST <filespec> [,<spec2>][,<filespec2>][;options]

CHAPTER 28. LIST COMMAND 28-1

Available options are:

- list on Local printer

- list on Servo printer

- Display on CRT

- suppress line numbers

list Formatted print file

- output formatted Print file

- Queue formatted print file, appending to an existing file
n - set Number of lines per page to n

- list in Indexed sequence

H=Z2owE"Exowner
1

Options may be entered in any sequence and should be
separated by commas.

28.3 INPUT File Specification

The file specification (<filespec>) must refer to a DOS text
file. If no extension is supplied with the file name, an
extension is assumed depending on the options given. A default
extension of TXT is assumed unless the option "I" or "F" is used.
The option "I" (list a file using its index) causes a default
extension of ISI and the option "F" (list a file with format
control bytes) causes a default extension of PRT. If no drive is
supplied with the file specification, all drives will be searched
for the filename/ext. If <filespec> 1s omitted, the message

NAME REQUIRED.

is displayed. If the file indicated by <filespec> is not found on
an online volume, the message

NO SUCH NAME.

is displayed.

28.4 Starting Point
The operator may specify a line number, or logical record
number, in the file at which the list should begin by including an
optional second parameter <spec2>. For example:
LIST <filespec>,L400

would 1list the specified file beginning with line 400 of the file.

28-2 DISK OPERATING SYSTEM

If the line number specification exceeds the number of lines in
the file, LIST returns to DOS after displaying the message:

FILE EXHAUSTED BEFORE LINE FOUND.
LIST <filespec>,R18

would directly access logical record 18 of the specified file and
list, starting at line number 1. If range or format errors occur,
the error type is indicated and another record number 1is
requested.

For instance, if the record number specification exceeds the
number of records, the message

RANGE - NEXT RECORD NUMBER:
is displayed.

The DEFAULT value for the second parameter is line 1 and
record 0.

28.5 OUTPUT File Specification

If the options "P" (write to a print file on disk) or "Q"
('QUEUED' write to a disk print file starting at the end-of-file
mark) are used, then the third parameter (filespec?2) may be used
to specify the output file. If the filename is not given, it is
assumed to be the same as the input file name. If the extension
is not given, it is assumed to be PRT.

Qutput from either the "P" or "Q" option is a text file with
print control characters as described in the Format Control
section. The file will be paged with headings; line numbers will
be included unless suppressed by the "X" option.

28.6 Output Device

The operator may specify an output device other than the CRT
display by including an optional parameter of "S" (servo printer),
"L" (local printer), "P", or "Q". For example:

LIST <filespec>,L400;S

would list the specified file on the Datapoint servo printer

CHAPTER 28. - LIST COMMAND 28=-3

starting at line 400 or
LIST <filespec>;L

would list the specified file on a Datapoint local printer
beginning at line number one.

For either print or disk output LIST will request a heading,
which will be placed at the top of every page of output.

The DEFAULT output device is the CRT display which may be
specified by entering a "D".

28.7 Output Format

A parameter is available to suppress line numbers. If the
'X'" is entered, lines of up to 132 characters will be printed.
For example:

LIST <filespec>;3X
would put the output on the servo printer without line numbers,
LIST <filespec>;X

would display the listing, showing 80 characters per line on the
CRT.

Any paged output (from the "L","S","P", or "Q" options) is
normally listed at 54 lines per page. The "Nn" option can be used
to change the number of lines per page, n being the desired
lines/page count.

28.8 Format Control

The parameter "F" is available to allow the handling of print
files (those with a format character in the first column of each
line). If "F" is entered, the file will be listed without line
numbers, page numbers, or headings, since all these items should
already be in the print file. The following format characters
cause the indicated action to be taken before the line is printed.

1 - Skip to top of form

+ - Suppress line feed

28-4 DISK OPERATING SYSTEM

(space) - Single line feed
0 - Double line feed
- - Triple line feed

Any other character in the first column will be handled as a space
(single line feed) and discarded.

28.9 Operator Controls

The listing consists of a continuous stream of the listed
file's text. To cause the listing to pause, the operator may hold
down the DISPLAY key. To abort the listing, the operator may

‘depress the KEYBOARD key.

28.10 Error Conditions

If printer output was specified and the requested printer is
not available, LIST beeps and displays the message:

PRINTER NOT READY

If the printer is made ready, listing will proceed. The KEYBOARD
key may be depressed to abort the LIST at this point if necessary.

LIST checks to be sure the text end-of-file is exactly six

zeroes and a three (see Text File Formats in the REFORMAT
chapter).

If the EOF is not exactly correct, LIST displays the message:
INVALID END OF FILE.

LIST can be used to test for a bad EOF since most text-handling
programs are not so particular about EOF format.

When <spec2> has been entered to start LIST at a particular
record number, LIST traps FORMAT or RANGE errors and allows a new
starting location to be entered. 1In any other usage, LIST does
not trap FORMAT or RANGE errors and any such errors are fatal.

CHAPTER 28. LIST COMMAND 28-5

CHAPTER 29. MANUAL COMMAND

MANUAL - Clear Auto Execution
MANUAL

If the auto-execution name has not been set the message
AUTO NOT SET.

will be displayed. Otherwise, the System Table location reserved
for the auto-execution information will be cleared and the message

AUTO CLEARED.

will be displayed.

CHAPTER 29. MANUAL COMMAND 29-1

CHAPTER 30. MIN COMMAND

30.1 Purpose

The Multiple In (MIN) command is useful for reading multiple
files (source, object, and Datashare object) from the front
cassette drive to disk. It will handle all standard single file
(OUT and SOUT), double file (SOBO), and multiple file (LGO, CTOS,
and MOUT with or without a directory) tape formats.

30.2 Tape Formats

Multiple In will automatically process the tape format by the
following conventions if an option is given.

30.2.1 Single File Tapes

An OUT (object out) tape format has a file mark zero, a file
mark one, an object file with entry point, and a file mark 0177.
An object file has an address with the MSB and LSB in the fourth
and fifth bytes of each record. Their complements are in the
sixth and seventh bytes. The remainder of each record is filled
with octal characters (ranging from 0 to 0377).

A SOUT (source out) tape format has a file mark zero, a
source file, a file mark one, and a file mark 0177. A source file
consists of records containing only ASCII characters, except for
space compression bytes, physical end-of-record bytes, and logical
end-of-record bytes.

30.2.2 Double File Tapes
A SOBO (source and object out) tape is the combination of a

SOUT and OUT tape. It has a file mark zero, a source file, a file
mark one, an object file with entry point, and a file mark 0177.

CHAPTER 30. MIN COMMAND 30-1

30.2.3 Multiple Numbered-File Tapes

An LGO (load and go) tape has a loader, a file mark zero, a
string of files (the first being an object file and the rest may
be source, object, Databus Code, and Relocatable Code intermixed)
separated by sequential file marks, and a file mark 0U4O0.

A MOUT (multiple out) tape without directory has a file mark
zero, a string of files (may be source, object, and Datashare
object intermixed) separated by sequential file marks, and file
marks 040 and 0177. Single and double file tapes are included in
this category if options are not used.

30.2.4 Multiple Named-File Tapes

A CTOS (cassette tape operating system) tape has a loader, a
file mark zero, a CTOS object file with entry point, a file mark
one, a catalog object file, a string of files separated by
sequential (though not necessarily contiguous) file marks, and a
file mark 040.

A MOUT (multiple out) tape with directory has a file mark
zero, a tape directory, a string of files separated by sequential
file marks, and file marks 040 and 0177. The directory is a
source format file containing a date entry seven bytes long
(DDMMMYY) and 31 file name entries each eleven bytes long (eight
bytes for the name and three bytes for the extension). The
entries are separated by end-of-string bytes (octal 015). This
makes it convenient for display under CTOS LIST or to load to disk
and list.

30.3 Parameters

30.3.1 Single File Tapes

For OUT, and SOUT tape formats, the file specifications may
be included on the command line in the following manner:

MIN [<file spec>];<option>
where <option> is an 'S' for SOUT tape formats.

File specifications are of the form FILENAME/EXT:DR#. If the
drive is not given, all drives online will be searched starting at

30=-2 DISK OPERATING SYSTEM

drive zero. If the extension is not given, the assumed extension
(TXT, ABS, DBC, or REL) will depend on the file format. MIN will
identify the tape format. If the file name has not been entered

on the command line, the program will ask:

LOAD FILE #XX (format)?

where XX indicates the file number on the cassette and format
indicates the type of file (SOURCE, OBJECT, DATABUS CODE, or
RELOCATABLE CODE). If the file is to be loaded, the response Y
(yes) will cause the message:

DOS FILE NAME:

to be displayed on the same line. If the response is N (no), the
operator will be asked for the next file (if any). If the

response is ¥, control is returned to DOS. If no name is entered,
the message:

NAME REQUIRED

will appear. If the filename specified already exists, the
message:

NAME IN USE. WRITE OVER?

will appear. The answer N (no) will cause the filename request to
be displayed again. The answer Y (yes) will cause the disk
resident file to be overwritten. 1If the file to be overwrittten
is write protected, the message:

¥WRITE PROTECTED¥* OVERWRITE?
will appear. If the response is not Y, the filename request will
be displayed again. If the response is Y, the protection is
changed from write protect to delete protect and the disk resident
file is overwritten. When a file has been loaded from the
cassette the message:

LOADED
will appear to the right of the filename. The message:

MULTIPLE IN COMPLETED

indicates the successful completion of the progran.

CHAPTER 30. MIN COMMAND 30-3

30.3.2 Double File Tapes

The file specifications for a SOBO tape may be entered on the
command line in the following manner:

MIN [<file spec>][,<file spec>];B

File specifications are of the form discussed above. If the
second file name is not given, the first name with the assumed
extension of ABS will be used. If the extension is not given with
the first name, TXT will be assumed. If the filename has not been
entered on the command line, MIN will operate in the same 'manner
as described in the section on single file tapes above for each
file on the cassette, displaying the messages in the same order
for both files.

30.3.3 Multiple Numbered-File Tapes

LGO tapes and MOUT tapes without a directory are both handled
in the same manner. MIN is first executed as:

MIN
An LGO tape will then be identified as:
LGO TAPE FORMAT

In the case of multiple files, MIN will operate in the same
manner as described in the section on single file tapes above for
loading a file without entering the name on the command line. The
questions described will be asked for each file on the tape until
end of file has been encountered on the tape or an *¥ is entered in
response to the "load" question. MIN bypasses the loader on a LGO
tape before searching for the file. If the file is not found, the
message:

FILE NOT FOUND
will appear and MIN will be terminated. If the file is found and

the file name is not entered on the command line, the file name
will be requested as in single-file tapes.

30-4 DISK OPERATING SYSTEM

30.3.4 CTOS Tapes

A CTOS tape will be identified as:

CTOS SYSTEM TAPE FORMAT

The system then searches for the catalog (tape file #1). The
CTOS file is fairly long so it takes a while. If the catalog file
is not an object file or is an object file that loads into memory
somewhere other than 017406 or 017410, the message:

BAD CATALOG
will appear and the remainder of the tape will be processed as a
multiple numbered-file tape starting at tape file #2. If a good
catalog is found, it will then be displayed as:

CATALOG: <file 1> <file 2> <Kfile 3> <file 4>. .

Then the operator will be asked:

DO YOU WANT TO LOAD <file 1> ?

The entire process is identical to the multiple numbered-file
tapes above except the first fourteen files are referred to by
name. The filename may be expanded by the operator from the six
character name allowed by CTOS to the eight character name allowed
by DOS plus the extension. A filename is requested if the reply
is 'Y,

30.3.5 MOUT With Directory Tapes

These tapes are processed in a manner very similar to CTOS
tapes. The tape is first identified as:

MOUT TAPE FORMAT
Next the date will be displayed:
DATE: DD MMM YY
Then the directory will be displayed:
DIRECTORY: <file 1/ext> <file 2/ext> <file 3/ext>. . .

Then the operator will be asked:

CHAPTER 30. MIN COMMAND 30-5

LOAD <file 1/ext> ?

All the responses are the same as above except that the file
name will not be requested. A drive response is also available.
Entering "DRn" or "<VOLID>" will imply "YES"™ and force the file to
drive n. The program will cycle until the end-of-tape file mark
(040 or 0177) is read at which point the message:

MULTIPLE IN COMPLETED

will be displayed.

30.3.6 Options

Tape file modifications may prevent MIN from automatically
determining the tape format. In this event, the options 'L' (for
LGO), 'C' (for CTOS), or 'D' (for Directory) are available. Also,
option 'N' (for No directory) will tell the system that it is
handling a MOUT tape without a directory, which allows entering
the file names manually if the directory entry names are not
desired. This option also allows entering the directory to disk.
Options are entered following a semi-colon.

These options are merely test overrides. If, for instance a
tape, starts with a recognizable file mark, a loader won't even be
tested for and therefore entering the 'L' option is meaningless.

Unfortunately, MIN cannot differentiate an 0UT, SOUT, or SOBO
tape from a MOUT without directory tape. To speed the processing,
the options 'S' (for SOUT) and 'B' (for SOBO) are available. Once
again, if the tape doesn't resemble a SOUT tape, for instance,
entering an 'S' is meaningless.

MIN accepts a drive specification option ":DRn" or ":Dn" to
force the disk files to a specific drive. Note that this drive
specification is an option appearing in the option list following
the semicolon, not part of any file specification. Drive
specification may be necessary to avoid overwriting existing files
on other drives or to force MIN to place the files on a drive
other than drive 0.

If the tape is a MOUT tape with a directory, the options 'A'
(for All), '0' (for Overwrite), 'Q' (for modifying the extension
with Q's) are available. Using the option 'A' will load all files
on the tape. However, if the file already exists, the operator
will be asked if overwriting is desired and if not, for a new file
name. Entering the '0' option in conjunction with the 'A' will

30-6 DISK OPERATING SYSTEM

force overwriting of existing files (unless write protected). If
while processing in the 'All Overwrite' mode a write protected
file is encountered, the message:

¥¥X¥WRITE PROTECTED*#*#

will appear and processing will continue with the next file.
Entering the 'Q' option in conjunction with the 'A' will put as
many Q's into the directory extension as necessary to create a new
filename/ext if the original one already exists. If the original
filename/ext exists, the message:

EXISTING FILE

will appear to the right before the modification to the extension
is performed. If the filename/QQQ already exists, the message:

Q OPTION EXHAUSTED
will appear to the right and the file will be skipped.

The option 'N' followed by an octal number allows that
specific file to be loaded. For example, entering:

MIN FILE/TXT;N12

will load the tape file following file mark 12 (octal) to disk as
'FILE/TXT'. The default extension will be 'TXT' for source, 'ABS'
for object, 'DBC' for Databus Code object files, and 'REL' for
Relocatable Code files depending on the tape file format. If a
non-octal number is entered (e.g. N8) the message:

NUMBER NOT OCTAL

will appear and MIN will be terminated. If an unrecognizable
record format is encountered, the message:

UNRECOGNIZABLE TAPE RECORD FORMAT

will appear and MIN will be terminated. MIN bypasses the loader
on a LGO tape before searching for the file. If the file
specified is not found, the message:

FILE NOT FOUND
will appear and MIN will be terminated. If the file is found and

the file name was not entered on the command line, the file name
will be requested as in single-file tapes.

CHAPTER 30. - MIN COMMAND 30-7

The options 'L', 'C', 'N', 'S', and 'B' are mutually
exclusive. Only one may be entered. The 'A' may be entered with
or without the 'D' and with none of the other above options. '0'
and 'Q' are mutually exclusive and may only be entered in
conjunction with the 'A'. If any of these restrictions is
violated or a character other than those above entered, the
message:

BAD OPTION PARAMETER

will appear and the program will be aborted.

30.4 Errors

If the tape format is not one of the eight standard formats
outlined above in the Tape Formats section (e.g. it starts with a
file mark two) the message:

INVALID TAPE FORMAT

will appear and the processing will be aborted. If the end of
tape is detected while processing, the message:

¥XEND OF TAPE¥*#

will appear and the processing will be aborted. If a parity error
is encountered in an object or Datashare file on tape, the
message:

¥%¥*PARITY ERROR-FILE DELETED*¥*#*
will appear, the file name will be removed from the disk
directory, and processing will skip to the next file. If a parity
error is encountered in a source file on tape, the message:
¥¥XPARITY ERROR-RECORD MODIFIED¥*#*#%
will appear, a 253 byte disk record will be written with percent

signs in the first five positions of the record data, and
processing will be continued with the next record.

30-8 DISK OPERATING SYSTEM

CHAPTER 31. MOUT COMMAND

31.1 Purpose

The Multiple Out (MOUT) command is useful for writing
multiple (up to 32, or 31 if a directory is used) disk files
(source, object, and Datashare) out to the front cassette drive.

An additional feature is the ablity to create a tape file
directory as file #0 on the tape. The directory is a source
format file, that is, it consists entirely of ASCII characters
except for space compression bytes, physical end-of-record marks,
and logical end-of-record marks. The directory contains a date
entry seven bytes long (DDMMMYY) and 31 file name entries each
eleven bytes long (eight bytes for the name and three bytes for
the extension). The entries are separated by end-of-string bytes
(octal 015). This makes it convenient to list under CTOS LIST or
to load to disk and list. The directory is also used by the MIN
program to enter files to disk. MOUT creates the directory in
memory before the tape writing starts even if it is not to be
written to tape. The writing of a full tape (over 500 records)
takes about 10 minutes, which shows the advantage of entering all
the names before writing begins.

Another feature is the option to automatically verify a tape
following its creation. Or a previously written directory tape
may be verified in an 'only verify' mode. If this mode is
requested, the system will read the directory on the cassette tape
in the front drive (if a valid directory is not found, the system
will request file names from the operator) and verification will
be performed against the indicated files.

31.2 Parameters

File specifications and/or options may be entered on the
command line in the following manner:

MOUT [<file spec>,<file spec>,...][;options]
File specifications abe of the form FILENAME/EXT:DR#. If the

drive is not given, all online drives will be searched starting at
drive zero. If the extension is not given, ABS is assumed. File

CHAPTER 31. MOUT COMMAND 31-1

specs are separated by anything (including multiple spaces) except
letters, numbers, slash (/), or colon (:).

31.3 Options

Options (which follow a semi-colon and may be spaced or
separated by commas) are 'L' for a loader format tape, 'D' for a
directory format tape, 'V' for verification of the created tape,
and 'X' for verification only. :

If a loader is to be written, the first file (file #0) must
be an object file. There are no restrictions on files other than
#0.

The directory option ('D') will write a tape directory as
file #0. The first item within the directory is the date entered
DDMMMYY. Note: the month is entered as three alpha characters.
The date may be entered following the option letter (e.g.
D12JANTY4). 1If the date is not entered, it will be requested.

The verify option ('V') will verify all the files on the
created tape. Verification consists of making a byte for byte
comparison between the data on the disk and the data on the tape.
If verification fails, the tape will be rewritten and verification
tried one more time.

The verify only option ('X') will cause the first tape file
to be read from the front deck. If it is a directory (first seven
characters of DDMMMYY format), the remaining files will be
automatically verified using the directory entries. If it is a
loader, it will be verified and file names requested for the
remaining files as they are verified. An 'N' may be entered
immediately preceding the 'X' to force the system not to recognize
the directory. This would be done if manually entering file names
is desired (for instance, the directory names don't match the disk
file names). If there is neither a directory or loader, file
names are requested as the files are verified.

If the semi-colon is entered with no entry following, it will
be interpreted that the tape will not have a loader, a directory,
or any verification.

Entering 'D' and 'L' together or entering anything with 'X!
other than 'N', or entering some letter other than 'D', 'L', 'V',
'X', or 'N' will result in the message:

BAD OPTION PARAMETER. MOUT DISCONTINUED.

31-2 DISK OPERATING SYSTEM

and the Multiple Out will be aborted.

If file names and/or options are not entered on the command
line, MOUT will ask for them as required. If options were not
entered, the first question will be:

DO YOU WANT A LOADER?

Replies other than 'Y' or 'N' will be answered by:

WHAT?

and a repeat of the question. If the reply is 'N', the next
question is:

DO YOU WANT A DIRECTORY?

Again, if the reply is other than 'Y' or 'N', it will be answered
by:

WHAT?

and a repeat of the question. If the reply is 'Y', the next
request is:

ENTER THE DATE (DDMMMYY):
where the month is entered as three alpha characters. If the day
is not in the range of 00 to 39, the month not alpha, or the year
not in the range of 70 to 99, the response:

BAD DATE

will appear and again the request for the date. The next question
is: :

| DO YOU WANT TO VERIFY THE TAPE?
If the reply is not 'Y' or 'N', the response:
WHAT?
will appear followed by a repeat of the question. If the reply is
'Y' and the replies to the loader and directory questions were

'N', the question:

DO YOU WANT TO ONLY VERIFY THE TAPE?

CHAPTER 31. MOUT COMMAND 31=-3

will then be asked. If the reply is other than 'Y' or 'N', the
response

WHAT?

will appear followed by a repeat of the question. If only
verification is requested, the first tape record on the front tape
deck is read in. If it is a directory (the first seven characters
of DDMMMYY format), the remaining tape files will be automatically
verified using the directory entries. 1If it is a loader, the
message:

LGO TAPE FORMAT
will appear. The message:
LOADER IS BEING VERIFIED

will then appear as the loader is being verified. If the loader
verifies correctly, the message:

LOADER OK
will appear to the right. Otherwise, the message:
BAD LOADER

will appear. After checking the loader, or if the tape has
neither a loader or directory, the message:

CASSETTE FILE #XX (format) DOS FILE NAME:

will appear where XX is the file number and (format) is (SOURCE),
(OBJECT), (DATABUS CODE), or (RELOCATABLE CODE) depending on the
file format. If nothing is entered, the message:

NAME REQUIRED

will appear and the request will be repeated. If an asterisk (%)
is entered, MIN will terminate and return to DOS. If a
greater-than sign (>) is entered, the program will skip to the
next file. If a less-than sign (<) is entered, the program will
backspace to the prior file (bypassing null files). If the
program finds the beginning of the tape, it will beep and then
move forward to the first file. 1If a name is entered, the default
extension is 'TXT' for source, 'ABS' for object, and 'DBC' for
Datashare object depending on the file format. If the drive

31-4 DISK OPERATING SYSTEM

number is not entered, all online drives will be searched starting
at drive zero. If a drive number greater than DOS allows is
given, the message:

BAD DRIVE

will appear and the request repeated. If the file is not found,
the message:

FILE NOT FOUND

will appear and the request repeated. If the disk file is found,
it will be matched byte by byte against the disk file. If the
files completely match, the message:

FILE OK

will appear to the right and processing continues with the next
file. If an error is detected, the appropriate message will
appear and processing continues with the next file. Null files
are bypassed. Processing continues until an end-of-tape mark
(file mark 040 or 0177) is read at which time the message:

VERIFICATION PHASE COMPLETED

will appear and MOUT will be terminated.

31.4 File Names

If the file names are not given in the command line, the
operator will be asked for the file names one at a time. The
request is of the form:

CASSETTE FILE XX DOS NAME:

where XX is the file number. Possible replies to the file name
query include:

a) the file specifications as discussed above,

b) a pound sign (#) which will bump the file number to 20
octal if not already there (only allowed on loader tapes to
initiate numbered files on a CTOS tape),

c) a dollar sign ($) which will cause a null file (tape file
mark only) to be written to tape and the file spec of
NULL/NUL to be entered in the directory,

d) an asterisk (*) which will indicate no more files are to be
entered and the tape writing started (writing is postponed

CHAPTER 31. MOUT COMMAND 31=5

until the directory is complete), and

e) 0S which will abort the program. The message:
MULTIPLE OUT DISCONTINUED will appear and control is
returned to DOS. (To dump OS/ABS, enter '0OS/ABS').

If the operator fails to enter a name, the message:
NAME REQUIRED

will appear and the name request will be repeated. If the drive
is given and is not in the range valid for DOS, the message:

BAD DRIVE

will appear followed by a re-request of the name. If the file is
not found, the message:

FILE NOT FOUND

will appear followed by a re-request of the name. If the file is
found, the format (object, source, or Datashare) will be
determined by the system. If the tape is a loader tape and file
#0 is not an object file, the message:

FILE FOLLOWING LOADER NOT OBJECT

will appear along with a re-request of the file name. This
message may also be displayed if the reply to the flle name query
for file #0 is a pound sign. Otherwise the messages:

OBJECT FILE

or:
SOURCE FILE
or:
DATABUS CODE FILE
or:
RELOCATABLE CODE FILE
or:

NULL FILE

31-6 DISK OPERATING SYSTEM

will appear to the right of the file name. If the pound sign is
entered for a tape that does not have a loader, the message:

NOT LGO TAPE

will appear with a re-request of the file name. If 32 files (or
31 on a directory tape) are entered, the message:

THAT'S THE END OF THE LINE

will appear and the tape writing is started automatically.

31.5 Writing

Once the tape writing has started, the system will keep the
operator informed of its progress. As a loader is being written,
the message:

LOADER IS BEING WRITTEN
will appear. As a directory is being written, the message:

DIRECTORY IS BEING WRITTEN

will appear. While files (including null files) are being
written, the message:

FILE <filename/ext> IS BEING WRITTEN

will appear. When the writing is completed, the message:
WRITING PHASE COMPLETED

will appear.

If a non-object record is sensed in an object file while
writing to tape, the message:

¥FILE CONTAINS NON-OBJECT RECORD*
will appear and the next file is written over the bad tape file
including the file mark. This will leave a directory entry
without a file. If this should happen, it will cause verification
to display the message:

NON-SEQUENTIAL FILE MARK

CHAPTER 31. MOUT COMMAND 31=-7

and the tape rewritten.

If a non-source record is sensed in a source file while
writing to tape, the message:

¥INCORRECTLY FORMATTED SOURCE RECORD¥
will appear. The file is ended at this point without writing the
bad record and the next tape file will start immediately
following. If this should happen, it will cause verification to
display the message:

¥%¥%¥TNCORRECTLY FORMATTED DISK RECORD¥¥#¥
or:

TAPE EOF BEFORE DISK EOF
and the tape rewritten.

If MOUT runs out of tape, the message:

¥END OF TAPE ENCOUNTERED WHILE WRITING filename/ext¥
will appear, an end of tape marker written at the end of the
previous tape file, and the unwritten files will be removed from
the directory (if there is one). Processing then will be
continued with verification.
31.6 Verifying

If verification is requested, the system will keep the
operator informed of its progress. As a loader is being verified,
the message:

LOADER IS BEING VERIFIED
will appear. As a directory is being verified, the message:

DIRECTORY IS BEING VERIFIED

will appear. While files (including null files) are being
verified, the message:

FILE filename/ext IS BEING VERIFIED

will appear. When the verification is completed, the message:

31-8 DISK OPERATING SYSTEM

VERIFICATION PHASE COMPLETED

will appear. If verification is requested for a tape having no
directory, the message:

NOT DIRECTORY TAPE
is displayed. Then the message:
CASSETTE FILE #XX(format) DOS FILE NAME:

will appear. The filename should be entered. Responses are
discussed in the section under OPTIONS.

A variety of error messages may be displayed during the
verification phase. Most of them are self-explanatory. They
include:

BAD LOADER

BAD DIRECTORY

TAPE FILE DOES NOT MATCH DISK FILE

¥%*¥INCORRECTLY FORMATTED DISK RECORD¥##¥

DISK FILE CONTAINS NON-OBJECT RECORD.

DISK FILE CONTAINS NON-TEXT RECORD.

NON-SEQUENTIAL FILE MARK.

TAPE FILE MARK READ BEFORE TAPE OBJECT EOF.

TAPE OBJECT EOF NOT FOLLOWED BY TAPE FILE MARK.

- DISK EOF BEFORE TAPE EOF

TAPE EOF BEFORE DISK EOF

If an error is detected, the program will then either rewrite
the tape (if it has just been created) or skip to the next file

(if in the 'verify only' mode). If it rewrites the tape, the
message:

I'M NOW REWRITING THE TAPE

CHAPTER 31. MOUT COMMAND 31-9

will appear. The system will rewrite once before quitting
completely at which point the message:

VERIFICATION UNSUCCESSFUL
will appear and the processing terminated.

If a problem arises that causes an abnormal end (e.g. end of
tape), the message:

MULTIPLE OUT DISCONTINUED

will appear, otherwise the message:
MULTIPLE OUT COMPLETED

will signal the successful end of the program.
¥%¥%*ERROR D ON DECK 2%*%

will signal parity errors on the cassette and control is returned
to DOS.

31-10 DISK OPERATING SYSTEM

CHAPTER 32. NAME COMMAND

NAME -~ Change the name of a file

NAME <file spec1>,[<file spec2>][,<subdirectory name>]

NAME will allow the user to change the name of a file, the
extension of a file, or the subdirectory in which a file resides.
The content of the file is unchanged. The first file
specification refers to the current file name and the second file
specification is the new name and/or extension to be assigned. If
no extension is supplied in the first file specification, ABS is
assumed. If no extension is supplied in the second file
specification, the extension of the first file is assumed. If no
extensions are supplied, both files will be assumed to have
extensions of ABS. The drive number should only be specified in
the first file specification.

If the NAME command is used to move a file from one
subdirectory to another the second file specification may be
omitted (unless the filename and/or extension are to be changed)
and the subdirectory name denoting the subdirectory into which the
file is to be placed is the third specification:

NAME <file spec1>,,<subdirectory name>

In both uses of the NAME command, two specifications are required.
If either name is not given, the message

NAME REQUIRED.

will be displayed. If the second name is already defined on the
drive that contains the first file, the message

NAME IN USE.
will be displayed. Note that the drive specification on the
second name is ignored. If the first name is not found on an
online disk, the message

NO SUCH NAME.

will be displayed. If the subdirectory name keyed is not found

CHAPTER 32. NAME COMMAND 32-1

on the disk containing the file to be renamed, the message
NO SUCH SUBDIRECTORY.
will be displayed. If the third parameter is not specified, the

file is "brought into" the current subdirectory at the completion
of the renaming process.

32=2 DISK OPERATING SYSTEM

CHAPTER 33. PUTIPL COMMAND

The PUTIPL command writes an IPL (Initial Program Loader)
block and DOS boot blocks to the disk.

PUTIPL <:DRIVE>

If the drive number is not specified in the command line, PUTIPL
will display the following:

LOGICAL DRIVE TO BE WRITTEN (O-max OR "*" TO EXIT TO DOS):

Respond with the drive number that you want to write to.

CHAPTER 33. PUTIPL COMMAND 33-1

CHAPTER 34. PUTVOLID COMMAND

The PUTVOLID command writes a symbolic volume identification
(VOLID) onto a disk.

PUTVOLID <VOLID><:DRIVE>;<OWNER ID>

Where VOLID is 1 to 8 characters in length, DRIVE is the logical
drive to be written to, and OWNER ID is any information the user
wants.

If only a drive number is entered, the existing VOLID for that
drive will be displayed.

CHAPTER 34. PUTVOLID COMMAND 34-1

CHAPTER 35. REFORMAT COMMAND

35.1 Introduction

The DOS REFORMAT command is used to change the internal disk
format of text-type (non-object) files. Additionally, it can
recover disk space left unused when files are updated by the
DATASHARE indexed sequential access method. REFORMAT can compress
a file in place on disk provided that such compression does not
entail the writing of a physical disk sector prior to the time
that sector is read. REFORMAT maintains logical consistency in
such cases and will not write on a disk file until it has checked
to be sure it can complete its Jjob successfully.

35.2 Operation

When the REFORMAT program is to be executed, the operator
must type:

REFORMAT <file-spec>[,<file-spec>][;<parameters>]

where only the first file specification is mandatory, and
specifies the file to be reformatted. If the second file
specification is given, it must be distinct from the first.
Reformatting in place is requested by omitting the second file
specification.

The parameter list describes the format the output file is to
take, and whether REFORMAT is to free any disk space that might be
vacated by the reformatting process. In addition, the user can
specify that REFORMAT is to pad short records, and either truncate
or segment long records. REFORMAT will produce three different
kinds of output files: record compressed, space and record
compressed, or blocked records (see the section on TEXT FILE
FORMATS). Note that REFORMAT will not produce blocked space
compressed records or space compressed non record compressed files
although such files can be used as input to the REFORMAT program.
If no parameters are given, the output file is blocked one record
per sector.

CHAPTER 35. REFORMAT COMMAND 35-1

Parameters passed to REFORMAT may be separated by spaces or

commas.

The valid parameters are as follows:

Parameter Description

B<n> The output file will be blocked. This implies no space

or record compression, with <n> logical records per
physical sector. '

The output file will be space and record compressed.
The number of logical records per physical sector will
be indeterminate.

The output file will be record compressed, but no space
compression will be done. In general, the number of
logical records per physical sector will be
indeterminate.

L<n> The length of each logical record will be adjusted to

35-2

<n> characters. Note that if the logical records are
space compressed, this will not make the physical length
of the records <n> characters. If the logical record is
shorter than <n> characters, it will be padded with
blanks to the proper length. If the logical record is
longer than <n> characters, the action taken depends on
the T and S parameter.

(Only valid if L parameter is given) Truncate the
logical record if it is longer than <n> characters.

(Only valid if L parameter is given) If the length of
the logical record is greater than <n> characters,
segment it into (q) logical records each of length <n>,
padding if necessary. The number (q) is defined as input
length divided by <n> rounded upward to the next
integer.

If neither S or T is specified, and an input record of
length greater than <n> is found, a message is issued
and REFORMAT gives up.

If reformatting is done in place and this parameter is
specified, any disk space vacated by the reformatting
process will be returned to the operating system for
re-use.

DISK OPERATING SYSTEM

35.3 Output File Formats

The REFORMAT utility permits you to select essentially three
different output file formats. It will produce blocked files that
are not space compressed, record compressed files that are not
space compressed, and files that are both record and space
compressed. In addition, it has a subcommand to permit you to
specify the logical length of the output records. Use of this
subcommand will guarantee that each record has exactly the same
logical length. Note that if the output format does not specify
space compression, the physical length of each record will be
identical. This is especially useful for telecommunications
disciplines that require records of fixed length.

If you have set a fixed logical length for output records,
there are two subcommands available to tell REFORMAT what to do
Wwith records whose logical length exceeds the specified output
length. You may select either truncation of the input record, or
you may segment it into two (or more) output records, each of the
logical length specified.

35.4 Reasons for Reformatting

Several uses of REFORMAT deserve special mention. First, a
random disk file is structured to have one logical record per
physical sector. Often, however, it is convenient to create a
random file through the use of the general purpose editor - which.
record and space compresses its output. REFORMAT can then
reprocess the file into the correct format for DATASHARE or
DATABUS random access.

Secondly, when a file is accessed with DATASHARE indexed
sequential access method, any additions or deletions result in an
increase in the physical size of the file. The reason for this 1is
that any inserted records are placed at the physical end of the
file, and each one consumes at least one entire physical sector,
regardless of its logical length. Similarly, deleted records are
simply overstored with octal 032 (logical delete) characters, and
the space they vacate is not reused. REFORMAT recognizes this
condition, and will recover such vacated space. Note that ISAM
read-only or update-only (no additions or deletions) files do not
usually need reformatting.

CHAPTER 35. REFORMAT COMMAND 35-3

35.5 Reformat Messages

The REFORMAT utility program produces several messages on the
operator's console. The contents and where necessary, meaning of
those messages follow:

35-4

DOS. VER 2 REFORMAT COMMAND - date
Self-explanatory sign on message.

COMMAND LINE ERROR: 015 missing
This is an internal error and should be reported to
Datapoint.

PROGRAM ERROR - EXCESS FILE SPACE NOT DEALLOCATED

TO PREVENT POSSIBLE LOSS OF DATA
REFORMAT has detected an invalid end of file mark. 1In
order to prevent the possible loss of data which might
be after the invalid end of file indicator, space
allocated but unused is not freed.

EXCESS FILE SPACE NOT DEALLOCATED; OUTPUT FILE IS
DELETE PROTECTED.
Self-explanatory.

OUTPUT FILE IS WRITE PROTECTED AND CANNOT BE
WRITTEN INTO OR SHORTENED.
You have requested REFORMAT to output to a
write-protected file.

INVALID OPTIONS SPECIFIED
You have given REFORMAT an invalid parameter 1list.
This message is followed by the valid options you may
specify.

ILLEGAL, CONFLICTING OR DUPLICATE OPTIONS
You have specified two mutually exclusive options.

YOU SPECIFIED BOTH SEGMENTATION AND TRUNCATION.
YOU CANNOT HAVE BOTH
Self-explanatory.

BLOCKING FACTOR CONTAINS INVALID NON-NUMERIC DIGITS
Self-explanatory.

BLOCKING FACTOR REQUIRED BUT MISSING OR ZERO FOUND

You specified blocking but omitted the blocking
factor.

DISK OPERATING SYSTEM

LOGICAL RECORD LENGTH REQUIRED BUT MISSING OR ZERO FOUND
You must specify the logical record length of the
output file if you wish to have fixed length output
records.

YOU HAVE ILLEGALLY ENTERED A SPECIFICATION FOR
A THIRD FILE

REFORMAT recognizes only two file specifications.

HOW DO YOU EXPECT TO FIT THAT MANY RECORDS IN A
256 BYTE SECTOR?
Self-explanatory.

LOGICAL RECORD LENGTH, IF SPECIFIED, MUST
BE <= 250 BYTES.
Self-explanatory.

YOUR BLOCKING FACTOR IS TOO LARGE FOR THE SIZE
OF THE RECORDS YOU HAVE.
Self-explanatory.

YOUR LOGICAL RECORD LENGTH IS TOO SMALL FOR THE

SIZE OF THE RECORDS YOQOU HAVE
While processing the input file, REFORMAT came across
a record that was larger than the specified logical
record length. Since you specified neither
segmentation nor truncation, this 1s recognized as an
error.

SPECIFIED OUTPUT FILE FORMAT ENLARGES PRESENT
INPUT FILE. FILES CANNOT BE ENLARGED DURING
REFORMAT-IN-PLACE. REFORMAT IN-PLACE REQUEST
REFUSED.

Self-explanatory.

YOU SPECIFIED AN OUTPUT FILE THAT ENDED UP

BEING YOUR INPUT FILE. TO REFORMAT IN-PLACE

DO NOT SPECIFY ANY OUTPUT FILE.
Self-explanatory.

CHAPTER 35. REFORMAT COMMAND 35-5

OUTPUT FILE NOT FOUND ON DRIVE X.

OUTPUT FILE FOUND ON DRIVE Y.

OUTPUT FILE WILL BE CREATED ON DRIVE Z.
These messages only occur if no specific drive was
indicated for the output file. The first message
appears followed by either the second or third.
REFORMAT could not find the output file on the same
drive as the input file. It either found one on a
different drive, or created one on the displayed
drive. If the output file is created, it is always
created on the same drive as the one the input file is
on.

REFORMAT IN-PLACE REQUESTED.

PRESCAN IN PROGRESS.
REFORMAT is checking to make sure it can properly
process the file inplace.

FILE ALREADY WAS IN THE SPECIFIED FORMAT
Self-explanatory.

COPYING WITH REFORMATTING IN PROGRESS
Self-explanatory.

REFORMAT-IN-PLACE IS IN PROGRESS.
DO NOT DISTURB!!!
Self-explanatory.

NAME REQUIRED
Either you gave only an extension or drive for the
input file, or you specified the output file first,
followed by the input file.

INVALID DEVICE
An invalid drive was specified for the input file.

NO SUCH NAME
The input file specified cannot be found.

INVALID DRIVE SPECIFICATION

The drive specification entered for one of the file
specifications was not in a valid format.

35-6 DISK OPERATING SYSTEM

35.6 Text File Formats

Under Datapoint Corporation's Disk Operating System, text
files consist of legal ASCII characters, which make up the text
itself, and various control characters with special meanings. It
is illegal to have the control characters in the text portion of
the file. According to DOS convention, any character between 000
and 037 is considered a control character.

Each physical record of a text file is a logical disk sector,
and contains 256 characters. The first three and last two
characters are reserved for control functions; hence, the maximum
space available in a single physical record is 251 bytes. The
format of a logical sector is as follows:

Offset Length Description

000 001 Physical file number of this file. For a
detailed description of physical file
organization, see the chapter on System
Structure.

001 002 Logical record number. This refers to logical
physical records, and is not related to text
records within the file.

003 373 Text. 251 bytes of text and control characters,
depending upon the format of the file.

376 002 Two characters reserved.

The text part of each file is considered a logical stream,
crossing sector boundaries without being logically discontinuous.
Demarcations of logical record boundaries are made solely by
control characters imbedded within the text itself. There are
essentially five control characters found in files generated by
DOS: 000 <NUL> used for end of file indication, 003 used to
denote the end of medium (a sector boundary) but not the end of a
logical record, 011 <CMP> used to denote space compression, 015
" <ENT> used to denote the end of a logical record, and 032
used to denote deleted data.

CHAPTER 35. REFORMAT COMMAND 35=-7

Under DOS each file is treated as a single, continuous stream
of data. Physical records bear no relation to the logical
structure of the data contained in them. In this way, a
proliferation of different file structures, and the special
routines needed to treat such special cases has been avoided.
This does not mean that there cannot be a relation between
physical and logical structure, it simply means that such a
relationship is incidental to a particular file, and need not be
treated as a special case. For example, random access to a data
file is defined in the DATABUS language. Files to be accessed in
this manner are structured in such a way that one logical record
corresponds exactly with one physical record. This structure is
not inherent in the makeup of a random file, in fact, such files
can be treated exactly as any other text file.

The basis for this treatment of text files is the logical
record. A logical record starts at the beginning of a file, or
immediately after the end of a previous logical record. It
consists of ASCII data and is of no pre-determined length.
Instead, the record is terminated with a single ENT character. In
this way, complications arising from a multitude of record types
are entirely avoided.

If the logical record contains any CMP characters, it is said
to be space-compressed. The character immediately following the
CMP character is a space count, and the pair represent the number
of ASCII blanks removed when the record was compressed. Since the
character following CMP is always assumed to be a space count, CMP
can never occur as the next-to-last text character in a physical
sector, since the EM character following it would be lost.

If the file is organized so that each physical sector
contains exactly the same integral number of logical records, with
no logical record spanning an EM character, the file is said to be
blocked. If the file is not blocked, then it is said to be record
compressed. Note that for a blocked file all sectors except
possibly the last one in the file contain the same number of
logical records while for record compressed files the number of
logical records per physical sector is indeterminate.

Under DOS conventions, a valid end of file mark consists of
exactly six NUL characters, followed by an EM character:

000 000 000 000 OO0 000 003

This mark must begin at a sector boundary. All information after
a valid end of file mark in the sector is indeterminate.

35-8 DISK OPERATING SYSTEM

CHAPTER 36. THE REPAIR COMMAND

The purpose of REPAIR is to repair a malfunctioning or
non-functioning DOS disk pack. The performance of the DOS is
directly related to the correctness of disk-resident system
tables. Errors in these tables can cause DOS difficulties ranging
from occasional mysterious losses of data to complete inability of
the DOS to function on the pack. REPAIR finds, identifies to the
operator, and attempts to correct errors in the system tables.

REPAIR, once activated by an operator, is capable of seeking
errors and determining corrective measures on its own. However,
there are operator interfaces which exist to give a human operator
the power to monitor and control the program's progress. The
program constantly displays on the screen information about what
it is doing. If errors are discovered, the operator will be asked
if the error should be corrected on disk. Thus, the operator has
control over any changes made to disk and may suppress any
correction suggested by the program.

REPAIR consists of three phases: the Cluster Allocation Table
and Directory check phase, the Retrieval Information Blocks check
phase, and the Cluster Allocation Table regeneration phase. In
general terms, the program progresses from simple error analysis
to quite involved error analysis during its execution. Beginning
with the cylinders-to-be-locked-out information supplied by the
Lockout CAT on disk and supplemented by the operator, each program
phase progresses according to information developed or verified
during preceding checks.

The amount of interface and systems expertise required of the
operator ranges from almost zero to very much, and is directly
proportional to two things: how badly the pack is damaged, and
whether the operator wants to try to save files with errors. If
the operator merely permits REPAIR to delete every file found to
be in error, the result would be guaranteed to be error-free
disk-resident system tables, and the operator would not need to
understand any details of the DOS. Sometimes, however, it will be
easier for the operator to take notes and refer to the appropriate
DOS documentation in order to save a file, rather than delete the
file and then have to re-create it.

REPAIR is a completely self-contained program and does not

require a working DOS to run. REPAIR can be executed as a COMMAND
from the DOS or from an LGO cassette. REPAIR carries its own

CHAPTER 36. THE REPAIR COMMAND 36-1

copies of the standard basic DOS I/0 routines (DR$, DW$, KEYINS,
DSPLY$), the DOS interrupt handler, and the DOS DEBUG$ routine.

36.1 Applications of REPAIR

There are three general classes of errors that can cause a
DOS to work improperly:

1. Errors in the data within a file. Examplé: An
incorrectly written object code record in a program object file
will make the program unloadable and thus unexecutable.

2. Errors in the DOS system files. Example: If one of the
DOS system files were inadvertently damaged, as by being partially
overwritten, then sooner or later some part of the DOS would not
function properly.

3. Errors in the disk system tables. Example: The Cluster
Allocation Table is overwritten.

Far and away the most commonly occurring class of error is
class 3. (Incidentally, the most common error is the one given
for the example: a destroyed C.A.T.). Also, class 1 and class 2
errors most often occur because of previously existing class 3
errors,

REPAIR will not find or fix class 1 or 2 errors. Once those
errors have occurred the file with the error should be reloaded to
disk. If the user is interested in fixing these kinds of errors
he should refer to later sections in this chapter and other
appropriate DOS documentation.

REPAIR can fix almost all class 3 errors, and thus can fix
almost all of the problems that commonly occur with a disk pack.

36.2 When to use REPAIR
There are three times to run the REPAIR program:
1. Regular disk-pack checking. It never hurts to run REPAIR

after every few hours of disk use, in order to catch errors that
may be developing that haven't been noticed.

2. Unexplained strange things start happening. If you ever
see the message:

36-2 DISK OPERATING SYSTEM

FAILURE IN SYSTEM DATA

it is time to run REPAIR. If other error messages are displayed
by the DOS, such as:

RECORD FORMAT ERROR

and there seems to be no reason that the error should have
occured, REPAIR may find the reason. If files or records in files
disappear or get scrambled, it is probably a good idea to run
REPAIR to see if errors have developed in the system tables.

3. The DOS will not run at all. Many times if the DOS will
not "boot" it is because 1) The CAT has been destroyed -
specifically, the auto-execute PFN (the last byte in the sector)
is not 000 (REPAIR will always reset the auto-execute PFN to 000
when it writes the regenerated CAT to disk); or 2) The directory
(one or more sectors) has been destroyed; or 3) One or more of
the RIBs for the system files have been destroyed.

36.3 Understanding REPAIR

This chapter is divided into two major sections for two
levels of reference:

1. Minimal operator interface.

The first major section is for users who wish to use REPAIR
to make their pack work again as quickly and with as little effort
as possible. To use REPAIR, one does not have to understand very
much about the DOS or the structure of the data on disk.

2. Medial operator interface.

The second major section is a rather comprehensive discussion
of the various messages and options provided by the REPAIR
program, and is for users who wish to be able to take advantage of
the file-saving options available with REPAIR.

The second major section also discusses a variety of things
that can go wrong on a disk pack and how REPAIR can be used to
~deal with those problems. This is for users who are interested in
understanding the DOS system disk data structure for its own sake,
with emphasis, of course, on problems that can occur.

CHAPTER 36. THE REPAIR COMMAND 36-3

36.3.1 Preliminary reading

At absolute minimum, anyone who wants to use the REPAIR
program must understand some basic DOS concepts. The REPAIR user
must have a concept of what a DOS FILE is, and should be
acquainted with the use of the QPERATOR COMMANDS (entered at the
DOS system console) and FILE NAMES. The user must understand the
concept of FILE DELETION. The user must also know what DRIVE
NUMBER means.

If possible, the REPAIR user should read and understand the
section "Disk Structure". To use and understand REPAIR to the
maximum extent, the user should understand terms such as:
cylinder, sector, cluster allocation table, retrieval information
block, segment descriptor, and cluster.

36.4 Minimal Operator Interface

This section is for those who wish to use REPAIR to make
their disk work again as quickly and with as little effort as
possible. To use this section requires no knowledge of the DOS
beyond the concept of files. It does require the ability to read
through and understand the following step-by-step instructions.

In the most ultimately simple case, the user will not want to
lock out any cylinders (a cook-book process -- you don't have to
know what a cylinder is), and the REPAIR program will not find any
errors. The main structure of the following example is built on
such a case: however, places in the example where there may be
variations are noted and where in the chapter to find explanations
of the variations is also noted.

36.4.1 Executing REPAIR

If REPAIR is catalogued on the disk (as REPAIR/CMD), and if
the DOS is capable of loading and executing it, the fastest and
easiest way to get REPAIR started is by simply keying the command
at the system console:

REPAIR

REPAIR may also be executed by placing a LOAD-AND-GO (LGO)
tape of REPAIR in the back cassette deck and pressing RESTART key
(and RUN key simultaneously on the 5500).

In either case, the pack to be checked must be placed in a

36-4 DISK OPERATING SYSTEM

drive connected to the computer and brought on line.

In the following examples, a pictogram of the state of the
CRT display will be given followed by a brief explanation and
instructions for the operator.

Note that a pound sign (#) in one of the bottom two lines of the
pictogram represents the cursor position. The cursor will be

flashing when the operator is required to respond to the
information on the screen.

36.4.2 Sign-on and drive number specification

DATAPOINT DOS. REPAIR

DRIVE NUMBER: #

e = e N

N mm e e

The screen appears as above when REPAIR has been loaded and
execution has begun.

The operator must enter the logical number of the drive
holding the disk pack that is to be REPAIRed.

36.4.3 Cylinder Lockout

DATAPOINT DOS. REPAIR

DRIVE NUMBER: 0
LOCKOUT CAT: FORMAT LOOKS OK.
DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? #

e e NS

CHAPTER 36. THE REPAIR COMMAND 36-5

N e e e e e

The screen may appear as above when REPAIR is ready to accept
cylinder lockout. Cylinder lockout is a way of reserving disk
space from DOS use. If cylinders are to be locked out, there will
generally be a sticker or label on the case of the disk pack with
the numbers of the cylinders to be reserved. If there are
cylinders to be locked out refer to the Cylinder Lockout with
REPAIR Section.

If no cylinders are to be locked out, enter "N".

36.4.4 Directory check monitor

oo o
[oNeoNe]

DRIVE NUMBER 0

LOCKOUT CAT: FORMAT LOOKS OX.

DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
WORKING CAT: FORMAT LOOKS CK.

PR U S
Oy

The screen appears as above when the cylinder lockout option
has not been taken and the CAT and Directory check phase has
begun. Specifically, note the vertical numbers at the right
center of the screen: these numbers monitor the cycling of the
directory check. If something besides these numbers appears on
the screen after the cylinder lockout is completed, refer to the
CAT errors and Directory read/write errors Section.

No operator response is required.

36-6 DISK OPERATING SYSTEM

36.4.5 Directory Errors

/ \
i DIRECTORY ENTRY COPY: DELETE INCOMPLETE |
[!
! !
| [}
j : i
{ MASTER: COPY:
1
1 i
10330 3 3333 3 00
P o050 7 TTTT 7 02 |
i 264 1CAT CMDT 777 T7CAT CMDT 6 0
]
! 1
E ENTER: 1=MASTER->COPY, 2=DELETE BOTH, 3=NO CHANGE: # f
t |
\ /
The screen will appear as above (in general -- specific words

will vary) if REPAIR finds an error in the directory.

For explanation of the messages refer to the Directory Errors
section of Medial Interface below.

To delete the erroneous file enter the number corresponding to
DELETE BOTH (in this example, 2=DELETE BOTH).

36.4.6 Retrieval Information Blocks check

RIB MASTER: (PFN 000) RIB COPY:

W ook K ok W ook

[sNoNe]
[eNeoNe]

e e e N
N mm e~

The screen appears as above during the Retrieval Information
Blocks check. The vertical numbers at the right of the screen
monitor the cycling of the RIB check. The column of asterisks is
displayed only while a RIB is actually being checked. If a pack
does not have many files on it the asterisks will not appear
during most of the RIB check.

CHAPTER 36. THE REPAIR COMMAND 36-7

No operator response is required.

36.4.7 Retrieval Information Blocks Errors

DELETE THE FILE ? #

/

| PFN ERROR LRN ERROR ¥ PFN ERROR LRN ERROR
i UTH BYTE NOT 0377 ¥ 4TH BYTE NOT 0377

} 1ST SEG.DES. ERROR * 1ST SEG.DES. ERROR

i MULTIPLE ALLOCATION 00001 ¥ MULTIPLE ALLOCATION 00001

; CYL.ADR.OVERFLOW CYL.ERROR ¥ CYL.ADR.OVERFLOW CYL.ERROR
i RIB TERMINATOR ERROR ¥ RIB TERMINATOR ERROR

i 0320 3

i 0012 7

5 1003SYSTEMD SYS?T

’:

i

\

|

The screen will appear as above (in general - specific words
will vary) if REPAIR finds an error in a RIB.

For explanation of the messages refer to the RIB Errors
section of Medial Interface below.

To delete the erroneous file enter "Y".

36.4.8 End of RIB check

0000 FILES HAVE RIB FORMAT ERRORS.
0025 FILES HAVE NO RIB FORMAT ERRORS.

CLUSTER ALLOCATION PHASE, PASS 1. PFN #

e e N
N mm e e e -

The screen appears as above when the RIB check phase is
finished. The messages at the top of the screen are a summary of
the information accumulated during the RIB check phase. The
message near the bottom of the screen is notification to the
operator that REPAIR is ready to begin the cluster allocation
phase.

36-8 DISK OPERATING SYSTEM

To proceed, depress the <ENTER> key. If no RIB format errors
remain on the disk, pressing <ENTER> is not required.

36.4.9 Cluster allocation phase, Pass 1

/ \
{ 0000 FILES HAVE RIB FORMAT ERRORS.)
{ 0025 FILES HAVE NO RIB FORMAT ERRORS. |
1]
! 1
i i
| |
‘ !
! 00 i
| 00 :
E CLUSTER ALLOCATICN PHASE, PASS 1.. PFN 000 00 E
| |
i i
\ /
The screen appears as above during the first pass of the
cluster allocation phase. The vertical numbers at the right of
the screen are the pass cycle monitor.
No operator response is required.

36.4.10 Cluster allocation phase, Pass 2

/ \
i 0000 FILES HAVE RIB FORMAT ERRORS. |
E 0025 FILES HAVE NO RIB FORMAT ERRORS. i
H]
‘ 1
1

1 i
: !
i 00 T
: 00 |
i CLUSTER ALLOCATICN PHASE, PASS 1. PFN 000 00 i
! CLUSTER ALLOCATION PHASE, PASS 2. PFN 000 i
! | :
I i
\ /

The screen appears as above during the cluster allocation
phase, pass 2. The bottom message is displayed and the cycle
monitor numbers at the right of the screen are restarted when pass
2 begins.

No operator response is required.

CHAPTER 36. THE REPAIR COMMAND » 36-9

36.4.11 Cluster allocation phase, pass 3

QQOO FILES WITH ALLOCATION CONFLICTS.
00000 CLUSTERS IN THOSE FILES.

oI

CLy TER ALLOCATION PHASE, PASS 1. PFN 000
CLUSTER ALLOCATION PHASE, PASS 2. PFN 000
CLUSTER ALLOCATION PHASE, PASS 3. #

[oNeRe]
o C O

e e e e LN
NN e e e~

The screen appears as above at the end of the cluster
allocation phase, pass 2. The messages at the top of the screen
are a summary of the information gathered during cluster
allocation phase pass 1 and 2. The message at the bottom of the
screen indicates that REPAIR is ready to begin the cluster
allocation phase pass 3.

To proceed, depress the <ENTER> key. If no allocation
conflicts are present, it is not necessary to press <ENTER>.

36.4.12 Cluster Allocation Conflicts

PFN 200 PFN 220
0030 3 030
0060 7 060
304 1S1IN CMDT 3641300U0T CMD

OF CLUSTERS IN FILE: 00001 # OF CLUSTERS IN FILE: 00002

CONFLICTING FILES: 002 CONFLICTING FILE # 001

OF CONFLICTING CLUSTERS: 00001 # OF CONFLICTING CLUSTERS: 00001

OF CORRECT PFN/LRN: 00004 OF 00006 # OF CORRECT PFN/LRN: 00000 OF 00006

F
0 3
0 7

7

ENTER: DELETE FILE: 1=LEFT, 2=RIGHT, 3=BOTH; 4=NO CHANGE: #

S e e e ek e ~N
e
o
3]

S

The screen will appear as above (in general, specific words
will vary) if REPAIR finds that two or more files are trying to
use the same space on disk.

For explanation of the messages refer to Cluster Allocation

36-10 DISK OPERATING SYSTEM

Conflicts in Medial Interface below.

To delete the files in error enter "3",

36.4.13 System Table Replacement

00000 CLUSTERS IN THOSE FILES.

S oo
[eRoXs

CLUSTER ALLOCATION PHASE, PASS 1. PFN 000
CLUSTER ALLOCATION PHASE, PASS 2. PFN 000
CLUSTER ALLOCATION PHASE, PASS 3.

WRITE NEW C.A.T. TO DISK ? #

L e e e o e e e N
N e e e e e e S

REPAIR will compare its generated CAT with the one on disk.
If they match, the message:

COMPUTED C.A.T. MATCHES DISK

will appear. Otherwise, the message on the last line of the
screen above will appear. '

To overwrite the CAT on disk enter "Y". To prevent overwrite
of the CAT on disk enter "N". If no errors have been discovered
by REPAIR, the operator should enter "Y".

REPAIR will then compare its Lockout CAT with the one on
disk. If they match, the message: ' ‘

COMPUTED LOCKOUT C.A.T. MATCHES DISK

will appear. Otherwise a message will appear asking if the
Lockout CAT is to be written back to the disk.

To overwrite the Lockout CAT on disk (making any additional
cylinders locked out during the primary stages of REPAIR
permanent) enter "Y". To prevent overwrite of the Lockout CAT on
disk enter "N". If no errors in the Lockout CAT have been
discovered by REPAIR and no additional cylinders were locked out,
the operator should enter "Y',

REPAIR will finally generate a Hashed Directory Index and

CHAPTER 36. THE REPAIR COMMAND 36-11

compare it with the one on disk. If they match, the message:

COMPUTED H.D.I. MATCHES DISK

will appear. Otherwise a message will appear asking if the Hashed
Directory Index is to be written back to disk; Enter a "Y" if so,
on "N" if not. The H.D.I. check 1is not performed on a diskette

. system.

oo
ooco

CLUSTER ALLOCATION PHASE, PASS 1. PFN 000
CLUSTER ALLOCATION PHASE, PASS 2. PFN 000
CLUSTER ALLOCATION PHASE, PASS 3.

WRITE NEW C.A.T. TO DISK ? N
WRITE NEW LOCKOUT CAT TO DISK ? N
COMPUTED H.D.I. MATCHES DISK

DISK REPAIR DONE.

L e e e e e e e N
N mm e e e e

The message on the last line of the screen above will appear
when the REPAIR program is finished checking the disk. The REPAIR

program will attempt to re-load the DOS when it is finished if it
was loaded from DOS.

No operator response is required.

36.5 Medial Operator Interface

This section is a rather comprehensive discussion of the
various messages and options provided by REPAIR, and is for those
who wish to be able to take advantage of the file-saving options
available with REPAIR. To use this section will require that the
operator gain an understanding of whatever error(s) REPAIR finds
that the he wishes to repair. For example, if the only errors on
the user's disk are in the directory, it is not necessary to study
Retrieval Information Blocks or Cluster Allocation.

This section follows the section numbering scheme of the
previous section, Minimal Operator Interface.

When a facet of REPAIR operation is discussed more

36-12 ~DISK OPERATING SYSTEM

appropriately elsewhere, the discussion is not repeated in this
section, but the reader is referred to the section containing the
discussion. When the section referenced is the corresponding
section under Minimal Operator Interface, this section will simply
say "See Minimal Interface".

To use this section requires that the user have a copy of and
understand the use of either of the DOS commands, DUMP or
DUMP93X0. The ability to use the Assembler may be mandatory in
some cases.

This section assumes that the REPAIR program is used as an
error-finding tool, and that the user, with the aid of one of the
DUMP programs and special programs he may create, can fix errors
that develop on the disk. A specific example is the case of a
file with bad RIBs. REPAIR can tell the operator that the file's
RIBs contain errors. Either DUMP program can be used to determine
the magnitude of the damage to the RIBs, and, if necessary, where
the file's records actually are on disk. If necessary, the user
can create a simple Assembly language program to re-create the
file's RIBs on disk. Sometimes it will be less effort to
re-create a file's RIBs than to re-create the file itself.

36.5.1 Executing REPAIR

If REPAIR is cataloged on the disk (as REPAIR/CMD), and if
the DOS is capable of loading and executing it, the fastest and
easiest way to get REPAIR started is by simply keying the command
at the system console:

REPAIR

REPAIR may also be executed by placing a LOAD-AND-GO (LGO)
tape of REPAIR in the rear cassette deck and pressing RESTART.

In either case, the pack to be checked must be placed in a
drive connected to the computer and brought on line.

Note that a pound sign (#) in one of the bottom two lines of
the pictogram represents the cursor position. The cursor will be
flashing when the operator is required to respond to the
information on the screen.

CHAPTER 36. THE REPAIR COMMAND 36-13

36.5.2 3ign-on and drive number specification
See Minimal Interface for illustration.

After the operator has entered the nﬁmber,of the drive
holding the pack to be REPAIRed, REPAIR will wait for that drive
to come ready before proceeding to do cylinder lockout.

36.5.3 Cylinder lockout

The Cylinder Lockout with REPAIR Section is a discussion with
examples of the cylinder lockout process.

Cylinders are locked out because they give read/Write errors
or because by system design they are to be reserved for some
special use.

If the user is not sure whether cylinders have been locked
out on a disk pack (and the Lockout CAT and backup have both been
destroyed), either of the DUMP programs can be used to look at the
cylinders on disk.

Cylinders that have been reserved for special use can
generally be recognized by the formatting of their sectors.
Sectors that have not been used by the normal DOS routines will
not have the special DOS header information in the first three
bytes. The first byte is the PFN (Physical File Number) of the
file, and the second and third bytes give the LRN (Logical Record
Number) of the record in the file. For records that have been
written by the normal DOS, each cluster will have the same first
byte, and the second and third bytes will be incremented by one
(LSp, MSP).

36.5.4 Direétory check monitor
See Minimal Interface for illustration.

The directory check monitor is the means by which REPAIR
indicates its progress to the operator. Specifically, the
directory check monitor constantly displays the disk address of
the current directory entry being checked. This display is in the
form of two vertically displayed octal numbers at the right of the
screen. The first number is a directory sector number indicator,
and the second number is the buffer page address of the directory
entry being checked.

36-14 DISK OPERATING SYSTEM

If the directory check monitor stops and no other messages
are displayed, then the REPAIR program was loaded to memory
improperly or something is wrong with the hardware.

If a page in the directory has been accidentally overwritten
by a record from a file, then REPAIR will find many errors in that
directory page. If while executing REPAIR the operator notices
that there are quite a few errors in the directory, he can note
the directory page address as shown by the directory check
monitor. (The left number of the directory check monitor is the
physical sector number of the directory page). Using either of
the disk dump programs the operator can look at the bad directory
page(s).

If the damage is only to one copy of the directory (the usual
case) then REPAIR can recover the directory. However, the
operator may wish to use either DUMP command to look at the
directory to see if, by examining the data there, he can determine
if an error in a user program has caused the directory to be
overwritten. Clues to such events can be gleaned by noting the
first byte of the record (which would be a file PFN), for example.

36.5.5 Directory errors

The directory is a table of entries for files on the pack.
There are two copies of the directory, the MASTER and the COPY.
There are 16 pages to each copy of the directory, each page holds
entries for up to 16 files. (One disk physical sector is one
directory logical page). Thus, the directory has a MASTER and a
COPY entry for up to 256 files.

The REPAIR program checks the directory one file at a time.
That is, the MASTER and the COPY of a directory entry are checked
at the same time.

If an error in the MASTER or the COPY entry or both is
detected, REPAIR will display:

1. A brief error description at the top of the screen,

2. The MASTER and COPY entry across the lower center of the
screen,

3. An option message near the bottom of the screen.

The error description will indicate whether the error is in
the MASTER or the COPY entry or both, and will define the type of

CHAPTER 36. THE REPAIR COMMAND 36-15

error.

Note that although directory entries for a file may have
several types of errors at the same time, REPAIR will only deal
with one error type at a time.

The directory entries are displayed under their respective
headings- MASTER: and COPY: . The first four bytes and the last
byte of each entry are always displayed in vertical octal. The
5th thru 15th bytes (being the file name and extension) of each
entry are displayed in ASCII except for bytes in those fields
which cannot be displayed in ASCII on the CRT display; those
bytes will be converted to vertical octal.

The option message at the bottom of the screen will enable
the operator, by selecting and entering a digit, to correct the
MASTER entry with information from the COPY entry, to correct the
COPY entry with information from the MASTER entry, to delete both
entries (and thus the file), or to make specific changes to one or
both entries, or to make no change at all to either entry.

Below are examples of the various directory errors that may
occur and discussions of the respective messages. The first
example is the most complete; the other directory error routines
work basically the same way but their examples are not as
expanded.

Note that for the examples concerning the directory MASTER,
the same messages (transposing the words COPY and MASTER) apply to
the directory COPY.
36.5.5.1 Delete errors

Delete errors include those where the directory entry master

is deleted and the copy is not deleted, or the directory entry
master is partially deleted.

36-16 DISK OPERATING SYSTEM

36.5.5.1.1 One entry deleted

ENTER: 1=COPY->MASTER, 2=DELETE BOTH, 3=NO CHANGE: #

/ \
| DIRECTORY ENTRY MASTER: DELETED i
1 1

!
! |
’ :
3 MASTER COPY: i
|]
1 3333333333333333 0330 3 0 0 |
v T T T TT T T T T T T T T 0060 7 02|
5 TTTTTTTTTTTTTTTT 2041CAT CMDT 6 0 |
g |
: |
\ /

The screen will appear as above if REPAIR finds a file for
which the directory MASTER entry is deleted (filled with 0377's)
but the directory COPY is not.

The operator has three options:

1. Enter "1" to copy the COPY entry to the MASTER entry, thus
saving the file's name in the directory;

2. Enter "2" to delete both entries, and thus the file;

3. Enter "3" to take no action on the file's entries and
continue the directory check.

\
/
! DIRECTORY ENTRY MASTER: DELETED E
1 1
| |
‘ :
! MASTETR: coPY: :
‘ !
1 3333333333333333 0330 3 8 g
V77 77T T T TTTTTTTTT 0060 7 :
YT T T T T T T T T TTTTTT 204 1CAT CMDYT 6 0 |
: 1
E ENTER: 1=COPY->MASTER, 2=DELETE BOTH, 3=NO CHANGE: 1 E
| *%%¥ ARE YOU SURE ? ¥%% 4 : }
\

The message on the last line of the screen above will appear
when the operator has selected and entered one of the digits given
in the option message. REPAIR will always make sure the operator

entered what he intended to before proceeding to carry out the
function.

CHAPTER 36. THE REPAIR COMMAND 36-17

To carry out the function selected enter "Y". If "N" is
entered the option message will be re-displayed.

/

i

1

!

!

1 MASTETR: CoOPY:

1

1

i 0330 3 0330 3
10060 7 0060 7 00
204 1CAT CMDY7Y 204 1CAT CMDT g 2
{ 0
i ENTER: 1=COPY->MASTER, 2=DELETE BOTH, 3=NO CHANGE: 1

| ®%%¥ ARE YOU SURE ? #%% Yy

{ DONE.

\

The screen will appear as above if the operator has replied
"1" to the message above and replied "Y" to the message "¥¥¥ ARE
YOU SURE ? ¥***"_ WYhen REPAIR does an entry to entry copy, both
entries are re-displayed to show the operator the results of the
copy, and the message: "DONE." is displayed at the bottom of the
screen.

No further operator response is required{

N e e e e~

/

i DIRECTORY ENTRY MASTER: DELETED

!

;

| MASTER COPY:

1

{3333333333333333 3333333333333333

T TT T T T T T T T T T TTTT TTTTTTTTTTTT TN 00
PTTTTTT T T T T T T TTTTTTTTTTTTTTTT g g
i ENTER: 1=COPY->MASTER, 2=DELETE BOTH, 3=NO CHANGE: 2

| ¥*% ARE YOU SURE ? *¥% y

i DONE.

\

NPT S

The screen will appear as above if the operator has replied
"2" to the message above and replied "Y" to the message "*¥¥¥ ARE
YOU SURE ? ¥*#*%¥"_ YWYhen REPAIR deletes the entries from the
directory, the entries are re-displayed to show the operator that
the delete has been accomplished, and the message: "DONE." is
displayed at the bottom of the screen.

No further operator response is required.

36-18 DISK OPERATING SYSTEM

MASTER COoOPY:
3333333333333333 0330 3 00
TTTTTTTTTTTTTTTT 0060 7 02
TTTTTTTTTTTTTTTT 2041CaAT CMDT 60

ENTER: 1=COPY->MASTER, 2=DELETE BOTH, 3=NO CHANGE: 3
%¥ ARE YOU SURE ? ¥¥% Y

e N

N mmmm— e e e e~

The screen will appear as above if the operator has replied
"3" to the message above and replied "Y" to the message "¥¥¥ ARE
YOU SURE ? ¥#%¥n =~ REPAIR will make no change to the entries and
will resume the directory check.

No further operator response is required.

36.5.5.1.2 Delete Incomplete

ENTER: 1=COPY->MASTER, 2=DELETE BOTH, 3=NO CHANGE: #

/

E DIRECTORY ENTRY MASTER: DELETE INCOMPLETE

Il

i

! .

5 MASTER: COoPY:

!

i 333333 3 0330 3 00
T T TT T 7 0060 7 02
T T T TTTT CMDT 2041CAT CMDY 6 0
i

',

;

\

N e e e

The screen will appear as above if REPAIR finds a file for
which the directory MASTER entry is partially deleted (partially
filled with 0377's) but the directory COPY is not.

The operator options and REPAIR actions are the same as for
one entry deleted, see the preceding section.

CHAPTER 36. THE REPAIR COMMAND 36-19

36.5.5.2 RIB Address Errors

RIB Address errors include invalid RIB addresses or unequal
RIB addresses between the directory MASTER and COPY.

36.5.5.2.1 RIB Address Invalid

/ \
5 DIRECTORY ENTRY MASTER: R.I.B. ADDRESS INVALID !

]
i . 1
| |

]
3 MASTER: COPY: !
| |
3 0330 3 0330 3 00!
10060 7 0060 7 02 |
50041CAT CMDT 204 1CAT CMDT 6 0 |
g !
3 ENTER: 1=COPY->MASTER, 2=DELETE BOTH, 3=NO CHANGE: # !
H]
\ /

The screen will appear as above if REPAIR finds a directory
MASTER entry with an invalid RIB address.

In this example, the RIB address of the directory MASTER is
invalid because the cylinder address is 000.

The RIB address is the first byte and the top two digits of
the second byte of a directory entry. The first byte is the
cylinder address and to be valid must be an octal number in the
range 001 thru the maximum cylinder number for the DOS in use
(DOS.A - 0312, DOS.B - 0312, DOS.C - 0114, DOS.D - 0374, DOS.E -
0312). The top two digits of the second byte define the cluster
number and to be valid must be one of the following:

00, 04, 10, 14, 20, 24, 30, 34
For diskette systems, the valid two digits are only:
00, 10, 20, 30
The operator has three options:

1. Enter "1" to copy the COPY entry RIB address to the MASTER
entry RIB address;

2. Enter "2" to delete both entries, and thus the file;

36-20 DISK OPERATING SYSTEM

3. Enter "3" to take no action on the file's entries and
resume the directory check.

\
/)
| DIRECTORY ENTRY MASTER: R.I.B. ADDRESS INVALID :
: !
1
' |

i
i MASTER: COPY: i
' |
10330 3 o93é0 R
! 0060
3 004 1"CAT CMDT 204 1CAT CMDT 6 o;
!]
E TNTER: 1=COPY->MASTER, 2=DELETE BOTH, 3=NO CHANGE: 1 :
| *#% ARE YOU SURE ? ¥¥% 4 }
\

The message on the last line of the screen above will appear
if the operator has replied "1" to the message above.
To carry out the function selected enter "Y".

/ \
; DIRECTORY ENTRY MASTER: R.I.B. ADDRESS INVALID 5
1]
! !
1 !
5 MASTER: COPY: |

!
1 1
1 0330 3 0330 3 00 |
1 0C60 7 0060 7 02|
5 oCcC41CcaAacT CMDT 204 1CAT cCMDT 6 0

i
] 1
| ENTER: 1=COPY->MASTER, 2=DELETE BOTH, 3=NO CHANGE: 1 |
| MOVE ENTIRE ENTRY 2 # !
\ /

The message on the last line of the screen above will appear

if the operator replied "Y" to the message "¥#¥¥ ARE YOU SURE ?
®EXN

Enter "N" to have REPAIR copy the RIB address (only) from the
COPY entry to the MASTER entry. Enter "Y" to have REPAIR copy the
entire COPY entry to the MASTER entry.

The "MOVE ENTIRE ENTRY ?" option is given to give the
operator the ability to correct many types of errors in an
erroneous entry at one time, rather than correct each error as it
is found. If the operator can recognize a severly destroyed entry
the first time he sees it, this option can enable him to repair
the directory more quickly.

CHAPTER 36. THE REPAIR COMMAND 36-21

36.5.5.2.2 RIB Addresses not equal

/ \
5 DIRECTORY ENTRY MASTER & COPY: R.I.B. ADDRESSES NOT EQUAL !
]
| |
! |
3 MASTER: COPY: |
! !
i 0330 3 0330 3 00
10060 7 0060 7 0 2!
52041CAT CMDT 304 1CAT CMDYT 6 0}
1) i
f ENTER: 1=MASTER->COPY, 2=COPY->MASTER, 3=DELETE BOTH, 4=NO CHANGE: # !
| i
\ /

The screen will appear as above if REPAIR finds a file with
directory entries with RIB addresses that are both valid but not
equal. '

In this example, the RIB address in the MASTER is 002,300 and
in the COPY is 003,300.

The operator has four options:

1. Enter "1" to copy the MASTER entry RIB address to the COPY
entry RIB address;

2. Enter "2" to copy the COPY entry RIB address to the MASTER
entry RIB address; ,

3. Enter "3" to delete both entries, and thus the file;

4, Enter "4" to take no action on the file's entries and
resume the directory check.

If it is not obvious by visual inspection of the directory
entries which is in error, the operator should note the RIB
address as given by each directory entry, and enter "4"., If
REPAIR later discovers PFN and LRN errors in the actual RIBs for
the file (see Retrieval Information Blocks Errors), then the
operator can be fairly sure the directory MASTER entry for the
file is in error, since only the directory MASTER entry is used to
determine the RIB address of a file for the RIB check phase of
REPAIR.

If the operator wants to make very sure which, if either, of

36-22 DISK OPERATING SYSTEM

the directory entries is corbect, he can use the DUMP or DUMP93XO0
commands to look at the file after REPAIR has finished execution.

When it is determined which directory entry for the file has
the correct RIB address, the operator can execute REPAIR again,
this time entering "1" or "2" as appropriate to correct the
erroneous directory entry.

If neither entry is correct, and it would be easier to modify
the directory entries for the file than to delete them and
re-create the file, refer to the available DOS documentation for
details on ways to modify the directory sectors on disk.

36.5.5.3 File protection not same

ENTER: 1=DELETE ENTRIES,2=NO CHANGE;PROTECTION: 3=NONE,4=DELETE,5=WRITE: #

/ \
': DIRECTORY ENTRY MASTER & COPY: FILE PROTECTION NOT SAME !
i '
| ENTRY MASTER: WRITE PROTECTION i
i ENTRY COPY: NO PROTECTION |
; MASTER: COPY: h
] i
1 0330 3 0 330 3 00 |
i 00 5 0 7 0060 K 0 2 |
| 238 1CcaAT CMDZT 204 1TCAT CMDY 6 0
ﬁ g
1 1
: 1
1
\ /

The screen will appear as above if REPAIR finds a file with
directory entries with protection not the same.

In this example, the directory MASTER entry has WRITE
protection indicated for the file, while the directory COPY entry
has no protection indicated for the file. Note: where the bits
for both WRITE and DELETE protection are set, WRITE protection has
precedence, since WRITE protection implies DELETE protection.

The protection indication is in the bottom two bits (bottom
digit) of the second byte of a directory entry. If the upper bit
of the two is set on (the digit is 2) then the directory entry
indicates that the file is DELETE protected. If the bottom bit is
set on (the digit is 1 or 3) then the directory entry indicates
that the file is WRITE protected. If neither of the two bits is
set on (the digit is 0) then the directory entry indicates NO
protection for the file, that is, that the file is unprotected.

The operator has five options:

CHAPTER 36. THE REPAIR COMMAND 36-23

1. Enter "1" to delete both entries, and thus the file;

2. Enter "2" to take no action on the file's entries and
resume the directory check;

3. Enter "3" to set both entries to indicate NO protection;

4. Enter "4" to set both entries to indicate DELETE
protection; ' a

5. Enter "5" to séL both entries to indicate WRITE
protection. Co

36.5.5.4 Name-Extension not equal

ENTER: 1=MASTER->COPY, 2=COPY->MASTER, 3=DELETE BOTH, 4=NO CHANGE: #

/ \
é’DIRECTORY ENTRY MASTER & COPY: NAME~EXTENSION NOT LEQUAL i

.]

i !

e . o ‘ i

5 MASTER: COPY: E

1 : t

i 6230 L ' 3 0330 3 00!

10060 : 7 0060 7 02|

P 204 1TCATXXXXXCMDT 2041CAT CHMDYT 6 0}

: 1
\ !

; i

\ /

The screen will appear as above if REPAIR finds a file with
directory entries that do not have the same NAME/EXTENSION.

: The NAME/EXTENSION of a directory entry is located in bytes 5
through 15 inclusively. The NAME/EXTENSION of a directory entry
(and the file) is the normal means by which the file is identified
and manipulated, especially from the DOS system console.

Note that REPAIR does not seek or identify as erroneous files
with NAME/EXTENSIONS that contain non-ASCII characters, since by
DOS rules non~ASCII characters are perfectly legal in the
NAME/EXTENSION field.

- The operator has four options:

1. Enter "1" to o the MASTER entry NAME/EXTENSION to the
COPY entry NAME/EXTENSION, ‘

. Enter "2" Lg copy the COPY entry NAME/EXTENSION to the

'36-24 DISK OPERATING SYSTEM

MASTER entry NAME/EXTENSION;
3. Enter "3" to delete both entries, and thus the file;

4, Enter "4" to take no action on the file's entries and
resume the directory check.

36.5.6 Retrieval Information Blocks check

RIB MASTER: (PFN 000) RIB COPY:

W N ook Kk ox M

oo0o
ooo

S e —— e e e —— N
N e o e o o o e s e e

The screen appears as above during the Retrieval Information
Blocks check.

REPAIR checks Retrieval Information Blocks (RIBs) for all
files in the directory with a valid RIB address, in the order of
the files' occurrence in the directory. The three-digit octal
number after "PFN" in the top line will indicate the actual
Physical File Number currently being checked. The two
vertically-displayed octal numbers at the right of the screen
provide the same information as the directory check monitor
described previously.

There are two RIBs for each file, a MASTER and a COPY. The
RIB MASTER is the very first record in the file and the RIB COPY
is the second record in the file. Each RIB uses one full 256-byte
disk sector. Refer to the System Structure Chapter for a
description of the structure of the RIBs.

If REPAIR detects any errors in the RIB MASTER a message
describing the class of error will be displayed in the portion of
the screen under the heading "RIB MASTER:". If REPAIR detects any
errors in the RIB COPY a message will be displayed in the portion
of the screen under the heading "RIB COPY:". ‘

The PFN indicator and the cycle monitor numbers are

CHAPTER 36. THE REPAIR COMMAND 36-25

incremented and displayed for each entry in the directory. The
column of asterisks is displayed only while the RIBs for a file
are actually being checked.

36.5.7 Retrieval Information Blocks errors

RIB MASTER: (PFN 000) RIB COPY:
PEN ERROR LRN ERROR * PFN ERROR : LRN ERROR
473 D!TV NOT 0377 ¥ LTH BYTE NOT 0377 ’
18T SEG.DES. ERRCR * 13T SEG.DES. ERROR
MULTIPLE ALLOCATION 00001 # MULTIPLE ALLOCATION 0C0Q1
CYL.ADR.OVERFLOW CYL.ERROR # CYL.ADR.OVERFLOW CYL.ERROR
RIB TZRMINATOR ERROR # RIB TERMINATOR ERROR

e e e e e
N B

The screen will appear as above if REPAIR finds errors in the
RIB MASTER or COPY for a file. Note that all of the messages
given in the example above will not necessarily appear. The
pictogram above shows the screen as it would appear while the RIB
check was in progress. The next pictogram shows the state of the
screen when the RIB check has finished and has displayed the
file's directory MASTER entry and is ready for operator response.

Below is a discussion of each of the messages in the screen
above. In the above pictogram all possible messages are shown in
their respective positions for both the RIB MASTER and the RIB
COPY. Note that since the RIB MASTER and COPY have the same
formats, (indeed, normally they are exact duplicates of each
other, except for their Logical Record Number [LRN]) they can have
the same errors.

There are two types of errors that a RIB may have: simple and
complex. If REPAIR finds only one simple error in only one of the
RIBs then the operator will be given the option of having REPAIR
correct the error. If multiple simple errors or any complex
errors are detected then the errors are too serious for REPAIR to
cope with, and will only give the operator a choice between
deleting the file or making no change at all. Even with multiple
or complex errors the file may be saveable.

PEN ERROR

36-26 DISK OPERATING SYSTEM

This message is displayed if the first byte of the RIB is not
the file's Physical File Number (PFN). This is a simple error and
is correctable under the conditions given above.

RN ERROR

This message is displayed for the RIB MASTER if the Logical
Record Number (LRN) is not zero, and for the RIB COPY if the LRN
is not one. This is a simple error and is correctable under the
conditions given above.

4TH BYTE NOT 0377

This message is displayed if the 4th byte of the RIB is not
0377. When the DOS object code loader lcads a program into memory
it skips over disk records with a 0377 in the 4th byte: since the
RIBs of a file are not part of the object code of a file their
fourth byte should always be 0377 so the loader will not attempt
to load them to memory. This is a simple error and 1s correctable
under the conditions given above.

1ST SEG.DES. ERROR

Expanded: First Segment Descriptor Error. This message is
displayed if the first segment descriptor of the RIB does not
point to itself. Since the RIBs are the first two records in any
file, they will always be in the first cluster. The first segment
descriptor must point to the beginning of the file, which is the
cluster where the RIBs are.

MULTIPLE ALLOCATION 00001

This message is displayed if REPAIR discovers that, according
to the RIB's segment descriptors, two or more segments of the file
overlap. Specifically, segment descriptors identify clusters on
the disk which belong to the given file. If one or more of these
clusters is indicated as belonging to more than one segment, then
there is mulitple allocation of clusters. The five digit octal
number indicates how many clusters are multiply allocated.

CYL.ADR.OVERFLOW

This message is displayed if REPAIR discovers a segment
descriptor which indicates that a segment overruns the physical
end of the disk. Of course it is not actually possible for a file
to extend beyond the upper limit of the disk space, but it is
possible for a segment descriptor to erroneously indicate this.
For example, a segment descriptor might say, in effect: "This

CHAPTER 36. THE REPAIR COMMAND 36-27

segment begins at the last cluster on the disk and extends for ten
clusters".

-CYL .ERROR

~ This message is displayed if REPAIR discovers a segment
descriptor with a cylinder address that is either 0 (always
reserved for the Cluster Allocation Table and the Directory) or
greater than the maximum cylinder number allowed by the DOS (DOS.A
- 0312, DOS.B - 0312, DOS.C - 0114, DOS.D - 0374, DOS.E - 0312).

RIB TERMINATOR ERROR

‘ This message is displayed if REPAIR discovers a RIB that has

an incorrect terminator. The logical end of a RIB is indicated by
either the actual physical end of the disk record or a pair of
0377's. An 0377 in the first byte of a segment descriptor but a
non-0377 in the second byte defines a TERMINATOR ERROR.

/ ¢

| PFN ERROR *

! *

! *

! *

H *

! ¥

| 0230 3
d 0060 7
5 20 41CHANGE CMDT
I=

i

\

DELETE THE FILE ? #

N e e o i e e e e e

The screen will appear as above when REPAIR has completed the
RIB check for a file whose RIBs had only one simple error. Note

that the screen is rolled up one line so that the heading
containing the PFN is no longer displayed. However the directory

MASTER entry for the file, containing the NAME/EXTENSION for the
file, is displayed under the error message area.

To simply have REPAIR delete the file enter "Y". To attempt
to save the file enter "N".

36-28 DISK OPERATING SYSTEM

DELETE THE FILE ? N
WRITE CORRECTION TO DISK ? #

/ \
! * I
: * |
: # i
! % i
| * |
' 0230 3 5
! 0060 7 !
| 204 1CHANGE CMDT7T :
]

! i
i]
! 1
\ 1
H]
\ /

The message on the last line of the screen above will appear
if the operator replied "N" to the message above.

Enter "Y" to have REPAIR write the correct RIB 1nformat10n to
the RIB in error and resume the RIB check.

#
*
*
*
0230
0060
2041 CHANGE CMD

DELETE THE FILE ? N
WRITE CORRECTICN TO DISK ? N
FILE SPACE WILL NOT BE ALLOCATED.#

e e e S

~Jw
N mmmm e e e -

The message on the last line of the screen above will appear
if the operator replied "N" to the message above. REPAIR will not
allocate space (by setting the appropriate bits in the CAT) for a
file if there is any uncorrected/uncorrectable error in either of
the RIBs.

REPAIR will wait until the operator depresses the ENTER key
before resuming the RIB check.

CHAPTER 36. THE REPAIR COMMAND 36-29

*

*

%

*
0230 3
0060 7
2041 CHANGE CMDT

RIBS' SEGMENT DESCRIPTORS NOT EQUAL.
DELETE THE FILE ? #

e e e N

The messages on the last two lines of the screen above will
appear if the RIB MASTER and COPY for a file individually have no
format errors but do not describe the same segments for the file.

Enter "Y" to delete the file from the directory. Enter "N"
to make no change to the file and resume the RIB check.

NOTE that whether or not the file is deleted REPAIR will not
allocate any space on disk for the file (refer to the pictogram
and discussion above). The consequence of this is that, although
the file will still be accessable, the space it occupies is marked
as available for allocation to some other file. As a result, the
remains of the file on disk are almost certain to be overwritten
by some other file sooner or later.

Complex RIB errors can come in infinitely many kinds and
combinations. The REPAIR diagnostics will describe specific
errors, but if the user is considering fixing a RIB he must
examine the RIB himself and determine what is wrong with it and
how to correct it. Sometimes this will involve examining records

on disk and determlnlng whether or not the records belong to the
file and how they should be organized in the RIBs segment -

descriptors. Because of the potential complexity of this
operation the current version of REPAIR does not attempt the
analysis necessary to re-construct a RIB with complex errors.
36.5.7.1 A simple case

A relatively simple-to-fix case might go like this:

1. REPAIR would find a file with simple and complex errors in
the RIB MASTER.

2. The user would use either disk dump program to look at the

36-30 DISK OPERATING SYSTEM

N = mm e e~

RIBs and determine that the RIB MASTER had somehow been completely
destroyed, but the format of the RIB COPY seemed to be correct.

3. Using the information in the segment descriptors of the
RIB COPY, the user would determine that the COPY was correct.

4., The user could then use the DUMP93X0 CASSETTE DUMP command
to dump the RIB COPY to cassette, then use the DUMP93X0 CASSETTE
LOAD command to load the record to the RIB MASTER.

5. The user would run REPAIR again. This time REPAIR would
find that the RIB MASTER for the file had one simple error,
namely, that the LRN was incorrect. REPAIR could correct this
error.

6. The original error is thus corrected.
36.5.7.2 A Complex Case

The worst case of RIB damage could be corrected in the
following manner:

1. REPAIR would find a file with simple and complex errors in
both the RIB MASTER and COPY.

2. The user would use either disk dump program to look at the
RIBs and determine that the RIBs had somehow been completely
destroyed, but that the file following the RIBs was not damaged.
(T?is can happen when a program incautiously uses DOS logical file
0.

3. Using either disk dump program the user would locate and
map all of the file's SEGMENTS on disk.

4, From the information about the file's segments, the user
would re-construct the file's RIBs, and write a program to write
the RIBs to disk.

5. As a check on the above, REPAIR would be run to insure
that the new RIBs for the file did not indicate an allocation
conflict with another file.

6. The error is thus corrected.

CHAPTER 36. THE REPAIR COMMAND 36-31

36.5.8 End of RIB check
See Minimal Interface for illustration.

When all of the RIBs for all of the files on the disk have
been checked REPAIR will count the number of files with
uncorrected RIB format errors and the number of files with no RIB
format errors and will display the counts on the screen. The
files that do have RIB format errors will not be allocated space
?n disk and will not be processed in the cluster allocation phase

below).

36.5.9 Cluster allocation phase, Pass 1
See Minimal Interface for illustration.

The cluster allocation phase of REPAIR re-constructs in
memory the CAT from the information in the RIBs of files that have
no RIB format errors. The cluster allocation phase consists of
three passes. The first pass makes one pass through all the files
on the pack with no RIB format errors and builds in memory two
CATs: one for all files that have no space (cluster allocation)
conflicts with other files and a second for files which do have
cluster allocation conflicts.

36.5.10 Cluster allocation phase, Pass 2
See Minimal Interface for illustration.

The second pass of the cluster allocation phase makes another
pass through all the files allocated to the first CAT and finds
any that may have conflicts with space allocated to the second ‘
CAT, and removes those files' space allocation from the first CAT
and allocates their space to the second CAT.

36.5.11 Cluster allocation phase, Pass 3

See Minimal Interface for illustration.

The third pass of the cluster allocation phase does an
analysis on any two files with disk space (cluster allocation)
conflicts with each other and displays the results of the analysis

on the screen (see next section). If no files have cluster
allocation conflicts REPAIR proceed to System Table Replacement.

36-32 DISK OPERATING SYSTEM

36.5.12 Cluster allocation conflicts

PFN 200 PFN 220
8 8 g g 3 0030 3
3041S8S1IN CMD g 3049 7
30418S00UT CMD
ﬁ g? gég?TERS IN FILE: 00001 # OF CLUSTERS IN FILE: 00002 !
L oor CON”LICTING FILES: 002 CONFLICTING FILE # 001
FLICTING CLUSTERS: 00001 # OF CONFLICTING CLUSTERS: 00001

OF CORRECT PFN/LRN: 00004 OF 00006 # OF CORRECT PFN/LRN: 00000 OF 00006

ENTER: DELETE FILE: 1=LEFT, 2=RIGHT, 3=BOTH; 4=NO CHANGE: #

P e e e LN

I

The screen appears as above (in general, specific words will
vary) if REPAIR finds two files with cluster allocation conflicts
- that is, if two files have, according to their respective RIBs,
been allocated in whole or in part the same clusters on disk.

The possible combinations of file cluster allocation
conflicts is myriad. One file may have conflicts with only one
other file. One file may have conflicts with many other files.
Many files may have conflicts with many files in different
combinations of numbers.

REPAIR handles any possible combination of files with cluster
allocation conflicts by dealing with only two files at a time. As
in the above example, the directory MASTER entry (and some
additional information) for a file is displayed on the left of the
screen, and the directory MASTER entry (and some additional
information) for a file that has cluster allocation conflicts with

it is displayed on the right of the screen.

As long as the file on the left of the screen is not deleted,
all of the files that have cluster allocation conflicts with it
will be displayed in turn on the right of the screen. When all of
the cluster allocation conflicts with the file on the left of the
screen have been dealt with, then the next file with cluster
allocation conflicts will be displayed on the left of the screen,
and all files that have cluster allocation conflicts with it will
be displayed in turn on the right of the screen, and so on until
all files that have cluster allocation conflicts have been dealt

with.

The information displayed for the two files having cluster

CHAPTER 36. THE REPAIR COMMAND 36-33

allocation conflicts is to guide the operator in deciding among
the four options given by REPAIR. For explanation of the messages
see the next section.

REPAIR corrects a cluster allocation conflict by deleting one
of the files involved. If many files are involved in cluster
allocation conflicts then the operator will probably want to enter
""" after each display so that he can accumulate the information
necessary to decide which files should be deleted and which should
be retained (that is, REPAIR will be executed twice, once to
gather all the information about cluster allocation conflicts and
once to actually delete files).

Specifically, the operator has four options:

1. Enter "1" to delete the file indicated on the left of the
screen;

2. Enter "2" to delete the file indicated on the right of the
screen;

3. Enter "3" to delete both of the files;.

4, Enter "4"™ to take no action on either of the files and
resume the CLUSTER ALLOCATION PHASE, PASS 3.

36.5.12.1 Cluster allocation phase, Pass 3 Messages

The explanations below describe the information given in the
respective messages and how the operator can interpret the
information.

36.5.12.1.1 Left side of screen

EN 00

This message gives the PHYSICAL FILE NUMBER of the file whose
directory MASTER entry is displayed immediately below it.

The PFN is a means of identifying the file besides the
NAME/EXTENSION given in the directory entry. Additionally, the
PFN of a file tells the file's relative location in the directory
(refer to the System Structure Chapter for a discussion of the
directory). This information can be useful, especially with a
relatively new disk pack, in indicating which files are older and

36-34 DISK OPERATING SYSTEM

which are newer.

DIRECTORY MASTER entry

The directory entry for a file provides the fundamental means
of identifying the file on the disk. The directory entry contains
information as follows:

The physical disk address of the beginning of the file is
given in the first byte and the higher two digits of the second
byte. The first byte is the cylinder address and the top three
bits of the second byte are the cluster number. Since the RIBs
are the first two records in the file, this address points to the
file's RIBs.

The protection of the file is given in the bottom digit of the
second byte. 1 or 3 = write protection, 2 = delete protection.

The old logical record number limit field is given in the third
(LSB) and fourth (MSB) byte of the file, as a 16-bit binary
number. This field is currently unused by the "dot-series" DOS,
which normally set it to zero when a file is created.

The NAME/EXTENSION of the file is given in the 5th through 12th
bytes and the 13th through 15th bytes respectively.

The last byte of the directory entry is the number of the DOS
subdirectory on that logical drive containing the file.

OF CLUSTERS IN FILE: 00000

This message gives the number of clusters in the file as a
5-digit octal number.

Besides giving the operator an indication of the size of the
file, it can be compared to the number of clusters in the file
involved in cluster allocation conflicts (below), to give a
relative indication of what percent of the file may be in error.

OF CONFLICTING FILES: 000

This message gives the number of files (in octal) that
conflict with the file displayed on the left of the screen.

If the number is very large, and the file not very important
to the operator, then the operator may decide to delete the file
rather than look at all of the files that have cluster allocation
conflicts with it.

CHAPTER 36. - THE REPAIR COMMAND 36-35

OF CONFLICTING CLUSTERS: 00000

This message gives the number (in octal) of clusters that are
in conflict for the entire file. If the file has conflicts with
many files then this number will almost always be larger than the
corresponding number on the right side of the display.

The number of conflicting clusters for a file can give the
operator a quantitative indication of possible damage to the file.

OF CORRECT PFN/LRN: 00000 QF 00000

This message gives the number of records in the file that
have the correct DOS header information in them (being the PFN in
the first byte of the physical record and the LRN in the second
conflict with other files, and the number of records in the
clusters that are in conflict. Both of the numbers are in octal.

If a record in a contested cluster does not have the correct
PFN/LRN information, then it has probably been overwritten by a
record of a file that also claims the cluster.

This message gives the operator an indication of actual
damage to the file. If the number of correct PFN/LRN is high,
then there is little damage to the file and the RIB for the file
is probably correct. If the number of correct PFN/LRN is very

low, then the file has probably been overwritten by another file
and/or the file's RIB is incorrect.

36.5.12.1.2 Right side of screen

PFN 000
Same as for left side of screen.
DIRECTORY MASTER entry

Same as for left side of screen.
OF CLUSTERS IN FILE: 00000

Same as for left side of screen.

CONFLICTING FILE # 000

36-36 DISK OPERATING SYSTEM

This message provides a counter (in octal) to help the
operator keep track of each file among several with which the file
on the left of the screen has cluster allocation conflicts. This
number can never exceed the # QF CONFLICTING FILES: 000 count.

OF CONFLICTING CLUSTERS: 00000

This message gives the number (in octal) of clusters that are
in conflict between the files indicated on the left and right of
the screen.

OF CORRECT PFN/LRN: 00000 QOF 00000

This message gives the number of records in the file that

. have the correct DOS header information in them (PFN and LRN) for

—_——eme R el Rl e S Y Do oy sy SN S NN s S

left of the screen, and the number of records in the clusters that
are in conflict. Both of these numbers are in octal.

Refer to the discussion under this message for the left side
of the screen. The user will need to be aware of the structure of
the files being examined.

The user may wish to use either disk dump program to inspect
the actual data on disk before deleting one or both of two files
with cluster allocation conflicts.

For a file with cluster allocation conflicts, one of five
things may be true:

1. The file may have correct RIBs and all correct records.

(That is, the error is in the file(s) having the cluster
allocation conflict with this file.)

2. The file may have incorrect RIBs.

3. The file's space has been erroneously allocated to
another file, and is occupied by the other file.

4, Another file has erroneously been allocated the file's
space, and its space is occupied by this file.

5. Any combinaton of (2), (3) and (4) above.

Either disk dump program can be used to look at the RIBs of
files with cluster allocation conflicts. From the information
given by the segment descriptors either disk dump program can be
used to look at where the file's records should be on disk. If

CHAPTER 36. THE REPAIR COMMAND 36-37

the records for the file are where they should be according to the
RIB, then the file possibly has no errors.

NOTE:

used.

The user will need to be aware of the structure of the
files being examined.

From the information gathered by examination of the actual
data on disk, the user can determine whether a file has errors and
if so, whether corrections should be made, and if so, what ’
corrections. In some cases the user may want to change a file's
RIB to relocate the file on disk. This, of course, would require
careful study of the real allocation of space on the disk and
regeneration of the file's RIBs.

36.5.13 System table replacement
See Minimal Interface for illustration.

The CLUSTER ALLOCATION TABLE that will be written to disk is
a combination of the CAT for files that had no cluster allocation
conflicts and the CAT for files that had cluster allocation
conflicts but that the operator did not wish to delete. The
allocation for files with cluster allocation conflicts is retained
so that if a new file is created it will not take space that is
being used by one of the un-deleted but erroneous files, thus
compounding cluster allocation conflicts.

Files that will still exist in the directory but will not
have space allocated to them will be:

Files with an invalid RIB address in their directory MASTER entry;
Files with any uncorrected error in either RIB

The reason disk space is not allocated to these files is that
if REPAIR cannot find the RIB for a file or if the RIB has
uncorrected errors then REPAIR has no way of knowing where the
file's clusters should be located. Any files of this class are
best transferred to cassette (if possible) and KILLed before any
new data is loaded to disk.

36-38 DISK OPERATING SYSTEM

36.5.14 Termination of REPAIR
See Minimal Interface for illustration.

When the REPAIR program has finished execution and has been
run from DOS it will return to DOS. Otherwise it goes into a dead
loop; that is, it executes a JUMP to self. This is so that the
processor will be "locked up" by the REPAIR program until the
operator takes some specific action, such as putting a LGO program
or DOS boot cassette in the rear deck and depressing RESTART. If
the auto-restart tab were punched out of the cassette in the rear
deck and REPAIR executed a HALT instruction upon completion, then
the computer would attempt to load and execute the cassette in the
rear deck, which the operator may not wish to happen.

36.6 Cylinder Lockout with REPAIR

This section describes the mechanics of locking out
cylinders. To accomplish this with the REPAIR program does not
require an understanding of the cylinder concept.

Any cylinders that are reserved (locked out) on a disk should
be recorded on a sticker or label on the case of the pack. 1In
addition, the cylinders to be locked out are recorded internally
on the disk itself in the Lockout CAT and its backup. The list of
cylinders to be locked out might look something like:

FLAGGED CYLINDERS (or TRACKS):
40-50
167
200-202

Obviously, the cylinder numbers locked out cannot exceed the
maximum cylinder number allowed on the DOS in use. The following
example assumes a cartridge disk system; operation would be
identical for any other system. Remember that the numbers used
for cylinder lockout are decimal, rather than octal as used in
most other portions of REPAIR. The following example shows how a
list of cylinders as above would be locked out in the REPAIR
program.

CHAPTER 36. THE REPAIR COMMAND 36-39

DATAPOINT DOS. REPAIR

DRIVE NUMBER: O
LOCKOUT CAT: FORMAT LOOKS OK.
DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? #

e e e e N

The screen appears as above when REPAIR is ready to accept
cylinder lockout instructions. The instructions serve as
additional cylinders to be locked out. REPAIR will not normally
allow cylinders which have been previously locked out to be
"unlocked". When REPAIR finishes execution and optionally
rewrites the Lockout CATs, the cylinders locked out will be those

originally locked out plus those specified by the operator in the
following steps.

To lock out cylinders, the operator must enter "Y",

QU S ——

DATAPOINT DOS. REPAIR

DRIVE NUMBER: 0
LOCKOUT CAT: FORMAT LOCKS OK.
%¥%% ARE YOU SURE ? #x¥ g

e N

REPAIR will make sure the operator wants to lock out
cylinders before accepting cylinder numbers to be locked out.

36-40 DISK OPERATING SYSTEM

Ny S S

To lock out cylinders, the operator must enter "Y".

e N

DATAPOINT DOS. REPAIR

DRIVE NUMBER: C

LOCKCUT CAT: FORMAT LOOCKS OK.
***% ARE YOU SURE ? *¥% Y
CYLINDER NUMBERKS> <1-202>: #

The screen will appear as above when REPAIR is ready to
accept the first cylinder(s) to be locked out.

If the operator were locking out the cylinders listed above,

he would enter 40-50 and press ENTER.

P

e e e = N

DATAPOINT DOS. REPAIR

DRIVE NUMBER: O

LOCKOUT CAT: FORMAT LOOKS OK.

%¥%% ARE YOU SURE ? *##% Y

CYLINDER NUMBER<S> <1-202>: 40-50
CYLINDER NUMBERKS> <1-202>: #

N m—mmmmmmm mm e mm e

CHAPTER 36. THE REPAIR COMMAND

36-41

The screen appears as above when REPAIR has accepted the
previous cylinder lock-out and is ready for the next cylinder

number(s).

According to the above sample list, the operator would now
enter 167.

DRIVE NUMBER: O

LOCKOUT CAT: FORMAT LOOXS OK.

#%¥% ARE YOU SURE ? #%% y

CILINDER NUMBERKS> <1-202>: 40-50
CYLINDER NUMBERKS> <1-202>: 167
CYLINDER NUMBERKS> <1-202>: #

D T LY

N e e -

The screen appears as above when REPAIR has accepted the
previous lock-out and is ready to accept the next cylinder

number(s).

According to the above list the operator must now enter
200-202.

36-42 DISK OPERATING SYSTEM

DRIVE NUMBER: O

LOCKQUT CAT: FORMAT LOOKS OK.

¥%% ARE YOU SURE ? ¥¥#% Y

CYLINDER NUMBER<S> <1-202>: 40-50
CYLINDER NUMBERKS> <1-202>: 167
CYLINDER NUMBERKS> <1-202>: 200-202
CYLINDER NUMBERKS> <1-202>: #

S e e e e N
N e e

The screen appears as above when REPAIR has accepted the
previous lock-out and is ready to accept the next cylinder
number(s). :

According to the above example the operator has no more
cylinders to lock out. At this point then, the operator would

merely depress the ENTER key to signal REPAIR that no more
cylinders are to be locked out. REPAIR would proceed immediately

to the cluster allocation table and directory check phase.

36.7 CAT errors and directory read/write errors

This section describes messages displayed by the REPAIR
program when it discovers an error (of any kind) in the CLUSTER
ALLOCATION TABLEs (CATs) or a read or write error in the
directory.

These errors are the first type of error checked for by
REPAIR. A format (logic) error in one or more of the CATs is not
fatal (will not cause REPAIR to abort), but will be noted to the
operator. An uncorrectable read or write error in any of the CATs
or the directory is fatal, because the disk pack is in very

CHAPTER 36. THE REPAIR COMMAND 36-43

serious trouble if hardware errors occur in any of these tables.

REPAIR does not consider a read error in the CAT or DIRECTORY
fatal until either an attempt to clear the error by writing back
to disk has failed or the operator has instructed REPAIR not to
attempt the write. A write error to the CAT or DIRECTORY is
always fatal.

There is a working (MASTER) and a backup (COPY) version of
the Working CAT, the Lockout CAT, and the directory.

The examples that follow are given in the sequence of their
potential occurrence in REPAIR execution.

Important notice: Similar sequences are used for errors in
the Lockout CAT and its backup as for the Working CAT and its
backup. In this chapter, only the Working CAT sequence is used as
an example, since both are directly comparable. The messages for
both sequences are largely identical to save space. The user can
tell at any time whether the messages refer to the Working or
Lockout CATs by looking for the header "LOCKOUT CAT:" or "WORKING
CAT:" more or less directly preceding the message.

36.7.1 Cluster allocation table read errors

Note that although this example concerns the CAT MASTER, the
same messages (substituting the word COPY for MASTER) apply to the
CAT COPY. :

DATAPOINT DOS. REPAIR

DRIVE NUMBER: 0

LOCKOUT CAT: FORMAT LOOKS OK.

DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
WORKING CAT:

C.A.T. MASTER READ ERROCR

WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? #

e N
N e e e

The messages on the last two lines of the screen above will
appear when the REPAIR program has detected a read error in the
CAT MASTER. Notice how in this case, the header "WORKING CAT:"
implies that the read error has occurred in the Working CAT MASTER
as opposed to the Lockout CAT MASTER.

36-44 DISK OPERATING SYSTEM

To have REPAIR attempt to clear the read error enter Y;
otherwise enter N.

DRIVE NUMBER: 0

LOCKCUT CAT: FORMAT LOOKS OK.

DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
WORKING CAT:

C.A.T. MASTER READ ERROR

WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? Y

READ ERROR CLEARED.

R R U
Ny

The message on the last line of the screen above will appear
when the operator has replied "Y" to the message above and the
attempt to clear the read error was successful

.

No further operator response is required.

DRIVE NUMBER: 0 00KS OK
K AT: FORMAT L .
%gc§ggngNT TO LOCK OUT ADDITONAL CYLINDERS ? N
WORKING CAT:
C.A.T. MASTER READ ERROR
WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? N
READ ERROR UNCORRECTABLE.
THE PACK IS NOT FIXABLE.

e
R

The messages on the last two lines of the screen above will
appear if the operator replies "N" to the message above or if the
write to disk did not clear the read error. The REPAIR program
will not accept any further commands. To get any other program
running on the computer the operator must press the RESTART Kkey.

No operator response is required.

CHAPTER 36. THE REPAIR COMMAND 36-45

DATAPOINT DOS. REPAIR

DRIVE NUMBER: O©

LOCKOUT CAT: FORMAT LOOKS OK.

DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
WORKXING CAT: FORMAT LOOKS OK.

THE C.A.T. MASTER HAS DEVELOPED A READ ERROR

THE PACK IS NOT FIXABLE.

e ——— e e e
N e e e e

The messages on the last two lines of the screen above will
appear if a read error occurs when REPAIR reads the CAT MASTER for
the second time during the CAT check. This read error is
automatically considered fatal because it is evidence of a
transient hardware error in the CAT.

No operator response is required.

36.7.2 Cluster Allocation Table is destroyed

Note that although this example concerns the CAT MASTER, the
same messages (transposing the words COPY and MASTER) apply to the
CAT COPY.

DATAPOINT DOS. REPAIR

DRIVE NUMBER: O

LOCKOUT CAT: FORMAT LOOKS OK.

DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
WORKING CAT:

TEE C.A.T. MASTER IS DESTROYED

WRITE C.A.T. COPY INTO C.A.T. MASTER ? #

o e e e LN
N e e e

The messages on the last two lines of the screen above will
appear when the REPAIR program has discovered that the CAT MASTER
is destroyed but the CAT COPY appears to be valid.

To have REPAIR copy the CAT COPY into the CAT MASTER, enter
"Y"., Otherwise, enter "N".

36-46 DISK OPERATING SYSTEM

DRIVE NUMBER: O

LOCKOUT CAT: FORMAT LOOKS OK.

DO YOU WANT TC LOCK OUT ADDITIONAL CYLINDERS ? N
WORKING CAT:

THE C.A.T. MASTER IS DESTROYED

WRITE C.A.T. COPY INTO C.A.T. MASTER ? Y

DONE.

e e N
N~ e e e~

The message on the last line of the screen above will appear
when the operator has replied "Y" to the message above and the
write to the CAT MASTER was successful. REPAIR will proceed to
check the directory

No operator response required.

DRIVE NUMBER: 0

LOCKOUT CAT: FORMAT LOOKS OK.

DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
WORKING CAT:

THE C.A.T. MASTER IS DESTROYED

WRITE C.A.T. COPY INTO C.A.T. MASTER ? Y

DISK WRITE ERROR FOR C.A.T. MASTER.

THE PACK IS NOT FIXABLE.

e e m N
N mm e e e e e

The messages on the last two lines of the screen above will
appear if a write error occurs when REPAIR tries to write to the
CAT MASTER. The REPAIR program will not accept any further
commands. To get any other program running on the computer the
operator must press the RESTART key.

No operator response is required.

CHAPTER 36. THE REPAIR COMMAND 36-47

DRIVE NUMBER: 0

LOCKOUT CAT: FORMAT LOOKS OK.

PO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N

WORKING CAT: ,

THE C.A.T. MASTER IS DESTROYED

THE C.A.T. MASTER & COPY ARE DESTROYED

THE C.A.T. MASTER & COPY WILL HAVE TO BE RECONSTRUCTED FROM THE R.I.B.'S

T e i
N = e e e

The messages on the last three lines of the screen above will
appear if REPAIR discovers that both copies of the CAT are
destroyed. After the messages are displayed REPAIR will proceed
to check the directory At the conlusion of REPAIR simply write the
new CAT to disk to correct the error.

No operator response is required.

36.7.3 Cluster Allocation Table Copies Do Not Match

DATAPOINT DOS. REPAIR

DRIVE NUMBER: O

LOCKOUT CAT: FORMAT LOOKS OK.

DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS 2 N

WORKING CAT:

C.&.7. MASTER & COPY DO NOT MATCH

THE C.A.T. MASTER & COPY WILL HAVE TO BE RECONSTRUCTED FROM THE R.I.B.'S

e e e N
D

The messages on the last two lines of the screen will appear
when REPAIR has discovered that the CAT MASTER and COPY versions
do not agree with each other. Since it is not possible for REPAIR
to choose which version is correct at this point, it will proceed
to check the DIRECTORY. At the conclusion of REPAIR, simply write
the new CAT to disk to correct the error.

No operator response is required.

36-48 DISK OPERATING SYSTEM

36.7.4 Directory Read Errors

Note that although this example concerns the directory

MASTER, the same messages (transposing the words COPY and MASTER)
apply to the directory COPY.

DATAPOINT DOS. REPAIR

DRIVE NUMBER: O

LOCKOUT CAT: FORMAT LOOKS OK.

DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
WORKING CAT: FORMAT LOOKS OK.

DIRECTORY PAGE MASTER READ ERROR

WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? #

e e e e e e TS e S e - \
I

The messages on the last two lines of the screen above will
appear when REPAIR has detected a read error in the directory
MASTER.

To have REPAIR attempt to clear the read error enter "Y",
otherwise enter "N",

DRIVE NUMBER: 0

LOCKOUT CAT: FORMAT LOOKS OK.

DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
WORKING CAT: FORMAT LOOKS OK.

DIRECTORY PAGE MASTER READ ERROR

WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? Y
WRITE COPY PAGE TO MASTER PAGE ? #

e e i e e N
S

The message on the last line of the screen above will appear
if the operator has replied "Y" to the message above.

To have REPAIR copy the directory COPY page to the directory
MASTER page enter "Y", otherwise enter "N". If "N" is entered the
directory check will continue.

CHAPTER 36. THE REPAIR COMMAND 36-49

DRIVE NUMBER: O

LOCKOUT CAT: FORMAT LOOKS OK.

DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
WORKING CAT: FORMAT LOOKS OK.

DIRECTORY PAGE MASTER READ ERROR

WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? Y
WRITE COPY PAGE TO MASTER PAGE ? Y

DONE.

e e == N
NS e e e e e e e

The message on the last line of the screen above will appear
when the write to the directory MASTER has been successful. The
directory check will continue.

No further operator response is required.

DRIVE NUMBER: O

LOCKOUT CAT: FORMAT LOOKS OK.

DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
WORKING CAT: FORMAT LOOKS OK.

DIRECTORY PAGE MASTER READ ERROR

WRITE TO DISK TO ATTEMPT TO CLEAR ERROR 7 Y
WRITE COPY PAGE TO MASTER PAGE 7?7 Y

DIRECTORY PAGE MASTER WRITE ERROR

THE PACK IS NOT FIXABLE.

e e e e N
N mm e e e e e e

The messages on the last two lines of the screen above will
appear if the operator replied "Y" to the message above and REPAIR
detected a write error when it attempted to write to the directory
MASTER. The REPAIR program will not accept any further commands.
To get another program running on the computer the operator must
press the RESTART key.

No operator response is required.

36-50 DISK OPERATING SYSTEM

CRIVE NUMBER: 0

LCOCKOUT CAT: FORMAT LOOKS OK.

L0 YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
WORKING CAT: FORMAT LOOKS OK.

DIRECTORY PAGE MASTER READ ERROR

WR1ITE TO DISK TC ATTEMPT TO CLEAR ERROR ? Y
whUTE COPY PAGE TO MASTER PAGE 2 ¥

DIRECTORY PACE MASTER READ ERROR

THE PACK IS NOT FIXABLE.

PR PSRN
S

The messages of the last two lines of the screen above will
appear if the operator replied "Y" to the message above and REPAIR
detected a read error when it attempted to re-read the directory
MASTER page it had just written.

No operator response is required.

DRIVE NUMBER: O

LOCKOUT CAT: FORMAT LOOKS OK.

DO YCU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
WORXING CAT: FORMAT LOOKS OK.

LIRECTORY PAGE MASTER READ ERROR

WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? Y
WRITE COPY PAGE TO MASTER PAGE ? Y

DIRECTORY COPY PAGE HAS DEVELOPED A READ ERROR
THE PACK IS NOT FIXABLE.

o e e e N
N e e e e

The messages on the last two lines of the screen above will
appear if the operator replied "Y" to the message above and REPAIR
detected a read error when it attempted to re-read the directory

COPY to compare it against the directory MASTER page just written
and re-read.

No operator response is required.

CHAPTER 36. THE REPAIR COMMAND 36-51

/ \
1]
i 1
i |
i |
{ DRIVE NUMBER: 0 |
| LOCKOUT CAT: FORMAT LOOKS OK. i
! DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N |
i WORKING CAT: FORMAT LOOKS OK. i
{ DIRECTORY PAGE MASTER READ ERROR |
. WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? Y i
| WRITE COPY PAGE TO MASTER PAGE ? Y i
i DIRECTORY PAGE MASTER & COPY DO NOT MATCH |
! THE PACK IS NOT FIXABLE. i
\ /

The messages on the last two lines of the screen above will
appear if the operator replied "Y" to the message above but the
directory page MASTER and COPY did not match after the page copy
had been made. This error is automatically considered fatal
because it is evidence of a hardware error in the directory.

No operator response is required.
/ \
! i
Il 1
] 1
§ 1
I |
! i
! DRIVE NUMBER: O i
! LOCKOUT CAT: FORMAT LOOKS OK. !
! DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N :
| WORKING CAT: FORMAT LOOKS CK. !
{ DIRECTORY PAGE MASTER READ ERROR !
! WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? Y i
! DIRECTORY PAGE COPY ALSO GIVES READ ERROR !
! WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? # }
\

The messages on the last two lines of the screen above will
appear if the operator replies "Y" to the message above and REPAIR
detects a read error in the directory COPY page.

To have REPAIR attempt to clear the read error enter "Y",

otherwise enter "N". If the write is successful REPAIR will
continue with the directory check.

36-52 DISK OPERATING SYSTEM

DRIVE NUMBER: 0

LOCKOUT CAT: FORMAT LOOKS OK.

DO YOU WANT TO LOCK OUT ADDITIONAL CYLINDERS ? N
WORKING CAT: FORMAT LOOKS OK.

DIRECTORY PAGE MASTER READ ERROR

WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? Y
DIRECTORY PAGE COPY READ ERROR

WRITE TO DISK TO ATTEMPT TO CLEAR ERROR ? Y

READ ERROR UNCORRECTABLE.

THE PACK IS NOT FIXABLE.

e == N

N mm e e e e

Thg messages on the last two lines of the screen above will
appear if the operator replied "N" Lo the message above or if the
write to disk did not clear the read error.

No operator response is required.

CHAPTER 36. THE REPAIR COMMAND 36-53

CHAPTER 37. REWIND COMMAND

REWIND - Rewind the cassette tape.
REWIND [REAR or DECK1]

The cassette in the front deck is rewound unless "REAR" or
"DECK1" is specified. If no cassette is in place in the deck, the
rewind will proceed but only after a cassette is put into place.
The cassette can be fully wound onto the clear leader at the very
end of the tape, since the rewind command starts by slewing the
tape backwards for a few seconds first. This both takes up any
slack that may be present in the cassette before the high-speed
rewind starts, and also ensures that the tape is not on the clear
leader when the actual rewind begins.

CHAPTER 37. REWIND COMMAND 37-1

CHAPTER 38. SAPP COMMAND

SAPP - Append two source files creating a third
SAPP <file spec>,[<file spec>],<file spec>

The SAPP command appends the second source file after the
first and puts the result into the third file. If extensions are
not supplied, TXT is assumed. The first two files must exist. If
the third file does not already exist, a new file will be created.
The first file's end of file record is discarded and the copy is
terminated by the end of file mark in the second file.

Omitting the second file specification causes the first file
to be copied into the third file. Note that neither the first or
second file is changed.

The first and third file specifications are required. If
either is omitted the message

NAME REQUIRED
will be displayed.

The second and third file specifications must not be the
same.

CHAPTER 38. SAPP COMMAND 38-1

CHAPTER 39. SORT COMMAND

39.1 Introduction

The Disk Operating System SORT enables any Datapoint Disk
user to initiate file sorts directly from the keyboard.

Using a multi-train radix sort technique, the Datapoint
processor achieves speeds comparable with much larger systems.
The list of options also compares favorably with much more
extensive systems. Nevertheless, since it uses the full dynamic
nature of the Disk Operating System, it is extremely easy to
operate. (Users who have spent several hours figuring out how to
set up the myriad of SORT work datasets required, even for the
simplest sorts, by other sort packages know what we're talking
about.)

For more sophisticated uses, SORT may be called from other
programs through CHAIN. Using CHAIN also enables complicated sort
options to be reduced to a single file name then callable either
from the keyboard or another program. CHAIN also extends the
SORT package to operate as a merge, as well.

39.2 General Information

SORT attempts to optimize its speed by placing its work files
on a drive separate from the input or output files. Unless
otherwise directed, SORT opens its work files on the
highest-numered disk on-line, excluding the disk containing the
input file. Both SORT work files are always placed on the same
drive. If SORT selects a drive with insufficient space, it will
abort. It may than be necessary to drive-direct its work files.

CHAPTER 139. SORT COMMAND 39-1

39.3 Fundamental SORT Concepts

39.3.1 File Formats

A1l Datapoint systems use a universal text file structure
recognized by Databus, Datashare, RPG II, Basic, Scribe, Editor,
Assembler, Terminal emulators, etc. Therefore, any text file
generated by or for any of the above, may be sorted. The file to
be sorted must be on disk, however.

There are two sub-formats a Datapoint file can have: Blocked
or Sequential. Blocked files are required to have a single
'string' or 'record' of data per physical disk record. The
maximum record size for blocked records is 249 bytes (plus
end-of-record and end-of-sector control bytes for a total of 251
bytes). Sequential records have no fixed relationship to physical
disk records and are written as densely as possible in the given
file space. Nonetheless, blocked files can be read sequentially
in the identical way that sequential files are read. In fact,
both types of files, when read sequentially, are
indistinguishable. Blocked files are used for achieving random
access to records. They generally require more disk space than
sequential files for the same amount of data.

Space compression implies that the logical position and the
physical position of a character in a record may differ. SORT
will always expand the spaces to determine the logical position of
a character.

When sorting, consider that the result of the sort is not a
restructuring of the original file. It is a NEW file which is a
restructured COPY of the original file. The original file is
‘never changed.

Therefore, SORT produces a file which is a sorted version of
the original. This gives the user the added opportunity of
specifying the type of file to be output regardless of the input
file format (with one restriction - see the section on
Input/Output File Format Options).

39-2 DISK OPERATING SYSTEM

39.3.2 The Key Options

The KEY of a sort is the FIELD or that part of the record
which is to ORDER the sequence of records. For instance, it can
be a person's name, state, employee number, amount in debt or any
aspect of the data base identifiable by a fixed position in the
. record, based upon the column count from the beginning of the
record.

Consider the following record (column count scale below for
reference only):

Mule, Francis A. 242219 123 BARN SAN ANTONIO TX
123456789012345678901234567890123456789012345678901234567890

The name begins in column 1 and goes to 22. The employee number
spans columns 24-29. The street address is 31-42. The city is
43-58. The State is 59-60

If each person had a record in the file exactly in the above
format, SORT could order the sequence of records in the file by
any of the above fields. For instance, to get an alphabetical
list of the records by name, the key would be 1 to 22 (hereafter
referred to as 1-22). The key for sequencing the file in order of
employee number would be 24-29. The key for ordering the records
by state then city and then employee number would be
59-60,43-58,24-29,

Any portion of the record can be used as a key. Care must be
taken when selecting a key to include no more characters than
necessary, since each character added to the key slows down the
sort.

The key specified for SORT is concatenated to a single
string, then sorted character-by-character, with the left-most
character being of most significance. It is very important to
realize the effect of a right-to-left character sort. To appear
in the "right" sequence numeric fields must be right-justified,
character fields must be left-justified. If signed numeric fields
are sorted, the sign should be moved to the left-most position and
the magnitude right-justified; otherwise the resulting sorted
sequence will contain positive and negative values in no
discernible order, since the "-=-" and "+" signs are just another
character to SORT. A full explanation of character sort concepts
is beyond the scope of this manual. Interested users should
consult an appropriate information science textbook.

CHAPTER 39. SORT COMMAND 39-3

39.3.3 How to Sort a File

Sorting a file is done from the keyboard of the DOS. All the
operator must know is the name of the file to be sorted, the name
desired for the sorted output file, and the columns containing the
key.

For instance, the keyboard issued command for the above
example to sort on the name field (1-22), would be:

SORT EMPLFILE,SORTFILE;1-22

This is assuming that the name of that file was EMPLFILE. It
is also the operator's decision as to what the resultant sorted
file is called, as the command could have easily been:

"SORT EMPLFILE,EMPSORT; 1-22

as well. The second file named is where the resultant sorted
output will be placed. :

More complicated keys may be stated as well and the command
to sort by state and then name would be:

SORT EMPLFILE,SORTFILE;59-60,1-22
That is all there is to simplified sorting.

Testing SORT for yourself is simple. Most systems have a
source code file for a Databus or Assembly language program on the
disk. Such programs can be sorted by op-code and provide an

interesting analysis of the usage of each instruction type:

SORT INFILE,OUTFILE;9-12

39.4 The Other Options

39.4.1 Generalized Command Statement Format

The following is the generalized statement format for the
Datapoint DOS SORT:

SORT IN,OUT[,:DRk][,SEQ][;[[FI[OI[RICHILGNNNTCIIN]I[K1]...[,0n][,Kn]]

Information contained within a pair of square brackets

39-4 DISK OPERATING SYSTEM

[] is optional; information within brackets is
order-dependent. Commas may be used to delimit parameters.
(NOTE that commas MUST be used to delimit sort-key groups.)
The first four fields (those ahead of the semi-colon) are
considered to be file specification fields. The fields
following the semicolon are considered to be sort key
parameters. Default conditions are listed below. Typical
statements obeying this format are:

SORT INFILE,OUTFILE
SORT INFILE,OUTFILE;1-3,7-20

SORT INFILE,OUTFILE;ID1-3

SORT INFILE,OUTFILE;IDL7-20

SORT INFILE,OUTFILE;LH11-20

SORT INFILE,OUTFILE,,SEQFILE

SORT INFILE,OUTFILE, :DRO,SEQFILE/SEQ:DR1

AN NN N NN~
~NOUIT FEFWN —
— e e S

All the above statements will invoke a sort. Each will
provide different results. However, notice that in (1)
there are no other parameters than the file specifiers.

That 1is because all the specifiable parameters have a
default value in case there is no specification for it.

The following list defines the parameters which can be
specified:

IN.. oo iei i This specifies the input file. This file
must exist on disk.

OUT. . iviiiiinnn This specifies the output file. This
specification is optional IF AND ONLY IF the
'L' AND 'H' options are used. If an output
file is specified AND no disk drive is
specified AND the file exists on a drive
on-line to the system then the output file
will over-write the existing file. If an
output file is specified AND no disk drive
is specified AND no file of that name exists
on a drive on-line to the system THEN a file
of the given name will be created on the
same drive as the input file.

:DRK. ... vi This specifies the drive for the sort key
file. This is only a working scratch file
needed during the sort. SORT will attempt
to pick the optimum drive on which to put
the work file on a multi-drive system.

CHAPTER 39. SORT COMMAND 39-5

39-6

Experience or special considerations may
cause the user to want to specify a work
drive.

........ NON-ASCII COLLATING SEQUENCE FILE
This specifies the file which contains the
collating sequence to be used. If omitted,
ASCII will be assumed.

ooaaoo‘cﬁFORMATo

This parameter specifies the output file
format: blocked or space compressed
(standard editor output format). If the user
specifies I (and the input file is also
blocked), then the output file will be left
blocked.

Without typing the 'I', the output file will
be record compressed no matter what the
input file. If and only if the input file
is a blocked file, you may include the 'I'
parameter and cause the output file to be
blocked.

«essee....0RDER.

This parameter specifies the output file
collating sequence: Ascending or
Descending. The actual character entered is
'A'" or 'D'. The default value is 'A'.

Without typing the 'D', the collating
sequence order is considered ASCENDING.
Including the 'D' parameter will cause the
collating sequence to operate in DESCENDING
order. Note that if some keys are to be
sorted in ascending order and other keys in
descending order, the "On" specification
described below should precede each key
whose order differs from the order of the
key preceeding it. However, if all keys are
to be ordered in the same sequence, this
parameter need only be specified once.

...... . .RECORD FORMAT.
This parameter specifies a special output
record format: Limited output file format
or Tag file or Keytag file output. The
actual character entered is 'L' or 'T' or

DISK OPERATING SYSTEM

ooooooooo

'K'. The default value is no special output
record format; that is, neither 'L' nor 'T'
nor 'K', so that the records in the output
file will be exact copies (FULL IMAGE
RECORDS) of the records in the input file.

Normally the sort transfers all of the
records of the input file to the output
file. It is possible, not only to transfer
part of each record, but to select only
certain records or to include constant
literals in each record as well. Including
the 'L' parameter in the 1list of parameters
will cause another question to be asked
wherein you may specify the limitations and
constants. See the section on Limited
Output Format Option.

By entering the 'T' character an output file
is generated which consists only of binary
record number and buffer byte pointers to
the input file records. See the section on
Tag File Output Format Option.

By entering the 'K' character a standard
text format output file is generated which
consists of records containing a 5 byte user
logical record number, a 3 byte buffer
address, and the key. These records are
space-compressed and have trailing spaces
truncated. See the section on Keytag File
Qutput Format Option. :

HARDCOPY OUTPUT.
This parameter specifies that the output of

the SORT will be listed on a printer. The
actual character entered is 'H'. The
default value is no hardcopy output.

Without typing the 'H' no printing will
occur and SORT will require that an output
file be named. 1If the 'H' parameter 1is
given and an output file is named then SORT
will list the output to a printer and will
generate an output file. -If the 'H'
parameter 1s given and no output file is
named then SORT will list the output to a
printer and no disk file output will be

CHAPTER 39. SORT COMMAND 39-7

generated.

If the 'H' parameter is given then the 'L’
parameter must precede the 'H' parameter.

SORT will print to a local printer or a
servo printer. See the section on Hardcopy
Qutput Option.

GROUP INDICATOR

This parameter specifies that the input file
consists of Primary and Secondary records
and specifies which Group is to be sorted.
The actual character entered is 'P' for
primary or 'S' for secondary. There 1s no
default value.

If the 'G' option is entered then the NNNTC
options must also be entered.

In a file with Primary and Secondary
records, a string of records with a Primary
record as the first record and Secondary
records following it is considered one
block, or group, of records.

When the file is sorted on Primary records
the output file has the blocks of records
re-ordered so that the Primary records are
in the sorted sequence; no change is made
in the sequence of the Secondary records
following each Primary record. When the file
is sorted on Secondary records and the first
key specified is in ascending sequence, the
output file has the blocks of records in the
same order as in the input file, but the
Secondary records within each block are in
the sorted sequences.

When the file 1is sorted on Secondary records
and the first key specified is in descending
sequence, the output file has the blocks of

records in reversed order as the input file,
but the Secondary records within each block

are in the sorted sequence.

SORT has no provision for the sorting of
Primary and Secondary records in the same

39-8 DISK OPERATING SYSTEM

SORT run.

NUMERIC position of Primary/Secondary flag.
This parameter specifies the character
position for the character (the 'C'
parameter) indicating whether the record is
a Primary or Secondary record . The number
must be specified if the option is taken and
must fall in the range 1 to 249.

TYPE of evaluation.

This parameter specifies equivalence or
inequivalence of the group indicator
character; that is, whether the character in
the record will be equal to or not equal to
the character specified. The actual

character entered is '=' for equal or '#'
for not equal. There is no default
character, '=' or '#' must be given if the .

option is taken.

If '=' is given then if the character in the
NNNth position of an input file record is
EQUAL to the group indicator character --
indicated by 'C' below -- then the record is
a member of the specified sort group --
indicated by 'G' above. Otherwise, it is
not a member of the specified group.

CHARACTER, group indicator

This parameter specifies the actual test
character for determination of a record's
membership in the sort group. The actual
character entered is any member of the
available character set -- this means any
combination of eight bits -- except 015.
There is no default character: the character
immediately following the 'T' parameter is
taken to be the 'C' parameter -- except a
015.

This parameter specifies no space
compression on output. This applies to Full
Image and Limited Output files. It does not
apply for blocked or Tag files. If the
input file is space-compressed, the 'N'
parameter will cause the output file to be
non-compressed. If the input file is not

CHAPTER 39. SORT COMMAND 39-9

space-compressed, the output file will not
be compressed, regardless of the N
parameter.

A SSS-EEE
This is the first sort key specification. If
no key 1s specified, the SORT will assume
1-10,i.e. the first ten characters of the
record.
SSS is the starting key position.
EEE is the ending key position. The key 1is
limited to 118 characters and must be
contained within the first 249 characters of
the record.

Onuveveninneanns This specifies the order for the nth key
(ascending and descending are indicated by
"A' or 'D'). If omitted the order used on
the previous key is assumed.

" Kn.oooaooiaaa, SSS-EEE

The nth sort key specification. The maximum
number of keys is that which can be typed
without exceeding the input line.

39.4.2 Keys-overlapping and in Backwards Order

The key specification need not be only forward. A
specification of 17-12 will cause the 6 delimited characters to be
a key but in the order of 17,16,15,14,13,12. This is extremely
valuable, clearly, in data which has the most significant digit or
character last.

Key specifications may also be overlapping: 1-20,30-15
overlaps 15 to 20. When this occurs, the system will optimize the
sort and save time over re-sorting on those columns again.

39.4.3 Collating Sequence File

By specifying a sequence file, the user may substitute any
collating sequence for the standard ASCII character set. The
sequence file may have any name, but the extension must /SEQ (SEQ
is the default extension). If the disk drive number on which the
file resides is omitted, SORT defaults to the same drive from
which the SORT itself was loaded. This table may be supplied by
the user but must meet certain requirements to be loaded:

39-10 DISK OPERATING SYSTEM

wn —

It must be an absolute object file.

It must begin loading at location 027400.

The first eleven bytes must contain the file name and the
extension must be SEQ. (Full 8 - character file name with
trailing blanks, then extension.)

The table itself must begin loading at location 027400 and
occupy 256 bytes (overstoring the file name described in
3). For instance, the source for the EBCDIC sequence file
begins:

SET 027400
DC 'EBCDIC SEQ'
SET 027400

DC 0,1,2,3,4,5,6,7,

If the file is not found on the specified disk drive the
following message is displayed:

SEQUENCE FILE NOT FOUND

If the file is found but is not an absolute object file
the following message is displayed:

SEQUENCE FILE FORMAT ERROR A

If the file format appears valid, the file will be loaded
using DOS routine LOADX$. LOADX$ will return an error
code if the load is unsuccessful. The following display
will notify the user of the error:

~

SEQUENCE FILE FORMAT ERROR n

where n=0 if file does not exist

if disk drive is off-=line
if directory parity fault
if RIB parity fault

if file parity fault

if off end of physical file
if record of illegal format

AAUVUTEFWN —

CHAPTER 39. SORT COMMAND 39-11

39.4.4 Ascending and Descending sequences

Changing the collating sequence from ascending to descending
is the same as 'reversing' the file, or placing the last first,
etc. Sorting a telephone directory in ascending sequence on name
produces the familiar order. Should it be sorted in descending
sequence, then Mr. Zyk would be first and Mr. Aardvark would be
last. The order of collation, when alphabetic, numeric, and
punctuation characters all can occur in a column together, follows
the character set order. The sequence may be specified for each
sort key. However, it need not be specified if it is the same as
the key which preceeds it. Therefore, it is possible to sort
portions of the key in ascending order and portions in descending
order.

39.4.5 Input/output File Format Options

SORT accesses each file sequentially. Due to the techniques
used in the Datapoint standard file structure, the sequential
reading technique will provide SORT with all of the records in the
file whether the file was originally blocked or sequential.
Therefore, the file format options only allow specification of the
output file's format.

If the input file is blocked, that is one logical record or
string per physical disk record, then you have a choice of output
formats (F option). If 'I' is chosen, that is blocked, then each
output disk record will contain an exact copy of the appropriate
input file record. If 'I' is not specified, then the input file,
reordered, will be reblocked and appear, generally much more
compactly, in the output file in record-compressed sequential
format.

If the input file is sequential in its original format, then
there is only one choice for the output format; the output file
format for a sort on an input file which is sequential must be
sequential.

39.4.6 Limited output format option

In many cases, especially when making reports, directories
etc. from the data base, it isn't necessary to have the entire
record transferred from the input file to the output file during a
sort. For instance, an entire personnel data base can be sorted
by name to produce an internal company telephone directory.
However, it is obvious that all that is needed is the name and

39-12 DISK OPERATING SYSTEM

telephone number, NOT all the other payroll information.
Therefore, SORT permits transferring only that part of the data
base desired.

The following is the generalized statement format for the
limited output specification which is entered as a second line of
parameters:

<(SSS[-EEE]"*7'QQQ')[/(P"NNNTC)]>[,<DUPLICATE OF PRECEEDING>]...

Where different items within parentheses are separated
by . Only one item within a pair of parentheses may be
specified. 1Items within square brackets [] are optional and
items within corner brackets <> may be repeated and must be
separated by commas. '

The following list defines the parameters which can be
specified:

SSS. it . .3TARTING position within input record.

EEE....... .o ENDING position within input record.
These parameters specify the character
positions within the input record to be
copied to the output record. The EEE
specification is optional; if it is not
specified then only one character, the
character at SSS, will be copied from the
input record to the output record. The SSS
and EEE options must fall in the range 1 to
249.

LI ASCII TAG output.
This parameter specifies that an ASCII
pointer to the input record appear in the
output record. The ASCII pointer points to
the input file logical record number and the
byte in that physical disk record containing
the first byte of the input file logical
record. If the 'I' parameter was specified
in the SORT options then, since the byte in
the physical disk record containing the first
byte of the input file logical record will
always be '1', the '"1' will not appear. The
ASCII pointer is a DATASHARE compatible,
leading-zero and space-compressed ASCII
number. The number of digits for the logical
record number pointer is five; the largest
number that can be represented is 65,535.

CHAPTER 39. SORT COMMAND 39-13

The number of digits for the byte pointer (if
it is generated; that 1is, the 'I' parameter
was not specified) is three; the largest
number that can be represented is 250.

.QUOTED character string.

This parameter specifies an actual string of
quoted characters that is to be copied into
the output record. The quoting symbol is the
single quote ' mark. The string may include
any characters except the ' mark itself and
015, and must be less than 90 characters
long.

PRIMARY record to be source.

This parameter specifies that the information
specified by the prior set of START/END
positions is to be extracted from the primary
record for the current record block, rather
than the present (secondary) record. This
parameter has no effect when an output record
is being generated from a primary record.

NUMERIC position of evaluation character.
This parameter specifies the character
position for the character (the 'C' parameter
below) indicating whether the information
specified by the prior set of START/END
positions is to be copied from the input
record to the output record. The number must
fall in the range 1 to 2.49.

TYPE of evaluation.

This parameter specifies the equivalence or
inequivalence of the evaluation character;
that is, whether the character in the input
record should be EQUAL to or NOT EQUAL to the
evaluation charater. The actual character
entered is '=' for equal or '#' for not
equal. If the evaluation 1is satisfied, then
the information specified by the prior set of
START/END positions will be copied to the
output record.

CHARACTER, record evaluation.

This parameter specifies the actual test
character for record evaluation. The actual
character entered is any character except

39-14 DISK OPERATING SYSTEM

015.

In the same manner that the key of the records is
specified by fixed column number, i.e. 1-10 for the first
ten characters, the limited output feature specifies that
part of the records to be transferred. Should the response
1-10 be given to the limited output format request, only the
first ten characters of each record will be transferred to
the output file. The limited output format specifier
operates in the same manner as the specification of multiple
discontiguous sort key fields. For instance, 1-10,50-70
would transfer thirty-one characters from each record of the
input file to the output file. The eleventh character in
the output record would be the fiftieth character of the
input record, etc.

To invoke the limited output format option, the
operator includes the 'L' parameter in the specifier list.
If and only if the L is specified during the SORT call, will
there be a second question asked of the operator on the next
line:

LIMITED OUTPUT FILE FORMAT:

This question requires at least one non-trivial field
specification or constant (see next paragraph). The number
of field and constant specifications is only limited by that
which can fit on the keyed in 1line.

To permit even more utility in report generation, SORT
allows inclusion of constants in the output record that
didn't occur in the input record. For instance, assume that
the personnel data base was a full record of about 240
characters and that the employee's name appears in columns
80 to 110 and his telephone number was in columns 171 to
180. To make a telephone directory in alphabetical order,
one could answer the following to the limited file output
format request:

80-110," - ',171=-180

Note that this would put out the name followed by one
space, a hyphen, one more space and the number. Any number
of input file fields and constants can be placed in the
output file up to the limit of the line on which the
specification is typed.

Often not every record of the input file is needed in

CHAPTER 39. SORT COMMAND 39-15

the output file. Limited output allows selection of records
from the input file, based on character evaluation on one
character position. For example, if a primary/secondary
file is being sorted and only the primary records are
desired in the output file, the command could appear as:

SORT INFILE,OUTFILE;LP1=%,2-10
LIMITED OUTPUT FILE FORMAT:
1-85/1=%

Columns 1-85 of the input record will be written to the
output file if column 1 is an ¥,

Limited output can be used to make more complex
selections. If it is desired to output records containing a
0 in column 5 OR a 1 in column 6, the command would be:

SORT INFILE,OUTFILE;L5-8,12-15
LIMITED OUTPUT FILE FORMAT:
1-85/5=0, 1-85/6=1

To output records containing a 0 in column 5 AND a 1 in
column 6 would require two SORTs, the first using a limited
output to test column 5 and using only a 1-character key, to
make the SORT as fast as possible. The second SORT would
use a limited output testing column 6 and would be given a
sort key to correctly order the output file.

There is no relationship between the primary /
secondary specification on the command line and the

conditional output specification on the limited output
format line.

Also note that the output file requires proportionally
less room than the input file when limited. Often this fact
can be put to use when the disk file space is nearly
exhausted and a sort is required.

39.4.7 TAG file output format option

For some applications it is useful to have a data file sorted
into several different sequences. However, to have several copies
of a file on disk merely to have it in different sequences
consumes a lot of disk space, and indeed if the file is a very
large file many copies of it may not fit onto one or even four
disk packs.

39-16 DISK OPERATING SYSTEM

This problem could be avoided if there were a way to index
into the one main file in any of several different sequences. The
index pointers could exist as a file, and the index entry for each
record in the main file would only have to be three bytes long --
two bytes for the LRN (Logical Record Number) and one byte for the
BUFPTR (Buffer Pointer -- a pointer to the beginning of the actual
desired record within the disk physical buffer).

SORT provides for the generation of such an indexing file, a
TAG file, by the 'T' variation of the 'R' option. A TAG file may
be generated for either a sequential or blocked file, and will
have the same format for either file. The format of a TAG file is
simple:

1. For each record in the input file, the TAG file will have a
three byte binary pointer to the first byte of the record.

2. The format of the pointer is:
Byte 1: MSPLRN (Most Significant Portion of LRN),
Byte 2: LSPLRN (Least Significant Portion of LRN),
Byte 3: BUFPTR (Buffer Pointer).

3. The three-byte binary pointers are blocked 83 to a physical
disk record.

4, The Physical-End-Of-Record mark is an 003 and the rest 000's.

5. The End-0f-File mark is: beginning at the first byte in the
physical record, six 000's, one 003, and the rest 000's.

TAG files may be used by assembly language programs or by RPG
ITI (as Record Address files).

For users writing their own Assembly language code to use a
TAG file, it is important to know that the MSPLRN and LSPLRN are

together a 16-bit binary pointer to the DOS LOGICAL RECORD NUMBER
of the input file, as opposed to the USER LOGICAL RECORD NUMBER.
The difference is this: The DOS LOGICAL RECORD NUMBER of a file
points to the actual Nth record (starting with zero, the primary
RIB) in the file, whereas the USER LOGICAL RECORD NUMBER of a file
points to the Nth DATA RECORD (starting with the zeroth data
record) in the file. Thus a DOS LRN of zero points to the very
first record of the file, which is the master copy of the RIB, a
DOS LRN of one points to the second record of the file which 1is
the RIB copy, a DOS LRN of two points to the third record of the
file (which is the FIRST DATA RECORD of the file and the USER
LOGICAL RECORD NUMBER zero), and so on. The LRN given in the TAG
file can NOT be used with the POSIT$ routine unless it is biased

CHAPTER 39. SORT COMMAND 39-17

by -2. It is much easier to simply place the LRN from the TAG
file directly into the LOGICAL FILE TABLE ENTRY for the file that
is indexed.

The case with the BUFFER POINTER byte is similar to the LRN
pointer bytes. The BUFFER POINTER byte from the tag file is the
DOS BUFFER POINTER as opposed to the USER BUFFER POINTER. The
difference is this: the DOS BUFFER POINTER points to the actual
Nth byte of a disk buffer (starting with zero), whereas the USER
BUFFER POINTER points to the Nth DATA BYTE in the disk buffer; the
beginning (zeroth) DATA BYTE in the buffer is the fourth byte in
the buffer; the first three bytes are reserved for the DOS. Thus,
a DOS BUFPTR of zero points to the very first byte in the buffer,
which is the PFN (Physical File Number) of the file, a DOS BUFPTR
of one points to the second byte in the buffer, which is the DOS
LSPLRN, a DOS BUFPTR of two points to the third byte in the
buffer, which is the D0OS MSPLRN, a DOS BUFPTR of three points to
the fourth byte of the buffer (which is the very first DATA BYTE
in the buffer), and so on. The BUFPTR given in the TAG file can
NOT be used with the GETR$ or PUTR$ routines unless it is biased
by -3. It is much easier to simply place the BUFPTR from the TAG
file directly into the LOGICAL FILE TABLE ENTRY for the file that
is indexed.

If the TAG file option is specified then the LIMITED OUTPUT
FILE FORMAT or the HARDCOPY OUTPUT can NOT be specified.

If a TAG file is generated when the 'P' (PRIMARY SORT) option
is specified then TAG file pointers will be generated only to the
PRIMARY records in the input file.

If a TAG file is generated when the 'S' (SECONDARY SORT)
option is specified then TAG file pointers will be generated that
point to each PRIMARY record of the input file (in their original
sequence) each primary tag being followed by pointers to the
SECONDARY records in the record block in their sorted sequence.

When a TAG file is generated for 'P' or 'S' sorts, no
indication is given in the TAG file pointer as to whether the
pointer points to a primary or a secondary record; it is up to the
user's program to check the records in the indexed file to
determine when a record block begins or ends.

39-18 DISK OPERATING SYSTEM

39.4.8 KEYTAG File Output Format Option

Requesting a Keytag file output will cause a file (default
extension "TXT") to be created. This GEDIT- compatible text file
contains the record pointers and the key. The record pointers
(first 8 bytes of the rcord) consist of a 5 byte logical record
number (range 0 to 65,535) and a 3 byte buffer address. The
record number is the user logical record number, that is, zero
points to .the first data sector. Therefore, the user logical
record number, converted to binary, may be used with the POSIT$
routine. The buffer address is the buffer pointer, that is, one
points to the first data byte in a sector. It may be biased by 2
and placed directly into the Logical File Table, or if biased by
-1, used by the GETR$ routine. This Keytag file output is the
Keytag file used by INDEX.

If a sequence file (e.g., EBCDIC/SEQ) is used, the key
produced by this option will be translated to that sequence. If
the un-translated key is desired, a Keytag file may be created
(slower) by requesting ASCII TAG output from the Limited Output
Format Options

39.4.9 HARDCOPY output option

Many times it is desired to have a hardcopy (printed) output
from a SORT instead of or in addition to the creation of a disk
output file. This can be easily accomplished with SORT by
specifying the 'H' (HARDCOPY) option along with the 'L' (LIMITED
OUTPUT STRING) option. The 'H' option is essentially an expansion
of the 'L' option because disk data files are almost never
suitable for full image output to a printer; decimal points need
to be inserted into dollar and cents amounts, dashes need to be

inserted into part numbers, and spaces need to be placed between
dollar amounts and part numbers to columnate the data, and so on.

If it is desired to list output records in full image format, it
is only neccessary to give:

1T = n

(where n is the maximum printable character on printer) as the
limited output string specification.

Sort will not send a line of over 132 characters to a
printer. If the limited output specification designates a longer
output record, then the full specified formatting will be applied
to the disk output file (if any), but only the first 132
characters of the record will be printed.

CHAPTER 39. SORT COMMAND 39-19

If the following special characters are imbedded in the
output record, they will be interpreted as indicated:

015 = End-0f-Record and Carriage-Return/Line Feed.
012 = Line Feed.
014 = Form Feed.

SORT will support either a local printer (address 0303) or a
servo printer (address 0132). If a servo printer is on-line at
the beginning of the FINAL MERGE then it is used as the output
printer device; else a local printer will be used. If both
printers are available on a system, selection between one or the
other cannot be forced by parameterization; if output is desired
to the local printer then the servo printer must be turned off.

39.4.10 Primary/Secondary sorting considerations

If the 'P' (PRIMARY) or 'S' (SECONDARY) SORT option is used
then the input file must have a PSPSPS.... format in order for
SORT to work as expected, where P is one primary record and S is
one or more secondary records. The first record in the file
should always be a primary record, and the last record should be a
secondary record. There should always be at least one secondary
record following each primary record. Tertiary and further level
records cannot be accommodated by SORT.

In some cases it may be possible to successfully sort a file
using the 'P' or 'S' options even if the file does not faithfully
follow the above rules. However, the user must exercise great
caution if he is to successfully "fudge" a system as complex as
SORT. Pitfalls will be many. For example, if a file has the
format PPPPSPSPS..., and a sort is done using the 'S' option, the
output file will probably not contain the first three primary
records at all. This case occurs because when sorting using the
'S' option, pointers are generated for only the secondary records,
prefixed by a pointer to the record preceeding the first secondary
record of a record block. Since no secondary pointers were ever
generated for the first three primary records, they are simply
lost. It should be easy for the user to imagine what would happen
to a file if a tertiary sort were attempted.

39-20 DISK OPERATING SYSTEM

39.4.11 Key File Drive Number

There are three file systems associated with a sort. The
first is, of course, the input file. The second is the output
file. The third is the keyfile system. (The user only uses the
output file - the keyfile system is a scratch file used by the
system during sorting). There are actually two files which get
opened during the sort for the keyfile system. They are
¥*SORTKEY/SYS and *SORTMRG/SYS. These two files can grow to
considerable sizes during the sorting procedure since they are
proportional to the number of records and the size of the key
field.

There are two considerations for the location of the keyfile
system. The first is the problem of room. The keyfile must be on
a drive with sufficient room to hold it. The second is speed.

The greatest increase in speed occurs in removing the keyfile
system from the same drive as the input file. Greater speeds can
occur if it is, as well, not on the same drive as the output file.
Normally the SORT does a pretty good job of determining the best
location of the two keyfile files and it shouldn't be necessary to
specify anything for this. However, under complex circumstances,
it may be desirable for the operator to specify the drive number
for the keyfile. Should this be the case, the user should type in
the <:DRk> specification as indicated in the general command
format in the Generalized Command Statement Format section.

39.4.12 Disk space requirements

A formula for determining the room in physical disk records
that will be required for the SORT work files is:

2N(L+P+3)

where: R = Room in physical disk records (sectors) required on
disk.

N = Number of logical records in input file for which keys
will be generated:
= number of records in file if not sorting on 'P' or
'St.
= number of primary records in file if sorting on 'P'.
= number of secondary records in file 1if sorting on
'St.
Length of the sort key in bytes.
3 if sorting on secondary records,

CHAPTER 39. SORT COMMAND 39-21

0 if not sorting on secondary records.

number of sort key trains.

bytes per block of physical space available to the user
(nominally 253 bytes)

2]
non

The value of T can be computed approximately, as:

N(L+P+3)

39.4.13 LINK into SORT from programs
There are three ways in which a SORT can be initiated:

From the keyboard via the DOS COMMAND HANDLER;

By using the DOS CHAIN command;

By loading and linking to SORT/CMD from an assembly
language program.

1.
2
3

.
.

Datashare users can invoke SORT by using the rollout
facility to start or continue a chain (see CHAIN and the DATASHARE
User's Guide for more details).

The following detailed information is provided for users
writing system-level programs in assembler language, since
Datapoint does not release a source listing of the SORT program.
Normal usage of SORT requires no knowledge of the following
information.

Sort reserves for the user a nominal amount of storage normally
occupied by the DOS DEBUG$ routine. The specific memory locations
saved are 06144 through 06377. This permits the user to partially
overlay his program with the SORT utility and regain control at
the completion of the sort. Additionally, the next page of
storage, 06400-06777, is available to the user if full image
output records are to be generated. The DOS interrupt handler 1is
disabled during the sort but is re-enabled upon completion of the
sort. Of course, if the user has a foreground process running
before and after the sort, the process must be controlled from
within the memory not used by SORT, or when foreground is
re-enabled it will vector to whatever SORT left in memory.

The steps to call SORT from an assembler program are as
follows:

1. Close files 1, 2, and 3 if open.

39-22 DISK OPERATING SYSTEM

Ul =W

6.
Where:

LIMSTG

HEDING

EXITAD

Set MCR$ (01400-01543) with the command string terminated
by a 015.
Load the SORT utility.
PUSH the stack.
Point HL to a parameter table with the format:
PTABLE DA LIMSTG
DA HEDING
DA EXITAD
RETURN

= the limited output specification string, terminated by a
015. If there is to be no limitation output specification,
put 0. If there is a LIMSTG, it must exist entirely within
the range 06144-06377. The LIMSTG must be exactly the
characters as they would be entered from the keyboard.
Examples follow.

= the hardcopy heading string, terminated by a 015. If
there is to be no hardcopy output, put 0. If there is a
hardcopy heading string, it must exist entirely within the
range 06144-06377. The HEDING must be exactly the
characters as they would be entered from the keyboard.
Examples follow.

= the first memory location to be executed upon successful
completion of the sort. If the sort is to return to the
DOS upon completion, put 0. If there is a specific exit
address, it must exist within the range 06144-06377.
Normally, the instructions at the exit address will load
and run the program to be run after the sort, or will
re-load a control program of the user's own control system.

A simple example of loading and running sort from an

assembler program would be:

1.SRTCMD DC 'SORT INFILE,OUTFILE',015 SORT CMD STRING
2.SRTNAM DC 'SORT CMD' NAME OF SORT UTILITY ON DISK
3.PTABLE DA 0 NO LIMITATION STRING

. DA 0 NO HARDCOPY HEADING

5. DA 0 NO SPECIAL EXIT ADDRESS
6.RUNSRT LC SRTNAM-SRTCMD MOVE THE SORT COMMAND STRING

CHAPTER 39. SORT COMMAND 39-23

7. DE MCR$ TO MCR$

8. HL SRTCMD

9. CALL BLKTFR

10. LC -1 LOAD THE SORT UTILITY

11. DE SRTNAM

12. CALL LOADS$

13. PUSH PUSH THE SORT STARTING
ADDRESS

14. HL PTABLE POINT TO THE PARAMETER TABLE

15. RET RUN SORT

The above sequence of instructions could be located anywhere in
memory, except lines 13 thru 15 must obviously reside in a portion
of memory from 06144 thru 06377 to avoid being overlayed when the
SORT utility is loaded from disk. The above instructions
exemplify the simplest possible case of linking to SORT, in that
only the SORT command and an input file and an output file are
specified, all other options are defaulted. The above
instructions have the same effect as calling SORT by entering the
line:

SORT INFILE,OQOUTFILE
to the DOS COMMAND HANDLER.
Here is a line-by-line explanation of the instructions:

Line 1 defines the SORT command string. This is accomplished
by a simple DC statement of a quoted ASCII string followed by a
015. The quoted ASCII characters are exactly the same that would
be keyed in to the DOS Command Handler if the sort were being
initiated from the keyboard. The 015 is the string delimiter and
is the same character that is placed after a string by the KEYINS$
routine when the "ENTER" key is depressed. The SORT command
string can be up to 100 characters long including the 015 because
the MCR$ area is 100 bytes long. Note that this is nineteen
characters more than can be specified from the keyboard.

Line 2 defines the name of the SORT utility main overlay.
Notice that the complete name of the SORT given here must be
exactly the name as listed in the DOS directory of files. The
eleven ASCII characters in a file name specification include an
eight character filename and a three character extension. Since
the filename of SORT is only four characters, it must be followed
by four spaces before the extension of "CMD" can be given.

39-24 DISK OPERATING SYSTEM

Line 3 defines the beginning of the six-byte parameter table.
The first two bytes of the parameter table specify the address of
the beginning of the Limited Output Specification string. In this
example there is to be no limited output specification string, so
an address of 0 is given.

Line 4 defines the address of the beginning of the HARDCOPY
HEADING string. In this example there is to be no hardcopy
output, so an address of 0 is given.

Line 5 defines the address of the Exit Address, or the
address to which the SORT is to exit when it is successfully
completed. (If something goes wrong during the sort, exit is to
the D0S.) 1In this example there is to be no special exit address,
so an addess of 0 is given.

Line 6 begins the actual process of calling SORT from the
program. Lines 6 thru 9 move the SRTCMD string from wherever it
is in memory to the MCR$ area.

Line 10 specifies that SORT is to be loaded from wherever it
is found in the disk drives that are on-line to the system. Refer
to the chapter on System Routines if you are not familiar with the
DOS LOAD$ routine.

Line 11 points to the name of the SORT utility main overlay
in memory, given in SRTNAM, line 2.

Line 12 calls the DOS LOAD$ routine which finds the SORT main
overlay program on disk and loads it into memory, leaving the
starting address in HL.

Line 13 puts the starting address of SORT on the P-counter
Stack.

Line 14 points to the Parameter Table, lines 3, 4, and 5.

The way that SORT knows that it is being run by the DOS Command
Handler or by a user program is by comparing the values of the HL
contents with the entry point of SORT. If the values are equal,
as they are immediately following a LOAD$, then SORT asks for a
Limited Output Specification string and a Hardcopy Heading string
if they are specified in the SORT COMMAND string. If the values
are not equal, then SORT checks the memory pointed by HL for the
location of the Limited Output Specification string, the Hardcopy
Heading string, and an Exit Address.

Line 15 effects the actual transfer of execution to the SORT
utility. Since the starting address of the SORT was PUSHed onto

CHAPTER 39. SORT COMMAND 39-25

the P-counter stack, a RETurn instruction JuMPs to the SORT
starting address.

39.5 The use of CHAIN with SORT

The reader should first familiarize himself with CHAIN by
thoroughly reading the CHAIN Section.

CHAIN is a system whereby the operator of a Datapoint DOS may
pre-define a procedure sequence of his own programs, system
commands and utilities (including keyboard answers to questions
requested by these programs) and have them called and sequentially
executed by a single name. This feature is especially powerful
when using SORT since there may be a repetitive sequence of
routines with complex parameterizations which could make good use
of simplification.

A Datashare program can link to SORT by executing a ROLLOQUT
instruction to a user-built CHAIN file which includes the SORT
command line and, if specified, the Limited Output specification
line and a Hardcopy Heading line, followed by the DSBACK program
to re-load the Datashare. .

39.5.1 How to Set up a chain file for SORT

The author of a chain file only needs to remember that ALL
questions that the system requests INCLUDING those initiated by
the executing programs MUST BE ANSWERED from the chain file just
as though they would be typed in from the keyboard.

For instance, the initiation of a sort
"SORT INFILE,QUTFILE;I3-42"

could be done through chain. To do this, use EDIT or BUILD to
type in that exact sequence of characters into a file. Note that
the file will, in this case, consist of a single line as typed
above. The file can be any name, but for purposes of simplifying
the explanation, it shall be referred to as "CHAINFIL". If
"CHAINFIL" consists of that single line, and if the operator types
the command "CHAIN CHAINFIL"™ to the DOS, the SORT specified above
would be initiated. If the 'L' specification were included in the
statement above, then SORT would ask for another line of
information. 1In this case, the file "CHAINFIL" would have to have
two lines in it with the first being the SORT command and the

39-26 DISK OPERATING SYSTEM

second being the limited output file format specification.

39.5.2 Naming a repetitive SORT procedure

Frequently there are sorts and printouts and other procedures
which occur together and for which a name invoking the procedure
would be a great simplification.

For instance, in the telephone directory example above, the
process of sorting the file into a limited output file and then
listing it on a local printer could be procedurized as follows:

SORT EMPFILE,TELFILE;L80-110

80-110,' - ',171-180

LIST TELFILE;XL

TELEPHONE DIRECTORY FOR XXXXXXXXXX CORPORATION

Note that there are four statements. The first is the SORT
command. The second is the answer to the limited format initiated
by the 'L' in the SORT command. The third is the DOS LIST command
with the specifiers of 'X' which says 'without line numbers' and
the 'L' which means local printer. Then there is a forth line
which the LIST command requests - the heading. This question nust
also be answered in the chain file. If the above four statements
were placed in a file by the Editor (or by any other means) and
then CHAIN were invoked with that file specified, the result would
be a printed telephone directory from the personnel files.

39.5.3 Using CHAIN to cause a merge

Consider a situation wherein a system has a master file

called '"MASTER' and a file of records to be added, in sequence, to
the master file called 'ADDFILE'. To merge these two files in

sorted sequence at the end of each day would normally require a
sequence of keyed in operations which are somewhat complicated and
error prone. CHAIN can cause an effective MERGE and assign it a
single name as follows:

SAPP MASTER,ADDFILE,MASTER
SORT MASTER,SCRATCH;1-20
KILL MASTER/TXT

Y

NAME SCRATCH/TXT,MASTER/TXT

CHAPTER 39. SORT COMMAND 39-27

Note that the procedure:
1) appends the ADDFILE to the MASTER file.
2) Sorts the extended MASTER file into a SCRATCH file.
3-5) Renames the SCRATCH file as the new MASTER file. Thus, it is
apparent that a merge can be effectively achieved using SORT and
by using chain to pre-define the procedure.

39.6 SORT Execution-Time Messages
This section describes the operator messages that SORT may
display on the CRT screen during execution. Some of the messages
are monitor messages to keep the operator informed of the progress
of the program, while other messages are error messages.
DOS. VER. n.n SORT COMMAND - date
This message is the SORT sign-on.

SORT OVERLAY MISSING.

This message is displayed if the SORT/0V1 file is not on the
same drive as the SORT/CMD file.

INPUT FILE REQUIRED.

This message is displayed if no filename was specified for the
first file specification. This would happen if a command line
such as:

SORT ,QUTFILE or SORT /TXT,OUTFILE
were entered.
OUTPUT FILE REQUIRED.

This message is displayed if no filename was specified for the
second file specification AND if the 'L' and 'H' options were
not specified.

BAD DEVICE SPECIFICATION.

This message is displayed if a drive specification in a file
specification was not entered in a valid format.

OUTPUT FILE SAME AS INPUT.

39-28 DISK OPERATING SYSTEM

This message 1s displayed if the FILENAME and EXTENSION of the
INPUT file and the OUTPUT file are the same, and the DRIVE
NUMBER for each file is the same or not specified for EACH
file.

INPUT FILE NOT FOUND.

This message is displayed if the INPUT file could not be found
on any drive on-line to the system if no drive was specified,
or on the drive given if a drive was specified. If no
extension is supplied in the file specification an extension of
TXT will be assumed; in this case if a file FILENAME/TXT is not
on-line or on the drive specified then the INPUT file will not
be found.

INPUT FILE RIB ERROR.

This message is displayed if a read parity error occurs when
the INPUT file's RIB is checked to determine the INPUT file's
length.

KEY FILE SPECIFICATION ERROR.

This message is displayed if a FILENAME or EXTENSION is given
for the KEY DRIVE specification.

KEY FILE DEVICE SPECIFICATION ERROR.

This message is displayed if the drive specification for the
KEY file is not a valid drive spec.

SORT KEY FILE PLACED ON DRIVE #

This message is displayed if the KEY DRIVE was not specified on
a multi-drive system. The message is to notify the operator of
the location of the KEY file. The # stands for a valid drive
number.

OPTION FIELD ERROR.

This message is displayed if a semicolon (;) is entered at the
end of the SORT command line but is not followed by any option
specifications.

CHAPTER 39. SORT COMMAND 39-29

OPTION SPECIFICATION DUPLICATION.
This message is displayed if a command line such as:
SORT INFILE,QUTFILE;DLA

were entered. The 'D' and 'A' options are both variations of
the ORDER option, and obviously both cannot occur
simultaneously.

HARDCOPY ONLY IF LIMITED OUTPUT SPECIFIED.
This message is displayed if the 'H' option is specified but
the 'L' option was not given previously.
ILLEGAL HEADER SPECIFICATION.
This message is displayed if the 'P' or 'S' option is given but
is immediately followed by the 015 byte -- the "ENTER" key.
ILLEGAL HEADER KEY EVALUATION.
This message is displayed if the character immediately

following the 'PNNN' or 'SNNN' option is not '=' or '#'.

ILLEGAL SORT KEY SPECIFICATION.
This message is displayed if a key position of 0 or greater
than 249 was specified, or if a key position was not terminated
by , or - or 015, or if a two-position key was not terminated
by , or 015.

SORT KEY TOO LONG.
This message is displayed if the total sort key is longer than
118 characters long.

OVERLAPPING SORT KEY SPECIFICATIONS---SORT OPTIMIZED.

This message is displayed if the same record positions were
specified for more than one sort key group. SORT does not

39-30 DISK OPERATING SYSTEM

repeat duplicate positions in sort key generation and thus
saves processing and disk read/write time.

OVERLAPPING SORT AND HEADER KEYS---SORT OPTIMIZED.

This message is displayed if the same record position is
specified as a sort key position and a header indication
position. The position is removed as a sort key position and
the key is thus shortened. The effect is as for the previous
message.

LIMITED OUTPUT FILE FORMAT:

This message is displayed if SORT has accepted the SORT command
line including all option specifications and if the 'L' option
has been given. The operator must enter the limited output
specification line.

NULL LIMITATION SPECIFICATION.

This message is displayed if the 'L' option was given but the
limitation specification was only 015 -- the "ENTER" key. If
the 'L' option is given then a non-empty limited output
specification string must also be given.

INVALID LIMITATION SPECIFICATION.

This message is displayed if the limited output specification
does not fit the syntax given in the section on Limited Output
Format Option. Usually the fault is that a comma was not

placed between option specification groups, or double quotes "
were used instead of single quotes !

ENTER THE HARDCOPY HEADING:

This message is displayed when the limited output specification
has been accepted and if the 'H' option was given. The
operator must enter from 0 to 79 characters of information
which will be printed at the top of each page printed during
SORT output generation.

CHAPTER 39. SORT COMMAND 39-31

SEQUENCE FILE NAME REQUIRED

This message is displayed when the sequence file field is blank
and the file specification fields have not been terminated with
a semi-colon or an end of line designator.

SEQUENCE FILE NOT FOUND

This message is displayed when SORT requests the sequence file
be OPENed and DOS cannot locate the file on the disk drive
indicated. Note that if the drive is not specified, the drive
on which the SORT/CMD resides is implied.

SEQUENCE FILE FORMAT ERROR A

This message is displayed when SORT determines that the
sequence file specified is not an absolute object file.

SEQUENCE FILE FORMAT ERROR n

This message is displayed when SORT receives an error return
from LOADX$ when an attempt is made to load the sequence file.
The value of n may be 0-6 and is defined as follows:

If file does not exist

If disk drive is off-line
If directory parity error
If RIB parity fault

If file parity fault

If off end of physical file
If record of illegal format

oUW O

LIMITATION SPECIFICATION OVERFLOW

This message indicates that limited output parameters entered
require more memory (256 bytes) than allocated by SORT.

INTERNAL ERROR -- GET SYSTEM HELP !!!

This message indicates a probable hardware error occurred
during a limited output string sort. SORT cannot continue
executing. '

39-32 DISK OPERATING SYSTEM

THE FOLLOWING MESSAGES MAY BE DISPLAYED DURING SORT
INITIALIZATION IF SORT WERE LINKED TO BY AN ASSEMBLY LANGUAGE
PROGRAM:

INVALID LIMITATION STRING ADDRESS.
INVALID HARDCOPY HEADING STRING ADDRESS.
INVALID USER EXIT ADDRESS.
One of these messages is displayed if the corresponding entry
in the parameter table linkage data was not either 0 or in the
range 06144-06377 inclusive.
LFT ENTRIES 1->3 NOT CLOSED WHEN SORT ENTERED.
This message is displayed if the user left one of the logical
files 1, 2, or 3 open upon linking to the SORT utility.
LIMITATION STRING MISSING.
This message is displayed if the 'L' option was given in the
SORT command string but the pointer to the limited output
format string in the parameter table linkage data was 0,
indicating no limited output format string specified.
HARDCOPY HEADING STRING MISSING.
This message i1s displayed if the 'H' option was given in the
SORT command string but the pointer to the hardcopy heading

string in the parameter table linkage data was 0, indicating no
hardcopy heading string specified. :

THE FOLLOWING MESSAGES ARE DISPLAYED AFTER THE SORT
INITIALIZATION IS COMPLETED:

BUILDING SORT KEY TRAIN n.
This message is displayed when all parameter specifications

have been accepted and SORT has started the extraction of the
sort keys from records of the INPUT file and is writing them to

CHAPTER 39. SORT COMMAND 39-33

the ¥SORTKEY/SYS file.

SORT KEY FILE OVERFLOW.

This message 1s displayed if there was not adequate room on the
KEY DRIVE to hold the ¥*SORTKEY/SYS file. If ¥SORTKEY/SYS file
overflow occurs the file is deleted from the disk before the
message is displayed.

NULL OUTPUT FILE.

This message is displayed if no sort key records were
generated. A null output file (first record EOF) is prepared
before SORT ends.

INTERMEDIATE SORT PASS n.

This message is generated during sorting of the sort key trains
on the ¥*SORTKEY/SYS file. The only actual sorting done during
a sort is that which can be done on the initial sort key
trains, which are made short enough that they will fit in
memory. After the sorting of the keys within each initial
train, the trains are merged sixteen abreast into larger
trains, repeatedly until only one train remains.

INTERMEDIATE MERGE PASS n, TRAIN n.

This message is displayed if more than sixteen sort key trains
exist during a merge pass. The intermediate merge pass number
is the Nth iteration of the merge process. The train number is
the number of the train being output by the merge pass. If
more than one train is output by an intermediate merge pass
then at least one more intermediate merge pass will be
required. If more than sixteen trains are output by an
intermediate merge pass then at least two more intermediate
merge passes will be required, and so on.

FINAL MERGE: SORT TRAIN n.

This message is displayed during the generation of the output
file from the data in the now fully sorted and merged sort key
file and from the records in the INPUT file. The sort train
number corresponds to the current state of progress as measured

39-34 DISK OPERATING SYSTEM

against the number of trains generated by the next to the last
intermediate merge pass.

MERGE FILE OVERFLOW

This message indicates not enough disk space is available for
the merge file.

OUTPUT FILE OVERFLOW

This message indicates not enough disk space is available for
the output file.

CHAPTER 39. SORT COMMAND 39-35

CHAPTER 40. SUR COMMAND

40.1 Purpose

When a specific disk is used for more than one purpose, some
inconveniences occasionally turn up. Assume for a moment that a
user has a disk which he is using for program generation on each
of two more or less unrelated projects. When he uses the CAT
command, for instance, he will normally see a whole range of
files, some of which are not related to the project he may be
currently interested in. Or, he may begin editing a new file on
the disk, only to find that another user of the same disk may have
already had a file of that name. At times like this, it would be
convenient to logically partition the directory so that a user
would only have a portion of it, the portion he is currently
interested in, available to him at one time.

A more concrete example is the DOS itself and its various
commands. Obviously Datapoint's DOS.A, DOS.B, and DOS.C bear a
strong resemblance to each other. The DOS and most of the command
files are configured at assembly time through conditional assembly
and equates to support a given disk controller and specific file
structure. The result is several different object code files, all
with a /ABS extension, for each single source file with a /TXT
extension. Yet it is desirable for a number of reasons to keep

all of the object code files for all the DOS and commands on a
single drive.

Without the DOS subdirectory facility, it is not permitted to
have two files on a given logical drive with the same name.

4Oo.2 About Subdirectories

The use of the SUR (Subdirectory Utility Routine) command
allows the user to logically partition the directory on a given
disk into several smaller subdirectories. FEach such subdirectory
can then contain zero or more files, up to the combined maximum of
256 files per logical drive. Each subdirectory on a disk has a
unique name. Two subdirectories always exist on all drives;
these are called SYSTEM and MAIN. The names for the other
subdirectories are assigned by the user as he establishes themn,
and follow the same rules as for any standard DOS file name. As a

CHAPTER 40. SUR COMMAND 4o-1

subdirectory is created, the name specified by the user is related
to a unique number which is referred to as the subdirectory
number. The relationship between subdirectory names and
subdirectory numbers is not unlike the relationship between DOS
file names and physical file numbers. A given subdirectory may
have different numbers on different drives, even though the
subdirectory name is the same. ’

It is important to realize that subdirectories are not a way
of getting more than 256 files on a drive. This they cannot do.
The thing that subdirectories are good for is partitioning the
directory and restricting the scope of a file name. This allows
several files of the same name to exist on one disk at the same
time, without causing the DOS to become confused as to which is
the one to be referenced at any time. The way the DOS achieves
this is that each of the files is in a "different subdirectory",
and hence is uniquely identified even though the name and
extension may be identical.

40.2.1 Creation of Subdirectories

Subdirectories are created with the SUR command. All that is
required is to specify a name for the proposed subdirectory and
request its creation. Creation of a subdirectory does not
actually result in any real change to the directory on disk at
all; all it does is to cause the specified name to be entered
into a table in SYSTEM7/SYS (yes, that's why SYSTEM7 isn't write
protected), kept on disk, which relates each subdirectory name
with its subdirectory number. The user is allowed to specify
which drive he wishes to create the subdirectory on; 1if he does
not indicate a specific drive, the named subdirectory is placed
onto all on-line drives if possible.

40.2.2 Deletion of Subdirectories

Subdirectories are deleted with the SUR command. The user
specifies the name of the subdirectory he wishes to remove and
requests its deletion. Deletion of a subdirectory does not result
in KILLing the files within the range of that subdirectory. If a
subdirectory to be deleted contains one or more files, the files
are first moved from that subdirectory to the one called MAIN
before the named subdirectory is deleted. The user is allowed to
specify from which drives the subdirectory is to be deleted; if he
does not indicate a specific drive, the named subdirectory is
deleted from all on-line drives on which it appears.

NOTE: Subdirectories may not be deleted while PS is running.

4o-2 DISK OPERATING SYSTEM

40.2.3 Being "in a Subdirectory"

The user can define at any time which of the subdirectories
on each of his disks contain the current files he is interested
in. This is done with the SUR command by specifying the name of
the subdirectory containing the files of current interest. This
action causes him to be placed "into" the named subdirectory on
the drive specified. (If no specific drive is mentioned, he will
be placed "into" the subdirectory specified on all on-line drives
containing a subdirectory with the given name). It is appropriate
to point out that the current subdirectory on each drive need not
have the same name; for example, the user could easily be in
subdirectory PROGRAMS on drive zero and in subdirectory DATABASE
on drive one at the same time.

Once in a specific subdirectory on a drive, that state does
not normally change until the user requests being placed into a
different subdirectory (again via the SUR command) or re-boots the
DOS. Rebooting the DOS causes the user to be placed into the
subdirectory named SYSTEM on all drives.

40.2.4 Scope of a File Name

When a program accesses a file under DOS, it tells DOS the
name and extension of the file it is looking for and either
indicates one specific drive which the DOS is to search for the
file, or requests that the DOS look on all on-line drives. In
order for the DOS to "find" the given file, the DOS must find a
file whose name and extension exactly match the ones specified by
the requesting program. If no such file can be found, the DOS
returns indicating that the specified file cannot be found and
therefore probably does not exist.

When subdirectories are in use, this matching of name and
extension is expanded so that in addition to a file's name and
extension matching those specified by the requesting program, the
file must also be within either the current subdirectory (for that
drive) or the one called SYSTEM in order to be "found".

Therefore the scope of a file name can be more or less
defined via the following: when a user is in subdirectory X on
drive Y, files can be "seen" by his program only if they are in
either subdirectory X or subdirectory SYSTEM. Files in any other
subdirectory will not appear to exist.

CHAPTER 40. SUR COMMAND 40-3

40.2.5 About Subdirectory SYSTEM

It has been shown that files in the subdirectory named SYSTEM
are special in that they can be accessed regardless of which
subdirectory the user is "in" on a specific drive. Likewise, a
special situation also occurs when the user is "in" the
subdirectory named SYSTEM. When the subdirectory named SYSTEM 1is
the current subdirectory on a given drive, all files on that drive
are accessible regardless of which subdirectory they themselves
are actually in.

A little caution must be used when a user is in subdirectory
SYSTEM on a disk with multiple files of the same name and
extension. The caution is that, although each of the files is
still associated with one and only one subdirectory, all of the
files on a disk are available when the user is "in" the SYSTEM
subdirectory. The result is that in this situation, one of the
files of the desired name and extension will be referenced; which
one is referenced is, however, undefined. Therefore, good
practice dictates that if a user has more than one file with the
same name and extension on some drive, that he make a point of
always knowing which subdirectory he is in (and that it is not
SYSTEM) if it matters to him which of his files he references.

40.2.6 Files vs. the User Being "in a Subdirectory"

It is important not to confuse the two distinct concepts of a

file being in a subdirectory as opposed to that of [a user] "being
in a subdirectory". .

A file being in a specific subdirectory is a way of saying
that the file cannot be accessed when the current subdirectory is
neither that specific subdirectory nor SYSTEM. This relationship,
that of a file being in a specific subdirectory, is retained more
or less permanently; if a file is placed in subdirectory SUBDIR1
today on a disk, the disk can be removed and stored on a shelf;
if tomorrow the disk is taken down from the shelf and re-mounted,
that file will still be in subdirectory SUBDIRI1.

A user being in a specific subdirectory is a way of saying
that the subdirectory in question is "the current subdirectory" on
one or more logical drives. The "current subdirectory" on a drive
is less permanent and reflects the use of the SUR command since
the previous time the DOS was bootstrapped.

4o-4 DISK OPERATING SYSTEM

40.2.7 Getting a File into a Subdirectory

In general, there are three ways to get a file into a given
subdirectory. The easiest and probably most common of these is
automatic. Whenever a file is created, it is always placed into
the current subdirectory on the drive on which it is created.

Once a file has been thus created, it can be moved between
subdirectories with the NAME command. The NAME command can take a
file within the scope of the current subdirectory and put it into
the current subdirectory if it is not already (which is useful if
either the source or destination subdirectory is SYSTEM) or can
place it into any other subdirectory the user might wish to put it
into.

40.3 Usage

The SUR command is parameterized as follows:

SUR [<name>][/<function>][:DR<n>][,<new name>]

The function performed by SUR is determined by the absence or
g:igi.of the <function> field and the name field, as described

40.3.1 Establishing a "Current Subdirectory"

If the function field is not given, SUR establishes the named
subdirectory as the current subdirectory on all drives on which

the named subdirectory exists. If the named subdirectory does
not exist on one or more drives, the current subdirectory on any
such drives is unaffected. If a specific drive is mentioned,

then only the current subdirectory on the specified drive is
subject to change.

40.3.2 Creating a Subdirectory

If the function field is /NEW, SUR creates the named
subdirectory on all drives on which the named subdirectory does
not exist. The current subdirectory 1is not affected by the
operation. If a specific drive 1s mentioned, then the named
subdirectory is only created on the specified drive.

CHAPTER 40. "SUR COMMAND 40-5

40.3.3 Deleting a Subdirectory

If the function field is /DEL, SUR deletes the named
subdirectory on any drives on which the named subdirectory exists.
If any files are in the named subdirectory, they are moved to
subdirectory MAIN before the named subdirectory is deleted. 1If
the subdirectory being deleted is the current subdirectory on that
drive, the current subdirectory is also changed to MAIN.
Subdirectories SYSTEM and MAIN cannot be deleted. 1If a specific
drive 1s mentioned, then the named subdirectory is only deleted
from the specified drive.

40.3.4 Renaming a Subdirectory

If the function field is /REN, SUR renames the named
subdirectory on any drives on which the named subdirectory exists,
to the name specified in the new subdirectory name field. If any
files are in the named subdirectory, they will be in the
subdirectory specified by the new subdirectory name field upon
completion of the operation. Subdirectories SYSTEM and MAIN
cannot be renamed. If a specific drive is mentioned, then the
name of the named subdirectory is changed only on that specified
drive.

40.3.5 Displaying Subdirectories

If the subdirectory name field is not given, SUR displays the
names of all subdirectories on all on-line drives. The format of
the listing is similar to that provided for file names by the CAT
command. The number in parentheses to the right of each
subdirectory name is the subdirectory number associated with that

name (in octal); an asterisk indicates the current subdirectory
on each drive. If a specific drive is mentioned, then only the

subdirectories present on the specified drive are displayed.

40-6 DISK OPERATING SYSTEM

CHAPTER 41. UBOOT COMMAND

The UBOOT command writes a DOS bootblock onto the cassette
tape in the front tape deck.

The UBOOT command then rereads the bootblock to insure that
the cassette is good. In addition, the bootblock checks its own
parity immediately upon loading and halts if it finds it has not
been loaded properly.

If the machine halts upon booting repeatedly and other boot
tapes work on the same machine, then the boot tape which causes
the boot operation to halt is not a good tape and should be
replaced.

The boot tape created by UBOOT reads an IPL (Initial Program
Loader) block from disk. The IPL block then reads and executes
the DOS bootblock (from disk). The IPL and bootblock are put on
disk by DOSGEN and PUTIPL.

The UBOOT tape is capable of loading any version 2.3 DOS from
any type of disk. If there are nultiple types of disks on your
system, they will be scanned in the following order:

1. Mass storage disks
2. Cartridge disks
3. Floppy disks

Logical drive zero will be tested on each of the disks. If drive
zero is off-line, depressing the "DISPLAY" key will cause a scan
of ALL on-line drives. This means that if drive zero is "down",
you can generally continue running. When a disk is found that
contains a good IPL, it will be selected as the "BOOT DRIVE";
henceforth overlays will be loaded off it. Commands will also be
loaded from the booted drive first (default).

CHAPTER 41. UBOOT COMMAND 41-1

CHAPTER 42. UTILITY/SYS

Most of the DOS commands have been put in an absolute library
named "UTILITY/SYS". This has the following advantages:

1. Free up some directory and data space.
Makes most of the utility programs available on any disk,
i.e., UTILITY/SYS can be on any drive on-1line.

3. Assures the user that the most current DOS commands will
be used.

Using the librarian utility program (LIBSYS 1.1), many user
programs could also be added to UTILITY/SYS. A few guldelines for
programs that can be members of "UTILITY/SYS":

1. Programs should start at 017000 or higher.
2 Programs that use overlays should use DOS function 13 and
14 to access the library.

If you have placed your own programs into UTILITY/SYS, do not
overwrite UTILITY/SYS on a partial gen. Instead, MIN the new
UTILITY/SYS using a different file name, then use LIBSYS as
follows:

MIN

(filename UTILITY/NEW)
LIBSYS UTILITY/SYS
REPLACE UTILITY/NEW
END

KILL UTILITY/NEW

YES

To display the members in UTILITY/SYS, enter:
CAT ¥

Note: the CAT command also displays the directory of any library
(see CAT command).

When keyboard commands are entered, the specified command
will automatically be located as either a separate disk file or a
member of UTILITY/SYS. Normally a separate file name is first
checked, then the library member. To reverse the normal

precedence put a leading ¥ or : in front of the command name. For
example:

CHAPTER 42. UTILITY/SYS ho-1

#CHANGE SCRATCH/TXT;X
or
:CHANGE SCRATCH/TXT;X

See the chapter on the Command Interpreter for details on
selection of a command from the disk directory or from
UTILITY/SYS.

h2-2 DISK OPERATING SYSTEM

CHAPTER 43. SYSTEM DESCRIPTION

43,1 System Philosophy

The objective of DOS is to allow maximum use of the
capabilities of a Datapoint disk system with a minimum of effort.
The DOS disk structure provides dynamic space allocation and fully
random file access capability on all supported disk types. Also
provided are an extensive set of utility programs to perform many
basic data processing functions. 1In all system utilities the
operator commands are as simple as possible while providing a
versatile program capability. Error codes and program messages
are mostly presented in English, avoiding complex,
incomprehensible messages.

Datapoint DOS is a facilities oriented system. It provides
utility programs for general use, and extensive system routines
for use in assembler coding. DOS is not a supervisory system; it
imposes practically no overhead. The DOS facilities provide a base
for Datashare, BASIC, and most other Datapoint languages and
systems.

43,2 System Structure

‘DOS occupies only the lower 8K of memory in the processor.
0f this 8K, only the lower 2.8K is necessary for the support of
the disks. The first 768 bytes of memory (0 - 01377) contain the

object code loader, entry point table, and interrupt handler.
Object code may be loaded from 01400 upwards, overlaying much of

DOS. If object code is loaded below 01400, the code overstores
the loader or entry points and results are unpredictable.

The operating system debug facility and the keyboard and
display routines reside between 2.8K and 4K, the cassette driver
routines from 4K to 5.4K, and the command interpreter from 5.4K to
8K. It is recommended that user programs start at 017000 (octal).

To achieve its small size in memory, DOS uses disk-resident
overlays for the disk file opening, closing, and allocation
routines. Most of the system error messages also reside in an
overlay, allowing fully descriptive messages without using a
prohibitive amount of memory. A set of short utility routines

CHAPTER 43. SYSTEM DESCRIPTION 43-1

(DOS Functions) uses a separate overlay area.

The operating system uses a single disk controller with at
least one physical disk drive attached. Each "on-1line" drive -- a
drive containing a disk ready to read -- is assumed to contain a
valid DOS disk, which will have all necessary system tables and
files present and in correct format. This assumption on the part
of the system requires caution on the part of the operator if a
disk not fitting this description is mounted. If, for instance, a
disk has been mounted to be DOSGENed, the operator must not run
any programs that will attempt to use the disk before it has been
genned, or an abort will occur indicating system data failure.

DOS is designed to be run interactively by an operator at the
processor console. The operator generally enters commands from
the keyboard, which the operating system interprets and executes.
During execution, status information needed by the executing
program 1s requested from the operator via CRT messages expecting
a keyed response.

A DOS utility program (CHAIN) allows execution of predefined
processes automatically in a non-interactive fashion, so no
operator attention is required. Other utility programs extend
this automatic capability such that the system can be made almost
completely operator independent if desired.

43-2 DISK OPERATING SYSTEM

CHAPTER 44. SYSTEM STRUCTURE

44,1 Disk Structure

44,.1.1 Introduction

Any disk used with DOS is a self-contained information
structure. A disk contains up to 256 files, each of which is
described in system tables on the disk and which resides
completely on the one disk. No system information on a disk
references any other disk.

The basic structure of disk storage is the file. Files on
Datapoint DOS consist of up to 38,400 sectors, or as many sectors
as fit on a logical disk, whichever is smaller. The space
occupied by a file is mapped in its Retrieval Information Block
(RIB), which is the first sector of the file. The Directory
stores the name of each file and provides a pointer to locate the
RIB, thus completely defining a file.

Space for files is allocated in clusters, a cluster being the
smallest allocatable unit of disk space. In general, each
cylinder of a disk is divided into 8 equal clusters. On diskette
systems a cylinder has only 4 clusters. Thus a cluster consists
of 3, 6, or 24 sectors on diskette, cartridge, and mass storage
systems respectively. The sectors constituting a cluster are

always contiguous and never cross the boundary of a cylinder or
head. The Cluster Allocation Table (CAT) and the Lockout CAT

maintain a record of clusters in use or unavailable for use and
clusters free for use.

The RIB maps the file space in segments; a segment is a set
of contiguous clusters. A file then consists of a set of segments
located randomly on the disk, each segment being a small block of
clusters. Within this space, the file is logically continuous,
there being no logical discontinuity at the boundary of a segment.

Each sector within a file carries its own identification.
The first byte of a sector contains the Physical File Number (PFN)
of the file to which it belongs. The PFN uniquely identifies a
file. The second and third bytes contain the Logical Record

CHAPTER 44. SYSTEM STRUCTURE 4u-1

Number (LRN) of the sector. The LRN is a count of sectors in the
file, starting with 0 at the first sector, and incrementing by one
for each successive sector.

All major tables discussed in this section -- the CAT,
Lockout CAT, HDI, Directory, and RIB -- are all kept in duplicate.
The backup copy of each of the tables helps prevent data loss in
event of a read/write error to a system sector.

4y .1.2 Disk Space Management: CAT and Lockout CAT

The Lockout CAT indicates locked out cylinders -- cylinders
which will not be used by the DOS. Cylinders are automatically
locked out at DOS generation if they are found bad by the surface
verification. Cylinders may be manually specified for lockout
during system generation or during REPAIR. Cylinder 0 is always
locked out for system use. Each byte of the Lockout CAT
represents a cylinder: byte O=cyl 0, byte 1=cyl 1, byte 2=cyl 2,
etec. The byte value is 0377 (017 on diskettes) if the cylinder is
locked out, and is 000, otherwise.

The CAT indicates available space for the DOS; CAT updates
are performed automatically as space allocation or deallocation is
performed. As in the Lockout CAT, each byte of the CAT represents
a cylinder. Each bit of a byte represents a cluster of the
cylinder: bit 7=cluster 0, bit b6=cluster 1, etc. (For diskettes,
bits 7-4 are zero, bit 3=cluster 0, bit 2=cluster 1, bit 1=cluster
2, and bit O=cluster 3). If a bit is set (1), the cluster it
represents is either in use by a file or locked out; if a bit is
clear (0), the cluster is free.

The CAT and Lockout CAT observe some fixed format rules:

Byte 0 is always 0377

Byte 1 through n may be any value as described above
(n is the number of cylinders on the disk)

Bytes n+1 through 0376 are 0377 (except for directory
mapping bytes, if used.)

Byte 0377 is any value. This is the auto-execute PFN and
is normally zero.

4h-2 DISK OPERATING SYSTEM

44y.1.3 Files: HDI, Directory Mapping Bytes, Directory, RIB

The Hashed Directory Index (HDI) provides access to, and
controls allocation of, the Directory. Each byte of the HDI
represents a directory entry, offset from the beginning of the
index by PFN. Thus, byte 0=PFN 0, byte 1=PFN 1, byte 2=PFN 2,
etc. If the value of the byte is 0377 the directory entry it
represents is not in use. When a PFN is in use, a hash code
(value 0-0376) generated from the file name is placed in the byte.
This value indicates the PFN is in use, and is used to speed
directory searching when a file is being loacated by name.

Directory Mapping Bytes are a less sophisticated means of
Directory access and control, used in DOS.B version 1 and in
diskette operating systems. The mapping bytes are bytes 0357-0376
of the CAT. Each byte represents a directory sector (0-15) and
the value in the byte represents the number of entries (0-16) in
use in that sector.

The Directory is 16 sectors (logically referenced as 0-15)
containing 256 directory entries, 16 entries per sector. A
directory entry contains the name, protection, and subdirectory of
a file; it also points to the file's RIB. Directory entry format:

[O]112[314(5]6]7]8[9l10[11[12[13]14[15 |

Bytes 0-1 are the RIB address/protection. (See
"Addressing Byte Structures".)

Bytes 2-3 are unused (normally zero)

Bytes 4-11 are the file name. A file name 1is usually
ASCII characters as described in the DISK FILES
chapter under File Names, padded with blanks to
be eight characters long, but may be any values.

CHAPTER 44, SYSTEM STRUCTURE h4-3

Bytes 12-14 are the file extension. Same format rules
as file name.

Byte 15 is the subdirectory number, usually 0377,
indicating subdirectory SYSTEM.

A Retrieval Information Block (RIB) maps a file's domain on
disk. A file is composed of segments, each segment being composed
of contiguous clusters. The RIB contains up to 126 segment
descriptors which completely describe the clusters allocated to a
file.

PFN LRN 0377 | SD1 | SD2 <> SDh125 | sbl2é6
LSB MSB

Each segment descriptor (SD) is two bytes long (see "Addressing
Byte Structures"). A segment descriptor of 0377,0377 indicates
the end of the RIB. The fourth byte of a RIB is always 0377. The
RIB is always the first sector of the file; the RIB copy is the
second sector and is identical to the RIB except that its LRN is
1.

4y ,1.4 Sector Identification

Every sector of a file contains in its first byte the PFN of
the file. The next two bytes are the Logical Record Number (LRN),
stored least significant byte first. The PFN and LRN are
primarily intended as validation fields when a file record is
read. When a file record is written, the PFN and LRN are set
correctly; reading a record with a PFN that does not match or an
out-of-sequence LRN constitutes a Record Format Error.

Not every sector in the space allocated to a file has this
PFN and LRN data. Only sectors that have been used for the file
have this informatin set. Unused sectors may have anything in the
first three bytes.

ha-y DISK OPERATING SYSTEM

44.1.5 Addressing Byte Structures

44.1.5.1 PDA - Physical Disk Address

MSB LSB
[7Te]514]3 21110] (7T6TsM413120110]
cylinder sector
address number
cluster
number

The cluster number references a cluster within a cylinder;
values are 0-7 except for diskette systems which use values
0,2,4,6 for clusters 0,1,2,3 respectively. The sector number
references a sector within a cluster.

Note: This is the DOS "PDA" and must notibe confused with
the hardware disk addressing of any particular controller.

44.1.5.2 RIB Address/Protection

Used in a directory entry to point to beginning of file.

MSB LSB
[7]6]5]4]3]2]1]0 | L 716(5{4 (31210 |
cylinder i L write protection
address | (l=protected)

delete protection
(l=protected)
unassigned

cluster number

The cylinder address and cluster number, with an assumed
sector number of zero, is the PDA of the first sector of the file.

CHAPTER 44. SYSTEM STRUCTURE 4y-5

44.1.5.3 Segment Descriptor - used in RIB to define a segment.

MSB LSB
[716]5]4]3]2]1]0 | !756J5H4L3121110|
cylinder number of
address clusters minus 1

cluster number

The cylinder address and cluster number, with an assumed
sector number of zero, is the PDA of the first sector of the
segment. The length of the segment in clusters is given by the
low-order five bits of the 1lsb; length can be 1-32 clusters
(except DOS.B, 1-10).

44,1.5.4 Physical File Numer - used to access directory and HDI

[71615141372]1]0 |

directory sector number
directory entry number

The directory sector number specifies a sector of the
directory (0-15). The directory entry number (0-15) specifies an
entry within a sector.

Note: Since directory entries are 020 bytes long, if the
low-order four bits of the PFN are set to 0, the resulting value
is the byte location of the beginning of the specified directory
entry. For example, PFN 0304 references the directory entry
beginning at byte 0300 (entry number 014) of sector U4 of the
directory.

) DISK OPERATING SYSTEM

44,2 Disk Data Formats

The DOS itself does not deal with the user's data below the
record level. It only keeps track of where the records are,
allowing the user to format the data in any manner he pleases.

The user is presented with records that are 253 bytes long, the
first three bytes of each sector being reserved for system sector
identification as described above. The DOS and its utility
programs do make a number of assumptions concerning file structure
however, and system operation is much simpler if all files are
structured to match these assumptions.

DOS makes assumptions about the structure of text files and
about absolute object code files. The structure expected for text
files under DOS is described in the chapter on REFORMAT. Any file
to be processed by the standard text-handling facilities of DOS
must have the standard text format described.

If a file is to be loaded by the system loader, it must be an
object code file in the following format:

load load N bytes of
000 address address N | object code data block 0377
lsb msb | complement

L_ HL L_ HL L_ logical E(
U /

one data block

Note that this is the format of output files from Datapoint
assemblers. Any number of data blocks may appear in a record.

The leading byte of a data block will always be either 0,
indicating a block follows, or 0377, indicating end of record.

The special case of N being zero is used to indicate end of file,
in which case the HL given is taken to be the starting address of
the program loaded.

CHAPTER 44, SYSTEM STRUCTURE hy-7

4y . 3 Memory Mapping

The DOS occupies memory as shown by the following map:

| y

COMMAND
OVERLAYS
017000
COMMAND
INTERPRETER
012400
CASSETTE
DRIVERS
010000 (4K)
DOS FUNCTIONS
7 07400
DEBUG
06000
EYIN & DISPLA
KEYIN & DISPLAY 05400
FILE HANDLING
OVERLAYS
04000 (2K)
DISK FILE
HANDLING ROUTINES
02000
DATA AR
ATA AREA 01400
ENTRY POINTS &
INTERRUPT HANDLER 01000
SYSTEM LOADER
0

uy-8 DISK OPERATING SYSTEM

4y 4 Memory Tables

4y 4.1 Entry Point Tables

Three entry point tables exist within the D0OS. These tables
consist of a group of jumps to the various routines made available
to the user. These jumps allow the system to be changed without
requiring the user to modify his programs. To assure
compatability between operating systems and for future versions of
DOS, any calls to system routines should use the documented entry
points only.

The first entry point table is located between 01000 and
01377. It contains entry points to the routines in the loader
(the loader itself, the basic disk read and write drivers, and the
interrupt handler) and to the DOS file handling routines. It also
contains in-line routines to increment and decrement the HL
registers.

The second entry point table is located between 010000 and
010066 and contains entry points to the cassette handling
routines.

The third entry point table is located between 013400 and
013452 and contains entry points to routines within the command
interpreter. The availability of the command interpreter routines
makes small command tasks easy to implement.

See the chapters on System Routines and Routine Entry Points
for details on the routine functions and entry point locations.

44.4.2 Logical File Table

The major working table in the system is called the Logical
File Table (LFT) and is located from 01544 through 01643. It
contains all of the information required by the file handling
routines for every file which is currently open (a maximum of
three files may be open at any one time - logical files one, two,
and three). Once the user has opened a file by its symbolic name,
he deals with it by the logical file number under which it was
opened. The Logical File Number (LFN) specifies which LFT and
which disk buffer memory page are to be used for a file.

CHAPTER 44, SYSTEM STRUCTURE 44-9

The LFT contains for each entry the following information in
the order shown (the number in parentheses is the number of bytes
used for the item):

PFN (1) - Physical File Number, PFN of the file
referenced by this LFT
PDN (1) - Logical Drive Number (bits 3 - 0)

Protection (bit 7 set indicates delete
protection, bit 6 set indicates write
protection) New Space Allocated flag (bit 5)
set if new space has been allocated to this

file,

LRN (2) - Next Logical Record Number, system LRN of next
sequential sector

BLRN (2) - Base LRN, first LRN in current segment (system
LRN)

CSD (2) - Current Segment Descriptor

The CSD and BLRN describe the current file
segment and allow quick calculation of the PDA
to be read/written by treating the LRN as an
offset from BLRN. If the desired LRN is not in
the current segment, the RIB is re-read and a
new current segment established.

) - Physical Disk Address of RIB, MSB

) - Physical Disk Address of RIB, LSB

Storing the RIB PDA allows quickly locating the
RIB when it must be accessed for getting a new
segment descriptor, for allocation updates, or
for file closing.

MAXLRN (2) - Largest system LRN referenced (read, written,
or positioned to) since the file was opened.
Used for space deallocation at close if new
space allocated flag is set.

LRNLIM (2) - Largest LRN allowed. Obsolete field, now
unused.

BUFADR (1) - Current controller buffer byte address, used
for byte transfers to or from the disk
controller buffer.

XXXXXX (1) = Unused

RIBCYL
RIBSEC

~
_

16 bytes total

There are actually four LFT entries (01544-01563,
01564-01603, 0160L4-01623, 01624-01643) to correspond to LFNs zero
through three. The LFN used for a file specifies which buffer
page to use for the disk transfer operation. LFN 0 uses buffer
page zero (or 4, 8, or 12), LFN 1 uses buffer page one (or 5, 9,
or 13), and so on. The larger buffer page numbers are available

44-10 ~ DISK OPERATING SYSTEM

on 4K disk controllers and are specified by the high-order bits of
the LFN given to the system routine used. Not all routines
recognize the page-select feature of LFN, check the description of
each routine in System Routines.

Buffer page zero is a special case and is reserved for sSystem
use because the DOS needs a buffer into which it can read the RIB
if it is necessary to determine a new current segment when a given
access 1is made. This need is only critical on writes, when the
buffer contains the information to be written to the disk. On
reads, the user's data will always be the last item to be read and
and page zero may be used. Always be careful in use of buffer
page zero, however, since an access involving a different logical
file may cause logical file zero's disk buffer to be loaded with a
RIB. Also, the zeroth disk controller buffer is always used by
the system loader in transferring data to memory. Page zero is
used so that an overlay may be loaded or another program can be
chained to without disturbing any of the standard (one through
three) logical files. LFN zero has one final peculiarity, CLOSEs
have no effect when issued on LFN zero. Neither space
deallocation nor updating of the protection field occur when
logical file zero is closed.

The DOS loader uses a set of locations in memory between 4
and 022 to perform the functions of an LFT entry during the
loading process. It knows, however, that an object file is always
sequential and does not have to have the accessing generalization
of the main file handling routines. The file handling routines
also use these low memory locations for temporary storage of a
specified LFT entry to eliminate having to continually index into
the LFT. Also, since the basic disk read and write routines use
location 5 to indicate which drive is to be used, having the LFT
temporarily stored in the low memory locations automatically
selects the correct drive for use.

44,5 Disk Overlays

DOS uses disk overlays to reduce its main memory
requirements. The overlays are in disk files SYSTEM1/SYS through
SYSTEM7/SYS. The memory-resident DOS is stored in the disk file
SYSTEMO/SYS. These eight files must reside in PFN's 0 through 7,
the PFN corresponding to the number in the file name.

CHAPTER 44, SYSTEM STRUCTURE 4h4-1

The system overlay files load into memory between 04000 and
05400 and are loaded by the system as needed. The functions of
the overlays are:

SYSTEM1/SYS - PREP - create a new file
SYSTEM2/SYS - CLOSE - close a file
SYSTEM3/SYS - OPEN - open an existing file

SYSTEMU4/SYS - ALLOC - allocate more space for a file
SYSTEM5/SYS - ABORT - display an error message
SYSTEM6/SYS - SCREEN initialize a RAM display screen

SYSTEMT7/SYS is the DOS Fuction overlay and is described in
the DOS Function section of the chapter on System Routines. The
DOS Functions are short overlay routines and load into a separate
area of memory. Also, the first sector of SYSTEM7/SYS is used to
store subdirectory names (see the SUR command).

When DOS needs an overlay file, it searches for the file on
the booted drive.

44.6 The Command Interpreter

The command interpreter resides in locations 013400 through
017777. The command interpreter receives command lines from the
keyboard, as described in the chapter on Operator Commands,
storing the command line in memory in the Monitor Communication
Region (MCR$, location 01400 through 01543). When the line is
terminated (ENTER key, 015), the stored command line is scanned
and the indicated command program is loaded and executed.

While the command interpreter is waiting for character entry
from the keyboard, it runs a test on the disk buffer memory. As
soon as a character is ready from the keyboard, the disk buffer
memory test is terminated and the normal keyin routine is entered.
Even Jjust sriking the CANCEL key will terminate the disk buffer
menory test. If an error is detected by the disk buffer memory
test, the message "DISK BUFFER FAULT" is displayed and the screen
is rolled up one line.

When the command interpreter is intially entered via the
entry point DOS$ it will execute the program set for
auto-execution if there is one. If the KEYBOARD key is depressed,
auto-execution is not performed. The autoed program will also~be
run any time the system returns to DOS$; exit routines EXIT$ and
ERROR$ return via this entry point.

When a command line has been entered, the command interpreter

4y-12 DISK OPERATING SYSTEM

must attempt to locate and load the specified command program. If
the command is obviously bad (a null entry line) the interpreter
immediately displays "WHAT?" and waits for a new line. A pound
sign (#) for invoking DEBUG is also treated as a special case,
causing the interpreter to immediately go to DEBUG. Normally the
first field on the command line will be normalized to the form
shown below and the file thus specified will be searched for. The
sequence of searching for a requested program depends on the
format of the command line.

If the operator entered a leading "*¥" or ":" as part of the
command name, a flag called UTILSW (UTILity SWitch) is 'set,
incicating that the specified command is to be located as a member
of UTILITY/SYS. 1If a drive specification was entered as part of
the command name, the search goes only to the specified drive, as
indicated in the sequence shown below.

The first test the interpreter performs is to check the drive
specification entered, if any. If the drive specification is
invalid, an error message 1s displayed and a new command line
requested. If the drive specified is valid, or if no drive was
specified, the interpreter searches for the command as outlined
below.

1. If a drive was specified:
a. If UTILSW 1is set:

(1) Open UTILITY/SYS on the specified drive. If the
file is missing or if the specified command is
not a member, say "WHAT?", else run the program.

b. If UTILSW is not set:

(1) Attempt to open the command file on the specified
drive. If successful, run the program. Else:

(2) 1If no extension was specified in the command

name, open UTILITY/SYS on the specified drive and
search for the command as a member of the

library. Else:
(3) "WHAT?" and get another command.
2. If no drive was specified:
a. If UTILSW is set: ,
(1) Open UTILITY/SYS on the booted drive and search
for the command as a member of the library.

Else:

(2) Try to open command as a file on booted drive.
Else:

(3) Check for command in UTILITY/SYS on any drive.
Else:

(4) Try to open comand as a file on any drive. Else:
(5) "WHAT?" and get another command.

CHAPTER 44. SYSTEM STRUCTURE 4h-13

b. If UTILSW is not set:
(1) Try to open command as a file on booted drive.
Else:

(2) If no extension was specified in the command
name, open UTILITY/SYS on the booted drive and
check for the command as a member of the library.
Else:

Try to open command as a file on any drive. Else:
If no extension was specified in the command
name, open UTILITY/SYS on any drive and check for
the command as a member of the library. Else:

(5) M"WHAT?" and get another command.

—~
=W
~—

The command interpreter uses lexical scanning routines to
interpret the entered command line. These routines are available
for user programs and are described in the chapter on System
Routines. The command interpreter scans up to four file
specifications from the command line. The file name scan is
terminated by a semicolon (;) or end-of-string (015). The file
specifications are entered in a normalized symbolic form into the
corresponding logical file table entries (0 through 3). The
normalized form is not the same as normal LFT information, the LFT
area simply provides convenient storage for the file
specifications. If desired (and it usually is), the open routine
can open a file using the LFT in which the file name used for the
open is stored. The format of the normalized form is shown here:

DRCODE (1) - Drive select code: logical drive number in
binary, no drive spec (0377), invalid drive
spec (0376)

PDN location of normal LFT, set to 0377 to
indicate the LFT is closed.

File name specified, padded with trailing
spaces to 8 characters. Eight spaces if no
name given.

File extension specified. Three spaces if no
extension entered.

Logical drive specification (spaces if no
spec).

0377 (1)
FILENAME (8)

FILEEXT (3)

DRSPEC (3)

-

When a program receives control from the command interpreter,
LFT's one through three (zero was used to load the program itself)
contain normalized entries as indicated above, and MCR$ still
contains the command as entered, so the program can retrieve
information from its command line. If a program is auto-executed,
none of this command line information is available, so any program
which tests for information as provided above can not be
auto-executed. Conversely, any program intended for

hh-14 DISK OPERATING SYSTEM

auto-execution must not look for command information. The command
AUTOKEY is provided to allow automatic execution of programs
requiring command line information.

CHAPTER 44, SYSTEM STRUCTURE 4y-15

CHAPTER 45. INTERRUPT HANDLING

45,1 Interrupt Mechanism

Datapoint 1100, 2200, and 5500 processors feature a
one-millisecond timed interrupt. Every millisecond, a flip-flop
indicating "interrupt pending" is set; the setting of this
flip-flop occurs independently of processor instruction cycling.
At the beginning of an instruction fetch cycle the status of the
interrupt pending flip-flop is checked. If the flip-flop is set,
a CALL to the interrupt vector location occurs and the flip-flop
is cleared. On 1100 and 2200 processors, the interrupt vector
location is address 0. On 5500's the interrupt vector location is
address 0167444, which normally immediately performs a Jjump to
location 0. While interrupts are active, location zero is a jump
to the interrupt scheduler.

The execution of the CALL ends hardware control of the
interrupt. Any interrupt service performed, task scheduling, or
prioritizing is under software control.

The machine instruction DI (Disable Interrupts) prohibits
recognition of the interrupt pending flip-flop, thereby preventing
any interrupt calls until recognition of the flip-flop is
reactivated by an EI (Enable Interrupts) instruction.

45.2 Interrupt Scheduler

DOS provides an interrupt scheduler loaded as part of the
system boot operation. The scheduler resides between 01201 and
01376 and remains memory-resident. Normal system operation never
overstores this scheduler. The basic coding of the scheduler is
shown below. The code shown 1s intended as an example of the
structure of the scheduler and is not the exact code used within
DOS.

CHAPTER 45. INTERRUPT HANDLING 45-1

INTRPT DI Disable interrupts

BETA ‘ Use BETA mode
INTO CALL RETURN Perform each of processes 0
INT1 CALL RETURN through
INT2 CALL RETURN three
INT3 CALL RETURN
MLA ¥INTSCN Rotate to the next
AD 6 one of processes
LMA 4 through 7
AD INT4-6
LLA HL => CALL address
PUSH Jump to the
RETURN RET next CALL
INTSCN DC 0 Rotation counter storage
INTY CALL RETURN CALLs for the rotating
JMP INTRET process slots
INTS CALL RETURN
JMP INTRET
INTG6 CALL RETURN
JMP INTRET
INTT CALL RETURN
XRA Reset the scan pointer
MSA ¥INTSCN after calling process 7
INTRET ALPHA back to ALPHA mode
EI Enable interrupts
RET Back to the background

All processing performed on an interrupt call is called
"foreground", the processing interrupted is referred to as
"background". Foreground processing begins with the DI

instruction labeled INTRPT above and ends with the RET instruction
terminating the scheduler. The above scheduler illustrates the

fundamental rules of foreground code on a Datapoint processor:

1. Interrupts must be disabled during foreground. The
scheduler disables interrupts initially and does not
enable interrupts until immediately before terminating.
Any foreground processes must not enable interrupts.

2. Foreground processing is performed in BETA mode,
background processing in ALPHA mode. The scheduler sets
the machine modes; foreground processes should not change
the mode.

3. Foreground processes are CALLed routines and must return

45-2 DISK OPERATING SYSTEM

with the stack in the same condition as on entry. Each
CALL instruction INTO through INTT7 can be used to call a
foreground routine. The scheduler itself uses a simple
RET to return to background processing; if any foreground
routine modified the stack, the scheduler could exit to
the wrong location. Even if the scheduler manages to
return properly, the background process uses the same
stack (there is only one stack) and any modification
performed by foreground routines could be fatal to the
background processing.

4, Register contents on entry to foreground processing may be
undefined. Normally the BETA mode registers and condition
flags will be the same on entry to foreground as they were
at the conclusion of foreground processing on the previous
interrupt, so contents on entry can be considered as
known. Under PS, however, the BETA mode registers and
condition flags are not preserved, since they are used by
PS and by the other partition. Even when PS is not in
use, register contents cannot be predicted if there is a
possibility of multiple foreground routines being active.
If a single routine is active, registers may be preserved;
if another routine or two is made active, they may modify
the registers used by the first routine, effectively
destroying any expected contents.

45,3 Active Processes

Each of the labeled CALLs in the scheduler, INTO - INTT7, is
called a foreground "process" or, sometimes, an interrupt "slot",
‘and is referenced by number 0 through 7.

Normally each foreground process is inactive, since each CALL
invokes only a return to the scheduler. A process is made active
by overstoring the address RETURN following the process CALL with
the entry address of a desired foreground routine. The address so
stored is called the "state" of the foreground process. (Two DOS
routines, SETI$ and CS$, set the state of a process.) Thus if the
address PRINT is stored 1lsb, msb in INT1+1 and INT1+2 (the address
area following the CALL at INT1) the state of foreground process 1
is PRINT. Once a process has been made active -- given a state --
it can again be made inactive by storing the adress RETURN back
into the two bytes following the CALL. (Two DOS routines, CLRI$
and TP$, terminate processes in this manner.) While a process is
active, the routine it calls will be performed once every
interrupt cycle, or every fourth cycle depending on the slot
number used.

CHAPTER 45. INTERRUPT HANDLING 45-3

The scheduler is structured to provide four "one-millisecond"
processes and four "four-millisecond" processes. The
"one-millisecond" and "four- millisecond" designations refer to
the length of time between sequential executions of the process.
Interrupt slots 0-3 are one-millisecond processes; each process is
executed every time an interrupt occurs. Interrupt slots 4-7 are
four-millisecond processes; one of the four is executed every time
an interrupt occurs, so any one process is executed only every
fourth millisecond.

45.4 Timing Considerations

The greatest constraint on foreground routines is timing,
mainly the total length of time required to execute. Since an
interrupt occurs every millisecond, the total amount of time spent
in foreground must be less than 1000 microseconds. Thus the
amount of time spent executing each active foreground routine and
the interrupt scheduler itself (130 microseconds on a 2200) must
total less than a millisecond. If the time spent in foreground is
more than a millisecond, the interrupt pending flag will already
be set when the interrupt scheduler executes its final RET, so an
interrupt call will immediately occur and no background processing
will be performed.

Also, if more than one millisecond is spent in foreground,
interrupts can be dropped. The interrupt pending flag has only
off and on values. If an interrupt signal occurs and the flag was
already set, it simply stays set and the occurrence of the
interrupt pulse has no effect -- the interrupt is lost. If, for
example, 1200 microseconds is being spent in foreground on each
interrupt, only 5 interrupt calls will occur in a 6 millisecond
time interval. One interrupt was lost because the flag was

already set when its signal occurred. In a similar fashion,
interrupts can be lost if interrupts are disabled for too long in
background.

Another timing concern is "jitter"™. Jitter describes the
variation in interrupt timing: it is not exactly one millisecond
between interrupt calls. The timing variation occurs mainly
because of time spent in background with interrupts disabled. If
background processing disables interrupts for 200 microseconds
(200 microseconds of jitter) it could be 1200 microseconds between
interrupt calls if the interrupt pending flag were set immediately
after interrupts became disabled. An additional source of jitter
is time spent in foreground processes. Any variation in the
execution time of process 0 appears as jitter to process 1.

45-4 DISK OPERATING SYSTEM

Jitter must be taken into account when designing any program
structure. If an external device is being serviced by interrupts
and the device presents a character for input every 1.4
milliseconds, jitter must not exceed 400 microseconds. If the
jitter were over 400 microseconds, a character could appear ready
and then be overstored by the next character before an interrupt
occurred to service the device. A good guideline 1is 200
microseconds maximum for the user's code.

45.5 DOS Interrupt Routines

DOS provides four utility routines for interrupt processing.
Use of these routines simplifies interrupt process coding and
helps assure DOS compatibility. For full descriptions of
parameterization of these routines, see the chapter on System
Routines.

45.5.1 SETI$

SETI$ changes the state of a foreground process. SETI$ is
usable only from background and is generally used to initiate a
previously inactive process. The routine accepts a specified
address and stores the address following the CALL instruction of a
specified interrupt slot. Even if the process was previously
active, the new state is stored over the old state.

45.5.2 CLRI$

CLRI$ terminates a foreground process. The address of RETURN
(see sample scheduler above) is stored following the CALL of the
specified process number. Any routine active from that interrupt
slot is then inactive. CLRI$ is used from background.

45.5.3 CS$

CS$, 1like SETI$, changes the state of a foreground process,
but is used from foreground. A call to CS$ affects only the
process performing the call. CS$ changes the state of the process
to the address of the instruction following the "CALL CS$" and
returns -- not to the invoking routine -- but to the interrupt
scheduler. Due to the stack manipulations performed by CS$ it
must be called only from the outermost stack level of a foreground
routine; it must not be called from a routine called by the main
routine. CS$ does not enable interrupts.

CHAPTER 45. INTERRUPT HANDLING 45-5

45.5.4 TP$

TP$ terminates a foreground process, like CLRI$, but is
itself called from foreground. TP$ affects only the foreground
process from which 1t is called, setting the state of that process
to RETURN to deactivate the process, and returning to the
scheduler. Like CS$, TP$ must be called only from the outermost
stack level of a foreground routine. TP$ does not enable
interrupts.

45.6 Programming Considerations

45.6.1 Background Code

If interrupt processing is to be used, the mainline program
code must be written "interruptable" with the realization it may
be interrupted anytime interrupts are not disabled. For most
processing, no particular concern is necessary, since if the
interrupt processes are coded correctly the stack, registers, and
condition flags are unchanged after interrupt processing so the
background code will never notice the interruption. Coding for I1/0
device handling is the most critical part of interruptable code,
since during interrupt processing the selected I/0 device can
change.

Interrupts must be disabled any time the currently selected
I/0 device is critical: between addressing the device and testing
status, between addressing the device and issuing a command, etc.
At the same time, interrupts must not be disabled for too long a
time, due to introducing excessive Jjitter or even dropping

interrupts. It is especially important to be certain interrupts
are enabled for at least one instruction cycle in any wait loop

least interrupts be delayed for the duration of the loop.

If the background code uses BETA mode, interrupts must be
disabled all the time BETA mode is in use. If an interrupt occurs
while in BETA mode, the registers and condition codes will be
modified by the scheduler and foreground routines and results on
the background program could be disastrous. Background code
should not generally use BETA mode.

A1l DOS wutility routines are written completely interruptable

and disable interrupts for a maximum of 200 microseconds. DOS
routines return with interrupts enabled.

45-6 DISK OPERATING SYSTEM

45,.6.2 Foreground Code

Duration of foreground routines is of primary concern. If a
routine is too long to execute in a single interrupt cycle, split
its operation using CS$ or successive four-millisecond processes.
Foreground routines should never use a wait loop; they should
return, using the delay of background processing to wait for the
next interrupt.

Additionally, foreground routines:

Must not enable interrupts.

Must exit with the stack in the same condition as on
entry.

Must not use mode instructions.

Should not assume register conditions have been preserved.

=w N —

Be sure to terminate foreground processes when they are no

- longer needed. A process left active uses up machine time. When
a program finishes any active foreground processes remain active.
These foreground processes at best slow down the system, and may
cause CALLs to locations that have been overstored with other
code, causing unpredictable results. Be sure to terminate all
foreground processes at program exit.

DOS itself uses foreground processing in only a few

instances: the cassette driver routines, the DEBUG P-counter
display, and the delay function (DOSFUNC 8).

CHAPTER 45. INTERRUPT HANDLING 45-17

CHAPTER 46. SYSTEM ROUTINES

46.1 Parameterization

Parameters are passed to the subroutines through the
registers. In the discussion of these parameters, the following
abbreviations will be used:

LFN - Logical File Number times 16 (16, 32, or 48)
LRN - Logical Record Number (the user's LRN)

PFN - Physical File Number

LFT - Logical File Table

also:

Drive Number - indicates a logical drive number (0 through N,
where N is the maximum number of logical drives
supported by the DOS in use). In some routines, 0377
is used to indicate that all drives are to be checked.

Name- the address of a field containing exactly eleven bytes.
The first eight bytes are the file name and the last
three bytes are the file extension by command-
interpreter convention. The name characters may be any
eight bit combinations except the first character must
not be a 0377. The command interpreter requires that
all characters be letters or digits.

46.2 Exit Conditions

If a routine fails to perform as expected, some indication
must be made that the expected action did not occur. This
indication is given by the condition flags in the processor being
set in a special manner or by control being transferred to a trap
location instead of returned via the subroutine mechanism. The
'"Exit conditions' section of each subroutine description shows the
register contents and condition flags of interest when the routine
returns.

CHAPTER 46. SYSTEM ROUTINES 46-1

46.3 Error Handling

Minor errors are indicated by the Exit Condition of the
routine called. Major errors cause a trap -- an automatic grab of
program control by the operating system. The trap for each type
of error transfers control to a specified location, which will
display an appropriate error message.

Minor errors are always non-fatal; the program can test the
Exit Conditions and determine what action to take. Major errors
can be fatal or non-fatal. When a trap occurs, the system will
simply display a message and restore itself, causing a fatal
program error. Many major error traps can be intercepted by the
program and given special treatment, as described in the section
on TRAP$ below.

46.4 Foreground Routines:

The chapter on Interrupt Handling contains a complete
discussion on the functioning and use of the foreground handling
and should be consulted for an understanding of the following
routines.

46.4.1 CS$ - Change Process State

CS$ changes a foreground routine's state. It is called by
the executing foreground routine and causes its execution address
to be changed to the address following the CALL CS$. Execution

will not continue at the new address until the next interrupt
occurs. CS$ is normally called from the outermost stack level

(level 0) of an active foreground process. Calls to CS$ from
deeper stack levels of the routine must be very carefully planned
and are not recommended.

Entry point: 01033
Parameters: on subroutine stack - see the Chapter on Interupt
Handling

Exit conditions: return is made to the scheduler

46-2 DISK OPERATING SYSTEM

46.4.2 TP$ - Terminate Process

TP$ d ~-“vates the process called by storing the address of
a return instruction in the process call. TP$ is jumped to, not
calle<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>