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1 Introduction

The National Center for Missing and Exploited Children (NCMEC) explains that “United States
federal law defines child pornography as any visual depiction of sexually explicit conduct involving
a minor [2].” They refer to these images as Child Sexual Abuse Material (CSAM). They document
the harm they cause and note that “the disturbing reality is that the Internet platforms we use
every day ... are now being used to ... collect CSAM.”

Apple is aiming to limit CSAM on its platforms. Apple users (also called clients) store photos
in iCloud. Apple would like to detect if any of these photos belongs to NCMEC’s database of
CSAM photos. If the number of these matches exceeds some pre-determined threshold, indicating
systematic presence of CSAM, Apple will report the user to appropriate authorities.

Taking action to limit CSAM is a laudable step. But its implementation needs some care. Naively
done, it requires scanning the photos of all iCloud users. But our photos are personal, recording
events, moments and people in our lives. Users expect and desire that these remain private from
Apple. Reciprocally, the database of CSAM photos should not be made public or become known
to the user.

Apple has found a way to detect and report CSAM offenders while respecting these privacy con-
straints. When the number of user photos that are in the CSAM database exceeds the threshold,
the system is able to detect and report this. Yet a user photo that is not in the CSAM database
remains invisible to the system, and users do not learn the contents of the CSAM database.

This is done using cryptography. Specifically, Apple intends to leverage a well-established crypto-
graphic tool called Private Set Intersection (PSI).

Apple holds a set X of fingerprints of photos from a database of CSAM photos. (The CSAM
database itself is held by NCMEC or other child safety organizations.) Let D be the set of finger-
prints of the photos of a user. Using PSI, Apple would end up learning the intersection I = X∩D of
these sets, but nothing about the photos in D whose fingerprints are not in the intersection. So the
privacy of innocent user photos is protected, yet Apple can determine the number of user photos
that are in the CSAM database; this is just the size of I. If this number exceeds the threshold
set by policy, it can report the user. Meanwhile the user does not learn the contents of set X and
hence of the CSAM database.

The Apple protocol, described in [11], adds to this some new, and innovative, elements, for two
reasons. The first is to enhance privacy. The user-privacy offered by PSI is already high, but
Apple goes further; its protocol denies Apple even the contents of the set I when its size is below
threshold. The second reason is system and functionality constraints. Typical PSI protocols give
the output to the client, but Apple needs it to go to the server; typical PSI protocols process the
members of the client set (here, the fingerprints of user photos) together, but Apple needs to be
able to process them individually and independently of each other.

For the protocol to provide the desired or claimed privacy, the cryptography needs to be right. How
do we know that the math works, meaning that the privacy goals are met? Cryptographers assess
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this by giving what are called proofs of security. Such a proof establishes that the protocol meets
a certain mathematical definition of security, assuming cryptographic primitives (building blocks)
used within are themselves secure.

A security proof establishes security in an abstract model, ruling out attacks in that model. It
does not cover everything that can go wrong in a real system, but it covers a lot. There is
enough conviction in the community that proofs are important that, for example, they tend to
be a requirement for protocols to be standardized.

Apple has provided such a proof for its protocol. Their document [11] shows that the protocol
meets the canonical definition in the broad area of secure computation of which PSI is a part,
namely UC security [13].

The current document complements this with another proof. It shows the protocol meets alternative
definitions of security. The proof uses different methods. Most importantly, I give what cryptogra-
phers call a concrete-security analysis. This evaluates security quantitatively, giving evidence that
the protocol is not only secure in principle, but is so for the key sizes in actual use.

Why another analysis? The Apple protocol will see hundreds of millions of uses. It is desirable
that it receive extensive analysis, done by different people, using different methods.

In mathematics, confidence in a theorem grows with time as different people give different proofs
based on different approaches. It is the same with cryptographic protocols.

Meanwhile, there is growing recognition of the importance, for practical security, of analyses that
are concrete and give bounds that are tight [1, 10]. This document is a start to addressing these
goals for the Apple protocol.

We start with definitions of security for the protocol that associate to an attacker a number, called
its advantage, that is its probability of violating security. (There are two dominant definitional
paradigms in cryptography. One, called simulation, is what underlies UC-security. The other,
called indistinguishability, is what we use. Indistinguishability is more directly amenable to a
concrete security treatment.)

We then give theorems that, given an adversary attacking a certain security property (as captured
by one of our definitions), return a formula that upper bounds the advantage of this adversary as
a sum of terms. These terms could be functions of protocol parameters, like the group size, or
they could themselves be advantages, of adversaries (that the theorem proof constructs) that aim
to defeat the security of cryptographic primitives used in the protocol.

The terms in the upper bound can be estimated, using cryptanalytic knowledge of the primitives
and the values of protocol parameters. Once this is done, the formula yields a numerical upper
bound on the advantage of our original adversary. The bounds in our results are good enough
that we see evidence of security for the Apple protocol for the key and group sizes in use in the
implementation.

The protocol we are analyzing here, that we call the basic Apple protocol, is the tPSI-AD protocol
of [11, Section 4.1], with some simplifications noted in Section 4. We do not consider the ftPSI-AD
protocol of [11, Section 4.2], but it should only offer security guarantees greater than those of the
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basic Apple protocol.

Now let us overview the more technical sections that follow. In Section 3 we give a protocol syntax
to capture the different functional requirements that the protocol targets. This allows us to describe
the basic Apple protocol in a modular way. Our description, in Figure 1, is quite compact.

In Section 5 we give indistinguishability-based definitions of security that associate to adversaries
their advantage in winning a certain game that is described in pseudocode. This is for both server
security (asking that clients not learn the content of the set X) and client security (asking that the
server, Apple, not learn anything about client photos whose fingerprints are not in X, and, when
the number of these is below threshold, not even which ones they are).

For both server and client security, we then give theorems that state explicit bounds on adversary
advantage, as described above. From these, again as stated above, one can obtain numerical bounds
on adversary advantage as a function of adversary running time and the key or group sizes used in
the protocol implementation.

Correctness refers to a protocol performing its task, meaning returning the desired outputs given
any inputs. It is usually easy to see, but, for the Apple protocol, for reasons discussed further
in Section 9, it is more involved. We treat it in Section 9, giving a game-based definition, and a
theorem that bounds the advantage of an adversary in violating correctness.

The proofs of the theorems use the game-playing technique [8], which breaks the proof up into
a sequence of games described in pseudocode. One merit of this style is that it lends itself to
automated proof verification, which would be an interesting step for the future.

We use many key technical ideas from [11]. Probably the most important is the extraction strategy
of Figure 7, which is taken from the simulator in the proof of [11, Theorem 4].

2 Notation and preliminaries

By ε we denote the empty string. By |Z| we denote the length of a string Z. By x‖y we denote
the concatenation of strings x, y.

If q is an integer then Zq = {0, 1, . . . , q − 1} and Z∗q = { x ∈ Zq : gcd(x, q) = 1 }. So if q is prime
then Z∗q = {1, 2, . . . , q − 1}. We let [1..n] = {1, 2, . . . , n}.
If S is a finite set, then |S| denotes it size.

If X is a finite set, we let x←$X denote picking an element of X uniformly at random and assigning
it to x. Algorithms may be randomized unless otherwise indicated. If A is an algorithm, we let
y ← A[O1, . . .](x1, . . . ;ω) denote running A on inputs x1, . . . and coins ω, with oracle access to
O1, . . ., and assigning the output to y. By y←$A[O1, . . .](x1, . . .) we denote picking ω at random
and letting y ← A[O1, . . .](x1, . . . ;ω). An adversary is an algorithm. Running time is worst case,
which for an algorithm with access to oracles means across all possible replies from the oracles. We
use ⊥ (bot) as a special symbol to denote rejection, and it is assumed to not be in {0, 1}∗.
We use the code-based game-playing framework of [8]. A game G (see Figure 2 for an example)
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starts with an optional Init procedure, followed by a non-negative number of additional procedures
called oracles, and ends with a Fin procedure. Execution of adversary A with game G proceeds as
follows. First, Init executes, and its output is the input for A. Now the latter executes, making
calls to the game oracles. Eventually, it halts with some output. The adversary output is the input
to Fin, and the output of Fin is the game output. By Pr[G(A)] we denote the probability that the
execution of game G with adversary A results in this game output being the boolean true.

Different games may have procedures (oracles) with the same names. If we need to disambiguate,
we may write G.O to refer to oracle O of game G.

We adopt the convention that the running time of an adversary refers to the time for the execution
of the game with the adversary. So the running time of the adversary includes the time taken by
game procedures.

In games, integer variables, set variables boolean variables and string variables are assumed initial-
ized, respectively, to 0, the empty set ∅, the boolean false and ⊥.

3 Protocol syntax

The syntax allow us to break the protocol into components so as to more formally capture some
of the requirements and constraints listed in [11, Section 2.3]. Breaking up the protocol into
components in this way also allows a modular description of the protocol as shown in Figure 1.

The syntax captures a process in which the server (using algorithm SePost) first posts some data,
and the client (using algorithm ClInit) then initializes some information that it will keep static while
the protocol executes. After that, at any time, the client (using algorithm ClVch) can create and
upload a voucher. This is processed (using algorithm SeCollect) by the server. Finally, after all
vouchers have been uploaded, the server (using algorithm SeOut) checks whether the number of
matches is above threshold, obtaining, if so, the associated data of these matches.

Proceeding to the definition, a protocol Π specifies the following:

• U— the universe, of which the target set X will be a subset.

• HS— a set of functions, all with the same range denoted HS.Rng. This is the space from which
a random oracle H←$ HS will be drawn. This allows the scheme to say what are the domains
and ranges of the random oracles it needs. Scheme algorithms get H as oracle, indicated as
an input in square brackets below.

• (pdata, skey)←$ SePost[H](X)— The server posting algorithm takes a set X ⊆ U to return
pdata, that is sent to the client, and private information (a secret key) that it retains.

• ckey ←$ ClInit[H](pdata)— The client initializes some client information that it will keep static
during an epoch.
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• vouch←$ ClVch[H](pdata, ckey , (y, id , ad))— Given a triple consisting of a data point y ∈ U,
an identifier id and associated data ad , the client computes a voucher vouch that is sent to
the server.

• sList ← SeCollect[H](pdata, skey , vouch, sList)— Upon receiving a voucher vouch from the
client, the server updates its list sList .

• sout ← SeOut[H](pdata, skey , sList)— Once the list is complete, the server computes, from
it, its final output.

We write Π.U, Π.HS, Π.SePost, Π.ClInit, Π.ClVch, Π.SeCollect, Π.SeOut to recover the above com-
ponents from Π.

This syntax captures that the client creates vouchers one by one, carrying no state from one to the
next beyond the static state ckey for the epoch. It sees the server as incrementally updating its
output sList as it processes incoming vouchers.

4 The basic Apple protocol

The basic protocol, shown in Figure 1, has the following ingredients and parameters:

1. G— a cyclic group of prime order q in which the DDH problem (as defined in Section 6) is
assumed to be hard. The operation is written additively, with the identity element denoted 0.

2. G— a generator of G

3. U— the universe, of which the target set X will be a subset.

4. (h1, h2, n
′)←$ MkHT1(|X|) ; T ← MkHT2(X,h1, h2, n

′)— Setup hash table for set X ⊆ U, in
two steps. The first step takes the size n = |X| of X and returns an integer n′ ≥ n together
with hash functions h1, h2: U→ [1..n′]. The second step takes X and the outputs of the first
step, and returns a function T : [1..n′]→ X ∪ {⊥} representing a table in which X is stored.
The requirements are as follows. (1) For each x ∈ X there is a unique ` ∈ {1, 2} such that
T [h`(x)] = x and T [h3−`(x)] = ⊥. (2) All other table entries are ⊥, meaning T [i] = ⊥ if there
is no x ∈ X such that i ∈ {h1(x), h2(x)}. (3) h1(x) 6= h2(x) for all x ∈ U. The creation of the
hash table is explicitly split into two steps because it is important that h1, h2, n

′ may depend
on |X| but not on X beyond that, and hence reveal nothing about X beyond |X|. This entire
setup is accomplished using Cuckoo Hashing. We do not detail this, relying instead on the
stated properties. We neglect the small failure probabilities associated to Cuckoo hashing.

5. A hash function H: U→ G \ {0} that will be modeled as a random oracle.

6. t— the threshold, an integer. When the number of matches exceeds this, the server should
recover their associated data.
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Π.SePost[H](X):

1 (h1, h2, n
′)←$ MkHT1(|X|) ; T ← MkHT2(X,h1, h2, n

′) // Make the hash table containing X

2 α←$ [1..q − 1] ; L← αG

3 For i = 1, . . . , n′ do

4 If T [i] 6= ⊥ then Pi ← αH(T [i]) else Pi←$ G \ {0}
5 pdata ← (L, n′, P1, . . . , Pn′ , h1, h2) ; Return (pdata, α)

ClInit(pdata):

6 Require: Valid(pdata) = true // “Require” means reject if this fails. Function Valid is defined in Section 4.

7 adkey ←$ {0, 1}k ; a1, . . . , at←$ F ; ckey ← (adkey , a1, . . . , at) ; Return ckey

ClVch[H](pdata, ckey , (y, id , ad)):

8 (L, n′, P1, . . . , Pn′ , h1, h2)← pdata // Parse pdata to recover its components

9 (adkey , a1, . . . , at)← ckey // Parse ckey to recover its components

10 adct ←$ SE.Enc(adkey , ad) ; x←$ F \ {0} ; z ← Padkey,a1,...,at(x) ; sh ← (x, z)

11 R← H(y) ; w1 ← h1(y) ; w2 ← h2(y) ; β1, β2, γ1, γ2←$ Zq ; b←$ {1, 2}
12 Q1 ← β1R+ γ1G ; S1 ← β1 Pwb + γ1 L ; Q2 ← β2R+ γ2G ; S2 ← β2 Pw3−b + γ2 L

13 K1 ← KDF(S1) ; K2 ← KDF(S2) ; ct1←$ SE.Enc(K1, (adct , sh)) ; ct2←$ SE.Enc(K2, (adct , sh))

14 vouch ← (id , Q1, ct1, Q2, ct2) ; Return vouch

SeCollect[H](pdata, α, vouch, (sList1, sList2)):

15 (L, n′, P1, . . . , Pn′ , h1, h2)← pdata // Parse pdata to recover its components

16 (id , Q1, ct1, Q2, ct2)← vouch // Parse vouch to recover its components

17 Ŝ1 ← αQ1 ; Ŝ2 ← αQ2

18 K1 ← KDF(Ŝ1) ; K2 ← KDF(Ŝ2) ; M1 ← SE.Dec(K1, ct1) ; M2 ← SE.Dec(K2, ct2) ; i← ⊥ ; match← 0

19 If (M1 6= ⊥ and M2 = ⊥) then (i,match)← (1, 1) ; If (M1 = ⊥ and M2 6= ⊥) then (i,match)← (2, 1)

20 idList ← Append(idList , id) ; mList ← Append(mList ,match)

21 If match = 1 then (adct , sh)←Mi ; adList ← Append(adList , adct) ; shList ← Append(shList , sh)

22 Else adList ← Append(adList ,⊥)

23 Return (idList ,mList , adList , shList)

SeOut[H](pdata, α, (idList ,mList , adList , shList)):

24 s← |shList | ; m← |idList |
25 If (s < t+ 1) then return (idList ,mList) // Number of matches is below threshold

26 adkey ← Recover(shList) // Shamir secret-sharing recovery to get adkey from shares

27 For i = 1, . . . ,m do

28 If (adList [i] 6= ⊥) then ad i ← SE.Dec(adkey , adList [i]) else ad i ← ⊥
29 Return idList , (ad1, . . . , adm)

Figure 1: Basic Apple Protocol.
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7. k— length of keys for the symmetric encryption SE, and also output length of KDF, as
discussed below.

8. F— a finite field for a Shamir secret-sharing scheme. It is required that the size |F| of the
field be ≥ 2k so that a key K ∈ {0, 1}k can be represented as field element and be a secret in
Shamir secret sharing.

9. Pa0,...,at : F → F— for a0, . . . , at ∈ F, this is the polynomial defined by Pa0,...,at(x) = a0 +
a1x+ · · · atxt for all x ∈ F. A share is a pair (x, z) ∈ F2, and this share is correct for Pa0,...,at

if z = Pa0,...,at(x).

10. s← Recover(sh1, . . . , shn)— Recovery of a Shamir-shared secret from a list of shares. If the
shares have distinct first components and are all correct shares for Pa0,...,at , and if n ≥ t+ 1,
then the output s equals a0.

11. SE— A symmetric authenticated encryption scheme. It has key space {0, 1}k. It specifies a
randomized encryption algorithm allowing encryption as C←$ SE.Enc(K,M), and a deter-
ministic decryption algorithm allowing decryption as M ← SE.Dec(K,C), and is assumed to
have perfect correctness. The privacy property we need is formalized as ind$ in Section 6. A
robustness property, required for correctness, is formalized as rob$ in Section 9. SE will be
based on GCM, as described further in Section 6.

12. sList ← Append(sList , I)— Append item I to list sList .

13. KDF: G → {0, 1}k— key derivation function that derives a k-bit key K ← KDF(S) from a
group element S ∈ G. The security requirement for KDF, formalized in Section 6, asks that
if the input S is random then the output KDF(S) is indistinguishable from random.

We now specify a protocol, in the syntax of Section 3, that we refer to as the basic Apple protocol.
It is the protocol for tPSI-AD in [11, Section 4.1], with some simplifications discussed below. We do
not consider the protocol of [11, Section 4.2], but it is an enhancement that adds further security,
so the expectation is that it has the properties we show for the basic protocol, and possibly more.

Figure 1 shows the algorithms SePost,ClInit,ClVch, SeCollect,SeOut. The universe U is that from
the above list of ingredients. The set of functions HS is the set of all functions H: U → G \ {0},
so that, in security games, H will be chosen randomly from this set. The function Valid invoked at
line 6 is defined as follows:

Function Valid(pdata)

1. (L,P1, . . . , Pn′ , h1, h2)← pdata // Parse pdata to recover its components

2. Require: L ∈ G \ {0}
3. Require: P1, . . . , Pn′ ∈ G \ {0} are all distinct
4. Require: h1, h2: U→ [1..n′] and h1(x) 6= h2(x) for all x ∈ U
5. Return true if all checks pass, else false
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The construction described in [11] enforces 4 with a syntactic condition that is easily checked, so
that this check does not require evaluating the functions on all inputs in U.

This description has simplified the tPSI-AD protocol of [11, Section 4.1] in a few ways. The protocol
in [11] uses a PRF applied to the identifier to obtain the x we pick at random at line 10. The purpose
of the PRF is to ensure that if an identifier is re-used, then the x value is the same. We will instead
assume identifiers don’t repeat. Also, in the protocol in [11], the client uses an additional layer of
encryption in ClVch. It is not security-relevant; its purpose is to shorten the size of the voucher.
Accordingly, we omit it. As a result, our vouchers at line 14 are 4-tuples while those in [11] are
5-tuples.

5 The target security goals

Here we give definitions for the security goals that we will later show the protocol meets.

PSI is a particular case of the (two-party) secure computation problem. In its abstract and general
form, party 1 has an input x1 and party 2 has an input x2. They want to interact and end with
party 1 having output f1(x1, x2) and party 2 having output f2(x1, x2), where f1, f2 are fixed, public
functions. Security for party 1 asks that party 2 (now an adversary) learns no more about x1 than
necessary; that is, no more than implied by the knowledge of x2 and f2(x1, x2). Likewise for security
for party 2.

One common way to formalize this is the UC-framework [13]. This is the approach used in [11]. It
is based on the simulation paradigm.

Here we consider an alternative definition that we feel is simpler and more direct, and lends itself
more easily to a concrete security treatment under which one obtains precise bounds on adversary
advantage. It is based on the indistinguishability paradigm. Consider a pair of inputs x1,0, x1,1
for party 1 that satisfy f2(x1,0, x2) = f2(x1,1, x2). Consider the protocol executed with the parties’
inputs being x1,c, x2, where c is a random challenge bit. The output of party 2 does not depend on
c due to the way x1,0, x1,1 were chosen. Security for party 1 now asks that party 2, as the adversary,
not be able to determine c.

This is easy to formalize in the setting of semi-honest parties, but Apple desires security even when
parties are malicious, and the protocol is designed to achieve it. In that case, what is the input x2
of the adversary? We ask that it be determined by an extractor.

The definitions and results here are in the random oracle model [7]. The extractor needs to program
the random oracle. This leads to a definitional challenge; how does one, in the absence of the
distinguisher present in the simulation-based paradigm, force the extractor to program the random
oracle with random values? Our answer is to require a particular form of programming in which
the extractor supplies a bijection with range that of the random oracle, and the result of a query
is the result of this bijection on a random input, the latter picked by the game but known to the
extractor.

We now separately describe definitions for server and client security, the extraction issue arising
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Game Gss
Π

Init:

1 c←$ {0, 1} // Random challenge bit

2 H←$ Π.HS // Pick a function to be the random oracle

Post(X0, X1): // Adversary calls with sets X0, X1.

3 Require: |X0| = |X1| and X0, X1 ⊆ Π.U

4 (pdata, skey)←$ Π.SePostHash(Xc)

5 Return pdata // Adversary is given this

Hash(W ): // The random oracle

6 Return H(W )

Fin(c′): // Adversary provides guess c′ ∈ {0, 1} for c

7 Return (c = c′) // Result of game, true if c′ = c and false otherwise

Figure 2: Game defining server-security of protocol Π.

only in the latter.

5.1 Server security

Server security asks that even a malicious client does not learn anything about the set X beyond
its size. We formulate the requirement as an indistinguishability game, seeing X as a “message”
that is being “encrypted” with the “ciphertext” being pdata.

The formalization considers game Gss
Π of Figure 2. The Initialize procedure picks a random challenge

bit c at line 1. It also picks at random a function H to play the role of the random oracle; the
random oracle itself is modeled by oracle Hash, which, given an input, simply returns the result of
H on that input. The adversary Ass, representing a malicious client, calls oracle Post with a pair
of sets X0, X1. The condition at line 3 mandates that the sets must be of the same size, and be
subsets of the universe, else the game rejects. At line 4, the server posting algorithm is executed
on input Xc, the set designated by the challenge bit. The pdata generated here is returned to the
adversary. We can allow the adversary multiple queries to Post to model security being maintained
across multiple epochs, but for simplicity we restrict attention to one query (one epoch) for now.
The adversary also has access to the random oracle Hash. Finally the adversary calls Fin with a
guess c′ as to the value of c. The game returns true if the guess is correct and false otherwise. The
advantage of adversary Ass is:

Advss
Π(Ass) = 2 Pr[Gss

Π(Ass)]− 1 . (1)

A proof of security aims to bound this advantage as a function of adversary resources. The latter
includes its running time and the number of queries it makes to the random oracle Hash.
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5.2 Client security

This definition asks that even a malicious server does not learn anything about the client input
beyond what the protocol is supposed to provide.

The definition is based on game Gcs
Π,Ex,Out of Figure 3. It is parameterized by an extractor Ex

and a function Out that represents the protocol output that the server is supposed to learn. The
definition is asking that it learn nothing meaningful beyond this. The advantage of an adversary
Acs is:

Advcs
Π,Ex,Out(Acs) = 2 Pr[Gcs

Π,Ex,Out(Acs)]− 1 . (2)

Client security for Π relative to Out asks that there exists an efficient extractor Ex such that
Advcs

Π,Ex,Out(Acs) is small for all efficient Acs. This is what Theorem 8.1 establishes. Let is now
explain the game.

The extractor Ex specifies two algorithms, the set extractor Ex.X and the algorithm Ex.H that
programs the random oracle Hash. These algorithms share a common state St that is maintained
by the game. When the adversary Acs makes a query y to Hash, the game asks Ex.H to determine
the reply. Ex.H does not directly provide this reply, for if it did, the game would not have a way to
guarantee that it is random. Rather, Ex.H supplies a function f: Dom → HS.Rng, where HS.Rng
is the range of all functions in HS, meaning the range of the random oracle. The game picks
ω←$ Dom and returns f(ω) as the reply to the query. This is guaranteed to be random because f
is required to be a bijection. The value ω, together with other quantities, are stored as ht[y], and
table ht is available (read-only) to the extractor, so that it can use ω in extracting the set.

After the adversary Acs has made some number of Hash queries that are answered in this way, it
will query Pdata with some pdata. It must make exactly one query to Pdata, and the pdata it
submits in this query is required to satisfy the validity predicate defined above, else the game rejects
at line 4, meaning the adversary automatically loses. Otherwise, the set-extraction component Ex.X
of the extractor is run at line 5. It takes pdata, its current state St and the table ht. It returns a
set X that it sees as underlying pdata, and an updated state. The extracted set X is then returned
back to the adversary.

It is not the job of the definition to describe any particular extraction strategy, but, if the reader
is curious, the extractor of [11], used for Theorem 8.1, is shown in our notation in Figure 7.

After its Pdata query, the adversary Acs may make more Hash queries, which continue to be
answered as shown. Eventually, it will make a Vouch query. It must make exactly one query
to Vouch. This takes the form of a pair t0, t1 of vectors, each a vector of triples representing
a sequence of client triples. At line 10, the game takes the vector tc indicated by the challenge
bit c, and processes it with the protocol algorithm ClVch to get a vector v of client vouchers that
is returned to the adversary. Perhaps after further Hash queries, the adversary returns its guess
c′ ∈ {0, 1} to the value of c, and at line 16 the game returns true iff this guess is correct.

Client vouchers do reveal some information about client triples; namely, whatever it is the purpose
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Game Gcs
Π,Ex,Out

Init:

1 c←$ {0, 1} // Random challenge bit

2 St← ε // Extractor state, explicitly maintained by game

3 HT[·], ht[·]← ⊥ // Initialize all entries of these tables to ⊥

Pdata(pdata): // Adversary calls with pdata

4 Require: Valid(pdata) = true

5 (X, St)←$ Ex.X(pdata, St, ht) // Extract set X from pdata

6 Return X // Adversary gets the extracted set

Vouch(t0, t1): // Adversary calls with a pair of vectors of triples

7 out← Out(t0, t1, X)

8 Require: out 6= ⊥
9 ckey ←$ ClInit[Hash](pdata)

10 For i = 1, . . . , |t0| do v[i]←$ ClVch[Hash](pdata, ckey , tc[i])

11 Return v, out

Hash(y): // The programmable random oracle

12 If HT[y] 6= ⊥ then return HT[y]

13 (f, St)←$ Ex.H(y,St, ht) // f: f.Dom→ HS.Rng is a bijection

14 ω←$ f.Dom ; HT[y]← f(ω) ; ht[y]← (f, ω,HT[y])

15 Return HT[y]

Fin(c′): // Adversary provides guess c′ ∈ {0, 1} for c

16 Return (c = c′) // Result of game, true if c′ = c and false otherwise

Function Out(t0, t1, X)

Require: |t0| = |t1| // The vectors must have the same length

m← |t0| // Length of both vectors, the number of triples

Require: ID(t0) = ID(t1) // Identifiers in the vectors are the same

Require: ID(t0[1]), . . . , ID(t0[m]) are all distinct // Identifiers must be distinct

Require: Match(t0, X) = Match(t1, X) // Locations of matches in the vectors must be the same

s← |ID(t0, X)| // Number of matches. By above, s also equals |ID(t1, X)|
If s ≤ t then // Number of matches is below threshold

out← (ID(t0),Match(t0, X)) // Output the locations of the matches

Else // s ≥ t+ 1, number of matches is above threshold

Require: AD(t0, X) = AD(t1, X) // Associated data of matches must be the same

out← (ID(t0),AD(t0, X)) // Output the identifiers and associated data of the matches

Return out // This is ⊥ if any requirement above fails

Figure 3: Top: Game defining client-security of protocol Π relative to extractor Ex and output
function Out. Bottom: The output function for the protocol we consider.
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of the protocol to provide to the server. So if the adversary can submit arbitrary vectors to Vouch,
it can trivially win. Accordingly, the vectors are restricted to agree on whatever information the
protocol is supposed to obtain about them. This is enforced through function Out. It is called
at line 7, and, at line 8, the game rejects if the result out is ⊥. Once this restriction has been
made, the definition is non-trivial, asking that nothing be revealed about client triples beyond the
minimal information the protocol is allowed to get.

The particular function Out used here is shown at the bottom of Figure 3. To explain it, we need
some notation. If (y, id , ad) is a client triple, then we recover its data as Data((y, id , ad)) = y, its
identifier as ID((y, id , ad)) = id and its associated data as AD((y, id , ad)) = ad . This notation is
extended to a m-vector t of triples by setting

Data(t) = (Data(t[1]), . . . ,Data(t[m]))

ID(t) = (ID(t[1]), . . . , ID(t[m]))

AD(t) = (AD(t[1]), . . . ,AD(t[m])) .

Now for a set X we let ID(t, X) be the set of all ID(t[i]) such that Data(t[i]) ∈ X. This is the set
of identifiers of matches, and its size is the number of matches. We let Match((y, id , ad), X) = 1 if
y ∈ X and 0 otherwise. We let AD((y, id , ad), X) = ad if y ∈ X and ⊥ otherwise. These also are
extended to an m-vector t via

Match(t, X) = (Match(t[1], X), . . . ,Match(t[m], X))

AD(t, X) = (AD(t[1], X), . . . ,AD(t[m], X)) .

Now we can return to function Out in Figure 3. It requires that the vectors t0, t1 agree in their
identifiers, since these are always revealed by the protocol to the server. If the number s of matches
is below threshold, the output out contains only the locations of the matches. When it is above
threshold, the output contains the associated data of the matches. Throughout we assume that all
associated data has the same length, and this length is public.

6 Cryptographic primitives and assumptions

Server security is based on the assumed hardness of the DDH problem in group G. We formalize
this via game Gddh

G,G,s of Figure 4. It is associated to group G, generator G of G and an integer s
representing the number of instances. If Addh is an adversary playing this game, its advantage is

Advddh
G,G,s(Addh) = 2 Pr[Gddh

G,G,s(Addh)]− 1 . (3)

It is convenient for our proofs to have made the number of instances s a parameter of the game.
The standard DDH problem sets s = 1. A self-reducibility argument from [17], however, shows
that the hardness of the s-instance version reduces tightly to the hardness of the single-instance
version as long as s stays somewhat below the adversary running time, and accordingly we work
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Game Gddh
G,G,s

Init:

1 d←$ {0, 1} // Random challenge bit

2 α←$ Z∗q // q = |G|
3 L← αG

4 For i = 1, . . . , s do

5 Ri←$ G \ {0}
6 If d = 1 then Si ← αRi else Si←$ G \ {0}
7 Return (L,R1, S1, . . . , Rs, Ss)

Fin(d′): // Adversary provides guess d′ ∈ {0, 1} for d

8 Return (d = d′) // Result of game, true if d′ = d and false otherwise

Figure 4: Game defining DDH problem for group G, generator G and number of instances s ≥ 1.

with the former.

Game Gkdf
KDF,u of Figure 5 formalizes the security assumption made on the key-derivation function

KDF: G → {0, 1}k. It asks that KDF(S) is indistinguishable from a random k-bit string when
S←$ G is not known to the adversary. If Akdf is an adversary playing this game, its advantage is

Advkdf
KDF,u(Akdf) = 2 Pr[Gkdf

KDF,u(Akdf)]− 1 . (4)

The definition is in the multi-user setting, with parameter u being the number of users, because this
is what arises in our results and proofs. A standard hybrid argument shows that single-user (u = 1)
security implies multi-user security with a factor u loss in advantage. However, certain choices of
KDF may avoid this loss and have multi-user and single-user security that are comparable.

The symmetric encryption scheme SE draws its key K at random from key space {0, 1}k. It specifies
a randomized encryption algorithm that encrypts messageM to ciphertext C via C←$ SE.Enc(K,M).
The length of C is |C| = |M |+e where e is an integer, called the ciphertext-length overhead, that is
associated to the scheme. The deterministic decryption algorithm recovers via M ← SE.Dec(K,C).
Game Gind$

SE,u of Figure 5 formalizes the security assumption made on SE. It asks that a cipher-
text encrypting M be indistinguishable from a random string of length |M | + e as long as the
adversary is given neither the key nor the randomness underlying the encryption. This is called
indistinguishability from random, and denoted IND$. If Ase is an adversary playing this game, its
advantage is

Advind$
SE,u(Ase) = 2 Pr[Gind$

SE,u(Ase)]− 1 . (5)

The definition is in the multi-user setting, with parameter u being the number of users, because
this is what arises in our results and proofs. A standard hybrid argument shows that single-user
(u = 1) security implies multi-user security with a factor u loss in advantage [6]. However, certain
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Game Gkdf
KDF,u

Init:

1 d←$ {0, 1} // Random challenge bit

2 For i = 1, . . . , u do

3 Si←$ G // Pick a random seed

4 Ki,0←$ {0, 1}k ; Ki,1 ← KDF(Si)

5 Return (K1,d, . . . ,Ku,d)

Fin(d′): // Adversary provides guess d′ ∈ {0, 1} for d

6 Return (d = d′) // Result of game, true if d′ = d and false otherwise

Game Gind$
SE,u

Init:

1 d←$ {0, 1} // Random challenge bit

2 For i = 1, . . . , u do

3 Ki←$ {0, 1}k // Pick a random key

Enc(i,M): // Adversary calls with user i and message M

4 C1←$ SE.Enc(Ki,M) ; C0←$ {0, 1}|M|+e

5 Return Cd

Fin(d′): // Adversary provides guess d′ ∈ {0, 1} for d

6 Return (d = d′) // Result of game, true if d′ = d and false otherwise

Figure 5: Top: Game defining multi-seed security of KDF. Bottom: Game defining multi-user
IND$ security of SE.

choices of SE may avoid this loss and have multi-user and single-user security that are comparable,
as discussed further below.

Correctness of the protocol requires that SE satisfies a form of robustness [3] that is defined in [11]
and that we call random-key robustness. It is noted in [11] that random-key robustness of SE is
implied by its authenticity. This leads to requiring that SE be an authenticated encryption scheme.
In Section 9 we define a multi-user version of random-key robustness, and use it in Theorem 9.1 to
establish correctness of the protcol.

The Apple system is building SE from the standardized GCM authenticated encryption scheme.
The latter is an AEAD scheme [18], so the encryption algorithm is deterministic and, in addi-
tion to key K and message M , takes a 96-bit nonce N and associated data A to return a ci-
phertext, written Y ← GCM.Enc(K,M,N,A). Decryption works as M ← GCM.Dec(K,Y,N,A),
and in particular assumes possession of the nonce. To turn this into a scheme SE meeting our
IND$ definition, a natural possibility is that SE.Enc(K,M) pick N ←$ {0, 1}96 and return N‖Y
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where Y ← GCM.Enc(K,M,N, ε). (Here ‖ denotes concatenation and ε is the empty string.)
SE.Dec(K,C) will parse C as N‖Y ← C and return M ← GCM.Dec(K,Y,N, ε). An attractive
feature of GCM for our purposes is that its multi-user security is close to its single-user security
(as opposed to off by a factor of u) [12].

Symmetric encryption is used in two places in the protocol. Theorem 8.1 indicates that in one use,
only a single message is encrypted under each key, meaning encryption is what’s called one-time.
In this case, it would be fine to use GCM directly with a known and constant nonce. But this
will not work for the second usage, where many messages are encrypted under a single key, making
randomization necessary for security. To keep things simple, the Apple system is using a single,
randomized scheme SE across both usages.

7 Server-security of the protocol

Theorem 7.1 below implies that if DDH is hard then the basic Apple protocol is server-secure. The
statement itself is quantitative, implying that the advantage of an adversary with certain resources
in violating server security is, up to a factor of two, the same as the advantage of an adversary
with comparable resources in breaking DDH. This tight reduction means there is almost no loss in
security relative to DDH itself. This is evidence that clients won’t obtain meaningful information
about the dataset X held by Apple.

Theorem 7.1 Let Π be the basic Apple protocol (Figure 1) associated to the ingredients listed in
Section 4. Let Ass be an adversary, playing game Gss

Π , that makes one Post query, and let n be
the size of the sets in that query. Let h be the number of Hash queries of Ass. Let s = h + n.
Then we can construct an adversary Addh, playing game Gddh

G,G,s, such that

Advss
Π(Ass) ≤ 2 ·Advddh

G,G,s(Addh) .

Adversary Addh, shown explicitly in Figure 6, has about the same running time as Ass.

Proof of Theorem 7.1: The input to adversary Addh of Figure 6 is the tuple returned by the
Init procedure of game Gddh

G,G,s. It begins by picking at random a bit c to play the role of the
challenge bit in game Gss

Π . It then runs Ass, simulating the latter’s Post,Hash oracles via the
shown subroutines Post∗,Hash∗, respectively, to get its guess bit c′ ∈ {0, 1}. The guess d′ that
Addh returns is 1 if c′ = c and 0 otherwise. The replies that Addh makes to Hash∗ queries are
R1, . . . , Rs. The table HT is assumed to be initially ⊥ everywhere, and then gets populated so that
HT[y] holds the value of Hash∗(y). The reason the DDH parameter is s = h+ n is that there are
h Hash∗ queries by Ass and then potentially n more through line 11. For the analysis we have

Pr
[
d′ = 1 | d = 1

]
= Pr

[
c′ = c | d = 1

]
=

1

2
·Advss

Π(Ass) +
1

2

Pr
[
d′ = 1 | d = 0

]
= Pr

[
c′ = c | d = 0

]
=

1

2
.
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Adversary Addh(L,R1, S1, . . . , Rs, Ss): // Get the input from Gddh
G,G,s.Init

1 c←$ {0, 1} // Pick challenge bit for game Gss
Π

2 j ← 0 // Initialize hash-query counter

3 c′←$Ass[Post
∗,Hash∗] // Run Ass, simulating its oracles, to get its guess c′

4 If (c′ = c) then d′ ← 1 else return d′ ← 0

5 Return d′

Subroutine Post∗(X0, X1): // Subroutine simulating oracle Gss
Π .Post

6 n← |X0| // Assume |X0| = |X1| and X0, X1 ⊆ Π.U

7 (h1, h2, n
′)←$ MkHT1(n) // Make hash table parameters

8 T ← MkHT2(Xb, h1, h2, n
′) // Put challenge set in hash table

9 For i = 1, . . . , n′ do

10 If T [i] 6= ⊥ then

11 R← Hash∗(T [i]) // Ensure that T [i] has been queried to Hash∗ so that β(T [i]) is defined

12 Pi ← Sβ(T [i])

13 Else Pi←$ G \ {0}
14 pdata ← (L, n′, P1, . . . , Pn′ , h1, h2)

15 Return pdata

Subroutine Hash∗(y): // Subroutine simulating random oracle Gss
Π .Hash

16 If HT[y] 6= ⊥ then return HT[y]

17 j ← j + 1 ; HT[y]← Rj ; β[y]← j

18 Return HT[y]

Figure 6: Adversary Addh for proof of Theorem 7.1.

The justification for the second equation is as follows. When d = 0, the group elements P1, . . . , Pn′

are all random in G \ {0}, independently of b. Also, h1, h2, n
′ depend only on n and thus not on b.

(This is where we use this aspect of the hash table creation process.) So pdata is independent of c.
Now, from the two equations above, we have

Advddh
G,G,m(Addh) = Pr

[
d′ = 1 | d = 1

]
− Pr

[
d′ = 1 | d = 0

]
=

1

2
·Advss

Π(Ass) .

This yields the equation in the theorem.

8 Client security of the protocol

Theorem 8.1 below implies that the protocol achieves the above definition of client security assuming
the KDF and the symmetric encryption scheme meet the definitions of security given in Section 6.
Equation (6) shows that the reduction is pretty tight. This means that we have evidence that the
server cannot obtain meaningful information about client data, not just in principle, but even with
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the group and key sizes chosen in the implementation.

The theorem refers to a parameter µ. To explain, recall that the extractor returns a set X, and
then the adversary makes a query to Vouch that consists of a pair (t0, t1) of vectors of triples.
We can assume that Out(t0, t1) 6= ⊥, where Out is the function of Figure 3. As a consequence the
number of matches in the two vectors is the same, meaning |ID(t0, X)| = |ID(t1, X)|. The theorem
asks that this common size be bounded above by a parameter that it calls µ. The parameter shows
up in the bound on the number of Enc calls of adversary Ase,2. We expect µ to be much smaller
than the number m of triples in the vectors. This, as we discuss more below, translates to better
quantitative security for the protocol.

Theorem 8.1 Let Π be the basic Apple protocol (Figure 1) associated to the ingredients listed in
Section 4, and in particular let q = |G| be the size of the group. Then there is an extractor Ex,
shown explicitly in Figure 7, such that the following is true. Let Acs be an adversary, playing game
Gcs

Π,Ex,Out, that makes one Pdata query and achieves advantage εcs = Advcs
Π,Ex,Out(Acs). Let h be

the number of Hash queries of Acs and m the length of each vector in its (one) Vouch query. Let
µ be a parameter such that |ID(t0, X)| ≤ µ whenever X is the set returned by the extractor and
(t0, t1) is the Vouch query of Acs. Then we can construct adversaries Akdf ,Ase,1,Ase,2 such that

εcs ≤ 2 · εkdf + 2 · εse,1 + 2 · εse,2 +
4(m+ h)

q − 1
, (6)

where:

• εkdf = Advkdf
KDF,2m(Akdf) is the advantage of Akdf . It is playing game Gkdf

KDF,2m.

• εse,1 = Advind$
SE,2m(Ase,1) is the advantage of Ase,1. It is playing game Gind$

SE,2m and makes one
query, per each of its 2m users, to its Enc oracle.

• εse,2 = Advind$
SE,1(Ase,2) is the advantage of Ase,2. It is playing game Gind$

SE,1 and makes min(µ, t)
queries, all for its one user, to its Enc oracle, where t is the protocol threshold parameter.

The constructed adversaries all have about the same running time as Acs.

The extractor, shown in Figure 7, is taken from the simulator of [11]. The way it programs the
random oracle is to reply to query x by β G for a β←$ G \ {0} that it retains and uses in the
extraction.

The extractor must be efficient, the more so, the better. We make no explicit claim in this regard.
The way it shows up is that, in Theorem 8.1, the running times of the constructed adversaries
include the time to run the extractor. (This is due to our convention that the running time of Acs

is actually the time of the execution of this adversary with game Gcs
Π,Ex,Out, and thus includes the

time to run the extractor, as part of the execution time of procedure Pdata.) So higher extractor
time means higher running time for the constructed adversaries, and thus their higher advantage,
which decreases security according to Equation (6).

The parameter µ in the theorem statement is the number of matches, which we expect to be small.
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(For an honest user, who has no CSAM, it is zero.) The theorem says that security of encryption
under adkey is only required for the encryption of this small number µ of messages. (Despite this
encryption being employed for all m triples and m being much larger than µ.) This number being
small is important because, when there is just one user, adversary advantage in violating security
of the encryption scheme grows quadratically in the number of messages encrypted. So the fact
that µ is small significantly improves the quantitative security that we can show is provided by the
protocol. (A naive analysis would set µ = m, resulting in much poorer quantitative guarantees.)

The proof of Theorem 8.1 will use the following lemma. It is due to Naor and Reingold [17], and
is discussed in [11, Section 3.1]. It considers a pair (Q,S), constructed from P,R, and describes
its distribution depending on whether or not P = αR. For completeness, we give the proof, which
uses linear algebra.

Lemma 8.2 Let G be a group of prime order q, and G a generator of G. Let α ∈ Z∗q and
let L = αG. Let P,R ∈ G \ {0}. Define Q, S: Zq × Zq → G by Q(β, γ) = β R + γ G and
S(β, γ) = β P + γ L. Regard Q, S as random variables over the random choices β, γ←$ Zq.

(1) Assume P 6= αR. Then the pair (Q,S) is uniformly distributed over G×G.

(2) Assume P = αR. Then the pair (Q,S) is uniformly distributed over { (Q,S) ∈ G×G : S =
αQ }.

Proof of Lemma 8.2: Let r ← DLogG,G(R) and p ← DLogG,G(P ). Let t ← DLogG,G(Q(β, γ))
and s← DLogG,G(S(β, γ)). Then [

r 1
p α

]
·
[
β
γ

]
=

[
t
s

]
.

The determinant of the 2 by 2 matrix on the left is D = (rα−p) mod q. For part (1), the assumption
that P 6= αR means that p 6= αr mod q and thus D 6= 0, so the matrix is invertible. So for every
choice of (t, s) ∈ Z2

q there is a unique (β, γ) ∈ Z2
q such that the above matrix equation is true. The

claim follows. For part (2), D = 0 and s = (pβ + αγ) mod q = (rαβ + αγ) mod q = αt mod q, and
the claim follows.

Proof of Theorem 8.1: We use a sequence of games. The Init,Pdata,Hash and Fin procedures
of these games are shown in Figure 7. We give the Vouch procedure separately for each game.

In Figure 7, at line 10, α is set to the discrete log of L. Games are only used in the analysis and
don’t have to be efficient, making this possible. The Hash procedure replies directly according to
the way the extractor programs it rather than calling the extractor.

Consider the games G0,G1 in Figure 8. We claim that

1

2
·Advcs

Π,Ex,Out(Acs) +
1

2
= Pr[G0(Acs)] . (7)
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Extractor Ex.H(y,St, ht): // Program the random oracle

1 Define f: Z∗q → G \ {0} by f(β) = β G

2 Return (f, St)

Extractor Ex.X(pdata, St, ht): // Extract the set

3 Require: Valid(pdata) = true

4 (L,P1, . . . , Pn′ , h1, h2)← pdata // Parse pdata to recover its components

5 For all x such that ht[x] 6= ⊥ do

6 (f, β, R)← ht[x]

7 If ( ∃i ∈ {h1(x), h2(x)} : (Pi = β L) ) then X ← X ∪ {x}
8 Return (X, St)

Init:

7 c←$ {0, 1} ; St← ε ; HT[·], ht[·]← ⊥
8 adkey ←$ {0, 1}k ; a1, . . . , at←$ F ; ckey ← (adkey , a1, . . . , at)

Pdata(pdata):

9 (X, St)←$ Ex.X(pdata, St, ht)

10 (L, n′, P1, . . . , Pn′ , h1, h2)← pdata ; α← DLogG,G(L) ; Return X

Hash(y):

11 If HT[y] 6= ⊥ then return HT[y]

12 ω←$ Z∗q ; HT[y]← ωG ; ht[y]← (ω,HT[y])

13 Return HT[y]

Fin(c′):

14 Return (c = c′)

Figure 7: Top: Extractor. Bottom: Some procedures for games in proofs.

Game G0 follows game Gcs
Π,Ex,Out, but additionally, at line 7, picks S′1, S

′
2 at random, and at line 9

uses them to perform the encryption. At line 10, if y ∈ X, it returns correctly what Gcs
Π,Ex,Out would

return. If y 6∈ X then, at line 13, it instead returns the ciphertexts based on S′1, S
′
2. However, if at

line 12 the bad flag is set, then, because game G0 includes the boxed code, the values are corrected
before being returned. So the game is performing correctly if either y ∈ X or bad = true. We now
claim it is also performing correctly otherwise. For this we invoke Lemma 8.2. If bad = false and
y 6∈ X then we have αR 6∈ {Pw1 , Pw2}, so the condition in part (1) of the lemma is true. The lemma
says that Q1, S1, Q2, S2 are randomly and independently distributed group elements. So replacing
S1, S2 by S′1, S

′
2 makes no difference. This justifies Equation (7).
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Vouch(t0, t1): // Games G0 , G1

1 out← Out(t0, t1, X)

2 For i = 1, . . . , |t0| do

3 (y, id , ad)← tc[i]

4 adct ←$ SE.Enc(adkey , ad) ; x←$ F \ {0} ; z ← Padkey,a1,...,at(x) ; sh ← (x, z)

5 R← Hash(y) ; w1 ← h1(y) ; w2 ← h2(y) ; β1, β2, γ1, γ2←$ Zq ; b←$ {1, 2}
6 Q1 ← β1R+ γ1G ; Q2 ← β2R+ γ2G

7 S1 ← β1 Pwb + γ1 L ; S2 ← β2 Pw3−b + γ2 L ; S′1←$ G ; S′2←$ G
8 K1 ← KDF(S1) ; K2 ← KDF(S2) ; ct1←$ SE.Enc(K1, (adct , sh)) ; ct2←$ SE.Enc(K2, (adct , sh))

9 K′1 ← KDF(S′1) ; K′2 ← KDF(S′2) ; ct ′1←$ SE.Enc(K′1, (adct , sh)) ; ct ′2←$ SE.Enc(K′2, (adct , sh))

10 If y ∈ X then v[i]← (id , Q1, ct1, Q2, ct2)

11 Else

12 If (αR ∈ {Pw1 , Pw2}) then bad← true ; (ct ′1, ct
′
2)← (ct1, ct2)

13 v[i]← (id , Q1, ct
′
1, Q2, ct

′
2)

14 Return v, out

Vouch(t0, t1): // Game G2

1 out← Out(t0, t1, X)

2 For i = 1, . . . , |t0| do

3 (y, id , ad)← tc[i]

4 adct ←$ SE.Enc(adkey , ad) ; x←$ F \ {0} ; z ← Padkey,a1,...,at(x) ; sh ← (x, z)

5 R← Hash(y) ; w1 ← h1(y) ; w2 ← h2(y) ; β1, β2, γ1, γ2←$ Zq ; b←$ {1, 2}
6 Q1 ← β1R+ γ1G ; Q2 ← β2R+ γ2G

7 S1 ← β1 Pwb + γ1 L ; S2 ← β2 Pw3−b + γ2 L

8 K1 ← KDF(S1) ; K2 ← KDF(S2) ; ct1←$ SE.Enc(K1, (adct , sh)) ; ct2←$ SE.Enc(K2, (adct , sh))

9 K′1←$ {0, 1}k ; K′2←$ {0, 1}k ; ct ′1←$ SE.Enc(K′1, (adct , sh)) ; ct ′2←$ SE.Enc(K′2, (adct , sh))

10 If y ∈ X then v[i]← (id , Q1, ct1, Q2, ct2)

11 Else v[i]← (id , Q1, ct
′
1, Q2, ct

′
2)

12 Return v, out

Figure 8: Games G0,G1,G2 for proof of Theorem 8.1.

Games G0,G1 are identical-until-bad. So by the Fundamental Lemma of Game Playing [8] we have

Pr[G0(Acs)] = Pr[G1(Acs)] + (Pr[G0(Acs)]− Pr[G1(Acs)]) (8)

≤ Pr[G1(Acs)] + Pr[G1(Acs) sets bad] . (9)

Now we need to bound both terms in Equation (9).

Consider the computation R← Hash(y) at line 5. If HT[y] had been defined before L,P1, . . . , Pn′ ,
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h1, h2 were submitted to Pdata, then line 12 will not set bad because y 6∈ X. So now consider
Hash queries made by Acs after it submitted L,P1, . . . , Pn′ , h1, h2. Since Acs could pick the y in
tb at line 3 after making these queries, and since each query has a 2/(q − 1) chance of setting bad
at line 12, the overall chance that Acs can set bad at line 12 through its h queries to Hash is at
most 2h/(q − 1). Finally, if Acs did not query Hash(y), the query at line 5 has a further 2/(q − 1)
chance of setting bad at line 12, and there are m such queries. So the overall chance of setting bad
is

Pr[G1(Acs) sets bad] ≤ 2(m+ h)

q − 1
. (10)

In game G1, the random choice of S′1, S
′
2 for y 6∈ X allows us to exploit the assumed security of KDF

to replace K ′1,K
′
2 by random k-bit strings. This is the change made in moving to G2 of Figure 8,

showing up at line 9 of the latter. We construct adversary Akdf , playing game Gkdf
KDF,2m, so that

Pr[G1(Acs)]− Pr[G2(Acs)] ≤ Advkdf
KDF,2m(Akdf) . (11)

Adversary Akdf receives, from Gkdf
KDF,2m.Init, a list of 2m k-bit keys that we write as K1,1,K1,2,

. . . ,Km,1,Km,2. Adversary Akdf starts by executing the steps of Init in Figure 7. It then runs
Acs, itself replying to the latter’s oracle queries, to get Acs’s output bit c′, and returns the latter
as its own guess bit. It replies to Pdata and Hash queries of Acs as per Figure 7. For the Vouch
query, it proceeds as in game G2, executing lines 1–8. At line 9, instead of picking K ′1,K

′
2, it

sets K ′1 ← Ki,1 and K ′2 ← Ki,2. (Here i is the For loop counter from line 2.) It then reverts to
following game G2 for lines 10–12, the response to the query being as per line 12. For the analysis,
let S1,1, S1,2, . . . , Sm,1, Sm,2 denote the seeds chosen at line 3 of Gkdf

KDF,2m.Init. Then Si,1, Si,2 play

the role of S′1, S
′
2 in game G1. So if the challenge bit d of game Gkdf

KDF,2m is 1 then Acs gets the
view it would in game G1, and if d is 0 then Acs gets the view it would in game G2, which implies
Equation (11).

Now, using Equation (11), we have

Pr[G1(Acs)] = Pr[G2(Acs)] + (Pr[G1(Acs)]− Pr[G2(Acs)]) (12)

≤ Pr[G2(Acs)] + Advkdf
KDF,2m(Akdf) , (13)

so our task is now to bound Pr[G2(Acs)].

In game G2, the random choice of K ′1,K
′
2 for y 6∈ X allows us to exploit the assumed IND$-security

of SE to replace ct ′1, ct ′2 by random strings. This is the change made in moving to G3 of Figure 9,
showing up at line 9 of the latter. Here ` denotes the length of the message (adct , sh) that is being
encrypted, and e is the ciphertext-length overhead of SE. (We are using the assumption that the
length of the associated data is a fixed, known constant across all queries, which means that the
length of the messages being encrypted is also the same across all queries.) We construct adversary
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Vouch(t0, t1): // Game G3

1 out← Out(t0, t1, X)

2 For i = 1, . . . , |t0| do

3 (y, id , ad)← tc[i]

4 adct ←$ SE.Enc(adkey , ad) ; x←$ F \ {0} ; z ← Padkey,a1,...,at(x) ; sh ← (x, z)

5 R← Hash(y) ; w1 ← h1(y) ; w2 ← h2(y) ; β1, β2, γ1, γ2←$ Zq ; b←$ {1, 2}
6 Q1 ← β1R+ γ1G ; Q2 ← β2R+ γ2G

7 S1 ← β1 Pwb + γ1 L ; S2 ← β2 Pw3−b + γ2 L

8 K1 ← KDF(S1) ; K2 ← KDF(S2) ; ct1←$ SE.Enc(K1, (adct , sh)) ; ct2←$ SE.Enc(K2, (adct , sh))

9 ct ′1←$ {0, 1}`+e ; ct ′2←$ {0, 1}`+e

10 If y ∈ X then v[i]← (id , Q1, ct1, Q2, ct2)

11 Else v[i]← (id , Q1, ct
′
1, Q2, ct

′
2)

12 Return v, out

Figure 9: Game G3 for proof of Theorem 8.1.

Ase,1, playing game Gind$
SE,2m, so that

Pr[G2(Acs)]− Pr[G3(Acs)] ≤ Advind$
SE,2m(Ase,1) . (14)

Adversary Ase,1 starts by executing the steps of Init in Figure 7. It then runs Acs, itself replying
to the latter’s oracle queries, to get Acs’s output bit c′, and returns the latter as its own guess bit.
It replies to Pdata and Hash queries of Acs as per Figure 7. For the Vouch query, it proceeds
as in game G3, executing lines 1–8. At line 9, instead of picking ct ′1, ct ′2, it queries its own Enc
oracle to get ct ′1←$ Enc(2i− 1, (adct , sh)) and ct ′2←$ Enc(2i, (adct , sh)). (Here i is the For loop
counter from line 2.) It then reverts to following game G3 for lines 10–12, the response to the query
being as per line 12. For the analysis, let K1,K2, . . . ,K2m−1,K2m denote the keys chosen at line 3
of Gind$

SE,2m.Init. Then K2i−1,K2i play the role of K ′1,K
′
2 in game G2. So if the challenge bit d of

game Gind$
SE,2m is 1 then Acs gets the view it would in game G2, and if d is 0 then Acs gets the view

it would in game G3, which implies Equation (14).

Now, using Equation (14), we have

Pr[G2(Acs)] = Pr[G3(Acs)] + (Pr[G2(Acs)]− Pr[G3(Acs)]) (15)

≤ Pr[G3(Acs)] + Advind$
SE,2m(Ase,1) , (16)

With G3, we have shown that the adversary gets no information about y when y 6∈ X. Now our
task is to bound Pr[G3(Acs)] to show that what the adversary learns when y ∈ X is only what is
permitted by the output. We break this into two cases, the first being that the number of matches
is below threshold, the second being that it is above. Consider games G4,G5 of Figure 10, which
capture these two cases, respectively. The games differ only in that line 2 is in G4 alone and line 3
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Vouch(t0, t1): // Games G4,G5

1 out← Out(t0, t1, X) ; s← |ID(t0, X)|
2 If (s ≥ t+ 1) then return ⊥ // Line included only in game G4

3 If (s ≤ t) then return ⊥ // Line included only in game G5

4 For i = 1, . . . , |t0| do

5 (y, id , ad)← tc[i]

6 Q1 ← β1R+ γ1G ; Q2 ← β2R+ γ2G

7 ct ′1←$ {0, 1}`+e ; ct ′2←$ {0, 1}`+e

8 If y 6∈ X then v[i]← (id , Q1, ct
′
1, Q2, ct

′
2)

9 Else

10 adct ←$ SE.Enc(adkey , ad) ; x←$ F \ {0} ; z ← Padkey,a1,...,at(x) ; sh ← (x, z)

11 R← Hash(y) ; w1 ← h1(y) ; w2 ← h2(y) ; β1, β2, γ1, γ2←$ Zq ; b←$ {1, 2}
12 S1 ← β1 Pwb + γ1 L ; S2 ← β2 Pw3−b + γ2 L

13 K1 ← KDF(S1) ; K2 ← KDF(S2) ; ct1←$ SE.Enc(K1, (adct , sh)) ; ct2←$ SE.Enc(K2, (adct , sh))

14 v[i]← (id , Q1, ct1, Q2, ct2)

15 Return v, out

Figure 10: Games G4,G5 for proof of Theorem 8.1.

is in G5 alone. Beyond the games are the same as G3 except for some restructuring. The purpose
of the latter is to highlight that encryption under adkey , now at line 10, is only done when y ∈ X.
This results in fewer Enc queries for the Ase,2 we will construct later, which improves the concrete
security (tightness) considerably. For now, let p be the probability that s ≤ t, where s is computed
at line 1. This is the probability that the number of matches is below threshold. So we have

Pr[G3(Acs)] = p · Pr[G4(Acs)] + (1− p) · Pr[G5(Acs)] . (17)

We turn to bounding Pr[G4(Acs)] and Pr[G5(Acs)].

Since the number of matches s in game G4 is below threshold, the shares of adkey that Acs acquires
give it no information about adkey . This allows us to move to game G6 of Figure 11, where at
line 10, the key used as the secret for the Shamir secret sharing, rather than being adkey , is a fresh,
different key sampled at line 3. The perfect privacy of Shamir secret sharing implies that

Pr[G4(Acs)] = Pr[G6(Acs)] . (18)

This move allows us to exploit the assumed IND$-security of SE to replace adct by a random
string. This is the change made in moving to G7 of Figure 11, showing up at line 10 of the latter.
Here a denotes the length of the message ad that is being encrypted, and e is the ciphertext-length
overhead of SE. (We are again using the assumption that the length of the associated data is a fixed,
known constant across all queries, which means that the length of the messages being encrypted is
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Vouch(t0, t1): // Game G6

1 out← Out(t0, t1, X) ; s← |ID(t0, X)|
2 If (s ≥ t+ 1) then return ⊥
3 adkey ′←$ {0, 1}k

4 For i = 1, . . . , |t0| do

5 (y, id , ad)← tc[i]

6 Q1 ← β1R+ γ1G ; Q2 ← β2R+ γ2G

7 ct ′1←$ {0, 1}`+e ; ct ′2←$ {0, 1}`+e

8 If y 6∈ X then v[i]← (id , Q1, ct
′
1, Q2, ct

′
2)

9 Else

10 adct ←$ SE.Enc(adkey , ad) ; x←$ F \ {0} ; z ← Padkey′,a1,...,at(x) ; sh ← (x, z)

11 R← Hash(y) ; w1 ← h1(y) ; w2 ← h2(y) ; β1, β2, γ1, γ2←$ Zq ; b←$ {1, 2}
12 S1 ← β1 Pwb + γ1 L ; S2 ← β2 Pw3−b + γ2 L

13 K1 ← KDF(S1) ; K2 ← KDF(S2) ; ct1←$ SE.Enc(K1, (adct , sh)) ; ct2←$ SE.Enc(K2, (adct , sh))

14 v[i]← (id , Q1, ct1, Q2, ct2)

15 Return v, out

Vouch(t0, t1): // Game G7

1 out← Out(t0, t1, X) ; s← |ID(t0, X)|
2 If (s ≥ t+ 1) then return ⊥
3 adkey ′←$ {0, 1}k

4 For i = 1, . . . , |t0| do

5 (y, id , ad)← tc[i]

6 Q1 ← β1R+ γ1G ; Q2 ← β2R+ γ2G

7 ct ′1←$ {0, 1}`+e ; ct ′2←$ {0, 1}`+e

8 If y 6∈ X then v[i]← (id , Q1, ct
′
1, Q2, ct

′
2)

9 Else

10 adct ←$ {0, 1}a+e ; x←$ F \ {0} ; z ← Padkey′,a1,...,at(x) ; sh ← (x, z)

11 R← Hash(y) ; w1 ← h1(y) ; w2 ← h2(y) ; β1, β2, γ1, γ2←$ Zq ; b←$ {1, 2}
12 S1 ← β1 Pwb + γ1 L ; S2 ← β2 Pw3−b + γ2 L

13 K1 ← KDF(S1) ; K2 ← KDF(S2) ; ct1←$ SE.Enc(K1, (adct , sh)) ; ct2←$ SE.Enc(K2, (adct , sh))

14 v[i]← (id , Q1, ct1, Q2, ct2)

15 Return v, out

Figure 11: Games G6,G7 for proof of Theorem 8.1.

also the same across all queries.) We construct adversary Ase,2, playing game Gind$
SE,1, so that

Pr[G6(Acs)]− Pr[G7(Acs)] ≤ Advind$
SE,1(Ase,2) . (19)
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Adversary Ase,2 starts by executing the steps of Init in Figure 7. It then runs Acs, itself replying
to the latter’s oracle queries, to get Acs’s output bit c′, and returns the latter as its own guess bit.
It replies to Pdata and Hash queries of Acs as per Figure 7. For the Vouch query, it proceeds as
in game G7, executing lines 1–9. At line 10, instead of picking adct , it queries its own Enc oracle
to get adct ←$ Enc(1, ad). It then reverts to following game G7, for the rest of line 10 and for lines
11–14, the response to the query being as per line 15. For the analysis, let adkey denote the key
chosen at line 3 of Gind$

SE,1.Init. Then adkey plays the role of adkey in game G6. So if the challenge

bit d of game Gind$
SE,1 is 1 then Acs gets the view it would in game G6, and if d is 0 then Acs gets

the view it would in game G7, which implies Equation (19). The number of Enc queries of Ase,2

is s = |ID(t0, X)|, which by assumption is below µ, and by line 2 of G6 is also below t, so is below
min(µ, t) as claimed.

At this point, the messages encrypted in ct1, ct2 no longer depend on the associated data, so the
adversary gets no information about the latter. Now we claim that

Pr[G7(Acs)] =
1

2
, (20)

meaning the adversary in G7 gets no information about the challenge bit c. To show this, we need
to show that the adversary’s view is independent of the y determined at line 5. The query response
is clearly independent of y when y 6∈ X (this is what prior games have accomplished) so suppose
y ∈ X. In this case, αR ∈ {Pw1 , Pw2}. The assumption that Valid(pdata) = true means, first,
that w1 6= w2 and second that Pw1 6= Pw2 , so let j ∈ {1, 2} be such that αR = Pwj 6= Pw3−j .
Then Lemma 8.2 part (2) tells us how (Qj , Sj) is distributed and Lemma 8.2 part (1) tells us how
(Q3−j , S3−j) is distributed. These distributions do not depend on y. Finally, due to the random
choice of b at line 7, j itself does not depend on y. So the only thing the adversary learns is whether
or not y ∈ X, but the definition of function Out in Figure 3 ensures that the two vectors queried
to Vouch agree in this regard. This justifies Equation (20).

Next we return to the case that the number of matches is above threshold and claim that

Pr[G5(Acs)] =
1

2
, (21)

In this case, enough Shamir shares are available that the adversary recovers adkey and adct , and
thus ad . However, the definition of function Out in Figure 3 ensures that the two vectors queried
to Vouch agree in whatever information the adversary may recover.

Recalling how εcs, εkdf , εse,1, εse,2 were defined in the theorem statement, we can now put the above
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equations together to get

εcs
2

+
1

2
≤ εkdf + εse,1 + p ·

(
1

2
+ εse,2

)
+ (1− p) · 1

2
+

2(m+ h)

q − 1

≤ εkdf + εse,1 + εse,2 +
1

2
+

2(m+ h)

q − 1
. (22)

Rearranging terms yields Equation (6).

Recall that, as per our conventions, the running time of Acs means that of the execution of Acs with
game Gcs

Π,Ex,Out. This includes the time taken by game procedures (oracles) to compute their replies
to queries, which in turn includes the time to run Ex. With this convention, the running time of
the constructed adversaries is indeed essentially that of Acs as claimed in the theorem statement.

9 Protocol correctness

Correctness refers to the property that a protocol achieves the desired functionality, meaning, on
any inputs, returns the desired output. (As an analogy, correctness of an encryption scheme asks
that decryption reverse encryption.) Usually, this is simple, and may not be treated beyond a one-
line claim. Correctness in the Apple protocol, however, is more involved. This is in part because
it relies on properties of the underlying cryptographic primitives. Most importantly, it relies on a
robustness property of the symmetric encryption scheme. It also relies on the security of the KDF,
and on certain parameters being large enough. In cryptographic parlance, this makes correctness,
here, a computational property, as opposed to the statistical one it is usually.

Treating it, accordingly, requires that we first step back to definitions. We define correctness in
the same style as we have defined security, via a game, and then an advantage, associated to an
adversary playing that game. Then we give a theorem that upper bounds this adversary advantage
as a function of the advantage of other adversaries, that we construct, that aim to violate security
properties of the primitives. The bound also includes terms involving the size of the group G
and the field F. For appropriate parameter choices, this bound is small enough, which we take as
establishing correctness of the protocol.

The correctness game Gcorr
Π that we associate to protocol Π is shown in Figure 12. Fin returns true

when correctness fails, so that the advantage of adversary A, defined as

Advcorr
Π (A) = Pr[Gcorr

Π (A)] , (23)

is its probability of violating correctness. The game begins, as usual, by picking the function H
that will play the role of the random oracle via procedure Hash. The adversary begins by querying
a set X to procedure Post. (It is required to make exactly one query to this oracle.) The game
runs the protocol algorithm SePost on input X and returns the resulting pdata to the adversary.
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Game Gcorr
Π

Init:

1 H←$ Π.HS // Pick a function to be the random oracle

Post(X): // Adversary calls with set X.

2 Require: X ⊆ Π.U

3 (pdata, skey)←$ Π.SePostHash(X)

4 Return pdata // Adversary is given the public data

Vouch(t): // Adversary calls with a vector of triples

5 m← |t|
6 Require: ID(t[1]), . . . , ID(t[m]) are all distinct

7 ckey ←$ ClInit[Hash](pdata)

8 For i = 1, . . . ,m do

9 v[i]←$ ClVch[Hash](pdata, ckey , t[i]) ; sList ← SeCollect(pdata, skey ,v[i], sList)

10 sout ← SeOut[Hash](pdata, skey , sList)

11 Return ⊥

Hash(W ): // The random oracle

12 Return H(W )

Fin(): //

13 If (not Valid(pdata)) then return true // Correctness fails, adversary wins

14 φ← F(t, X)

15 Return (sout 6= φ) // Result of game, true if sout 6= φ and false otherwise

Function F(t, X)

m← |t|
s← |ID(t, X)| // Number of matches

If s ≤ t then // Number of matches is below threshold

out← (ID(t),Match(t, X)) // Output the locations of the matches

Else // s ≥ t+ 1, number of matches is above threshold

out← (ID(t),AD(t, X)) // Output the identifiers and associated data of the matches

Return out

Figure 12: Game defining correctness of protocol Π.

Next the adversary calls Vouch with a vector y of triples, which the game processes according to
the protocol, returning nothing (formally, ⊥) to the adversary. At line 13, procedure Fin returns
true (correctness failure) if pdata fails the validity condition. Else, at line 14, it sets φ to the
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Game Grob$
SE,s,r

Init:

1 For i = 1, . . . , s do Ki←$ {0, 1}k

2 For i = j, . . . , r do Kj ←$ {0, 1}k

Enc(i,M): // Adversary calls with sender i ∈ [1..s] and message M

3 Require: 1 ≤ i ≤ s
4 w ← w + 1 ; Cw←$ SE.Enc(Ki,M)

5 Return ⊥

Dec(j, l): // Adversary calls with receiver j ∈ [1..r] and index l ∈ [1..w]

6 Require: 1 ≤ j ≤ r and 1 ≤ l ≤ w
7 M ← SE.Dec(Kj , Cl)

8 If (M 6= ⊥) then win← true

9 Return ⊥

Fin: // No adversary input

10 Return win

Figure 13: Game defining ROB$ security of SE.

desired protocol output as determined by the functionality F defined at the bottom of the same
Figure. The adversary wins (the game returns true) if the protocol output sout is different from
the functionality output φ.

The random oracle Hash is called by scheme algorithms invoked in game procedures, but we
disallow the adversary from calling it, meaning we assume A makes zero Hash queries. This
reflects the expectation that protocol inputs are not dependent on the random oracle.

Robustness of an encryption scheme, a concept introduced in [3], asks that decryption under the
wrong key fails. That is, if C←$ SE.Enc(K,M) and M ′ ← SE.Dec(K ′, C) for K ′ 6= K, then M ′

should be ⊥. The definition has many variants depending on the allowed choices of K,K ′, C, and
has been further explored in [3, 14, 15, 16], the last paper using the term committing in place
of robust. Correctness of the Apple protocol relies on a form of robustness, defined in [11], that
we call random-key robustness. Its merit is that it is weak enough that, unlike stronger forms
of robustness, it is implied by the standard authenticity property of an authenticated encryption
scheme. This can be shown directly or obtained as a consequence of [15, Theorem 2].

We give a definition of random-key robustness, that we call ROB$, that extends the definition
of [11] to a multi-user setting. (This allows a tight reduction in Theorem 9.1.) The definition is
based on game Grob$

SE,s,r of Figure 13. If Arob is an adversary playing this game, its advantage is

Advrob$
SE,s,r(Arob) = Pr[Grob$

SE,s,r(Arob)] . (24)
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Here SE is the symmetric encryption scheme whose robustness is being defined, integer s ≥ 1
represents the number of senders and integer r ≥ 1 represents the number of receivers. Lines 1,2
pick keys for all senders and receivers. The adversary can call oracle Enc with the identity i ∈ [1..s]
of a sender and a message M to have the game create a ciphertext encrypting M under the key
Ki of sender i. It gets back ⊥ in response to the call. (It does not get back the ciphertext.) It can
also call Dec, giving a receiver identity j and a pointer l indicating a previously-created ciphertext
Cl. Oracle Dec decrypts Cl under the key Kj of receiver j. (Again, the response returned to the
adversary query is ⊥.) The adversary wins if the result of this decryption is not ⊥, meaning is a
valid message. The game returns true if the adversary submits some winning Dec query.

We need ultimately to rely on the authenticity of SE, so the tightness of the reduction from authen-
ticity to ROB$ is important. In Appendix A, we confirm that it is indeed tight, in the multi-user
setting.

The following theorem establishes correctness of the protocol assuming ROB$-security of SE, secu-
rity of the KDF, and that the sizes of the group and the field are large enough.

Theorem 9.1 Let Π be the basic Apple protocol (Figure 1) associated to the ingredients listed in
Section 4, and in particular let q = |G| be the size of the group and f = |F| the size of the field used
in the Shamir secret sharing. Let A be an adversary, playing game Gcorr

Π , that makes one Post
query, and let n′ be the size of the table created by MkHT1 given the size n of the set X in this
query. Let εcorr = Advcorr

Π (A) be the advantage of A in violating correctness. Assume A makes
no Hash queries, and let m be the length of the vector in its (one) Vouch query. Then we can
construct adversaries Akdf ,Arob such that

εcorr ≤ εkdf + εrob +
4m+ n′(n′ − 1)

2(q − 1)
+
m(m− 1)

2(f − 1)
, (25)

where:

• εkdf = Advkdf
KDF,4m(Akdf) is the advantage of Akdf . It is playing game Gkdf

KDF,4m.

• εrob = Advrob$
SE,2m,2m(Arob) is the advantage of Arob. It is playing game Grob$

SE,2m,2m. It makes
one query, per each of its 2m senders, to its Enc oracle, and the analogously for its Dec
oracle.

The constructed adversaries all have about the same running time as A.

The proof needs the following analogue of Lemma 8.2.

Lemma 9.2 Let G be a group of prime order q, and G a generator of G. Let α ∈ Z∗q and
let L = αG. Let P,R ∈ G \ {0}. Define Q, S: Zq × Zq → G by Q(β, γ) = β R + γ G and
S(β, γ) = β P +γ L. Then define S: Zq×Zq → G by S(β, γ) = αQ(β, γ). Regard Q, S, S as random
variables over the random choices β, γ←$ Zq. Assume P 6= αR. Then the pair (S, S) is uniformly
distributed over G×G.
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Proof of Lemma 9.2: Let r ← DLogG,G(R) and p ← DLogG,G(P ). Let t ← DLogG,G(S(β, γ))
and s← DLogG,G(S(β, γ)). Then [

rα α
p α

]
·
[
β
γ

]
=

[
t
s

]
.

The determinant of the 2 by 2 matrix on the left is D = (rα2− pα) mod q = α(rα− p) mod q. The
assumptions that α 6= 0 and P 6= αR mean that D 6= 0, so the matrix is invertible. So for every
choice of (t, s) ∈ Z2

q there is a unique (β, γ) ∈ Z2
q such that the above matrix equation is true. The

claim follows.

Proof of Theorem 9.1: Game G0 of Figure 14 excludes the boxed code, while game G1 includes
it. We claim that

Advcorr
Π (A) ≤ Pr[G0(A)] + Pr[G0(A) sets bad] . (26)

To justify this, consider the ways in which correctness fails, meaning the adversary wins in game
Gcorr

Π . The adversary wins if Valid(pdata) = false. This comes down to P1, . . . , Pn′ not being
distinct, for MkHT1,MkHT2 assure the other conditions are met. We capture this by having lines
8,12 of game G0 set bad if P1, . . . , Pn′ are not distinct. The recovery procedure of Shamir secret
sharing may fail if there are shares with the same first component, captured by setting bad at
line 19. Next, if y at line 18 is not in X, the correctness fails if either of the decryptions at line 25
is not ⊥, in which case bad1 is set. If y ∈ X, one decryption will be correct, and correctness fails
if the other returns a non-⊥ result, captured by setting bad2 at line 29. The game returns true if
either bad1 or bad2 was set.

At line 8, bad is set with probability at most (i−1)/(q−1), where i is the loop counter from line 4,
and similarly for line 12. At line 19, bad is set with probability at most (i− 1)/(f − 1) where i is
the loop counter from line 17. So overall

Pr[G0(A) sets bad] ≤
n′∑
i=1

i− 1

q − 1
+

m∑
i=1

i− 1

f − 1

≤ n′(n′ − 1)

2(q − 1)
+
m(m− 1)

2(f − 1)
. (27)

Games G0,G1 are identical-until-bad, and also return true (line 33) only under the condition that
bad = true. A variant of the Fundamental Lemma of Game Playing of [8], stated in [5], then says
that

Pr[G0(A)] = Pr[G1(A)] . (28)

We turn to bounding Pr[G1(A)]. All further games will use the procedures in Figure 15; they will
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Games G0, G1

Init:

1 adkey ←$ {0, 1}k ; a1, . . . , at←$ F ; ckey ← (adkey , a1, . . . , at) ; α←$ Z∗q

Post(X): // Adversary calls with set X.

2 Require: X ⊆ Π.U

3 n← |X| ; (h1, h2, n
′)←$ MkHT1(n) ; T ← MkHT2(X,h1, h2, n

′) ; XH← {0} ; PS← {0} ; XS← {0}
4 For i = 1, . . . , n′ do

5 x← T [i]

6 If (x 6= ⊥) then

7 HT[x]←$ G \ {0}
8 If (HT[x] ∈ XH) then bad← true ; HT[x]←$ G \XH

9 XH← XH ∪ {HT[x]} ; Pi ← αHT[x]

10 Else

11 Pi←$ G \ {0}
12 If (Pi ∈ PS) then bad← true ; Pi←$ G \ PS

13 PS← PS ∪ {Pi}
14 pdata ← (L, n′, P1, . . . , Pn′ , h1, h2) ; Return pdata

Vouch(t): // Adversary calls with a vector of triples

15 m← |t|
16 Require: ID(t[1]), . . . , ID(t[m]) are all distinct

17 For i = 1, . . . , |t| do

18 (y, id , ad)← t[i] ; adct ←$ SE.Enc(adkey , ad) ; x←$ F \ {0}
19 If (x ∈ XS) then bad← true ; x←$ F \XS

20 XS← XS ∪ {x} ; z ← Padkey,a1,...,at(x) ; sh ← (x, z)

21 R← Hash(y) ; w1 ← h1(y) ; w2 ← h2(y) ; β1, β2, γ1, γ2←$ Zq ; b←$ {1, 2}
22 Q1 ← β1R+ γ1G ; Q2 ← β2R+ γ2G ; S1 ← β1 Pwb + γ1 L ; S2 ← β2 Pw3−b + γ2 L

23 K1 ← KDF(S1) ; K2 ← KDF(S2) ; ct1←$ SE.Enc(K1, (adct , sh)) ; ct2←$ SE.Enc(K2, (adct , sh))

24 S′1 ← αQ1 ; S′2 ← αQ2

25 K′1 ← KDF(S′1) ; K′2 ← KDF(S′2) ; M1 ← SE.Dec(K′1, ct1) ; M2 ← SE.Dec(K′2, ct2)

26 If (y 6∈ X and (M1,M2) 6= (⊥,⊥)) then bad1 ← true

27 If y ∈ X then

28 If (R = Pwb) then j ← 2 else j ← 1

29 If (Mj 6= ⊥) then bad2 ← true

30 Return ⊥

Hash(y): // The random oracle

31 If HT[y] = ⊥ then HT[y]←$ G \ {0}
32 Return HT[y]

Fin(): //

33 Return ((bad1 ∨ bad2) ∧ (not bad))

Figure 14: Games G0,G1 for proof of Theorem 9.1, where the latter includes the boxed code and
the former does not.



34

Games G2–G5

Init:

1 adkey ←$ {0, 1}k ; a1, . . . , at←$ F ; ckey ← (adkey , a1, . . . , at) ; α←$ Z∗q

Post(X): // Adversary calls with set X.

2 Require: X ⊆ Π.U

3 n← |X| ; (h1, h2, n
′)←$ MkHT1(n) ; T ← MkHT2(X,h1, h2, n

′) ; XH← {0} ; PS← {0} ; XS← {0}
4 For i = 1, . . . , n′ do

5 x← T [i]

6 If (x 6= ⊥) then HT[x]←$ G \XH ; XH← XH ∪ {HT[x]} ; Pi ← αHT[x]

7 Else Pi←$ G \ PS

8 PS← PS ∪ {Pi}
9 pdata ← (L, n′, P1, . . . , Pn′ , h1, h2) ; Return pdata

Hash(y): // The random oracle

10 If HT[y] = ⊥ then HT[y]←$ G \ {0}
11 Return HT[y]

Fin(): //

12 Return (bad1 ∨ · · · ∨ badm)

Figure 15: Procedures used by games G2–G5 for proof of Theorem 9.1.

differ only in their Vouch procedures, which will be specified individually, and which set the flags
bad1, . . . , badm referred to at line 12 of Figure 15. In Figure 15, P1, . . . , Pn′ are chosen, as per game
G1, to be distinct.

Consider game G2 of Figure 16. We claim that

Pr[G1(A)] = Pr[G2(A)] . (29)

We proceed to justify Equation (29). Game G1, at line 24, had set S′1, S
′
2 as the server would in

SeCollect. Towards exploiting the assumed security of KDF, game G2 of Figure 16, additionally
and optimistically, choses S1, S2 at random at line 9. The claim is that, due to Lemma 9.2, these
can correctly replace S′1, S

′
2, respectively, unless some “bad” event happens, in which case they are

reverted to the latter values. We now expand on this. The optimistic choices S1, S2 are used in the
decryptions of line 11 that define the messages M1,M2, and these are used to set badi at lines 14,
17. We consider separately the case y 6∈ X and y ∈ X, beginning with the former. At line 13, if
αR equals either Pw1 or Pw2 , then flag bad is set and the boxed code, which is included in game
G2, reverts the messages M1,M2 to their “correct” values of M1,M2, respectively. If bad is not
set, however, we claim that substituting (S′1, S

′
2) by (S1, S2) makes no difference. Indeed, since

αR 6= Pw1 , we can apply Lemma 9.2, with the randomness being β1, γ1, to conclude that (S1, S
′
1)
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Games G2 , G3

Vouch(t): // Adversary calls with a vector of triples

1 m← |t|
2 Require: ID(t[1]), . . . , ID(t[m]) are all distinct

3 For i = 1, . . . , |t| do

4 (y, id , ad)← t[i] ; adct ←$ SE.Enc(adkey , ad)

5 x←$ F \XS; XS← XS ∪ {x} ; z ← Padkey,a1,...,at(x) ; sh ← (x, z)

6 R← Hash(y) ; w1 ← h1(y) ; w2 ← h2(y) ; β1, β2, γ1, γ2←$ Zq ; b←$ {1, 2}
7 Q1 ← β1R+ γ1G ; Q2 ← β2R+ γ2G ; S1 ← β1 Pwb + γ1 L ; S2 ← β2 Pw3−b + γ2 L

8 K1 ← KDF(S1) ; K2 ← KDF(S2) ; ct1←$ SE.Enc(K1, (adct , sh)) ; ct2←$ SE.Enc(K2, (adct , sh))

9 S′1 ← αQ1 ; S′2 ← αQ2 ; S1←$ G ; S2←$ G
10 K′1 ← KDF(S′1) ; K′2 ← KDF(S′2) ; M1 ← SE.Dec(K′1, ct1) ; M2 ← SE.Dec(K′2, ct2)

11 K1 ← KDF(S1) ; K2 ← KDF(S2) ; M1 ← SE.Dec(K1, ct1) ; M2 ← SE.Dec(K2, ct2)

12 If (y 6∈ X) then

13 If (αR ∈ {Pw1 , Pw2}) then bad← true ; (M1,M2)← (M1,M2)

14 badi ← ((M1,M2) 6= (⊥,⊥))

15 If y ∈ X then

16 If (R = Pwb) then j ← 2 else j ← 1

17 badi ← (M j 6= ⊥)

18 Return ⊥

Figure 16: Games G2,G3 for proof of Theorem 9.1, where the former includes the boxed code and
the latter does not.

is distributed just like (S1, S1). Then again since αR 6= Pw2 , we can apply the Lemma, with the
randomness being β2, γ2, to conclude that (S2, S

′
2) is distributed just like (S2, S2). Now consider

the case that y ∈ X. Then αR equals exactly one of Pw1 , Pw2 . (Meaning, equals one of them but
not the other. This uses that Pw1 6= Pw2 , which is true due to the choices in Figure 15.) Line 17
sets badi if the undesired decryption succeeds. Now Lemma 9.2 again applies to say that (Sj , S

′
j) is

distributed just like (Sj , Sj). So overall badi is set with the same probability as in game G1. This
concludes the justification of Equation (29).

Games G2,G3 are identical-until-bad, so by the Fundamental Lemma of Game Playing [8], we have

Pr[G2(A)] = Pr[G3(A)] + (Pr[G2(A)]− Pr[G3(A)])

≤ Pr[G3(A)] + Pr[G2(A) sets bad] . (30)
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Game G4

Vouch(t): // Adversary calls with a vector of triples

1 m← |t|
2 Require: ID(t[1]), . . . , ID(t[m]) are all distinct

3 For i = 1, . . . , |t| do

4 (y, id , ad)← t[i] ; adct ←$ SE.Enc(adkey , ad)

5 x←$ F \XS; XS← XS ∪ {x} ; z ← Padkey,a1,...,at(x) ; sh ← (x, z)

6 S1, S2, S1, S2←$ G
7 K1 ← KDF(S1) ; K2 ← KDF(S2) ; ct1←$ SE.Enc(K1, (adct , sh)) ; ct2←$ SE.Enc(K2, (adct , sh))

8 K1 ← KDF(S1) ; K2 ← KDF(S2) ; M1 ← SE.Dec(K1, ct1) ; M2 ← SE.Dec(K2, ct2)

9 badi ← ((M1,M2) 6= (⊥,⊥))

10 Return ⊥

Game G5

Vouch(t): // Adversary calls with a vector of triples

1 m← |t|
2 Require: ID(t[1]), . . . , ID(t[m]) are all distinct

3 For i = 1, . . . , |t| do

4 (y, id , ad)← t[i] ; adct ←$ SE.Enc(adkey , ad)

5 x←$ F \XS; XS← XS ∪ {x} ; z ← Padkey,a1,...,at(x) ; sh ← (x, z)

6 K1←$ {0, 1}k ; K2←$ {0, 1}k ; ct1←$ SE.Enc(K1, (adct , sh)) ; ct2←$ SE.Enc(K2, (adct , sh))

7 K1←$ {0, 1}k ; K2←$ {0, 1}k ; M1 ← SE.Dec(K1, ct1) ; M2 ← SE.Dec(K2, ct2)

8 badi ← ((M1,M2) 6= (⊥,⊥))

9 Return ⊥

Figure 17: Games G4,G5 for proof of Theorem 9.1.

We claim that

Pr[G2(A) sets bad] ≤ 2m

q − 1
. (31)

To justify this, let β = α−1 be the inverse of α in the group Z∗q . The condition tested at line 13
of G2 can equivalently be written as R ∈ {β Pw1 , β Pw2}. Line 6 sets R ← Hash(y). That y 6∈ X
(line 13) means that HT[y] was determined after P1, . . . , Pn′ , and so the random choice of HT[y]
has probability at most 2/(q − 1) of being in the set {β Pw1 , β Pw2}. (If y repeats in a triple at
line 4, we can consider only the first time it occurs.) There are at most m choices of y so the union
bound yields Equation (31).
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We now need to bound Pr[G3(A)]. With game G4 as in Figure 17, we claim that

Pr[G3(A)] ≤ Pr[G4(A)] . (32)

We saw that S1, S2, S1, S2 in game G3 were uniformly and independently distributed over G. Game
G4 directly picks them as such. This renders various variables unused, allowing them to be dropped.
In the y 6∈ X case, game G4 sets badi as in game G3. In the y ∈ X case, it sets badi more generously
than in game G3. This justifies Equation (32).

At lines 6,7, game G5 in Figure 17 picks the keys K1,K2,K1,K2 directly at random from {0, 1}k
rather than, as in game G4, obtaining them via KDF. We build adversary Akdf so that

Pr[G4(A)]− Pr[G5(A)] ≤ Advkdf
KDF,4m(Akdf) . (33)

Adversary Akdf receives, from Gkdf
KDF,4m.Init, a list of 4m k-bit keys that we write as K1,1,K1,2,

K1,1,K1,2, . . . ,Km,1,Km,2,Km,1,Km,2. Adversary Akdf starts by executing the steps of Init in
Figure 15. It then runs A, itself replying to the latter’s oracle queries. It replies to Post and
Hash queries of A as per Figure 15. For the Vouch query, it proceeds as in game G5, exe-
cuting lines 1–5. At lines 6,7, instead of picking K1,K2,K1,K2, it sets them to Ki,1,Ki,2,Ki,1,
Ki,2, respectively. (Here i is the For loop counter from line 3.) It then reverts to following game
G5 for line 8, the response to the query being as per line 9. If the condition at line 12 of Fig-
ure 15 is met, our adversary Akdf returns 1 as its output guess bit, else 0. For the analysis, let
S1,1, S1,2, S1,1, S1,2, . . . , Sm,1, Sm,2, Sm,1, Sm,2 denote the seeds chosen at line 3 of Gkdf

KDF,4m.Init.

Then Si,1, Si,2, Si,1, Si,2 play the role of S1, S2, S1, S2 in game G4. So if the challenge bit d of game
Gkdf

KDF,4m is 1 then A gets the view it would in game G4, and if d is 0 then A gets the view it would
in game G5, which implies Equation (33).

We can now appeal to the assumed robustness of SE to bound Pr[G5(A)]. Namely, we build
adversary Arob so that

Pr[G5(A)] ≤ Advrob$
SE (Arob) . (34)

Adversary Arob starts by executing the steps of Init in Figure 15. It then runs A, itself replying
to the latter’s oracle queries. It replies to Post and Hash queries of A as per Figure 15. For
the Vouch query, it proceeds as in game G5, executing lines 1–5. At line 6, instead of picking
K1,K2, ct1, ct2 as shown, it queries its own Enc oracle to get ⊥←$ Enc(2i − 1, (adct , sh)) and
⊥←$ Enc(2i, (adct , sh)). (Here i is the For loop counter from line 3.) It then queries its Dec oracle
to get ⊥ ← Dec(2i−1, 2i−1) and ⊥ ← Dec(2i, 2i). (These oracles always return ⊥.) As per game
G5 it returns ⊥ as the response to A’s query. (It skips line 8, not setting badi.) When A halts, so
does Arob. For the analysis, let K1,K2, . . . ,K2m−1,K2m and K1,K2, . . . ,K2m−1,K2m denote the
keys chosen at lines 1,2, respectively, of Grob$

SE,2m,2m.Init of Figure 13. Then K2i−1,K2i,K2i−1,K2i

play the role of K1,K2,K1,K2 in game G5. So if the execution of A with game G5 sets badi for
some i, then the execution of Arob with game Grob$

SE,2m,2m sets win. This justifies Equation (34).
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Putting together the above yields Equation (25).
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A Authenticity tightly implies ROB$

Correctness of the protocol as per Theorem 9.1 relied on the ROB$ security of the symmetric
encryption scheme SE. The SE Apple is using, however, is an authenticated encryption scheme.
The definition of the latter does not explicitly require robustness. The gap is bridged by the fact,
noted in [11], that authenticity implies the type of robustness needed here.

In our concrete-security setting, however, we need to also ask what is the tightness of the reduc-
tion and whether it holds in our multi-user setting. Lemma A.1 below confirms that multi-user
authenticity tightly implies ROB$.

The definition of authenticity we use, called AUTH, starts from the INT-CTXT definition of [4],
extended to the multi-user setting as per [9], and then weakens that in two ways. First, the Enc
oracle, that would normally allow the adversary to obtain encryptions of messages of its choice
for users of its choice, is omitted. Second, rather than returning the result of decryption to the
adversary, the decryption oracle Dec returns ⊥. Lemma A.1 says that even this weak notion of
authenticity tightly implies ROB$.



40

Game Gauth
SE,r

Init:

1 For i = j, . . . , r do Kj ←$ {0, 1}k

Dec(j, C): // Adversary calls with user j ∈ [1..r] and ciphertext C

2 Require: 1 ≤ j ≤ r
3 M ← SE.Dec(Kj , C)

4 If (M 6= ⊥) then win← true

5 Return ⊥

Fin: // No adversary input

6 Return win

Figure 18: Game defining AUTH security of SE.

Proceeding to the details, the definition is based on game Gauth
SE,r of Figure 18. If Aauth is an

adversary playing this game, its advantage is

Advauth
SE,r (Aauth) = Pr[Gauth

SE,r (Aauth)] . (35)

Integer r ≥ 1 is the number of users. Line 1 picks keys for all of them. The adversary can call
oracle Dec with a user identity j and a ciphertext C of its choice. Oracle Dec decrypts C under
the key Kj of receiver j. The adversary wins if this decryption is non-⊥.

Lemma A.1 Let SE be a symmetric encryption scheme, and Arob an adversary playing game
Grob$

SE,s,r. Assume it makes qd queries per user to its Dec oracle. Then we can construct an adversary
Aauth such that

Advrob$
SE,s,r(Arob) ≤ Advauth

SE,r (Aauth) . (36)

Adversary Aauth makes qd queries per user to its Dec oracle. Its running time is about that of
Arob.

Proof of Lemma A.1: Adversary Aauth begins by picking keys K1, . . . ,Ks←$ {0, 1}k, where
{0, 1}k is the key space of SE, as per line 1 of game Grob$

SE,s,r. It initializes counter w to 0. It then
runs Arob. When Arob makes a query i,M to its Enc oracle, adversary Aauth executes w ← w + 1
and Cw←$ SE.Enc(Ki,M), as per lines 4,5 of game Grob$

SE,s,r. It returns ⊥ to Arob. When Arob

makes a query j, l to its Dec oracle, adversary Aauth calls its own Dec oracle with j, Cl. It returns
⊥ to Arob.
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