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Abstract
Machine learning (ML) based prediction models, and espe-
cially deep neural networks (DNNs) are increasingly being
served in the cloud in order to provide fast and accurate infer-
ences. However, existing service ML serving systems have
trouble dealing with fluctuating workloads and either drop re-
quests or significantly expand hardware resources in response
to load spikes. In this paper, we introduce Model-Switching,
a new approach to dealing with fluctuating workloads when
serving DNN models. Motivated by the observation that end-
users of ML primarily care about the accuracy of responses
that are returned within the deadline (which we refer to as
effective accuracy), we propose to switch from complex and
highly accurate DNN models to simpler but less accurate
models in the presence of load spikes. We show that the
flexibility introduced by enabling online model switching pro-
vides higher effective accuracy in the presence of fluctuating
workloads compared to serving using any single model. We
implement Model-Switching within Clipper, a state-of-art
DNN model serving system, and demonstrate its advantages
over baseline approaches.

1 Introduction

Deep neural networks (DNN), currently the state-of-the-art
in machine learning (ML), are being increasingly deployed
as cloud services to provide highly-accurate inferencing (or
predictions) for a range of applications. Systems such as Clip-
per [10] and Tensorflow serving [31] have been developed
to ease the challenges in the deployment, optimization, and
maintenance of DNN based machine-learning-as-a-service
(MLaaS). Like other cloud services, MLaaS has quality of
service (QoS) requirements in the form of service level agree-
ments (SLAs) between the user and the cloud provider that
provide guarantees on request latency, throughput and relia-
bility. For ML, however, the prediction accuracy (or simply
accuracy) of the model is also a critical metric but has not
traditionally been encapsulated in SLAs.

In this paper, we make two observations to address this
gap. First, we observe that for ML workloads, clients are
interested not in the fraction of predictions returned within
a deadline, but instead the fraction of correct predictions
returned within the deadline. We refer to this metric as the
effective accuracy; in Section 3, we show that the effective
accuracy is the product of the ML model’s accuracy and its
deadline meet rate. Second, we observe that an SLA specified
in terms of effective accuracy enables flexibility in dealing
with spikes in workload, for instance, those observed during
events like Black Friday.

The flexibility arises from the fact that deep learning mod-
els of varying computational complexity and accuracy can be
trained for the same application. We observe that as load in-
creases, the cloud provider can swap out complex and highly
accurate models for more computationally efficient models
while preserving effective accuracy. We refer to this approach
as Model-Switching. From the cloud providers’ perspective,
Model-Switching allows to make meaningful trade-offs be-
tween the computational cost and the service accuracy. For
instance, consider a web-serving application, which employs
high-performance machine-learning models to recommend
relevant items to users or show them ads. In such applications,
whenever there is a spike in user load, cloud providers either
throttle the serving rate of the application or scale-out com-
putational resources to meet the demand and thus the latency
SLA. However, in the former, there is a hit to the throughput
SLA (or servable queries-per-second), and in the latter, there
is an associated hardware cost for the cloud provider 1. A third
alternative to these options is to guarantee effective accuracy.
With this approach, latency and throughput SLAs can always
be met at the cost of limited accuracy loss. Without this knob,
clients have to either give up on latency or throughput under
spiking load.

To illustrate the benefits of the proposed approach, we de-
velop and evaluate Model-Switching, an online scheduler built

1Google Cloud ML’s documentation is reflective of the current approach:
“If your traffic regularly has steep spikes, and if reliably low latency is impor-
tant to your application, you may want to consider manual scaling [1].”



on top of Clipper [10] that monitors and adapts to workload
fluctuations by switching between a set of pre-trained models
for image classification. To further improve efficiency, Model-
Switching also optionally determines the optimal number of
threads and replicas for each model. Our evaluation shows
that Model-Switching yields the highest effective accuracy
for all deadline constraints compared with serving with each
single model by itself.

The remainder of the paper is organized as follows: Sec-
tion 2 provides a brief overview of deep learning and the
limitation of existing MLaaS frameworks; the proposed effec-
tive accuracy, our new QoS metirc, and the model-switching
framework are described in Section 3 followed by results
from preliminary evaluation in Section 4. Section 5 describes
related work while Section 7 lists the limitations of current
approach and future work. Section 6 ends the paper.

2 Background and Motivation

We begin by briefly describing the deep learning inference
and the limitations of existing MLaaS approaches.

2.1 DNNs and MLaaS

DNN Basics State-of-the-art DNNs are typically trained us-
ing GPU-enabled machine learning frameworks [7,24,32] like
PyTorch, TensorFlow, or Caffe to obtain the model weights.
Trained models can then be deployed into IoT and embed-
ded devices for inferencing (i.e., to render predictions); in
practice, state-of-the-art DNN models can be computationally
demanding and hence inference is often outsourced to the
cloud.

The execution time of DNN inference depends on its depth,
the size of each layer’s feature maps and filters. Fig. 1 shows
the execution time for a family of ResNet models with vary-
ing depth (for example, ResNet-18 has 18 layers). From the
figure, we can observe a more than 5× spread in execution
times and that more complex, deeper models are also more
accurate. (Also shown in the figure is the impact of thread-
level parallelism on each model’s execution time, which will
be discussed later in Section 3.2.1).
MLaaS Framework Several DNN prediction serving sys-
tems have been built [10, 31, 39] to ease the deployment,
optimization, and maintenance of DNN inference services.
In these systems, DNN models are usually deploy into con-
tainers, or servables. State-of-art serving systems also enable
model versioning, updates, rollbacks, replication, etc. At run-
time, they enable caching, adaptive batching, and ensembling,
together with auto-scaling policies [8, 9, 16–18, 30] to sus-
tain QoS and manage hardware resources. Nonetheless, these
systems have some drawbacks, described next.

2.2 Limitation of Exiting MLaaS Framework

Despite recent advances, state-of-the-art MLaaS frameworks
still do not perform well in the presence of highly fluctuating
loads or load spikes. Existing frameworks like Swayam [18]
and Clipper [10] choose to violate SLAs in the presence of
load spikes in order to conserve hardware resources. Both
systems internally track each request’s deadline in the queue
and prune (or drop) the request if the queuing delay will result
in a deadline miss. As a consequence, Swayam is only able
to guarantee that 96% of requests return within the deadline
during load spikes, even though the target SLA requires 99%
of the jobs to meet deadline. In return, Swayam provides 27%
resources savings compared to a baseline that scales hardware
resources in response to load spikes. To summarize, existing
MLaaS serving systems offer an unappealing trade-off for
bursty workloads: either violate SLAs or incur significant
hardware overheads. In this paper we show that this trade-off
can be averted using the proposed model switching scheme
and without the need to scale up resources.
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Figure 1: Inference time for ResNets in Pytorch [32] on a
32-vCPU host machine.

3 Model-Switching: Our Approach

We start with the new metric, i.e., effective accuracy for
MLaaS systems, and then introduce our Model-Switching
Framework.

3.1 Effective Accuracy

We argue that for MLaaS, response time (latency) alone does
not capture end-users’ expectation; instead, users are inter-
ested in both fast and accurate responses. To this end, we
define effective accuracy within a deadline constraint as the
fraction of correct (or accurate) predictions returned within
the deadline. We will assume that users are agnostic to which
model the service provider uses as long as the SLA, specified
in terms of effective accuracy, is met.

Assume a pre-trained library of M ML models for given
task where each model i ∈ [1,M] is pre-characterized in terms
of its accuracy ai and pD,λ

i , the fraction of requests that meet



deadline D assuming requests arrive at rate λ. Then, the effec-
tive accuracy, ae f f

i is simply:

ae f f
i = pD,λ

i ∗ai. (1)

Note that the execution time of a DNN is typically fixed and
input independent; consequently, deadline misses are statisti-
cally independent of mis-classifications, thus enabling us to
express the effective accuracy as a product of probabilities.
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Figure 2: Effective accuracy as a function of increasing job
arrival rate.

Figure 2 shows the effective accuracy for five ResNet mod-
els with increasing load (requests/second) assuming a dead-
line of 750 ms. At low loads, the most complex ResNet model,
since it has the highest baseline accuracy and, since queuing
delay is negligible under low loads, always meets the deadline.
However, as load is increased, the simpler models have higher
effective accuracy than more complex models because the
latter incur a much higher fraction of deadline misses.

3.2 Online Model-Switching
Based on the observations above, our online model-switching
framework monitors and predicts future job arrivals and
switches between models to maximize effective accuracy. In
addition, once a model is picked, the framework also selects
the optimal number of threads and replicas of the model given
the hardware constraints. We begin by discussing the impact
of number of threads and model replicas on performance.

3.2.1 Job-level and Thread-level Parallelism

DNN model-based microservices, along with other general
cloud computing workloads, offer variety of opportunities in
terms of parallelism [12, 28]. In MLaaS setting, as requests
queue up for processing, two decisions can be made to ex-
ploit the parallelism at different granularity: (1) How many
requests can be serviced in parallel? The answer depends
on the number of microservice replicas (R) we have in the
system; (2) Once a request is assigned to one of the DNN
models, how many threads (T ) should be allocated to this
microservice (as shown in Fig. 1)?

In this paper, we assume fixed capacity C of computing
resources (i.e., CPU cores) for serving job requests. (If re-
quired, the proposed approach can be easily combined with
auto-scaling frameworks that increase C in response to spikes

in workload.) Under this assumption, any combination of
<R,T > that satisfies R×T =C can be chosen.

To understand the impact of the choice of <R,T > on per-
formance, we deploy several ResNet models in Clipper [10]
and measure the end-to-end query latency by varying <R,T >
combinations at varying load levels. More information about
Clipper and on the experiment set-up can be found in Sec-
tion 4.

Fig. 3 summarizes the 99th percentile (P99) query la-
tency for ResNet-50 and ResNet-152 models for five different
<R,T > configurations. It can be observed that judiciously pick
<R,T > is necessary; the optimal number of threads T reduces
with increasing load. Qualitatively similar results hold for the
other ResNet models but are not shown here due to space
constraints.
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Figure 3: Tail latency as job arrival rate increases.

3.2.2 Request Rate Prediction

In this paper, we use event-based windowing to monitor load
at run-time, and use the load measured in a given window as a
predictor for the next window. Clipper records each incoming
request’s arrival timestamp internally. Our Model-Switching
controller estimates the inter-arrival rate by using the youngest
and oldest timestamps with a fixed window size periodically.
The window size can be tuned offline to improve the respon-
siveness. A similar approach was also used in [35].

3.2.3 Rule Based Model-Switching

With pre-characterized information about the P99 latency
for each model, and the request-rate estimate, the Model-
Switching controller searches over all M models and their
<R, T > configurations to pick the model and configuration
that has the highest effective accuracy for the specified dead-
line. Note that doing so maximizes the chances that any given
SLA constraint specified in terms of effective accuracy would
be met. While our goal of maximizing effective accuracy
might create some slack between offered and required service
quality, this slack can be exploited by scaling down hardware
resources (although we do not explore resource scaling in this
paper).

Although our Algorithm 1 is general and able to explore
dynamic <R,T > allocation, we can see that <R:4,T :4> works



Algorithm 1: SLA Deadline-Aware Model-Switching
Plan Generation.

Data: A fixed capacity of CPU resources, C; target
SLA deadline D; intermediate load, Q; a pool of
candidate DNN models, M (sorted with
descending baseline accuracy).

Result: Model index and combination of <R,T > for
online prediction serving.

1 index←M,R←C;
2 for m ∈ [1,M] do
3 index← m;
4 < R,T >← argmin<R,T>:R×T=C P99(m,Q);
5 if P99<R,T>(m,Q)≤ D then
6 return index,< R,T >;
7 else
8 Pass;
9 end

10 end
11 return index,< R,T >;

effectively on ResNets across the board for most target dead-
lines, shown in Fig. 3. In our evaluations, we statically pick
this configuration and do not consider this problem further in
this paper.

3.2.4 Additional Considerations

Model Setup Times ML backend setup incurs large provi-
sioning delays (e.g., a few seconds) due to massive I/O opera-
tions. To alleviate this issue, in this work, we pre-deploy all
candidate models, relying on the fact that the RAM resources
are usually abundant and under-utilized.

Similar ideas have also been proposed recently in Multi-
Tenant Serving system aiming for better resource utilization
[29, 33]. We also quantify the actual memory cost for hosting
5 models simultaneously in Section 4. More discussion is also
available in Section 7.
CPU Resource Contention Hosting multiple DNN models
may incur CPU performance overhead. However, at each
given time, only one model would be required in active mode.
To minimize performance impact, we reduce the CPU priority
of the remaining “inactive” models via the OS level scheduler.
We validated this approach and found that with this optimiza-
tion, the performance is almost the same as only deploying a
single model by itself.

4 Evaluation

We build our Model-Switching controller into Clipper [10],
an open source online prediction serving system. To be focus
on this study, we disable the cache and dynamic batch size
adaption in Clipper.

System Configuration We use a dedicated Azure Virtual
Machine (VM) with 32 vCPUs and 128GB of RAM for Clip-
per model serving and our Model-Switching controller. For
the client, we have another separate VM (8 vCPUs and 32GB
RAM) to send image queries. We set batch size of 1 when
posting the request.

Inference Models We primarily look at deep residual nets
(ResNets) [22] with various number of layers, baseline ac-
curacy and execution time, shown in Fig. 1. Each model is
pre-trained in Pytorch [32] on Imagenet [13], and deployed
into container with <R:4,T :4> as microservices (discussed in
Section 3.2.1) in Clipper. At any given time, only one model’s
containers are in the active state.

Workload Generator The load generator tries to emulate
user behavior with a Markov model [11, 14]. It operates in an
open system model [34], i.e., new jobs arrive independently of
job completions and following Poisson inter-arrivals [11, 35].
We also validated the generated workload with a trace of job
arrivals from a production system deployed in industry.

Model-Switching Controller The controller runs as part
of the Clipper serving system with a sample period of 1 sec-
ond and tracks the most recent incoming queries to the TASK
QUEUE to measure load. It then determines and switches to
the best model with a target SLA deadline of 750 ms. The
deadline is selected to make sure the largest ResNet-152 is a
feasible solution at low load.

4.1 Results

Fig. 4a shows the load profile (queries/second) over a 300-
second period for the industrial trace and the models selected
by the Model-Switching controller during this period. From
the figure, we can see the the controller selects the most accu-
rate but also computationally expensive ResNet-152 model
when the load is relatively low. For moderate loads, the
controller switches between ResNet-101 and ResNet-152.
However, when the load spikes at the 125-second mark, the
controller can quickly adapt and serves requests using the
smaller ResNet-50, ResNet-34, or even ResNet-18 models.
Note that all the switching happens in real-time, together with
the prediction serving. The results account for all overheads
of switching between models.

Effective Accuracy Fig. 4b shows the effective accuracy
of the proposed Model-Switching controller compared to
baselines that make use of a single model only. The results
are shown for deadline constraints ranging from 700ms to
1500ms using the same workload trace from Fig. 4a. We
observe that since both ResNet-18 and ResNet-34 are fast
and never miss deadlines, their effective accuracy are simply
equal to their baseline accuracies. The effective accuracy of
the larger ResNet-50, -101, and -152 models reduces as the
deadline constraints become tighter due to high deadline miss
rates. In contrast, Model-Switching yields the highest effec-
tive accuracy for all deadline constraints — we note that this
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Figure 4: Results on (a) 5-minute window of trace; (b) Effective accuracy; (c) Empirical CDF of query latency.

effective accuracy would be unachievable by the smaller mod-
els and only achievable by the larger models by introducing
additional hardware resources.

Tail Latency To better understand how our Model-
Switching adapts to load fluctuations, we plot the empirical
CDF (Fig. 4c) of end-to-end latency observed by a client sub-
mitting requests in Fig. 4a. We compare the percentile latency
of Model-Switching with baselines that serve requests using
single model each. Several observations from the plot: (1)
Small models, such as ResNet-18 and ResNet-34, guarantee
that all queries finish within the deadline but have low base-
line accuracies. (2) Large and more accurate models (e.g.,
ResNet-152 and ResNet-101) suffer long tail latency, result-
ing in several deadline misses. (3) Model-Switching, as it
stands, seeks to combine the best of both worlds; i.e., meeting
deadlines on the one hand, while serving requests using the
most accurate models whenever possible.

CPU and RAM Usage: In all our experiments above, we
allocate a total of 16 vCPUs (<R:4,T :4>) for active model con-
tainers and limit the CPU utilization for each of the inactive
model containers to be less than 1%. 8 vCPUs are configured
to handle the client’s HTTP POST requests, and the remain-
ing for other Clipper components. The Multi-Tenant ResNet
models with a total 20 replicas occupy about 11.8% (15.1GB)
of the total system RAM.

5 Related Work

There are an increasing number of studies on different aspects
of MLaaS. The most relevant for our paper are those that
introduce platforms and characterize their performance, and
those that optimize QoS and resource allocation.
ML Inference Serving Framework A convention way to
deploy ML service is to provision containers, or servables
to host ML models. Examples include Clipper [10], Tensor-
flow Serving [31], and Rafiki [39]. These frameworks aim
to minimize the cost of deployment, optimization of latency
and throughput, and maintenance of DNN based MLaaS. Our
work can be easily implemented on top of these existing
frameworks with minimal modifications (indeed, we build

our proposed solution within Clipper).
Auto-scaling Policies Auto-scaling policies are used to guar-
antee response time SLA while maximizing resource effi-
ciency [3, 4, 18]. However, in the event of load spikes, these
existing auto-scaling policies fail to capture the dynamics
in time (since bringing up new hardware resources is time
consuming) and increase resource usage. In this paper, we
aim to solve this problem without scaling hardware resources
but by exploiting model diversity while providing high QoS.
Model Accuracy Vs Performance Several works have at-
tempted to optimize the model accuracy and performance. For
example, static pruning (compression), quantization, and neu-
ral architecture search approaches [25, 36, 41, 43, 44] can gen-
erate a family of model versions that can be switched during
run-time. Input-redundant techniques such as NoScope [27]
and Focus [23] are primarily targeted at video queries (where
a lot of redundancy exists in the transferred data between
frames). In our case, we are targeting image (and presum-
ably textual) queries from different users. In such scenarios,
the opportunity to exploit input redundancy may be lower
than that in video queries. Other input-dependent cascade
methods [37, 40], also fit nicely with our model-switching
framework wherein classifiers of different complexities could
be switched in and out at run-time in response to the work
load. Another related work [20] exploits model diversity by
exposing latency/accuracy trade-offs to users, while we fo-
cus on automatically switching between models to optimize
effective accuracy.

6 Conclusion

In this paper, we argue that for MLaaS, the prediction ac-
curacy (or simply accuracy) of the model is also a critical
metric but has not traditionally been encapsulated in SLAs.
We call for effective accuracy, a new metric, that should be
looked at when evaluating the performance of such systems.
To achieve a better effective accuracy while serving the pre-
diction requests, Model-Switching has been proposed to dy-
namically select the best model according to the load and
the pre-characterized model performance. We evaluated our
framework on a real MLaaS system.



7 Challenges and Discussion

Several challenges lie ahead of us before we can achieve our
goal of an automatic and low cost Model-Switching controller
for MLaaS.
Reducing Memory Overheads Containerization disallows
any sharing of host machine resources. There is a trade-off
between reducing cold start time and the memory resources.
A model can be invoked quickly when it is already in memory
and does not require a cold start. However, keeping all models
in memory at all times is prohibitively expensive and does
not scale well. Ideally, we want a method to provide illusion
that all models are always warm, while spending resources
as if they were always cold. Some work on this can be found
in [5, 6].
Dynamic Replica and Thread Allocation Currently, we
statically set the model replica and thread configuration be-
fore the deployment for simplicity. We are exploring more
practical ways to implement this allocation online in real time.
Integration of Exiting Auto-scaling Framework In this
work, we assume a fixed capacity C of computing resources
(i.e. CPU cores) for backend serving. However, in practice,
there may be a certain amount of resources available to scale
up. In this setting, the problem of synergistically performing
both model-switching and autoscaling remains open.
Offline Training-Free Model-Switching Controller Fur-
ther, since we used the pre-characterized information about
the P99 latency for each model at a fixed capacity. The model-
switching controller needs to be retrained if autoscaling policy
spawns or revokes some container replicas. As a future work,
we are exploring the possibility of training a Reinforcement
Learning agent to automatically learning these changes on-
line.
Synergistic Optimization with Caching, Batching etc. Ex-
isting MLaaS frameworks enable performance optimizations
through caching, adaptive batching [10, 19] etc. We need
to first figure out what optimizations our model-switching
is compatible with and also figure out a synergistic way to
incorporate model switching into these techniques.
Extend to Multiple Types of Computing Resources Al-
though CPUs are widely used for DNN inference in existing
MLaaS platforms such as in Facebook [21] and Amazon [2],
many specialized hardwares are designed for better DNN in-
ference. Examples are GPU [38], FPGA [15], and Google’s
TPU [26, 42]. These heterogeneous hardware resources open
new opportunities to optimize the latency, accuracy, power ef-
ficiency and resource efficiency, etc. with a holistic approach.
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