AWS End-of-Support
Migration Program (EMP)
for Windows Server

User Guide

dWS

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide

AWS End-of-Support Migration Program (EMP) for Windows Server:

User Guide
Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide

Table of Contents

What Is AWS End-of-Support Migration Program (EMP) for Windows Server?cceeeveveiveiieineiineennennnnn. 1
LT 1B < 1
(@] aTelT o) &S PP PPt 2
Supported operating systems and reqUIreMENTScuuiiuiiiiiiei ettt et e e e e e eenes 2
Yool =1 o o PP TP PSRN 2
Tl o [« [PPSR PSRN 3

HOW T WOTKS .ttt ettt e et e et ea et et eaeaeeneaebeaneneanesenannennas 4
TRE EMP PrOCESS ..vninitiiiiei ittt ettt e et e e e e et et et et et et et e et e et e e en et aa st anaaesnssesnsnenenstneneensnees 5

(DT 0) =] PP PPN 6
Packaging Preparation ...ttt a et e e e e e 6
[(o T [[« [PPSO P PSP UPPOPPPPTPPPR 6
DEPLOYIMENT . ettt et ettt et et et et et et et et et st e e e e e e e e e e e e e et aaeans 6
SYSTEM FEQUITEIMENTS ...ttt ettt et et e et e e et et ea et enea e saeneneeaenenens 6
[0) = 1 o] PP PS PPN 7
[DF | = I o] | =Tat { [s IO T O PR P PP PP PPTPPTPPTRt 7
Compatibility Package Builder COMPONENTSc.uiiniiiiiiiii et e e e enes 7

(1= A - {=T o PP PP PP 10
DIECISION TF@O .eneiniii ettt e et e et et et e e e ettt ae e e e e et e e e e 10
Planning @ MGrationoeeeeeiinii ettt ettt et et et et et et et et e e et e e et et eaaeaneaneans 11
HIGh-1eVEL dISCOVEIY ...eteiiiiii et ettt st et st e e s e et e e e e e e e e s e ens 11
Install Compatibility Package BUildercouiiniiniiii e e 13
Package an appliCationoc.ioeiiiiii et aa e 13

StaNdard PACKAGING . c.ueuniiiiiti et ettt ettt et ea et ea et e et et ea e e e eann 15
REVEISE PACKAGING «.eueeniiiiiiiii ettt ettt e et et e ettt et e e et e e e e e e e e 17
Package an [1S-based appliCationceuiiniiiiiiii e 26
DISCOVEIY .ttt ettt et ettt e et e et et et et et et et et en e 26
[[To L (TP PP TP PPPTPPRPPIR 27
TrOUDBLESNOOTING ..eniiiiniiii ettt ettt et ettt et et et e a e e aereaanas 29
Package CONTENTSoniniiiieie ettt et e et e et et et s e et e e e e e e e e s eneennen 30
SOUICE PACKAGE CONTEMES .uiunininiiiieii ettt ettt et et seae e s e et s e ta s e easeneeaseneenseneens 30
Deployed package COMEENTSuuiiniiii ittt et ettt et e e e e e e e e ea e e eaneanees 35
Deploy an @pPPLICAtioNc.uieniiiiii ettt et e e e e e e eans 35
[=Te [U1 =T a =] o PP PPN 36
RUN deploymMent T00Luiniiiii ittt et et ettt e e e e e 37

WOrking With EMP PACKAGES «..ucuniuniiniiiiiiei ittt eie ettt ettt ete et et ea et eaereneneneneneneennenennenns 38
=R ol o] - Lot o [l = PP OO P P 38
Compatibility PAckage fEAtUIESeiuiiiii it e e e et s e e e e e e e 39

FOrCEEXTEIrNAIMANITESTuivniiiiieeie ettt ettt e e e e et e et e et e et e et e e eaasaansannas 40
REGCLASSESMEIGING ..eueuiininiinti ettt et et et e et e e et et st et e e e e s e et s e e e s e en e ensaneens 41
DONOtHIAEDEDUGGETeniiieieiei et et ettt et ettt et et et et et ea e e eaneaneanes 41
HandlelNValidHANALEoeeinie ettt et e et et e et eaeeaeenenennas 42
NOTWOWBAPTOCESS ..eeenieniniiiiei ettt ettt et e ettt e sttt e s e e e et ea e enetaensaenanns 42
NEtWOIrKREAITECTION ... ettt ettt ettt et e et e e e e e e e e e e e e ens 42
LocalMappedObjectShimttt e 44
DEPOPEOUL ..ttt ettt et et e e et et et e e e e e 45
COMVIIUALIZALION .oenii ittt ettt e et et e e e et ene et enenenenennannens 45
FOrCEWINAOWSVEISION .. euiiniiiit ettt ettt ettt et et et e e et et et e e e e s e e e e e e e e e eeneanes 46
RedirectX64PackagedREGIStIY . .cuuiuniiiiiiii ittt et e et et et e e e e e eaen 46
LOQASYSEEIMRESOUITES ...euuiuniniiiiiie ettt ettt ettt ettt ettt tneenetne et eneneneneenseneeaseneenneneennenns 47
Edit, upgrade, and mMaintain PACKAGESeuniuniiii ittt et e et et et et et eaeaaeaneans 47
Bt oo et a e e 47
810 Te 11 [« [T O P PP PP TR PTPPPTPRPRt 48
=TT 01 = 11 o [PPSR PPP 48
OPtiMIZE ProCeSS MONITOL ...uiuititiiiii ettt e e et et et et e e et ettt taananenenenenenenensnenenns 49

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide

Update a deployed Packagec.e e ettt 50
UNINSTall @ PACKAge ...eeeie et ettt et e e e e eas 51
[l a =11 (I oY T | [T« RSP PPPPPNN 52
Manage cuStom CONFIGUIALIONSiuieiiiiiit et e et e e e e e e et e e e e e e eaaaanas 54
LINK PACKAGES «.euiiniiiiiii ettt et e et et et et et et et et et et et et ettt et e et e et aea e e eans 56
ODBC AFIVEIS ettt ettt et et ettt ettt et e et et et e et e et e eb e eb e ta et et e eaa e et e eneeneeneanenns 57
Enable out-0f-process COMcuuiiiniiiei ettt et et e et et et et e et e eba e ebeebeenaennae 58
Add SXS @SSEMDBLIES ...ttt ettt ettt et ettt et et et et e b ea e e 59
EXCLUAE OF ELACh @ PrOCESS uuivniriiiiiiie ittt et ee e e et et et e ee et e ee et e ee et s aneansaneensaneansaneanaanns 60
RUN cmd. exe as @ ChIld PrOCESSouiiuiitiiiii ittt e e et e e e e e e e e e e e e e aneens 61
SY=TaT] 11 8PP PSPPI 64
[DE) - I olo] L =Tat £ Tc T PSPPSR RO SPTUPPRPPPPPRt 65
J e8] o] £=1 g e To) i 5 T« TP 66
[V LT Lo o PP PPTN 68
DOCUMENT HISTOY neuininii ittt ettt e et et et e et e et e e ea et en et e et et es et eneananeaneneanteneaanes 69

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Features

What Is AWS End-of-Support
Migration Program (EMP) for
Windows Server?

The AWS End-of-Support Migration Program (EMP) for Windows Server provides the technology and
guidance to migrate your applications running on Windows Server 2003, Windows Server 2008, and
Windows Server 2008 R2 to the latest, supported versions of Windows Server running on Amazon Web
Services (AWS). Using EMP technology, you can decouple critical applications from their underlying
operating system so that they can be migrated to a supported version of Windows Server on AWS
without code changes.

Topic contents
» Features of AWS End-of-Support Migration Program (EMP) for Windows Server (p. 1)
o AWS End-of-Support Migration Program (EMP) for Windows Server concepts (p. 2)
» Supported operating systems and requirements (p. 2)
o Accessing AWS End-of-Support Migration Program (EMP) for Windows Server (p. 2)
« Pricing for EMP (p. 3)

Features of AWS End-of-Support Migration
Program (EMP) for Windows Server

AWS End-of-Support Migration Program (EMP) for Windows Server offers the following features to
help you migrate your applications running on legacy Windows Server operating systems to supported
versions.

Install capture

During packaging, a snapshot is taken of the current state of the operating system and a capture process
starts recording all changes made during the application installation.

Runtime analysis

File and registry access, along with changes that occur when an application is launched from this section
of the packing wizard, are recorded and made available for addition to the package being created. This
feature allows EMP to include first-launch changes by the application to the system.

Legacy OS support

An EMP package is created on the operating system that is currently supported by the application
being packaged. This compatibility packaging allows you to migrate an application from an operating
system with which it is compatible to one with which it is incompatible, while preserving application
functionality.

Cross-platform support

You can deploy a single package across multiple supported operating systems.

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Concepts

Pre- and post- deployment scripts

You can include custom scripts in the package to deploy MSI (Microsoft Installer) files or to run other
tasks that must be performed as part of the package/application deployment process.

Fast editing with no package recompilation

The time it takes to package, test, and update applications and configurations is reduced with fast
editing, which requires no package recompilation. EMP packages can be updated to include application
updates or the latest EMP components.

AWS End-of-Support Migration Program (EMP) for
Windows Server concepts

The following concept is central to your understanding and use of AWS End-of-Support Migration
Program (EMP) for Windows Server.

Packaging

The process of capturing a legacy application using the EMP package builder on the source operating
system.

Clean packaging server

A server instance of the Windows operating system version that is supported by the application to be
packaged.

Compatibility package

When the EMP compatibility packaging process is complete, the output of the package builder is called
an EMP compatibility package.

Supported operating systems and requirements

For supported operating systems and requirements to successfully migrate your application with AWS
End-of-Support Migration Program (EMP) for Windows Server, see AWS End-of-Support Migration
Program (EMP) for Windows Server System requirements (p. 6).

Accessing AWS End-of-Support Migration Program
(EMP) for Windows Server

AWS End-of-Support Migration Program (EMP) for Windows Server offers standalone tools that you
download and install on your developer workstation. You can download the EMP tools from the End-of-
Support Migration Program for Windows Server product page.

New releases of the AWS End-of-Support Migration Program (EMP) for Windows Server Compatibility
Package Builder are provided in MSI format. To upgrade to a new version from a previous version,
uninstall the previous version by using the Add or Remove Programs feature from legacy Windows
operating systems, or from Programs and Features in the Control Panel for later operating systems.
Then, reinstall the package with the latest MSI.

http://aws.amazon.com/emp-windows-server/
http://aws.amazon.com/emp-windows-server/

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Pricing

Pricing for EMP

AWS End-of-Support Migration Program (EMP) for Windows Server is available for use at no cost.

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide

How AWS End-of-Support Migration
Program (EMP) for Windows Server
works

AWS End-of-Support Migration Program (EMP) for Windows Server technology identifies the
dependencies that your application has on a legacy operating system, and creates a package that
includes the resources necessary for the application to run on a new version of Windows Server.

The EMP Compatibility Package Builder creates packages for legacy Windows applications to run on

any supported target operating system. It uses an install-and-capture snapshot process to create a
package that includes all of the changes made during application installation. After the package has
been created, application and runtime analyses detect additional configuration changes that occur when
the application first runs. The EMP package can be manually deployed using a command passed to its
deployment program. Deployment can be automated with scripts or managed by enterprise tools, such
as AWS Systems Manager.

Application compatibility packages include everything an application requires to run on a modern
operating system. This includes all of the application files, runtimes, components, deployment tools, and
the embedded redirection and compatibility engine. The EMP Compatibility Package Builder creates a
package on the existing operating system that runs the legacy application (for example, Windows Server
2003 or Windows Server 2008) so that it can determine the application dependencies for the out-of-
support operating system and set the required redirections. The redirection and compatibility engine

is designed to run in user mode. When the package is deployed to the target machine, the file type
associations are registered and shortcuts are created to run the application.

Compatibility packaging follows these three principles:

« Packaging is performed on the operating system supported by the application.

« Runtime analysis is performed to detect and review first-run activity of the application after
installation.

« The redirection and compatibility engine, along with the package deployment program, are included in
the package.

The package does not include the legacy operating system, which means you never run any part of the
legacy Windows Server version on the new Windows Server to which the application is upgraded. The
redirection engine intercepts the API calls that the application makes to the underlying Windows Server
operating system, and redirects them to the files and registry within the created package. As a result,
the request by the application for resources that are present within the package are redirected to the
package so that the application runs successfully on the new operating system. This lightweight strategy
means that the target application can see a combination of the redirected and local file system and
registry with minimal impact on the performance of the application or local machine. The approximate
RAM overhead per application is 3 to 5 MB, with no measurable CPU impact after the application has
started.

Common redirections (not including file and registry redirections) supported by the EMP compatibility
engine include:

« The application uses a fixed port. The EMP engine redirects to an appropriate and available port on
the new version of the operating system.

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
The EMP process

« The application accesses data stored in a fixed location that is not available on the new OS version.
The EMP engine redirects these requests to the appropriate location on the new version of the
operating system.

« The application is hardcoded to ¢: \WinNT. The EMP engine redirects the application to C:
\Windows.

« The application requires Java version 1.3. EMP packages and isolates the application with Java 1.3 so
that it does not make calls to newer Java runtimes in the new version of the operating system.

Topics
o The AWS End-of-Support Migration Program (EMP) for Windows Server process (p. 5)
« AWS End-of-Support Migration Program (EMP) for Windows Server System requirements (p. 6)
» AWS End-of-Support Migration Program (EMP) for Windows Server limitations (p. 7)
« Data collection (p.7)
« Components of the EMP Compatibility Package Builder (p. 7)

The AWS End-of-Support Migration Program
(EMP) for Windows Server process

This section provides a high-level overview of the EMP process, including the steps involved in each
phase of the process.

The EMP process

Testing on current
> on-premises
environment

Portfolio discover /

Application discovery
documentation

Testing on target EC2
instance

os v
Packaging > | est o >

>

v

~ Deploy to production
Packaging is run on a cloned EC2 instance or
on current on-premises environment if cloning
is not feasible

The EMP process:
« Discovery (p. 6)
» Packaging preparation (p. 6)
« Packaging (p. 6)
» Deployment (p. 6)

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Discovery

Discovery

During discovery, target applications are recognized using AWS Optimization and Licensing Assessment
(AWS OLA). Discovery includes identifying legacy applications that require EMP packaging for migration
to later versions of the Windows Server operating system.

Packaging preparation

Packaging preparation includes the following steps.

Clone the server image to the AWS instance, if possible.
Complete application discovery.
Plan user acceptance testing (UAT).

Pwn =

Define the target environment.

Packaging

Packaging includes the following steps.

1. EMP package builder packages the application on the source server version, guided by application
discovery. The source server version is the Windows Server operating system that currently hosts the
application.

2. The package is tested on a clean source server version and any required remediation is performed.

3. The package is tested on the target server version instance following the UAT plan. Any necessary
remediation is performed.

Deployment

Deployment includes the following steps.

1. Deployment and testing on the target environment.
2. Production deployment.

AWS End-of-Support Migration Program (EMP) for
Windows Server System requirements

AWS End-of-Support Migration Program (EMP) for Windows Server supports the following operating
systems:

« Windows Server 2016 (64-bit)

» Windows Server 2012 R2 (64-bit)

« Windows Server 2008 R2 (64-bit)

« Windows Server 2008 (32-bit and 64-bit)
« Windows Server 2003 SP2 (32-bit)

The following system requirements must be met to migrate your application with AWS End-of-Support
Migration Program (EMP) for Windows Server.

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Limitations

« .NET. Microsoft .NET 4.0 Client Profile, or later.
« Memory. As required by the packaged applications. Minimum 2 GB.
« Processor. As required by the packaged applications. Two CPUs recommended.

« Disk space. 10 GB required to create the snapshots. The size of the EMP package depends on the size
of the application. It will be 10 to 50 percent larger than the application being packaged.

AWS End-of-Support Migration Program (EMP) for
Windows Server limitations

The following application and component types cannot be migrated using AWS End-of-Support
Migration Program (EMP) for Windows Server.

« Applications that do not run on the Windows operating system.

« 16-bit applications. If the target operating system is a 64-bit Windows operating system, the NT
Virtual DOS Machine (NTVDM) required to run these applications is available on 32-bit Windows
operating systems only.

« Kernel-mode drivers that are a different bitness than the target operating system. Device drivers
are not virtualized with EMP and therefore must be compatible with the target operating system.
Compatible drivers can be deployed with the package. For example, if you are moving to a 64-bit
operating system, you must have a 64-bit driver that is compatible with the new operating system.

« Low-level applications. For example, antivirus, firewall, and VPN applications.
« Explorer Shell Extensions.

» Microsoft BizTalk and Microsoft Transaction Server (MTS)-based systems.

« Desktop applications.

Data collection

AWS collects usage information through the EMP telemetry module during the deployment and
subsequent use of EMP packages. The telemetry module sends the collected data to an application
modernization metrics service running on AWS. To view the data collected by the telemetry module, see
Data collected by the AWS End-of-Support Migration Program (EMP) for Windows Server (p. 65) in

the Security section of this guide.

Components of the EMP Compatibility Package
Builder

The installation directory of the Compatibility Package Builder includes the following files and folders.
Files

« Compatibility.Package.Builder.exe — the Package Builder program.

« Compatibility.Package.Builder.cfg — Used to configure packager settings, such as file scan root
directory.

« Compatibility.Package.Builder.exe.config — Contains packager program settings, such as packager
event logging level and dependencies, such as the .NET runtime version.

« Compatibility.Package.Builder.log — Logs package builder events during packaging.

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Compatibility Package Builder components

« Compatibility.Package.CmdLineBuilder.exe — The CLI version of the Package Builder. Uses the
PackageScript.xml as its response file.

« Compatibility.Package.CmdLineBuilder.exe.config — Includes the CLI program settings, such as CLI
event logging level and dependencies, such as the .NET runtime version.

« EULA.rtf and eula.base — The end-user-license-agreement files. the content of the . rtf file is copied
into the .base file, which is saved as HTML in the package root folder.

« ExclusionList.json — A configuration file that contains the list of files, folders, and registry keys that
are ignored during scanning.

« Open Source Licenses.txt — Contains the license for the open-source components in the Package
Builder.

Folders

« Images — Contains the graphic files used by the Package Builder application.

« x64 (Engine Binaries) — Contains the EMP runtime files for packages to be deployed on a 64-
bit system. When packaging is performed on a 64-bit machine, the contents of this folder are
automatically copied into the root folder of the EMP package during the package build. An EMP
package that was built on a 64-bit machine cannot be run on a 32-bit machine.

« x86 (Engine Binaries) — Contains the EMP runtime files for packages to be deployed on a 32-
bit system. When packaging is performed on a 32-bit machine, the contents of this folder are
automatically copied into the root folder of the EMP package during the package build. An EMP
package that was built on a 32-bit machine will run on a 64-bit machine, however, we recommend that
you use the appropriate runtimes for the destination platform. This is automatically handled during
the deployment process.

« Tools — Contains three sets of tools that are available to EMP packages.
 DiscoveryTool — A command line tool that can perform a limited discovery of a server.

Commands

e Compatibility.Package.DiscoveryTool.exe -d "<InstallDirectory>— Writes a list
of loaded COM servers and drivers in <Currentdirectory>\Report. json.

e Compatibility.Package.DiscoveryTool.exe -1 — Lists features and subfeatures of the
tool in the command console.

 Editor — Used to edit existing packages. This tool has a shortcut in the Start menu, where it goes by
Compatibility Package Editor.

« ReversePackagingTools — A command line tool set used in the reverse packaging process, a
method of compatibility packaging used when application installation media is not available. This
tool set is used during the first two stages of reverse packaging:

1. Install media reverse engineering — A reverse engineered installation media, called a package
source is generated from a working instance of the application on the server.

2. EMP package build — The package source installation is then captured on a clean packaging
server using the Compatibility Package Builder.

Commands

¢ type <procmoncapture.CSV> | GeneratePackageSource.exe |
RemoveKnownFolders.exe > <outputfilename.json>— Generates a manifest for the
package source from the CSV file using RemoveKnownFolders.exe to remove common known
system registry keys, files, and folders.

¢ type <filteredoutputfilename.json> | ExportFromSystem.exe >
<logfilename.txt> — Extracts the listed files, directories, and registry keys from
the operating system and compresses them along with the remaining contents of the
ReversePackagingTools folder into PackageSource. zip. This file is a reverse-engineered
installation media for the application.

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Compatibility Package Builder components

e type <filteredoutputfilename.json> | DeployToSystem.exe >

<logfilename.txt> — Installs Package Source during the package build on the packaging
server using the package builder.

« lISTools — A set of command line scripts used to enable the automatic migration of legacy Windows
IIS applications to a modern, supported version of Windows Server on AWS. For more information,
see Package an I1S-based application (p. 26).

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Decision tree

Get started with AWS End-of-
Support Migration Program (EMP)
for Windows Server

This section helps you get started with creating an EMP package to help you migrate your legacy
application to a modern Windows Server operating system. It includes a decision tree to help you
determine whether the AWS End-of-Support Migration Program (EMP) for Windows Server is the right
solution for your migration, considerations for planning your migration, high-level discovery steps,
Compatibility Package Builder installation steps, procedures for packaging an application with or without
installation media, and steps for deploying a packaged application.

Getting started topics
o AWS End-of-Support Migration Program (EMP) for Windows Server decision tree (p. 10)
« Planning an AWS End-of-Support Migration Program (EMP) for Windows Server migration (p. 11)

» High-level AWS End-of-Support Migration Program (EMP) for Windows Server application discovery
exercise (p. 11)

o Install AWS EMP Compatibility Package Builder (p. 13)

o AWS End-of-Support Migration Program (EMP) for Windows Server application packaging
model (p. 13)

« Package an lIS-based application (p. 26)
« EMP compatibility package contents (p. 30)
« Deploy an EMP package (p. 35)

AWS End-of-Support Migration Program (EMP) for
Windows Server decision tree

The EMP decision tree is a set of questions to assist you in determining whether EMP is the right solution
for migrating applications onto modern Windows Operating Systems in AWS.

EMP decision tree Are you migrating legacy

Nindows
amodem

Are there viable native upgrade
EMP is not needed paths for the legacy
applications?

=20 CRETEs Are some of the applications

ca;be migrated to known to be incompatible with

Amazon Web Services the target Windows operating

without EMP | system?

" No 7 Yes
et Y

Are the applications 16-bit,

does they use kernel mode

drivers, of they low-level

applications?

These applications
can be migrated to

No
y

These applications Use EMP to package the
are out of scope for applications before migrating to
EMP Amazon Web Services

10

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Planning a migration

Planning an AWS End-of-Support Migration
Program (EMP) for Windows Server migration

When you plan an AWS End-of-Support Migration Program (EMP) for Windows Server migration,
consider the following:

« Application environment — legacy to target

It is important to understand the existing architecture of the application that is being migrated so that
the target environment can be correctly set up. In an n-tier application model, you should identify
each server that makes up the model and understand which of the servers require migration and which
of them require EMP for the migration process. Some of the servers may already be migrated onto a
modern platform in AWS and using a step-by-step migration approach ensures a smooth transition to
AWS.

For example, if you attempt to migrate a three-tier application that consists of an Internet Information
Server (1IS) web server, application server, and SQL Server 2008, all running on Windows Server 2008
on premises, the migration plan might look like this: the [IS Web Server migrates to a Windows Server
2019 in AWS without the need for EMP migration. The application running on the application server is
captured into an EMP package and migrated onto a Windows Server 2019 running on AWS, and SQL
Server is migrated to Amazon Relational Database Service (Amazon RDS). If the application works only
on the legacy version of SQL Server, then it can be captured into an EMP package and migrated to a
modern operating system.

« Standard vs. reverse packaging

The application discovery (p. 11) exercise determines whether the standard (p. 15) or
reverse (p. 17) packaging model should be applied.

Note
If the criteria for standard packaging is met, we recommend that you follow this methodology
rather than the reverse packaging methodology.

» Packaging and testing environment

Set up your packaging and testing environments according to the results of the application discovery
exercise. For more information about each packaging scenario, see AWS End-of-Support Migration
Program (EMP) for Windows Server application packaging model (p. 13).

High-level AWS End-of-Support Migration
Program (EMP) for Windows Server application
discovery exercise

After you identify the applications to migrate using EMP, we recommend that you perform an
application discovery exercise for each application. EMP application discovery refers to the process

of gathering and documenting all of the information about a legacy application that is required to
inform the creation of a functioning EMP package and its deployment onto a modern, supported target
environment. The information required to complete application discovery comes from both the legacy
and target environments, and typically includes configuration details, installation instructions, topology,
customizations, security requirements, users, and more.

When the application discovery is complete, analyze the information against the EMP limitations (p. 7) to
determine EMP eligibility.

11

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
High-level discovery

We recommend that an application subject matter expert (SME) is available to assist with the discovery
process. The application SME is a representative who knows how the application works for the business
and is familiar with the business workflows within the application. The SME can demonstrate all business
workflows and also define or agree upon an acceptance testing plan for the application if one does not
exist. The acceptance testing plan can be used during the testing of the application in the EMP package.

The following table shows a discovery checklist to guide you through the discovery process.

Checklist item

Application name and version

Application subject matter expert (SME)

Software prerequisites required by the application

Source operating system

Target operating system

Are the install media and install instructions
available?

Application topology and external dependencies

Does the application require specific drivers?

Other application details

Windows features and roles required

Known issues

Details

The name and version of the application that you
want to migrate.

The name and contact details of the application
SME to assist with the migration.

The software required to be installed before or
with the application. For example, .NET 2.0 SP1,
earlier versions of Java, Visual C++ runtimes, and
more. The dependencies can be included in the
same package as the application.

The operating system on which the application
currently runs.

The operating system to which you want to
migrate the application.

The answer to this question determines the EMP
packaging model to be follow for migration
(standard (p. 15) or reverse (p. 17)

packaging). For standard packaging, gather install
media, instructions, and customizations required
to carry out a complete setup of the application
on the legacy OS.

For example, three-tier topology with an
application/desktop tier, an 11S-based web tier,
and a database tier all hosted on different servers
requiring connectivity between one another.

If so, is a 64-bit compatible version available?
(Check the EMP limitations (p. 7)).

What is the bit rate of the application: 32- or 64-
bit? Does it use COM+ or DCOM components?

Are Windows Services installed or used by the
application? Do any services require domain or
local service accounts? Is the application subject
to Data Execution Prevention (DEP)? Are there any
firewall ports that should be opened?

The Windows features and roles required by the
application to set up on the modern operating
system.

Any known issues of the application to account for
during the testing phases.

12

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Install Compatibility Package Builder

Checklist item Details
Cross-check against EMP limitations Verify whether the application is in scope for EMP
packaging.

Install AWS EMP Compatibility Package Builder

The AWS EMP Compatibility Package Builder is the primary tool used to create EMP compatibility
packages to deploy functioning legacy Windows applications on modern Windows Server operating
systems on which they would otherwise be incompatible. Package Builder is provided in an MSI installer
file that installs the tool on a clean packaging server. A clean packaging server is a server instance of the
Windows operating system version that is supported by the application to be packaged.

Perform the following steps to install the AWS EMP Compatibility Package Builder.

1. If you have not done so already, download AWS EMP Compatibility Package Builder from the AWS
End-of-Support Migration Program (EMP) for Windows Server product page.

New releases of the AWS End-of-Support Migration Program (EMP) for Windows Server
Compatibility Package Builder are provided in MSI format. To upgrade to a new version from a
previous version, uninstall the previous version by using the Add or Remove Programs feature from
legacy Windows operating systems, or from Programs and Features in the Control Panel for later
operating systems. Then, reinstall the package with the latest MSI.

2. After you have downloaded the EMP tools, double-click the Compatibility Package Builder file to run
it.

On the Welcome to the Compatibility Package Builder Setup Wizard pop-up, choose Next.
In the End-User License Agreement, select the terms agreement, and choose Next.

Under EMP Telemetry, select the check box to enable telemetry (optional), and choose Next.
Accept the default Destination Folder, or modify it, and choose Next.

Choose Install.

© N o U A~ W

When the application installation completes, choose Finish.

AWS End-of-Support Migration Program (EMP) for
Windows Server application packaging model

The following model and descriptions show the process of packaging a legacy application using AWS
End-of-Support Migration Program (EMP) for Windows Server. There are two packaging scenarios:

« Standard packaging. Use when the application media and install instructions are available to recreate
an up-to-date installation of a legacy application in its current supported operating system.

« Reverse packaging. Use when the application media or the install instructions are not available to
recreate an up-to-date installation of a legacy application in its current supported operating system.

Note
If the criteria for standard packaging is met, then we recommend that you apply this packaging
method instead of the reverse packaging method.

13

http://aws.amazon.com/emp-windows-server
http://aws.amazon.com/emp-windows-server

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Package an application

The EMP application packaging model
Standard packaging Reverse packaging

Application server
2003/2008 v
Clone of application
server
2003/2008

system
2003/2008

Amazon Web Services
testing server —
deployment operating
system 2016/2019

Application server
The legacy application server on which the legacy application is installed and runs.
Clone of the application server

The clone of the application server that is used for the process capture phase of the reverse packaging
process. For information about the reverse packaging process, see How to package an application when
installation media is not available (reverse packaging) (p. 17).

If you do not want to clone the production servers, then you can skip this step and follow the initial steps
of the reverse packaging process on the production application server. We recommend that you follow
standard best practices for working on a production system.

Packaging server

The server is an original build, including service packs, of the server operating system where the
application is installed and runs. The EMP product is installed and used to create the EMP application
package on this server.

Testing Server—source operating system

This testing server is an original build, including service packs, of the server operating system where the
application is installed and runs. It is used to validate the EMP package on the operating system on which
it was created.

AWS Testing Server—deployment operating system

This testing server is the target operating system on which the EMP package must run. This server is
used to validate the application in an EMP package on the target operating system within the AWS
environment.

On-premises testing server—deployment operating system

This server is the target operating system on which the EMP packages must run. This server is used to
validate the application in an EMP package in the target, on-premises operating system.

Note

This step is required only if there is a benefit to test the package in an on-premises environment
to validate that it works as expected before migrating the application to AWS, or if it is

required to troubleshoot any issues. It helps identify whether issues are the result of the AWS
environment setup, the EMP package, or the target operating system.

14

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Standard packaging

If you want someone at AWS or one of our partners to perform the application packaging for you, then
submit a request to AWS 1Q.

Packaging instructions:
» How to package an application when installation media is available (standard packaging) (p. 15)
« How to package an application when installation media is not available (reverse packaging) (p. 17)

How to package an application when installation
media is available (standard packaging)

When installation media is available, an application is packaged with the EMP Compatibility Package
Builder. The package builder uses installation snapshot-based packaging along with runtime analysis to
create compatibility packages for applications.

Perform the steps in the following stages to create a compatibility package using the package
builder when installation media is available:

« Stage 1: Install capture (Required) (p. 15)

« Stage 2: Runtime analysis (Optional) (p. 15)

« Stage 3: Edit package contents (Optional) (p. 16)
« Stage 4: Package Finalization (Required) (p. 16)

Stage 1: Install capture (Required)

1. After you install the tools from the End-of-Support Migration Program for Windows Server product
page, launch the package builder from your desktop.

2. On the Select Package Folder page, choose Select Folder. Select a package folder to specify where
the package will be created, then choose OK.

3. Choose Next.

4. On the Start Capture page, choose Start Capture to capture the state of the system before the
application is installed.

5. Choose Next when the capture is complete.

6. Install the application, components, and any required dependencies.

7. When all of the installations have completed, reboot ONLY if required by the application installer.
After the reboot completes, you can restart the package builder from your desktop.

8. Return to the package builder, and on the Install Application page, choose Next.

9. |If required, proceed to Stage 2: Runtime analysis (Optional) (p. 15); otherwise, choose Next to
proceed to Stage 3: Edit package contents (Optional) (p. 16) .

Note

When it is launched from the desktop shortcut only, runtime analysis reviews file and registry
operations (for example, read, modification, and creation) performed by processes. This is not
a required step, but can be used to review and include changes to the registry and file system
during the first run of the application. It can also be helpful to review what the application
processes do when running under the EMP engine.

Stage 2: Runtime analysis (Optional)

The package builder detects all files, registry keys, and shortcuts created or modified when the
application runs for the first time. Shortcuts are displayed on the Run Installed Applications screen. If
no shortcuts are displayed, proceed to Stage 3: Edit package contents (Optional) (p. 16).

15

https://iq.aws.amazon.com/?utm=docs
http://aws.amazon.com/emp-windows-server/

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Standard packaging

Important

Do not use any desktop or Start menu shortcuts. Start the application using only the shortcuts
displayed in the package builder. If you use shortcuts other than those displayed in the package
builder, configuration changes will not be captured by the package builder.

The following steps enable application files and registry entries that are created when the application is
configured for the first time to be captured in the package.

1.

Start the application by using the shortcut in the package builder. Do not use shortcuts on the
desktop or Start menu.

Choose each shortcut to load the shortcuts.

Perform any required configuration changes to ensure that the application is configured for users
the first time it starts. If the packaged application fails during a particular workflow, or an issue is
identified during user acceptance testing (UAT), try to repeat the workflow during the packaging
process.

Close the programs, and choose Next to continue.
Choose Complete Capture to record the final state of the system.

After the capture successfully completes, the following message displays Capture completed.
Please click “next” to continue.Choose Next.

Important
Do not uninstall the application during runtime analysis or the package builder will capture this
change and create the package without the application.

Stage 3: Edit package contents (Optional)

Files, registry keys, and redirects can be added to, removed from, or modified in the package depending
on what was captured during the install capture and runtime analysis.

The following steps show how to modify the contents of the package.

1.

On the Captured Files page, you can use the left-hand pane Files in package to view or remove
files, or to add redirections for files captured in the package by the install capture process.

Navigate to the file or folder, open the context (right-click) menu, then choose Redirect or Remove
Item, as required. If you choose a folder and want to redirect all subfolders, then choose Redirect
Children.

If you redirect or remove an item, the available options on the context menu changes to Remove
Redirect or Add Item, which allows you to reverse your changes.

To include the files detected by runtime analysis, use the right-hand pane Files requested at
runtime

Navigate to the file, open the context (right-click) menu, and choose Include in package.

Choose Next, which displays the Captured Registry Keys page. From this page, you can view and
manage registry keys in the same way as files.

Choose Next when you have made the required changes for registry keys.

Stage 4: Package Finalization (Required)

1.

On the Package page, in the App Name box, enter a unique name for the application, which
automatically populates the App ID box.

Optionally, enter a description for the application in the Description box.
From the Run drop-down list, optionally select the executable that is used to load the application.

16

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Reverse packaging

Choose Package App to create the package.
Choose Next when the Press “Next” to continue message is displayed.
To view the contents of the package, choose Open Package.

To make changes, choose Edit this Package to modify the contents of the package or to change the
name, description, and initial executable in the package.

8. When you are finished, close the package builder by choosing the X in the top right-hand corner.

N o v s

How to package an application when installation
media is not available (reverse packaging)

The following steps must be performed to create a compatibility package using the package builder
when installation media is not available:

« Prerequisites for reverse packaging (p. 17)

« Use Process Monitor to discover the files and registry keys used by the application (p. 18)
« Filter the capture (p. 19)

« Choose which processes to save in the capture (p. 19)

» Capture the files and registries (p. 19)

» Create the export bundle of the files and registry keys required for the application (p. 21)
» Create the new packaged version of the application (p. 21)

« Package applications on multiple drives (p. 22)

« Integrate COM+ applications into EMP packages (p. 23)

Prerequisites for reverse packaging

The following prerequisites must be met to successfully package an application when the installation
media is not available.

Requirements

To successfully migrate server applications when the installation media is unavailable, you must have
access to a virtual server or instance with a working version of the application.

Software prerequisites
The following software is required to package an application without the installation media.

« Windows Sysinternals Process Monitor (Procmon.exe). Used to trace files, processes, and registry
keys of a running application. Copy the procmon. exe tool to a folder on the instance. In the
packaging procedure described in this topic, we copy it to the ReversePackagingTools folder of the
EMP Compatibility Package Builder installation .

« The EMP package builder. To install the EMP Compatibility Package Builder, see Install AWS EMP
Compatibility Package Builder (p. 13). You can find the reverse packaging tools in the Tools folder
of the installation.

« On a 32-bit instance, the default installation folder path is C: \Program Files\AWS\EMP.
« On a 64-bit instance, the default installation folder path is Cc: \Program Files (x86)\AWS\EMP.

« A text editor with syntax highlighting that supports JSON and XML. Notepad++ is one free option.

The next phase of this process is to use Process Monitor to discover the files and registry keys that are
used by the application on the source machine.

17

https://notepad-plus-plus.org/

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Reverse packaging

To optimize the setup of Process Monitor for reverse packaging, see Optimize Process Monitor for
Reverse Packaging (p. 49).

Use Process Monitor to discover the files and registry keys used
by the application

The next phase of the process is to use Process Monitor to discover the files and registry keys that are
used by the application on the source machine.

To set up Process Monitor for application discovery, see Optimize Process Monitor for Reverse
Packaging (p. 49).
Reverse packaging steps

« Prepare to discover the application (p. 18)

» Discover the files and registry keys used by the application (p. 18)

Prepare to discover the application

To prepare for discovery, complete the following steps.

1. Verify that no applications or processes other than those required by Windows are running. This
improves the quality of the capture.

Navigate to the ReversePackagingTools folder.

Open (double-click) procmon. exe to launch Process Monitor.

On the Process Monitor License Agreement pop-up, choose Agree to load Process Monitor.

vk W

To ensure that Process Monitor captures everything that happens on the machine, you must enable
advanced output by selecting Enable Advanced Output from the Filter dropdown menu.

Discover the files and registry keys used by the application

After Process Monitor is installed and configured, complete the following steps to discover the
application:

1. Load the application that you want to discover.
2. Use the application to perform typical operations.

To get a high-quality discovery of the application files and registry keys, use the common workflows
performed by your users and any workflows performed at the end of the month or quarter, such as
reporting. If you load and close the application only, you are more likely to generate a package that
fails during user acceptance testing. We recommend that you use the application as it is typically
used in your production environment, and for a longer period of time. This prevents the necessity of
repeating the discovery process because of missed files and registry keys.

If you are not sure which workflows are relevant to the application, ask an end user of the
application to perform their workflows on the application.

3. When you have finished using all of the features that you want to discover, close the application.
Return to the Process Monitor application.

5. Choose the Capture icon (image of a magnifying glass) on the Process Monitor toolbar. The Process
Monitor dialog box will display, stating Disconnecting from Event Tracking for Windows
(ETW). This can take up to a minute. When the disconnection completes, the Capture
icon will appear as crossed out by a red line.

18

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Reverse packaging

Filter the capture

After you create the capture, you must filter the output and determine which items to safely discard.
To filter the capture, perform the following steps:

1. Choose the Show Process and Thread Activity icon on the Process Monitor toolbar to clear the
selection. This removes these operations from the Process Monitor trace because they are not
required for this process.

2. Choose the Show Network Activity icon on the Process Monitor toolbar to clear the selection. This
removes these operations from the Process Monitor trace because they are not required for this
process.

3. Choose the Save icon on the toolbar.
On the Save to File pop-up, verify that both Events displayed using current filter and Also include
profiling events are selected, then choose OK.

Note

Later in this procedure, we will save only the processes that we believe should be included
in the capture as the basis for capturing and creating the packaged version of the
application. The reason we save the capture at this point in the overall process is to have the
option to reload this version of the capture if we later realized we have omitted something
from the final capture. This prevents the necessity of repeating the capture from scratch if
we omitted something in error.

5. Display the process tree by entering CTRL+T or by selecting Process Tree from the Tools menu. The
process tree displays, showing all of the processes captured by the Process Monitor.

Choose which processes to save in the capture

After saving the capture, you must choose which processes to save. Choose only the processes required
by the application to run successfully.

To save processes in the capture, complete the following steps.

Scroll through the Process Tree until you locate the executable used to load the application.
Choose the executable.
Choose Include Process to save this process in the final capture.

PN =

Review the Process Tree for additional processes to include in the final capture. Choose Include
Process or Include Subtree as required.

When you are finished reviewing the Process Tree, choose Close.

o w

On the toolbar, choose the Save icon.

7. On the Save to File pop-up, verify that both Events displayed using current filter and Also include
profiling events are selected.

8. Under the Format section, select Comma-Separated Values (CSV), and then choose OK.

9. Open Windows Explorer and verify that the log file has been created in the .CSV format, and that
the file size is greater than o.

10. Close the Process Monitor.

Capture the files and registries

After creating the log file, you must run the EMP reverse packaging tools to process the .CSV capture file
created by Process Monitor. The following two tools are used in this process:

19

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Reverse packaging

« GeneratePackageSource. This command compiles a list of the files and registry keys accessed by the
application from the Process Monitor capture. These are exported to a .JSON file one line at a time.

« RemoveKnownFolders. This command removes known files, folders, and registry keys that are not
required from the Process Monitor capture. Examples include background Windows services and
components that are already present on the target server.

To process the capture file with EMP tools, complete the following steps.

1. Open a command prompt as an administrator.

2. Navigate to the folder that contains the Process Monitor capture files, for example, C: \Program
Files\AWS\EMP\Tools\ReversePackagingTools.

3. Enter the following command, where <procmoncapture.CSV> is the name of the .CSV file that you
created and <outputfilename. json> is the name of output file that you want to create:

type <procmoncapture.CSV> | GeneratePackageSource.exe | RemoveKnownFolders.exe
> <outputfilename.json>

For example:

type Logfile.CSV | GeneratePackageSource.exe | RemoveKnownFolders.exe > source.json

Note

The GeneratePackageSource and RemoveKnownFolders commands can be run

one at a time by first piping the Logfile.CSV into GeneratePackageSource.exe,
and then running RemoveKnownFolders . exe to generate the source. json. If the
GeneratePackageSource.exe hangs, the Process Monitor may still have a lock on the
CSV file. If this is the case, resolve by rebooting the machine.

4. Navigate to Windows Explorer and verify that the .JSON file has been created and that its size is
greater than o.

5. Edit the .JSON file in a text editor, such as Notepad++.

6. Remove the lines where the path name is the same because a folder includes any subfolders and
contents.

I ' Program e\ AWS\IMP\ Tooks\BeversePackagmalooh\ source. 1o - Notepad ++
B & Sewch few Egeodeg L Settngs baoo B Bhoes Wedow © B
HE B sRD e |tk ¢ = LA[ED@E CICHCE] -

S osce pon 3]

S0h e forsgth s 30038 Ines 1 4732 a3 Cd:iS se:0|0 et TF-8 B

In this example, the files listed in the selected area of the .JSON file can be updated to
"%ProgramFiles\\Microsoft SQL Server", because it includes the folders and contents of
this folder.

7. Remove other items that are not relevant to the application and change entries, such as hard-coded
drive letters, to variables.

20

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Reverse packaging

8. Save the file with a different file name, such as FilteredSource. json. This allows you to revert to
the original file if you encounter problems later in the packaging process.

Create the export bundle of the files and registry keys required
for the application

After you edit and save the filtered source .JSON file, you must run the ExportFromSystem EMP tool.
This tool reads the .JSON file and compiles copies of files and extracts copies of registry keys required to
run the application. It adds them to the Files and Registry folders in the ReversePackagingTools
folder. When the export is complete, these folders and their contents are compressed into a file called
PackageSource.zip.

Note

Before you run this command, verify that all application services and processes are stopped so
that all of the required resources are successfully exported from the system. Any processes and
services that are in use will prevent a successful export.

Follow these steps to run the ExportFromSystem EMP tool.

1. Return to the administrator command prompt that you opened previously. If you closed it, open a
new command prompt as an administrator and navigate to C:\Program Files\AWS\EMP\Tools
\ReversePackagingTools

2. Enter the following command. <filterfile.JSON> is the name of the .JSON file that you created
when you captured the files and registry keys. <logfilename. txt> is the name of the log file that
you want to create to capture the output of running the ExportFromSystem command.

type <filterfile.JSON> | ExportFromSystem.exe > <logfilename.txt>

For example:

type FilteredSource.json | ExportFromSystem.exe > exportfromsystem.txt

We recommend that you pipe the output to a file to check for errors.

Note

It takes a while before the C: \Program Files\AWS\EMP\Tools
\ReversePackagingTools prompt displays. This is because of the number of actions
being performed by the ExportFromSystem tool.

3. Open Windows Explorer and verify that the PackageSource. zip has been created and that its
size is greater than 0. When the PackageSource. zip is created, you can use this to create an EMP
package for the application.

Create the new packaged version of the application

The final step in the reverse packaging process is to create a new packaged version of the application.

To package an application, the virtual machine on which the application is to be packaged must be
running the same version and service packs as the source machine of the application.

You must first copy the PackageSource. zip that you previously created to a new virtual machine.

1. Log on to the new virtual machine.

2. Copy and extract the PackageSource.zip to an empty folder.

21

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Reverse packaging

The contents of the PackageSource. zip should be the same as the C:\Program Files\AWS
\EMP\Tools\ReversePackagingTools folder on the source machine.

3. Follow the steps to create a new package using the EMP Compatibility Package Builder. When Install
Application is displayed, you can install the application.

You can now install the application using the EMP DeploytoSystem tool, which automates the
installation process. The application must be installed with this tool, and not with the application's native
installation system.

As an administrator, open a command prompt.

2. Go to the folder that contains the files extracted from the PackageSource. zip.
Enter the following command, where <filterfile.JSON> is the name of the .JSON file that
you previously created of the final list of files and registry keys used by the application, and

<logfilename.txt> is the name of the log file that you want to create to capture the output of
the DeployToSystem command.

type <filterfile.JSON> | DeployToSystem.exe > <logfilename.txt>

For example:

type FilteredSource.json | DeployToSystem.exe > deploytosystem.txt

We recommend that you pipe the output to a file to check for errors.

It will take a while before your folder is redisplayed. If you are prompted to reboot the instance,
you should do so only after the application is installed. If you reboot, run the Compatibility Package
Builder using the desktop shortcut.

When the command prompt is displayed, return to the EMP Compatibility Package Builder to
complete the packaging process.

Package applications on multiple drives

This section shows the additional configuration required to capture applications that are set up on
multiple drives. For this example, a typical install of SQL Server 2000 is installed on the ¢ drive, and the
data is stored on the D drive.

Application directories

« Data directory — D:\Program Files\Microsoft SQL Server
« Application directory — C:\Program Files\Microsoft SQL Server

The Process Monitor backing file should be used if process monitoring will take several minutes or hours.
Create this on the non-system drive with additional filters.

Example: package applications on multiple drives for SQL Server 2000

Expand PackageSource.zip to the ¢ drive.

2. Runthe DeployToSystem command from the ¢ drive location. File copy errors may occur if you run
this command from the D drive.

3. Package files in the ¢ drive may contain references to D drive locations. These locations must be
redirected in the AppRegistry.xml file.

22

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Reverse packaging

<Write>
<KeyName>HKEY CURRENT_ USER\Software\AWSEMP\Compatibility.Package|%GUID%\HKLM
\SOFTWARE\Microsoft\MSSQLServer\Replication</KeyName>
<ValueName>WorkingDirectory</ValueName>
<Value ValueType="String">D:\ProgramFiles\Microsoft SQL Server\MSSQL\REPLDATA</
Value>
</Write>

Many applications also have an internal configuration file that contains important file or directory
paths. For example, SQL 2000 includes a sqlsunin.ini file with important file paths. If redirection
is not implemented in this file for calls to the D drive file locations, the SQL Server fails to start.

The procmon and compatibility engine logs will show several non-redirected and path not
found errors, especially in the ERRORLOG file.

4. Add the following folder match redirection to Redirections.xml to redirect calls from the D drive
to the package.

<FolderMatch>
<From>D:\</From>
<To>ProgData</To>

</FolderMatch>

Integrate COM+ applications into EMP packages

This topic contains information for scripted integration of COM +applications into EMP packages. This
includes how to detect whether an application includes COM+ applications and how to include COM+
applications in EMP packages.
COM+ application topics

o Detect whether an application includes COM+applications (p. 23)

« Include COM+ applications in an EMP package (p. 24)

Detect whether an application includes COM+applications

Detect COM+ applications
1. Open the Component Services console using one of the following methods.

e Run dcomenfg in the command line or using PowerShell and expand Component Services.

« Open Component Services from the Start menu: Start>All Programs>Administrative
Tools>Component Services.

o Enter Component Services in the Search box.

2. Expand Component Services to list the COM+ applications. The following are the default COM+
applications that are included in Windows Server 2003 R2 and 2008 R2, with 1IS and Application
Server roles enabled. .NET Utilities is included only in Windows Server 2003 R2. COM+ Utilities (32-
bit) is only included on Windows Server 2008 R2. The rest of the applications are included on both
operating system versions.

« .NET Utilities (Windows Server 2003 R2)
« COM+ Explorer

« COM+ QC Dead Letter Queue Listener
« COM+ Utilities

23

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Reverse packaging

« COM+ Utilities 32-bit (Windows Server 2008 R2)
« System Application

The names of the COM+applications typically indicate to which applications they belong.

Include COM+ applications in an EMP package

To include COM+ applications in EMP packages, perform an EMP package build using the standard or
reverse packaging models. In this example, the Source Server is the server instance upon which standard
packaging was performed, or upon which the process monitoring was performed if the package is built
using reverse packaging.

Export the COM+ applications from the source server

1. Open the Component Services console using one of the following methods.

e Run dcomenfg in the command line or using PowerShell and expand Component Services.

« Open Component Services from the Start menu: Start>All Programs>Administrative
Tools>Component Services.

« Enter Component Services in the Search box.

2. Expand COM+ Applications and identify the COM+ applications that are installed according to the
specified applications.

3. Right-click on the first COM+ application that you want to export to open the context menu, and
select Properties.
Choose the Activation tab to display the Activation type details.

5. Change the activation type to Server application. Choose OK on the two warning messages, and
then choose the Advanced tab.

6. Under Debugging, select Launch in debugger so that you can edit the Debugger path. The
default debugger path is C: \Windows\system32\dllhost.exe /ProcessID:{GUID}. For
example, C:\Windows\system32\dllhost.exe /ProcessID:{0481F901-E8DC-446C-
B82F-7746E380214D}.

7. Add the following string to the path, where <DeployedPackagePath> is the path to the deployed
EMP package (%DefaultDir%). Ensure that there is one space character between this string and the
default path:

"<DeployedPackagePath>\Compatibility.Package.Engine.exe" /f

The debugger path should be set to:

"<DeployedPackagePath>\Compatibility.Package.Engine.exe" /f C:\Windows
\system32\dllhost.exe /ProcessID:{GUID}

For example:

"C:\ProgramData\EMP\SQL2005STDSP4_7807\Compatibility.Package.Engine.exe" /f C:\Windows
\system32\dllhost.exe /ProcessID:{0481F901-E8DC-446C-B82F-7746E380214D}

8. Return to the Activation tab and set the Activation type back to Library application. Choose Apply
and OK to close the COM+ Properties window.

9. Repeat steps three through eight for all of the other COM+ applications you discovered.
10. Right-click on the first COM+ application top open the context menu and select Export.

24

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Reverse packaging

11.
12.
13.
14.
15.
16.

Choose Next on the Export Wizard.

Enter the path to the exported MSI file and select Export user identities with roles. Choose Next.
Choose Finish to complete the export.

The exported COM+ application MSI and . cab files are exported to the specified location.

Repeat steps ten through fourteen for all of the COM+ applications you discovered.

Copy all of the exported COM+ applications into the root folder of the EMP package.

Discover missing dependent files

1.

10.

On a clean instance running the same operating system as the source server, verify that the required
1IS and Application Server roles are enabled.

Deploy the EMP package. Do not install the COM+ export at this time.

The exported COM+ applications in the MSI file often do not include all of the dependencies
required to register the COM+ applications on a new server. In this case, the dependent libraries
would have been captured into the EMP package. However, when the COM+ MSI installation runs,
the installations fails because the libraries cannot be found.

Open (double-click) the first COM+ MSI to start the installation. If dependencies are not missing and
the installations successfully completes, the COM+ application should appear in the Component
Services. Run the other COM+ MSi files. If all of the COM+ MSI installations complete successfully,
then proceed to the next procedure (Integrate the COM+ application installation into the package
deployment). If any installations fail with the error message Error registering COM+
Application. Contact your support personnel for more information, proceed with
the next steps to discover and add the missing libraries.

Launch SysInternals Process Monitor (procmon), clear the procmon window, start monitoring, and
attempt the first failed MSl installation again.

Stop the monitoring when the error appears.

Include a filter with a path that contains C:\Program Files\COMPlus Applications
(applicable to 32-bit COM+ applications installed on Windows Server 2003 and 64-bit COM

+ applications installed on Windows Server 2008 R2). Missing DLLs and possibly TLB files are
displayed. If you are running Windows Server 2008 R2 and no missing libraries are displayed, modify
your filter to include ¢: \Program Files (x86)\COMPlus Applications to discover any 32-bit
COM+ libraries required by your application.

Search the ProgData directory for the missing files. When you have found them, create the native
directory C:\Program Files\COMPlus Applications\GUID and copy the files from their
package location into the GUID folder.

Clear the procmon screen and attempt the installation again. If it completes, then all of the
dependencies have been found. If it does not complete, repeat step 7 to discover the missing files.

Repeat this process until all of the COM+ applications have been successfully installed. You may have
to modify your filter to contain C: \Program Files (x86)\COMPlus Applications to pick up
any missing 32-bit COM+ application libraries. The COMPlus Applications folders should now include
all of the libraries required to register all of the COM+ applications.

Copy the COMPlus Applications folder from the C:\Program Files into the corresponding
location in the EMP package (ProgData\Program Files). Repeat the same process for C:
\Program Files (x86) if you have discovered any 32-bit COM+ libraries on a 64-bit machine.

Integrate the COM+ application installation into the package deployment

When your COM+ applications are in the package root folder and, if there were any missing COM
+ registration dependencies, the discovered libraries in the COMPlus Applications folders are in the
package, add the COM+ application installation to the deployment using the DeploymentScript.xml

25

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Package an IIS-based application

feature. The following example tasks are required to add the COM+ application installation to the
deployment.

The first tasks copy the COMPlus Applications folders into their corresponding native locations. This is
required only if there are any missing COM+ registration dependencies. Add another task to copy the
ProgData\Program Files(x86)\COMPlus Applications if you added this to your package. The
second task, or set of tasks, runs the MSI installations.

<Install>
<Programs>
<Program Order="0" PrelInstall="true">
<ProcessWindowStyle>Normal</ProcessWindowStyle>
<Path>%SystemX86%\CMD.exe</Path>
<Args>/c XCOPY /E /H /I /R /Q /Y "C:\ProgramData\EMP\SQL2005STDSP4_7807\ProgData
\Program Files\COMPlus Applications" "C:\Program Files\COMPlus Applications"</Args>
<WaitCondition TimeoutInSeconds="0">Exit</WaitCondition>
</Program>
<Program Order="1" PostInstall="true">
<ProcessWindowStyle>Hidden</ProcessWindowStyle>
<Path>%SystemX86%\msiexec.exe</Path>
<Args>/i "%DefaultDir%\Microsoft.SqglServer .MSMQTask.MSI" /L*v "%DefaultDir%
\Microsoft.SglServer .MSMQTask.MSIInstalllLog.txt</Args>
<WaitCondition TimeoutInSeconds="0">Exit</WaitCondition>
</Program>
</Programs>
</Install>

Your deployed package can now be used as a source package for a successful deployment of your
package, which includes COM+ applications. To test the package, copy it to another server instance. The
next time the package is deployed, it should automatically install the COM+ applications. The debugger
setting in the COM+ applications allows them to be virtualized by the package engine.

Package an IIS-based application

EMP supports packaging and migrating legacy 11S-based applications that run on Windows Server 2003,
Windows Server 2008, and Windows Server 2008 R2 to the latest, supported versions of Windows Server
running on AWS.
Topics

« Discovery (p. 26)

« Migrate your I1S-based application (p. 27)

« Troubleshooting packaging an 11S-based application (p. 29)

Discovery

The first step of a migration plan is to identify additional 11S-based application dependencies that are
installed on the same server as the application you are migrating. For example, an 1IS-based application
can be dependent on a third-party application that generates reports, such as Crystal Reports.

If the dependency information is not available, try the following steps:
1. Navigate to and inspect the configuration files of the web application for dependencies.

The following example web . config file, found in C:\inetpub\wwwroot of an IIS-based
application, shows a dependency on Crystal Reports assemblies:

26

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Migrate

<assemblies>
<add assembly="CrystalDecisions.Web, Version=13.0.4000.0, Culture-neutral, PublicKeyToken—692FBEA5521E1304"/>
<add assenbly="CrystalDecisions.Shared, Version=13.0.4000.0, Culture=neutral, PublicKeyToken=692FBEA3521E1304"/>
<add assembly="logdnet, Version=1.2.10.0, Culture=neutral, PublicKeyToken=692FBEA5521E1304"/>
<add assenbly="CrystalDecisions.ReportSource, Version=13.0.4000.0, Culture=neutral, PublicKeyToken=632FBEA5521E1304" />
<add assembly="CrystalDecisions.ReportAppServer.Controllers, Wersion=13.0.4000.0, Culture=neutral, PublicKeyToken=692FBEA5521E1304"/>
<add assemnbly="CrystalDecisions.ReportAppServer.DataDefModel, Version=13.0.4000.0, Culture=neutral, PublicKeyToken=692FBEAS521E1304"/>
<add assembly="CrystalDecisions.CrystalReports.Engine, Version=13.0.4000.0, Culture=neutral, PublicKeyToken=692FBEA5521E1304"/>
<add assembly="CrystalDecisions.ReportAppServer.ClientDoc, Version=13.0.4000.0, Culture=neutral, PublicKeyToken=692fhea’521el304"/>
<fazsenblies>

Capture a Process Monitor log file of your application usage. See Use Process Monitor to discover the
files and registry keys used by the application (p. 18) for the steps to capture a Process Monitor
log file. The captured log file can reveal third-party application dependencies.

The following example Process Monitor log file shows that the sample 11S-based application depends
on a legacy version of Crystal Reports. An IIS worker process called w2wp . exe handles the web
requests sent to the IIS web server for the configured IS application pool.

Time .| Pracess Name | PID | Operation [Pah [Resul =
1243 5 wiwpene 2396 A ReadFile C:\Program Files (<86 1\5AP BusinessObijectsCrystal Fleports for NET Framework 4.04CommontS4P BusinessObiects Enterprise | 4.0\win32_s@6\pviocale-0.dl SUCCESS =
1243 7 wiwpene 2396 B\ ReadFile C:AProgram Files (+861\5AP BusinessObjects\Crystal Fleparts for NET Framework 4.04CommontSAP BusinessObiects Enterprise | 4.0\win32_s6\pviocale1-0.dl SUCCESS

. 2936 hReadFie C:\Program Files (<86 \SAP BusinessObjects\Crystal Reparts for MET Framework 4.0CommontSAP BusinessObjects Enterprise | 4.0\win32_sB6\pviocale1-0.dl SUCCESS

2936 hReadrie C:AProgram Files [+85SAP BusinessObjects\Crystal Reparts for MET Framework 4.04CommontSAP BusinessObjects Enterprise | 4.0\win32_sB6\pviocale1-0.dl SUCCESS

2996 hReadFile C:\Pragram Files [+86AGAP BusinessObjects\Crystal Rieparts far MET Framewark 4.0CommantSAP BusinessObjects Enterprise 3| 4.00win32_s6\pviacale1-0.dl SUCCESS

2996 hReadFile C:\Pragram Files [+868G4P BusinessObjects\Crystal Rreparts far NET Framewark, 4.0CommantSAP BusinessObjects Enterprise | 4.00win32_sB6\pviacale1-0.dl SUCCESS

2396 hReadFile C:AProgram Files [+884S4P BusinessObjects\Crystal Rreparts for NET Framework 4,0\CommantSAP BusinessObjects Enterprise 4| 4.0\win32_sg6\pviocdle1-0.dl SUCCESS

2356 Bk ReadFie C:APragram Files [+85)\S4P BusinessObjects\Crystal Rreparts for NET Framework 4,0\CommantS4P BusinessObjects Enterprise | 4.0\win32_s86\pviocdle1-0.dl SUCCESS

. 239 B Readfile C:\Program Files [+85 V4P BusinessObiects\Crystal Rreparts for NET Framework 4, 0CommantS4P BusinessObiects Enterprise | 4.00win32_s6\pviocdle1-0.dl SUCCESS

1243 7 wiwpere 2396 B\ ReadFile C:AProgram Files (+85\54P BusinessObjects!\Crystal Reports for NET Framework 4.04CommontS4P BusinessObjects Enterprise 4| 4.0\win32_s8E\pviocale1-0.dl SUCCESS

1243 7 wiwpere 2396 B\ ReadFiie C:AProgram Files (+851\5AP BusinessObijects!\Crystal Reports for NET Framework 4.04Commont34P BusinessObjects Enterprise 4| 4.0\win32_s8Epviocdle-0.dl SUCCESS

1243 7 wiwpene 2396 2\ CreateFileMapp. . C:\Program Files (+861%54P BusinessObjsctshCrystal Fleports for NET Framework 4.04CommontSAP BusinessObiects Enterprise | 4.0\win®2_sB6\pviocale-0.dl SUCCESS

1243 7 wiwpene 2396 B\ ReadFile C:AProgram Files (+861\5AP BusinessObjects\Crystal Fleparts for NET Framework 4.04CommontSAP BusinessObiects Enterprise | 4.0\win32_s6\pviocale1-0.dl SUCCESS

. T w3wpene 296 h CloseFile C:\Program Files (<86 \SAP BusinessObjects\Crystal Reparts for MET Framework 4.0CommontSAP BusinessObjects Enterprise | 4.0\win32_sB6\pviocale1-0.dl SUCCESS

1243 5 wiwpene 2936 hReadFile C:AProgram Files [+85SAP BusinessObjects\Crystal Reparts for MET Framework 4.04CommontSAP BusinessObjects Enterprise | 4.0\win32_sB6\pviocale1-0.dl SUCCESS

1243, 5 wiwpene 2996 ShCreateFile C:\Pragram Files [+86AGAP BusinessObjects\Crystal Rieparts far MET Framewark 4.0CommantSAP BusinessObjects Enterprise 3| 4.00win32_s6\pviacale1-0.dl SUCCESS

12 Wi e 296 Sh.CloseFile C:\Pragram Files [+868G4P BusinessObjects\Crystal Rreparts far NET Framewark, 4.0CommantSAP BusinessObjects Enterprise | 4.00win32_sB6\pviacale1-0.dl SUCCESS
1243, T wiwpere 2396 hReadFile C:AProgram Files [+884S4P BusinessObjects\Crystal Rreparts for NET Framework 4,0\CommantSAP BusinessObjects Enterprise 4| 4.0\win32_sg6\pviocdle1-0.dl SUCCESS -
- e & Beoci YA T T BB S LT Y RS YW s |

Migrate your lIS-based application

There are two stages to migrate an IIS-based application:

1

. Web application migration — Migrate the web application configuration from the legacy version of

the IIS-based application on an unsupported Windows Server version to a modern version of IIS on a
supported Windows Server version.

. Standard or reverse packaging (optional) — This option applies only when application dependencies

are identified during discovery. Follow either the standard (p. 15) or reverse (p. 17) packaging
process to capture the application dependencies in an EMP package and link them to the migrated IIS-
based web application running on a modern Windows Server version.

Stage 1: Migrate your web application configuration

Stage 1 of the lIS-based application migration process consists of steps to apply on the legacy and target
servers.

Legacy server steps

Apply the following steps to the legacy (source) server that hosts the 11IS-based web application:

1.

Install the EMP Compatibility Package Builder (p. 13) on the legacy server. The EMP IIS migration
tools are located in the Tools/I1STools folder within the installation directory (64-bit system: C:
\Program Files (x86)\AWS\EMP\ or 32-bit system: C:\Program Files\AWS\EMP)\).

Launch the Internet Information Services (11S) Manager shortcut on the legacy server and, within
the Sites node, identify the name of the website(s) you want to migrate.

Open PowerShell as an administrator and change the directory to the I1sTools folder. Then, run
the following command:

27

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Migrate

PS C:\> Export-IISWebSiteWithDependentFeatures.psl -Name Websitel,Website2 -
OutputDirectory C:\DestinationFolder

-Name — specify the name of one or more website(s) identified in the Sites node.

-OutputDirectory — specify the folder to which the website contents and configuration will be
saved.

-DisableContent — optional argument to export the configuration of the legacy IIS websites
without exporting the web application files. This command is useful when the web application files
are stored on a network drive that is mapped on the server, and there is no requirement to migrate
them to the modern Windows Server.

When you run this command, the installation of MSDeploy provided with the EMP release and
included in the II1STools folder will be silently installed if it is not already.

When the command completes, a folder is created in the output directory location that you
specified. The folder is called EMP-I1S. In addition, this folder captures the Windows features that
are installed on the legacy server.

Inspect the output of the Export[WebsiteName].msdeploy.err and
ExportGlobalConfig.msdeploy.err files for runtime errors and remediate as required. An
empty file indicates that no errors were recorded.

Copy the EMP-I1Is folder to the target server.

Uninstall the EMP Compatibility Package Builder from the source server.

Run the PowerShell script Uninstall-MSDeploy.ps1 provided in the MSDeploy folder to
uninstall the Web Deploy application.

Target server steps

Apply the following steps to the target server to which the 11S-based web application will be migrated.

1.

Install the EMP Compatibility Package Builder on the target server. The EMP IIS migration tools
are located in the Tools/IISTools folder within the installation directory (64-bit system: C:
\Program Files (x86)\AWS\EMP\ or 32-bit system: C:\Program Files\AWS\EMP\).

Open PowerShell as an administrator and change the directory to the I1STools folder. Then, run
the following command.

PS C:\> Import-IISWebSiteWithDependentFeatures.psl -Path C:\DestinationFolder\EMP-IIS

When you run this command, the installation of MSDeploy provided with the EMP release and
included in the IISTools folder will be silently installed if it is not already.

The command will then install and set up the server with the Windows features identified from the
source server. If a feature that was identified in the source server is deprecated and a replacement
feature is not identified, a warning message is displayed. You can edit the Config.xml file located
in the root of the EMP-11S folder if a manual change to the list of features to install is required.

For Windows Server 2003 applications, a list of Windows features on the legacy server is not
identified. Instead, a default list of Windows features is configured on the target operating system.

When the command completes, the web application configuration of the IIS-based web application
is set up on the target server.

28

https://docs.microsoft.com/en-us/aspnet/web-forms/overview/deployment/web-deployment-in-the-enterprise/deploying-web-packages
https://docs.microsoft.com/en-us/aspnet/web-forms/overview/deployment/web-deployment-in-the-enterprise/deploying-web-packages

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Troubleshooting

Inspect the output of the Import[WebsiteName].msdeploy.err and
ImportGlobalConfig.msdeploy.err files for runtime errors and remediate as required. An
empty file indicates that no errors were recorded.

3. Uninstall the EMP Compatibility Package Builder from the target operating system. If you discovered
application dependencies and are moving to the next stage to capture them, do not uninstall the
EMP Compatibility Package Builder.

Stage 2: Capture application dependencies (optional)

This procedure is necessary only if you identify application dependencies in the discovery phase.

1. Follow either the standard (p. 15) or reverse (p. 17) packaging process to capture the
application dependencies in an EMP package. Move the package to the target server and deploy
(p. 35)the package on the target server with an additional /DeployAllRegistry switch.

Example command

C:\EMP\Package0001\Compatibility.Package.Deployment.Exe /acceptEULA /deploydir "C:
\Programdata\EMP" /DeployAllRegistry

The /DeployAllRegistry switch makes the EMP package accessible at the machine level and
ensures that IIS-based Windows accounts such as IUSR can access the EMP package registry when
required.

2. Open PowerShell as an administrator and navigate to the I1STools folder. Run the following
command.

PS C:\> Set-IISEMPConfigurations.psl -WebSite WebSite -EMPPackagePath c:
\EMPPackageDeployLocation

-Website — specify the name of the website(s) identified in the Sites node.

-EMPPackagePath — specify the folder to which the website contents and configuration will be
saved. For example, C:\Programdata\EMP\Package0001.

This command will set the necessary 11S-related integration configurations required for the EMP
package.

3. The IIS-based web application migration is complete and you can begin user testing.

Troubleshooting packaging an 1IS-based application

The following actions can help you troubleshoot issues that can occur when you package an 1IS-based
application.

Set Enable 32-bit application application pool setting to True

Some applications require the Enable 32-bit application application pool to be set to True in
order to work on a modern operating system. This is especially true for applications for which this setting
is currently set to True in the legacy environment, or if the application has been ported from a 32-bit
system. EMP does not set this option as part of the migration process.

Create 1IS-based application migration log files

When you run the following PowerShell scripts, import and export log files are created in the EMP-I1S
folder.

29

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Package contents

PS C:\> Export-IISWebSiteWithDependentFeatures.psl

PS C:\> Import-IISWebSiteWithDependentFeatures.psl

The . err files log errors when . err commands are run. The . out files create a descriptive log of the
running of the command.

Sample log files

Export

Export[WebsiteName].msdeploy.err
Export[WebsiteName].msdeploy.out
ExportGlobalConfig.msdeploy.err
ExportGlobalConfig.msdeploy.out

Import

Import[WebsiteName].msdeploy.err
Import[WebsiteName].msdeploy.out
ImportGlobalConfig.msdeploy.err
ImportGlobalConfig.msdeploy.out

Use the scripts provided in the IISTools folder to help troubleshoot errors

The PowerShell scripts located in the IISTools folder support the —-confirm, -whatif, -verbose, and
help parameters.

EMP compatibility package contents

This section describes the folders and files that are included in an EMP compatibility package. When
the EMP compatibility packaging process is complete, the output of the package builder is called an
EMP compatibility package. The package contains both the file and registry data of the packaged
application, and the EMP binaries and configuration files that are required to deploy and run the
packaged application.

The EMP package, which is the product to deploy, is called the source package. The post-deployment
package is called the deployed package. These packages are slightly different at the level of the root
package folder. However, the packaged application content is the same in both packages.

Package contents
» Source package contents (p. 30)

» Deployed package contents (p. 35)

Source package contents

The source package root folder contains two folders, along with a list of files.

» ProgData folder — Contains the directory structure and files of the packaged application, captured
during the EMP packaging process.

30

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Source package contents

« EngineBinaries folder — Contains the EMP package engine binaries, which support both 32-bit and
64-bit Windows operating systems. During deployment, package deployment detects the bit rate of
the operating system and deploys the appropriate engine binaries into the deployed package. Both 32-
bit and 64-bit binaries are deployed into 64-bit Windows operating systems.

Files

« Compatibility.Package.Engine.exe — The compatibility package redirection (virtualization) engine.
When the entry point of an application is invoked, the engine is launched with the arguments
required to load the target application process as a child process of the engine. As a result, the
engine is able to intercept and redirect calls from the process.

« Compatibility.Package.Engine.Launcher.x64.exe — Along with its 32-bit counterpart, this
executable file an out-of-process COM server launcher. For packages running on 32-bit Windows
operating systems, only the x86 program is required. However, both programs are required on 64-bit
Windows operating systems.

« Compatibility.Package.Engine.x64.dll — Along with its 32-bit counterpart, this .dll is a library that
is used by the compatibility package engine. Both libraries are required for a package to run on a
64-bit Windows operating system. However, only the 32-bit library is required for 32-bit Windows
operating systems.

« HookYou.exe and HookMe.dll — These files provide an alternative method to virtualize a process
when it has not been started by the package engine.

« Other source package files
o _metadata.json — Contains EMP package metadata.

{
"PackageId": "SQL2005EXP_9482",

"Icon": "%DefaultDir%\\Compatibility.Package.Run.exe",
"Name": "SQL2005EXP",

"Version": "",

"Publisher": "",

"AWSProfileName": "default"

}

« Compatibility.Package.Deployment.exe — The package deployment program, called with
arguments to deploy, update, or uninstall an EMP package. By default, it logs deployment events to
a text file located at the root of the package folder. This program eliminates the need to install an
agent on the target operating system.

» Compatibility.Package.Deployment.exe.config — Used to pass settings to the executable file, for
example, the logging level. The default level is INFO.

« DeploymentWorkFlowLog.txt — The log file created by the package deployment
program. Contains a log of deployment events according to the log level in
Compatiblity.Package.Deployment.exe.config.

« AppRegistry.xml — The main registry file for the package. Contains most of the registry data of the
packaged applications.

<RegistryOperations xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
NeedToBeDecoded="true" ValidateWrite="false">
<Write>
<KeyName>HKEY CURRENT_USER\Software\AWSEMP\Compatibility.Package\%GUID%\HKLM\SYSTEM
\CurrentControlSet\services\eventlog\Application\Visual Studio - VsTemplate</KeyName>
<ValueName>EventMessageFile</ValueName>
<Value ValueType="ExpandString">%ProgramFilesX86%\Microsoft Visual Studio
8\Common7\IDE\msenv.dll</Value>
</Write>
<Write>
<KeyName>HKEY CURRENT_USER\Software\AWSEMP\Compatibility.Package\%GUID%\HKLM\SYSTEM
\CurrentControlSet\services\eventlog\Application\Visual Studio - VsTemplate</KeyName>
<ValueName>TypesSupported</ValueName>

31

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Source package contents

<Value ValueType="DWord">7</Value>
</Write>

« ComDeployment.xml — Contains instructions for deploying out-of-process COM servers, COM+,
and DCOM components. The setting Enabled="true" denotes that the deployment of out-of-
process COM servers, as well as COM+ and DCOM components, occurs during package deployment
so that they are immediately available. You may want to set Enabled="false" to prevent this kind
of deployment for some troubleshooting scenarios.

<COM xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" Enabled="true">
<OutOfProcServers>
<OutOfProcServer>
<Path>%DefaultDir%\ProgData\Program Files (x86)\Microsoft Visual Studio
8\Common7\IDE\devenv.exe</Path>
</OutOfProcServer>
</OutOfProcServers>
</COM>

« Compatibility.Package.Run.exe — The program that serves as the entry point into the EMP
package. When invoked, it verifies that the registry is loaded and consistent with the registry files
contents. If not, it loads the package registry before launching the engine with arguments to launch
the target application program. By default, it logs high-level run events to a text file located at the
root of the package folder.

« Compatibility.Package.Run.exe.config — Used to pass settings to the package deployment
executable, for example, the logging level.

« Compatibility.Package.Engine.clc — The package engine configuration file. Used to apply settings,
such as compatibility features, links to other EMP packages, engine detach, and process exclusion
from redirection.

The following is a sample of the default file that is included in each package.

<AAV PackageId="SQL2005_7206">
<Includes>

<Include>Redirections.xml</Include>

</Includes>

<!—-

<Excludes>
<Exclude>SomeExecutable.exe</Exclude>

</Excludes>—-->

<!—-

<Detaches>
<Detach>SomeExecutable.exe</Detach>

</Detaches>-->

<!—-

<COM>
<CLSID ID="" Excludes="false">
<Registration ConnectionType = "MultiUse"/>
</CLSID>

</COM>-->

<!—-

<Features>
<Feature>DEPOptOut</Feature>
<Feature>HandleInvalidHandle</Feature>
<Feature>NetworkRedirection</Feature>
<Feature>LocalMappedObjectShim</Feature>
<Feature>NotWowé64Process</Feature>
<Feature>ForceWindowsVersion</Feature>
<Feature>COMVirtualization</Feature>

</Features>

-——>

<Features>
<Feature>RedirectX64PackagedRegistry</Feature>

32

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Source package contents

</Features>
</AAV>

Contents

« Includes — Element that specifies the Redirections.xml of the current package. No path is
required because it exists in the root folder of the packages. Other packages can be linked to the
current package by adding their Redirections.xml files here. For more information, see Link
EMP packages (p. 56).

« Excludes and Detaches — For more information, see Exclude or detach a process from the
package redirection rules (p. 60).

« COM — Element that specifies class IDs (CLSIDs) that must be excluded from
COMVirtualization. For more information, see the steps for excluding CLSIDs from
COMVirtualization under Enable support for out-of-process Common Object Model (COM) in
an EMP package (p. 58).

o Features — See EMP compatibility package features (p. 39).

ComRegistryKeys.xml — Contains the COM, DCOM, and COM+ registration data of the packaged
application.

DeploymentScript.xml — Introduces custom configurations into an EMP package. See Managing
EMP custom configurations (p. 54).

EMP.TelemetryClient.exe — Program that collects some basic operational information about
the usage of EMP to improve the product. The ability of EMP to send telemetry data to AWS is
mandatory to deploy packages. For more information, see Deploy an EMP package (p. 35).

For data collected, see Data collected by the AWS End-of-Support Migration Program (EMP) for
Windows Server (p. 65).

EMP.TelemetryClient.exe.config — Passes settings to the Telemetry Client, for example, the
AWSProfileName.

EnvironmentVariables.xml — Contains the captured environment variables that are required to be
available to the virtualized application.

<Variables xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Variable Name="Path" Append="true" IsEncoded="false" Value="C:\Program Files
(x86)\Microsoft SQL Server\90\Tools\binn\" />

</Variables>

FileAssociations.xml — Contains the file associations registration data for the packaged application.

<RegistryOperations xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
NeedToBeDecoded="true" ValidateWrite="false"> <Write>
<KeyName>HKEY_LOCAL_MACHINE\SOFTWARE\Classes)\.xdl</KeyName>
<ValueName></ValueName>
<Value ValueType="String">ssmsee.xdl.9.0_SQL2005_7206</Value>
</Write>
<Write>
<KeyName>HKEY_LOCAL_MACHINE\SOFTWARE\Classes\ssmsee.xdl.9.0_SQL2005_7206</KeyName>
<ValueName></ValueName>
<Value ValueType="String">Microsoft SQL Server Deadlock File</Value>
</Write>

Programs.xml — Specifies how EMP launches the programs of the packaged application. Each set of
instructions for running a program is called a RunCondition. The RunCondition is an argument
that is passed to Compatibility.Package.Run.exe. Each run condition (runi, run2, and so on)
is a launch instruction to package run, which contains an argument to pass to the package engine.
The package engine specifies what application program to launch, in what directory, for how long,
and includes any arguments to be passed to it.

33

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Source package contents

<Programs xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Program>
<RunCondition>runl</RunCondition>
<ProcessWindowStyle>Normal</ProcessWindowStyle>
<Path>%DefaultDir%\Compatibility.Package.Engine.exe</Path>
<Args>/f "%DefaultDir%\ProgData\Program Files (x86)\Microsoft SQL Server\90\Tools
\Binn\VSShell\Common7\IDE\ssmsee.exe" %FILEARGS%</Args>
<WorkingDirectory />
<WaitCondition TimeoutInSeconds="0">None</WaitCondition>
</Program>

« Redirections.xml — The redirection instruction set to the package engine, which specifies which
file, folder, or registry key requests should be redirected and to where. It also contains a duplicate
of some of the content of the CLC file, which allows it to be configured with compatibility package
features, COM exclusions, process exclusions or detaches, as required, when it is used to link the
package to another compatibility package.

The following are examples of file, folder, and registry redirection rules.

<ExactMatch>
<From>%SystemX86%\SQLServerManager .msc</From>
<To>ProgData\Windows\SysWOW64\SQLServerManager .msc</To>
</ExactMatch>

<FolderMatch>
<From>%ProgramFiles%\Microsoft SQL Server</From>
<To>ProgData\Program Files\Microsoft SQL Server</To>
</FolderMatch>

<KeyMatch>
<From>HKLM\SYSTEM\CurrentControlSet\services\SQLWriter</From>
</KeyMatch>

« Report.json — Contains a report on any unsupported application features detected during the
package build, for the attention of the packaging engineer.

The following is a sample report for an unsupported COM+ property.

[{

"Level": "Warn",

"Category": "COM+",

"Message": "COM+ application DotNetTestMultiCOMPlusApp is using roles for managing the

the security. At the moment roles are not ported across in the compatibility package.
Please recreate all the roles on target machine manually after deploying the package.
Please ensure you configure the roles at component, interface and method level similar
to how they are configured at source machine."

]

« Services.xml — Contains instructions to configure any Windows services captured during packaging.
ImagePath specifies the package run program with a run condition. The run condition is detailed in
the Program.xmnl file. So, although services are installed natively, the service image is virtualized.

<Services xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Service>
<Name>MSSQL$SQLEXPRESS</Name>
<ImagePath>%DefaultDir%\Compatibility.Package.Run.exe /RunConditions run5</
ImagePath>

34

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Deployed package contents

<Description>Provides storage, processing and controlled access of data and rapid
transaction processing.</Description>

<DisplayName>SQL Server (SQLEXPRESS)</DisplayName>

<Startup>Automatic</Startup>

<StartOnDeploy>true</StartOnDeploy>

<LogOnAs>

<Username>NT AUTHORITY\NetworkService</Username>

</LogOnAs>

<Timeout>300000</Timeout>
</Service>

 Shortcuts.xml — Contains instructions to configure any program shortcuts captured during
packaging. The <Target> is the package run program with a run condition as argument. The run
condition is detailed in the Programs . xm1 file. When a program is launched from a shortcut, it runs
as a child process of the package engine.

<Shortcuts xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Shortcut>
<Path>%CommonPrograms%\Microsoft SQL Server 2005\SQL Server Management Studio
Express.lnk</Path>
<Target>%DefaultDir%\Compatibility.Package.Run.exe</Target>
<Args>/RunConditions runl</Args>
<Description />
<IconLocation>%DefaultDir%\ProgData\Program Files (x86)\Microsoft SQL Server
\90\Tools\Binn\VSShell\Common7\IDE\ssmsee.exe</IconLocation>
<IconIndex>0</IconIndex>
<WorkingDir />
</Shortcut>

« eula.html — The end-user license agreement file.
« Open Source Licenses.txt — A license agreement that covers the open source components.

Deployed package contents

When the source package is deployed to the target Windows server, the contents of the .
\EngineBinaries\x64 or . \EngineBinaries\x86 folders are copied into the package root
folder during the package deployment depending on the bit rate of the operating system. The
DeploymentWorkFlowLog.txt is populated with the logged package deployment events.

Once the package has been launched by the start of a service, when an application shortcut or other
entry point into the package is launched, another log file is created within the deployed package root
folder called RunWorkFlowLog. txt.

RunWorkFlowLog.txt

Contains a brief log of events that take place from package invocation to the launch of the package
engine. Once the RunCondition is passed to the package engine that has successfully launched,
package run exits after logging a successful launch event.

Deploy an EMP package

This topic contains information and steps to set up for and deploy an EMP package.

Topics
» Requirements for deploying an EMP package (p. 36)
» Run the deployment tool (p. 37)

35

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Requirements

Requirements for deploying an EMP package

When you deploy an EMP package on Windows Server 2012 or later, AWS credentials and connectivity
to the AWS application modernization metrics service are required. The deployment fails if the package
cannot validate the supplied AWS credentials or cannot send the mandatory telemetry to AWS.

There are two ways you can provide AWS credentials to the deployment package if they are not set up on
the server.

« If your deployment server is not an Amazon EC2 instance, you can configure the AWS profile on the
server and update the profile name in the metadata. json file in the root of the packaged folder.

« If your deployment server is an Amazon EC2 instance, you can assign an execute-api:Invoke IAM
role to the server.

Configure the AWS profile on the server (server is not an EC2 instance)

You can configure the AWS profile on the server using the AWS CLI or AWS Tools for Windows
PowerShell. You must set up an IAM user in your AWS environment. The IAM user must be configured to
allow execute-api:Invoke. To configure this, assign the following IAM policy to the IAM user of the
AWS profile on the server.

{ "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Action": "execute-
api:Invoke", "Resource": "*" }]}
AWS CLI

When you use the AWS CLI, profile information is stored in the C: \Users\<username>\ . aws directory.
Use the aws configure command to configure the profile for the IAM user you set up to allow for
execute-api:Invoke permissions. The AWS CLI can be downloaded from the Installing, updating, and
uninstalling the AWS CLI page. For more information about how to specify a profile using the AWS CLI,
see Named profiles.

AWS CLI example

C:\>aws configure

AWS Access Key ID [None]: <EXAMPLE-ACCESSKEY>

AWS Secret Access Key [None]: <EXAMPLE-SECRETKEY>
Default region name [None]:

Default output format [None]:

C:\>

AWS Tools for Windows PowerShell

When you use AWS Tools for Windows PowerShell, profile information is stored in C:\Users
\<username>\AppData\Local\AWSToolkit\RegisteredAccounts. json. Use theset-
AwWSCredential command to configure the profile. For more information about how to specify
credentials using AWS Tools for PowerShell, see Using AWS credentials in the AWS Tools for PowerShell
User Guide.

AWS Tools for Windows PowerShell example

PS C:\Program Files (x86)\AWS Tools\PowerShell\AWSPowerShell> Set-AWSCredential -
AccessKey <EXAMPLE-ACCESSKEY> -SecretKey <EXAMPLE-SECRETKEY> -StoreAs default
PS C:\Program Files (x86)\AWS Tools\PowerShell\AWSPowerShell>

36

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-profiles.html
https://docs.aws.amazon.com/powershell/latest/userguide/specifying-your-aws-credentials.html

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Run deployment tool

Note

If you do not specify a name when you create a profile, it will default to default by both the
AWS CLI and AWS Tools for PowerShell. You are not required to update the metadata. json file
found in the root of the EMP package. If you specify a new name for the profile at a later time,
update the AWSProfileName property in the metadata. json file.

Assign 1AM role to the server (server is an EC2 instance)

Assign an IAM role to the deployment server and verify that the following IAM policy is applied to it. For
more information about how to assign an IAM role, see Creating IAM roles.

{ "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Action": "execute-
api:Invoke", "Resource": "*" }]}

Connectivity to the AWS application modernization metrics service

The EMP deployment server must have internet connectivity to create a secure http outbound
connection to the AWS application modernization service.

Run the deployment tool

To run the deployment tool, perform the following steps.

Open a command prompt as an administrator.

2. Run the following command to deploy the package to all of the users of the server, where <path-
to-package> is the path of the EMP package, and <switches> are the relevant command line
switches you want to specify.

<path-to-package>\Compatibility.Package.Deployment.Exe /<switches>

For example:

C:\EMP\Package0001\Compatibility.Package.Deployment.Exe /acceptEULA /deploydir "C:
\Programdata\EMP"

When you run this command, the following operations are performed.

« Allfiles in the <path_to_package> folder are copied to the specified /deploydir.

« All shortcuts specified in the shortcuts.xml are written to the public profile for visibility to all
users of the server.

« Shortcuts for a path in the user desktop or Start menu are translated to the equivalent of the
directory of the public profile.

« Any file type associations specified in the FileAssociation.xml are created in HKLM root key
of the registry.

« If the /deploydir switch is provided, the package is copied to the specified folder.

Note
The EMP package application registry is not written until a shortcut is first launched.

37

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Best practices

Working with EMP packages

This section includes information to help you manage EMP packages, including best practices,
compatibility package features, how to edit, upgrade, and maintain an EMP package, how to update a
deployed EMP package, and how to uninstall an EMP package.

Topics

» Best practices for packaging applications with AWS End-of-Support Migration Program (EMP) for
Windows Server (p. 38)

« EMP compatibility package features (p. 39)

« Edit, upgrade, and maintain an EMP package (p. 47)

» Optimize Process Monitor for Reverse Packaging (p. 49)

« Update a deployed EMP package (p. 50)

» Uninstall an EMP package (p. 51)

« Enable EMP compatibility package engine logging (p. 52)

« Managing EMP custom configurations (p. 54)

 Link EMP packages (p. 56)

» Applications using ODBC drivers (p. 57)

« Enable support for out-of-process Common Object Model (COM) in an EMP package (p. 58)
» Add side-by-side (SXS) assemblies to an EMP compatibility package (p. 59)

« Exclude or detach a process from the package redirection rules (p. 60)

» Run cmd.exe as a child process to the EMP compatibility package engine (p. 61)

Best practices for packaging applications with
AWS End-of-Support Migration Program (EMP) for
Windows Server

Following the best practices in this section when creating EMP packages increases the likelihood of
creating successful EMP packages and achieving faster migration lifecycles.

Note
Packaging refers specifically to the process of capturing a legacy application using the EMP
Package Builder on the source operating system.

Always package on the source server

The EMP Application Packaging Model (p. 13) demonstrates that the application packaging step occurs
on the source server. For example, if an application installs and functions on Windows Server 2008

R2, then the packaging step is performed on the same operating system. Technically, it is possible to
package the application on the operating system that the application is migrating to, such as Windows
Server 2019. However, packaging on the legacy OS version ensures that the application installs and
functions as expected. The application may fail to install and function on the modern operating system
and, as a result, the install capture process on the modern operating system can result in a package
created in a non-working state.

Always package on a clean server

After an application has been installed or packaged on a server, we recommend that you do not
repackage the application on the same server in the same state. This is because the EMP Package Builder

38

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Compatibility package features

compares the differences between snapshots taken before and after the application installation on the
operating system. If any legacy application components are on the operating system before the snapshot
is taken, the resulting EMP package will not include the application components.

Creating snapshots of your packaging machine before carrying out any packaging would mean you could
always restore your system to a clean state if you needed to recapture the application.

Disable background noise

Turn off Microsoft Defender Antivirus, any other antivirus software, and automatic Windows Update to
ensure that changes to the system by any of these background tasks are not captured in the package. If
your security policy requires that you keep any antivirus software turned on, then you can unload them
when performing the package builder process.

Application prerequisite software or dependencies

If an application requires prerequisite software, for example, a legacy version of Java, and this software
is not included or installed natively in the target operating system, then we recommend that you include
these components in the EMP package for the application.

If an application requires operating system dependencies, for example, specific Windows roles and
features, or requires an application prerequisite software that will be included on the target operating
system, then we recommend that you set up these dependencies on the packaging server before the
application is captured using the EMP Package Builder.

Familiarize yourself with the application being packaged

We recommend that you document how the application installation is completed, and also the
application workflows. This helps to ensure that you can refer back to the documentation during the
packaging phases. This also helps to ensure that you can review the finalized list of steps required to
capture a complete working state of the application. The document should list known issues to watch
out for and help you plan how dependencies must be captured or migrated. We recommend that you
perform a test install of the application before starting the EMP process.

One package per server

When possible, we recommend that you create a single EMP package for each server that is being
migrated. This ensures a simple package design to help facilitate migration and future management of
the application.

Discovery

We recommend that you understand how to structure an EMP package before you create it. To
understand the package structure and how the application works in its environment, we recommend
that you perform application discovery. For more information about the application discovery process,
see High-level AWS End-of-Support Migration Program (EMP) for Windows Server application discovery
exercise (p. 11). You can use this information to structure the EMP package.

The EMP compatibility package (compatiblity.package.engine.exe) includes features that can be
enabled to resolve compatibility issues with packaged applications. This topic defines these features and
demonstrates how they work.

EMP compatibility package features
Feature name Description

ForceExternalManifest Forces the use of an external manifest file, which
overrides the system default.

39

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
ForceExternalManifest

Feature name Description

RegClassesMerging Merges virtual and real registry values into a
virtual key.

DoNotHideDebugger Ensures that process debugging remains visible.

HandleInvalidHandle Ignores invalid handle errors.

NotWow64Process Forces 32-bit applications running on 64-bit

Windows to be virtualized as if they are running
on 32-bit Windows.

NetworkRedirection Redirects hostnames, domain names, IPs, and
ports.

LocalMappedObjectShim Converts global file mappings to local.

DEPOptOut Identifies and handles DEP exceptions.

ExcludeNativeWindows Prevents a packaged application from using a

native Windows application or process.
COMVirtualization Virtualizes COM.

ForceWindowsVersion Forces a Windows version check to a specific
Windows version.

RedirectX64PackagedRegistry Redirects 64-bit registry when running a 32-bit
application.
LoadSystemResources Loads architecture-independent resource files

regardless of bitness.

Compatibility package features
« ForceExternalManifest (p. 40)
» RegClassesMerging (p. 41)
« DoNotHideDebugger (p. 41)
« HandlelnvalidHandle (p. 42)
« NotWow64Process (p. 42)
« NetworkRedirection (p. 42)
» LocalMappedObjectShim (p. 44)
« DEPOptOut (p. 45)
o COMVirtualization (p. 45)
« ForceWindowsVersion (p. 46)
o RedirectX64PackagedRegistry (p. 46)
» LoadSystemResources (p. 47)

ForceExternalManifest

Windows includes a global setting in: HKEY LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
\CurrentVersion\PreferExternalManifest - DWORD that controls whether external manifests
should be used when a process is launched (or DLL loaded). By default, this registry entry is missing, with

40

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
RegClassesMerging

a value of 0 (disable). This means that Windows uses an embedded manifest from the exe/d11, if one
exists.

The feature ForceExternalManifest allows the process launched by EMP to use an external manifest
file.

An application manifest is an XML file that describes and identifies the shared and private side-by-side
assemblies to which an application should bind at runtime. The name of an application manifest file is
the name of the application's executable followed by .manifest.

The following is an example of an application manifest that disables Windows theming, which can cause
compatibility issues with an earlier application version.

<assembly xmlns="urn:schemas-microsoft-com:asm.v1l" manifestVersion="1.0"
xmlns:asmv3="urn:schemas-microsoft-com:asm.v3" >

<asmv3:application>
<asmv3:windowsSettings xmlns="http://schemas.microsoft.com/SMI/2011/WindowsSettings">
<disableTheming>true</disableTheming>
</asmv3:windowsSettings>
</asmv3:application>

</assembly>

RegClassesMerging

If an application uses an enumerate key function to determine available keys, the compatibility package
redirections may not account for this. Adding a high-level redirection to resolve this behavior can

result in more issues and prevent your application from functioning. For example, if the application is
enumerating HKLM\ Software\Classes to determine available classes, adding a redirection for HKLM
\Software\Classes will most likely result in a failure. The solution is to enable registry merging so
that the redirected and local registry keys are seen as one registry.

The following compatibility engine configuration example enables the RegClassesMerging feature in
the Compatibility.Package.Engine.clc file.

<AAV>
<Features>
<Feature>RegClassesMerging</Feature>
</Features>
</AAV>

The following example adds a KeyMatch redirection rule for the registry key in the previous example to
Redirections.xml.

<KeyMatch>
<From>HKLM\SOFTWARE\Classes</From>
</KeyMatch>

DoNotHideDebugger

This feature ensures that process debugging remains visible. If not enabled, some applications will pass
exceptions or breakpoints to the debugger (engine) and some applications can break. This feature is
usually enabled to prevent tampering or for license protection, and is often not required.

The following compatibility engine configuration example enables the DoNotHandleDebugger feature
in the Compatibility.Package.Engine.clc file.

41

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
HandlelnvalidHandle

<AAV>
<Features>
<Feature>DoNotHideDebugger</Feature>
</Features>
</AAV>

HandlelnvalidHandle

When invalid handles cause applications to fail to run when using DoNotHideDebugger, then the
compatibility engine can be configured to ignore the invalid handles. If a thread uses a handle to a kernel
object that is invalid (for example, because it is closed) Windows notifies the debugger. The EMP engine
handles any invalid handles by default. However if DoNotHideDebugger is enabled, the EMP engine
does not handle invalid handles. If the HandleInvalidHandle feature is set, then the exception is
handled and invalid handles are ignored.

The following compatibility engine configuration example enables the HandleInvalidHandle feature
in the Compatibility.Package.Engine.clc file.

<AAV>
<Features>
<Feature>DoNotHideDebugger</Feature>
<Feature>HandleInvalidHandle</Feature>
</Features>
</AAV>

NotWow64Process

When enabled, this feature prevents Windows from using WOWG64 redirections and forces processes to
run as 32-bit in the package by hooking the IsWow64, PrintD1gExA, PrintD1gExW, PrintD1gA, and
PrintD1gWw APIs.

The following compatibility engine configuration example enables the NotWow64Process feature in the
Compatibility.Package.Engine.clc file.

<AAV>
<Features>
<Feature>NotWow64Process</Feature>
</Features>
</AAV>

Note
This feature, when enabled, causes the printer driver host for 32-bit applications
(spLwowe 4 . exe) to fail, and must be excluded if the packaged application launches it.

NetworkRedirection

The NetworkRedirection feature enables network redirection for hostname, domain name, IP, and
ports. This allows server applications running in packages to redirect their network requests to new
names, IP addresses or ports, so that you can migrate applications to new servers without changing
application source code.

Use cases

« Hostname virtualization with <Network ThisComputer="legacy_machine_name"> applies to
server applications for which you don't have the installation media, and the application has been
extracted from the server on which it runs. This feature virtualizes the hostname of the server on
which the application runs so that it behaves as if it runs on the original server.

42

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
NetworkRedirection

« Domain Name redirection with <DomainName> is for server applications for which you don't have
the installation media, and the application has been extracted from the server on which it runs. This
feature redirects from the name a server application expects to find on the network to one that is
present.

« IP address and port redirection with <Connect> enables applications to accept connections <From>
one IP address or port <To> another.

Note

Apply the Microsoft server naming conventions described at https://docs.microsoft.com/en-
us/troubleshoot/windows-server/identity/naming-conventions-for-computer-domain-site-ou.
These are the only naming conventions supported.

The following compatibility engine configuration examples enable the NetworkRedirection feature in
the Compatibility.Package.Engine.clc file.

Hostname virtualization

<AAV>
<Features>
<Feature>NetworkRedirection</Feature>
</Features>
<Network ThisComputer="legacy_machine_name">
</Network>
</AAV>

Domain name redirection

<AAV>
<Features>
<Feature>NetworkRedirection</Feature>
</Features>
<Network>
<DomainName>
<From>legacy_machine</From>
<To>new_machine</To>
</DomainName>
</Network>
</AAV>

IP and port redirection

The following example redirects network connections from 192.168.2.1 on port 13000t0 127.0.0.1
on port 12000.

<AAV>
<Features>
<Feature>NetworkRedirection</Feature>
</Features>
<Connect>
<From>
<IP>192.168.2.1</IP>
<Port>13000</Port>
</From>
<To>
<IP>127.0.0.1</IP>
<Port>12000</Port>
</To>
</Connect>
</AAV>

43

https://docs.microsoft.com/en-us/troubleshoot/windows-server/identity/naming-conventions-for-computer-domain-site-ou
https://docs.microsoft.com/en-us/troubleshoot/windows-server/identity/naming-conventions-for-computer-domain-site-ou

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
LocalMappedObjectShim

Logging

When the <DomainName> feature is enabled, the compatibility engine logs the following.

Server redirection from %0ld% to %new%

Only the Microsoft server naming conventions described at https://docs.microsoft.com/en-us/
troubleshoot/windows-server/identity/naming-conventions-for-computer-domain-site-ou are
supported. The following messages are logged if a server name does not apply these naming
conventions.

Server name cannot begin with a period (.) and will not be virtualized

Server name cannot be longer than 15 characters and will not be virtualized

Server cannot contain invalid character "invalid_character" and will not be virtualized

If <To> is not specified, the following message is logged.

Server redirection will not redirect from %o0ld%

If <From> is not specified, the following message is logged.

Server redirection will not redirect to %new%

LocalMappedObjectShim

The name of the file mapping object can include a G1lobal or Local prefix in order to create the object
in the global or session namespace. If a service or system creates a file mapping object in the global
namespace, any process running in any session can access that file mapping object if the caller has

the required access rights. To ensure that the kernel object names created by your applications do not
conflict with the names of any other applications, enable the *LocalMappedObjectsShim feature. This
feature converts all file mapping objects from the global to local namespace if no redirection rule is set
for the object name.

Use cases

« Enable an application that requires administrator permissions to run on an account with lower
permissions.

« Enable multiple instances of the desktop application to run on a server operating system when the use
of global objects by the application prevents the application from installing.

The following compatibility engine configuration examples enable the LocalMappedObjectShim
feature in the Compatibility.Package.Engine.clc file.

<AAV>
<Features>
<Feature>LocalMappedObjectShim</Feature>
</Features>
</AAV>

File mapping exclusions can be applied for named file mapping objects so that they remain global
objects by including the following tags.

44

https://docs.microsoft.com/en-us/troubleshoot/windows-server/identity/naming-conventions-for-computer-domain-site-ou
https://docs.microsoft.com/en-us/troubleshoot/windows-server/identity/naming-conventions-for-computer-domain-site-ou

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
DEPOptOut

<FileMappingExclusions>
<FileMappingExclusion>Global\string</FileMappingExclusion>
</FileMappingExclusions>

DEPOptOut

Applications written using Visual Studio 2008, or earlier, are incompatible with operating systems
enabled with Data Execution Prevention (DEP), this includes the following.

» Systems configured with Secure Boot.
« Default policies applied to the Windows operating system.
« Windows running the Enhanced Mitigation Experience Threat (EMET) toolkit.

This incompatibility is caused by the forcing of DEP enablement for an application.
Use cases

« Enable the application to opt out of DEP, so that it can run on the server or desktop without
configuration changes for EMET, or the default policies that are applied to an application within its
organization.

« For applications running in the compatibility package, the DEPOptOut feature resolves memory access
violations by changing the memory address location to an executable part of memory.

Identify whether a failure is due to DEP

If a failure is caused by DEP, the application crashes with or without an error message. When a detailed
error message is displayed, it shows the exception details, which include: Exception Code: cO000005,
which means ACCESS VIOLATION, and Exception Data: 0000008.

On later versions of Windows, the message doesn’t display the exception details. You must look at the
Windows application event log. Error Event 1000 will report the exception code C0000005.

The following compatibility engine configuration example enables the DEPOptOut feature in the
Compatibility.Package.Engine.clc file.

<AAV>
<Features>
<Feature>DEPOptOut</Feature>
</Features>
</AAV>

COMVirtualization

The coMVirtualization feature is required to virtualize the out-of-process COM servers. If the
ComDeployment.xml file in the compatibility package contains one or more OutOfProcServer
entries, then you must enable the cOMVirtualization feature.

The following compatibility engine configuration example enables the cOMVirtualization feature in
the Compatibility.Package.Engine.clc file.

<AAV>
<Features>
<Feature>COMVirtualization</Feature>
</Features>
</AAV>

45

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
ForceWindowsVersion

ForceWindowsVersion

If an application requires a particular version of the operating system in order to run, it queries the
operating system to ensure that the expected version, build, service pack, or type (desktop or server) is
returned. EMP compatibility packages can intercept the API requests and return values specified by the
compatibility engine configuration file.

The following compatibility engine configuration example enables the ForceWwindowsVersion feature
in the Compatibility.Package.Engine.clc file.

Possible values for ProductType are:

e Server

e DomainController

<Features>
<Feature>ForceWindowsVersion</Feature>

</Features>

<ForceWindowsVersion>
<MajorVersion>INT</MajorVersion>
<MinorVersion>INT</MinorVersion>
<BuildNumber>INT</BuildNumber>
<ProductType>TYPE</ProductType>
<ServicePackText>INT</ServicePackText>
<ServicePackMajor>INT</ServicePackMajor>
<ServicePackMinor>INT</ServicePackMinor>

</ForceWindowsVersion>

Example scenario

An EMP-packaged application must run on Windows Server 2019. However, it fails with an error message
stating that the application must be installed on Windows Server 2003. This is because it checks whether
the operating system is Windows Server 2003 and finds Windows Server 2019. If the application does
not require a specific service pack, ForceWindowsVersion can be configured as follows.

<Features>
<Feature>ForceWindowsVersion</Feature>

</Features>

<ForceWindowsVersion>
<MajorVersion>5</MajorVersion>
<MinorVersion>2</MinorVersion>
<BuildNumber>3790</BuildNumber>

</ForceWindowsVersion>

RedirectX64PackagedRegistry

The Compatibility Package Builder detects whether it is running on a 64-bit operating system and writes

the <Feature>RedirectX64PackagedRegistry</Feature> configuration to the clc file so that the
package knows which platform that it was created on. Packages created on a 32-bit operating system do
not require this compatibility feature.

The following compatibility engine configuration example enables the
RedirectX64PackagedRegistry feature in the Compatibility.Package.Engine.clc file.

<AAV>
<Features>
<Feature>RedirectX64PackagedRegistry</Feature>

46

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide

Edit,

LoadSystemResources
</Features>
</AAV>
LoadSystemResources

This feature loads architecture-independent resource files regardless of bitness. The
LoadSystemResources feature is useful when 32-bit applications must access the resource-only DLL
present in the native system32 directory instead of syswow64. This is necessary when the wow64 file
system redirection is enabled for a 32-bit application.

The following compatibility engine configuration example enables the LoadSystemResources feature
in the Compatibility.Package.Engine.clc file.

<AAV>
<Features>
<Feature>LoadSystemResources</Feature>
</Features>
</AAV>

upgrade, and maintain an EMP package

The EMP Package Editor is a tool that is used to modify existing EMP compatibility packages. You can

use the Package Editor to apply upgrades, security updates, hot fixes, and service packs to the packaged
application. You can also use the Editor to maintain the EMP components. The editor supports reboots so
that you can apply an application update that requires a reboot during installation.

Important

You must use the Package Editor to update an EMP package on the same architecture on which
the original package was created. For example, if the package was created on an x86 machine,
then the Editor must update the package on an x86 machine.

The EMP Package Editor is installed with the EMP Compatibility Package Builder. A shortcut for the
Editor is included in the same menu as the EMP Compatibility Package Builder.

Topics
« Edit the application in an EMP package (p. 47)
» Upgrade the application in an EMP package (p. 48)
o Maintain an EMP package (p. 48)

Edit the application in an EMP package

Perform the following steps to edit an application in an EMP package.

1. Verify that you are using the latest version of the EMP Compatibility Package Builder. For
version history, see AWS End-of-Support Migration Program (EMP) for Windows Server version
history (p. 68).

Copy the EMP package that you want to edit to the server.

Open the Amazon Web Services folder and launch the Compatibility Package Editor.

On the Home tab, choose Open an existing Compatibility Package.

Navigate to and choose the package that you want to update. Then choose Select Folder.

o Uk UwWN

To make changes to files and folders, choose the Files tab and navigate to the file or folder you
want to edit. You can review the files and folders added to or removed from the package. All
changes are displayed by default. The following filters can be applied.

47

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Upgrade

10.

« New — Display all files added to the package.
« Modified — Display all files changed by the update.
« Deleted — Display all files removed during the application update.

When you open the context (right-click) menu on any folder, you can Add Files, Add Folders, or
Delete files. When you right-click on a file, you can only Delete files.

To remove registry keys, open the Registry tab, navigate to the registry key that you want to
remove, open the context (right-click) menu on the registry key, then choose Delete.

When you have finished editing files, folders, or registry keys, choose Save to build the changes into
an updated package.

When the Package Editor updates a package, it creates a new package folder for the updated
package. It appends the folder name with a version number. The original package is left unchanged
for future reference. In addition, the package ID is not changed so that you can use the updated
package to update a deployed instance of the original package.

To update a deployed EMP package with an updated version, run the following command on the
server running the original deployed package.

<PathtoUpdatedPackage>\Compatibility.Package.Deployment.exe /update

Upgrade the application in an EMP package

Perform the following steps to upgrade an application in an EMP package.

1.

N o v ks~ W

o

10.

11.

Some patch installers check for the presence of an application before installing updates. So verify
that you are using the Windows Server operating system version supported by the application and
the update, and include the original application installed natively on the server.

Verify that the latest version of the EMP Compatibility Package Builder is installed on the server you
want to update.

Copy the EMP package that you want to update to the server.

Open the Amazon Web Services folder and launch the Compatibility Package Editor.
On the Home tab, choose Open an existing Compatibility Package.

Navigate to and choose the package you want to update, then choose Select Folder.

To make changes to files and folders, choose the Files tab and navigate to the file or folder you
want to edit. Choose Update.

Install the application patch and make any necessary configuration changes.

When the installation is complete, choose Next and the Package Editor merges the updates to the
EMP package.

When the merge is complete, all of the updates made to the package by the patch installation can
be viewed in the Files and Registry tabs. The upper right-hand corner displays the total number of
files (All), as well as the number of New, Modified, Deleted, and existing files.

Choose Save to build the updates to a new package.

Maintain an EMP package

When a new version of EMP is released, you can update deployed EMP packages with new binaries.
Perform the following steps to update a deployed EMP package with new EMP binaries.

48

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Optimize Process Monitor

Verify that the latest version of the EMP Compatibility Package Builder installed on the server.
Navigate to the Package Builder installation directory.
Navigate to the Runtime.x64 or the Runtime.x86 folder, depending on the package architecture.

P UunN =

Copy the files (or a subset of the files, depending on what requires updating) in this folder to the
folder in the package that requires the update.

Optimize Process Monitor for Reverse Packaging

Process Monitor is an advanced monitoring tool for Windows that captures real-time file system, registry,
process, and thread activity. The first step of the EMP reverse packaging process is to capture a Process
Monitor (procmon) log of the entire functional running of the application on the source operating
system. The log is used to create an EMP package consisting of all of the required components for the
application to successfully function on a modern operating systems after it has been migrated. An
incomplete capture can result in missing application components.

You can download the latest version of Process Monitor from Microsoft at: https://docs.microsoft.com/
en-us/sysinternals/downloads/procmon.

Perform the following steps to set up capturing for Process Monitor. Use these steps only as a guide. The
monitoring process requirements for each application can vary.

Download the tool on the system running the application that you want to discover.
2. As an administrator, open the command prompt, and launch Process Monitor.

Procmon.exe /AcceptEula /Noconnect

/AcceptEula automatically accepts the EULA license and bypasses the EULA dialog box.

/Noconnect This flag prevents Process Monitor from automatically starting log activity.

3. Configure Process Monitor to save captured logs to a backing file as opposed to virtual memory by
navigating to File>Backing Files and choosing the Use file name option. Select the location and file
to which you want to save the backing file.

Note
If the system used to capture the logs does not have sufficient storage capacity, you can
store the data in another location, such as on a different server or external storage device.

4. Start the capture by choosing Capture. To stop the capture, choose Capture again.

The following optional steps reduce the size of the log file, where possible. To reduce the size of the log
file, we recommend that you run procmon only when running the application windows to reduce capture
of background noise and unrelated workflows.

1. Verify that the following options are not selected:

« Process and Thread Activity
« Network Activity
« Profiling Events

2. Select Drop Filtered Events in the Filter menu. This prevents events that don't meet the filter
criteria from being added to the log.

3. The following table contains common exclusion items related to the operating system that are not
required for the application capture. You can add these exclusions to the Process Monitor application
capture exclusion filter.

49

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Update a deployed package

Exclusions in the EMP_Procmon_Exclusions.PMF filter

Exclusion item
Wininit.exe
Wuauclt.exe
Dwm.exe
Spoolsv.exe
Lsass.exe
Audiodg.exe
SearchIndexer.exe
Taskhostw.exe
Ctfmon.exe

CcmExcec.exe

Description

Windows Start-Up Application
Windows Update

Desktop window manager

Spooler SubSystem App

Local Security Authority Process
Windows Audio Device Graph Isolation
Windows Search Indexer

Host Process for Windows Tasks

CTF loader

Host Process for Microsoft Endpoint

Configuration Manager

You can further expand the number of exclusion items by performing the following steps.

Run procmon for a limited period of time or without the execution process.
Analyze the capture logs and note any processes that are not related to the application.
Add the unrelated processes as additional exclusion items.

A UwbnN =

For applications where a complete list of required processes are known, you can start a Process
Monitor capture and include only these processes in the capture. If this method results in missed
process applications, the final logs may not contain the required information to complete a working
package.

Update a deployed EMP package

This topic contains information to guide you through the process of updating an already deployed EMP
package.

To update the contents of an already deployed EMP package with a new version of the package, run the
Compatibility.Package.Deployment.exe command with the /update switch.

Compatibility.Package.Deployment.exe /update

The package may include changes to the following:

« Files

» Registry settings

« Shortcuts

« Package configuration files
« File type associations

50

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Uninstall a package

Important

If you attempt to use the /deploydir switch when a package has already been deployed, a
Failed to deploy' exit code -1 error will be returned. The /update switch must be
used to update the package to the latest version, or the /uninstall switch must be used to
remove the package first.

Each component is updated as follows.
File Associations

If the file type associations source file (FileAssociations.xml) in the new package is the same as
the one in the currently deployed package, /update will recreate any missing file type associations and
restore values or types to the original values and types specified during the initial deployment.

Note

The /update switch preserves any values that appear in the registry that are not specified in
the source file. If the file type associations source file (FileAssociations.xml) in the new
package is different from the one in the currently deployed package, /update deletes the
registry values that do not appear in FileAssociations.xml and updates values and types
that have changed.

Shortcuts

New shortcuts specified in Shortcuts.xml will be created. Shortcuts that do not exist in the XML file
will be removed. Fields that are different between the currently deployed and the new version to be
deployed will be updated to the latest version.

Registry

A registry update will be performed the next time the application runs. This does not happen as part

of the update process. Updates are performed if the value of Last Modified Date of Registry
Added in HKCU\Software\AWSEMP\Compatibility.Package\{appid} differs from value of the last
modified date of the new application registry XML file (AppRegistry.xml).

The registry update removes all keys under {appid}, but not the values of the keys, and creates all of
the entries specified in the AppRegistry.xml file. The update then sets the last modified time to the
time of the new AppRegistry.xml file.

Subsequent application start events will not initiate registry updates because the modified time of the
file will match the value stored in the registry. If the last modified time cannot be found in the registry,
the registry will be created using the latest AppRegistry.xml file file. If the AppRegistry.xml
file file is invalid, /update will report an error and will not remove any application registry.

When you uninstall a package, all of the files, shortcuts, file type associations, and registry keys
associated with the package are removed. Files in use, which cannot be deleted, are marked for deletion
for the next reboot. After reboot, Windows removes the files marked for deletion along with the registry
configuration for Out of Process COM virtualization.

To uninstall a package, perform the following steps.

1. Open a command prompt as an administrator.

2. Run the following command, where <source-location-of-package> is the location from which
the package was initially deployed.

C:\<source-location-of-package>\Compatibility.Package.Deployment.exe /U

51

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Enable logging

Note
If you run this command from the deployed location, the uninstall will be incomplete. Verify
that the package is uninstalled from the correct source path.

Enable EMP compatibility package engine logging

This topic contains information to help you to enable logging for the EMP compatibility package engine.
By default, logging is disabled. Logging helps you identify problems with applications running in an EMP
package.

Logs generated by the compatibiity engine are created in the following folders:

« On Windows Server 2008 and later versions: *%LocalAppData%\AWSEMP\Logs*
« On Windows Server 2003: ¥UserProfile%\Local Settings\Application Data\AWSEMP\Logs

Note
LocalAppData resolves to a special location for the SYSTEM account: C: \Windows
\System32\config\systemprofile\AppData\Local.

You can update the default log file location, if required. To do this, see step four in the procedure at the
end of this topic (Enable compatibility package engine logging).

Each time the package engine runs, two logs are created:

« Log for package engine — Outputs to reversedate-time-PID-
Compatibility.Package.Engine. log. For example, 20190425-113000-000600-
Compatibility.Package.Engine.log.

» Log for the child process(es) redirected by the package engine — outputs to reversedate-time-
parentPID-PID-ExecutableName.log. For example, 20190425-113000-000600-002820—
MyApp.log

The package engine log for child processes includes the following columns:

Column Description

TIMESTAMP The date and time that the log file entry was
written.

TID The thread ID that generated the log item.

LOG TYPE Defines the type of log entry:

« INFO — Contains general information, such as a
file redirection.

« ERROR — Generated when the Windows API
function fails.

« DEBUG — Contains details about how the
compatibility package engine is running.

CATEGORY The area to which each API belongs. For
example, File or Registry. Categories also
include subcategories, such as Redirected or
NotRedirected

52

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Enable logging

Column Description

FUNCTION-LINE The function that generates a log event message.
This will often be a Windows API, although
internal compatibility package engine functions
generate their own log events.

FROM Typically, the from/original name. For example,
the filename, registry key, and so forth

TO Typically, the virtualized name (filename, registry).
It can also be empty to indicate that the original
name is the same.

Note

For application logging, the FROM/TO
fields are populated when virtualizing
from one location to another. However,
FROM can be used only to record the
details of an APl accessing a location that
is not virtualized (for example, registry
access to a non-virtualized path). The
FROM/TO fields can also be empty when
a location or object isn't virtualized,

but for which a log event should be
recorded (the message will contain
details about the event). For example,
the NotWow64Process virtualizes

the Windows APl PrintD1g, and the
information about this is recorded

MESSAGE Additional information related to the function
that generates the log event (for example, other
parameters). This means that the information is
different for each function. For example, for FILE
APIs, the information could be the desired access.
For coy, it could be the class registration.

ERROR (CODE) When an error occurs, the generated error code is
displayed.
MESSAGE The error message associated with the error code.

Enable compatibility package engine logging

1. Navigate to the package folder.
Open Compatibility.Package.Engine.clc in a text editor, such as Notepad++.
Create the tag using the following command and set the value for Log to one of the following,
depending on the level of logging required.
« Off — The default. Logging is disabled.

« On — Only high-level APIs are logged. There is no nesting of log entries/logging of any lower-
level API calls. For example, when you create a file, the CreateFile APl is called. This, in turn,
calls the lower level API NTCreateFile. When logging is set to On, you will not see entries for the
lower-level APIs called, such as NTCreateFile.

« Verbose — All entries, including both high-level and low-level API calls.

53

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Manage custom configurations

<AAV Log="<value>"

4. To customize the location where the log files are created, use an additional LogPath tag that points
to the location where you want the log files to be created.

The following example enables log files to be created in the C: \Temp location.

<AAV Log="On" LogPath="C:\Temp">

Managing EMP custom configurations

You can add custom configurations to your EMP package using the DeploymentScript.xml file
that is provided in the root folder of each created package. Each application works uniquely and
implementation for the same application can work differently across environments.

The DeploymentScript.xml file can handle different methods for running Windows. This includes
running scripted installations and Windows installer files, or it can use tools such as CMD. exe,
PowerShell.exe, and WSH to achieve specific results.

The following example shows the structure of the DeploymentScript.xml.

<Deployment>
<Install>
<!l--
<Programs>
<Program Order="0">
<ProcessWindowStyle>Normal</ProcessWindowStyle>
<Path>Program2</Path>

<Args>arg2</Args>
<WaitCondition TimeoutInSeconds="0">None</WaitCondition>
</Program>
</Programs>-->
</Install>
<Uninstall>
<!--
<Programs>

<Program Order="0">
<ProcessWindowStyle>Normal</ProcessWindowStyle>
<Path>Program2</Path>
<Args>arg2</Args>
<WaitCondition TimeoutInSeconds="0">None</WaitCondition>
</Program>

</Programs>-->

</Uninstall>
</Deployment>

DeploymentScript.xml element and attribute descriptions:

« Install — Specifies what to run during the package deployment phase.
« Programs — Specifies the number of tasks to run.

« Program — Specifies the details of the task to run. To run more than one task, copy and paste the
entire Program element and tailor it to the new action.

« Order — Specifies the sequence of the tasks as 0, 1, 2, and so on. The current release includes only the
Order attribute.

54

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Manage custom configurations

« Prelnstall and PostInstall— These attributes are not added by default. You can add them as needed.

» By default, the programs are run as PostInstall tasks. This means that they are run towards the
end of the EMP package deployment, after the installation of services. The PostInstall attribute
can be explicitly set as follows.

<Program Order="0" PostInstall="true">

Example scenario: deploy drivers silently as part of the EMP package deployment — The drivers
will be deployed after the services have been installed and started, towards the end of the package
deployment process. Tasks that install service dependencies must not be run as PostInstall tasks.

« You can run a PreInstall task by adding a PreInstall=“true” attribute and value as follows.
This runs the program before the services are installed.

<Program Order="0" PreInstall="true">

Example scenario: an application's Windows service requires a dependency in Windows features
to be enabled on the server on which it is deployed before it can start — A PreInstall script
can be used to enable the Windows feature so that it is set up and configured as part of the EMP
deployment process before the service is started.

» ProcessWindowStyle — This attribute can be set to either Normal or Hidden depending on the
requirements for the visibility of the process run.

o Path — The path to the program to be run.
« Args — This attribute allows for the passing of arguments to the program that is to be run.

« WaitCondition — The TimeoutInSeconds attribute can be set with either a None or Exit condition
in the <waitConditions> tag. A program configured with a timeout will display an error to the user
if the process fails to close within the specified time. If the timeout is set to 0, it waits indefinitely.

If a dependency is installed prior to a service starting, you may need to add an Exit condition to
ensure that the process completes and exits before Compatibility.Package.Deployment.exe
moves to the next task, or commences services installation:

<WaitCondition TimeoutInSeconds="0">Exit</WaitCondition>

 Uninstall — Specifies what to run during the uninstall phase of an EMP package.

Example scenario: migrate local users and groups

Applications that use local users and groups can be migrated by using the DeploymentScript.xml
program tasks. Identify the local users and groups to be migrated from the legacy source machine. Take
note of the users that have been added to these groups. Create a script that creates these local users and
groups on the target system.

In this scenario, SQL Server 2005 Express creates the following local users and groups when installed
natively on Windows Server 2008 R2.

Bsqu QLServerADHelper iserd IHCADSRO7 Members in the qroup have the requ...
Msqu LUser§WIN-021HCADSROTSQLENPRESS Members in the group have the requ...
501 Server200950L BrowserUser §WIN-021HCADSRO7 Members in the graup have the requ...

The Network Service account is added to these groups.

55

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Link packages

SQLServer2005M550LServerADHelperUser$WIN-021HCADSR... ﬂ

General |

% Server2005M550LS erverAD Helperl serfwIN-021HCADSRO 7

Members in the group have the required access and
privileges to be assigned as the log on account for the

Description:

Members:

| EE,NT AUTHORITYSMETWORK SERVICE [5-1-5-20)

The following PowerShell script creates these local users and groups. It is stored in a file called
CreateLocalUsersGroups.psl.

$groups = New-Object 'system.collections.generic.dictionary[string,string]’

$groups.Add('SQLServer2005MSSQLServerADHelperUser$' + $ENV:COMPUTERNAME, "Members in the
group have the required access and privileges to be assigned as the log on account for the
associated instance of SQL Server Active Directory Helper in SQL Server 2005.")

$groups.Add('SQLServer2005MSSQLUser$"' + $ENV:COMPUTERNAME, "Members in the group have the
required access and privileges to be assigned as the log on account for the associated
instance of SQL Server and SQL Server FullText Search in SQL Server 2005.")

$groups.Add('SQLServer2005SQLBrowserUser$' + $ENV:COMPUTERNAME, "Members in the group have
the required access and privileges to be assigned as the log on account for the associated
instance of SQL Server Browser in SQL Server 2005.")

ForEach ($group in $groups.GetEnumerator())

{

$newGroup = New-LocalGroup -Name $group.Key -Description ($group.Value.Substring(0,44) +
.o)

Add-LocalGroupMember -Group $newGroup -Member "S-1-5-20"

}

To migrate local users and groups, add this file to the root of the EMP package and update the
DeploymentScript.xml as follows.

<Install>
</Program>
<Program Order="0" PrelInstall="true">
<ProcessWindowStyle>Hidden</ProcessWindowStyle>
<Path>Powershell.exe</Path>
<Args>"%DefaultDir%\CreateLocalUsersGroups.psl"</Args>
<WorkingDirectory>%DefaultDir%</WorkingDirectory>
<WaitCondition TimeoutInSeconds="0">Exit</WaitCondition>
</Program>
</Install>

Link EMP packages

This topic contains an example Redirections.xml file to show you how to link EMP packages so
that they can interact with each other. One scenario for which this process is useful is if an application
requires access to files or registry keys from a different EMP package, for example, if you packaged a
dependency in a separate EMP package and the main application requires access to the dependency
application to function as required.

You can link packages by loading the Redirections.xml file from one package to another using the
<Includes> tagin the EMP compatibility engine config file (Compatibility.Package.Engine.clc).

56

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
ODBC drivers

Example

In the following example, an <Include> tag entry has been added (C:
\DeployDirForPackage2\ExamplePackage2\Redirections.xml). When a process from
ExamplePackagel starts, the engine that starts the process will load the Redirections.xml file from
both ExamplePackagel and ExamplePackage2.

<AAV PackageId="ExamplePackagel">
<Includes>
<Include>Redirections.xml</Include>
<Include>C:\DeployDirForPackage2\ExamplePackage2\Redirections.xml</Include>
</Includes>

When both Redirections.xml files are loaded, the process from ExamplePackagel follows all

of the redirections from ExamplePackage?2. In this example, we could add an <Include> entry for
the Redirections.xml for ExamplePackagel in the Compatibility.Package.Engine.clc of
ExamplePackage2 so that processes from either package can access each other.

In this example, a relative path is used. If ExamplePackagel and ExamplePackage2 are
deployed into the same DeployDir, you can enter the path as follows: <Include>..
\ExamplePackage2\Redirections.xml</Include>.

Applications using ODBC drivers

Migrate applications that require Open Database Connectivity (ODBC) drivers.
Microsoft ODBC drivers

Windows Server 2016 and Windows Server 2019 include several Microsoft ODBC drivers installed as part
of the operating system. We recommend that you use these versions in the package instead of earlier
versions.

To verify whether an ODBC driver is present on the target operating system, open the Drivers tab of the
ODBC Data Source Administrator application. Note that there are separate 32-bit and 64-bit versions of
the ODBC data sources and drivers.

=) ODBC Data Source Administrator (32-bit) X

User DSN System DSN Fle DSN Drivers Tracing Connection Pooling About

ODBC Drivers that are installed on your system:

Version Company Fie ~

YR g=Y] 10.00.1763.01 Microsoft Coporation ODBCJT32.DLL.
10.00.17763.01 Microsoft Corporation ODBCJT32.DLL
10.00.17763.01 Microsoft Corporation ODBCJT32.DLL
10.00.17763.01 Microsoft Corporation ODBCJT32.DLL
10.00.17763.01 Microsoft Corporation ODBCJT32.DLL
10.00.17763.01 Microsoft Corporation ODBCJT32.DLL
10.00.17763.01 Microsoft Corporation ODBCJT32.DLL
10.00.17763.01 Microsoft Corporation ODBCJT32.DLL
Microsoft dBase-Treiber (" dbf) 10.00.17763.01 Microsoft Comoration ODBCJT32.DLL ¥
< >

_" An ODEBC diiver allows ODBC-enabled programs to get information from ODEC data saurces. To install
b| new drivers, use the divers setup program

You can also query for the installed ODBC drivers using PowerShell by running the Get-0ODBCDriver
cmdlt.

Third-party ODBC drivers

Applications that require ODBC drivers that are not included by default in Windows operating systems
must be included within the EMP package so that the application has everything it requires to run.
Applications that install third-party ODBC drivers as part of the application install process will include
the ODBC drivers in the EMP package as part of the install capture process. Applications that require

57

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Enable out-of-process COM

ODBC drivers to be manually installed, either before or after the application is installed, must be
installed during the install capture process so that they are included in the EMP package.

Enable support for out-of-process Common Object
Model (COM) in an EMP package

This topic includes steps to enable support for out-of-process Common Model Objects (COM) in an EMP
package. There are two main types of COM servers: in-process and out-of-process. In-process servers are
implemented in a dynamic linked library (DLL). Out-of-process servers are implemented in an executable
file (EXE).

Out-of-process servers can reside on either the local computer or a remote computer. In addition, COM
provides a mechanism that allows an in-process server (DLL) to run in a surrogate EXE process to run the
process on a remote computer. For more information about how to create DLL servers that can be loaded
into a surrogate EXE process, see the Microsoft documentation at DLL Surrogates.

Applications with components that run out-of-process require the COMVirtualization feature to
be enabled to virtualize COM. Process Monitor (procmon) can be used to detect these components by
monitoring SVCHOST . exe. Also, APIMON can be used, filtering for CoCreateInstance.

A failure results in either CLSID not found or Component not registered when the COM
subsystem does not run within the virtual environment of the package.

Note

The coMvirtualization feature is not required if the application uses in-process COM
objects. Applications that use in-process COM objects behave as expected without enabling the
feature.

Enable the coMvirtualization feature

Navigate to the package folder of the application.
Edit the Compatibility.Package.Engine.clc in atext editor, such as Notepad++.

Enable the coMvirtualization feature by moving the feature tag out of the section of tags that
are commented out.

<Features>
<Feature>COMVirtualization</Feature>
</Features>

For a 64-bit package, add the coMVirtualization tag to the automatically added <Features>
element that contains the RedirectX64PackageRegistry feature. If two <Features> elements
are used in the CLC file, an error will result when you attempt to run the package.

<AAV>
<Features>
<Feature>RedirectX64PackagedRegistry</Feature>
<Feature>COMVirtualization</Feature>
</Features>
</AAV>

Debugging COM virtualization

« COM messages are written to the engine logs. Search for coM to find them.

58

https://docs.microsoft.com/en-us/windows/win32/com/dll-surrogates

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Add SXS assemblies

« COM error messages are written to the engine logs. Search for ERROR, COM to find them.

« If COM instance creation fails, the engine log message will contain Failed to create COM
instance.

« Resolving or troubleshooting problems with COM Virtualization may require temporary or permanent
exclusion of CLSIDs from the process.

To exclude CLSIDs from COM virtualization

1. Inthe Compatibility.Package.Engine.clc configuration file, locate and edit the
<Features> tag, which is used to enable COMVirtualization.

<AAV>
<Features>
<Feature>ComVirtualization</Feature>
</Features>
</AAV>

2. To exclude CLSID EF66E233-9F07-4E32-9119-FF40CDDD4DCF, insert the following <coM> tag
code outside of the <Features> tag to specify the CLSID you want to exclude.

<AAV>
<Features>
<Feature>ComVirtualization</Feature>
</Features>
<COM>
<CLSID ID="{EF66E233-9F07-4E32-9119-FF40CDDD4DCF}" Excluded="true">
</CLSID>
</COM>
</AAV>

To include the CLSID, change the value of Excluded to ="false", or remove the <COM> tags.

Add side-by-side (SXS) assemblies to an EMP
compatibility package

A Windows side-by-side assembly is described by manifests. A side-by-side assembly contains a
collection of resources — a group of DLLs, Windows classes, COM servers, type libraries, or interfaces
— that are always provided to applications together. These resources are described in the assembly
manifest.

Typically, a side-by-side assembly is a single DLL. For example, the Microsoft COMCTL32 assembly is a
single DLL with a manifest, whereas the Microsoft Visual C++ development system run-time libraries
assembly contains multiple files.

Manifests contain metadata that describes side-by-side assemblies and side-by-side assembly
dependencies. Side-by-side assemblies are used by the operating system as fundamental units of
naming, binding, versioning, deployment, and configuration.

Every side-by-side assembly has a unique identity. One of the attributes of the assembly identity is its
version. For more information, see Assembly Versions in the Microsoft documentation.

The EMP Compatibility Package Builder does not configure support for side-by-side assemblies. If your
application uses side-by-side assemblies that are distributed with installers, you must first attempt to
install them natively on the target operating system. If this is successful, you can script the installation of

59

https://docs.microsoft.com/en-us/windows/win32/sbscs/manifests
https://docs.microsoft.com/en-us/windows/win32/sbscs/m-sbscs-gly
https://docs.microsoft.com/en-us/windows/win32/sbscs/assembly-versions

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Exclude or detach a process

these assemblies into package deployment using the DeploymentScript.xml. For more information
see Managing EMP custom configurations (p. 54). If native installation is not possible or does not
address the issue, you can add the assemblies to the package as private assemblies.

The following error message will appear in the Windows Event Viewer, from which you can determine
what assemblies you need, along with the version:

Activation context generation failed for "DemoApplication.exe". Dependent
AssemblyTowersWatson.Components.Licensing.ComSRM, publicKeyToken="97c62a3c455f5e0d",type="win32",versic
not be found. Please use sxstrace.exe for detailed diagnosis.

Add side-by-side assemblies to an EMP package
1. Add the missing DLLs associated with the run-times to the same folder as the executable being run.

Alternatively, use Process Monitor to monitor the application process along with csrss.exe to
determine where the application is looking for these DLLs.

2. Locate the DLLs (usually located in ¢: \Windows\Assembly or C:\Windows\WinsXxs folders).

Exclude or detach a process from the package
redirection rules

This topic explains how to use the Excludes or Detaches features in the package redirection rules.
Excludes feature

We recommend the Excludes feature method to control the behavior of the package redirection and
virtualization engine. It prevents child processes from being virtualized and redirected without affecting
the virtualization of the parent processes.

This feature is useful when the packaged application is spawning local processes from locally installed

applications that you do not want redirected. This is because the redirections change the behavior of the
child processes.

Exclude a process from the package redirection rules

Open Compatibility.Package.Engine.clc.
2. Add the executable names to the Exclude tags.

<Excludes>
<Exclude>Excel.exe</Exclude>
<Exclude>Winword.exe</Exclude>
</Excludes>

Detaches feature

You can control the behavior of the virtualization and redirection engine using the Detaches feature.
After an application has started, the virtualization engine exits when the initial create process function
completes. All redirections and most virtualization features will be available to the parent process that
started.

The Detaches feature is useful when child processes do not exit cleanly, and terminate with an
exception.

60

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Run cmd. exe as a child process

Important

The virtualization and redirection engine of the package will detach from the parent process
once virtualization is complete. Any child processes will not be virtualized, and the detached
process will not benefit from DEPOptOut or HandleInvalidHandle, even if these features are
enabled.

Detach a process from the package redirection rules

Open Compatiblity.Package.Engine.clc.
Add the executable names to the Detach tags.

<Detaches>
<Detach>Excel.exe</Detach>
<Detach>Winword.exe</Detach>
</Detaches>

Run cmd. exe as a child process to the EMP
compatibility package engine

This topic explains how to test or troubleshoot an EMP package by launching cmd . exe as a child process
to the EMP package engine. Doing this launches cmd . exe in the context of the EMP package to quickly
run tests, validate application errors, and retest functionality.

Run emd. exe as a child process

1.
2.

Deploy the EMP package following the usual deployment process.

Open a new cmd. exe window and navigate to the root of the EMP package. Run the following
command.

<pathtopackage>\Compatibility.Package.Engine.exe /F cmd.exe

This command launches the engine and runs the cmd . exe as a child process in the context of an
EMP package. A new command window will open. All redirection rules and package configurations
now apply to the new cmd. exe process. You can verify this using Process Explorer and looking for
the cmd. exe under the parent cmd. exe.

Example: Verify that application can access its main installation folder

In this troubleshooting scenario, we want to verify that the LegacyApp application packaged in EMP can
access its main installation folder, LegacyAppFolder.

1.

Check the package to confirm that LegacyAppFodler exists.

61

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Run cmd. exe as a child process

ProgDakta

{?I':, ;,r;-| .= _ompu

Crganize = Include in |

. Favorites
B Deskiop
g Downloads

2. A corresponding <FolderMatch> redirection should exist in the Redirections.xml file of the
package.

<FileSystem>
<FolderMatch>
<From>%ProgramFilesX86%\LegacyAppFolder</From>

62

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Run cmd. exe as a child process

<To>ProgData\LegacyAppFolder</To>
</FolderMatch>

Use cmd. exe to check for the file in the local system. The system should not be able to find the file.

stem32\cmd.exe

Microsoft Windows [Uersion 6.1.76011
Copyright (c) 2009 Microsoft Corporation. ALl rights reserved.

C:Users™Adninistrator>cd “c:“\Program Files {(x86> \LegacyfAppFolder'"
T he tem cannot find the path specified.

C:lsers™Adninistrator>_

Run cmd. exe as a child process to the package engine. This should confirm that the
LegacyAppFolder is available in the context of the EMP package.

\windows'system32} crnd.exe.
es\Administratorded C:\ProgramData\EMP\LegacyApp_B0O1
:\ProgranDataxEMP\Legac yApp_B0B1>Compatibility.Package .Engine.exe /f cnd.exe

C: \ProgranData\ENP\LegacyApp_BOBL>

Microsoft Wind 11
Copyright <c) i A1l rights reserved.

C:\ProgranData\EMP\Legacyfpp_BBA1>cd "o :\Program Files (x86>\LegacyfAppFolder"

c :\Progran Files {xB6>\LegacyAppFolder>_

63

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide

Security in AWS End-of-Support
Migration Program (EMP) for
Windows Server

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes this
as security of the cloud and security in the cloud:

« Security of the cloud — AWS is responsible for protecting the infrastructure that runs AWS services in
the AWS Cloud. AWS also provides you with services that you can use securely. Third-party auditors
regularly test and verify the effectiveness of our security as part of the AWS Compliance Programs.
To learn about the compliance programs that apply to Porting Assistant for .NET, see AWS Services in
Scope by Compliance Program.

« Security in the cloud - Your responsibility is determined by the AWS service that you use. You are also
responsible for other factors including the sensitivity of your data, your company'’s requirements, and
applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when using AWS
End-of-Support Migration Program (EMP) for Windows Server. The following list contains information
about how AWS End-of-Support Migration Program (EMP) for Windows Server helps you to meet your
security and compliance objectives.

« Migrates legacy applications from insecure EOS Windows versions to the latest secure versions.
The EMP application packaging process captures only the legacy application components into an
EMP package, not the legacy operating system components. The package can then be deployed and
run in isolation, and benefits from the enhanced security and performance of the modern operating
system. The modern operating system, in turn, runs on modern hardware, which also mitigates against
hardware-based vulnerabilities. Because an EMP package is no longer dependent on the underlying
operating system, it can run on a later version of Windows, including future semi-annual Windows
releases. This ensures that you can take advantage of future security benefits and always run on a
supported Windows version.

« Application security updates. Applications contained in an EMP package can be patched with
security updates provided by the application vendors by using the EMP Compatibility Package
Editor (p. 38).We recommend that you maintain packaged applications with their latest security
updates to keep them as secure as possible in the AWS Cloud.

« Application security vulnerabilities. EMP does not resolve inherent security vulnerabilities in legacy
applications. Because vulnerable applications benefit from the better security features of modern
Windows servers, EMP reduces their exposure to exploitation. Regularly updating EMP-packaged
applications with security updates where available is recommended to counter security vulnerabilities.

64

http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/programs/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/services-in-scope/

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide
Data collected

Data collected by the AWS End-of-Support
Migration Program (EMP) for Windows Server

AWS collects usage information through the EMP telemetry module during the deployment and
subsequent use of EMP packages. Collection of the telemetry collected during deployment is mandatory,
whereas the runtime (usage) telemetry is optional. You can opt out of sending runtime telemetry when
you install the EMP Compatibility Package Builder. The telemetry module sends the collected data to an
application modernization metrics service running on AWS.

The following mandatory telemetry metrics are collected by AWS:

o AWS account ID

« Windows operating system version
« Infrastructure (AWS or not AWS)

» Hashed package ID

The following optional runtime telemetry metrics are collected by AWS:

« Windows operating system, for example, Windows Server 2008.
« Windows operating system architecture, for example, x86.

« Instance type. The instance type is the machine type on which the application is deployed. It can be
either an Amazon EC2 instance or an on-premises machine.

« EMP compatibility engine version, for example, 1.0.0. 4.

« EMP compatibility engine architecture, for example x86.

« Virtualized executable name, for example, Notepad++.

« Virtualized Application Architecture, for example, x86.

« Namespace to identify whether the package run is a development or production run.

65

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide

Troubleshooting AWS End-of-
Support Migration Program (EMP)
for Windows Server

When troubleshooting AWS End-of-Support Migration Program (EMP) for Windows Server issues, we
recommend that you apply the following methodology. There are four major types of issues related to
EMP packaging.

Environment — The target system is running in production and may be subject to more stringent
restrictions than the test server. Common examples include more restrictive group policies, antivirus
restrictions, enabled controlled folders, and User Access Control restrictions.

Legacy application — It is not uncommon to find pre-existing issues in the application that exist
before packaging. For example, if a function fails in the packaged application you should test the
functionality on the natively installed application on the legacy server.

Packaging — These are issues related to the capture process and primarily an incomplete test plan. A
common example would be functionality that should have been run during the capture, but was not
included and therefore system calls to the registry or files was not captured.

EMP packaging tools — These are issues related to the EMP product. If you suspect product issues,
create a ticket so the product team can look into the issue.

To find the root cause of an issue, we recommend the following workflow, where you begin testing on
the legacy operating system and then move towards testing on the target operating system.

1.

Test the package on a clean machine running the source operating system and where the application
has never been installed. A clean testing machine is a server instance of the Windows operating
system version with as little else as possible installed on the machine.

. Test the package on a machine running the target operating system where no other applications or

policies are installed.

. Test the package on a machine running the target operating system configured with other

applications and policies that will exist in the target environment.

This testing process allows you to identify the step during which the package is failing.

When the package fails during testing, we recommend trying the following tools to remediate.

Check if any error messages appear when the application fails — An application failure typically
results in an error message. The error message may be from Windows and provide details about what
has gone wrong, or it may provide a Windows error code, which can help to diagnose the problem. The
message can also be from the application process that encountered the problem. This indicates that
the process was successfully started then encountered a problem. Application error codes and other
messages indicate that the error has been logged and assist with problem diagnoses.

Check the Windows Event Viewer for application errors — Application errors are not always
logged in Windows Event Logs; however, we recommend that you check them for useful diagnostic
information.

Use the Sysinternals tool, Process Explorer — Use Process Explorer to check the command line and
environment variables used to load the application process.

66

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide

1. Download Process Explorer from https://docs.microsoft.com/en-us/sysinternals/downloads/
process-explorer.

Launch your EMP packaged application or reproduce the error you want to investigate.

Launch Process Explorer and look for the process you want to investigate.

Open (double-click) the process that you want to investigate to open the Properties window.
View the command line on the Image tab of the Properties window, in the Command line box.

o HuN

In the Properties window, choose the Environment tab to view the environment variables that are
available to the process.

Use the Sysinternals tool, Process Monitor (procmon) — Check Process Monitor to see if the
application writes any log files to the drive to investigate. Also use Process Monitor to check if there
are any registry keys or files the application is not able to find (the result returned for this scenario

is PATH NOT FOUND). Or check to see if the application is failing to read or write from registry keys
or files even when found (the returned result for this scenario is ACCESS DENIED). These results can
be compared to the results obtained from a procmon log of a working installation of the application,
which should show as SUCCESS for these operations.

Enable the compatibility package engine logs

« To enable package engine logging, open the Compatibility.Package.Engine.clc filein a text
editor, such as Notepad ++.

« By default, the first line will contain the following: <AAV PackageId=“PackageID”>. For example,
AAV PackageId="SQL2005EXPSP4_8959">.

o Add the string Log=“on” to the line so that it reads <AAV PackageId=“PackageID” Log=“on’”>.
For example, AAV PackageId="SQL2005EXPSP4_8959" Log="on">.

67

https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer
https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide

AWS End-of-Support Migration

Program (EMP) for Windows Server
version history

The following table describes the released versions of AWS End-of-Support Migration Program (EMP) for
Windows Server Compatibility Package Builder.

New releases of the AWS End-of-Support Migration Program (EMP) for Windows Server Compatibility
Package Builder are provided in MSI format. To upgrade to a new version from a previous version,
uninstall the previous version by using the Add or Remove Programs feature from legacy Windows
operating systems, or from Programs and Features in the Control Panel for later operating systems.
Then, reinstall the package with the latest MSI.

Version Details Release date

1.0.0 Initial release October 15,
2020

68

AWS End-of-Support Migration Program
(EMP) for Windows Server User Guide

Document History for User Guide

The following table describes the documentation for this release of AWS End-of-Support Migration
Program (EMP) for Windows Server.

« Latest documentation update: October 15, 2020

update-history-change update-history-description update-history-date

Initial release (p. 69) Initial release of the AWS End- October 15, 2020
of-Support Migration Program
(EMP) for Windows Server User
Guide.

69

	AWS End-of-Support Migration Program (EMP) for Windows Server
	Table of Contents
	What Is AWS End-of-Support Migration Program (EMP) for Windows Server?
	Features of AWS End-of-Support Migration Program (EMP) for Windows Server
	AWS End-of-Support Migration Program (EMP) for Windows Server concepts
	Supported operating systems and requirements
	Accessing AWS End-of-Support Migration Program (EMP) for Windows Server
	Pricing for EMP

	How AWS End-of-Support Migration Program (EMP) for Windows Server works
	The AWS End-of-Support Migration Program (EMP) for Windows Server process
	Discovery
	Packaging preparation
	Packaging
	Deployment

	AWS End-of-Support Migration Program (EMP) for Windows Server System requirements
	AWS End-of-Support Migration Program (EMP) for Windows Server limitations
	Data collection
	Components of the EMP Compatibility Package Builder

	Get started with AWS End-of-Support Migration Program (EMP) for Windows Server
	AWS End-of-Support Migration Program (EMP) for Windows Server decision tree
	Planning an AWS End-of-Support Migration Program (EMP) for Windows Server migration
	High-level AWS End-of-Support Migration Program (EMP) for Windows Server application discovery exercise
	Install AWS EMP Compatibility Package Builder
	AWS End-of-Support Migration Program (EMP) for Windows Server application packaging model
	How to package an application when installation media is available (standard packaging)
	Stage 1: Install capture (Required)
	Stage 2: Runtime analysis (Optional)
	Stage 3: Edit package contents (Optional)
	Stage 4: Package Finalization (Required)

	How to package an application when installation media is not available (reverse packaging)
	Prerequisites for reverse packaging
	Requirements
	Software prerequisites

	Use Process Monitor to discover the files and registry keys used by the application
	Prepare to discover the application
	Discover the files and registry keys used by the application

	Filter the capture
	Choose which processes to save in the capture
	Capture the files and registries
	Create the export bundle of the files and registry keys required for the application
	Create the new packaged version of the application
	Package applications on multiple drives
	Integrate COM+ applications into EMP packages
	Detect whether an application includes COM+applications
	Include COM+ applications in an EMP package

	Package an IIS-based application
	Discovery
	Migrate your IIS-based application
	Stage 1: Migrate your web application configuration
	Legacy server steps
	Target server steps

	Stage 2: Capture application dependencies (optional)

	Troubleshooting packaging an IIS-based application

	EMP compatibility package contents
	Source package contents
	Deployed package contents

	Deploy an EMP package
	Requirements for deploying an EMP package
	Run the deployment tool

	Working with EMP packages
	Best practices for packaging applications with AWS End-of-Support Migration Program (EMP) for Windows Server
	EMP compatibility package features
	ForceExternalManifest
	RegClassesMerging
	DoNotHideDebugger
	HandleInvalidHandle
	NotWow64Process
	NetworkRedirection
	LocalMappedObjectShim
	DEPOptOut
	COMVirtualization
	ForceWindowsVersion
	RedirectX64PackagedRegistry
	LoadSystemResources

	Edit, upgrade, and maintain an EMP package
	Edit the application in an EMP package
	Upgrade the application in an EMP package
	Maintain an EMP package

	Optimize Process Monitor for Reverse Packaging
	Update a deployed EMP package
	Uninstall an EMP package
	Enable EMP compatibility package engine logging
	Managing EMP custom configurations
	Link EMP packages
	Applications using ODBC drivers
	Enable support for out-of-process Common Object Model (COM) in an EMP package
	Add side-by-side (SXS) assemblies to an EMP compatibility package
	Exclude or detach a process from the package redirection rules
	Run cmd.exe as a child process to the EMP compatibility package engine

	Security in AWS End-of-Support Migration Program (EMP) for Windows Server
	Data collected by the AWS End-of-Support Migration Program (EMP) for Windows Server

	Troubleshooting AWS End-of-Support Migration Program (EMP) for Windows Server
	AWS End-of-Support Migration Program (EMP) for Windows Server version history
	Document History for User Guide

