
UsableNet

WCAG Principles
Applied To Mobile

2

UsableNet

Table of Contents

Table of Contents .. 2

Foreword ... 3

Principle 1 – Perceivable ... 4
 Example 1: Small Screen Size .. 5
 Example 2: Zoom/Magnification .. 6
 Example 3: Text Contrast .. 7
 Example 4: Changing Screen Orientation (Portrait/Landscape) .. 8
 Example 5: Provide Easy Methods for Data Entry .. 9

Principle 2 – Operable ... 10
 Example 1: Placing Buttons Where They Are Easy To Access .. 11
 Example 2: Keyboard Control for Touchscreen Devices ... 12
 Example 3: Touch Target Size and Spacing ... 13
 Example 4: Touchscreen Gestures .. 14
 Example 5: Device Manipulation Gestures ... 15
 Example 6: Provide Mechanisms To Abort or Undo the Action .. 16

Principle 3 – Understandable ... 17
 Example 1: Consistent Layout ... 18
 Example 2: Positioning Important Page Elements Before the Page Scroll ... 19
 Example 3: Grouping Operable Elements That Perform the Same Action ... 20
 Example 4: Provide Clear Indication That Elements Are Actionable .. 21
 Example 5: Provide Instructions for Custom Touchscreen and Device Manipulation Gestures 22

Principle 4 – Robust ... 23
 Example 1: Set the Virtual Keyboard To the Type of Data Entry Required ... 24
 Example 2: Support the Characteristic Properties of the Platform.. 25

References .. 26

3

UsableNet

Foreword

The content of this document is for the most part taken
from the W3C Working Draft, “Mobile Accessibility: How
WCAG 2.0 and Other W3C/WAI Guidelines Apply to
Mobile”. published in 2015.

At UsableNet, we created this document and added
practical visual examples to it, to use it as a quick
reference tool for everyone who needs a straightforward
introduction or guidance on how WCAG principles can
apply to the mobile context, whether is mobile web
content, mobile web apps, native apps, or other hybrid
solutions.

This document version has been recently updated and
includes references to the latest WCAG 2.1 guidelines.

Principle 1
Perceivable

UsableNet

5

Principle 1 – Perceivable

Example 1: Small Screen Size

Small screen size is one of the most common
characteristics of mobile devices. While the exceptional
resolution of these screens theoretically enables large
amounts of information to be rendered, the small size of
the screen places practical limits on how much information
people can actually view at one time, especially when
magnification is used by people with low vision.

Some best practices for helping users to make the most of
small screens include

• Minimizing the amount of information that is put on each
page compared to desktop/laptop versions by providing
a dedicated mobile version or a responsive design:
 ° a dedicated mobile version contains content tailored

for mobile use. For example, the content may contain
fewer content modules, fewer images, or focus on
important mobile usage scenarios.

 ° a responsive design contains content that stays
the same, but CSS stylesheets are used to render
it differently depending on the viewport width. For
example, on narrow screens the navigation menus may
be hidden until the user taps a menu button.

• Providing a reasonable default size for content and
touch controls (see "B.2 Touch Target Size and Spacing")
to minimize the need to zoom in and out for users with
low vision.

• Adapting the length of link text to the viewport width.
• Positioning form fields below, rather than beside, their

labels (in portrait layout)

Approaches such as content prioritization and progressive disclosure favors
clarity over density of information, helping the user stay focused throughout
the whole app experience.

UsableNet

6

Principle 1 – Perceivable

Example 2: Zoom/Magnification

A variety of methods allow the user to control
content size on mobile devices with small screens.
At the browser level these methods are generally
available to assist a wide audience of users. At
the platform level these methods are available as
accessibility features to serve people with visual
impairments or cognitive disabilities.

The methods include the following:
• OS-level features

 ° Set default text size (typically controlled from
the Display Settings) Note: System text size is
often not supported by mobile browsers.

 ° Magnify entire screen (typically controlled
from the Accessibility Settings). Note: Using
this setting requires the user to pan vertically
and horizontally.

 ° Magnifying lens view under user’s finger
(typically controlled from the Accessibility
Settings)

• Browser-level features
 ° Set default text size of text rendered in the

browser’s viewport
* Reading mode that renders main content at

a user-specified text size
 ° Magnify browser’s viewport (typically “pinch-

zoom”). Note: Using this setting requires the
user to pan vertically and horizontally.
* Note: Some browsers have features that

might modify this type of magnification
(e.g. re-flowing the content at the new
magnification level, overriding author
attempts to prevent pinch-zoom).

The WCAG 2.0 success criterion that is most
related to zoom/magnification is

• 1.4.4 Resize text (Level AA)

SC 1.4.4 requires text to be resizable without
assistive technology up to 200 percent. To meet
this requirement content must not prevent text
magnification by the user.

The following methods might be used:
• Ensure that the browser pinch zoom is not

blocked by the page’s viewport meta element
so that it can be used to zoom the page to
200%. Restrictive values for user-scalable
and maximum-scale attributes of this meta
element should be avoided. Note: Relying on
full viewport zooming (e.g. not blocking the
browser’s pinch zoom feature) requires the user
to pan horizontally as well as vertically. While
this technique meets the success criteria it is less
usable than supporting text resizing features that
reflow content to the user’s chosen viewport size.
It is best practice to use techniques that support
text resizing without requiring horizontal panning.

• Support for system fonts that follow platform
level user preferences for text size.

• Provide on-page controls to change the text size.

Accessibility features geared toward specific
populations of people with disabilities fall under the
definition of assistive technology adopted by WCAG
and thus cannot be relied upon to meet the success
criteria. For example, a platform-level zoom feature
that magnifies all platform content and has features
to specifically support people with low vision is
likely considered an assistive technology.

Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud
exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.
Duis aute irure dolor in
reprehenderit in voluptate velit esse
cillum dolore

Lorem ipsum
dolor sit amet,
consectetur
adipisicing elit,
sed do eiusmod
tempor
incididunt ut
labore et dolore
magna aliqua. Ut
enim ad minim

pinch to zoom

OS larger text support

UsableNet

7

Principle 1 – Perceivable

Example 3: Text Contrast

Mobile devices are more likely than desktop/laptop devices to be
used in varied environments including outdoors, where glare from
the sun or other strong lighting sources is more likely. This scenario
heightens the importance of use of good contrast for all users and
may compound the challenges that users with low vision have
accessing content with poor contrast on mobile devices.

The WCAG 2.0 success criteria related to the issue of contrast are:

• 1.4.3 Contrast (Minimum) (Level AA) which requires a
contrast of at least 4.5:1 (or 3:1 for large-scale text) and

• 1.4.6 Contrast (Enhanced) (Level AAA) which requires a
contrast of at least 7:1 (or 4.5:1 for large-scale text).

SC 1.4.3. allows for different contrast ratios for large text. Allowing
different contrast ratios for larger text is useful because larger text
with wider character strokes is easier to read at a lower contrast.
This allows designers more leeway for contrast of larger text, which
is helpful for content such as titles. The ratio of 18-point text or
14-point bold text described in the SC 1.4.3 was judged to be large
enough to enable a lower contrast ratio for web pages displayed
on a 15-inch monitor at 1024x768 resolution with a 24-inch viewing
distance. Mobile device content is viewed on smaller screens and in
different conditions so this allowance for lessened contrast on large
text must be considered carefully for mobile apps.

For instance, the default point size for mobile platforms might
be larger than the default point size used on non-mobile devices.
When determining which contrast ratio to follow, developers
should strive to make sure to apply the lessened contrast ratio only
when text is roughly equivalent to 1.2 times bold or 1.5 times (120%
bold or 150%) that of the default platform size. Note, however, that
the use of text that is 1.5 times the default on mobile platforms
does not imply that the text will be readable by a person with low
vision. People with low vision will likely need and use additional
platform level accessibility features and assistive technology such
as increased text size and zoom features to access mobile content.

Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum
dolore

Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum
dolore

Heading Heading
Subheading Subheading

Headings 12.63:1 Headings 2.52:1

Content 8.06:1 Content 2.26:1

Text legibility is preserved by an adequate contrast between the font color
and the background. For AA compliance, text should have color ratio of at
least 4.5:1 (larger text at least 3:1).

UsableNet

8

Principle 1 – Perceivable

Example 4: Changing Screen Orientation
(Portrait/Landscape)

Some mobile applications automatically set the screen
to a particular display orientation (landscape or portrait)
and expect that users will respond by rotating the mobile
device to match. However, some users have their mobile
devices mounted in a fixed orientation (e.g. on the arm of a
power wheelchair).

Therefore, mobile application developers should try to
support both orientations. If it is not possible to support
both orientations, developers should ensure that it is easy
for all users to change the orientation to return to a point
at which their device orientation is supported.

Changes in orientation must be programmatically exposed
to ensure detection by assistive technology such as screen
readers. For example, if a screen reader user is unaware
that the orientation has changed the user might perform
incorrect navigation commands.

The WCAG 2.1 success criterion related to the issue of screen
orientation is:

• 1.3.4 Orientation (Level AA)

SC 1.3.4 requires that content does not restrict its view and
operation to a single display orientation, such as portrait or
landscape, unless a specific display orientation is essential.

Switch to
landscape view
to use this app.

Mobile apps should never force the user to use a specific screen orientation.
Using a device in portrait or landscape mode is a matter of user’s preference
so app designers and developers should strive at supporting complete
functionality regardless of user’s behavior.

UsableNet

9

Principle 1 – Perceivable

Example 5: Provide Easy Methods for Data Entry

Users can enter information on mobile devices in multiple
ways such as on-screen keyboard, Bluetooth keyboard,
touch, and speech. Text entry can be time-consuming
and difficult in certain circumstances. Reduce the amount
of text entry needed by providing select menus, radio
buttons, check boxes or by automatically entering known
information (e.g. date, time, location).

The WCAG 2.1 success criterion related to this issue is:

• 1.3.5 Identify Input Purpose (Level AA)

SC 1.3.5 requires that the purpose of each input
field collecting information about the user can be
programmatically determined when:

• The input field serves a purpose identified in the Input
Purposes for User Interface Components section

• The content is implemented using technologies with
support for identifying the expected meaning for form
input data

Shipping AddressBack

Name

Street Address

Surname

State

Use Billing Address ›

New Shipping Address

What’s new?

Done

Typing is proven to be a slow method of data entry. Providing alternatives
such as autofill, data sharing between apps or dictation improves the overall
app experience and prevents errors.

Principle 2
Operable

UsableNet

11

Principle 2 – Operable

Example 1: Placing Buttons Where
They Are Easy To Access

Mobile sites and applications should position interactive
elements where they can be easily reached when the
device is held in different positions.

When designing mobile web content and applications
many developers attempt to optimize use with one
hand. This can benefit people with disabilities who
may only have one hand available, however, developers
should also consider that an easy-to-use button
placement for some users might cause difficulties for
others (e.g. left- vs. right-handed use, assumptions
about thumb range of motion). Therefore, flexible use
should always be the goal.

Some (but not all) mobile operating systems provide
work-around features that let the user temporarily shift
the display downwards or sideways to facilitate one-
handed operation.

Easy

Easy Easy

Hard

Hard

OK

OK OK

Different screen sizes require different handholds. Between phones and
tablets the regions of the screen we can comfortably reach with our thumbs
change enormously. The green thumb zone identifies the areas where our
thumbs can perform accurate tapping. The red zones instead are those
most difficult to reach, so touch targets placed within these areas should be
definitely larger than usual.

UsableNet

12

Principle 2 – Operable

Example 2: Keyboard Control
for Touchscreen Devices

Mobile device design has evolved away from built-in physical
keyboards (e.g. fixed, slide-out) towards devices that maximize
touchscreen area and display an on-screen keyboard only when the
user has selected a user interface control that accepts text input
(e.g. a textbox).

However, keyboard accessibility remains as important as ever
and most major mobile operating systems do include keyboard
interfaces, allowing mobile devices to be operated by external
physical keyboards (e.g. keyboards connected via Bluetooth, USB
On-The-Go) or alternative on-screen keyboards (e.g. scanning on-
screen keyboards).

Supporting these keyboard interfaces benefits several groups with
disabilities:
• People with visual disabilities who can benefit from some

characteristics of physical keyboards over touchscreen keyboards
(e.g. clearly separated keys, key nibs and more predictable key
layouts).

• People with dexterity or mobility disabilities, who can benefit
from keyboards optimized to minimize inadvertent presses (e.g.
differently shaped, spaced and guarded keys) or from specialized
input methods that emulate keyboard input.

• People who can be confused by the dynamic nature of onscreen
keyboards and who can benefit from the consistency of a
physical keyboard.

Several WCAG 2.0 and 2.1 success criteria are relevant to effective
keyboard control:

• 2.1.1 Keyboard (Level A)
• 2.1.2 No Keyboard Trap (Level A)
• 2.1.4 Character Key Shortcuts (Level A)
• 2.4.3 Focus Order (Level A)
• 2.4.7 Focus Visible (Level AA)
• 2.5.6 Concurrent Input Mechanisms (Level AAA)

T

T T

Some mobile app experiences may sometimes end up being less engaging
(if not frustrating) for users with disabilities, who rely on an external physical
keyboard for interactive operations.

UsableNet

13

Principle 2 – Operable

Example 3: Touch Target Size and Spacing

The high resolution of mobile devices means that many
interactive elements can be shown together on a small
screen. But these elements must be big enough and have
enough distance from each other so that users can safely
target them by touch.

Best practices for touch target size include the following:
• Ensuring that touch targets are at least 9 mm high by 9

mm wide.
• Ensuring that touch targets close to the minimum size

are surrounded by a small amount of inactive space.

Note: This size is not dependent on the screen size, device
or resolution. Screen magnification should not need to be
used to obtain this size, because magnifying the screen
often introduces the need to pan horizontally as well as
vertically, which can decrease usability.

The WCAG 2.1 success criterion related to the issue of touch
target size and spacing is:

• 2.5.5 Target Size (Level AA)

SC 2.5.5 requires that the size of the target for pointer
inputs is at least 44 by 44 CSS pixels except when

• Equivalent: the target is available through an
equivalent link or control on the same page that is at
least 44 by 44 CSS pixels

• Inline: the target is in a sentence or block of text
• User Agent Control: the size of the target is

determined by the user agent and is not modified by
the author

• Essential: a particular presentation of the target is
essential to the information being conveyed

Sign In
Sign In

Since human fingers are a very imprecise pointing tool, tap targets within
an app should be big enough to help people interact with precision and
confidence, even when they have to perform tasks in a hurry.

UsableNet

14

Principle 2 – Operable

Example 4: Touchscreen Gestures

Many mobile devices are designed to be
primarily operated via gestures made on
a touchscreen. These gestures can be
simple, such as a tap with one finger, or
very complex, involving multiple fingers,
multiple taps and drawn shapes.

Some (but not all) mobile operating
systems provide work-around features that
let the user simulate complex gestures
with simpler ones using an onscreen
menu.

Some best practices when deciding
on touchscreen gestures include the
following:
• Gestures in apps should be as easy as

possible to carry out. This is especially
important for screen reader interaction
modes that replace direct touch
manipulation by a two-step process of
focusing and activating elements. It is
also a challenge for users with motor or
dexterity impairments or people who
rely on head pointers or a stylus where
multi-touch gestures may be difficult or
impossible to perform. Often, interface
designers have different options for
how to implement an action. Widgets
requiring complex gestures can be
difficult or impossible to use for screen
reader users. Usually, design alternatives
exist to allow changes to settings via
simple tap or swipe gestures.

• Activating elements via the mouseup or
touchend event. Using the mouseup or
touchend event to trigger actions helps
prevent unintentional actions during
touch and mouse interaction. Mouse
users clicking on actionable elements
(links, buttons, submit inputs) should
have the opportunity to move the cursor
outside the element to prevent the
event from being triggered. This allows
users to change their minds without
being forced to commit to an action.
In the same way, elements accessed
via touch interaction should generally
trigger an event (e.g. navigation,
submits) only when the touchend event
is fired (i.e. when all of the following are
true: the user has lifted the finger off
the screen, the last position of the finger
is inside the actionable element, and
the last position of the finger equals the
position at touchstart).

Another issue with touchscreen gestures
is that they might lack onscreen indicators
that remind people how and when to use
them. For example, a swipe in from the left
side of the screen gesture to open a menu
is not discoverable without an indicator or
advisement of the gesture.

The WCAG 2.1 success criterion related to
this issue is:

• 2.5.1 Pointer Gestures (Level A)

Trace to confirm changes Confirm changes

OK, I’m fine

Trace to confirm changes Confirm changes

OK, I’m fine

Customized gestures are sometimes used as an
effective replacement for annoying confirmation
dialogs. However, users with disabilities may still
benefit from the latter, so app designers should
implement them as an alternative feature.

UsableNet

15

Principle 2 – Operable

Example 5: Device Manipulation Gestures

In addition to touchscreen gestures, many mobile
operating systems provide developers with control
options that are triggered by physically manipulating
the device (e.g. shaking or tilting). While device
manipulation gestures can help developers create
innovative user interfaces, they can also be a challenge
for people who have difficulty holding or are unable to
hold a mobile device.

Some (but not all) mobile operating systems provide
work-around features that let the user simulate device
shakes, tilts, etc. from an onscreen menu.

Therefore, even when device manipulation gestures
are provided, developers should still provide touch and
keyboard operable alternative control options.

• 2.1.1 Keyboard (Level A)
• 2.5.4 Motion Actuation (Level A)

Another issue with control via device manipulation
gestures is that they might lack onscreen indicators that
remind people how and when to use them.

scroll
up

scroll
down

standard scrolling tilt scrolling

Accelerometers allow designers and developers to explore innovative and
unique experiences for the users. Those kinds of features should always be
treated as enhancements of the standard control options, which keep the app
totally usable and accessible.

UsableNet

16

Principle 2 – Operable

Example 6: Provide Mechanisms To Abort
or Undo the Action

The WCAG 2.1 success criterion related to the issue is:

• 2.5.2 Pointer Cancellation (Level A)

SC 2.5.2 requires that for functionality that can be operated
using a single pointer, at least one of the following is true.

• No Down-Event: the down-event of the pointer is not
used to execute any part of the function;

• Abort or Undo: completion of the function is on the
up-event, and a mechanism is available to abort the
function before completion or to undo the function
after completion;

• Up Reversal: the up-event reverses any outcome of
the preceding down-event;

• Essential: completing the function on the down-event
is essential.

This success criterion provides guidelines about how
actions should be properly designed and implemented.
Actions should usually happen on the up event, using the
generic OS built-in event for that prupose. Down events
should only be only when the behavior is considered
essential (e.g., a piano player simulator).

New Message New Message

Cancel Cancel

Not only users with cognitive disabilities, but also people with tremor,
mobility impairments or someone in a hurry may touch or click on
the wrong screen location by mistake, experiencing an unexpected
bahavior of the application.

Users should be able to abort or undo an unintended action, like
the ability of sliding the finger away from a button, before lifting it
without invoking any action.

Principle 3
Understandable

UsableNet

18

Principle 3 – Understandable

Example 1: Consistent Layout

Components that are repeated across multiple pages
should be presented in a consistent layout. In responsive
web design, where components are arranged based on
device size and screen orientation, web pages within
a particular view (set size and orientation) should be
consistent in placement of repeated components and
navigational components. Consistency between the
different screen sizes and screen orientations is not a
requirement under WCAG 2.0.

For example:
• A Web site has a logo, a title, a search form and a

navigation bar at the top of each page; these appear
in the same relative order on each page where they
are repeated. On one page the search form is missing
but the other items are still in the same order. When
the Web site is viewed on a small screen in portrait
mode, the navigation bar is collapsed into a single icon
but entries in the drop-down list that appears when
activating the icon are still in the same relative order.

• A Web site, when viewed on the different screen sizes
and in different orientations, has some components
that are hidden or appear in a different order. The
components that show, however, remain consistent for
any screen size and orientation.

The WCAG 2.0 success criteria that are most related to
the issue of consistency are:

• 3.2.3 Consistent Navigation (Level AA)
• 3.2.4 Consistent Identification (Level AA)

Feed

Feed

Consistency is key to creating seamless and cross-channel user experiences.
It helps the user feeling comfortable and in control while starting a task,
which may start on mobile and get completed on tablet or desktop.

UsableNet

19

Principle 3 – Understandable

Example 2: Positioning Important Page
Elements Before the Page Scroll

The small screen size on many mobile devices limits
the amount of content that can be displayed without
scrolling.

Positioning important page information so it is visible
without requiring scrolling can assist users with low
vision and users with cognitive impairments.

If a user with low vision has the screen magnified only
a small portion of the page might be viewable at a
given time. Placing important elements before the
page scroll allows those who use screen magnifiers
to locate important information without having to
scroll the view to move the magnified area. Placing
important elements before the page scroll also makes
it possible to locate content without performing an
interaction. This assists users that have cognitive
impairments such as short-term memory disabilities.
Placing important elements before the page scroll
also helps ensure that elements are placed in a
consistent location. Consistent and predictable
location of elements assists people with cognitive
impairments and low vision.

App App

Log In

Username

Password Username

Password

Properly prioritized layout design helps users focus on the most important
content displayed on screen and makes the tasks faster to perform.

UsableNet

20

Principle 3 – Understandable

Example 3: Grouping Operable Elements
That Perform the Same Action

When multiple elements perform the same action or
go to the same destination (e.g. link icon with link text),
these should be contained within the same actionable
element. This increases the touch target size for all users
and benefits people with dexterity impairments. It also
reduces the number of redundant focus targets, which
benefits people using screen readers and keyboard/
switch control.

The WCAG 2.0 success criteria that are most related to
grouping of actionable elements are:

• 2.4.4 Link Purpose (In Context) (Level A)
• 2.4.9 Link Purpose (Link Only) (Level AA)

Menu

“Menu, Button”

Menu

“Image”

Menu

“Menu, Button”

Properly grouped elements keep the navigation order logical for keyboard
users and allow screen reading technologies to properly describe focused
targets.

UsableNet

21

Principle 3 – Understandable

Example 4: Provide Clear Indication
That Elements Are Actionable

Elements that trigger changes should
be sufficiently distinct to be clearly
distinguishable from non-actionable
elements (content, status information, etc).
Providing a clear indication that elements
are actionable is relevant for web and native
mobile applications that have actionable
elements like buttons or links, especially in
interaction modes where actionable elements
are commonly detected visually (touch
and mouse use). Interactive elements must
also be detectable by users who rely on a
programmatically determined accessible name
(e.g. screen reader users).

Visual users who interact with content using
touch or visual cursors (e.g. mice, touchpads,
joysticks) should be able to clearly distinguish
actionable elements such as links or buttons.
Existing interface design conventions are
aimed at indicating that these visual elements
are actionable. The principle of redundant
coding ensures that elements are indicated as
actionable by more than one distinguishing
visual feature. Following these conventions
benefits all users, but especially users with
vision impairments.

Visual features that can set an actionable
element apart include shape, color, style,
positioning, text label for an action, and
conventional iconography.

Examples of distinguishing features:
1. Conventional shape: Button shape (rounded

corners, drop shadows), checkbox, select
rectangle with arrow pointing downwards

2. Iconography: conventional visual icons
(question mark, home icon, burger icon for
menu, floppy disk for save, back arrow, etc)

3. Color offset: shape with different
background color to distinguish the element
from the page background, different text
color

4. Conventional style: Underlined text for links,
color for links

5. Conventional positioning: Commonly used
position such as a top left position for back
button (iOS), position of menu items within
left-aligned lists in drop-down menus for
navigation

The WCAG 2.0 and 2.1 success criteria do not
directly address issue of clear visual indication
that elements are actionable but are related to
the following success criteria:

• 3.2.3 Consistent Navigation (Level AA)
• 3.2.4 Consistent Identification (Level AA)

Edit Description Edit DescriptionCancel CancelDone Done

Edit Description Edit DescriptionCancel CancelDone Done

Actionable elements and controls should be
clearly distinguishable, properly styled and
labelled in order to make the interaction feel easy
and straightforward. Considering specific OS
interface design guidelines is key for delivering
consistent user experiences.

UsableNet

22

Principle 3 – Understandable

Example 5: Provide Instructions for Custom
Touchscreen and Device Manipulation Gestures

The ability to provide control via custom touchscreen and
device manipulation gestures can help developers create
efficient new interfaces. However, for many people, custom
gestures can be a challenge to discover, perform and
remember.

Therefore, instructions (e.g. overlays, tooltips, tutorials,
etc.) should be provided to explain what gestures can
be used to control a given interface and whether there
are alternatives. To be effective, the instructions should,
themselves, be easily discoverable and accessible. The
instructions should also be available anytime the user
needs them, not just on first use, though on first use they
may be made more apparent through highlighting or some
other mechanism.

These WCAG 2.0 success criteria are relevant to providing
instructions for gestures:

• 3.3.2 Labels or Instructions (Level A)
• 3.3.5 Help (Level AAA)

MyMail MyMail

Swipe down
to refresh

Swipe right
to archive

Swipe left
to reply

NEW FEATURE

Long swipe right to Trash
Try swiping a message further

to put it in Trash.

Static screen instructions are the most common type of tutorials adopted
by many mobile apps. The “learn by playing” technique, largely adopted
in video game design, is however a much more effective way of coaching:
by pairing instructions with action, the user learns new gestures through
active participation.

Principle 4
Robust

UsableNet

24

Principle 4 – Robust

Example 1: Set the Virtual Keyboard
To the Type of Data Entry Required

On some mobile devices, the standard keyboard
can be customized in the device settings and
additional custom keyboards can be installed.
Some mobile devices also provide different
virtual keyboards depending on the type of data
entry. This can be set by the user or can be set to
a specific keyboard.

For example, using the different HTML5 form field
controls (see Method Editor API) on a website
will show different keyboards automatically
when users are entering in information into that
field. Setting the type of keyboard helps prevent
errors and ensures formats are correct but can
be confusing for people who are using a screen
reader when there are subtle changes in the
keyboard.

Your Payment Your PaymentBack Back

$ 123,00 $ 123,00
Card Number Card Number

Pay Now Pay Now

1

4

7

2

5

8

0

3

6

9

Providing users with the appropriate keyboard for the type of data they
have to enter plays an important role in terms of simplifying filling forms
and make typing faster.

UsableNet

25

Principle 4 – Robust

Example 2: Support the Characteristic
Properties of the Platform

Mobile devices provide many features to help
users with disabilities interact with content.
These include platform characteristics such as
zoom, larger fonts, and captions. The features
and functions available differ depending on the
device and operating system version.
For example, most platforms have the ability to
set large fonts, but not all applications honor
it for all text. Also, some applications might
increase font size but not wrap text, causing
horizontal scrolling.

Feed Feed

iOS Android

Both iOS and Android provide accessibility features for zooming and
magnifying screen content. On iOS the three finger double tap gesture
activates the zoom feature, whereas on Android the same feature gets
triggered with just one finger double tap.

26

UsableNet

References

Webpages

• Mobile Accessibility: How WCAG 2.0 and Other W3C/WAI
Guidelines Apply to Mobile, W3C First Public Working Draft 26
February 2015, Copyright © 2015 World Wide Web Consortium,
(MIT, ERCIM, Keio, Beihang),
https://www.w3.org/TR/mobile-accessibility-mapping/

• Web Content Accessibility Guidelines (WCAG) 2.0,
https://www.w3.org/TR/WCAG20/

• Web Content Accessibility Guidelines (WCAG) 2.1,
https://www.w3.org/TR/WCAG21/

• How Do Users Really Hold Mobile Devices?, Steven Hoober,
http://www.uxmatters.com/mt/archives/2013/02/how-do-users-
really-hold-mobile-devices.php

• iOS Human Interface Guidelines,
https://developer.apple.com/ios/human-interface-guidelines/
overview/design-principles/

Books

• Designing for Touch, Josh Clark, (A Book Apart, 2015)

• Mobile First, Luke Wroblewski, (A Book Apart, 2011)

https://www.w3.org/TR/mobile-accessibility-mapping/
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG21/
http://www.uxmatters.com/mt/archives/2013/02/how-do-users-really-hold-mobile-devices.php
http://www.uxmatters.com/mt/archives/2013/02/how-do-users-really-hold-mobile-devices.php
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/

	Segnalibri per struttura
	Foreword
	Principle 1
	Example 1: Small Screen Size
	Example 2: Zoom/Magnification
	Example 3: Text Contrast
	Example 4: Changing Screen Orientation (Portrait/Landscape)
	Example 5: Provide Easy Methods for Data Entry
	Principle 2
	Example 1: Placing Buttons Where They Are Easy To Access
	Example 2: Keyboard Control for Touchscreen Devices
	Example 3: Touch Target Size and Spacing
	The high resolution of mobile devices means that many
	Example 4: Touchscreen Gestures
	Example 5: Device Manipulation Gestures
	Example 6: Provide Mechanisms To Abortor Undo the Action
	Principle 3
	Example 1: Consistent Layout
	Example 2: Positioning Important Page Elements Before the Page Scroll
	Example 3: Grouping Operable Elements That Perform the Same Action
	Example 4: Provide Clear Indication That Elements Are Actionable
	Example 5: Provide Instructions for Custom Touchscreen and Device Manipulation Gestures
	Principle 4
	Example 1: Set the Virtual KeyboardTo the Type of Data Entry Required
	Example 2: Support the Characteristic Properties of the Platform
	References

