
GPL Programmer’s Manual

GPL Programmer’s Manual....................... 1
Introduction.. 1

Welcome to Graphic Programming1
What GPL Provides..1
About This Manual...2
Another Resource..3

What You Create With GPL....................... 5
System Requirements 7

Hardware Requirements7
Software Requirements ..8

Knowledge Up-Front 9
Controls Knowledge..9
PC Knowledge..10
Product Knowledge...10

Getting Started..11
Installing GPL...11
Running the System Generation Program11
Setting Up the Printer..13
Starting GPL with Windows 95, Windows 98, or
Windows NT ...13
Some Terms ...15

Overview of the Steps17
Graphic Programming............................... 1
Overview of the Control Strategy............. 3

Components ...3
Structure ...4
Storage..6
Example ..7
Viewing ...8
Creating ..8

Function Blocks..13
Introduction ..13
Categories and Classes13
Features ..17
Templates ...22
Template Error Checking28

Compounds...31
Introduction ..31
Types...35

© June 18, 2004 Johnson Controls, Inc. 1

Features ..37
Templates ...38
Compounds in the Applications Library41
Compound Design...41

Processes ...43
Introduction ..43
Process Triggering ..46
Process Priorities ..46
Restart Process..47

Connecting Function Blocks...................49
Data and Control Flow...49
Forming a Loop..53
Required and Optional Lines..............................54
Types of Lines..56
Direct Connections..64
Remote Connections...67
Fan-In and Fan-Out Connections.......................69

Commanding Objects and Processes73
Commanding Objects..73
Commanding Process Objects...........................75

Documenting Control Strategies.............77
Text as Comments...77
Analog Displays for Simulation..........................78
Text Description File ...79

Order of Process Execution81
Process Level...81
Process Execution...85
Conditional Execution...89
One-Shot Execution ..91

Sharing Data and Explaining Unreliable
Data..93

Sharing Data Between Processes......................93
Sharing Data Between NCMs94
Explaining Unreliable Data94

Archive Database Interface97
Interactions...97

No Archive Mode103
Editor...103
Expert Checker...104
Translator and Compiler104

Editor ...1
Overview ...5

Starting the Editor..5
Mouse and Keyboard...6
Editor Screen..8

2 DDL Programmer’s Manual

Prerequisites ..21
Icons ..23
Tutorial ..25

Name the Diagram ...27
Paste Down Function Blocks27
Define Function Blocks.......................................29
Connect Function Blocks32
Compound the Diagram......................................35
Save the Compound Into a File37
Erase a Function Block and Undo the Erased
Block ...38
Erase a Connection and Undo the Erased
Connection ...38
Print the Diagram...39
Exit GPL ..39
Review...39

Exiting GPL ...41
Directory and Control Strategy Functions
..43

Using the File Option Menu44
Paging the Directory..46
Selecting a Network...47
Saving a Control Strategy...................................47
Loading a Control Strategy.................................49
Displaying a Strategy Description File50
Changing Disk Drives..51
Creating a Directory ..51
Deleting a Control Strategy52

Compound Functions...............................53
Using the Compound Option Menu54
Paging the Directory..56
Making a Compound ...56
Editing a Compound..59
Loading a Compound Block60
Loading the Contents of a Compound61
Displaying a Compound Description File62
Changing Disk Drives..62
Creating a Directory ..63
Deleting a Compound..64

Zoom and Pan Functions.........................65
Zooming In and Out...66
Panning...67

Erase and Delete Functions.....................69
Erasing an Item ..71
Erasing a Group of Items72

Deleting an Object ...73
 3

Clearing Memory..74
Undoing an Erased Item or Group of Items75

Move, Copy, and Resize Functions.........77
Moving an Item...79
Copying an Item ...81
Moving a Group of Items.....................................83
Copying a Group of Items...................................84
Resizing an Item...85
Resizing a Group of Items85
Adding a Line Segment.......................................86

Block Connection and Command
Functions ..87

Learning the Basics of Connecting Blocks89
Connecting Two Blocks......................................94
Connecting Two Blocks in Separate Compounds
...101
Connecting Two Blocks Remotely...................103
Commanding an Object111
Commanding a Process....................................115
Exempting a Connection from Triggers116

Query Functions.....................................119
Viewing and Editing a Block Template............121
Reading and Modifying an Object....................122
Querying a Compound?....................................123
Accessing a FILE Block125
Viewing a USER Block Macro File125
Querying a Connection126
Finding a Function Block..................................127
Replacing System Names132
Viewing the List File ..136
Performing a Session Read137

Print Functions139
Using the Print Option Menu and Submenu ...139
Learning the Basics of Printing........................143
Paging the Print Queue144
Creating a Diagram Print File145
Creating a Template Print File147
Printing Diagrams and Templates....................148
Deleting a Print File ...151

Tools Functions......................................153
Turning the Grid On and Off155
Typing Text...156
Pasting Down Analog Displays........................157
Running the Expert Checker158
Running the Simulator159
Running the Translator and Compiler160

4 DDL Programmer’s Manual

Miscellaneous Functions163
Displaying a Help Screen..................................163
Selecting a Function Block Category164
Sizing and Pasting Down a Function Block....165

User Messages..167
Expert Checker .. 1
Overview... 3
Using the Expert Checker 5

Running the Expert Checker5
During the Expert Check.......................................7
Viewing Errors in the List File9

Error Messages...11
Fatal Errors...11
Initialization Errors ..13
Operation Block Errors13
Object Block Errors ...15
USER Block Errors ..16
Shared Variable Block Errors16
Diagrammatic Errors ...17
File Nesting Errors...17

Simulator .. 1
Overview... 3

Purpose of Simulator ..3
Getting Started... 5

Preparing a Strategy File for Simulation5
Starting the Simulator ...6
The Simulator Screen..7
Moving Around the Simulator Screen13
Changing Block’s Data or Outputs15
Exiting the Simulator...16

Tutorial ..17
Starting the Tutorial...17
Executing a Process..19
Modifying a Block Output22
Saving Changes Made in the Simulator23
Exiting the Simulator...24

Using the Control Window.......................25
QUIT ..26
SAVE DB ...26
FIND...28
NC START...29
DIAGRAM..32
ADVISORY ..32
PRINTER ...34

RUNTIME...34

 5

Message Similarities..34
FAST Execution Mode...36
NORMAL Execution Mode36
SUSPEND Execution Mode.................................36
Execution Mode Details37

Simulator Functions.................................39
Automatic Mode...39
Manual Mode ..40
Simulating Processes ...41
Order of Execution of Function Blocks.............45
Modifying Object Block Configuration45
Simulating Configuration Connections.............45
Simulating Unreliability47
Simulating Manual Commands48
Simulating a PID Loop Object49
Simulating TIME Blocks50
Simulating CONN, CNST, and SVAR Blocks.....51
Simulating PULS, DLAY, and BSEQ Timers53
Simulating Local Control55

Differences Between Simulator and NCM
Execution ..57

Manual Mode ..57
PID Loop ...57
Lighting Control Group58
Configuration Connections58
Restart Processes ...58
Process Priority ...59
Change-of-State Analysis59
Change-of-State Feedback Delay Timers..........59
Blocks and Commands Not Fully Simulated59
Object Attributes Not Simulated60

User Messages ...61
Fatal Initialization Error Messages.....................61
User Status Messages...62
User Error Messages...63
Runtime Operation Block Error Messages66

Translator..1
Overview ...3

Expert Checker...3
Using the Translator...................................5

Running the Translator ...5
During Translation...8
Viewing Errors in the List File10

Error Messages...13
Fatal Errors...13
Non-Fatal Errors...14

6 DDL Programmer’s Manual

Compiler Errors..15
Function Blocks... 1
Introduction.. 3

Object Blocks...4
Operation and Special Blocks..............................5

Object Blocks... 1
Introduction.. 3

Category ...5
Template Fields..6
Connections ...9
Example ..10

ACM (Accumulator) Object11
Category ...11
Purpose...11
Details ...11
Template Fields (First Screen)13
Template Fields (Second Screen)14
Connections ...16
Reliability ..16
Example ..17

AD (Analog Data) Object19
Category ...19
Purpose...19
Details ...19
Template Fields (First Screen)21
Template Fields (Second Screen)22
Connections ...23
Reliability ..24
Example ..24

AI (Analog Input) Object...........................25
Category ...25
Purpose...25
Details ...25
Template Fields (First Screen)27
Template Fields (Second Screen)29
Connections ...35
Reliability ..36
Example ..36

AOD (Analog Output Digital) Object39
Category ...39
Purpose...39
Details ...39
Template Fields (First Screen)41
Template Fields (Second Screen)42
Connections ...43

Reliability ..43
 7

Example ..44
AOS (Analog Output Setpoint) Object45

Category ...45
Purpose...45
Details ...45
Template Fields (First Screen)47
Template Fields (Second Screen)49
Connections ...50
Reliability ..51
Example ..51

BD (Binary Data) Object...........................53
Category ...53
Purpose...53
Details ...53
Template Fields (First Screen)55
Template Fields (Second Screen)55
Connections ...56
Reliability ..57
Example ..58

BI (Binary Input) Object59
Category ...59
Purpose...59
Details ...59
Template Fields (First Screen)61
Template Fields (Second Screen)63
Connections ...64
Reliability ..65
Example ..65

BO (Binary Output) Object.......................67
Category ...67
Purpose...67
Details ...67
Template Fields (First Screen)69
Template Fields (Second Screen)71
Connections ...72
Reliability ..73
Example ..73

LCG (Lighting Control Group) Object.....75
Category ...75
Purpose...75
Details ...75
Template Fields (First Screen)76
Template Fields (Second Screen)76
Template Fields (Third Screen)77
Connections ...77
Reliability ..78

8 DDL Programmer’s Manual

Example ..78
MSD Object..79

Category ...79
Purpose...79
Details ...79
Template Fields (First Screen)80
Template Fields (Second Screen)80
Connections ...82
Reliability ..83
Example ..84

MSI Object ...85
Category ...85
Purpose...85
Details ...85
Template Fields (First Screen)86
Template Fields (Second Screen)88
Connections ...89
Reliability ..89
Example ..90

MSO Object ...91
Category ...91
Purpose...91
Details ...91
Template Fields (First Screen)93
Template Fields (Second Screen)95
Corrections...97
Reliability ..98
Example ..98

PIDL (PID Loop) Object101
Category ...101
Purpose...101
Details ...101
Template Fields (First Screen)103
Template Fields (Second Screen)103
Template Fields (Third Screen: Port Definition)
...105
Template Fields (Fourth Screen: Port Definition)
...107
Template Fields (Fifth Screen: Output Definition)
...107
Connections ...108
Reliability ..110
Example ..111

REF (Generic Object Reference) Block.113
Category ...113
Purpose...113

 9

Details ...113
Template Fields (First Screen)118
Template Fields (Second Screen)119
Connections ...120
Reliability ..121
Example ..121

210A (C210A) Block................................123
Category ...123
Purpose...123
Details ...123
Template Fields (First Screen)124
Template Fields (Second Screen)125
Connections ...125
Reliability ..127
Example ..128

260A (C260A) Block................................131
Category ...131
Purpose...131
Details ...131
Template Fields (First Screen)132
Template Fields (Second Screen)133
Connections ...134
Reliability ..135
Example ..136

Zone (Fire Zone) Block...........................139
Category ...139
Purpose...139
Details ...139
Template Fields (First Screen)143
Template Fields (Second Screen)144
Connections ...145
Reliability ..145
Example ..146

Operation and Special Blocks...................1
Introduction ..3

Category ...5
Information Table...8
Example ..12

ABRT (Abort) Block..................................13
Category ...13
Purpose...13
Details ...13
Information Table...13
Reliability ..14
Example ..14

ADD (Addition) Block17

10 DDL Programmer’s Manual

Category ...17
Purpose...17
Details ...17
Information Table...18
Reliability ..19
Example ..19

ADV Block ...21
Category ...21
Purpose...21
Details ...21
Information Table...22
Reliability ..22
Example ..23

AND Block ...25
Category ...25
Purpose...25
Details ...25
Information Table...25
Reliability ..26
Example ..26

AVG (Average) Block................................27
Category ...27
Purpose...27
Details ...27
Information Table...27
Reliability ..28
Example ..28

BSEQ (Binary Sequencer) Block29
Category ...29
Purpose...29
Details ...29
Information Table (First Screen)33
Information Table (Second Screen)33
Reliability ..39
Example ..39

CMD (Command) Block............................41
Category ...41
Purpose...41
Details ...41
Information Tables...44
Reliability ..55
Example ..55

CNST (Constant) Block57
Category ...57
Purpose...57

Details ...57

 11

Information Table...57
Reliability ..58
Example ..58

COMP (Compare) Block59
Category ...59
Purpose...59
Details ...59
Information Table...60
Reliability ..60
Example ..60

CONN (Connection) Block63
Category ...63
Purpose...63
Details ...63
Information Table...64
Reliability ..65
Example ..65

DBCM (Deadband Compare) Block.........67
Category ...67
Purpose...67
Details ...67
Information Table...69
Reliability ..70
Example ..70

DFCM (Differential Compare) Block........71
Category ...71
Purpose...71
Details ...71
Information Table...76
Reliability ..76
Example ..76

DIV (Divide) Block.....................................79
Category ...79
Purpose...79
Details ...79
Information Table...79
Reliability ..79
Example ..80

DLAY (Delay) Block83
Category ...83
Purpose...83
Details ...83
Information Table...86
Reliability ..86
Example ..87

DWPT (Dew Point) Block89

12 DDL Programmer’s Manual

Category ...89
Purpose...89
Details ...89
Information Table...90
Reliability ..90
Example ..91

ENDP (Enthalpy Dew Point) Block93
Category ...93
Purpose...93
Details ...93
Information Table...94
Reliability ..94
Example ..95

ENRH (Enthalpy Relative Humidity) Block
..97

Category ...97
Purpose...97
Details ...97
Information Table...98
Reliability ..98
Example ..99

EQN (Equation) Block101
Category ...101
Purpose...101
Details ...101
Information Table...104
Reliability ..104
Example ..104

FILE Block ...107
Category ...107
Purpose...107
Details ...107
Information Table...108
Reliability ..108
Example ..108

FILT (Filter) Block109
Category ...109
Purpose...109
Details ...109
Information Table...111
Reliability ..111
Example ..111

FREL (Force Reliable) Block..................113
Category ...113
Purpose...113

Information Table...113
 13

Reliability ..113
Example ..114

HSEL (High Select) Block115
Category ...115
Purpose...115
Details ...115
Information Table...115
Reliability ..116
Example ..116

LSEL (Low Selector) Block....................117
Category ...117
Purpose...117
Details ...117
Information Table...117
Reliability ..117
Example ..118

LTCH (Latch) Block119
Category ...119
Purpose...119
Details ...119
Information Table...120
Reliability ..120
Example ..120

MSEL (Mode Selector) Block.................123
Category ...123
Purpose...123
Details ...123
Information Table...125
Reliability ..126
Example ..126

MUL (Multiply) Block129
Category ...129
Purpose...129
Details ...129
Information Table...129
Reliability ..129
Example ..130

NOT Block ...133
Category ...133
Purpose...133
Details ...133
Information Table...133
Reliability ..133
Example ..134

OR Block ...135
Category ...135

14 DDL Programmer’s Manual

Purpose...135
Information Table...135
Reliability ..135
Example ..136

PERD (Period) Block137
Category ...137
Purpose...137
Details ...137
Information Table...139
Reliability ..139
Example ..139

PIR (PI Reset) Block141
Category ...141
Purpose...141
Details ...141
Information Table...144
Reliability ..144
Example ..144

PRNT (Print) Block..................................147
Category ...147
Purpose...147
Details ...147
Information Table...148
Reliability ..148
Example ..149

PULS (Pulse) Block151
Category ...151
Purpose...151
Details ...151
Information Table...155
Reliability ..155
Example ..157

RAMP Block ..159
Category ...159
Purpose...159
Details ...159
Information Table...161
Reliability ..161
Example ..161

READ (Read Attribute) Block.................163
Category ...163
Purpose...163
Details ...163
Information Table...164
Reliability ..164

Example ..165

 15

RH (Relative Humidity) Block167
Category ...167
Purpose...167
Details ...167
Information Table...167
Reliability ..168
Example ..168

RTOT (Real-to-Time) Block....................171
Category ...171
Purpose...171
Details ...171
Information Table...172
Reliability ..172
Example ..172

SAMP (Sample and Hold) Block............175
Category ...175
Purpose...175
Details ...175
Information Table...176
Reliability ..176
Example ..177

SPAN Block...179
Category ...179
Purpose...179
Details ...179
Information Table...181
Reliability ..181
Example ..181

STOP Block...185
Category ...185
Purpose...185
Details ...185
Information Table...185
Reliability ..186
Example ..186

SUB (Subtraction) Block........................189
Category ...189
Purpose...189
Details ...189
Information Table...189
Reliability ..190
Example ..190

SVAR (Shared Variable) Block193
Category ...193
Purpose...193
Details ...193

16 DDL Programmer’s Manual

Information Table...195
Reliability ..195
Example ..196

SWCH (Switch) Block199
Category ...199
Purpose...199
Details ...199
Information Table...201
Reliability ..201
Example ..202

TIME Block ..205
Category ...205
Purpose...205
Details ...205
Information Table...205
Reliability ..205
Example ..206

TOT (Totalization) Block207
Category ...207
Purpose...207
Details ...207
Information Table...208
Reliability ..208
Example ..208

TTOR (Time-to-Real) Block211
Category ...211
Purpose...211
Details ...211
Information Table...212
Reliability ..212
Example ..212

2CMD (Dual Command) Block213
Category ...213
Purpose...213
Details ...213
Information Tables..215
Reliability ..217

UNRD (Unreliable Data) Block219
Category ...219
Purpose...219
Details ...219
Information Table...220
Reliability ..220
Example ..220

USER Block ...223
Category..223

 17

Purpose...223
Details ...223
Information Table (First Screen)225
Information Table (Second Screen)226
Reliability ..227
Example ..228

VH (Value Holder) Block233
Category ...233
Purpose...233
Details ...233
Information Table...234
Reliability ..235
Example ..235

WAIT Block ...237
Category ...237
Purpose...237
Details ...237
Information Table...238
Reliability ..238
Example ..238

WBDP (Wet Bulb Dew Point) Block.......241
Category ...241
Purpose...241
Details ...241
Information Table...241
Reliability ..242
Example ..242

WBRH (Wet Bulb Relative Humidity) Block
...245

Category ...245
Purpose...245
Details ...245
Information Table...245
Reliability ..246
Example ..247

WRIT (Write Attribute) Block249
Category ...249
Purpose...249
Details ...249
Information Table...250
Reliability ..250
Example ..250

XOR (Exclusive OR) Block.....................253
Category ...253
Purpose...253
Details ...253

18 DDL Programmer’s Manual

Information Table...253
Reliability ..253
Example ..254

Template Field Descriptions..................... 1
Appendix .. 1
Appendixes .. 3
Appendix A... 5

Major Icons ...5
Minor Icons...12

Appendix B: Summary of Keys15
GPL Editor Keys...15
GPL Simulator Keys ..16

Appendix C: Summary of File Names and
Extensions...17
Appendix D: Capabilities..........................19
Appendix E: External Functions..............21

Restoring Backup Files and Compounds21
Deleting a Directory...22
Writing a Text Description File22
Writing a USER Block File23

Appendix F: Characters, Symbols, and
Reserved Words27

International Language Characters27
Character and Symbol Table28
Reserved Words...29

Appendix G: Attributes31
Appendix H: GPL Advanced Concepts ...81

Who Should Read this Document?....................81
GPL Efficiency Issues83

Efficiency of a Single GPL Process83
Efficiency of All GPL Processes in an NCM......88
Efficiency of the Entire Network90

GPL Libraries ..95
HLIB - GPL HVAC Library95
Using the Metasys GPL HVAC Library95
Building Your Own Library of GPL Compounds95
Prioritization of Processes96
Types of Memory ...97
Shared Variables..100
Using Shared Variables.....................................100
Value Holder Block vs. Shared Variable Block101
Process Statuses...104
When to Use the Restart Process110
How a Process Period Works...........................110

 19

Frequently Asked Questions112
Glossary ..1

20 DDL Programmer’s Manual

© November, 1999 Johnson Controls, Inc. 1
 Code No. LIT-631010

GPL Programmer’s Manual

Introduction

Welcome to Graphic Programming Page 3

• What GPL Provides 3
• About This Manual 4
• Another Resource 5

What You Create With GPL 7

System Requirements *9

• Hardware Requirements *9
• Software Requirements 10

Knowledge Up-Front 11

• Controls Knowledge 11
• PC Knowledge 12
• Product Knowledge 12

Getting Started *13

• Installing GPL 13
• Running the System Generation Program *13
• Setting Up the Printer *15
• Starting GPL with Windows 95, Windows 98,

or Windows NT *15
• Some Terms 17

Overview of the Steps 19

* Indicates those sections where changes have occurred since the last
printing.

2 Introduction

Introduction 3

Welcome to Graphic
Programming

Welcome to graphic programming and to the Graphic
Programming Language (GPL). It is the standard
Metasys software language for creating control strategies
that contain software objects and processes. It is a standalone
software package that runs on the Operator Workstation. GPL
is designed as an efficient, easy-to-use graphic tool for
application engineers, system representatives, and facility
operators.

GPL, as its name implies, is graphically oriented. It uses
symbols to represent actual control programs. The GPL
program, called a control strategy, looks much like an
electronic or pneumatic control drawing. The control strategy
consists of diagrams, and the diagrams are the programs. If
you can read flowcharts and pneumatic control diagrams, you
will have little difficulty with reading GPL diagrams.

Graphic programming recognizes that the human mind
understands complex relationships more easily if they are
presented in symbols. Graphic symbols convey information
quickly; for example, a floppy diskette is recognized as
meaning Personal Computer (PC) disk operations. The
symbols that GPL uses are called icons and function blocks.
Icons are images that, when selected, perform a function, such
as displaying an option menu. Function blocks are rectangles
that represent software objects, processes, and GPL operation
and special blocks. You paste down these function blocks on
the diagram as you need them.

The primary items that you create with the GPL Editor are
control strategies, which contain software objects and
processes. A software object represents and characterizes a
field device, such as an Analog Input object, or a data object,
such as a Binary Data object. A process is a set of logical
evaluations in graphic form that determines when to perform
an action, such as when to turn on a supply fan or enable a
chiller. Each process is translated into a process object, which
is downloaded to and executed by a Network Control Module
(NCM).

What GPL
Provides

4 Introduction

In addition to the Editor, GPL provides three other utilities
that assist in developing processes and point objects. They are
the Expert Checker, Simulator, and Translator/Compiler. The
Expert Checker verifies that a control strategy is complete and
correct. The Simulator tests the functional operation of control
strategies. The Translator/Compiler converts the diagrams of
the control strategy into processes.

GPL also features online help screens that give you quick
explanations of icons and function blocks. And last, GPL
provides a library of HVAC applications that are pre-
programmed control strategies you can use.

This manual describes how to create, edit, expert check,
simulate, and translate control strategies with GPL. It is split
into several major chapters: Introduction, Graphic
Programming, Editor, Expert Checker, Simulator, Translator,
Function Blocks, Appendix, Glossary, and Index.

Note: This manual does not support GPL as used on the
branch CAE system.

Introduction describes what GPL creates, system
requirements, required knowledge, installation, and overview
of the steps you perform to write a control strategy.

Graphic Programming describes what you need to know to
create a control strategy with GPL.

About This
Manual

Introduction 5

Editor contains step-by-step instructions of all GPL Editor
functions. It includes a tutorial for the beginner that teaches
how to draw, modify, and print a diagram.

Expert Checker describes how to use this verification tool to
check a control strategy before translation.

Simulator describes how to run the GPL Simulator, which can
check the integrity of a control strategy. It contains a tutorial
that is helpful to the beginner.

Translator describes how to translate and compile a control
strategy into processes for the NCM.

Function Blocks is a detailed reference of all function blocks
available in GPL. Many application examples are given. The
chapter is split into three sections: object blocks, operation and
special blocks, and template field descriptions.

Appendix contains helpful reference information, such as a
summary of all GPL file names and extensions.

Glossary defines terms specific to GPL that are used in this
manual.

Index is a list of GPL topics, concepts, and terms with a
chapter and page number reference.

Also refer to the following training package for an interactive
learning experience using GPL:

Metasys Graphic Programming Language: A
Computer-Based Training (CBT) program for helping you
learn the basics of each GPL utility.

Another
Resource

6 Introduction

Introduction 7

What You Create With GPL

You create four items with the Graphic Programming
Language: control strategies, object databases, intermediate
source code, and processes (Figure 1). You use three GPL
utilities--Editor, Expert Checker, Translator/Compiler--to
develop these items.

GPLPROD

Editor

 Expert
Checker

Object

 Data

Bases

Processes

Archive Data
 Base

Compiler

Translator

 Control
Strategies

Intermediate

 Source

 Code

Simulator
(optional)

Figure 1: What GPL Produces

The GPL Editor creates and edits control strategies. A control
strategy is a set of diagrams that defines the logic that controls
the equipment connected to the NCM. For example, a strategy
may control a chilled water valve or an entire air handling unit.

8 Introduction

The Editor also creates the databases for point objects and
function blocks. Each object and function block has an
associated database template that defines the characteristics of
the object or block. Such characteristics may be the system and
object name, high and low alarm limits, and differential.

The GPL Expert Checker verifies the completeness and
correctness of a strategy. The Simulator validates the logic of a
strategy.

The Translator creates intermediate source code from the
process compounds in a control strategy.

The Compiler converts the intermediate source code into
downloadable object code. The object code consists of
individual process objects that are downloaded to, and
executed by, the NCM. The final products of GPL are software
objects and downloadable processes that are added to the
archive database.

Introduction 9

System Requirements

Before you can use GPL, your Operator Workstation or
standalone PC requires the following hardware and software.

Notes: GPL supports Windows NT®.

Although certain features may function, starting with
Metasys Release 10.0, Windows 3.1 is no longer
supported.

The following hardware is required to use GPL:

• one of the personal computers listed in the Operator
Workstation Configurations Technical Bulletin in the
Metasys Network Technical Manual (FAN 636). (If you
do not have this manual, contact a local Johnson Controls
branch office.)

• one or more floppy diskette drives, 1.44 Mb 3.5 in. only

• math coprocessor (80287 for 286-based computers; 80387
for 386-based computers)

• 3.5 Mb or more available hard disk space

• 640K RAM of conventional memory (525K of which
must be available)

• mouse (IBM, Microsoft Serial Mouse Systems
PC Mouse, or equivalent)

• an EGA monochrome monitor or EGA minimum color
monitor

Note: Contact the Field Support Center in Milwaukee for
additional information.

Hardware
Requirements

10 Introduction

To print GPL control strategies, you need the following
additional hardware (optional):

• IBM Proprinter III

This hardware is optional but highly recommended:

• 1 Mb of extended memory

This software is required:

• GPL program diskette (Standard Version)

• IBM DOS 5.0 (IBM machines), or Compaq
MS DOS 5.0 (Compaq machines), or MS DOS 5.0
(CompuAdd machines)

• mouse driver for IBM, Microsoft, or Mouse Systems
mouse

Note: If you are using an IBM 57SX PC and the IBM
mouse driver (PS2MOUSE.COM), you must use
Version 1.1 or later of the mouse driver. (Earlier
versions will cause system failure.) The mouse
driver provided with IBM DOS 5.0 does work
properly.

This software is optional but highly recommended:

• Multisoft Super PC-Kwik Disk Accelerator 3.55
(for IBM PS/2 and Compaq Deskpro machines) or
Microsoft SMARTDRIVE.SYS 3.03 (for PCs with
Person-Machine Interface installed or Compaq SLT/286)

• virtual disk driver (for IBM and Compaq Deskpro
models)

Software
Requirements

Introduction 11

Knowledge Up-Front

There are three areas of knowledge you must have to use GPL
effectively: HVAC controls, PC operations, and Metasys
Network.

To program with GPL, you need to know the basic concepts
and methods of HVAC control for commercial buildings. Also,
you need to become familiar with the required control
sequences before writing control strategies with GPL. The
more familiar you are with the control needs, the easier
graphic programming will be.

You can create control strategies with GPL using your
knowledge, the drawings, job specification, and the sequence
of operation (Figure 2).

CTRLSTRT

Building Control

GPL

Drawings

Specifications

Sequence of
Operations

Your Knowledge

2

E=MC

Figure 2: Creating Control Strategies with GPL

Controls
Knowledge

12 Introduction

To use GPL, you need to have basic personal computer skills
and know DOS concepts, such as directories and files. You
should also know how to use a mouse. A mouse is a small,
hand-held pointing device that is used in GPL for moving the
cursor, selecting icons, and drawing items on the screen.

You also need to be familiar with the functions and features of
the Metasys Network, especially software objects and
processes. You should have a general knowledge and
understanding of Metasys terms and concepts. This knowledge
is important to understanding how to program with GPL. For
this information, consult the following areas of the Metasys
Network Technical Manual (FAN 636):

• System Architecture

• Software Data Sheets

PC Knowledge

Product
Knowledge

Introduction 13

Getting Started

The first step is to install the GPL software on your PC. The
PC should be running properly and displaying the DOS
prompt, or it should have Windows 95, Windows 98, or
Windows NT®.

IMPORTANT: Install GPL on the C drive of your PC.
GPL will not work if installed on the
D drive.

To install GPL, read the INSTALL file on the GPL program
diskette. It contains updated information on how to install GPL
on your computer. Also, read the README file, which
contains updated information not available in this manual.

The system generation program (SYSGEN.EXE) configures
the GPL software for your particular needs. It specifies
six items: what type of mouse you have installed, the timer
value for the Simulator, whether your computer has Drive B,
the double-click duration for the mouse, and whether No
Archive mode is enabled. You must run this program when
you first install GPL, and again each time you need to change
the configuration.

1. To run the system generation program, go to the directory
where the GPL executable files reside. Type SYSGEN at
the DOS prompt and press Enter. Six parameters are
shown (Figure 3): Mouse Type, Enable Physical Drive B,
Enable Windows Printing, Associated Input Timer,
Double Clk Duration, and Enable No Archive Mode. The
Mouse Type field is back-highlighted in blue to indicate it
is selected.

2. Press Tab to change the Mouse Type field until the mouse
that your computer uses is shown. Two mouse choices
display: Mouse Systems PC Mouse (default) and
Microsoft/IBM. The Microsoft/IBM choice applies to
either the Microsoft Serial or the IBM mouse (or
compatibles). Press Enter to move to the next parameter.

Installing GPL

Running the
System
Generation
Program

14 Introduction

System Configuration Menu

SYSGEN

MOUSE TYPE: MOUSE SYSTEMS PC MOUSE (USE DRIVER HALOMSMI)

ENABLE PHYSICAL DRIVE B: NO

ASSOCIATED INPUT TIMER: 30

DOUBLE CLK DURATION: 5

ENABLE NO ARCHIVE MODE: NO

< < Hit Tab Key to Change Parameter, Arrows to Move, F10 to Save and Exit > >

ENABLE Windows Printing: NO

Figure 3: SYSGEN Screen

3. For the next parameter, Enable Physical Drive B, press
Tab to change the entry to Yes if your computer has Drive
B. If Drive B is not used, answer No (default). Press Enter
to move to the parameter.

4. For the next parameter, Enable Windows Printing, press
tab to change the entry to Yes if you wish to print to any
Windows compatible printer installed on your PC
including non dot matrix printers. If you wish to use the
original method of printing, which only supports specific
dot matrix printers, select No.

5. For the next parameter, Associated Input Timer, type a
timer value that the Simulator will use when simulating
associated input applications with the AD and BD objects.
The range of the timer is 1 to 255 seconds (default is
30 seconds).

Introduction 15

6. For the next parameter, Double Clk Duration, type in the
number of clock ticks between the first and second mouse
clicks when the mouse is double-clicked. This is a tuning
mechanism that is needed to make double-clicking more
reliable. The value you select depends on the PC’s clock
speed. For slower PCs (8 MHz or less), increase duration;
for faster PCs (10 MHz or more), decrease duration. The
range is 1 to 30 ticks (5 is the default).

7. For the last parameter, Enable No Archive Mode, press
Tab to select Yes or No. If Enabled, archive database
interactions will not occur, and the Translator will not
operate. If Disabled, archive database interactions will
occur, and the Translator will operate. Enabling the No
Archive mode offers some advantages. For details, refer to
the Graphic Programming section.

8. Press F10 to save the changes and exit SYSGEN.

Once you have properly installed GPL and configured the
SYSGEN program, GPL is ready to run.

To set up the printer, make sure the printer cable is connected
securely to the computer and the printer is online. If a cartridge
that provides extended characters is installed, remove it. GPL
does not support special cartridges.

To set up the printer to print international language characters,
refer to the manufacturer’s literature.

When running Metasys Operator Workstation (OWS) software
with Windows 95/Windows 98, or Windows NT, you can run
GPL from the Exit menu on the Network Map as you could in
previous releases. However, if you do not have Metasys OWS
software loaded on your PC, you can run GPL one of
two ways.

• run GPL from the DOS prompt, or

• run GPL from the Windows 95/Windows 98 Start menu.

Setting Up the
Printer

Starting GPL
with
Windows 95,
Windows 98, or
Windows NT

16 Introduction

You can run GPL from Metasys OWS software the same way
you did in previous releases of Metasys.

To run GPL:

1. Go to the Network Map.

2. Click the Exit menu. The Exit menu appears.

3. Click GPL. The GPL program executes.

IMPORTANT: Do not go to DOS by restarting your
computer in the MS-DOS mode. GPL does
not run properly using this method.

To run GPL from the DOS prompt using Windows 95/98:

1. Click the Start Menu button in the lower, left corner of
your monitor. The Start menu appears.

2. Move the mouse over the Programs option. The Programs
submenu appears displaying the programs you have
loaded on your machine.

Note: In some cases, depending on where you have loaded
your DOS prompt icon, you may need to select a
submenu.

3. Click the DOS prompt icon. The MS-DOS window
appears, allowing you to run a DOS session.

4. Type GPL at the DOS prompt. The GPL program
executes.

Running GPL from
the Exit Menu

Running GPL from
the DOS Prompt

Introduction 17

The following terms are used throughout the manual. You
need to understand them before you go on:

Click left: pressing the left mouse button once.

Click right/middle: pressing the right or middle mouse button
once. Click right refers to a two button mouse, and click
middle refers to a three button mouse.

Double-click left: quickly pressing the left mouse button
twice.

Double-click right/middle: quickly pressing the right or
middle mouse button twice. Double-click right refers to a
two button mouse, and double-click middle refers to a
three button mouse.

Select: positioning the cursor on an icon, option, or field and
clicking a mouse button.

Drag: holding down a mouse button, moving the mouse, and
releasing the button.

Some Terms

18 Introduction

Introduction 19

Overview of the Steps

To prepare processes for an NCM, you need to follow a series
of steps. Figure 5 summarizes these steps in flowchart form.

START

Editor:
Draw Control

Strategy

Expert Checker:
Verify Control

Strategy
Correctness

Simulator:
Check Logic of

Control Strategy
(optional)

A B

Translator:
Translate Control

Strategy into
Intermediate
Source Code

Compiler:
Compile

Intermediate
Source Code

into Processes

Download:
Download Processes

into NCM
(done with Operator

Workstation)

A B

END
stpscnpr

Yes

Yes

Yes

Yes

No

No

No

No

Were
errors
found?

Were
errors
found?

Are
there logic
problems?

Are
there logic
problems?

Figure 5: Steps of Creating a Process

Each of these steps is fully described in various chapters of the
manual.

20 Introduction

© November, 1999 Johnson Controls, Inc. 1
 Code No. LIT-631020

GPL Programmer’s Manual

Graphic Programming

Graphic Programming 1

Overview of the Control Strategy 3

• Components 3
• Structure 4
• Storage 6
• Example 7
• Viewing 8
• Creating 8

Function Blocks 13

• Introduction 13
• Categories and Classes 13
• Features 17
• Templates 22
• Template Error Checking 28

Compounds 31

• Introduction 31
• Types 35
• Features 37
• Templates 38
• Compounds in the Applications Library 41
• Compound Design 41

Processes 43

• Introduction *43
• Process Triggering 46
• Process Priorities 46
• Restart Process 47

* Indicates those sections where changes have occurred since the last
printing.

2 Graphic Programming

Connecting Function Blocks 49

• Data and Control Flow 49
• Forming a Loop 53
• Required and Optional Lines 54
• Types of Lines 56
• Direct Connections 64
• Remote Connections 67
• Fan-In and Fan-Out Connections 69

Commanding Objects and Processes 73

• Commanding Objects 73
• Commanding Process Objects 75

Documenting Control Strategies 77

• Text as Comments 77
• Analog Displays for Simulation 78
• Text Description File 79

Order of Process Execution 81

• Process Level 81
• Process Execution 85
• Conditional Execution 89
• One-Shot Execution 91

Sharing Data and Explaining Unreliable Data 93

• Sharing Data Between Processes 93
• Sharing Data Between NCMs *94
• Explaining Unreliable Data 94

Archive Database Interface 97

• Interactions 97

No Archive Mode 103

• Editor 103
• Expert Checker 104
• Translator and Compiler 104

* Indicates those sections where changes have occurred since the last
printing.

Graphic Programming 3

Overview of the Control
Strategy

A control strategy is a series of GPL diagrams that achieves
the control objectives for the Metasys Network. Two examples
of control strategies are air handling unit and chiller plant
control. This section explains the basics of a control strategy.

Figure 1 shows an example of a diagram that is part of a
control strategy. A diagram is a drawing in the work area that
you create and modify with the GPL Editor.

HTG

HTG

CLG

AHU1
FILE
AHU2

CLG

R CONN
SA-T

R CONN
HTG-ENA

R CONN
HYG AOD

Function
Blocks

Text Main Building

Analog
Displays

O

C
I1

SP

AD

IN

PO

2C
SC

O

Connections

GPLCOMP

0.00000

0.00000

 CONN
SETPOINT

PIDL

AHU1
PIDL-1

Compounds FILE
Block

2CMD
AUX DIS

AUX ENA

Figure 1: Components of a Diagram

Components

4 Graphic Programming

A diagram may contain any mixture of the following
components (Figure 1):

� Function blocks--rectangles on the screen that represent
an object or GPL operation or special block.

� Compound blocks--rectangles on the screen that look
similar to function blocks but have one or two lines
through them. They are user-created or pre-programmed
blocks that contain one or more diagrams. Some
compound blocks represent processes that the NCM can
execute.

� Connections--lines that are drawn between blocks to
indicate data and control flow.

� Text--comments that label and explain a diagram.

� Analog displays--numeric fields that indicate the outputs
of blocks during simulation.

� FILE blocks--special blocks that provide access to other
control strategies.

Figure 2 illustrates the structure of a GPL control strategy. The
example features three air handlers. The strategy for each air
handling unit is represented by a separate FILE block, all of
which are pasted on the highest level diagram. Under each
FILE block are compounds and diagrams that contain the logic
for the particular air handling unit. The figure shows three
compound levels under AHU2. Typically, a control strategy
would be composed of many compound levels.

Structure

Graphic Programming 5

Control
strategy
for AHU1

CONN
SETPOINT

CONN
CLGADD

ECON

FILE
AHU1

FILE
AHU3

CONN
CLG-ENA

R CONN
SAT

PIDL
AHU1

PIDL-CLG

FILE
AHU2

CompoundsDiagrams

2CMD
AUX DIS
AUX ENA

CLG

strctfg2

N
C
M

HTG

FANS

OCC

Control
strategy
for AHU3

Figure 2: Structure of a Control Strategy

6 Graphic Programming

Each GPL control strategy is stored as a set of three files. Each
file holds specific data that contributes to the entire strategy.
The files are identified by names in DOS format. The file
names consist of eight character maximum names and three
character maximum extensions. The descriptions and
extensions of control strategy files are:

Description File
Extension

Backup File
Extension

Connection Information .CI .OCI

Database .DB .ODB

Text (includes analog
displays)

.TX .OTX

The .CI file contains data that describes the connections
between function blocks. The .DB file contains the information
from the database templates. The .TX file contains the text and
analog displays that are written in the work area. When you
load a control strategy, the GPL Editor merges the three files
to create one strategy in memory.

The Editor creates corresponding backup files each time you
update an existing control strategy. The backup files are
updated each time you save a control strategy. You can use the
backup files if you accidentally erase, lose, or revise the
originals. The letter “O” for “Old” distinguishes these files.

Just as with any DOS file, strategy files can be copied, deleted,
and renamed. Each FILE block represents a control strategy
and has a set of files with the same DOS extensions as any
other strategy.

When you are saving and loading files, the Editor purposely
hides the file name extensions. For example, the files AHU.CI,
AHU.DB, and AHU.TX would be collectively identified as
AHU in the Editor. The extensions are only important when
you are performing file management functions outside of GPL,
such as copying or renaming files.

Storage

Graphic Programming 7

The following is an example of a control strategy that will
execute in an NCM (Figure 3). The strategy is for an air
handling unit called AHU1 and features three compounds:
STATPRS (Static Pressure Control), TEMPCTL (Temperature
Control) and FAN-LOGC (Fan Logic). Under each compound
are diagrams. For simplicity, only the diagram that is under the
STATPRS compound is shown. The sequence of operation in
Figure 3 explains the purpose of the strategy.

Static Pressure Control
The DDC controller will control the static pressure upon fan startup.

A static pressure transmitter (located 2/3 the distance of the longest run)
will control, through the DDC controller, the supply fan variable frequency
drive to maintain 1 in. W.G. duct static pressure. A high limit (hardware) of
4.0 in. W.G. will protect the duct.

STATPRS

AHU1

STATPRS

TEMP-CTL

AHU1

TEMPCTL

FAN-LOGC

AHU1

FAN-LOGC

Diagram

Under
STATPRS
Compound

Diagram

with Three
Compounds

Sequence of

Operation

AI

AHU1
STATIC

AOD

AHU1
SFANVFD

PIDL

AHU1
PID-SVSD

NOT
2CMD

AUX ENA
AUX DIS

CMD

SET PIDL
AUXIN

CNST

0% OPEN

V PO

C

O

O

I

O

SC

CF

CF

E

SP

2C

AE

I1

V

R CONN

STATUS

V

I

O

ctrlst33

ADDITIONAL
DIAGRAMSADDITIONAL

DIAGRAMS

Figure 3: Example of a Control Strategy

Example

8 Graphic Programming

To view a GPL control strategy (you must have started GPL):

1. Click left on the File icon (disk), which displays a listing
of all the defined GPL directories and files.

2. Click left on the name of the strategy you want, then click
left on the LOAD option. The control strategy displays in
the work area.

When a control strategy is loaded, its highest level is shown.
To reach a lower level compound, select the Query icon and
double click left inside a compound block. If you happen to
single click, the template for the compound displays instead.
To clear the template, click left or press the Esc key.

When a lower level compound is displayed, you can easily
return to the higher levels. You do so by clicking left on one of
the compound names that displays across the bottom of the
work area.

Creating a control strategy involves the following tasks:

� Create diagram.

� Group diagram into compounds.

� Save diagram to a control strategy file.

� Check the control strategy.

The following paragraphs give you an overview of how these
operations are performed. For step-by-step instructions, refer
to the Editor chapter.

Note: The GPL HVAC Library, a library of standard
applications, is available for purchase through the
branch office. These applications provide a “top-
down” approach to GPL programming. The library
contains most HVAC control strategies that you will
need. You may modify them to meet your needs.

Viewing

Creating

Graphic Programming 9

This task involves pasting down function blocks, defining
block databases and connecting the blocks. (The instructions
presume that the No Archive mode of the GPL Editor is
disabled.)

Pasting Down Function Blocks

The first task in creating a diagram is to paste down the
function blocks that the logic requires. Follow these steps:

1. Select the function block from the bottom of the screen by
clicking left on it. If the block you want is not currently
displayed, you need to change the function block
category.

2. To change the function block category, display the list of
all categories by clicking left on the LIBRARY field.
Position the cursor inside the red check box next to the
desired category and click left. The function blocks that
line the bottom of the screen change to those in the
selected category.

3. Choose a block by clicking left on it.

4. Move the cursor into the work area. A block displays.

5. Position the block in any spot on the work area and click
left. The block pastes down.

Create Diagram

10 Graphic Programming

Defining the Databases

After each function block is pasted down, you need to define
its database. The database consists of configurable attributes
and parameters that are the unique characteristics of the block.
For example, each AI object block has a High Alarm Limit, a
configurable attribute you need to define. The values entered
affect the way the object is simulated and executed.

To define a database of a function block:

1. Click left on the Query (question mark) icon.

2. Click left inside the function block. Its database template
displays.

3. Enter appropriate names and values.

4. Press the F10 key to save the entries. If this is an object
block, a message displays on the screen to indicate archive
database interaction. Other user messages may then
display on the bottom of the work area. See the Editor
chapter for details.

Connecting Function Blocks

When two function blocks are pasted down in the work area,
you can connect them together. Follow these steps:

1. Click left on the Connection (arrow) icon.

2. Click left on the function block at which the connection is
to start. An output connection menu displays.

3. Click left on the desired output connection name.

4. Move the connection line into the function block that is to
receive the connection. Click left. An input connection
menu displays.

5. Click left on the desired input connection name. The
blocks are now connected.

Graphic Programming 11

The next task is to group the diagram (or part of the diagram)
into a compound. You use compounds to logically group
blocks, specify process objects, and aid in presenting control
strategies. Follow these steps:

1. Click left on the Compound icon.

2. Click left on the MAKE option. Move the mouse and
notice a white enclosing box has appeared.

3. Enclose the portion of the diagram that you wish to
compound into the white box. If the enclosing box is not
the correct size, hold down the right/middle button and
drag the mouse to resize it. Click left.

4. Click left on the TEMPLT option to define the name and
type of compound in its database template. Press F10 to
save the entries. See the Editor chapter for details.

5. Enter a name for the compound in the Name field by
simply typing from the keyboard. (You do not have to
select this field with the mouse.)

6. Click left on SAVE.

7. Click left on DISK to save the new compound to disk.

The next task is to save the control strategy to a file.

1. Click left on the File icon.

2. Type in a name in the File Name field.

3. Click left on the SAVE option. The file is saved to disk.

Group Diagram
into Compounds

Save the Control
Strategy

12 Graphic Programming

After a control strategy is complete, you need to verify it with
the Expert Checker. This is a separate utility from the GPL
Editor that verifies the completeness and correctness of the
strategy. For example, it checks that all required connections
are made and all blocks are correctly nested.

A description of all errors that the Expert Checker finds are
placed in a list file. You can view this list file with the Editor
by clicking left on the VIEW option under the Query option
menu.

To run the Expert Checker, follow these steps:

1. Double-click left on the Tools icon (hammer).

2. Click left on the Expert Checker icon (check mark). The
Expert Checker screen then replaces the Editor screen and
begins running.

3. After the strategy has been checked, press any key to
return to the Editor screen.

At this point, you can check the logic of the control strategy
with the Simulator and translate and compile it with the
Translator and Compiler.

Check the Control
Strategy

Graphic Programming 13

Function Blocks

This section introduces function blocks. It explains the
categories, classes, features, and templates of function blocks.
For instructions on how to paste down, edit, and connect
function blocks, refer to the Editor chapter.

A function block is a rectangle on the screen that represents an
object or GPL operation or special block. Each function block
defines an object or performs a particular action, such as select
the highest of two values, or calculate enthalpy.

Each block is pasted down in the work area and defined by
filling in its database template. The template lists the attributes
and parameters (i.e., characteristics) of the block.

In most cases, each block is connected to other blocks. The
connections between blocks establish the data and control
flow. Each block has a defined set of allowable inputs and
outputs to which lines may be connected. These inputs and
outputs are displayed on connection menus. There are nine line
types that pass different kinds of data, such as analog, binary,
and time. Each line type is described in detail later.

All function blocks are organized under a category and a class
(Figure 4). A function block category is a grouping of function
blocks that have similar uses. The GPL Editor uses block
categories to logically organize the 69 function blocks that are
available. All categories are listed in the function block library
that displays when you click left on the LIBRARY box. There
are 14 different categories of blocks.

Introduction

Categories and
Classes

14 Graphic Programming

CLASS

C
A
T
E
G
O
R
Y

Psychrometric
Equations

Input/Output

Data

Multistate

Controllers

Control

Calculations

Selectors

Logic

Math

Report

Process Control

Object Control

Time

Object Operation Special

AOD
ACM
REF

BI
BO
AI
AOS

AD
BD

SVAR
VH

CNST
CONN

MSI
MSO
MSD

PIDL
LCG
210A

260A
ZONE

PIR
BSEQ
COMP

DFCM
DBCM

RAMP
SPAN
FILT

ENRH
ENDP
WBDP

HSEL
LSEL
SWCH

ADD
SUB
MUL

PRNT
ADV

PERD
WAIT

CMD
2CMD

TIME
RTOT
TTOR

AND
OR
XOR
NOT

WBRH
DWPT
RH

SAMP
MSEL

LTCH
PULS
DLAY

DIV
AVG
EQN

STOP
ABRT

READ
WRIT

FCTBL

Reliability

Miscellaneous

FREL
UNRD

TOT
USER

FILE

Figure 4: How Function Blocks are Grouped: by Category and by Class

Graphic Programming 15

A class is a grouping of function blocks that have similar
definition requirements. For example, some blocks require a
system\object name, while others need a block name. There
are three classes of blocks: object, operation, and special.

Object blocks represent software objects in the archive
database. Software objects in the Metasys system can be
defined in GPL. They are:

ACM Accumulator MSD Multistate Data*

AD Analog Data MSI Multistate Input*

AI Analog Input MSO Multistate Output*

AOD Analog Output Digital PIDL PID Loop

AOS Analog Output
Setpoint

REF Generic Object
Reference**

BD Binary Data 210A Control System C210

BI Binary Input 260A Control System C260

BO Binary Output ZONE Fire Zone

LCG Lighting Control
Group

 * Used only in European market.
** Represents C260X, C500X, and CS software objects; also, any

hardware object.

Each software object block has at least one input and output.
At its input, an object block can accept commands and changes
to its writable attributes. For example, a binary output object
can be commanded to Start or Stop, or the AUX_IN port of a
PIDL object can be commanded to a value. Also, a BO object
can accept a change to Minimum On Time, which is a writable
attribute.

At the output, the value of an object block is made available
for other blocks to read. An example would be a selector block
reading the value of an analog input object. The line
connection between the selector block and the AI object block
is actually a “request” to read an attribute.

Object Blocks

16 Graphic Programming

These blocks instruct the NCM to perform an operation, such
as selecting between two values, executing some logic or
calculation, or issuing an advisory. They also provide process
control functions, such as temporarily suspending the
execution of a process. The GPL Translator creates executable
code from these blocks. The operation blocks are the largest
group of blocks in GPL and include the following:

ABRT Abort PERD Period

ADD Add PIR Proportional-
Integral Reset

AND And PRNT Print

AVG Average PULS Pulse

BSEQ Binary Sequencer RAMP Ramp

CMD Command READ Read

COMP Compare RH Relative Humidity

DBCM Deadband
Compare

RTOT Real-to-Time
Conversion

DFCM Differential
Compare

SAMP Sample and Hold

DIV Division SPAN Span

DLAY Delay STOP Stop

2CMD Dual Command SUB Subtraction

DWPT Dew Point SVAR Shared Variable

ENDP Enthalpy-Dew
Point

SWCH Switch

ENRH Enthalpy-Relative
Humidity

TIME Time of Day

EQN Equation TOT Totalization

FILT Filter TTOR Time-to-Real
Conversion

FREL Force Reliable UNRD Unreliable Data

HSEL High Select USER User

LSEL Low Select VH Value Holder

LTCH Latch WAIT Wait

MODE Mode WBDP Wet Bulb-Dew
Point

MUL Multiply WBRH Wet Bulb-Relative
Humidity

NOT Not WRIT Write

OR Or XOR Exclusive Or

Operation Blocks

Graphic Programming 17

All operation blocks can provide a control flow input and
output. Some blocks have a conditional input called Enable.
This input allows for conditional execution (explained in
Order of Process Execution section). All operation blocks
must be placed inside a process compound in order for them to
translate into executable code. This is a GPL requirement. This
requirement differentiates operation blocks from the other two
classes of function blocks--object and special. Object and
special blocks do not have to be placed in a process.

The blocks that belong to this class are the Constant (CNST),
Connection (CONN), and File (FILE) blocks. The CNST
block specifies a constant value that can be used as an input to
any block. The CONN block titles a connection line that
comes from a different diagram. The FILE block serves as a
link between multiple strategy files for one NCM. With the
FILE block, you can paste several files on one screen, then
translate all the files together, instead of individually. None of
these blocks have to be placed in a process, since they do not
translate into executable code.

Some features are similar to all function blocks, while others
are unique.

The following are the features that all function blocks have in
common.

� Each block is rectangle-shaped and displays on the screen
at a specific default size. You can adjust this size before
or after pasting down the block. As an added convenience,
three function keys are available that vary the size of
blocks: F2, F3, and F4. These keys provide large, small,
and standard default sizes respectively.

Special Blocks

Features

Common Features

18 Graphic Programming

� Each block is labeled with an abbreviation of its type
name, which appears centered in the upper portion of the
block (Figure 5). In addition, you can assign a unique
name to each block. For object blocks, this name is a
system\object name. For operation and special blocks, it is
a block name. For command and dual command blocks,
the block name is actually the command name. For all
blocks, names are centered in the block. The size of the
characters depends on how long the name is; the longer
the name, the smaller the characters will be.

System Object Name

CNSTAI
AHU
OAT1 50.0

Block Type Name

Block Name

LBLFCBLK

Figure 5: Labeling of Function Blocks

� Each function block has a database template. (See
Figure 9 for an example.) The template contains attributes
and parameters that describe the characteristics of the
block (e.g., number of inputs). For more details, see the
Templates section.

� A function block can be copied. You may find that
copying a defined block is easier than pasting down a new
one of the same type, because you do not need to redefine
the common parameter values.

� All function blocks have online help screens that describe
the block and discuss what makes the output of a block
unreliable. Position the cursor on a block in the function
block directory and press F1 to get help.

Graphic Programming 19

The following are unique block features.

• The most evident differences between blocks are their
special markings (Figure 6).

AI
System
Object

AND
Name

OR
Name

XOR
Name

NOT
Name

Name

Name

Name

System

Object

LTCH

Name

SMKFCBLK

REF
System
Object

Object
Blocks

(oval in the middle)

Generic Object
Reference Block

(diamond in the middle)

Logic
Blocks

(logic symbols used)

Group Compound
Block (single line)

Process Compound
Block (double line)

All Other Blocks
(no special markings)

Figure 6: Special Markings on Function Blocks

• An object block pastes down undefined, while an
operation or special block pastes down defined. An
undefined block is colored magenta and bordered with
dots (Figure 7). A defined block is colored brown with
solid lines.

Unique Features

20 Graphic Programming

AI ENRH

Magenta Brown

Defined
Object Block

Defined
Operation Block

Undefined
Object Block

Brown

UNDFOPBK

AI
S Y S TE M
O B JE C T

Figure 7: Appearances of an Undefined and Defined
Object Block, and Defined Operation Block

� The archive database is invoked each time you add,
modify, or delete an object block. It is also invoked when
you query an object block for the first time since the file
has been loaded. The message Archive Database
Interaction in progress displays in the middle
of the screen (Figure 8). During the interaction, the Editor
may display a user message in the bottom of the work
area. For example, if you define an invalid hardware
object name in the block’s template, the message
Archive hardware object record does not
exist—{system\object name} will display. For
more details, see the Archive Database Interface section
at the end of this chapter.

Graphic Programming 21

A H U I

N ETN AM E

LIB R AR Y

IN P U T/O U TPU T
B I BO A I A O S A O D A C M R EF

M =0%
X=1412
Y=1356

ARCHDB

A N A LO G IN PU T O B JEC T (A I)

F-10SAV E, E SC /m ouse click-cancel, PG D N -P AG E

ID E N TIFIC A TIO N

System N am e

O bject N am e
Expanded ID

H AR D W AR E

S ystem N am e

O bject N am e

H W Type

Slot N um ber

Analog Type

A H U 1
O A-TEM P

EN G IN EER IN G D ATA

Analog U nits

D ecim al Position

H igh Alarm Lim it

Low A larm Lim it

Setpoint

N orm alband

D ifferential

Filter W eight

D E G F

1

80,00000

40,00000

55,00000

10,00000

1k ohm

A rchive D atabase Interaction in progress...

Figure 8: Archive Database Interaction Message

• Copied operation and special blocks are pasted down
defined, while copied object blocks are pasted down as
undefined. This is because only one instance of an object
block can be defined in a strategy file. Therefore, you
need to define a unique system\object name for each
copied object block.

• When you copy a compound, its object blocks change to
undefined. This is a precaution to protect from having
multiple objects with the same software system\object
name in the same file. You then need to redefine each
object block individually. You can do so by simply
opening each object block template, assigning a unique
system\object name, and pressing F10. When you do this,
the Editor reads the archive database, checking if the
object is already defined.

22 Graphic Programming

You define the database of each function block by filling in its
template. Every block has a database template. Figure 9 shows
the first page of the AI object template. A template drops
down over the diagram in the work area when you query the
block.

The template consists of parameter and attribute fields into
which you enter information. These fields describe the details
of the function block.

AITEMP

M =0%
X=1412
Y=1356

AHU I

NETNAME

LIBRARY

INPUT/OUTPUT
B I BO AI AOS AOD ACM REF

1

DCM

A N A LO G IN PU T O B JEC T (A I)

F-10S AVE , E SC /m ouse click-cancel, P G D N -PA G E

ID EN TIFIC A TIO N

System N am e
O bject N am e

Expanded ID

H AR D W AR E

S ystem N am e
O bject N am e
H W Type

Slot N um ber
Analog Type

EN G IN EER IN G D ATA

Analog U nits
D ecim al Position
H igh A larm Lim it
Low Alarm Lim it
Setpoint
N orm alband
D ifferential
Filter W eight

D E G F

1

80,00000

40,00000

55,00000

10,00000

1k ohm

D C M

1

Figure 9: First Page of AI Template

Notice in Figure 9 that the fields on the template are organized
under groups. The groups on this template are
IDENTIFICATION, HARDWARE, and ENGINEERING
DATA. The types and number of groups vary, depending on
the function block. But the presentation from block to block is
made as consistent as possible. For example, all object blocks
have IDENTIFICATION as their first group, located in the
upper left corner of the template.

Templates

Graphic Programming 23

Most parameters have default values. These are acceptable
values for the block. In many cases, you will not have to
change these values.

The amount of information that the template contains depends
on the function block. Some blocks, such as those under the
Math category, require very few entries, while others, namely
the object blocks, have two or three pages (screens) of entries.

Each time you display a template, the Editor positions the
cursor within the upper left parameter field. The field is
highlighted in white to indicate it is selected for entry. A red
rectangle within a field indicates the cursor’s position.

You can use the following keys within the templates:

Key Function

Page Up Displays the previous page.

Page Down Displays the next page.

F10 Saves template changes and closes template.

Esc Ignores template changes and closes
template.

Arrows Moves cursor between fields.

CTRL + Left and
Right Arrows

Moves cursor within a field one space at a
time.

Backspace Moves cursor back one space within field,
deleting the character.

Insert Shifts characters one space to the right for
you to add a character.

Delete Deletes a character in a parameter field.

24 Graphic Programming

Colors specify the different characteristics of template fields.
The colors and the corresponding characteristics are:

Color Description

Blue Non-modifiable fields; once you have
defined the block, these fields cannot be
changed without deleting the object from
the archive database, and re-adding it.

Light Blue Read-only fields.

Magenta Modifiable fields; use the keyboard to enter
appropriate values.

Light Magenta Non-modifiable fields; can be changed by
factory only.

Green Modifiable Tab fields; press the Tab key to
toggle through all available choices.

Light Green Modifiable Tab fields that become non-
modifiable once the object is added to the
archive database.

Yellow Static text in the template (e.g., headers
and footers).

White Currently selected field.

Note: On the portable Operator Workstation, you’ll see
variations of gray instead of colors.

Templates have a number of different types of fields. They are:
analog, integer, binary, character string, tab, pop-up,
blank/delete, and STD range type.

Graphic Programming 25

These fields take analog, real, or floating point numbers.
The range for real numbers is 9999999 to 0.00001, 0.0, and
-0.000001 to -99999999. Real number fields have eight places
including the minus sign and the decimal place.

Note: The Editor converts all decimal numbers into binary
format; therefore, only five of the eight possible digits
can be displayed reliably. For example, if -49.4567 is
entered in the database template, GPL will round it
off to -49.4566, not to -49.457. This is because
rounding errors are introduced after the fifth digit.
Decimal number conversion is unpredictable after the
fifth digit.

Also, the Editor forces a fraction to have a 0 before
the decimal point. The least significant digit will not
be displayed. For example, if -.123456 is entered,
-0.12345 will be displayed (the number 6 is dropped).

Integer fields take integer values that are valid for the type of
data requested. An example of an integer field is Number of
Inputs for a HSEL block, which can accept the numbers
2, 3, or 4.

Binary fields take a Yes (Y) or No (N) entry.

These fields may allow any combination of alphabetic
characters (A-Z), international language characters
(see Appendix F: Characters, Symbols, and Reserved Words),
numbers (0-9), and certain symbols (e.g., “+” sign). For a list
of all valid characters and symbols, refer to Appendix F:
Characters, Symbols, and Reserved Words.

Analog

Integer

Binary

Character String

26 Graphic Programming

Tab fields are dynamic fields that have two or more entries;
you display these entries by pressing the Tab key. Each time
you press Tab, a different selection appears in the field. Once
you have scrolled through all the choices, the first choice
reappears. To keep a selection, press Enter or an Arrow key.

Pop-up fields are conditional fields. When they display and
what they display depends on the entry made on a previous
field. For example, on the template of a BI object block, the
parameter “Subslot Number” will “pop up” on the screen when
you select DCM for the hardware type.

These types are real number fields into which you can enter a
blank by pressing the space bar. In some instances, these fields
can also accept the letter “D” for Delete.

If you do not wish to define a value for an optional attribute,
enter a blank. For example, you may not want to specify a high
alarm limit for an analog data object. A blank in the high alarm
limit template field would leave this attribute unspecified. You
may specify a high alarm limit later by editing the template.

If you enter a blank in a Command block template, the
command will not send a new value for this parameter. You
may also enter the letter “D,” which will delete a parameter
when the command is sent.

For example, an Alarms command to an analog data object has
three parameters: High Limit, Low Limit, and Differential. If
you enter a blank in the Differential field, the existing
differential value of the object will remain unchanged.
However, if you instead enter the letter “D” in the Differential
field, the command would delete the current differential.

Tab

Pop-up

Blank/Delete

Graphic Programming 27

The standard (STD) range type field appears only on the
template for the AI point object (Figure 10). It defines the
standard range type of the sensor for the AI object
(e.g., voltage and temperature range). Below this field are
four fields labeled Linearization Parameters. The GPL Editor
fills in these fields for you, according to the range type
specified above. For example, entering “3” would change the
Linearization Parameters to the values associated with range
type 3. This saves you the effort of manually entering the
values.

ANALOG INPUT OBJECT (AI)

F10 - SAVE, ESC/mouse click-cancel, PGUP-PAGE

1

-49,9290

89.14399

-4787.60

221.9400

RANGES

 S TD R ange Type

 Linear. P arm . 1

 Linear. P arm . 2

 Linear. P arm . 3

 Linear. P arm . 4

STDTLPF

Figure 10: STD Range Type and
Linearization Parameter Fields

The Editor offers 25 standard ranges that provide the
linearization parameters for the Metasys family of function
modules and sensors. These ranges are listed in a table; refer
to the AI Object Block in the Function Blocks chapter. If you
want to specify your own values, enter a range type of “0,”
which allows you to edit these fields.

STD Range Type

28 Graphic Programming

The GPL Editor performs syntactic error checking for each
template field. It checks for valid data types, proper ranges,
field interactions, and duplicate object names.

The data entered into a field must be of the proper type and
within the proper range. For example, if integers are required,
the Editor will not allow you to enter a letter. If you try to
enter a letter for a field that requires a number, the Editor will
ignore your keystroke. If you try to enter a number outside the
appropriate range, the Editor will accept the entry; but when
you press the Enter key, a warning beep will sound, and the
entry will change back to its previous (valid) value. Also, the
cursor will remain in the field.

Some checks involve the interaction between two fields.
For example, the high alarm limit you enter for an AI object
must be greater than its low alarm limit. The Editor checks for
these interactions when you press F10 to save the template.
If an interfield error is found, an appropriate error message
displays on the bottom of the work area. After you click the
mouse to continue, the Editor returns to the first page of the
template. Refer to the User Messages section of the Editor
chapter for definitions of all interfield error messages.

You may use a system\object software name for an object
block only once in a single strategy file. You can use the same
system\object name in multiple files, but not twice in the same
file. The Editor checks for duplicate system\object names
when you press F10. If the Editor finds a duplicate, the
appropriate error message is displayed. You can either enter a
unique system\object name, or click left to exit the template.

Template Error
Checking

Valid Data Types
and Proper
Ranges

Field Interactions

Duplicate Object
Names

Graphic Programming 29

Note: If you need to use the value from an object block
more than once in the same file, use a fan-out
connection. Refer to the section Fan-In and Fan-Out
Connections for details.

The data in the template is saved when you press the F10 key.
For object blocks, the template information is saved in
two places: the GPL database file (.DB extension of control
strategy) and the appropriate archive database file. For all
other function blocks, the template information is saved to the
strategy file only. When you translate a control strategy, the
GPL Translator uses the template information to create the
executable code that will run in the NCM.

30 Graphic Programming

Graphic Programming 31

Compounds

This section explains compounds. For instructions on how to
make and edit compounds, refer to the Compound Functions
section in the Editor chapter.

A compound is a grouping of blocks combined to form a high
level function, such as optimal start or damper control.
Several compounds are combined to form a control strategy.
Each compound is represented by a block. Figure 11 shows a
compound block and the diagram it represents.

I1

V

AI
AHU1

OA-TEMP1

AI
AHU1

OA-TEMP2

HSEL
O

IN

SVAR
OATEMP

I2

V

Diagram

NAME

AHU1

S E LE C T

Compound

CMPNDBLK

Figure 11: Compound Block and Diagram it Represents

Introduction

32 Graphic Programming

Compounds are used extensively in GPL. A compound has
these features:

• Helps you organize many blocks under a diagram by
grouping them under functional categories. For example,
all heating control logic can be grouped under a heating
compound.

• Creates a new function block, such as an 8-input AND,
that is made up of various other function blocks.

• Breaks down a complex control strategy into more easily
manageable and understandable parts.

• Hides details that would otherwise clutter a diagram.

• Creates multiple levels of diagrams under one strategy
file. This is called compound nesting. For example, as in
Figure 12, the highest level might be the air handling unit,
the next level the heating and cooling control logic, then
the different heating and cooling systems, and so forth.
A maximum of 30 levels can be nested.

• Creates a standard application that can be stored, reused,
and changed as often as needed.

• Provides the mechanism for creating process objects
(NCM requirement).

Graphic Programming 33

A D D ITIO N A L
C O M P O U N D S

A N D D IA G R A M S

A D D ITIO N A L
C O M P O U N D S

A N D D IA G R A M S

C LGH TG

A H U

CMPDNSTG

Figure 12: Compound Nesting

A compound block shares some of the same features as
function blocks: it can be named, defined, edited, and pasted
down on a diagram.

When you are displaying one or more nested compound levels,
the names of the currently active compound levels are shown
on the bottom of the work area, enclosed in rectangular boxes
(Figure 13). These boxes are called Compound Name fields.

34 Graphic Programming

CPDNFLDS

M =0%
X=1412
Y=1356

AHU I

NETNAME

LIBRARY

INPUT/OUTPUT
BI BO AI AOS AOD ACM REF

Level 1 Level 2 Level 3 Level 4

Compound Name Fields

Figure 13: Compound Name Fields

The Compound Name fields have two purposes. The
first purpose is to indicate the currently active compound level.
The work area can show up to the last four levels. Higher
levels are hidden from view, but return as you move toward
the highest compound level. The second purpose is to provide
for a mechanism of returning to a higher level. Clicking left on
a Compound Name field changes the work area to show the
diagram that contains the associated compound block. Pressing
Esc moves the diagram up one level.

Graphic Programming 35

GPL offers three types of compounds: group, process, and
Restart process. Figure 14 shows an example of each type.
You can distinguish the different types by their appearances.
The group compound block has two sections: the first section
contains the compound file name; the second section contains
the compound block name. The process and Restart compound
blocks have three sections: the first section contains the
compound file name; the second section contains the system
name; the third section contains the object name (always
Restart for the Restart compound).

A N D

6-AND

D M P R

A H U 1

D M P LO G IC

R E S TA R T

A H U 1

R E S TA R T

Group: Process: Restart Process:

GPRCMPDS

Figure 14: Appearances of Group, Process, and
Restart Process Compounds

A group compound is a grouping of blocks, connections, and
text. Its purpose is to functionally group a diagram into a
single block. For example, a group compound can be used to
create a customized block, such as a six input AND block.

The process compound is a special case of the group
compound. Besides grouping blocks, connections, and text, it
is used to identify part of a diagram as a process object that,
when translated, creates downloadable, NCM executable code.
Only those diagrams that feature one or more operation blocks
must be placed in a process compound, since compounding is
the method of creating object code from the operation blocks.
In fact, only the operation blocks on a diagram need to be
compounded into a process; all others do not have to be
compounded. A process compound may contain group
compounds and other process compounds. However, the
Translator creates an independent process from each process
compound.

Types

36 Graphic Programming

The Restart compound is a special process compound that is
used exclusively for performing required startup processing. It
is always the first process to execute when the NCM starts. For
example, the Restart compound can be used to initialize shared
variables, determine occupancy time, or delay processing until
field equipment comes back online. Only one Restart process
can exist per NCM.

A compound provided from the factory may be protected.
When a compound is protected, you may view and edit its
database template, but you cannot view or edit its contents.
Also, you cannot connect to or from it, since a protected
compound cannot be opened. However, the protected
compound may have preconnected blocks, such as the CNST
block, which you may connect from, and CONN blocks, which
you can connect to or from. These blocks contain preselected
input and outputs that you can use. Figure 15 shows two
CONN blocks and one CNST block with a protected
compound.

From a
Function Block

To a
Function

Block

O

IN

CONCNST

O

IN

IN

O
CONN

Compound

S ystem

O bject

CNST

CONN
IN

Figure 15: CONN and CNST Blocks Used with a Protected Compound

Graphic Programming 37

A compound block has the following features:

• The block has a name and a database template. Within this
template are parameter values that you enter, such as the
type of compound and its name. The next section
describes compound templates in detail.

• The compound block or its contents can be pasted down
on a diagram. When you paste down a compound block
on an existing diagram, all the diagrams that are under that
compound are added to the file. You may instead paste
down the expanded version of the compound block, which
consists of the compound’s first level. You would load in
an expanded version if you want to create a new strategy
or compound based on an existing one.

• When you make a compound and click on SAVE to save
it, you can either save the new compound to the screen or
save it to the hard disk. If you elect to save it to the
screen, the Editor creates a compound block for the
compound and pastes it in the middle of the work area.
Then, you can save the new compound to disk. If you
elect to save the compound to disk, the Editor will save
the compound to a file on the hard disk. Then, you can
load the compound block into the work area.

• A connection line can be drawn in a compound block.
This has two possible purposes. The first is to command
the compound. The three available commands are
PRC_ENA (Process Enable), PRC_DIS (Process
Disable), and TRIGGER. The second purpose is to
connect a line to a block within the compound via the
OPEN CMPD connection. You may terminate a
connection from one compound level to another, but not
up a previous (higher) level. Also, you cannot terminate a
connection from a compound level to itself. Lastly, you
can connect up to ten levels deep.

Features

38 Graphic Programming

The compound templates contain parameter values that
describe the characteristics of the compound, such as its name
and its type. The template for the group compound is shown in
Figure 16.

Compound Block (CMP)

Compound Type
Block Name
Protected?

F10-SAVE, ESC/mouse click-CANCEL

GRCPTMP

GROUP

N

Figure 16: Group Compound Template

Name Type Default Range/Choices

Compound
Type

TAB GROUP GROUP,
PROCESS,
RESTART
PROCESS

Block Name Character Blank 8 characters

Protected? Binary/
Read-only

N Y (Yes) or N (No)

Templates

Template Fields
for Group
Compound

Graphic Programming 39

Figure 17 shows the template for the process compound.

Compound Block (CMP)

F10-SAVE, ESC/mouse click-CANCEL

Compound Type
Process Sys Name
Process Obj Name
Expanded ID
NC Node Name
Protected?
Period
Priority
Exempt All

PRCPDTMP

P R O C E S S

N
00:00:00
4

N

Figure 17: Process Compound Template

Name Type Default Range/Choices

Compound
Type

TAB PROCESS GROUP, PROCESS,
RESTART PROCESS

Process Sys
Name

Character Blank 8 characters

Process Obj
Name

Character Blank 8 characters
(See Note.)

Expanded
ID

Character Blank 24 characters

NC Node
Name

Character/
Read-only

Blank 8 characters

Protected? Binary/
Read-only

N Y (Yes) or N (No)

Period Time 00:00:00 Time

Priority Integer 4 1 to 4 (1=highest)

Exempt All? Binary N Y (Yes) or N (No)

Note: For a process compound, entry cannot be RESTART.

Template Fields
for Process
Compound

40 Graphic Programming

Figure 18 shows the template for the Restart compound.

Compound Block (CMD)

F10-SAVE, ESC/mouse click-CANCEL

Compound Type
Process Sys Name
Process Obj Name
Expanded ID
NC Node Name
Protected?

RSCPDTMP

RESTART PROCESS

RESTART

N

Figure 18: Restart Compound Template

Name Type Default Range/Choices

Compound
Type

TAB RESTART GROUP, PROCESS,
RESTART PROCESS

Process
Sys Name

Character Blank 8 characters

Process Obj
Name

Character RESTART RESTART

Expanded
ID

Character Blank 24 characters

NC Node
Name

Character/
Read-only

Blank 8 characters

Protected? Binary/
Read-only

N (Yes) or N (No)

Template Fields
for Restart
Compound

Graphic Programming 41

Johnson Controls engineers have developed a software
package called the Metasys GPL HVAC Library
(WS-SWHLIB-00x) that contains a collection of
pre-programmed standard applications. These are tested
applications that you can copy and modify to meet your needs.
You may load them from the compound option menu.
Example files are also available.

Which diagrams you should make into compounds depend on
these factors:

• The diagrams that need to be grouped into process
compounds. All operation blocks on a diagram must be
part of a process compound. For details, refer to the
Processes section.

• Your programming preferences. For example, you can
divide a complex strategy into several compounds,
because several small compounds are easier to work with
than a few large ones.

• Number of blocks on a diagram. You may want to make it
a standard practice to compound any diagram that
contains ten or more blocks, to assure the diagram is easy
to read.

� The sequence of logic on a diagram. A compound should
group a complete sequence of logic. For example, you
should compound fan logic separately from economizer
logic.

You can create a structure of compounds using either a
bottom-up or a top-down design. The bottom-up design
involves drawing the lowest level diagram, then the next
highest diagram and so forth, making group and process
compounds along the way. This method is most useful when
you cannot use one of the compounds in the GPL HVAC
Library.

Compounds in
the Applications
Library

Compound
Design

42 Graphic Programming

The top-down design is the preferred method, since you don’t
need to create compounds from scratch. It involves loading in
a compound or example file provided in the GPL HVAC
Library and editing it to fit your particular application.
Another manner of top-down design is to create empty
compounds first--the high-level structure--then drawing the
diagrams that belong under the compounds. To create an
empty compound, simply compound an empty screen.

Graphic Programming 43

Processes

This section explains processes. For detailed instructions on
how to create and edit a process, see the Compound Functions
section in the Editor chapter.

A process is a self-sufficient, modular block of computer
instructions for the NCM. Processes are used to implement the
logic of control strategies.

To make a process with the GPL Editor, you group the
diagram into a process compound. A process compound is a
functional grouping of blocks, connections, and text. A process
compound can be translated and compiled into a process
object. The process object can be downloaded to and executed
by the NCM.

A process compound may be one diagram or a series of
diagrams. If the compound consists of a series of diagrams,
some of these diagrams may also be process compounds.
Creating one compound inside of another is called nesting.
A nested compound has at least one higher level compound.
If multiple process compounds are nested, the Translator will
create separate processes from each. Also, even though a
process compound may be nested under another process
compound, their processes execute independently.

When you designate a compound as a process, you need to
specify a number of parameters in the process compound’s
database template. Since a process compound is an object, you
need to assign it a unique software system\object name.

You also may assign a process period to the compound. The
period is how often a process is to execute. You can change a
period of a process in the template to a value other than
00:00:00, the default period. A 00:00:00 period means the
process will not run periodically. That is, the period will run
only when triggered or when directed to by a PERD block.

Lastly, in the template, you may select exemption of all
triggers for this process.

Introduction

44 Graphic Programming

When deciding which diagrams of a control strategy should be
made into processes, follow these recommendations:

• Group diagrams into process compounds based on
function and logic.

• Design process compounds so that they execute only as
often as necessary.

• Group diagrams into process compounds based on
common periods, priorities, triggers, and trigger
exemptions.

• Group a diagram into a separate process if it needs to be
manually commanded or time programmed.

Note: Pay particular attention to the following blocks that
affect process execution: ABRT, BSEQ, CMD,
DLAY, PERD, PULS, STOP, 2CMD, WAIT. Refer
to Process Execution in the Order for Process
Execution section for details.

• Do not make process compounds too large. Large
processes can be more difficult to debug and will take
longer to translate, upload, and download. Keep the
diagrams to a manageable size. Also, if a process is too
large, it increases the chance that it will be time-sliced.
Consider the NCM memory requirements, which are as
follows:

Overhead per process: 1 Kb (approximately).
Maximum memory allowed per process: 32 Kb.
Maximum number of processes per NCM: 255.

• Make process compounds that contain the 210A or 260A
object blocks as small as possible. These processes
require that the status of the controller be polled over the
L2 Bus, which responds much slower than the N2 Bus.
Therefore, keep L2 Bus accesses to a minimum. If the
number of L2 devices on a single L2 trunk is greater
than 10, assign the process priority to 4 (the lowest).

Deciding on
Process
Compounds

Graphic Programming 45

The following are some important facts regarding processes.
(For details about a particular block, refer to the Function
Blocks chapter.)

• All operation blocks must be in a process. Within a
process, operation blocks are governed by the same
period, process priority, triggers, and exemptions.

• The period of a process is set by the Period parameter in
the compound’s template or by a PERD block in the
process. If more than one PERD block is used, the last
executed PERD block sets the period. The period timer is
started at the end of the process execution.

• When executed, a WAIT block suspends the execution of
all blocks that follow it for the wait time specified. The
wait timer is canceled if the process is disabled or is
triggered by some other means.

• A process may be triggered by the expiration of a timer
from a PULS, DLAY, or BSEQ block.

• When a STOP or an ABRT block executes, the remainder
of the process will not execute.

� Shared variables and objects are needed to communicate
data from one process to another.

• A binary connection line that connects two operation
blocks across two different processes will automatically
create a binary shared variable that is transparent to the
programmer. If the value of the binary shared variable
changes, it will cause the second (i.e., destination) process
to trigger.

• When an ABRT block executes, you must enable the
process before it can be triggered.

• If you are migrating an N1 ARCNET® job to an Ethernet
network requiring a change in node address, you must
recompile DDL and GPL process databases for the NC.

Important Facts

46 Graphic Programming

A process is run in the NCM only when it is “triggered” to
execute. The following events cause a process to execute in the
NCM:

• when the process is downloaded as enabled

• when a Process Enable (PRC_ENA) command is sent to
the process

• when the process is triggered with a manual or a time-
programmed command

• when the process is triggered by a command block that is
connected to its process compound block

• when the process is triggered by a command in another
process

• when the value of a binary, non-exempted shared variable
read in the process changes reliably

• when a triggerable, non-exempted attribute read in the
process changes reliably

• when the process period expires

• when the NCM is warm or cold started

Each process has a priority level associated with it. This
priority affects the order in which a process is executed in
relation to all others.

The four priority levels are 1 (highest), 2, 3, and 4 (lowest).
You define a priority for a process in the database template of
the process compound. If you do not enter a priority, Priority 4
will be used as the default.

When a process is triggered, it is entered on a process queue
before it actually executes. For example, if the queue contains
two processes--Process A at Priority 1 and Process B at
Priority 2--Process A will execute before Process B, since it
has a higher priority.

Process
Triggering

Process
Priorities

Graphic Programming 47

Which processes should be assigned higher priorities than
others depends on the application. Usually, the processes that
contribute to the safety of a building should be assigned higher
priorities than all others. Also, if performance of a process is
critical, then that process should be assigned a high priority
(e.g., 1 or 2).

A Restart process is a special process that is used exclusively
for performing required startup processing. For example, the
Restart process can be used to change shared variables to
values different from their initialization values. Also, the
Restart process can determine occupancy time, or delay
processing until field equipment comes back online. It is
always the first process to execute when the NCM is warm or
cold started.

You create a Restart process by making a Restart compound,
which you do by selecting RESTART PROCESS in the
Compound Type field of its database template. You also need
to assign a valid system name. The object name is defined as
“Restart.”

Since the Restart process is the first process the NCM executes
upon warm or cold startup, all other enabled processes will be
in a queue until its execution completes without errors.
(Processes disabled, in error, or not fully downloaded are not
placed in the queue.) During this time, the status of the process
is in the Held mode. The Restart process is optional, and it
executes only once on a warm or cold startup of the NCM.

Here are some things to keep in mind regarding the Restart
process:

� If the status of the Restart process is DISABLED, NOT
FULLY DOWNLOADED, or ERROR at warm or cold
start, neither the Restart process nor any other process will
execute in the NCM.

� If the status of the Restart process is DISABLED during
its execution, or it completes in error (executes an ABRT
block or detects a fatal error), no other processes in the
NCM will execute.

Restart Process

Important Facts

48 Graphic Programming

� The following blocks cannot be used in a Restart process:
PERD, PULS, DLAY, and BSEQ. The Expert Checker
verifies that none of these blocks are used in a Restart
Process.

Note: The WAIT block can be used in a Restart process.
However, execution of a WAIT block in a Restart
process prevents any other process to execute.

� A single NCM can have only one Restart process. If
two or more Restart processes with the same system name
are created, then compiled, the last Restart process to
compile becomes the actual Restart process the NCM will
use. However, if two or more Restart processes with
different system names are created, compiled, and then
downloaded to the same NCM, the download will fail and
an error message will display indicating the failure.

� The Restart process cannot be enabled, disabled,
triggered, or time-programmed.

� The initialization values that the Restart process can
change are summarized in the following table:

Type Initialization Value

Analog (real) 0

Binary (logical) False

Time 00:00:00

Integer 0

Comparison False (applied to last known value of
comparison)

Period 00:00:00

Attribute 0 (Analog or Integer)
False (Binary) or
00:00:00 (Time)

Process Reliability Reliable

Graphic Programming 49

Connecting Function Blocks

This section describes connections between function blocks. It
covers the methods of connecting blocks and the types of
connections. For detailed instructions on how to add, modify,
and delete connections, refer to the Block Connection and
Command Functions section in the Editor chapter.

Drawing a connection line between two function blocks
establishes the data flow or control flow on a diagram.

Data flow is the passing of data from one block to another.
Three types of data can flow from one block to another:
analog, binary, and time. Analog data might be a value of a
temperature sensor. Binary data is an On (1) or Off (0) state.
Time data could be how long a fan is on or the time of day at
which the fan was started. The GPL Editor represents analog
and time data by a solid white line; it represents binary data by
a dashed white line.

Data flow is read in the direction of the connection arrows. For
example, a connection line that has its arrowhead on the right
means the data is flowing from left to right. Consider the
diagram in Figure 19. In this example, the ENRH block reads
the values of two AI sensors that report outdoor air
temperature and relative humidity. It then calculates enthalpy,
and the SVAR block reads and stores this value.

Data and Control
Flow

Data Flow

50 Graphic Programming

DATAFLO

V

O

IN

V

SVAR

OAENRH

ENRH

ENRH1
DB

RH

VALUE of AHU\OA-RH made available to other blocks.

VALUE of AHU\OA-TE made available to other blocks.

ENRH reads VALUE of AHU1\OA-TE for use in ENRH calculation.

Calculated enthalpy made
available to other blocks.

OAENRH stores calculated
value from ENRH.

ENRH reads VALUE of AHU1\OA-RH for use in ENRH calculation.

AI

AHU1

OA-TE

AI

AHU1

OA-RH

Figure 19: Example of Data Flow

Line Labels

Notice in Figure 19 that the ends of each connection line are
labeled. These are called line labels that abbreviate the names
of the connections. For example, the letter “V” at the
AHU1\OA-TE block means VALUE, and the letters “DB” into
the ENRH1 block mean DRY BULB temperature.

The following are characteristics of line labels:

� The Editor creates each line automatically after you
complete a connection.

� The labels are placed at the beginning and ends of the
connection line.

� The labels consist of one or two characters that abbreviate
the connection name.

� Every function block has a unique set of line labels.

� For command blocks, the line label is based on the name
of the command, not the name of the connection.

� Line labels also go into and out of compound blocks.

Graphic Programming 51

Control flow dictates the order in which certain blocks
execute. Unlike a data flow line, the control flow line does not
represent a value. Instead, a control flow line merely indicates
the execution order of blocks. It is only needed when data flow
lines make the order of execution ambiguous, or when you
want to specify a particular order of execution. For example,
you can use a control flow line for sequential commands.
Control flow is represented by a dotted white line.

Figure 20 shows an example of a control flow. Notice that
both ends of the control flow line are labeled “CF” (Control
Flow). In this example, a control flow line is drawn from the
lower 2CMD block to upper 2CMD block. This allows
EX-FAN2 (Exhaust Fan -2) to be commanded first, then
EX-FAN1 (Exhaust Fan -1). An important tip to remember for
a control flow connection is that the origin block will always
be the first block to execute (i.e., the block where the control
flow line begins).

VBI
AHU1

FSTAT1

CNTRLFLO

BO
AHU1

EX-FAN1

BO
AHU1

EX-FAN2

2CMD
START
STOP

2CMD
START
STOP

Control flow line indicates

that lower START\STOP
command will execute

before upper START\STOP
command.

ST

2C

SC

CF

ST

2C

CF

SC

Figure 20: Example of Control Flow

Control Flow

52 Graphic Programming

Another example of where a control flow line may be needed
is between two diagrams on the same screen. GPL cannot
determine which diagram to execute first, so you need to use a
control flow line to specify. Figure 21 illustrates. As shown, a
control flow line is drawn from the upper CMD block to the
lower CMD block. This means PUMP1 will be commanded
first (when FSTAT1 is True and Reliable), then PUMP2 will
be commanded (when FSTAT2 is True and Reliable). Another
control flow line is drawn from the lower CMD block to the
ADD block. This means the ADD block will execute after
PUMP2 is commanded. In effect, the two control flow lines
ensure the NCM will command AHU1\PUMP1 before
AHU1\PUMP2.

Note: In the example of Figure 21, the ADD and SVAR
blocks will still execute when AHU1\PUMP1 or
AHU1\PUMP2 is not commanded.

BO
AHU1
PUMP1

BO
AHU2
PUMP2

Control flow line
that indicates upper
START command will
execute first.

Control flow line
that indicates lower
START command will
execute before
ADD block.

Upper
Diagram

Lower
Diagram

CTRLFLO2

V

V

V

AI
CPLANT
FLOW2

BI
AHU1

FSTAT2

BI
AHU1

FSTAT1

ADD

FLO W S

AI
CPLANT
FLOW1

CMD

S TA R T

CMD

S TA R T

I2

E

ST

CF

C

IN

O

CF

E

CF

O

I1

ST

CF

SVAR

TLFLOW

C

Figure 21: Example of Control Flow Lines Between Two Diagrams

Graphic Programming 53

As you may have noticed in the two previous examples,
control flow lines are only drawn between operation blocks,
not between object blocks. This is because only operation and
special blocks have control flow inputs and outputs. Object
blocks cannot have control flow lines because GPL does not
create executable code from the object blocks as it does from
operation and special blocks.

While making connections, you may form a loop between
two or more blocks. If a loop is formed, the Editor cannot
determine which block to execute first. The Editor detects a
loop immediately and displays a loop detected error message.
It also changes all lines that are involved in the loop to red and
asks you to click left on the block that you want to execute
first. This block is called the Loop-master block. After you
click on the block, the lines return to white, and the line that
enters the Loop-master block is encased in a circle. Figure 22
shows an example, in which a process reads the value of an
SVAR block and adds 1.0 to it.

ADD

ADD BLK

CNST

A D D 1.0

SVAR

P C B _C N S T

LOOP-MASTER BLOCK

IN

O

I2
I1

O
O

LOOPEX

Figure 22: Loop Example Showing Use of
Loop-Master Block

Forming a Loop

54 Graphic Programming

If the block that you want to make the Loop-master block is in
a different diagram, you can go to that diagram using the
standard method of moving between compounds. To cancel
this operation before specifying a Loop-master block, click left
anywhere outside the work area. The last connection made
erases and the operation aborts.

Some line connections are required, while others are optional.
An input line is required if (1) the block’s algorithm needs the
value it represents, and (2) the block has no equivalent
template field for the value.

An output line is required if it needs to be read by other
blocks.

An input line is optional if the block has an equivalent
template field for the value. For example, the template for the
HSEL block contains Input 1 and Input 2. If you enter a value
for Input 2, you do not need to also terminate an Input 2
connection to the HSEL block. Figure 23 illustrates
two equivalent methods of specifying Input 2.

Required and
Optional Lines

Graphic Programming 55

V

HSEL
SELECT

I1

AI
AHU1

FLOW1

HIGH SELECT BLOCK (HSEL)

Connected

Not Connected

Block Name

Input 1

Input 2
Number of Inputs 2

7.000000

0.000000

SPCF-INP

HIGH SELECT BLOCK (HSEL)

Connected

Connected

Block Name

Input 1

Input 2
Number of Inputs 2

0.000000

0.000000

VAI
AHU1

FLOW2

V

HSEL
SELECT

I1

I2

AI
AHU1

FLOW1

Figure 23: Two Options in Specifying Input 2 (I2)

Note: If you connect an input externally, the GPL Editor
uses the connection, not its equivalent template value.
If you do not connect an input, the Editor uses the
template value.

Other optional connections include control flow connections.

56 Graphic Programming

The GPL Editor features nine different types of connection
lines that are named after the data that they pass to other
blocks. The types are analog, binary, time, command, dual
command, read, write, control flow, and configuration. The
Editor has different line types so that you can visually
distinguish the data type, and so that the Editor can perform
error checking while you are connecting (e.g., you could not
connect a time line to a command input).

The analog type of line represents analog data, such as a
setpoint or temperature. An analog line is solid white. In the
following example (Figure 24), the SVAR block reads the
value of an AI object that senses flow.

VAI
AHU1
FLOW IN

SVAR
FLOW

ANL-BIN

Figure 24: Analog Line Example

The binary type of line represents a True or False state. True is
also known as On or 1, and False as Off or 0. A binary line is a
dashed white line. In Figure 25, the PRNT block reads the
value of a BI object that senses fan status, and if the value of
the BI Input is True and Reliable, the PRNT block sends a
message reporting its status to the printer.

ANL-BIN

VBI
AHU1

FAN-STAT IN
PRNT

Figure 25: Binary Line Example

Types of Lines

Analog

Binary

Graphic Programming 57

The time type represents a time value. Time is specified in
24-hour format, in which hours, minutes, and seconds are
separated with a colon (:). For example, ten seconds after
2:39 p.m. would be 14:39:10. Time arithmetic also uses
24-hour format (e.g., 3:00:00 - 14:00:00 = 13:00:00). A time
line looks the same as an analog line—solid white.

In the following example (Figure 26), the ADD block adds the
time values of the TIME and CNST blocks, and the SVAR
block reads the value of the ADD block.

SVAR
TTIME

TIME

CNST

05:00:00

ADD

T

O

T1

T2

O

T1

TYM-CMD

Figure 26: Time Line Example

The command type sends a command from a single command
block (CMD) to an object block. A command line is a heavy
solid white line. In Figure 27, the BO object is commanded to
Start when the BI object is True.

TYM-CMD

CMD
STARTE

C

ST

VBI
AHU1

FSTAT1

B O
AHU1

EX-FAN

Figure 27: Command Line Example

Time

Command

58 Graphic Programming

The dual command type sends a command from a dual
command block (2CMD) to an object block. A dual command
line is usually the same as the single command line—a heavy
solid white line. In Figure 28, the BO object is commanded to
Start or Stop, based on the Select Command input.

DUALCOM

2CMD
START
STOPSC

2C

ST

VBI
AHU1

FSTAT1

B O
AHU1

EX-FAN

Figure 28: Dual Command Line Example

The read type passes a readable attribute from an object block
to the READ block. A read line is only started in an object
block. You would use this type of line when the attribute you
need to read is not available in the connection menu. The read
line can terminate only to a READ block, or to a CONN block
that is passing the read line to a READ block. A read line, like
the two command lines, is a heavy solid white line.

In the following example (Figure 29), the PRNT block sends a
message to the printer when the HI_WARNL (High Warning
Limit) attribute of the AHU\FLOW object is greater than the
AHU1\HWSETPT object (setpoint). The DFCM block
compares HI_WARNL and the setpoint. If HI_WARNL is
greater than the setpoint, with an applied differential, the
PRNT block sends a message reporting the attribute’s status to
the printer.

I1

RDAI
AHU1
FLOW

AD
AH U 1

HWSETPT

AD
AHU1

DIFF

V V

I2 DF

E

O

RD

OREAD
HIWARNL

DFCM
>

PRNT

READ

Figure 29: Read Line Example

Dual Command

Read

Graphic Programming 59

The write type sends a writable attribute from a write (WRIT)
block to an object block. A write line is used only when the
attribute that you need to change cannot be changed through a
command. The WRIT block modifies an attribute only. The
CMD or 2CMD block modifies an attribute and executes an
algorithm, such as change-of-state analysis. A write line is a
heavy solid white line.

In the example of Figure 30, the WRIT block changes the
value of the HI_LIMIT attribute of an AI object, based on the
season of the year. When the BD object indicates the summer
season, the HI_LIMIT is 85.0°F. When the object indicates the
winter season, the HI_LIMIT is 70.0°F.

READ

IN

V O
SWCH

WRIT
HILIMIT

C N S T

70.0

C N S T

85.0

AI
AHU1

SEASON

O

O

SW

WR

WR

I0

I1

BD
AHU1

WINTER

Figure 30: Write Line Example

Write

60 Graphic Programming

A control flow line is a continuous line drawn between two
function blocks to indicate the order of block execution. A
control flow line is a dotted white line. You should use a
control flow connection only when block execution order
cannot be determined by the data flow lines. For example, in
Figure 31, the object called AHU1\EX-FAN2 will be
commanded before AHU1\EX-FAN1, as indicated by the
control flow line from the lower CMD block to the upper
CMD block. Notice that both ends of a control flow line are
labeled “CF” (Control Flow).

VBI
AHU1

FSTAT1

CMD
STOP

CMD
START

BO
AHU1

EX-FAN1

BO
AHU1

EX-FAN2

E

CF

SP

C

E

CF

C

ST

CNTRLFLX

Figure 31: Control Flow Line Example

In a control flow connection, the origin block always executes
before the destination block. Control flow lines are seldom
used, since data flow lines are usually enough to specify block
execution order. Also, control flow connections are allowed
only between operation blocks; each operation block has a
control input and a control output. Object blocks cannot accept
control flow connections.

Control Flow

Graphic Programming 61

The configuration type of line does not pass data the same way
that data lines do. It is used to show a reference that is made
within the template of an object block. To understand this
concept, consider the example in Figure 32.

This example shows a configuration connection between an AI
object and a PIDL object. It also shows the PIDL template, in
which the system\object name for the AI object is referenced.
The reference made in the template actually “connects” the
two blocks. Therefore, the configuration line is not required
but is drawn to show the connection graphically.

V

SP

PIDL
AHU1
PIDL1

AI
AHU1
OAT1

PID LOOP OBJECT (PIDL)
PORT DEFINITION

SETPOINT
REFERENCE SELECT
SYSTEM NAME
OBJECT NAME

R E FE R E N C E

AHU1

OAT1

CONFIGLX

Figure 32: Configuration Line Example

Note: When you draw a configuration connection, the
referenced system\object name is not automatically
defined within an object’s template. You need to
define the referenced system\object name in the
template manually.

For clarity, we recommend that you draw all configuration
connections between object blocks. In fact, configuration
connections are necessary if you want to simulate them.

Configuration

62 Graphic Programming

The way you can tell if a line is a configuration connection is if
an object block is connected to another object block, either
directly or through one or more CONN blocks. All
connections between object blocks are configuration
connections. In fact, configuration connections can only exist
between object blocks. The Expert Checker verifies that the
configuration lines drawn match the reference in the template.

A configuration connection uses the data flow line
representation. That is, a configuration connection for analog
data is a solid white line, and for binary data, a white dashed
line.

Figure 33 shows two additional examples of configuration
connections. The top example shows the BI as the feedback
object for a BO object. The bottom example shows the AI as
the feedback object for an AOS object.

BI
AHU1

FSTAT1

AI
AHU1

CHWS-TE

BO
AHU1

FSTAT1

AOS
AHU1

CHWS-ADJ

FB FB

FB FB

CNFGLN

Figure 33: More Configuration Line Examples

Graphic Programming 63

In summary, the line types and their visual representations are:

Line Type Visual Representation

Analog Solid

Binary Dashed

Time Solid

Command Solid/Heavy

Dual Command Solid/Heavy

Read Solid/Heavy

Write Solid/Heavy

Control Flow Dotted

Configuration Solid (analog and time)
or Dashed (binary)

64 Graphic Programming

A direct connection is any continuous line between two
function blocks that are contained in the same file. The blocks
can be either on the same diagram or in different compounds.
A direct connection made on the same diagram is the most
common and most straightforward type (Figure 34).

SVAR
FLOW

V

IN

DRCTCNCT

AI
AHU1
FLOW

Figure 34: Example of a Direct Connection

A direct connection between two compounds usually requires
that the line goes off the edge of the work area. As Figure 35
indicates, the line from the HSEL block runs off the edge of
the screen, having no indication of where it is headed.

DRCTCNCT

C O M P 1

N A M E 1

N A M E 1

V

V

O
I1

I2

N A M E 2

SVAR
HFLOW

IN

IN

O

AI

AHU1
FLOW1

AI
AHU1

FLOW2

HSEL

C O M P 2

N A M E 1

Figure 35: Example of a Direct Connection Between Two Compounds

Direct
Connections

Graphic Programming 65

The line that goes off the work area may use a Connection
(CONN) block, which is placed near the edge of the screen
before the line exits the screen. Figure 36 repeats the example
of Figure 35, but uses a CONN block to identify the line from
the HSEL block.

N A M E 1

V

V

O
I1

I2

A I

A H U 1
FLO W 1

A I

A H U 1
FLO W 2

C O N N
FLO W

O
H S E L

OC O M P 1

N A M E 1

XDIRCO

N A M E 2

CONN
FLOW

IN

SVAR
HFLOW

IN

O

IN

IN

C O M P 2

N A M E 2

Figure 36: Example of a Direct Connection Using Connection Blocks

The CONN block serves as a line label to identify the
destination of the connection; it also serves as a throughway
for the data between the origin and destination blocks. The
CONN block is explained in more detail in the Function
Blocks chapter.

66 Graphic Programming

Keep in mind these factors that apply to direct connections:

� A direct connection can be any of the nine line types
discussed earlier.

� A direct connection can consist of up to 14 line segments.
The error message Too many connection
segments displays if you try to draw more than
14 segments. A direct connection cannot penetrate more
than ten compound levels.

� The origin and destination connection points must be of
the same data type. For example, you cannot connect a
binary output to an analog input. If you try to do so, an
appropriate error message will display.

� You may have to change the block’s data type in its
template before connecting to or from it. For example, if
you want to enter time data into an ADD block, you need
to configure the ADD block to accept time data before
making the connection (analog data is the default). Also,
for those blocks that have a variable number of inputs
(e.g., AND block), the number of inputs must be specified
before the connection menus provide the proper number
of inputs.

Important Facts

Graphic Programming 67

A remote connection is a noncontinuous line that connects
two blocks. The remote connection is primarily for connecting
blocks in different compounds, although you may also
remotely connect two blocks on the same compound. A remote
connection eliminates the need for drawing long lines that
cross compounds. Figure 37 compares the two methods of
connecting blocks.

DCVSRC

V

V
O

I1

I2

A I
M ZU 1
ZN TE 1

A I
M ZU 1
ZN TE 2

H SE L

C

CMD
SET AD

AD
M ZU 1

H I-ZTE M P

SA

V

O

I1

I2

AI

M ZU 1
ZN TE 1 H S E L

CCMD
SET AD

AD
M ZU 1

H I-ZTE M P

SA

Compound 2

Compound 1 Compound 1

Compound 2

AI
M ZU 1
ZN TE 2

AD
M ZU 1

H I-ZTE M PV

V V

Direct Connection Method Remote Connection Method

Figure 37: Direct Connection vs. a Remote Connection

A remote connection is equivalent to a direct connection. It
differs from a direct connection in that it is represented by an
arrowhead called a remote connection symbol (Figure 38). The
connection line exits from the “V” side of the symbol only. As
Figure 38 shows, the remote connection symbol has four
orientations.

Remote
Connections

68 Graphic Programming

INOUTRC

Default Orientation Other Orientation

Figure 38: Shape and Orientations of
Remote Connection Symbol

The GPL Editor offers two types of remote connections: origin
remote connections and destination remote connections. The
origin remote connection references the origin block, in which
the remote connection enters a destination block (Figure 39).
The destination remote connection references the destination
block, in which the remote connection accepts an input from
an origin block (Figure 39). As shown, each end of the line on
a remote connection is labeled just as direct connections are
labeled.

OI1

I2

V

AI

AHU1
FLOW1

A I

A H U 1
FLO W 2

V

IN

INOUTRC

HSEL SVAR

Origin Remote Connections
(reference origin block)

Destination Remote Connection
(reference destination block)

Figure 39: Input and Output Remote Connections

A remote connection symbol points to its reference. The
symbol has the same characteristics as its referenced block:
It is labeled with the same block name or system\object name,
and you can query the template by clicking on the remote
connection symbol (with the Query mode selected).

Graphic Programming 69

Keep in mind these factors that apply to remote connections:

� Two blocks can be connected remotely only if they exist
in the same strategy file. A remote connection between
two files is not allowed.

� Deleting a remote connection symbol does not also delete
the referenced block, since it is a connection, not a block.

� You must name a block for it to be remotely connected.

� When making a remote connection, if there are two blocks
with the same name, you cannot distinguish between them
on the remote connection menu. Therefore, assign a
unique name to each function block.

� When you compound a remote connection symbol without
its referenced block, the symbol becomes unlabeled.

Fan-in and fan-out connections are allowed between function
blocks. A fan-in connection is multiple outputs fed into
one input. A fan-out connection is the same output going into
multiple inputs.

Figure 40 shows an example of a fan-in connection. Even
though the line labels into the BO object are different, they are
going to the same input connection. Only the following types
of lines allow fan-in: command, dual command, write, and
control.

Important Facts

Fan-In and Fan-
Out Connections

70 Graphic Programming

BO
AHU1

EX-FAN1

C

ST

BH

RP

CMD
START

CMD
BEG TRND
VALUE

CMD
REL PRI

C

C

FANINOUT

Figure 40: Fan-In of Multiple Commands to an Object

Graphic Programming 71

Figure 41 shows an example of a fan-out connection. The three
VALUE outputs from the AI object each have the same value.
All output connections allow for fan-out, except the command
and write outputs of the USER block. A fanned-out connection
is especially useful to an object block, since only one instance
of an object is allowed per strategy file.

FANINOUT

DFCM
>

PIDL
AHU1
CLG1

ADV

AOD
AHU1

CLG-VLV

AD
AHU1

SAT-SPT

PRNT

O

E
I1

I2

IN

PO

I1
V

V

V

V

V

AI
AHU1
SA-T

Figure 41: Fan-Out from an Attribute of an Object

72 Graphic Programming

Figure 42 shows a second example of a fan-out connection.
A single CMD block sends the same Lock Reports command
values to all three object blocks. The type of command that
you fan out must be valid for each object.

C
CMD

LOC_REP

BO
AHU1

EX-FAN1

BO
AHU1

EX-FAN2

AI
AHU1
OAT

LR

LR

LR

C

C

FAN-OUT

Figure 42: Fan-Out from a Single Command to
Multiple Objects

Graphic Programming 73

Commanding Objects and
Processes

This section discusses commanding objects and process
objects. For detailed instructions on how to command objects
and processes, see the Block Connection and Command
Functions section of the Editor chapter.

You can send a command to an object by connecting a
command block to it. Two command blocks are offered:
Single Command (CMD) and Dual Command (2CMD). The
CMD block is used for commands, for example: SET_PIDL,
BEG_TRND, and START. The 2CMD block is for commands
that are most often used in pairs, for example: START/STOP,
BEG_TOT/END_TOT, and BEG_TOT/STOP. Figure 43
shows two examples of commands to objects.

CMD
SET AD

C

SA

VBI
AHU1

SMK-MODE

2CMD
START
STOPSC

2C

ST

VBI
AHU1

FAN-STAT

AD
AHU1

STAT-SPT

BO
AHU1
EX-FAN

XCOMMOB

E

Figure 43: Examples of Commanding an Object

In the top example of Figure 43, a SET_AD command is sent
to an AD object when the input of the BI object is True. In the
bottom example, a Start command is sent to the BO object
when the Select Command input of the BI object is True (1). A
Stop command is sent when the Select Command input is False
(0).

Commanding
Objects

74 Graphic Programming

Note: Notice in Figure 43 that SET AD in the CMD block
is separated with spaces, not with an underscore
(i.e., SET AD instead of SET_AD). The GPL
Translator inserts the underscore during translation.
This is true for all commands that require
underscores.

The command output connection from a command block
(CMD and 2CMD) to an object block must be drawn before
the command block can accept a parameter input. This is
because the Editor needs to know which command you chose
in order to present the correct parameters. (However, if the
CMD or 2CMD block is connected to a CONN block, this rule
does not apply.) Figure 44 illustrates the steps for drawing the
output and input connections for a 2CMD block. (CMD block
also applies.)

2CMD
START
STOPSC

2C

ST

VBI
AHU1

FSTAT1

B O
AHU1

EX-FAN1S

2CMD

2CMD
START
STOP

2C

ST

BI
AHU1

FSTAT1

B O
AHU1

EX-FAN1S

2CMD
BI

AHU1
FSTAT1

B O
AHU1

EX-FAN1S

Given:

Step One: Connect 2CMD to BO.

Step Two: Connect BI to 2CMD.

Figure 44: Order of Connecting a 2CMD Block

Graphic Programming 75

The command blocks send data to objects. The other operation
blocks read their inputs and calculate an output that other
blocks can read. Also, the command blocks are different from
other operation blocks in that you select the command block
name by selecting a command name in the connection menu.

You may send a command to any object at any NCM in the
Metasys Network. The object’s system name describes to
which NCM it belongs.

A process compound can be commanded by connecting a
CMD or 2CMD block to its block. Three possible commands
to compounds are available: Enable Process, Disable Process,
and Trigger Process. Figure 45 shows an example of each.

CMD
TRIGGER

C

2CMD
PRC DIS
TRIGGERSC

2CVBI
AHU1

FAN-ST1

CMD
PRC ENA

C
E C O N D B

AHU1

E C O N D B

E C O N D B

AHU1

E C O N D B

E C O N D B

AHU1

E C O N D B

EN

TR

DS

PRCCMPND

Figure 45: Choices in Commanding a Process Compound

Commanding
Process Objects

76 Graphic Programming

Graphic Programming 77

Documenting Control
Strategies

This section describes three forms of documentation for
control strategies: text, analog displays, and text description
file. For detailed instructions on how to add text and analog
displays to a diagram, see the Tools Functions section of the
Editor chapter. For instructions on how to prepare a text
description file, see Appendix E: External Functions.

The text function allows you to type comments on any space
on a diagram (Figure 46). These comments may explain the
purpose of the diagram, label the diagram, or contain any other
helpful information.

VAI
AHU1
ZNTE1

V

I1

I2

O

IN

HSEL
SVAR

HITEMP

AI
AHU1
ZNTE2

SVAR stores highest
value of ZNTE1 and
ZNTE2.

COMMENTS

Figure 46: Comments Written on the Screen (Left Justified Text)

Text as
Comments

78 Graphic Programming

Keep in mind these factors that apply to text:

� Text is written to the screen at a preset size, which on a
12-inch monitor is about 1/4 inch. The Editor does not
provide various type sizes, though you can resize text with
the Move icon (Scissors).

� Text can include any combination of upper and lower case
letters, international language characters, numbers, and
most other characters that a standard keyboard offers. The
characters not supported are: _ (underscore), | (vertical
bar), ` (back apostrophe).

� Text in GPL, just as comments in most programming
languages, is not translated into object code. The GPL
Translator simply ignores text.

Analog displays allow you to show the analog output value of
a block during simulation. Only the GPL Simulator uses
analog displays. They provide a convenient readout of the
block’s output without having to select the block and display
the output value in the Block Window. In the Editor, analog
displays are simply zero values that are placed next to an
output connection (Figure 47) or elsewhere in the work area.
The Expert Checker and the Translator ignore analog displays.
Binary and time values cannot be represented by analog
displays. See the Simulator chapter for details.

VAI
AHU1
ZNTE1

V

I1

I2

O

IN

HSEL
SVAR

HITEMP

AI
AHU1
ZNTE2

XANLDIS

0.00000

0.00000

0.00000

Figure 47: Example of Analog Displays

Important Facts

Analog Displays
for Simulation

Graphic Programming 79

An analog display is associated with a particular analog
connection. The association is made when you select a block’s
name and its output connection name. You can position the
display anywhere on a diagram, but it is best if you paste it
close to the block or analog line it represents.

In addition to showing the analog display of a connected line,
you may also paste down an analog display for an output that
is not connected. Simply select the name of the output from the
connection menu and paste down the display in any convenient
spot on the diagram.

You can paste down multiple analog displays for the same
output. For example, you can have an analog display for an AI
object next to its output and duplicate the display at another
compound level.

Various decimal resolutions are available, such as 0.00000 and
0.0. You select the resolution before you paste it down. It can
also be changed to a different resolution later if you wish.

Each control strategy and compound can have a description
file. The purpose of this file is to explain the control logic of
the strategy or compound. The file can also be used to:

� Summarize functions.

� Document the sequence of operation.

� Explain the control objectives.

� Contain the author and date of creation.

� List the required input and output connections.

� Contain any other pertinent information.

Text Description
File

80 Graphic Programming

Figure 48 shows an example of a description file for a supply
air temperature control application.

TXTDSC

Supply Air Temperature Control with Modulated Heating

DESCRIPTION

Temperature control of the supply (discharge) air through modulated heating.

FILE NAME

HTM.CMP

PATH NAME

The following DOS path name indicates the location of the compound:
<FMS> \APPS\HVAC\CONTROL\TEMP-CTL\HTM.CMP

MAIN FUNCTION

Temperature control of the supply (discharge) air through modulated heating.
This compound can modulate a heating device, such as a hot water valve.

Figure 48: Text Description File

To view the description file of a control strategy, select a file
and click left on the Description icon under the File option
menu. To view the description file of a compound, select a file
and click left on the Description icon under the Compound
option menu. An advantage of the description file is that you
can view it without having to load its strategy or compound.

You prepare the description file outside of GPL with a text
editor. For details, refer to Appendix E: External Functions.

Graphic Programming 81

Order of Process Execution

This section describes the execution order of blocks in a
process. The order of execution of a process and between
processes is important because the order determines how the
process will be translated by GPL and executed by the NCM.

Within a process, the order of execution is dictated by the
direction of the data and control flow lines. No priority is
given to any particular data line. The rules for determining the
order of execution are the following.

1. An operation block executes after all operation blocks
from which it receives data execute.

2. An operation block executes after all operation blocks
from which it receives control flow lines execute.

3. If Rules 1 and 2 cause a loop, the Editor will ask you to
select the block that should execute first.

4. An operation block receiving data from an object block
executes after all operation blocks commanding that
object execute. Note that object blocks execute
independently of a process.

Process Level

82 Graphic Programming

To understand how to apply these rules, consider the following
examples:

A B

PRCSLVL

Figure 49: Demonstrating Rule 1

In Figure 49, a data flow line between Blocks A and B
determines that Block B will execute after Block A (Rule 1).

PRCSLVL

A B

Figure 50: Demonstrating Rule 2

In Figure 50, a control flow line between Blocks A and B
determines that Block B will execute after Block A (Rule 2).

BA

LOOP-MASTER BLOCK

PRCSLVL2

Figure 51: Demonstrating Rule 3

In Figure 51, a loop exists between Blocks A and B, and Block
B is the Loop-master block (circled arrow connection). Block
B will execute before Block A (Rule 3). The same holds true if
Block B were in a different process in the same strategy file.

Graphic Programming 83

AC M D O bject
B lock

PRCSLVL2

Figure 52: Demonstrating Rule 4

In Figure 52, Block A reads an attribute of an object that is
commanded by a CMD block. Block A executes after the
CMD block executes (Rule 4).

PRCSLVL2

A

C D

B

E

Figure 53: Using a Control Flow Line to Specify Execution Order

In Figure 53, the data flow lines between the five blocks, and
the control flow line between Blocks B and C, determine that
the order of execution will be: A, B, C, D, and E.

84 Graphic Programming

Without the control flow line, the order of execution would be:
A before B, C before D, B and D before E. Note that the order
of execution cannot be determined between A and C, A and D,
B and C, and B and D.

The order of execution cannot be determined except by the
four rules stated previously. If the order of execution is
important, use control flow lines.

Order of block execution is consistent across group
compounds in the same process. For instance, as shown in
Figure 54, Block 3 has a connection line drawn to Block 4, but
Block 4 is in another compound. In this case, Block 3 executes
before Block 4.

Compound 1 Compound 2

PROCESS

5

4

6

8

1

2 3

7

PROCSS

Figure 54: Order of Block Execution Across Two Compounds
in Same Process

Graphic Programming 85

The Interpreter inside the Network Control Module executes
GPL processes. The order in which it executes processes is
first by their assigned priorities (1, 2, 3, or 4, where 1 is the
highest priority, and 4 is the lowest), then on a first-come,
first-served basis. A higher priority process is always executed
before a lower priority process. Processes of the same priority
are executed on a first-come, first-served basis.

A GPL process must be downloaded for it to execute. The
download operation sends process objects to the proper NCM
over the N1 LAN. After the process is downloaded, the NCM
executes it once.

A GPL process will execute from its beginning in the NCM
when one of these events occurs:

� The process is enabled or downloaded as enabled.

� A process Enable (PRC_ENA) command is sent to the
process.

� The process is triggered with a manual or a time-
programmed command.

� The process is triggered by a command block that is
connected to its process compound block.

� The process is triggered by a command in another
process.

� The value of a binary, non-exempted shared variable read
in a process changes reliably.

� A triggerable, non-exempted attribute read in the process
changes reliably.

� The process period expires.

� The NCM is warm or cold started.

Process
Execution

86 Graphic Programming

A GPL process will execute where it left off when one of these
events occurs:

� A wait timer of the process expires.

� A time-sliced process has a chance to continue its
execution. A process is time-sliced when it contains so
many instructions that it cannot finish its execution.

Several function blocks affect the normal execution of a
process. They are Period, Wait, Stop, Abort, Pulse, Delay, and
Binary Sequencer. The behaviors of each are summarized
below.

Period Block

A Period (PERD) block changes the periodic interval at which
the process executes. A trigger that occurs while the period
timer is running cancels the timer and runs the process
immediately. This block does not guarantee the process will
execute once every period, since another PERD block may
exist in the same process and may modify the period value.
Also, a process with a five second period, for example, will
execute approximately every five seconds, since there is some
overhead processing that may delay execution by a second or
more. The last PERD block in a process to be executed
dictates which period is used. The period timer is set at the end
of the processes’ execution (i.e., after the last block or
immediately after a STOP block executes).

Wait Block

The Wait (WAIT) block suspends execution of an entire
process for a specified period of time. The process resumes
where it left off when the wait timer expires (i.e., not from its
beginning). The timer is canceled if a trigger occurs while the
process is in the Waiting state. When the trigger occurs, the
process is executed from its beginning.

Blocks That Affect
Execution

Graphic Programming 87

Stop Block

This block stops the execution of a process immediately and
places it in the Ready state. When this block is executed and
its enable input is true, the process halts. The blocks that
follow the STOP block will not execute. When the process is
triggered again, the process executes from its beginning.

Abort Block

The Abort (ABRT) block halts process execution and sets the
process to the Error state. The process may not be executed
again until a manual command enables the process (manual,
process, or time-programming command).

Pulse Block

The Pulse (PULS) block maintains an output of True for a
specified time. The block triggers its process after the time
period expires. The execution restarts at the beginning of the
process.

Note: A PULS block configured as a one-shot does not
trigger the process. Also, a PULS block configured as
cancelable may cancel the timer under certain
conditions. Refer to the PULS block in the Function
Blocks chapter.

Delay Block

The Delay (DLAY) block delays the change of data to True
for a specified time. The execution restarts at the beginning of
the process after the time period expires.

Note: A DLAY block configured as a one-shot does not
retrigger the process. Also, a DLAY block may
cancel the timer under certain conditions. Refer to the
DLAY block in the Function Blocks chapter.

88 Graphic Programming

Binary Sequencer Block

Internally, the Binary Sequence (BSEQ) block uses a
cancelable pulse function and may trigger the process.

For details on any of these blocks, see the Function Blocks
chapter.

A triggerable binary attribute or binary shared variable may be
suppressed from triggering the process by marking its
connection line “exempt.” An exempted line is indicated with
an open white square on the input side (Figure 55). You would
exempt a line if it represents a binary attribute or binary shared
variable that, if changed, will cause unnecessary or unwanted
processing.

For example, Figure 55 shows a BO object that represents the
lights in a conference room (AHU1\CONF-LTG). Also shown
are two BI objects, one representing fan status
(AHU1\FSTAT1), and the other a motion detector
(AHU1\CONF-OCC). The lights in the conference room are
commanded to On when the fan is On, and the motion detector
indicates that the room is occupied. However, the connection
from the AHU1\FSTAT1 object to the AND block is made
exempt, so that this process should not be triggered every time
the fan changes state.

VB I
A H U 1

FS TA T1

V

I1

I2

O

B I
A H U 1

C O N F-O C C

XEXMPTLN

BO
AHU1

CONF-LTG
A N D

SC ST

Exempted Connection

2CMD
START
STOP

2C

Figure 55: Example of an Exempt Line

Making Lines
Exempt

Graphic Programming 89

Keep in mind these factors that apply to exempt lines:

� You need only exempt a binary triggerable attribute in one
diagram in the process to make the binary attribute exempt
in all locations. All other uses of this binary attribute are
made exempt also, though only one line is actually marked
exempt.

� You cannot exempt non-triggerable attributes and analog
or time shared variables. The Expert Checker validates all
exempt connections.

� You cannot exempt an attribute that is read by a READ
block. If you need to exempt such an attribute, use a
USER block.

Conditional execution is the IF...THEN...ELSE logic that
some textual programming languages use. The GPL Editor
does not provide blocks named IF, THEN, and ELSE. It
instead uses a connection type called Enable to provide for
conditional execution. Enable is offered as both an input and
output connection.

You can draw conditional execution between two function
blocks or between two process compounds. Figure 56 shows
conditional execution between function blocks. The example
shows two methods of writing conditional logic: a textual
representation using JC-BASIC, and a graphical representation
using GPL. The representations are equivalent.

Important Facts

Conditional
Execution

90 Graphic Programming

V

BO

AHU1
BO1

BO

AHU1
BO2

BO

AHU1
BO3

CMD

STOP

CMD

STOP

BI

AHU1
BI1

CMD

START

CMD

START

E

C

ST

C

C

SP

ST

SP

E

E

E

E

O

C

I

TXTREP

TEXTUAL REPRESENTATION GPL GRAPHIC REPRESENTATION

IF 'AHU\BI1\VALUE' THEN

TELL 'AHU\BO1' TO "START"

TELL 'AHU\BO2' TO "STOP"

TELL 'AHU\BO3' TO "START"

ELSE
 TELL 'AHU\BO3' TO "STOP"
END IF NOT

E

E

Figure 56: Textual and Graphical Representations
of Conditional Logic

Figure 57 shows conditional execution between process
compounds, in which the RAMP compound, when it is
triggered, triggers the DMP compound. A CMD block for
triggering is used.

Graphic Programming 91

1PRCS

C

TR

CMD
TRIGGERE

C

RAMP

AHU1

R M P LO G IC

D M P

AHU1

D M PLO G IC

Figure 57: Example of One Process Triggering Another

Conditional execution is available only to the following
operation blocks: ABRT, ADV, CMD, PERD, PRNT, READ,
STOP, SVAR, 2CMD, WAIT, and WRIT.

The “one-shot” execution is a special case of conditional
execution. This type executes only once under certain
conditions, then not again until conditions change. The PULS
block configured as one-shot provides for this type of
conditional logic.

Figure 58 has an example of a PULS block placed between a
BI block and a CMD block. When the output of the BI object
changes from False to True, the PULS block goes True for one
execution, which enables the CMD block to issue a Start
command to the BO object. Since a One-shot PULS block is
used, the output of the PULS block is True for only
one execution, and then it is False. If the BI object stays True,
no additional Starts will be sent. Another Start command is
sent when the condition of the BI changes from True to False
to True again. The PULS block is described in the Function
Blocks chapter.

One-Shot
Execution

92 Graphic Programming

BI
AHU1
BI1

PULS
ONE SHOT

CMD
START

BO
AHU1
BO1

V

I

O

E

C

ST

ONESHOT

Figure 58: Example of a One-Shot PULS Block Used as an
Input to a CMD Block

Graphic Programming 93

Sharing Data and Explaining
Unreliable Data

This section describes how data is shared between processes
and NCMs in a control strategy. It also discusses unreliable
data.

Data can be shared between two or more GPL processes on the
same NCM by using the shared variable block (SVAR). The
SVAR block receives a value from another block, then on a
different diagram, another SVAR block of the same name and
type receives the same value. The diagram can be in the same
file or in a different file. In other words, shared variable blocks
can communicate values between files on the same NCM. All
files for the same NCM can share data via shared variables of
the same name and type.

Note: You cannot use the same SVAR block in separate
NCMs in an attempt to share data between NCMs.

When you connect a data flow line between two blocks in
different processes, GPL automatically generates a shared
variable. The shared variable is exempted in the source
process but not in the destination process. This is to prevent
unnecessary triggers in the source process. The shared variable
does not appear on the diagram as a SVAR block. If the
connection is binary, it generates a binary shared variable. As
such, the connection can be exempted from triggers at the
destination block, or all triggers in that process may be
exempted in the template of the destination process compound.

Refer to the Function Blocks chapter for more details on the
SVAR block.

Sharing Data
Between
Processes

94 Graphic Programming

Data can be shared between various NCMs by using the object
blocks. An object that is defined in a process for one NCM can
be referenced in the process for another NCM. For example,
let’s say you have two NCMs: NCM1 and NCM2. An analog
input object for outside air temperature called AHU1\OAT1 is
defined in the process for NCM1. The value of AHU1\OAT1
can be used by an NCM2 process also, by simply pasting down
an AI block and calling it AHU1\OAT1. Both instances of the
object AHU1\OAT1 will always have the same value.

Notes: You can use a particular object block only once per
strategy file. Every line out of an object block is a
read of the object. If you need to read an object
attribute’s value more than once, assign its value to a
value holder or SVAR block. This latter practice is
useful when the object’s value is needed in multiple
processes in the same NCM.

A fan-out connection from the object block produces
multiple reads (messages) of the object. These reads
may involve N1 and/or N2 messages.

Using SVAR or Value Holder Block with fan-out
instead of a fan-out from an object block always
produces a faster executing process.

For some control applications, you may need to determine
when data values become unreliable. When a value is
unreliable, you can program the process to take certain default
actions, such as pass a reliable value instead of normal control
actions. That is why GPL keeps track of the reliability of all
data. The UNRD block provides a way for testing reliability of
data.

Unreliable data is entered into a GPL process when:

� The hardware device that the object block represents goes
offline.

� An operation block attempts a divide-by-zero calculation.

� An input to an operation block is out of range.

� A shared variable that has an unreliable value is read.

When a process becomes unreliable, it reports as a status
alarm. This status alarm is then sent to the associated system’s
report group.

Sharing Data
Between NCMs

Explaining
Unreliable Data

Graphic Programming 95

Unreliable data from one function block will be passed on to
all downstream blocks. In most cases, if any of the inputs are
unreliable, the output will also be unreliable. The specifics of
how each block handles unreliable data are discussed in the
Function Blocks chapter.

When an operation block detects an unreliable value from an
object attribute, it uses the last known reliable value and sets it
unreliable.

96 Graphic Programming

Graphic Programming 97

Archive Database Interface

This section describes the archive database as it relates to
GPL. The archive database stores all data for process objects,
hardware objects, software objects, and feature software. Of
these three items, GPL creates the software object databases
and the process objects. The word “object” in this section
applies to object blocks, such as AIs and BOs and process
objects.

Note: This section applies when GPL has the No Archive
mode disabled. For details on when it is enabled,
refer to the next section, No Archive Mode.

The archive database is accessed when you are adding new
objects and querying, deleting, and modifying defined objects
with the GPL Editor. To indicate this, the message Archive
Database Interaction in progress displays in
the middle of the work area. If an error occurs during the
interaction, an error message displays on the bottom of the
work area. For example, if the object you are modifying does
not exist in the archive database, a message to that effect
would display. The block is then set to undefined. An object is
updated as long as no errors are encountered during the
archive database interaction.

The Editor requires that the archive database be on the
Operator Workstation’s hard disk so it can read from and write
to it. The CAE Tool, Data Definition Language (DDL), and
Upload feature use the archive database too, since these tools
can also change the object block databases and process
objects. Each NCM has its own archive database, and each
archive database is stored at an Operator Workstation
(Figure 59).

Interactions

98 Graphic Programming

GPL
C AE

TO O L

GLOBAL

DATA BASE

ARCHIVE

DATA BASE
NCM #1

ARCHIVE

DATA BASE
NCM #2

ARCHIVE

DATA BASE
NCM #3

N C M #1

O N LIN E

D ATA
B AS E

N C M #2

O N LIN E

D A TA
B AS E

N C M #3

O N LIN E

D A TA
B AS E

CAE
TRANSLATOR

DATABS

DDL

OPERATOR WORKSTATION

Figure 59: Archive Database Interactions

The strategy file and archive database are updated each time
you define, modify, or delete an object. This guarantees that
the strategy file and archive database are continually
synchronized. Also, both the hardware and the software
records of the object stored in the archive database are
updated.

When you query a defined object, the Editor interacts with the
archive database to read the object’s data as stored in the
archive. The Editor presents this data in the object’s database
template. However, when you query an undefined object, the
Editor does not interact with the archive database but instead
displays the object’s data as stored in the strategy file.

Querying a
Defined or
Undefined Object

Graphic Programming 99

When you define a new object, the Editor checks the strategy
file and the archive database to make sure the object is not
already defined. The check occurs when you press F10 to save
the object’s database template.

If the Editor detects that the object you are trying to define
already exists in the strategy file, it does not let you create it
and notifies you with an appropriate error message. Only
one instance of an object can be used per strategy file.

If the object is not defined in the file but exists in the archive
database, the Editor asks whether you want to read the object’s
current data from the archive database into the strategy file.

If you choose not to do so, you must define a unique name to
the object. If you choose to do so, the object template is
updated with the data from the archive database.

Then, if this is a process object, the Editor makes
two additional checks. First, it checks if object code for the
process already exists in the archive database. A user message
displays that allows you to specify whether the strategy file
version of the process will overwrite the archive database
version the next time the process is translated and compiled.
Second, the Editor checks if the object code was last built by
an application other than strategy (e.g., CAE Translator).
Another user message displays that allows you to specify
whether the strategy file version of the process will overwrite
the archive database version the next time the process is
translated and compiled.

After you define an object, some of its template fields become
non-modifiable. For example, the software system\object
name, the hardware system\object name, and the hardware
addresses become unchangeable. If a non-modifiable field
must be changed, you need to delete and re-add the object.

The GPL Editor also reads the archive database when you
modify an existing object. This occurs when you click left on
the block with the Query icon highlighted. After you make
changes to an object block and press the F10 key, both the
strategy file and the archive database are updated (as long as
no errors occurred).

Defining a New
Object

Modifying an
Object

100 Graphic Programming

However, when you make changes to the template of a defined
process object, only the strategy file is updated. The archive
database is not updated until the process is translated and
compiled. If you update the block from the archive database by
performing a Session Read or Querying the block, the values
in the archive database will overwrite the changes you made to
the process template.

You may delete an object from the archive database and/or
erase its block from the strategy file. When you click left on an
object block to erase it, a message displays asking you whether
you want to delete the object from the archive database. Then,
a second message displays, asking you whether you want to
erase the block from the strategy file. If you delete an object
from the archive, but do not erase the block from the file, the
block’s border turns to magenta, making it undefined. When
you delete an object from the archive database, the available
slot numbers for the associated hardware object are updated. If
any errors occur during the delete operation, an appropriate
message displays.

The archive database is read the first time you query a defined
object block to view or modify its template. The template data
is then updated in the strategy file. The next time you query the
same object, the archive database is not read again, since the
data is now the same as in the strategy file. This, in effect,
improves the efficiency of the Editor, since it needs to read the
archive database only once per object query. This is true until
you reload the file, load a different file, or exit GPL.

The archive database is invoked when you attempt to define a
generic reference object block (REF) via the F10 key. The
Editor lets you define the REF block only if the specified
system\object exists in the archive database and is of the
correct type. However, by the nature of the REF block, only an
association to the actual object in the archive is established; an
object named in the REF block is not actually added to or
modified in the archive as would occur for an AI block, for
example.

Deleting and
Erasing an Object

Optimizing the
Archive Database
Reads

Using Generic
Object Reference
Blocks

Graphic Programming 101

The Session Read function updates the data of all object
blocks (defined and undefined) in a strategy file with the data
for these objects in the current archive database. Session Read
accomplishes this in one operation. The alternative would be
to query each object block individually.

During a Session Read, when a match is found between a GPL
file object block’s system\object name and an archive object’s
system\object name, all data for the object in the archive
overwrites data for the object in the GPL file. In other words,
the archive is the “master” because its data overwrites the
corresponding data in the strategy file.

Perform a Session Read:

� when the archive database has been changed and you want
to update the GPL file for simulation

� when you expect to query a number of blocks. If you first
perform a Read, the blocks will open immediately (since
no archive interaction is required).

� to change the status of undefined object blocks in the GPL
file to defined. During a Read, an undefined object block
in the GPL file will change to defined if the archive
database contains the corresponding object.

� when you load a GPL file (to synchronize the data in the
file with the archive)

The Session Read affects object and process object blocks
only, not operation or special blocks.

If a block is undefined and the Session Read is successful, the
block’s status is changed to defined, and the block’s template
is updated with what is in the archive database.

While it is running, the message Session Read in
progress displays in the middle of the work area.

Performing a
Session Read

102 Graphic Programming

When the Session Read is complete, the Session Read
Complete message tells you:

� how many defined and undefined blocks were read
successfully

� how many blocks had errors
� how many defined blocks did not require reading because

they had recently been read or queried
� how many undefined blocks could not be read because

they lacked a system or object name

All errors and warnings are sent to the list file, which you can
display by clicking left on the VIEW option under the Query
option menu.

For procedural information on the Session Read function, see
Performing a Session Read, under Query Functions, in the
Editor section.

When the No Archive mode is disabled, a few prerequisites
must be met before you can edit an object in the archive
through GPL. They include:

� Operator Workstation archive database must be built and
available.

� Global database must have defined all NCMs and all
system names, which you plan to use and reference in the
strategy file.

� NCM archive database must be available on the Operator
Workstation.

� Archive database must have defined all hardware objects
that you plan to use and reference in the strategy file.
Examples of hardware objects include DCMs and XBNs.

� Strategy file must be loaded under a GPL directory that is
under the network directory.

Criteria for Editing

Graphic Programming 103

No Archive Mode

The No Archive mode is a limited mode of operation for the
GPL Editor. It offers the following advantages:

� The archive database as built by DDL does not have to
exist before creating your control strategy. This means
that the DDL code and the strategies can be written
concurrently, and synchronized later.

� The performance of the GPL Editor increases, since no
archive interactions have to take place.

� The GPL Editor can be more easily demonstrated,
learned, and used experimentally to try new or modified
processes.

The GPL Standard Version is initially configured with No
Archive Mode disabled. To enable (or disable) No Archive
mode, run the SYSGEN program. (For details, refer to
Introduction.) The GPL Consultant Version, however, is
configured with No Archive Mode permanently enabled. You
cannot use the SYSGEN program to disable it.

No Archive mode changes slightly the operation of the Editor,
Expert Checker, Translator, and Compiler. (The operation of
the Simulator is not affected.) Each change is described in the
following paragraphs.

The Network Name field, located on the GPL Editor screen in
the lower left corner, displays NO ARCHIVE instead of the
currently selected network.

When you query a defined object block, the archive database
is not accessed to obtain the object’s current definition. Its
existing definition, as stored in the GPL control strategy file, is
displayed.

Editor

Network Name
Field

Querying Objects

104 Graphic Programming

When you are defining and editing object blocks, the Editor
performs no verifies, adds, or deletes to the archive database.

When you press F10 to save changes made to an object
block’s template, the Editor still checks for required fields,
invalid characters and symbols, and duplicate names.
However, the Editor does not perform interfield checks
(e.g., low limit < high limit), verify that the object exists in the
archive, or update the object data in the archive.

When an object block has all required fields entered, it will be
shown as defined. Its border turns to brown just as if it were
successfully added to the archive database.

You cannot delete objects from the archive. When you click
on a defined object block in the work area (with Eraser icon
selected), the block erases immediately from the strategy file.
The object delete and block erase verification messages do not
display.

The Session Read function is not operational. An error
message displays if you try to perform a Session Read when
the Editor is in No Archive mode.

The Expert Checker is operational. However, it is not invoked
automatically via the Translator, since the Translator is
disabled (see next paragraph).

The GPL Translator and Compiler are not operational. If you
try to translate and compile, an error message displays to state
these utilities are unavailable.

Defining and
Editing Objects

Deleting and
Erasing Object
Blocks

Session Read

Expert Checker

Translator and
Compiler

Graphic Programming 105

At some point, you will want to disable No Archive mode with
SYSGEN in order to add your control strategies to the archive
database. After you disable No Archive mode, you must
perform a Session Read on each control strategy file that was
created or edited when No Archive mode was enabled. This is
the most convenient method of synchronizing the strategy file
with the archive database. Until you do this, object blocks
changed or added while No Archive mode was enabled will
appear as defined, even though they are not synchronized with
the objects in the archive database. After the Session Read, the
blocks for all objects that are defined in the archive remain
defined in the strategy file, and their templates are
synchronized with the archive database. Those objects that are
not defined in the archive are set to undefined (colored
magenta) in the strategy file, and an error is written to the list
file. For these objects, you will need to open the block
templates individually and press F10 to add the objects to the
archive database.

Note: If you do not perform a Session Read, the Editor will
allow you to expert check, translate, and compile the
file. However, the Compiler will detect those objects
that are not defined in the archive and write an error
to the list file. Note that the Compiler does not
change the undefined objects to undefined in the
strategy file.

Disabling No
Archive Mode

106 Graphic Programming

© November, 1999 Johnson Controls, Inc. 1
 Code No. LIT-631030

GPL Programmer’s Manual

Editor

Overview 5

• Starting the Editor 5
• Mouse and Keyboard 6
• Editor Screen 8
• Prerequisites 21

Icons 23

Tutorial 25

• Name the Diagram 27
• Paste Down Function Blocks 27
• Define Function Blocks 29
• Connect Function Blocks 32
• Compound the Diagram 35
• Save the Compound Into a File 37
• Erase a Function Block and Undo the Erased Block 38
• Erase a Connection and Undo the Erased

Connection 38
• Print the Diagram 39
• Exit GPL 39
• Review 39

Exiting GPL 41

Directory and Control Strategy Functions 43

• Using the File Option Menu 44
• Paging the Directory 46
• Selecting a Network 47
• Saving a Control Strategy 47
• Loading a Control Strategy 49
• Displaying a Strategy Description File 50
• Changing Disk Drives 51
• Creating a Directory 51
• Deleting a Control Strategy 52

* Indicates those sections where changes have occurred since the last
printing.

2 Editor

Compound Functions 53

• Using the Compound Option Menu 54
• Paging the Directory 56
• Making a Compound 56
• Editing a Compound 59
• Loading a Compound Block 60
• Loading the Contents of a Compound 61
• Displaying a Compound Description File 62
• Changing Disk Drives 62
• Creating a Directory 63
• Deleting a Compound 64

Zoom and Pan Functions 65

• Zooming In and Out 66
• Panning 67

Erase and Delete Functions 69

• Erasing an Item 71
• Erasing a Group of Items 72
• Deleting an Object 73
• Clearing Memory 74
• Undoing an Erased Item or Group of Items 75

Move, Copy, and Resize Functions 77

• Moving an Item 79
• Copying an Item 81
• Moving a Group of Items 83
• Copying a Group of Items 84
• Resizing an Item 85
• Resizing a Group of Items 85
• Adding a Line Segment 86

* Indicates those sections where changes have occurred since the last
printing.

Editor 3

Block Connection and Command Functions 87

• Learning the Basics of Connecting Blocks 89
• Connecting Two Blocks 94
• Connecting Two Blocks in Separate Compounds 101
• Connecting Two Blocks Remotely 103
• Commanding an Object 111
• Commanding a Process 115
• Exempting a Connection from Triggers 116

Query Functions 119

• Viewing and Editing a Block Template 121
• Reading and Modifying an Object 122
• Querying a Compound? 123
• Accessing a FILE Block 125
• Viewing a USER Block Macro File 125
• Querying a Connection 126
• Finding a Function Block 127
• Replacing System Names *132
• Viewing the List File 136
• Performing a Session Read 137

Print Functions 139

• Using the Print Option Menu and Submenu 139
• Learning the Basics of Printing 143
• Paging the Print Queue 144
• Creating a Diagram Print File 145
• Creating a Template Print File 147
• Printing Diagrams and Templates *148
• Deleting a Print File 151

Tools Functions 153

• Turning the Grid On and Off 155
• Typing Text 156
• Pasting Down Analog Displays 157
• Running the Expert Checker 158
• Running the Simulator 159
• Running the Translator and Compiler 160

* Indicates those sections where changes have occurred since the last
printing.

4 Editor

Miscellaneous Functions 163

• Displaying a Help Screen 163
• Selecting a Function Block Category 164
• Sizing and Pasting Down a Function Block *165

User Messages *167

* Indicates those sections where changes have occurred since the last
printing.

Editor 5

Overview

This chapter explains how to use the GPL Editor. It contains
step-by-step instructions for all functions the Editor provides.
It also has a tutorial that quickly teaches you the basics of GPL
editing. The last section of this chapter explains all error
messages that the Editor may output.

The GPL Editor:

� Creates and edits control strategies for the NCM. The
strategies define the logic that controls the equipment
connected to the Metasys Network.

� Creates and edits software objects and compounds.

� Creates and edits process objects.

� Prints control strategy diagrams and database templates.

� Runs the Expert Checker, Simulator, and Translator.

To start GPL, type GPL at the DOS prompt and press Enter.
The GPL program will execute, and the Editor screen will
display. To start GPL from the FMS, select GPL from the Exit
menu at the Operator Workstation. The computer will exit
Windows to DOS, and then execute GPL. The Editor screen
will display.

Starting the
Editor

6 Editor

When GPL is started, a blank work area or a control strategy is
displayed. A blank area is displayed if the GPLPATH
environmental variable in the GPL.BAT file is set to a network
directory. A strategy is displayed if the GPLPATH
environmental variable is set to file name. If you wish, you
may change the GPLPATH statement to a different file or
directory. Follow DOS standards for changing a batch file.

You use the mouse extensively with the GPL Editor for
moving the cursor, selecting icons, and drawing items on the
screen. Two buttons on the mouse are used; which one you use
depends on the function you are performing.

You can use either a two or three button mouse with GPL.
With a two button mouse, you use both the left and right
buttons. With a three button mouse, you use only the left and
middle buttons.

Note: In all GPL operations, pressing the right button on a
two button mouse is equivalent to pressing the middle
button of a three button mouse.

The instructions in this chapter presume you are familiar with
using a mouse. The term “click” means to move the cursor to
an icon or option on the screen, and press the mouse button.
The following shorthand descriptions for clicking are used:

Description Meaning

Click left Press the left mouse button
once.

Click right/middle Press the right or middle mouse
button once.

Double-click left Quickly press the left mouse
button twice.

Select Position the cursor on an icon,
option, or field and click a
mouse button.

Drag Hold down a mouse button,
move the mouse and release
the button.

Details

Mouse and
Keyboard

Editor 7

You use the keyboard for entering data, paging screens,
displaying help screens, and saving changes made to a
template. The GPL Editor has the following special keys:

Key Function

Alphanumeric keys Enter information such as
names, values, and descriptions.

Arrow keys Move cursor between parameter
fields.

Backspace Moves cursor back one space
within a parameter field.

CTRL/Arrow Moves cursor within a parameter
field.

Esc Ignores changes made to a
template and closes template.
Exits a help screen. Clears most
items in the work area, such as
some option menus and
description files.

F1 Displays a help screen.

F2 Changes the function block size
to the large default size.

F3 Changes the function block size
to the small default size.

F4 Changes the function block size
to the standard default size.

F10 Saves changes made to a
template and closes template.

Page Up Displays the next page of a
template, help screen, or file.

Page Down Displays the previous page of a
template, help screen, or file.

Insert Shifts characters one space to
the right for you to add a
character.

Delete Deletes a character in a
parameter field.

Note: If your PC is configured to run 386MAX.SYS
(in CONFIG.SYS file), do not quickly press the
mouse button and a keyboard key simultaneously
when typing text in the work area; the computer may
hang. If this occurs, reboot the computer
(CTRL-ALT-DEL) and re-enter all updates made
since you last saved the GPL file.

8 Editor

The Editor Screen is displayed each time you start GPL from
the FMS or DOS. You create, edit, and delete control
strategies with it. In addition, you start the Expert Checker,
Simulator, and Translator from the Editor screen.

As Figure 1 shows, the GPL Editor screen is divided into
several, functionally different areas.

M =0%
X=1412
Y=1356

EDITSCRN

Icons

W ork A rea

Network Name Field
Strategy/Compound File Name Field
Cursor Coordinates
Memory Usage

Function B lock D irectory
Function B lock C ategory

 Library Field

E N R H

N E TN A M E

LIB R AR Y

IN P U T/O U TP U T
B I B O A I A O S A O D A C M R E F

Figure 1: GPL Editor Screen

Icons are graphic symbols (Figure 1) that represent some
function, such as enabling the erase function or displaying an
option menu. You enable the function by positioning the
cursor on the icon and clicking or double-clicking the left
mouse button.

Editor Screen

Icons

Editor 9

The Network Name field shows the directory name of the
network currently selected (Figure 1). This is the network that
the Editor uses for all archive database interactions. The field
may also display:

?? ARCH DB Network directory is not selected.
COMPOUND Compound make or edit mode is in use.
NO ARCHIVE Archive database interaction is disabled.

The Strategy/Compound File Name field indicates the name
of the control strategy or compound that is currently loaded
(Figure 1).

The cursor coordinates are the x- and y-coordinates of the
cursor’s position on the screen (Figure 1). They help you to
position blocks, lines, and text. The range is 0000 to 1000,
with these end values per cursor position:

Cursor Position End Values

Upper left corner x=0, y=1000

Upper right corner x=1000, y=1000

Lower left corner x=0, y=0

Lower right corner x=1000, y=0

The memory usage figure (M = Memory) is a percentage of
how much computer RAM the current control strategy is
consuming (Figure 1). The number increases and decreases as
you edit the strategy.

A figure of 100% indicates that one of the three files of the
control strategy is full. GPL does not indicate which file is full.
When a file is approaching 100%, you might want to add a
FILE block to the control strategy to divide the large strategy
into one or more smaller strategies.

Network Name
Field

Strategy/
Compound File
Name Field

Cursor
Coordinates

Memory Usage

10 Editor

The Function Block Directory is the row of function blocks
that line the bottom of the screen (Figure 1). Clicking left on
one of these blocks selects it to be pasted down in the work
area.

The Function Block Category field shows the name of the
currently selected function block category (Figure 1). A block
category is a grouping of GPL blocks that have similar
functions. GPL has over 60 blocks organized under
16 different block categories. The blocks display on the
bottom of the screen when you select a different block
category.

The Library field (Figure 1) changes the function blocks that
display on the bottom of the screen. Clicking left on this field
displays the function block categories down the right side of
the work area (Figure 8). Selecting one of these categories
changes the function blocks directory across the bottom of the
screen.

The Work Area is the entire middle portion of the Editor
screen (Figure 1). In this area, you create and edit control
strategies and edit the function block templates. Selection
menus, help screens, user messages, the function block library,
FILE block icon, the cursors, and the white enclosing box are
also displayed here.

Function Block
Directory

Function Block
Category

Library Field

Work Area

Editor 11

Selection Menus

Selection menus offer additional functions that are related to
an icon or function. There are four types of selection menus:
option menus, submenus, connection menus, and find menus.

An option menu appears in the upper portion of the work
area, just to the right of the Exit icon (stop sign). Figure 2
shows the option menu for the File icon (disk). Clicking left on
an icon (or double-clicking left in some cases) displays the
menu. You can clear an option menu from the screen by
clicking left in any open spot in the work area.

M =0%
X=1412
Y=1356

FYLOPMNU

LIB R A R Y

IN PU T/O U TP U T
B I BO A I A O S A O D A C M R E F

UP

DWN
S AV E LOAD

C:\

DRIV

DIR

C H ILLE R *

AHU1 BOILER*..*

File Option Menu

Figure 2: Option Menu for File Icon

12 Editor

A submenu appears in the same place as an option menu—in
the upper portion of the work area. A submenu is a
second menu that appears after you make a selection on an
option menu. The GPL Editor has only two submenus: Print
submenu and Translator submenu. Both are pictured in
Figure 3. Clicking left inside the checkbox selects the function.
You clear a submenu from the screen by clicking left in any
open spot of the work area. This cancels the operation.

M =0%
X=1412
Y=1356

PRSBMNU

LIB R A R Y

IN PU T/O U TP U T
B I BO A I A O S A O D A C M R E F

D iagram s(s)

Tem plate(s)

S ave translated source

S top after translation

S tandard defaults

Translator Submenu

Print Subm enu

Figure 3: Print and Translator Submenus

Editor 13

A connection menu appears while you are connecting
two blocks. If you are connecting two blocks remotely, or
assigning an analog display to a block’s output, a remote or
analog display connection menu is used. The connection
displays over the diagram as shown in Figure 4. Clicking left
on a connection name selects it. You can clear a connection
menu from the screen by clicking left in any open spot of the
work area.

M =0%
X=1412
Y=1356

CONNMNU

LIB R A R Y

IN PU T/O U TP U T
B I B O A I A O S A O D A C M R EF

Connection Menu

V

DB

RH

Name:

CONTROL OUTPUT

UP
DWN

ANA BIN
TOP
BOT

E N R H
E N R H 1

CMD
SET AD

AI
AHU1

OA-TEMP

AI
AHU1
OA-RH

V

AD
AHU1

OA-ENRH

ENRH

NETNAME

Figure 4: Connection Menu

14 Editor

A find menu appears when you click left on the Find option. It
displays over the diagram like a connection menu (Figure 5).
Clicking left on a system\object name or block name selects it.
You can clear a connection menu from the screen by clicking
left.

M=1%
X=1412

Y=1356

FINDMNU

LIB R A R Y

IN PU T/O U TP U T
B I BO A I A O S A O D A C M R E F

ENRH

NETNAME

D B

V

V

R H

O

A I

A H U 1

O A-R H

A I

A H U 1
O A -TE M P

V S A

C
E N R H
EN R H 1

C M D
S E T A D

AD

A H U 1

O A-EN R H

UP
DWN

OBJ B LK
TOP
BOT

Name:

AHU1
SET AD

ENRH1

Find Menu

Figure 5: Find Menu

Editor 15

Help Screens

Help screens provide brief instructions and descriptions on
any item on the screen, such as an icon or function block.
Figure 6 shows the help screen for the Exit icon. To view a
help screen, you position the cursor over the area in question
and press F1. Help screens are context sensitive, which means
the information that appears pertains to the function that is
available at the current position of the cursor. Pressing Esc or
clicking left returns the screen to its previous condition.

M =1%
X=1412

Y=1356

HLPSCRN

LIB R A R Y

IN PU T/O U TP U T
B I B O A I A O S A O D A C M R EF

E N R H

NETNAME

Help Screen

Exit Icon (Stop Sign)

Description: This icon lets you exit GPL, either to DOS (Disk
Operating System) or the Metasys FMS (Facilities
Management System). If you try to exit, and have
not saved the control strategy that you edited, the
message "File/compound not saved - changes
will be lost" displays. Click left on [OK] if you do not
want to save the changes, or, click left on
[CANCEL] to escape the exit operation.

WARNING: Do not press the CTRL/C or CTRL/2
keys simultaneously. If you do so, the
Editor will terminate, and all changes
made to the control strategy file since
it was last saved will be lost.

Procedure: For the options that follow, click left on the Exit icon
(stop sign). A prompt displays on the bottom of the
work area.

EXIT = Left Mouse Button NEXT PAGE = Page Down Key

Figure 6: Help Screen for Stop Sign Icon

16 Editor

User Messages

User messages are statements that ask you to perform an
action, or notify you of an error. Many include [OK] and
[CANCEL] fields that you click left on to perform or ignore a
function, respectively. User messages display on the lower
portion of the work area. Figure 7 shows the user message that
displays when you try to update a control strategy. Note that
when the Editor displays a user message, it positions the cursor
over the most probable choice.

M =1%
X=1412
Y=1356

USRMSSG

LIB R A R Y

IN PU T/O U TP U T
B I B O A I A O S A O D A C M R EF

UP

DWN
SAVE LOAD

C:\

DRIV

DIR

CHILLER*

AHU1 BOILER*..*

V

DB

RH

AI
AHU1

OA-TEMP

AI
AHU1
OA-RH

V

AD
AHU1

OA-ENRH

CMD
SET AD

E N R H
E N R H 1

SAV

O C

ENRH

WARNING! File Exists. Update?

OK CANCEL

E N R H

NETNAME

ENRH

Figure 7: User Message for File Update

Editor 17

Function Block Library

The function block library shows the 16 function block
categories (Figure 8). You need to display the library each
time you want to change the function block category. Clicking
left in the red checkbox beside a category changes the block
directory to make available the blocks under that category.

M =0%
X=1412
Y=1356

FNCBLLIB

IN PU T/O U TP U T
B I B O A I A O S A O D A C M R EF

FUNCTION BLOCK
LIBRARY

LIB R A R Y

Block Category Field
Library Field

IN PU T/O U TP U T
D A TA
M U LTI S TA TE
C O N TR O LLE R S
C O N TR O L
C A LC U LA TIO N S
P S YC H R O M E TR IC E Q
S E LE C TO R S
LO G IC
M A TH
R E PO R T
P R O C E S S C O N TR O L
O B JE C T C O N TR O L

M IS C E LLA N EO U S

TIM E
R E LIA B ILITY

Figure 8: Function Block Library

18 Editor

FILE Block Icon

The FILE block icon returns you to a previous file when you
click left on it (Figure 9). It displays only when the work area
is showing the contents of a FILE block.

M =0%
X=1412
Y=1356

FLEBLICN

IN PU T/O U TP U T
B I B O A I A O S A O D A C M R EF

LIB R A R Y

FILE Block Icon

Figure 9: FILE Block Icon

Editor 19

Crossmark and Underline Cursors

The crossmark cursor and underline cursor are movable
markers that indicate a position on the screen (Figure 10).
The crossmark cursor is shown when you are selecting blocks
and icons. The underline cursor is shown when you are typing
text.

M =0%
X=1412
Y=1356

CRSMRK

IN PU T/O U TP U T
B I B O A I A O S A O D A C M R EF

LIB R A R Y

C rossm ark C ursor U nderline C ursor

Figure 10: Crossmark and Underline Cursors

Note: You may notice that the crossmark cursor will “jump”
to a different area of the screen when you click or
double-click on an icon or option. This helps you
select the next function more quickly.

20 Editor

You can use the white enclosing box when making
compounds and selecting a part of the diagram to zoom, move,
or copy (Figure 11). The enclosing box comes to the screen
automatically when you select the operation. You can resize
the enclosing box by dragging the right/middle mouse button.

M =0%
X=1412
Y=1356

WHTBOX

IN PU T/O U TP U T
B I B O A I A O S A O D A C M R EF

LIB R A R Y

Figure 11: White Enclosing Box

White Enclosing
Box

Editor 21

Before you can create diagrams with the GPL Editor, you must
meet the following prerequisites (applies only when archive is
enabled):

� The Operator Workstation archive database must be built
and available.

� The global database must have defined all NCMs and all
system names that you plan to use and reference in the
strategy file.

� The NCM archive database must be available on the
Operator Workstation.

� The archive database must have defined all hardware
objects that you plan to use and reference in the strategy
file.

� A strategy file must be loaded under a GPL directory that
is under the network directory.

Prerequisites

22 Editor

Editor 23

Icons

Icons are graphic symbols that represent some function, such
as enabling the erase function or displaying an option menu.
You enable or perform the function by positioning the cursor
on the icon and clicking or double-clicking the left mouse
button. When you select an icon, it back-highlights in red.

Clicking left on an icon either displays an option menu or
activates the default option for that icon. The default option is
the function that can be performed without choosing it on an
option menu. The default option is also included on the option
menus, and it is always the left-most choice on the menu. The
instructions in this chapter indicate the default functions for
each icon.

Some option menus are displayed by double-clicking left on
the icon. The instructions in this manual indicate when a single
or double-click is needed.

24 Editor

Figure 12 shows a summary of all the main icons.

SUMMN

Name Click Left Double-Click Left

Exit (stop sign)

File (disk)

Compound

Zoom & Pan

Erase (eraser)

Move (scissors)

Connection (arrow)

Query (question mark)

Print (page)

Tools (hammer)

Exits GPL.

Displays option
menu.

Displays option
menu.

Enables zoom
function.

Enables eraser
function.

Enables move
function

Enables con-
nection function.

Enables query
function.

Displays option
menu.

Turns Grid on/off.

Same.

Same.

Same.

Displays option menu.

Displays option menu.

Displays option menu.

Displays option menu.

Displays option menu.

Same.

Displays option menu.

Figure 12: Summary of Main Icons

Editor 25

Tutorial

This section is a tutorial of the GPL Editor. It describes the
basic steps of drawing, saving, and printing a diagram. The
tutorial introduces you to the most-used functions only. You
can find the instructions for all Editor functions in later
sections of this chapter.

By completing the exercises in the tutorial, you will learn how
to:

� Name the diagram.

� Paste down function blocks.

� Define function blocks.

� Connect function blocks.

� Compound a diagram.

� Save the compound into a file.

� Erase a function block and undo the erased block.

� Erase a connection and undo the erased connection.

� Print a diagram.

� Exit GPL.

Note: The exercises presume that the Editor is set to interact
with the archive database. If No Archive Mode is
enabled, no checks against the archive database will
be made, and the object blocks will paste down as
defined.

26 Editor

Figure 13 shows the diagram that you will draw.

DGRMEDTR

V

DB

RH

AI
AHU1

OA-TEMP

AI
AHU1
OA-RH

V

AD
AHU1

OA-ENRH

CMD
SET AD

E N R H
E N R H 1 SAV

O C

Figure 13: Diagram You Will Draw

In this GPL diagram, outdoor air enthalpy is calculated using
the values of outdoor air dry bulb temperature and outdoor air
relative humidity. The result is sent to an analog data object.
The analog data object can be viewed on an object summary at
the Operator Workstation.

Before you can begin the Tutorial, you need to perform these
steps using DDL:

� Compile the Operator Workstation archive database file.

� Define these two items in the global database: NCM name
of NCM-FLR1 and a hardware system name of AHU1.

� Define this hardware system\object name in the archive
database: AHU1\DCM1 as a DCM hardware type device.

For instructions on how to perform these steps, see the DDL
Programmer’s Manual (FAN 630).

Now you are ready to start the Tutorial. If you have not
already started the GPL Editor, do so now (refer to Starting
the Editor). When the Editor screen displays, it may show a
diagram. To clear it, double-click left on the Erase icon, click
left on CLR ALL, and answer OK to the warning message.

Editor 27

In this first exercise, you will assign a name to the diagram you
will draw. This will also select the network, which is a
required step when creating control strategies.

1. Click left on the File icon (disk).

2. Go to the GPL directory under the desired network
directory by clicking left on the directory names.

3. Type in ENRH in the File Name field.

4. Position the cursor on the SAVE option and click left. The
empty ENRH file saves to disk, the Network Name field
changes to show the selected network, and the File option
menu clears.

In the next exercise, you will paste down several function
blocks.

In the first exercise, you will paste down five function blocks
into the work area: two Analog Input (AI) blocks,
one Enthalpy-Relative Humidity (ENRH) block,
one Command (CMD) block, and one Analog Data (AD)
block.

1. Look at the function block category field in the lower
right corner of the screen (Figure 1). If INPUT/OUTPUT
is displayed, skip to Step 4; otherwise, continue with
Step 2.

2. Click left on the LIBRARY field in the lower right corner.
A list of all function block categories displays.

3. You will first paste down two analog input blocks, which
belong to the INPUT/OUTPUT category. Position the
cursor inside the red checkbox next to INPUT/OUTPUT
and click left. The function blocks displayed on the
bottom change to those that belong to this category.

4. From the function blocks on the bottom of the screen,
locate the one labeled AI (analog input). Position the
cursor over that block and click left. The Function Block
library clears (if it was displayed), and the background of
the AI block highlights in red to indicate you have
selected it.

Name the
Diagram

Paste Down
Function Blocks

Paste Down AI
Blocks

28 Editor

5. Move the mouse up. Notice a magenta-colored block
appears. This is the AI block.

6. Position the block in the upper left side of the work area.
Refer to Figure 13 for proper placement. Click left. The
block pastes down and is labeled AI.

7. Move the mouse. Notice a second block forms. This is
another AI block ready to be pasted down. Paste it down
under the first AI block. Again, refer to Figure 13 for its
proper placement.

1. The ENRH block resides under the PSYCHROMETRIC
EQ (psychrometric equations) category. Display the
function block categories by clicking left on the
LIBRARY field. Click left in the checkbox next to the
PSYCHROMETRIC EQ category. The blocks on the
bottom of the screen change.

2. Locate the ENRH block in the row of function blocks.
Click left on it to select it.

3. Paste down one ENRH block about one inch to the right
of the AI blocks (see Figure 13).

1. The CMD block resides under the OBJECT CONTROL
category. Change the function block category to OBJECT
CONTROL.

2. Locate the CMD block in the row of function blocks.
Click left on it to select it.

3. Paste down one CMD block about one-half inch to the
right of the ENRH block.

Paste Down ENRH
Block

Paste Down CMD
Block

Editor 29

1. The AD block resides under the DATA category. Select
the DATA category to display the AD block on the
bottom of the screen.

2. Click left on the AD block and paste it down about
one-half inch to the right of the CMD block.

Your diagram should now look something like Figure 14:

PASTEDWN

CMD

AI

AI

AD
ENRH

Figure 14: Five Function Blocks Pasted Down

The next exercise will teach you how to define the function
blocks you pasted down.

Each function block has a database template that you fill in
that defines its name, parameters, and attributes
(i.e., characteristics). This template drops down into the work
area. In these steps, you will fill in the templates for four of the
blocks that you pasted down in the previous step. You will not
define the CMD block, since the Editor defines it for you when
you connect it to an object block.

Paste Down AD
Block

Define Function
Blocks

30 Editor

1. Click left on the Query icon (question mark).

2. Position the cursor inside the upper AI block. Click left.

The template for the AI block appears in the work area.
Notice that two columns of parameters are shown. For this
exercise, you will only need to define a few of them, and
accept the default values for all others.

3. Notice that the first parameter, System Name, is
highlighted in white. When a parameter is highlighted like
this, it is selected for entry. Type AHU1 for the System
Name. Use the backspace key if you make a typing
mistake. Press Enter.

4. The next field, Object Name, now highlights. Type
OA-TEMP in the Object Name field. Press Enter.

5. Move to the third parameter, Expanded ID. Type
OUTDOOR AIR TEMPERATURE. Press Enter.

6. The cursor is now in the first parameter of the
HARDWARE category. This data links the hardware
device with the software object. Type AHU1 for System
Name and DCM1 for Object Name.

7. You are now done with this template. Press F10 to save
the entries. An archive database interaction message
displays, indicating that the Editor is trying to add the new
object to the archive.

Note: If an error message displays at this point, refer to the
User Messages section of this chapter. An error
should not occur if the archive database exists and
contains the hardware object DCM1.

Notice that the AI block has changed from magenta to brown
to indicate it is now defined. Also notice the block is labeled
with the System Name and Object Name that you entered.

Define Upper AI
Block

Editor 31

1. Define the other AI block in the same manner as you did
the first AI block. Refer to the previous steps if you need
to. Use the up arrow and down arrow keys to move
between the fields as required. Under the
IDENTIFICATION column, type these values:

System Name–AHU1
Object Name–OA-RH
Expanded ID–OUTDOOR AIR R.H.

Under the HARDWARE column, type:

System Name–AHU1
Object Name–DCM
Slot Number–2

At this point, you would ordinarily change the appropriate
attributes in the template to configure the object to
represent an outdoor air relative humidity sensor.
However, for the purpose of the tutorial, you can skip this
step.

2. Press F10 to save. The archive database is again accessed.

1. Define the ENRH block. It is actually defined (block’s
border is brown), but you should still assign it a unique
name. Type a Block Name of ENRH1.

2. Press F10 to save. Note that the archive database is not
accessed since this is an operation block.

1. Define the AD block. Under the IDENTIFICATION
column, type these values:

System Name–AHU1
Object Name–OA-ENRH
Expanded ID–OUTDOOR AIR ENTHALPY

2. Press F10 to save.

Define Lower AI
Block

Define ENRH
Block

Define AD Block

32 Editor

The blocks are now defined and the diagram should look like
Figure 15:

FORBLKS

CMD
ENRH
ENRH1

AI
AHU1

OA-TEMP

AI
AHU1
OA-RH

AI
AHU1

OA-ENRH

Figure 15: Four Function Blocks Defined

The next exercise will teach you how to connect the function
blocks you have defined.

Connecting blocks establishes the data and control flow
between two blocks. The diagram so far has all blocks except
the CMD block defined. The connection process will define
the CMD block. In these steps, you will connect the two AI
blocks to the ENRH block. You will then connect the CMD
block to the AD block, and the ENRH block to the CMD
block.

1. Click left on the Connection icon (bent-up arrow).

2. Click left inside the AI block labeled AHU1\OA-TEMP.
A connection menu displays. This is called an output
connection menu, since it shows all available outputs for
this block. The connection names are color-coded to
indicate different types.

3. Locate VALUE in this list (colored yellow) and click left
on it. The menu clears.

4. Move the mouse. Notice a line has formed.

5. Move the line into the ENRH block and click left.
Another connection menu displays, this one is called an
input connection menu, which shows all available inputs
into the ENRH block.

Connect
Function Blocks

Connect
AHU1\OA-TEMP
Block to ENRH
Block

Editor 33

6. Click left on DRY BULB in the menu. The menu clears
and a line connects the two blocks. Notice the line labels
at each end of the line: “V” for Value and “DB” for
Dry Bulb temperature. This means that the Value attribute
of the AI object is used for the Dry Bulb value in the
ENRH calculation.

1. Click left inside the AI block labeled AHU1\OA-RH. The
output connection menu displays.

2. Click left on VALUE in this list.

3. Draw the line into the ENRH block and click left. The
input connection menu for the ENRH block displays.

4. Click left on REL HUMID (Relative Humidity) in the
menu. The menu erases and a line connects the
two blocks. The line labels are “V” for Value at the AI
block and “RH” (Relative Humidity) at the ENRH block.
The Value attribute of the AI object is used for the
Relative Humidity value in the ENRH calculation.

1. Click left on the CMD block. An output connection menu
displays.

2. Click left on COMMAND in this list. The menu clears.

3. Move the line into the AD block labeled
AHU1\OA-ENRH and click left. The input connection
menu for this block displays, which lists all available
commands to the AD object.

4. Click left on SET AD in this list. The line connects the
two blocks. The line labels are “C” (Command) at the
CMD block and “SA” (SET AD) at the AHU1\OA-ENRH
block. The CMD block is sending a SET AD command to
the AHU1\OA-ENRH object that stores the enthalpy value
calculated by the ENRH block.

Connect
AHU1\OA-RH
Block to ENRH
Block

Connect CMD
Block to AHU1\OA-
ENRH Block

34 Editor

1. Click left on the ENRH block. The output connection
menu displays.

2. Click left on OUTPUT in this list. The menu clears.

3. Move the line into the CMD block and click left. The
input connection menu displays.

4. Click left on VALUE in the menu. The menu erases and a
line now connects the two blocks. The line labels are “O”
(Output) at the ENRH block and “V” (Value) at the CMD
block. The result of the enthalpy calculation, Output, is
read by the CMD block, which in turn commands the
AHU1\OA-ENRH object to that value.

Your diagram should now resemble Figure 16.

CONDGRM

V

DB

RH

AI
AHU1

OA-TEMP

AI
AHU1
OA-RH

V

AD
AHU1

OA-ENRH

CMD
SET AD

E N R H
E N R H 1 SAV

O C

Figure 16: Connections on the Diagram

You have now finished drawing the diagram. The next
exercise will teach you how to group the diagram into a
process compound.

Connect ENRH
Block to CMD
Block

Editor 35

Compounding is a method of grouping a diagram into a block
to provide a high-level function, such as optimal start or
damper control. The diagram that you created in the previous
exercises is not complete until you group it into a process
compound. That is because the diagram contains two operation
blocks (ENRH and CMD), and all operation blocks must be
placed in a process compound so that they can be translated
and compiled into object code. Follow these steps.

1. Click left on the Compound icon. Its option menu
displays.

2. Click left on the MAKE option.

3. Move the mouse and notice that a white enclosing box
appears. This box is used to enclose the area of the
diagram that you want to compound. For this example,
you need to compound the entire diagram.

4. Enlarge the enclosing box by holding down the right
button and dragging the mouse. Enlarge the box so that it
encloses the entire diagram. It is best to size the box so
that it is slightly larger than all items to be enclosed.

5. Click left. The Compound Make screen displays
(Figure 17).

Compound the
Diagram

36 Editor

M=0%

X=1412
Y=1356

MAKESCRN

LIB R A R Y

IN PU T/O U TP U T
B I B O A I A O S A O D A C M R EF

V

DB

RH

AI
AHU1

OA-TEMP

A I
A H U 1
O A -R H

V

AD
AHU1

OA-ENRH

CMD
SET AD

E N R H
E N R H 1 SAV

O C

FM S\B IN \G P L\A P PS M A K E N A M E :________ SAVE TEMPLT CANCEL

Figure 17: Compound Make Screen

6. Click left on Templt (Template). The database template
for the compound appears.

7. The cursor is in the Compound Type field. Press the
Tab key once to display PROCESS as the compound
type. The template changes to show additional fields.

8. Press Enter. Type in AHU1 for a System Name. Press
Enter.

9. Type in ENTHALPY for an Object Name. Press Enter.

10. Use the down arrow key to move to the Period field.
Type 00:05:00. Press Enter.

11. Press F10 to save the data you entered. The compound
database template clears.

12. Type OA#ENRH in the NAME field. This is the name
under which the compound will be saved on disk.

Editor 37

13. Click left on the SAVE option. A message displays,
giving you the option of saving the compound to the
screen or to the disk. Click left on Screen. The blocks on
the screen are replaced with a compound block labeled
OA-ENRH. The diagram you created is actually “behind”
this block. (You can view it by double-clicking left on the
block with the Query icon highlighted.)

14. To save this new process compound to the archive
database, click left on the compound block with the Query
mode selected. Press F10 to save the template
information. An archive database interaction message
displays. Once the process is added to the archive, the
template clears and the block turns brown with solid
borders.

The next exercise will teach you how to save the compound
into a file.

All compounds must be placed into strategy files for them to
be used with the other GPL utilities, including the Expert
Checker, Simulator, and Translator. In this step, you will save
the compound you made in the previous exercise to a file you
created earlier called ENRH.

1. Click left on the File icon. An option menu displays. The
name ENRH is already in the File Name field, so you do
not have to type it in.

2. Position the cursor on the SAVE option and click left. The
ENRH file saves to disk and the File option menu clears.

The next exercise will teach you how to erase a function block
and undo the erased block.

Save the
Compound Into
a File

38 Editor

Erasing parts of a diagram and undoing (i.e., unerasing) erased
items are easy. In this exercise, you will erase the function
block labeled ENRH1, then undo the erased block.

1. To redisplay the diagram, double-click left on the
compound block with the Query icon selected.

2. Click left on the Erase icon.

3. Move the cursor anywhere inside the block labeled
ENRH1 and click left. The block and its connections
erase.

4. To undo the erased block, double-click left on the Erase
icon. An option menu displays.

5. Click left on the UNDO option. The block and its
connections return to the screen. An Undo message
displays below that indicates the operation has been
performed. Click left to clear the message.

Erasing a connection is slightly different from erasing a
function block. You can place the cursor anywhere inside a
function block to erase it. For a line, however, you must place
the cursor at either end of the connection, or on a turn in the
line. Undoing an erased connection is the same as undoing an
erased block.

In these steps, you will erase the connection between the
AHU1\OA#TEMP and ENRH1 blocks. The Erase icon should
already be selected.

1. Move the cursor on either end of the line between
AHU1\OA#TEMP and ENRH1. A yellow box appears.
Click left and the connection line erases.

2. To undo the erased connection, double-click left on the
Erase icon to display the option menu.

3. Click left on the UNDO option. The connection should
return to the screen. Click left to clear the undo message.

4. Save the diagram again by clicking left on SAVE under
the File option menu. Click left inside [OK] under the File
Exists message.

Erase a Function
Block and Undo
the Erased Block

Erase a
Connection and
Undo the Erased
Connection

Editor 39

This section of the tutorial explains how to send a diagram to
an attached printer. The process requires two steps: creating a
print file for the diagram, then sending the print file to the
printer.

Note: This procedure requires that the printer is properly
configured to accept strategy files. Refer to the
Getting Started section in the Introduction chapter.

1. Click left on the Print icon. Its option menu displays.

2. Click left on the PRT ONE option. The Print submenu
displays.

3. Click left inside the checkbox for Diagram(s). The
diagram momentarily flashes on the entire screen. A print
file of the diagram is created and added to the print queue.

4. Check to make sure the printer is online and ready. Click
left on the Start Output option. Printing should begin in a
moment. If any other files were listed on the print queue,
they will also print.

You have now completed the tutorial. You can exit GPL and
go to the DOS or Metasys FMS environment.

1. Click left on the Exit icon. GPL displays this prompt:

EXIT TO:
[DOS] [FMS] [CANCEL]

2. Click left on [DOS] to go to the DOS environment. Click
left on [FMS] to go to the Metasys Network. Click left
on [CANCEL] to escape the Exit operation.

In this Tutorial, you have learned how to draw, change, save,
and print a diagram. You also have learned how to compound
a diagram. The last step explained how to exit GPL.

At this point, you can go to other parts of the manual to learn
more about GPL.

Print the
Diagram

Exit GPL

Review

40 Editor

Editor 41

Exiting GPL

This section explains how to exit the GPL Editor and return to
DOS or the FMS.

1. Click left on the Exit icon (stop sign). The prompt
EXIT TO: [DOS] [FMS] [CANCEL] displays.

2. Click left on [DOS] to go to the DOS environment. Click
left on [FMS] to go to the Metasys Facilities Management
System environment. Click left on [CANCEL] to escape
the Exit operation.

You must save a control strategy or compound that you have
edited before exiting GPL.

!
 WARNING: If you exit GPL without saving the

control strategy or compound that
you edited, all changes made since
the last save are lost.

If you press the CTRL/C or
CTRL/2 keys simultaneously, the
GPL Editor will exit. Since this is a
forced exit, all changes made to the
strategy or compound file will be
lost and unrecoverable.

To return to GPL from DOS, type GPL at the DOS prompt
and press Enter. The computer will execute GPL, and the
Editor screen will display. To return to GPL from the FMS,
select GPL from the Exit menu at the Operator Workstation.
The computer will exit Windows to DOS, and then execute
GPL. The Editor screen will display.

Details

42 Editor

Editor 43

Directory and Control
Strategy Functions

This section describes how to perform the following directory
and file functions:

� Use the File option menu.

� Page the directory.

� Create, save, load/edit, and delete a strategy.

� Display a description file.

� Change disk drives.

� Create a directory.

The File icon (disk) provides these functions.

44 Editor

Clicking left on the File icon (disk) displays an option menu
(Figure 18).

M =0%
X=1412
Y=1356

FLOPTMEN

LIB R A R Y

IN PU T/O U TP U T
B I BO A I A O S A O D A C M R E F

UP

DWN
S AV E LOAD

C:\

DRIV

DIR

C H ILLE R *

AHU1 BOILER*..*

Load Option
Save Option
Up/Down Options

Description Icon
Drive/Directory Options
Delete File Icon

Directory
Directory Name Field
File Name Field

Figure 18: File Option Menu

As Figure 18 indicates, the File option menu features a
Directory, Directory Name field, and File Name field. The
following paragraphs describe them in detail.

Using the File
Option Menu

Editor 45

The directory is a list of all directories and GPL control
strategy file names. Only files created with the GPL Editor are
shown; all others are filtered out. The items are listed in
alphabetical order from left to right. A maximum of 11 items
can be listed per page. The listing cannot display directory
names that contain extensions (e.g., GPL.DIR).

Items in the listing with asterisks (*) appended to their names
are directories. Those without asterisks are files. Clicking on a
directory name changes the directory to show all items that are
under the directory.

The symbol “. .*” is used to reach higher level directories.
Clicking on it changes the directory to display the items under
the next-highest directory. The “. .*” symbol usually appears
in the upper left corner. Clicking left on a file name selects it
for saving, loading, deleting, or viewing its description file.

The Directory Name field shows the current directory. If the
full directory name cannot be displayed, the names scroll to
the left, dropping off the left-most characters as required to fit
the entire lowest-level directory name.

Directory

. . * AHU1 BOILER
CHILLER*

Directory Name
Field

C:\

46 Editor

The File Name field is a space for typing in a directory or
control strategy file name. Up to eight alphanumeric characters
are allowed in a directory or file name. As you type in a name,
the Editor filters the directory to show only those names
beginning with the letters specified. For example, if you type
in “S,” the directory changes to show every name that starts
with the letter S. Then, if you type in “E” after the S, every
name that begins with SE is displayed, and so on. Use this
feature to quickly locate an item or to find an entry whose
name you cannot fully remember. The DOS wildcard character
(*) is not allowed. For other characters and words that are not
allowed, refer to Appendix F: Characters, Symbols, and
Reserved Words.

Note: An alternative to typing in a control strategy file name
is to click left on its name in the directory. The Editor
then places the selected name in the File Name field.

To type text in the File Name field, you must have the
cursor inside the File option menu. The field is not
case sensitive.

To show other items on the directory in the File option menu,
page up and down. The UP option pages the directory back
one page; the DWN option pages the directory forward one
page.

� To page the directory back one page, click left on the UP
option.

� To page the directory forward one page, click left on the
DWN option.

If you click left on UP or DWN and the directory does not
change, you have reached the first or last page, respectively.

File Name Field

Paging the
Directory

UP
DWN

Details

Editor 47

This procedure selects a network. You need to select a
network when the Network Name field displays
?? ARCH DB, and you are creating a new control strategy.
The procedure is required so that the Editor knows which
archive database to interact with. The Editor interacts with the
archive database when you are adding, modifying, and deleting
object blocks and processes.

1. Click left on the File icon (disk). The option menu
displays.

2. Go to the GPL subdirectory that is under the desired
network. If you need to, go to a subdirectory under the
GPL subdirectory.

3. Type a name for the strategy in the File Name field.

4. Click left on SAVE. If this strategy does not exist, the
Editor creates it, and the Network Name field is updated
to display the selected network. If this strategy already
exists, a message displays that asks you to write over the
file or cancel the save operation.

This procedure saves a displayed control strategy to any
available disk drive after creating or editing. Each control
strategy is stored in three files with the following extensions:
.DB (database), .CI (connection), and .TX (text). These
extensions do not appear in the directory and should not be
entered in the File Name field. The following instructions
presume the strategy to be saved is currently in the work area.

1. Click left on the File icon (disk). The option menu
displays.

2. If you need to change the disk drive, refer to Changing
Disk Drives. If you need to change the directory, refer to
Using the File Option Menu.

3. Click left on the strategy file name in the directory
(if shown) or type a name inside the File Name field.

4. Click left on SAVE. If the file already exists, the message
WARNING! File Exists. UPDATE? displays.
Click left to [OK] to write over the strategy file. You may
instead click left on [CANCEL] to escape the save
operation.

Selecting a
Network

. . * AHU1 BOILER
CHILLER*

Saving a Control
Strategy

SAVE

48 Editor

The file name you specify must follow DOS conventions. For
example, the name must consist of alphanumeric characters
and be at most eight characters. Also, the file name must not
be a reserved word or contain invalid characters. Refer to
Appendix F: Characters, Symbols, and Reserved Words for
details.

When a control strategy is saved, all blocks are saved in their
current states—defined or undefined. However, if the control
strategy contains a FILE block, the strategy that it represents is
not also saved.

To reach a higher-level directory, click left on the symbol
“. .*”.

Before GPL saves an existing control strategy, it creates a set
of backup files that represent the old version of the strategy.
These backup files can be retrieved if the changes you made to
the new version of the strategy are no longer wanted. Refer to
the section on restoring backup files in Appendix E: External
Functions.

The Editor will not allow you to exit until you have the chance
to save the strategy you edited. If you change a strategy and
then try to exit before saving it, the tool will prompt you when
you click left on the Exit icon.

Details

Editor 49

This procedure loads an existing control strategy from any
available disk into the work area for viewing and editing. The
work area does not have to be clear to load a strategy.

1. Click left on the File icon (disk). The option menu
displays.

2. If you need to change the disk drive, refer to Changing
Disk Drives. If you need to change the directory, refer to
Using the File Option Menu.

3. Click left on the control strategy file name in the directory
or type its name in the File Name field.

4. Click left on LOAD. The contents of the strategy will
come to the screen.

Click left on the symbol “. .*” to reach a higher-level
directory.

Only one control strategy can be loaded at a time.

When the Editor loads the strategy, it updates the
strategy/compound File Name field to show the loaded file
name.

Loading a
Control Strategy

LOAD

Details

50 Editor

Each control strategy may have a strategy description file that
you prepare with an ASCII editor outside of GPL. The
description file has the same path file name as the control
strategy, with a .DDS (diagram description) extension. The
purpose of the file is to explain what each diagram in the
control strategy does, and to contain any other related
information, such as the author of the program and date of
creation. The control strategy does not need to be loaded to
view its description file. (Refer to Appendix E: External
Functions for details on how to prepare a description file.)

1. Click left on the File icon (disk). Click left on the control
strategy file name in the directory or type its name in the
file name field.

2. Click left on the Description icon. The description fills the
entire work area, replacing a diagram if one is displayed.

3. Use the Page Up and Page Down keys to scroll through
the file. Click left or Esc to clear the description and
redisplay the diagram (if one was displayed).

The description file can be displayed, but not edited or printed,
with the GPL Editor. To print the file, use a DOS utility that
can print ASCII files.

The description file has a maximum size of 30 pages. Use the
Page Up and Page Down keys to move through the description
file. Press Esc or click left to exit the file.

Displaying a
Strategy
Description File

Details

Editor 51

You can store and retrieve GPL directories and control
strategy files from any available DOS disk drive. The GPL
Editor recognizes Drive C as the default drive for all file and
compound functions in the Editor. The valid disk drives are
A through Z.

Note: You cannot use Drive B unless you have specified it
in the System Generation (SYSGEN.EXE) file at
installation time. See the installation information in
the Introduction chapter for details.

1. Click left on the File icon (disk). The option menu
displays.

2. Type the letter of a disk drive in the File Name field. Disk
drives A through K are valid.

3. Click left on the DRIV option. The directory changes to
show the contents of the selected disk.

The Editor shows the current directory level that the
GPLPATH statement specifies in the GPL.BAT file.

The directory is filtered to show only GPL control strategy
files.

Use the DIR option to create a DOS directory under which
GPL control strategy files can be stored.

1. Click left on the File icon (disk). The option menu
displays.

2. If you need to change the disk drive, refer to Changing
Disk Drives for instructions. If you need to change the
directory, refer to Using the File Option Menu.

3. If you want to create a subdirectory, go to the desired
directory by clicking left on the directory name.

4. Enter a unique subdirectory name in the File Name field.

5. Click left on DIR. The new directory is created and added
to the directory.

Do not type an asterisk (*) after the directory name. For a list
of other characters and words that are not allowed, refer to
Appendix F: Characters, Symbols, and Reserved Words.

A GPL subdirectory may contain up to 100 files. You cannot
delete GPL directories within the Editor.

Changing Disk
Drives

DRIV

DIR

Details

Creating a
Directory

DRIV

DIR

Details

52 Editor

This procedure deletes a control strategy from any available
disk.

1. Click left on the File icon (disk). The option menu
displays.

2. If you need to change the disk drive, refer to Changing
Disk Drives for instructions. If you need to change the
directory, refer to Using the File Option Menu.

3. Click left on the name of the file in the directory or type
its name in the File Name field.

4. Click left on the Delete File icon (trash can). The message
Verify file deletion displays. To delete the
control strategy, click left on [OK]. The control strategy is
deleted and the directory refreshes. You may otherwise
click left on [CANCEL] to escape this operation.

This procedure deletes a set of files associated with the control
strategy; they have the following extensions: .DB, .CI,
and .TX. The .DDS (diagram description) file, since it is not
created with GPL, is not deleted. It must be deleted outside of
GPL. Also, this procedure does not delete the associated
backup strategy files.

Once a control strategy is deleted, it cannot be restored within
GPL. Use a special restoration program to restore deleted files.
Alternatively, you can use the backup files of the control
strategy (filename.ODB, .OCI, and .OTX), which should still
be intact. Refer to the restoring backup files section in
Appendix E: External Functions.

You may delete a control strategy that is currently displayed.
However, it will not clear from the work area.

Deleting a
Control Strategy

Details

Editor 53

Compound Functions

This section describes how to perform the following
compound functions:

� Use the Compound option menu.

� Page the directory.

� Make, edit, and delete a compound.

� Load a compound (either its block or contents).

� Display a description file.

� Change disk drives.

� Create a directory.

The Compound icon provides these functions.

54 Editor

Clicking left on the Compound icon displays an option menu
(Figure 19).

M =0%
X =1412
Y =1356

comopmn

LIB R A R Y

IN PU T/O U TP U T
B I B O A I A O S A O D A C M R EF

UP

DWN

C:\

DRIV

DIR

M ZU 1*

..*

Directory
Directory Name Field
File Name Field

Load/Expanded Options

Make/Edit Options

Up/Down Options

Text Description File Icon

Drive/Directory Options

Delete File Icon

AHU1*
APPS*

 MAKE

EDIT

LOAD

XPND

Figure 19: Compound Option Menu

As Figure 19 indicates, the Compound option menu features a
Directory, Directory Name field, and File Name field. The
following paragraphs describe them in detail.

Using the
Compound
Option Menu

Editor 55

The directory is a list that shows all directories and
compounds. They are listed in alphabetical order from left to
right. A maximum of 11 items can be listed per page. The
listing cannot display directory names that have extensions
(e.g., GPL.DIR).

Items in the listing with asterisks (*) appended after their
names are directories. Those without asterisks are files.
Clicking on a directory name changes the list to show all items
that are under the directory.

The symbol “. .*” is used to reach higher level directories.
Clicking on it changes the list to display the items under the
next-highest directory. The “. .*” symbol usually appears in
the upper left corner. Clicking left on a compound name
selects it for saving, editing, loading, deleting, or viewing its
description file.

The SET GPLCMP statement in the GPL.BAT file determines
which particular directory is shown when you click left on the
Compound icon. If you wish, you may change the directory by
editing the statement with a text editor. Follow the DOS
conventions for editing a batch file.

The Directory Name field shows the current directory. If the
full directory name cannot be displayed, the names scroll to
the left, dropping off the left-most characters as required to fit
the entire lowest-level directory name.

Directory

. . * APPS* AHU1*
MZU1*

Directory Name
Field

C:\

56 Editor

The File Name field is a space for typing in a compound,
directory, or drive name. Up to eight alphanumeric characters
are allowed in the name. As you type in a name, the Editor
sorts the directory to show those names beginning with the
letters specified. For example, if you type in “S,” the list
changes to show every name that starts with the letter S. Then,
if you type in “E” after the S, every name that begins with SE
is displayed, and so on. Use this feature to quickly locate an
item or to find an item whose name you cannot fully
remember. The DOS wildcard character (*) is not allowed. For
other characters and words that are not allowed, refer to
Appendix F: Characters, Symbols, and Reserved Words.

Note: An alternative to typing in a compound name is to
click left on its name in the directory. The Editor then
places the selected name in the File Name field.

To type text in the File Name field, you must have the
cursor inside the Compound option menu. The field is
not case sensitive.

To show other items on the directory in the Compound option
menu, page up and down. The UP option pages the directory
back one page; the DWN option pages the directory forward
one page.

� To page the directory back one page, click left on the UP
option.

� To page the directory forward one page, click left on the
DWN option.

If you click left on UP or DWN and the directory does not
change, you have reached the first or last page, respectively.

This procedure makes and saves a compound to any available
disk drive. The compound file has a .CMP extension.

1. Click left on the Compound icon. The option menu
displays.

2. If you need to change the disk drive, refer to Changing
Disk Drives for instructions. If you need to change the
directory, refer to Using the Compound Option Menu.

3. Click left on MAKE.

File Name Field

Paging the
Directory

UP
DWN

Details

Making a
Compound

MAKE

EDIT

Editor 57

4. Move the mouse and notice that a white enclosing box
appears. Use this box to enclose the area of a diagram that
you want to compound.

5. Enclose the area of the diagram that you want to
compound within the white box. If the box is not the
proper size, hold down the right button and drag the
mouse to resize it.

6. Make sure the section of the diagram that you want to
compound is totally enclosed inside the white box. Click
left. The Compound Make screen appears (Figure 20).

M=0%

X=1412
Y=1356

MAKESCRN

LIB R A R Y

IN PU T/O U TP U T
B I B O A I A O S A O D A C M R EF

V

DB

RH

AI
AHU1

OA-TEMP

A I
A H U 1
O A -R H

V

AD
AHU1

OA-ENRH

CMD
SET AD

E N R H
E N R H 1 SAV

O C

FM S\B IN \G P L\A P PS M A K E N A M E :________ SAVE TEMPLT CANCEL

Figure 20: Compound Make Screen

7. Enter a name for this compound in the Name field. This is
the name that is used to store the compound to disk. The
entire pathname is not required, just a compound name.
(The pathname is displayed to the left of the Name field.)

58 Editor

8. Click left on TEMPLT. The compound database template
appears. Specify the type of compound (GROUP,
PROCESS, or RESTART PROCESS) and the parameters
that define this compound. Refer to the Compounds
section in the Graphic Programming chapter for more
information on the Compound block parameters.

9. Press F10 to save the parameter values. The template
clears.

10. Click left on Save. A message displays, giving you the
option of saving the compound to the screen or to the
disk.

If you want the Editor to create a compound block for you
and paste it on the screen, click left on [SCREEN].

If you want the Editor to save the compound to the disk,
click left on [DISK].

11. The Editor checks if this compound is defined. If the
compound already exists, the message
WARNING! File exists. UPDATE? appears.
Click left on [OK] to update the compound or click left on
[CANCEL] to return to the Compound Make screen.

The white enclosing box has a default size. When you resize
the box, the default size is changed to this new size. Therefore,
the next time the white enclosing box is displayed, the box will
be this new size. Also, the size of a compound made to the
screen matches the size of the enclosing box.

When a diagram is grouped into a compound, all of its
function blocks shrink slightly in size. This is because the
Compound Make screen is a bit smaller than the standard
editing screen.

Before GPL saves a compound, it creates a backup file that
represents the old version of the compound. The backup file
has an .OCM extension. This backup file can be retrieved if
the changes you made to the new version of the compound are
no longer wanted. Refer to the section on restoring backup
files in Appendix E: External Functions.

Click left on CANCEL in the compound editing screen to
cancel the Make operation.

The maximum number of nested compound levels is 30.

Details

Editor 59

This procedure loads an existing compound from any available
disk into the work area for editing.

1. Click left on the Compound icon. The option menu
displays.

2. If you need to change the disk drive, refer to Changing
Disk Drives for instructions. If you need to change the
directory, refer to Using the Compound Option Menu.

3. Click left on the name of the compound in the directory,
or type in its name in the File Name field.

4. Click left on EDIT. The Compound Edit screen displays
in the work area. Make your changes as you normally
would in editing a strategy.

5. If you need to edit the compound’s database template,
click left on TEMPLT, and press F10 to save the changes.

6. After editing, click left on Save. The message
WARNING! File exists. UPDATE? appears.
Click left on [OK] to update the compound or click left on
[CANCEL] to cancel the save operation.

You can bring in a compound for editing while a diagram is in
a work area. When you do so, the compound replaces the
diagram in the work area. After you are finished with the
compound, the diagram returns to the work area.

During editing, you can move up and down compounds that
have multiple levels. To reach a lower level, double-click left
on the compound block.

Note: To get back to the higher level compound, press Esc.
Press Esc once for each level.

While you make changes to the compound or its template
during the editing session, the archive database is not
accessed. Therefore, object blocks cannot be set to defined.

Editing a
Compound

MAKE

EDIT

Details

60 Editor

This procedure loads a compound block into the work area
from any available disk drive.

1. Click left on the Compound icon. The option menu
displays.

2. If you need to change the disk drive, refer to Changing
Disk Drives for instructions. If you need to change the
directory, refer to Using the Compound Option Menu.

3. Click left on the name of the compound in the directory,
or type in its name in the File Name field.

4. Click left on LOAD. Move the mouse and notice the
compound block comes to the screen. Before pasting it
down, you may resize the compound block by holding
down the right/middle button and dragging the mouse.

5. Click left to paste down the compound block in the work
area.

When you load a process compound block into the work area,
it comes in as undefined, and all object blocks under it also
become undefined. This is a precaution that prevents from
having duplicate process compounds and objects in the same
file.

A compound block that is defined (colored brown) does not
mean the blocks at the lower levels are also defined. You need
to open the compound to determine if the blocks are defined.

Loading a
Compound
Block

LOAD

XPND

Details

Editor 61

This procedure loads the contents (i.e., expanded version) of a
compound. Use this procedure to create a new strategy or
compound based on an existing one. The compound can come
from any available disk drive.

1. Click left on the Compound icon. The option menu
displays.

2. If you need to change the disk drive, refer to Changing
Disk Drives for instructions. If you need to change the
directory, refer to Using the Compound Option Menu.

3. Click left on the name of the compound in the directory,
or type in its name in the File Name field.

4. Click left on XPND. Move the mouse and notice the
outline of the compound’s contents comes into the work
area. Before pasting it down, you may resize the contents
by holding down the right/middle button and dragging the
mouse.

5. Click left to paste down the compound in the work area.

The size of the compound’s contents is the same as it was
saved but can be resized before pasting it down. Refer to
Step 4 above.

The expanded version of a protected compound cannot be
loaded.

The expanded version of the compound does not include the
template information of the compound block.

Loading the
Contents of a
Compound

LOAD

XPND

Details

62 Editor

Each compound may have an associated description file that
you prepare with an ASCII editor outside of GPL. The
description file has the same path file name as the compound,
with a .CDS (compound description) extension. The purpose
of the file is to explain the logic of the diagrams in the
compound, and to contain any other related information, such
as the author of the compound and date of creation. The
compound does not have to be loaded to view its description
file.

1. Click left on the Compound icon. The option menu
displays.

2. Click left on the name of the compound in the directory,
or type its name in the File Name field.

3. Click left on the Description icon. The description
replaces the diagram in the work area (if displayed).

4. Use the Page Up and Page Down keys to scroll through
the file. Click left or Esc to clear the file and redisplay the
diagram (if one was displayed).

The description file can only be displayed, not edited or
printed, with the GPL Editor. To print the file, use a DOS
utility that can print ASCII files.

The description file can be a maximum of 30 pages long.

You can store and retrieve compounds from any available
DOS disk drive. The GPL Editor recognizes Drive C as the
default drive for all file and compound management functions
in GPL. The valid disk drives are A through Z.

Note: You cannot use Drive B unless you have specified it
in the System Generation file (SYSGEN.EXE) at
installation time. See the Getting Started section in
Introduction.

1. Click left on the Compound icon. The option menu
displays.

2. Type the letter of a disk drive in the File Name field. The
valid disk drives are A through Z.

3. Click left on the DRIV option. The directory changes to
show the contents of the selected disk.

Displaying a
Compound
Description File

Details

Changing Disk
Drives

DRIV

DIR

Editor 63

The Editor shows the current directory level that the
GPLPATH statement specifies in the GPL.BAT file.

The Editor filters the directory to show only GPL compound
files.

Use the DIR option to create a DOS format directory under
which you can store GPL compounds.

1. Click left on the Compound icon. The option menu
displays.

2. If you need to change the disk drive, refer to Changing
Disk Drives for instructions. If you need to change the
directory, refer to Using the Compound Option Menu.

3. If this is to be a subdirectory, go to the desired directory
by clicking left on the directory name.

4. Enter the new subdirectory name in the File Name field.

5. Click left on DIR. The new directory is created and added
to the list.

Do not type an asterisk (*) after the directory name. For a list
of other characters and words that are not allowed, refer to
Appendix F: Characters, Symbols, and Reserved Words.

The Editor supports up to 100 directories. You cannot delete a
directory in GPL.

Details

Creating a
Directory

DRIV

DIR

Details

64 Editor

This procedure deletes a compound from any available disk.

1. Click left on the Compound icon. The option menu
displays.

2. If you need to change the disk drive, refer to Changing
Disk Drives for instructions. If you need to change the
directory, refer to Using the Compound Option Menu.

3. Click left on the name of the compound in the directory,
or type in its name in the File Name field.

4. Click left on the Delete File icon (trash can). The message
Verify file deletion displays. To delete the
compound, click left on [OK]. The compound is deleted
and the list refreshes. You may otherwise click left on
[CANCEL] to escape this operation.

This procedure deletes the file with a .CMP extension. The
.CDS (compound description) file is not created with GPL,
and therefore is not deleted. It must be deleted outside of GPL.
Also, this procedure does not delete the associated backup
compound file.

Once a compound is deleted, it cannot be restored within GPL.
Use a special restoration program to restore deleted
compounds. Alternatively, you can use the backup file of the
compound (filename.OCM), which should still be intact. Refer
to the restoring backup files section in Appendix E: External
Functions.

You may delete a compound that has its block currently
displayed. However, the block will not clear from the work
area.

Deleting a
Compound

Details

Editor 65

Zoom and Pan Functions

This section explains how to zoom and pan a diagram. The
Zoom and Pan icon provides the zoom and pan functions.
Double-clicking left on the Zoom and Pan icon displays an
option menu (Figure 21).

M =0%
X=1412
Y=1356

ZOOMPAN

IN PU T/O U TP U T
B I B O A I A O S A O D A C M R EF

LIB R A R Y

Zoom Icon Pan Icon

Figure 21: Zoom and Pan Option Menu

Note: The default operation of this icon is zoom in.

The procedures in this section presume a diagram is currently
displayed.

66 Editor

The zoom in function enlarges a portion of a diagram for
closer viewing, much like a zoom lens on a camera enlarges an
image. Zoom out returns it to its previous size. A diagram can
be zoomed up to four times by successively clicking left. The
GPL Editor does not indicate if a diagram is zoomed.

1. Click left on the Pan and Zoom icon.

2. Move the mouse and notice that a white enclosing box
appears. This box selects the portion of the diagram that
you want to zoom.

3. While holding down the right/middle button and dragging
the mouse, size the white box to a size large enough to
enclose the portion of the diagram you want to zoom.

4. Click left. The selected area enlarges.

5. If you want to zoom further, click left again. You can
zoom up to four times.

6. To zoom out, double-click left. One double-click will
zoom out one level.

The degree of the zoom depends on how large you size the
white enclosing box. The smaller the white box, the larger the
selected portion is zoomed.

Use the left button to zoom in and out: a single click zooms in;
a double-click zooms out. Hold down the right/middle button
to resize the white enclosing box.

The white enclosing box has a default size. Even if you resize
it, the box returns to its default size after you complete the
zoom operation.

You may edit a diagram that is zoomed, but when you return it
to regular size, all blocks and text you added will shrink in
respect to the size of the zoomed area.

When you zoom in a compound, the compound name fields
disappear. They return when you zoom out to the original size.

Zooming In and
Out

Details

Editor 67

This procedure lets you pan across a zoomed diagram in the
work area. Panning “slides” a diagram up, down, and across so
you can view particular areas of the diagram. The GPL Editor
does not indicate if a diagram is panned.

1. Double-click left on the Pan and Zoom icon. The option
menu displays.

2. Click left on the Pan icon.

3. While holding down the left button, drag the mouse across
the screen. Release the button. The screen pans in the
direction of the mouse.

Panning is only available when the work area is zoomed in. To
return the diagram to original size, click left on the Pan and
Zoom icon, place the cursor in the work area, and double-click
left (double-click for each zoomed level).

Panning

Details

68 Editor

Editor 69

Erase and Delete Functions

This section explains how to perform these functions:

� Erase an item or group of items. Items include function
and compound blocks, connection lines, text, or analog
displays.

� Delete an object from the archive database.

� Clear memory.

� Undo an erased item or group of items.

The Erase icon (eraser) provides these functions. The delete
function removes a defined object from the archive database,
and the erase function erases an item from the work area.

70 Editor

Double-clicking left on the Erase icon displays an option menu
(Figure 22).

M =0%
X=1412

Y=1356

ERASEOP

IN P U T/O U TP U T
B I BO A I A O S A O D A C M R E F

LIB R A R Y

CLR
ALL UNDO

Erase Group Icon

Erase Item Icon

Clear All Option

Undo Option

Figure 22: Erase Option Menu

Note: The default operation of this icon is erase item.

Editor 71

The items that you can erase from a diagram include function
and compound blocks, connection lines, remote connections,
text, and analog displays.

1. Click left on the Erase icon (eraser).

2. If you want to erase an undefined object block, or an
operation or special block, move the cursor into the block
and click left. The block and its connections erase.

If you want to erase a defined object block, move the cursor
into the block and click left. The message Delete this
object from the archive database? displays on
the bottom of the work area. To keep the object in the archive
database, click left on [NO]. To delete the object from the
archive, click left on [YES]. Then, another message displays
which asks, Erase this block from the GPL
strategy file? To erase the block from the file, click
left on [YES]; otherwise, to keep the object block, click left on
[NO].

If you want to erase a connection line only, move the cursor at
either end of the line, or on a turn in a line. A yellow box
appears, showing that this connection is selected for deletion.
Click left. The connection line erases.

If you want to erase a remote connection, click left on it, or
select the end of or a turn in the remote connection line and
click left.

If you want to erase text or an analog display, move the cursor
on it. A yellow box appears, enclosing the text or analog
display to be erased. Click left. The text or analog display
erases.

If you accidentally erase an item, use the undo function to get
it back. See the section Undoing an Erased Item or Group of
Items for details.

Erasing an Item

Details

72 Editor

When you erase an item, the work area does not refresh.
Therefore, the blocks, connections, text, and analog displays
that are adjacent to the erased block may also erase partially.
Simply click left in an open spot on the work area, and these
items will return.

If an object block that has a remote connection is erased, the
remote connection is also erased.

When selected for erase, a REF object block erases
immediately and the Editor does not display the delete object
option (just like an operation block). The object for the REF
block in the archive database is not affected.

This function erases a group of items on a diagram. Items that
can be erased include function and compound blocks,
connection lines, remote connections, text, and analog
displays. However, this function does not delete objects from
the archive database.

1. Double-click left on the Erase icon (eraser).

2. Click left on the Erase Group icon (framed eraser).

3. Move the mouse and notice that a white enclosing box
appears. This box selects the group of items on the
diagram that you want to erase.

4. While holding down the right/middle button and dragging
the mouse, size the box large enough to enclose the group
that you want to erase. Move the mouse to position the
box within the group.

5. Click left. The selected group erases.

Function and compound blocks, remote connections, text, and
analog displays must be totally enclosed in the white enclosing
box to erase. Connection lines, however, do not. Also, you
cannot erase an individual connection line by enclosing it
within the white box.

If you inadvertently erase a group of items, use the Undo
function to get it back. See the section Undoing an Erased
Item or Group of Items for details.

Erasing a Group
of Items

Details

Editor 73

When you erase a group, the work area does not refresh.
Therefore, the blocks, connections, text, and analog displays
that are adjacent to the erased group may also erase partially.
Simply click left on any open spot in the work area, and these
items will return.

The white enclosing box has a default size. It is changed,
however, when you resize it. The new size then becomes the
default size—the size of the white enclosing box the next time
the eraser function is used.

If an object block that has a remote connection is erased, the
remote connection is also erased.

When selected for erase, a REF object block erases
immediately and the Editor does not display the delete object
option (just like an operation block). The object for the REF
block in the archive database is not affected.

With this procedure, you can delete a software object or
process object from the archive database. Only one object at a
time can be deleted from the archive. That means you cannot
use the Erase Group icon to delete multiple objects at one
time. Also, a REF object block can only be erased from the
file, not deleted from the archive, since it is only a reference to
the object, not an actual object.

1. Click left on the Erase icon (eraser).

2. Move the cursor into the object block and click left. The
message Delete this object from the
archive database? displays on the bottom of the
work area.

3. To delete the object from the archive database, click left
on [YES]. To keep the object in the archive database,
click left on [NO]. Then, another message displays which
asks, Erase this block from the GPL
strategy file? To erase the block from the file,
click left on [YES]; otherwise, to keep the object, click
left on [NO].

Deleting an
Object

74 Editor

When you delete an object from the archive database but keep
it in the strategy file, its border changes to magenta.

When you delete a process compound from the archive
database, only the process object for the compound is deleted,
not all object blocks defined in the compound.

Note: After you delete several objects, use ARCHPACK to
compress the archive database.

This function clears the computer’s RAM, which effectively
clears the entire control strategy from the work area. The
function is helpful when you want to “clear the slate” and start
over.

!
 CAUTION: Before this function is performed,

the message WARNING! You are
about to clear the entire
diagram displays as a precaution.
If you clear the screen, all changes
made since the last save are lost and
cannot be recovered with the Undo
function.

1. Double-click left on the Erase icon (eraser). The option
menu displays.

2. Click left on CLR ALL. The message WARNING! You
are about to clear the entire diagram
appears.

3. Click left on [OK] to clear the work area. You may
instead click left on [CANCEL] to exit this operation.

After you clear the memory, the network is deselected, the
Network Name field displays ?? ARCH DB, and the memory
usage figure changes to 0.

Details

Clearing Memory

CLR
ALL

Details

Editor 75

The Undo function allows you to retrieve items of a control
strategy that you previously erased. The items can be function
and compound blocks, connection lines, text, and analog
displays. These steps presume that at least one erased action is
in memory, ready to be restored.

1. Double-click left on the Erase icon (eraser). The option
menu displays.

2. Click left on UNDO. The items that you last erased return
to the work area. The message Last erased item
restored. Returning to Erase mode
displays. Click left to clear the message.

3. To retrieve another erased item, repeat the previous
two steps.

The Undo function returns the erased items for each individual
erase action up to the last time the file was saved. Up to 250
erase actions can be restored.

Since a control strategy may consist of multiple compound
levels, it is possible to restore an item that is on a level
different from the one currently displayed. In that case, you
would not see the item being restored to the work area.
Therefore, the message Last erased item restored.
Returning to Erase mode will always display after
each undo action to indicate that the GPL Editor has, in fact,
performed the operation.

When an object block is restored, the block is returned as
undefined. This eliminates the chance of having two blocks
with the same system\object name. However, any changes
made in the template remain intact.

An erased object block that has a remote connection can be
restored. When that happens, the remote connection symbol
returns labeled as before.

Undoing an
Erased Item or
Group of Items

UNDO

Details

76 Editor

Editor 77

Move, Copy, and Resize
Functions

This section explains how to perform the following functions:

� Move, copy, and resize an item or group of items. Items
include function and compound blocks, connections, text,
and analog displays.

� Add a new line segment.

The Move icon (scissors) provides these functions.

78 Editor

Double-clicking left on the Move icon displays an option
menu (Figure 23).

M =0%

X=1412

Y=1356

MOVOPMNU

IN PU T/O U TP U T
B I B O A I A O S A O D AC M R E F

LIB R A R Y

Copy Item Icon
Move Item Icon

Move Group Icon
Copy Group Icon

Figure 23: Move Option Menu

Note: The default operation of this icon is move.

The procedures discussed in this section presume a diagram is
currently displayed.

Editor 79

You can move any item pasted down on a diagram, including
blocks, line segments, text, and analog displays. The item can
be moved to any spot on the work area.

1. Click left on the Move icon (scissors).

2. If you want to move a block (and its connection lines),
click left on it. The title of the block disappears. Move the
block to a new position and click again to paste it down.

If you want to move a segment of a connection line, move
the cursor to the beginning, end, or turn in the line.
A yellow box appears that indicates the line is selected for
move. Click left. Move the line to a new position and
click left again to paste down.

If you want to move text, position the cursor on the text
and a yellow box appears. Click left. The text disappears
and a white box appears. Move the box to where the text
should go and click left to paste it down.

If you want to move an analog display, position the cursor
on the display and a yellow box appears. Click left. The
display becomes free to move. Move it to a new position
and click left to paste down. The analog display is still
associated with its connection.

When you select a block for move, its label disappears. That is
normal. When you select text, it disappears and a white box
appears. That, too, is normal.

All connection lines leaving or entering a block move with the
block.

You may notice that the GPL Editor limits the area in which
the beginning or end of a line can be moved. This is necessary
so that the line remains connected to the block.

Moving an Item

Details

80 Editor

You can straighten a connection line that has two right angle
turns as follows (Figure 24):

1. Position the cursor at the upper turn until the yellow box
appears. Click left and move the mouse until the upper
turn is in line with the bottom line. Click left again to
paste it down.

2. Position the cursor at the end of the line (i.e., on the
arrowhead). With the yellow box highlighted, click left
and move it to straighten the line; click again to paste it
down.

STRTALN

CMD
SET BD

CMD
SET BD

CMD
SET BD

1

2

I

I

I

V

V

V

Upper Turn

End

Original:

B I
A H U 1

FA N -S T A T

B I
A H U 1

FA N -S T A T

B I
A H U 1

FA N -S TA T

Figure 24: Straightening a Line

You may resize an item that you are moving before pasting it
down. Hold down the right/middle button and drag the mouse.
An individual analog display should not be resized, since it
will not display as the new size in Simulator.

Editor 81

You can move items from one area of the screen to another.
The GPL Editor does not allow you to move an item from
one diagram to another. You may, however, group the area to
be moved into a group compound, and load the expanded
version of the compound into another diagram.

If you undo an erased connection line, and you moved the
function block after the erased action, the line will be restored
at its original position, not at the block’s new position.

This function makes a copy of a block, text string, or analog
display. You may find it easier to copy an existing item than to
paste down a new one, because copying a block also copies its
template information.

1. Double-click left on the Move icon (scissors). The option
menu displays.

2. Click on the Copy icon (stamp).

3. If you want to copy a function or compound block, click
left anywhere inside the block. A copy displays on top of
the original. Move the duplicate to a desired position, and
click left to paste down.

If you want to copy a text string, position the cursor on the
text and a yellow box appears. Click left. The text
disappears and a white box appears. Move the box to
where the duplicate should go and click left to paste it
down.

If you want to copy an analog display, position the cursor
on the display and a yellow box appears. Click left. A
duplicate appears. Move it to a position and click left to
paste it down.

Copying an Item

82 Editor

When you select a block for duplication, its name disappears.
That is normal. When you select text, it disappears and a white
box appears. That, too, is normal.

You can copy items from one area of the screen to another.
The GPL Editor does not allow you to copy an item from
one diagram to another. You may, however, group the area to
be copied into a group compound, and load the expanded
version of the compound into another diagram.

You may resize an item you are copying before pasting it
down. Hold down the right/middle button and drag the mouse.
You should not resize an individual analog display, since it
will not display as the new size in the Simulator.

When you copy a function block, you also copy its database. A
copied operation or special block is defined, but a copied
object or process block is undefined. You need to define all
copied object and process blocks separately, since only
one object of the same name can exist in the same strategy file.
Also, all object blocks under a copied process compound
block are changed to undefined.

When a compound block is copied, all compounds and
diagrams under it are also copied. In this way, you can use the
copy function to duplicate a complete system control strategy
in one step. For example, you may want to create a new air
handling strategy by copying an existing strategy and merely
editing the system\object names in the new strategy.

If the error message Too many items for move/copy
operation displays when you try to copy a compound, the
temporary buffer used in this operation is full. If the compound
exists on disk, try instead to paste down the compound using
the LOAD option. Or, create a new compound to disk,
selecting the parts of this compound you wish to copy; then,
paste down that compound.

Details

Editor 83

A group of blocks, connections, text, and analog displays can
be moved together at one time.

1. Double-click left on the Move icon (scissors). The option
menu displays.

2. Click on the Move Group icon (framed scissors).

3. Move the mouse and notice a white enclosing box
appears. This box selects the group that you want to move.

4. While holding down the right/middle button and dragging
the mouse, size the white enclosing box large enough to
enclose the group. Position the box within the group and
click left. The block labels disappear.

5. Move the group to its new position and click left to paste
it down.

When you select a group of items for move, their labels
disappear. That is normal.

Each item in the group must be completely enclosed in the
white enclosing box for it to be selected for move. The
connection line is an exception. If the block it is connected to
is completely enclosed, the line does not have to be enclosed.

You may resize a group of items you are moving before
pasting it down. Hold down the right/middle button and drag
the mouse. Resizing is performed proportionally.

The white enclosing box has a default size. It is changed,
however, when you resize it. The new size then becomes the
default size—the size of the white enclosing box the next time
the Move Group function is used (or any other function that
uses the enclosing box).

You can move a group of items from one area of the screen to
another. The GPL Editor does not allow you to move a group
from one diagram to another. You may, however, group the
items to be moved into a group compound, and load the
expanded version of the compound into another diagram.

If the error message Too many items for move/copy
operation displays when you try a group move, the
temporary buffer used in this operation is full. Try instead to
move less items or move each item individually.

Moving a Group
of Items

Details

84 Editor

You can copy a group of blocks, connections, text, and analog
displays together at one time.

1. Double-click left on the Move icon (scissors). The option
menu displays.

2. Click on the Copy Group icon (framed stamp).

3. Move the mouse and notice a white enclosing box
appears. This box selects the group that you want to copy.

4. While holding down the right/middle button and dragging
the mouse, size the white enclosing box large enough to
enclose the group. Position the box within the group and
click left. The block labels disappear.

5. Move the copy to a spot in the work area and click left to
paste down.

When you select a group of items for copy, their labels
disappear. That is normal.

For a group to be selected, make sure each item in the group is
completely enclosed in the white enclosing box. The
connection line is an exception. If the block it is connected to
is completely enclosed, the line does not have to be enclosed.

You may resize a group of items you are copying before
pasting it down. Hold down the right/middle button and drag
the mouse.

The white enclosing box has a default size. It is changed,
however, when you resize it. The new size then becomes the
default size—the size of the white enclosing box the next time
the Copy Group function is used (or any other function that
uses the enclosing box).

Copying a Group
of Items

Details

Editor 85

You can copy a group of items from one area of the screen to
another. The GPL Editor does not allow you to copy a group
from one diagram to another. You may, however, group the
items to be copied into a group compound, and load the
compound into another diagram.

If the error message Too many items for move/copy
operation displays when you try a group copy, the
temporary buffer used in this operation is full. Try instead to
copy less items or copy each item individually. If this is an
individual compound and it exists on disk, paste down the
compound using the LOAD option. Or, create a new
compound to disk, selecting the parts of this compound you
wish to copy; then, paste down that compound.

You can resize a block or text. Resizing is performed
proportionally.

Note: Connections and analog displays can be resized only
with the Resize Group function.

1. Click left on the Move icon (scissors).

2. If you want to resize a block, click left on the block. The
block becomes free to move and resize. Hold down the
right/middle button and drag the mouse to resize. Position
the block and click left to paste down.

If you want to resize a text string, position the cursor on
the text and a yellow box appears. Click left. The text
disappears and a white box appears. Hold down the
right/middle button and drag the mouse to size the white
box. Position the text and click left to paste it down.

You can resize a group of blocks, connections, text, and
analog displays together at one time. Resizing is performed
proportionally.

1. Double-click left on the Move icon (scissors). The option
menu displays.

2. Click on the Move Group icon (framed scissors).

3. Move the mouse and notice a white enclosing box
appears. This box selects the group that you want to
resize.

Resizing an Item

Resizing a
Group of Items

86 Editor

4. While holding down the right/middle button and dragging
the mouse, size the white enclosing box large enough to
enclose the group. Position the box within the group and
click left. The block labels disappear.

5. Hold down the right/middle button and drag the mouse.
Resize the group. Click left to paste down.

When you select a group of items for resizing, their labels
disappear. That is normal.

For a group to be selected, make sure each item in the group is
completely enclosed in the white enclosing box. The
connection line is an exception. If the block it is connected to
is completely enclosed, the line does not have to be enclosed.

The white enclosing box has a default size. It is changed,
however, when you resize it. The new size then becomes the
default size--the size of the white enclosing box the next time
the Resize Group function is used (or any other function that
uses the enclosing box).

You can add a line segment to an existing line by following
this procedure.

1. Click left on the Move icon (scissors).

2. Position the cursor on the turn in the line where the new
segment is to be formed. A yellow highlighting box
appears. Click right and drag the mouse. A new segment
appears. Click left to paste it down.

You cannot add a line segment to the end of a connection
(i.e., at its arrowhead).

Details

Adding a Line
Segment

Details

Editor 87

Block Connection and
Command Functions

This section discusses the basics of drawing connections and
how to perform these functions:

� Connect two function or compound blocks, either within
the same diagram or different diagrams.

� Connect two function or compound blocks remotely.

� Command objects and processes.

� Exempting a connection from triggering a process.

88 Editor

The Connection icon (bent-up arrow) provides these functions.
Double-clicking left on the Connection icon displays an option
menu (Figure 25).

M =0%

X=1412

Y=1356 IN PU T/O U TP U T
B I B O A I A O S A O D A C M R E F

LIB R A R Y

XMPT

Connection Icon Exempt Connection Icon

CONOPMNU

Figure 25: Connection Option Menu

Note: The default operation of this icon is connect block.

Editor 89

By drawing lines between function or compound blocks, you
accomplish GPL data and control flow. You draw lines by
selecting from a list of inputs and outputs for each block.
These inputs and outputs are listed on connection menus that
display in the work area while you are making a connection
(Figure 26).

OISIDES

Output

Input

UP
DWN

TOP
BOT

Name:

IN P U T C O N N EC TIO N M E N U

UP
DWN

ANA BIN
TOP
BOT

Name:

O U TP U T C O N N E C TIO N M E N U

Figure 26: Output and Input Sides of a Connection

Clicking left on a block displays its output connection menu.
Selecting an output from the menu starts the line from the edge
of the block. Then, moving the line into another block and
clicking left again displays the input connection menu. After
you select an input, the Editor draws the line between the
blocks.

All connection lines are white, but the appearance of the line
varies according to the type of data being exchanged. The
following table outlines the data types:

Type of Data Line Shape

Analog or Time Solid

Binary Dashed

Control Dotted

Command Heavy Solid

Dual Command Heavy Solid

Read Heavy Solid

Write Heavy Solid

Learning the
Basics of
Connecting
Blocks

90 Editor

The only prerequisite to connecting two blocks is that both
blocks are pasted down in the work area. In almost all cases,
blocks do not have to be defined to be connected. However,
you may have to specify in the database template the type of
data that can be connected to a particular block. For example,
before you connect a time data line to an ADD block, you have
to first configure the ADD block to accept time data. You do
this in the block’s database template.

Almost all function blocks require either an input or output
connection. The Editor presents all available choices in the
connection menus. Object blocks, however, can stand alone on
a diagram without connections. Also, two other function
blocks may not require connections: the FILE block (never
connected) and the USER block (depends on application).

You may cancel the drawing of a line any time during the
connection procedure. To cancel before you selected an output
connection, click anywhere outside the menu. To cancel after
you selected an output connection, click the right/middle
button once to erase each formed line segment. To cancel
while the input menu is displayed, click anywhere outside the
menu.

The instructions in this section refer to an origin block and a
destination block (Figure 27). The origin block is where a
connection starts; the destination block is where a connection
ends.

Details

Editor 91

V

DB

ENRH
ENRH1

A I
A H U 1

O A -T E M P

Origin Block:

Destination Block:

ORDESBLK

Figure 27: Origin and Destination Blocks

When you make connections with the grid on, the lines “snap”
at 90 degree angles. That is, the lines you draw diagonally
paste down as straight lines. This speeds up the process of
drawing neat and consistent lines. If the grid is off, the lines
are pasted down exactly as drawn. See the Tools Functions
section for details.

Once you connect two blocks, each end of the line has a
1- or 2-character label that abbreviates the selected connection
type (Figure 28). The Function Blocks chapter lists the
meanings of all line labels per block.

ORDESBLK

V

DB

ENRH
ENRH1

A I
A H U 1

O A -T E M P

DB-DRY BULB temperature
from AHU1\OA-TEMP.

V-VALUE attribute of the AI object.

Figure 28: Line Labels for Two Connected Blocks

You may draw connection lines across or on top of each other.
GPL is able to distinguish between the two different lines.

A direct connection can have up to 14 line segments, and a
remote connection, seven line segments. Also, a direct
connection can penetrate up to ten compound levels.

92 Editor

Connection lines to show data or control flow can be drawn in
any direction. Figure 29 shows various directions. However,
for easy readability, it is best to show data flow from left to
right and from top to bottom.

VDODCFL

Figure 29: Various Directions of Data or Control Flow

The number of lines that can enter or exit a function block is
preset. If you try to connect more inputs or outputs than is
allowed, the GPL Editor will notify you with an appropriate
error message. The User Messages section at the end of this
chapter explains all error messages.

For some blocks, you may configure (i.e., specify) the number
of connection lines in the block’s database template. The AND
block, for example, may have two, three, or four input
connections. The Number of Inputs field in the AND block
template determines how many inputs the Editor makes
available in the input connection menu. You can change the
number of configured inputs at any time.

Editor 93

Whenever you want information about an existing connection,
a brief description of it is available. Select the Query icon and
position the cursor on the beginning, end, or corner of the line.
A yellow box displays to indicate the line is selected. Click
left, and a brief description about the origin and destination
blocks appears in the lower portion of the work area
(Figure 30).

M=0%
X=1412

Y=1356

QUERCON

LIB R A R Y

IN PU T/O U TP U T
B I BO A I A O S A O D A C M R EF

E N R H

NETNAME

V

DB

AI
AHU1
OA-TE

E N R H
O A -E N R H

A nalog: AH U 1\O A-TE -V ALU E to O A -E N R H -D R Y B U LB
 To continue, click the m ouse.

Figure 30: Querying a Connection

The Expert Checker verifies that you have made every
required connection. It does not, however, check if the
connections you made are sensible. The Function Blocks
chapter indicates all required and optional connections for
each block.

94 Editor

Connecting blocks establishes the data or control flow from
one block to another. When you make a connection, the Editor
checks to see if this is a valid connection; if not, a message
displays on the bottom of the work area. For example, the
Editor would not allow an analog type line to be an input to a
binary connection.

The process of drawing a line between blocks involves
selecting the correct input and output connection name from
the connection menus that display. Figure 31 is a sample of a
direct connection menu.

UP
DWN

ANA BIN
TOP
BOT

Name:

HI_ALARM
LO_ALARM
NORMAL
OVERRIDE
VALUE

HI_WARN
LO_WARN
OFFLINE
READ

Connection
Name List

Connection
Name Field

MNUFLDS

Figure 31: Direct Connection Menu

As shown, the menu is composed of the following fields,
which perform these operations:

UP

Pages the Connection Name list back one page. If you click
left on UP and the list does not change, you have reached the
first page.

DWN

Pages the Connection Name list forward one page. If you click
left on DWN and the list does not change, you have reached
the last page.

Connecting Two
Blocks

Introduction

Menu Fields

Editor 95

ANA

Filters the Connection Name list to show only analog
connections. Click left on ANA to filter the list to show all
analog connections (ANA back-highlights in red). Click left on
ANA again to show all connections (ANA dehighlights).

BIN

Filters the Connection Name list to show all binary
connections. Click left on BIN to filter the list to show all
binary connections (BIN back-highlights in red). Click left on
BIN again to show all connections (BIN dehighlights).

TOP

Displays the first page (top) of the Connection Name list. If
you click left on TOP and the list does not change, you have
reached the first page.

BOT

Displays the last page (bottom) of the Connection Name list. If
you click left on BOT and the list does not change, you have
reached the last page.

96 Editor

Lists all possible connections for the block, arranged
alphabetically from left to right. Click left on the connection
name to select it. The connection names are color coded in the
menu to distinguish their types.

Connection Type Color

Analog Yellow

Binary Blue

Time Brown

Control Green

Command White

Dual Command White

Read White

Write White

Field for typing in a valid connection name. As you type the
name, the Editor filters the list to show only those entries
beginning with the letters specified. Use the backspace key to
erase a typed letter and refilter the list. The field is not case
sensitive.

Connection Name
List

Connection Name
Field

Editor 97

To make a direct connection on the same diagram, follow
these steps. For making a connection between compounds (i.e.,
different diagrams), or making a remote or command
connection, see the later sections.

1. Click left on the Connection icon (arrow).

2. Click left anywhere inside the origin block. An output
connection menu displays, such as the example in
Figure 32.

UP
DWN

ANA BIN
TOP
BOT

Name:

HI_ALARM
LO_ALARM
NORMAL
OVERRIDE
VALUE

HI_WARN
LO_WARN
OFFLINE
READ

XOCONMNU

Figure 32: Example of an Output Connection Menu

3. Select the appropriate output connection name by clicking
left on it. (Optionally, you may click left on ANA or BIN
to filter by connection type.) The menu disappears.

4. Move the mouse and notice a line has formed.

5. Move the line out of the origin block. To add a line
segment, click left. To erase a line segment, click
right/middle.

6. Move the line anywhere inside the destination block and
click left. The input connection menu displays.

7. From the menu, click left on the appropriate input
connection name. (Optionally, you may click left on ANA
or BIN to filter by connection type.) The two blocks
connect.

Procedure

98 Editor

You may need to turn a line for it to reach the destination
block, or to make a tidy connection. Figure 33 shows an
example of two turns in the connection between the
AHU1\OA-TEMP and ENRH1 blocks. To turn the line,
simply click left anywhere in the work area while drawing the
line. A new line segment forms. Make as many turns as needed
to reach the destination block (14 segments maximum).

TURNLINE

V

D B
E N R H
E N R H 1

A I
A H U 1

O A -TE M P

V

R H

Turn

Turn

A I
A H U 1
O A -R H

Figure 33: Turns in a Line to Reach Destination Block

Figure 34 shows additional examples of various methods for
connecting blocks. Fan in is multiple outputs fed into
one input; fan out is the same output going into multiple
inputs.

Details

Editor 99

V

D B E N R H
E N R H 1

A I
A H U 1

O A -TE M P

V

R H

C

B D
A H U 1
FA N -1

C

C

C M D
S E T B D

C M D
B E G TR E N D

V A LU E

C M D
R E LE A S E

DIRCONC

I1

P R N T

D FC M
>

A I
A H U 1
A I1

V

V

V

I

I

P ID L
A H U 1
P ID L-1

Fan In:

Fan O ut:

Standard
C onnection:

SB

B H

R

A I
A H U 1
O A -R H

Figure 34: Direct Connection, Fan In Connection,
and Fan Out Connection

100 Editor

When making connections, you may form a loop between
two or more blocks. A loop is formed when two blocks are fed
the inputs and outputs of each other (Figure 35). In this case,
the Editor does not know which block to execute first. When
the Editor detects a loop, the warning message
Loop detected! Select Loop-Master block is
displayed and the loop turns red. To complete a loop, you need
to choose which function block GPL will execute first by
clicking left on that block. This block is called the loop-master
block. The end of the loop-master block connection will then
change to an open circle.

CNST
ADD1.0

IN

O

I1

I2

O O

FORMLOOP

LOOP-MASTER BLOCK

S V AR

PC B _C N S T

ADD
ADD BLK

Figure 35: Forming a Loop

Note: When the message Loop detected! Select
Loop-Master block is displayed, the only items
in the work area that are active include the function
blocks that are in the loop, all compound blocks, and
the Compound Name fields. If you click on an
inactive item in the work area, nothing happens. If
you click anywhere outside the work area, the last
line drawn that caused the loop erases, canceling the
loop.

If the loop-master block is on another diagram, you can go to
that diagram in the normal manner and click left on the block.
If the loop-master block has a remote connection as an input,
the remote connection symbol is marked as the loop-master
block.

Editor 101

You can connect blocks that exist in different compounds but
in the same file. The procedure is similar to connecting two
blocks that are on the same screen. These steps presume that
the origin block is in the current compound and the destination
block is in another compound.

1. Click left on the Connection icon (arrow).

2. Double-click left on the compound that contains the origin
block.

3. Click left anywhere inside the origin block. An output
connection menu displays.

4. Select the appropriate output connection name by clicking
left on it. (Optionally, you may click left on ANA or BIN
to filter by connection type.) The menu disappears.

5. Move the mouse and notice a line forms. Move the line
past the green edge of the work area and click left. This
displays the diagram at the next-highest level.

6. Draw the line into the compound block that contains the
destination block. Click left. The contents of that
compound display.

7. Locate the destination block. Move the line anywhere
inside the destination block and click left. The input
connection menu displays.

8. From the menu, select the appropriate input connection
name. (Optionally, you may click left on ANA or BIN to
filter by connection type.) The two blocks connect.

While drawing the line from the origin block, continue to click
into lower level compounds until you reach the desired
destination block. You can go down as many as ten compound
levels.

Connecting Two
Blocks in
Separate
Compounds

Details

102 Editor

The relative position that a line leaves the origin compound is
where it is drawn coming out of the compound or compound
block at the higher level. For example, if a line leaves the
origin compound at the right side of the work area, it will
appear on the left side of the destination compound at
relatively the same vertical position (Figure 36).

OC O M P 1

N A M E 1

LNBTWCM

N A M E 1

V

V

O
I1

I2

A I

A H U 1

FLO W 1

A I

A H U 1
FLO W 2

C O N N
FLO W

O
HSEL

N A M E 2

CONN
FLOW

IN

SVAR
HFLOW

IN

O

IN

IN

C O M P 2

N A M E 2

Figure 36: Relative Position of a Line Between Compounds

If you move a connection line that exits a compound headed
for another compound, the other segment of the line inside the
compound remains in its original position. It will not move
when the other segment is moved.

Editor 103

With this procedure, you can draw a remote connection
between two blocks. The blocks you want to connect may be
in the same diagram or in different diagrams, but they must be
in the same file. Remote connections between separate files is
not allowed.

Note: A block must be named for it to be connected
remotely. That is because the name is required to
identify the block in the remote connection menu.
Object blocks can be either defined or undefined.

The procedure for drawing a remote connection is different
from drawing a direct connection. The primary difference is
that you double-click anywhere on the screen to start the
remote connection.

GPL has two types of remote connections: origin remote
connection and destination remote connection. The origin
connection has the origin block as its reference, in which the
remote connection is an input to a destination block
(Figure 37). The destination remote connection has the
destination block as its reference, in which the remote
connection is an output from an origin block (Figure 37).

OI1

I2

V

A I

A H U 1

FLO W 1

AI

AH U 1

FLO W 2

V

IN

INOUTRC

H SEL S V A R

O rigin R em ote C onnections
(references origin block)

D estination R em ote C onnection
(references destination block)

Figure 37: Origin and Destination Remote Connections

Connecting Two
Blocks Remotely

Introduction

104 Editor

The steps in making an origin remote connection or a
destination remote connection differ slightly. To make an
origin remote connection, you double-click left in the work
area, which displays the remote connection symbol. To make a
destination remote connection, you first need to start the
connection line from the origin block, then double-click left in
the work area. The complete instructions for both types of
remote connections are explained separately below.

The remote connection menu (Figure 38) displays while you
are making the remote connection. It differs slightly from the
direct connection menu.

RMTCNMN

UP
DWN

OBJ BLK
TOP
BOT

Name:

AHU1
SET_AD

ENRH1
Block Name List

Block Name Field

Figure 38: Remote Connection Menu

As shown, the menu is composed of the following fields,
which perform these operations:

UP

Pages the Block Name list back one page. If you click left on
UP and the list does not change, you have reached the first
page.

DWN

Pages the Block Name list forward one page. If you click left
on DWN and the list does not change, you have reached the
last page.

Menu Fields

Editor 105

OBJ

Filters the Block Name list to show only system names that are
defined in the file. Click left on OBJ to filter the list to show
all system names. (OBJ back-highlights in red). Click left on
OBJ again to list all system names, and operation and special
block names (OBJ dehighlights).

BLK

Filters the Block Name list to show only operation and special
block names. Click left on BLK to filter the list to show all
operation and special block names (BLK back-highlights in
red). Click left on it again to list all system names, and
operation and special block names (BLK dehighlights).

TOP

Displays the first page (top) of the Block Name list. If you
click left on TOP and the list does not change, you have
reached the first page.

BOT

Displays the last page (bottom) of the Block Name list. If you
click left on BOT and the list does not change, you have
reached the last page.

Lists all system names, and the names of object, operation, and
special blocks in the control strategy. Object names and blocks
within protected compounds are not listed. A REF object
block name may have appended a block label in blue to
differentiate it from other REF blocks. Click left on a system
name to change the list to show all object blocks under that
system. Click left on an object name to change the list to show
all connections under that object. Similarly, click left on an
operation or special block to change the list to show all
connections under that block.

Block Name List

106 Editor

The list is arranged alphabetically from left to right. The
names in the list are color coded to distinguish their types.

Name Color

System Name Red

Object Block Name Red

Operation Block Name White

Special Block Name White

Field for typing in a valid system name or block name. As you
type the name, the Editor filters the list to show only those
entries beginning with the letters specified. Use the backspace
key to erase a typed letter and refilter the list.

Follow these steps to make an origin remote connection (steps
for making a destination remote connection follow):

1. Click left on the Connection icon (arrow).

2. Double-click left in any empty space in the work area.
A remote connection symbol appears.

3. If you need to resize the remote connection symbol, hold
down the right/middle mouse button and drag the mouse.

4. Position the remote connection symbol and select the
proper orientation, clicking the right/middle button to
change orientation (Figure 39). If you click and the
orientation does not change, move the symbol closer to
the middle of the work area.

Block Name Field

Procedure: Origin
Remote
Connection

Editor 107

Default Orientation Other Orientations

FOURORIE

Figure 39: Four Orientations for
Remote Connection Symbol

5. With the remote connection symbol in the desired
position, click left. The remote connection menu displays.

6. From the connection menu, locate the origin block.

If the origin block is an object, click left on the desired
system name in red. A list of all objects under that system
displays. Select an object name and a list of all output
connections displays.

If the origin block is an operation or special block, click
left on the block name in white. A list of all output
connections displays.

7. Click left on an output connection name. Notice the
remote connection is labeled.

8. Move the mouse and a line forms from the “V” side.

9. Route the line to anywhere inside the destination block
and click left. The input connection menu displays.

10. Click left on a valid input connection name. The origin
block connects to the destination block, via the remote
connection.

108 Editor

Follow these steps to make a destination remote connection:

1. Click left on the Connection icon (arrow).

2. Click left on the origin block. Select an output connection
name. Slowly move the mouse outside the block and
notice a line forms.

3. Move the line to a desired position from the block and
double-click left. A remote connection symbol appears.

4. If you need to resize the remote connection symbol, hold
down the right mouse button and drag the mouse.

5. If you need to change the orientation of the remote
connection symbol, click the right/middle button.
Figure 38 shows the different orientations. If you click
and the orientation does not change, move the symbol
closer to the middle of the work area.

6. With the remote connection symbol in the desired
position, click left. The remote connection menu displays.

7. From the connection menu, locate the destination block.

If the destination block is an object, click left on the
desired system name in red. A list of all objects under that
system displays. Select an object name and a list of all
input connections displays.

If the destination block is an operation or special block,
click left on the block name in white. A list of all input
connections displays.

8. Click left on an input connection name. The origin block
connects to the destination block, via the remote
connection.

Procedure:
Destination
Remote
Connection

Editor 109

With the Move icon selected, you can move or resize a remote
connection symbol just as you would any function block.

A remote connection can consist of up to seven line segments.

To reassign a remote connection, select the Connection icon,
double-click left on the remote connection symbol, and select
a different block. If you are reassigning an origin remote
connection from a CMD, 2CMD, or WRIT block, it is best to
erase the remote connection, then re-add it. Even though you
may select a different origin block, the Editor does not update
the line labels or verify that you made a valid selection for that
object. Invalid commands and attributes are detected when the
file is translated and compiled.

You can view and edit a template for the remote connection,
which is actually the template of the referenced (i.e., origin or
destination) block. Changing the template from the remote
connection is equivalent to changing it from the referenced
block.

The size of the line label for the remote connection is based on
the size of the referenced block, not on the size of the remote
connection symbol. For example, if the referenced block has
been enlarged, the line label for the remote connection will
appear enlarged, even though the remote connection symbol is
default size.

When a compound is created that contains a remote
connection symbol, the remote connection symbol may
become unassigned. This will happen only when the
referenced block is not saved as part of the same compound.
The remote connection does not lose its assignment if the
referenced block is saved in the same compound. To reassign a
remote connection, double-click left on its symbol.

If you erase a block that has a remote connection, the remote
connection symbol is also erased. If you restore the block with
the Undo function, the block and the remote connection
symbol return just as before.

Details

110 Editor

All blocks can accept a remote connection, provided there are
connections available and the block is assigned a name. The
same holds true for operation and special blocks, even though
naming these blocks is optional. You must name an operation
block for it to show up on the remote connection menu.
Therefore, if you are planning to connect an operation block
remotely, you must name it. In the remote connection menu,
the 2CMD block shows the command name that represents
CMD0.

If there are two blocks with the same name, both block names
will display in the remote connection menu. Since you cannot
determine which name goes with which block, we suggest that
you assign unique names to all blocks. However, if there are
two commands of the same type in the same file, you cannot
do this. Instead, you need to place a Connection (CONN)
block between the reference CMD block and the object block.
Otherwise, there would be two command blocks with identical
names on the same diagram. Figure 40 illustrates:

O
I1

I2

V

IN
LSEL

AI
MZU1

ZNTE1

V

V

I3

CONN

LO-ZNTE

CONN
LO-ZNTE

AD
MZU1

LO-ZNTE

AI

MZU1
ZNTE2

AI

MZU1
ZNTE3

CMD
ALARMS

CONN

HI-ZNTE

AD

MZU1
HI-ZNTE

CMD

ALARMS

O

O O

O

LL

LL AL

AL

CONNCMD

Figure 40: CONN Block Used to Label Second CMD Block

Editor 111

Objects are commanded in GPL by connecting a command
block to an object block. Commands such as Start/Stop and
Begin/End Totalization are examples. Objects, including
process compounds, can accept a command line as an input.
Refer to the next section, Commanding a Process, for
instructions on how to connect to process compound blocks.

Two command blocks are offered: CMD (single command) or
2CMD (dual command). The procedure for making a
command connection involves selecting COMMAND or
DUAL CMD on the output connection menu, and selecting the
proper command or commands on the input connection menu.

The output connection menu for the CMD block is similar to a
direct connection menu, but it displays command names, not
connect names, and does not have the ANA and BIN options.
However, the output connection menu for the 2CMD block is
different in several ways. Figure 41 shows an example.

UP
DWN

CMD1 CMD0
TOP
BOT

Name:

2CMDBLK

BEG_TOT
END_TOT
LOC_REP
UNL_REP
RELEASE
UNL_TRG

BEG_TRND
END_TRND
LOC_TRG
UNL_REP

Command
Name List

Command
Name Field

Figure 41: Output Connection Menu for the 2CMD Block

Commanding an
Object

Introduction

112 Editor

The menu is composed of the following fields, which perform
these operations:

UP

Pages the Command Name list back one page. If you click left
on UP and the list does not change, you have reached the
first page.

DWN

Pages the Connection Name list forward one page. If you click
left on DWN and the list does not change, you have reached
the last page.

CMD1

When this field is highlighted, the command you select will be
the one sent when the Select Command input from the origin
block is True (1).

CMD0

When this field is highlighted, the command you select will be
the one sent when the Select Command input from the origin
block is False (0).

TOP

Displays the first page (top) of the Command Name list. If you
click left on TOP and the list does not change, you have
reached the first page.

BOT

Displays the last page (bottom) of the Command Name list.
If you click left on BOT and the list does not change, you have
reached the last page.

Menu Fields

Editor 113

Lists all possible command names for the block, arranged
alphabetically from left to right. Click left on the command
name to select it.

Field for typing in a valid command name. As you type the
name, the Editor filters the list to show only those entries
beginning with the letters specified. Use the backspace key to
erase a typed letter and refilter the list.

The command blocks are labeled according to the command
name. Figure 42 illustrates:

LABELING

CMD
SET BD

CMD
SET PIDL
SETPOINT

2CMD
START
STOP

C om m and N am e

A ttribute

CMD1

CMD0

C om m and N am e

Figure 42: Various Labeling Techniques for
Command Blocks

Follow these steps to connect a command block to an object
block:

1. Click left on the Connection icon (arrow).

2. Click left on the CMD or 2CMD block. The output
connection menu displays.

3. If this is a CMD block, click left on COMMAND in the
connection menu. If this a 2CMD block, click left on
DUAL CMD. The menu disappears.

Command Name
List

Command Name
Field

Procedure

114 Editor

4. Move the mouse and notice a line has formed. Move the
line out of the origin block. To add a line segment, click
left. To erase a line segment, click right/middle.

5. Draw the line anywhere inside the object block (or a
CONN block configured to accept a command), and click
left. The input connection menu displays.

6. If the connection is from a CMD block, click left on the
name of the command. The CMD block then connects to
the object block or CONN block.

If the connection is from a 2CMD block, two selections in
the connection menu display: CMD1 and CMD0. You
need to choose one command for each selection. On the
CMD1 level (CMD1 is highlighted), click left on the
command that will be sent when the Select Command
input is True (1). On the CMD0 level (CMD0 is
highlighted), click left on the command that will be sent
when the Select Command input is False (0). The
two blocks connect.

GPL labels the command block for you, based on the
command you selected. Some of the command names have
underscores (e.g., SET_AD). The GPL Editor cannot display
underscores on the face of the block, so a space is used in the
name instead (e.g., SET AD). The GPL Translator will add
underscores in the commands when the file is translated.

You cannot edit a CMD block to change the type of command
(e.g., SET_AD to BEG_TOT). To change a command, you
need to delete the command block, paste down a new one, and
reconnect it.

Only those commands valid for the type of object selected are
indicated in the input connection menu.

If you query a command block that is not selected, the
template contains the statement Command unselected—
Connect block to object for command
selection.

If you bring a command line into a group compound, it will
open immediately, so that you can terminate the line to an
object block or to a properly configured CONN block.

Details

Editor 115

You can command process objects (i.e., process compounds)
with this procedure. The three possible commands are Enable
Process, Disable Process, and Trigger Process. You can use
either the CMD or 2CMD block.

1. Click left on the Connection icon (arrow).

2. Click left on the CMD or 2CMD block. The connection
menu displays.

3. If this is a CMD block, click left on COMMAND in the
connection menu. If this a 2CMD block, click left on
DUAL CMD. The menu disappears.

4. Move the mouse and notice a line has formed. Move the
line out of the origin block. To add a line segment, click
left. To delete a line segment, click right/middle.

5. Draw the line anywhere inside the process compound
block and click left. The input connection menu displays.

6. If the connection is from a CMD block, click left on a
command, either PRC_ENA (enables process), PRC_DIS
(disables process), or TRIGGER (triggers process).
The CMD block then connects to the compound block.

If the connection is from a 2CMD block, two levels in the
connection menu display: CMD1 and CMD0. On the
CMD1 level (CMD1 is highlighted), click left on the
command that will be executed when the Select Command
input is True (1). On the CMD0 level (CMD0 is
highlighted), click left on the command that will be
executed when the Select Command input is False (0).
The two blocks connect.

Commanding a
Process

116 Editor

You must define the compound as a process for it to accept a
command (i.e., you must configure the Compound Type field
to PROCESS or RESTART PROCESS). Also, if you want to
command an object inside a process, select OPEN CMPD
(open compound). The compound will open so that you can
terminate the connection to an object.

With this procedure, you can make a binary triggerable
connection line exempt from triggering a process. In some
applications, you may need to exempt a binary line from
triggering a process, since it may otherwise cause unnecessary
or unwanted processing. For details, refer to the Order of
Process Execution section in the Graphic Programming
chapter.

1. Double-click left on the Connection icon (arrow).

2. Click left on the Exempt Connection icon (XMPT arrow).

3. Position the cursor over either end of or turn in a binary
line. A yellow highlight box appears. Click left. An open
square overlays the arrowhead. This indicates that the line
is exempt.

The exempt connection acts as a toggle switch, which means
clicking left on either end or corner in the line alternates
between exempt and non-exempt.

You may select for exemption all the binary triggerable
attributes and binary shared variables for a process by
answering Yes to Exempt All? in the compound
template.

You can exempt from triggering a process only the triggerable
attributes of objects and binary shared variables. Also, only
those binary triggerable attributes that are listed on the
standard connection menus are available for exemption. This
means that you cannot exempt a triggerable attribute that is
used with a READ block. In this case, you need a USER block
to read and exempt the attribute.

Details

Exempting a
Connection from
Triggers

X M P T

Details

Editor 117

If the exempted connection is part of a fanned-out connection,
the other connections in the fan-out are also exempted, even
though they are not marked as such. This is true only for
fanned-out connections that go to the same process. For
fanned-out connections between processes, the connection that
is in a different process from the exempted connection will not
be exempted.

Do not exempt a line entering a CONN (Connect) block if the
CONN block has fanned out connections. Otherwise, the GPL
Editor will not be able to determine which of the fanned out
blocks is exempt.

118 Editor

Editor 119

Query Functions

This section explains how to perform the following query
functions:

� View and edit a database template for an operation or
special block.

� Read and modify an object in the archive database.

� Query a compound.

� Access a FILE block.

� View the macro file of a USER block.

� Query a connection.

� Find a function block.

� Replace system names in a strategy file.

� View the list file.

� Perform a Session Read.

The Query icon (question mark) provides these functions.
Double-clicking on the Query icon displays an option menu
(Figure 43).

120 Editor

M=0%
X=1412

Y=1356

QURYOP

IN P U T/O U TP U T
B I BO A I A O S A O D A C M R EF

LIB R A R Y

Query Icon
Session Read Option

FIND READ

Find Block Option

View List File Option

REPL

Replace Option

VIEW

Figure 43: Query Option Menu

Note: The default operation of this icon is query.

All instructions in this section presume a diagram is currently
displayed.

Editor 121

The following keys have specific functions when any template
is displayed:

Key Function

Arrow keys Moves cursor between fields.

Backspace Moves cursor back one space
within a field, erasing entries.

CTRL + Arrow Keys Moves cursor within a field
one space at a time.

F10 Saves changes, accesses
archive database, and closes
template.

Left mouse button/Esc Ignores changes and closes
template.

Page Up Displays previous page of
template.

Page Down Displays next page of template.

Each operation, special, and group compound block has a
database that defines its name, parameter values, and other
characteristics. The Editor represents these databases as
templates that display in the work area. Use this procedure to
view and edit database templates.

1. Click left on the Query icon (question mark).

2. Click left anywhere inside a function block. A template
displays in the work area. Use the Page Up and Page
Down keys to scroll through templates with multiple
pages.

3. After you are done viewing the template, press the Esc
key or click left to exit. If you want to make changes, go
to the next step.

4. Make the changes to the parameters as needed. Each is
defined in the Template Field Descriptions section of the
Function Blocks chapter.

5. To save the changes and exit the template, press F10. Or,
to ignore the changes you made, press Esc or click left.

Viewing and
Editing a Block
Template

122 Editor

You may assign the same name to two operation or two special
blocks in the same file, or assign them no name (blank). The
operation blocks without an assigned name cannot be
connected remotely, and will not show on the Find menu.

The Editor checks to make sure you enter proper values into
the parameter fields. It checks for valid data types, proper
ranges, field interactions, and duplicate object names. Refer to
the Function Blocks section in the Graphic Programming
chapter for details on template error checking. For an
explanation of a user message, refer to the User Messages
section at the end of this chapter.

Some parameters in a database template may also be available
through input connections. If the parameter is specified in the
template and is connected as an input, the value of the input,
not of the parameter field, will be used.

Refer to the previous section, Query Functions, for a table
listing the keys that have specific template functions.

Each object and process compound block has a database that
defines its name, attribute values, and other characteristics.
This data is stored in the strategy file and the archive database.
The Editor represents these databases as templates that display
in the work area. Use this procedure to read and modify the
templates (i.e., objects).

1. Click left on the Query icon (question mark).

2. Click left anywhere inside the object or process block. An
archive database interaction message may display. This
indicates that the Editor is reading the template
information from the archive database into the strategy
file database. (If you get a message at this point, refer to
the User Messages section in this chapter.)

3. Use the Page Up and Page Down keys to scroll through
templates with multiple pages.

4. After you are done reading the template, press the Esc key
or click left to exit. If you want to make changes, go to the
next step.

Details

Reading and
Modifying an
Object

Editor 123

5. Make the changes to the attributes and parameters as
needed. Each is defined in the Template Field
Descriptions section of the Function Blocks chapter.

6. To save the changes and exit the template, press F10.
An archive database interaction message may display.
(Then, if an error message displays, refer to the
User Messages section.) Or, to ignore the changes you
made, press Esc or click left. The archive will not be
accessed.

You cannot assign the same software system\object name to
two object blocks that are in the same file. When an object or
process compound block is defined, its color changes from
magenta to brown.

The Editor checks to make sure you enter proper values into
the parameter fields. It checks for valid data types, proper
ranges, field interactions, and duplicate object names. Refer to
the Function Blocks section in the Graphic Programming
chapter for details on template error checking. For an
explanation of a user message, refer to the User Messages
section at the end of this chapter.

Some attributes in a database template may also be available
through input connections. If the attribute is specified in the
template and is connected as an input, the value of the input,
not of the parameter field, will be used.

This function displays the contents of a compound block.

1. Click left on the Query icon (question mark).

2. Position the cursor anywhere inside the compound block.

3. Double-click left. The contents of the compound display.

Details

Querying a
Compound?

124 Editor

The names of the currently active compound levels are shown
on the bottom of the work area, enclosed in rectangular boxes
(Figure 44). These boxes are called Compound Name fields,
which contain the system\object name for a process or Restart
process compound, or the compound name for a group
compound. The work area can only show up to four levels in
the compound name fields. Higher levels are hidden from
view, but return as you move toward the highest compound
level.

CMPDFLDS

M=0%
X=1412

Y=1356

AHU I

NETNAME

LIBRARY

INPUT/OUTPUT
BI BO AI AOS AOD ACM REF

Level 1 Level 2 Level 3 Level 4

Compound Name Fields

Figure 44: Compound Name Fields

The Compound Name fields have two purposes: to indicate the
level of the currently displayed compound, and to provide for
a mechanism of returning to the higher levels. To return to a
higher level, click left on its name in the field.

To show the data template for a compound, click left on its
block.

Details

Editor 125

This function accesses the contents of a FILE block. For
details on the FILE block, refer to the Function Blocks
chapter.

1. Click left on the Query icon (question mark).

2. Double-click left on the FILE block that you wish to open.
The contents of the external file are loaded and the FILE
Block icon (arrow) displays in the upper right corner of
the work area.

3. After you are finished with viewing and editing the
external file, return to the parent file by clicking left on
the File Block icon.

The file that you want to access through the FILE block must
be in the current directory. Also, to return to the parent file, the
parent file must be in the same directory.

You may penetrate up to 30 levels of FILE blocks.

This function displays the macro file for a USER block. For
details on how to write a USER block macro file, refer to the
Function Blocks chapter.

1. Click left on the Query icon (question mark).

2. Double-click left on the USER block. The macro file for
the block displays.

3. Use the Page Up and Page Down keys to scroll through
the file. After you are finished viewing, click left or Esc to
display the previous contents of the work area.

The SET GPLUMAC statement in the GPL.BAT file
determines under which particular directory all USER block
macro files should reside. The Editor searches for the file in
this directory when you double-click left on the USER block.
If you wish, you may change the directory by editing the
GPL.BAT file with a text editor. Use the DOS conventions for
editing a batch file.

You cannot edit or print the macro file with the Editor.

Accessing a
FILE Block

Details

Viewing a USER
Block Macro File

Details

126 Editor

This function displays a brief description of a connection. It is
especially helpful for a connection that spreads across
compounds.

1. Click left on the Query icon (question mark).

2. Position the cursor on either end of or turn in the
connection you want to query. Notice a yellow
highlighting box appears.

3. Click left. A description displays on the bottom of the
work area. Click left again to clear the description.

The query connection message describes the connection types
between two function blocks. It follows this format:

[Connection] Type: [Origin Block]—[Connection Name] to
[Destination Block]—[Connection Name]

where:

[Connection]: Analog, Binary, Time, Cmd (Command or Dual
Command), Read, Write, or Control.

[Origin Block] or [Destination Block]: For object and process
compound blocks, the system\object name; for operation and
special blocks, the block name.

[Connection Name]: name of the connection as displayed in
the input or output connection menu.

Here are two examples:

Analog: AHU1\OA-TEMP-VALUE to
ENRH1-DRY BULB

Cmd Type: SET AD-COMMAND to
AHU1\OA-ENRH-SET AD

Querying a
Connection

Details

Editor 127

This feature is similar in concept to a Find feature of a word
processor. It searches the file to locate each instance of a block
name. When an instance is found, it displays the diagram that
contains the block, and highlights the block in yellow.

The Find menu (Figure 45) displays on the work area when
you click left on the Find icon. It contains all system\object
names and block names that are used in the currently loaded
control strategy file.

UP
DWN

OBJ B LK
TOP
BOT

Name:

AHU1

FINDMNU2

AHU2
AHU3
OA-ENRH

SET BD
OA-TEMP Block Name List

Block Name Field

Figure 45: Find Menu

As shown, the menu is composed of the following fields,
which perform these operations:

UP

Pages the Block Name list back one page. If you click left on
UP and the list does not change, you have reached the first
page.

DWN

Pages the Block Name list forward one page. If you click left
on DWN and the list does not change, you have reached the
last page.

Finding a
Function Block

FIND

Introduction

Menu Fields

128 Editor

OBJ

Filters the Block Name list to show only system names that are
defined in the file. Click left on OBJ to sort the list to show all
system names. (OBJ back-highlights in red). Click left on OBJ
again to list all system names, and operation and special block
names (OBJ dehighlights).

BLK

Filters the Block Name list to show only operation and special
block names that are defined in the file. Click left on BLK to
sort the list to show all operation and special block names
(BLK back-highlights in red). Click left on BLK again to list
all system names, and operation and special block names
(BLK dehighlights).

TOP

Displays the first page (top) of the Block Name list. If you
click left on TOP and the list does not change, you have
reached the first page.

BOT

Displays the last page (bottom) of the Block Name list. If you
click left on BOT and the list does not change, you have
reached the last page.

Editor 129

Lists all defined and undefined object and process compound
blocks, and all named operation, special, and group compound
blocks. However, the menu does not show block names that
are inside protected compounds. Also, if the Find menu
references a 2CMD block, the command associated with
CMD0 is shown only, not CMD1. A REF object block name,
if a duplicate of another REF block, is appended with a unique
block label in blue for identification purposes. All block names
are arranged alphabetically from left to right.

To find an object or process compound block, click left on its
system name, then its object name. To find an operation,
special, or group compound block, click left on its block name.
To distinguish between the block classes, these colors are used
in the Find menu:

Name Color

System Name Red

Object Name Red

Operation Block Name White

Special Block Name White

Group Compound Block
Name

White

Field for typing in a valid block name. As you type the name,
the Editor filters the list to show only those entries beginning
with the letters specified. Use the backspace key to erase a
typed letter and resort the list. The field is not case sensitive.

Block Name List

Block Name Field

130 Editor

Follow these steps to use the Find feature:

1. Double-click left on the Query icon (question mark).

2. Click left on the FIND option. The Find menu displays
like the one in Figure 46.

UP
DWN

OBJ B LK
TOP
BOT

Name:

AHU1
AHU2
AHU3
OA-ENRH

SET BD
OA-TEMP

FINDMNUX

Figure 46: Example of a Find Menu

At this point, the instructions vary depending on if you want to
locate an object, process compound, operation, special, or
group compound block.

3. To locate an object or process compound block, click left
on the system name under which this object resides. Then
the objects under that system display. Locate the object
name in the list and click left on it. The Editor will move
to the first diagram that contains this object block, and
highlight the block’s border in yellow. The message Find
Next Occurrence? displays. Go to Step 4.

To locate an operation, special, or group compound block,
locate the block name in the list and click left on its name.
The Editor will move to the first diagram that contains this
block, and highlight the block’s border in yellow. The
message Find Next Occurrence? displays.

4. Click left on [OK] to find the next occurrence or click left
on [CANCEL] to exit the find operation.

Procedure

Editor 131

A block must be named in the database template for it to show
on the list. In the Find menu, the 2CMD block shows the
command that represents CMD0.

No special message is given when no occurrences are found.

If a strategy has two blocks with the same block name, the first
one the Editor will find will be the block that was pasted down
first.

To refresh the work area from showing the highlighted block,
click left in an open area of the screen. If you delete a
highlighted block, the yellow outline remains on the screen. To
clear it, simply refresh the work area.

When you are editing a compound, only those blocks in the
immediate compound level are represented in the Find menu.

If a diagram is zoomed when you start the find operation,
zoom cancels when the reference is found.

Details

132 Editor

This function replaces system names of the selected blocks in a
strategy file. The purpose of this function is to allow you to
replace multiple system names in a strategy file in a single
operation.

To use the Replace:

1. Double-click left on the Query icon (question mark).

2. Click left on the REPL option. A message appears telling
you to use the white enclosing box to select blocks to
include in the Replace.

3. Click left to continue. The white enclosing box appears.

4. Use the white enclosing box to select the blocks you want
to include in the Replace. The Replace will be performed
on all object blocks within the enclosing box, and all
object blocks in compounds within the enclosing box.

To shrink and enlarge the enclosing box, hold down the
right/middle button and drag the mouse. Click left when
the blocks are selected.

Once the blocks are selected, the Replace menu shown in
Figure 47 displays.

REPLACE: SYSTEM NAMES

Search for:
Replace with:

Confirm?

F10 = EXECUTE, ESC = CANCEL

Y

replmenu

Figure 47: Replace Menu

To move between the fields in the Replace menu, use the
up and down arrow or Enter keys.

Replacing
System Names

REPL

Editor 133

5. Type the system name you want to change in the Search
for field. This name must match the system name exactly
(no wildcard characters). However, the search is case-
insensitive.

6. Type the new system name in the Replace with field. The
name will be replaced exactly as you type it (including
whether the letters are lower or upper case).

7. Select whether you want to confirm each Replace by
typing y (yes) or n (no) in the Confirm ? field. Yes is the
default.

8. To execute the Replace, press F10. Or, to Cancel,
press Esc.

If you selected to not confirm each Replace, all the system
names in the selected blocks that match the system name
being searched for will be automatically changed.

If you selected to confirm each Replace, the Confirm
message box shown in Figure 48 appears as each system
name to be replaced is found. The Confirm box includes
the type of system name to be replaced (e.g., software,
hardware, associated input, feedback, reference), and both
the old and new system names.

REPLACE: [] System Name Withtype old new

YES NO CANCEL

Replconf

Figure 48: Confirm Message Box

To replace the system name, click YES.

Or, to skip the replace for this field, click NO. Or, to
cancel the Replace process, click CANCEL.

When the Replace is complete, a message appears telling
you how many system names were replaced. Click left to
clear the message from the work area.

134 Editor

The Replace will be performed on all object blocks within an
area you select, and on all object blocks within compounds in
the selected area. The Replace will not be performed on
subfiles (when using FILE blocks).

The Replace function searches for all system names in object
templates, including Process object system names, feedback,
associated input, PIDL inputs, etc.

In Compound Edit mode, the Replace function replaces system
names for only those objects that are in the compound. It does
not change the compound system name itself.

Once a system name has been replaced in an object template of
a defined object, the block’s status changes to undefined. To
define objects with replaced system names, and to synchronize
the strategy file with the archive database, you have two
options:

� either open each undefined object block and press F10 to
save the block to the archive database

� or use the Session Read function, which reads all object
blocks in the file at one time (the more efficient option)

Note: Remember that in a Session Read, the Read looks
only for a match between the system\object name in
the strategy file and the system\object name in the
archive database. When it finds a match, data in the
archive database for the object overwrites all data for
the object in the strategy file.

The Replace function is useful in these situations:

� Use Replace to simply change system names in a file or a
portion of a file in case of a mistake or reconsideration of
what the names should be.

� Use Replace for a facility that has multiple applications
that operate identically (e.g., multiple air handling units or
chillers). Create a GPL program for one of these
applications, and copy the program for each additional
application. Then use the Replace function to provide
unique system names for the objects in the duplicated
files.

These two procedures are described in the following section.

Details

Editor 135

Use this procedure to change system names in the archive
database and in the corresponding GPL strategy file, and to
synchronize the file with the archive database.

1. Change the appropriate system names in the DDL source
file using a text editor.

If the system name is new, add it to the GLOBAL.DDL
file.

2. Recompile the DDL files.

3. Change the system names in the GPL strategy file using
the GPL Replace function.

4. Perform a Session Read on the GPL strategy file to
synchronize the file with the archive database.

Use this procedure to copy a portion of the archive database
and the corresponding GPL strategy file, change system names
in the copied file, and synchronize the GPL file with the
archive database.

1. Make a copy of the DDL source code that corresponds to
the GPL strategy file you intend to copy.

2. Change the appropriate system names in the DDL source
code using a text editor.

If the system name is new, add it to the GLOBAL.DDL
file.

3. Recompile the DDL.

4. Make a copy of the GPL strategy file that corresponds to
the copied DDL source code file.

5. Change the system names in the copied GPL file using the
Replace function.

6. Perform a Session Read on the GPL strategy file to
synchronize the file and the archive database.

Changing System
Names

Copying a GPL
Strategy

136 Editor

The list file is a text file that the Session Read, Expert
Checker, Translator, and Compiler use to record errors. This
procedure allows you to view that file.

1. Double-click left on the Query icon (question mark).

2. Click left on the VIEW option. The list file displays. Use
the Page Up and Page Down keys to move through the
listing.

3. Click left or press Esc to clear the file from the work area.

With the GPL Editor, you can view the first 30 pages of the
list file. If the file is more than 30 pages, you need to use a text
editor outside of GPL to view the subsequent pages.

The list file has the same file name and is placed in the same
directory as the control strategy that was updated with Session
Read, expert checked, or translated. It has a .LST extension.
Also, the list file is not created until one of the GPL utilities
runs.

The list file cannot be edited, deleted, or printed with the GPL
Editor. Use a text editor outside of GPL to do these functions.

Viewing the List
File

VIEW

Details

Editor 137

This function performs a Session Read, which updates the data
of all defined and undefined objects in a strategy file with the
data for these objects in the current archive database. The
entire strategy file is updated in one step, which is much more
efficient and convenient than updating each block individually.

1. Double-click left on the Query icon (question mark).

2. Click left on the READ option. The message
Session Read In Progress displays in the middle
of the work area. When done, a Session Read
Complete message appears. (This message is described
under Details.)

3. Press any key to return to the Editor screen.

The Read function synchronizes objects (defined and
undefined) in the control strategy with the objects in the
archive database. The archive database is the “master” because
its data overwrites the corresponding data in the strategy file.

All warnings and errors that are found during processing go to
the list file. You can view this list file by clicking left on the
VIEW option in the Query option menu. (See Viewing the List
File, earlier in this section, for more information.)

Each object block that caused an error is set to undefined, and
the template information for the block is not updated with the
archive data. Refer to the User Messages section for
descriptions of all Session Read error messages.

If no errors are found during processing, the object block
databases in the strategy file are updated to reflect those in the
archive database.

All data that is updated during processing is not saved to the
file until you save the strategy to disk.

Performing a
Session Read

READ

Details

138 Editor

The Session Read Complete message box displays the
following information:

� how many defined blocks were successfully read
� how many defined blocks had errors or warnings, and

therefore couldn’t be read
� how many defined blocks didn’t need to be read because

they had been recently read or queried
� how many undefined blocks were successfully read
� how many undefined blocks had errors or warnings, and

therefore couldn’t be read
� how many undefined blocks could not be read because

they lacked a system or object name

Note: Session Read does not add blocks to the GPL
strategy; if an object is in the archive database but is
not in the GPL file, the Read will not add the block to
the GPL file.

Editor 139

Print Functions

This section explains the two Print menus, the basics of
printing, and how to perform these print functions:

� Page the print queue.

� Create print files.

� Send print files to the printer.

� Delete print files from the queue.

The Print icon provides these functions.

The Print icon uses two menus: an option menu and a
submenu.

Clicking left on the Print icon displays an option menu
(Figure 49).

Using the Print
Option Menu
and Submenu

Print Option Menu

140 Editor

RDVIEW

M=0%

X=1412
Y=1356

LIB R A R Y

IN PU T/O U TP U T
B I B O A I A O S A O D A C M R EF

UP

DWN

PRT
ONE

PRT
MANY

C:\

START
OUTPUT

Print Queue
Directory Name
File Name Field

Print Many Option
Print One Option
Up/Down Options

Start Print Option

Delete File Icon

CHIL_1
HUMANA

CHIL_2
HUMANA=

CHIL_3

Figure 49: Print Option Menu

As Figure 49 indicates, the Print option menu features a print
queue, Directory Name field, and File Name field. The
following paragraphs describe them in detail.

Editor 141

This is a list of all files ready for printing. The print files are
listed in alphabetical order from left to right. A maximum of
12 files can be listed per page. Templates have an = character
after their names to distinguish template print files from
diagram print files. The name of a print file is the same as the
name of the strategy file or compound block it represents.

Note: The Editor erases the temporary print file after it
sends it to the printer. Also, you can manually erase
a print file with the Delete File icon. The print file
remains in the queue even if you exit GPL. This
means that you can queue up several print files, exit
GPL, then sometime later, re-enter GPL to print the
files.

This field shows the printing directory, which is preset at
C:\{FMSPATH}\BIN\GPL. All temporary print files will go to
this directory. You cannot change it to send print files to a
different directory.

This space is for typing in a print file name; up to
eight alphanumeric characters are allowed. While you type in a
name, the Editor filters the queue to show only those files
beginning with the letters specified. For example, if you type
in “S,” the list changes to show every file that starts with the
letter S. Then, if you type in “E” after the S, every file that
begins with SE is displayed, and so on.

Note: An alternative to typing in a print file name is to click
left on its name in the queue. The Editor then places
the selected name in the File Name field.

To type text in the File Name field, you must have the
cursor inside the Print option menu. The field is not
case sensitive.

Print Queue

AHU1 COOL2 HEAT1
HEAT1 =

Directory Name
Field

C:\

File Name Field

142 Editor

The Print function has a submenu that displays after you click
left on PRT ONE or PRT MANY (Figure 50).

M=0%
X=1412

Y=1356

PRNTSUB

LIB R AR Y

IN P U T/O U TP U T
B I BO A I A O S A O D A C M R E F

D iagram s(s)

Tem plate(s)

Print Submenu

Figure 50: Print Submenu

The submenu offers two options:

Diagram(s)

Select if you want to send one or more diagrams to the print
queue.

Template(s)

Select if you want to send one or more block templates to the
print queue.

To cancel the Print operation with the Print submenu
displayed, click left outside the submenu.

Print Submenu

Editor 143

The GPL printing process involves the following steps:

� Display the diagram that you want to print.

� Display the Print option menu.

� Select PRT ONE or PRT MANY.

� Select Diagram(s) or Template(s).

� Click left on Start Output.

All printouts are labeled with the print file name. They are also
labeled with the date on which they were sent to the print
queue, not when they were actually printed. For diagrams, the
file name and date appear in the lower left corner (Figure 52).
For templates, this information is in the upper left corner
(Figure 53).

Foreign language characters as part of text in a control strategy
will print only if your printer has the capability to do so.

Depending on the characters used, printed text may be slightly
shorter in length than on the Editor screen.

The GPL Editor prints diagrams and templates in a specific
order. The order is as follows:

1. The highest level of a control strategy.

2. All compounds nested below the compound on the highest
level that was pasted down last.

3. All compounds nested below the compound on the next
lowest level that was pasted down, and so forth.

Figure 51 is a sample showing the order in which each
compound of an entire file might be printed. Compounds that
are labeled with the same number are on the same screen. The
letters after the numbers indicate the order of printing within
the compound.

Learning the
Basics of
Printing

144 Editor

5.A 5.B

1.B

6.A

7.A 7.B

1.A

2.A 2.B

4.A 4.B

3.A

1.C

8.A 8.B

10.A9.A

11.A 11.B 11.C

ORDRPRN

Figure 51: Order of Printing

You can page up and down the print queue in the Print option
menu to show other entries. The UP option pages the queue
back one page; the DWN option pages the queue forward
one page.

� To page the queue back one page, click left on the UP
option.

� To page the queue forward one page, click left on the
DWN option.

If you click left on UP or DWN and the list does not change,
you have reached the first or last page, respectively.

Paging the Print
Queue

UP
DWN

Details

Editor 145

This function creates a print file for one or more diagrams in a
control strategy. Select PRT ONE to create a print file for the
currently displayed diagram. Select PRT MANY to create a
print file for the currently displayed diagram and all nested
diagrams.

The print file is placed on the print queue, which can be sent to
a printer. Each diagram print file has the same name as the
strategy or compound file name, with a .PRD (print diagram)
extension. Even though a strategy may contain many diagrams,
only one print file containing all diagrams is created.

1. Load the strategy containing the diagrams that you want to
print. If you want to print multiple diagrams under one
strategy, display the diagram at the level from which you
want to start the printing.

2. Click left on the Print icon (page). The option menu
displays.

3. If you are printing a single diagram, click left on the PRT
ONE option. If you are printing multiple diagrams, click
left on PRT MANY. A submenu appears.

4. Click left inside the checkbox next to Diagram(s). Each
diagram will now flash on the entire screen momentarily
as it is sent to the print queue. When all diagrams are sent
to the queue, the print option menu returns.

5. You are now ready to send the diagrams to the printer.
Refer to the section called Printing Diagrams and
Templates.

Creating a
Diagram Print
File

PRT
ONE

PRT
MANY

146 Editor

The print file name used is the same as the control strategy or
compound file name. If the strategy has no name defined, the
print file name will be “DEFAULT.”

By clicking left on PRT MANY, you can create a print file for
all the diagrams that are under a particular control strategy.
However, if the strategy contains a FILE block, a print file is
not created for the diagrams that are under the FILE block. To
create a print file for these, you must first access the external
control strategy file by double-clicking left on the FILE block.

A diagram that is zoomed will print zoomed. If you are
printing multiple levels, the level that is zoomed will be
printed as zoomed, but all other levels will print regular size.

All the lower levels of the compounds that are on the screen
when zoomed will be printed.

Two print files cannot share the same name. If you attempt to
print files to the queue that have the same names, a file exists
error message will display.

The create print file operation is continuous. You cannot pause
it. The only way to halt or cancel the operation once it begins
is to exit GPL and answer Y (yes) to the printing in progress
warning message.

Details

Editor 147

This function creates a print file for the database templates in a
control strategy. Select PRT ONE to create a print file for the
currently displayed diagram. Select PRT MANY to create a
print file for the currently displayed diagram and all nested
diagrams.

The print file is placed on the print queue, which can be sent to
a printer. Each template print file has the same name as the
strategy or compound file name, with a .PRT (print template)
extension. Even though a strategy may contain many diagrams,
only one print file containing all templates is created.

1. Load the strategy containing the templates that you want
to print. If you want to print multiple templates under
one strategy, display the diagram at the level from which
you want to start the printing.

2. Click left on the Print icon (page). The option menu
displays.

3. If you are printing the templates for a single diagram,
click left on the PRT ONE option. If you are printing
templates for multiple diagrams, click left on PRT
MANY. A submenu appears.

4. Click left inside the checkbox next to Template(s). When
all templates are sent to the queue, the print option menu
returns.

5. You are now ready to send the templates to the printer.
Refer to the section called Printing Diagrams and
Templates.

In the print queue, template print files have an = character at
the end of them to distinguish them from diagram print files.

By clicking left on PRT ONE, you create a print file that
contains templates of all blocks on the displayed diagram.
The GPL Editor cannot selectively print the template of an
individual block.

Creating a
Template Print
File

PRT
ONE

PRT
MANY

Details

148 Editor

The print file name used is the same as the control strategy or
compound name. If the strategy has no name defined, the print
file name will be “DEFAULT=.”

By clicking left on PRT MANY, you can create a print file for
all the templates that are under a particular control strategy.
However, if the strategy contains a FILE block, a print file is
not created for the templates that are part of the external file.
To create a print file for these, you must first access the
external control strategy file by double-clicking left on the
FILE block.

Two print files cannot share the same name. If you attempt to
print files to the queue that have the same names, a file exists
error message will display.

The create print file operation is continuous. You cannot pause
it. The only way to halt or cancel the operation once it begins
is to exit GPL and answer Y (yes) to the printing in progress
warning message.

Use this procedure to print all the diagrams and templates that
are in the print queue. You cannot select certain items in the
queue that you want to print. Figures 52 and 53 are examples.

1. Double-click left on the Print icon (page).

2. Click left on Start Output. The option menu closes.

If Enable Windows Printing was set to Yes when GPL was
configured with SYSGEN, a printer dialog box will display.
To begin printing, select any printer installed on your PC and
click OK. After printing, reactivate GPL from the taskbar.

If Enable Windows Printing was set to No when the GPL was
configured, printing will begin immediately after selecting
Start Output.

Note: GPL automatically prints diagrams with landscape
orientation. Selecting landscape again under printer
properties will result in incorrect printing.

As diagrams and templates are being printed, you are free to
perform other GPL functions. However, when the Print
function accesses the disk drive, the cursor may freeze
temporarily. Also, some functions may temporarily halt the
printing. This is normal, and printing will resume when that
action is completed.

Printing
Diagrams and
Templates

START
OUTPUT

Details

Editor 149

After a diagram or template is printed, the GPL Editor deletes
its print file.

If you exit the GPL Editor while a diagram or template is
printing, the printout will stop immediately. The diagram and
template that were not completely printed, and all others that
did not start printing, remain in the print queue.

As diagrams and templates are being printed, you can create
additional print files, either from the same strategy or from a
different one. Note that a new print file added to the queue will
start printing even if you don’t manually start it by clicking left
on Start Output. That is because the Editor continually scans
the print queue, and will start the new entries before you have
a chance to start them manually.

PRDGRM

V

D B

RH

A I
A H U 1

O A -T E M P

A I
A H U 1
O A -R H

V

A D
A H U 1

O A -E N R H

C M D
S E T A D

EN R H
EN R H 1 SAV

O C

ENRH Sat Mar 14 09:36:51 1992

Figure 52: Example of a Printed Diagram

150 Editor

ENGINEERING DATA
Analog Units
Decimal Position
High Alarm Limit
Low Alarm Limit
Setpoint
Normalband
Differential
Filter Weight

ASSOCIATED INPUT
System Name
Object Name
Attribute Name

REPORT TYPE
NORMAL
WARNING
ALARM
OVERRIDE

MESSAGES
Warning #
Alarm #

Graphic Symbol #
Operator Instr. #

= DEG F
= 1
= $0.00000
= 40.00000
= 55.00000
= 10.00000
= 1.000000

=
=
=

= NONE
= NONE
= NONE
= NONE

= $
= $

= $
= $

IDENTIFICATION
System Name
Object Name
Expanded ID
NC Name

= AHU1
= OA-ENRH
= Outside Air Enthalpy
= NCM-FLR1

FLAGS
Auto Dialout
Enable PT History
Save PT History
Comm Disabled

PARAMETERS
Waiting Delay(min)
Initial Value

Cmd Type: Set-Command to AHU\OA-ENRH-SET AD

=N
=Y
=N
=N

=1
=55.00000

File: ENRH

Tue Feb 14 10:45:30 1992

ANALOG DATA OBJECT (AD)

XPRTTM

Figure 53: Example of a Printed Template

Editor 151

Use this procedure to delete a diagram or template print file
from the print queue.

1. Click left on the Print icon (page).

2. Select the print file that you want to delete by clicking left
on its name in the queue. (Or enter its name in the
File Name field.) Template files are identified with the
= symbol.

3. Click left on the Delete File icon (trash can). The item is
removed from the queue and from disk.

If the print file is erased while it is currently printing, the
printer stops and moves to the top of the form. You will then
have to begin the printing operation again by clicking left on
Start Output.

Deleting a Print
File

Details

152 Editor

Editor 153

Tools Functions

This section explains how to perform the following functions:

� Turn the grid on and off.

� Type text in the work area.

� Paste down an analog display.

� Run the Expert Checker, Simulator, and Translator.

The Tools icon (hammer) provides these functions.
Double-clicking on the Tools icon displays an option menu
(Figure 54).

154 Editor

TOOLSOP

M =0%

X=1412

Y=1356 IN PU T/O U TP U T

B I B O A I A O S A O D A C M R EF
LIB R A R Y

Grid Icon

TEXT 0.00 SIM TRAN

Type Text Option

Analog Displays Option Expert Checker Icon

Simulator Option

Translator Option

Figure 54: Tools Option Menu

Note: The default option of this icon is Grid On/Off.

Editor 155

The Grid function aids you in drawing neat and tidy diagrams.
When it is on, blocks, connections, text, and analog displays
“snap” into place, which helps you line up and orient these
items on a diagram. The grid is defaulted to on and, therefore,
is always on unless you turn it off. Use this procedure to turn
the grid on or off.

• To turn the grid on, click left on the Tools icon (hammer).
Blue dots appear in the background of the Tools icon.

• To turn the grid off, click left on the Tools icon (hammer).
The blue dots in the background of the Tools icon
disappear.

You can change the grid in two ways: by clicking left on the
Tools icon, or double-clicking left on the Tools icon and
clicking left on the Grid icon.

Turning the Grid
On and Off

Details

156 Editor

You can add comments and statements to the diagram to
explain its logic or its function blocks.

1. Double-click left on the Tools icon (hammer). The option
menu appears.

2. Click left on the TEXT option. The cursor changes to an
underline.

3. Position the underline cursor where you wish to begin
typing and click the left button. Type away. Use the
Enter key to start a new line directly under the first.
When complete, press Esc.

4. You can now move to another spot in the work area to
continue, or you may stop this operation by clicking left
on any icon.

While you are tying text, use the Backspace key to erase
previously typed characters. When you are finished typing a
line, press Enter. The cursor moves to the next line directly
under the first character of the previous line. This allows you
to type text that is left justified.

You can move, size, delete, and duplicate text just as function
blocks. Refer to the Move, Copy, and Resize Functions and
Erase and Delete Functions sections for details. However, you
cannot change text that is pasted down; you need to erase and
retype it.

Depending on the characters used, text may be slightly shorter
in length on the Simulator screen and on printouts than on the
Editor screen.

The following foreign language characters can be typed as text
in a control strategy:

Ä,Å,à,á,â,ä,å Ñ,ñ

Çç Ö,ó,ô,ö

É,è,é,ê,ë Ü,ù,ú,û,ü

í,î ß

Typing Text

TEXT

Details

Editor 157

Analog displays are numeric fields that are placed at the
outputs of function blocks to indicate their values during
simulation.

Note: You can use analog displays only for function blocks
that output analog data. The outputs of binary blocks
are indicated by colored lines in the Simulator.
Blocks that output time data cannot be represented.
Refer to the Simulator chapter for details.

1. Double-click left on the Tools icon (hammer).

2. Click left on the Analog Displays (0.00) option. A string
of zeros comes to the screen.

3. Click right/middle to select the decimal position and
resolution you want.

4. Position the field as desired and click left. The analog
display pastes down and a menu displays.

5. From this menu, select the system\object name or block
name that you want to associate with the analog display.
Then, select the connection name. The analog display is
now associated with that block’s output connection.
Another analog display appears, which you can associate
with a different block.

You can move, copy, delete, and resize an analog display just
as a function block. If resized, the Simulator will not show the
size change. Refer to the Move, Copy, and Resize Functions
and Erase and Delete Functions sections for details.

You can associate an analog display with the same connect
name multiple times in the same file.

The decimal positions and resolutions that are available range
from 0.0 to 000000. See the Simulator chapter for details.

You may change the decimal position for an analog display
that is pasted down by selecting the Move icon, clicking left on
the display, and clicking the right\middle button until the
position you want is shown.

If a REF block has a block label specified, the label is shown
in the analog displays menu in blue, next to its object name.

Pasting Down
Analog Displays

0.00

Details

158 Editor

The GPL Expert Checker checks the correctness and
completeness of GPL diagrams and compounds in a control
strategy. Below are the instructions for starting the Expert
Checker. Refer to the Expert Checker chapter for more details.

Note: We recommend that you use the Expert Checker on a
control strategy file before simulating or translating it.

1. Double-click left on the Tools icon (hammer).

2. Click left on the Expert Checker icon (checkmark).

Note: If the file has been changed and not yet saved,
the message WARNING! File/Compound
not saved—changes will be lost
displays. To bring the Expert Checker to the
screen and ignore the changes, click left on
[OK]. The checker will use the last saved version
of the file. To cancel the Expert Checker, click
left on [CANCEL].

3. The Editor clears and the Expert Checker comes to the
screen. When checking is complete, press any key to
return to the Editor.

While the Expert Checker is running, the screen displays these
messages:

Expert Checking in progress for file:

{FILE PATHNAME}

Blocks Checked [XXXX]

Expert Check Complete—Number of errors
found: {XX}

Return to the Editor

Strike a key when ready. . .

The errors that the Expert Checker finds are sent to the list file.
View the list file by clicking left on the VIEW option under
the Query option menu.

If a control strategy uses a FILE block, the diagrams under that
file are also expert checked.

Running the
Expert Checker

Details

Editor 159

The GPL Simulator emulates the operation of processes in a
control strategy file. Below are the instructions for starting the
Simulator. Refer to the Simulator chapter for details on
Simulator operation.

1. Double-click left on the Tools icon (hammer).

2. Click left on the SIM option (Simulator).

If the file has been changed and not yet saved, the
message WARNING! File/Compound not
saved—changes will be lost displays. Click
left on [OK] to execute the Simulator and ignore the
changes. The Simulator will use the last saved version of
the file. Click left on [CANCEL] to cancel the Simulator.

3. The Editor clears and the Simulator comes to the screen.
When you are done simulating, select QUIT from the
command bar menu to return to the Editor.

Running the
Simulator

SIM

160 Editor

The GPL Translator creates intermediate source code from the
process compounds in a control strategy file. The GPL
Compiler creates process objects from the intermediate source
code. Below are the instructions for running these utilities.
Refer to the Translator chapter for details.

Note: The Translator will invoke the Expert Checker if the
file has not yet been expert checked.

1. Double-click left on the Tools icon (hammer).

2. Click left on the TRAN option (Translator).

If the file has been changed and not yet saved, the
message WARNING! File/Compound not
saved—changes will be lost displays. Click
left on [OK] to bring the Translator to the screen and
ignore the changes. The Translator will use the last saved
version of the file. Click left on [CANCEL] to cancel the
Translator.

3. A submenu displays that provides these options
(Figure 55):

Running the
Translator and
Compiler

TRAN

Editor 161

M=0%
X=1412

Y=1356

LIB R AR Y

IN P U T/O U TP U T
B I BO A I A O S A O D A C M R E F

A H U 1

NETNAME

TRNSMNU

S ave translated source

S top after translation

Standard defaults

Translator Submenu

Figure 55: Translator Submenu

Save translated source

Click left inside this checkbox if you want to save the
intermediate source file after the executable process objects
are created.

Stop after translation

Click left inside this checkbox if you want only the
intermediate source file saved. The Compiler will not run, and
process objects will not be created.

Standard defaults

Click left inside this checkbox if you want to create the
executable process objects and then delete the intermediate
source file.

162 Editor

4. After you select one of the above choices, the Editor
screen clears and the Translator begins. (The Expert
Checker runs first if not yet run on this file.)

5. When the Translator and Compiler are done, press any
key to return to the Editor.

While the Translator is running, the screen displays these
messages:

Translation in progress for {FILENAME}

Blocks Translated {XX}

Translation Complete: {XX} errors

Return to the Editor

Strike a key when ready. . .

When the Compiler is running, the screen displays these
messages:

Compile in progress for {FILENAME}

Compiling Process [XX]-{SYSTEM\OBJECT NAME}

Compile Complete: {XX} Errors {YY} Warnings

Return to the Editor

Strike a key when ready. . .

The errors that the Translator and Compiler find are sent to the
list file. View the list file by clicking left on VIEW under the
Query option menu. If no errors are found, and you elected to
save the source file, the list file will contain the source file and
some reference tables.

If a control strategy uses a FILE block, the diagrams under that
file are also translated and compiled.

Details

Editor 163

Miscellaneous Functions

This section explains how to perform these functions:

� Display a help screen.

� Select a library category.

� Size and paste down a function block in the work area.

Use this procedure to display a help screen about the size of
the Editor screen. Online help is available for all areas of the
screen, including the icons, function blocks, and Editor fields.
However, online help is not available with the Expert Checker,
Simulator, or Translator utilities.

Note: Online help is not available if an option menu or the
function block library is displayed. Also, help is not
available when the underline cursor for writing text is
displayed.

1. Position the cursor in the area on which you want help.

2. Press F1. The work area clears and the message
WORKING displays temporarily. The help screen displays
in the work area.

Use the Page Down key to display the next page, and the
Page Up key to display the previous page. The page number is
displayed in the upper right corner of the screen. Click left or
press Esc to exit a help screen.

The maximum length of help screens for the icons is three
pages, and for the block help screens, five pages.

Help is not available for pasted down function blocks. To
display a help screen for a function block, change the function
block category to display the block in the block directory
(if required), position the cursor on the block, and press F1.

Displaying a
Help Screen

FIPIC

Details

164 Editor

This procedure changes the function block category. The
blocks that belong to the category display in the Function
Block Directory (on bottom of screen). You need to change
the category if the block you want to paste down is under a
category other than the one currently active. GPL offers
over 60 blocks that are grouped in 16 categories.

1. Click left on the LIBRARY field (Figure 56). The
function block library appears on the right side of the
work area.

M =0%

X =1412

Y =1356

FNCBLLB

IN P U T/O U TP U T
B I B O A I AO S A O D A C M R E F

FU N C TIO N B LO C K
LIB R A R Y

LIBR A R Y

Block C ategory Field
Library Field

Function B lock D irectory

IN P U T/O U TP U T
D A TA
M U LTI S TA TE
C O N TR O LLE R S
C O N TR O L
C A LC U LA TIO N S
P S Y C H R O M E TR IC E Q
S ELEC TO R S
LO G IC
M A TH
R E P O R T
PR O C E S S C O N TR O L
O B JE C T C O N TR O L

M ISC E LLA N E O U S

TIM E
R E LIA B ILITY

Figure 56: Function Block Library

2. A small checkbox appears to the left of each block
category. Click left inside the checkbox for the category
you want. The block directory changes to show those that
belong to the selected category. Also, the Block Category
field changes to the one you selected.

Selecting a
Function Block
Category

LIB R A R Y

Editor 165

Each function block category has a set number of blocks.
A category can have at most seven blocks, all of which display
on the block directory.

The Multi-state category contains MSI and MSO object
blocks, and the Data category contains the MSD object block.
These blocks require special NCM software that is currently
available in the European market only.

To clear the function block library, click left in an empty area
of the screen.

You can size and paste down a function block in the work
area. Use the following procedure.

1. Locate the function block that you want to paste down in
the Function Block Directory (on bottom of screen). If it
is not shown, select the category under which it is
assigned. (Refer to the previous section, Selecting a
Function Block Category, for the steps.)

2. Position the cursor on a function block and click left. The
block’s background will back-highlight in red to indicate
you have selected it.

3. Move the mouse into the work area and notice a block
comes to the screen.

At this point, you can size the block. You can either size
the block manually, or use a function key to change the
block to one of three available default sizes. The default
size is the size at which a block comes to the screen when
you select it.

4. To size the block manually, hold down the right/middle
mouse button and drag the mouse.

To size the block to one of its three default sizes, press
F2, F3, or F4. F2 provides a large default size, which is
about four times the size of the standard default size.
F3 provides a small default size; and F4, the standard
default size.

5. Once the block is at the desired size, position it and click
left to paste it down in the work area.

Details

Sizing and
Pasting Down a
Function Block

166 Editor

After you size a function block, either manually or by using
F2, F3, or F4, the size of subsequent blocks that you display
for pasting down will be the new size. The function keys are
especially important in this case, since you can enlarge the size
of one function block, then easily return to the default size for
the next block by pressing F4.

After you paste down a function block, another appears on top
of it that is a duplicate of the first. This lets you quickly paste
down several blocks of the same type. To clear the block,
either select another block, or click left on the Query icon.

Object blocks paste down undefined; operation and special
blocks paste down defined. Undefined object blocks are
colored magenta with dotted borders. They turn brown with
solid borders once defined. Defined operation and special
blocks are also colored brown with solid borders.

Details

Editor 167

User Messages

This chapter explains all user messages that the GPL Editor
may output. The messages are organized alphabetically. Most
user messages display on the bottom of the work area, just
above the row of function blocks (Figure 57). A few messages
appear in the middle of the work area.

M=0%
X=1412
Y=1356

MSGBOX

INPUT/OUTPUT
BI BO AI AOS AOD ACM REF

LIBRARY

User Message Box

Figure 57: User Messages Box in Work Area

The action message To continue, click the mouse
accompanies most user messages. If a particular message has a
different action message, it is described here.

168 Editor

The items in brackets { } will be replaced by actual
system\object names and values on the screen. The following
are the user messages:

Address, time, or date value is out of
range.

The value of the address, time, or date parameter is not within
the valid range.

All erased items have been restored.

There are no more erased items to recover.

All files are output--file selection not
allowed.

You are trying to print a single file by clicking left on its name
in the print queue. This is not the proper method for sending a
file to the printer. Instead, click left on the Start Output option.

Already at highest compound level.

By pressing Esc, you are trying to reach a higher compound
level, but the compound displayed is the highest.

Analog Type for MAI pt type cannot be
100 ohm--{system\object name}.

You have attempted to specify a 100 ohm analog type when
the point type is MAI. The 100 ohm analog type is available
only if the point type is AI.

Archive Database Interaction in progress ...

Data in the archive database is being read from or written to
the strategy file.

Note: This message appears boxed in the middle of the
work area, overlaying the displayed database
template.

Archive Database not found in the current
directory.

The Editor could not find the archive database. The control
strategy file must reside under the same directory or
subdirectory as the archive database.

Editor 169

Archive hardware object record does not
exist--{system\object name}.

The object record for the system\object name you specified
under the Hardware category does not exist in the archive
database, and therefore you cannot use it in a control strategy.

Archive object type mismatch--Delete
aborted.

You are trying to delete an existing object from the archive
database that is of a different type than in the strategy file
database.

Archive object type mismatch--
{system\object name}.

The object in the archive is of a different type than in the
strategy file database.

Assoc Off Input cannot equal Dbl
Mmnt/Assoc Inp--{system\object name}.

The number you entered for Switch Input # cannot be the same
as that entered for Off Switch Input #.

Assoc Sys\Obj Name not in archive DB--
{system\object name}.

The system\object name you defined under the Associated
Input category is not defined in the archive database; therefore,
you cannot use it in a GPL control strategy.

Associated Sys\Obj\Attr, all defined or
all blank--{system\object name}.

You must define or leave blank the system\object and attribute
fields under the Associated Input category.

At least one PIDL output is required.

The PIDL object definition is not complete until you define at
least one output.

170 Editor

Attribute name of Assoc. Object is the
wrong type--{system\object name}.

The attribute you specified is not the correct type for the object
(e.g., you entered a binary attribute for an AD object).

Attribute name of Assoc. Object is not
valid--{system\object name}.

The attribute you specified is not valid for the Associated
Object.

Aux Switch must be an AI type--
{system\object name}.

The object that you defined as a reference under the Aux
Switch Input category must be an AI object.

Aux Switch must be on same DCM as PIDL--
{system\object name}.

The object that you defined as a reference under the Aux
Switch Input category must be on the same DCM as the PIDL
object.

Aux Switch Sys\Obj Name not in archive DB-
-{system\object name}.

The system\object name that you defined as a reference under
the Aux Switch Input category is not defined in the archive
database, and therefore you cannot use it in a GPL control
strategy.

Bad drive specification.

The drive letter you entered is not valid. The valid disk drives
are A through Z.

Cannot add or modify software object
mapped to LON hardware.

You are trying to define or modify a LON object in GPL.
These objects must be defined or modified using DDL.

Cannot make directory.

You are trying to make a directory that already exists.

Editor 171

Cannot paste FILE block--at maximum
penetration level.

You are trying to add a FILE block to a file that has reached
its maximum number of FILE block levels.

Cannot paste CMP block--at maximum
penetration level.

You are trying to add a compound level to a file that has
reached its maximum number of compound levels.

Cannot pick last vertex for insertion.

You are trying to add a line segment at the end of a
connection. This is not allowed.

Cannot put detector on forward activated
list.

A forward activated list cannot contain fire points that are
detectors.

Cannot save the strategy file while in
Compound Edit mode.

You are trying to save the control strategy while editing a
compound. This is not allowed.

Cannot stamp a single connection.

You are trying to copy a single connection. That is not a valid
operation. You must copy the connection with the block to
which it is connected.

Cannot terminate connection within
selected compound.

You have looped back to the originating compound in trying to
connect two blocks in different compounds. A connection
from one compound must terminate in another compound, not
the same compound.

Cleaning Crew must be NO for Assoc
Inp/Assoc Off--{system\object name}.

The switch numbers you designated for Switch Input # and Off
Switch Input # cannot also be defined as “Y” in the Cleaning
Crew Switches table.

172 Editor

Compound does not contain any blocks for
this loop.

You tried to open a compound that does not have any function
blocks that are part of the loop.

Connection attempted to invalid command.

You are trying to connect the wrong type of command to an
object block; or, you are trying to connect two CONN blocks
that are configured for the same type, but are passing different
command types (e.g., Warning command into a CONN block
that passes an Alarm command).

Connection menu is empty.

You are trying to make an output connection from a FILE
block. This block has no output connections.

Connection not made--Sequential connection
limit exceeded.

You have reached the maximum number of sequential
connections (120) allowed.

Could not initialize the DBM--cannot open
win.ini file.

The win.ini file could not be located. Either it is in the wrong
directory or it does not exist. The file must be under the same
directory as the FMSDOS environmental variable specifies.

Could not initialize the DBM--keyword
undefined in win.ini file.

The win.ini file does not contain one or more of the
following keywords: DATA, FMSDATA, or MODELS. All
three keywords are required.

Could not initialize the DBM--keyword
undefined in win.ini file.

The win.ini file does not contain the keyword value for one or
more of the following keywords: DATA, FMSDATA, or
MODELS. All three keywords require values.

Editor 173

Could not initialize the DBM--out of
environmental space.

Your computer does not have enough memory to run GPL.
Make sure the SHELL command in the CONFIG.SYS file is
set to a large enough number.

Could not initialize the DBM--status : xx

There is a problem with the database manager. Call Technical
Support in Milwaukee, noting the status number that displays.

Could not open .LST error file.

The Editor cannot open the list file for writing messages that
are created with Session Read. Click left on [OK] to continue.

Could not set FMSDOS environmental
variable.

Your computer does not have enough memory to run GPL.
Increase the environmental size as specified by the SHELL
command in the CONFIG.SYS file.

CS object already assigned to DSC--
{system\object name}.

The hardware object you specified is assigned to a C210A or
C260A controller.

Cursor too close to workspace boundary.

You are trying to display a remote connection symbol with the
cursor too close to the edge of the work area.

Day of week prefix incorrect or repeated
in TIM function.

The day-of-week abbreviation entered is incorrect or repeated
within the interlock statement. Valid abbreviations are SU,
MO, TU, WE, TR, FR, and SA for Sunday through Saturday,
respectively.

174 Editor

DBM add error.

The database manager of the GPL Editor cannot add the object
block as you have requested. The database may be faulty.
Click left on [OK] to continue.

DBM delete error.

The database manager of the GPL Editor cannot delete the
object block as you have requested. The database may be
faulty. Click left on [OK] to continue.

DBM error. --{status #}

The archive database interface is not working properly. Call
the Technical Support Group (TSG) in Milwaukee for
assistance, taking note of the status number that displayed.

DBM failure. (Spawn--{status #})

The Editor cannot access the archive database. This message
usually indicates your computer does not have enough memory
available.

DBM write error.

The database manager of the GPL Editor cannot save the
changes you made to the object block’s template. The database
may be faulty. Click left on [OK] to continue.

Delete this object from the archive
database?

You have selected to delete this object block from the archive
database. Perform the deletion by clicking left on [YES]. Or,
you may keep the object in the archive by clicking left on
[NO].

Differential must be undefined (blank)--
{system\object name}.

You must leave the Differential blank if the High Limit, Low
Limit, Setpoint, and Normalband are all blank (undefined).
The Differential is optional.

Editor 175

Differential value too high--
{system\object name}.

The Differential value you have entered is too high. The
following must be true:

(Setpoint - Normalband/2 + Differential) <

(Setpoint + Normalband/2 - Differential)

Disk not inserted or not ready.

The drive letter you typed is not of a valid drive, or the floppy
diskette is missing from the drive.

DSC hardware object does not exist in
archive.

The object record for the system\object name you specified
under the Hardware category does not exist in the archive
database; therefore, you cannot use it in a control strategy.

DSC logical point type invalid.

The logical point type you specified is not valid for this object.

DSC type is wrong for this CS object--
{system\object name}.

The Hardware object you specified must be of a C210A or
C260A type, depending on which CS object template you are
editing.

Enter or select a name.

You selected a function under the File or Compound option
menu without clicking left on, or typing in, the name of the
strategy or compound.

Environment variable GPLCMP not defined--
using default of c:\.

The GPLCMP environmental variable is not defined, or not
defined properly, in the GPL.BAT file. As a default, the GPL
Editor will read the root directory (c:\) when displaying the
compound directory.

176 Editor

Environment variable GPLPATH not defined--
using default of c:\.

The GPLPATH environmental variable is not defined, or not
defined properly, in the GPL.BAT file. As a default, the GPL
Editor will read the root directory (c:\) when displaying the
strategy file directory.

Environment variable GPLUMAC not defined--
using default directory.

The GPLUMAC environmental variable is not defined, or not
defined properly, in the GPL.BAT file. As a default, the GPL
Editor will use the C:\FMS\DATA\GPL\JCIUMACS directory
for the USER block functions.

Erase this block from the GPL Strategy
file?

You have selected to erase this object block from the work
area and the strategy file. Perform the erase action by clicking
left on [YES]. Or, you may keep the object on the work area
and in the strategy file by clicking left on [NO].

ERROR! Connection memory exceeds limit.

You have reached the maximum size of the connection subfile
(.CI) for the control strategy.

ERROR! Database memory exceeds limit.

There is not enough PC memory available to load or edit the
selected compound. Or, you have reached the maximum
allowable mixture of function blocks that the database file
(.DB) of the control strategy can contain.

ERROR! Graphic symbol memory exceeds
limit.

You have reached the maximum number of text characters that
the database file (.DB) of the control strategy can contain.

Editor 177

ERROR! File version number does not match.

The control strategy or compound you are trying to load was
created with a different version of GPL.

Error! Illegal Operator:

The operator you entered is not one of the following: +, -, *, /,
^.

Error! Invalid identifier:

You entered an invalid identifier. Only use the following
characters and symbols in the equation: I1-I4, C1-C4, +, -, *, /,
(,), SQR, ^, LOG, SIN, COS, TAN, ABS, MIN, MAX, AVG,
and PI.

ERROR! Missing compound name.

You tried to save a compound without specifying a name in the
Name field. All compounds must be named.

Error! Missing expression/operand.

The function requires an expression or operand.

Error! Missing left parenthesis.

A required left parenthesis is missing.

Error! Missing operator.

A required operator is missing.

Error! Missing right parenthesis.

A required right parenthesis is missing.

Error! No expression.

The right parenthesis has no matching left parenthesis.

Error! Too many parameters.

You have defined too many parameters for the function.

178 Editor

ERROR! Total blocks exceeds limit.

You have reached the maximum number of blocks in a strategy
file (999).

ERROR! Total connections exceeds limit.

You have reached the maximum number of connections in a
strategy file (2200).

ERROR! Total graphic symbols exceeds limit.

You have reached the maximum number of text lines in a
strategy file (800).

ERROR! Write to disk failed—disk full,
write protect, etc.

The write procedure to the disk has failed. The possible causes
include: disk is full, disk is write protected, or some other
cause. Note that the strategy or compound file name is created,
but its contents is blank.

EXIT TO:

You have selected the Exit icon to exit the GPL Editor. Click
left on [DOS] to go to the DOS environment. Click left on
[FMS] to go to the Metasys Network. Or, click left on
[CANCEL] to escape the exit operation.

Feedback Object type must be AI/AD/ACM--
{system\object name}.

The object you defined in the Feedback category must be an
AI, AD, or ACM object.

Feedback Object type must be BI/BD--
{system\object name}.

The object you defined in the Feedback category must be a BI
or BD object.

Editor 179

Feedback Sys\Obj, all defined or all
blank--{system\object name}.

You must define or leave blank the system name and object
name fields under the Feedback category.

Feedback Sys\Obj names are required--
{system\object name}.

You must define the system name and object name fields
under the Feedback category.

Feedback Sys\Obj names must be blank--
{system\object name}.

You must leave blank the system name and object name fields
under the Feedback category for an AOS object that is defined
for local control.

Feedback Sys\Obj Name not in archive DB--
{system\object name}.

The system\object name you specified under the Feedback
category is not defined in the archive database, and therefore
you cannot use it in a GPL control strategy.

File not found or not in current
directory.

The file you selected or typed in does not exist in the currently
selected directory.

File being printed--cannot update.

You tried to add a print file to the queue that is currently
printing.

Find next occurrence?

Whether you wish to find the next place this block is used in
the control strategy. Click left on [OK] to find the next
reference, or click left on [CANCEL] to exit the Find
operation.

180 Editor

Group Number already used--{system\object
name}.

The group number you specified for the LCG object is already
being used by another LCG object.

Hardware object record does not exist.

The object record for the system\object name you specified
under the Hardware category does not exist in the archive
database; therefore, you cannot use it in a control strategy.

Hardware slot already used--{system\object
name}.

The hardware slot you specified is taken by another object.

Hardware slot must be an odd number--
{system\object name}.

The hardware slot for a Form C Point Type of an ACM or BI
object must be an odd number.

Hardware slot not available--
{system\object name}.

The hardware slot you specified is already taken by a different
object.

Hardware subslot already used--
{system\object name}.

The hardware subslot you specified is already taken by a
different object.

Hardware type mismatch in the archive DB--
{system\object name}.

The HW (hardware) type you selected does not match the
Hardware System\Object name specified.

High Input Span must be > Low Input Span--
{system\object name}.

You must define a Span High Input that is greater than the
Span Low Input (if defined).

Editor 181

High Limit must be > Low Limit--
{system\object name}.

You must define a High Alarm Limit that is greater than Low
Alarm Limit (if defined).

High Limit value too low--{system\object
name}.

The High Limit value you have entered is too low. The
following must be true:

(High Limit - Differential) > (Setpoint + Normalband/2)

High Output Span cannot equal Low Output
Span--{system\object name}.

You must define a Span High Output that is not equal to the
Span Low Output (if defined).

High Sat must be an AI type--
{system\object name}.

The object that you defined as a reference under the High
Saturation category must be an AI object.

High Sat must be on same DCM as PIDL--
{system\object name}.

The object that you defined as a reference under the High
Saturation category must be on the same DCM as the PIDL
object.

High Sat Sys\Obj Name not in archive DB--
{system\object name}.

The system\object name that you defined as a reference under
the High Saturation category is not defined in the archive
database, and therefore you cannot use it in a GPL control
strategy.

HR:MIN:SEC requires colon (:).

A colon (:) is required to separate the hour, minute, and second
values.

182 Editor

Input {1-6} must be an AI type--
{system\object name}.

The object that you defined as a reference under the Input n
(1-6) category must be an AI object.

Input {1-6} must be on same DCM as PIDL--
{system\object name}.

The object that you defined as a reference under the Input n
(1-6) category must be on the same DCM as the PIDL object.

Input {1-6} Sys\Obj Name not in archive
DB--{system\object name}.

The system\object name that you defined as a reference under
the Input n (1-6) category is not defined in the archive
database, and therefore you cannot use it in a GPL control
strategy.

Insufficient memory to run Editor.

There is not enough memory in RAM to run the GPL Editor.

Invalid block name.

You have entered a reserved word that cannot be used for the
Block Name of a SVAR block. Appendix F: Characters,
Symbols, and Reserved Words lists all reserved words.

Invalid character in file name.

You have entered an invalid character in the File Name field of
the FILE block template. Appendix F: Characters, Symbols,
and Reserved Words lists all invalid characters.

Invalid character in the process obj name.

You have entered an invalid character in the Object Name
field of the process compound template. Appendix F:
Characters, Symbols, and Reserved Words lists all invalid
characters.

Editor 183

Invalid character in the software object
name.

You have entered an invalid character in the Object Name
field of an object block template. Appendix F: Characters,
Symbols, and Reserved Words lists all invalid characters.

Invalid character in block name.

You have entered an invalid character in the Block Name field
of the SVAR block template. Appendix F: Characters,
Symbols, and Reserved Words lists all invalid characters.

Invalid character in the software system
name.

You have entered an invalid character in the software System
Name field of an object block template. Appendix F:
Characters, Symbols, and Reserved Words lists all invalid
characters.

Invalid character in type/file name.

You have entered an invalid character in the Type/File Name
field of the USER block template. Appendix F: Characters,
Symbols, and Reserved Words lists all invalid characters.

Invalid command type.

You are trying to connect a command line from a command
block that is already configured to an object that cannot accept
this type of command.

Invalid directory in GPLCMP--using default
of c:\.

The directory specified for the GPLCMP environmental
variable in the AUTOEXEC.BAT file is invalid. As a default,
the GPL Editor will read the root directory (c:\) when
displaying the compound directory. Refer to the Introduction
chapter for details.

184 Editor

Invalid directory in GPLUMAC--using
default directory.

The directory specified for the GPLUMAC environmental
variable in the AUTOEXEC.BAT file is invalid. As a default,
the GPL Editor will use the C:\FMS\DATA\GPL\JCIUMACS
directory for the USER block functions. Refer to the
Introduction chapter for details.

Invalid file name.

You have entered a reserved word that cannot be used for the
Block Name of a FILE block. Appendix F: Characters,
Symbols, and Reserved Words lists all reserved words.

Invalid logical point number for ASP type.

The logical point number you entered is outside the range for
an AOS object that has ASP as its logical point type. The valid
range is 4 to 67.

Invalid logical point number for BSP type.

The logical point number you entered is outside the range for
an BO object that has BSP as its logical point type. The valid
range is 5 to 7.

Invalid name.

You have entered a reserved word that cannot be used for the
name of a directory, file, or compound block. Appendix F lists
all reserved words.

Invalid Number of States and Wired 0 for
H/W Ref--{system\object name}.

You have entered a number of states and wired 0 that is invalid
for the specified hardware reference.

Invalid Number of States for H/W Ref--
{system\object name}.

You have entered a number of states that is invalid for the
specified hardware reference.

Invalid operand.

A legal parameter such as Z1 or L2D5 was expected but not
found at the point of the error.

Editor 185

Invalid path in GPLPATH--using default of
c:\.

The directory pathname specified for the GPLPATH
environmental variable in the AUTOEXEC.BAT file is
invalid. As a default, the GPL Editor will read the root
directory (c:\) when displaying the strategy file directory.
Refer to the Introduction chapter for details.

Invalid process obj name.

You have entered a reserved word that cannot be used for the
Process Object Name of a compound block. Appendix F:
Characters, Symbols, and Reserved Words lists all reserved
words.

Invalid process sys name.

You have entered a reserved word that cannot be used for the
Process System Name of a compound block. Appendix F:
Characters, Symbols, and Reserved Words lists all reserved
words.

Invalid software object name.

You have entered a reserved word that cannot be used for the
software Object Name of an object block. Appendix F:
Characters, Symbols, and Reserved Words lists all reserved
words.

Invalid software system name.

You have entered a reserved word that cannot be used for the
software System Name of an object block. Appendix F:
Characters, Symbols, and Reserved Words lists all reserved
words.

Invalid type/file name.

You have entered a reserved word that cannot be used for the
name of a USER block. Appendix F: Characters, Symbols,
and Reserved Words lists all reserved words.

Last erased item restored. Returning to
Erase mode.

The item that you erased last has returned to the diagram. The
Erase function is now enabled.

186 Editor

Logical point number already used--
{system\object name}.

The logical point number you specified is taken by another
object.

Loop Detected! Select the Loop-master
block.

You have formed a loop while making connections on the
diagram. To correct the loop, choose which function block you
want GPL to execute first by clicking left on it.

Loop Number already used - {system\object
name}.

The loop number you specified for the PIDL object is already
being used by another PIDL object.

Low Limit value too high--{system\object
name}.

The Low Limit value you have entered is too high. The
following must be true:

(Low Limit + Differential) < (Setpoint - Normalband/2)

Low Sat must be an AI type--{system\object
name}.

The object that you defined as a reference under the Low
Saturation category must be an AI object.

Low Sat must be on same DCM as PIDL--
{system\object name}.

The object that you defined as a reference under the Low
Saturation category must be on the same DCM as the PIDL
object.

Low Sat Sys\Obj Name not in archive DB--
{system\object name}.

The system\object name that you defined as a reference under
the Low Saturation category is not defined in the archive
database; therefore, you cannot use it in a GPL control
strategy.

Editor 187

Maximum compound penetration level has
been reached.

You are trying to query a compound in a file that has reached
its maximum number of compound levels.

Maximum file penetration level has been
reached.

You are trying to access a FILE block in a file that has reached
its maximum number of FILE block levels.

Minimum On Time too high for this Load--
{system\object name}

You have attempted to modify the Minimum On Time for this
object to a value that is greater than the load’s Minimum
Release Time. (This condition can occur if the object has been
defined as a DLLR load when previously added to the archive
database via DDL or online generation.)

Minimum Off Time too low for this Load--
{system\object name}

You have attempted to modify the Minimum Off Time for this
object to a value that is greater than the Comfort Override’s
Minimum Shed Time. (This condition can occur if the object
has been defined as a DLLR load with a Comfort Override
attribute when previously added to the archive database via
DDL or online generation.)

Missing Hardware System\Object Name--a
required field.

You must define a hardware system\object name for the object.

Missing operator inside DEL (Delay)
function.

The Delay function requires an operator.

Missing System\Object Name--a required
field.

You must define a system\object name for the object.

188 Editor

Missing System\Object Name for PIDL--
Aux Switch. Inp.

You must define a system\object name of the object that the
PIDL object will use for its Auxiliary Switch Input.

Missing System\Object Name for PIDL--
Hi Sat Limit.

You must define a system\object name of the object that the
PIDL object will use for its High Saturation Limit input.

Missing System\Object Name for PIDL--
Input {1-6}.

You must define a system\object name of the object that the
PIDL object will use for its Input {1-6}.

Missing System\Object Name for PIDL--
Low Sat Limit.

You must define a system\object name of the object that the
PIDL object will use for its Low Saturation Limit input.

Missing System\Object Name for PIDL--
Offset.

You must define a system\object name of the object that the
PIDL object will use for its Offset input.

Missing System\Object Name for PIDL--
Sel Input Signal.

You must define a system\object name of the object that the
PIDL object will use for its Selector Input.

Missing System\Object Name for PIDL--
Setpoint.

You must define a system\object name of the object that the
PIDL object will use for its Setpoint input.

Missing {XXXXX}--a required field.

You must define a value for {XXXXX}, a required field. The
{XXXXX} can be any valid template field.

Editor 189

MM-DD-YY requires hyphen (-).

A hyphen (-) is required to separate the month, day, and year
values.

Must terminate connection within current
compound.

You are trying to enter a higher compound level to terminate a
connection to a block. You must end the connection within the
displayed compound.

No Analog connections are available.

This block has no analog connections available.

No Binary connections are available.

This block has no binary connections available.

No blocks available for selection.

The control strategy has no blocks that can accept a remote
connection or analog display, or be located with the Find
function.

No COMMAND connections are available.

This block has no command connections available.

No COMMAND/WRITE connections are available.

This block has no command or write connections available.

No description available.

This control strategy or compound has no text description file.
The file must have the same name as the control strategy or
compound with a .DDS (strategy) or .CDS (compound)
extension.

Note: This message displays in the middle of the work area.
To clear it, click left.

No DUAL COMMAND connections are available.

This block has no dual command connections available.

190 Editor

No help available.

You tried to display a help screen, but the Editor could not
locate the help file. The two help files, ICON.HLP and
BLOCK.HLP, must be in the following directory:
C:\FMS\BIN\GPL.

No loop devices allowed as parameters for
the XZONE function.

The XZONE operator only allows fire zones as parameters.

No Loop-master selected. Last connection
will be deleted.

You clicked outside the work area instead of clicking on the
Loop-master block. When you click the mouse again, the
connection will erase and you’ll need to draw it again.

No .LST file available.

You tried to display the list file, but the Editor could not locate
the file. Either the file is in the wrong directory, or it has not
yet been created with Session Read, the Expert Checker, or the
Translator/Compiler. The .LST file should be under the same
directory as the control strategy file.

No READ connections are available.

This block has no read connections available.

No Session Read required.

You tried to perform a Session Read on a strategy file whose
object blocks are already matched with the data in the archive
database.

No source code available.

This USER block has no source file. The file you specify in
the database template must be the same name as the ASCII
source file. Also, the source file must be in the appropriate
directory with a .MAC extension.

Note: This message displays in the middle of the work area.
To clear it, click left.

Editor 191

No TIME connections are available.

This block has no time connections available.

No WRITE connections are available.

This block has no write connections available.

Non-existent directory.

The currently displayed directory is showing the root
directory.

Normal State cannot be NONE when latching
is Yes--{system\object name}.

If you answered Y (Yes) for the Latching Point field, you
cannot specify NONE in the Normal State field.

Not a binary connection.

You are trying to exempt a non-binary connection. Only binary
connections can be exempt from triggering a process.

Not a connection.

You are trying to exempt something other than a connection
(e.g., a block).

Not enough memory available for DBM
operation.

The GPL Editor could not perform a Database Manager
(DBM) function because the computer’s RAM is full. Check to
make sure no unnecessary TSR programs are in memory.

NOT function operates on only one value.

Only one value can be specified with the NOT function.
The value can come from a single parameter
(e.g., Z5 or L1D3) or an equation that results in a single value
(e.g., (OR(Z28 Z29) or OR(Z1 AND (Z3 Z4)). An example of
an invalid function is: NOT(Z1 Z2), which has
two parameters.

Object does not exist, Delete aborted.

The object block you are trying to delete from the archive
database does not exist.

192 Editor

Object record does not exist in archive
DB--{system\object name}.

The object you are trying to read from the archive database is
missing.

Off Switch In—already used on LC Device--
{system\object name}.

The Off Switch Input Number you specified is already used by
the Intelligent Lighting Controller.

Offset must be an AI type--{system\object
name}.

The object that you defined as a reference under the Offset
category must be an AI object.

Offset must be on same DCM as PIDL--
{system\object name}.

The object that you defined as a reference under the Offset
category must be on the same DCM as the PIDL object.

Offset Sys\Obj Name not in archive DB--
{system\object name}.

The system\object name that you defined as a reference under
the Offset category is not defined in the archive database, and
therefore you cannot use it in a GPL control strategy.

Only 128 Hardware Refs allowed for this
device--{system\object name}.

While attempting to add a software object to a System 9100
device, you have used the 129th hardware reference. Each
System 9100 controller can have a maximum of 128 of its
hardware references mapped to software objects.

Output {1-8} attr, VALUE if AOD / not
VALUE if PIDL--{system\object name}.

The attribute that you specified under the Output n {1-8}
category must be Value if the system\object name is of an
AOD object; or, you must specify some other valid attribute
other than Value if the system\object name is of a PIDL object.

Editor 193

Output {1-8} must be an AOD/PIDL type--
{system\object name}.

The object that you defined under the Output n {1-8} category
must be an AOD or PIDL object.

Output {1-8} must be on same DCM as PIDL--
{system\object name}.

The object that you defined under the Output n {1-8} category
must be on the same DCM as the PIDL object.

Output {1-8} Sys\Obj\Attr, all defined or
all blank--{system\object name}.

You must define or leave blank the System Name, Object
Name, and Attribute fields under the Output n {1-8} category.

Output {1-8} Sys\Obj Name not in archive
DB--{system\object name}.

The system\object name that you defined under the
Output n {1-8} category is not defined in the archive database,
and therefore you cannot use it in a GPL control strategy.

Panel/Pt. addresses must both be zero or
non-zero--{system\object name}.

You must enter either a zero or non-zero number for both the
Annunciator Panel--and Point--address parameters.

Parentheses mismatch. Left and right
parentheses do not match.

A required left or right parenthesis is missing.

PID Loop number for DCM must be 1-16--
{system\object name}.

You attempted to enter a PID Loop number greater than 16 for
a PID Loop object on a DCM. For a DCM, the PID Loop
number range is 1-16. For a DCM140, the range is 1-20.

Point address already used.

The point address you specified is taken by another object.

194 Editor

Point address out of range.

The point address you specified is not within the valid range
for the OTHER controller type. Each OTHER controller has
its own range. Refer to the engineering document for your
particular controller.

Printer is already active.

You clicked left on Start Output while the print operation is
already in progress. The print operation will continue until all
files are sent to the printer.

Printer not ready.

The printer to which you are trying to send a print file is
offline or disconnected.

Process has been recompiled without using
GPL.

The process compound that you have queried has been
compiled with some other utility than the GPL Compiler. If
you want the strategy file version of the process to overwrite
the archive database version the next time it is translated with
GPL, click left on [OVRWRITE]. The process compound
block will stay defined. If you do not want the strategy file
version of the process to overwrite the archive database
version, click left on [IGNORE]. The block will change to
undefined.

Process object code already exists in the
archive database.

You have pasted down a process compound that has object
code in the archive database. If you want the strategy file
version of the process to overwrite the archive database
version the next time it is translated with GPL, click left on
[OVRWRITE]. The process compound block will stay
defined. If you do not want the strategy file version of the
process to overwrite the archive database version, click left on
[IGNORE]. The block will change to undefined.

Editor 195

Process object code does not exist--
{system\object name}.

The process compound that you have queried has no
associated object code. This is merely a status message, not an
error message.

Protected process/compound--expansion/edit
not allowed.

You tried to edit or load the contents of a protected compound.
You cannot perform this operation on protected compounds.

Reader Number specified does not exist--
(system\object name).

You specified an undefined Reader Number for a Binary Input
object. The Reader Number you specify must reference a
defined Card Reader object on a defined D600 Access
Controller.

Required DBM files not found in correct
path.

The GPL Editor could not perform a Database Manager
(DBM) function. Either the DBM executable files are missing
from the C:\FMS\BIN directory, or the C:\FMS\BIN directory
is not specified in the AUTOEXEC.BAT PATH statement.

Remote destination not allowed if crossed
into compound.

You are trying to create a remote connection that is at a
different compound level from which it started. You must start
and end the remote connection at the same compound level.

Same file has been penetrated--Check file
name.

You are trying to access a file that has the same name as its
parent file. Open the FILE block template and assign it a
unique name.

Sel Inp Signal must be an AI type--
{system\object name}.

The object that you defined as a reference under the Select
Input category must be an AI object.

196 Editor

Sel Inp Signal must be on same DCM as
PIDL--{system\object name}.

The object that you defined as a reference under the Select
Input Signal category must be on the same DCM as the PIDL
object.

Sel Inp Sig Sys\Obj Name not in archive
DB--{system\object name}.

The system\object name that you defined as a reference under
the Select Input category is not defined in the archive
database, and therefore you cannot use it in a GPL control
strategy.

Session Read Complete--{n} Error(s) Found.

The Session Read operation for this strategy file is complete.
If any errors were found, examine the list file by clicking left
on VIEW under the Query option menu.

Session Read in Progress ...

The Session Read function, which matches the strategy file
database with the archive database, is in progress.

Note: This message appears boxed in the middle of the
work area, overlaying whatever may be displayed.

Session Read not available when in No
Archive Mode.

The Session Read operation is available only when the Editor
is interacting with the archive database.

Setpoint & Normalband must both be
defined/unde --{system\object name}.

You must define or leave blank the Setpoint and Normalband
values.

Setpoint must be an AI type—{system\object
name}.

The object that you defined as a reference under the Setpoint
category must be an AI object.

Editor 197

Setpoint must be on same DCM as PIDL--
{system\object name}.

The object that you defined as a reference under the Setpoint
category must be on the same DCM as the PIDL object.

Setpoint Sys\Obj Name not in archive DB--
{system\object name}.

The system\object name that you defined as a reference under
the Setpoint category is not defined in the archive database,
and therefore you cannot use it in a GPL control strategy.

Span Values must all be defined or
undefined—{system\object name}.

You must define or leave blank all four span values (Span
High Input, Span Low Input, Span High Output, Span Low
Output).

Software and hardware obj must be on same
NCM--{system\object name}.

The objects you defined under the Identification and Hardware
categories must be on the same NCM.

STD Range value for FPU must be 0, 26-33--
{system\object name}.

The standard range value you specified is outside the accepted
range for an FPU hardware type. The range is 0 and any
number between 26 and 33.

Stop time must be greater than start time
within TIM function.

The stop time must be a later time than the start time. Crossing
over midnight is not allowed.

Switch In--already used on LC Devic --
{system\object name}.

The Switch Input Number you specified is already used by the
Intelligent Lighting Controller.

198 Editor

System name does not exist in the archive
DB--{system\object name}.

The system name you specified is not defined in the archive
database; therefore, you cannot use it in a GPL control
strategy.

System\Object name already exists in
archive DB--{system\object name}.

The system\object name you specified is already defined in the
archive database, and therefore cannot be added to the archive.

System\Object name and block label are not
unique.

Two REF blocks in the same file have the same system\object
name and block label. The block label for each REF block that
has the same system\object name must be unique.

Text found past closing parenthesis.

A parameter or operator is found past the point where the
forward activated list or reverse activated equation should end.

The L/W System\Object name is not unique
in this GPL strategy file.

You are trying to duplicate an object block that already exists
in the strategy file. A strategy file can have at most
one instance of a particular object block (i.e., the same
system\object name).

This function is not allowed while in the
Compound Edit mode.

You are trying to access the contents of a FILE block while
editing a compound. This is not allowed.

To continue, click the mouse.

To clear the work area of the user message, click the left
mouse button.

Editor 199

Time zone specified is not defined--
{system\object name}.

You have entered a value in the Suppress TZ field that doesn’t
match an existing time zone.

Too many connection levels.

You are trying to draw a connection through more than
ten compound levels (the maximum).

Too many connection segments.

You have reached the maximum allowed connection segments.
A direct connection can have up to 14 segments, and a remote
connection, seven segments. Click right/middle to erase the
last connection segment.

Too many items for move/copy operation.

There is not enough memory in RAM to perform the move or
copy operation, or to load the expanded compound.

Too many operands and operators.

The interlock statement is too large to be stored properly.

Translator not available when in No Archive
Mode.

The Translator utility is available only when the Editor is
interacting with the archive database.

Tune Noise Band must be greater than
Deadband--{system\object name}.

You must enter a Tune Noise Band that is greater than the
Deadband.

Type designation incorrect for module or
detector loop device.

The type designation for this parameter is incorrect. A
parameter identified as a loop device must be either a module
or a detector.

200 Editor

Unknown operator detected in the reverse
equation.

The reverse equation contains an unknown operator.

Update GPL block with archive database
data?

This object or process block already exists in the archive
database. Click left on [UPDATE] to copy in block’s template
information from the archive database. Or, click left on
[IGNORE] to keep the block’s template information as stored
in the strategy file.

Verify file deletion.

Indicate that you wish to delete the file or compound by
clicking left on [OK]. Or, click left on [CANCEL] to exit this
operation.

WARNING!!! Disk space is low--loss of
data possible.

There is not enough computer memory available for the GPL
Editor. Take out any unnecessary TSRs and set up a
RAMDISK. Refer to the README file that came with the
GPL program diskettes.

WARNING! File/compound not saved--changes
will be lost.

You edited the file or compound and have not yet saved the
changes. Click left on [OK] to ignore the changes and execute
the selected operation. Or, click left on [CANCEL] to clear
this message so you can save the file or compound.

WARNING! File exists. UPDATE?

The control strategy file, compound file, or print file already
exists. Click left on [OK] to write over the file and update it;
or, click left on [CANCEL] to escape the operation. Note that
the Editor does not allow you to create two print files with the
same name. For example, if the file name of a control strategy
is AHU1\COOLING and the file name of a compound is
JOB123\AHU1\COOLING, the Editor will not allow you to
create two print files called COOLING.PRD.

Editor 201

WARNING! Printing in progress--exiting
now may lose output!

You are trying to exit the Editor or go to one of the GPL
utilities while GPL printing is in progress. Click left on [OK]
to exit GPL or go to the utility; or, click left on [CANCEL] to
remain in the Editor and continue printing.

WARNING! Process object code does not
exist.

You queried a defined process compound that has never been
translated and compiled, and therefore, its object code does
not exist in the archive database. This message points out that
the process is not complete until it is translated and compiled.

WARNING! Write to disk failed. Out of
disk space.

You tried to save a compound to a disk that is full.

WARNING! You are about to clear the
entire diagram.

The GPL Editor is about to clear the entire control strategy file
from the computer’s RAM. Click left on [OK] to clear
memory; or, click left on [CANCEL] to escape the CLR ALL
operation.

Wired 0 invalid for Local Contact H/W
Reference--{system\object name}.

You have attempted to define wired 0 for this local contact
when the specified hardware reference is not valid for wired 0.

Working ...

The GPL Editor is loading information from the help file.

Zone on wrong side of Last Forward Zone—
{system\object name}.

For a forward activated zone, the number you enter must be
less than or equal to the zone boundary. For a reverse
equation, the number must be greater than the value of the
zone boundary.

202 Editor

© June, 1992 Johnson Controls, Inc. 1
 Code No. LIT-631040

GPL Programmer’s Manual

Expert Checker

Overview 3

Using the Expert Checker 5

� Running the Expert Checker 5
� During the Expert Check 7
� Viewing Errors in the List File 9

Error Messages 11

� Fatal Errors 11
� Initialization Errors 13
� Operation Block Errors *13
� Object Block Errors 15
� USER Block Errors 16
� Shared Variable Block Errors 16
� Diagrammatic Errors 17
� File Nesting Errors 17

* Indicates those sections where changes have occurred since the last printing.

2 Expert Checker

Expert Checker 3

Overview

This chapter contains instructions for using the Expert
Checker.

The Expert Checker is a software program that verifies the
completeness and correctness of GPL control strategies. Use
this debugging utility to check a strategy file for errors before
simulating or translating the file.

Any time you create or edit a strategy file, you must use the
Expert Checker to check the file for completeness and
correctness.

The Expert Checker:

� Performs error checks on control diagrams generated with
the GPL Editor or CAE Translator.

� Saves all errors in a list file, which you can view in the
Editor.

� Returns you to the GPL Editor so you can correct the
errors before simulating or translating the file.

The Expert Checker checks a strategy file for missing
connections, improper configurations, missing template
information, and undefined blocks.

The Expert Checker saves messages about all errors (except
fatal errors) in a list file. This list file has the same file name
and is placed in the same directory as the strategy file being
checked, with a .LST extension.

The Expert Checker examines all subfiles that are referenced
by FILE blocks in the main file. This allows you to check all
subfiles at one time. Errors from subfiles are saved in the
same list file as errors from the main file.

4 Expert Checker

Expert Checker 5

Using the Expert Checker

This section tells you how to use the Expert Checker and
describes the list file. The section includes:

� Running the Expert Checker

� During the Expert Check

� Viewing Errors in the List File

Before the Translator will translate a strategy file into
downloadable process objects, the file must be run through the
Expert Checker and found to be free of errors. If you attempt
to translate a file that has not been checked, GPL
automatically starts the Expert Checker to check the file.
You'll find complete information on the Translator in the
Translator chapter.

To run the Expert Checker from the Editor, use the following
steps:

1. Load the control strategy file that you want to check into
the work area of the Editor.

2. Double-click left on the Tools icon to display the Tools
option menu.

Running the
Expert Checker

Starting the Expert
Checker from the
Translator

Starting the Expert
Checker from the
Editor

6 Expert Checker

Figure 1: Tools Option Menu

3. Click left on the Expert Checker icon (check mark) in the
Tools option menu.

As soon as you select the Expert Checker, the Editor screen
clears and the Expert Checker begins checking the file.
Messages about the progress of the check appear on the
screen. These messages are described below. After the check,
press any key to return to the Editor.

TLSOP2

����

������

	��
�� ������������

�� �� 	� 	�
 	�� 	� ���
����	��

���� ���� ��� �	
�

��������	�
�����
�

����

�������

Expert Checker 7

The first thing the Expert Checker does is check the Expert
Checked flag (which every strategy file has). This flag
indicates whether checking is required. Whenever you save a
new or edited strategy file, the Expert Checked flag is set to
No, indicating that checking is required. When a file has been
checked and found to be free of errors, the Expert Checked
flag is set to Yes, indicating that checking is not required.

If the Expert Checker finds the flag set to Yes, it does not
check the file, and the following information appears on the
screen.

Expert Checking in progress for file:

{FILENAME}

Blocks Checked [0]

Expert Check complete - Number of errors found: 0

Return to the Editor

Strike a key when ready...

The zeros in the Blocks Checked and Number of Errors Found
fields indicate that checking did not occur because the file has
already been checked and found to be free of errors.

In this case, the Expert Checker sends a message to the list file
stating that the file has been previously checked and found to
be free of errors.

If the Expert Checked flag is set to No, checking takes place,
and the following message appears on the screen.

Expert Checking in progress for file:

{FILENAME}

Blocks Checked [XX]

During the Expert
Check

Expert Checked
Flag

Expert Checker In
Progress

8 Expert Checker

This message displays the name of the file being checked and
the number of blocks checked so far. The Blocks Checked
field increments by one as each block is checked.

All subfiles referenced by FILE blocks are also checked.

If a fatal error occurs, the message associated with the error is
shown on the screen, and the Expert Checker is terminated
immediately. Fatal errors are listed in the Error Messages
section later in this chapter.

Here is an example of a message that appears when a fatal
error occurs.

Expert Checking in progress for file:

{FILENAME}

Cannot create list file, {FILENAME.LST}

Expert Check complete - Fatal error

Return to the Editor

Strike a key when Ready...

When the checking procedure is complete and no errors are
found, the following message appears.

Expert Checking in progress for file:

{FILENAME}

Blocks Checked [XX]

Expert Check complete - No errors

Return to the Editor

Strike a key when Ready...

If non-fatal errors are found, the following message appears.

Expert Checking in progress for file:

{FILENAME}

Blocks Checked [XX]

Expert Check complete - Number of errors found: {XX}

Return to the Editor

Strike a key when Ready...

The Expert Checker saves all errors (except fatal errors) in the
list file, which can be viewed in the Editor.

Fatal Errors

No Errors Found

Errors Found

Expert Checker 9

The list file displays informative error messages for all non-
fatal errors found by the Expert Checker.

If the list file does not exist, the Expert Checker creates it. If
the list file does exist, the Expert Checker clears its contents
before saving any new error messages in it.

The list file has the same name as the strategy file you
checked, with a .LST extension (it is also placed in the same
directory). For example, the list file for a file called AHU1 is
AHU1.LST.

When a subfile is checked, the current content of its list file is
cleared and replaced with a message stating the file has been
checked as a subfile (if the subfile doesn't have a list file, one
is created). The message directs you to the file that contains
the subfile errors. For example, let's say you check a file
called AHU1 that has a subfile called CLG. All errors are
saved in a list file called AHU1.LST, including the errors in
the CLG subfile. If you view the list file for CLG, you will
find this message.

CLG last used as a subfile

12:15:02 2/16/90

See AHU1.LST for messages

The list file can also be written to by the Translator and
Compiler. When the Expert Checker writes to the list file, it
first clears the file. The list file header displays the time and
date, strategy file name, and name of the program (e.g., Expert
Checker, Translator, Compiler) that wrote the current
information to the list file.

The list file is an ASCII text file. You can view the file with
the GPL Editor, or print and view it with any text editor.

To view the list file in the GPL Editor, follow these steps:

1. Load the file you checked into the Editor. If the file is
already displayed in the Editor, this step is not necessary.

2. Double-click left on the Query icon (question mark) to
display the Query option menu.

3. Click left on the VIEW option in the Query option menu.
The screen displays up to 30 pages of the list file for the
currently loaded file. Here is an example of a list file
(Figure 2).

Viewing Errors in
the List File

10 Expert Checker

Figure 2: Example of List File

The errors found in the main file are listed first, followed by
the errors found in subfiles. Within each file, the errors are
organized by compound. The compound pathname appears as
a heading, followed by the errors in the compound. The
compound pathname is represented like a DOS pathname with
the highest level compound first.

The total number of errors found is displayed at the end of the
file.

If necessary, use the PageDn and PageUp keys to scroll to
additional errors. The GPL Editor can display up to 30 pages
(screens) of the list file. (If the list file is more than 30 pages,
exit the GPL Editor and view additional pages in DOS.)

XLSTFYL

����

������

	��
�� 	�
������
��

	 � �	 ��� ��� ��� ���

�	��������

�������

GPL - EXPERT CHECKER Revision 4.00

 COPYRIGHT(C) 1989,1990,1991,1992 JOHNSON CONTROLS INC. ALL RIGHTS RESERVED

**

11:18:23 3/15/92

Expert Checking File:
C:\FMS\BIN\GPL\APPSLIBR\ENRH1

COMPOUND: - AHU1\COMPOUND

1. CMD block "SET AD" missing required output connection "COMMAND"
- check source to final destination

Number of errors found: 1

**

**

Expert Checker 11

Error Messages

This section explains all error messages. There are eight types
of errors found by the Expert Checker:

Fatal USER Block

Initialization Shared Variable

Operation Block Diagrammatic

Object Block File Nesting

All error messages except fatal error messages are saved in the
list file.

In the list file and on your screen, the bracketed items will be
replaced by real values from the actual file. For example,
where the message in this section reads, Cannot read list
file, {FILENAME}.LST, the bracketed portion will be
replaced by the actual file name of the file you are attempting
to check.

This type of error involves the inability to create or write to
the disk, or the inability to allocate memory. A fatal error
causes the Expert Checker program to immediately abort. The
error message is displayed on the Expert Checker screen as
soon as the error occurs. (This is the only type of error not
saved in the list file.)

Cannot create .LST file:

{FILENAME}.LST

The Expert Checker cannot open a list file due to the disk
being full, corrupt, or because of write protect constrictions.

Cannot create sub LIST file:

{FILENAME}.LST

The Expert Checker cannot open the subfile’s .LST file
because the disk is full, or because too many files are open.

Fatal Errors

12 Expert Checker

Error Opening configuration file, GPL.CFG

The Expert Checker cannot open the configuration file
(GPL.CFG) to get the name of the file to be checked. Disk
may be corrupt.

Error while writing data base file

The Expert Checker cannot write to the data base file (after
setting the Expert Checked flag).

Error while writing to .LST file:
{FILENAME}.LST

The Expert Checker cannot write to the list file because the
disk is full or corrupt.

Error while writing to sub LIST file:
{FILENAME}.LST

The Expert Checker cannot write to the subfile’s .LST file
because the disk is full.

No GPL File to Expert Check

The Expert Checker cannot find the name of the file to be
checked in the GPL configuration file. The Expert Checker
searches the GPL configuration file for the name of the file to
be checked.

Out of memory for data base and connection RAM

The Expert Checker cannot allocate enough memory to load
the GPL block data base.

Unable to allocate memory

The Expert Checker cannot allocate enough memory to
perform operations necessary to continue.

Expert Checker 13

This type of error may occur when the data base and
connection files are loaded from disk. An Initialization error
will stop the error checking process for the file being checked.
The Expert Checker will continue checking nested subfiles.

Connection File not found, {FILENAME}.CI

Data base File not found, {FILENAME}.DB

The named file is missing.

Connection File not readable, {FILENAME}.CI

Data base File not readable, {FILENAME}.DB

The named file is corrupt.

This type of error indicates a required connection may not
have been made, a block may not have been grouped into a
control process, or an illegal block is contained in a Restart
process. In addition, certain types of blocks have special
requirements such as interfield dependencies (for example, a
PIR block’s high range must be greater than low range) and
types of blocks to which they can be legally connected. If
these requirements are not met, the following Operation block
errors will occur.

Hi input must be greater than lo input in SPAN block
{NAME}

Hi range must be greater than lo range in PIR block
{NAME}

There are conflicting interfield dependencies in the named
operation block. These checks are made for default values
entered in template fields only. The Expert Checker cannot
check for conflicting interfield dependencies that result from
runtime values.

Initialization
Errors

Operation Block
Errors

14 Expert Checker

Input connection {CONN} of CONN block {NAME} cannot

be marked exempt—mark exemption on connection to
final destination

An input connection to a CONN block has been marked
exempt, creating an ambiguous condition. It is not possible to
determine the destination for this exempt line. To avoid
ambiguity, mark the final destination block as exempt.

Input Connection {CONN} of {OPER BLOCK TYPE} block
{NAME} must come directly from an object block

The input connection to a block is from an invalid block type.
This message is generated if a TOT block has an input
connection that is not directly from an object block.

{OPER BLOCK TYPE} block {NAME} cannot be used in a
Restart process.

An illegal block type has been found in a Restart process.

{OPER BLOCK TYPE} block {NAME} cannot have an ENA
OUT connection without an ENA IN connection.

A block has been found that has an ENA OUT connection
without an ENA IN connection.

{OPER BLOCK TYPE} block {NAME} missing required
{INPUT/OUTPUT} connection {CONN}

The required connection is missing. {CONN} indicates the
name of the missing connection.

{OPER BLOCK TYPE} block {NAME} must be in process
compound

A block has been found that is not in a process compound.

Output connection of {OPER BLOCK TYPE} block {NAME}
not triggerable, exemption undefined

A binary output that is not triggerable has been marked as
exempt. Only triggerable binary variables can be made
exempt.

Remote (input/output) connection unspecified for
{CONN} of {OPER BLOCK TYPE} block {NAME}

Expert Checker 15

The named block has an unspecified remote input or output
connection.

16 Expert Checker

This type of error indicates one of three things for an object
block: the block is not defined, a connection is illegal, or the
connection creates conflicts.

Configuration lines from REF block {SYS\OBJ NAME—
BLOCK LABEL} to {SYS\OBJ NAME} are not allowed

A REF block may not be used as the source of a configuration
connection, unless the block is connected to an AD or BD
object block.

Conflicting configuration references for {REF NAME}
in {SYS\OBJ NAME} and (input/output) connection
{CONN} of {BLK TYPE} block {NAME or SYS\OBJ NAME}
{MSG}

A reference mismatch. The origin of a line connected as a
configuration reference to a block conflicts with the reference
system\object name in the block’s data base template.

If a READ block is connected to the ASSOC IN connection of
an AD or BD block, {MSG} will be replaced by the phrase
“connection must come directly from object, not from READ
attribute block.” In all other cases, {MSG} will not appear.

Input connection {CONN1} of {SYS\OBJ NAME} must come
from output connection {CONN2} of block type {OBJ
BLOCK TYPE}

The input connection to a block is from an invalid source. The
input connection must be a valid connection between the
following block types: BO/BI, BO/BD, AOS/AI, AOS/AD,
AOS/ACM, PIDL/AOD.

Port {CONN} of PIDL {NAME} configured NORMAL—output
connection can only come from PIDL OUT of PIDL block

A block other than a PIDL is connected to a PIDL port
defined as Normal, or an output connection from a PIDL other
than a PIDL OUT is connected to a PIDL port defined as
Normal. When a PIDL port is defined as Normal, it can only
be connected to another PIDL.

Object Block
Errors

Expert Checker 17

Remote (input/output) connection unspecified for
{CONN} of {SYS\OBJ NAME}

A remote connection to an input or output of an object block
exists that is not referenced to an actual object block.

String not triggerable, exemption undefined for
{SYS\OBJ}

An attribute that has been marked as exempt is not triggerable.

Undefined {OBJ BLOCK TYPE} block found

An object is not defined, meaning the block templates are
incomplete or have not been successfully saved to the archive
data base.

This type of error indicates a USER block exists with the same
TYPE/FILE name as another USER block but with different
input/output configurations.

Configurations for USER Block {TYPE/FILE NAME} do
not match for {BLK NAME1} and {BLK NAME2}

There is a duplicate USER block in the file with the same
TYPE/FILE name but a different number of inputs or outputs.

Output connection {CONN} for USER block {NAME}
cannot be fanned out

The output Write or Command connections of a USER block
are fanned out.

This type of error indicates a Shared Variable (SVAR) block
does not have a name associated with it, or that there is more
than one SVAR block with the same name in the process.

SVAR block must have a block name

A SVAR block has been found without a block name.

USER Block
Errors

Shared Variable
Block Errors

18 Expert Checker

SVAR block {NAME} may only be used once in process
{PRC CMP NAME}

A SVAR block occurs more than once in a process.

This type of error indicates ambiguities in the control flow.

No loop defined between {BLK TYPE} block {NAME or
SYS\OBJ NAME} and {BLK TYPE} block {NAME or SYS\OBJ
NAME}

There are loop errors for the named operation blocks. The
order of execution cannot be determined. There is either a
master block without a loop or there are multiple loops with
more than one master block.

This type of error indicates that file nesting is not hierarchical.

Illegal file block nesting for file:

{FILENAME}

FILE blocks have been illegally nested. A subfile cannot
reference a file that is previous to itself in the hierarchy of
files. For example, if block A references block B, and block B
references block C, block C cannot reference block A.

Diagrammatic
Errors

File Nesting
Errors

Expert Checker 19

© Febrary, 1994 Johnson Controls, Inc. 1
 Code No. LIT-631050

GPL Programmer’s Manual

Simulator

Overview 3

� Purpose of Simulator 3

Getting Started 5

� Preparing a Strategy File for Simulation 5
� Starting the Simulator 6
� The Simulator Screen 7
� Moving Around the Simulator Screen 13
� Changing Block’s Data or Outputs 15
� Exiting the Simulator 16

Tutorial 17

� Starting the Tutorial 17
� Executing a Process 19
� Modifying a Block Output 22
� Saving Changes Made in the Simulator 23
� Exiting the Simulator 24

Using the Control Window 25

� QUIT 26
� SAVE DB 26
� FIND 28
� NC START 29
� DIAGRAM 32
� ADVISORY 32
� PRINTER 34
� RUNTIME 34
� Message Similarities 34
� FAST Execution Mode 36
� NORMAL Execution Mode 36
� SUSPEND Execution Mode 36
� Execution Mode Details 37

* Indicates those sections where changes have occurred since the last printing.

2 Simulator

Simulator Functions 39

� Automatic Mode 39
� Manual Mode 40
� Simulating Processes 41
� Order of Execution of Function Blocks 45
� Modifying Object Block Configuration 45
� Simulating Configuration Connections 45
� Simulating Unreliability 47
� Simulating Manual Commands 48
� Simulating a PID Loop Object 49
� Simulating TIME Blocks 50
� Simulating CONN, CNST, and SVAR Blocks 51
� Simulating PULS, DLAY, and BSEQ Timers 53
� Simulating Local Control 55

Differences Between Simulator and NCM Execution 57

� Manual Mode 57
� PID Loop 57
� Lighting Control Group 58
� Configuration Connections 58
� Restart Processes 58
� Process Priority 59
� Change-of-State Analysis 59
� Change-of-State Feedback Delay Timers 59
� Blocks and Commands Not Fully Simulated 59
� Object Attributes Not Simulated *60

User Messages 61

� Fatal Initialization Error Messages 61
� User Status Messages 62
� User Error Messages 63
� Runtime Operation Block Error Messages 66

* Indicates those sections where changes have occurred since the last printing.

Simulator 3

Overview

This chapter describes Simulator functions and contains
instructions and a hands-on tutorial that quickly teach you
how to use the Simulator.

You should be familiar with using the Editor before using the
Simulator. You’ll find more information in the Editor
chapter.

The Simulator is a software utility that allows you to test the
functional operation of GPL control strategies, which include
process objects and objects. Use the Simulator to test control
strategies and the behavior of objects before translating the
strategies into processes and downloading the processes into
an NCM.

The Simulator allows you to test control strategies in a safe
environment. In addition, the Simulator gives you extensive
control over the execution of processes. This means that you
can simulate various conditions (e.g., offline and unreliable
states) to test how the logic will respond.

Purpose of
Simulator

4 Simulator

The Simulator allows you to:

� simulate execution of the processes within the file

� examine the data throughout in the process data flow

� test a section of a process under all conditions

� simulate the interaction of objects with processes and
other objects

� temporarily change object attributes to simulate different
runtime states

� view how your changes affect subsequent function blocks

� save any changes made for future simulation sessions

The Simulator attempts to match as closely as possible the
behavior of blocks and processes in the NCM. Like the NCM,
the Simulator executes function blocks from “upstream to
downstream” in the process data flow. When executing a
function block, the Simulator evaluates the block’s current
inputs, applies the block’s algorithm to the input values, and
generates output values. These output values then become the
input values for the downstream function blocks.

In the Simulator, blocks have two modes: Automatic mode
(default) and Manual mode. When a block is in Automatic
mode, it executes normally. When a block is in Manual mode,
you can manipulate the data fields and outputs of the block to
simulate different conditions. Then, when the block is
executed, you can view the impact of your changes on
downstream blocks. You can repeat this cycle of switching
between Automatic and Manual modes, modifying function
block outputs, and observing the results until you are satisfied
with the outcome.

Simulator and NCM
Execution

Automatic and Manual
Modes

Simulator 5

Getting Started

This section introduces you to the procedures you’ll need to
know to use the Simulator effectively. This section includes:

� Preparing a Strategy File for Simulation

� Starting the Simulator

� The Simulator Screen

� Moving Around the Simulator Screen

� Changing a Block’s Data or Outputs

� Exiting the Simulator

The tutorial following this section guides you through the
process of simulating a control strategy.

Following the tutorial are sections explaining all Simulator
functions.

Preparatory steps for simulating a file include pasting analog
displays, typing text, and expert checking the file. All three
steps are optional, but recommended. Paste down analog
displays to help you easily view the changing analog values
that occur during simulation. Type text as needed to clearly
identify the outputs and analog displays in the diagram.
Expert check a file to assure that the file to be simulated is
without errors. Perform the following steps:

1. Load the control strategy file into the work area of the
Editor.

2. Paste down analog displays using the 0.00 option in the
Tools option menu. Paste down explanatory text using
the TEXT option in the Tools menu. Both of these
functions are described in the Tools Functions section of
the Editor chapter.

3. Save the file with the pasted analog displays and
explanatory text.

Preparing a Strategy
File for Simulation

6 Simulator

4. Run the file through the Expert Checker. A file should
only be simulated after it has been run through the Expert
Checker and found to be free of errors.

To start the Simulator:

1. If you haven’t loaded the control strategy file into the
work area yet, do so now.

2. Double-click left on the Tools icon (hammer) to display
the Tools option menu (Figure 1).

Figure 1: Tools Option Menu

3. Click left on the SIM option in the Tools menu. The
screen clears and the message, Initializing
Simulator...please wait, appears briefly. Then the
Simulator screen appears (Figure 2).

Starting the
Simulator

TLSOPMN

����

������

	��
�� ������������

�� �� � � 	�
 	�� 	� ���
����	��

���� ���� ��� �	
�

��������	
�����

�����
���

����

�����	�

Simulator 7

Figure 2: Simulator Screen

As shown in Figure 2, the Simulator screen is divided into
four major areas: the Main window, the Control window, the
Block window, and the Message line.

The Main window displays the control strategy diagram you
selected. The diagram appears as it does in the Editor, with
the exception of text, which may be slightly shortened in
length.

If the function blocks displayed in the diagram are the
contents of a compound, a green box appears around the
diagram. As in the Editor, you can move into and back out of
compound levels. To move into a compound, double-click the
compound block in the diagram. To back out of a compound,
double-click the compound name field in the lower left corner
of the Main window.

In the Main window, the currently selected block is
highlighted. Use the mouse to select a block.

����

����	
�

��

�	�����

�������

������

�
������

������

������

�	�
����

����

�����

�����

���	��

�����

�������
����
�����

���
�����

����	�
����	��
��
����������

����
�����

����	�
����
!�����
�	�
����������

�������
"��

SIMSCRN

The Simulator
Screen

Main Window

8 Simulator

The Main window displays some of the results of simulation.
For example, where analog displays have been pasted down,
you can quickly view changing analog values.

In the Main window:

� Blocks in Manual mode are drawn in yellow.

� True (closed/1/yes) binary connection lines are green.

� False (open/0/no) binary connection lines are red.

� Unreliable connection lines flash blue every half second.

� If a connection line is a possible trigger, its connecting
arrow is outlined in light cyan.

� If a connection line is a possible trigger, but originates
from an object with locked triggers, its connecting arrow
is outlined in yellow.

� The order of execution for each operation block in a
process appears in the upper left corner of the operation
block. For example, the number 3 appears in the upper
left corner of the operation block that is third in the
execution order.

Simulator 9

The Control window (Figure 2) displays the following
Simulator options.

MENU OPTION FUNCTION
QUIT Exits Simulator and returns to Editor
SAVE DB Saves changes made to data fields for future

Simulator sessions
FIND Displays a list of all function blocks in the file

and allows selection
NC START Simulates either a warm or cold NC start
DIAGRAM Redisplays diagram after displaying messages
ADVISORY Displays Advisory messages
PRINTER Displays Print messages
RUNTIME Displays Runtime messages
FAST Executes timing functions at ten times the

normal speed
NORMAL Executes timing functions at normal speed
SUSPEND Stops executing timing functions

On the Simulator screen, the DIAGRAM, ADVISORY,
PRINTER, and RUNTIME options are grouped under a
DISPLAY heading, and the FAST, NORMAL, and
SUSPEND options are grouped under an EXECUTION
heading. These and other options are described in detail in
Using the Control Window.

Control Window

10 Simulator

The Block window (Figure 2) displays data specific to one
selected block. In the Block window, you can view the
current block values, put a block in Manual mode, and modify
some of the block’s outputs and data fields. By modifying
block outputs and data fields, you can simulate various
conditions and see the results on downstream logic.

The colors of the fields in the Block window indicate the type
of data to be viewed or entered in the fields.

COLORS TYPE OF DATA
Brown Time value
Green Tab fields
Light Cyan Binary value
Magenta String value
Yellow Analog/Integer value

The bottom line of the screen displays the name of the file
currently being simulated, the function keys currently
available, and user messages.

The file name appears to the far left. (The file name is the
strategy file name.)

Following the file name are the names of currently available
function keys. You can select the named functions either by
pressing the appropriate function key, or by using the mouse.
To use the mouse, move the mouse cursor over the name of
the function you want to perform. Click left to perform the
function.

User messages overwrite the file name and function key
display when they occur. The user messages appear when you
perform certain actions during simulation. For example, if
you attempt to put an object block into Automatic mode and
the object has interfield configuration errors, a message
appears in this line and explains the error. (See User
Messages.)

Block Window

Message Line

Simulator 11

To insure that the Portable Workstation clearly displays the
simulation information, use the following gray scale setup.
You’ll find information on setting up the gray scales in your
Portable Workstation manual.

When setting up the gray scales for the Portable Workstation,
use the following gray scale continuum:

1----2----3----4----5----6----7----8

White Black

COLORS PORTABLE SHADESETTING
Green, Yellow, Bright White 1 (White)
Black, Blue 4 (Light Gray)
Cyan, Magenta, Brown, White, Dark
Gray, Light Blue, Light Green, Light
Red, Light Magenta

7 (Dark Gray)

Red, Light Cyan 8 (Black)

Using the suggested gray scale settings, the Portable Operator
Workstation display has the following differences:

� Blocks in Manual mode are displayed in high intensity.

� Blocks in Automatic mode are displayed in low intensity.

� True binary connection lines are white.

� False binary connection lines are black.

� Unreliable connection lines flash on and off every half
second.

The Simulator uses analog displays to represent analog output
values of the blocks. (Analog displays, however, cannot
represent time values.) Using the Editor, you can paste down
these displays on the diagram. However, the analog display in
the Main window may show something other than expected.
This would occur if you did not specify the precision and
width of the analog display correctly.

Precision: Number of digits to the right of the decimal point
(e.g., 0.00 has a precision of two).

Width: Total number of digits including the decimal point
(e.g., 0.00 has a width of four).

Gray Scale Setup for
Portable Workstation

Portable Operator
Workstation Simulator
Screen

Analog Displays in the
Simulator

12 Simulator

With these definitions in mind, note the following points to
consider when values are displayed in the Main window:

Precision and Width: If the value to display is large and
requires more digits to the left of the decimal point than
specified in the analog display, precision is sacrificed, so that
width is not exceeded. Example:

SPECIFIED DISPLAY VALUE TO
DISPLAY

ACTUAL VALUE
DISPLAYED

0.00 17.48 17.5

Overflow: If the value is so large that it requires more digits
to the left of the decimal point than the total width of the
specified analog display, the value is shown as asterisks.
Also, the sign of the number (+ or -) appears in front of the
asterisks. Example:

SPECIFIED DISPLAY VALUE TO
DISPLAY

ACTUAL VALUE
DISPLAYED

0.00 10000 +****

Underflow: If the value is so small that all digits shown are
zero, the value displayed is zero, preceded by the sign of the
value. Example:

SPECIFIED DISPLAY VALUE TO
DISPLAY

ACTUAL VALUE
DISPLAYED

0.00 0.001 +0.00

If an analog display is not specified correctly, use the Editor to
change the display. Select the Move icon (Scissors), click left
on the display, and click the right/middle button until an
appropriate display is shown.

Analog values displayed in the Block Window use the
0.00000 format. Note that the Simulator does not use the
Decimal Position field, which is a template parameter for the
object blocks.

Simulator 13

The mouse is active on the entire Simulator screen. For
example, use the mouse to select a block, select Control
Window options, and toggle between Automatic and Manual
modes. Many of the mouse functions have equivalent
keyboard functions, such as moving to a data field, which can
be done with the mouse or the arrow keys. Some of the
equivalent functions require you to press ALT and a letter
simultaneously.

Both the left and right buttons of the mouse are used. For
example, the left button is used to select a data field, and the
right button is used to toggle between the various states of this
field.

The following tables explain the keystrokes and mouse actions
used in the Main, Control, and Block windows, and in the
Message line.

KEYSTROKES
FUNCTION

Alt Key and
Highlighted Letter of
Option

Performs option (e.g., press ALT/Y for Yes
and ALT/T for CLR TOP)

Alphanumeric
Character Set

Specifies values in fields

Arrow Keys Move between data fields to select a field
PageUp/PageDn Displays multiple pages of data fields
Tab Scrolls through possible entries in some data fields
Enter Enters new data in currently selected field
Esc Key Cancels the selected control option while the

verify or selection box is displayed
F4 Toggles between Automatic and Manual modes
F5 Triggers execution of the process displayed in Block

window
F7 Sets all blocks in the file into Manual mode
F8 Sets all blocks in the file into Automatic mode

Moving Around the
Simulator Screen

14 Simulator

IN THE MAIN WINDOW
MOUSE ACTION FUNCTION
Click Left on Block Displays selected block’s data in Block

window
Click Left on Verify or
Selection Box

Performs the selected option

Click Right on Block Toggles the manual and automatic state of
the selected block

Double-Click Left on
Compound Block or
Compound Name
Field

Moves into or backs out of compound levels

Mouse Movement Moves highlight around diagram to select
block

IN THE CONTROL WINDOW
MOUSE ACTION FUNCTION
Click Left Performs option
Mouse Movement Moves between Simulator options

IN THE BLOCK WINDOW
MOUSE ACTION FUNCTION
Click Down Arrow Displays next page
Click Left Selects a data field for user entry
Click Right Toggles between two binary entries or TAB entries
Click Up Arrow Displays previous page
Mouse Movement Highlights a data field for selection

IN THE MESSAGE LINE
MOUSE ACTION FUNCTION
Click Left Performs function under mouse cursor
Mouse Movement Moves mouse cursor between function key options

Simulator 15

The following steps tell you how to perform one of the most
basic Simulator functions: changing a block’s data fields in
the Block window. For a technical explanation of what the
Simulator does under various conditions, see Simulator
Functions.

To change a function block’s data or outputs, you must
perform two tasks: (1) put the block in Manual mode, and (2)
change the output or data fields in the Block window. These
two tasks are described below.

1. In the Main window, use the mouse to select the block
you want to put in Manual mode. The selected block is
highlighted.

2. Click left on the block. The data fields for the selected
block are displayed in the Block window.

3. Click right on the MANUAL ? field (or press F4) to put
the block in Manual mode.

Use either the right mouse button or F4 key to toggle the
MANUAL ? field between N (no) and Y (yes). If the
block is in Automatic mode, the field displays N. If the
block is in Manual mode, the field displays Y. Automatic
mode (N) is the default.

When the block is in Manual mode, you can change the
outputs and modifiable data fields. In the Block window,
the modifiable fields are shown in high intensity.

In the Main window, the block that you put in Manual
mode is drawn in yellow.

You can leave a block in Manual mode or put it back in
Automatic mode before executing the process containing
the block. Processes can be executed with blocks in both
Manual and Automatic modes.

Changing Block’s
Data or Outputs

Putting a Block in
Manual Mode

16 Simulator

One data field in the Block window is always highlighted.
This indicates that you can use the keyboard to modify the
data in that field.

1. While the block is in Manual mode, use the mouse to
highlight the field you want to change. A green highlight
box appears around the field to show it is selected.

2. Click left. The data in the field is back-highlighted.

3. Either type the new value over the old value and press
Enter, or click right (or press Tab) to scroll through the
possible values. When you type characters, they appear
red until you press Enter, when they change to blue.

The scroll function is not available with all fields. With
scroll fields, you do not need to press Enter.

If the value you enter is out of range, a beep will sound,
and the field will change back to the original value.

You can execute a process that contains blocks in both
Manual and Automatic modes, as long as the process block
itself is in Automatic mode. Therefore, returning a block to
Automatic mode is optional.

To return a block to Automatic mode:

1. Display the block’s data fields in the Block window.

2. Click right on the MANUAL ? field (or press F4). This
action toggles the block between Automatic and Manual
modes. When the block is in Automatic mode, N appears
in the MANUAL ? field.

To exit the Simulator:

1. Click left on the Quit option on the Control window (or
press ALT/Q). The QUIT ? verify box displays.

2. Click left on YES (or press ALT/Y). This exits the
Simulator and displays the Editor screen.

Changing Data in the
Block Window

Returning a Block to
Automatic Mode

Exiting the
Simulator

Simulator 17

Tutorial

This hands-on tutorial guides you through the basic steps of
simulating a GPL control strategy to test its logic. This
tutorial introduces the Simulator functions you are most likely
to use. You’ll find information on all Simulator functions in
the sections following this tutorial.

By completing this tutorial, you will learn how to:

� Display a block’s data fields in the Block window.

� Put a block in Manual mode.

� Trigger execution of a process.

� Modify a block’s outputs.

� View results of the modification.

� Save changes made to outputs and object data fields in the
Simulator.

� Exit the Simulator.

As a prerequisite for using this tutorial, you should have
completed the tutorial in the Editor chapter. The Simulator
tutorial uses the same process compound you created in the
Editor tutorial. You saved this process compound as the
ENRH file.

To start the tutorial:

1. Load the ENRH file into the work area of the Editor.

2. Double-click left on the AHU1\ENTHALPY process
compound to display its contents.

3. Prepare the ENRH file for simulation as described in
Getting Started.

While preparing the file, paste down analog displays next
to the AHU1\OA-TEMP, AHU1\OA-RH, and
AHU1\OA-ENRH blocks (Figure 3). Associate the
analog displays with the VALUE attributes of the objects.

Starting the Tutorial

18 Simulator

Next to the AHU1\OA-TEMP analog display, type text strings
stating Value = and Deg F. Next to the AHU1\OA-RH analog
display, type text strings stating Value = and
% RH. Next to the AHU1\OA-ENRH analog display, type
text strings stating Value = and BTU/LBM (as shown in
Figure 3).

Figure 3: AHU1\ENTHALPY Process Compound Displayed in Simulator Before First
Execution of Process

4. Change the initial value of the AHU1\OA-ENRH block to
0.00000.

To change the initial value, display the block’s template
and go to the INITIAL VALUE field (second page of the
template). Type 0.0 and press Enter. Then save the
block by pressing F10.

5. Save the revised file by clicking left on the File icon
(Disk) and then clicking left on the SAVE option.

6. Run the file through the Expert Checker to make sure it is
free of errors.

����

����	
�

��

�	�����

�������

������

�
������

������

������

�	�
����

����

�����

�����
 #$%&'(��$#")*

(�+$

AHUENTH

�
�����	��

�	�����

	�������

�
	��	���

�������

�������

�������

������������	��
��
��

������

�����

�

�������

�������

�,-�����.#��� �/-#��
����� �0-#��
#���

�

��

��

�

	�

�����
����

����� ���

� �

������

�����������

������

�������������	

������

����������

��

����

�����	

��

����

�����

��

����

�������

Simulator 19

7. Start the Simulator by double-clicking on the Tools icon
and clicking left on the SIM option. The process
compound should appear on the Simulator screen as
shown in Figure 3. If the ENRH1 fields are not displayed
in the Block window, use the mouse to select the ENRH1
block and click left.

In this tutorial, you’ll simulate the process with initial block
values. Then you’ll modify the AHU1\OA-TEMP object
block’s value and simulate the process again to see the effect
on the AHU1\OA-ENRH object’s value.

For a complete explanation of the operation of the
AHU1\ENTHALPY process, including a description of the
blocks, review the tutorial in the Editor chapter.

In these steps, you’ll execute the process to see the value that
results in the AHU1\OA-ENRH block when the process
executes with initial values. Whenever an object is simulated
for the first time, certain data fields are automatically
initialized. In this case, the value attributes of the AI objects
will be initialized to their setpoints, and the value of the AD
object will be initialized to its initial value.

To execute the process:

1. Display the AHU1\ENTHALPY process compound data
fields in the Block window. To do this, click left on the
Compound Name field in the lower left corner of the
Main window (the Compound Name field displays the
system\object name of the process).

The screen appears as shown in Figure 4. The cursor
appears on the MANUAL ? field in the upper right corner
of the Block window.

Executing a Process

20 Simulator

Figure 4: Process Compound Data Displayed in Block Window

2. With the mouse, highlight the MANUAL ? field and click
right (or press F4) to put the process block called
AHU1\ENTHALPY in Manual mode. When a block is in
Manual mode, the MANUAL ? field displays Y and
modifiable data fields are shown in high intensity.

3. Click left on the STATUS field. Repeatedly click right
(or press Tab) to scroll through the possible states (e.g.,
READY, WAIT, ERROR, DISABLED) until TRIGGER
is displayed.

4. When TRIGGER is displayed in the STATUS field, put
the block back in Automatic mode.

����

����	
�

��

�	�����

�������

������

�
������

������

������

�	�
����

����

�����

�����
 #$%&'(��$#")*

(�+$

prcmpd

�
���
��������
���

��	���

���������

 ����������

��������

��������

�

�,-�����.#��� �1-�	����	 �/-#��

����� �0-#��
#���

��!���������	�����

�
������	���������

�
��
��

��
���

�	��	���

������
���

�

	�
��

"

�

�

��

��

� �

����

� � ���	

� �

����

� ��� �

�

� �

����

� � ���� �

	�

���������

����� ���

� �

������

�����������

������

�������������	

������

����������

Simulator 21

The process immediately executes. Note that the
COUNTDOWN field in the lower left corner of the Block
window counts down from the specified period length of
00:00:05 (5 seconds). The process executes whenever the
countdown timer reaches 00:00:00.

Here is how the process diagram looks after execution
(Figure 5).

Figure 5: AHU1\ENTHALPY Process Compound After Execution of Process

After executing the process with its initial values, the
AHU1\OA-ENRH block displays a value of 18.8281. This is
the value of the outdoor air enthalpy.

The enthalpy values arrived at in this tutorial assume that the
ENRH1 block is using the default value of barometric
pressure (29.0000 in. Hg).

The following occurs during execution of the process:

1. The ENRH1 block reads the values of dry bulb
temperature and relative humidity from the AI blocks,
performs its algorithm, and generates an output value,
which represents outdoor air enthalpy.

����

����	
�

��

�	�����

�������

������

�
������

������

������

�	�
����

����

�����

�����
 #$%&'(��$#")*

(�+$

aftrenth

�
���
��������
���

��	���

���������

 ����������

��������

�������"

�

�,-�����.#��� �1-�	����	 �/-#��

����� �0-#��
#���

��!���������	�����

�
������	���������

�
��
��

��
���

�	��	���

������
���

�

	�
��

"

�

�

��

��

� �

����

� � ���	

� �

����

� ��� �

�

� �

����

� � ���� �

	�

���������

����� ���

� �

������

�����������

������

�!�!"!�������	

������

����������

Process Execution

22 Simulator

2. The CMD block reads the output value from the ENRH1
block and sends a SET AD command to the AHU1\OA-
ENRH object block.

3. The AHU1\OA-ENRH object block responds to the SET
AD command and changes its value to the value sent
from the CMD block.

In this exercise, you’ll modify the value in the AHU1\OA-
TEMP block (dry bulb temperature) and see the results in the
AHU1\OA-ENRH block.

To modify the value in the AHU1\OA-TEMP block:

1. In the Main window, click left on the AHU1\OA-TEMP
block to display its data fields in the Block window.

The cursor appears on the MANUAL ? field in the upper
right corner of the Block window.

The default N (for no) appears in the MANUAL ? field,
indicating the block is in Automatic mode.

2. Highlight the MANUAL ? field and click right (or press
F4) to put the block in Manual mode. A Y (yes) appears
in the field. In the Main window, the AHU1\OA-TEMP
block is drawn in yellow, indicating it is in Manual mode.

3. Click left on VALUE field. The value 55.0000 appears
highlighted.

4. Type the value 100.00 over the old value. Press Enter.
You just changed the value of the outdoor air temperature
(AHU1\OA-TEMP) to 100.0°F.

When the process executes again (within five seconds), the
value of the AHU1\OA-ENRH block changes from 18.8281 to
50.1914 BTU/lb as a result of changing the AHU1\OA-TEMP
value.

Modifying a Block
Output

Simulator 23

After making changes to object data fields and operation
block outputs, you might want to save the changes for later
simulation. Use the SAVE DB option in the Control window
to save the changes.

If you save changes to object blocks in the Simulator, the
changes will appear in the block fields the next time you load
the file into the Simulator. However, if you load the file into
the Editor and perform any function that causes the Editor to
read the archive data base, the changes will be overwritten
with the values from the archive data base. For example, if
you perform a Query on a block, any changes to the block that
you made in the Simulator will be overwritten by the archive
values. If the strategy file is then saved in the Editor, all
Simulator changes for that object block will be lost.

You can transfer the object block changes you make in the
Simulator to the archive data base. This is described in the
Using the Control Window section of this chapter.

Changes to operation block outputs cannot be transferred to
the archive data base and downloaded into the NCM. These
values are used by the Simulator only.

When blocks are copied in the Editor, any saved simulation
changes to the original blocks will appear in the copies as
well.

To save the changes you made in the Simulator:

1. Click left on SAVE DB on the Control window. The
SAVE DB ? verify box displays.

2. Click left on YES (or press ALT/Y). The changes you
made to the outputs and object block data fields are
saved.

Saving Changes
Made in the
Simulator

24 Simulator

To exit the Simulator and return to the Editor:

1. Click left on the Quit option on the Control window (or
press ALT/Q). The QUIT ? verify box displays.

2. Click left on YES (or press ALT/Y). This exits the
Simulator and returns you to the Editor screen. The
diagram appears as it did before you entered the
Simulator.

You are now finished with the Simulator tutorial. The next
section explains all the options in the Control window.

Exiting the
Simulator

Simulator 25

Using the Control Window

This section explains the following options in the Simulator
Control window:

� QUIT

� SAVE DB

� FIND

� NC START

� DIAGRAM

� ADVISORY

� PRINTER

� RUNTIME

� FAST

� NORMAL

� SUSPEND

To select an option from the Control window, move the
mouse to position the cursor over the option’s box and click
left. Or, simultaneously press the ALT key and type the
highlighted letter of the option; for example, “ALT/F” for
FIND or “ALT/Q” for QUIT.

26 Simulator

Use the QUIT option to exit the Simulator and return to the
Editor. When you select QUIT, all simulation is halted.

To exit the Simulator:

1. Click left on the Quit option on the Control window (or
press ALT/Q). The QUIT ? verify box displays.

2. Click left on YES (or press ALT/Y). This exits the
Simulator and returns you to the Editor screen. The
diagram appears as it did before you entered the
Simulator.

Use the SAVE DB option to save the changes you made
during simulation to object data fields, operation block
outputs, and special block outputs. When you select SAVE
DB, all simulation is halted.

To save the changes, position the cursor over the SAVE DB
option and click left (or press ALT/S). The SAVE DB ?
verify box displays. Click left on the YES option (or press
ALT/Y).

In the Editor, if you perform any function on an object block
with saved Simulator changes that reads the archive data base
for that object, the saved Simulator changes are overwritten by
the values from the archive data base. For example, if you
query a defined object block with changes, the changes are
overwritten because the Query function reads the archive data
base.

If you do not perform a function on an object block (in the
Editor) that reads the archive data base, the saved Simulator
changes for that object block appear the next time you load
the file into the Simulator.

If you load undefined object blocks into the Simulator, change
their data fields, and then save the changes, the changes will
appear as the block defaults in the Editor.

The Manual mode Yes/No flags, the connection reliability
flags, and changes to operation and special block outputs are
not overwritten in the Editor. These values are used by the
Simulator only and cannot be saved to the archive data base.

QUIT

SAVE DB

Simulator 27

Advisory, printer, or runtime messages generated during
simulation are not saved, even when you use the SAVE DB
option.

In the Simulator, you might make changes to object block
attributes (such as setpoint) that you want to transfer to the
archive data base because they improve the functioning of the
process.

The set of transferrable configuration attributes are those that
appear in both the object block’s template (in the Editor) and
in the object’s Block window data fields (in the Simulator).

Note: The PERIOD field in the Simulator represents the
current period of a process object. The initial period,
specified in the Editor template, cannot be changed
from the Simulator.

To transfer changes to the archive data base:

1. Save the changes with the SAVE DB option in the
Simulator.

2. Go to the Editor.

3. Delete the object from the archive data base (but not from
the diagram).

4. Query the object with the changes. The changes you
made in the Simulator appear in the object’s template.

5. Save the object by pressing F10. The object is added
again to the archive data base with the changes you made
in the Simulator.

Here is another way to transfer changes to the archive data
base:

1. Load a file with undefined object blocks into the
Simulator.

2. Make the desired changes to the undefined object block’s
configuration attributes.

Transferring Simulator
Changes to Archive
Data Base

28 Simulator

3. Simulate the file until you are satisfied with the outcome.

4. Save the changes with the SAVE DB option.

5. Go to the Editor.

6. Query the undefined object with the changes. The
changes you made in the Simulator appear in the object’s
template.

7. Save the object by pressing F10. The object is saved to
the archive data base with the changes you made in the
Simulator.

The FIND option displays a list of all named blocks in the file.
You can select a block from this list to display in the Block
window.

For example, if you select FIND when the ENRH file (used in
the tutorial) is loaded in the Simulator, the following list of
blocks appears in the Block window (Figure 6).

Figure 6: Find Function Displaying All Blocks in ENRH File

FIND

� � ��

����	
�

��

�	�����

�������

������

�
������

������

������

�	�
����

����

�����

�����
 #$%&'(��$#")*

(�+$

FNDFNC

��������
���

��	��

�,-�����.#��� �1-�	����	 �/-#��
����� �0-#��
#���

�����
#��	�

���
�

�����
#	�
�����
#����

�

��

��

�

	�

�����

����

����� ��	

� �

������

�����������

������

�!�!"!�������	

������

����������

� �

����

� � ���	

��

����

�����

� �

����

� � ���� �

Simulator 29

If there are more than 16 blocks in the file, click left on the up
and down arrows in the right corner (or use the PageDn and
PageUp keys) to display additional pages of blocks.

If more than one block has the same name, the name appears
for each occurrence. For example, if two blocks have the
same name, the name appears twice.

To select a block and display its data in the Block window,
position the mouse over the block name. A green highlight
box appears, indicating it is selected. Then click left. The
selected block’s data fields display in the Block window.

The names of group compounds and process objects appear
yellow. To list the blocks in one compound, position the
cursor over the compound name and click right. Only those
blocks in the selected compound are listed. To display block
data for the compound in the Block window, position the
cursor over the compound name and click left.

You can use the FIND option to trigger processes other than
the one displayed in the Main window. To do so, click left on
the process system\object name in the list of blocks. The
process’s data fields display in the Block window. Then,
while the process is in Automatic mode, press F5 to trigger the
process. (Or, trigger the process by putting the process in
Manual mode, changing the status to TRIGGER, and
returning the process to Automatic mode.)

The NC START function simulates a cold or warm start of the
NCM following a download, reboot, or power failure.

Note: The NC START command is a Simulator command
only; it is not a command you can issue to an actual
NCM.

When you select NC START from the Control window, a box
appears prompting you to select either a cold or warm restart.
Click the button that corresponds to the type of restart you
want to simulate. To cancel the NC START function, click
outside the box (or press ESC).

NC START

30 Simulator

The Simulator assumes that all processes and objects reside on
the same NCM, meaning that all objects will be affected by
the NC START. To exclude a process or object from the NC
START operation, put it in Manual mode before selecting NC
START.

The only way to trigger a Restart process is with the NC
START function. (The Restart process cannot be triggered
with the F5 function key.)

As in the NC, the following actions take place for both a cold
and warm NC START:

� All local variables contained within processes (e.g.,
operation block outputs, and temporary values such as
first pass flags and DIFF comparisons) are set to
0/0.0/FALSE/00:00:00 and reliable.

� The Restart process, if it exists and is in Automatic mode,
begins execution while other enabled processes are put
into the Held state.

When the Restart process successfully completes, all
processes that were in the Held state are put into the
Trigger state and triggered in priority order. After
triggering once, periodic processes will execute according
to their defined periods.

If the Restart process error locks, other processes remain
in the Held state.

� If no Restart process exists, or it is in Manual mode, all
enabled processes are immediately put into the Trigger
state and executed in priority order.

Cold and Warm Start

Simulator 31

The following actions take place for a cold NC START only:

� All shared variables (SVAR blocks) in the file are
initialized to 0/0.0/FALSE/00:00:00 and reliable.

� All object runtime attributes that are not directly obtained
from the hardware or features are set to their default
values.

The attributes Command Priority, Reports Locked, and
Trigger Locked are defaulted.

Value attributes of objects are set to their Initial Values, if
the Initial Value attribute applies. Otherwise, Value
attributes remain unchanged.

Change of state analysis is performed so that other
runtime attributes (e.g., S/W Override, alarm) are
synchronized with the Value and Command Priority
attributes.

� The priority of all 12 PIDL ports is defaulted to 3, and the
port values are set to their priority 3 values. The PIDL
algorithms run once, to synchronize all other attribute
values.

During simulation of an NC START, the following values are
left unchanged:

� shared variables (SVAR blocks) that are in Manual mode

� all shared and local variables originating from operation
blocks in Manual mode

� process compound blocks in Manual mode, and all
operation blocks within them

� attributes of objects in Manual mode

� attributes of objects that are directly obtained from
hardware. These include Offline, HOA, and LC HOA
flags, and the Value attribute and Reliable flags of the
input objects (ACM, AI, BI, LCG, MSI, ZONE). These
attributes maintain their values following an NC START.

� the Early Time and Late Time attributes of the BD, BO,
MSD, and MSO objects. These objects maintain their
values following an NC START because features are not
simulated.

Cold Start Only

What the NC START
Does Not Change

32 Simulator

Use the DIAGRAM option to redisplay the GPL diagram after
you have used the ADVISORY, PRINTER, or RUNTIME
option to display messages. When you display messages, the
diagram in the Main window is cleared and replaced with the
message list.

Use the ADVISORY option to display messages generated by
Advisory (ADV) blocks. These messages are generated only
when ADV blocks are executed.

To display advisory messages, position the cursor over the
ADVISORY option on the Control window and click left. (Or,
press ALT/V.)

The diagram in the Main window clears and generated
messages are displayed on the screen. The following figure is
an example of an advisory messages screen.

DIAGRAM

ADVISORY

Simulator 33

Figure 7: Screen Displaying Advisory Messages

The advisories screen displays the type of message (e.g.,
CRITICAL1, CRITICAL2), the message text (as much as can
be shown), and the time and date the message was generated.
If an input is connected to the ADV block, its value is printed
at the end of the message text.

����

����	
�

��

�	�����

�������

������

�
������

������

������

�	�
����

����

�����

�����
 #$%&'(��$#")*

(�+$

advmsg

�
���
��������
���

��	���

���������

 ����������

��������

�������$

�$

�,-�����.#��� �1-�	����	 �/-#��
����� �0-#��
#���

��!���������	�����

�
������	���������

�
��
��

��
���

�	��	���

������
���

�

	�
��

"

�

#23���+�(� ���	��� ���	���

���� ����
%%

�	����
��������������������
��	
�����&�"&������$�$"

34 Simulator

Use the PRINTER option to display printer messages
generated by Print (PRNT) blocks. These messages are
generated only when PRNT blocks are executed.

To display printer messages, position the cursor over the
PRINTER option on the Control window and click left. (Or,
press ALT/P.)

The printer screen displays the object name of the printer
receiving the message, the message text (as much as can be
shown), and the date and time the message is generated
(optional). The information to be displayed with the message
is specified in the PRNT block’s template. If an input is
connected to the PRNT block, its value is printed at the end of
the message text.

Use the RUNTIME option to display runtime and fatal errors
generated by the execution of operation blocks.

To display runtime error messages, position the cursor over
the RUNTIME option on the Control window and click left.
(Or, press ALT/R.)

The runtime messages screen displays the process
system\object name, block type, the message text, and the
time the runtime or fatal error message was generated.

Advisory, printer, and runtime messages generated during
simulation cannot be saved, even when you use the SAVE DB
option. In addition, messages cannot be sent to a printer.

Each message is limited to one line on the screen. The
message text may be truncated so that other information can
be fully displayed. If the message text is truncated, ellipsis
dots (...) will follow the text.

Each message screen can display up to 21 messages. The
newest messages are displayed at the bottom. If the 20-second
message is generated, the old message at the top of the screen
is cleared to make room for the new message.

PRINTER

RUNTIME

Message Similarities

Simulator 35

The messages are displayed in different colors to distinguish
between the different data types being displayed. The
following table lists the different colors by data type.

COLORS TYPE OF DATA
Brown Time

(ADVISORY, PRINTER, RUNTIME)
Cyan Date (ADVISORY, PRINTER)

Type (RUNTIME non-fatal)
Gray Value (ADVISORY, PRINTER)
Green Text

(ADVISORY, PRINTER, RUNTIME)
Red Type (RUNTIME fatal)
Yellow Type (ADVISORY)

Printer (PRINTER)
Process (RUNTIME)

To clear all messages from the screen, click left on the CLR
ALL option in the Main window (or press ALT/C). To clear
only the top message, click left on CLR TOP (or press
ALT/T).

To redisplay the GPL diagram, click left on the DIAGRAM
option in the Control window. The diagram is displayed at the
same compound level that was showing before you selected
one of the message’s options.

Clearing Messages

Returning to the GPL
Diagram

36 Simulator

Use the FAST option to accelerate the execution of time
functions. When FAST is selected, the Simulator runs at ten
times the normal speed, meaning one second of Simulator
time is equal to ten seconds of real time. Using the FAST
option allows you to quickly see how processes will run over
an extended period.

When FAST mode is selected, the same screen information is
displayed as in NORMAL mode. However, the values update
faster.

To leave FAST mode, select either the NORMAL or
SUSPEND execution option.

Use the NORMAL option to return to the normal execution of
time functions. When NORMAL is selected, one second of
Simulator time equals one second of real time, and timing
functions operate normally.

Of the three Execution options (FAST, NORMAL, and
SUSPEND), NORMAL is the default.

The SUSPEND option stops all timing functions. This allows
you to view multiple compounds without the values constantly
changing. SUSPEND mode also allows you to completely set
up a scenario before testing it.

While SUSPEND mode is selected, if you put an object in
Manual mode, change its values, and put it back in Automatic
mode, all change-of-state and trigger analysis is performed.
However, triggered processes will not execute until either the
NORMAL or FAST execution mode is selected.

In SUSPEND mode, all connection (CONN) blocks in
Automatic mode will continue to be updated once per second.
In addition, unreliable connections will continue to flash once
every half second.

To leave SUSPEND mode, select either the NORMAL or
FAST execution option.

FAST Execution
Mode

NORMAL Execution
Mode

SUSPEND Execution
Mode

Simulator 37

TIME blocks, when executed, will read an internal Simulator
clock that updates at ten times the normal rate, updates in real
time, or stops updating according to which Execution mode is
selected (FAST, NORMAL, SUSPEND).

The following timing functions are also affected by the
Execution mode:

� process COUNTDOWN timers

� PULS, DLAY, and BSEQ countdown timers

� PIDL countdown timers

� AD and BD associated input mapping

Execution Mode
Details

38 Simulator

Simulator 39

Simulator Functions

This section describes Simulator functions. This section
includes:

� Automatic Mode

� Manual Mode

� Simulating Processes

� Order of Execution of Function Blocks

� Modifying Object Block Configuration

� Simulating Configuration Connections

� Simulating Unreliability

� Simulating Manual Commands

� Simulating a PID Loop Object

� Simulating a TIME Block

� Simulating CONN, CNST, and SVAR Blocks

� Simulating PULS, DLAY, and BSEQ Timers

This section describes what the Simulator does under various
conditions. You’ll find information on how to use the
Simulator in the previous sections.

When in Automatic mode (the default mode), an object block
is run continuously, independent of the execution of any
process. Even when the process containing the object is not
being executed, the object within the process performs its
algorithm. This differs from an operation block, which
performs its algorithm only when the process it is contained in
is executed.

Automatic Mode

40 Simulator

To put a block in Automatic mode, click left on the block to
display the block’s data fields in the Block window. Click
right on the MANUAL ? field (or press F4) to change it to N.

You can put all blocks in the file in Automatic mode by
pressing the F8 function key (All Automatic).

You will not be allowed to put a block back in Automatic
mode if there are any interfield errors in the Block window
data fields. In this case, an error message appears in the
Message line, informing you of the error. Correct the error
and attempt to put the block in Automatic mode again.

When in Manual mode, a block is not executed. The inputs
and algorithm of the block are ignored, but its outputs are still
passed to downstream blocks.

When an object block is in Manual mode, it does not accept
any commands from CMD or 2CMD blocks.

A block in Manual mode interrupts the data flow and passes
its outputs to downstream blocks.

When an object block is in Manual mode, you can change the
block’s configuration data and outputs, set reliable and offline
flags, and manipulate command fields (e.g., S/W OVERRIDE,
REPORTS LOCKED). In the Block window, modifiable
fields are shown in high intensity.

Only the outputs of operation blocks and special blocks are
modifiable in Manual mode.

In the Main window, blocks in Manual mode are drawn in
yellow.

To put a block in Manual mode, click left on the block to
display the block’s data fields in the Block window. Click
right on the MANUAL ? field (or press F4) to change it to Y.

You can put all blocks in the file in Manual mode by pressing
the F7 function key (All Manual).

You can put a block in Manual mode and modify its values as
many times as you find necessary for simulation.

Manual Mode

Simulator 41

Processes (and the operation blocks contained within them)
are executed only when the process is in Automatic mode and
it is either triggered or its countdown timer expires. Object
blocks within processes perform their algorithms
continuously, even when the process is not executing.

The Simulator triggers processes on conditions very similar to
normal NCM execution.

A process is triggered when:

� its countdown timer expires

� it receives a trigger command

� a trigger connection changes state

� an NC START is executed

A process is not triggered when:

� it is in Manual mode

� it is in the ERROR or DISABLED state

A possible trigger is identified as any binary connection
whose destination is an input to an operation block and whose
source is either a triggerable attribute or a binary shared
variable (either from a binary SVAR block or from a binary
operation block output that crosses processes).

The following are not possible triggers:

� a connection marked EXEMPT

� a connection in a process that has its EXEMPT ALL flag
set to Yes

� a connection from USER, REF, and READ blocks

If a series of CONN blocks are used to pass the value of a
triggerable attribute or binary SVAR, only the output of the
last CONN block will be identified as a possible trigger.

So you can immediately see which connections are possible
triggers in the Main window, the connection arrow for the
possible trigger connection is outlined in light cyan. The
remainder of the line appears as usual. If the trigger
connection is locked, the connection arrow is outlined in
yellow instead of light cyan.

Simulating
Processes

Process Triggering

Trigger Connections

42 Simulator

A process is triggered by a trigger connection when the:

� value of the trigger connection changes and the
connection is reliable and not locked

� trigger connection changes to a reliable state and is not
locked

� trigger connection changes to an unlocked state and is
reliable

Triggers can occur any time the value of the trigger
connection changes, even if the origin block of the connection
is in Manual mode.

Manual modification of the output of binary SVAR blocks can
cause triggers in all processes that read the value of that
SVAR.

To trigger a process:

1. Put the process block in Manual mode.

2. Move the cursor to the STATUS field and click right (or
press Tab) to scroll through the possible process states
(READY, WAIT, ERROR, DISABLED) until TRIGGER
displays.

3. Put the process block back in Automatic mode. The
process immediately executes. If a period is specified, the
COUNTDOWN field counts down the length of the
period, and the process is executed again whenever the
countdown expires.

Another way to trigger the process displayed in the Block
window is to leave the process in Automatic mode and press
F5.

In the Simulator, a process compound block can be in one of
the following states:

READY: The process is ready for execution. When the
process is triggered or whenever the countdown expires, the
process will execute.

TRIGGER: The process will execute immediately when in
Automatic mode.

How to Manually
Trigger a Process

Process States

Simulator 43

HELD: An NC START has been simulated and all processes
are put on hold while the Restart process executes. The
process will be put into the TRIGGER state as soon as the
Restart process successfully completes execution.

Note: If the Restart process error locks, all other processes
will remain in the Held state.

WAIT: The process has a WAIT block that has just been
executed. The process will resume execution when the WAIT
timer expires. You can accelerate the expiration of the WAIT
timer by manually changing the WAIT timer from the
process’s Block window to a small value (e.g., 00:00:01).

DISABLED: The process will not be executed. When the
status is Disabled, the only way to execute the process is to
change the status to TRIGGER or READY, or have another
process send a PRC_ENA (process enable) command to the
process. When a process is disabled, all timers associated
with the PULS, DLAY, and BSEQ blocks are canceled (i.e.,
set to 00:00:00).

ERROR: The process will not be executed. This state is
caused by a fatal error occurring during execution of an
operation block within the process. All fatal errors generate
Runtime error messages, which can be viewed with the
RUNTIME option. When the status is ERROR, the only way
to execute the process is to change the status manually to
TRIGGER or READY, or have another process send a
PRC_ENA (process enable) command to the process. When a
process is in the ERROR state, all timers associated with the
PULS, DLAY, and BSEQ blocks are canceled (i.e., set to
00:00:00).

44 Simulator

The PERIOD field initially displays the period defined in the
Editor process compound template. This value determines
how often the process will execute. For example, a period of
00:00:05 means the process will execute every five seconds,
following the first execution.

The PERIOD field is modifiable in Manual mode.

To change the period, put the block in Manual mode, click left
on the PERIOD field to select it, type the new time, and press
Enter. Then put the block back in Automatic mode. The
process will use the new period after its next execution.

To execute the process only when triggered (rather than
periodically), use a period of 00:00:00.

The period may be changed by the execution of a PERD block
within the process. A process can contain multiple PERD
blocks, which are conditionally or unconditionally executed.

When a process object is initialized, the PERIOD field is set
back to the initial period defined in the Editor template.

The COUNTDOWN field counts from the period length to
00:00:00 to show you the amount of time that remains until
the process will be executed again. For example, if the period
is 00:00:05 seconds, the COUNTDOWN field counts down
from 00:00:05 seconds to 00:00:00. When the countdown
reaches 00:00:00, the process executes, and the
COUNTDOWN field resets to the period and begins counting
down again. This cycle repeats for as long as the process
remains in Automatic mode, is not disabled, and does not
encounter a fatal error.

Process PERIOD and
COUNTDOWN Fields

Simulator 45

In the Simulator, function blocks are executed in the same
order as they will be in the NCM. For NCM execution, this
order is established when the file is translated by the
Translator. You’ll find more information on the order of
execution of blocks in the Graphic Programming chapter.

The order of execution of operation blocks in a process is
shown in the Main window. In the upper left corner of each
operation block, the number of the block’s position in the
execution order is displayed. For example, a number 3 will
appear in the upper left corner of an operation block that is the
third block to execute in the process.

To modify an object’s configuration means to modify its
attribute data fields. For example, you can modify an object’s
setpoint or high alarm limit. You can then see the effect these
changes have on the behavior of the object.

To modify an object block’s configuration, first display the
block’s data fields in the Block window. Then put the block
in Manual mode, make the desired changes, and put the block
back in Automatic mode.

To simulate configuration connections (Associated Input,
Feedback, PIDL Ports, PIDL Output), you must make a
connection line between the two blocks in the Editor. This is
a requirement specific to the Simulator. The Editor and NCM
require only that the Associated Input, Feedback, or Reference
be defined in the object’s template. The Simulator requires
both the definition in the Editor template and the connection
line.

When defining an AD or BD block in the Editor, you may
define an associated input. To do this, you specify the
system\object name of the associated input object and the
name of its attribute in the object’s template. To simulate this
configuration connection, you must also make a connection
line between the two objects in the Editor. If you do not make
the connection line, the configuration connection will not be
simulated.

Order of Execution
of Function Blocks

Modifying Object
Block Configuration

Simulating
Configuration
Connections

Associated Input

46 Simulator

In the Simulator, the AD or BD will read the associated input
attribute at 30-second intervals. You can change this interval
in the Associated Input Timer field using the SYSGEN
program. In the NCM, the associated input attribute is read
once every four seconds for BDs and every 30 seconds for
ADs. These intervals cannot be changed. You’ll find more
information on SYSGEN in the Introduction.

When defining an AOS or BO block in the Editor, you may
define another object as feedback. To do this, you specify the
system\object name of the feedback object in the AOS or BO
object’s template. To simulate this configuration connection,
you must also make a connection line between the AOS or BO
block and the feedback object in the Editor. If you do not
make the connection line, the configuration connection will
not be simulated.

Specifically, you must make a connection line between the
following blocks for feedback to be simulated: BO/BI,
BO/BD, AOS/AI, AOS/AD, AOS/ACM.

The value of the configuration line will reflect the
commanded value of the AOS or BO object.

When defining a PIDL object block in the Editor, you may
define an AI object’s VALUE attribute as the value for one of
the 12 ports of the PIDL block. To do this, you specify the
system\object name of the AI object in the Reference field for
that port in the PIDL block’s template. To simulate this
configuration connection, you must also make a connection
line between the AI value output and the PIDL port input. If
you do not make the connection line, the configuration
connection will not be simulated.

Feedback

PIDL Port

Simulator 47

When defining a PIDL block in the Editor, you may define a
port of another PIDL or an AOD block as an output of the
PIDL block. To do this, you specify the
system\object\attribute name of the PIDL or AOD object in
the Output Reference field in the PIDL block’s template. To
simulate this configuration connection, you must also make a
connection line between the PIDL OUT connection and the
PIDL port or the AOD block’s value. If you do not make the
connection line, the configuration connection will not be
simulated.

In the Simulator (as in the NCM), when an object becomes
unreliable, the values of some of its attributes will be returned
along with the unreliable indicator.

In general, an object becomes unreliable when the object’s
Offline flag is set to Yes. For other conditions that may make
an object unreliable, see the object block descriptions in the
Function Blocks chapter.

You can simulate an unreliable or offline state and see the
effects on downstream function blocks. To simulate an
unreliable state, click right on the object block’s RELIABLE
field to change it to N. To simulate an offline state, click right
to display Y in the object block’s OFFLINE field.

You can also simulate unreliability in a CONN or SVAR
block by putting the block in Manual mode and displaying N
in the block’s Reliable field. This value will not be
overwritten as long as the block is in Manual mode.

In the Main window, unreliable data connection lines (binary,
analog, and time data lines) flash blue every one-half second.
This allows you to see how unreliability is passed to
downstream blocks. (In the Portable Operator Workstation,
unreliable data connection lines flash on and off every one-
half second.)

PIDL Output

Simulating
Unreliability

48 Simulator

For a list of the attributes that become unreliable when an
object’s Offline flag is set True or the Reliable flag is set
False, see the object block descriptions in the Function Blocks
chapter.

The outputs of operation blocks generally are unreliable when
any of their inputs are unreliable. Some operation blocks can
generate unreliable data when their inputs are all reliable but
out of range. Operation blocks that generate unreliable data
will log an error message in the Runtime message list.

You can simulate commands from the Operator Workstation
or NT by modifying the values of the object attributes that are
affected by the commands. For example, you can simulate an
Override command or an Auto command. You can then view
how the command affects the behavior of the object.

To simulate an Override command for an AOS:

1. Suspend execution by selecting the SUSPEND option in
the Control window.

2. Put the block in Manual mode.

3. Change the value to the desired override value.

4. Change the Command priority to 1.

Note: When you override a BO object, you must set the
Command priority to 3.

5. Return the block to Automatic mode. The Override flag
is automatically set, and the AOS will not change its
value when a SET AOS command is sent from a process.

Note: Do not confuse Automatic mode in the Simulator
with the Auto command performed at the Operator
Workstation. The Auto command at the workstation
releases an Override command. See the description
that follows.

6. Change execution to Normal by selecting the NORMAL
option in the Control window.

Simulating Manual
Commands

Simulator 49

At the Operator Workstation, you release an Override
command with the Auto command. In the Simulator, release
the Override command by changing the priority to a level
lower than 1 (in the case of a BO, a level lower than 3). This
mimics the Auto command from the workstation.

When simulated, the PIDL object responds to commands and
periodically performs its algorithms (Input Conditioning, PID,
Auxiliary Signal Switch, Output Filter, Selector, and
Reliability Switch) according to the sample period specified in
the PID Loop template.

The algorithms are similar to the PIDL algorithms run in an
NCU except that only the proportional term of the PID
algorithm is calculated. The integral and derivative terms are
not calculated. In addition, the Simulator does not simulate
Self-tuning Algorithm functions, nor simulate suspension of
the PID algorithm when no AOD objects are connected as
outputs or all of the objects serving as PIDL outputs are in
override.

In the Block window, the SAMPLE PERIOD field displays
the sample period specified when the PIDL is defined. This
value determines how often the PIDL algorithms will execute.
For example, a sample period of 5 means the PIDL algorithms
will execute every five seconds. This field is modifiable in
Manual mode.

The Simulator runs all of the PID Loop algorithms according
to the sample period. This differs from the DCM, which runs
only the Input Conditioning and PID algorithms according to
the sample period. The DCM runs the remainder of the
algorithms whenever there is a change in an attribute used by
the algorithms.

In the Simulator, if the PID algorithm is disabled (all input
scalars set to 0.0) but the other algorithms are used, we
suggest that you set the sample period of the disabled PIDL
equal to the sample period of the PIDL generating the PID
control signal.

Releasing an Override
Command

Simulating a PID
Loop Object

50 Simulator

The COUNTDOWN field in the Block window counts down
the sample period, indicating when the PIDL algorithms will
execute next. At the end of the countdown, the PIDL
algorithms execute, and the COUNTDOWN field resets to the
sample period and begins counting down again.

You’ll find more information on the PIDL block in the
Function Blocks chapter.

When a TIME block executes in Automatic mode, the
Simulator reads the current time and date information from
the Simulator clock.

The operation of the Simulator clock depends on the selected
execution mode (FAST, NORMAL, or SUSPEND). If FAST
is selected, the Simulator clock runs ten times faster than the
system clock on the computer you are using. In other words,
one second of simulator time equals ten seconds of real time.
If NORMAL (the default) is selected, the Simulator clock runs
the same as the system clock. If SUSPEND is selected, the
Simulator clock is stopped.

Whenever the Simulator is started, the Simulator clock is reset
to the system clock time.

The values read from the Simulator clock are used as the
outputs of the TIME block when it executes. However, by
putting a block in Manual mode, you can manually set the
outputs of the TIME block to observe how a process will
perform at a particular instant.

To manually change the outputs in the TIME block and have
the Simulator use these settings:

1. Click left on the TIME block in the Main window to
display its data fields in the Block window.

2. Put the TIME block in Manual mode.

3. Change the output fields in the TIME block as desired.
You can change the time, day of week, day of month,
month, and year. As long as the TIME block is in Manual
mode, the Simulator will use the time and date
information specified in the TIME block when the
process executes.

Simulating TIME
Blocks

Simulator 51

In the Simulator, the Connection (CONN), Constant (CNST),
and Shared Variable (SVAR) blocks have the following
functions in Automatic and Manual modes.

The Simulator Block window displays both the CONN block’s
INPUT and OUTPUT fields. If the input is unreliable, the
input line is flashing.

Automatic Mode: The input value and reliability are passed
through to the output. While in automatic, the pass through
operation is performed continuously, independent of the
execution of any process.

Manual Mode: Both the output value and output reliability
are modifiable. The input is not passed through to the output.

Only CONN blocks that connect data flow (analog, binary,
and time types) will show and allow modification of data. If
the CONN block does not connect data flow, the following
message appears in the Block window when the CONN block
is selected:

Configuration Connection - No Data Flow.

If a CONN block does not have an input, it is ignored by the
Simulator, and the following message appears in the Block
window when the CONN block is selected:

No Input Connection - CONN Block Ignored.

The Simulator Block window displays both the CNST block’s
VALUE and OUTPUT fields.

Automatic Mode: The output is set equal to the value
configured in the Editor. If the output is modified while in
Manual mode, it is set equal to the Editor value as soon as it is
put into Automatic mode, independent of the execution of any
process.

Manual Mode: The output is modifiable. The value of the
constant (which will ultimately be used by the process in the
NCM) is not modifiable in the Simulator.

All SVAR blocks that have the same name and type share the
same value. These blocks are put into Automatic and Manual
modes as a group; that is, putting one into Manual mode
causes all others with the same name and type to be put into
Manual mode.

Simulating CONN,
CNST, and SVAR
Blocks

CONN

CNST

SVAR

52 Simulator

Automatic Mode: If an input to the block exists and the
block is enabled, the SVAR value and value reliability are set
equal to the value and reliability of the input (an assignment to
the SVAR is made). If there are any other SVAR blocks in
the file with the same name and type, their values will also be
updated.

Manual Mode: The value and value reliability are
modifiable. Any changes made to this block will also be
made to the other SVAR blocks in the file with the same name
and type.

Simulator 53

The timers used in the PULS (Pulse), DLAY (Delay) and
BSEQ (Binary Sequencer) blocks are simulated in the
Automatic and Manual Modes as described below.

Note: Execution of timers depends on which execution
mode is selected in the Control window (FAST,
NORMAL, or SUSPEND). In FAST mode, timers
are simulated ten times as fast as normal, meaning
one second of Simulator time equals ten seconds of
real time. In SUSPEND mode, all timing functions
are stopped. In NORMAL mode (the default), timing
functions execute normally.

The Simulator Block window displays a TIMER field, which
represents the dynamic value of the timer that is started when
the input changes from False to True.

Automatic Mode: If the process is neither disabled nor in the
ERROR state, the timer counts down. When the timer reaches
00:00:00, the process that contains the PULS block is
executed and the PULS output goes False. If the status of the
process becomes either DISABLED or ERROR, the timer is
canceled (i.e., set to 00:00:00). The PULS timer stops
counting down when the process is in Manual mode, even if
the PULS block is in Automatic mode.

Manual Mode: Timer stops counting down and its value
becomes modifiable in the Block window. By changing the
value of the timer, you can accelerate the expiration of the
timer. If you enter 00:00:00, you cancel the timer and the
process will not be triggered automatically. When you take
the block out of manual mode, the TIMER field resumes
counting down. Refer to the PULS block in the Function
Blocks chapter for details on its operation, including the one-
shot type.

Simulating PULS,
DLAY, and BSEQ
Timers

PULS (Cancelable and
Non-Cancelable)

54 Simulator

The Simulator Block window displays a TIMER field, which
represents the dynamic value of the timer that is started when
the input changes from False to True.

Automatic Mode: If the process is neither disabled nor in the
ERROR state, the timer counts down. When the timer reaches
00:00:00, the process that contains the DLAY block is
executed and the DLAY output goes True, assuming that the
input is still True. If the status of the process becomes either
DISABLED or ERROR, the timer is canceled (i.e., set to
00:00:00). The DLAY timer stops counting down when the
process is in Manual mode, even if the DLAY block is in
Automatic mode.

Manual Mode: Timer stops counting down and its value
becomes modifiable in the Block window. By changing the
value of the timer, you can accelerate the expiration of the
timer. If you enter 00:00:00, you cancel the timer and the
process will not be triggered automatically. When you take
the block out of manual mode, the TIMER field resumes
counting down. Refer to the DLAY block in the Function
Blocks chapter for details on its operation, including the one-
shot type.

The Simulator Block window displays ON TIMER and OFF
TIMER. These are time fields representing the dynamic value
of the timers that are started when a stage change occurs in the
BSEQ block. When a stage change takes place, the ON
TIMER field is set equal to the configured DELAY ON TIME
for the next highest stage (or 00:00:00 if already at highest
stage), and the OFF TIMER field is set to the configured
DELAY OFF TIME for the current stage (or 00:00:00 if at
stage 0).

Automatic Mode: If the process is neither disabled nor in the
ERROR state, the timers count down. When either timer
reaches 00:00:00, the process that contains the BSEQ block is
executed and the BSEQ algorithm is run again to determine if
a stage change should occur. Whenever a stage change
occurs, the ON TIMER and OFF TIMER are reset to the
configured values for DELAY ON TIME and DELAY OFF
TIME. If the status of the process becomes either DISABLED
or ERROR, the timer is canceled (i.e., set to 00:00:00). The
BSEQ timers stop counting down when the process is in
Manual mode, even if the BSEQ block is in Automatic mode.

DLAY (Cancelable)

BSEQ

Simulator 55

Manual Mode: The ON TIMER and OFF TIMER fields stop
counting down and their values become modifiable in the
Block window. By changing the values of the timers, you can
accelerate the expiration of the timers. If you enter 00:00:00
in both fields, you cancel the timers and the process will not
be triggered automatically. When you take the block out of
manual mode, the timer fields resume counting down. Refer
to the BSEQ block in the Function Blocks chapter for details
on its operation.

In the Block window, the AOS and BO objects may contain
the data field Local Control. It represents the LOC_CNTL
attribute of the object, which indicates the current status of the
local control, either Yes or No. If local control is Yes, the
ASC is controlling the hardware. If local control is No, the
NCM is controlling.

The local control field is a read-only status field, and will
show in the Block window only if you configured local
control to Yes when defining the block with the Editor. If you
answered No in the block’s template, or the object is mapping
to a hardware type that does not allow local control, the field
will not show in the Simulator. To simulate a BO object
under local control of the hardware, enter a 9 in the CMD
PRIORITY field for the BO. To simulate an AOS object
under local control of the hardware, enter a 4 in the CMD
PRIORITY field for the AOS. For more details on how local
control works, refer to the AOS Object and BO Object
Technical Bulletins in the Metasys Network Technical
Manual.

Simulating Local
Control

56 Simulator

Simulator 57

Differences Between Simulator and
NCM Execution

Though the Simulator attempts to match as closely as possible
the execution of blocks and processes at the NCM, there are
some differences. This section explains the differences
between NCM execution and Simulator execution.

The most obvious difference between Simulator and NCM
execution is the Manual mode capability of the Simulator.
The Simulator allows you to put a function block in Manual
mode and change its outputs or object data fields. The NCM
does not allow this.

Note: Do not confuse Manual mode in the Simulator with
the manual override switches found on the output
Function Modules and the XRL and XRM modules.

The Simulator calculates only the proportional term of the PID
algorithm. The derivative and integral terms are not
simulated. In addition, the Simulator does not simulate the
Self-tuning Algorithm functions, nor simulate suspension of
the PID algorithm when no AOD objects are connected as
outputs or all objects serving as PIDL outputs are in override.
In these cases, the Simulator will continue to calculate the
proportional term of the PID algorithm.

The Simulator runs all of the PID Loop algorithms (Input
Conditioning, PID, Auxiliary Signal Switch, Output Filter,
Selector, and Reliability Switch) according to the sample
period. This differs from the DCM, which runs only the Input
Conditioning and PID algorithms according to the sample
period. The DCM runs the remainder of the algorithms
whenever there is a change in an attribute used by the
algorithms.

Manual Mode

PID Loop

58 Simulator

In the Simulator, if the PID algorithm is disabled, we suggest
that you set the sample period of the disabled PIDL equal to
the sample period of the PIDL generating the PID control
signal.

In the Simulator, the LCG prioritization of commands are
represented differently than they are in the LCG Focus
window at the Operator Workstation. Priority 1 represents an
Operator Workstation or NT override condition. Priority 2
represents an On or Off command from a process. Priority 3
represents control at the hardware device, either from a
TIMED ON command from a process, ILC schedule, or local
switch.

For a configuration connection to be valid in the NCM, it is
enough that the referenced object is configured in the main
object’s data base template. For example, feedback will be
provided as long as the AI object is referenced in the AOS
object’s template. However, for simulation, you must also
make a connection line between the main object and the
referenced object in the Editor. For example, you must make
a connection line between the AOS and AI objects for the
feedback to be simulated.

Specifically, you must make a connection line between the
following blocks for the configuration connection to be
simulated: BO/BI, BO/BD, AOS/AI, AOS/AD, AOS/ACM,
AI/PIDL, PIDL/AOD, PIDL/PIDL.

In the Simulator, the only way to simulate a RESTART
process is to use the NC START command. An NC START
command simulates either a cold or warm start of the NC.
The Restart process, if it exists and is enabled, is the first
process to execute, while the other processes are placed in a
HELD state. You’ll find information on how the Restart
process operates in the NCM in the Graphic Programming
section of this manual.

Note: The NC START command is a Simulator command
only; it is not a command you can issue to an actual
NCM.

Lighting Control
Group

Configuration
Connections

Restart Processes

Simulator 59

The Simulator does not support time-slicing or process
interruption. Higher priority processes will not execute more
often than lower priority processes. If two processes are to
begin simulation in the same one second interval, the higher
priority process will be simulated before the lower priority
process.

The Simulator supports process priority 1, 2, 3, and 4 (lowest).

In the Simulator, change-of-state analysis is triggered for the
same reasons that it is in the NCM (e.g., an object receives a
command, a PIDL completes execution). In the Simulator,
change-of-state analysis is also triggered when a block is put
back into Automatic mode.

The Simulator does not implement change-of-state feedback
delay timers. The value of the object used for feedback will
automatically be changed to the value of the BO or AOS it is
providing feedback for. Correct and immediate field gear
response is assumed.

In the Simulator, the following blocks and commands are not
executed as they are in the NCM. An explanation of how the
Simulator handles each block or command follows its name.

REF: Always in Manual mode. Outputs (attributes) are
always modifiable. All commands to the REF block are
ignored. No connections from REF block binary attributes
will be considered as possible triggers.

TOT: Always in Manual mode. Outputs are always
modifiable.

210A: Always in Manual mode. Outputs (attributes) are
always modifiable. All commands to the 210A are ignored.

260A: Always in Manual mode. Outputs (attributes) are
always modifiable. All commands to the 260A are ignored.

Process Priority

Change-of-State
Analysis

Change-of-State
Feedback Delay
Timers

Blocks and
Commands Not
Fully Simulated

60 Simulator

USER: Always in Manual mode. Binary, analog, and time
outputs are always modifiable. The USER block code is not
simulated. No connections from USER blocks will be
considered as possible triggers.

READ: In Automatic mode, the attribute value is not read;
however, the value of the enable input is passed to the enable
output. You can simulate a read by putting the READ block
in Manual mode and changing the output to reflect a change in
the current attribute value. During simulation, the READ
output is not overwritten. No connections from READ block
binary attributes will be considered as possible triggers.

WRIT: In Automatic mode, the attribute value in the
connected object is not changed; however, the value of the
enable input is passed to the enable output. Change the
writable attribute’s value within the object block’s data fields
to simulate a write.

BEG TRND/END TRND commands: Object ignores the
command; however, the value of the enable input is passed to
the enable output.

BEG TOT/END TOT commands: Object ignores the
command; however, the value of the enable input is passed to
the enable output.

RES TOT command: Object ignores the command;
however, the value of the enable input is passed to the enable
output.

FILE: File blocks are not simulated. The Simulator simulates
only one file at a time. To simulate a subfile, go to the Editor
and load the subfile, and then access the Simulator.

For objects, if an attribute is not included in the Simulator
Block Window for the object, its function will not be
simulated. Included in the list of attributes that are not
simulated are: Heavy Equipment Delay, Minimum On and
Off Times, Maximum Starts per Hour, Alarm Delay, Warning
Delay, Override Default Delay, and Auto Restore.

Object Attributes
Not Simulated

Simulator 61

User Messages

There are four types of user messages that can occur when
you use the Simulator.

� Fatal Initialization Error Messages

� User Status Messages

� User Error Messages

� Runtime Operation Block Error Messages (fatal and non-
fatal)

Fatal initialization error messages appear on the screen when
you attempt to access the Simulator and there is an error that
prevents access.

The following fatal initialization errors may occur.

Checksum error for configuration file, GPL.CFG

A checksum error is encountered while reading the
configuration file.

Configuration file not found, GPL.CFG

The configuration file is not found in the GPL directory.

Connection file not found, {FILENAME}.CI

The connection file is not found in the working directory.

Data base file not found, {FILENAME}.DB

The data base file is not found in the working directory.

Error while reading configuration file, GPL.CFG

A read error is encountered while reading the configuration
file.

Fatal Initialization
Error Messages

62 Simulator

Error while reading connection file, {FILENAME}.CI

A read error is encountered while reading the connection file.

Error while reading data base file, {FILENAME}.DB

A read error is encountered while reading the data base file.

Error while reading text file, {FILENAME}.TXT

A read error is encountered while reading the text file.

Not enough memory available to run Simulator

Not enough memory can be allocated to run the Simulator.

Text file not found {FILENAME}.TX

The text file is not found in the working directory.

To recover from a fatal initialization error, press Enter to
return to the Editor. Check the integrity of the GPL
configuration. If necessary, restore the backup versions of the
file set before attempting to simulate again.

Status messages appear in the Message line while the
Simulator is performing a function. These messages tell you
what the Simulator is doing. When you press any key or click
the mouse button, the status message disappears.

The following status messages may appear.

Initialization of all objects complete

This message appears after an OBJ INIT for all objects has
completed.

{system\object name} : Initialization complete

This message appears after a successful OBJ INIT for a single
object has completed.

Recovering from a
Fatal Initialization
Error

User Status
Messages

Simulator 63

SAVE in PROGRESS...

This message appears while a SAVE DB operation is being
performed.

SAVE COMPLETE

This message appears after a SAVE DB operation has
completed.

Error messages appear in the Message line in two cases. They
appear when you attempt to:

� put a block into Automatic mode and there are interfield
configuration errors in the Block window data fields

� perform an invalid action

When you enter information into data fields in the Block
window, you must use the same valid ranges and correct
formats you use when entering information into Editor
templates. If you enter incorrect information and attempt to
put the block into Automatic mode, a message appears and
explains the error.

To recover from an object interfield configuration error,
simply correct the invalid information and attempt to put the
block into Automatic mode again.

If you attempt to perform an invalid action (for example, if
you double-click a protected compound), a message appears
and explains the error.

The following list includes all messages that result from
interfield configuration errors and invalid actions. These
messages are arranged in alphabetical order for easy reference.
An explanation of the error follows each message.

(X) block(s) found with interfield errors, these
remain in Manual

You are attempting to place all blocks in Automatic mode and
one or more blocks (actual number indicated by X) have
errors. These blocks cannot be placed in Automatic mode and
remain in Manual.

User Error
Messages

64 Simulator

DIFFERENTIAL must be undefined (blank)

You must leave the Differential blank if the High Limit, Low
Limit, Setpoint, and Normalband are all blank (undefined).
The Differential is optional.

DIFFERENTIAL value too high

The differential value you have entered is too high. The
following must be true:

(Setpoint - Normalband/2 + Differential) < (Setpoint +
Normalband/2 - Differential)

Error while writing connection file, {FILENAME}.CI

A disk error occurred during a SAVE DB operation.

Error while writing database file, {FILENAME}.DB

A disk error occurred during a SAVE DB operation.

HIGH ALARM LIM must be > LOW ALARM LIM

You must define a High Alarm Limit that is greater than the
Low Alarm Limit (if defined).

HIGH ALARM LIM value too low

The High Limit value you entered is too low. The following
must be true:

(High Limit-Differential) > (Setpoint + Normalband/2)

Invalid selection: Cannot view PROTECTED compound

You are attempting to access a protected compound.

LOW ALARM LIM value too high

The Low Limit value you entered is too high. The following
must be true:

(Low Limit+Differential) < (Setpoint - Normalband/2)

Simulator 65

NORMAL STATE cannot be NONE when LATCHING POINT is Y

If you entered Y (Yes) for the Latching Point field, you cannot
specify 0 “None” in the Normal State field.

Open failed on connection file, {FILENAME}.CI

Connection file does not exist on the disk when you attempt to
perform a SAVE DB operation.

Open failed on database file, {FILENAME}.DB

The data base file does not already exist on the disk when you
attempt to perform a SAVE DB operation.

SETPOINT & NORMALBAND must both be defined/-
undefined

The Setpoint and Normalband values must both be defined or
both be blank.

SPAN HI Input must be > SPAN LO Input

You must define a Span High Input that is greater than the
Span Low Input (if defined).

SPAN HI OUTPUT cannot equal SPAN LO OUTPUT

You must define a Span High Output that is not equal to the
Span Low Output (if defined).

SPAN values must all be defined or undefined (blank)

The four span values must all be defined, or all be blank.
(Span High Input, Span Low Input, Span High Output, Span
Low Output).

WAIT TIMER can’t = 00:00:00 in WAIT state

The process status is WAIT and the Wait Timer is 00:00:00;
the Simulator will only take a process out of the WAIT state
when the Wait Timer changes from 00:00:01 to 00:00:00.

66 Simulator

During execution of operation blocks, runtime errors may
occur because of invalid data, which the operation blocks use
in performing their algorithms. The error messages are
similar to the runtime messages generated by a process in the
NCM.

There are two types of runtime operation block errors: fatal
and non-fatal. Fatal runtime errors stop execution of the
process and cause the process to be put into an ERROR state.
Non-fatal runtime errors cause the block outputs to become
unreliable. The process will continue execution using the
unreliable data.

To display runtime error messages, click left on the
RUNTIME command in the Control window.

The format of runtime messages is as follows:

ERROR <{process sys\obj name}> {BLOCK TYPE} {ERROR
MESSAGE}

The following fatal and non-fatal runtime error messages may
occur. All errors are non-fatal unless stated otherwise.

baro press < 0.5, using 0.5

The Barometric Pressure value is out of range in metric units
for the ENDP, ENRH, WBDP, WBRH blocks.

baro press > 1.08, using 1.08

The Barometric Pressure value is out of range in metric units
for the ENDP, ENRH, WBDP, WBRH blocks.

baro press < 15.0, using 15.0

The Barometric Pressure value is out of range in English units
for the ENDP, ENRH, WBDP, WBRH blocks.

baro press > 32.0, using 32.0

The Barometric Pressure value is out of range in English units
for the ENDP, ENRH, WBDP, WBRH blocks.

Runtime Operation
Block Error
Messages

Simulator 67

cos expr too large, partial loss

The input to a cosine function (in an EQN block) is large,
which causes a partial loss of significance in the result.

cos expr too large, total loss

The input to a cosine function (in an EQN block) is very large,
which causes a complete loss of significance in the result.

deadband < 0.0, using 0.0

The Deadband value of a PIR block is less than zero.

dew pt < -99.9, using -99.9

The Dew Point value is out of range in metric units for the
ENDP, RH, WBDP blocks.

dew pt > 199.9, using 199.9

The Dew Point value is out of range in metric units for the
ENDP, RH, WBDP blocks.

dew pt < -147.9, using -147.9

The Dew Point value is out of range in English units for the
ENDP, RH, WBDP blocks.

dew pt > 391.9, using 391.9

The Dew Point value is out of range in English units for the
ENDP, RH, WBDP blocks.

dew pt > dry bulb,using dry bulb

The Dew Point value is greater than the Dry Bulb value for
the ENDP, RH, WBDP blocks; the Dry Bulb value is used for
the Dew Point in the psychometric calculations.

differential < 0.0, using 0.0

The Differential value of a DFCM block is less than zero.

68 Simulator

divide by zero

Attempting to divide by zero in the DIV or EQN block.

dry bulb < -99.9, using -99.9

The Dry Bulb value is out of range in metric units for the
DWPT, ENDP, ENRH, RH, WBDP, WBRH blocks.

dry bulb > 199.9, using 199.9

The Dry Bulb value is out of range in metric units for the
DWPT, ENDP, ENRH, RH, WBDP, WBRH blocks.

dry bulb < -147.9, using -147.9

The Dry Bulb value is out of range in English units for the
DWPT, ENDP, ENRH, RH, WBDP, WBRH blocks.

dry bulb > 391.9, using 391.9

The Dry Bulb value is out of range in English units for the
DWPT, ENDP, ENRH, RH, WBDP, WBRH blocks

floating point error

An overflow occurred during a math operation (fatal error).

input >= 1440.0 minutes

The Input value of a RTOT block is greater than or equal to
1440.0 minutes; the calculated result will be 23:59:59.

input < 0.0 minutes

The Input value of a RTOT block is less than 0.0 minutes; the
calculated result will be 00:00:00.

integral time < 0.0, using 5.0

The Integral Time value of a PIR block is less than zero.

log expression <= 0.0

The input to a log function (in an EQN block) is less than
zero; the calculated result will be a very large negative value.

Simulator 69

low input >= high input

The Low Input value of a SPAN block is greater than or equal
to the High Input value (fatal error).

low output >= high output

The Low Output value of a PIR block is greater than or equal
to the High Output value (fatal error).

rel humid < 0.0, using 0.0

The Relative Humidity value is out of range for the DWPT,
ENRH, WBRH blocks.

rel humid > 100.0, using 100.0

The Relative Humidity value is out of range for the DWPT,
ENRH, WBRH blocks.

sin expr too large, partial loss

The input to a sine function (in an EQN block) is large, which
causes a partial loss of significance in the result.

sin expr too large, total loss

The input to a sine function (in an EQN block) is very large,
which causes a complete loss of significance in the result.

square root expression < 0.0

The input to a square root function (in an EQN block) is less
than zero; the calculated result will be zero.

stepsize < 0.0, using 0.0

The Stepsize value in a RAMP block is less than zero.

tan expr too large, partial loss

The input to a tangent function (in an EQN block) is large,
which causes a partial loss of significance in the result.

70 Simulator

tan expr too large, total loss

The input to a tangent function (in an EQN block) is very
large, which causes a complete loss of significance in the
result.

time = 00:00:00, ignored

The Time In value of a WAIT block is zero; the WAIT block
will be ignored (no WAIT will occur).

x^y, x = 0.0, y = 0.0

When computing x raised to the yth power (in an EQN block)
and both x and y are zero; the calculated result is zero.

x^y, x = 0.0, y < 0.0

When computing x raised to the yth power (in an EQN block)
and x is zero, and y is negative; the calculated result is a very
large positive value.

x^y, x < 0.0, y not integer

When computing x raised to the yth power (in an EQN block)
and x is negative, and y is not an integer; the calculated result
is zero.

weight < 1.0, using 1.0

The Filter Weight value of a FILT block is less than one.

© June, 1992 Johnson Controls, Inc. 1
 Code No. LIT-631010

GPL Programmer’s Manual

Translator

Overview 3

� Expert Checker 3

Using the Translator 5

� Running the Translator 5
� During Translation 8
� Viewing Errors in the List File 10

Error Messages 13

� Fatal Errors 13
� Non-Fatal Errors 14
� Compiler Errors 15

* Indicates those sections where changes have occurred since the last printing.

2 Translator

Translator 3

Overview

This chapter contains instructions for using the Translator.

The GPL Translator is a utility that translates control strategies
in a GPL strategy file into processes that can be downloaded
into an NCM.

The Translator:

� Translates a GPL strategy file into downloadable process
objects.

� Saves all errors in a list file, which you can view in the
Editor.

In addition to translating the currently loaded file, the
Translator translates all subfiles referenced by FILE blocks.

Before the Translator translates a file, the file must be run
through the Expert Checker and found to be free of errors. If
the last saved version of the file has not been checked, the
Translator automatically invokes the Expert Checker to check
the file. If the file is free of errors, translation takes place. If
errors are found, the file is not translated. In this case, you
must return to the Editor and correct the errors before the file
can be translated.

Expert Checker

4 Translator

Translator 5

Using the Translator

This section explains how to use the Translator. This section
includes:

� Running the Translator

� During Translation

� Viewing Errors in the List File

The Translator requires the .DB and .CI extension files from
the control strategy file set.

To run the Translator:

1. Load the file you want to check into the work area of the
Editor.

2. Double-click left on the Tools icon (hammer). The Tools
option menu appears.

Running the
Translator

6 Translator

Figure 1: Tools Option Menu

3. Click left on the TRAN option in the Tools option menu.
The following Translator submenu appears.

TLSOPMN2

����

������

	��
�� ������������

�� �� 	� 	�
 	�� 	� ���
����	��

���� ���� ��� �	
�

����������	
�����

����

�������

Translator 7

Figure 2: Translator Submenu

4. Click left on the option that corresponds to your choice.
The options are as follows:

Save translated source: Click left inside this checkbox if you
want to save the intermediate source file (.BAS) after the
executable process objects (.OBJ) are created. A list file
(.LST) detailing the compilation is generated.

Stop after translation: Click left inside this checkbox if you
want only the intermediate source file saved. Process objects
will not be created.

Standard defaults: Click left inside this checkbox if you
want to create the executable process objects and then delete
the intermediate source file. A list file detailing the
compilation is generated.

����

������

	��
��

transub

����	��

������������

	
 �� �
 	�
 	�� 	� ���

���������������������

����������������������

�����������������

����������	������

8 Translator

As soon as you select one of these options, the Editor screen
clears, and the Expert Checker is invoked to make sure the file
has been checked and found to be free of errors. If the file is
found to be free of errors, translation begins.

If the file is not free of errors, translation does not take place.
Strike any key to return to the Editor and correct the errors.

If the file is found to be free of errors, translation occurs
according to the selections you made in the Translator
submenu. The GPL strategy file (including all nested subfiles
referenced by FILE blocks) is translated into a source file and
the source file is compiled into downloadable processes.

Each compiled process has the same object name as the
process object created in GPL, with an .OBJ extension. The
process is also placed in the same directory. For example, if
you created a process object with the system\object name
AHU1\ECON, this process object is called ECON.OBJ when
compiled, and it is placed in the AHU1 system directory.

After compiling, the source file (.BAS) is deleted or not
deleted according to your selection. The default is to delete
the source file.

If errors are found, the Translator saves the errors in the list
file. If translation and compilation are successful, the list file
contains detailed information about the compiled process
objects.

During Translation

Translator 9

During translation, the screen displays the following messages
about the progress of the Translation:

Translation in progress for {FILENAME}

Blocks Translated: {XX}

This message displays the name of the file being translated
and the number of blocks that have been translated so far.
The Blocks Translated field increments by one as each block
is translated.

Translation Complete: {XX} errors

Return to Editor

Strike a key when ready...

This message tells you that translation is complete and
displays the number of errors found. If errors are found, you
can view them in the list file (described later in this section).

The following messages appear during compilation (if you
selected to compile the source file into process objects).

Compile in progress for file - {FILENAME}

Compiling process [XX] - {OBJECT NAME}

This message displays the name of the file being compiled, the
number of processes compiled so far, and the system\object
name of the process currently being compiled.

Compile Complete: {XX} Errors {YY}
Warnings

Return to the Editor

Strike a key when ready...

This message tells you that compilation is complete and
displays the number of errors and warnings found. You can
view the errors and warnings in the list file (described later in
this section).

Translation Messages

Compilation Messages

10 Translator

If errors are found during translation or compilation, the list
file displays the errors.

If the translation and compilation process is successful, the list
file displays the following information about the compiled
processes:

� source code

� local variable, shared variable, object reference, and
trigger/exempt tables

� size of the process object (in bytes) in the PC data base

� number of errors and warnings (0 if none)

The list file has the same name as the file you are translating,
with a .LST extension (it is also placed in the same directory).
For example, the list file for a strategy file called AHU1 is
AHU1.LST.

The list file is created the first time the file is run through the
Expert Checker. Whenever the file is Expert Checked again
or run through the Translator, the list file is cleared and any
new error messages are written to it. The list file header
displays the time and date, file name, and name of the
program (e.g., Expert Checker, Translator, Compiler) that
wrote the current information to the list file.

The list file is an ASCII text file. You can view the list with
the GPL Editor, or view and print it with any text editor.

To display the list file from the Editor:

1. Load the file you translated into the Editor. If the file is
already displayed on the Editor screen, this step is not
necessary.

2. Double-click left on the Query icon (question mark) to
display the Query option menu.

Viewing Errors in
the List File

Translator 11

3. Click left on the VIEW option in the Query option menu.
The errors found during translation or compilation are
displayed in the list file. Here is an example of a list file.

Figure 3: Example of a List File

If necessary, use the PageDn and PageUp keys to scroll to
additional pages. The GPL Editor can display up to 30 pages
(screens) of the list file. (If the list file is longer than 30
pages, exit the GPL Editor and display the additional pages in
DOS.)

XLSTFL2

���

������

������
�����������

	
 	� �
 ��� ��� ��� ���

�
	��������

�������

GPL - TRANSLATOR Revision 4.00

Copyright (C) 1989,1990,1991,1992 JOHNSON CONTROLS INC. ALL RIGHTS RESERVED

Translating File: ENRH1

10:47:32 3/15/92

Translation Complete: 1 error

File could not be created - ENRH1.BAS

12 Translator

Translator 13

Error Messages

This section explains the following types of Translator errors:

� Fatal

� Non-fatal

� Compiler

On your screen, the bracketed items will be replaced by actual
names from the GPL control strategy file. For example,
where this section displays Missing Macro—
{BLKTYPE:BLOCKNAME}, your screen will display the
actual type and name of the block that is missing the macro.

Fatal errors cause translation to stop immediately. Fatal error
messages are displayed on the screen; they are not saved in the
list file.

If one of these messages appears on the screen, press any key
to return to the Editor.

Disk failure—read/write—{NAME OF XL
ROUTINE}

The translator encountered either a read- or write-to-disk
failure. The name of the affected routine is displayed.

Disk Full

There is not enough room on disk to write the data to disk.

File could not be opened—{FILENAME.LST}

The Translator cannot find the list file for the strategy file you
selected to translate. The file either is not in the current
directory or doesn’t exist, there are too many files opened, or
the .LST file is read only.

Fatal Errors

14 Translator

Non-fatal errors are saved in the list file. These errors do not
cause translation to stop. However, even though translation
may continue, the translation is considered unsuccessful if any
error occurs. When the translation is unsuccessful, the source
file is automatically deleted.

If you selected to compile the source file and the translation is
unsuccessful, compilation does not occur. If you selected to
compile the source file and the compilation is unsuccessful, no
process objects are generated.

File could not be created—{FILENAME.BAS}

The Translator cannot create the output file.

File could not be opened—{FILENAME}

The Translator cannot find the list file for the strategy file you
selected to translate. The file either is not in the current
directory or doesn’t exist, there are too many files opened, or
the .LST file is read only.

Macro File does not exist—{FILENAME.MAC}

The macro definition file does not exist within the defined
directory.

Missing Connect Name—
{BLKTYPE:BLOCKNAME:CONNECT NAME}

The specified connect name does not exist in the macro
definition file for the block.

Missing Macro—{BLKTYPE:BLOCKNAME}

The macro associated with the block type does not exist in the
macro definition file.

Non-Fatal Errors

Translator 15

All errors found during compilation are displayed in the list
file. If errors are found in a process, the process is not
compiled into a process object (however, other error-free
processes within the file are compiled). The list file displays
each error message below the source code line that contains
the error. The error message tells you the number of the line
with the error and explains the error.

The following is a list of the error messages that the compiler
could write to the list file.

ERROR
CODE

MESSAGE

100 Function parameter cannot be an array
101 Attribute is not a triggerable attribute
102 Attribute is not a writable attribute
103 Too many characters in attribute name
104 Too few characters in attribute name
105 Characters after line continuation have been ignored
106 Left and/or right side of + operator is logical
107 Advisory type incorrect
108 Left and/or right side of AND operator is not logical
109 Array subscript too large
110 Illegal character found in attribute name
111 Illegal character found in object name
112 Illegal character found in string
113 Illegal character found in system name
114 Control variable not a local or shared variable
115 Control variable not an integer or real variable
116 Decimal point found without any accompanying digits
117 Non-numeric expression found to left of operator
118 Non-numeric expression found to right of operator
119 Non-numeric expression found to the right of DIFF
120 <> relational operator not allowed in DIFF expression
121 Incorrect DIM variable
122 Unknown compiler directive
123 Left and/or right side of / operator is logical or time
124 Unknown END keyword
125 EXEMPT variable must be attribute or shared variable
126 Unknown item found in expression

Continued on next page . . .

Compiler Errors

16 Translator

ERROR
CODE

MESSAGE

127 Illegal character found in format string
128 Can’t assign value to function outside its DEF
129 Unknown GO keyword
130 Missing/incorrect INCLUDE filename
131 Cannot assign a logical value to an integer variable
132 Cannot assign an integer value to a logical variable
133 Cannot assign a real value to a logical variable
134 Cannot assign a time value to a logical variable
135 Bad variable name
136 Left and/or right side of * operator is logical or time
137 Missing/incorrect network address
138 Incorrect FOR variable given
139 Right side of NOT operator is not logical
140 Bad opcode found while resolving a forward label reference
141 Left and/or right side of OR operator is not logical
142 Incorrect parameter type
143 Left and/or right side of ^ operator is logical or time
144 Missing/incorrect printer name
145 Priority value must be in the range 1 - 4
146 Missing/incorrect process name
147 Cannot assign a logical value to a real variable
148 Cannot assign a time value to a real variable
149 Incorrect relative operator for logical expression
150 Missing/incorrect #REPLACE id
151 Instruction not allowed in a RESTART process
152 Shared variable must be of type logical
153 Incorrect SHARED variable
154 Statement not allowed in a simple IF statement
155 Subscript type is not integer or real
156 Left and/or right side of - operator is logical
157 Missing/incorrect TELL command
158 Cannot assign a logical value to a time variable
159 Cannot assign a real value to a time variable
160 Right side of unary - is logical or time
161 Right side of unary + is logical or time

Continued on next page . . .

Translator 17

ERROR
CODE

MESSAGE

162 Instruction not allowed in a user defined function
163 Need at least 1 character after FN in function name
164 Left and/or right side of XOR operator is not logical
165 Can’t create timer
166 Can’t get source date and time
167 Can’t kill timer
168 Control variable in FOR statement cannot be an array
169 Compiler directive must be 1st item on physical line
170 Label already defined
171 Parameter already defined
172 ELSE statement found inside a FIRST PASS statement
173 END IF statement found inside a FIRST PASS statement
174 Expected a real or integer expression
175 Expected a real, integer, time, or logical parameter
176 Expected an attribute parameter
177 Expected user defined function name
178 Expected an integer constant
179 Expected a logical expression
180 Expected a logical type parameter
181 Expected a real or integer type parameter
182 Expected an object reference
183 Expected a string
184 Expected a time expression
185 Expected a time type parameter
186 Expected the keyword ENGLISH or METRIC
187 Exponent too large
188 Extra characters found at end of statement
189 Unable to open file
190 Keyword FIRST PASS not allowed here
191 Function can’t be part of an expression inside its own definition
192 Hours value is too large
193 Variable doesn’t match the nearest FOR loop
194 Incorrect number of parameters - expecting
195 Integer constant is too large
196 Label defined inside of a user defined function

Continued on next page . . .

18 Translator

ERROR
CODE

MESSAGE

197 Label defined outside of a user defined function
198 Label defined inside of another user defined function
199 Keyword not allowed in expression
200 Label too large
201 Line is too large to decompile
202 Logical line exceeds 1024 characters
203 Logical & non-logical data used with operator
204 Loop crosses user defined function definition
205 Minutes value is too large
206 Negative sign must be at the beginning or end of the format string
207 Missing left parenthesis on array variable
208 Missing right parenthesis on array variable
209 Missing back slash in system object name
210 Missing comma
211 Missing double quote at end of string
212 Missing END PROCESS keyword
213 Missing single quote at end of system object name
214 Missing equal sign
215 Missing exempt item
216 Missing exponent
217 Missing closing right parenthesis in expression
218 Missing format string
219 Missing left parenthesis on function parameter list
220 Missing right parenthesis on function parameter list
221 Missing GOTO/GOSUB keyword
222 Missing/incorrect label reference
223 Missing minutes field in time constant
224 Missing parameter after comma
225 Format string must have at least 1 pound sign
226 Missing PROCESS keyword
227 Missing/incorrect process descriptor string
228 Missing required parameter
229 Missing seconds field in time constant
230 Missing THEN keyword
231 Missing TO keyword

Continued on next page . . .

Translator 19

ERROR
CODE

MESSAGE

232 Missing variable reference after comma
233 Only 1 decimal point allowed in format string
234 Only 1 negative sign allowed in format string
235 Too many characters in name token
236 Multiple ELSE statements found
237 Nested replacements not allowed
238 Nested user defined functions not allowed
239 Not part of a WHILE statement
240 Not part of a FIRST PASS statement
241 Not part of a user defined function definition
242 Not part of an IF statement
243 Missing keyword DEF
244 Missing $ in keyword DATE$
245 Not part of a FOR statement
246 Nested INCLUDE files not allowed
247 Missing PASS keyword
248 Numeric & non-numeric data used with operator
249 Process object exceeds 32K
250 Too many characters in object name
251 Too few characters in object name
252 Can’t open include file
253 More that 1 PRIORITY statement found
254 Real constant is too large
255 Real constant is too small
256 This TELL command requires an attribute destination
257 This TELL command requires an object destination
258 Seconds value is too large
259 Source line too large
260 String attributes not allowed in TELL commands
261 Too many characters in string
262 Too many characters in system name
263 Time and non-time data used with operator
264 Too many characters in time constant
265 Too many errors found - compilation aborted
266 Too many internal labels
267 Too many internal variables

Continued on next page . . .

20 Translator

ERROR
CODE

MESSAGE

268 Too many levels of parentheses in expression
269 Two label definitions on same logical line
270 Unable to allocate memory block—system error
271 Unable to add process object to database
272 Unable to close network. Status =
273 Unable to create JC-BASIC compiler status dialog box
274 Unable to create JC-BASIC compiler status dialog box template
275 Unable to delete process object
276 Unable to get user initials
277 Unable to lock memory block—system error
278 Unable to open network. Status =
279 Unable to start compile
280 User defined function has not been defined
281 Unfinished FOR loop found
282 Unfinished IF loop found
283 Unfinished user function definition found
284 Unfinished WHILE loop found
285 Unknown/incorrect attribute found
286 Unknown/incorrect object found
287 Undefined REPLACE identifier
288 Unknown statement type found
289 Name does not begin with a letter
290 Label reference never defined
291 User defined function has already been defined
292 Variable has already been defined
293 Manufacturing file not found
294 Incorrect NCM for system

© August, 1998 Johnson Controls, Inc. 1
 Code No. LIT-631070

GPL Programmer’s Manual

Function Blocks

���� Introduction

Object Blocks*

Operation and Special Blocks

Template Field Descriptions*

* Indicates those sections where changes have occurred since the last
printing.

2 Function Blocks

Function Blocks 3

Introduction

This chapter contains detailed descriptions of all the function
blocks available with the Graphic Programming Language.
The block descriptions are split into two sections: Object
Blocks and Operation and Special Blocks. The last section of
this chapter, Template Field Descriptions, is a glossary of all
attributes and parameters that can be defined in the data base
templates.

A function block is a rectangle on the screen that represents a
Metasys software object, process, or GPL function. Each
function block performs a particular action, such as selecting
the highest of two values, or calculating enthalpy. GPL
features three different types of function blocks: object,
operation, and special (Figure 1).

Figure 1: Types of Function Blocks

You paste down each block in the work area, and then define
its data base by filling in a template that drops down into the
work area. The values in the template define its
characteristics.

���������	
����

����� �������� ������

TOFNBLX

4 Function Blocks

In most cases, each block is connected to other blocks. The
connections between the blocks establish the data and control
flow on a diagram. Each block has a defined set of allowable
inputs and outputs to which lines may be connected. These
inputs and outputs display on connection menus, which come
to the screen when connecting the blocks.

For more information on Function Blocks, refer to the
Graphic Programming chapter.

The section titled Object Blocks describes all the object blocks
that are available in GPL. The object blocks include:

ACM Accumulator MSD Multistate Data*

AD Analog Data MSI Multistate Input*

AI Analog Input MSO Multistate Output*

AOD Analog Output Digital PIDL PID Loop

AOS Analog Output
Setpoint

REF Generic Object
Reference**

BD Binary Data 210A Control System C210

BI Binary Input 260A Control System C260

BO Binary Output ZONE Fire Zone

LCG Lighting Control
Group

 * Used only in European market.
** Represents C260X, C500X, and CS software objects; also, any

hardware objects.

Object Blocks

Function Blocks 5

The section titled Operation and Special Blocks describes all
the operation and special blocks that are available in GPL.
The operation blocks include:

ABRT Abort PIR PI Reset

ADD Addition PRNT Print

ADV Advisory PULS Pulse

AND And RAMP Ramp

AVG Average READ Read Attribute

BSEQ Binary Sequencer RH Relative Humidity

CMD Command RTOT Real-to-Time

COMP Compare SAMP Sample and Hold

DBCM Deadband Compare SPAN Span

DFCM Differential
Compare

STOP Stop

DIV Divide SUB Subtraction

DLAY Delay SVAR Shared Variable

DWPT Dew Point SWCH Switch

ENDP Enthalpy Dew Point TIME Time

ENRH Enthalpy Relative
Humidity

TOT Totalization

EQN Equation TTOR Time-to-Real

FILT Filter 2CMD Dual Command

FREL Forced Reliable UNRD Unreliable Data

HSEL High Select USER User

LSEL Low Select VH Value Holder

LTCH Latch WAIT Wait

MSEL Mode Selector WBDP Wetbulb Dew Point

MUL Multiply WBRH Wetbulb Relative
Humidity

NOT Not WRIT Write Attribute

OR Or XOR Exclusive Or

PERD Period

Operation and
Special Blocks

6 Function Blocks

The special blocks include:

CNST Constant FILE File

CONN Connection

GPL Programmer’s Manual

Object Blocks

Introduction Page 3
ACM (Accumulator) Object 11
AD (Analog Data) Object 19
AI (Analog Input) Object 25
AOD (Analog Output Digital) Object 39
AOS (Analog Output Setpoint) Object 45
BD (Binary Data) Object 53
BI (Binary Input) Object 59
BO (Binary Output) Object 67
LCG (Lighting Control Group) Object 75
MSD Object 79
MSI Object 85
MSO Object 91
PIDL (PID Loop) Object 101
REF (Generic Object Reference) Block 113
210A (C210A) Block 123
260A (C260A) Block 131
Zone (Fire Zone) Block 139

© June 18, 2004 Johnson Controls, Inc. 1

2 Object Blocks—Introduction

Introduction

This section presents a detailed description of each object
block available with the Graphic Programming Language. The
blocks are organized alphabetically.

The description of each block in this section follows a
standard format. Figure 2 shows the format with the different
sections.

Object Blocks—Introduction 3

Category

Purpose

Details

Template Fields

Connections

Reliability

Example

Name of Object Block

Name of the function block category
to which the block belongs
(e.g., Input/Output).

What the block is used for.

A table that describes the data base
template entries for the block.

A table that briefly describes input
and output connections for the block.

Detailed information on how the block
handles unreliable data.

An application that focuses on how
the block can be used in a GPL
control strategy.

Full description of the block's function
and characteristics.

STDRDFMT

Figure 2: Standard Format for Block Descriptions

Four of these headings require further explanation: category,
template fields, connections, and example.

4 Object Blocks—Introduction

Category Object blocks are organized in the GPL Editor by category.
Four different categories group the object blocks:
Input/Output, Data, Multistate, and Controllers.

 Input/Output
Blocks

BI BO AI AOS AOD ACM REF

These blocks represent Metasys® software point objects that
are mapped to actual hardware. The input blocks convert
signals provided by the input hardware to meaningful values
that the GPL algorithms can use. The input and output blocks
accept commands from GPL command blocks and perform the
control function on the output hardware.

Data Blocks

CNST CONN AD BDSVAR VH

These blocks represent Metasys software point objects and are
holders of data that can be used either in the same process or
other processes.

Multistate Blocks

MSOMSI MSD

These blocks represent Metasys multistate software point
objects.

Controller Blocks

LCG 260A210A ZONEPIDL

These blocks represent Metasys software objects mapped to
controller hardware. They are used for HVAC control
applications.

Object Blocks—Introduction 5

Template Fields The Template Fields section has a table that describes the
details about database template entries. The following is the
header for the table and descriptions of its columns:

Category Field Name Type Default Range/Choices

Category A major grouping of related fields. An example is Engineering
Data in the AI block template.

Field Name The name of the attribute, value, or parameter as it appears in
the database template. An example is Expanded ID.

Note: Some template entries may also be connection menu
selections. For example, the Auxiliary Switch Input
parameter of the PIDL block is in the block’s
template and in the block’s input connection menu.
You may enter a value in the template and connect
the value to the block, but the connected value will
always take precedence over template value. Those
entries that are both in the template and in connection
menus are indicated by an asterisk (*) in the chart.

For definitions of all attributes, values, and parameters, refer
to the section called Template Field Descriptions.

Type The type of data that describes the template entry. Included
are:

ANA: Analog, real or floating point fields. An example is the
Hi Alarm field for an AI block.

BIN: Binary (Boolean) fields that take a Yes (Y) or No (N)
entry. An example is the Save PT History? field for a BD
object.

INT: Integer fields that take any integer value. An example is
the Decimal Position field for an AOD object.

N: Fields that cannot be modified once you add the object to
the archive database. An example is the Slot Number field for
an ACM block.

READ-ONLY: Read-only fields that cannot be edited; the
Editor enters these values for you. An example is the
NC Name field for an AD block.

POP-UP: Fields that “pop up” on the screen when you make a
selection in a previous field. Which field displays depends on

6 Object Blocks—Introduction

the selection of the previous field. For example, on the AOS
object template, the two parameters Step Ratio and Saturation
Size pop up when you select INCR for the Point Type. Some
pop-up fields may also be tab fields.

STR: Character string fields that allow any combination of
alphabetic characters (A-Z, a-z), international language
characters, numbers (0-9), and the underscore (_). An example
is the System Name field (most blocks). Refer to Appendix F:
Characters, Symbols, and Reserved Words for a list of
international characters, reserved names, and invalid symbols
that cannot be used in STR fields.

TAB: Fields that toggle between different entries. A different
entry displays each time you press the Tab key. Once you
have tabbed through all the choices, the first choice reappears.
To keep a selection, press Enter or an arrow key. An example
is the Report Type field for the AOS object.

Object Blocks—Introduction 7

Default The value that the Editor automatically puts in the field. The
default value is based on common applications; therefore, you
do not have to change it in most cases.

Range/Choices The range of acceptable values; or, the acceptable or available
choices. The “Real” and “Time” entries mean any number in
these ranges:

Real: 99999999 to 0.000001, 0.0, -0.00001 to -9999999.

Time: 00:00:00 to 23:59:59

Notes: GPL converts all decimal numbers into binary
format; therefore, only five of the eight possible
digits can be displayed reliably. For example, if
-49.4567 is entered, GPL will display -49.4566,
not -49.457. This is because rounding errors are
introduced after the fifth digit. Decimal number
conversion is unpredictable after the fifth digit.

Also, GPL forces a fraction to have a 0 before the
decimal point. The least significant digit will not be
displayed. For example, if you enter -.123456, GPL
displays -0.12345 (the number 6 is dropped).

Although they are included as choices, not all
LONWORKS® compatible devices are available at the
publication date of this document.

8 Object Blocks—Introduction

Connections This heading has a table that briefly describes all available
input and output connections for the block. The input
connections are organized under the Input (GPL) and Input
(Commands) rows. The output connections are organized
under the Output (GPL) and Output (Attributes) rows. The
table has four columns: Connection, Name, Type, and Label.

Connection The type of connection (e.g., Input [GPL]).

Name The full name of connection type (e.g., READ and VALUE).

Type The type of data, including:

Data Type Description
ANA Analog connections
BIN Binary (Boolean) connections
CMD Single command connections
CTL Control flow connections
READ Read attribute connections
TIM Time connections
2CMD Dual command connections
WRIT Write attribute connections

Label A one- or two-character abbreviation of the connection name
(e.g., I1 for Input 1). The label, which identifies a connection,
appears at the end of a line.

Note: An asterisk (*) next to an entry indicates that it is in
the template and in the connection menu.

All input and output connections for object blocks
are optional.

Object Blocks—Introduction 9

Example Each example indicates a process period, which is how often
the process should execute. These period values are guidelines
only. The actual process periods you choose should be based
on the application and the type of controlled mechanical
equipment.

10 Object Blocks—Introduction

ACM (Accumulator) Object

Input/Output Category

Creates a software representation of a binary input device that
is measuring flow or consumption by monitoring a rate of
contact change.

Purpose

Figure 3 shows the general model of how the ACM object
operates. For more information, see the Metasys Network
Technical Manual (FAN 636), Software Data Sheets,
Accumulator (ACM) Technical Bulletin.

Details

Object Blocks—ACM 11

ACMGEN

Point History

Control Process
Triggering

XM

NCM

Hardware Input

Override Command
from Operator

Hardware Interface

Debounce Filtering

Delta Pulse Count

Pulse Accumulation

Rate Calculation

Filter

Override

Alarm Analysis

Alarm Delay

Change-of-State
Reporting

Figure 3: ACM General Model

12 Object Blocks—ACM

Template Fields
(First Screen)

Category Field Name Type Default Range/Choices
Identification System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 Expanded ID STR Blank 24 characters
Hardware System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 HW Type* TAB/N XBN XBN, XRM/XRL/2X, AHU,

VAV, UNT, OTHER, DC9100,
DX9100, XT9100, XTM,
DX91ECH, FPU, DSC8500

 Slot Number
 (XBN) INT/N 1 1 to 32
 (XRM,XRL,2X) INT/N 1 1 to 8
 (FPU) INT/N 1 1 to 16
 Point Type
 (For XMs) TAB/N SINGLE SINGLE or FORM C
 (For AHU,

 VAV, UNT,
 OTHER)

READ
ONLY/N/P
OP-UP

BI BI

 Debounce Filter ANA/
POP-UP

24 12 to 3060 msec
(multiples of 12 only)

 LED ON when
CLO

BIN/
POP-UP

Y Y (Yes) or N (No)

 Logical Pnt Nmbr INT/N 1 1 to 255
 Logical Pnt Type READ

ONLY/N
TOT TOT

 Point Address
 (For AHU) INT/N 7 7 or 8
 (For VAV,

 UNT)
INT/N 4 4

 (For OTHER) INT/N 1 1 to 256
 Hardware Reference
 (For DC9100) TAB/N Total1 Total1-2
 (For DX9100,

 DX91ECH)
TAB/N CNT1

CNT1-8
PM1-12AC1-8
XT1-8CNT1-8

 (For XT9100,
 XTM)

TAB/N CNT1

CNT1-8

* To define an XRE for HW Type, select XRM/XRL/2X.
Continued on next page . . .

Object Blocks—ACM 13

Category
(Cont.)

Field Name Type Default Range/Choices

Engineering Data Analog Units STR KW 6 characters
 Analog Con Units STR KWH 6 characters
 Decimal Position INT 1 0 to 3
 High Alarm Limit ANA Blank Real or Blank (not defined)
 Low Alarm Limit ANA Blank Real or Blank (not defined)
 Setpoint ANA Blank Real or Blank (not defined)*
 Normalband ANA Blank Real > 0.0 or Blank

(not defined)*
 Differential ANA Blank Real > 0.0 or Blank (not defined)
 Filter Weight ANA Blank Real > 1.0 or Blank (not defined)
* Either both Setpoint and Normalband must be defined, or both must be undefined (blank).

Category Field Name Type Default Range/Choices
Flags Auto Dialout BIN N Y (Yes) or N (No)
 Enable PT Hist. BIN Y Y (Yes) or N (No)
 Save PT

History
BIN N Y (Yes) or N (No)

 Comm
Disabled

BIN N Y (Yes) or N (No)

Parameters Pulse Constant ANA 0.000000 Real or Blank (not defined)
 Rate Constant TAB HOUR HOUR,SEC,MIN
 Warning Delay INT 1 0 to 255 minutes
Report Type Normal TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Warning TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
Continued on next page . . .

Template Fields
(Second Screen)

14 Object Blocks—ACM

Category
(Cont.)

Field Name Type Default Range/Choices

 Alarm TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Override TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
Messages Warning No. INT 0 0 to 255
 Alarm No. INT 0 0 to 255
 Graphic

Symbol No.
INT 0 0 to 32767

 Operating Instr.
No.

INT 0 0 to 32767

Object Blocks—ACM 15

Connections

Connection Name Type Label
Input (GPL) COMMAND CMD C
 DUAL CMD 2CMD 2C
 FEEDBACK ANA FB
 WRITE WRIT WR
Input (Commands) ALARMS CMD AC
 BEG_TOT CMD/2CMD BT
 BEG_TRND CMD/2CMD BH
 END_TOT CMD/2CMD ET
 END_TRND CMD/2CMD EH
 LOC_REP CMD/2CMD LR
 LOC_TRG CMD/2CMD LT
 RES_TOT CMD RT
 UNL_REP CMD/2CMD UR
 UNL_TRG CMD/2CMD UT
 WARNINGS CMD WC
Output (GPL) READ READ RD
Output (Attributes) HI_ALARM BIN HA
 HI_WARN BIN HW
 LO_ALARM BIN LA
 LO_WARN BIN LW
 NORMAL BIN N
 OFFLINE BIN OL
 OVERRIDE BIN SO
 VALUE ANA V

The ACM object becomes unreliable when the hardware it
represents goes offline or reports an unreliable count. The
following ACM attributes also become unreliable: VALUE,
DISPLAY, LO_ALARM, LO_WARN, HI_ALARM,
HI_WARN, NORMAL, and STATUS.

Reliability

Note: The TOTAL attribute is always reliable.

The ACM object ignores all commands that contain an
unreliable parameter. Also, if a WRIT block that is connected
to an ACM object block sends unreliable data to the object,
the WRIT block will execute, but the ACM object will ignore
the write and remain in its current state.

16 Object Blocks—ACM

The ACM object block in this example (Figure 4) is an input
to the DFCM block. The DFCM block compares the current
value of an accumulator object (AHU1\ACM1) to a setpoint
(SETPOINT). If the ACM value is greater than the setpoint,
given an applied differential (DIFF), this process will print a
message to an output device. The message is:

Example

THE 2ND FLOOR METER THAT MEASURES KW HAS
EXCEEDED <value>

Notice that this message includes a description of the
engineering units (kilowatts). That is because units cannot be
appended to the end of the message.

A period of 00:02:00 minutes is defined for this process,
which means it will run once every two minutes.

Note: The DFCM and PRNT blocks, both operation blocks,
must be placed in a process.

Object Blocks—ACM 17

ACMOBJ

PRNT
PRINT

V

I1 E

INDFI2

CNST
SETPOINT

CNST
DIFF

O O

O

O

ACM
AHU1
ACM-1

DFCM

Figure 4: ACM Object Example

18 Object Blocks—ACM

AD (Analog Data) Object

Data Category

Creates a storage location for an analog value. The AD object
has no associated hardware. It can receive a command or an
analog value from another object, or store the result of some
calculation.

Purpose

Figure 5 shows the general model of how the AD object
operates. For more information, see the Metasys Network
Technical Manual, Software Data Sheets, Analog Data (AD)
Technical Bulletin.

Details

Object Blocks—AD 19

ADGNRLMD

NCM
Initial Value

Input Prioritization

Filtering

Current Value

Alarm Limit
Analysis

Warning Delay

Change-of-State
Reporting

Control Process
Triggering

Point History

Figure 5: AD General Model

20 Object Blocks—AD

Template Fields
(First Screen)

Category Field Name Type Default Range/Choices
Identification System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 Expanded ID STR Blank 24 characters
 NC Name READ

ONLY/N
Blank 8 characters

Engineering
Data

Analog Units STR DEG F 6 characters

 Decimal
Position

INT 1 0 to 3

 High Alarm
Limit

ANA 80.00000 Real or Blank (not defined)

 Low Alarm
Limit

ANA 40.00000 Real or Blank (not defined)

 Setpoint ANA 55.00000 Real or Blank (not defined)*
 Normalband ANA 10.00000 Real > 0.0 or Blank (not

defined)*
 Differential ANA 1.000000 Real > 0.0 or Blank (not

defined)
 Filter Weight ANA Blank Real > 1.0 or Blank (not

defined)
Associated
Input

System Name STR/N Blank 8 characters

 Object Name STR/N Blank 8 characters
 Attribute Name STR/N Blank 8 characters
* Either both Setpoint and Normalband must be defined, or both must be undefined (blank).

Object Blocks—AD 21

Template Fields
(Second Screen)

Category Field Name Type Default Range/Choices
Flags Auto Dialout BIN N Y (Yes) or N (No)
 Enable Pt Hist. BIN N Y (Yes) or N (No)
 Save Pt History BIN N Y (Yes) or N (No)
 Comm

Disabled
BIN N Y (Yes) or N (No)

Parameters Warning Delay INT 1 0 to 255 Minutes
 Initial Value ANA 55.00000 Real
 Adjust Disabled BIN N Y (Yes) or N (No)
Report Type Normal TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Warning TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Alarm TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Override TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
Continued on next page . . .

22 Object Blocks—AD

Category
(Cont.)

Field Name Type Default Range/Choices

Messages Warning No. INT 0 0 to 255
 Alarm No. INT 0 0 to 255
 Graphic

Symbol No.
INT 0 0 to 32767

 Operating Instr
No.

INT 0 0 to 32767

 Connections

Connection Name Type Label
Input (GPL) ASSOC IN ANA AS
 COMMAND CMD C
 DUAL CMD 2CMD 2C
 FEEDBACK ANA FB
 WRITE WRIT WR
Input (Commands) ALARMS CMD AC
 BEG_TOT CMD/2CMD BT
 BEG_TRND CMD/2CMD BH
 END_TOT CMD/2CMD ET
 END_TRND CMD/2CMD EH
 LOC_REP CMD/2CMD LR
 LOC_TRG CMD/2CMD LT
 RELEASE CMD R
 RES_TOT CMD RT
 SET_AD CMD SA
 UNL_REP CMD/2CMD UR
 UNL_TRG CMD/2CMD UT
 WARNINGS CMD WC
Output (GPL) READ READ RD
Output (Attributes) HI_ALARM BIN HA
 HI_WARN BIN HW
 LO_ALARM BIN LA
 LO_WARN BIN LW
 NORMAL BIN N
 OFFLINE BIN OL
 OVERRIDE BIN SO
 VALUE ANA V

Object Blocks—AD 23

The AD object becomes unreliable if the assigned attribute it
is sampling for its value becomes unreliable. It also becomes
unreliable if GPL commands an unreliable value to the object.
The following AD attributes also become unreliable:
DISPLAY, LO_ALARM, LO_WARN, HI_ALARM,
HI_WARN, NORMAL, STATUS, and VALUE.

Reliability

The AD object ignores all commands that contain an
unreliable parameter. However, the AD object does accept a
SET_AD command whose Value parameter is unreliable. In
this case, the command forces the AD object to unreliable.

If a WRIT block that is connected to an AD object block
sends unreliable data to the object, the WRIT block will
execute, but the AD object will ignore the write and remain in
its current state.

This example has an AD object block as an adjustable setpoint
for economizer control (Figure 6). If the outside air
temperature (AHU1\OA-TEMP) is less than the AD setpoint
(AHU1\EC-SETPT), given an applied differential of 2.0°F,
economizer (ECON) is set.

Example

A period of 00:02:00 minutes is defined for this process,
which means it will run once every two minutes.

Note: The DFCM and SVAR blocks, both operation
blocks, must be placed in a process.

ADOBJCT

SVAR
ECON

V

I1

E

DF

O

O

V

I1
AD

AHU1
EC-SETPT

CNST
2.0 DEGF

<DFCM

AI
AHU1

OA-TEMP

Figure 6: AD Object Example

24 Object Blocks—AD

AI (Analog Input) Object

Input/Output Category

Creates a software representation of a hardware device that is
monitoring an analog value. The primary function of an AI
object is to convert the raw hardware signal (analog-to-digital
counts) from an analog input device to data that can be used in
operator displays, alarm limit analysis, and control processes.

Purpose

Figure 7 shows a general model of how the AI object
operates. For more information, see the Metasys Network
Technical Manual, Software Data Sheets, Analog Input (AI)
Technical Bulletin.

Details

Object Blocks—AI 25

Hardware
Interface

Ranging

Filtering

Spanning

Override Command

Current Value

Alarm Limit Analysis

Square Root
Extraction

Analog to
Digital Conversion

Point History

Warning Delay

Change-of-State
Reporting

Control Process
Triggering

NCM

DCM

ALFUNCT

Figure 7: AI Functional Flow

26 Object Blocks—AI

Template Fields
(First Screen)

 Category Field Name Type Default Range/Choices
 Identification System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 Expanded ID STR Blank 24 characters
 Hardware System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 HW Type TAB/N DCM DCM, DCM140, FPU,

DSC8500, AHU, VAV, VMA,
UNT, OTHER, DR9100,
DC9100, LCP, DX9100,
XT9100, XTM, DX91ECH,
TC9100, LON3

 Slot Number
 (For DCM and

DCM140)
INT/N/
POP-UP

1 1 to 10

 (For FPU) INT/N/
POP-UP

1 1 to 16

 Analog Type
 (For DCM) INT/N/

POP-UP
1K ohm 1K ohm, 100 ohm, or

VOLT/AMP
 (For DCM140) INT/N/

POP-UP
1K ohm 1K ohm, 100 ohm, VOLT/AMP

or V/A LOW END REL*
 Point Type TAB/N/

POP-UP
AI 0 = AI

1 = MAI1
 Subslot Number INT/N/

POP-UP
1 1 to 2

 Filter Weight ANA/
POP-UP

Blank Real >1.0 or Blank (not defined)

 Flow Coefficient ANA/
POP-UP

Blank Real > 0.0 or blank (not
defined)

 Span Low
Input2

ANA/
POP-UP

Blank Real or blank (not defined)

 Span High
 Input2

ANA/
POP-UP

Blank Real or blank (not defined)

 Span Low
Output2

ANA/
POP-UP

Blank Real or blank (not defined)

 Span High
Output2

ANA/
POP-UP

Blank Real or blank (not defined)

 1 If Point Type = MAI, 100 ohm option is invalid for analog type.
2 Spanning is not supported for an AI object on a DSC8500.
3 LON Hardware type is not definable from GPL. See Example section for details.

 Continued on next page . . .

Object Blocks—AI 27

 Category
(Cont.)

Field Name Type Default Range/Choices

 STD Range Type
 (For DCM and

DCM140)
INT/
POP-UP

1 0 to 25, 34 to 111

 (For FPU) INT/
POP-UP

26 0, 26 to 33

 Linear Parm. 1 ANA/
POP-UP

See Default
AI Ranges
Table

Real

 Linear Parm. 2 ANA/
POP-UP

See Default
AI Ranges
Table

Real

 Linear Parm. 3 ANA/
POP-UP

See Default
AI Ranges
Table

Real

 Linear Parm. 4 ANA/
POP-UP

See Default
AI Ranges
Table

Real

 Filter Tolerance ANA/
POP-UP

0.200000 0.200000 to 100.0000%

 Logical Pnt Nmbr INT/N/
POP-UP

1 1 to 255

 Logical Pnt Type TAB/N/
POP-UP

FUL LTD, FUL, RAT, TOT, INC,
ASP, or ADP

 Point Address
 (For AHU) INT/N/

POP-UP
1 1 to 8

 (For VAV, UNT) INT/N/
POP-UP

1 1 to 12

 (For OTHER) INT/N/
POP-UP

1 1 to 256

 (For VMA) INT/N/
POP-UP

1 1 to 5

 Point Type READ
ONLY/N/
POP-UP

AI AI

 Hardware Reference
 (For DR9100) TAB/N AI1 AI1-4
 (For DC9100) TAB/N AI1 AI1-8, Total1-21 (for DO9100

only)
 (For LCP) TAB/N AI1 AI1-8
 (For DX9100) TAB/N AI1 AI1-8, XT1-8AI1-8, CNT1-81,

PM1-12AC1-81, XT1-8CNT1-81

 (For DX91ECH) TAB/N AI1 AI1-8, XT1-8AI1-8, CNT1-81,
PM1-12AC1-81, XT1-8CNT1-81

 1 Restrictions apply to all AI objects mapped to these H/W references. Please refer to AI
 documentation.

 Continued on next page . . .

28 Object Blocks—AI

 Category
(Cont.)

Field Name Type Default Range/Choices

 (For XT9100, XTM) TAB/N AI1 AI1-8, CNT1-81

 (For TC9100) TAB/N AI1 AI1-4
 (For LON) TAB/N 01AI01 Definition not available
 Engineering

Data
Analog Units STR DEG F 6 characters

 Decimal Position INT 1 0 to 3
 High Alarm Limit ANA 80.00000 Real or Blank (not defined)
 Low Alarm Limit ANA 40.00000 Real or Blank (not defined)
 Setpoint ANA 55.00000 Real or Blank (not defined) 2

 Normalband ANA 10.00000 Real > 0.0 or Blank (not defined) 2

 Differential ANA Blank Real > 0.0 or Blank (not
defined)

 2 Either both Setpoint and Normalband must be defined, or both must be undefined (blank).

 Template Fields
(Second Screen)

 Category Field Name Type Default Range/Choices
 Flags Auto Dialout BIN N Y (Yes) or N (No)
 Enable PT Hist. BIN Y Y (Yes) or N (No)
 Save PT History BIN N Y (Yes) or N (No)
 Comm Disabled BIN N Y (Yes) or N (No)
 Parameters Warning Delay ANA 1 0 to 255 minutes
 Report Type Normal TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Warning TAB NON NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Continued on next page . . .

Object Blocks—AI 29

 Category (Cont.) Field Name Type Default Range/Choices
 Alarm TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Override TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Messages Warning No. INT 0 0 to 255
 Alarm No. INT 0 0 to 255
 Graphic Symbol

No.
INT 0 0 to 32767

 Operating Instr
No.

INT 0 0 to 32767

30 Object Blocks—AI

 Linear Parameter For Standard Ranges
 For DCM and DCM140, use standard ranges 1 to 25, and 34 to 111.

For FPU, use standard ranges 26 to 33.

 Range Type Parm 1 Parm 2 Parm 3 Parm 4
 1 DEGF 1000 ohm Ni - 49.929 89.144 -4787.6 221.94

 2 DEGF 1000 ohm Pl -116.32 100.75 979.87 10.941

 3 DEGF CPD silicon - 16.936 66.482 -5624.1 414.23

 4 DEGF 100 ohm Pl - 49.972 71.417 437.8 3.0646

 5 DEGC 1000 ohm Ni - 45.516 49.525 -2659.7 123.3

 6 DEGC 1000 ohm Pl - 82.397 55.987 6.2715 543.93

 7 DEGC CPD silicon - 27.197 36.979 -3153.7 235.82

 8 DEGC 100 ohm Pl - 45.54 39.676 243.26 1.6975

 9 WC IDP001 0/.1 - 0.025 0.03656 0.0 0.0

 10 WC IDP002 0/.25 - 0.0625 0.09139 0.0 0.0

 11 WC IDP005 0/.5 - 0.125 0.18278 0.0 0.0

 12 WC IDP010 0/1 - 0.25 0.36557 0.0 0.0

 13 WC IDP030 0/3 - 0.75 1.09670 0.0 0.0

 14 WC IDP050 0/5 - 1.25 1.82784 0.0 0.0

 15 WC IDP100 0/10 - 2.5 3.65568 0.0 0.0

 16 mBAR IDP001 0/0.249 -0.06228 0.09106 0.0 0.0

 17 mBAR IDP002 0/0.623 - 0.15576 0.22775 0.0 0.0

 18 mBAR IDP005 0/1.245 - 0.31125 0.45513 0.0 0.0

 19 mBAR IDP010 0/2.491 - 0.62275 0.91063 0.0 0.0

 20 mBAR IDP030 0/7.472 - 1.8680 2.73152 0.0 0.0

 21 mBAR IDP050 0/12.45 - 3.1125 4.55132 0.0 0.0

 22 mBAR IDP100 0/24.91 - 6.2275 9.10629 0.0 0.0

 The following ranges display mA or VDC. Use span function to show appropriate
engineering units.

 23 4/20 mA input 0.0 5.86081 0.0 0.0
 24 0/10 VDC input 0.0 2.92454 0.0 0.0
 Note: If you use the AI with a Delta-P sensor to calculate flow, you cannot use

ranges 23 or 24; you must range the AI to match the sensor.
 25 W560/HE-6110 0/5 VDC 0.0 58.4908 0.0 0.0
 Continued on next page . . .

Object Blocks—AI 31

 Linear Parameter For Standard Ranges (Cont.)
 For FPU, use standard ranges 26 to 33.

For DCM and DCM140, use standard ranges 1 to 25, and 34 to 111.

 Range Type Parm 1 Parm 2 Parm 3 Parm 4
 26 ANT101 0 to 100F -0.03364 52.1918 -1741.36 57.6882
 27 ANT102 40 to 140F 39.94782 52.2460 -1783.97 67.5819
 28 ANT103 -50 to 150F - 49.98669 111.394 -7642.14 464.659
 29 ANT104 -50 to 250F - 50.05439 179.105 -19755.2 1930.92
 30 ANT101 -18 to 38C - 17.7962 28.9954 -967.423 32.0491
 31 ANT102 4 to 60C 4.41553 29.0255 -991.095 37.5455
 32 ANT103 -46 to 66C - 45.5480 61.8858 -4245.63 258.144
 33 ANT104 -46 to 121C - 45.5857 99.5000 -10975.1 1072.73

If you are adding an ANV, ANC, or ANP analog card to an AI software object, you must
calculate the linearization parameters. You’ll find the equations for calculating linearization
parameters later in this document.

 34 WC IDP250 0/25 -6.250000 9.139063 0.0 0.0
 35 WC IDPB001 -0.1/0.1 -0.150000 0.073113 0.0 0.0
 36 WC IDPB002 -0.25/0.25 -0.375000 0.182781 0.0 0.0
 37 WC IDPB005 -0.5/0.5 -0.750000 0.365563 0.0 0.0
 38 WC IDPB010 -1.0/1.0 -1.500000 0.731125 0.0 0.0
 39 WC IDPBO25 -2.5/2.5 -3.75000 1.827813 0.0 0.0
 40 WC IDPB050 -5/5 -7.500000 3.655625 0.0 0.0
 41 WC DPT-2640-1 0/0.1 0.0 0.058490 0.0 0.0
 42 WC DPT-2640-2 0/0.25 0.0 0.146225 0.0 0.0
 43 WC DPT-2640-3 0/0.5 0.0 0.292450 0.0 0.0
 44 WC DPT-2640-4 0/1 0.0 0.584900 0.0 0.0
 45 WC DPT-2640-5 0/2.5 0.0 1.462250 0.0 0.0
 46 WC DPT-2640-6 0/5 0.0 2.924500 0.0 0.0
 47 WC DPT-2640-7 0/10 0.0 5.849000 0.0 0.0
 48 WC DPT-2640-8 0/25 0.0 14.622500 0.0 0.0
 49 WC DPT-2640-21 -0.1/0.1 -0.100000 0.116980 0.0 0.0
 50 WC DPT-2640-22 -0.25/0.25 -0.250000 0.292450 0.0 0.0
 51 WC DPT-2640-23 -0.5/0.5 -0.500000 0.584900 0.0 0.0
 52 WC DPT-2640-24 -1/1 -1.000000 1.169800 0.0 0.0
 53 WC DPT-2640-25 -2.5/2.5 -2.500000 2.924500 0.0 0.0
 54 WC DPT-2640-26 -5/5 -5.000000 5.849000 0.0 0.0
 55 WC DPT-2640-27 -10/10 -10.000000 11.698000 0.0 0.0
 56 WC DPT-2640-28 -25/25 -25.000000 29.245000 0.0 0.0
 Continued on next page . . .

32 Object Blocks—AI

 Linear Parameter For Standard Ranges (Cont.)
 For FPU, use standard ranges 26 to 33.

For DCM and DCM140, use standard ranges 1 to 25, and 34 to 111.

 Range Type Parm 1 Parm 2 Parm 3 Parm 4
 57 WC DPT-2641-1 0/0.1 -0.025000 0.03663 0.0 0.0
 58 WC DPT-2641-2 0/0.25 -0.062500 0.091575 0.0 0.0
 59 WC DPT-2641-3 0/0.5 -0.125000 0.18315 0.0 0.0
 60 WC DPT-2641-4 0/1 -0.250000 0.3663 0.0 0.0
 61 WC DPT-2641-5 0/2.5 -0.625000 0.915750 0.0 0.0
 62 WC DPT-2641-6 0/5 -1.250000 1.831500 0.0 0.0
 63 WC DPT-2641-7 0/10 -2.500000 3.663000 0.0 0.0
 64 WC DPT-2641-8 0/25 -6.250000 9.157500 0.0 0.0
 65 WC DPT-2641-21 -0.1/0.1 -0.150000 0.073260 0.0 0.0
 66 WC DPT-2641-22 -0.25/0.25 -0.375000 0.183150 0.0 0.0
 68 WC DPT-2641-23 -0.50/0.50 -0.750000 0.366300 0.0 0.0
 67 WC DPT-2641-24 -1.0/1.0 -1.500000 0.732600 0.0 0.0
 69 WC DPT-2641-25 -2.5/2.5 -3.750000 1.831500 0.0 0.0
 70 WC DPT-2641-26 -5.0/5.0 -7.500000 3.663000 0.0 0.0
 71 WC DPT-2641-27 -10.0/10.0 -15.000000 7.326000 0.0 0.0
 72 WC DPT-2641-28 -25.0/25.0 -37.500000 18.315000 0.0 0.0
 73 mBAR IDP250 0/62.28 -15.56875 22.76540 0.0 0.0
 74 mBAR IDPB001 -

0.249/0.249
-0.37365 0.18212 0.0 0.0

 75 mBAR IDPB002 -
0.623/0.623

-0.93450 0.45549 0.0 0.0

 76 mBAR IDPB005 -
1.245/1.245

-1.86750 0.91025 0.0 0.0

 77 mBAR IDPB010 -
2.491/2.491

-3.73650 1.82123 0.0 0.0

 78 mBAR IDPB025 -
6.228/6.228

-9.34125 4.55308 0.0 0.0

 79 mBAR IDPB050 -
12.45/12.45

-18.67500 9.10251 0.0 0.0

 80 mBAR DPT-2640-1 0/0.249 0.0 0.14570 0.0 0.0
 81 mBAR DPT-2640-2 0/0.623 0.0 0.36439 0.0 0.0
 82 mBAR DPT-2640-3 0/1.245 0.0 0.72820 0.0 0.0
 83 mBAR DPT-2640-4 0/2.491 0.0 1.45699 0.0 0.0
 84 mBAR DPT-2640-5 0/6.228 0.0 3.64246 0.0 0.0
 85 mBAR DPT-2640-6 0/12.450 0.0 7.28201 0.0 0.0
 86 mBAR DPT-2640-7 0/24.910 0.0 14.56986 0.0 0.0
 87 mBAR DPT-2640-8 0/62.275 0.0 36.42465 0.0 0.0
 Continued on next page . . .

Object Blocks—AI 33

 Linear Parameter For Standard Ranges (Cont.)
 For FPU, use standard ranges 26 to 33.

For DCM and DCM140, use standard ranges 1 to 25, and 34 to 111.

 Range Type Parm 1 Parm 2 Parm 3 Parm 4
 88 mBAR DPT-2640-21

-0.249/0.249
-0.24910 0.29140 0.0 0.0

 89 mBAR DPT-2640-22
-0.623/0.623

-0.62300 0.72879 0.0 0.0

 90 mBAR DPT-2640-23
-1.245/1.245

-1.24500 1.45640 0.0 0.0

 91 mBAR DPT-2640-24
-2.491/2.491

-2.49100 2.91397 0.0 0.0

 92 mBAR DPT-2640-25
-6.228/6.228

-6.22750 7.28493 0.0 0.0

 93 mBAR DPT-2640-26
-12.45/12.45

-12.45000 14.56401 0.0 0.0

 94 mBAR DPT-2640-27
-24.91/24.91

-24.91000 29.13972 0.0 0.0

 95 mBAR DPT-2640-28
-62.275/62.275

-62.27500 72.84930 0.0 0.0

 96 mBAR DPT-2641-1 0/0.249 -0.06228 0.09125 0.0 0.0
 97 mBAR DPT-2641-2 0/0.623 -0.15575 0.22820 0.0 0.0
 98 mBAR DPT-2641-3 0/1.245 -0.31125 0.45604 0.0 0.0
 99 mBAR DPT-2641-4 0/2.491 -0.62275 0.91245 0.0 0.0
 100 mBAR DPT-2641-5 0/6.228 -1.55688 2.28113 0.0 0.0
 101 mBAR DPT-2641-6 0/12.450 -3.11250 4.56044 0.0 0.0
 102 mBAR DPT-2641-7 0/24.910 -6.22750 9.12453 0.0 0.0
 103 mBAR DPT-2641-8 0/62.275 -15.56875 22.81133 0.0 0.0
 104 mBAR DPT-2641-21

-0.249/0.249
-0.37365 0.18249 0.0 0.0

 105 mBAR DPT-2641-22
-0.623/0.623

-0.93450 0.45641 0.0 0.0

 106 mBAR DPT-2641-23
-1.245/1.245

-1.86750 0.91209 0.0 0.0

 107 mBAR DPT-2641-24
-2.491/2.491

-3.73650 1.82491 0.0 0.0

 108 mBAR DPT-2641-25
-6.228/6.228

-9.34125 4.56227 0.0 0.0

 109 mBAR DPT-2641-26
-12.45/12.45

-18.67500 9.12087 0.0 0.0

 110 mBAR DPT-2641-27
-24.91/24.91

-37.36500 18.24907 0.0 0.0

 111 mBAR DPT-2641-28
-62.275/62.275

-93.41250 45.62267 0.0 0.0

34 Object Blocks—AI

 Connections

Connection Name Type Label
Input (GPL) COMMAND CMD C
 DUAL CMD 2CMD 2C
 FEEDBACK ANA FB
 WRITE WRIT WR
Input (Commands) ALARMS CMD AC
 BEG_TOT CMD/2CMD BT
 BEG_TRND CMD/2CMD BH
 END_TOT CMD/2CMD ET
 END_TRND CMD/2CMD EH
 LOC_REP CMD/2CMD LR
 LOC_TRG CMD/2CMD LT
 RES_TOT CMD RT
 UNL_REP CMD/2CMD UR
 UNL_TRG CMD/2CMD UT
 WARNINGS CMD WC
Output (GPL) READ READ RD
Output (Attributes) HI_ALARM BIN HA
 HI_WARN BIN HW
 LO_ALARM BIN LA
 LO_WARN BIN LW
 NORMAL BIN N
 OFFLINE BIN OL
 OVERRIDE BIN SO
 VALUE ANA V

Object Blocks—AI 35

Reliability The AI object becomes unreliable when the hardware it
represents goes offline or reports an unreliable status. The
following AI attributes also become unreliable: AD_COUNT,
DISPLAY, FLTR_VAL, HI_ALARM, HI_WARN,
LO_ALARM, LO_WARN, NORMAL, STATUS, PRE_VAL,
and VALUE.

The AI object ignores all commands that contain an unreliable
parameter. Also, if a WRIT block that is connected to an AI
object block sends unreliable data to the object, the WRIT
block will execute, but the AI object will ignore the write and
remain in its current state.

The AI object block in this example (Figure 8) represents
outside air temperature (AHU1\OA-TEMP). It is commanded
to new alarm limits and differential based on the state of the
BD object (AHU1\SUM-WINT), which determines summer
and winter mode. When the mode changes from summer to
winter, the CMD block sends to the AI object a high limit of
70.0°F, low limit of 38.0°F, and a differential of 2.0°F. When
the mode changes from winter to summer, the AI object is
updated with a high limit of 95.0°F, low limit of 50.0°F, and a
differential of 2.0°F.

Example

A period of 00:00:00 is defined for this process since it should
run only when triggered by the BD object.

Note: The CMD and NOT blocks, operation blocks, must
be placed in a process.

36 Object Blocks—AI

ALOEXMPL

V

CNST
95.0 F

CNST
50.0 F

CNST
2.0 F

CNST
70.0 F

CNST
38.0 F

CNST
2.0 F

C

C

AL

AL

E

E

O

O

O

HL

LL

DF

O

O

O

HL

LL

DF

O

I

CMD
ALARMS

CMD
ALARMS

V

BD
AHU1

SUM-WINT

AI
AHU1

OA-TEMP

NOT

Figure 8: AI Object Example

Object Blocks—AI 37

Notes: The AI block can reference an AI software object
mapped to a LON device. However, the AI software
object must already be present in the archive
database. You cannot create it by setting an AI block
in the GPL editor.

 The AI block will not show what hardware reference
the AI actually uses in the device. When working
with software objects on LON devices, create your
archive database with DDL first, then design your
control strategy within the GPL editor.

38 Object Blocks—AI

AOD (Analog Output Digital)
Object

Input/Output Category

Creates a software representation of an analog output used for
position control, such as opening a damper 25%.

Purpose

Figure 9 shows a general model of how the AOD object
operates. For more information, see the Metasys Network
Technical Manual, Software Data Sheets, Analog Output
Digital (AOD) Technical Bulletin.

Details

Object Blocks—AOD 39

PIDL Value

Scheduling or
Control Process

Command

Override Command
from Operator

Control Process
Triggering

Point History

Output Control

Command
Proritization

Spanning

AODFUNCT

Commanded Value

Change-of-State
Reporting

Hardware Interface

Figure 9: AOD Functional Flow

40 Object Blocks—AOD

Template Fields
(First Screen)

Category Field Name Type Default Range/Choices
Identification System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 Expanded ID STR Blank 24 characters
Hardware System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 HW Type TAB/N DCM DCM, DCM140
 Slot Number INT/N 1 1 to 10
 Point Type
 (For DCM) TAB/N PROP PROP or INCR
 (For DCM140) TAB/N PROP PROP, INCR, or MAO
 Subslot

Number
INT/N
POP-
UP

1 1 to 2

 Step Ratio ANA/
POP-
UP

0.900000 Real

 Saturation
Size

INT/
POP-
UP

90 0 to 255 seconds

Engineering Data Analog Units STR PCT 6 characters

 Decimal
Position

INT 1 0 to 3

Object Blocks—AOD 41

Template Fields
(Second Screen)

Category Field Name Type Default Range/Choices
Flags Auto Dialout BIN N Y (Yes) or N (No)
 Enable PT

Hist.
BIN Y Y (Yes) or N (No)

 Save PT
History

BIN N Y (Yes) or N (No)

 Comm
Disabled

BIN N Y (Yes) or N (No)

 Auto Restore BIN Y Y (Yes) or N (No)
Parameters Span Low

Input
ANA Blank Real or blank (not defined)

 Span High
Input

ANA Blank Real or blank (not defined)

 Span Low
Output

ANA Blank Real or blank (not defined)

 Span High
Output

ANA Blank Real or blank (not defined)

Report Type Override TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Graphic

Symbol No.
INT 0 0 to 32767

 Operating
Instr. No.

INT 0 0 to 32767

42 Object Blocks—AOD

Connections

Connection Name Type Label
Input (GPL) COMMAND CMD C
 DUAL CMD 2CMD 2C
 VALUE ANA V
 WRITE WRIT WR
Input (Commands) BEG_TOT CMD/2CMD BT
 BEG_TRND CMD/2CMD BH
 END_TOT CMD/2CMD ET
 END_TRND CMD/2CMD EH
 LOC_REP CMD/2CMD LR
 LOC_TRG CMD/2CMD LT
 RELEASE CMD/2CMD R
 RES_TOT CMD RT
 SET_AOD CMD SA
 UNL_REP CMD/2CMD UR
 UNL_TRG CMD/2CMD UT
Output (GPL) READ READ RD
Output (Attributes) HOA BIN HO
 OFFLINE BIN OL
 OVERRIDE BIN SO
 VALUE ANA V

The AOD object becomes unreliable when it goes offline and
the object is being controlled by the DCM. However, the
object can be offline and reliable if it currently has a command
pending at Priority 1 or 2. When the object is unreliable, the
following attributes are also unreliable: DISPLAY, HOA, and
VALUE.

Reliability

The AOD object ignores all commands that contain an
unreliable parameter. Also, if a WRIT block that is connected
to an AOD object block sends unreliable data to the object,
the WRIT block will execute, but the AOD object will ignore
the write and remain in its current state.

Object Blocks—AOD 43

Example This example uses an AOD object block in a static pressure
loop (Figure 10). If smoke is detected by the BI object
(AHU1\SMK-1), the CMD block sends a command of 100%
Open to the AOD object (AHU1\SF-INL), which tells the
hardware to open the vanes. The AI input for the PIDL loop
(AHU1\STAT-PRS) is from AHU1\STATIC.

This example assumes that the SET_AOD command to
AHU1\SF-INL is released by some other process when the
building returns to normal condition.

A period of 00:00:00 is specified because this process is
triggered when the value of the BI object changes from Off to
On or On to Off.

Note: The CMD block, an operation block, must be placed
in a process.

AODOX

V

O

I1

V

V

V

SA

E

C

PO

BI
AHU1
SMK-1

CNST
100.0%

CMD
SET AOD

PIDL
AHU1

STAT-PRS

AOD
AHU1
SF-INL

AI
AHU1

STATIC

Figure 10: AOD Object Example

44 Object Blocks—AOD

AOS (Analog Output
Setpoint) Object

Input/Output Category

Creates a software representation of an analog output device
used for position control or remote setpoint adjustment.

Purpose

Figure 11 shows a general model of how the AOS object
operates. For more information, see the Metasys Network
Technical Manual, Software Data Sheets, Analog Output
Setpoint (AOS) Object Technical Bulletin.

Details

Object Blocks—AOS 45

Change-of-State
Reporting

Control Process
Triggering

Point History

Hardware
Interface

New Setpoint sent
to AI, AD, or ACM.Optional Feedback

Command Prioritization

Spanning

Hardware Interface

Output Control Commanded Value

Override Command
from Operator

Scheduling or
Control Process

Command

NCM

AOSFCFLO

Figure 11: AOS Functional Flow

46 Object Blocks—AOS

Template Fields
(First Screen)

 Category Field Name Type Default Range/Choices
 Identification System Name STR/N Blank 8 characters

 Object Name STR/N Blank 8 characters

 Expanded ID STR Blank 24 characters

 Hardware System Name STR/N Blank 8 characters

 Object Name STR/N Blank 8 characters

 HW Type TAB/N DCM DCM, DCM140, FPU,
DSC8500, AHU, VAV, UNT,
OTHER, DC9100, LCP,
DX9100, XT9100, XTM,
DX91ECH, VMA, LON1

 Slot Number

 (For DCM and
DCM140)

INT/N/
POP-UP

1 1 to 10

 (For FPU) INT/N/
POP-UP

1 1 to 16

 Span Low Input ANA/
POP-UP

Blank Real or blank (not defined)

 Span High Input ANA/
POP-UP

Blank Real or blank (not defined)

 Span Low
Output

ANA/
POP-UP

Blank Real or blank (not defined)

 Span High
Output

ANA/
POP-UP

Blank Real or blank (not defined)

 Point Type

 (For DCM) TAB/N/
POP-UP

PROP PROP or INCR

 (For DCM140) TAB/N/
POP-UP

PROP PROP, INCR, or MAO

 (For AHU, VAV,
VMA, UNT,
OTHER)

READ
ONLY/N/
POP-UP

AO AO, ADF, ADI

 Logical Pnt
Nmbr

INT/N/
POP-UP

1 1 to 255

 Logical Pnt
Type

TAB/N/
POP-UP

INC INC, ASP, or ADP

 1 LON Hardware type not definable from GPL. See Example section for details.
 Continued on next page . . .

Object Blocks—AOS 47

 Category (Cont.) Field Name Type Default Range/Choices
 Point Address

 (For AHU and
AO)

INT/N/
POP-UP

1 1 to 8

 (For AHU and
ADF, ADI)

INT/N/
POP-UP

129 129 to 256

 (For VAV, UNT
and AO)

INT/N/
POP-UP

1 1 to 8

 (For VAV, UNT
and ADF, ADI)

INT/N/
POP-UP

65 65 to 256

 (For OTHER) INT/N/
POP-UP

1 1 to 256

 (For VMA and
AO)

INT/N/
POP-UP

1 1 to 2

 (For VMA, VAV,
UNT and ADF,
ADI)

INT/N/
POP-UP

65 65 to 256

 Step Ratio ANA/
POP-UP

0.900000 Real

 Saturation Size INT/
POP-UP

90 0 to 255 seconds

 Local Control2 BIN/N/
POP-UP

N Y (Yes) or N (No)

 Hardware
Reference

 (For DC9100) TAB/N OUT1 OUT1-8, ACO1-4

 (For LCP) TAB/N OUT1 OUT1-8, ACO1-4

 (For DX9100) TAB/N OUT1 OUT1-14, ACO1-8, XT1-8AO1-
8

 (For
 DX91ECH)

TAB/N OUT1 OUT1-14, ACO1-8
XT1-8AO1-8

 (For XT9100,
 XTM)

TAB/N AO8 AO1-8

 (For LON)1 TAB/N 01AO02 Definition not available

 Engineering Data Analog Units STR DEG F 6 characters

 Decimal
Position

INT 1 0 to 3

 Feedback System Name STR/N Blank 8 characters

 Object Name STR/N Blank 8 characters

 1 LON Hardware type not definable from GPL. See Example section for details.
2 Local Control is not available on XT9100 and XTM.

48 Object Blocks—AOS

Template Fields
(Second Screen)

Category Field Name Type Default Range/Choices
Flags Auto Dialout BIN N Y (Yes) or N (No)
 Enable PT

Hist.
BIN Y Y (Yes) or N (No)

 Save PT
History

BIN N Y (Yes) or N (No)

 Comm
Disabled

BIN N Y (Yes) or N (No)

 Auto Restore BIN Y Y (Yes) or N (No)
Parameters Initial Value ANA Blank Real or blank (not defined)
Report Type Override TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Graphic

Symbol No.
INT 0 0 to 32767

 Operating
Instr. No.

INT 0 0 to 32767

Object Blocks—AOS 49

Connections

Connection Name Type Label
Input (GPL) COMMAND CMD C
 DUAL CMD 2CMD 2C
 WRITE WRIT WR
Input (Commands) BEG_TOT CMD/2CMD BT
 BEG_TRND CMD/2CMD BH
 END_TOT CMD/2CMD ET
 END_TRND CMD/2CMD EH
 LOC_REP CMD/2CMD LR
 LOC_TRG CMD/2CMD LT
 RELEASE CMD R
 RELEASE3 CMD/2CMD R3
 RES_TOT CMD RT
 SET_AOS CMD SA
 UNL_REP CMD/2CMD UR
 UNL_TRG CMD/2CMD UT
Output (GPL) FEEDBACK ANA FB
 READ READ RD
Output (Attributes) HOA BIN HO
 OFFLINE BIN OL
 OVERRIDE BIN SO
 VALUE ANA V

50 Object Blocks—AOS

Reliability The AOS object is unreliable when its HOA attribute becomes
unreliable. If the AOS object goes offline, its VALUE
attribute remains reliable.

The AOS object ignores all commands that contain an
unreliable parameter. Also, if a WRIT block that is connected
to an AOS object block sends unreliable data to the object, the
WRIT block will execute, but the AOS object will ignore the
write and remain in its current state.

The AOS object block in the following example (Figure 12) is
a setpoint for a pneumatic controller (AHU1\SETPOINT).
The PIR block calculates a new setpoint for the AOS based on
outside air temperature (AHU1\OA-TEMP). The CMD block
sends the new setpoint to the AOS object.

Example

A period of 00:03:00 minutes is defined for this process,
which means the process will execute once every three
minutes.

Note: The PIR and CMD blocks, both operation blocks,
must be placed in a process.

AOSOBJXM

OV

IN V SA

CPIR
AOS

AHU1
SETPOINT

CMD
SET AOS

AI
AHU1

OA-TEMP

Figure 12: AOS Object Example

Notes: The AOS block can reference an AOS software
object mapped to a LON device. However, the AOS
software object must already be present in the
archive database. You cannot create it by setting an
AOS block in the GPL editor.

 The AOS block will not show what hardware
reference the AOS actually uses in the device. When
working with software objects on LON devices,
create your archive database with DDL first, then
design your control strategy within the GPL editor.

Object Blocks—AOS 51

52 Object Blocks—AOS

BD (Binary Data) Object

Data Category

Creates a storage location for binary data. The BD object has
no associated hardware. It can receive a command or a binary
value from a binary attribute of an associated object.

Purpose

Figure 13 shows a general model of how the BD object
operates. For more information, see the Metasys Network
Technical Manual, Software Data Sheets, Binary Data (BD)
Object Technical Bulletin.

Details

Object Blocks—BD 53

BDGNRLMD

NCM

Initial Value

Input Prioritization

Current Value

Latch Function

Change-of-State
Reporting

Control Process
Triggering

Point History

Alarm Delay

Alarm Analysis

Figure 13: BD General Model

54 Object Blocks—BD

Template Fields
(First Screen)

Category Field Name Type Default Range/Choices
Identification System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 Expanded ID STR Blank 24 characters
 NC Name READ

ONLY/N
Blank 8 characters

Engineering Data State 0 Units STR OFF 6 characters
 State 1 Units STR ON 6 characters
Associated Input System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 Attribute

Name
STR/N Blank 8 characters

 Template Fields
(Second Screen)

Category Field Name Type Default Range/Choices
Flags Auto Dialout BIN N Y (Yes) or N (No)
 Enable PT Hist. BIN N Y (Yes) or N (No)
 Save PT History BIN N Y (Yes) or N (No)
 Comm Disabled BIN N Y (Yes) or N (No)
 Latching Point BIN N Y (Yes) or N (No)
Parameters Normal State TAB NONE STATE 0, STATE 1, or NONE
 STATE 1 or NONE
 Initial Value TAB STATE 0 STATE 0 or STATE 1
 Alarm Delay INT 30 0 to 255 seconds
 Delay All Alarms BIN N Y (Yes) or N (No)
 Adjust Disabled BIN N Y (Yes) or N (No)
Report Type Normal TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Alarm TAB NONE NONE
 CRITICAL1
Continued on next page . . .

Object Blocks—BD 55

Category
(Cont.)

Field Name Type Default Range/Choices

 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Override TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
Messages Alarm No. INT 0 0 to 255
 Graphic Symbol

No.
INT 0 0 to 32767

 Operating Instr
No.

INT 0 0 to 32767

 Connections

Connections Name Type Label
Input (GPL) ASSOC IN BIN AS
 COMMAND CMD C
 DUAL CMD 2CMD 2C
 FEEDBACK BIN FB
 WRITE WRIT WR
Input (Commands) BEG_TOT CMD/2CMD BT
 BEG_TRND CMD/2CMD BH
 END_TOT CMD/2CMD ET
 END_TRND CMD/2CMD EH
 LOC_REP CMD/2CMD LR
 LOC_TRG CMD/2CMD LT
 RELEASE CMD R
 RES_TOT CMD RT
 SET_BD CMD SB
 UNL_REP CMD/2CMD UR
Continued on next page . . .

56 Object Blocks—BD

Connections (Cont.) Name Type Label
 UNL_TRG CMD/2CMD UT
 UNLATCH CMD UL
Output (GPL) READ READ RD
Output (Attributes) ALARM BIN A
 EARLY_TM TIM ES
 LATE_TM TIM LS
 LATCH BIN L
 NORMAL BIN N
 OFFLINE BIN OL
 OVERRIDE BIN SO
 VALUE BIN V

The BD object becomes unreliable if the assigned binary
attribute it is sampling for its value becomes unreliable. It also
becomes unreliable if GPL commands an unreliable value to
the object. The following BD attributes become unreliable if
the object is unreliable: ALARM, DISPLAY, NORMAL,
STATUS, and VALUE.

Reliability

The BD object ignores all commands that contain an
unreliable parameter. However, the BD object does accept a
SET_BD command whose Value parameter is unreliable. In
this case, the command forces the BD object to unreliable.

If a WRIT block that is connected to a BD object block sends
unreliable data to the object, the WRIT block will execute, but
the BD object will ignore the write and remain in its current
state.

Object Blocks—BD 57

Example In this example, (Figure 14), the Early Start attribute of a BD
object is used in a preoccupancy mode strategy. When the
process executes, the preoccupancy time in minutes
(AHU1\PREOCC-M) is read and converted to time format
(RTOT). The early start time (AHU1\OCC\EARLY_TM) is
then subtracted from the amount of preoccupancy time in time
format. If the amount of preoccupancy time is greater than or
equal to system time (SYSTEM), and the system time is less
than or equal to occupancy time, then preoccupancy mode is
enabled (PREOCCEN).

A period of 00:02:00 is defined for this process, which means
it will run once every 2 minutes.

Note: All operation blocks in this example must be placed
in a process. These include: RTOT, SUB, AND,
CNST, SVAR, TIME, and both COMP blocks.

BDOBEX

O
V COMP

T1 > = T2

SVAR
PREOCCEN

RTOT

O

T

IN
T2

T1

I1

I2 I

ES

T

T2

T1

ES T1

T2

OAND

O

O

BD
AHU1
OCC

AI
AHU1

PREOCC-M

COMP
T1 < = T2

SUB
T1 - T2

TIME
SYSTEM

Figure 14: BD Object Example

58 Object Blocks—BD

BI (Binary Input) Object

Input/Output Category

Creates a software representation of a hardware sensor that is
monitoring a two position field condition.

Purpose

Figure 15 shows a general model of how the BI object
operates. For more information, see the Metasys Network
Technical Manual, Software Data Sheets, Binary Input (BI)
Object Technical Bulletin.

Details

Object Blocks—BI 59

BIGNRLMD

NCM

Control Process
TriggeringPoint History

Debounce Filter

Hardware Interface

Alarm Analysis

Current Value

Override Com mand

XM
OR

DCM

Hardware Input

Latch Function

Alarm Delay

Change-of-State
Reporting

Figure 15: BI General Model

60 Object Blocks—BI

Template Fields
(First Screen)

 Category Field Name Type Default Range/Choices
 Identification System Name STR/N Blank 8 characters

 Object Name STR/N Blank 8 characters

 Expanded ID STR Blank 24 characters

 Hardware System Name STR/N Blank 8 characters

 Object Name STR/N Blank 8 characters

 HW Type2 TAB/N DCM DCM, DCM140, FPU, DSC8500,
XBN, XRM/XRL/2X, AHU, VAV,
VMA, UNT, OTHER, D600,
DR9100, DC9100, LCP, DX9100,
XT9100, XTM, DX91ECH,
TC9100, LON1

 Slot Number

 (For DCM and
DCM140)

INT/N/
POP-UP

1 1 to 10

 (For XBN) INT/N/
POP-UP

1 1 to 32

 (For XRM/
XRL/2X)

INT/N/
POP-UP

1 1 to 8

 (For FPU) INT/N/
POP-UP

1 1 to 16

 Point Type

 (For DCM and
DCM140)

TAB/N/
POP-UP

BI BI or MBI

 (For XBN,
XRM/XRL/2X)

TAB/N/
POP-UP

SINGLE SINGLE or FORM C

 (For AHU, VAV,
VMA, UNT,
OTHER)

READ
ONLY/N/
POP-UP

BI BI

 Debounce Filter

 (For DCM and
DCM140)

INT/
POP-UP

2 1 to 255 seconds

 (For XBN,
XRM/XRL/2X)

INT/
POP-UP

24 12 to 3060 msec
(multiples of 12 only)

 Subslot Number INT/N/
POP-UP

1 1 or 2

 LED ON when
CLO

BIN/
POP-UP

Y Y (Yes) or N (No)

 1 LON Hardware type not definable from GPL. See Example section for details.
2 To define an XRE for HW Type, select XRM/XRL/2X.

 Continued on next page . . .

Object Blocks—BI 61

 Category (Cont.) Field Name Type Default Range/Choices
 Binary Type TAB/N/

POP-UP
BIN101 BIN101, BIF101, BIS101, SST101,

or SST102
 Logical Pnt

Addr
INT/N/
POP-UP

1 1 to 255

 Logical Pnt
Type

TAB/N/
POP-UP

CON CON, MAN, BSP, or BDP

 Point Address
 (For AHU) INT/N/

POP-UP
1 1 to 8

 (For VAV, UNT) INT/N/
POP-UP

1 1 to 12

 (For OTHER) INT/N/
POP-UP

1 1 to 256

 (For VMA and
BI)

INT/N/
POP-UP

1 1 to 3

 Reader Number INT/N/
POP-UP

1 1 to 16

 BI Point
Number

INT/N/
POP-UP

1 1 to 8

 Input Type READ
ONLY/
POP-UP

2-STATE 2-STATE

 PT Enabled BIN/
POP-UP

Y Y (Yes) or N (No)

 Suppress TZ INT/
POP-UP

0 0 to 8

 Alarm if Set BIN/
POP-UP

N Y (Yes) or N (No)

 Quiet if Reset BIN/
POP-UP

N Y (Yes) or N (No)

 Hardware
Reference

 (For DR9100) TAB/N WIN WIN, OCC, AIRQ
 (For DC9100) TAB/N DI1 DI1-8, LCM1-4
 (For LCP) TAB/N DI1 DI1-8, LCM1-4
 (For DX9100) TAB/N DI1 DI1-8, XT1-8DI1-8, LRS1-32
 (For DX91ECH) TAB/N DI1 DI1-8, XT1-8DI1-8, LRS1-64
 (For XT9100,

 XTM)
TAB/N 1DI1 1DI1-8

2DI1-8
 (For TC9100) TAB/N WIN WIN, OCC, AIRQ. ALM, AFM
 (For LON)1 TAB/N 01BI07 definition not available
 Engineering Data State 0 Units STR OFF 6 characters
 State 1 Units STR ON 6 characters

 1 LON Hardware type not definable from GPL. See Example section for details.

62 Object Blocks—BI

Template Fields
(Second Screen)

Category Field Name Type Default Range/Choices
Flags Auto Dialout BIN N Y (Yes) or N (No)
 Enable PT

Hist.
BIN Y Y (Yes) or N (No)

 Save PT
History

BIN N Y (Yes) or N (No)

 Comm
Disabled

BIN N Y (Yes) or N (No)

 Latching Point BIN N Y (Yes) or N (No)
Parameters Normal State TAB NONE STATE 0, STATE 1 or NONE
 Alarm Delay INT 30 0 to 255 seconds
 Delay All

Alarms
BIN N Y (Yes) or N (No)

Report Type Normal TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Alarm TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Override TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
Messages Alarm No. INT 0 0 to 255
 Graphic

Symbol No.
INT 0 0 to 32767

 Operating
Instr No.

INT 0 0 to 32767

Object Blocks—BI 63

 Connections

Connection Name Type Label
Input (GPL) COMMAND CMD C
 DUAL CMD 2CMD 2C
 FEEDBACK BIN FB
 WRITE WRIT WR
Input (Commands) ALARMS CMD AC
 BEG_TOT CMD/2CMD BT
 BEG_TRND CMD/2CMD BH
 END_TOT CMD/2CMD ET
 END_TRND CMD/2CMD EH
 LOC_REP CMD/2CMD LR
 LOC_TRG CMD/2CMD LT
 RES_TOT CMD RT
 UNL_REP CMD/2CMD UR
 UNL_TRG CMD/2CMD UT
 UNLATCH CMD UL
Output (GPL) READ READ RD
Output (Attributes) ALARM BIN A
 LATCH BIN L
 NORMAL BIN N
 OFFLINE BIN OL
 OVERRIDE BIN SO
 VALUE BIN V

64 Object Blocks—BI

Reliability The BI object becomes unreliable when the hardware it
represents goes offline or reports an unreliable status. The
following BI attributes also become unreliable: ALARM,
DISPLAY, NORMAL, STATUS, and VALUE.

The BI object ignores all commands that contain an unreliable
parameter. Also, if a WRIT block that is connected to a BI
object block sends unreliable data to the object, the WRIT
block will execute, but the BI object will ignore the write and
remain in its current state.

The BI object block in the following example (Figure 16) is a
latching point (AHU1\SWITCH). When it latches, the
statement AHU1\SWITCH IS LATCHED is printed; when it
unlatches, the statement AHU1\SWITCH IS UNLATCHED is
printed.

Example

A period of 00:00:00 is defined for this process since it needs
to run only when triggered by the BI object.

Note: The NOT and PRNT blocks, operation blocks, must
be placed in a process.

BOBJEXPL

O

E

I

L

E
NOT

Figure 16: BI Object Example

Object Blocks—BI 65

Notes: The BI block can reference a BI software object
mapped to a LON device. However, the BI software
object must already be present in the archive
database. You cannot create it by setting a BI block
in the GPL editor.

 The BI block will not show what hardware reference
the BI actually uses in the device. When working
with software objects on LON devices, create your
archive database with DDL first, then design your
control strategy within the GPL editor.

66 Object Blocks—BI

BO (Binary Output) Object

Input/Output Category

Creates a software representation of a two position controlled
device.

Purpose

Figure 17 shows the functional flow of how the BO object
operates. For more information, see the Metasys Network
Technical Manual, Software Data Sheets, Binary Output (BO)
Technical Bulletin.

Details

Object Blocks—B0 67

Start/Stop
Constraints

Heavy Equipment
Delay

Output Relay
Orientation

Command
Execution

Initial Value

Hardware
Interface

NCM

BOFCTFLO

Change of State
Reporting

Control Process
Triggering

Point History

NCM

DCM or
XM

Hardware
Output

Software
Update

Optional Feedback
Object

Operator Command

Control Process Command

Scheduling Command

Demand Limit Command

Load Roll Command

Command
Prioritization

Figure 17: BO Functional Flow

68 Object Blocks—BO

Template Fields
(First Screen)

 Category Field Name Type Default Range/Choices
 Identification System Name STR/N Blank 8 characters

 Object Name STR/N Blank 8 characters

 Expanded ID STR Blank 24 characters

 Hardware System Name STR/N Blank 8 characters

 Object Name STR/N Blank 8 characters

 HW Type2 TAB/N DCM DCM, DCM140, FPU, DSC8500,
XRM/XRL/2X, AHU, VAV, VMA, UNT,
OTHER, DR9100, DC9100, LCP, DX9100,
XT9100, XTM, DX91ECH, TC9100, LON1

 Slot Number

 (For DCM and
DCM140)

INT/N/
POP-UP

1 1 to 10

 (For XRM/
XRL/2X)

INT/N/
POP-UP

1 1 to 8

 (For FPU) INT/N/
POP-UP

1 1 to 16

 Point Type

 (For DCM and
DCM140)

TAB/N/
POP-UP

MAINT. MAINTAINED or LATCHED

 (For AHU, VAV,
VMA, UNT,
OTHER)

TAB/N/
POP-UP

BO BO or BD

 Pulse Duration

 (For DCM and
DCM140)

INT/
POP-UP

200 20 to 5100 msec
(multiples of 20 only)

 (For
XRM/XRL/2X)*

INT/
POP-UP

252 12 to 3060 msec
(multiples of 12 only)

 LED ON when
CLO

BIN/
POP-UP

Y Y (Yes) or N (No)

 Binary Type TAB/N/
POP-UP

SST101 SST101 or SST102

 Logical Pnt
Nmbr

INT/N/
POP-UP

1 1 to 255

 Logical Pnt
Type

TAB/N/
POP-UP

MOM MOM, MAN, BOF, BSP, or BDP

 1 LON hardware type not definable from GPL. See Example section for details.
2 To define an XRE for HW Type, select XRM/XRL/2X. The Pulse Duration field automatically

pops up if the HW Type is XRM/XRL/2X. However, if you are using the XRM/XRL/2X option
to define an XRE, ignore the Pulse Duration field.

 Continued on next page . . .

Object Blocks—BO 69

 Category
(Cont.)

Field Name Type Default Range/Choices

 Point Address

 (For AHU) INT/N/
POP-UP

1 1 to 10 (for BO)
193 to 256 (for BD)

 (For VAV, UNT) INT/N/
POP-UP

1 1 to 14 (for BO)
225 to 256 (for BD)

 (For OTHER) INT/N/
POP-UP

1 1 to 256 (for BO and BD)

 (For VMA and
BO type)

INT/N/
POP-UP

1 1 to 5

 (For VMA and
BD type)

INT/N/
POP-UP

65 65 to 256

 Hardware
Reference

 (For DR9100) TAB/N DO3 DO3-7, STUP, SOFF

 (For DC9100) TAB/N DO3 DO3-8, STUP, SOFF, DCO1-4

 (For LCP) TAB/N DO3 DO3-8, STUP, SOFF, DCO1-4

 (For DX9100) TAB/N DO3 DO3-8, STUP, SOFF, DCO1-32, XT1-
8DO1-8

 (For
 DX91ECH)

TAB/N DO3 DO3-8, STUP, SOFF, DCO1-32,
XT1-8DO1-8

 (For XT9100,
 XTM)

TAB/N 1DO1 1DO1-8
2DO1-8

 (For TC9100) TAB/N DO3 DO1-7
STUP
SOFF

 (For LON)1 TAB/N 01BO13 Definition not available

 Local Control2 BIN/N/
POP-UP

N Y (Yes) or N (No)

 Engineering
Data

State 0 Units STR OFF 6 characters

 State 1 Units STR ON 6 characters

 Feedback System Name STR/N Blank 8 characters

 Object Name STR/N Blank 8 characters

 1 LON hardware type not definable from GPL. See Example section for details.
2 Local Control is not available on XT9100 and XTM.

70 Object Blocks—BO

Template Fields
(Second Screen)

Category Field Name Type Default Range/Choices
Flags Auto Dialout BIN N Y (Yes) or N (No)
 Enable PT Hist. BIN Y Y (Yes) or N (No)
 Save PT History BIN N Y (Yes) or N (No)
 Comm Disabled BIN N Y (Yes) or N (No)
 Auto Restore BIN Y Y (Yes) or N (No)
Parameters Output Relay

(CLOSED for
START)

BIN Y Y (Yes) or N (No)

 Feedback
(CLOSED for
START)

BIN Y Y (Yes) or N (No)

 Initial Value TAB NONE STATE 0, STATE 1 or NONE
 Heavy Equip

Dlay
INT 5 0 to 255 seconds

 Min ON Time INT 1 0 to 255 seconds
 Min OFF Time INT 0 0 to 255 seconds
 Max Starts/Hour INT 255 1 to 255
Report Type Normal TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Alarm TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Override TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
Continued on next page . . .

Object Blocks—BO 71

Category
(Cont.)

Field Name Type Default Range/Choices

Messages Alarm No. INT 0 0 to 255
 Graphic

Symbol No.
INT 0 0 to 32767

 Operating
Instr. No.

INT 0 0 to 32767

 Connections

Connection Name Type Label
Input (GPL) COMMAND CMD C
 DUAL CMD 2CMD 2C
 WRITE WRIT WR
Input (Commands) BEG_TOT CMD/2CMD BT
 BEG_TRND CMD/2CMD BH
 END_TOT CMD/2CMD ET
 END_TRND CMD/2CMD EH
 LOC_REP CMD/2CMD LR
 LOC_TRG CMD/2CMD LT
 REL_PRI CMD RP
 RES_TOT CMD RT
 START CMD/2CMD ST
 STOP CMD/2CMD SP
 UNL_REP CMD/2CMD UR
 UNL_TRG CMD/2CMD UT
Output (GPL) FEEDBACK BIN FB
 READ READ RD
Output (Attributes) ALARM BIN A
 EARLY_ TM TIM ES
 HOA BIN HO
 LATE_TM TIM LS
 NORMAL BIN N
 OFFLINE BIN OL
 OVERRIDE BIN SO
 VALUE BIN V

72 Object Blocks—BO

Reliability The BO object is always reliable, unless it has an associated
feedback object. If it has a feedback object assigned, the BO
object will become unreliable when the associated feedback
object becomes unreliable. The following BO attributes also
become unreliable: ALARM, DISPLAY, NORMAL, and
STATUS.

The BO object ignores all commands that contain an
unreliable parameter. Also, if a WRIT block that is connected
to a BO object block sends unreliable data to the object, the
WRIT block will execute, but the BO object will ignore the
write and remain in its current state.

In this example (Figure 18), a BO object that represents fan
start/stop (AHU1\FAN) provides feedback to the BI object
(AHU1\FAN-STAT) when it Starts or Stops.

Example

A period of 00:00:00 is defined for this process since it needs
to run only when triggered by the BO object.

BOBJEX

BO
AHU1
FAN

FB

FB

BI
AHU1

FAN-STAT

Figure 18: BO Object Example

Notes: The BO block can reference a BO software object
mapped to a LON device. However, the BO software
object must already be present in the archive
database. You cannot create it by setting a BO block
in the GPL editor.

 The BO block will not show what hardware reference
the BO actually uses in the device. When working
with software objects on LON devices, create your
archive database with DDL first, then design your
control strategy within the GPL editor.

Object Blocks—BO 73

74 Object Blocks—BO

LCG (Lighting Control
Group) Object

Controllers Category

Creates a software representation of a group of lighting
circuits that are controlled by the Intelligent Lighting
Controller (ILC).

Purpose

The purpose of an LCG is to control lights (circuits) in areas
that perform the same functions, such as an office area or a
parking lot. Up to 32 individual LCG objects can be defined
per ILC.

Details

In the LCG database template, you define the software
definition of the LCG and the ILC to which this group
belongs. The entries include selecting the Blink feature,
Cleaning Crew feature, and Relay Outputs.

Note: DDL and online generation allow definition of Event
Scheduling for the LCG object. GPL does not allow
this. If you use GPL to modify an existing LCG
object (that has events defined through DDL or
online generation), the Event Scheduling for the
modified object will remain unchanged.

For more information, see the Metasys Intelligent Lighting
Controller Technical Manual (FAN 638.5).

Object Blocks—LCG 75

Template Fields
(First Screen)

Category Field Name Type Default Range/Choices
Identification System Name STR/N Blank 8 character
 Object Name STR/N Blank 8 character
 Expanded ID STR Blank 24 character
Hardware System Name STR/N Blank 8 character
 Object Name STR/N Blank 8 character
 Group

Number
INT/N 1 1 to 32

Associated Switch Switch Input
No.

INT/N 0 0 to 32, 0=None

 Switch Type TAB/N MAINT. MAINTAINED, MOMENTARY
or DBL MOMENT

 Off Switch Inp
No.

INT/N/
POP-UP

0 0 to 32, 0=None

 Template Fields
(Second Screen)

Category Field Name Type Default Range/Choices
Flags Auto Dialout BIN N Y (Yes) or N (No)
 Comm Disabled BIN N Y (Yes) or N (No)
Override Ovrd Def Delay ANA 1.000000 0.0 to 99.9 hours
Parameters Blnk at Turn OFF BIN N Y (Yes) or N (No)
Report Type Normal TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Override TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Graphic Symbol No. INT 0 0 to 32767
 Operating Instr No. INT 0 0 to 32767

76 Object Blocks—LCG

 Template Fields
(Third Screen)

Category Field Name Type Default Range/Choices
Relay Outputs 1-40 BIN N Y (Assign relay/No blink),

N (No assignment), or
B (Assign relay/Yes blink)

Cleaning Crew
Switches

1-32 BIN N Y (Assign inputs) or N (No
assignment)

 Connections

Connection Name Type Label
Input (GPL) COMMAND CMD C
 DUAL CMD 2CMD 2C
 WRITE WRIT WR
Input (Commands) BEG_TOT CMD/2CMD BT
 BEG_TRND CMD/2CMD BH
 END_TOT CMD/2CMD ET
 END_TRND CMD/2CMD EH
 LOC_REP CMD/2CMD LR
 LOC_TRG CMD/2CMD LT
 OFF CMD/2CMD OF
 ON CMD/2CMD ON
 RELEASE CMD R
 RES_TOT CMD RT
 TIMED_ON CMD T
 UNL_REP CMD/2CMD UR
 UNL_TRG CMD/2CMD UT
Output (GPL) READ READ RD
Output (Attributes) OFFLINE BIN OL
 OVERRIDE BIN SO
 VALUE BIN V

Object Blocks—LCG 77

Reliability The LCG object becomes unreliable when it goes offline. The
following attributes also become unreliable: DISPLAY and
VALUE.

The LCG object ignores all commands that contain an
unreliable parameter. Also, if a WRIT block that is connected
to an LCG object block sends unreliable data to the object, the
WRIT block will execute, but the LCG object will ignore the
write and remain in its current state.

In the following example, (Figure 19), a lighting control group
is used in a security application. When the building security
point is breached (BLDG-1\SECURITY), a command is
issued to turn on the security lighting group
(BLDG-1\SEC-LTG) and an advisory (SEC-ADV) is printed
to notify the operator.

Example

A period of 00:00:00 is defined for this process since it needs
to run only when triggered by the BI object.

Note: The ADV and CMD blocks, both operation blocks,
must be placed in a process.

LCGOBX

V

ADV
SEC-ADV

ON

C

E

EN

V

LCG
BLDG-1

SEC-LTG

CMD
ON

BI
BLDG-1

SECURITY

Figure 19: LCG Object Example

78 Object Blocks—LCG

MSD Object

Multistate Category

Creates a storage location for multistate data. The MSD object
has no associated hardware. It can receive a command or an
analog READ value from an analog attribute of an associated
object.

Purpose

Figure 20 shows a general model of how the MSD object
operates. For more information, see the Metasys European
Technical Notes, Software Data Sheets, MSD Engineering.

Details

MSDMD

NCM

Initial Value

Input Prioritization

Current Value

Latch Function

Control Process
Triggering

Point History

Alarm Delay

Alarm Analysis

Change-of-State
Reporting

Figure 20: MSD General Model

Object Blocks—MSD 79

Template Fields
(First Screen)

Category Field Name Type Default Range/Choices
Identification System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 Expanded ID STR Blank 24 characters
 NC Name READ

ONLY/N
Blank 8 characters

Engineering Data Number of
States

INT/N 2 2 to 4

 State 0 Units STR S0 6 characters
 State 1 Units STR S1 6 characters
 State 2 Units STR S2 6 characters
 State 3 Units STR S3 6 characters
Associated Input System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 Attribute

Name
STR/N Blank 8 characters

 Template Fields
(Second Screen)

Category Field Name Type Default Range/Choices
Flags Auto Dialout BIN N Y (Yes) or N (No)
 Enable PT Hist. BIN Y Y (Yes) or N (No)
 Save PT History BIN N Y (Yes) or N (No)
 Comm Disabled BIN N Y (Yes) or N (No)
 Latching Point BIN N Y (Yes) or N (No)
Parameters Normal State TAB NONE STATE 0, STATE 1, STATE 2,

STATE 3, or NONE
 Initial Value TAB STATE 0 STATE 0, STATE 1, STATE 2,

or STATE 3
 Alarm Delay INT 30 0 to 255 seconds
 Delay All Alarms BIN N Y (Yes) or N (No)
 Adjust Disabled BIN N Y (Yes) or N (No)
Report Type Normal TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
Continued on next page . . .

80 Object Blocks—MSD

Object Blocks—MSD 81

Category
(Cont.)

Field Name Type Default Range/Choices

 CRITICAL4
 FOLLOW_UP
 STATUS
 Alarm TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Override TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
Messages Alarm No. INT 0 0 to 255
 Graphic

Symbol No.
INT 0 0 to 32767

 Operating
Instr No.

INT 0 0 to 32767

Connections

Connections Name Type Label
Input (GPL) ASSOC IN BIN AS
 COMMAND CMD C
 DUAL CMD 2CMD 2C
 FEEDBACK ANA FB
 WRITE WRIT WR
Input (Commands) BEG_TOT CMD/2CMD BT
 BEG_TRND CMD/2CMD BH
 END_TOT CMD/2CMD ET
 END_TRND CMD/2CMD EH
 LOC_REP CMD/2CMD LR
 LOC_TRG CMD/2CMD LT
 RELEASE CMD/2CMD R
 RES_TOT CMD RT
 SET_MSD CMD SM
 UNL_REP CMD/2CMD UR
 UNL_TRG CMD/2CMD UT
 UNLATCH CMD/2CMD UL
Output (GPL) READ READ RD
Output (Attributes) ALARM BIN A
 EARLY_TM TIM ES
 LATE_TM TIM LS
 LATCH BIN L
 NORMAL BIN N
 OFFLINE BIN OL
 OVERRIDE BIN SO
 STATE_0 BIN S0
 STATE_1 BIN S1
 STATE_2 *a BIN S2
 STATE_3 *a BIN S3
Note: *a Displayed only as appropriate for object’s Number of States.

82 Object Blocks—MSD

Reliability The MSD object becomes unreliable if the assigned analog
attribute it is sampling for its value becomes unreliable. It also
becomes unreliable if GPL commands an unreliable value to
the object. The following MSD attributes become unreliable if
the object is unreliable: ALARM, DISPLAY, NORMAL,
STATE_n values, and STATUS.

The MSD object ignores all commands that contain an
unreliable parameter. However, the MSD object does accept a
SET_MSD command whose Value parameter is unreliable. In
this case, the command forces the MSD object to unreliable.

If a WRIT block that is connected to an MSD object block
sends unreliable data to the object, the WRIT block will
execute, but the MSD object will ignore the write and remain
in its current state.

Object Blocks—MSD 83

Example In this example, (Figure 21), an MSD object is used to
dispatch an operator command to a group of System 91
Controllers (DR-9100). The command values (units) are
defined in the MSD object as OFF, STNDBY, and COMFRT
to correspond to the three operating modes of the DR-9100
controllers. This enables the operator to set all controllers of
the group to the desired mode with a single command.

The VALUE attribute of the MSD object is accessible through
an analog READ block (note that the VALUE attribute is not
directly accessible for GPL connections). The CMD block, in
turn, commands the MS_1 attribute of each of the CS objects,
which are each mapped to the MODC item of the
corresponding DR-9100.

No period (i.e., 00:00:00) is defined for this process, since it is
meant to trigger only when the operator issues a command.

RD

RD

O C

V

CMD
STCSMS

MS_1

READ
VALUE

MSD
SYSTEM
MS-CMD SA

REF
SYSTEM1

DR01

SA

REF
SYSTEM1

DR02

SA

REF
SYSTEM2

DR01

SA

REF
SYSTEM2

DR02

msd-exmp

Figure 21: MSD Object Example

84 Object Blocks—MSD

MSI Object

Multistate Category

Creates a software representation of a hardware sensor that is
monitoring a multi-position field condition.

Purpose

Figure 22 shows a general model of how the MSI object
operates. For more information, see the Metasys European
Technical Notes, Software Data Sheets, MSI Engineering.

Details

XM
or

 DCM

Hardware Input Hardware Interface

Debounce Filter

MSIMD

Overide Ccmmand

Current Value

Alarm Analysis

Alarm Delay

Latch Function

Change-of-State
Reporting

Control Process
Triggering

Point History

 NCM

Figure 22: MSI General Model

Object Blocks—MSI 85

Template Fields
(First Screen)

 Category Field Name Type Default Range/Choices
 Identification System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 Expanded ID STR Blank 24 characters
 Hardware System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 HW Type TAB/N DCM DCM, DCM140, XBN,

XRM/XRL/2X, DR9100,
DC9100, LCP, DX9100,
XT9100, XTM, DX91ECH,
TC9100, LON1

 Slot Number
 (For DCM and

DCM140)
INT/N/
POP-UP

1 1 to 10

 (For XBN) INT/N/
POP-UP

1 1 to 32

 (For XRM/
XRL/2X)

INT/N/
POP-UP

1 1 to 8

 Hardware
Reference

 (For DR9100) TAB/N WIN WIN, OCC, AIRQ
 (For DC9100) TAB/N DI1 DI1-8, LCM1-4
 (For LCP) TAB/N DI1 DI1-8, LCM1-4
 (For DX9100) TAB/N DI1 DI1-8, LRS1-32, XT1-8DI1-8
 (For

 DX91ECH)
TAB/N DI1 DI1-8, LRS1-64

XT1-8DI1-8
 (For XT9100

and XTM with 2
states)

TAB/N 1DI1 1DI1-8
2DI1-8

 (For XTM with
2 states and
wired 0)

TAB/N 1DI1 1DI1, 1DI3, 1DI5, 1DI7
2DI1, 2DI3, 2DI5, 2DI7

 (For XTM with
3 or 4 states
with or without
wired 0)

TAB/N 1DI1 1DI1, 1DI5
2DI1, 2DI5

 (For TC9100) TAB/N WIN WIN, OCC, AIRQ, ALM, AFM
 (For LON)1 TAB/N 01MI06 Definition not available
 1 LON hardware type not definable from GPL. See Example section for details.
 Continued on next page . . .

86 Object Blocks—MSI

Object Blocks—MSI 87

 Category
(Cont.)

Field Name Type Default Range/Choices

 Point Type
(For DCM,
DCM140)

TAB/N/
POP-UP

BI BI or MBI

 Debounce Filter
 (For DCM and

DCM140)
INT/
POP-UP

2 1 to 255 seconds

 (For XBN,
XRM/XRL/2X)

INT/
POP-UP

24 12 to 3060 msec
(multiples of 12 only)

 Subslot Number INT/N/
POP-UP

1 1 or 2

 LED ON when
CLO

BIN/
POP-UP

Y Y (Yes) or N (No)

 Wired 0 BIN/N/
POP-UP

N Y (Yes) or N (No)

 Engineering Data Number of
States

INT/N 2 2 to 4 2

 State 0 Units STR S0 6 characters
 State 1 Units STR S1 6 characters
 State 2 Units STR S2 6 characters
 State 3 Units STR S3 6 characters
 2 Number of States can be > 2 for XRM2X, XRL2X or XTM. For all other controllers, must

be 2.

Template Fields
(Second Screen)

Category Field Name Type Default Range/Choices
Flags Auto Dialout BIN N Y (Yes) or N (No)
 Enable PT

Hist.
BIN Y Y (Yes) or N (No)

 Save PT
History

BIN N Y (Yes) or N (No)

 Comm
Disabled

BIN N Y (Yes) or N (No)

 Latching Point BIN N Y (Yes) or N (No)
Parameters Normal State TAB NONE STATE 0, STATE 1, STATE 2,

STATE 3 or NONE
 Alarm Delay INT 30 0 to 255 seconds
 Delay All

Alarms
BIN N Y (Yes) or N (No)

Report Type Normal TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Alarm TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Override TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
Messages Alarm No. INT 0 0 to 255
 Graphic

Symbol No.
INT 0 0 to 32767

 Operator Instr.
No.

INT 0 0 to 32767

88 Object Blocks—MSI

Connections

Connection Name Type Label
Input (GPL) COMMAND CMD C
 DUAL CMD 2CMD 2C
 FEEDBACK ANA FB
 WRITE WRIT WR
Input (Commands) BEG_TOT CMD/2CMD BT
 BEG_TRND CMD/2CMD BH
 END_TOT CMD/2CMD ET
 END_TRND CMD/2CMD EH
 LOC_REP CMD/2CMD LR
 LOC_TRG CMD/2CMD LT
 RES_TOT CMD RT
 UNL_REP CMD/2CMD UR
 UNL_TRG CMD/2CMD UT
 UNLATCH CMD/2CMD UL
Output (GPL) READ READ RD
Output (Attributes) ALARM BIN A
 LATCH BIN L
 NORMAL BIN N
 OFFLINE BIN OL
 OVERRIDE BIN SO
 STATE_0 BIN S0
 STATE_1 BIN S1
 STATE_2 *a BIN S2
 STATE_3 *a BIN S3
Note: *a Displayed only as appropriate for object's Number of States.

The MSI object becomes unreliable when the hardware it
represents goes offline or reports an unreliable status. The
following MSI attributes also become unreliable: ALARM,
DISPLAY, NORMAL, STATE_n values, and STATUS.

Reliability

The MSI object ignores all commands that contain an
unreliable parameter. Also, if a WRIT block that is connected
to an MSI object block sends unreliable data to the object, the
WRIT block will execute, but the MSI object will ignore the
write and remain in its current state.

Object Blocks—MSI 89

Example The MSI object block in the following example (Figure 23) is
a fan with three states, where STATE_0 is off. When the fan
is switched to STATE_1, the statement AHU1\R_FAN IS IN
STATE_1 is printed; when it is switched to STATE_2, the
statement AHU1\R_FAN IS IN STATE_2 is printed.

A period of 00:00:00 is defined for this process since it needs
to run only when triggered by the MSI object.

Note: The two PRNT operation blocks in this example
must be placed in a process.

S1

E
PRNT

STATE_1
MSI

AHU1
R_FAN

PRNT
STATE_2

S2

E

msi-exmp

Figure 23: MSI Object Example

Notes: The MSI block can reference an MSI software object
mapped to a LON device. However, the MSI
software object must already be present in the
archive database. You cannot create it by setting an
MSI block in the GPL editor.

 The MSI block will not show what hardware
reference the MSI actually uses in the device. When
working with software objects on LON devices,
create your archive database with DDL first, then
design your control strategy within the GPL editor.

90 Object Blocks—MSI

MSO Object

Multistate Category

Creates a software representation of a multi-position
controlled device.

Purpose

Figure 24 shows the functional flow of how the MSO object
operates. For more information, see the Metasys European
Technical Notes, Software Data Sheets, MSO Engineering.

Details

Object Blocks—MSO 91

Start/Stop
Constraints

Heavy Equipment
Delay

Output Relay
Orientation

Command
Execution

Initial Value

Hardware
Interface

NCM

MSOFLOW

Change-of-State
Reporting

Control Process
Triggering

Point History

NCM

DCM, XM or
SYS91

Hardware
Output

Software
Update

Optional Feedback
Object

Operator Command

Control Process Command

Scheduling Command

Command
Prioritization

Figure 24: MSO Functional Flow

92 Object Blocks—MSO

 Category Field Name Type Default Range/Choices
 Identification System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 Expanded ID STR Blank 24 characters
 Hardware System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 HW Type TAB/N DCM DCM, DCM140, XRM/XRL/2X,

DR9100, DC9100, LCP,
DX9100, XT9100, XTM,
DX91ECH, TC9100, LON1

 Slot Number
 (For DCM and

DCM140)
INT/N/
POP-UP

1 1 to 10

 (For
XRM/XRL/2X)

INT/N/
POP-UP

1 1 to 8

 Hardware Reference
 (For DR9100) TAB/N DO3 DO3-7, STUP, SOFF
 (For DC9100) TAB/N DO3 DO3-8, STUP, SOFF, DCO1-4
 (For LCP) TAB/N DO3 DO3-8, STUP, SOFF, DCO1-4
 (For DX9100) TAB/N DO3 DO3-8, STUP, SOFF, DCO1-32,

XT1-8DO1-8

 (For
 DX91ECH)

TAB/N DO3 DO3-8, STUP, SOFF, DCO1-32,
XT1-8DO1-8

 (For XT9100
and XTM with
2 states)

TAB/N 1DO1 1DO1-8
2DO1-8

 (For XTM with
3 or 4 states)

TAB/N 1DO1 1DO1, 1DO5
2DO1, 2DO5

 (For TC9100) TAB/N DO3 DO1-7
STUP
SOFF

 (For LON)1 TAB/N 01MO051 Definition not available
 Point Type TAB/N/

POP-UP
MAINT. MAINTAINED or LATCHED

 1 LON hardware type not available from GPL. See Example section for details.
 Continued on next page . . .

Template Fields
(First Screen)

Object Blocks—MSO 93

94 Object Blocks—MSO

 Category (Cont.) Field Name Type Default Range/Choices
 Pulse Duration
 (For DCM and

DCM140)
INT/
POP-UP

200 20 to 5100 msec
(multiples of 20 only)

 (For
XRM/XRL/2X)

INT/
POP-UP

252 12 to 3060 msec
(multiples of 12 only)

 LED ON when
CLO

BIN/
POP-UP

Y Y (Yes) or N (No)

 Feedback System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 Engineering Data Number of States INT/N 2 2 to 4 2
 State 0 Units STR S0 6 characters
 State 1 Units STR S1 6 characters
 State 2 Units STR S2 6 characters
 State 3 Units STR S3 6 characters
 Local Contact System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 HW Type TAB/N DCM DCM, DCM140, XBN,

XRM/XRL/2X, DR9100, DC9100,
LCP, DX9100, XT9100, XTM,
DX91ECH, TC9100

 Slot Number
 (For DCM and

DCM140)
INT/N/
POP-UP

1 1 to 10

 (For XBN) INT/N/
POP-UP

1 1 to 32

 (For
XRM/XRL/2X)

INT/N/
POP-UP

1 1 to 8

 Hardware
Reference

 (For DR9100) TAB/N WIN WIN, OCC, AIRQ
 (For DC9100) TAB/N DI1 DI1-8, LCM1-4
 (For LCP) TAB/N DI1 DI1-8, LCM1-4
 (For DX9100) TAB/N DI1 DI1-8, LRS1-32
 (For

 DX91ECH)
TAB/N DI1 DI1-8, LRS1-64

XT1-8DI1-8
 (For XT9100

and XTM without
wired 0)

TAB/N 1DI1 1DI1-8
2DI1-8

 (For XTM with
wired 0)

TAB/N 1DI1 1DI1, 1DI3, 1DI5, 1DI7
2DI1, 2DI3, 2DI5, 2DI7

 2 Number of States can be > 2 for XRM2X, XRL2X, or XTM. For all other controllers, must
 be 2.

 Continued on next page . . .

 Category (Cont.) Field Name Type Default Range/Choices
 (For TC9100) TAB/N WIN WIN, OCC, AIRQ, ALM, AFM
 Local Control* BIN/POP-

UP
n Y (Yes) or N (No)

 * Local Control is not available on XT9100 and XTM.
 Point Type TAB/N/

POP-UP
BI BI or MBI

 Subslot Number INT/N/
POP-UP

1 1 or 2

 Debounce Filter
 (For DCM and

DCM140)
INT/
POP-UP

2 1 to 255 seconds

 (For XBN and
XRM/XRL/2X)

INT/
POP-UP

24 12 to 3060 msec (multiples of 12
only)

 LED ON when
CLO

BIN/
POP-UP

Y Y (Yes) or N (No)

 Wired 0 BIN/N/
POP-UP

N Y (Yes) or N (No)

 Template Fields
(Second Screen)

Category Field Name Type Default Range/Choices
Flags Auto Dialout BIN N Y (Yes) or N (No)
 Enable PT Hist. BIN Y Y (Yes) or N (No)
 Save PT

History
BIN N Y (Yes) or N (No)

 Comm
Disabled

BIN N Y (Yes) or N (No)

 Auto Restore BIN Y Y (Yes) or N (No)
Parameters Output Relay

(CLOSED for
START)

BIN Y Y (Yes) or N (No)

 Feedback
(CLOSED for
START)

BIN Y Y (Yes) or N (No)

 Initial Value TAB NONE STATE 0, STATE 1, STATE
2, STATE 3 or NONE

 Heavy Equip
Dlay

INT 5 0 to 255 seconds

 Min ON Time INT 1 0 to 255 seconds
 Min OFF Time INT 0 0 to 255 seconds
 Max

Starts/Hour
INT 255 1 to 255

Continued on next page . . .
Category
(Cont.)

Field Name Type Default Range/Choices

Object Blocks—MSO 95

96 Object Blocks—MSO

Report Type Normal TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Alarm TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Override TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
Messages Alarm No. INT 0 0 to 255
 Graphic

Symbol No.
INT 0 0 to 32767

 Operating
Instr. No.

INT 0 0 to 32767

Corrections

Connection Name Type Label
Input (GPL) COMMAND CMD C
 DUAL CMD 2CMD 2C
 WRITE WRIT WR
Input (Commands) BEG_TOT CMD/2CMD BT
 BEG_TRND CMD/2CMD BH
 END_TOT CMD/2CMD ET
 END_TRND CMD/2CMD EH
 LOC_REP CMD/2CMD LR
 LOC_TRG CMD/2CMD LT
 REL_PRI CMD/2CMD RP
 RES_TOT CMD RT
 SET_MSO CMD SM
 UNL_REP CMD/2CMD UR
 UNL_TRG CMD/2CMD UT
Output (GPL) FEEDBACK ANA FB
 READ READ RD
Output (Attributes) ALARM BIN A
 EARLY_ TM TIM ES
 HOA BIN HO
 LATE_TM TIM LS
 LC_HOA BIN LO
 NORMAL BIN N
 OFFLINE BIN OL
 OVERRIDE BIN SO
 STATE_0 BIN S0
 STATE_1 BIN S1
 STATE_2 *a BIN S2
 STATE_3 *a BIN S3
Note: *a Displayed only as appropriate for object’s Number of States.

Object Blocks—MSO 97

Reliability The MSO object is always reliable, unless it has an associated
feedback object. If it has a feedback object assigned, the MSO
object will become unreliable when the associated feedback
object becomes unreliable. The following MSO attributes also
become unreliable: ALARM, DISPLAY, NORMAL, and
STATUS.

The MSO object ignores all commands that contain an
unreliable parameter. Also, if a WRIT block that is connected
to an MSO object block sends unreliable data to the object, the
WRIT block will execute, but the MSO object will ignore the
write and remain in its current state.

In this example (Figure 25), a 4-state MSO object that
represents a multistate fan control (AHU1\S_FAN) receives
commands according to damper position. The damper value is
spanned in the SPAN block to a range, which can be
processed by the MODE input of the MSEL block. Inputs 1
through 4 of the MSEL block select appropriate states, which
are then sent as commands via the CMD block to the MSO
object (AHU1\S_FAN).

Example

A period of 00:02:00 is defined for this process, which means
that it will run once every 2 minutes.

V
IN

O

M
C

SM
O

V

CNST
STATE_0

CNST
STATE_1

CNST
STATE_2

CNST
STATE_3

I1 I2 I3 I4

AI
AHU1
DPR

SPAN

1 - 4.0

MSEL CMD

SET_MSD

MSO
AHU1
S_FAN

mso-exmp

Figure 25: MSO Object Example

98 Object Blocks—MSO

Object Blocks—MSO 99

Notes: The MSO block can reference an MSO software
object mapped to a LON device. However, the MSO
software object must already be present in the
archive database. You cannot create it by setting an
MSO block in the GPL editor.

 The MSO block will not show what hardware
reference the MSO actually uses in the device. When
working with software objects on LON devices,
create your archive database with DDL first, then
design your control strategy within the GPL editor.

100 Object Blocks—MSO

PIDL (PID Loop) Object

Controllers Category

Creates a software representation of a PID Loop running in
the DCM. Its main function is to provide a proportional plus
integral plus derivative control algorithm based on sampling a
feedback value at consistent time intervals.

Purpose

The PID algorithm incorporates the proportional, integral, and
derivative terms independently. This means that the PID Loop
can be configured as a proportional only, a proportional plus
integral, or a proportional plus integral plus derivative
controller.

Details

Figure 26 shows a general model of how the PIDL object
works. For more information, see the Metasys Network
Technical Manual, Software Data Sheets, PID Loop (PIDL)
Technical Bulletin.

Object Blocks—PIDL 101

PIDL Output1

PIDL Output8

COS Reporting

Control Process
Triggering

Hardware Interface

Input Value

Input6 Value

Selector Input

Aux Sw Input
V l

Aux. Signal
S i h

Output Filter

Selector

Reliability
S i h

Output
Distribution

PIDLFNCT

Function
Attribute

Setpoint

Offset

High Saturation Limit

Low Saturation
Li i

PID and Self-Tune

Input Conditioning

Figure 26: PIDL Functional Flow

102 Object Blocks—PIDL

Template Fields
(First Screen)

Category Field Name Type Default Range/Choices
Identification System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 Expanded ID STR Blank 24 characters
Hardware System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 PID Loop

Number
INT/N 1 DCM: 1 through 16

DCM140: 1 through 20
Engineering
Data

Analog Units STR DEG F 6 characters

 Decimal
Position

INT 1 0 to 3

Category Field Name Type Default Range/Choices
Flags Auto Dialout BIN N Y (Yes) or N (No)
 Comm

Disabled
BIN N Y (Yes) or N (No)

Initial Control
Parameters

Input Function TAB SUM SUM, MIN or MAX

 Sample
Period

INT 5 1 to 32, 767 seconds

 Proportional
Bnd

ANA 20.00000 Real

 Integral Time* ANA 60.00000 Real ≥ 0.0 seconds
 Derivative Wgt ANA 0 Real ≥ 0.0
 Deadband* ANA 1.000000 Real ≥ 0.0
 Hysteresis

Comp
ANA 0.000000 0.0 to 100.0%

 Tune Noise
Band

ANA 4.000000 Real ≥ 0.0

 Tune Chng
Factor

ANA 0.000000 Real ≥ 0.0

 Aux Switch Ena BIN N Y (Yes) or N (No)
 Filter Weight ANA 1.000000 Real ≥ 1.0
 Selector

Type=HI
BIN Y Y (Yes) or N (No)

 Select Unrl
Dflt

BIN N Y (Yes) or N (No)

Continued on next page . . .

Template Fields
(Second Screen)

Object Blocks—PIDL 103

104 Object Blocks—PIDL

Category
(Cont.)

Field Name Type Default Range/Choices

Initial Control
Parameters

Unrel Dflt
Resp

ANA 0.000000 Real

Report Type Normal TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Alarm TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Override TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
Messages Alarm No. INT 0 0 to 255
 Graphic

Symbol No.
INT 0 0 to 32767

 Operating
Instr No.

INT 0 0 to 32767

Template Fields
(Third Screen:
Port Definition)

Category Field Name Type Default Range/Choices
Setpoint Reference

Select
TAB/N NORMAL NORMAL or REFERENCE

 Value* ANA/
POP-
UP

55.00000 Real

 System Name STR/N/
POP-
UP

Blank 8 characters

 Object Name STR/N/
POP-
UP

Blank 8 characters

Offset Reference
Select

TAB/N NORMAL NORMAL or REFERENCE

 Value* ANA/
POP-
UP

0.000000 Real

 System Name STR/N/
POP-
UP

Blank 8 characters

 Object Name STR/N/
POP-
UP

Blank 8 characters

Aux Switch Input Reference
Select

TAB/N NORMAL NORMAL or REFERENCE

 Value* ANA/
POP-
UP

0.000000 Real

 System Name STR/N/
POP-
UP

Blank 8 characters

 Object Name STR/N/
POP-
UP

Blank 8 characters

High Saturation Reference
Select

TAB/N NORMAL NORMAL or REFERENCE

 Value* ANA/
POP-
UP

100.0000 Real

 System Name STR/N/
POP-
UP

Blank 8 characters

 Object Name STR/N/
POP-
UP

Blank 8 characters

Continued on next page . . .

Object Blocks—PIDL 105

106 Object Blocks—PIDL

Category
(Cont.)

Field Name Type Default Range/Choices

Low Saturation Reference
Select

TAB/N NORMAL NORMAL or REFERENCE

 Value* ANA/
POP-
UP

0.000000 Real

 System Name STR/N/
POP-
UP

Blank 8 characters

 Object Name STR/N/
POP-
UP

Blank 8 characters

Selector Input Reference
Select

TAB/N NORMAL NORMAL or REFERENCE

 Value* ANA/
POP-
UP

0.000000 Real

 System Name STR/N/
POP-
UP

Blank 8 characters

 Object Name STR/N/
POP-
UP

Blank 8 characters

 Template Fields
(Fourth Screen:
Port Definition)

Category Field Name Type Default Range/Choices
Input 1 Scalar ANA 1.000000 Real
 Reference

Select
TAB/N NORMAL NORMAL or REFERENCE

 Value* ANA/
POP-
UP

0.000000 Real

 System Name STR/N/
POP-
UP

Blank 8 characters

 Object Name STR/N/
POP-
UP

Blank 8 characters

Input 2 to Input 6 Scalar ANA 0.000000 Real
 Reference

Select
TAB/N NORMAL NORMAL or REFERENCE

 Value* ANA/
POP-
UP

0.000000 Real

 System Name STR/N/
POP-
UP

Blank 8 characters

 Object Name STR/N/
POP-
UP

Blank 8 characters

 Template Fields
(Fifth Screen:
Output
Definition)

Category Field Name Type Default Range/Choices
Output 1 to
Output 8

System Name STR/N Blank 8 characters

 Object Name STR/N Blank 8 characters
 Attribute

Name
TAB/N Blank Blank,VALUE,INP1VAL,

 INP2VAL,INP3VAL,INP4VAL,
 INP5VAL,INP6VAL,
 SETPOINT,OFFSET,
 HI_SAT_V,LO_SAT_V,
 AUX_IN,SEL_INP

Object Blocks—PIDL 107

Connections

Connection Name Type Label
Input (GPL) AUX_IN ANA AI
 COMMAND CMD C
 DUAL CMD 2CMD 2C
 HI_SAT_V ANA HS
 INPUT 1* ANA I1
 INPUT 2* ANA I2
 INPUT 3* ANA I3
 INPUT 4* ANA I4
 INPUT 5* ANA I5
 INPUT 6* ANA I6
 LO_SAT_V ANA LS
 OFFSET ANA OS
 SEL_INP ANA SL
 SETPOINT ANA SP
 WRITE WRIT WR
Input (Commands) AUX_DIS CMD/2CMD AD
 AUX_ENA CMD/2CMD AE
 BEG_TOT CMD/2CMD BT
 BEG_TRND CMD/2CMD BH
 END_TOT CMD/2CMD ET
 END_TRND CMD/2CMD EH
 LOC_REP CMD/2CMD LR
 LOC_TRG CMD/2CMD LT
 REL_PIDL CMD RP
 RES_TOT CMD RT
 SET_PIDL CMD SP
 STARTUP CMD SU
 UNL_REP CMD/2CMD UR
 UNL_TRG CMD/2CMD UT
Output (GPL) FEEDBACK ANA FB
 READ READ RD
Continued on next page . . .

108 Object Blocks—PIDL

Object Blocks—PIDL 109

Connection (Cont.) Name Type Label
Output (Attributes) AUX_IN* ANA AI
 DEADBAND* ANA DB
 HI_SAT_V* ANA HS
 HI_SAT_F BIN HF
 INT_TIME* ANA IT
 LO_SAT_V* ANA LS
 LO_SAT_F BIN LF
 OFFLINE BIN OL
 OFFSET* ANA OS
 OVERRIDE BIN SO
 PIDA_REL BIN PR
 PIDL_OUT ANA PO
 PROPBAND ANA PB
 RELIABLE BIN R
 SEL_FLAG BIN SF
 SETPOINT* ANA SP
 SEL_INP* ANA SL
 VALUE ANA V
Note: To send the result of the PID Loop calculation to an AOD or another PIDL block, use the

PIDL OUT output connection, not VALUE.

Reliability The PIDL object becomes unreliable if it goes offline. The
following attributes also become unreliable if the PIDL object
goes offline or if an internal PIDL attribute becomes
unreliable:

AUX_IN, DISPLAY, FEEDBACK, FLTR_VAL,
HI_SAT_V, INP1VAL, INP2VAL, INP3VAL,
INP4VAL, INP5VAL, INP6VAL, LO_SAT_V,
OFFSET, PID_CALC, SEL_INP, SEL_OUT,
SETPOINT, SWCH_OUT, and VALUE.

In addition, these attributes become unreliable if just the PIDL
object goes offline:

HI_SAT_F, INT_TIME, LO_SAT_F, PIDA_REL,
PROPBAND, and SEL_FLAG, and UNREL.

The PIDL object ignores all commands that contain an
unreliable parameter. However, the PIDL object accepts a
SET_PIDL command whose value parameter is unreliable. In
this case, the command may cause the PIDL object to be
unreliable.

If a WRIT block that is connected to a PIDL object block
sends unreliable data to the object, the WRIT block will
execute, but the PIDL object will ignore the write and remain
in its current state.

110 Object Blocks—PIDL

REF (Generic Object
Reference) Block

Input/Output Category

Allows GPL processes to reference a software object/model or
hardware object that exists in the archive database, but is of a
type not supported by a dedicated GPL block. An example is a
Control System (CS) object.

Purpose

The Generic Object Reference (REF) block provides a GPL
reference to an object that exists in the NCM archive database.
By this reference, you may issue commands to the object from
a process or read attributes of the object for use in a process.
The REF block is generic in that it can reference a multitude
of object types, including those listed in the following table.
Use the Ref Object Type field in the template to select the
type of object.

Details

Note: The REF block allows you to read OFFLINE
attributes, but it does not trigger the process.

Object Blocks—REF 113

Object (Ref. Object Type) Type of Object
CS (Control System) Software Model
C260X Software
C500X Software
DSC-1000 Hardware
XM (Includes XBN, XRL, XRE, XRM) Hardware
DCM Hardware
LCD Hardware
AHU Hardware
VAV Hardware
UNT Hardware
LCP Hardware
DC9100 Hardware
DR9100 Hardware
FIRE Hardware
FPU Hardware
DSC8500 Hardware
D600 Hardware
READER Software
MIG Hardware
DX9100 Hardware
XT9100 Hardware
DCM140 Hardware
XTM Hardware
VND Hardware
PHX Hardware
DX91ECH Hardware
TC9100 Hardware
MC Software
NDM Hardware
VMA Hardware
LONTCU, LONTCUA Hardware
LONVMA, LONVMAA
Other (Includes any object not
covered by given categories.)

Software or Hardware

114 Object Blocks—REF

The REF block has the following characteristics:

• The object that the REF block references must already
exist in the archive database. Define the object in the
DDL file or define it online with the Operator
Workstation and upload the file. Unlike other dedicated
object block types (e.g., AI), the object that the REF
block references is not added to, modified, or deleted
from the archive database when updated with the Editor.

• The Type Name field in the template labels the REF
block. This name will appear on the outside of the block.
You may use the default name, REF, or any eight
character maximum name. We recommend that you
match this name with the entry in the Ref Object Type
field. However, if the type is CS, match the Type Name
with the model name; for example, AHU12.

• The second page of the REF block template lists the
attributes that will be direct output connections. You do
not need to specify any output connections in the template
if you intend to draw only input connections to the REF
block (e.g., a CMD block into a REF block). Also, when
commanding an attribute of a REF object, do not enter the
attribute name in the REF block template, just enter it in
the CMD or 2CMD block template. The REF template
shows eight binary, eight analog, and two time output
connections. Each connection has two fields: Attribute
and Description.

Attribute: Enter the exact name of the attribute for the
software object/model or hardware object (e.g., AI_2).
This name must match the corresponding attribute as
defined in the DDL file or at the Operator Workstation.
The attribute name becomes a connection name on the
output connection menu. Enter each attribute name
carefully; they are not verified until the process is
compiled. Appendix G: Attributes lists the attributes
available for each object type.

 Note: To determine which attribute name corresponds
to which symbol name, refer to the symbol table
from HVAC PRO or the CS Model summary at
the Operator Workstation.

Object Blocks—REF 115

Description: Enter a description of the attribute
(e.g., Dis_Temp). If the attribute is configured in a
software object/model or hardware object, we recommend
that you match the attribute’s description in the REF
block with its description in the model. In that way, you
will be able to easily identify the attribute in GPL and at
the Operator Workstation. The Editor does not check for
matching attribute descriptions.

• The REF object can access all the readable attributes of a
referenced object/model. Use direct connections to access
those attributes that are configured in the template. Use
the READ block to access integer attributes.

• You can use the WRIT block to change the value of an
attribute configured in the REF block. Refer to the WRIT
block for details.

• If more direct connections are needed in the process than
are supplied from one REF block, you can access the
other attributes by connecting a READ block to the REF
block. Or, you may define multiple REF blocks that
reference the same system\object in the same strategy file.
In this case, the file would have two or more REF blocks
with identical system\object names. To differentiate
between the blocks, use a block label. The Block Label is
a one character identifier that is part of the block name.
The label can be any valid alphanumeric character or
symbol. It is always in the upper right corner of the block,
colored blue. If it is blank, no label will appear on the
outside of the block.

• An attribute of the REF block may be used as an
associated input to an AD or BD object. If you use this
application, make sure the attribute name you enter in the
REF block template matches exactly the attribute name in
the AD or BD template (Associated Input column). The
Expert Checker verifies valid attribute connections
between REF and AD/BD blocks.

• The REF block does not allow direct connections for
multistate integer attributes of objects. To read a
multistate integer attribute, connect the REF block to a
READ block, and enter the multistate attribute name in
the READ block template. The READ block will convert
the integer to analog.

116 Object Blocks—REF

IMPORTANT: The GPL Editor does not check the use
of multistate attributes. Therefore, if
you read a multistate attribute without
going through a READ block,
calculations may provide unexpected
results, especially in the case of
division.

• If you specify Other in the Ref Object Type field, no type
check is made. The Editor assumes you have defined
everything properly in DDL and at the OWS.

• If you exempt a binary attribute connection, the Editor
and Expert Checker assume it is a triggerable attribute.
The Compiler will detect incorrect exemptions.

Object Blocks—REF 117

 Template Fields
(First Screen)

Category Field Name Type Default Range/Choices
Identification System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 Description STR Blank 24 characters
 Block Label STR/N Blank 1 character
 Type Name STR REF 8 characters
 Ref. Object Type TAB/N CS CS
 C260X
 C500X
 DSC-1000
 XM
 DCM
 LCD
 AHU
 VAV
 UNT
 LCP
 DC9100
 DR9100
 FIRE
 FPU
 DSC8500
 D600
 READER
 MIG
 DX9100
 XT9100
 DCM140
 XTM
 VND
 PHX
Continued on next page . . .

118 Object Blocks—REF

Category (Cont.) Field Name Type Default Range/Choices
 DX91ECH
 TC9100
 MC
 NDM
 VMA
 LONTCU, LONTCUA
 LONVMA, LONVMAA
 OTHER

 Template Fields
(Second Screen)

Category Field Name Type Default Range/Choices
Binary
Connections

Attribute (B1-B8) STR Blank 8 characters

 Description
(B1-B8)

STR Blank 8 characters

Analog
Connections

Attribute (A1-A8) STR Blank 8 characters

 Description
(A1-A8)

STR Blank 8 characters

Time
Connections

Attribute (T1-T2) STR Blank 8 characters

 Description
(T1-T2)

STR Blank 8 characters

Object Blocks—REF 119

Connections

Connection Name Type Label
Input (GPL) COMMAND CMD C
 DUAL CMD 2CMD 2C
 WRITE WRIT WR
Input (Commands) BEG_TOT CMD/2CMD BT
 BEG_TRND CMD/2CMD BH
 END_TOT CMD/2CMD ET
 END_TRND CMD/2CMD EH
 LOC_REP CMD/2CMD LR
 LOC_TRG CMD/2CMD LT
 REL_260X CMD RL
 REL_500X CMD RL
 REL_CS CMD RL
 RES_TOT CMD RT
 SET_MC CMD SM
 ST260XAN CMD SA
 ST260XBN CMD SB
 ST260XSP CMD SA
 ST500XAN CMD SA
 ST500XBN CMD SB
 ST500XSP CMD SA
 STCSAN CMD SA
 STCSBN CMD SB
 STCSMS CMD SA
 UNL_REP CMD/2CMD UR
 UNL_TRG CMD/2CMD UT
Output (GPL) READ READ RD
Output (Attributes) {A1 to A8 attribute} ANA A1 to A8
 {B1 to B8 attribute} BIN B1 to B8
 {T1 or T2 attribute} TIM T1 or T2

120 Object Blocks—REF

Reliability The REF block, since it is a reference to an object, matches
the reliability of the object. Specifically, the particular output
connection of the REF block is unreliable if the attribute
referenced is unreliable.

In the example shown in Figure 28, a REF block is used to
reference a VAV100 Controller. The occupied mode
(AHU1\VAV1\OCCUPIED) and temporary occupancy mode
(AHU1\VAV1\TEMP_OCC) attributes from the controller are
read. When the controller is in the occupied mode, but not in
the temporary occupancy mode, the CMD block sends a
STCSBN command to the controller to turn on the toilet
exhaust fans. When the controller is in the unoccupied mode
or the temporary occupancy mode, the fans are turned off.

Example

A period of 00:02:00 is defined for this process, which means
it will run once every two minutes.

Note: All operation blocks in this example must be placed
in a process. These include: AND, NOT, and CMD.

REFBLOK

O

I1

CONN
TEMP OCC

CONN
OCCUPIED

I2

VAV100
AHU1
VAV1

CMD
STCSBN

BO_1

B1

B2 O O

O

O
SB

I

AND

I

I

V
NOT

Figure 28: REF Block Example

Object Blocks—REF 121

122 Object Blocks—REF

210A (C210A) Block

Controllers Category

Creates a software representation for a C210A Application
Specific Controller.

Purpose

You must define one 210A object block for each C210A
controller that you wish to connect to the Metasys Network.
Within the database template, you define the specific
applications of the controller. The application selections you
make must match the field configuration exactly (i.e., how the
C210A is configured with the Y199 Service Module). The
template does not configure the controller, it merely matches
the field configuration.

Details

For more information on configuring the C210A, see the
Metasys Application Specific Controllers Technical Manual,
C210A/C260A Controllers, C210A Controller Technical
Bulletin.

Object Blocks—210A 123

Template Fields
(First Screen)

Category Field Name Type Default Range/Choices
Identification System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 Expanded ID STR Blank 24 characters
Hardware System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
Application Damper TAB NO

DAMPER
NO DAMPER, PRESSURE
DEP, or PRESSURE INP

 Heat TAB NO HEAT NO HEAT or HEAT
 Fan TAB NONE NONE, SERIES, or

PARALLEL
 Setpoint TAB LOCAL LOCAL or REMOTE
 Occupied/Unocc TAB NONE NONE, LOCAL CONTACT,

L2 COMMAND, or BOTH
 Warmup TAB NONE NONE, L2 COMMAND, or

SARE AND L2 COMMAND
 Shutdown TAB NONE NONE, L2 COMMAND OPEN,

LOCAL, or L2 CMD CLOSE
and LOCAL

 Auxiliary
Binary

BIN N Y (Yes) or N (No)

 Aux. Temp BIN N Y (Yes) or N (No)
 Aux. Delta P BIN N Y (Yes) or N (No)
 Aux. Humid BIN N Y (Yes) or N (No)
 Aux. Sensor BIN N Y (Yes) or N (No)

124 Object Blocks—210A

Template Fields
(Second Screen)

Category Field Name Type Default Range/Choices
Flags Auto Dialout BIN N Y (Yes) or N (No)
 Comm

Disabled
BIN N Y (Yes) or N (No)

Parameters Display Value
AI

ANA 1 1 to 6

 Display Units STR DEG F 6 characters
 Setpt for NT SP ANA 7 1 to 12
Report Type Override TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Graphic

Symbol No.
ANA 0 0 to 32767

 Operating
Instr No.

ANA 0 0 to 32767

 Connections

Connection Name Type Label
Input (GPL) COMMAND CMD C
 DUAL CMD 2CMD 2C
 WRITE WRIT WR
Input (Commands) BEG_TOT CMD/2CMD BT
 END_TOT CMD/2CMD ET
 LOC_REP CMD/2CMD LR
 LOC_TRG CMD/2CMD LT
 REL_210A CMD RL
 RES_TOT CMD RT
 ST210AAN CMD AN
 ST210ABN CMD BN
 ST210ASP CMD SP
 UNL_REP CMD/2CMD UR
 UNL_TRG CMD/2CMD UT
Output (GPL) READ READ RD
Continued on next page . . .

Object Blocks—210A 125

Connection
(Cont.)

Name Description Type Label

Output
(Attributes)

AXBI Auxiliary Binary Input BIN AX

 CNWU Central System Warmup BIN CW
 DFPR Differential Press-Control ANA DR
 DPSP Calculated DP Setpoint ANA DP
 HCPB Htg/Clg Proportional Band ANA HB
 HLTC Hardware Latch Point BIN HC
 HWSD Hardware Shutdown BIN HD
 HWUO Hardware Unoccupied BIN HO
 LTCH Latched Internal Point BIN LT
 MNDP Minimum DP Setpoint ANA MD
 MXDP Maximum DP Setpoint ANA MP
 OFFLINE Object Offline Flag BIN OL
 OVERRIDE Software Override Flag BIN SO
 PRCL Prop Cooling and Press DP Act ANA PL
 RZSP Remote Zone Setpoint ANA RZ
 SARE Supply Air Reheat Enable BIN SR
 SDBC Shutdown w/Box Closed BIN SC
 SDBO Shutdown w/Box Open BIN OS
 UNOC Downloaded Unoccupied BIN UO
 WMUP Warmup Enabled BIN WP
 ZNSP Zone Setpoint ANA ZS
 ZNT Zone Temperature ANA ZT

126 Object Blocks—210A

Reliability The 210A object becomes unreliable when the C210A
controller reports an unreliable status, or a device connected to
the C210A goes offline. The following is a list of attributes
that also become unreliable:

Name Description Name Description
ACTC Actuator Timing

Constant
OFRH On-Off Reheat

AUXI Auxiliary 0-5 VDC
Input

PFOF Parallel Fan
On/Off

AUXP Auxiliary Diff
Pressure

PFSS Parallel Fan
Start/Stop

AUXR Auxiliary Relative
Humidity

PMAX Actual DP at
Maximum

AUXT Auxiliary Temp
Sensor

PRCL Prop Cooling and
Press DP Act

AXBI Auxiliary Binary Input PRRH Proportional
Reheat

AXDP Auxiliary DP Setpoint REHT Electric Reheat
CNWU Central System

Warmup
RZSP Remote Zone

Setpoint
DFPR Delta Pressure-

Control
SARE Supply Air Reheat

Enable
DISPLAY ASCII Value SDBC Shutdown w/Box

Closed
DMPP Damper Position SDBO Shutdown w/Box

Open
DPSP Calculated DP

Setpoint
SETPOINT NT-chosen

Setpoint
HCPB Htg/Clg

Proportional Band
SFOF Series Fan On/Off

HLTC Hardware Latch
Point

SFSU Series Fan Startup

HRTZ 50 Hz/60 Hz SUSB Setup/Setback
HWSD Hardware

Shutdown
TCMD Temp Control

Mode
HWUO Hardware

Unoccupied
TCMD
ASCI

Temp Control
Mode ASCII

HTDB Heating Deadband UNOC Downloaded
Unoccupied

INTE Integer Error VALUE Value
INTG Integral Gain WMUP Warmup Enabled
LTCH Latched Internal

Point
WTMP Warmup Temp

Diff
LV12 L2 Bus Only Switch ZNSP Zone Setpoint
MNDP Minimum DP

Setpoint
ZNT Zone Temperature

MXDP Maximum DP
Setpoint

Object Blocks—210A 127

The 210A object ignores all commands that contain an
unreliable parameter. Also, if a WRIT block that is connected
to a 210A object block sends unreliable data to the object, the
WRIT block will execute, but the 210A object will ignore the
write and remain in its current state.

In the example shown in Figure 29, the 210A block represents
a VAV controller on the third floor (VAV1\3RDFLR), which
in this process is used for temporary occupancy control.
The controller monitors the state of a binary push button,
which is located on a thermostat. An attribute called Latch
(LT connection) represents the pushbutton. When the
pushbutton is pressed, and the controller is in unoccupied
mode (UO connection), two things happen: (1) the CMD
block sends a command to set the C210A controller in the
occupied mode, and (2) the DLAY block sets a delay time of
two hours (02:00:00). The timer sets temporary occupancy
control for two hours. After two hours, a command is sent to
reset the C210A to unoccupied mode, and reset the Latch
attribute to False. The latter action allows an occupant to press
the pushbutton again.

Example

A period of 00:10:00 is defined for this process, which means
it will run once every 10 minutes.

Note: All operation blocks in this example must be placed
in a process. They include: AND, both CMD blocks,
and DLAY.

128 Object Blocks—210A

210AOE

O

I1

I2

I

O

O

O

I

I

I

AND

CNST
OCCUPIED

CNST
False

DLAY
02:00:00

210A
VAV1

3rd FLR

UO

LT

E

E
E

E
CF

CF

O

BN BN

BN

C

CMD
ST210ABN

UNOC

CMD
ST210ABN

LTCH

CMD
ST210ABN

UNOCC

C

CNST
UNOCC

Figure 29: 210A Object Example

Object Blocks—210A 129

130 Object Blocks—210A

260A (C260A) Block

Controllers Category

Creates a software representation for a C260A Heat Pump
controller.

Purpose

You must define one 260A object block for each C260A
controller that you wish to connect to the Metasys Network.
Within the database template, you define the specific
applications of the controller. The application selections you
make must match the field configuration exactly (i.e., how the
C260A is configured with the Y199 Service Module). The
template does not configure the controller, it merely matches
the field configuration.

Details

For more information on configuring the C260A, see the
Metasys Application Specific Controllers Technical Manual,
C210A/C260A Controllers, C260A Controller Technical
Bulletin.

Object Blocks—260A 131

Template Fields
(First Screen)

Category Field Name Type Default Range/Choices
Identification System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 Expanded ID STR Blank 24 characters
Hardware System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
Application Fan On/Comp

Off
TAB NONE NONE, LOCAL CONTACT,

L2 COMMAND, or BOTH
 Setpoint TAB LOCAL LOCAL or REMOTE
 Occupied/Unocc TAB NONE NONE, LOCAL CONTACT,

L2 COMMAND, or BOTH
 Shutdown TAB NONE NONE or L2 COMMAND
 Auxiliary

Binary
BIN N Y (Yes) or N (No)

 Aux. Temp 1 BIN N Y (Yes) or N (No)
 Aux. Temp 2 BIN N Y (Yes) or N (No)
 Aux. Humid 1 BIN N Y (Yes) or N (No)
 Aux. Humid 2 BIN N Y (Yes) or N (No)
 Aux. Sensor BIN N Y (Yes) or N (No)

132 Object Blocks—260A

Template Fields
(Second Screen)

Category Field Name Type Default Range/Choices
Flags Auto Dialout BIN N Y (Yes) or N (No)
 Comm

Disabled
BIN N Y (Yes) or N (No)

Parameters Display Value
AI

ANA 1 1 to 6

 Display Units STR DEG F 6 characters
 Setpt for NT

SP
ANA 6 1 to 8

Report Type Override TAB NONE NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Graphic

Symbol No.
ANA 0 0 to 32767

 Operating
Instr No.

ANA 0 0 to 32767

Object Blocks—260A 133

Connections

Connection Name Type Label
Input (GPL) COMMAND CMD C
 DUAL CMD 2CMD 2C
 WRITE WRIT WR
Input (Commands) BEG_TOT CMD/2CMD BT
 END_TOT CMD/2CMD ET
 LOC_REP CMD/2CMD LR
 LOC_TRG CMD/2CMD LT
 REL_260A CMD RL
 RES_TOT CMD RT
 ST260AAN CMD AN
 ST260ABN CMD BN
 ST260ASP CMD SP
 UNL_REP CMD/2CMD UR
 UNL_TRG CMD/2CMD UT
Output (GPL) READ READ RD

Connection Name Description Type Label
Output (Attributes) FLOW Flow BIN FL
 HWUO Hardware Unoccupied BIN HO
 OFFLINE Object Offline Flag BIN OL
 OVERRIDE Software Override Flag BIN SO
 RZSP Remote Zone Setpoint ANA RZ
 SDWN Shutdown BIN SN
 UNOC Downloaded Unoccupied BIN UC
 ZNSP Zone Setpoint ANA ZS
 ZNT Zone Temperature ANA ZT

134 Object Blocks—260A

Reliability The 260A object becomes unreliable when the C260A
controller reports an unreliable status, or a device connected to
the C260A goes offline. The following is a list of attributes
that also become unreliable:

Name Description Name Description
AUXT Auxiliary

Temperature 1
LTCH Latched Internal

Point
AUXR Auxiliary

Humidity 1
LV12 L2 Bus Only

AUXI Auxiliary 0-5 VDC PE Proportional
Error

AURH Auxiliary
Humidity 2

PRCL Proportional
Cooling

ATMP Auxiliary Temp 2 PRRH Proportional
Reheat

CLPB Cooling Prop Band RVAL Reverse Valve
Configuration

CPCM Compressor
Cooling Cmd

RZSP Remote Setpoint

DISPLAY ASCII Value SETPOINT NT-chosen
Setpoint

FLOW Flow SDWN Downloaded
Shutdown

FNON Hardware Fan
On/Comp Off

STBK Setback

FOCO Downloaded Fan
On/Comp Off

STUP Setup

HLTC Hardware Latch
Point

TCMD Temp Control
Mode

HRTZ 50 or 60 Hertz TCMD ASCI Temp Control
Mode ASCII

HTCM Heating Command UNOC Downloaded
Occ/Unocc

HTDB Heating Deadband VALUE Value
HTPB Heating

Proportional Band
ZNSP Zone Setpoint

HWUO Hardware
Occupied/
Unoccupied

ZNT Zone
Temperature

INTG Integration

The 260A object ignores all commands that contain an
unreliable parameter. Also, if a WRIT block that is connected
to a 260A object block sends unreliable data to the object, the
WRIT block will execute, but the 260A object will ignore the
write and remain in its current state.

Object Blocks—260A 135

In the example shown in Figure 30, the 260A block represents
a heat pump controller that controls a fan and compressor that
serves a conference room (AHU1\CONF. RM). In this
process, the C260A is used for floating temperature control
based on zone temperature. When occupancy mode is set
(i.e., unoccupied mode attribute is not set), the zone
temperature is examined. If zone temperature is less than
72.0°F, or greater than or equal to 75.0°F (with an applied
deadband of 3.0°F) the CMD block commands the attribute
Fan On/Compressor Off to Off, which allows for fan and
compressor operation. If zone temperature is less than 72.0°F
or greater than 75.0°F, the CMD block commands the
Fan On/Compressor Off attribute to On, which allows for
fan only operation.

Example

A period of 00:10:00 is defined for this process, which means
it will run once every ten minutes.

Note: All operation blocks in this example must be placed
in a process. They include: AND, NOT, both CMD
blocks, and DBCM.

136 Object Blocks—260A

260AOB

260A
AHU1

CONF. RM

CMD
ST260ABN

FOCO

NOT

AND CMD
ST260ABN

FOCO

CNST
True

CNST
False

CNST
73.5

CNST
3.0

BN UO

ZT

I1

I

O

I1

I2
E

I

DB

O

BN

I2 I

O

O

O

O

O

O

O O

I

E

O
NOT

DBCM
=

Figure 30: 260A Object Example

Object Blocks—260A 137

138 Object Blocks—260A

Zone (Fire Zone) Block

Controllers Category

Creates a software object representation of a single fire zone
that is programmed into the IFC-2020 Fire Controller. For
details, refer to the Fire System Objects Technical Bulletin in
the Metasys Network Technical Manual under the Objects tab.

Purpose

Once defined and downloaded, the ZONE object block
represents a ZONE object that resides in the NCM. The
ZONE object tracks the status of the corresponding fire zone
programmed into the IFC-2020, and reports that status as
required throughout the Metasys Network. You can define up
to 240 ZONE blocks per IFC-2020.

Details

Note: When the ZONE object is downloaded to the NCM
with the Operator Workstation, the data does not also
download to the IFC-2020. To work around this
situation, program the IFC-2020 manually or
program the IFC-2020 online from the workstation.

The Fire Zone No. parameter assigns this block to a unique
zone. The zone maps to a specific slot on the fire controller.
Each zone must have a unique fire zone number.

The Panel No. and Point No. parameters both require a zero or
non-zero number. An interfield error message displays if one
is zero and the other is not.

As part of configuring the ZONE block, you may need to
write an interlock statement in the block’s template. This is a
control-by-event interlock statement that tells the fire system
to take a specific action when a certain point reports an alarm.
For example, if an initiating device goes into alarm, then
horns will be sounded. An interlock statement is not required
if the ZONE object is for a forward activated zone. If the
object is for a reverse activated zone, you must enter at least a
null set, such as OR ().

Object Blocks—ZONE 139

The interlock statement determines if this is a forward or
reverse activated object. If the interlock statement is a list, a
forward activated zone will be generated. If the interlock
statement is an equation, a reverse activated zone will be
generated. If the interlock statement is defaulted, a forward
activated null set will be generated. For an explanation of
forward activated and reverse activated lists, see the
IFC-1010/2020 Technical Manual (FAN 448).

The interlock statement format almost directly follows the
IFC-2020 standalone programming format for the control-by-
event equation. All restrictions placed on the control-by-event
equations apply. In addition, follow these special Metasys
system requirements, which do not precisely match
IFC-1010/2020 restrictions:

• Interlock statement must be an ASCII string of up to
70 characters.

• Items in the statement can be separated by spaces, but
spaces are not required. (Items are defined as embedded
operators, times, dates, zones, or devices.) Spaces after a
left parenthesis or before a right parenthesis are optional.

• Statements containing a reverse activated equation must
begin with an explicit operator and end with a right
parenthesis.

• Each operator must include a left parenthesis immediately
after the operator text. No spaces or implied parentheses
are allowed. For example, using the implied parenthesis
"(" will not be accepted to mean “OR(”, as it does on the
IFC-1010/2020.

• Statements containing a forward activated list can begin
and end with parentheses, but parentheses are not
required. For example: (Z200 Z210 Z6M35). No
embedded (additional) parentheses are allowed.

• Lower case characters will be treated the same as upper
case characters.

140 Object Blocks—ZONE

 Only those operators known to the Metasys system can be
used, which are: AND(, DEL(, NOT(, OR(, TIM(, and
XZONE(.

 Time operators must have a colon between the hour,
minute, and second values (e.g., 01:17:20) instead of a
period.

When you press F10 to save the changes, the Editor checks
the template entries and syntax of the interlock statement you
entered. (However, if the Editor is in No Archive mode,
no checks are made.) A caret (^) symbol below the statement
indicates the approximate location of the error. The possible
error messages with descriptions are as follows:
Address, time, or date value is out of
range

The value of the address, time, or date parameter is not within
the valid range.

Cannot put detector on forward activated
list

A forward activated list cannot contain points that are
detectors.

Day of week prefix incorrect or repeated
in TIM function

The day-of-week abbreviation entered is incorrect or repeated
within the interlock statement. Valid abbreviations are SU,
MO, TU, WE, TR, FR, and SA for Sunday through Saturday,
respectively.

HR:MIN:SEC requires colon (:)

A colon (:) is required to separate the hour, minute, and
second values.

Invalid operand

A legal parameter such as Z1 or L2D5 was expected but not
found at the point of the error.

Object Blocks—ZONE 141

Missing operator inside DEL (Delay)
function

The Delay function requires an operator.

MM-DD-YY requires hyphen (-)

A hyphen (-) is required to separate the month, day, and year
values.

No loop devices allowed as parameters for
the XZONE function

The XZONE operator only allows zones as parameters.

NOT function operates on only one value

Only one value can be specified with the NOT function. The
value can come from a single parameter (e.g., Z5 or L1D3) or
an equation that results in a single value (e.g., (OR(Z28 Z29)
or OR(Z1 AND(Z3 Z4)). An example of an invalid function
is: NOT(Z1 Z2), which has two parameters.

Parentheses mismatch. Left and right
parentheses do not match

A required left or right parenthesis is missing.

Stop time must be greater than start time
within TIM function

The stop time must be a later time than the start time. Crossing
over midnight is not allowed.

Text found past closing parenthesis

A parameter or operator is found past the point where the
forward activated list or reverse activated equation should
end.

Too many operands or operators

The interlock statement is too large to be stored properly.

142 Object Blocks—ZONE

Type designation incorrect for module or
detector loop device

The type designation for this parameter is incorrect.
A parameter identified as a loop device must be either a
module or a detector.

Unknown operator detected in the reverse
equation

The reverse equation contains an unknown operator.

 Template Fields
(First Screen)

Category Field Name Type Default Range/Choices
Identification System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 Expanded ID STR Blank 20 characters
Hardware System Name STR/N Blank 8 characters
 Object Name STR/N Blank 8 characters
 Fire Zone No. INT/N 1 1 to 240
Fire Interlock Interlock

Statement
STR/N Blank 70 characters

Annunciator Panel No. INT/N 0 0 to 32
 Point No. INT/N 0 0 to 64

Object Blocks—ZONE 143

Template Fields
(Second Screen)

Category Field Name Type Default Range/Choices
Flags Auto Dialout BIN Y Y (Yes) or N (No)
 Comm. Disable BIN N Y (Yes) or N (No)
Report Type Normal TAB STATUS NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Alarm TAB CRITICAL1 NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Disable TAB CRITICAL2 NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
 Trouble TAB CRITICAL3 NONE
 CRITICAL1
 CRITICAL2
 CRITICAL3
 CRITICAL4
 FOLLOW_UP
 STATUS
Messages Alarm No. INT 0 0 to 255
 Normal No. INT 0 0 to 255
 Disable No. INT 0 0 to 255
 Graphic

Symbol No.
INT 0 0 to 32767

 Operating
Instr No.

INT 0 0 to 32767

144 Object Blocks—ZONE

 Connections

Connection Name Type Label
Input (GPL) COMMAND CMD C
 DUAL CMD 2CMD 2C
 WRITE WRIT WR
Input (Commands) LOC_REP CMD/2CMD LR
 LOC_TRG CMD/2CMD LT
 UNL_REP CMD/2CMD UR
 UNL_TRG CMD/2CMD UT
Output (GPL) READ READ RD
Output (Attributes) ALARM BIN A
 OFFLINE BIN OL
 TROUBLE BIN TR

The ZONE object becomes unreliable when the hardware it
represents goes offline or reports an unreliable status. The
following ZONE attributes also become unreliable: ALARM,
DISABLED LOCALLY, TROUBLE, and VALUE. In
addition, if no alarm has been recorded for this zone since the
NCM was last downloaded, the last alarm time stamp will be
unreliable.

Reliability

If a WRIT block that is connected to a ZONE object block
sends unreliable data to the object, the WRIT block will
execute, but the ZONE object will ignore the write and remain
in its current state.

Object Blocks—ZONE 145

Example In the following example (Figures 31a-31d), several ZONE
blocks provide a smoke control zone application in which
mechanical fans are used to limit the spread of harmful smoke
between floors (i.e., zones) in a building. The floor where the
fire is detected is purged while the floors above and below are
pressurized. These actions help isolate the smoke from the
other floors. For this example, refer to the following table.
The actions are performed within this example.

Zone That Detects Fire Action
1 Zone 1 is purged.

(1st Floor) Zone 2 is pressurized.
2 Zone 1 is pressurized.

(2nd Floor) Zone 2 is purged.
 Zone 3 is pressurized.

3 Zone 2 is pressurized.
(3rd Floor) Zone 3 is purged.

Figure 31a shows three group compounds. Under each is a
group compound that contains the control logic that
determines which floor to purge and which to pressurize. The
group compound for Floor 1 is shown in Figure 31b.

If a fire is detected on Floor 1 (AHU_1\FLOOR_1), the CMD
block sends a command to the BO object (AHU_1\PURGE_1)
to purge the floor (and perform any other control sequence,
such as opening dampers). Also, another command is sent to
pressurize Floor 2.

The logic for Floor 2 is shown in Figure 31c. If a fire is
detected on Floor 2 (AHU_1\FLOOR_2), the CMD block
sends a command to the BO object (AHU_1\PURGE_2) to
purge the floor. Also, two other commands are sent to
pressurize Floors 1 and 3.

Finally, the logic for Floor 3 is shown in Figure 31d. This is
almost identical to Floor 1. If a fire is detected on Floor 3
(AHU_1\FLOOR_3), the CMD block sends a command to the
BO object (AHU_1\PURGE_3) to purge the floor. Also,
another command is sent to pressurize Floor 2.

146 Object Blocks—ZONE

A period of 00:00:00 is defined for the process since it needs
to run only when the Alarm attribute of the ZONE block is
triggered, indicating a fire has been detected.

Note: All operation blocks in this example are placed in a
process. They include: all CNST, OR, NOT, AND,
and 2CMD blocks.

ALL_FLRS

FLOOR_1

ALL_FLRS

FLOOR_2

ALL_FLRS

FLOOR_3

ZONEOB

Figure 31a: ZONE Object Example

Object Blocks—ZONE 147

O

O

O 2C

STSC

I

A

I1

I2

I1

SC

2C

A

ST

Zone 1 Purge / Zone 2 Press

I2

zonob2b

ZONE
AHU_1

FLOOR_2

ZONE
AHU_1

FLOOR_1

BO
AHU_1

PURGE_1

BO
AHU_1

PRESS_1

2CMD
START
STOP

ANDOR

CNST
False

2CMD
START
STOP

NOT

Figure 31b: ZONE Object Example

ZONEOB2

O

OAND

2CMD
START
STOP

2CMD
START
STOP

OR 2C

STSC

I

I1

I2
I1

SC

2C

A

ST

Zone 1 Press / Zone 2 Purge / Zone 3 Press.

NOT

A

A

I2

ZONE
AHU_1

FLOOR_3

ZONE
AHU_1

FLOOR_2

ZONE
AHU_1

FLOOR_1

BO
AHU_1

PRESS_2

BO
AHU_1

PURGE_2

Figure 31c: ZONE Object Example

148 Object Blocks—ZONE

O

OAND

2CMD
START
STOP

2CMD
START
STOP

CNST
False

OR 2C

STSC

I

I1

I2
I1

SC

2C

A

ST

Zone 2 Press / Zone 3 Purge

NOT

ZONEOB3

I2

O

A

BO
AHU_1

PRESS_3

BO
AHU_1

PURGE_3

ZONE
AHU_1

FLOOR_3

ZONE
AHU_1

FLOOR_2

Figure 31d: ZONE Object Example

Object Blocks—ZONE 149

© June, 1996 Johnson Controls, Inc. 1
 Code No. LIT-631090

GPL Programmer’s Manual

Operation and Special Blocks

Introduction Page 3

ABRT (Abort) Block 13

ADD (Addition) Block 17

ADV Block 21

AND Block 25

AVG (Average) Block 27

BSEQ (Binary Sequencer) Block 29

CMD (Command) Block 41

CNST (Constant) Block 57

COMP (Compare) Block *59

CONN (Connection) Block 63

DBCM (Deadband Compare) Block *67

DFCM (Differential Compare) Block *71

DIV (Divide) Block 79

DLAY (Delay) Block 83

DWPT (Dew Point) Block 89

ENDP (Enthalpy Dew Point) Block 93

ENRH (Enthalpy Relative Humidity) Block 97

EQN (Equation) Block 101

FILE Block 107

FILT (Filter) Block 109

FREL (Force Reliable) Block 113

HSEL (High Select) Block 115

LSEL (Low Selector) Block 117

LTCH (Latch) Block 119

MSEL (Mode Selector) Block 123

* Indicates those sections where changes have occurred since the last
printing.

2 Operation and Special Blocks—Introduction

MUL (Multiply) Block Page 129

NOT Block 133

OR Block 135

PERD (Period) Block 137

PIR (PI Reset) Block 141

PRNT (Print) Block 147

PULS (Pulse) Block 151

RAMP Block 159

READ (Read Attribute) Block 163

RH (Relative Humidity) Block 167

RTOT (Real-to-Time) Block 171

SAMP (Sample and Hold) Block 175

SPAN Block 179

STOP Block 185

SUB (Subtraction) Block 189

SVAR (Shared Variable) Block 193

SWCH (Switch) Block 199

TIME Block 205

TOT (Totalization) Block 207

TTOR (Time-to-Real) Block 211

2CMD (Dual Command) Block 213

UNRD (Unreliable Data) Block 219

USER Block 223

VH (Value Holder) Block 233

WAIT Block 237

WBDP (Wet Bulb Dew Point) Block 241

WBRH (Wet Bulb Relative Humidity) Block 245

WRIT (Write Attribute) Block 249

XOR (Exclusive OR) Block 253

* Indicates those sections where changes have occurred since the last
printing.

Operation and Special Blocks—Introduction 3

Introduction

This section contains a detailed description of each operation
and special function block available with the Graphic
Programming Language. The blocks are organized
alphabetically.

The description of each block in this section follows a
standard format. Figure 32 shows this format.

4 Operation and Special Blocks—Introduction

��������

	
�����

������

��������	��

���

��	��	�	��

�������

���������	�
������
��	�����������

������������������������
����������

������������������������������

��������������������� ���
�

!������������ ���
��������� ��������

���	�������
������
�����������

������� ����
���������������������

�� �����
�������� ����

!��		��������������������������

������������������� �����"#$

���
�����
������

%���� ���
�	����������������&��������

� ����
����
�������

�������

Figure 32: Standard Format for Block Descriptions

Three of these headings require further explanation: category,
information table, and example.

Operation and Special Blocks—Introduction 5

All function blocks are organized in the GPL Editor by
category. The operation and special blocks are under
13 different categories: Data, Control, Calculation,
Psychometric Equation, Selector, Logic, Math, Report,
Process Control, Object Control, Time, Reliability, and
Miscellaneous.

These blocks are holders of data; data which can be used
either in the same process or other processes. The SVAR and
VH blocks are operation blocks, and the CNST and CONN
blocks are special blocks.

These blocks are used for HVAC control and comparison
applications.

These blocks perform calculations that can be used in
processes.

Category

Data Blocks

���� �� �����	 �
�� ��

Control Blocks

�� ���� �
�� ���� ����

Calculation Blocks

���� ���� ��	

6 Operation and Special Blocks—Introduction

These blocks calculate enthalpy, wet bulb temperature, dew
point, and relative humidity.

These blocks perform selection functions based on some
criteria; for example, the HSEL block provides the highest
value of two, three, or four inputs.

These blocks perform logical operations.

These blocks perform basic mathematical operations.

Psychrometric
Equation Blocks

���� ���� ���� ���� ���	 ��

Selector Blocks

���� ���� ���� ���� ����

Logic Blocks

���
� �
� �
	 �	�� ���� ����

Math Blocks

��� ��� ��� �� ��� ���

Operation and Special Blocks—Introduction 7

These blocks send reports to operator devices.

These blocks control or affect the execution of processes.

These blocks send commands to object blocks and allow an
object block’s attribute to be read or written to.

These blocks provide timing functions such as reading the
system time and converting between real and time values. All
Time blocks are operation blocks.

The UNRD block tests for unreliable data, and the FREL
block forces an output to be reliable. Both Reliability blocks
are operation blocks.

Report Blocks

���	 ���

Process Control
Blocks

���� ��	 �	
� ���	

Object Control
Blocks

��� ���� ���� ��	

Time Blocks

	�� �	
	 		
	

Reliability Blocks

���� ����

8 Operation and Special Blocks—Introduction

These blocks provide various functions such as totalizing an
object’s value in minutes (TOT) and linking the files of
multiple control strategies into one file (FILE). The TOT and
USER blocks are operation blocks. The FILE block is a
special block.

The Information Table describes details about data base
template entries and connection names.

Note: Some template entries may also be connection menu
selections. For example, the Differential parameter
of the DFCM block is in the block’s template and in
the block’s input connection menu. You may enter a
value in the template and connect the value to the
block, but the connected value will always take
precedence over the template value.

Those entries that are both in the template and in
connection menus are indicated by an “X” marked in
both the T column and the I (Input) or O (Output)
column.

The following is a sample of the table with descriptions of its
columns:

Field Name Connect Name Type Default Range RC T I O LB

The name of the attribute or parameter as it appears in the data
base template. An example is Block Name.

Note: For definitions of all attributes and parameters, refer
to the section called Template Field Descriptions.

Miscellaneous
Blocks

	
	 ���� ���

Information Table

Field Name

Operation and Special Blocks—Introduction 9

The name of the connection as it appears in the connection
menus. Two examples are the INPUT and ENA OUT
connections.

The type of data that describes the template entry or
connection. Included are:

ANA: Analog, real, or floating point fields or connections.
Examples are the Setpoint field (PIR block) and the Deadband
connection (DBCM block).

BIN: Binary (Boolean) fields or connections that take a Yes
(Y) or No (N) entry or connection. Examples are the Default
field (UNRD block) and the Input 1 connection (OR block).

CMD: Single command connections. An example is the
command connection from a CMD block.

CTL: Control flow connections. An example is the control
flow connection for a DBCM block.

2CMD: Dual command connections. An example is the
command connection from a 2CMD block.

INT: Integer fields or connections that take any integer value.
Examples are the Number of Inputs field (OR block) and the
Priority connection (CMD block).

N: Fields that cannot be modified once you have added the
block to the archive data base. Only the compound template
for a Process and Restart compound has this type of field. An
example is the Process System Name field for a process
compound.

Connect Name

Type

10 Operation and Special Blocks—Introduction

READ-ONLY: Read-only fields that cannot be edited. The
GPL Editor enters values in read-only fields. An example is
the Command field.

READ: Read attribute connections. An example is the Read
connection (READ block).

STR: Character string fields that allow any combination of
alphabetic characters (A-Z, a-z), international language
characters, numbers (0-9), and the underscore (_). An
example is the Block Name field (most blocks). Refer to
Appendix F for a list of reserved names, international
characters, and invalid symbols that cannot be used in STR
fields.

TAB: Fields that toggle between different entries. A
different entry displays each time you press the TAB key.
Once you have tabbed through all the choices, the first choice
reappears. To keep a selection, press Enter or an arrow key.
An example is the I/O Connections field for the CONN block.

TIM: Time input connections that take values from 00:00:00
to 23:59:59. An example is the Time input connection of a
SVAR block.

WRIT: Write attribute connections. Examples are the Write
input and output connections of a WRIT block.

The value that the GPL Editor automatically puts in the field.
The default value is based on common applications; therefore,
you do not have to change it in most cases.

The range of acceptable values; or, the acceptable or available
choices. The Char entry means characters. The Real and
Time entries mean any number in these ranges:

Real: 99999999 to 0.000001, 0.0, -0.00001 to -9999999.

Time: 00:00:00 to 23:59:59.

Default

Range

Operation and Special Blocks—Introduction 11

Note: The GPL Editor converts all decimal numbers into
binary format; therefore, only five of the eight
possible digits can be displayed reliably. For
example, if -49.4567 is entered, the Editor will
display -49.4566, not -49.457. This is because
rounding errors are introduced after the fifth digit.
Decimal number conversion is unpredictable after
the fifth digit.

Also, the Editor forces a fraction to have a 0 before the
decimal point. The least significant digit cannot be displayed.
For example, if you enter -.123456, the Editor displays -
0.12345 (the number 6 is dropped).

Whether the block requires this connection (“Y” means Yes
and “N” means No). Note that a required connection may
actually be conditional; for example, a time connection is not
required if an analog connection is made.

Whether this attribute or parameter is an entry on the data base
template. An “X” indicates the attribute or parameter is
definable in the template.

Whether this connection is an input. An “X” indicates an
input connection.

Whether this connection is an output. An “X” indicates an
output connection.

The one or two character abbreviation of the connection name.
This label appears at the start or end of a connection line.
Examples are I1 for Input 1 and V for Value.

RC (Required
Connection)

T (Template Entry)

I (Input Connection)

O (Output
Connection)

LB (Label)

12 Operation and Special Blocks—Introduction

Each example indicates a process period, which is how often
the process should execute. These period values are
guidelines only. The actual process periods you choose
should be based on the application and the type of controlled
mechanical equipment.

Example

Operation and Special Blocks—ABRT 13

ABRT (Abort) Block

Process Control

Ends a process abnormally, usually when some error
condition is detected via graphic logic.

This block places the process in the Error state. Once aborted,
the process is not executed on its period or when triggered.

The process can be executed again by:

• a manual command (Enable command)

• another process (Process Enable command)

• redownloading the process in the Enabled state

This block has an Enable input, which provides conditional
logic. If this optional input is connected, the block will abort
a process only when the Enable input is True and reliable. If
the Enable input is False (reliable or unreliable), or True and
unreliable, the block will not abort the process. If the Enable
input is not connected, the block will abort the process each
time it is executed.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 char X

- ENA IN BIN 0,1 N X E

- ENA OUT BIN See Note 0,1 N X E

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Note: The ENA OUT can be connected only if the ENA IN is connected. The default is 0.

Category

Purpose

Details

Information Table

14 Operation and Special Blocks—ABRT

When this block is executed and the Enable input (if
connected) is False or unreliable, the process is not aborted. If
the Enable input is not connected, no reliability check is made.

In this example (Figure 33), an ABRT block aborts the
process, based on the condition of a fan, which is represented
by a BO object (AHU1\FAN), and the status of a BI object
(AHU1\FAN-STAT). When the fan starts, the process is
triggered to execute. At this point, the output of the DLAY
block is False, so the AND block evaluates to False and the
process is not aborted.

After 10 minutes, the DLAY block timer expires, which
triggers the process to execute again. Now, the output of the
DLAY block is True. The XOR block reads the values of the
BO and BI objects. If one is True and the other False, the
XOR block will be True. Then, the AND block will be True,
and the process will abort.

A period of 00:00:00 is specified for this process, since it only
needs to run when a triggerable attribute of the BO object
changes.

Note: All operation blocks in this example must be placed
in a process. They include: ABRT, AND, DLAY,
and XOR.

Also, the connections in this example dictate the
order of execution. In some cases, you may want to
use control flow lines to guarantee that the ABRT
block executes when expected, and doesn’t end
execution before all desired blocks have executed.

Reliability

Example

Operation and Special Blocks—ABRT 15

Figure 33: ABRT Block Example

�
�

��

��

��

����

	�
���

��

����

	�

����

��������

�	
 ��� ��

�

�
��

��

�

�

� �

ABRTBLK

16 Operation and Special Blocks—ABRT

Operation and Special Blocks—ADD 17

ADD (Addition) Block

Math

Adds two inputs using the following equation:

Input 1 + Input 2 = Output

The ADD block can accept either analog or time inputs. If
you select analog in the Type field, real math is used. If you
choose time, time math is used. Time math is performed in
24-hour format, for example:

10:00:00 + 11:17:10 = 21:17:10
11:00:00 + 15:00:00 = 02:00:00

You can specify constant values for Input 1 and Input 2
instead of connecting external inputs. Define the constant
values in the data base template.

Category

Purpose

Details

18 Operation and Special Blocks—ADD

Field Name Connect Name Type Default Range RC T I O LB
Block
Name

STR Blank 8 Char X

Type TAB ANALOG ANALOG,
TIME

X

Input 1 INPUT 1 ANA 0.000000 Real N X X I1

TIME IN1 TIM 00:00:00 Time N X X T1

Input 2 INPUT 2 ANA 0.000000 Real N X X I2

TIME IN2 TIM 00:00:00 Time N X X T2

- OUTPUT ANA 0.000000 Real Y X O

TIM 00:00:00 Time Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Information Table

Operation and Special Blocks—ADD 19

The output of the ADD block is unreliable if either or both of
its inputs are unreliable.

The ADD block in this example (Figure 34) adds the values of
two flow sensors (CPLANT1\FLOW1 and
CPLANT1\FLOW2), the sum of which is assigned to an
analog SVAR block (TOT_FLOW).

A period of 00:02:00 minutes is defined for this process,
which means it will run once every two minutes.

Note: The ADD and SVAR blocks, both operation blocks,
must be placed in a process.

Figure 34: ADD Block Example

Reliability

Example

��

��
�

ADDBLX

����

	�	
������

�

� �

�����	�

��� �

��

�����	�

��� �

�
��

20 Operation and Special Blocks—ADD

Operation and Special Blocks—ADV 21

ADV Block

Report

Sends an advisory message to correct devices or files based on
the access report groups. The system name of the process that
contains the ADV block determines the access report group.
Each time this block is executed, the advisory will be sent to
the correct devices or files.

You can configure this block to accept analog, binary, or time
data. The default is analog. If you want to connect binary or
time data, you must first make that selection in the template
before making a connection.

This block has an Enable input, which provides conditional
logic. If this optional input is connected, the block will send
the message only when the Enable input is True and reliable.
If the Enable input is False (reliable or unreliable), or True
and unreliable, the block will not send the message. If the
Enable input is not connected, the block will send a message
each time it is executed.

You can append a value to the end of the message by
connecting a data line from an object block to the ADV block.
The value may be analog, binary, or time data. Here is a
message example.

CRIT 1 ADVISORY LOOP IS SATURATED. SETPOINT IS 55.0 6/26/90 16:48:14

In this example, the text entered in the template is “Loop is
saturated. Setpoint is.” The type of data selected is Analog.
The value 55.0 is 55.0°F, and comes from a duct sensor.

Category

Purpose

Details

22 Operation and Special Blocks—ADV

Field Name Connect Name Type Default Range RC T I O LB
Block
Name

STR Blank 8 Char X

Advisory
Type

TAB STATUS See
Note A

X

Text STR BLANK 50 Char X

Type TAB ANALOG ANALOG,
BINARY,
TIME

X

- INPUT BIN 0 0,1 N X I

ANA 0.000000 Real N X IN

- TIME IN TIM 00:00:00 Time N X TI

- ENA IN BIN 0,1 N X E

- ENA OUT BIN See Note
B

0,1 N X E

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Note A: The Advisory Type field can be any of the following: CRITICAL1, CRITICAL2, CRITICAL3,
CRITICAL4, FOLLOW_UP, or STATUS.

Note B: The ENA OUT can be connected only if the ENA IN is connected. The default is 0.

Note: Appendix F: Characters, Symbols, and Reserved
Words lists valid characters for use in messages.

No advisory message is sent if the Enable input is False or
unreliable. The advisory does not indicate whether the input
value is reliable.

Information Table

Reliability

Operation and Special Blocks—ADV 23

In this example (Figure 35), the ADV block reads the value of
the HI_SAT_FLAG attribute (“HF” connection) from a PIDL
object (AHU1\PID-CLG). If the flag is True and Reliable, the
ADV block sends a report to the Report Router feature in the
NCM, which, in turn, sends a message to the Operator
Workstation that the HI_SAT_FLAG is set. The message is:

THE COOLING PIDL IS HI SATURATED.

A period of 00:00:00 is defined for this process since it needs
to run only when the triggerable attribute HI_SAT_FLAG
changes.

Note: The ADV block, an operation block, must be placed
in a process.

Figure 35: ADV Block Example

Example

��

ADVBLX

�

�

��

��

�

���

�������	

����

����

��� ����

���

����
���

� �

����

��������

24 Operation and Special Blocks—ADV

Operation and Special Blocks—AND 25

AND Block

Logic

Performs a logical AND operation on two, three, or four
binary inputs.

If all binary inputs into this block are True, then the output is
True; otherwise, the output is False.

You can configure this block to have two, three, or four binary
inputs. The default is two. If you want to connect more than
two inputs, you must first specify the number of inputs in the
template before making more than two connections.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Number of
Inputs

INT 2 2,3,4 X

- INPUT 1 BIN 0,1 Y X I1

- INPUT 2 BIN 0,1 Y X I2

- INPUT 3 BIN 0,1 Y X I3

- INPUT 4 BIN 0,1 Y X I4

- OUTPUT BIN 0 0,1 Y X O

- CONTROL N X CF

- CONTROL N X CF

Category

Purpose

Details

Information Table

26 Operation and Special Blocks—AND

The output of the AND block is unreliable if any of its inputs
are unreliable.

In this example, (Figure 36), the AND block determines if an
alarm message should be sent to the printer. The AND has as
inputs a BI object block for occupied/unoccupied mode
(AHU1\OCC-UNOC) and an AI object block for discharge air
temperature (AHU1\DSCH-TMP). If the building is in
occupied mode and the discharge air temperature is in high
alarm, this message is printed:

AHU1\DSCH-TMP IS IN HIGH ALARM (OCCUPIED MODE).

A period of 00:00:00 is defined for this process since it should
only run when triggered by the VALUE attribute of the BI
object or the HI_ALARM attribute of the AI object.

Note: The AND and PRNT blocks, both operation blocks,
must be placed in a process.

Figure 36: AND Block Example

Reliability

Example

'(

���	
�

�

�

')

��

�

��

���	

�

����

!'

!*+(

��,*-./#

���
#0�.

�����

Operation and Special Blocks—AVG 27

AVG (Average) Block

Math

Averages up to four inputs using the following equation:

(Input 1 + Input 2 + Input 3 + Input 4)/n = Output

where n = number of configured inputs (n = 2, 3, or 4).

You can configure this block to have two, three, or four
inputs. The default is two. If you want to connect three or
four inputs, you must specify the number of inputs in the
template before making these connections.

Also, you can specify constant values for Input 1 and Input 2
instead of connecting external inputs. Enter the constant
values in the data base template.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Input 1 INPUT 1 ANA 0.000000 Real N X X I1

Input 2 INPUT 2 ANA 0.000000 Real N X X I2

Number of
Inputs

INT 2 2,3,4 X

- INPUT 3 ANA Real N* X I3

- INPUT 4 ANA Real N* X I4

- OUTPUT ANA 0.000000 Real Y X O

- CONTROL N X CF

- CONTROL N X CF

* Input 3 is a required connection if you enter 3 in the Number of Inputs field. Input 4 is a required
connection if you enter 4 in this field.

Category

Purpose

Details

Information Table

28 Operation and Special Blocks—AVG

The output of the AVG block is unreliable if any of its inputs
are unreliable.

The AVG block in the following example (Figure 37)
averages three zone temperatures
(AHU1\ZONE1,AHU1\ZONE-T2,AHU1\ZONE-T3). The
SVAR block reads the result.

A period of 00:03:00 is defined for this process, which means
the process will run once every three minutes.

Note: The AVG and SVAR blocks, both operation blocks,
must be placed in a process.

Figure 37: AVG Block Example

Reliability

Example

'(

������

�

')

�

'1

�

�

��

��

���	

������

� �

� � �	

� �� ���

��

���	

�����	

���
����

�������

Operation and Special Blocks—BSEQ 29

BSEQ (Binary Sequencer)
Block

Control

Controls up to eight stages of heating, direct expansion
cooling, or other similar control applications.

The function of the BSEQ block is to increment and
decrement through the configured stages. A stage is a
configured set of binary values for the outputs. The number
of binary values configured for each stage is equal to the
configured number of outputs.

The functional operation of the BSEQ block is based on the
reliability of the input, and the value and reliability of
B-Enable. Their relationship to the block’s operation is
shown in the following table:

Inputs Functional Operation
1. B-Enable is True and reliable or

unconnected.

2. Input is reliable.

BSEQ is in staging operation.

1. B-Enable is False and reliable.

2. Input is reliable.

BSEQ is always at Stage 0.

1. B-Enable is Unreliable and/or

2. Input is unreliable.

BSEQ stages to the Fail-safe Stage and
remains there as long as the unreliable
condition exists.

When the BSEQ block is in the staging operation, the input is
compared to one of the setpoints, and the block will
increment, decrement, or stay at the present stage, based on
the following comparisons:

Category

Purpose

Details

30 Operation and Special Blocks—BSEQ

FOR < OPERATOR:
INCREMENT STAGE 1. Delay On timer for next stage has

expired; and

2. Input < Make Setpoint.

DECREMENT STAGE 1. Delay Off timer for current stage has
expired; and

2. Input ≥ Break Setpoint.

NO STAGING None of the above conditions exist.

FOR > OPERATOR:
INCREMENT STAGE 1. Delay On timer for next stage has

expired; and

2. Input > Make Setpoint

DECREMENT STAGE 1. Delay Off timer for current stage has
expired; and

2. Input ≤ Break Setpoint

NO STAGING None of the above conditions exist.

Note: When the BSEQ block evaluates to No Change, the
block is evaluated again the next time the process is
triggered.

The first time the BSEQ block executes, the Delay On timer
for Stage 1 is set. Then, when a stage change occurs, the
Delay On timer of the next highest stage and the Delay Off
timer of the current stage are set. However, if the BSEQ
block is currently at the highest configured stage, only the
Delay Off timer for that stage is set. Similarly, if the BSEQ
block is at Stage 0, only the Delay On timer for Stage 1 is set.
If the stage changes and the opposite-direction timer has not
expired, that timer is canceled.

Operation and Special Blocks—BSEQ 31

You can configure the following for this block:

• Number of stages, from one to eight.

• Operation, either less than (<) or greater than (>). The
operation you choose determines how the block will
function (see tables above).

• Number of outputs, from one to eight.

• Fail-safe Stage, either Current Stage, or Stage 0 through
Stage 8.

• Make Setpoints, Break Setpoints, Delay On timers, and
Delay Off timers.

Follow the two rules below when defining the Make and
Break Setpoints. If you do not follow these rules, the BSEQ
block will not function properly.

If you select the > operator: Define the Make Setpoints
and Break Setpoints in ascending order (e.g., Make
Setpoint 1=68.0 and Make Setpoint 2=69.0).

If you select the < operator: Define the Make Setpoints
and Break Setpoints in descending order (e.g., Make
Setpoint 1=67.0 and Make Setpoint 2=65.0).

Note: The block will stage if you make all the Make
Setpoints and Break Setpoints equal.

32 Operation and Special Blocks—BSEQ

Here are some important characteristics of the BSEQ block:

• If you configure a Fail-safe Stage that is greater than the
largest configured stage, the BSEQ block will use the
largest configured stage.

• The BSEQ block increments and decrements only one
stage at a time. You cannot configure it to skip a stage.

• The BSEQ uses the Fail-safe Stage when the analog input
or the B-Enable input to the block is unreliable.

• The process in which the BSEQ is used is triggered when
a Delay On or Delay Off timer expires.

• If the B-Enable is not connected, its value is always True
and reliable.

Note: For most applications, place the BSEQ block in a
process with a non-zero period that represents the
response time required to respond to changes in the
input when both timers have expired.

Operation and Special Blocks—BSEQ 33

Note: Number of rows and columns displayed will depend
on the number of stages and the number of outputs
specified on the first page of the template.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Num. of
Stages

INT 2 1 - 8 X

Operation TAB < < or > X

Num. of
Outputs

INT 2 1 - 8 X

Fail-safe
Stage

TAB CURRENT CURRENT
0,1,...,8

X

- INPUT ANA 0.000000 Real N X IN

- B-ENABLE BIN 1 0,1 N X BE

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Field Name Connect Name Type Default Range RC T I O LB
STAGE 0
OUTPUT 1

OUTPUT 1 BIN 0 0,1 Y X O1

STAGE 0
OUTPUT 2

OUTPUT 2 BIN 0 0,1 Y X O2

STAGE 0
OUTPUT 3

OUTPUT 3 BIN 0 0,1 Y X O3

STAGE 0
OUTPUT 4

OUTPUT 4 BIN 0 0,1 Y X O4

STAGE 0
OUTPUT 5

OUTPUT 5 BIN 0 0,1 Y X O5

STAGE 0
OUTPUT 6

OUTPUT 6 BIN 0 0,1 Y X O6

STAGE 0
OUTPUT 7

OUTPUT 7 BIN 0 0,1 Y X O7

STAGE 0
OUTPUT 8

OUTPUT 8 BIN 0 0,1 Y X O8

Information Table
(First Screen)

Information Table
(Second Screen)

34 Operation and Special Blocks—BSEQ

Field Name Connect Name Type Default Range RC T I O LB
STAGE 1
MAKE
SETPOINT

ANA 68.00000 Real X

STAGE 2
MAKE
SETPOINT

ANA 66.50000 Real X

STAGE 3
MAKE
SETPOINT

ANA 0.000000 Real X

STAGE 4
MAKE
SETPOINT

ANA 0.000000 Real X

STAGE 5
MAKE
SETPOINT

ANA 0.000000 Real X

STAGE 6
MAKE
SETPOINT

ANA 0.000000 Real X

STAGE 7
MAKE
SETPOINT

ANA 0.000000 Real X

STAGE 8
MAKE
SETPOINT

ANA 0.000000 Real X

STAGE 1
BREAK
SETPOINT

ANA 69.00000 Real X

STAGE 2
BREAK
SETPOINT

ANA 68.00000 Real X

STAGE 3
BREAK
SETPOINT

ANA 0.000000 Real X

STAGE 4
BREAK
SETPOINT

ANA 0.000000 Real X

STAGE 5
BREAK
SETPOINT

ANA 0.000000 Real X

STAGE 6
BREAK
SETPOINT

ANA 0.000000 Real X

STAGE 7
BREAK
SETPOINT

ANA 0.000000 Real X

STAGE 8
BREAK
SETPOINT

ANA 0.000000 Real X

Operation and Special Blocks—BSEQ 35

Field Name Connect Name Type Default Range RC T I O LB
STAGE 1
DELAY ON

TIM 00:02:00 Time X

STAGE 2
DELAY ON

TIM 00:03:00 Time X

STAGE 3
DELAY ON

TIM 00:00:00 Time X

STAGE 4
DELAY ON

TIM 00:00:00 Time X

STAGE 5
DELAY ON

TIM 00:00:00 Time X

STAGE 6
DELAY ON

TIM 00:00:00 Time X

STAGE 7
DELAY ON

TIM 00:00:00 Time X

STAGE 8
DELAY ON

TIM 00:00:00 Time X

STAGE 1
DELAY OFF

TIM 00:00:10 Time X

STAGE 2
DELAY OFF

TIM 00:00:15 Time X

STAGE 3
DELAY OFF

TIM 00:00:00 Time X

STAGE 4
DELAY OFF

TIM 00:00:00 Time X

STAGE 5
DELAY OFF

TIM 00:00:00 Time X

STAGE 6
DELAY OFF

TIM 00:00:00 Time X

STAGE 7
DELAY OFF

TIM 00:00:00 Time X

STAGE 8
DELAY OFF

TIM 00:00:00 Time X

STAGE 1
OUTPUT 1

BIN 1 0,1 X

STAGE 1
OUTPUT 2

BIN 0 0,1 X

STAGE 1
OUTPUT 3

BIN 0 0,1 X

36 Operation and Special Blocks—BSEQ

Field Name Connect Name Type Default Range RC T I O LB
STAGE 1
OUTPUT 4

BIN 0 0,1 X

STAGE 1
OUTPUT 5

BIN 0 0,1 X

STAGE 1
OUTPUT 6

BIN 0 0,1 X

STAGE 1
OUTPUT 7

BIN 0 0,1 X

STAGE 1
OUTPUT 8

BIN 0 0,1 X

STAGE 2
OUTPUT 1

BIN 1 0,1 X

STAGE 2
OUTPUT 2

BIN 1 0,1 X

STAGE 2
OUTPUT 3

BIN 0 0,1 X

STAGE 2
OUTPUT 4

BIN 0 0,1 X

STAGE 2
OUTPUT 5

BIN 0 0,1 X

STAGE 2
OUTPUT 6

BIN 0 0,1 X

STAGE 2
OUTPUT 7

BIN 0 0,1 X

STAGE 2
OUTPUT 8

BIN 0 0,1 X

STAGE 3
OUTPUT 1

BIN 0 0,1 X

STAGE 3
OUTPUT 2

BIN 0 0,1 X

STAGE 3
OUTPUT 3

BIN 0 0,1 X

STAGE 3
OUTPUT 4

BIN 0 0,1 X

STAGE 3
OUTPUT 5

BIN 0 0,1 X

STAGE 3
OUTPUT 6

BIN 0 0,1 X

STAGE 3
OUTPUT 7

BIN 0 0,1 X

STAGE 3
OUTPUT 8

BIN 0 0,1 X

Operation and Special Blocks—BSEQ 37

Field Name Connect Name Type Default Range RC T I O LB
STAGE 4
OUTPUT 1

BIN 0 0,1 X

STAGE 4
OUTPUT 2

BIN 0 0,1 X

STAGE 4
OUTPUT 3

BIN 0 0,1 X

STAGE 4
OUTPUT 4

BIN 0 0,1 X

STAGE 4
OUTPUT 5

BIN 0 0,1 X

STAGE 4
OUTPUT 6

BIN 0 0,1 X

STAGE 4
OUTPUT 7

BIN 0 0,1 X

STAGE 4
OUTPUT 8

BIN 0 0,1 X

STAGE 5
OUTPUT 1

BIN 0 0,1 X

STAGE 5
OUTPUT 2

BIN 0 0,1 X

STAGE 5
OUTPUT 3

BIN 0 0,1 X

STAGE 5
OUTPUT 4

BIN 0 0,1 X

STAGE 5
OUTPUT 5

BIN 0 0,1 X

STAGE 5
OUTPUT 6

BIN 0 0,1 X

STAGE 5
OUTPUT 7

BIN 0 0,1 X

STAGE 5
OUTPUT 8

BIN 0 0,1 X

STAGE 6
OUTPUT 1

BIN 0 0,1 X

STAGE 6
OUTPUT 2

BIN 0 0,1 X

STAGE 6
OUTPUT 3

BIN 0 0,1 X

STAGE 6
OUTPUT 4

BIN 0 0,1 X

38 Operation and Special Blocks—BSEQ

Field Name Connect Name Type Default Range RC T I O LB
STAGE 6
OUTPUT 5

BIN 0 0,1 X

STAGE 6
OUTPUT 6

BIN 0 0,1 X

STAGE 6
OUTPUT 7

BIN 0 0,1 X

STAGE 6
OUTPUT 8

BIN 0 0,1 X

STAGE 7
OUTPUT 1

BIN 0 0,1 X

STAGE 7
OUTPUT 2

BIN 0 0,1 X

STAGE 7
OUTPUT 3

BIN 0 0,1 X

STAGE 7
OUTPUT 4

BIN 0 0,1 X

STAGE 7
OUTPUT 5

BIN 0 0,1 X

STAGE 7
OUTPUT 6

BIN 0 0,1 X

STAGE 7
OUTPUT 7

BIN 0 0,1 X

STAGE 7
OUTPUT 8

BIN 0 0,1 X

STAGE 8
OUTPUT 1

BIN 0 0,1 X

STAGE 8
OUTPUT 2

BIN 0 0,1 X

STAGE 8
OUTPUT 3

BIN 0 0,1 X

STAGE 8
OUTPUT 4

BIN 0 0,1 X

STAGE 8
OUTPUT 5

BIN 0 0,1 X

STAGE 8
OUTPUT 6

BIN 0 0,1 X

STAGE 8
OUTPUT 7

BIN 0 0,1 X

STAGE 8
OUTPUT 8

BIN 0 0,1 X

Operation and Special Blocks—BSEQ 39

The outputs of the BSEQ block are always reliable. If the
input or B-Enable input is unreliable, the output will take on
the state defined by the Fail-safe Stage, which can be either
Current Stage, Stage 0, or Stage 1 to Stage 8.

The example in Figure 38 contains a BSEQ block that has two
stages of electric heat and two outputs configured. The BSEQ
has a BI object for occupied mode (AHU1\OCC) as the B-
Enable input. An AI object for discharge air temperature
(AHU1\DIS-TEMP) is the analog input. The values specified
in the BSEQ template are (default values):

Stage Make Setpoint Break Setpoint Delay On Delay Off Outputs
12345678

0 00

1 68.0 69.0 00:02:00 00:00:10 10

2 66.5 68.0 00:03:00 00:00:15 11

The BSEQ block will operate when the building becomes
occupied. When the discharge air temperature is less than
68.0°F, a Start command is sent to AHU1\HTG1, which turns
on the first stage of heat. When the discharge air temperature
is less than 66.5°F, the two BO objects AHU1\HTG1 and
AHU1\HTG2 are sent Start commands, which turn on the first
and second stages of heat on a rise in temperature. When the
discharge air temperature is greater than or equal to 68.0°F,
the BO objects are sent Stop commands, which de-energize
the second stage of heat. The first stage of heat remains on a
further rise in temperature, when the discharge air temperature
is greater than or equal to 69.0°F, the BO objects are sent Stop
commands, which de-energize the first and second stages
(i.e., all stages of heat off).

Reliability

Example

40 Operation and Special Blocks—BSEQ

A period of 00:03:00 minutes is defined for this process,
which means it will run once every three minutes.

Note: All operation blocks in this example must be placed
in a process. These include: BSEQ and both 2CMD
blocks.

Figure 38: BSEQ Block Example

�����

�

��

����

����

��

����

���	

�

�

��

��

�	

��

��

��

�

���	

�

�

),/�

�.!0.

�.�#

),/�

�.!0.

�.�#

��

���	

�

!'

!*+(

�'�-.2/#

Operation and Special Blocks—CMD 41

CMD (Command) Block

Object Control

Commands object blocks. This changes an object’s attribute
values and/or invokes an algorithm in the object (e.g., COS
analysis). For example, you would use a CMD block to Start
or Stop a binary output object.

Some commands have parameters that must be specified with
the command, such as High Limit, Low Limit, and Priority.
You define these parameters in the command block’s
template. The CMD block is labeled with the name of the
command (e.g., SET BD for the BD object).

These important factors relate to command blocks:

• Before you can edit the CMD template or enter the
block’s parameters, you must connect the output of the
CMD block to an object block or to a CONN block.

• If you erase a command connection and try to connect a
different command, you’ll notice that the connection
menu contains the previous command only.

• To change the type of command selected, you need to
erase the CMD block from the work area, then paste
down and define a new one. However, if this is an origin
remote CMD block, you may select a different origin
block by simply double-clicking left on the CMD block
(with Connection icon selected) and selecting a different
command. Yet, even in this case it is best to erase the
origin remote connection and re-add it, since the Editor
does not update the line label at the destination block or
verify that you selected a valid command for that object.
An invalid command is not detected until the file is
translated and compiled.

Category

Purpose

Details

42 Operation and Special Blocks—CMD

• For some commands, you can delete a command
parameter by entering the letter “D” in place of a value.
When the command is sent, the current parameter value
will be deleted. For example, placing a D in the High
Alarm Limit field means that the next time the object is
commanded, no High Alarm Limit will exist for the
object.

• You may enter a blank in the parameter fields of some
commands. This will avoid sending a new parameter
value with the command. That is, the object will maintain
its previous parameter value.

• The CMD block cannot display the underscore (_) that
some commands contain (e.g., SET_AD). It displays a
blank space instead (i.e., SET AD).

• You may use the CMD block to modify integer
parameters and attributes. The NCM will convert the
analog value to integer by rounding. The rounding rules
are:

0.00 - 0.49: Round off
0.50 - 0.99: Round up

To command a REF block with the CMD block, keep in mind
the following points:

• The selected command must be valid for the referenced
object. For example, the REL_CS command should not
be sent to a REF block that is configured for C260X. The
Compiler verifies that the command is valid.

• The selected command must be valid for the attribute.
(Refer to following table.) For example, even though the
STCSAN command is valid for the CS object, it is not
valid for the BI_1 attribute, since STCSAN is an analog-
type command. Note that the Editor, Expert Checker, and
Compiler do not check for invalid commands. If an
object receives an invalid command, it simply ignores it.

Operation and Special Blocks—CMD 43

• The selected attribute must be valid for the software
object/model or hardware object. For example, if the
AI_5 attribute is not configured in the model, it should
not be used in GPL. The Compiler verifies that the
attribute is valid.

The following table lists which attributes are valid for which
REF block commands.

REF Block
Command

Valid Attributes

STCSAN AI_1 to AI_16 AO_1 to AO_16 AD_1 to AD_32 SP_1 to SP_32

STCSBN BI_1 to BI_16 BO_1 to BO_16 BD_1 to BD_32

STCSMS MS_1 and MS_2

REL_CS AI_1 to AI_16 AO_1 to AO_16 AD_1 to AD_32 SP_1 to SP_32

BI_1 to BI_16 BO_1 to BO_16 BD_1 to BD_32

MS_1 and MS_2

ST500XAN AI1VAL to AI6VAL AO1VAL to AO6VAL

ST500XBN BI1VAL to BI5VAL BO1VAL to BO4VAL

ST500XSP SP1VAL to SP16VAL

REL_500X SP1VAL to SP16VAL

ST260XAN AI1VAL to AI6VAL VO1VAL and AO2VAL

ST260XBN BI1VAL to BI6VAL BO1VAL to BO5VAL

ST260XSP SP1VAL to SP12VAL

REL_260X SP1VAL to SP12VAL

BEG_TOT See Totalization and Trend features for valid attributes.

END_TOT

BEG_TRND

END_TRND

44 Operation and Special Blocks—CMD

This block has an Enable input, which provides conditional
logic. If this optional input is connected, the command will be
sent only when the Enable input is True and reliable. If the
Enable input is False (reliable or unreliable), or True and
unreliable, the command will not be sent. If the Enable input
is not connected, the command will be sent each time the
CMD block executes.

Field Name Connect Name Type Default Range RC T I O LB
Command See

Note A
See Note
A

X

- ENA IN BIN 0,1 N X E

- ENA OUT BIN See
Note B

0,1 N X E

- COMMAND CMD Y X C

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Note A: Refer to the following table to determine which of the various tables describe a particular
command. For a list of which objects accept which commands, refer to the Software Data
Sheets section in the Metasys Network Technical Manual.

Note B: The ENA OUT can be connected only if the ENA IN is connected. The default is 0.

Information
Tables

Operation and Special Blocks—CMD 45

Table Command(s)
1 ALARMS

2 AUX_DIS, AUX_ENA, LOC_REP, LOC_TRG, OFF, ON, PRC_DIS,
PRC_ENA, RELEASE, RELEASE3, STARTUP, TRIGGER, UNL_REP,
UNL_TRG, UNLATCH

3 BEG_TOT, BEG_TRND, END_TOT, END_TRND

4 REL_CS, REL_260X, REL_500X

5 REL_PIDL

6 REL_PRI

7 REL_210A

8 REL_260A

9 RES_TOT

10 SET_AD, SET_AOS

11 SET_AOD

12 SET_BD

13 SET_PIDL

14 START, STOP

15 STCSAN, STCSMS, ST260XSP, ST500XSP

16 STCSBN

17 ST210AAN

18 ST210ABN

19 ST210ASP

20 ST260AAN

21 ST260ABN

22 ST260ASP

23 ST260XAN, ST500XAN

24 ST260XBN, ST500XBN

25 TIMED_ON

26 WARNINGS

27 SET_MC, SET_MSD, SET_MSO

46 Operation and Special Blocks—CMD

Table 1
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
ALARMS 8 Char X AL

Low Limit LO LIMIT ANA 40.00000 See
Note

N X X LL

High Limit HI LIMIT ANA 80.00000 See
Note

N X X HL

Differential DIFF ANA 1.000000 Real >0
See
Note

N X X DF

Note: This field can accept one of three entries: a real value, the letter “D” for Delete, or no entry
at all (blank). Enter a D to delete the object’s parameter when the command is sent.
Enter a blank to keep the current parameter value in the object.

Table 2
Field Name Connect Name Type Defaul

t
Range RC T I O LB

Command READ
ONLY

AUX_DIS X AD

AUX_ENA X AE

LOC_REP X LR

LOC_TRG X LT

OFF X OF

ON X ON

PRC_DIS X DS

PRC_ENA X EN

RELEASE X R

RELEASE3 X R3

STARTUP X SU

TRIGGER X TR

UNL_REP X UR

UNL_TRG X UT

UNLATCH X UL

Operation and Special Blocks—CMD 47

Table 3
Field Name Connect Name Type Defaul

t
Range RC T I O LB

Command READ
ONLY

BEG_TOT X BT

BEG_TRND X BH

END_TOT X ET

END_TRND X EH

Attribute
Name

STR VALUE 8 Char X

Table 4
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
REL_CS X RL

REL_260X X RL

REL_500X X RL

Attribute STR Blank 8 Char X

Priority PRIORITY INT 3 2,3 N X X PR

Table 5
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
REL_PIDL 8 Char X RP

Attribute TAB AUX_IN AUX_IN X

INPT1VAL X

INPT2VAL X

INPT3VAL X

INPT4VAL X

INPT5VAL X

INTP6VAL X

SETPOINT X

OFFSET X

HI_SAT_V X

LO_SAT_V X

SEL_INP X

48 Operation and Special Blocks—CMD

Table 6
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
REL_PRI 8 Char X RP

Priority PRIORITY INT 7 2,4,5,6,7 N X X PR

Table 7
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
REL_210A 8 Char X RL

Attribute TAB ZNSP ZNSP X

MXDP X

MINDP X

AXDP X

HCPB X

HTDB X

RZSP X

INTG X

SUSB X

WTMP X

DPSP X

SETPOINT X

Priority PRIORITY INT 2 2,3 N X X PR

Table 8
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
REL_260A 8 Char X RL

Attribute TAB ZNSP ZNSP X

STUP X

STBK X

CLPB X

HTPB X

HTDB X

RZSP X

INTG X

SETPOINT X

Priority PRIORITY INT 2 2,3 N X X PR

Operation and Special Blocks—CMD 49

Table 9
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
RES_TOT 8 Char X RT

Attribute STR VALUE 8 Char X

Value VALUE ANA 0.000000 Real ≥ 0
See
Note

N X X V

Note: The RES-TOT command has different ranges for Event, Analog, Pulse, and Runtime
types of totalization. Make sure that the value you specify in the template is within the
range for the particular totalization type.

Table 10
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
SET_AD X SA

SET_AOS X SA

Value VALUE ANA 0.000000 Real N X X V

Priority PRIORITY INT 2 2,3 N X X PR

Table 11
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
SET_AOD SET_AOD

See Note
X SA

Value VALUE ANA 0.000000 Real N X X V

Note: The SET_AOD command is fixed at priority 2.

Table 12
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
SET_BD 8 Char X SB

Value INPUT BIN 0 0,1 N X X I

Priority PRIORITY INT 3 2,3 N X X PR

50 Operation and Special Blocks—CMD

Table 13
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
SET_PIDL 8 Char X SP

Attribute TAB AUX_IN AUX_IN X

INPT1VAL X

INPT2VAL X

INPT3VAL X

INPT4VAL X

INPT5VAL X

INPT6VAL X

SETPOINT X

OFFSET X

HI_SAT_V X

LO_SAT_V X

SEL-INP X

Value VALUE ANA 0.000000 Real N X X V

Priority PRIORITY INT 3 2,3 N X X PR

Table 14
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
START X ST

STOP X SP

Priority PRIORITY TAB 7 2,4,5,6,7 N X X PR

Table 15
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
STCSAN X SA

STCSMS X SA

ST260XSP X SA

ST500XSP X SA

Attribute STR Blank 8 Char X

Value VALUE ANA 0.000000 Real N X X V

Priority PRIORITY INT 3 2,3 N X X PR

Operation and Special Blocks—CMD 51

Table 16
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
STCSBN 8 Char X SA

Attribute STR Blank 8 Char X

Value VALUE BIN 0 0 or 1 N X X V

Priority PRIORITY INT 3 2,3 N X X PR

Table 17
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
ST210AAN 8 Char X AN

Attribute TAB ZNT ZNT X

AUXT X

AUXP X

AUXR X

DFPR X

AUXI X

Value VALUE ANA 0.000000 Real N X X V

Table 18
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
SET210ABN 8 Char X BN

Attribute TAB UNOC UNOC X

SDBC X

SDBO X

LTCH X

WMUP X

SARE X

HRTZ X

Value INPUT BIN 0 0,1 N X X V

52 Operation and Special Blocks—CMD

Table 19
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
ST210ASP 8 Char X SP

Attribute TAB MXDP MXDP X

MINDP X

AXDP X

HCPB X

HTDB X

ZNSP X

RZSP X

INTG X

SUSB X

WTMP X

DPSP X

SETPOINT X

Value VALUE ANA 0.000000 Real N X X V

Priority PRIORITY TAB 3 2,3 N X X PR

Table 20
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
ST260AAN 8 Char X AN

Attribute TAB ZNT ZNT X

AUXT X

AUXP X

AUXH X

AUXR X

DFPR X

AUXI X

Value VALUE ANA 0.000000 Real N X X V

Operation and Special Blocks—CMD 53

Table 21
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
ST260ABN 8 Char X BN

Attribute TAB UNOC UNOC X

FOCO X

LTCH X

SDWN X

HRTZ X

Value INPUT BIN 0 0,1 N X X V

Table 22
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
ST260ASP 8 Char X SP

Attribute TAB STUP STUP X

STBK X

CLPB X

HTPB

HTDB X

ZNSP X

RZSP X

INTG X

SETPOINT X

Value VALUE ANA 0.000000 Real N X X V

Priority PRIORITY TAB 3 2,3 N X X PR

Table 23
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
ST260XAN X SA

ST500XAN X SA

Attribute STR Blank 8 Char X

Value VALUE ANA 0.000000 Real N X X V

54 Operation and Special Blocks—CMD

Table 24
Field Name Connect Name Type Default Range RC T I O LB
Command READ ST260XBN X SB

ONL
Y

ST500XBN X SB

Attribute STR Blank 8 Char X

Value VALUE BIN 0 0 or 1 N X X V

Table 25
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
TIMED_ON 8 Char X TO

Hours Time TIM 1.000000 0 to 99.9 N X X T

Table 26
Field Name Connect Name Type Default Range RC T I O LB
Command READ

ONLY
WARNINGS 8 Char X W

C

Setpoint SETPOINT ANA 55.00000 See Note 1 N X X SP

Normalband NORMBAND ANA 10.00000 See Note 1 N X X NB

Warning
Delay

WARNDLAY ANA 3.0 0-255 min
See Note 2

N X X W
D

Differential DIFF ANA 1.000000 Real > 0
See Note 1

N X X DP

Note 1: This field can accept one of three entries: a real value, the letter “D” for Delete, or no entry
at all (blank). Enter a D to delete the parameter. Enter a blank to keep the current
parameter value.

Note 2: This field allows a blank, which directs the Translator and Simulator to leave this value
unchanged. Also, this field allows whole numbers only.

Table 27
Field Name Connect Name Type Default Range RC T I O LB
Command READ SET_MC 8 Char X SM

ONL
Y

SET_MSD 8 Char X SM

SET_MSO 8 Char X SM

Value INPUT INTN 0 0,1,2,3 N X X V

Priority PRIORITY INT 3 2,3 N X X PR

Operation and Special Blocks—CMD 55

If any of the command parameters are unreliable, the
unreliable value(s) and associated reliability flag(s) are sent
with the command. For details refer to the Software Data
Sheets section of the Metasys Network Technical Manual.

If an Enable line is connected and its value is unreliable, no
command is sent.

In this example (Figure 39), the HSEL block selects the
highest of two analog input objects (AHU1\ZN-T1 and
AHU1\ZN-T2). The CMD block reads this value and sends it
to the AD object.

A period of 00:05:00 is defined for this process, which means
it will run once every five minutes.

Note: The HSEL and CMD blocks, both operation blocks,
must be placed in a process.

Figure 39: CMD Block Example

Reliability

Example

��

������

�

�

��

�

��

����

�	
��

��

����

�	
��

�

�

����

������	���

�
����

�

��

�����

56 Operation and Special Blocks—CMD

Operation and Special Blocks—CNST 57

CNST (Constant) Block

Data

Provides a fixed value that can be an input to another block.

You can configure this block for analog, binary, or time data.
The default is analog. If you want to specify binary or time
data, you must first select either binary or time in the template
before making a connection.

The CNST block does not have to be in a process.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Description STR Blank 24 Char X

Type TAB ANALOG ANALOG,
BINARY,
TIME

X

Value ANA 0.000000 Real X

BIN 0 0,1 X

Time TIM 00:00:00 Time X

OUTPUT ANA See Note Real Y X O

BIN See Note 0,1 Y X O

TIM See Note Time Y X O

CONTROL CTL N X CF

CONTROL CTL N X CF

Note: The default value is the value specified in the template.

Category

Purpose

Details

Information Table

58 Operation and Special Blocks—CNST

The output of the CNST block is always reliable.

The following example (Figure 40) shows two CNST blocks
as inputs into a SWCH block. The SWCH block will switch
between a discharge air temperature (AHU1\DSCH-TMP)
High Alarm Limit of 68.0°F and 80.0°F, depending on
whether the building is occupied (AHU1\OCC-UNOC). If the
BI object is in the Occupied state, the CMD block will change
the High Alarm Limit of the discharge air temperature to
68.0°F. If the BI is in the Unoccupied state, the SWCH block
will send 80.0°F through, and the CMD block will change the
High Alarm Limit to 80.0°F.

A period of 00:00:00 is defined for this process since it needs
to run only when the triggerable attribute of the BI object
changes.

Note: The SWCH and CMD blocks, both operation blocks,
must be placed in a process.

Figure 40: CNST Block Example

Reliability

Example

���	���

�� �

�

��

��

����

���
�	��

��

����

���
���
�	��

������

�	��

������

�

��

�

�

��

��

���� ���

������

Operation and Special Blocks—COMP 59

COMP (Compare) Block

Control

Compares two inputs, and outputs either a True or False state,
based on that comparison.

The output of this block is True if the comparison is True; the
output is False if the comparison is False.

You can configure this block to compare analog or time
inputs. The default is analog. If you want to compare time
data, you must first select time in the template before making
a connection.

The possible compare operations are:

Greater than (Input 1 > Input 2)
Less than (Input 1 < Input 2)
Equal to (Input 1 = Input 2)
Greater than or equal to (Input 1 ≥ Input 2)
Less than or equal to (Input 1 ≤ Input 2)
Not equal to (Input 1 <> Input 2)

Note: A COMP block that is configured for time and uses
the Equal To (=) operator will compare hours and
minutes, not seconds. Seconds are truncated before
COMP makes the comparison.

Also, if the Equal To operator is used with real
inputs, the output will almost always be False, since
it is very unlikely that two real values will equal.
This is especially true if a floating point operation
was done prior to the compare. Similarly, if the Not
Equal To (<>) operator is used with real inputs, the
output will almost always be True.

Category

Purpose

Details

60 Operation and Special Blocks—COMP

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Type TAB ANALOG ANALOG,
TIME

X

Operation TAB < <, >,
<>, =,
≤, ≥

X

Input 1 INPUT 1 ANA 0.000000 Real N X X I1

TIME IN1 TIM 00:00:00 Time N X X T1

Input 2 INPUT 2 ANA 0.000000 Real N X X I2

TIME IN2 TIM 00:00:00 Time N X X T2

OUTPUT BIN 0 0,1 Y X O

CONTROL CTL N X CF

CONTROL CTL N X CF

The output of this block is unreliable if Input 1 or Input 2 is
unreliable.

The example in Figure 41 contains two COMP blocks that
compare system time (TIME) with the fan Early Start/Late
Stop times (AHU1\FAN1) to set Occupied mode (OCC). The
process sets Occupied mode if the system time is greater than
Early Start Time and less than Late Stop Time.

A period of 00:01:00 is defined for this process, which means
it will run once every minute.

Note: All operation blocks in this example have to be
placed in a process. These include: both COMP
blocks, TIME, AND, and SVAR.

Information Table

Reliability

Example

Operation and Special Blocks—COMP 61

Figure 41: COMP Block Example

�
�����

�

�

��

����

���
�

��

�

�

��

��

�

��

��

����

��

��

��

����

��	�

����

����

�	

62 Operation and Special Blocks—COMP

Operation and Special Blocks—CONN 63

CONN (Connection) Block

Data

Labels a connection line on the screen.

The CONN block is used primarily for labeling a line that
comes from or exits to an external compound.

You can configure this block to accept analog, binary, time,
control, command, dual command, read, or write connections.
The default is analog. If you want to connect data other than
analog, you must first select the data type in the template
before making a connection.

With the I/O Connections parameter, you can specify whether
this block must be connected to another block. The parameter
has two tab choices: OPTIONAL and REQUIRED. If you
select OPTIONAL, the output of the CONN block does not
require a connection. If you select REQUIRED, the output
requires a connection. Also, the letter “R” (colored blue) on
the face of the block indicates it is configured as REQUIRED.

Note: You may connect two CONN blocks each in different
compounds for the purpose of labeling the line in
each compound.

These important factors relate to CONN blocks:

• If the input to an optional CONN block comes from a
required output connection, the output of the optional
CONN block is required. Similarly, if the output of an
optional CONN block goes to a required input, the input
of the optional CONN block is required.

• If an optional CONN block is connected to an optional
input, and the input of the CONN block is not connected,
the template’s value in the destination block is used.

Category

Purpose

Details

64 Operation and Special Blocks—CONN

• If you need to change the type of command or dual
command selected at a CONN block, you need to erase
the CONN block and paste down a new one, then
reconfigure it in the template.

• If you connect a CMD or 2CMD block to a CONN block,
the output connection menu will list the commands of all
objects.

• Once you have connected a CONN block that is
configured for command or dual command to an object
block, the input connection menu will only display the
selected command.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Type TAB ANALOG See Note X

I/O
Connections

TAB OPTIONAL OPTIONAL
REQUIRED

X

INPUT BIN 0,1 ** X I

ANA Real ** X IN

CMD ** X C

2CMD ** X 2C

READ ** X RD

WRIT ** X W
R

TIME IN TIM Time ** X TI

OUTPUT BIN 0 0,1 ** X O

ANA 0.000000 Real ** X O

TIM 00:00:00 Time ** X O

CMD ** X C

2CMD ** X 2C

READ ** X RD

WRIT ** X W
R

CONTROL CTL ** X CF

CONTROL CTL ** X CF

Note: The Type field has the following entries: BINARY, ANALOG, TIME, CONTROL,
COMMAND, DUAL CMD, READ, and WRITE.

** A required connection if the I/O Connections field is set to Required. A required or optional
connection if this field is set to Optional. Refer to the Details section for information.

Information Table

Operation and Special Blocks—CONN 65

The CONN block passes reliability information along with the
data. That is, the output is unreliable if the input is unreliable.

In this example (Figure 42), three CONN blocks indicate data
coming from an external diagram, and one CONN block
shows data leaving the diagram.

The CONN block labeled OA-TEMP represents data from an
AI object named AHU1\OA-TEMP (outdoor air temperature).
The SETPOINT block is a setpoint value of an AD object
block. The DIFF block is a differential value from an AI
object block. All three of these CONN blocks are inputs into
the DFCM block. The CONN block labeled SET BD is for a
BD object on another diagram.

In this process, the DFCM compares the value of OA-TEMP
with SETPOINT. If OA-TEMP is less than SETPOINT, given
an applied differential (DIFF), a SET BD command is sent to
the BD object.

A period of 00:03:00 is defined for this process, which means
it will execute once every three minutes, sending a new
command to the BD every three minutes.

Note: The DFCM and CMD blocks, both operation blocks,
must be placed in a process.

Reliability

Example

66 Operation and Special Blocks—CONN

Figure 42: CONN Block Example

CONBLK

�������

����	
�

����

���

����

�	�����

�

�

� ��
�

�	����
�

���
���

�

�

�

�

�

�

������

�	����

��

Operation and Special Blocks—DBCM 67

DBCM (Deadband Compare)
Block

Control

Compares two analog inputs. It outputs either a True or False
state, depending on the relational operator and the applied
deadband.

The two relational operators for this block are Equal To (Input
1 = Input 2) and Not Equal To (Input 1 <> Input 2). The
operator determines the behavior of the block as it applies to
the deadband. Figures 43 and 44 demonstrate these behaviors.

Note: If the Equal To operator is used with real inputs, the
output will almost always be False, since it is very
unlikely that two real values will equal. This is
especially true if a floating point operation was done
prior to the compare. Similarly, if the Not Equal To
(<>) operator is used with real inputs, the output will
almost always be True.

The deadband is a range within which Input 1 can vary about
Input 2 without initiating any change in the output. One-half
of the deadband value is on either side of Input 2. For
example, if Input 2 is 70.0 and the deadband is 2.0, the
deadband range will be from 69.0 to 71.0. With this example,
Input 1 will be equal to Input 2 as long as its value is in the
deadband range.

Figure 43 shows the function of the DBCM block for the
Equal To operator as Input 1 changes. The output of the block
is True as long as Input 1 is inside the deadband area (shaded).
As Input 1 increases, the output becomes True when
Input 1 = Input 2 - Deadband/2. It changes to False when
Input 1 > Input 2 + Deadband/2. Then, as Input 1
decreases, the output becomes True again when
Input 1 = Input 2 + Deadband/2.

Category

Purpose

Details

68 Operation and Special Blocks—DBCM

Figure 43: DBCM Operation: Equal To Operator

Figure 44 shows the function of the DBCM block for the Not
Equal To operator. The output of the block will be True when
the value of Input 1 is outside the deadband area (shaded).
As Input 1 increases, the output becomes False when
Input 1 ≤ Input 2 - Deadband/2. It changes to True when
Input 1 > Input 2 + Deadband/2. Then, as Input 1 decreases,
the output becomes False again when
Input 1 = Input 2 + Deadband/2.

Figure 44: DBCM Operation: Not Equal To Operator

����� ��	� �����

�������	� ��	�

���

������

������

����

���������	�
�

���������	�
�

����	�
�

�������

��������	
�

����	
��	

����	 ����	

����

����
��

����
��

����

������	������

������	������

�	������

�������

��	

��	

��������	

Operation and Special Blocks—DBCM 69

You can configure this block to compare analog inputs only.
If you specify a deadband of 0.0, this block works the same as
the COMP block. Also, you can specify a constant value for
any of the inputs instead of connecting an external input.
Enter a constant value in the data base template.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Input 1 INPUT 1 ANA 0.000000 Real N X X I1

Operation TAB = =, <> X

Input 2 INPUT 2 ANA 0.000000 Real N X X I2

Deadband DEADBAND ANA 0.000000 Real ≥ 0 N X X DB

OUTPUT BIN 0 0,1 Y X O

CONTROL CTL N X CF

CONTROL CTL N X CF

Information Table

70 Operation and Special Blocks—DBCM

The output of this block is unreliable if Input 1, Input 2, or the
Deadband is unreliable.

In the following example (Figure 45), the DBCM block is
configured for Not Equal To operation. It compares discharge
air temperature (AHU1\DSCH-AIR) with a setpoint
(AHU1\SETPOINT) of 60.0°F, given a deadband of 10.0°F
(AHU1\DEADBAND). If the DSCH-AIR is not equal to the
SETPOINT and the deadband, the PRNT block sends a
message to the printer. The message is:

DISCHARGE AIR TEMPERATURE IS OUT OF RANGE.

A period of 00:01:00 is defined for this process, which means
it will run once every minute.

Note: The DBCM and PRNT blocks, both operation blocks,
must be placed in a process.

Figure 45: DBCM Block Example

Reliability

Example

��

�������

�

��

�

�

�

�

�

��

����

���
���

�

����

������	�

�

����

����	

����
���

Operation and Special Blocks—DFCM 71

DFCM (Differential Compare)
Block

Control

Compares two analog inputs. It outputs either a True or False
state, depending on the relational operator and the applied
differential.

The relational operators for this block are the following:

Less Than (Input 1 < Input 2)
Greater Than (Input 1 > Input 2)
Equal To (Input 1 = Input 2)
Less Than or Equal To (Input 1 ≤ Input 2)
Greater Than or Equal To (Input 1 ≥ Input 2)

The operator determines the behavior of the block as it applies
to the differential. The differential is the range within which
Input 1 can vary about Input 2 without initiating any change in
the output. The differential range can be on either side of
Input 2, or on both sides, depending on the operator selected.

Note: When a process containing a DFCM block executes
for the first time, the differential of the DFCM block
is not applied, and the block acts like a simple COMP
block. First-time execution occurs when the NCM is
rebooted or downloaded, or the process containing
the DFCM block is downloaded or enabled.

Figures 46 to 50 illustrate the behaviors of the DFCM block
according to the various relational operators.

Note: If the Equal To operator is used with real inputs, the
output will almost always be False, since it is very
unlikely that two real values will equal. This is
especially true if a floating point operation was done
prior to the compare. Similarly, if the Not Equal To
(<>) operator is used with real inputs, the output will
almost always be True.

Category

Purpose

Details

72 Operation and Special Blocks—DFCM

Figure 46 shows the function of the DFCM block for the Less
Than operator. The output is True when Input 1 < Input 2.
As Input 1 increases, the output remains True through the
differential. The output changes to False when
Input 1 ≥ Input 2 + Differential.

Figure 46: DFCM Operation: Less Than

Figure 47 shows the function of the DFCM block for the Less
Than or Equal To operator. The output is True when
Input 1 ≤ Input 2. As Input 1 increases, the output remains
True through the differential. The output changes to False
when Input 1 > Input 2 + Differential.

Figure 47: DFCM Operation: Less Than or Equal To

�����

���

������

���	���

����

������������

�	�����

��	�

����������

�����

���

������

���	���

����

������������

�	�����

��	�

����������

Operation and Special Blocks—DFCM 73

Figure 48 shows the function of the DFCM block for the
Greater Than operator. The output is True when
Input 1 > Input 2. As Input 1 decreases, the output remains
True through the differential. The output changes to False
when Input 1 ≤ Input 2 - Differential.

Figure 48: DFCM Operation: Greater Than

����

�����

�	�����

�	�����

����

������������

����
�

�!"

��������#�

74 Operation and Special Blocks—DFCM

Figure 49 shows the function of the DFCM block for the
Greater Than or Equal To operator. The output is True when
Input 1 ≥ Input 2. As Input 1 decreases, the output remains
True through the differential. The output changes to False
when Input 1 < Input 2 - Differential.

Figure 49: DFCM Operation: Greater Than or Equal To

����

�����

�	�����

�	�����

����

$%% ! &'$��

����
��

�!"

��������#�

Operation and Special Blocks—DFCM 75

Figure 50 shows the function of the DFCM block for the
Equal To operator. For this operator, the differential is
applied on both sides of Input 2. As Input 1 increases, the
output remains False through the differential. The output
changes to True when Input 1 = Input 2. The output returns to
False near the point when Input 1 > Input 2 + Differential. It
does not turn to False at an exact point because of floating
point inaccuracies. As Input 1 decreases, the output remains
False through the differential, until again Input 1 = Input 2, at
which point it changes to True. The output returns to False at
the exact point when Input 1 < Input 2 - Differential.

Figure 50: DFCM Operation: Equal To

You can configure this block to compare analog inputs only.
Also, you can specify a constant value for an input instead of
connecting an external input. However, you cannot connect
the differential as an input.

�	
��

�	
��

��� ���

�����

�	�����

�	�����

����

$%% ! &'$��

$%% ! &'$��

����
��

��������#�(

76 Operation and Special Blocks—DFCM

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Input 1 INPUT 1 ANA 0.000000 Real N X X I1

Operation TAB < <,>, =,
≤, ≥

X

Input 2 INPUT 2 ANA 0.000000 Real N X X I2

Differential DIFF ANA 0.000000 Real ≥ 0 N X X DF

OUTPUT BIN 0 0,1 Y X O

CONTROL CTL N X CF

CONTROL CTL N X CF

The output of this block is unreliable if Input 1, Input 2, or the
Differential input is unreliable. The output will be unreliable
if the Differential input is less than 0.0. If it is, three things
will occur: a user advisory will be sent to the Operator
Workstation, the DFCM block will function like a COMP
block, and the output of the block will be flagged unreliable.

In this example (Figure 51), the DFCM block is configured
for Less Than (<) operation. It is used to compare outdoor air
temperature (AHU1\OA-TEMP) with an adjustable setpoint
(AHU1\ECON-SPT) in order to determine economizer mode
(ECON). If the outdoor air temperature (I1) is less than the
setpoint (I2), economizer is set. If the outdoor air temperature
is greater than or equal to the setpoint, plus a differential of
2.0°F, economizer is not set.

A period of 00:05:00 is defined for this process, which means
it will execute once every five minutes.

Note: The DFCM and SVAR blocks, both operation blocks,
must be placed in a process.

Information Table

Reliability

Example

Operation and Special Blocks—DFCM 77

Figure 51: DFCM Block Example

��

��������

�

��

�

�

�

�

�

��

����

��
����

�

����

���	
���

��	��

�����)�

���� ����

���	

78 Operation and Special Blocks—DFCM

Operation and Special Blocks—DIV 79

DIV (Divide) Block

Math

Divides Input 1 by Input 2 using the following equation:

Input 1/Input 2 = Output

The inputs into this block can only be analog. If Input 2 is
zero (0.0), a divide-by-zero runtime error occurs and a user
advisory is issued. If this happens, the result of the calculation
will be:

3.4 x 1038 (if Input 1 ≥ 0.0), or
-3.4 x 1038 (if Input 1 < 0.0)

Note: The operator terminals cannot fully display the above
numbers, since they are capable of displaying values
of up to eight characters.

You can specify a constant value for an input instead of
connecting an external input. Enter a constant value in the
data base template.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Input 1 INPUT 1 ANA 0.000000 Real N X X I1

Input 2 INPUT 2 ANA 1.000000 Real N X X I2

OUTPUT ANA 0.000000 Real Y X O

CONTROL CTL N X CF

CONTROL CTL N X CF

The output of the DIV block is unreliable if either of the
inputs is unreliable or Input 2 is 0.0.

Category

Purpose

Details

Information Table

Reliability

80 Operation and Special Blocks—DIV

In this example (Figure 52), the DIV block is part of a tonnage
calculation. The standard tonnage equation is:

TONS = ∆T (GPM) / 24

where:

∆T = Delta T, change in chilled water return temperature and
chilled water supply temperature.

GPM = gallons per minute, a measured value.

To convert this equation into a GPL diagram, three math
blocks are required:

SUB: Subtracts two chilled water temperatures to find
∆T.

DIV: Divides GPM by 24.

MUL: Multiplies ∆T by GPM/24.

The example of Figure 52 performs three calculations:

• GPM is divided by 24. The GPM figure is obtained from
an AI object that measures flow (AHU1\FLOW). This is
Input 1 of the DIV block. Input 2 of the DIV block is 24,
from a CNST block.

• ∆T is calculated. This value is obtained from two AI
objects, one reporting chilled water return temperature
(AHU1\CHWR-T), and the other chilled water supply
temperature (AHU1\CHWS-T). Input 1 of the SUB block
is AHU1\CHWR-T, and Input 2 is AHU1\CHWS-T.

• The result of the DIV and SUB blocks is multiplied.
Input 1 of the MUL block is from the DIV block, and
Input 2 is from the SUB block.

A command block reads the calculated value, and sends it to
an AD object (AHU1\TONS), whose value can be read on a
summary at an operator device.

A period of 00:02:00 is defined for this process, which means
it will execute once every two minutes.

Note: All operation blocks in this example must be placed
in a process. They include: DIV, MUL, SUB, and
CMD.

Example

Operation and Special Blocks—DIV 81

Figure 52: DIV Block Example

�
���

��

�

���
��
���

��
����

���

��
�������

���
��� ���

��

�����

�!

��

��

��
����

��"�

��
����

��"�

��
����

��"�

��
����
���"

�

�

��

��
�������

��

� �

82 Operation and Special Blocks—DIV

Operation and Special Blocks—DLAY 83

DLAY (Delay) Block

Logic

Delays the change of binary data to True for a period of time.

This block can be configured as a Cancelable Delay or One-
shot Delay. The Cancelable type delays binary change of data
to True for a specified period of time, whereas the One-shot
type delays the changing of data for one execution of the
process.

The output of this type varies as shown in Figure 53 and
according to the following table:

Cancelable Delay

Change of Input Output

False --> True False for delay time specified, then True

True --> False False

Category

Purpose

Details

Cancelable DLAY

84 Operation and Special Blocks—DLAY

Figure 53: Cancelable DLAY Block

When the delay time for the Cancelable DLAY block has
expired, the process that contains this block will be triggered.
If the input returns to False before the timer expires, the
output will stay False and the process will not be triggered.

Note: We recommend that you do not specify a time delay
of 00:00:00 for a Cancelable Delay because it will
require more processing time and memory. The
DLAY block will always act as a One-shot delay if
you do so. If you want the delay to be a One-shot,
configure it as such in the Type field of the template.

For initialization applications, a Cancelable DLAY block can
accept a constant of True as its input. In this case, the output
varies as follows:

Cancelable Delay

Constant Input Output

True False for first execution and until delay timer
expires, then True for each subsequent
execution until the NCM is warm started or
the process is re-downloaded

����

��� ��#

����

��������

����

�!"

�!"

����

 ��*
�$+ !

��� ��#

�����

 ��*
�$+ !

��#$�#

��$�#

��#$�#

������� ��

����

�!"

�!"

����

�����

��$�#

Operation and Special Blocks—DLAY 85

The output of a One-shot DLAY block varies as shown in
Figure 54 and according to this table:

One-shot Delay
Change of Input Output

False --> True False for one execution of the process, then
True

True --> False False

Figure 54: One-Shot DLAY Block

If the input of the One-shot DLAY block changes back to
False before the next execution of the process, the output will
remain False.

Note: The One-shot DLAY block will not trigger a process.

One-Shot DLAY

�� ��

� �� ��#

� !"

� !"

�� ��

�����

����

��������

����

�	������

� � � � � �

��(� , -"'$.&

��#$�#

��$�# ����

��� ��#

�!"

�!"

����

�����

��#$�#

��$�#

86 Operation and Special Blocks—DLAY

For initialization applications, a One-shot DLAY block can
accept a constant of True as its input. In this case, the output
varies as follows:

One-shot Delay
CONSTANT INPUT OUTPUT

True False for first execution, then True for each
subsequent execution

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Type TAB CANCEL CANCEL,
ONE-
SHOT

X

INPUT BIN 0,1 Y X I

Time TIME IN TIM/
POP-UP

00:00:05 Time >
00:00:00

N X X TI

OUTPUT BIN 0 0,1 Y X O

CONTROL CTL N X CF

CONTROL CTL N X CF

The reliability of the DLAY block depends on its
configuration: Cancelable or One-shot.

Information Table

Reliability

Operation and Special Blocks—DLAY 87

Input and Timer (If...) Output (Then...)
If input changes from False to True, and input
and timer are reliable. Or, if input changes
from True to False and input is reliable.

Reliable

If input changes from False to True, and input
and/or timer is unreliable. Or, if input
changes from True to False, the input is
unreliable, and the timer has not expired.

Unreliable

If input changes from True to False and input
is unreliable. Input does not change,
regardless of its reliability.

No Change In
Reliability

The output is unreliable if the input is unreliable.

The DLAY block in the following example (Figure 55) is
configured as a Cancelable delay. It delays a command to an
exhaust fan (AHU1\EX-FAN1). The CMD block will
command the exhaust fan to Start one minute (00:01:00) after
the supply fan (AHU1\SFAN1-ST) starts.

If the AHU1\SFAN1-ST stops before the one minute delay
timer expires, the start command is not sent.

A period of 00:00:00 is defined for this process, since its
execution is dictated by the Cancelable operation of the block.

Note: The DLAY and CMD blocks, both operation blocks,
must be placed in a process.

Cancelable Delay

One-Shot Delay

Example

88 Operation and Special Blocks—DLAY

Figure 55: DLAY Block Example

�

�������

�

�

� ��

����

�/
��	���

���

�����

��

����

���	�
��

��0

��#��#��

Operation and Special Blocks—DWPT 89

DWPT (Dew Point) Block

Psychrometric Equations

Calculates dew point temperature based on dry bulb
temperature and relative humidity. This block uses the
ASHRAE formula for calculating dew point.

The dew point calculation can be done in either English or
Metric units.

Valid ranges for the calculated dew point temperature are:

Dry Bulb Temperature: -147.9 to 391.9°F (-99.9 to 199.9°C)

Relative Humidity: 0 to 100%

Note: GPL converts relative humidity to an integer by
rounding (e.g., 10 to 10.49999 = 10; 10.50000 to
10.99999 = 11).

Category

Purpose

Details

90 Operation and Special Blocks—DWPT

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Units TAB ENGLISH ENGLISH
METRIC

X

DRY BULB ANA Real Y X DB

REL HUMID ANA Real Y X RH

OUTPUT ANA 0.000000 Real Y X O

CONTROL CTL N X CF

CONTROL CTL N X CF

The output of this block is unreliable if the dry bulb
temperature input or relative humidity input is unreliable.
Also, if either of these values is less than the lowest part of
their range, enthalpy is calculated using the lowest range value
(e.g., for dry bulb temperature, -147.9°F), the output is
unreliable, and a runtime error message is generated.
Similarly, if either of these values is greater than the highest
part of their range, enthalpy is calculated using the highest
range value (e.g., for dry bulb temperature, -391.9°F), the
output is unreliable, and a runtime error message is generated.

Information Table

Reliability

Operation and Special Blocks—DWPT 91

In this example (Figure 56), the DWPT block calculates the
dew point temperature of outside air. The block takes as
inputs the outside air temperature (AHU1\OA-TEMP) and the
outside air relative humidity (AHU1\OA-RH). These values
are entered in the dew point algorithm, whose result is
assigned to a SVAR block (AHU1\OA-DWPT).

A period of 00:02:00 is defined for this process, which means
it will run once every two minutes.

Note: The DWPT and SVAR blocks, both operation blocks,
must be placed in a process.

Figure 56: DWPT Block Example

Example

�

���	���

�

�	

��

�

��

����

�� ��

��

����

��
���

�

����
��
���

����

	
����

92 Operation and Special Blocks—DWPT

Operation and Special Blocks—ENDP 93

ENDP (Enthalpy Dew Point)
Block

Psychrometric Equations

Calculates enthalpy based on dry bulb temperature, dew point
temperature, and barometric pressure. This block uses the
ASHRAE formula for calculating enthalpy.

The enthalpy calculation can be done in either English or
Metric units.

Valid ranges for calculated Enthalpy are:

Dry Bulb Temperature: -147.9 to 391.9°F (-99.9 to 199.9°C)

Dew Point Temperature: -147.9 to 391.9°F (-99.9 to 199.9°C)

Barometric Pressure: 15.00 to 32.00 in. Hg (0.51 to 1.08 bar)

Category

Purpose

Details

94 Operation and Special Blocks—ENDP

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Units TAB ENGLISH ENGLISH
METRIC

X

Barometric
Press.

BARO PRES ANA 29.00000 Real N X X BP

- DRY BULB ANA Real Y X DB

- DEW POINT ANA Real Y X DP

- OUTPUT ANA 0.000000 Real Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

The output of this block is unreliable if the dry bulb
temperature input, dew point temperature input, or barometric
pressure input is unreliable. Also, if any of these values is less
than the lowest part of their range, enthalpy is calculated using
the lowest range value (e.g., for dry bulb temperature,
-147.9°F), the output is unreliable, and a runtime error
message is generated. Similarly, if any of these values is
greater than the highest part of their range, enthalpy is
calculated using the highest range value (e.g., for dry bulb
temperature, -391.9°F), the output is unreliable, and a runtime
error message is generated.

A runtime error message is also generated if dew point
temperature is greater than dry bulb temperature.

Information Table

Reliability

Operation and Special Blocks—ENDP 95

The following example (Figure 57) contains an ENDP block
that calculates the enthalpy of outside air. The block takes as
inputs the outside air temperature (AHU1\OA-TEMP) and the
dew point of outside air (AHU1\OA-DWPT). These values
are entered into the enthalpy algorithm. The CMD block
reads the result, and commands an AD object (AHU1\OA-
ENDP) to this value.

A period of 00:02:00 is defined for this process, which means
it will run once every two minutes.

Note: The ENDP and CMD blocks, both operation blocks,
must be placed in a process.

Figure 57: ENDP Block Example

Example

�

�������

�

�

�

�

��

����

�� �"�

��

����

��
���

� ��

�����

	
����
��

�����

�

����

����	�

96 Operation and Special Blocks—ENDP

Operation and Special Blocks—ENRH 97

ENRH (Enthalpy Relative
Humidity) Block

Psychrometric Equations

Calculates enthalpy based on dry bulb temperature, relative
humidity, and barometric pressure. This block uses the
ASHRAE formula for calculating enthalpy.

The enthalpy calculation can be done in either English or
Metric units.

Valid ranges for calculated Enthalpy are:

Dry Bulb Temperature: -147.9 to 391.9°F (-99.9 to 199.9°C)

Relative Humidity: 0 to 100%

Barometric Pressure: 15.00 to 32.00 in. Hg (0.51 to 1.08 bar)

Note: GPL converts relative humidity to integer by
rounding (e.g., 10.00000 to 10.49999 = 10; 10.50000
to 10.99999 = 11).

Category

Purpose

Details

98 Operation and Special Blocks—ENRH

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Units TAB ENGLISH ENGLISH
METRIC

X

Barometric
Press.

BARO PRES ANA 29.00000 Real N X X BP

- DRY BULB ANA Real Y X DB

- REL HUMID ANA Real Y X RH

- OUTPUT ANA 0.000000 Real Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

The output of this block is unreliable if the dry bulb
temperature input, relative humidity input, or barometric
pressure input is unreliable. Also, if any of these values is less
than the lowest part of their range, enthalpy is calculated using
the lowest range value (e.g., for dry bulb temperature,
-147.9°F), the output is unreliable, and a runtime error
message is generated. Similarly, if any of these values is
greater than the highest part of their range, enthalpy is
calculated using the highest range value (e.g., for dry bulb
temperature, -391.9°F), the output is unreliable, and a runtime
error message is generated.

Note: The output of this block is also unreliable if the
internally calculated dew point value is outside the
range of -80.0 to 150.0°F (-60.0 to 70.0°C). (Internal
dew point value is not provided to the programmer.)

Information Table

Reliability

Operation and Special Blocks—ENRH 99

The following example (Figure 58) contains an ENRH block
that calculates the enthalpy of outside air. The block takes as
its inputs the outside air temperature (AHU1\OA-TEMP) and
the relative humidity of outside air (AHU1\OA-RH). These
values are entered into the enthalpy algorithm. The CMD
block reads the result, and commands an AD object
(AHU1\OA-ENRH) to this value.

A period of 00:05:00 is defined for this process, which means
it will run once every two minutes.

Note: The ENRH and CMD blocks, both operation blocks,
must be placed in a process.

Figure 58: ENRH Block Example

Example

�

�������

�

�

��

�

��

����

�� ��

��

����

��
���

� ��

����	

����	
��

�����

��

����

�� ����

100 Operation and Special Blocks—ENRH

Operation and Special Blocks—EQN 101

EQN (Equation) Block

Math

Creates a user-defined equation.

The equation can use up to four real inputs, four constants,
and a variety of math functions. The available functions
include the following:

+ addition SIN sine

- subtraction COS cosine

* multiplication TAN tangent

/ divide ABS absolute value

^ exponentiation MIN minimum value

SQR square root MAX maximum value

LOG natural log AVG average

PI PI

You must follow this nomenclature:

I1, I2, I3, I4 for Inputs
C1, C2, C3, C4 for Constants

SQR(e), LOG(e), SIN(e),COS(e),TAN(e),ABS(e)

MIN(I1,I2,I3,...,I12)
MAX(I1,I2,I3,...,I12)
AVG(I1,I2,I3,...,I12)

PI

where e = numeric expression

Note: The angle for the trigonometric functions is assumed
to be radians.

Category

Purpose

Details

102 Operation and Special Blocks—EQN

You may use the inputs, constants, and operations any number
of times, as long as the total expression line is less than or
equal to 50 characters. Also, you may use up to 20 sets of
nested parentheses. Use parentheses to indicate the order of
math evaluation.

Expressions in the EQN block are evaluated according to
operator precedence. The following table shows the order of
execution of the operators, where 1 is the highest and the first
executed. In the case of equal rank, the operators are executed
from left to right. The evaluation sequence is modified by
parentheses, which have precedence over any operator.

Operator Definition Rank Type
() Group Operations 0 Any

^ Exponential 1 Arithmetic

- Unary Minus 2 Arithmetic

+ Unary Plus 2 Arithmetic

*,/ Multiply, Divide 3 Arithmetic

+,- Add, Subtract 4 Arithmetic, Time

DIFF Differential 5 Arithmetic

> Greater Than 6 Relational

< Less Than 6 Relational

≥≥≥≥ Greater or Equal
to

6 Relational

≤≤≤≤ Less or Equal to 6 Relational

= Equal to 6 Relational

<> Not Equal 6 Relational

NOT Negation 7 Logical

AND Conjunction 8 Logical

OR Disjunction 9 Logical

XOR Exclusive OR 9 Logical

You can specify a constant value for an input instead of
connecting an external input. Enter a constant value in the
data base template.

Operation and Special Blocks—EQN 103

The Editor checks the equation you enter and outputs an error
message if there is something wrong with it. A caret (^)
symbol below the equation indicates the approximate location
of the error. The possible error messages are:

Error ! Illegal Operator

The operator entered is not one of the following: +, -, *, /, ^.

Error ! Invalid identifier

An invalid identifier is entered. See the note below for all
valid characters and symbols allowed.

Error ! Missing expression/operand

The function is missing an expression or operand.

Error ! Missing Operator

A required operator is missing.

Error ! Missing left parenthesis

A required left parenthesis is missing.

Error ! Missing right parenthesis

A required right parenthesis is missing.

Error ! No expression

The right parenthesis has no matching left parenthesis.

Error ! Too many parameters

The function has more than 12 parameters defined.

Note: You must enter an equation in the Equation (Output)
field, or the Compiler will output an error. Also, all
inputs that you connect to the EQN block must be
represented in the equation. Otherwise, the Compiler
will output an error.

104 Operation and Special Blocks—EQN

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

INPUT 1 (I1) INPUT 1 ANA 0.000000 Real N X X I1

INPUT 2 (I2) INPUT 2 ANA 0.000000 Real N X X I2

INPUT 3 (I3) INPUT 3 ANA 0.000000 Real N X X I3

INPUT 4 (I4) INPUT 4 ANA 0.000000 Real N X X I4

CONSTANT
1 (C1)

ANA 1.000000 Real X

CONSTANT
2 (C2)

ANA 1.000000 Real X

CONSTANT
3 (C3)

ANA 1.000000 Real X

CONSTANT
4 (C4)

ANA 1.000000 Real X

EQUATION
(OUTPUT)

STR Blank 50
Chars
See
Note

X

- OUTPUT ANA 0.000000 Real Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Note: Only use the following characters and symbols in the equation: I1-I4, C1-C4, +, -, *, /, (,),
SQR, ^, LOG, SIN, COS, TAN, ABS, MIN, MAX, AVG, and PI.

The output is unreliable if any of the inputs are unreliable.
For example, divide-by-zero, math underflow, or overflow
will cause unreliability.

The example shown in Figure 59 uses an EQN block to
calculate BTUs (British Thermal Units). The standard BTU
equation is:

BTUs = GPM (∆T) 500

where:

GPM = Gallons Per Minute

∆T = Delta T, change of two temperatures

Information Table

Reliability

Example

Operation and Special Blocks—EQN 105

Applying the BTU equation in GPL requires four inputs and
an output. The equation defined in the EQN template is:

Equation (Output) = I1 * (I2 - I3) * I4

where:

I1 = GPM
I2 = Temperature of chilled water return
I3 = Temperature of chilled water supply
I4 = 500 (Constant)

The value for Input 1 is from an AI object (AHU1\FLOW1)
that measures water flow. Input 2 is from an AI object that
measures the temperature of return water (AHU1\CHWR-T),
and Input 3 from an AI object that measures supply water
temperature (AHU1\CHWS-T). Input 4 is a constant, 500.0.
The CMD block reads the output of the EQN block. The
CMD block then commands an AD object (AHU\BTUs) to the
value, which can be read on a summary at an operator device.

A period of 00:02:00 is defined for this process, which means
it will run once every two minutes.

Note: The EQN and CMD blocks, both operation blocks,
must be placed in a process.

106 Operation and Special Blocks—EQN

Figure 59: EQN Block Example

��

������

�

��
�

�

�

�

��

����

���	�

���

�	��

1����

�

����

����

��

����

����
�

��

����

����
�

�

�%

�!

��&'�� �%(&�!

��

�����

�

��

Operation and Special Blocks—FILE 107

FILE Block

Miscellaneous

Links the files of multiple control strategies into one “master”
file. You can access the external control strategy by double-
clicking left on its FILE block.

The primary purpose of the FILE block is to divide a large
control strategy into smaller strategies. Another purpose is to
create one global diagram for an NCM that contains a FILE
block for each of the strategies in the NCM. If you translate a
GPL strategy file that includes FILE blocks, the files
referenced by the FILE blocks will also be translated.

When you translate a file that contains one or more FILE
blocks, only one list file (.LST) is created (not one for each
FILE block).

You may place FILE blocks inside of compounds. You may
not connect blocks that are in different file blocks.

The name you assign to the FILE block must not be one of the
reserved words or contain invalid symbols. (Refer to
Appendix F: Characters, Symbols, and Reserved Words.)
Also, the file name must match the file name of the control
strategy it is to reference. For example, if the file name of the
control strategy is AHU1, you must enter AHU1 in the FILE
block’s template. Also, the file must be in the same directory.
For example, if the full file name of the strategy is
“C:\JOB123\AHU1”, the FILE block must be stored under the
directory “C:\JOB123”. You do not have to specify a DOS
extension in the file name.

You may have up to 30 nested FILE blocks in one control
strategy file. Each nested file must be in the same directory.

After the FILE block is defined, double-click left on it to
access the external control strategy. To return to the previous
strategy, click left on the File Block icon (up arrow) that
appears in the upper right corner of the work area.

Category

Purpose

Details

108 Operation and Special Blocks—FILE

The FILE block is different from operation blocks in that you
cannot connect two FILE blocks or simulate a FILE block.
However, you can simulate the contents of the FILE block.

Field Name Connect Name Type Default Range RC T I O LB
File Name STR Blank 8 Char X

This block has no associated reliability.

The example in Figure 60 shows four FILE blocks. Each
FILE block represents control strategies for four different air
handlers: AHU1, AHU2, AHU3, and AHU4. The control
strategies can be accessed by double-clicking on one of the
FILE blocks. (Query mode must be active.)

This example has no period defined since FILE blocks need
not be placed in processes.

����

����

����

���	

����

���

����

����

�������

Figure 60: FILE Block Example

Information Table

Reliability

Example

Operation and Special Blocks—FILT 109

FILT (Filter) Block

Calculations

Smooths out a change in value by taking a percentage of
change and adding to the previous value.

Note: This is a first-order exponential filter.

The percentage the FILT block uses is based on the filter
weight, a user-specified parameter. Figure 61 shows the effect
of filter weight on an input.

Figure 61: Effect of a Filter Weight

Category

Purpose

Details

�����

����

����������������

����	�

���������������

110 Operation and Special Blocks—FILT

This block has a Reset input, which determines whether the
output will be filtered. When the Reset input is not externally
connected, its value is always false and reliable, and the input
is always filtered. However, when the Reset input is
externally connected and reliable, the output is as follows:

Reset Input Output
True Equals input value (not filtered).

False Filtering occurs.

When the process that contains the FILT block runs for the
first time, the output depends on the Reset input. The
following chart illustrates:

Reset Input First Output
Not Connected Input/Filter Weight

True and Reliable Input

False and Reliable Input/Filter Weight

True or False and
Unreliable

Input

For second and subsequent executions, the algorithm uses the
previous output to calculate a new output.

Operation and Special Blocks—FILT 111

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Filter Weight FILTER ANA 1.000000 Real ≥
1.0

N X X F
W

- RESET BIN 0 0,1 N X R

- INPUT ANA Real Y X IN

- OUTPUT ANA 0.000000 Real Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

The output of this block is unreliable if the value of the input
or filter weight is unreliable. If the Reset input is unreliable,
the output will be the value of the input, flagged unreliable.

This example (Figure 62) filters accumulated tons, whose
values vary widely. Actual tons (ACT_TONS) are stored in a
SVAR block and is input into the FILT block, which applies a
filter of 20 (20.0). The CMD block then reads the result,
which in turn sends the filtered tons value to an AD object
(AHU1\FILT-TONS) for reading on a summary at an operator
device.

A period of 00:02:00 is defined for this process, which means
it will run once every two minutes.

Note: All operation blocks in this example must be placed
in a process. These include: FILT, SVAR, and CMD.

Information Table

Reliability

Example

112 Operation and Special Blocks—FILT

Figure 62: FILT Block Example

��

�������

�

�

��

�

����

����

���

���!����

� ��

����� �"#

�����#

�#

����

����$����

Operation and Special Blocks—FREL 113

FREL (Force Reliable) Block

Reliability

Forces an output to be reliable. The output value is the same
as the input value. The output is always reliable, regardless of
the reliability of the input.

The block can be configured for binary, analog, or time
values.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 CHAR X

Type TAB ANALOG ANALOG,
BINARY,
TIME

X

- INPUT ANA Real Y X IN

- OUTPUT ANA 0.000000 Real Y X O

- INPUT BIN 0,1 Y X I

- OUTPUT BIN 0 0,1 Y X O

- TIME IN TIM TIME Y X TI

- OUTPUT TIM 00:00:00 TIME Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

The output of the FREL block is always reliable, regardless of
the reliability of the input. Note that if any unreliable input
comes into the process containing the FREL block, the
process itself is still unreliable.

Category

Purpose

Information Table

Reliability

114 Operation and Special Blocks—FREL

In the example shown in Figure 63, the GPL process reads the
Value attribute of the AI object. If the Value attribute is
reliable, the Force Reliable block passes that value to its
output. The ADD block adds 5.0 to the value, which the
SVAR block then reads.

If the GPL process detects that the Value attribute of the AI
object is unreliable, it uses the last known reliable value and
flags it unreliable. The FREL block takes this value and flags
it reliable, and the process continues as described above.

Note: All operation blocks in this example must be placed
in a process. They include: FREL, ADD, CNST,
and SVAR.

Figure 63: FREL Block Example

Example

��
����
��"%

���� ���
����

�����

	
��

��

�

��

��

� �

��

����

�

Operation and Special Blocks—HSEL 115

HSEL (High Select) Block

Selectors

Selects the highest value of two, three, or four real inputs.

You can configure this block to accept two, three, or four
inputs. The default is two. If you want to select between
three or four inputs, you must first specify the number of
inputs in the template before making the connection.

Also, you can specify a constant value for an input instead of
connecting an external input. Enter a constant value in the
data base template.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Input 1 INPUT 1 ANA 0.000000 Real N X X I1

Input 2 INPUT 2 ANA 0.000000 Real N X X I2

Number of
Inputs

INT 2 2,3,4 X

- INPUT 3 ANA Real N* X I3

- INPUT 4 ANA Real N* X I4

- OUTPUT ANA 0.000000 Real Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

* Input 3 is a required connection if you set the Number of Inputs field to 3.

Input 4 is a required connection if you set the Inputs field to 4.

Category

Purpose

Details

Information Table

116 Operation and Special Blocks—HSEL

The output of this block is unreliable if any of the inputs are
unreliable.

In the example of Figure 64, the HSEL block chooses the
highest of three multi-zone temperatures. The HSEL block
takes as inputs temperatures as reported by three AI objects:
MZU1\ZN-T1, MZU1\ZN-T2, and MZU1\ZN-T3. The CMD
block then reads the highest of these values as selected by the
HSEL, and sends the value to an AD object (MZU1\HI-ZN)
for reading on a summary at an operator device.

A period of 00:02:00 is defined for this process, which means
it will run once every two minutes.

Note: The HSEL and CMD blocks, both operation blocks,
must be placed in a process.

Figure 64: HSEL Block Example

Reliability

Example

��

������

�

��

��

�

��

��

"&��

&�$��

��

"&��

&�$��

��

"&��

&�$�	

�#

"&��

��$&�
�

�"#

�����#
����

��

�

Operation and Special Blocks—LSEL 117

LSEL (Low Selector) Block

Selectors

Selects the lowest value of two, three, or four inputs.

You can configure this block to accept two, three, or four
inputs. The default is two. If you want to select between
three or four inputs, you must first specify the number of
inputs in the template before making the connection.

Also, you can specify a constant value for an input instead of
connecting an external input. Enter a constant value in the
data base template.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Input 1 INPUT 1 ANA 0.000000 Real N X X I1

Input 2 INPUT 2 ANA 0.000000 Real N X X I2

Number of
Inputs

INT 2 2, 3, 4 X

- INPUT 3 ANA Real N* X I3

- INPUT 4 ANA Real N* X I4

- OUTPUT ANA 0.000000 Real Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

* Input 3 is a required connection if you set the Number of Inputs field to 3. Input 4 is a required
connection if you set this field to 4.

The output of this block is unreliable if either of the inputs is
unreliable.

Category

Purpose

Details

Information Table

Reliability

118 Operation and Special Blocks—LSEL

In the example of Figure 65, the LSEL block chooses the
lowest of four multi-zone temperatures to obtain a heating
setpoint. The LSEL block takes as inputs temperatures as
reported by four AI objects: MZU1\ZN-T1, MZU1\ZN-T2,
MZU1\ZN-T3, and MZU1\ZN-T4. The CMD block then
reads the lowest of these values as selected by the LSEL
block, and sends the value to an AD object (MZU1\HT-
STPNT) for reading on a summary at an operator device.

A period of 00:02:00 is defined for this process, which means
it will run once every two minutes.

Note: The LSEL and CMD blocks, both operation blocks,
must be placed in a process.

Figure 65: LSEL Block Example

Example

��

�������

�

��
�

�

�

�

��

"&��

&�$��

����

��

"&��

&�$�	

��

"&��

&�$��

�

��

��

�"#

�����#

�

��

��

"&��

&�$�

�#

"&��

��$��%��

Operation and Special Blocks—LTCH 119

LTCH (Latch) Block

Logic

Remembers the binary state that was last True, and passes this
information to its output.

Figure 66, and the tables that follow, help illustrate the Latch
function.

Figure 66: Latch Function

Truth Table (when reliable):

Input Reset Output
True False True

False True False

True True Last Output

False False Last Output

Category

Purpose

Details

����

�����

��	
�

�
�	
�

 �'��

��
��

�(�'�

����

����

�(�'�

����

�(�'�

120 Operation and Special Blocks—LTCH

Transition Tables (when reliable):

Change Of Input Reset Output
True --> False False Last Output

False --> True False True (latched)

True --> False True False (latched)

False --> True True Last Output

Input Change Of Reset Output
True True --> False True (latched)

True False --> True Last Output

False True --> False Last Output

False False --> True False (latched)

Note: The initial condition of the output is False.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

- INPUT BIN 0,1 Y X I

- RESET BIN 0,1 Y X R

- OUTPUT BIN 0 0,1 Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

The output of this block is unreliable if the input or Reset
input is unreliable. If either input is unreliable, the output
value will be the previous value of the output, and will be
unreliable.

The example in Figure 67 contains a LTCH block that
provides an interlock function for a return fan (AHU1\RFAN),
based on the status of three zone smoke detectors (AHU1\Z1-
SMOKE, Z2-SMOKE, Z3-SMOKE). When AHU1\Z1-
SMOKE reports smoke, the 2CMD block issues a command to
start the return fan. When all the smoke detectors return to
normal, the 2CMD block sends a REL_PRI (release priority)
command to the return fan.

Information Table

Reliability

Example

Operation and Special Blocks—LTCH 121

A period of 00:00:00 is defined for this process since it needs
to run only when a triggerable attribute of one of the BI
objects changes.

Note: All operation blocks in this example must be placed
in a process. They include: LTCH, OR, NOT, and
2CMD.

Figure 67: LTCH Block Example

���
���

��

� ��"#

��� �

 ���% �

)�

����

 ����

��

��

)�

����

&�$�"�*� ��

� ��
����

����
�

�

)�

����

&�$�"�*�

��

����

��� $�

)�

����

&	$�"�*�

�

�

�

�

��

122 Operation and Special Blocks—LTCH

Operation and Special Blocks—MSEL 123

MSEL (Mode Selector) Block

Selectors

Selects an input based on the analog Mode Input, and transfers
the input’s value to the output. The MSEL block is basically
an analog multistate switch.

You can configure the MSEL block as follows:

• To accept analog, binary, or time data--The default is
analog. If you want to use binary or time data, you must
specify the type of data in the template before making the
connection.

• To accept two to eight modes--The default is two modes.
If you want to select between three to eight modes, you
must specify the number of modes in the template.

• To use a constant value as the input instead of an external
input--Enter a constant in the data base template of the
block.

This block has an input called Mode Input. The Mode Input
provides two functions:

• Decides which input to send to the output.

• Decides which mode to select.

Since GPL requires real numbers, not integers, the Mode Input
uses analog numbers in the range of 0.50 to 8.49. The MSEL
block converts a value in this range to an integer by rounding
(e.g., 0.50 to 1.49 = 1.0; 1.50 to 1.99 = 2.0). For example, if
the Mode Input is 1.3, the MSEL block will convert it to 1.0.
The following chart details the action of the Mode Input.

Category

Purpose

Details

124 Operation and Special Blocks—MSEL

Mode Input Mode Selected Output
0.50 - 1.49 1 Input 1

1.50 - 2.49 2 Input 2

2.50 - 3.49 3 Input 3

3.50 - 4.49 4 Input 4

4.50 - 5.49 5 Input 5

5.50 - 6.49 6 Input 6

6.50 - 7.49 7 Input 7

7.50 - 8.49 8 Input 8

This block also has an Active Input and Active Output, which
provide an OR function that can be used for an interlock
application. The inputs to the OR function are Active Input
and the Active Output Mode Flag. Each mode has its own
Active Output Mode Flag, which is configured in the data
base template. The following chart describes the OR function
as it applies to any mode.

Active Input Active Output
Mode Flag

Active Output

True Yes (True) True

True No (False) True

False Yes (True) True

False No (False) False

If the Active Input is not connected, its value is False and
reliable.

Operation and Special Blocks—MSEL 125

The Number of Input and Mode fields that are offered on the
template depends on what you specify in the Number of
Modes field.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Number of
Modes

INT 2 2-8 X

Type TAB ANA ANALOG,
BINARY,
TIME

X

Input 1 INPUT 1 ANA 0.000000 Real N X X I1

INPUT 1 BIN 0 0,1 N X X I1

TIME IN1 TIM 00:00:00 Time N X X T1

Input 2 INPUT 2 ANA 0.000000 Real N X X I2

INPUT 2 BIN 0 0,1 N X X I2

TIME IN2 TIM 00:00:00 Time N X X T2

Input 3 INPUT 3 ANA 0.000000 Real N X X I3

INPUT 3 BIN 0 0,1 N X X I3

TIME IN3 TIM 00:00:00 Time N X X T3

Input 4 INPUT 4 ANA 0.000000 Real N X X I4

INPUT 4 BIN 0 0,1 N X X I4

TIME IN4 TIM 00:00:00 Time N X X T4

Input 5 INPUT 5 ANA 0.000000 Real N X X I5

INPUT 5 BIN 0 0,1 N X X I5

TIME IN5 TIM 00:00:00 Time N X X T5

Input 6 INPUT 6 ANA 0.000000 Real N X X I6

INPUT 6 BIN 0 0,1 N X X I6

TIME IN6 TIM 00:00:00 Time N X X T6

Input 7 INPUT 7 ANA 0.000000 Real N X X I7

INPUT 7 BIN 0 0,1 N X X I7

TIME IN7 TIM 00:00:00 Time N X X T7

Input 8 INPUT 8 ANA 0.000000 Real N X X I8

INPUT 8 BIN 0 0,1 N X X I8

TIME IN8 TIM 00:00:00 Time N X X T8

Continued on next page . . .

Information Table

126 Operation and Special Blocks—MSEL

Field Name
(Cont.)

Connect Name Type Default Range RC T I O LB

Mode 1 BIN N (No) Y(Yes),
N(No)

X

Mode 2 BIN N (No) Y(Yes),
N(No)

X

Mode 3 BIN N (No) Y(Yes),
N(No)

X

Mode 4 BIN N (No) Y(Yes),
N(No)

X

Mode 5 BIN N (No) Y(Yes),
N(No)

X

Mode 6 BIN N (No) Y(Yes),
N(No)

X

Mode 7 BIN N (No) Y(Yes),
N(No)

X

Mode 8 BIN N (No) Y(Yes),
N(No)

X

- MODE ANA Y X M

- OUTPUT ANA 0.000000 Real Y X O

BIN 0 0,1 Y X O

TIM 00:00:00 Time Y X O

- ACTIVE IN BIN 0 0,1 N X AI

- ACTIVE BIN 0 0,1 N X A

- CONTROL CTL N X CF

- CONTROL CTL N X CF

The output of the MSEL block is unreliable when the input
value selected to be passed to the output is unreliable. An
input can be unreliable if its value is unreliable or is outside
the configured range. For example, if the block is configured
for three modes, and the input is 3.5 or greater, the output will
be unreliable and no advisory will be issued.

The Active Output is unreliable if either the Mode Input or
Active Input is unreliable, or if both are unreliable.

The example in Figure 68 is of a 100% outdoor air system.
The MSEL block chooses between three damper settings
based on the building’s mode (BLD_MODE). The
BLD_MODE values in the table below come from a time
programming process that determines the building’s mode of
operation. See the following table.

Reliability

Example

Operation and Special Blocks—MSEL 127

BLD Mode Mode
Selected

Output

0.50 - 1.49 1 0% Open sent to AHU1\DPR-
CTRL

1.50 - 2.49 2 10.0% Open (minimum) sent to
AHU1\DPR-CTRL

2.50 - 3.49 3 100.0% Open (maximum) sent to
AHU1\DPR-CTRL

The CMD block reads the selected mode and sends a
SET_AOS command to the damper control (AHU1\DPR-
CTRL).

A period of 00:02:00 is defined for this process, which means
it will run once every two minutes.

Note: All operation blocks in this example must be placed
in a process. They include: SVAR, MSEL, and
CMD.

Figure 68: MSEL Block Example

�������

��

��

�

���

)�#!"�#�

���

����

#% $�� �

����

������

�

�%

"

����

����

����

����

�����

�

�

��

��

�

���

�����	�

128 Operation and Special Blocks—MSEL

Operation and Special Blocks—MUL 129

MUL (Multiply) Block

Math

Multiplies two inputs using the following equation:

Input 1 * Input 2 = Output

The inputs to the MUL block can be analog only.

You can specify a constant value for an input instead of
connecting an external input. Enter a constant value in the
data base template.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Input 1 INPUT 1 ANA 0.000000 Real N X X I1

Input 2 INPUT 2 ANA 0.000000 Real N X X I2

- OUTPUT ANA 0.000000 Real Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

The output of the MUL block is unreliable if any of its inputs
are unreliable.

Category

Purpose

Details

Information Table

Reliability

130 Operation and Special Blocks—MUL

In this example (Figure 69), two MUL blocks are used as part
of the standard equation for BTUs (British Thermal Units).
The BTU equation is:

BTUs/Hour = GPM (∆T) 500

where:

GPM = Gallons Per Minute

∆T = Delta T, change of two temperatures

To convert this equation into a GPL diagram, three math
blocks are required:

SUB: Subtracts two chilled water temperatures to find ∆T;

MUL (two): Multiplies GPM by 500.0 by ∆T.

The example in Figure 69 performs the following:

1. GPM is multiplied by 500.0. The GPM figure is obtained
from an AI object that measures flow (AHU1\FLOW).
This is Input 1 of the MUL block. Input 2 of the MUL
block is 500.0, from a CNST block.

2. ∆T is calculated. This value is obtained from two AI
objects, one reporting chilled water return temperature
(AHU1\CHWR-T), and the other chilled water supply
temperature (AHU1\CHWS-T). Input 1 of the SUB block
is AHU1\CHWR-T, and Input 2 is AHU1\CHWS-T.

3. The result of the MUL and SUB blocks is multiplied.
Input 1 of the MUL block is from the first MUL block,
and Input 2 is from the SUB block.

Then, a command block reads the calculated value, and sends
it to an AD object (AHU1\BTU_HR), whose value can be
read on a summary at an operator device.

A period of 00:02:00 is defined for this process, which means
it will run once every two minutes.

Note: All operation blocks in this example must be placed
in a process. They include: both MUL blocks, SUB,
and CMD.

Example

Operation and Special Blocks—MUL 131

Figure 69: MUL Block Example

������

�

����

+����

�

�

��

��

��

����

��� $�

��

����

��� $�

��

����

����$�

�

��
��

�������

��

� �

��

�

�#

����

)��!�

��)

#����$�

�

��

��

����

���� ��

��

�������

�
��

�"#

�����#

132 Operation and Special Blocks—MUL

Operation and Special Blocks—NOT 133

NOT Block

Logic

Performs a logical Not operation on an input. The output is
equal to the opposite (logical negation) of the input.

The NOT block functions as follows:

Input Output
True False

False True

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

- INPUT BIN 0,1 Y X I

- OUTPUT BIN 0 0,1 Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

The output of the NOT block is unreliable if its input is
unreliable.

Category

Purpose

Details

Information Table

Reliability

134 Operation and Special Blocks—NOT

The NOT block in this example (Figure 70) aids in sending
one of two commands to an AI object (AHU1\OA-TEMP),
depending on the season of the year (AHU1\WINTER).
When the mode changes from winter to summer, the CMD
block sends summer alarm limits and differential to
AHU1\OA-TEMP.

A period of 00:00:00 is defined for this process, since it needs
to run only when a triggerable attribute of the BD object
changes.

Note: The NOT and CMD blocks, both operation blocks,
must be placed in a process.

Figure 70: NOT Block Example

Example

������

�

�

� ��

���

���������

��"#

��� "�

)#

����

�����

���

�

����

���
����

,+��

����

���

�

��

� �

�� #�

Operation and Special Blocks—OR 135

OR Block

Logic

Performs a logical OR operation on two, three, or four binary
inputs. The output is either True or False.

If any of the inputs into this block are True, the output is True;
otherwise, the output is False.

You can configure this block to have two, three, or four
inputs. The default is two. If you want to select between
three or four inputs, you must first specify the number of
inputs in the template before making the connection.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Number of
Inputs

INT 2 2, 3, 4 X

- INPUT 1 BIN 0,1 Y X I1

- INPUT 2 BIN 0,1 Y X I2

- INPUT 3 BIN 0,1 Y X I3

- INPUT 4 BIN 0,1 Y X I4

- OUTPUT BIN 0 0,1 Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

The output of the OR block is unreliable if any of its inputs
are unreliable.

Category

Purpose

Information Table

Reliability

136 Operation and Special Blocks—OR

In the example shown in Figure 71, the OR block aids in
choosing to start an exhaust fan (AHU1\EXH-FAN), based on
the status of two supply fans (AHU1\FAN1-ST and
AHU1\FAN2-ST). If either of the supply fans is on, the OR
block allows the CMD block to send a Start command to the
exhaust fan. Otherwise, the CMD block sends a Stop
command to the exhaust fan.

A period of 00:00:00 is defined for this process, since it needs
to run only when a triggerable attribute of one of the BI
objects changes.

Note: The OR and 2CMD blocks, both operation blocks,
must be placed in a process.

Figure 71: OR Block Example

Example

�	���

�

��

�

��

����"#

��� �

���%

)�

����

����$��

�� �

�

��
)�

����

����$��

��

���

�������

Operation and Special Blocks—PERD 137

PERD (Period) Block

Process Control

Changes the period of a process, either conditionally or
unconditionally. The process that is affected is the one in
which the PERD block is contained.

The PERD block can provide a conditional or unconditional
process period. A conditional PERD block changes the
process period based on some binary status, such as fan status
(Figure 72). An unconditional PERD block redefines the
process period, in which the period of the PERD block is used,
not the period as defined in the process compound template.

Figure 72: Conditional and Unconditional Periods

Category

Purpose

Details

����	

�

%� #

��-��-��

���

���

��������

���

����

��"%�

	����������

�������������

���

���"%

%� #

��-��-��

�
��

����

��"%�

��

��

��

���� �

138 Operation and Special Blocks—PERD

This block has an Enable input, which provides conditional
logic. If this optional input is connected, the process period
will be changed only when the Enable input is True and
reliable. If the Enable input is False (reliable or unreliable), or
True and unreliable, a period will not be changed. If the
Enable input is not connected, the period will be changed each
time the PERD block is executed.

When this block is executed and the Enable input is True, the
time specified in the PERD block’s template is used for the
processes’ period. However, if the Enable input is False, the
period specified in the process compound template or in
another PERD block is used.

More than one PERD block can be used in a single process.
However, the last PERD block to be executed will define the
period that the process actually uses.

A period of 00:00:00 will cause the process to run only when
triggered by some other factor, such as by a change-of-state of
an object’s triggerable attribute.

A process will not execute exactly as the period states. The
following external factors may affect execution:

• Some time is consumed in executing the process before
the period is determined.

• The timer of a WAIT block, if used in the process, is
added to the period timer.

• Higher priority processes may be running, preventing a
lower priority process from executing.

• The process may be executed before the period expires by
some other means (e.g., triggered by another process).

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Period TIME IN TIM 00:01:00 Time N X X TI

- ENA IN BIN 0,1 N X E

- ENA OUT BIN See Note 0,1 N X E

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Note: The ENA OUT can be connected only if the ENA IN is connected. The default is 0.

Information Table

Operation and Special Blocks—PERD 139

The PERD block will not set a period if the Enable input is
False (reliable or unreliable), or True and unreliable. In this
case, either the period as set by the last enabled PERD block
to be encountered, or the period as defined in the processes’
template, is used. The process period is also used if the
process contains multiple PERD blocks that are all disabled.
In addition, the Time In value of the PERD block is used
regardless of its reliability.

In this example (Figure 73), the PERD block directs this
process to run either once every two minutes (00:02:00) or
only when triggered (00:00:00). The period selected depends
on the status of a supply fan (AHU1\SFAN-ST). If the supply
fan is on, the SWCH block selects a period of 00:02:00
minutes, which means the process will run once every two
minutes. However, if the supply fan is off, the SWCH selects
a period of 00:00:00 minutes, in which case the process will
run only when triggered by the BI object (AHU1\SFAN-ST).
The lower portion of this diagram determines economizer
mode.

Note: All operation blocks in this example must be placed
in a process. They include: PERD, SVAR, SWCH,
and DFCM.

Reliability

Example

140 Operation and Special Blocks—PERD

Figure 73: PERD Block Example

������

��

%� #
��� ���"

�

���
���

�������

���
����

�� �

#��"
�

����

��

�

��

�

��
���

�������

����
��-��-��

����
��-��-��

�

��

�

��

�
��

�����

��

�
��

����

�

�� #�

Operation and Special Blocks—PIR 141

PIR (PI Reset) Block

Control

Resets a setpoint using a proportional plus integral algorithm.

Note: For network performance reasons, we recommend
that the process in which this block runs has a period
of at least one minute.

The PIR block calculates a value based on the difference
between the Setpoint, Input (feedback), Prop Band, and
Integral Time. The output is a result of using a proportional
plus integral control algorithm that is resident in the NCM.

The initial value of the output is the OFFSET if no error is
present and it is the first time the block is executed.

The PIR block uses the following algorithm:

calculate error:
error = SETPOINT - INPUT

if (abs(error) <= DEADBAND) then error = 0

if (error < DEADBAND) then error = error + DEADBAND

if (error > DEADBAND) then error = error - DEADBAND

calculate proportional term:
pterm = ((HI OUTPUT - LO OUTPUT) / PROPBAND) * error

calculate sample_time:
sample_time = current_time - last_time

calculate output:
OUTPUT = pterm + iterm + OFFSET;

if (OUTPUT > HI OUTPUT) then OUTPUT = HI OUTPUT

if (OUTPUT < LO OUTPUT) then OUTPUT = LO OUTPUT

calculate integral term:
if (sample_time <= INT TIME) then

 igain = sample_time / INT TIME

 iterm = igain * (OUTPUT - OFFSET) + (1 - igain) * iterm

Category

Purpose

Details

PIR Block
Algorithm

142 Operation and Special Blocks—PIR

Here are definitions of the terms used in the PIR block
algorithm.

SETPOINT

Desired INPUT value.

INPUT

Feedback value.

PROPBAND (Proportional Band)

Change in feedback that will cause a full scale change in
the value calculated by the function. If the PROPBAND
is 0, a runtime error will result.

INT TIME (Integral Time)

Number of minutes needed for the integral response to
equal the proportional response; must be greater than or
equal to 0, or an error is generated and a default value of
5 set unreliable is used.

OFFSET

Initial value of the reset function if no error is present the
first time the algorithm is executed.

DEADBAND

A value that is twice the acceptable value outside of
setpoint that must be crossed before change of output
occurs. Value must be greater than or equal to 0, or an
error is generated and a default value of 1.0 is used.

LO OUTPUT

Lowest value that this function will calculate.

HI OUTPUT

Highest value that this function will calculate.

RESTART

Logical value that, when True, causes the function to
reset the integral term (iterm) to zero.

Terms of Algorithm

Operation and Special Blocks—PIR 143

The PIR block can be configured for two types of control:
proportional only and proportional plus integral. To configure
for proportional only, set integral time (INT TIME) to 0. To
configure for proportional plus integral, integral time must be
greater than 0, and the time between successive block
executions must be less than integral time.

The following information applies to a PIR block configured
for proportional plus integral control.

This block has an optional input called Restart that resets the
integration term (iterm) to zero (0), which in effect cancels the
integral action of the PIR block. If the Restart input is not
connected, the default state of False and the integration term
(iterm) are used. If the Restart input is connected and its state
is True and reliable, the integration term (iterm) is reset to
zero (0), and the block functions as proportional only.

The integral action is zeroed (eliminated) the first execution
after:

• The process that contains the PIR block is downloaded or
enabled.

• The NCM that contains a process with a PIR block is
warm started.

• The time between successive PIR block executions is
greater than the Integral Time (INT TIME).

Subsequent executions of this block may cause the integral
term (iterm) to change to zero.

The output of the PIR block is limited to between the High
Output and Low Output. The integral action will not wind up
beyond these limits.

Two PIR Block
Configurations

PI Configuration
Only

144 Operation and Special Blocks—PIR

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Setpoint SETPOINT ANA 70.00000 Real N X X SP

Prop Band PROPBAND ANA 10.00000 Real ≠ 0 N X X PB

Integral Time INT TIME ANA 20.00000 Real ≥ 0
(minutes)

N X X IT

Offset OFFSET ANA 70.00000 Real N X X OS

Deadband DEADBAND ANA 1.000000 Real ≥ 0 N X X DB

High Output HI OUTPUT ANA 85.00000 See
Note

N X X HO

Low Output LO OUTPUT ANA 55.00000 See
Note

N X X LO
-

- INPUT ANA Real Y X IN

- RESTART BIN 0 0,1 N X RS

- OUTPUT ANA 0.000000 Real Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Note: Enter a real number for this value. The value for Low Output must be less than or equal to
High Output.

The output of the PIR block is unreliable if any of its inputs
are unreliable (or set unreliable because a value is out of
range). In this case, the output is set to be the last output set
unreliable, and the integration term (iterm) is set to zero (0).
When the PIR block returns to reliable, the integration term
(iterm) is again factored into the PIR algorithm.

In the following example (Figure 74), the PIR block calculates
a new setpoint for the AOS object (AHU1\SETPOINT), based
on outside air temperature (AHU1\OA-TEMP). The CMD
block sends the new setpoint value to the AOS object.

Information Table

Reliability

Example

Operation and Special Blocks—PIR 145

A period of 00:03:00 is defined for this process, which means
it will execute once every three minutes.

Note: The PIR and CMD blocks, both operation blocks,
must be placed in a process.

Figure 74: PIR Block Example

�	���

�

�

�

��

��"#

�������

��

���

������� ��

%�
���

����

���%����

146 Operation and Special Blocks—PIR

Operation and Special Blocks—PRNT 147

PRNT (Print) Block

Report

Prints a message to any printer on the network. Each time this
block is executed (and the Enable input is True and reliable),
the message will be sent to the printer identified in the block’s
data base template.

The Object Name field in the PRNT template defines the
printer to which the message is sent.

A value, the current date, and the current time may be
appended to the end of the message. Here is an example:

Outside temperature is: 76.0 01/01/90 13:24:02

In this example, the text entered in the template is “Outside
temperature is:.” The type of data selected is Analog. The
76.0°F value comes from an outdoor air temperature sensor.
The Date? and Time? fields are answered Yes. Notice that
time is presented in 24-hour format.

You can configure this block to accept analog, binary, or time
value connections. The default is analog. If you want to print
binary or time data, you must first specify the type of data in
the template before making a connection.

A carriage return and line feed is sent at the end of each print
statement.

This block has an Enable input, which provides conditional
logic. If this optional input is connected, the block will print a
message only when the Enable input is True and reliable. If
the Enable input is False (reliable or unreliable), or True and
unreliable, the block will not print a message. If the Enable
input is not connected, the block will print a message each
time it is executed.

Category

Purpose

Details

148 Operation and Special Blocks—PRNT

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Object Name
(Printer
Name)

STR Blank 8 Char X

Text STR Blank 50 Char X

Type TAB ANALOG ANALOG,
BINARY,
TIME

X

Date ? STR Y (Yes) Y(Yes),
N(No)

X

Time ? STR Y (Yes) Y(Yes),
N(No)

X

- ENA IN BIN 0,1 N X E

- ENA OUT BIN 0 0,1 N X E

- INPUT BIN 0 0,1 N X I

ANA 0.000000 Real N X IN

- TIME IN TIM 00:00:00 Time N X TI

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Note: Appendix F: Characters, Symbols, and Reserved
Words lists valid characters for use in messages.

No message is printed if the Enable input is False or
unreliable. However, if the input is unreliable, the message is
printed. The message does not indicate the value is unreliable.

Information Table

Reliability

Operation and Special Blocks—PRNT 149

The example in Figure 75 contains a PRNT block that sends a
message to the printer. If the building is occupied
(AHU1\OCC-UNOC) and the discharge air temperature
(AHU1\DSCH-TMP) is in high alarm, the PRNT block prints
this message:

AHU1\DSCH-TMP IS IN HI ALARM. VALUE IS: 80.0

A period of 00:00:00 is defined for this process since it needs
to run only when a triggerable attribute of the BI object
changes.

Note: The AND and PRNT blocks, both operation blocks,
must be placed in a process.

Figure 75: PRNT Block Example

Example

�	�����

�

�

� % ��

% ���

)�

����

���$����

��

��

��
��

���

��������

��#

��

�

150 Operation and Special Blocks—PRNT

Operation and Special Blocks—PULS 151

PULS (Pulse) Block

Logic

Outputs a True state for a period of time, then returns to False.

The PULS block has three different configuration types:
Cancelable, Non-cancelable, or One-shot.

The Cancelable type outputs a True state as long as the input
remains True and the pulse timer has not yet expired. The
output varies as shown in Figure 76 and according to the table
that follows.

Category

Purpose

Details

Cancelable PULS

152 Operation and Special Blocks—PULS

Figure 76: Cancelable Pulse Function

Cancelable Pulse
Change of Input Output

False --> True True for pulse time specified, or until input
returns to False

True --> False False until input changes to True

When the pulse timer expires, the process that contains this
block will be triggered. If the input returns to False before the
timer expires, the process will not be triggered. In addition,
the process is not triggered if you specify the timer as
00:00:00. In that case, the output is True for only one
execution.

For initialization applications, a Cancelable PULS block can
accept a constant of True for its input. In this case, the output
varies as follows:

Cancelable Pulse
Constant Input Output

True True for first execution and until pulse timer
expires, then False for subsequent
executions until NCM is warm started or
process is redownloaded

�����

���	

�������

���	

�
��

�
��

�����
���

����	

����������

����������

�����

�
��

�
��

�����

����	

������ ������
���

Operation and Special Blocks—PULS 153

The Non-cancelable type outputs a True state when the input
is True, and remains True until the pulse timer expires,
regardless if the input returns to False. The output varies as
shown in Figure 77 and according to the table that follows.

Figure 77: Non-Cancelable Pulse Function

Non-Cancelable Pulse
Change of Input Output

False --> True True for pulse time specified.

True --> False True until timer expires, then False.

When the pulse timer expires, the process that contains this
block will be triggered, and the output will return to False.
The process is not triggered if you specify the timer as
00:00:00. In this case, the output is True for only one
execution.

For initialization applications, a Non-cancelable PULS block
can accept a constant of True for its input. In this case, the
output varies as follows:

Non-Cancelable Pulse
Constant Input Output

True True for first execution and until pulse timer
expires, then False for subsequent
executions until NCM is warm started or
process is re-downloaded.

Non-Cancelable
PULS

�����

���	

��������

���	

�
��

�
��

�����
���

����	

���

����������

��������������

�����

�
��

�
��

�����

����	

������ ������

154 Operation and Special Blocks—PULS

The One-shot type outputs a True state when the input
changes to True, but for only one execution of the process.
This type does not trigger a process. The output varies as
shown in Figure 78 and according to the table that follows.

Figure 78: One-Shot Pulse Function

One-Shot Pulse
Change of Input Output

False --> True True for one execution of the process, then
back to False.

True --> False False until input changes to True.

For initialization applications, a One-shot PULS block can
accept a constant of True for its input. In this case, the output
varies as follows:

One-Shot Pulse
Constant Input Output

True True for first execution, then False
for subsequent executions until
NCM is warm started or process is
re-downloaded.

One-Shot PULS

���	

��������

���	

��	�����

����	��������

�����

�
��

�
��

�����

����	

�����

�
��

�
��

�����

����	

�����

������

�����

������
����	��������

Operation and Special Blocks—PULS 155

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Type TAB CANCEL CANCEL,
ONE
SHOT,
NON-
CANC

X

Time TIME IN TIM/
POP-
UP

00:00:05 Time >
00:00:00

N X X TI

- INPUT BIN 0,1 Y X I

- OUTPUT BIN 0 0,1 Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

The reliability of the PULS block depends on its type:
Cancelable, Non-cancelable, or One-shot.

The reliability of the output cannot change unless the value of
the input changes. The following table describes the
reliability of the Cancelable PULS block.

Input And Timer (IF...) Transition of
Output (AND...)

Output (THEN...)

If the input changes from False to True, and both
the input and timer are reliable.

False to True Reliable

If the input changes from True to False reliably
before the timer has expired.

True to False

If the input changes from False to True, and either
the input or timer is unreliable.

False to True Unreliable

If the input changes from True to False unreliably
and the timer has not expired.

True to False

Either the input changes from True to False,
regardless of reliability, and the timer has expired;
or the input’s value does not change, but its
reliability does.

No transition of
output

No Change in
Reliability

If the input remains True, regardless of reliability,
and the timer expires.

True to False

Information Table

Reliability

Cancelable

156 Operation and Special Blocks—PULS

An unreliable output cannot change to reliable until the input
makes a False to True transition. The following table
describes the reliability of the Non-cancelable PULS block.

Input and Timer (IF..) Output (THEN...)
If input changes from False to True, both the
input and the timer are reliable, and the timer is
not active.

Reliable

If the input changes from False to True, the
input and/or the timer is unreliable, and the timer
is not active.

Unreliable

If input changes from True to False or from
False to True, and the timer is active.

No Change in
Reliability

The output is unreliable if the input is unreliable.

Non-Cancelable

One-Shot

Operation and Special Blocks—PULS 157

The example in Figure 79 uses a One-shot PULS block in an
interlock sequence. When the supply fan starts
(AHU1\SFAN-ST1), the PULS block enables the CMD block
to send a Start command to the exhaust fan
(AHU1\EX-FAN1).

A period of 00:01:00 is defined for this process, which means
it will run once every minute or when a triggerable attribute of
the BI object changes.

Note: The PULS and CMD blocks, both operation blocks,
must be placed in a process.

Figure 79: PULS Block Example

Example

������

�

	

�

��

����

�����

��

�	
�

������� 	

�� �

��	�����
!�

���"

	#����"

158 Operation and Special Blocks—PULS

Operation and Special Blocks—RAMP 159

RAMP Block

Calculations

Varies an output at a predetermined linear rate, from one
value to another. The block can be used to gradually start
equipment.

You can configure the RAMP block for direct acting or
reverse acting control (Figure 80). A direct acting ramp
increases the output of the RAMP block for each execution by
adding the previous output value to the Step Size value. It
continues until the Output is greater than or equal to the End
value. Then, ramping stops. A reverse acting ramp decreases
the output of the RAMP block for each execution by
subtracting the Step Size value from the previous output
value. It continues until the Output is less than or equal to the
End value. Then, ramping stops.

To Define Set
Direct acting ramp (ascending) Start value < End value

Reverse acting ramp (descending) Start value > End value

Category

Purpose

Details

160 Operation and Special Blocks—RAMP

Figure 80: Ramp Function

This block has a Reset input. The RAMP block begins to
execute when the Reset input changes from True to False.

For the first execution, the block’s output is equal to the Start
value. For the second and subsequent executions, the output
is equal to the last output plus (direct) or minus (reverse) the
Step Size value. When the output reaches the End value, it
remains there until the Reset input changes from True to
False, and ramping starts again.

When Reset input is True and reliable, the output returns to
the Start value, and remains at the Start value until the Reset
input changes to False.

���	
	
����

���	

	�$
�����

	�������	��

�� �	

����������	��

	�$
�����

���
�
�����

���

�

���
�
�����

�� �	

	�$
�����

���

�

����������

������������������������

�

����������

������������������������

Operation and Special Blocks—RAMP 161

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Step Size STEPSIZE ANA 5.000000 Real ≥ 0 N X X SS

Start Value START VAL ANA 0.000000 Real N X X SV

End Value END VAL ANA 100.0000 Real N X X EV

- OUTPUT ANA 0.000000 Real Y X O

- RESET BIN 0 0,1 N X R

- CONTROL CTL N X CF

- CONTROL CTL N X CF

If the Reset input is True and reliable, the output equals the
Start value, flagged reliable. If the Reset input is unreliable,
the output equals the Start value, flagged unreliable. If the
Reset input is False and reliable, and the End value, Step Size,
or last output is unreliable, the output will be the last output,
flagged unreliable. Also, if an external input provides a Step
Size value of less than 0, a runtime error message is generated.

In the following example (Figure 81), the RAMP block
gradually opens a damper from 0 to 100% in 5% increments.
When the fan turns on (AHU1\FAN1-ST), the reset on the
RAMP block is set to 0, which activates the ramp. The CMD
block sends the Start value of 0% to the PIDL loop that
controls the dampers (AHU1\DMPR-CTL). Then, the DFCM
block compares whether the output of the RAMP block is
greater than 95.0%.

If the output is less than 95.0%, the CMD block sends the
PIDL object a value of 5.0%, which is the Last Output value
plus the Step Size (0.0 + 5.0% = 5.0%). Then, 15 seconds
later (00:00:15), another comparison is made to see if the
output is less than 95.0%. As long as the comparison is True,
a command that is 5.0% greater than the last command is sent
to the dampers until a command of 100.0% has been sent.

Information Table

Reliability

Example

162 Operation and Special Blocks—RAMP

If the output is greater than 95.0%, the process period is set to
00:00:00, which stops the execution of the process.

Note: All operation blocks in this example must be placed
in a process. They include: RAMP, DFCM, CMD,
NOT, AND, and PERD.

Figure 81: RAMP Block Example

	
����

��

� ���

���"

������� 	

�

��

!�

���"

���"���

�

����

��

�

� �

�	��

%%&%%&"'

����

"%%(%)

����

'(%)

����

%(%)

�
�� 	� ��

��

�

�

���

�	�����

�

����
	

�

�

��

�

	
���

���

���
����

����

Operation and Special Blocks—READ 163

READ (Read Attribute) Block

Object Control

Obtains the value of any readable attribute of an object, except
string attributes. The purpose of the READ block is to access
the readable attributes that do not appear on the connection
menus. For a list of the readable attributes for each object,
refer to Appendix G: Attributes.

You may use the READ block to obtain the values of readable
attributes that appear on the connection menus, but you should
instead use a direct connection to access these.

You can configure this block to accept an analog, binary, or
time attribute connection. The default is analog. If you want
to read a binary or time attribute, you must first specify the
type of attribute in the template before making a connection.

Note: To configure this block to read integer values, define
its type as analog. The integer will be converted to
an analog value, since GPL cannot use integers
directly.

This block has an Enable input, which provides conditional
logic. If this optional input is connected, the block will read
the attribute only when the Enable input is True and reliable.
If the Enable input is False (reliable or unreliable), or True
and unreliable, the block will not read the attribute. If the
Enable input is not connected, the attribute is read each time
the block executes.

Category

Purpose

Details

164 Operation and Special Blocks—READ

Field Name Connect Name Type Default Range RC T I O LB
Block Name
(Attribute)

STR Blank 8 Char X

Type TAB ANALOG ANALOG,
BINARY,
TIME

X

- ENA IN BIN 0,1 N X E

- ENA OUT BIN See Note 0,1 N X E

- OUTPUT BIN 0 0,1 N X O

ANA 0.000000 Real N X O

TIME 00:00:00 Time N X O

- READ REA
D

Y X RD

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Note: The ENA OUT can be connected only if the ENA IN is connected.
The default is 0.

The output of the READ block is unreliable if the input
attribute is unreliable.

Information Table

Reliability

Operation and Special Blocks—READ 165

In the example shown in Figure 82, the READ block reads the
NOR_COND attribute of the BI object (AHU1\SFAN1-ST),
and sends its value to a printer. The NOR_COND attribute is
an integer, but since GPL does not recognize integers, this
value is configured as Analog in the READ data base
template. An Enable line is drawn from the BI’s value
attribute to the READ block, and another Enable line is drawn
from the READ block to the PRNT block. In this way, the
value of NOR_COND will be printed only when it changes
from off to on. The following statement is printed:

THE NORMAL CONTACT POSITION IS:<NOR_COND value>
01/01/90 13:24:02

When the value of NOR_COND changes from on to off,
no statement is printed.

A period of 00:00:00 is defined for this process, since it only
needs to run when a triggerable attribute of the BI object
changes.

Note: The READ and PRNT blocks, both operation blocks,
must be placed in a process.

Figure 82: READ Block Example

Example

	� !���

��
����

��

����

���	
��

�

�

��
�

����

���	���

�

�	

166 Operation and Special Blocks—READ

Operation and Special Blocks—RH 167

RH (Relative Humidity) Block

Psychrometric Equations

Calculates relative humidity based on dry bulb temperature
and dew point temperature.

The relative humidity calculation can be done in either
English or Metric units.

Valid ranges for the calculated relative humidity:

Dry Bulb Temperature: -147.9 to 391.9°F (-99.9 to 199.9°C)

Dew Point Temperature: -147.9 to 391.9°F (-99.9 to 199.9°C)

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Units TAB ENGLISH ENGLISH
METRIC

X

- DRY BULB ANA Real Y X DB

- DEW POINT ANA Real Y X DP

- OUTPUT ANA 0.000000 Real Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Category

Purpose

Details

Information Table

168 Operation and Special Blocks—RH

The output of this block is unreliable if the dry bulb
temperature input or dew point temperature input is
unreliable. Also, if either of these values is less than the
lowest part of their range, relative humidity is calculated using
the lowest range value (e.g., for dry bulb
temperature,-147.9°F), the output is unreliable, and a runtime
error message is generated. Similarly, if either of these values
is greater than the highest part of their range, relative humidity
is calculated using the highest range value (e.g., for dry bulb
temperature, 391.9°F), the output is unreliable, and a runtime
error message is generated.

A runtime error message is also generated if dew point
temperature is greater than dry bulb temperature.

In the example shown in Figure 83, the RH block
calculates return air relative humidity, based on return air
temperature (AHU1\RA-TEMP) and return air dew point
(AHU1\RA-DWPT). The calculation is made only when the
fan (AHU1\FAN1-ST) is on. The CMD block then sends the
calculated result to an AD point (AHU1\RA-RH), which can
be read at an operator device.

A conditional period of 00:02:00 is defined for this process,
which means it will execute once every two minutes, as long
as the fan is on. If the fan is off, a zero period is defined.

Note: All operation blocks in this example must be placed
in a process. They include: RH, CMD, and PERD.

Reliability

Example

Operation and Special Blocks—RH 169

Figure 83: RH Block Example

	"���

�

�!
�

�

��

��

���"

����	��

��

���"

������

���

�	����

��

�����
�

��

	

!�

���"

���"���

����

��������

�
��

���"

����*��

170 Operation and Special Blocks—RH

Operation and Special Blocks—RTOT 171

RTOT (Real-to-Time) Block

Time

Converts a real value in minutes or seconds into a time value
in 24-hour format.

The RTOT block can be configured for either minutes or
seconds resolution. You select either minutes or seconds in
the Resolution tab field. Minutes is the default.

If minutes resolution is chosen, the input value represents
a number of minutes. For example, an input value of
450 means 450 minutes:

450 minutes is converted to 07:30:00.

If seconds resolution is chosen, the input value represents
a number of seconds. For example, an input value of
450 means 450 seconds:

450 seconds is converted to 00:07:30.

An analog value is rounded before it is converted to time. For
example:

386.2 minutes is rounded to 386.0, then converted
to 06:26:00.

386.5 seconds is rounded to 387.0, then converted
to 00:06:45.

The time value is always represented in hours, minutes,
and seconds (00:00:00).

Note: A runtime error is generated when the input of the
RTOT block equals either less than 0 hours, or
greater than or equal to 24 hours.

Category

Purpose

Details

172 Operation and Special Blocks—RTOT

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Resolution TAB MINUTES MINUTES/
SECONDS

X

- INPUT ANA Real Y X IN

- OUTPUT TIM 00:00:00 Time Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

The output of the RTOT block is unreliable when the
conversion from real to time results in a value, after rounding,
that is less than 0 hours or greater than or equal to 24 hours. If
the result is less than 0 hours, the output is set to unreliable
and given a value of 00:00:00. Similarly, if the result is
greater than or equal to 24 hours, the output is set to unreliable
and given a value of 23:59:59.

In the example shown in Figure 84, the RTOT block converts
a time in minutes to a time in 24-hour format, to provide for
an adjustable delay. The minute value is an AD object
(AHU1\P1-DELAY) that is defined as 10.5 minutes, which
can be adjusted at an operator device. The RTOT block
rounds 10.5 minutes to 11.0, and then converts to 00:11:00.
The DLAY block reads this time value from the output of the
RTOT block, and if the fan is on (AHU1\FAN1-ST), sets a
delay of 00:11:00. When the delay timer expires, the process
is triggered and the following statement is printed 11 minutes
(00:11:00) after the fan has started:

RETURN AIR RELATIVE HUMIDITY IS <value>

A period of 00:00:00 is defined for this process, since it only
needs to run when a triggerable attribute of the BI object
changes.

Note: All operation blocks in this example must be placed
in a process. They include: RTOT, PRNT, DLAY,
and SVAR.

Information Table

Reliability

Example

Operation and Special Blocks—RTOT 173

Figure 84: RTOT Block Example

	�#����

��

���

���"

�"��	 �+
	

�

�"

�
!�

���"

���"���

�����

	 ��

�
����

�����

��	

��������
����

174 Operation and Special Blocks—RTOT

Operation and Special Blocks—SAMP 175

SAMP (Sample and Hold)
Block

Selectors

Reads and stores an analog value when the Hold input is True
and reliable.

The SAMP block reads and stores the value of the input when
the Hold input changes from False to True. The value is held
until the Hold input changes to False, at which point the
output will equal the input.

The following table describes how the transition of the Hold
input affects the output and its reliability.

Time Hold Input
Transition

Output Reliability
of Output

T0 False and
reliable

Input Input’s
reliability

T1 True and
reliable

Snapshot of
Input at
transition time

Input’s
reliability

T2 True and
unreliable

Snapshot of
Input at T1

Unreliable

T3 True and
reliable

Snapshot of
Input at T1

Input’s
reliability at
T1

T4 False and
unreliable

Input Unreliable

T5 False and
reliable

Input Input’s
reliability

The SAMP block can sample and hold analog values only.

Category

Purpose

Details

176 Operation and Special Blocks—SAMP

Though these three blocks are similar, they have the following
differences.

Block Input is Assigned to Output
When:

SAMP Hold input is False and reliable

SVAR Enable input is True and reliable

VH Enable input is True and reliable

The SVAR differs from the other blocks in that it can share
data between processes on the same NC. In addition, more
than one SVAR block with the same name cannot exist in the
same process.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

- HOLD IN BIN 0,1 Y X H

- HOLD OUT BIN 0 0,1 N X H

- INPUT ANA Real Y X IN

- OUTPUT ANA 0.000000 Real Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

The output of this block is unreliable if the Hold input is
unreliable. If the Hold input is reliable and False, the
reliability of the output matches the reliability of the input. If
the Hold input is reliable and True, the reliability of the output
matches the reliability of the input when the sample was
taken.

Differences
Between SAMP,
SVAR, and VH
Blocks

Information Table

Reliability

Operation and Special Blocks—SAMP 177

In the following example (Figure 85), the SAMP block
samples and holds the value of the outside air temperature
(OA-TEMP) when the fan (AHU1\FAN-ST) starts. The
SVAR block (BEG_OAT) reads this value, which can then be
used in a different process. The SVAR block holds this value
when the fan stops. When the fan starts again, outside air
temperature is again read and sent to the SVAR block.

A period of 00:05:00 minutes is defined for this process,
which means it will run once every five minutes, or when a
triggerable attribute of the BI object changes.

Note: The SAMP and SVAR blocks, both operation blocks,
must be placed in a process.

Figure 85: SAMP Block Example

Example

�������

����

!	,-���

��

�	
�

������� ��

�����

�

��

�
��

�	
�

�����

�

178 Operation and Special Blocks—SAMP

Operation and Special Blocks—SPAN 179

SPAN Block

Calculations

Outputs a value that is in proportion to the input. The input
and output are linear. For example:

Input
Range

Input
Default

Output
Range

Output
Default

0 - 100 50 0 - 10 5

You can configure the SPAN block for direct acting or reverse
acting control. The values of Output Range 1 and Output
Range 2 determine the action. A direct acting span function
increases the value of an output; a reverse acting span function
decreases the value of an output. See the table and Figure 86
that follow.

To Define Set
Direct acting span Output Range 1 = 0.0

(ascending) Output Range 2 = 100.0

Reverse acting span Output Range 1 = 100.0

(descending) Output Range 2 = 0.0

Category

Purpose

Details

180 Operation and Special Blocks—SPAN

���

�����

	�������	��

����������	��

���.������/��0
���

�
���.������/��"

	���

�����

���

�����

���.������/��"
���

�
���.������/��0

	���

�����

�.����$

���.��

�.����$

���.��

�� ����

Figure 86: SPAN Functions: Direct Acting and
Reverse Acting

Note: You must define a Low input that is less than the
High input. Otherwise, the Translator will generate a
fatal error.

Operation and Special Blocks—SPAN 181

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Low Input LO INPUT ANA 0.000000 Real N X X LI

High Input HI INPUT ANA 100.0000 Real N X X HI

Output
Range 1

OUT RG 1 ANA 0.000000 Real N X X R1

Output
Range 2

OUT RG 2 ANA 100.0000 Real N X X R2

- INPUT ANA Real Y X IN

- OUTPUT ANA 0.000000 Real Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

The output of this block is unreliable if one of the following is
unreliable: Input, High Input, Low Input, Output Range 1, or
Output Range 2. If the input is greater than the High Input,
the value of the High Input is used for spanning. Similarly, if
the input is less than the Low Input, the value of the Low
Input is used. In both cases, the output will be reliable.

In the following example (Figure 87), the SPAN block
performs a reset schedule on a setpoint (AHU1\SETPT), based
on the outside air temperature (AHU1\OA-TEMP). The
SPAN block has these parameters, all defined with CNST
blocks:

High Input: 65.0°F

Low Input: 58.0°F

Output 1: 60.0°F

Output 2: 55.0°F

Information Table

Reliability

Example

182 Operation and Special Blocks—SPAN

This process runs periodically when the fan (AHU1\FAN-ST)
is on, or when the fan changes from on to off or from off to
on. When the outside air temperature is 65.0°F, the CMD
block will send a setpoint of 55.0°F to the PIDL object. When
the outside air temperature is 58.0°F, the CMD block will
send a setpoint of 60.0°F to the PIDL object. Refer to
Figure 88.

A conditional period of 00:03:00 minutes is defined for this
process, which means it will run once every three minutes, as
long as the fan (AHU1\FAN-ST) is on.

Note: All operation blocks in this example must be placed
in a process. They include: SPAN, CMD, and
PERD.

Figure 87: SPAN Block Example

�� ����

��

�

���

�	�����

�	������

���

���"

�	���

����

��������

	

!�

���"

������

�

� �

����

'1(%

����

2'(�

����

2%(%

����

''(%

��

���

���"

����	��
���	

� �
�� ��

� �
�" �0

Operation and Special Blocks—SPAN 183

���.����

3���.��4
����

���� 2'(%

����	��

3��.��4

����	

����

Figure 88: Graphing the SPAN Example

184 Operation and Special Blocks—SPAN

Operation and Special Blocks—STOP 185

STOP Block

Process Control

Stops the current execution of a process.

When this block is executed, the process ends just as if the
entire process had completed normally. It executes again
when the period of the process (if defined) expires, or when
the process is triggered.

Note: The primary application of the STOP block is to
prevent unnecessary processing. We do not
recommend you use the STOP block for any other
application, except under extreme circumstances.

This block has an Enable input, which provides conditional
logic. If this optional input is connected, the block will stop
process execution only when the Enable input is True and
reliable. If the Enable input is False (reliable or unreliable), or
True and unreliable, the block will not stop process execution.
If the Enable input is not connected, process execution will be
stopped each time the block executes.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

- ENA IN BIN 0,1 N X E

- ENA OUT BIN See Note 0,1 N X E

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Note: The ENA OUT can be connected only if the ENA IN is connected. The default is 0.

Category

Purpose

Details

Information Table

186 Operation and Special Blocks—STOP

When this block is executed and the Enable input is False or
unreliable, the execution of the process is not stopped.

In this example (Figure 89), the STOP block is used to aid in
improving NCU performance by allowing three commands to
execute only when necessary.

In the example, if the fan status (AHU1\F-STATUS) is off, the
current execution of the process is stopped after the STOP
block is executed. However, if the fan status is on, the process
executes normally, sending commands to three different BO
objects two minutes apart. Also, a PRNT block will send a
message to the printer indicating that the exhaust/kitchen fan
interlock has been executed.

Note: This example does not require the STOP block to
perform the interlock function. It is used for
illustrative purposes only to show how NCU
performance could be improved. We highly
recommend that you do not use the STOP block for
this purpose.

A period of 00:00:00 is defined for this process, since it needs
to run only when a triggerable attribute of the BI changes.

Note: All operation blocks in this example must be placed
in a process. They include: NOT, STOP, PRNT,
both WAIT blocks, and the three CMD blocks.

Reliability

Example

Operation and Special Blocks—STOP 187

Figure 89: STOP Block Example

��#����

�

	

�

	

�����

������

!�

���"

��������

���

	

*���

%%&%0&%%

!�

���"

	#����"��

����

�����

����

*���

%%&%0&%%

��

�	
�

 ��	���

!�

���"

	#����0��

���

�����

�

����

�	���,	

���

�����

�

	

	

�

	

��

��

	
	

	

	

	

	

	

��

	

188 Operation and Special Blocks—STOP

Operation and Special Blocks—SUB 189

SUB (Subtraction) Block

Math

Subtracts two inputs using the following equation:

Input 1 - Input 2 = Output

The inputs into this block can be either analog or time.
Analog is the block’s default, so to connect time data,
configure the block for time in its data base template.

If you select analog in the Type field, the block uses real
math. If you select time, the block uses time math.
Time math is performed in 24-hour format
(e.g., 3:17:10 - 6:00:00 = 21:17:10).

You can specify a constant value in the template instead of
connecting an external input.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Type TAB ANALOG ANALOG,
TIME

X

Input 1 INPUT 1 ANA 0.000000 Real N X X I1

TIME IN1 TIM 00:00:00 Time N X X T1

Input 2 INPUT 2 ANA 0.000000 Real N X X I2

TIME IN2 TIM 00:00:00 Time N X X T2

- OUTPUT ANA 0.000000 Real Y X O

- OUTPUT TIM 00:00:00 Time Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Category

Purpose

Details

Information Table

190 Operation and Special Blocks—SUB

The output of the SUB block is unreliable if either of its inputs
is unreliable.

In this example (Figure 90), the SUB block is part of a
tonnage calculation. The standard tonnage equation is:

TONS = ∆T (GPM / 24)

where:

∆T = Delta T, change in chilled water return temperature and
chilled water supply temperature.

GPM = gallons per minute, a measured value.

To convert this equation into a GPL diagram, three math
blocks are required:

DIV: Divides GPM by 24

SUB: Subtracts two chilled water temperatures to find ∆T

MUL: Multiplies ∆T by GPM/24

The example in Figure 90 performs these calculations:

1. GPM is divided by 24. Input 1 of the DIV block is GPM,
which is from an AI object (AHU1\FLOW1) that reports
gallons per minute. Input 2 of the DIV block is 24, from
a CNST block.

2. ∆T is calculated. Input 1 of the SUB block is chilled
water return temperature (AHU1\CHWR-T). Input 2 is
the chilled water supply temperature (AHU1\CHWS-T).

3. The result of the DIV and SUB blocks is multiplied.
Input 1 of the MUL block is from the DIV block. Input 2
is from the SUB block. A command block reads the
calculated value, and sends it to an AD object
(AHU1\TONS), whose value can be read on a summary
at an operator device.

Reliability

Example

Operation and Special Blocks—SUB 191

A period of 00:02:00 is defined for this process, which means
it will execute once every two minutes.

Note: All operation blocks in this example must be placed
in a process. They include: DIV, MUL, CMD, and
SUB.

Figure 90: SUB Block Example

������

��

�

�

���

�	����

��

���"

����

��

�����

���

�����

��

������

05

�

�

��

��

��

���"

��*���

��

���"

��*���

��

���"

��*���

��

���"

� �*"

�

�

��

�
�

��!"!��

��

�

� �

192 Operation and Special Blocks—SUB

Operation and Special Blocks—SVAR 193

SVAR (Shared Variable) Block

Data

Names a variable that is used to pass data between processes,
which can be in separate control strategy files for the same
Network Control Module (NCM).

The SVAR block has these primary characteristics:

• Can be configured for analog, binary, or time data. The
default is analog. If you want to connect binary or time
data, you must first specify the type of data in the
template before making the connection.

• Can be further configured for input only, output only, or
input and output. The block will store the value and
reliability of the input. The output is the last value and its
reliability.

• All shared variable blocks that have the same name and
type share the same value, as long as they are in the same
NCM.

• SVAR blocks retain their values in case of an NCM
power failure (warm start).

• Only one shared variable with the same name can be used
in the same process. However, the same shared variable
name can be used in multiple processes in a single
strategy file.

• SVAR blocks retain their values in case of a power failure
(warm start).

When a binary shared variable changes state, the process in
which it is read will be triggered, as long as the output line is
not exempt from triggers and the variable is reliable.

The name you assign to a SVAR block must not be one of the
reserved words or contain invalid symbols. (Refer to
Appendix F: Characters, Symbols, and Reserved Words.)
Also, the first character of a SVAR block must be a letter.

Category

Purpose

Details

194 Operation and Special Blocks—SVAR

This block has an Enable input, which provides conditional
logic. If this optional input is connected, the variable will be
assigned the input’s value only when the Enable input is True
and reliable. If the Enable input is False (reliable or
unreliable), or True and unreliable, the variable will not be
assigned. If the Enable input is not connected, the variable
will be assigned the input’s value each time the SVAR block
executes.

Though these three blocks are similar, they have the following
differences.

Block Input is Assigned to
Output When:

SAMP Hold input is False and reliable

SVAR Enable input is True and reliable

VH Enable input is True and reliable

The SVAR differs from the other blocks in that it can share
data between processes on the same NC. In addition, more
than one SVAR block with the same name cannot exist in the
same process.

Differences
Between SAMP,
SVAR, and VH
Blocks

Operation and Special Blocks—SVAR 195

Field Name Connect Name Type Default Range RC T I O LB
Block Name
(Variable
Name)

STR Blank 8 Char X

Description STR Blank 24 Char X

Type TAB ANALOG ANALOG,
BINARY,
TIME

X

- ENA IN BIN 0,1 N X E

- ENA OUT BIN See Note 0,1 N X E

- INPUT BIN 0 0,1 N X I

- INPUT ANA 0.000000 Real N X IN

- TIME IN TIM 00:00:00 Time N X TI

- OUTPUT BIN 0 0,1 N X O

- OUTPUT ANA 0.000000 Real N X O

- OUTPUT TIM 00:00:00 Time N X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Note: The ENA OUT can be connected only if the ENA IN is connected. The default is 0.

The reliability of the last block to make the assignment to the
SVAR block determines the reliability of the output. The
value of the unreliable output is equal to the last reliable
output.

Information Table

Reliability

196 Operation and Special Blocks—SVAR

The example in Figure 91 shows a SVAR block used in
diagrams that are in two different files. In the top diagram,
the SVAR block represents economizer mode. The DFCM
block compares the outside air temperature
(AHU1\OA-TEMP) with the setpoint (AHU1\EC-SETPT).
If the outside air temperature is less than the setpoint, given a
differential of 2.0°F, economizer is set.

In the bottom diagram, the SVAR block is an input to a
SWCH block. If SVAR is True, then a command of 100.0%
is sent to the AD object AHU1\MA-DMPCT. If SVAR is
False, then a command of 10.0% is sent to
AHU1\MA-DMPCT.

A period of 00:02:00 minutes is defined for both processes,
which means they will run once every two minutes.

Note: All operation blocks in this example must be placed
in a process. They include: DFCM, SWCH, CMD,
and both SVAR blocks.

Example

Operation and Special Blocks—SVAR 197

Figure 91: SVAR Block Example

�$ 	���

�

�

� �#

�	
�

���#������

����

�	�����

�������*

����

"%(%

�
��

���

���"

����	��

����

0(%��	,�

�

	��

��������

��

�

����

	���

��

���

���"

	���	���

����

	���

�
��

�*��

	�����*

����

"%%(%

198 Operation and Special Blocks—SVAR

Operation and Special Blocks—SWCH 199

SWCH (Switch) Block

Selectors

Chooses between two inputs. The SWCH block also provides
an OR function through a binary output called Active output.

You can configure this block to accept analog, binary, or time
data. The default is analog. If you want to connect binary or
time data, you must first specify the type of data in the
template before making the connection.

Also, you can specify constant values for Input 0 and Input 1
instead of connecting external inputs. Enter a constant value
in the data base template.

If the Switch input is True, then Input 1 is passed to the
output. If the Switch input is False, then Input 0 is the output.

This block has an Active input and Active output, which
provide an OR function inside the SWCH block (Figure 92).
The inputs to the OR function are Active input and Switch
input.

Category

Purpose

Details

200 Operation and Special Blocks—SWCH

Figure 92: Active In/Active Out Provide OR Function
Inside SWCH Block

The following chart describes the OR function:

Active Input Switch Input Active Output
True True True

True False True

False True True

False False False

If the Active input is not connected, its value is False and
reliable.

����

�6���7
��������

��

������	�

������

	�����

������

��.���%

��.���"

�����������

	�����

����

�����%��

Operation and Special Blocks—SWCH 201

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Type TAB ANALOG ANALOG,
BINARY,
TIME

X

INPUT 0 INPUT 0 ANA 0.000000 Real N X X I0

INPUT 0 BIN 0 0,1 N X X I0

TIME IN0 TIM 00:00:00 Time N X X T0

INPUT 1 INPUT 1 ANA 0.000000 Real N X X I1

INPUT 1 BIN 0 0,1 N X X I1

TIME IN1 TIM 00:00:00 Time N X X T1

- OUTPUT ANA 0.000000 Real Y X O

BIN 0 0,1 Y X O

TIM 00:00:00 Time Y X O

- SWCH IN BIN 0,1 Y X S
W

- SWCH OUT BIN 0 0,1 N X S
W

- ACTIVE IN BIN 0 0,1 N X AI

- ACTIVE BIN 0 0,1 N X A

- CONTROL CTL N X CF

- CONTROL CTL N X CF

The output of this block is unreliable if either the selected
input and/or the Switch input is unreliable. The Active output
is unreliable if either the Switch input or Active input is
unreliable.

Information Table

Reliability

202 Operation and Special Blocks—SWCH

In this example (Figure 93), the two SWCH blocks are used to
change the normal operation of a discharge air PID loop
(AHU1\DA-C). During normal operation, the loop will
modulate the heating valve based on discharge air. However,
when the fan turns off or the outdoor air temperature falls
below 35.0°F, PID control is overridden as follows:

• When the fan (AHU1\FAN-STAT) turns off, the CMD
block sends a command of 0% to the heating valve
(AHU1\H-VLV), closing it.

• When the outdoor air temperature (AHU1\OA-TEMP) is
less than 35.0°F, the CMD block sends a command of
100% to the heating valve, opening it.

A period of 00:01:00 is defined for this process, which means
it will run once every minute or when a triggerable attribute of
the BI changes.

Note: All operation blocks in this example must be placed
in a process. They include: DFCM, both SWCH
blocks, CMD, and 2CMD.

Example

Operation and Special Blocks—SWCH 203

Figure 93: SWCH Block Example

�&�"���

�

��

�

��

��

���"

����	��

��

�

�

��

���

���"

��� �

����

����

��	

�"

���"

����

�

����

%)

�
����

"%%)

�

��
����

%)

�*��

��� ����

�*

�

#��

!!!!$�!#�%

�

!�

���"

��������

�

	

���	

0�

���

�	�����

��#��

��

��

��
� �

�*��

��� ���

�*

�

��

�

0���

��#�	��

��#����

�

��

��

204 Operation and Special Blocks—SWCH

Operation and Special Blocks—TIME 205

TIME Block

Time

Obtains the current date information from the network
operating system. The date includes the time, month, day,
year, and operating day.

These are the valid ranges for this block:

Time: 00:00:00 to 23:59:59
Month: 1.0 (January) to 12.0 (December)
Day: 1.0 to 31.0
Year: 1989.0 to 2099.0
Today: 1 to 15 (1-7 is Sunday through Saturday,

8-14 is alternate Sunday through Saturday,
15 is holiday)

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

- TIME TIM 00:00:00 TIME N X T

- TODAY ANA 1.0 1.0-15.0 N X TD

- DAY ANA 1.0 1.0-31.0 N X D

- MONTH ANA 1.0 1.0-12.0 N X M

- YEAR ANA 1989.0 1989.0-
2099.0

N X Y

- CONTROL CTL N X CF

- CONTROL CTL N X CF

The output of the TIME block is always reliable.

Category

Purpose

Details

Information Table

Reliability

206 Operation and Special Blocks—TIME

The TIME block in this example (Figure 94) is used to
determine occupancy mode. Two attributes of the BO object,
Early Start Time (ES) and Latest Stop Time (LS), are inputs to
the COMP blocks. If the current time is greater than or equal
to the Early Start Time, and less than or equal to the Latest
Stop Time, then occupancy mode (OCC) is set to True.

A period of 00:02:00 is defined for this process, which means
it will run once every two minutes.

Note: All operation blocks in this example must be placed
in a process. They include: both COMP blocks,
AND, TIME, and SVAR.

Figure 94: TIME Block Example

Example

�
����

�"

��

�� ����

���
�

	

	�

���

 �

!�

���"

���"

�"

�
���	

��

�

�0

����
�������8

����
�������8

�0

Operation and Special Blocks—TOT 207

TOT (Totalization) Block

Miscellaneous

Obtains the totalized value in minutes of an object’s attribute
as determined by the Totalization feature.

Note: The TOT block obtains the totalized value only; it
does not define Totalization for the object.
Totalization must already be defined for the object
(via online generation). For more information, see
the Totalization Technical Bulletin in the Metasys
Network Technical Manual.

You can configure this block to obtain totalized data from the
current period, the last period, or both periods. You can also
configure it to obtain the values of analog or binary attributes.
The default is analog. If you want to get totalized data of a
binary attribute, you must first specify binary in the template
before making the connection.

Note: You cannot use a READ block to read a totalized
attribute. Only the object attributes that are available
with a direct connection can be inputs to the TOT
block.

Category

Purpose

Details

208 Operation and Special Blocks—TOT

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Type TAB ANALOG ANALOG,
BINARY

X

Totalization
Typ

TAB CURRENT CURRENT
LAST,
CURRENT
AND LAST
(See Note)

X

- TOT IN BIN Y X I

- ANA Y X IN

- CURTOT ANA 0.000000 Real N X CT

- LASTTOT ANA 0.000000 Real N X LT

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Note: If CURRENT was chosen in the Totalization Type field, CUR TOT will display in the output
connection menu. If LAST was chosen, LAST TOT will be displayed. And, if CURRENT
AND LAST was chosen, both CUR TOT and LAST TOT will be displayed.

The output of the TOT block is unreliable if there is no
response to the request for totalized data, the attribute is not in
the Totalization feature data base, or the value from the
feature is unreliable. In either case, the input value and the
unreliable status will be passed to the output.

In this example (Figure 95), the TOT block obtains the current
totalized value in minutes of an AI object attribute
(AHU1\OA-TEMP) as determined by the Totalization feature.
This value is then sent to a printer via the PRNT block. The
message printed is:

THE CURRENT TOTALIZED VALUE OF AHU1\OA-TEMP IS
<value>

Information Table

Reliability

Example

Operation and Special Blocks—TOT 209

A period of 00:03:00 is defined for this process, which means
it will run once every three minutes.

Note: The TOT and PRNT blocks, both operation blocks,
must be placed in a process.

Figure 95: TOT Block Example

�#����

�

��

��
����

��

�	
�

������� ��

���

210 Operation and Special Blocks—TOT

Operation and Special Blocks—TTOR 211

TTOR (Time-to-Real) Block

Time

Converts a time value in 24-hour format into a real value in
minutes or seconds.

The TTOR block can be configured for either minutes or
seconds. You select either minutes or seconds in the
Resolution tab field. Minutes is the default.

If minutes resolution is chosen, the output value represents a
number of minutes. For example:

04:00:00 is converted to 240 minutes.

With minutes resolution, a time value that contains seconds is
rounded before it is converted. For example:

04:00:29 is rounded to 04:00:00, then converted to
240 minutes.

04:00:30 is rounded up to 04:01:00, then converted to
241 minutes.

If seconds resolution is chosen, the output value represents
a number of seconds. For example:

01:02:03 is converted to 3723 seconds.

Category

Purpose

Details

212 Operation and Special Blocks—TTOR

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Resolution TAB MINUTES MINUTES/

SECONDS

X

- TIME IN TIM Time Y X TI

- OUTPUT ANA 0.000000 Real Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

The output of the TTOR block is unreliable if the input is
unreliable.

In the example shown in Figure 96, the TTOR block converts
the Early Start Time attribute of a BD object (AHU1\EARLY-
TM) into a real value in minutes. The real value is read by the
SVAR block (START-TM), which is used in an optimal start
calculation in another process.

A period of 00:03:00 is defined for this process, which means
it will run once every three minutes.

Note: The TTOR and SVAR blocks, both operation blocks,
must be placed in a process.

Figure 96: TTOR Block Example

Information Table

Reliability

Example

��#	���

�

��

� ����

��������

�#

�	
�

��&�'��� 	

����

Operation and Special Blocks—2CMD 213

2CMD (Dual Command) Block

Object Control

Sends one of two possible commands to an object block. The
dual command changes the object’s attribute values and/or
invokes an algorithm in the object (e.g., COS analysis). For
example, possible commands for a BO object include
Start/Stop, Begin Totalization/End Totalization, and
Lock/Unlock.

The dual command may have parameter values that must be
specified with the command (e.g., Priority). You specify these
parameters in the 2CMD block’s data base template.

When the 2CMD block is executed, one of two commands is
sent to the object (as long as the Edge Trigger is set to No).
Command 1 is sent when the Select Command input is True.
Command 0 is sent when Select Command input is False.

Command execution is affected by how you configure the
Edge Trigger parameter. See the following table.

For Edge
Trigger?

Command 1
Sent

Command 0
Sent

No
Command
Sent

Yes Only when
Select
Command
input changes
from False to
True.

Only when
Select
Command
input changes
from True to
False.

When Select
Command
input has not
changed.

No Always when
Select
Command
input is True.

Always when
Select
Command
input is False.

N/A

When Edge Trigger is Yes, if the Select Command input
changes while the enable input is False, the command will be
stored and then issued when the enable input goes to True.

Category

Purpose

Details

214 Operation and Special Blocks—2CMD

These important factors relate to 2CMD blocks:

• Before you can edit the 2CMD template or enter the
block’s command parameters, you must connect the
2CMD block to an object block or to a CONN block.

• If you erase the command connection and try to connect
to a different command set, you’ll notice that the
connection menu contains the previous commands only.

• You cannot change the commands selected without first
erasing the 2CMD block, then pasting down a new one,
and selecting a different command set. However, if this is
an origin remote 2CMD block, you may select a different
origin block by simply double-clicking left on the 2CMD
block (with Connection icon selected) and selecting a
different command set. Yet, even in this case, it is best to
erase the origin remote connection and re-add it, since the
Editor cannot update the line label at the destination block
or verify that you selected a valid command for that
object. An invalid command is not detected until the file
is translated and compiled.

You may use the 2CMD block to modify integer
parameters and attributes. The NCM will convert the
analog value to integer by rounding. The rounding rules
are:

0.00 - 0.49: Round off
0.50 - 0.99: Round up

This block has an Enable input, which provides conditional
logic. If this optional input is connected, a command may be
issued only when the Enable input is True and reliable. If the
Enable input is False (reliable or unreliable), or True and
unreliable, a command will not be sent. If the Enable input is
not connected, a command could be sent each time the 2CMD
block executes.

Operation and Special Blocks—2CMD 215

Field Name Connect Name Type Default Range RC T I O LB
Command
(1)

See
Note A

See
Note A

X

Command
(0)

See
Note A

See
Note A

X

Edge Trigger BIN Y Y(Yes),
N(No)

X

- SEL CMD BIN 1 0,1 Y X SC

- ENA IN BIN 0,1 N X EN

- ENA OUT BIN See
Note B

0,1 N X EN

- DUAL CMD 2CM
D

Y X 2C

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Note A: For the particular commands, refer to the following table which indicates the various tables
that describe the commands.

Note B: The ENA OUT can be connected only if the ENA IN is connected. The default is 0.

Table Number Command(s)
1 AUX_DIS, AUX_ENA, LOC_REP, LOC_TRG, PRC_DIS, PRC_ENA,

OFF, ON, RELEASE, RELEASE3, STARTUP, TRIGGER, UNL_REP,
UNL_TRG, UNLATCH

2 BEG_TOT, BEG_TRND, END_TOT, END_TRND

3 START, STOP

Information Tables

216 Operation and Special Blocks—2CMD

Table 1
Field Name Connect Name Type Default Range RC T I O LB
Command
(1/0)

READ
ONLY

AUX_DIS X AD

AUX_ENA X AE

LOC_REP X LR

LOC_TRG X LT

PRC_DIS X DS

PRC_ENA X EN

OFF X OF

ON X ON

RELEASE X R

RELEASE
3

X R3

STARTUP X SU

TRIGGER X TR

UNL_REP X UR

UNL_TRG X UT

UNLATCH X UL

Table 2
Field Name Connect Name Type Default range RC T I O LB
Command
(1/0)

READ
ONLY

BEG_TOT X BT

BEG_TRND X BH

END_TOT X ET

END_TRND X EH

Attribute
Name

STR VALUE 8 Char X

Operation and Special Blocks—2CMD 217

Table 3
Field Name Connect Name Type Default Range RC T I O LB
Command
(1/0)

READ
ONLY

START X ST

STOP X SP

REL_PRI X RP

Priority CMD1 PRI INT 7 2,4,5,6,7 N X X P1

Priority CMD0 PRI INT 7 2,4,5,6,7 N X X P0

If a command parameter is unreliable, the unreliable value and
the associated reliability flag are sent with the command to the
object. Refer to the reliability information in the Object
Blocks section of this chapter for details.

If an Enable line is connected and its value is unreliable,
neither command will be sent. Also, no commands are sent if
the Select Command input is unreliable.

In Figure 97, the 2CMD block sends a Start or Stop command
to the BO object depending on which fan is on. If
AHU1\FAN1-ST and AHU1\FAN2-ST are both on, the
2CMD block sends a Start command to AHU1\EXH-FAN, but
only once. If either AHU1\FAN1-ST or AHU1\FAN2-ST is
on (but not both), the 2CMD block sends a Stop command to
AHU1\EXH-FAN; again, only once.

Reliability

218 Operation and Special Blocks—2CMD

A period of 00:00:00 is defined for this process since it needs
to run only when a triggerable attribute of one of the BI
objects changes.

Note: The AND and 2CMD blocks, both operation blocks,
must be placed in a process.

Figure 97: 2CMD Block Example

'�
!�(

�

��

�

��

0�0���

�����

����

!�

���"

���"���

��

�

��
!�

���"

���0���

��

�	
�

�"	���

���

Operation and Special Blocks—UNRD 219

UNRD (Unreliable Data) Block

Reliability

Tests for unreliable data. You can use this block to ensure a
block’s value is never unreliable, and/or perform some logic
based on the unreliable data test.

The UNRD block passes to the output either the input value or
a default value. If the input is reliable, the UNRD block
passes the input value to the output. If the input is unreliable,
the block passes the default value along with its reliability
flag. The default value can be specified in the data base
template or connected.

The UNRD block has an Unreliable output. The Unreliable
output is set to True if the input is unreliable and False if the
input is reliable.

The following chart summarizes the output and the Unreliable
output.

Input Output Unreliable Output
Reliable Input False

Unreliable Default value as specified
in the data base template
or from a connected input.

True

You may configure this block to act on analog, binary, or time
input connections. The default is analog. If you want to
connect binary or time data, you must first specify the type of
data in the template before making a connection.

The default value can be configured in the data base template
or connected.

Category

Purpose

Details

220 Operation and Special Blocks—UNRD

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR 8 Char Blank X

Type TAB ANALOG ANALOG,
BINARY,
TIME

X

Default DEFAULT BIN 0 0,1 N X X DF

ANA 0.000000 Real N X X DF

TIM 00:00:00 Time N X X DF

- INPUT BIN 0 0,1 Y X I

ANA 0.000000 Real Y X IN

- TIME IN TIM 00:00:00 Time Y X TI

- OUTPUT BIN 0 0,1 N X O

ANA 0.000000 Real N X O

TIM 00:00:00 Time N X O

- UNREL OUT BIN 0 0,1 N X UO

- CONTROL CTL N X CF

- CONTROL CTL N X CF

The output of the UNRD block is reliable, as long as the input
is reliable. If the input is unreliable, the output and its
reliability will be equal to the Default input. If the Default
input is unreliable, the output will be unreliable.

In the example shown in Figure 98, the UNRD block ensures
that the value of an AI object called AHU1\OA-TEMP is
always reliable. If AHU1\OA-TEMP is reliable, the UNRD
block passes its value to the DFCM block. However, if
AHU1\OA-TEMP becomes unreliable, the UNRD block sends
a default constant of 55.0°F to the DFCM block. Also, the
PRNT block that is connected to the UNRD block sends the
following message to the printer:

OUTSIDE AIR TEMPERATURE UNRELIABLE. USING 55.0 DEGF.

Information Table

Reliability

Example

Operation and Special Blocks—UNRD 221

This process also sets economizer mode: If AHU\OA-TEMP
is less than the setpoint (AHU1\SETPT) with an applied
differential, then economizer mode is set. Otherwise, the
dampers are set to the minimum position (logic in another
diagram).

A period of 00:03:00 is defined for this process, which means
it will run once every three minutes.

Note: All operation blocks in this example must be placed
in a process. They include: UNRD, DFCM, SVAR,
and PRNT.

Figure 98: UNRD Block Example

��	!���

��

��

	

��

���"

����	��

 !

 "��

�����

 !�"

##$����%

����

����������
����

	���

 !

 "��

!� !� �!

��

�

��

�

��

��

� �

�!

����
	

����

222 Operation and Special Blocks—UNRD

Operation and Special Blocks—USER 223

USER Block

Process Control

Creates a generic operation block. You would make a USER
block if the function you need to perform is not available with
standard function blocks or compounds, or can be
accomplished more efficiently with a USER block. You need
to know JC-BASIC programming in order to create a USER
block. Refer to the JC-BASIC Programmer’s Manual.

Note: We recommend that you create a USER block only
when the desired functionality cannot be achieved by
using one or a combination of the standard function
blocks and compounds.

The USER block requires that you perform steps both outside
of GPL and within GPL.

Using an ASCII text editor, write the macro file for the USER
block, and store the file on disk. Assign the file a .MAC
extension. For detailed instructions, refer to the section
Writing a USER Block File in Appendix E: External Functions.

Follow these steps:

1. Paste down the USER block in the work area.

2. Click on the block with the Query mode selected to
display the block’s data base template. In the template,
specify the root file name of the macro file for the USER
block. Do not enter the .MAC extension.

Category

Purpose

Details

Outside of GPL

Within GPL

224 Operation and Special Blocks—USER

3. Specify the number of inputs and outputs that are part
of the USER block macro file. The block accepts the
following inputs: 0 to 8 analog, 0 to 8 binary,
and 0 to 4 time. The block accepts these outputs:
0 to 8 analog, 0 to 8 binary, 0 to 4 time, 0 to 8 single
command, and 0 to 8 writes.

4. Save the template information by pressing F10.

5. Place the USER block inside a process compound, save
the compound to disk, and save the compound to a
strategy file. (By saving the USER block as a compound,
you can use it again for another application whenever
desired.)

6. Check the file with Expert Checker. Translate and
compile.

Note: The Translator looks for your USER block macro file
in the CUSTUMAC directory. If it cannot find it
there, the Translator looks in the JCIUMAC file.
What this means is if the name you assign a USER
block macro file under the CUSTUMAC directory is
the same as a block macro file under the JCIUMAC
directory, the Translator will use the macro file in the
CUSTUMAC directory.

The name you assign to a USER block must not be one of the
reserved words or contain invalid symbols. (Refer to
Appendix F: Characters, Symbols, and Reserved Words.)

With the Query mode selected, you can view the macro file of
the USER block by double-clicking on the block. The Editor
can display the first 30 pages of the file. Use the Page Up and
Page Down keys to scroll through the file. Use the Esc key or
click left to display the previous diagram.

Other Details

Operation and Special Blocks—USER 225

You cannot edit or print the macro file with the GPL Editor.
You’ll need the text editor to perform those tasks.

The USER block has connections called Command and Write.
You can use these to command or write to an object without
using a CMD or WRIT block. You cannot fan-out from these
connections.

You can specify a constant value for an input instead of
connecting an external input. Enter a constant value in the
data base template.

Once programmed and defined, you can use the USER block
in any control strategy, just as any other operation block.
Also, you can use multiple USER blocks in the same strategy.

Note: USER blocks are not simulated.

Note: The number of inputs displayed will depend on the
configured number of inputs on the template’s first
page.

Field Name Connect Name Type Default Range RC T I O LB
Type/File
Name

STR USER 8 Char X

Block Name STR Blank 8 Char X

Description STR Blank 24 Char X

Analog
Inputs

INT 4 0-8 X

Binary Inputs INT 1 0-8 X

Time Inputs INT 1 0-4 X

Analog
Outputs

INT 1 0-8 X

Binary
Outputs

INT 1 0-8 X

Time
Outputs

INT 1 0-4 X

Command
Outputs

INT 1 0-8 X

Write
Outputs

INT 1 0-8 X

Information Table
(First Screen)

226 Operation and Special Blocks—USER

Field Name Connect Name Type Default Range RC T I O LB
Input 1 ANA IN1 ANA 0.000000 Real N X X A1

Input 2 ANA IN2 ANA 0.000000 Real N X X A2

Input 3 ANA IN3 ANA 0.000000 Real N X X A3

Input 4 ANA IN4 ANA 0.000000 Real N X X A4

Input 5 ANA IN5 ANA 0.000000 Real N X X A5

Input 6 ANA IN6 ANA 0.000000 Real N X X A6

Input 7 ANA IN7 ANA 0.000000 Real N X X A7

Input 8 ANA IN8 ANA 0.000000 Real N X X A8

Field Name Connect Name Type Default Range RC T I O LB
Input 1 BIN IN1 BIN 0 0,1 N X X B1

Input 2 BIN IN2 BIN 0 0,1 N X X B2

Input 3 BIN IN3 BIN 0 0,1 N X X B3

Input 4 BIN IN4 BIN 0 0,1 N X X B4

Input 5 BIN IN5 BIN 0 0,1 N X X B5

Input 6 BIN IN6 BIN 0 0,1 N X X B6

Input 7 BIN IN7 BIN 0 0,1 N X X B7

Input 8 BIN IN8 BIN 0 0,1 N X X B8

Input 1 TIME IN1 TIM 00:00:00 Time N X X T1

Input 2 TIME IN2 TIM 00:00:00 Time N X X T2

Input 3 TIME IN3 TIM 00:00:00 Time N X X T3

Input 4 TIME IN4 TIM 00:00:00 Time N X X T4

- ANA OUT1 ANA 0.000000 Real N X A1

- ANA OUT2 ANA 0.000000 Real N X A2

- ANA OUT3 ANA 0.000000 Real N X A3

- ANA OUT4 ANA 0.000000 Real N X A4

- ANA OUT5 ANA 0.000000 Real N X A5

- ANA OUT6 ANA 0.000000 Real N X A6

- ANA OUT7 ANA 0.000000 Real N X A7

- ANA OUT8 ANA 0.000000 Real N X A8

- BIN OUT1 BIN 0 0,1 N X B1

- BIN OUT2 BIN 0 0,1 N X B2

- BIN OUT3 BIN 0 0,1 N X B3

Continued on next page . . .

Information Table
(Second Screen)

Operation and Special Blocks—USER 227

Field Name
(Cont.)

connect Name Type Default Range RC T I O LB

- BIN OUT4 BIN 0 0,1 N X B4

- BIN OUT5 BIN 0 0,1 N X B5

- BIN OUT6 BIN 0 0,1 N X B6

- BIN OUT7 BIN 0 0,1 N X B7

- BIN OUT8 BIN 0 0,1 N X B8

- TIME OUT1 TIM 00:00:00 Time N X T1

- TIME OUT2 TIM 00:00:00 Time N X T2

- TIME OUT3 TIM 00:00:00 Time N X T3

- TIME OUT4 TIM 00:00:00 Time N X T4

- COMMAND1 CMD N X C1

- COMMAND2 CMD N X C2

- COMMAND3 CMD N X C3

- COMMAND4 CMD N X C4

- COMMAND5 CMD N X C5

- COMMAND6 CMD N X C6

- COMMAND7 CMD N X C7

- COMMAND8 CMD N X C8

- WRITE1 CMD N X W1

- WRITE2 CMD N X W2

- WRITE3 CMD N X W3

- WRITE4 CMD N X W4

- WRITE5 CMD N X W5

- WRITE6 CMD N X W6

- WRITE7 CMD N X W7

- WRITE8 CMD N X W8

- CONTROL CTL N X CF

- CONTROL CTL N X CF

You must manage the passing of unreliable data entirely in the
USER block’s macro file.

Reliability

228 Operation and Special Blocks—USER

This example demonstrates:

• Linking function blocks as inputs to and outputs from a
USER block

• Linking a USER block’s macro file (.MAC) to its
associated block in GPL

• Defining and using arrays in a USER block

In this example (Figure 99), the USER block monitors the
space temperature of occupied and unoccupied modes during
the day. It stores 14 days of the highest and lowest values
read from the space temperature sensor (AHU1\SPACETMP)
during occupied and unoccupied modes (AHU1\OCC-UNOC).
These values are stored in four different SVAR blocks
(OCC_HI,OCC_LO,UNOCC_HI,UNOCC_LO).

A period of 01:00:00 is defined for this process, which
means it will run once every hour. The BD object
(AHU1\OCC-UNOC) connected to the USER block as a
binary input type is a trigger for this process. This trigger will
cause the process to execute when the mode changes from
occupied to unoccupied, or vice versa, thereby capturing the
initial space temperature of the mode.

In the USER block data base template, the name of the macro
file (TEMP_MON) is entered in the Type/File Name field.
Also, the following inputs and outputs are configured:

Analog inputs: 1 Analog outputs: 4
Binary inputs: 1 Binary outputs: 0
Time inputs: 0 Time outputs: 0

Commands: 0
Writes: 0

Note: All operation blocks in this example must be placed
in a process. They include: USER and each SVAR
block.

Example

Operation and Special Blocks—USER 229

The macro file for this USER block is stored in the
C:\CUSTUMAC directory under a file named:
TEMP_MON.MAC (temperature monitoring). The following
is the contents of the file:

REM The following array variables (OCC_H_TEMP,
REM UNOCC_H_TEMP, OCC_L_TEMP, and
REM UNOCC_L_TEMP) are defined as shared
REM variables instead of local variables
REM because on a warmstart, shared
REM variables maintain their values.

REM The following arrays (OCC_H_TEMP(14),
REM UNOCC_H_TEMP(14), OCC_L_TEMP(14),
REM and UNOCC_L_TEMP(14)) are for storage
REM of the occupied and unoccupied, high
REM and low space temperatures.

SHARED OCC_H_TEMP(14),UNOCC_H_TEMP(14),\
OCC_L_TEMP(14),UNOCC_L_TEMP(14)

REM The following variables (DAY_POINTER%
REM and DAYY%) are defined as shared
REM variables instead of local variables
REM because on a warmstart, shared
REM variables maintain their values.

REM The shared variable DAY_POINTER% points
REM at day number 1 thru 14. The shared
REM variable DAYY% increments DAY_POINTER%.

SHARED DAY_POINTER%,DAYY%

REM The following lines initialize DAYY% and
REM then place initial values into the four arrays.

REM DAY is an integer function that provides
REM the same value as the Day output of the
REM TIME block.

IF DAYY% <> DAY THEN
DAYY% = DAY
IF DAY_POINTER% =14 \

THEN DAY_POINTER% = 1 \
ELSE DAY_POINTER%=DAYPOINTER% + 1

OCC_H_TEMP(DAY_POINTER%)=-999.9
UNOCC_H_TEMP(DAY_POINTER%)=-999.9
OCC_L_TEMP(DAY_POINTER%)=999.9
UNOCC_L_TEMP(DAY_POINTER%)=999.9

END IF

REM The next lines read in the space
REM temperature and occupied value
REM and compare the space
REM temperature
REM against the values in the arrays.

REM SPTEMP and OCC? are local variables.
REM They are used to provide consistent

230 Operation and Special Blocks—USER

REM values for the inputs and reduce the
REM number of accesses to the objects.

SPTEMP=[ANA IN1]
OCC?=[BIN IN1]

Operation and Special Blocks—USER 231

REM If either input is unreliable, the
REM temperature is not used to determine
REM the highest and lowest temperature.
REM If both inputs are reliable, compare
REM the space temperature to today’s
REM array values for the current building
REM mode, and store in the array value if a
REM new high and low is found.

IF NOT (UNRELIABLE(OCC?) OR UNRELIABLE(SPTEMP)) THEN
IF OCC? THEN

IF SPTEMP > OCC_H_TEMP(DAY_POINTER%) THEN \
OCC_H_TEMP(DAY_POINTER%) = SPTEMP

IF SPTEMP < OCC_L_TEMP(DAY_POINTER%) THEN \
OCC_L_TEMP(DAY_POINTER%) = SPTEMP

ELSE
IF SPTEMP > UNOCC_H_TEMP(DAY_POINTER%) THEN \

UNOCC_H_TEMP(DAY_POINTER%) = SPTEMP
IF SPTEMP < UNOCC_L_TEMP(DAY_POINTER%) THEN \

UNOCC_L_TEMP(DAY_POINTER%) = SPTEMP
END IF

END IF

REM The following are four local variables:
REM OCC_HIGH, OCC_LOW, UNOCC_HIGH,
REM and UNOCC_LOW. They are used to collect
REM the highest and lowest values for the
REM occupied and unoccupied modes when checking
REM the 14 element arrays.

OCC_HIGH = OCC_H_TEMP(1)
OCC_LOW = OCC_L_TEMP(1)
UNOCC_HIGH = UNOCC_H_TEMP(1)
UNOCC_LOW = UNOCC_L_TEMP(1)

REM Search the array for the highest and
REM lowest occupied and unoccupied space
REM temperatures.

FOR I% = 2 TO 14
IF OCC_HIGH < OCC_H_TEMP(I%) THEN \

OCC_HIGH = OCC_H_TEMP(I%)
IF OCC_LOW > OCC_L_TEMP(I%) THEN \

OCC_LOW = OCC_L_TEMP(I%)
IF UNOCC_HIGH < UNOCC_H_TEMP(I%) THEN \

UNOCC_HIGH = UNOCC_H_TEMP(I%)
IF UNOCC_LOW > UNOCC_L_TEMP(I%) THEN \

UNOCC_LOW = UNOCC_L_TEMP(I%)
NEXT I%

REM Assign the highest and lowest occupied
REM and unoccupied space temperatures
REM to the four respective outputs.

[ANA OUT1] = OCC_HIGH
[ANA OUT2] = OCC_LOW

232 Operation and Special Blocks—USER

[ANA OUT3] = UNOCC_HIGH
[ANA OUT4] = UNOCC_LOW

Operation and Special Blocks—USER 233

Figure 99: USER Block Example

!"

���	���

�

�

!�

���"

��������

��

���"

����	���

����

���-��

����

���- �

����

�����-��

����

�����- �

�"

�	��-���

�5

�"

�0

�9

��

��

��

��

234 Operation and Special Blocks—USER

Operation and Special Blocks—VH 235

VH (Value Holder) Block

Data

Reads and holds a value that can be read at a later time. The
VH block is used in applications such as Average Over Time,
Saving Network Reads, and First-In-First-Outs (FIFO). This
block is also used to store a value until a specific condition
occurs, at which time a new value is read and stored.

The VH block reads and stores the value of the input. The VH
block either assigns the input value to the output, or maintains
the last assigned value as the output, depending on the Enable
input. When the Enable input is True and reliable, the input
value is assigned to the output. When the Enable input is
False or unreliable, the input value is not assigned to the
output. Instead, the last assigned value is maintained as the
output. If the Enable input is not connected, the input is
always assigned to the output. If the input has never been
assigned to the output, the output is zero (0/0.0/00:00:00) and
reliable.

The VH block can be configured for analog, binary, or time
values.

The following table describes how the Enable input affects the
output.

Enable Input Output Reliability of Output
True and
reliable

Input Input’s reliability

False or
unreliable

Last assigned
value

Input’s reliability at time of last
assignment

Enable not
connected

Input Input’s reliability

Category

Purpose

Details

Enable Input

236 Operation and Special Blocks—VH

Though these three blocks are similar, they have the following
differences.

Block Input is Assigned to Output
When:

SAMP Hold input is False and reliable

SVAR Enable input is True and reliable

VH Enable input is True and reliable

The SVAR differs from the other blocks in that it can share
data between processes on the same NC. In addition, more
than one SVAR block with the same name cannot exist in the
same process.

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Type TAB ANALOG ANALOG/
BINARY/
TIME

X

INPUT ANA Real Y X IN

OUTPUT ANA 0.000000 Real Y X O

INPUT BIN 0,1 Y X I

OUTPUT BIN 0 0,1 Y X O

TIME IN TIM TIME Y X TI

OUTPUT TIM 00:00:00 TIME Y X O

ENA IN BIN 0,1 N X E

ENA OUT BIN See Note 0,1 N X E

CONTROL CTL N X CF

CONTROL CTL N X CF

Note: The ENA OUT can be connected only if the ENA IN is connected. The default is 0.

Differences
Between SAMP,
SVAR, and VH
Blocks

Information Table

Operation and Special Blocks—VH 237

The reliability of the output depends on the reliability of the
last input value assigned to the output, at the time of the
assignment. If the input is reliable at the time of the
assignment, the output is reliable. Conversely, if the input is
unreliable at the time of the assignment, the output is
unreliable. If the input has never been assigned to the output,
the output is zero (0/0.0/00:00:00) and reliable.

In the following example (Figure 100), the VH blocks are
used to average a value over time. Each time the process runs,
the value of the VH2 block is shifted into VH3, the value of
VH1 is shifted into VH2, and the value of the AI is shifted
into VH1. The AVG block averages the three values and
sends the result to the AD block.

A period of 00:00:10 seconds is defined for this process,
which means it will run once every ten seconds.

Note: The VH, AVG, and CMD blocks, all operation
blocks, must be placed in a process.

Figure 100: VH Block Example

Reliability

Example

��

���"

�	��

�&

�

�

�

�

���

��

����

���	
���

���

������

$"�(

�� �� ����

��

��

��

�

�

� � �

�

�
��

��
���$

� �

238 Operation and Special Blocks—VH

Operation and Special Blocks—WAIT 239

WAIT Block

Process Control

Postpones the full execution of a process for a period of time.
For example, the WAIT block can be used inside a Restart
process to postpone the start of equipment. The process that is
affected is the one in which the WAIT block is contained and
executed.

This block has an optional Enable input, which provides
conditional logic.

When this block is executed and the Enable input is True, the
process that contains the WAIT block is placed in a Waiting
state. The NCM Interpreter then goes on to execute other
processes. When the wait timer expires, the process resumes
execution at the block after the WAIT block. When all blocks
in the process have finished execution (or when a STOP block
is encountered), the process period timer is set. The actual
time between process executions is the sum of the process
period timer, the wait timer, and the process execution time.
(For details, refer to PERD (Period) Block in this chapter.) If
the process is triggered before the wait timer has expired, the
wait timer is canceled and the process executes from its
beginning.

When this block is executed and the Enable input is False
(reliable or unreliable) or True and unreliable, the process is
not placed in a Waiting state.

Note: Do not specify 00:00:00 for wait timer. This will not
provide a wait and will cause a runtime error.

Category

Purpose

Details

240 Operation and Special Blocks—WAIT

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Time TIME IN TIM 00:00:05 Time >
00:00:00

N X X TI

- ENA IN BIN 0,1 N X E

- ENA OUT BIN See Note 0,1 N X E

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Note: The ENA OUT can be connected only if the ENA IN is connected. The default is 0.

The WAIT block still executes even if the Time input is
unreliable, but will not execute if the Enable input is
unreliable.

In this example (Figure 101), a WAIT block waits for one
minute to verify a fan has actually started. When the fan
(AHU1\FAN) is commanded to on, the process waits one
minute. Then, it checks to see if the fan (AHU1\FAN-STAT)
has indeed started. If the fan has not started, the PRNT block
sends the following message to the printer:

AHU1\FAN DID NOT START

A control flow line is drawn from the WAIT block to the
XOR block to make sure the wait is executed before the
XOR block. The BI connection to the XOR block is
exempted from triggers because only the BO object, not the BI
object, should be allowed to trigger the process.

No period is defined for this process, since it only needs to run
when the VALUE attribute of the BO object changes.

Note: All operation blocks in this example have to be
placed in a process. They include: PRNT, XOR, and
WAIT.

Information Table

Reliability

Example

Operation and Special Blocks—WAIT 241

Figure 101: WAIT Block Example

&)����

�

��
	

�

��

��

'	"

��������

�

!�

���"

��������

��� ����

!�

���"

���

��

242 Operation and Special Blocks—WAIT

Operation and Special Blocks—WBDP 243

WBDP (Wet Bulb Dew Point)
Block

Psychrometric Equations

Calculates wet bulb temperature based on dry bulb
temperature, dew point temperature, and barometric pressure.

The wet bulb calculation can be done in either English or
Metric units.

Valid ranges for the calculated Wet Bulb Temperature:

Dry Bulb Temperature: -147.9 to 391.9°F (-99.9 to 199.9°C)

Dew Point Temperature: -147.9 to 391.9°F (-99.9 to 199.9°C)

Barometric Pressure: 15.00 to 32.00 in. WG (0.51 to 1.08 bar)

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Units TAB ENGLISH ENGLISH,
METRIC

X

Barometric
Press.

BARO PRES ANA 29.00000 Real N X X BP

- DRY BULB ANA Real Y X DB

- DEW POINT ANA Real Y X DP

- OUTPUT ANA 0.000000 Real Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Category

Purpose

Details

Information Table

244 Operation and Special Blocks—WBDP

The output of this block is unreliable if the Dry Bulb
Temperature input, Dew Point Temperature input, or
Barometric Pressure input is unreliable. Also, if any of these
values is less than the lowest part of their range, enthalpy is
calculated using the lowest range value (e.g., for dry bulb
temperature, -147.9°F), the output is unreliable, and a runtime
error message is generated. Similarly, if either of these values
is greater than the highest part of their range, enthalpy is
calculated using the highest range value (e.g., for dry bulb
temperature, -391.9°F), the output is unreliable, and a runtime
error message is generated.

A runtime error message is also generated if dew point
temperature is greater than dry bulb temperature.

The following example (Figure 102) contains a WBDP block
that calculates wet bulb temperature of the outside air based
on dew point and outside air dry bulb temperature. It uses a
barometric pressure of 29.00 in. Hg (specified in WBDP
template).

The WBDP block takes as inputs the outside air temperature
(AHU1\OA-TEMP) and the outside air dew point
(AHU1\OA-DWPT). These values are entered into the
WBDP block. The resultant value is read by the CMD block,
which commands an AD object (AHU1\OA-WBDP) to this
value.

A period of 00:02:00 is specified for this process, which
means it will run once every two minutes.

Note: The WBDP and CMD blocks, both operation blocks,
must be placed in a process.

Reliability

Example

Operation and Special Blocks—WBDP 245

Figure 102: WBDP Block Example

&�!����

�!

�

�

��

�

��

�	
�

���#(��

��

�	
�

�������

� ��

�	��

��	��

���

�	����

�#

�	
�

���(�#�

246 Operation and Special Blocks—WBDP

Operation and Special Blocks—WBRH 245

WBRH (Wet Bulb Relative
Humidity) Block

Psychrometric Equations

Calculates wet bulb temperature based on dry bulb
temperature, relative humidity, and barometric pressure.

The wet bulb calculation can be done in either English or
Metric units.

Valid ranges for the calculated Wet Bulb temperature:

Dry Bulb Temperature: -147.9 to 391.9°F (-99.9 to 199.9°C)

Relative Humidity: 0 to 100% RH

Note: GPL converts relative humidity to integer by
rounding (e.g., 10 to 10.49999 = 10; 10.50000 to
10.99999 = 11).

Barometric Pressure: 15.00 to 32.00 in. WG (0.51 to 1.08 bar)

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

Units TAB ENGLISH ENGLISH,
METRIC

X

Barometric
Press.

BARO PRES ANA 29.00000 Real N X X BP

- DRY BULB ANA Real Y X DB

- REL HUMID ANA Real Y X RH

- OUTPUT ANA 0.000000 Real Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Category

Purpose

Details

Information Table

246 Operation and Special Blocks—WBRH

The output of this block is unreliable if the Dry Bulb
Temperature input, Relative Humidity input, or Barometric
Pressure input is unreliable. Also, if any of these values are
less than the lowest part of their range, enthalpy is calculated
using the lowest range value (e.g., for dry bulb
temperature, -147.9°F), the output is unreliable, and a runtime
error message is generated. Similarly, if either of these values
is greater than the highest part of their range, enthalpy is
calculated using the highest range value
(e.g., for dry bulb temperature, -391.9°F), the output is
unreliable, and a runtime error message is generated.

Note: The output of this block is unreliable if the internally
calculated dew point value is outside the range of -
80.0 to 150°F (-60 to 70°C). (Internal dew point
value is not provided to the programmer.)

Reliability

Operation and Special Blocks—WBRH 247

The following example (Figure 103) contains a WBRH block
that calculates wet bulb temperature of the outside air based
on relative humidity and outside air dry bulb temperature. It
uses a barometric pressure of 29.00 in. Hg (specified in
WBRH template).

The block takes as inputs the outside air temperature
(AHU1\OA-TEMP) and the outside air relative humidity
(AHU1\OA-RH). These values are entered into the WBRH
block. The resultant value is read by the CMD block, which
commands an AD object (AHU1\OA-WBRH) to this value.

A period of 00:02:00 is specified for this process, which
means it will run once every two minutes.

Note: The WBRH and CMD blocks, both operation blocks,
must be placed in a process.

Figure 103: WBRH Block Example

Example

�������

��

�

�

��

�

��

����

�����

��

����

���	
��

� ��

	
����

�������
	
�

�����

�

����

�������

248 Operation and Special Blocks—WBRH

Operation and Special Blocks—WRIT 249

WRIT (Write Attribute) Block

Object Control

Modifies an attribute of an object block. Its purpose is to
write to those attributes that do not appear in the CMD and
2CMD block connection menus. For a list of all writable
attributes for each object, refer to Appendix G: Attributes.

You can configure this block for analog (the default), binary,
or time attributes. If you want to write a binary or time
attribute, you must first configure the block by specifying the
type of attribute in the template before making a connection.

Note: You may use this block to modify an integer
attribute. To do so, configure the block as analog.
GPL will convert the analog value to integer by
rounding. The rounding rules are:

0.00 - 0.49: Round off
0.50 - 0.99: Round up

You can specify a constant value for an input instead of
connecting an external input. Enter a constant value in the
data base template.

You may reassign an origin remote WRIT block to a different
write attribute (or even change it to a command or dual
command) that is available remotely. To do so, double-click
left on the remote WRIT block (with Connection icon
selected) and select the attribute or command. Be aware that
when you use this method, the Editor cannot update the line
label at the destination block or verify that you selected a valid
attribute/command for the object. An invalid selection is not
detected until the file is translated and compiled.

This block has an Enable input, which provides conditional
logic. If this optional input is connected, the block will write
an attribute only when the Enable input is True and reliable.
If the Enable input is False (reliable or unreliable), or True
and unreliable, the block will not write an attribute. If the
Enable input is not connected, the attribute is written each
time the WRIT block executes.

Category

Purpose

Details

250 Operation and Special Blocks—WRIT

Field Name Connect Name Type Default Range RC T I O LB
Attribute
Name (Block
Name)

STR Blank 8 Char X

Type TAB ANALOG ANALOG,
BINARY,
TIME

X

- ENA IN BIN 0,1 N X E

- ENA OUT BIN See Note 0,1 N X E

INPUT INPUT BIN 0 0,1 N X X I

ANA 0.000000 Real N X X IN

- TIME IN TIM 00:00:00 Time N X X TI

- WRITE WRIT Y X WR

- CONTROL CTL N X CF

- CONTROL CTL N X CF

Note: The ENA OUT can be connected only if the ENA IN is connected. The default is 0.

If the input into the WRIT block is unreliable, the block will
not write to the attribute.

In the following example (Figure 104), the WRIT block
changes the value of the Unrel Dflt Resp (Unreliable Default
Response) parameter of the PIDL object (defined in PIDL data
base template) when the PIDL detects unreliable data. If the
BI object (AHU1\OCC) reports that the building is in
occupied mode, and the PIDL object detects unreliable data,
the PIDL will output a value of 100, which will command the
cooling valve (AHU1\CLG-VLV) to 100% open. If the BI
object reports unoccupied mode, and the PIDL object detects
unreliable data, the PIDL will output a value of 0, which will
command the cooling valve (AHU1\CLG-VLV) to 0% open.

Note: This example requires that the Select Unrl Dflt
parameter in the PIDL template is answered Y (Yes).

No period is specified for this process, since it only needs to
run when triggered by the BI object.

Note: The SWCH and WRIT blocks, both operation blocks,
must be placed in a process.

Information Table

Reliability

Example

Operation and Special Blocks—WRIT 251

Figure 104: WRIT Block Example

�������

��

�

��

	���

������

��

���

����

�		

��	�

� �

�� ��

��

���

����

���� �

������

����

	�������

���

����

	������

��

����

�������

	���

����

252 Operation and Special Blocks—WRIT

Operation and Special Blocks—XOR 253

XOR (Exclusive OR) Block

Logic

Performs a logical exclusive OR operation on two binary
inputs.

The following truth table describes the XOR block:

Input 1 Input 2 Output
True True False

True False True

False True True

False False False

Field Name Connect Name Type Default Range RC T I O LB
Block Name STR Blank 8 Char X

- INPUT 1 BIN 0,1 Y X I1

- INPUT 2 BIN 0,1 Y X I2

- OUTPUT BIN 0 0,1 Y X O

- CONTROL CTL N X CF

- CONTROL CTL N X CF

The output of the XOR block is unreliable if either of its
inputs is unreliable.

Category

Purpose

Details

Information Table

Reliability

254 Operation and Special Blocks—XOR

In this example (Figure 105), an XOR block is used to verify a
fan has actually started. When the fan (AHU1\FAN) is
commanded to on, the process waits one minute. Then, it
checks if the fan (AHU1\FAN-STAT) has indeed started. If
the fan has not started, the PRNT block sends the following
message to the printer:

AHU1\FAN DID NOT START

A control flow line is drawn from the WAIT block to the
XOR block to make sure the wait is executed before the XOR
block. The BI connection to the XOR block is exempted from
triggers because only the BO object, not the BI object, should
be allowed to trigger the process.

No period is defined for this process, since it only needs to run
when the value attribute of the BO object changes.

Note: All operation blocks in this example have to be
placed in a process. They include: PRNT, XOR, and
WAIT.

Figure 105: XOR Block Example

Example

	
����

�

��
�

�

��

	�

����

��������

�

��

����

��������

���
����

��

����

���

	�

GPL Programmer’s Manual

Template Field Descriptions

The following is a reference section that contains full
descriptions of all attributes and parameters that appear in the
GPL database templates. After the definition, the range or list
of options for the attribute or parameter is given. (Refer to
Appendix F: Characters, Symbols, and Reserved Words for a
list of valid characters and symbols.) The descriptions are
organized alphabetically.

Note: The definitions of the attributes and parameters for
the object blocks are brief. For full details, refer to
the particular object technical bulletin in the Software
Data Sheets section of the Metasys Network
Technical Manual (FAN 636).

Specifies whether you want to enable the Active Output Mode
Flag for this mode of the BSEQ block. The Active Output
Mode Flag and the Active Input are placed in an OR function
to determine the Active Output. See the following table.

Active Output
Mode Flag

Active Input Active Output
Mode Flag

Active Output

True Yes True
True No True
False Yes True
False No False

Choices: Y (Yes) or N (No).

Specifies whether you want to disable the Priority 3 Adjust
(or Set) commands. This prevents the associated input object’s
value from being overwritten by the Priority 3 commands.
You can still issue the Override command if you need to
change the object’s value manually. Choices: Y (Yes=Adjust
disabled) or N (No = Adjust enabled).

Adjust Disabled

© November, 1999 Johnson Controls, Inc. 1
 Code No. LIT-631100

Type of advisory that is assigned to the text that the ADV
block will send to operator devices. Choices in descending
order: CRITICAL1, CRITICAL2, CRITICAL3, CRITICAL4,
FOLLOW_UP, and STATUS.

Advisory Type

The report type that an alarm COS will be reported as. Select
NONE if you do not want a report generated when the object
changes its status to Alarm. Choices in descending order:
CRITICAL1, CRITICAL2, CRITICAL3, CRITICAL4,
FOLLOW_UP, STATUS, and NONE.

Alarm

Alarm Number. A user-defined reference number that
identifies the particular text to be included with an alarm COS
report. The text is displayed in the dialog box of a critical
alarm report. Range: 0 to 255 (0 = No message).

Alarm #

Time period that the BI object may wait before reporting an
alarm. The delay is useful in preventing nuisance alarms when
the BI object is used as a feedback to a BO object. When
Delay All Alarms is enabled, all COS transitions from the
normal to the alarm state will also be delayed.
Range: 0 to 255 seconds (0 = no alarm delay).

Alarm Delay

Determines whether or not to activate a local annunciation
relay when the binary alarm point is set into alarm.
Choices: Y (Yes) or N (No).

Alarm if Set

Analog Consumption Units. Units that help make values in the
Demand Limiting feature more meaningful in that they
describe the type of value that the ACM object will report
(e.g., kWh). Range: one to six valid characters and symbols.

Analog Con Units

Name of the analog attribute that will be an output connection
for the REF block (e.g., AI_2). This name should match
exactly with the corresponding attribute that was specified in
the DDL file or at the Operator Workstation. Choices: all
valid analog readable attributes.

Analog
Connections
Attribute
(A1 to A8)

2 Template Field Descriptions

Description of the analog attribute (e.g., Dis_Temp). If the
attribute is used in a software model or hardware object, we
recommend that you match the attribute’s description in the
REF block with its description in the model or object. In that
way, you will be able to easily identify the attribute in GPL
and at the Operator Workstation. Range: 1 to 8 valid
characters and symbols.

Analog
Connections
Description
(A1 to A8)

Number of configured analog data inputs for the USER block.
Range: 0 to 8.

Analog Inputs

Number of configured analog data outputs for the USER
block. Range: 0 to 8.

Analog Outputs

The type of analog device that this object represents. Choices:
1K ohm, 100 ohm, VOLT/AMP, V/A LOW END REL.

Analog Type

Engineering units that describe the type of value of the object,
such as DEG F (Degrees Fahrenheit) or DEG C (Degrees
Celsius). These units are displayed on Change-of-State (COS)
reports and summaries that report the condition of the object.
Range: 1 to 6 valid characters and symbols.

Analog Units

Name of the attribute, such as VALUE, that the AD or BD is
sampling.

Associated Input
Attribute Name

Name of the system, such as AHU1, from which the AD (or
BD) object is getting its attribute sample. Choices: all valid
object names.

Associated Input
Object Name

Name of the object, such as OAT1 (for AD) or RETFAN
(for BD), that the AD (or BD) object is sampling. Choices: all
valid system names.

Associated Input
System Name

Template Field Descriptions 3

Name of the object attribute to which that the output will map.
If the destination object is an AOD block, select VALUE. If
the destination object is another PIDL block, select one of the
following: INP1VAL, INP2VAL, INP3VAL, INP4VAL,
INP5VAL, INP6VAL, SETPOINT, OFFSET, HI_SAT_V,
LO_SAT_V, AUX_IN, SEL_INP. If no output is to be
mapped, leave this field blank.

Attribute Name
(Output 1-8 of
PIDL Block)

Whether you want critical reports (CRITICAL 1-CRITICAL 4)
to force a dialup to a remote Operator Workstation. Choices:
Y (Yes) or N (No).

Auto Dialout

Whether you want an object to revert to its last commanded
condition when communication is restored (after a failure), or
when the NCM is restarted. Choices: Y (Yes) or N (No).

Auto Restore

Auxiliary Delta Pressure. Whether the C210A controller has
configured the auxiliary delta pressure point called AUXP.
Choices Y (Yes) or N (No).

Aux Delta P

Auxiliary Humidity. Whether the C210A controller has
configured the auxiliary relative humidity point called AUXR.
Choices: Y (Yes) or N (No).

Aux Humid

Auxiliary Humidity 1. Whether the C260A controller has
configured the auxiliary relative humidity point called
AUXR1. Choices: Y (Yes) or N (No).

Aux Humid 1

Auxiliary Humidity 2. Whether the C260A controller has
configured the auxiliary relative humidity point called
AUXR2. Choices: Y (Yes) or N (No).

Aux Humid 2

For 210A Block: AUX Sensor
Auxiliary Sensor. Whether the C210A controller has
configured the auxiliary input sensor point called AUXI.
Choices: Y (Yes) or N (No).

For 260A Block:
Auxiliary Sensor. Whether the C260A controller has
configured the auxiliary input sensor point called AUXI.
Choices: Y (Yes) or N (No).

4 Template Field Descriptions

Auxiliary Switch Enable. Whether you want the PIDL object
to use the auxiliary switch input instead of the PID algorithm.
The auxiliary switch provides an input to the PID loop that
bypasses the PID algorithm. If you want the auxiliary switch
input to be passed to the auxiliary switch output, answer
Y (Yes). If you want the result of the PID algorithm to be
passed to the auxiliary switch output, answer N (No).

Aux Switch Ena

Name of the AI object, if any, whose value is used for the Aux
Switch Input value. The AI object and PIDL object must be
on the same DCM. Choices: all valid object names.

Aux Switch Input
Object Name

Which value the PIDL object will use for the Auxiliary Switch
input. If you want the PIDL to use the Auxiliary Switch input
value entered in the template, select NORMAL. If you want
the PIDL to obtain the value from the object entered in the
template, select REFERENCE. The referenced AI object and
the PIDL object must be on the same DCM. Choices:
NORMAL or REFERENCE.

Aux Switch Input
Reference Select

Name of the system that contains the AI object, if any, whose
value is used for the Aux Switch Input value. Choices: all
valid system names.

Aux Switch Input
System Name

Value that provides a means for some other algorithm or a
default value to have control of the PIDL object output.
Range: all real numbers.

Aux Switch
Input Value

Auxiliary Temperature. Whether the C210A controller has
configured the auxiliary temperature sensor point called
AUXT. Choices: Y (Yes) or N (No).

Aux Temp

Auxiliary Temperature 1. Whether the C260A controller has
configured the auxiliary temperature sensor point called
AUXT. Choices: Y (Yes) or N (No).

Aux Temp 1

Template Field Descriptions 5

Auxiliary Temperature 2. Whether the C260A controller has
configured the auxiliary temperature sensor point called
AUXP. Choices: Y (Yes) or N (No).

Aux Temp 2

For 210A Block: Auxiliary Binary
Whether the C210A controller has configured the auxiliary
latching binary input called AXBI. Choices: Y (Yes) or
N (No).

For 260A Block:
Whether the C260A controller has configured the auxiliary
latching binary input points called LTCH and HLTC. Choices:
Y (Yes) or N (No).

Barometric Pressure. Value of barometric pressure for the
Psychrometric Equations operation blocks (included are
ENDP, ENRH, WBDP, and WBRH). Range: all real numbers.

Barometric Press.

The binary alarm point address (terminal connection) at the
Card Reader. Range: 1 to 8.

BI Point Number

Name of the binary attribute that will be an output connection
for the REF block (e.g., BI_2). This name should match
exactly with the corresponding attribute that was specified in
the DDL file or at the Operator Workstation. Choices: all
valid binary readable attributes.

Binary
Connections
Attribute
(B1 to B8)

Description of the binary attribute (e.g., Fan_Stat). If the
attribute is used in a software model or hardware object, we
recommend that you match the attribute’s description in the
REF block with its description in the model or object. In that
way, you will be able to easily identify the attribute in GPL
and at the Operator Workstation. Range: 1 to 8 valid
characters and symbols.

Binary
Connections
Description
(B1 to B8)

Number of configured binary data inputs for the USER block.
Range: 0 to 8.

Binary Inputs

6 Template Field Descriptions

Number of configured binary data outputs for the USER
block. Range: 0 to 8.

Binary Outputs

The type of binary device that this object represents.
BI choices: BIN101, BIF101, BIS101, SST101, SST102;
BO choices: SST101, SST102.

Binary Type

Blink at Turn Off. Whether the group of lights that is
represented by the LCG object should blink five minutes and
two minutes before turning off. The purpose is to notify
occupants that lights are soon to turn off. Choices: Y (Yes) or
N (No).

Blnk at Turn OFF

A user-specified unique character that is part of the REF
block’s identification. It differentiates between multiple REF
blocks that have the same system\object name.
Range: 1 valid character.

Block Label

Name that identifies the operation block. Range: 1 to 8 valid
characters and symbols.

Block Name

Name of the attribute you wish to read from or write to. You
must spell the attribute name correctly. Refer to Appendix G:
Attributes for the correct spelling of all readable and writable
attributes. Choices: valid attribute names.

Block Name
(Attribute Name)

Name assigned to the variable of the SVAR block.
Range: 1 to 8 valid characters and symbols.

Block Name
(Variable Name)

Parameter of the BSEQ block that helps decide whether the
block is to increment or decrement through the stages. If you
select the Greater Than (>) operator, the Break Setpoints must
be descending order (e.g., Break Setpoint 1=68.0,
Break Setpoint 2=67.0). However, if you select the Less
Than (<) operator, the Break Setpoints must be in ascending
order (e.g., Break Setpoint 1=67.0, Break Setpoint 2=68.0).
The Break Setpoint can be equal to the Make Setpoint.
Range: all real numbers.

Break Setpoint 1-8

Template Field Descriptions 7

Whether you want to enable the cleaning crew switch function
for the lighting group. This function allows a switch to turn on
a lighting group temporarily while the cleaning crew works in
the area served by the group. Choices: Y (Yes) or N (No).

Cleaning Crew
Switches

Communications Disabled. Whether you want to disable
communications between the object and the associated
controller (DCM or XM). When an object has its
communication disabled, it cannot trigger control processes,
send COS reports to operator devices, or accept commands
(except for Enable). Choices: Y (Yes) or N (No).

Comm Disabled

The name of the command that the CMD block will send to
the object. This is a read-only field (cannot be modified).
Choices: all possible commands shown on the connection
menu.

Command

The name of the command that the 2CMD block will send to
the object when the Select Command input is False (0). This is
a read-only field (cannot be modified). Choices: all possible
commands shown on the connection menu.

Command (0)

The name of the command that the 2CMD block will send to
the object when the Select Command input is True (1). This is
a read-only field (cannot be modified). Choices: all possible
commands shown on the connection menu.

Command (1)

Number of configured command outputs for the USER block.
Range: 0 to 8.

Command
Outputs

Constant values 1 to 4 that are used in the equation defined by
the EQN block. Range: all real numbers.

Constant 1 (C1)-
Constant 4 (C4)

8 Template Field Descriptions

Which damper configuration is defined at the C210A
controller. Select a configuration according to the following
table:

Damper

Points Defined Select This Configuration
ACTC, DMPR PRESSURE DEP (pressure

dependent)
ACTC, DMPR, DFPR,
MXDP, AXDP, DPSP, and
PMAX

PRESSURE INP (pressure
independent)

No Damper Points
Defined

NO DAMPER

Whether you want the current date appended to the statement
that the PRNT block sends to the printer. Choices: (Yes) or
N (No).

Date?

For DBCM Block: Deadband
A range for the DBCM block within which Input 1 can vary
about Input 2 without initiating any change in the output
(Figure 106). One-half of the deadband is on either side of
Input 2. Range: all positive real numbers.

Value

Input 2

Input 1

Time

1/2 Deadband

1/2 Deadband

Deadband

DSCRBDB

Figure 106: Describing the Deadband

Template Field Descriptions 9

For PIDL and PIR Blocks:
Specifies the range of error (setpoint minus feedback) that will
cause no change in the block’s output. If the error is within the
deadband (1/2-Deadband ≤ Error ≤ 1/2-Deadband), the error is 0.
If the error is outside the deadband, the error is the measured
error minus one-half the deadband (positive error) or plus
one-half the deadband (negative error).

The period of time in seconds or milliseconds that the
software waits before reading the value of a fluttering contact.
Range for DCM: 1 to 255 seconds.
Range: 12 to 3060 msec (multiples of 12 only).

Debounce Filter

Parameter that defines the number of digits that are displayed
to the right of the decimal point. For example, a decimal
position of “2” would display the number 72 as “72.00.” This
parameter applies to all numerical attributes of the object.
Range: 0 to 3.

Decimal Position

Value that the UNRD block will pass to its output if its
input is unreliable. Range: all real numbers (analog),
0 or 1 (binary), or 00:00:00 to 23:59:59 (time).

Default

Determines whether or not the alarm delay of the object is
used only for feedback alarm delay or every time the object
goes into the alarm state.

Delay All Alarms

Timer used in the BSEQ block to aid in determining when a
configured stage should run. When the Delay Off timer
expires, the BSEQ checks to see if it needs to move to the next
lowest stage. Range: 00:00:00 to 23:59:59.

Delay Off

Timer used in the BSEQ block to aid in determining when a
configured stage should run. When the Delay On timer
expires, the BSEQ checks to see if it needs to move to the next
highest stage. Range: 00:00:00 to 23:59:59.

Delay On

10 Template Field Descriptions

Derivative Weight. Value that controls the sensitivity of the
PID algorithm to the derivative (the rate of change) of the
feedback value. If you want to remove the derivative action
from the PID control algorithm, enter 0.0. The larger the
derivative weight, the larger is the effect of the derivative on
the overall control. A value greater than 4.0 is not
recommended. Range: all positive real numbers.

Derivative Wgt

A descriptor that further explains the purpose of the CNST or
REF block. Range: up to 24 valid characters and symbols.

Description

For AI Block: Differential
An optional software setting that prevents excessive alarm and
warning reports, resulting from fluctuations above and below
the limits (Figure 107). When the current value of the AI
crosses over a limit and a report is generated, the value must
again cross over the limit and its differential before a new
report is issued. Range: 0.000001 to 99999999 or blank
(not defined).

High Alarm
Limit

diffob

High Warning

Setpoint

Low Warning

Low Alarm
Limit

Differential

.

. .

Differential

Differential

. .

.

Differential

Normalband

Figure 107: Differential for AI Object

Template Field Descriptions 11

For DFCM Block:
The range within which Input 1 can vary about Input 2
without initiating any change in the output. Range: all positive
real numbers.

Zone Disabled Number. A user-defined reference number that
identifies the particular text to be included with a zone
disabled COS report. The text is displayed in the dialog box of
a critical zone disabled report. Range: 0 to 255
(0 = no message).

Disable #

Engineering units that describe the type of value of the CS
object, such as DEG F (Degrees Fahrenheit). These units are
displayed on COS reports and summaries that report the
condition of the object. Range: 1 to 6 valid characters and
symbols.

Display Units

Which analog input (AI-1 to AI-6) will be assigned to the
Value attribute of the C210A object. The value of this input
can then be viewed at the Operator Workstation and the
Network Terminal. Choices: 1 to 6 (i.e., AI-1 to AI-6).

Display Value AI

Whether you want to enable the Edge Trigger function for the
2CMD block. This function affects command execution. If
you answer Y (Yes) to Edge Trigger, Command 1 is sent only
when the Select Command input changes from False to True.
Similarly, Command 0 is sent only when the Select Command
input changes from True to False. If you answer N (No) to
Edge Trigger, Command 1 is always sent when the Select
Command input is True; and, Command 0 is always sent when
the Select Command input is False.

Edge Trigger

Enable Point History. Whether you want the NCM to collect
historical information on the object automatically. When
enabled, this parameter causes the NCM to sample and store
AI information, such as its current value and alarm status.
This information can be viewed on an operator device or sent
to a printer. Choices: Y (Yes) or N (No).

Enable PT Hist.

12 Template Field Descriptions

The value at which the RAMP block will stop ramping. If you
want the block to ramp up, define an End Value that is greater
than the Start Value. If you want the block to ramp down,
define an End Value that is less than the Start Value.
Range: all real numbers.

End Value

Mathematical equation that the EQN block will evaluate.
You may use the following characters: I1-I4, C1-C4, +, -, *, ?,
(,), SQR, ^, LOG, SIN, COS, TAN, ABS, MIN, MAX, AVG,
and PI. Range: up to 50 characters.

Equation (Output)

Whether you want to exempt all binary objects from
triggering the process. Choices: (Yes) or N (No).

Exempt All?

An expanded version of the object name that more clearly
identifies the object. For example, Outside Air Temp for
OAT. Range: 1 to 24 valid characters and symbols.

Expanded ID

Stage that the BSEQ block will assume if the Binary Enable
input or analog input is unreliable. Choices: CURRENT stage,
or stage 0 to 8.

Fail-Safe Stage

The fan configuration that is defined at the C210A controller.
Choices: NONE (no fan defined), SERIES, or PARALLEL.

Fan

Fan On/Compressor Off. The Fan On/Compressor Off
operation that is configured at the C210A controller. Select an
operation according to the following table:

Fan On/Comp Off

Point Defined Select This Operation
FNON LOCAL CONTACT
FOCO L2 COMMAND
FNON, FOCO BOTH
No Fan On/Compressor Off
Point Defined

NONE

Which state a feedback object will be set to when a Start
command is issued. Choices: Y (Yes; Start command will
close feedback input) or N (No; Start command will open
feedback input).

Feedback
(Closed for Start)

Template Field Descriptions 13

Name of the object, if any, whose setpoint value or Normal
State is mapped to the BO or AOS Feedback attribute.
Choices: all valid object names.

Feedback Object
Name

Name of the system that contains the feedback object, if any.
Choices: all valid system names.

Feedback System
Name

Engineering units associated with the feedback of a PID loop,
such as DEG F (Degrees Fahrenheit). These units are
displayed on COS reports and summaries that report the
condition of the loop. Range: 1 to 6 valid characters and
symbols.

Feedback Units

Name assigned to the control strategy file. Range: one to eight
valid characters and symbols.

File Name

The amount that a monitored quantity must change before the
FPU processes and reports the change as a change of status.
For example, a filter tolerance of 1.0% for a humidity point
means that a change of 1% is required for FPU processing.
Also known as filter increment. Range: 0.2 to 100.0%.

Filter Tolerance

For ACM and AI Blocks: Filter Weight
An optional parameter that instructs the software to smooth
out erratic input readings, such as spikes and analog noise. Its
purpose is to reduce false alarms and unnecessary control
process triggering. Range for ACM and AI: all real numbers
or blank (not defined). Range for AD: 1.000001 to 99999999
or blank (undefined)

For FILT Block:
Value that specifies the amount of filtering that this block will
apply to the input. The filtering action smoothes out changes
in the input’s value. Range: 1.0 to 99999999.

14 Template Field Descriptions

For PIDL Block:
An optional parameter that filters out short duration variations
in the output of the PID algorithm. To specify no filtering,
enter 1.0. Note that a large filter weight can greatly distort the
signal coming from the PID algorithm, to the extent that the
controller is simply controlling the filter rather than the
process. Range: 1.0 to 99999999.

Fire Zone Number. An identification number assigned to a
particular zone in a fire controller. Range: 1 to 240.

Fire Zone #

Optional value that is used in the square root calculation on a
ranged AI value. It converts a flow sensor input into
engineering units, such as CFM or GPM. If you specify a flow
coefficient that is greater than 0.0, the square root function is
performed on the filtered value and multiplied by the flow
coefficient. However, if you specify a flow coefficient that is
equal to 0.0, the square root function is not performed, and the
filtered value is passed to the output. Range: 0.000001 to
99999999 or blank (not defined).

Flow Coefficient

Graphic Symbol Number. A reference number that
identifies the particular graphic symbol used to represent
the object in Operator Workstation graphic summaries.
Range: 0 to 32,767 (0 = No graphic).

Graphic Symbol #

Number assigned that identifies the lighting group.
Range: 1 to 32.

Group Number

Name of the hardware device that the object is mapped to.
The object name must exist under the hardware system name
defined. Choices: all valid hardware object names.

Hardware Object
Name

Name of the system that represents the control panel or NCM
that is handling the object. Choices: all valid hardware system
names.

Hardware System
Name

See HW Reference. Hardware
Reference

See HW Type. Hardware Type

Template Field Descriptions 15

Whether the C210A controller has configured the preheat
mode. Preheat mode requires that these point names are
defined: HTDB, OFRH, PRRH, and REHT. Choices:
NO HEAT (none of these names are defined) or HEAT.

Heat

Heavy Equipment Delay. Time period that equipment
represented by the BO object will delay in starting.
Range: 0 to 255 seconds (0 = no delay).

Heavy Equip Dlay

Optional parameter that determines when an alarm for an AI
or AD object is generated. If the current value of the AI or AD
object exceeds the High Alarm Limit, an alarm will be
generated (Figure 108). Once the value decreases below the
High Alarm Limit and Differential, the alarm clears.
Range: any positive real number or blank (not defined).

High Alarm Limit

High Alarm
Limit

halio

High Warning

Setpoint

Low Warning

Low Alarm
Limit

. .

Differential

Differential

. .

Normalband

Figure 108: High Alarm Limit for AI Object

The highest value that the SPAN block can accept as an input.
Enter a High Input that is greater than a Low Input.
Range: all real numbers.

High Input

The highest value that the PIR block can output. Enter a
High Output that is greater than the Low Output.
Range: all real numbers.

High Output

16 Template Field Descriptions

Name of the AI object, if any, whose value is used for the
High Saturation Limit. The AI object and PIDL object must
be on the same DCM. Choices: all valid AI object names.

High Saturation
Object Name

Which value the PIDL object will use for the High Saturation
Limit. If you want the PIDL to use the High Saturation Limit
entered in the template, select NORMAL. If you want the
PIDL to obtain the value from the object entered in the
template, select REFERENCE. The referenced AI object and
the PIDL object must be on the same DCM.
Choices: NORMAL or REFERENCE.

High Saturation
Reference Select

Name of the system that contains the AI object, if any, whose
value is used for the High Saturation Limit. Choices: all valid
AI system names.

High Saturation
System Name

The maximum allowed output of the PID algorithm.
Range: all positive real numbers.

High Saturation
Value

The point type and number for the LCP, TC9100, DX9100,
LON, DX91ECH, DC9100, DR9100, XT9100, or XTM the
object is mapped to.

HW Reference

Choices per object:

 Objects Hardware Reference
 ACM DC9100: Total1-2

DX9100, DX91ECH: CNT1-8
 PM1-12AC1-8
 XT1-8CNT1-8
XT9100, XTM: CNT1-8

 AI DR9100: AI1-4
DC9100, LCP: AI1-8, Total1-21 (for DO9100 only)
DX9100: AI1-8, XT1-8AI1-8, CNT1-81,
 PM1-12AC1-81, XT1-8CNT1-81

DX91ECH: AI1-8, XT1-8AI1-8, CNT1-81,
 PM1-12AC1-81, XT1-8CNT1-81

TC9100: AI1-4
XT9100, XTM: AI1-8, CNT1-81

LON2 Definition not available.

 1 Restrictions apply to all AI objects mapped to these hardware
references. Please refer to AI documentation.

2 GPL cannot show hardware references used by software objects
on LONWORKS compatible devices.

 Continued on next page . . .

Template Field Descriptions 17

 Objects
(Cont.)

Hardware Reference

 AOS DC9100, LCP: OUT1-8, ACO1-4
DX9100: OUT1-14, ACO1-8, XT1-8AO1-8
DX91ECH: OUT1-14, ACO1-8, XT1-8AO1-8
XT9100, XTM: AO1-8
LON2: Definition not available.

 BI DR9100: WIN, OCC, AIRQ
DC9100, LCP: DI1-8, LCM1-4
DX9100: DI1-8, XT1-8DI1-8, LRS1-32
DX91ECH: DI1-8, XT1-8DI1-8, LRS1-64
TC9100: WIN, OCC, AIRQ, ALM, AFM
XT9100, XTM: 1DI1-8, 2DI1-8
LON2: Definition not available.

 BO DR9100: DO3-7, STUP, SOFF
DC9100, LCP: DO3-8, STUP, SOFF, DCO1-4
DX9100: DO3-8, STUP, SOFF, DCO1-32
DX91ECH: DO3-8, STUP, SOFF, DCO1-32,
 XT1-8DO1-8
TC9100: DO1-7, STUP, SOFF
XT9100, XTM: 1DO1-8, 2DO1-8
LON2: Definition not available.

 MSI DR9100: WIN, OCC, AIRQ
DC9100, LCP: DI1-8, LCM1-4
DX9100: DI1-8, XT1-8DI1-8, LRS1-32
DX91ECH: DI1-8, XT1-8DI1-8, LRS1-64
TC9100: WIN, OCC, AIRQ, ALM, AFM
XT9100, XTM: 1DI1-8, 2DI1-8
LON2: Definition not available.

 MSO DR9100: DO3-7, STUP, SOFF
DC9100, LCP: DO3-8, STUP, SOFF, DCO1-4
DX9100: DO3-8, STUP, SOFF, DCO1-32,
 XT1-8DO1-8
DX91ECH: DO3-8, STUP, SOFF, DCO1-32,
 XT1-8DO1-8
TC9100: DO1-7, STUP, SOFF
XT9100, XTM: 1DO1-8, 2DO1-8
LON2: Definition not available.

 1 Restrictions apply to all AI objects mapped to these hardware
references. Please refer to AI documentation.

2 GPL can not show hardware references used by software
objects on LONWORKS compatible devices.

 Continued on next page . . .

18 Template Field Descriptions

 Objects
(Cont.)

Hardware Reference

 MSO Local
Contact

DR9100: WIN, OCC, AIRQ
DC9100, LCP: DI1-8, LCM1-4
DX9100: DI1-8, LRS1-32
DX91ECH: DI1-8, XT1-8DI1-8; LRS1-64
TC9100: WIN, OCC, AIRQ, ALM, AFM
XT9100, XTM: 1DI1-8, 2DI1-8

Hardware Type. The type of hardware that the sensor or
device is connected to for this object. (The abbreviation 2X
means Multistate XMs.)

HW Type

Choices per object:

Objects Hardware Type
ACM XBN, XRM/XRL/2X, AHU, VAV, UNT, OTHER*,

DC9100, DX9100, XT9100, XTM, DX91ECH,
FPU, DSC8500

AI DCM, DCM140, FPU, DSC8500, AHU, VAV,
VMA, UNT, OTHER2, DR9100, DC9100, LCP,
DX9100, XT9100, XTM, DX91ECH, TC9100,
LON1

AOD DCM, DCM140
AOS DCM, DCM140, FPU, DSC8500, AHU, VAV,

VMA, UNT, OTHER2, DR9100, DC9100, LCP,
DX9100, XT9100, XTM, DX91ECH, LON1

BI DCM, DCM140, FPU, DSC8500, XBN,
XRM/XRL/2X, AHU, VAV, VMA, UNT,
OTHER2, D600, DR9100, DC9100, LCP,
DX9100, XT9100, XTM, DX91ECH, TC9100,
LON1

BO DCM, DCM140, FPU, DSC8500, XRM/XRL/2X,
AHU, VAV, VMA, UNT, OTHER2, DR9100,
DC9100, LCP, DX9100, XT9100, XTM,
DX91ECH, TC9100, LON1

MSI DCM, DCM140, XBN, XRM/XRL/2X, DR9100,
DC9100, LCP, DX9100, XT9100, XTM,
DX91ECH, TC9100, LON1

MSO DCM, DCM140, XRM/XRL/2X, DR9100,
DC9100, LCP, DX9100, XT9100, XTM,
DX91ECH, TC9100, LON1

MSO Local
Contact

DCM, DCM140, XBN, XRM/XRL/2X, DR9100,
DC9100, LCP, DX9100, XT9100, XTM,
DX91ECH, TC9100

1 GPL cannot show hardware references used by software objects
on LONWORKS compatible devices.

2 OTHER must be the N2OPEN hardware type as used in DDL.

Template Field Descriptions 19

Hysteresis Compensation. Value that compensates for the
error that occurs when the direction of a device is driven open
or closed by an actuator. The value is either added to
or subtracted from the output of the PID algorithm.
Range: 0.0 to 100.0%.

Hysteresis Comp.

Name assigned to identify the point object, such as
AIR_FLOW (Air Flow switch). The AI object and PIDL
object must be on the same DCM. Choices: all valid object
names.

Identification
Object Name

Name assigned to identify a system in the network, such as
AHU1. Choices: all valid system names.

Identification
System Name

The value of the object when it is first defined. Range for AD
and AOD: all real numbers. Range for BD and BO: STATE 0
or STATE 1.

Initial Value

A constant value for the input of the WRIT block. The block
uses this value if you do not make an external input
connection. Ranges: all real numbers (analog),
0 or 1 (binary), or 00:00:00 to 23:59:59 (time).

Input

A constant value for Input 0 of the SWCH block. The block
uses this value for Input 0 if you do not make an external
connection for Input 0. Ranges: all real numbers (analog),
0 or 1 (binary), or 00:00:00 to 23:59:59 (time).

Input 0

A constant value for Input 1 of the operation block. The block
uses this value for Input 1 if you do not make an external
connection for Input 1. Ranges: all real numbers (analog),
0 or 1 (binary), or 00:00:00 to 23:59:59 (time).

Input 1

Constant values for Input 1 through Input 4 of the EQN block.
These values are placed into the I1 to I4 terms as defined by
the equation. Range: all real numbers.

Input 1 (I1)-4 (I4)

Constant values for Input 1 through Input 8 of the MSEL
block. The block uses these values if you do not make external
connections for Input 1-8. Range: all real numbers.

Input 1 (I1)-8 (I8)

20 Template Field Descriptions

Name of the AI object, if any, whose value is used for the
Input n value. The AI object and PIDL object must be on the
same DCM. Choices: all valid AI object names.

Input 1-6
Object Name

Which value the PIDL object will use for Input n. If you want
the PIDL to use the Input n value entered in the template,
select NORMAL. If you want the PIDL to obtain the value
from the object entered in the template, select REFERENCE.
The referenced AI object and the PIDL object must be on the
same DCM. Choices: NORMAL or REFERENCE

Input 1-6
Reference Select

Name of the system that contains the AI object, if any, whose
value is used for the Input n value. Choices: all valid system
names.

Input 1-6
System Name

Specifies the inputs that are used in the PID algorithm. Range:
all real numbers.

Inputs 1-6 Value

A constant value for Input 2 of the operation block. The block
uses this value for Input 2 if you do not make an external
connection for Input 2. Ranges: all real numbers (analog),
0 or 1 (binary), or 00:00:00 to 23:59:59 (time).

Input 2

Determines the feedback value for the PID algorithm. If you
select SUM (summation), the feedback value is the summation
of the PID loop’s six inputs multiplied by the six scalars.
If you select MIN, the feedback value is the lowest product of
the PID loop’s six inputs multiplied by the six scalars. If you
select MAX, the feedback value is the highest product of the
PID loop’s six inputs multiplied by the six scalars.
The choices are: SUM, MIN, and MAX.

Input Function

Type of input defined for the BI object. Choice: 2-STATE. Input Type

Whether the CONN block must be connected to another
block. Choices: Optional and Required.

I/O Connections

Template Field Descriptions 21

Value in seconds that controls the sensitivity of the PID
control algorithm to the integral of the error. If you want to
remove the integral action from the PID control algorithm,
enter 0.0. Range: 0.000000 to 99999999 seconds.

Integral Time

Control-by-event statement that tells the fire system to take a
specific action when a certain point reports an alarm. Only use
characters that are valid for interlock statements. [Refer to the
IFC-1010/2020 Technical Manual (FAN 448).]
Range: up to 70 characters.

Interlock
Statement

Whether you want the BD object to remain in alarm when it
changes to an Alarm state. Choices: Y (Yes) or N (No).

Latching Point

LED On when Closed. Whether the LED is On when the relay
of the BI object is closed. This value defines the normal state
of the LED associated with the normal condition state.
Choices: Y (Yes; LED is On when Closed) or N (No; LED is
Off when Closed).

LED ON when
CLO

The first linearization parameter used in the software
calculation that ranges the analog-to-digital counts. The value
is defined and depends on the STD Range Type selected in the
field above. However, you may also define your own value
for this parameter by entering “0” in the STD Range Type
field. Range: 1.0000 to 999999.

Linear. Parm. 1

The second linearization parameter used in the software
calculation that ranges the analog-to-digital counts. The value
is defined and depends on the STD Range Type selected in the
field above. However, you may also define your own value
for this parameter by entering “0” in the STD Range Type
field. Range: 1.0000 to 999999.

Linear. Parm. 2

The third linearization parameter used in the software
calculation that ranges the analog-to-digital counts. The value
is defined and depends on the STD Range Type selected in the
field above. However, you may also define your own value
for this parameter by entering “0” in the STD Range Type
field. Range: 1.0000 to 999999.

Linear Parm. 3

22 Template Field Descriptions

The fourth linearization parameter used in the software
calculation that ranges the analog-to-digital counts. The value
is defined and depends on the STD Range Type selected in the
field above. However, you may also define your own value
for this parameter by entering “0” in the STD Range Type
field. Range: 1.0000 to 999999.

Linear. Parm. 4

Whether the controller or N2 device can assume control of its
points from the NCM. Choices: Y (Yes; controller or
N2 device is controlling its points) or N (No; NCM is
controlling points).

Local Control

Note: Not used for LONWORKS devices.

Logical Point Number. A unique number associated with the
logical point type that identifies the DSC8500 point.
Range: 1 to 255.

Logical Pnt Nmbr

Logical Point Type. An abbreviation of the type of DSC8500
point that, with the logical point number, identifies the point.
Choices are:

Logical Pnt Type

Object Choices
ACM TOT
AI ASP, ADP, LTD, FUL, RAT, TOT, INC
AOS ASP, ADP, INC
BI BSP, BDP, CON, MAN
BO BSP, BDP, MOM, MAN, BOF

Optional parameter that determines when an alarm for an
AI object is generated. If the current value of the AI object is
lower than the Low Alarm Limit, an alarm will be generated
(Figure 109). Once the value increases above the Low Alarm
Limit and the Differential, the alarm clears. Range: any
positive real number or blank (not defined).

Low Alarm Limit

Template Field Descriptions 23

High Alarm
Limit

lalio

High Warning

Setpoint

Low Warning

Low Alarm
Limit

. .

Differential

Differential

Normalband

. .

. .

Differential

. .

Differential

Figure 109: Low Alarm Limit for AI Object

The lowest value that the SPAN block can accept as an input.
Enter a Low Input that is less than a High Input.
Range: all real numbers.

Low Input

The lowest value that the PIR block can output. Low Output
must be less than the High Output. Range: all real numbers.

Low Output

Name of the AI object, if any, whose value is used for the
Low Saturation Limit. The AI object and PIDL object must be
on the same DCM. Choices: all valid AI object names.

Low Saturation
Object Name

Which value the PIDL object will use for the Low Saturation
input. If you want the PIDL to use the Low Saturation value
entered in the template, select NORMAL. If you want the
PIDL to obtain the value from the object entered in the
template, select REFERENCE. The referenced AI object
and the PIDL object must be on the same DCM.
Choices: NORMAL or REFERENCE.

Low Saturation
Reference Select

24 Template Field Descriptions

Name of the system that contains the AI object, if any, whose
value is used for the Low Saturation Limit. Choices: all valid
system names.

Low Saturation
System Name

The minimum allowed output of the PID algorithm.
Range: all positive real numbers.

Low Saturation
Value

Parameter of the BSEQ block that helps decide whether the
block is to increment or decrement through the stages. If you
select the Greater Than (>) operator, the Make Setpoints must
be in ascending order (e.g., Make Setpoint 1=68.0,
Make Setpoint 2=69.0). If you select the Less Than (<)
operator, the Make Setpoints must be in descending order
(e.g., Make Setpoint 1=67.0, Make Setpoint 2=65.0).
The Make Setpoint can be equal to the Break Setpoint.
Range: all real numbers.

Make Setpoint 1-8

Maximum Starts per Hour. The maximum number of State 1
commands that the BO object can issue in any hour.
Range: 1 to 255.

Max Starts/Hour

Minimum Off Time. The minimum time in seconds that the
load controlled by the BO object must stay off, after it is
turned off. The period protects the load from being damaging
by short cycle commands. Range: 0 to 255 seconds
(0 = no minimum Off time).

Min OFF Time

Minimum On Time. The minimum time in seconds that the
load controlled by the BO object must stay on, after it is
turned on. The period protects the load from being damaging
by short cycle commands. Range: 0 to 255 seconds
(0 = no minimum On time).

Min ON Time

The name of the Network Control Module on which the AD
or BD object is defined. This is a read-only field, which
means that GPL enters it for you.

NC Name

Template Field Descriptions 25

The report type that a normal COS will be reported as. Select
NONE if you do not want a report generated when the object
changes to Normal. Choices in descending order:
CRITICAL1, CRITICAL2, CRITICAL3, CRITICAL4,
FOLLOW-UP, STATUS, and NONE.

Normal

Normal Number. A user-defined reference number that
identifies the particular text to be included with a normal COS
report. The text is displayed in the dialog box of a return-to-
normal report. Range: 0 to 255 (0 = no message).

Normal #

Optional parameter that is the width of the normal operating
range for the object’s current value. Normalband is centered
on the setpoint (Figure 110), and is used to compute the high
and low warning limits. Range: 0.000001 to 99999999 or
blank (undefined).

Normalband

Note: Either both the Normalband and Setpoint must be
defined, or both must be undefined (blank).

High Alarm
Limit

normbio

High Warning

Setpoint

Low Warning

Low Alarm
Limit

Differential

. .

. .

Differential

Differential

. .

. .

Differential

Normalband

Figure 110: Normalband for AI Object

A user-defined normal contact value for the BD or BI object,
such as On or Off. If you do not want to define a normal state
for the object, select NONE, which means it will never go in
alarm. Choices: STATE 0, STATE 1, or NONE (no state
defined).

Normal State

26 Template Field Descriptions

Number of Outputs. The number of configured outputs for the
BSEQ block. Range: 1 to 8 outputs.

Num. of Outputs

Number of Stages. The number of configured stages for the
BSEQ block. Range: 1 to 8 stages.

Num. of Stages

The number of configured inputs for the operation block. This
figure determines how many inputs can be connected to the
block. Choices: 2, 3, or 4.

Number of Inputs

The number of configured modes for the MSEL block.
Range: 2 to 8 modes.

Number of Modes

Name assigned to the printer to which the PRNT block will
send the message. Choices: all valid printer object names.

Object Name
(Printer Name)

For 210A Block: Occupied/Unocc
Occupied/Unoccupied. Which occupied/unoccupied mode is
configured at the C210A controller. Select a mode according
to the following table:

Points Defined Select This Mode
SUSB, HWUO LOCAL CONTACT
SUSB, UNOC L2 COMMAND
SUSB, HWUO, UNOC BOTH
No Occupied/Unoccupied Points
Defined

NONE

For 260A Block:
Occupied/Unoccupied. Which occupied/unoccupied mode is
configured at the C260A controller. Select a mode according
to the following table:

Points Defined Select This Mode
STUP, STBK, HWUO LOCAL CONTACT
STUP, STBK, UNOC L2 COMMAND
STUP, STBK, HWUO, UNOC BOTH
No Occupied/Unoccupied Points
Defined

NONE

Off Switch Inp #

Template Field Descriptions 27

Off Switch Input Number. The number of the hardware input
that is used to turn the group Off. This parameter applies only
to a double momentary switch, which requires separate inputs
for its On and Off pushbuttons. Range: 0 to 32
(0 = no Off input).

Initial value used by the PIR block the first time it executes
error-free. Range: all real numbers.

Offset

Name of the AI object, if any, whose value is used for the
PIDL object Offset Value. The AI object and PIDL object
must be on the same DCM. Choices: all valid AI object
names.

Offset Object
Name

Which value the PIDL object will use for the Offset input. If
you want the PIDL to use the Offset value entered in the
template, select NORMAL. If you want the PIDL to obtain the
value from the object entered in the template, select
REFERENCE. The referenced AI object and the PIDL object
must be on the same DCM. Choices: NORMAL or
REFERENCE.

Offset Reference
Select

Name of the system that contains the AI object, if any, whose
value is used for the PIDL object Offset Value. Choices: all
valid AI system names.

Offset System
Name

A value that is added to the results of the PID algorithm. If all
PIDL input scalars are 0.0, then Offset is the output of the PID
algorithm. Range: all real numbers.

Offset Value

Operating Instruction Number. A reference number that
identifies the particular text provided when Help on an object
is requested at the Operator Workstation. Range: 0 to 32,767
(0 = No instructions).

Operating Instr #

The type of configured relational operator for the operation
block. Choices: <, >, -, -, =, and <> (depends on block).

Operation

28 Template Field Descriptions

Name of the AOD or PIDL object, if any, that contains the
attribute that will take on the value of the PIDL object’s
Current Output attribute. The object you enter must exist
under the output system name defined. The AOD or PIDL
object and the other PIDL object must be on the same DCM.
Choices: all valid AOD or PIDL object names.

Output 1-8
Object Name

Name of the system containing the attribute that will take on
the value of the PIDL object’s Current Output attribute.
Choices: all valid AOD or PIDL system names.

Output 1-8
System Name

The lowest or highest value that the SPAN block can output.
For a direct acting SPAN block, make Output Range 1 less
than Output Range 2. For a reverse acting SPAN block, make
Output Range 1 greater than Output Range 2.
Range: all real numbers.

Output Range 1

The lowest or highest value that the SPAN block can output.
For a direct acting SPAN block, make Output Range 2 greater
than Output Range 1. For a reverse acting SPAN block, make
Output Range 2 less than Output Range 1. Range: all real
numbers.

Output Range 2

Which state the Output Relay will be set to when the Start
command is issued. Choices: Y (Yes; Start command will
close relay) or N (No; Start command will open relay).

Output Relay
(Closed for Start)

The report type that an override COS will be reported as. If
you do not want a report generated when the object changes
its status to Override, select NONE. Choices in descending
order: CRITICAL1, CRITICAL2, CRITICAL3, CRITICAL4,
FOLLOW_UP, STATUS, and NONE.

Override

Override Default Delay. The delay time in hours that is used
for a Timed On command to a lighting group that has no
assigned time value. When the timer expires, the lighting
group will be commanded Off. Range: 0 to 99.9 hours
(0 = no delay).

Ovrd Def Delay

Template Field Descriptions 29

Panel Number. The addressing number assigned to a
particular annunciator panel. Range: 1 to 32.

Panel #

How often a process will execute. Range: 00:00:00 to
23:59:59.

Period

Integer value between 1 and 20 that identifies the PID Loop.
The DCM can have up to 16 separate PID Loops. The
DCM140 can have up to 20 separate PID Loops. The selected
PID Loop must not currently have another PIDL object
assigned to it. Range: 1 to 20.

PID Loop Number

Point Number. The addressing number assigned to a particular
annunciator point. Range: 1 to 64.

Point #

The hardware reference number assigned to the particular
ASC point as listed in the symbol table. Ranges:

Point Address

 Object Controller Ranges
 ACM AHU 7 or 8
 VAV, UNT 4
 OTHER 1 to 256
 AI AHU 1 to 8
 VAV, UNT 1 to 6
 OTHER 1 to 256
 VMA 1 to 5
 AOS AHU and AO type 1 to 8
 AHU and ADF, ADI type 129 to 256
 VAV, UNT and AO type 1 to 8
 OTHER 1 to 256
 VMA and AO type 1 to 2
 VMA, VAV, UNT and ADF, ADI

type
1 to 256

 BI AHU 1 to 8
 VAV, UNT 1 to 5
 OTHER 1 to 256
 VMA and BI type 1 to 3
 BO AHU and BO type 1 to 10
 VAV, UNT, and BO type 1 to 8
 AHU and BD type 193 to 256
 VAV, UNT, and BD type 225 to 256
 OTHER 1 to 256
 VMA and BO type 1 to 5
 VMA and BD type 65 to 256

30 Template Field Descriptions

The type of input required or output provided by the
associated field device. Choices:

Point Type

Object Hardware Device Tab Choices
ACM XMs SINGLE or FORM C
 AHU, VAV, UNT, OTHER BI only
AI DCM140 AI, MAI
 AHU, VAV, VMA, UNT,

OTHER
AI only

AOD DCM PROP or INCR
 DCM140 PROP, INCR, MAO
AOS DCM PROP or INCR
 DCM140 PROP, INCR, MAO
 AHU, VAV, VMA, UNT,

OTHER
AO, ADF, ADI

BI DCM, DCM140 BI or MBI
 XMs SINGLE or FORM C
 AHU, VAV, VMA, UNT,

OTHER
BI only

BO DCM, DCM140 MAINTAINED or LATCHED
 AHU, VAV, VMA, UNT,

OTHER
BO, BD

For Commands: Priority
The relative priority level that is assigned to a command.
The priority dictates whether the object will accept the
command. For example, if the object’s current command is at
priority 4, a command at priority 3 or higher is required to
release the priority 4 command. Range for Start/Stop
commands: 2 to 7 (2=highest). Range for all other commands:
2 or 3 (2=highest).

For Processes:
The relative priority level that is assigned to a process.
The priority dictates when a process will run in relation to
other processes that are in the queue. The lower the priority
number, the higher the priority. Range: 1 to 4 (1=highest).

Template Field Descriptions 31

Process Object Name. Object name assigned that identifies the
process. The name appears inside the process compound
block. For a RESTART process, the process object name is
fixed at RESTART. Range: all valid process object names.

Process Obj Name

Process System Name. System name assigned that identifies
the process. The name appears inside the process compound
block. Choices: all valid system names.

Process Sys Name

Proportional Band. The change in the error that is required to
cause a change of 100 in the PID algorithm’s output value.
The error is defined as the difference between the feedback
value and the setpoint value. For direct acting control, enter a
negative value. For reverse acting control, enter a positive
value. Range: all real numbers.

Proportional Bnd

Proportional Band. The change in the error that is required to
cause the output to change from its low limit to its high limit,
or vice versa. The error is defined as the difference between
the feedback value and the setpoint value. For direct acting
control, enter a negative value. For reverse acting control,
enter a positive value. Range: all real numbers.

Prop Band

Whether you want to protect the contents of a compound from
viewing. Choices: Y (Yes) or N (No).

Protected?

Point Enabled. Determines whether the binary alarm point
(associated with the BI) is enabled or disabled at the
D600 controller. Choices: Y (Yes) or N (No).

PT Enabled

32 Template Field Descriptions

A constant for converting a single ACM pulse into the
quantity of energy or material that the pulse represents. For
example, 0.034 kWh per pulse. If 0 is defined, no pulse
constant is used in the calculation. Range: all real numbers or
blank (not defined).

Pulse Constant

The length of time, in milliseconds, that the output to a
latching field device will be pulsed for State 0 and State 1
commands. The range of values depends on whether the
device is from a DCM or XRM/XRL. Range for DCM: 20 to
5100 msec (in multiplies of 20 msec only). Range for
XRM/XRL: 12 to 3060 msec (in multiplies of 12 msec only).

Pulse Duration

Determines whether or not to automatically silence the local
annunciation relay when a binary alarm point is reset to its
normally closed position. Choices: Y (Yes) or N (No).

Quiet if Reset

The time unit in the engineering units for the ACM object.
Choices: HOUR (hours), MIN (minutes), and SEC (seconds).

Rate Constant

The address the D600 controller uses to poll the card reader
and its associated binary alarm points. Range: 1 to 16.

Reader Number

Reference Object Type. The type of object to which the REF
block is associated. Choices: CS, C260X, C500X, DSC-1000,
XM (XBN, XRM, XRL, 2X), DCM, DCM140, LCD, AHU,
VAV, UNT, LCP, DR9100, DC9100, DX9100, XT9100,
FIRE, FPU, DSC8500, D600, READER, MIG, PHX,
DX91ECH, TC9100, MC, NDM, XTM, VND, LON,
OTHER.

Ref. Object Type

The assignments for the relay outputs that the LCG object will
control. Up to 40 relays can be controlled by a single LCG
object. Choices for each output: Y (Assign relay/No blink),
N (No assignment), or B (Assign relay/Yes blink).

Relay Outputs

Time units used when converting an integer to a time value or
a time value to integer in RTOT and TTOR blocks.
Choices: SECONDS, MINUTES.

Resolution

Template Field Descriptions 33

The time in seconds between consecutive calculations of the
PID control algorithm. Range: 1 to 32,767 seconds.

Sample Period

The pulse duration in seconds used to resynchronize the
hardware point to 0% to 100%. The parameter applies only to
an AOD or AOS object that is configured as an INCR point
type. If you want to disable the saturation size function,
enter 0. Range: 0 to 255 seconds.

Saturation Size

Save Point History. If you answer Y (Yes), historical
information for the object will be automatically sent from the
NCM to an archive file on an Operator Workstation. If you
select N (No), the information is only buffered at the NCM,
and will be overwritten with new data when the file is full.

Save PT History

Value that is multiplied by Input 1-6 to obtain the actual input
to the PID loop. If you want to disable the input to the PID
loop, enter 0.0. If you enter 0.0 for all scalar values, the PID
algorithm is not invoked and the value of the PID loop Offset
Port is used as the output of the PID calculation.
Range: all real numbers.

Scalar

Select Unreliable Default. If you answer Y (Yes), the
Reliability Switch uses the Unreliable Default Response
attribute as an output when the Reliable flag is equal to No.
If you answer N (No), the last reliable value will be sent to
the output.

Select Unrl Dflt

Name of the AI object, if any, whose value is used for the
Selector Input value. The AI object and PIDL object must be
on the same DCM. Choices: all valid AI object names.

Selector Input
Object Name

Which value the PIDL object will use for the Selector input.
If you want the PIDL to use the Selector input value entered in
the template, select NORMAL. If you want the PIDL to obtain
the value from the object entered in the template, select
REFERENCE. The referenced AI object and the PIDL object
must be on the same DCM. Choices: NORMAL or
REFERENCE.

Selector Input
Reference Select

34 Template Field Descriptions

Name of the system that contains the AI object, if any, whose
value is used for the Selector Input value. Choices: all valid
AI system names.

Selector Input
System Name

A minimum or a maximum limit that can be substituted for the
filtered PID algorithm output value. Range: all real numbers.

Selector Input
Value

Whether you want the High/Low Signal Selector to choose the
higher or lower input value and pass its value to the output of
the PID loop. If you want the selector to choose the higher
input value, answer Y (Yes). If you want the selector to
choose the lower input value, answer N (No).

Selector Type = HI

For ACM, AD, AI, and PIR Blocks: Setpoint
The center point (axis) of the normal operating range for the
object’s current value. Setpoint is also used by the software to
compute high and low limits. You must define a setpoint for a
PIR block. Range: all real numbers or blank (not defined).

Note: Either both the Normalband and Setpoint must be
defined, or both must be undefined (blank).

For 210A and 260A Blocks:
Which setpoint is configured at the C210 or C260A controller.
If the point name ZNSP is defined, select LOCAL. If the point
name RZSP is defined, select REMOTE.

Name of the AI object, if any, whose value is used for the
PIDL object’s Setpoint value. The AI object and PIDL object
must be on the same DCM. Choices: all valid AI object
names.

Setpoint Object
Name

Which value the PIDL object will use for the Setpoint input.
If you want the PIDL to use the Setpoint value entered in the
template, select NORMAL. If you want the PIDL to obtain the
value from the object entered in the template, select
REFERENCE. The referenced AI object and the PIDL object
must be on the same DCM.

Setpoint
Reference Select

Template Field Descriptions 35

Name of the system that contains the AI object, if any, whose
value is used for the PIDL object’s Setpoint value.
Choices: all valid AI system names.

Setpoint System
Name

The desired value of the control loop feedback signal. The
PID algorithm will work to cause the Feedback value to be
equal to the Setpoint value. Range: all real numbers.

Setpoint Value

Setpoint for Network Terminal Setpoint. Which setpoint will
be the default setpoint of the 210A object that the Network
Terminal can modify and time program. The NT can modify
and time program only one of the 12 setpoints.
Choices: 1 to 12 (SP-1 to SP-12).

Setpt for NT SP

For 210A Block: Shutdown
Which shutdown mode is configured at the C210A controller.
Select a mode according to the following table:

Points Defined Select This Mode
SDBO L2 COMMAND OPEN
HWSD LOCAL
HWSD, SDBC L2 COMMAND CLOSED and

LOCAL
No Shutdown Points
Defined

NONE

For 260A Block:
Which shutdown mode is configured at the C260A controller.
If the point name SDWN is defined, select L2 COMMAND.
If no shutdown points are defined, select NONE.

36 Template Field Descriptions

Number that represents the Function Module (FM) slot
number or input address. For the DCM, this number
represents the FM slot where the field device is connected.
For the XRLs/XRMs, this number usually means the input
address (terminal block location) where the field device is
connected. (The abbreviation 2X means Multistate XMs,
available only in the European market.) If an IUN is used, the
input slot number represents the FM slot number. The selected
slot on the given hardware object must not be currently
assigned to any other object. Ranges per hardware type are:

Slot Number

Hardware Type Ranges
DCM 1 to 10
XBN 1 to 32
XRL/XRM/2X 1 to 8
FPU 1 to 16

Optional parameter that sets the upper bound for an analog
value. If this parameter is defined, the analog value will not
report an input higher than the Span High Input. This allows
you to provide restrictions on the maximum displayed value of
the analog input. It also allows you to apply an offset and/or
gain adjustment to the input value. For example, a humidity
sensor might operate in a range of 30-80%. A Span High
Input of 80% would mean no value higher than 80% would be
input. Range: all real numbers or blank (not defined).

Span High Input

Note: Span High Input must be greater than the Span Low
Input. Also, if you define this parameter, you must
also define the other three span parameters.

Template Field Descriptions 37

Optional parameter that sets the upper bound for an analog
value. If this parameter is defined, the analog value will not
report an output higher than the Span High Output. This
allows you to provide restrictions on the maximum displayed
value of the analog output. It also allows you to apply an
offset and/or gain adjustment to the output value.
For example, a humidity sensor might operate in a range of
30-80%. A Span High Output of 80% would mean no value
higher than 80% would be output. Range: all real numbers or
blank (not defined).

Span High Output

Note: Span High Output must be greater than the Span Low
Output. Also, if you define this parameter, you must
also define the other three span parameters.

Optional parameter that sets the lower bound for an analog
value. If this parameter is defined, the analog value will not
report an input lower than the Span Low Input. This allows
you to provide restrictions on the minimum displayed value of
the analog input. It also allows you to apply an offset and/or
gain adjustment to the input value. For example, a humidity
sensor might operate in a range of 30-80%. A Span Low Input
of 30% would mean no value lower than 30% would be input.
Range: all real numbers or blank (not defined).

Span Low Input

Note: Span Low Input must be less than the Span High
Input. Also, if you define this parameter, you must
also define the other three span parameters.

Optional parameter that sets the lower bound for an analog
value. If this parameter is defined, the analog value will not
report an output lower than the Span Low Output. This allows
you to provide restrictions on the minimum displayed value of
the analog output. It also allows you to apply an offset and/or
gain adjustment to the output value. For example, a humidity
sensor might operate in a range of 30-80%. A Span Low
Output of 30% would mean no value lower than 30% would
be output. Range: all real numbers or blank (not defined).

Span Low Output

Note: Span Low Output must be less than the Span High
Output. Also, if you define this parameter, you must
also define the other three span parameters.

38 Template Field Descriptions

The Delay Off timers for Stages 1 to 8. For details, see
Delay Off. Range: 00:00:00 to 23:59:59.

Stage 1-8/Delay
Off

The Delay On timers for Stages 1 to 8. For details, see
Delay On. Range: 00:00:00 to 23:59:59.

Stage 1-8/Delay
On

The binary values of Outputs 1 to 8 for Stages 1 to 8.
Choices: 0 or 1.

Stage 1-8/
Outputs 1-8

The value at which the RAMP block will start ramping. If you
want the block to ramp up, define a Start Value that is greater
than the End Value. If you the block to ramp down, define a
Start Value that is less than the End Value.
Range: all real numbers.

Start Value

Characters that represent the open (Off) contact position of
a binary object. Range: up to six valid characters and symbols.

State 0 (Units)

Characters that represent the closed (On) contact position of a
binary object. Range: up to six valid characters and symbols.

State 1 (Units)

Standard Range Type. Defines the type of field device that
you are using, such as a 0-10 VDC transmitter. It is a number
that represents a standard sensor device. Entering a number
changes the linearization parameters to the predefined values.
You may also enter customized linearization values by
entering a “0” in the field. Ranges per hardware type are:

STD Range Type

Hardware Type Ranges
DCM 0 to 25, 34 to 111 (0=customized values)
FPU 0, 26 to 33 (0=customized values)

Template Field Descriptions 39

Conversion factor used for incremental type points. The factor
converts a commanded value change in percent to a pulse
duration in seconds. The parameter applies only to an AOD or
AOS object that is configured as an INCR point type.
Range: all real numbers.

Step Ratio

Value that the output of the RAMP block will change for each
step up or step down. Range: all positive real numbers.

Step Size

Number that describes which input of the Function Module is
represented by the object. Choices: 1 or 2.

Subslot Number

Alarm Suppression Time Zone number. The Alarm
Suppression Time Zone suppresses COS reporting for the
binary alarm point during a specified time period.
Range: 0 to 8.

Suppress TZ

The number of the hardware input that will be controlled by
the LCG object. Range: 0 to 32 (0 = no switch input
assignment).

Switch Input #

The type of switch that characterizes the hardware input that
will be controlled by the LCG object. Choices:
MAINTAINED, MOMENTARY, DBL (double)
MOMENTARY.

Switch Type

The message that will be printed via the ADV or PRNT block.
Range: up to 50 valid characters and symbols.

Text

For CNST Block: Time
A constant value for the time input of the CNST block. The
block uses this value for its input if you do not make an
external input connection. Range: 00:00:00 to 23:59:59.

For DLAY, PULS, and WAIT Blocks:
The value of the period timer that manipulates the value of the
output. Range: 00:00:01 to 23:59:59.

40 Template Field Descriptions

Whether you want the PRNT block to append the current time
of day to the message it will print. Choices: Y (Yes) or
N (No).

Time?

Name of the time attribute that will be an output connection
for the REF block (e.g., AD_2). This name should match
exactly with the corresponding attribute that was specified in
the DDL file or at the Operator Workstation. Choices: all
valid time readable attributes.

Time Connections
Attribute (T1 to T8)

Description of the time attribute (e.g., Sta_Time). If the
attribute is used in a software model or hardware object, we
recommend that you match the attribute’s description in the
REF block with its description in the model or object. In that
way, you will be able to easily identify the attribute in GPL
and at the Operator Workstation. Range: 1 to 8 valid
characters and symbols.

Time Connections
Description
(T1 to T8)

Number of configured time data inputs for the USER block.
Range: 0 to 4.

Time Inputs

Number of configured time data outputs for the USER block.
Range: 0 to 4.

Time Outputs

Totalization Type. The type of totalization data that the
TOT block will obtain. Choices: CURRENT, LAST, or
CURRENT AND LAST.

Totalization Typ

The report type that a trouble COS will be reported as. If you
do not want a report generated when the object changes to
Trouble, select NONE. Choices in descending order:
CRITICAL1, CRITICAL2, CRITICAL3, CRITICAL4,
FOLLOW-UP, STATUS, and NONE.

Trouble

Template Field Descriptions 41

Tune Change Factor. How quickly the automatic self-tuning
algorithm may change the Proportional Band (PBand) and the
Integral Time (ITime) attributes. To give the self-tuning
algorithm full control of the PBand and ITime values,
enter 1.0. To disable self-tuning control, enter 0.0.
Range: 0.0 to 1.0.

Tune Chng Factor

The range of values within which the feedback can vary
before tuning is attempted (Figure 111). The Tune Noise Band
is compared to the difference between the setpoint and the
input-conditioned feedback. If the difference is greater than
twice the Tune Noise Band, tuning may take place. The value
of Tune Noise Band must be greater than the Deadband.
Range: any positive real number.

Tune Noise Band

tunebio

Setpoint

Tune Noise Band (2x)

Tune Noise Band

Tuning may
begin.

Figure 111: Describing Tune Noise Band

The type of data that the block will use. Choices: ANALOG,
BINARY, TIME, CONTROL, COMMAND, DUAL CMD,
READ, or WRITE (depends on block).

Type

42 Template Field Descriptions

The DOS name assigned to the file that contains the code for
the USER block. Do not enter the DOS extension as part of
the type/file name. Range: up to eight valid characters and
symbols.

Type/File Name

A user-specified name that describes the type of REF block. It
appears on the outside of the block. Usually, the user matches
it to the Ref. Object Type entry or to the CS type to indicate
the model name. Range: 1 to 8 valid characters and symbols.

Type Name

The type of temperature units for the operation block.
Choices: ENGLISH or METRIC.

Units

Unreliable Default Response. A PIDL object output that may
be used when the Reliable flag equals 0. Range: all real
numbers.

Unrel Dflt Resp

A constant value for the analog or binary input of the CNST
block. The block uses this value for its input if you do not
make an external connection. Range: all real numbers (analog)
or 0 or 1 (binary).

Value

Which warmup mode is configured at the C210A controller.
Which shutdown mode is configured at the C210A controller.
Select a mode according to the following table:

Warmup

Points Defined Select This Mode
WMUP, SARE L2 COMMAND
AUXI, WTMP, CNWU, WMUP, SARE SARE AND L2 COMMAND
No Warmup Mode Points Defined NONE

The report type that a warning will be reported as. Select
NONE if you do not want a report generated when the object
changes its status to Warning. Choices in descending order:
CRITICAL1, CRITICAL2, CRITICAL3, CRITICAL4,
FOLLOW_UP, STATUS, and NONE.

Warning

Template Field Descriptions 43

Warning Number. User-defined reference number that
identifies the particular text to be included with a high or low
warning COS report. The text is displayed in the dialog box of
a critical warning report. Range: 0 to 255 (0 = No message).

Warning #

The amount of time in minutes that the object will wait
before issuing a COS report. Range: 0 to 255 minutes
(0 = no delay).

Warning Delay

Number of configured write outputs for the USER block.
Range: 0 to 8.

Write Outputs

44 Template Field Descriptions

Appendix 5

Appendix A

This appendix gives a brief description of each icon and option
in the GPL Editor. It consists of two sections: major icons and
minor icons. The major icons include those on the left side of
the screen and in the option menus. The minor icons are those
in the connection, command, and find menus. For more
detailed information on all icons, refer to the Editor chapter.

The following are brief descriptions of the major icons, which
are used on the left side of the screen and in option menus.

Exit Icon (Stop Sign)

Exits GPL, either to DOS or the Metasys FMS.

File Icon (Disk)

Displays the File option menu.

U P
D W N

UP and DWN Options

UP: Displays the previous page of a
directory.

DWN: Displays the next page of a
directory.

S A V E
SAVE Option

Saves a control strategy to a disk drive.

LO A D
LOAD Option

Loads a control strategy into the work
area.

Major Icons

cwoodti
Text Box
Code No. LIT-631110A

6 Appendix

Description Icon

Displays a description file for a control
strategy.

D R IV

DIR
DRIV and DIR Options

DRIV: Changes the currently selected
disk drive that is being used to save and
load control strategies.

DIR: Creates a new DOS directory.

Delete File Icon (Trash Can)

Deletes a control strategy file.

Compound Icon

Displays the Compound option menu.

U P
D W N

UP and DWN Options

UP: Displays the previous page of a
directory.

DWN: Displays the next page of a
directory.

M A K E

EDIT
MAKE and EDIT Options

MAKE: Creates a new compound.

EDIT: Edits an existing compound.

Appendix 7

LO A D

XPND
LOAD and XPND Options

LOAD: Loads a compound block into
the work area.

XPND: Loads the expanded version of a
compound into the work area.

Description Icon

Displays a description file for a
compound.

D R IV

DIR
DRIV and DIR Options

DRIV: Changes the currently selected
disk drive that is being used to save and
load compounds.

DIR: Creates a new DOS directory.

Delete File Icon (Trash Can)

Deletes a compound.

Zoom and Pan Icon

Single click: Zooms a diagram.
Double click: Displays the Zoom and Pan option menu.

Zoom Icon

Zooms a diagram.

Pan Icon

Moves up, down and across a diagram.

8 Appendix

Erase Icon (Eraser)

Single click: Erases any item or deletes an object on a
diagram.

Double click: Displays the Erase option menu.

Erase Icon (Eraser)

Erases any item or deletes an object on
a diagram.

Erase Group Icon (Framed Eraser)

Erases a group of items on a diagram.

C LR
A LL

CLR ALL Option

Clears the entire work area, which, in
effect, clears all data in RAM memory.

U N D 0

UNDO Option

Restores to the diagram any item
previously erased.

Move Icon (Scissors)

Single click: Moves and resizes an item on the diagram.
Double click: Displays the Move option menu.

Move Icon (Scissors)

Moves and resizes an item on the
diagram.

Appendix 9

Copy Icon (Stamp)

Copies an item on the diagram.

Move Group Icon (Framed Scissors)

Moves and resizes a group of items on a
diagram.

Copy Group Icon (Framed Stamp)

Copies a group of items on a diagram.

Connection Icon (Arrow)

Single click: Draws a connection line between two function
blocks.

Double click: Displays the Connection option menu.

Connection Icon (Arrow)

Draws a connection line between two
function blocks.

XM P T
Exempt Connection Icon (XMPT Arrow)

Makes an existing binary line exempt
from triggering a process.

Query Icon (Question Mark)

Single click: Displays a database template, displays the
contents of a compound, and queries a
connection.

Double click: Displays the contents of a compound or
displays the Query option menu.

10 Appendix

Query Icon (Question Mark)

Single click: Displays a database
template, displays the contents of a
compound, and queries a connection.
Double click: Displays the contents of a
compound or displays the Query option
menu.

FIN D

FIND Option

Locates places in the file where a
particular function block is used.

VIEW

VIEW Option

Displays the list file.

R EA D

READ Option

Reads the archive database to
synchronize (match) the GPL object
block database with the archive object
database.

Appendix 11

Print Icon (Page)

Displays the Print option menu.

U P
D W N

UP and DWN Options

UP: Displays the previous page of the
print queue.

DWN: Displays the next page of the
print queue.

PR T
O N E

PRT ONE Option

Creates a print file for the displayed
diagram.

PR T
M AN Y

PRT MANY Option

Creates a print file for multiple nested
diagrams in a control strategy.

S TA R T
O U TP U T

START OUTPUT Option

Sends all print files in the queue to the
printer.

Delete File Icon (Trash Can)

Deletes a print file from the print queue.

Tools Icon (Hammer)

Single click: Turns the grid on and off.
Double click: Displays the Tools option menu.

12 Appendix

Grid Icon

Turns the grid on and off.

TEXT

TEXT Option

Types comments, notes and labels on a
diagram.

0.00

0.00 Option

Pastes down analog displays used to
show values during simulation.

Expert Checker Icon (Check Mark)

Runs the GPL Expert Checker.

SIM

SIM Option

Runs the GPL Simulator.

TR AN

TRAN Option

Runs the GPL Translator.

The following are brief descriptions of the minor icons, which
are used in the connection, command, and find menus.

UP and DWN Options

UP: Displays the previous page of a list.
DWN: Displays the next page of a list.

Minor Icons

U P
D W N

Appendix 13

ANA Option

Filters list to show all analog connections.

BIN Option

Filters list to show all binary connections.

CMD1 Option

Highlighted when list shows the commands that can be sent
when the Select Input is True (1).

CMD0 Option

Highlighted when list shows the commands that can be sent
when the Select Input is False (0).

OBJ Option

Filters list to show all system names.

BLK Option

Filters list to show all operation, special, and group compound
block names.

TOP and BOT Options

TOP: Displays the first page (top) of the list.

BOT: Displays the last page (bottom) of the list.

AN A

BIN

C M D 1

C M D 0

O B J

B LK

TO P

BOT

14 Appendix

Appendix 15

Appendix B: Summary of
Keys

This appendix provides descriptions of the keys that have
specific functions for the GPL Editor and Simulator.

The following list explains the keystrokes used in the Editor.

The GPL Editor uses the following special keys:

Key Function

Alphanumeric Keys Enter information such as names, values,
and descriptions.

Arrow Keys Move cursor between parameter fields.

Backspace Moves cursor back one space within a
parameter field.

CTRL/Arrow Moves cursor within a parameter field.

Esc Ignores changes made to a template and
closes template. Exits a help screen.
Clears most items in the work area, such
as some option menus and description
files.

F1 Displays a help screen.

F2 Changes the function block size to the
large default size.

F3 Changes the function block size to the
small default size.

F4 Changes the function block size to the
standard default size.

F10 Saves changes made to a template and
closes template.

Page Up Displays the next page of a template, help
screen, or file.

Page Down Displays the previous page of a template,
help screen, or file.

Insert Shifts characters one space to the right
for you to add a character.

Delete Deletes a character in a parameter field.

GPL Editor Keys

cwoodti
Text Box
Code No. LIT-631110B

16 Appendix

The following tables explain the mouse actions and keystrokes
used in the three windows of the Simulator.

Key Function

Alt Key and
Highlighted Letter of
Option

Performs option (e.g., press ALT/Y for
Yes and ALT/T for CLR TOP).

Key Function

Alt Key and
Highlighted Letter of
Option

Performs option (e.g., press ALT/Q to
Quit).

Esc Key Clears dialog box and cancels previously
selected control function.

Key Function

Alphanumeric
Character Set

Specifies values in fields.

Arrow Keys Move between data fields to select a field.

Enter Enters new data in currently selected field.

F5 Triggers execution of process displayed in
Block window.

F4 Toggles between Automatic and Manual
modes.

PageUp/PageDn Displays multiple pages of data fields.

Tab Scrolls through possible entries in some
data fields.

GPL Simulator
Keys

From the Main
Window

From the Control
Window

From the Block
Window

Appendix 17

Appendix C: Summary of File
Names and Extensions

This appendix lists all files that the GPL utilities create and
use. The file names for the extensions listed here is the control
strategy or compound name
(e.g., C:\FMS\DATA\JOBS123\GPL\AHU1.DB).

File Description File Type Extension

Control Strategy Database .DB

Connection .CI

Text .TX

Database Backup .ODB

Connection Backup .OCI

Text Backup .OTX

Compound Compound .CMP

Compound Backup .OCM

Text Description Diagram .DDS

Compound .CDS

Print Diagram .PRD

Template .PRT

List List .LST

USER Block Source Code .MAC

Intermediate
Source

Source Code .BAS

Process Object Object Code .OBJ

cwoodti
Text Box
Code No. LIT-631110C

18 Appendix

The Editor uses two files for online help, which are accessed
when you press F1. These files are stored under the
C:\{FMSPATH} directory.

File Description File Type File Name

Help Screens Icon ICON.HLP

Block BLOCK.HLP

Appendix 19

Appendix D: Capabilities

The following table outlines the capabilities of the GPL Editor.

Item Maximum

Block database size 64 Kb (approximately)

Connection database size 32 Kb (approximately)

Connections per file 2200

Function blocks per file 999

GPL processes per NCM 255

Line segments per direct connection 14

Line segments per remote connection 7

Nested compound levels 30

Nested FILE blocks 30

Connection penetration levels 10

Files in a subdirectory 100

Sequential connections 120

Text database size (includes analog
displays)

40 Kb (approximately)

Text fields 800

Viewable pages for description file 30

Viewable pages for list file 30

Viewable pages for USER block macro
file

30

Viewable pages for the block help
screens

5

Viewable pages for the icon help
screens

3

cwoodti
Text Box
Code No. LIT-631110D

20 Appendix

Appendix 21

Appendix E:
External Functions

This appendix describes those functions you need to perform
outside of the GPL Editor.

The GPL Editor creates a set of backup files each time you
edit a control strategy or compound. These files are the version
of the strategy or compound before it is updated. You would
use the backup files if the originals are inadvertently changed,
lost, or damaged.

Notes: The GPL Editor creates backup files automatically;
the backup procedure cannot be inhibited.

Any software utility that can copy DOS files and
delete DOS directories can be used as an alternate to
the procedures that follow.

A control strategy has three backup files: .ODB, .OCI, and
.OTX. Each must be restored individually. You must be in
DOS to perform this procedure.

1. To restore the .ODB file to a .DB file, rename the file by
typing in the following at the DOS prompt:

rename c:\[path]\[filename].odb
c:\[path]\[filename].db

2. To restore the .OCI and .OTX files, repeat Step 1 above,
specifying the .OCI/.CI and .OTX/.TX file extensions.

The old version of the control strategy can be loaded as the
original. To load the strategy for editing, refer to the Directory
and Control Strategy Functions section in the Editor section.

Restoring
Backup Files
and Compounds

Restoring the
Control Strategy
Files

cwoodti
Text Box
Code No. LIT-631110E

22 Appendix

A compound has only one backup file: .OCM. You must be in
DOS to perform this procedure.

To restore the .OCM file to a .CMP file, rename the file by
typing in the following at the DOS prompt:

rename c:\[path]\[filename].ocm
c:\[path]\[filename].cmp

The old version of the compound has replaced the original.
To load the compound for editing, refer to the Compound
Functions section in the Editor chapter.

A directory can be created but not deleted with the GPL
Editor. You must be in DOS to do so.

Notes: Do not delete the GPL directory; the archive database
requires it.

Refer to your DOS manual for detailed instructions
on deleting directories.

To delete a directory, simply type in the following at the DOS
prompt:

rd c:\[directory name]

Each control strategy and compound can have an associated
description file. The purpose of the description files is to
explain the strategy or compound. You can display these files
in the GPL Editor work area by clicking left on the Description
icon.

Follow these rules in creating a description file:

� Create the file outside of GPL with a text editor that can
provide a file in ASCII format (i.e., no control characters).

� Define a left margin of 0 (minimum) and a right margin of
69 (maximum). Your file can have a right margin of more
than 69, but when viewed with the Editor, the text that is
after column 69 will wrap to the next line. The file can be
of any size, though only the first 30 pages (900 lines) can
be viewed with the GPL Editor.

Restoring a
Compound File

Deleting a
Directory

Writing a Text
Description File

Appendix 23

� Store the control strategy description file in the same
directory and assign it the same name as the control
strategy, with a .DDS (Diagram Description) extension.
Similarly, store the compound description file in the same
directory and assign it the same name as the compound,
with a .CDS (Compound Description) extension.

You program each USER block by writing a macro file with a
text editor. The macro file contains the JC-BASIC statements
and connection names that define the function of the USER
block. The connection names specified in the file will be
available in the block’s input and output connection menus.
The valid connection names are:

ANA IN1 to ANA IN8

BIN IN1 to BIN IN8

TIME IN1 to TIME IN4

ANA OUT1 to ANA OUT8

BIN OUT1 to BIN OUT8

TIME OUT1 to TIME OUT4

COMMAND1 to COMMAND8 (output)

WRITE1 to WRITE8 (output)

Follow these rules in creating a USER block macro file:

� Create the file outside of GPL with a text editor that can
provide a file in ASCII format (i.e., no control characters).

� Define a left margin of 0 (minimum) and a right margin of
69 (maximum). Your file can have a right margin of more
than 69, but when viewed with the Editor, the text that is
after column 69 will wrap to the next line. The file can be
of any size, though only the first 30 pages (900 lines) can
be viewed with the GPL Editor.

Writing a USER
Block File

Creating

24 Appendix

� Store the USER block macro file in the directory that is
specified by the SET GPLUMAC command in the
GPL.BAT file (e.g., SET GPLUMAC=C:\CUSTUMAC).
Assign a .MAC (Macro) extension to the file.

You link the macro file to the pasted down USER block via
the Type/File field in the database template. For details, refer
to the Function Blocks section.

Follow these rules in writing the JC-BASIC macro file for the
USER block:

� Follow the syntax rules for creating JC-BASIC processes.
The file may contain any valid combination of JC-BASIC
functions and compiler directives that are required to
achieve your control objectives. For details on how to
write in JC-BASIC, refer to the JC-BASIC Programmer’s
Manual.

� The connection names you define and use in the macro
file must match the connection names in the block. Valid
connection names are:

ANA IN1 to ANA IN8 COMMAND1 to COMMAND8

ANA OUT1 to ANA OUT8 TIME IN1 to TIME IN4

BIN IN1 to BIN IN8 TIME OUT1 to TIME OUT4

BIN OUT1 to BIN OUT8 WRITE1 to WRITE8

The connection names must be enclosed in square
brackets ([]). For example, to represent Analog Input 1,
you would specify: [ANA IN1]. However, the connection
names for COMMAND1 to COMMAND8 must be
enclosed in single parentheses and brackets; for example:
‘[COMMAND1]’. The Translator will substitute the
names of the graphically connected inputs and outputs
into the macro file.

Programming

Appendix 25

� Do not use the PROCESS and END PROCESS statements
in the USER block macro file.

� We recommend that you do not use line labels in the
USER block macro file. If you were to inadvertently
duplicate the USER block in the same process, the second
and subsequent uses of the line label would cause a
compiler error.

For an application example of a USER block, refer to the
Function Blocks section.

26 Appendix

Appendix 27

Appendix F:
Characters, Symbols, and
Reserved Words

This appendix lists the valid characters and symbols, invalid
symbols, and reserved words that apply to character strings,
including names of directories, files, objects, blocks, attributes,
and disk drives.

The check for the proper directory, file, and disk drive names
occurs when you click left on an icon or option that is under
the Disk or Compound menu. The check for proper object and
block names occurs when you press the F10 key to save the
block’s database template. The check for proper attribute
names occurs when the file is compiled.

Certain international language characters can be entered with
the GPL Editor. The Editor supports French, Canadian French,
German, Spanish, and Portuguese international characters. The
following table lists the supported international characters.

Ä,Å,à,á,â,ä,å í,î

ß Ñ,ñ

Ç,ç Ö,ó,ô,ö

É,è,é,ê,ë Ü,ù,ú,û,ü

Note: Do not use international language characters in the
following: attribute names, directory/file names, disk
drive names, SVAR, FILE, or USER block names.

International
Language
Characters

cwoodti
Text Box
Code No. LIT-631110F

28 Appendix

The following table lists all valid characters and symbols that
can be specified in GPL. An “x” in the column means that the
character or symbol is valid for the particular entry. For
example, the @ symbol can be used in an object block name.

Symbol Description Directory
Name or
File
Name

SVAR
Block
Name or
FILE Block
Name

Print and
Advisory
Block
Text
Fields

System, Object,
Attribute,
Compound, USER
Block Name or
Other Text Fields
(See Note a.)

a-z Lower case
letters

x x x x

A-Z Upper case
letters

x x x x

0-9 Numbers x x x x

See
previous
table.

International
characters

x x x

& Ampersand x x

* Asterisk x

x At symbol x x

\ Backslash x

{ and } Braces x x

^ Caret x x

: Colon x

, Comma x

$ Dollar x x

" and " Double quotes x
(see Note b)

= Equal x

! Exclamation x x

- Hyphen or dash x x

> and < Greater or less
than

x

(and) Parentheses x x

% Percent x x

. Period x

+ Plus x

Pound x x

? Question mark x

; Semicolon x

' and ' Single quotes x

/ Slash x

Continued on next page . . .

Character and
Symbol Table

Appendix 29

Symbol
(Cont.)

Description Directory
Name or
File
Name

SVAR
Block
Name or
FILE Block
Name

Print and
Advisory
Block
Text
Fields

System, Object,
Attribute,
Compound, USER
Block Name or
Other Text Fields
(See Note a.)

() Space x

[and] Square brackets x

~ Tilde x x

_ Underscore x x x x

| Vertical bar

a Other text fields: expanded IDs, REF block description, operation block names, REF block
label, block descriptions, etc.

b Double quotes (") must be used in pairs (otherwise, one double quote mark is perceived as a
termination character).

The following list of names cannot be used as directory names,
file names, or SVAR, FILE, or USER block names, since they
are reserved as DOS device names.

AUX AUXIN CLOCKS COM1

COM2 COM3 COM4 CON

LPT1 LPT2 LPT3 LPT4

NUL PRN

The following list of names cannot be used as directory names,
file names, or SVAR, FILE, or USER block names, since they
are reserved as Metasys subdirectory names.

COS INSTRUCT DEVICES

GPL DDL PROCESS

CAL1

Reserved Words

30 Appendix

The following list of names cannot be used as SVAR block
names since they are JC-BASIC keywords.

ABORT EXEMPT NAME STEP

ABS EXIT NEXT STOP

ADVISORY FALSE NORMAL SUB

ALARM FILTER NOT TAN

ALL FIRST OFF TELL

AND FOLLOW-UP ON THEN

AVG FOR OPEN TIME

CANC_PULSE FORCE_REL OR TIME$

CLOSED FORCE_UNREL PASS TIME_TO_INT

COS GO PERIOD TO

CRITICAL1 GOSUB PI TODAY

CRITICAL2 GOTO PI_RESET TOTAL

CRITICAL3 HI_ALARM PRINT TROUBLE

CRITICAL4 HI_WARNING PRIORITY TRUE

DATE$ IF PROCESS UNRELIABLE

DAY INT_TO_TIME RAMP USING

DEF LASTTOT REL_HUM WAIT

DELETE LET REM WETDP

DEWPT LO_ALARM RESET WETRH

DIFF LO_WARNING RETURN WHILE

DIM LOG SET XOR

ELSE MAX SHARED YEAR

END METRIC SPAN

ENGLISH MIN SQR

ENTHALPYDP MONTH STATUS

ENTHALPYRH N_CANC_PULSE SIN

#INCLUDE #REMARKS #LIST

#REPLACE #NOLIST #NOREMARKS

Appendix 31

Appendix G: Attributes

This appendix contains a list of all readable, writable, and
triggerable attributes for each object. The readable and
writable attributes are those that you can specify with the
READ and WRIT function blocks, respectively. The
triggerable attributes are those that may cause a process to
execute. The letter “x” in a column indicates which attribute is
readable, writable, or triggerable. For more details on these
and all attributes, refer to the technical bulletins for the objects
in the Metasys Network Technical Manual.

cwoodti
Text Box
Code No. LIT-631110G

32 Appendix

Attribute Name Type Readable Writable Triggerable

ALR_MSG Integer x x

ALR_RPT Integer x x

COS_DEL Binary x

DB_FILT Integer x

DEADBAND Float. Pt. x

DELAY Integer x

DIAL_UP Binary x x

DIFF Float. Pt. x

DISCONCT Binary x x

FBK_PROB Binary x x

FILTER Float. Pt. x

FORMAT Integer x

GRAPHIC Integer x x

HI_ALARM Binary x x

HI_LIMIT Float. Pt. x

HI_WARN Binary x x

HI_WARNL Float. Pt. x

HISTORY Binary x

INSTRUCT Integer x x

LED_STAT Binary x

LO_ALARM Binary x x

LO_LIMIT Float. Pt. x

LO_WARN Binary x x

LO_WARNL Float. Pt. x

LOC_CNTL Binary x

NOR_RPT Integer x x

NORMAL Binary x x

NORMBAND Float. Pt. x

OFFLINE Binary x x

OVERRIDE Binary x

OVR_RPT Integer x x

PPM Float. Pt. x

PREFIX Binary x

PT_TYPE Integer x

RATE_K Integer x

REPORT Binary x

SAVE_HIS Binary x

Continued on next page . . .

ACM Object

Appendix 33

Attribute Name
(Cont.)

Type Readable Writable Triggerable

SCAN Binary x

SETPOINT Float. Pt. x

SLOT Integer x

STATDISP Integer x

STATUS Integer x x

TOTAL Integer x

TRIGGER Binary x

VALUE Float. Pt. x

WARN_MSG Integer x x

WARN_RPT Integer x x

34 Appendix

Attribute Name Type Readable Writable Triggerable

ADJ_DIS Binary x

ALR_MSG Integer x x

ALR_RPT Integer x x

ASS_ATTR Integer x

CMD_PRI Integer x

COS_DEL Binary x

DELAY Integer x

DIAL_UP Binary x x

DIFF Float. Pt. x

DISCONCT Binary x x

FEATURE Integer x

FILTER Float. Pt. x

FORMAT Integer x

GRAPHIC Integer x x

HI_ALARM Binary x x

HI_LIMIT Float. Pt. x

HI_WARN Binary x x

HI_WARNL Float. Pt. x

HISTORY Binary x

INITIAL Float. Pt. x x

INSTRUCT Integer x x

LO_ALARM Binary x x

LO_LIMIT Float. Pt. x

LO_WARN Binary x x

LO_WARNL Float. Pt. x

NOR_RPT Integer x x

NORMAL Binary x x

NORMBAND Float. Pt. x

OFFLINE Binary x x

OVERRIDE Binary x

OVR_RPT Integer x x

PREFIX Binary x

REPORT Binary x

SAVE_HIS Binary x

SCAN Binary x

SETPOINT Float. Pt. x

STATDISP Integer x

STATUS Integer x x

TRIGGER Binary x

VALUE Float. Pt. x

WARN_MSG Integer x x

WARN_RPT Integer x x

AD Object

Appendix 35

Attribute Name Type Readable Writable Triggerable

DEV_ADDR Integer x x

DEV_CODE Integer x

DIAL_UP Binary x x

DISCONCT Binary x x

GRAPHIC Integer x x

INSTRUCT Integer x x

OFFLINE Binary x x

POLL_PRI Integer x x

PREFIX Binary x

SCAN Binary x

STATDISP Integer x

TRIGGER Binary x

TRUNK Integer x

AHU, UNT, VAV,
MIG, PHX, VND,
NDM Hardware
Objects

36 Appendix

Attribute Name Type Readable Writable Triggerable

AD_COUNT Integer x

ALR_MSG Integer x x

ALR_RPT Integer x x

COS_DEL Binary x

DELAY Integer x

DIAL_UP Binary x x

DIFF Float. Pt. x

DISCONCT Binary x x

FILTER Float. Pt. x

FLOW_K Float. Pt. x

FLTR_VAL Float. Pt. x

FORMAT Integer x

GRAPHIC Integer x x

HI_ALARM Binary x x

HI_LIMIT Float. Pt. x

HI_WARN Binary x x

HI_WARNL Float. Pt. x

HISTORY Binary x

INSTRUCT Integer x x

LO_ALARM Binary x x

LO_LIMIT Float. Pt. x

LO_WARN Binary x x

LO_WARNL Float. Pt. x

NOR_RPT Integer x x

NORMAL Binary x x

NORMBAND Float. Pt. x

OFFLINE Binary x x

OVERRIDE Binary x

OVR_RPT Integer x x

PRE_VAL Float. Pt. x

PREFIX Binary x

RANGE_1 Float. Pt. x

RANGE_2 Float. Pt. x

RANGE_3 Float. Pt. x

RANGE_4 Float. Pt. x

REPORT Binary x

SAVE_HIS Binary x

Continued on next page . . .

AI Object

Appendix 37

Attribute Name
(Cont.)

Type Readable Writable Triggerable

SCAN Binary x

SETPOINT Float. Pt. x

SLOT Integer x

SPAN_IN1 Float. Pt. x

SPAN_IN2 Float. Pt. x

SPAN_OT1 Float. Pt. x

SPAN_OT2 Float. Pt. x

STATDISP Integer x

STATUS Integer x x

STDRANGE Integer x

TRIGGER Binary x

VALUE Float. Pt. x

WARN_MSG Integer x x

WARN_RPT Integer x x

38 Appendix

Attribute Name Type Readable Writable Triggerable

CMD_PRI Integer x

DIAL_UP Binary x x

DISCONCT Binary x x

FEATURE Integer x

FORMAT Integer x

GRAPHIC Integer x x

HISTORY Binary x

HOA Binary x x

INSTRUCT Integer x x

OFFLINE Binary x x

OVERRIDE Binary x

OVR_RPT Integer x x

PREFIX Binary x

PT_TYPE Integer x

REPORT Binary x

RESTORE Binary x x

SAT Integer x x

SAVE_HIS Binary x

SCAN Binary x

SLOT Integer x

SPAN_IN1 Float. Pt. x

SPAN_IN2 Float. Pt. x

SPAN_OT1 Float. Pt. x

SPAN_OT2 Float. Pt. x

STATDISP Integer x

STEP Float. Pt. x x

TRIGGER Binary x

AOD Object

Appendix 39

Attribute Name Type Readable Writable Triggerable

CMD_PRI Integer x

DIAL_UP Binary x x

DISCONCT Binary x x

FB_SET Binary x

FEATURE Integer x

FORMAT Integer x

GRAPHIC Integer x x

HISTORY Binary x

HOA Binary x x

INITIAL Float. Pt. x

INSTRUCT Integer x x

LOC_CNTL Binary x x

LOC_ELIG Binary x

OFFLINE Binary x x

OVERRIDE Binary x

OVR_RPT Integer x x

PREFIX Binary x

PT_TYPE Integer x

REPORT Binary x

RESTORE Binary x x

SAT Integer x x

SAVE_HIS Binary x

SCAN Binary x

SLOT Integer x

SPAN_IN1 Float. Pt. x

SPAN_IN2 Float. Pt. x

SPAN_OT1 Float. Pt. x

SPAN_OT2 Float. Pt. x

STATDISP Integer x

STEP Float. Pt. x x

TRIGGER Binary x

VALUE Float. Pt. x

AOS Object

40 Appendix

Attribute Name Type Readable Writable Triggerable

ADJ_DIS Binary x

ALARM Integer x x

ALR_GEN Binary x x

ALR_MSG Integer x x

ALR_RPT Integer x x

ASS_ATTR Integer x

CMD_PRI Integer x

COS_DEL Binary x x

DELAY Integer x x

DIAL_UP Binary x x

DISCONCT Binary x x

EARLY_TM Time x

FEATURE Integer x

GRAPHIC Integer x x

HISTORY Binary x

INITIAL Binary x

INSTRUCT Integer x x

LATCH Binary x

LATCHING Binary x

LATE_TM Time x

NOR_COND Integer x x

NOR_RPT Integer x x

NORMAL Binary x x

OFFLINE Binary x x

OVERRIDE Binary x

OVR_RPT Integer x x

PREFIX Binary x

REPORT Binary x

SAVE_HIS Binary x

SCAN Binary x

STATDISP Integer x

STATUS Integer x x

TRIGGER Binary x

VALUE Binary x x

BD Object

Appendix 41

Attribute Name Type Readable Writable Triggerable

ALARM Integer x x

ALR_GEN Binary x x

ALR_MSG Integer x x

ALR_RPT Integer x x

COS_DEL Binary x x

DB_FILT Integer x

DELAY Integer x x

DIAL_UP Binary x x

DISCONCT Binary x x

GRAPHIC Integer x x

HISTORY Binary x

INP_TYPE Integer x

INSTRUCT Integer x x

LATCH Binary x

LATCHING Binary x

LED_STAT Binary x

NOR_COND Integer x x

NOR_RPT Integer x x

NORMAL Binary x x

OFFLINE Binary x x

OVERRIDE Binary x

OVR_RPT Integer x x

POINT_NO Integer x

PREFIX Binary x

PT_ENA Binary x

PT_TYPE Integer x

REPORT Binary x

RLAY_RST Binary x x

RLAY_SET Binary x x

SAVE_HIS Binary x

SCAN Binary x

SLOT Integer x

STATDISP Integer x

STATUS Integer x x

STI_NO Integer x

Continued on next page . . .

BI Object

42 Appendix

Attribute Name
(Cont.)

Type Readable Writable Triggerable

SUB_SLOT Integer x

SUPP_TZ Integer x x

TRIGGER Binary x

TROUBLE Binary x x

VALUE Binary x x

Appendix 43

Attribute Name Type Readable Writable Triggerable

ALARM Integer x

ALR_MSG Integer x x

ALR_RPT Integer x x

CMD_ACTN Binary x

CMD_PRI Integer x

COS_DEL Binary x x

DIAL_UP Binary x x

DISCONCT Binary x x

EARLY_TM Time x

FB_ACTN Binary x

FB_SET Binary x

FBK_PROB Binary x

FEATURE Integer x

FEEDBACK Binary x x

GRAPHIC Integer x x

HE_DELAY Integer x x

HISTORY Binary x

HOA Binary x x

INITIAL Binary x

INSTRUCT Integer x x

LATE_TM Time x

LED_STAT Binary x

LOC_CNTL Binary x x

LOC_ELIG Binary x

LOCK Binary x

LSTATUS Binary x

LMIN_OFF Integer x x

LMIN_ON Integer x x

LOAD Binary x

MAX_OFF Integer x x

MAX_STA Integer x x

MIN_OFF Integer x x

MIN_ON Integer x x

NOR_RPT Integer x x

NORMAL Binary x x

OFFLINE Binary x x

OVERRIDE Binary x

OVR_RPT Integer x x

Continued on next page . . .

BO Object

44 Appendix

Attribute Name
(Cont.)

Type Readable Writable Triggerable

PREFIX Binary x

PT_TYPE Integer x

PULSE Integer x

RATE Float. Pt. x

REPORT Binary x

RESTORE Binary x x

SAVE_HIS Binary x

SCAN Binary x

SLOT Integer x

STATDISP Integer x

STATE_0 Binary x x

STATE_1 Binary x x

STATUS Integer x x

TRIGGER Binary x

VALUE Binary x x

Appendix 45

Attribute Name Type Readable Writable Triggerable

ACTC Float. Pt. x

AINUM Integer x x

AUXAAPP Binary x

AUXBAPP Binary x

AUXI Float. Pt. x

AUXIOVR Integer x

AUXP Float. Pt. x

AUXPOVR Integer x

AUXR Float. Pt. x

AUXROVR Integer x

AUXT Float. Pt. x

AUXTOVR Integer x

AXBI Binary x

AXDP Float. Pt. x

AXDPOVR Integer x

CNWU Binary x

DAMPAPP Integer x

DFPR Float. Pt. x

DFPROVR Integer x

DIAL_UP Binary x x

DMPR Float. Pt. x

DPSP Float. Pt. x

DPSPOVR Integer x

FANAPP Integer x

GRAPHIC Integer x x

HCPB Float. Pt. x

HCPBOVR Integer x

HEATAPP Integer x

HLTC Binary x

HRTZ Binary x

HRTZOVR Integer x

HTDB Float. Pt. x

HTDBOVR Integer x

HWSD Binary x

HWUO Binary x

INTE Float. Pt. x

INTG Float. Pt. x

INTGOVR Integer x

Continued on next page . . .

C210A Object

46 Appendix

Attribute Name
(Cont.)

Type Readable Writable Triggerable

INSTRUCT Integer x x

LTCH Binary x

LTCHOVR Integer x

LV12 Binary x

MNDP Float. Pt. x

MNDPOVR Integer x

MXDP Float. Pt. x

MXDPOVR Integer x

OCCAPP Integer x

OFFLINE Binary x x

OFRH Float. Pt. x

OVERRIDE Binary x

OVF_SETP Binary x

OVR_RPT Integer x x

PMAX Binary x

PFOF Binary x

PFSS Binary x

PRCL Float. Pt. x

PREFIX Binary x

PRRH Float. Pt. x

REHT Binary x

REPORT Binary x

RZSP Float. Pt. x

RZSPOVR Integer x

SARE Binary x

SAREOVR Integer x

SCAN Binary x

SDBC Binary x

SDBCOVR Integer x

SDBO Binary x

SDBOOVR Integer x

SETPAPP Integer x

SETPOINT Float. Pt. x

SFOF Binary x

SFSU Binary x

SHTDAPP Integer x

SPNUM Integer x x

STATDISP Integer x

Continued on next page . . .

Appendix 47

Attribute Name
(Cont.)

Type Readable Writable Triggerable

SUSB Float. Pt. x

SUSBOVR Integer x

TCMD Integer x

TRIGGER Binary x

UNOC Binary x

UNOCOVR Integer x

VALUE Float. Pt. x

WMUP Binary x

WMUPAPP Integer x

WMUPOVR Integer x

WTMP Float. Pt. x

WTMPOVR Integer x

ZNSP Float. Pt. x

ZNSPOVR Integer x

ZNT Float. Pt. x

ZNTOVR Integer x

48 Appendix

Attribute Name Type Readable Writable Triggerable

AINUM Integer x x

ATMP Float. Pt. x

ATMPOVR Integer x

AURH Float. Pt. x

AURHOVR Integer x

AUXAAPP Binary x

AUXI Float. Pt. x

AUXIOVR Integer x

AUXR Float. Pt. x

AUXROVR Integer x

AUXT Float. Pt. x

AUXTOVR Integer x

AXBI Binary x

AXDP Float. Pt. x

AXDPOVR Integer x

CLPB Float. Pt. x

CLPBOVR Integer x

CNWU Binary x

CPCM Float. Pt. x

DAMPAPP Integer x

DIAL_UP Binary x x

FANAPP Integer x

FLOW Binary x

FNON Binary x

FOCO Binary x

FOCOOVR Integer x

GRAPHIC Integer x x

HCPB Float. Pt. x

HCPBOVR Integer x

HLTC Binary x

HRTZ Binary x

HRTZOVR Integer x

HTCM Float. Pt. x

HTDB Float. Pt. x

HTDBOVR Integer x

HTPB Float. Pt. x

HTPBOVR Integer x

Continued on next page . . .

C260A Object

Appendix 49

Attribute Name
(Cont.)

Type Readable Writable Triggerable

HWSD Binary x

HWUO Binary x

INTE Float. Pt. x

INTG Float. Pt. x

INTGOVR Integer x

INSTRUCT Integer x x

LTCH Binary x

LTCHOVR Integer x

LV12 Binary x

MNDP Float. Pt. x

MNDPOVR Integer x

MXDP Float. Pt. x

MXDPOVR Integer x

OCCAPP Integer x

OFFLINE Binary x x

OVR_SETP Binary x

OVERRIDE Binary x

OVR_RPT Integer x x

PE Float. Pt. x

PFOF Binary x

PFSS Binary x

PRCL Float. Pt. x

PREFIX Binary x

PRRH Float. Pt. x

REHT Binary x

REPORT Binary x

RVAL Binary x

RZSP Float. Pt. x

RZSPOVR Integer x

SCAN Binary x

SDWN Binary x

SDWNOVR Integer x

SETPAPP Integer x

SETPOINT Float. Pt. x

SFOF Binary x

SFSU Binary x

SHTDAPP Integer x

Continued on next page . . .

50 Appendix

Attribute Name
(Cont.)

Type Readable Writable Triggerable

SPNUM Integer x x

STATDISP Integer x

STUP Float. Pt. x

TCMD Integer x

TRIGGER Binary x

UNOC Binary x

UNOCOVR Integer x

VALUE Float. Pt. x

ZNSP Float. Pt. x

ZNSPOVR Integer x

ZNT Float. Pt. x

ZNTOVR Integer x

Appendix 51

Attribute Name Type Readable Writable Triggerable

AINUM Integer x x

AISUSED Integer x

AI1OVR - AI6OVR Binary x

AI1VAL - AI6VAL Float. Pt. x

AOSUSED Integer x

AO1OVR - AO2OVR Binary x

AO1VAL - AO2VAL Float. Pt. x

BISUSED Integer x

BI1OVR - BI4OVR Binary x

BI1VAL - BI4VAL Binary x

BOSUSED Integer x

BO1OVR - BO5OVR Binary x

BO1VAL - BO5VAL Binary x

DIAL_UP Binary x x

GRAPHIC Integer x

INSTRUCT Integer x x

OFFLINE Binary x x

OVERRIDE Binary x

OVR_RPT Integer x x

OVR_SETP Binary x

PREFIX Binary x

REPORT Binary x

SCAN Binary x

SETPOINT Float. Pt. x

SPNUM Integer x x

SPSUSED Integer x

SP1OVR - SP13OVR Binary x

SP1VAL - SP13VAL Float. Pt. x

STATDISP Integer x

TRIGGER Binary x

VALUE Float. Pt. x

C260X Object

52 Appendix

Attribute Name Type Readable Writable Triggerable

AINUM Integer x x

AISUSED Integer x

AI1OVR - AI6OVR Binary x

AI1VAL - AI6VAL Float. Pt. x

AOSUSED Integer x

AO1OVR - AO6OVR Binary x

AO1VAL - AO6VAL Float. Pt. x

BISUSED Integer x

BI1OVR - BI5OVR Binary x

BI1VAL - BI5VAL Binary x

BOSUSED Integer x

BO1OVR - BO4OVR Binary x

BO1VAL - BO4VAL Binary x

DIAL_UP Binary x x

GRAPHIC Integer x

INSTRUCT Integer x x

OFFLINE Binary x x

OVERRIDE Binary x

OVR_RPT Integer x x

OVR_SETP Binary x

PREFIX Binary x

REPORT Binary x

SCAN Binary x

SETPOINT Float. Pt. x

SPNUM Integer x x

SPSUSED Integer x

SP1OVR - SP16OVR Binary x

SP1VAL - SP16VAL Float. Pt. x

STATDISP Integer x

TRIGGER Binary x

VALUE Float. Pt. x

C500X Object

Appendix 53

Attribute Name Type Readable Writable Triggerable

ADADJEN Binary x

ADADJS Binary x

ADOVREN Binary x

ADOVRS Integer x

AD_1 - AD_32 Float. Pt. x

AIADJEN Binary x

AIADJS Binary x

AIOVREN Binary x

AIOVRS Integer x

AD_1 - AI_16 Float. Pt. x

AOADJEN Binary x

AOOVREN Binary x

AOOVRS Integer x

AO_1 - AO_16 Float. Pt. x

BDADJEN Binary x

BDADJS Binary x

BDOVREN Binary x

BDOVRS Integer x

BD_1 - BD_32 Binary x x

BIADJEN Binary x

BIOVREN Binary x

BIOVRS Integer x

BI_1 - BI_16 Binary x x

BOADJEN Binary x

BOADJS Binary x

BOOVREN Binary x

BOOVRS Integer x

BO_1 - BO_16 Binary x x

DIAL_UP Binary x x

DISCONCT Binary x x

FORMAT Integer x x

GRAPHIC Integer x x

INSTRUCT Integer x x

MSADJEN Binary x

MSADJS Binary x

MSVALUE0 -
MSVALUE4

Integer x

MSOVREN Binary x

Continued on next page . . .

CS Object

54 Appendix

Attribute Name
(Cont.)

Type Readable Writable Triggerable

MS_1 - MS_2 Integer x

NTCMDADJ Binary x

NTCMDATR Integer x x

NUMAD Integer x

NUMAI Integer x

NUMAO Integer x

NUMBD Integer x

NUMBI Integer x

NUMBO Integer x

NUMMS Integer x

NUMSP Integer x

OBJVAL Integer x x

OFFLINE Binary x x

OVERRIDE Binary x

OVR_RPT Integer x x

PREFIX Binary x

REPORT Binary x

SCAN Binary x

SPADJEN Binary x

SPADJS Binary x

SPOVREN Binary x

SPOVRS Integer x

SP_1 - SP_32 Float. Pt. x

STATDISP Integer x

TRIGGER Binary x

Appendix 55

Attribute Name Type Readable Writable Triggerable

ACDWNEED Binary x

AC_FAIL Binary x

AC_TAMP Binary x

BAFE Long x

BAT_LOW Binary x

DEV_ADDR Integer x x

DIAL_UP Binary x x

DL_IN_PR Binary x

ENCODE Integer x

G01 through G64 Binary x x

GLO_ACC Binary x

GRAPHIC Integer x x

ILK_TIME Integer x x

INSTRUCT Integer x x

INXIT Binary x

MAG Long x

NCRYPT Long x

NOREPVCD Binary x

OFFLINE Binary x x

OP_CHNG Binary x

PIN_5 Binary x

POLL_PRI Integer x x

PREFIX Binary x

REP_ALM Binary x

SCAN Binary x

STATDISP Integer x

TRIGGER Binary x

TRUNK Integer x

TZ_CHEK Binary x

VALUE Binary x

WIEG Long x

D600 Hardware
Object

56 Appendix

Attribute Name Type Readable Writable Triggerable

DEV_ADDR Integer x x

DEV_CODE Integer x

DIAL_UP Binary x x

DISCONCT Binary x x

GRAPHIC Integer x x

INSTRUCT Integer x x

OFFLINE Binary x x

POLL_PRI Integer x x

PREFIX Binary x

SCAN Binary x

STATDISP Integer x

TRIGGER Binary x

TRUNK Integer x x

DC9100/DR9100
Hardware Objects

Appendix 57

Attribute Name Type Readable Writable Triggerable

DEV_ADDR Integer x x

DIAL_UP Binary x x

DISCONCT* Binary x x

GRAPHIC Integer x x

INSTRUCT Integer x x

OFFLINE Binary x x

POLL_PRI Integer x x

PREFIX Binary x

SCAN Binary x

STATDISP Integer x

TRIGGER Binary x

TRUNK Integer x x

* The DISCONCT attribute is not supported by the DCM140.

DCM/DCM140
Hardware Object

58 Appendix

Attribute Name Type Readable Writable Triggerable

DEV_ADDR Integer x x

DEV_TYPE Integer x

DIAL_UP Binary x x

GRAPHIC Integer x x

INSTRUCT Integer x x

OFFLINE Binary x x

PREFIX Binary x

SCAN Binary x

STATDISP Integer x

TRIGGER Binary x

TRUNK Integer x x

DSC-1000
Hardware Objects

Appendix 59

Attribute Name Type Readable Writable Triggerable

DEV_ADDR Integer x x

DIAL_UP Binary x x

DL_PROG Binary x

GRAPHIC Integer x x

INSTRUCT Integer x x

OFFLINE Binary x x

PREFIX Binary x

S2_TYPE Integer x

SCAN Binary x

STATDISP Integer x

TRIGGER Binary x

TRUNK Integer x x

DSC8500
Hardware Object

60 Appendix

Attribute Name Type Readable Writable Triggerable

DEV_ADDR Integer x x

DEV_CODE Integer x

DIAL_UP Binary x x

DISCONCT Binary x x

GRAPHIC Integer x x

INSTRUCT Integer x x

OFFLINE Binary x x

POLL_PRI Integer x x

PREFIX Binary x

SCAN Binary x

STATDISP Integer x

TRIGGER Binary x

TRUNK Integer x x

DX9100/DX91ECH
Hardware Object

Appendix 61

Attribute Name Type Readable Writable Triggerable

AC_FAIL Binary x x

ALARM Binary x x

ALR_RPT Integer x x

ALRE_RPT Integer x x

BAT_LOW Binary x

DB_MATCH Binary x

DEV_ADDR Integer x x

DIAL_UP Binary x x

DL_IN_PR Binary x

DL_REQR Binary x

DNLD_ENB Binary x

EARL_MSG Integer x x

ETBL_MSG Integer x x

EVT_RPT Integer x x

GRAPHIC Integer x x

INSTRUCT Integer x x

LALR_MSG Integer x x

LTBL_MSG Integer x x

NOR_RPT Integer x x

NORE_RPT Integer x x

OFFLINE Binary x x

OPER_ENB Binary x x

POLL_PRI Integer x x

PREFIX Binary x

QY_IN_PR Binary x

REPORT Binary x

SCAN Binary x

SGNL_SIL Binary x x

STATDISP Integer x

STATUS Integer x x

TBL_RPT Integer x x

TBLE_RPT Integer x x

TRIGGER Binary x

TRUNK Integer x x

VALUE Binary x x

ZONE_BND Integer x

Fire Controller
Hardware Object

62 Appendix

Attribute Name Type Readable Writable Triggerable

DEV_ADDR Integer x x

DIAL_UP Binary x x

GRAPHIC Integer x x

INSTRUCT Integer x x

OFFLINE Binary x x

PREFIX Binary x

S2_TYPE Integer x

SCAN Binary x

STATDISP Integer x

TRIGGER Binary x

TRUNK Integer x x

FPU Hardware
Object

Appendix 63

Attribute Name Type Readable Writable Triggerable

ALM_STAT Binary x

DEV_ADDR Integer x x

DIAL_UP Binary x x

GRAPHIC Integer x x

IN_STAT Binary x

INSTRUCT Integer x x

OFFLINE Binary x x

OUT_STAT Binary x

POLL_PRI Integer x x

PREFIX Binary x

SCAN Binary x

STATDISP Integer x

TRIGGER Binary x

TRUNK Integer x x

LCD Hardware
Object

64 Appendix

Attribute Name Type Readable Writable Triggerable

ASSOC_IN Integer x x

BLNK_FLG Binary x x

CC_FEAT Integer x

CTOT_HR Integer x x

CTOT_MIN Integer x x

DIAL_UP Binary x x

EVNT1TYP Integer x x

EVNT1STH Integer x x

EVNT1STM Integer x x

EVNT1SPH Integer x x

EVNT1SPM Integer x x

EVNT2TYP Integer x x

EVNT2STH Integer x x

EVNT2STM Integer x x

EVNT2SPH Integer x x

EVNT2SPM Integer x x

EVNT3TYP Integer x x

EVNT3STH Integer x x

EVNT3STM Integer x x

EVNT3SPH Integer x x

EVNT3SPM Integer x x

EVNT4TYP Integer x x

EVNT4STH Integer x x

EVNT4STM Integer x x

EVNT4SPH Integer x x

EVNT4SPM Integer x x

GRAPHIC Integer x x

GRP_NUM Integer x

HISTORY Binary x

INSTRUCT Integer x x

IN_TYPE Integer x x

NOR_RPT Integer x x

OFF_INPT Integer x x

OFFLINE Binary x x

OVERRIDE Binary x

OVR_DLY Integer x x

OVR_RPT Integer x x

PREFIX Binary x

Continued on next page . . .

LCG Object

Appendix 65

Attribute Name
(Cont.)

Type Readable Writable Triggerable

PTOT_HR Integer x x

PTOT_MIN Integer x x

REPORT Binary x

SAVE_HIS Binary x

SCAN Binary x

STATDISP Integer x

TRIGGER Binary x

VALUE Binary x x

66 Appendix

Attribute Name Type Readable Writable Triggerable

DEV_ADDR Integer x x

DEV_CODE Integer x

DIAL_UP Binary x x

DISCONCT Binary x x

GRAPHIC Integer x x

INSTRUCT Integer x x

OFFLINE Binary x x

POLL_PRI Integer x x

PREFIX Binary x

SCAN Binary x

STATDISP Integer x

TRIGGER Binary x

TRUNK Integer x x

LCP Hardware
Object

Appendix 67

Attribute Name Type Readable Writable Triggerable

DEV_ADDR Integer x x

DIAL_UP Binary x x

GRAPHIC Integer x x

INSTRUCT Integer x x

OFFLINE Binary x x

POLL_PRI Integer x x

PREFIX Binary x

SCAN Binary x

STATDISP Integer x

TRIGGER Binary x

TRUNK Integer x x

LON Hardware
Object

68 Appendix

Attribute Name Type Readable Writable Triggerable

ALARM Binary x x

ALR_MSG Integer x x

ALR_RPT Integer x x

ASS_ATTR Integer x

CMD_PRI Integer x

CNTL_FEA Binary x

COS_DEL Binary x x

DELAY Integer x x

DIAL_UP Binary x x

DISCONCT Binary x x

EARLY_TM Time x

FEATURE Integer x

GRAPHIC Integer x x

HISTORY Binary x

INITIAL Integer x

INSTRUCT Integer x x

LATCH Binary x

LATCHING Binary x

LATE_TM Time x

LMIN_OFF Integer x x

LMIN_ON Integer x x

LOAD_PRI Integer x

LOCK Binary x

LSTATUS Binary x

MAX_OFF Integer x x

NOR_COND Integer x x

NOR_RPT Integer x x

NORMAL Binary x x

OFFLINE Binary x x

OVERRIDE Binary x

OVR_RPT Integer x x

PREFIX Binary x

RATE_1 Real x

RATE_2 Real x

RATE_3 Real x

REL_LEFT Integer x

REPORT Binary x

SAVE_HIS Binary x

Continued on next page . . .

MC Object

Appendix 69

Attribute Name
(Cont.)

Type Readable Writable Triggerable

SCAN Binary x

SENDING Binary x x

SHD_LEFT Integer x

SHED_STA Integer x

SL_COUNT Integer x

STATDISP Integer x

STATE_0 Binary x x

STATE_1 Binary x x

STATE_2 Binary x x

STATE_3 Binary x x

STATES Integer x

STATUS Integer x x

TRIGGER Binary x

VALUE Integer x x

70 Appendix

Attribute Name Type Readable Writable Triggerable

ADJ_DIS Binary x

ALARM Binary x x

ALR_GEN Binary x x

ALR_MSG Integer x x

ALR_RPT Integer x x

ASS_ATTR Integer x

CMD_PRI Integer x

COS_DEL Binary x x

DELAY Integer x x

DIAL_UP Binary x x

DISCONCT Binary x x

EARLY_TM Time x

FEATURE Integer x

GRAPHIC Integer x x

HISTORY Binary x

INITIAL Integer x

INSTRUCT Integer x x

LATCH Binary x

LATCHING Binary x

LATE_TM Time x

NOR_COND Integer x x

NOR_RPT Integer x x

NORMAL Binary x x

OFFLINE Binary x x

OVERRIDE Binary x

OVR_RPT Integer x x

PREFIX Binary x

REPORT Binary x

SAVE_HIS Binary x

SCAN Binary x

STATDISP Integer x

STATE_0 Binary x x

STATE_1 Binary x x

STATE_2 Binary x x

STATE_3 Binary x x

STATES Integer x

STATUS Integer x x

TRIGGER Binary x

VALUE Integer x x

MSD Object

Appendix 71

Attribute Name Type Readable Writable Triggerable

ALARM Binary x x

ALR_GEN Binary x x

ALR_MSG Integer x x

ALR_RPT Integer x x

COS_DEL Binary x x

DB_FILT Integer x

DELAY Integer x x

DIAL_UP Binary x x

DISCONCT Binary x x

GRAPHIC Integer x x

HISTORY Binary x

INSTRUCT Integer x x

LATCH Binary x

LATCHING Binary x

LED_STAT Binary x

NOR_COND Integer x x

NOR_RPT Integer x x

NORMAL Binary x x

OFFLINE Binary x x

OVERRIDE Binary x

OVR_RPT Integer x x

PREFIX Binary x

PT_TYPE Integer x

REPORT Binary x

SAVE_HIS Binary x

SCAN Binary x

SEQUENCE Integer x

SLOT Integer x

STATDISP Integer x

STATE_0 Binary x x

STATE_1 Binary x x

STATE_2 Binary x x

STATE_3 Binary x x

STATES Integer x

STATUS Integer x x

SUB_SLOT Integer x

TRIGGER Binary x

VALUE Integer x x

WIRED_0 Binary x

MSI Object

72 Appendix

Attribute Name Type Readable Writable Triggerable

ALARM Binary x x

ALR_MSG Integer x x

ALR_RPT Integer x x

AUTO_MAN Binary x

CMD_ACTN Binary x

CMD_PRI Integer x

COS_DEL Binary x x

DIAL_UP Binary x x

DISCONCT Binary x x

EARLY_TM Time x

FB_ACTN Binary x

FB_SET Binary x

FBK_PROB Binary x

FEATURE Integer x

FEEDBACK Integer x x

GRAPHIC Integer x x

HE_DELAY Integer x x

HISTORY Binary x

HOA Binary x x

INITIAL Integer x

INSTRUCT Integer x x

LATE_TM Time x

LC_DB_FI Integer x

LC_HOA Binary x x

LC_LED Binary x

LC_PROB Binary x x

LC_PTTYP Integer x

LC_SBSLT Integer x

LC_SEQ Integer x

LC_SET Binary x x

LC_SLOT Integer x

LC_WRD_0 Binary x

LED_STAT Binary x

LMIN_OFF Integer x x

LMIN_ON Integer x x

LOAD Binary x

LOC_CNTL Binary x x

LOC_ELIG Binary x

Continued on next page . . .

MSO Object

Appendix 73

Attribute Name
(Cont.)

Type Readable Writable Triggerable

LOCK Binary x

LSTATUS Binary x

MAX_OFF Integer x x

MAX_STA Integer x x

MIN_OFF Integer x x

MIN_ON Integer x x

NOR_RPT Integer x x

NORMAL Binary x x

OFFLINE Binary x x

OVERRIDE Binary x

OVR_RPT Integer x x

PREFIX Binary x

PT_TYPE Integer x

PULSE Integer x

RATE_1 Float. Pt. x

RATE_2 Float. Pt. x

RATE_3 Float. Pt. x

REPORT Binary x

RESTORE Binary x x

SAVE_HIS Binary x

SCAN Binary x

SEQUENCE Integer x

SLOT Integer x

STATDISP Integer x

STATE_0 Binary x x

STATE_1 Binary x x

STATE_2 Binary x x

STATE_3 Binary x x

STATES Integer x

STATUS Integer x x

TRIGGER Binary x

VALUE Integer x x

74 Appendix

Attribute Name Type Readable Writable Triggerable
ALR_MSG Integer x x

ALR_RPT Integer x x

AUX_ENA Binary x x

AUX_IN Float. Pt. x

AUX_PRI Integer x

AUX_REF Binary x

DEADBAND Float. Pt. x x

DEFAULT Float. Pt. x x

DIAL_UP Binary x x

DWEIGHT Float. Pt. x x

FEEDBACK Float. Pt. x

FILTER Float. Pt. x x

FLTR_VAL Float. Pt. x

FORMAT Integer x x

GRAPHIC Integer x x

HI_SAT_F Binary x x

HI_SAT_V Float. Pt. x

HISAT_RF Binary x

HSAT_PRI Integer x

HYST_CMP Float. Pt. x x

IN_FUNC Integer x x

INP1_PRI - INP6_PRI Integer x

INP1REF - INP6REF Binary x

INP1VAL - INP6VAL Float. Pt. x

INSTRUCT Integer x x

INT_TIME Float. Pt. x x

LO_SAT_F Binary x x

LO_SAT_V Float. Pt. x

LOOP_NUM Integer x

LSAT_PRI Integer x

LSAT_RF Binary x

NOR_RPT Integer x x

OFFLINE Binary x x

OFFSET Float. Pt. x

OFS_PRI Integer x

OFS_REF Binary x

OUT1_ATT -
OUT8_ATT

Integer x

OVERRIDE Binary x

Continued on next page . . .

PIDL Object

Appendix 75

Attribute Name
(Cont.)

Type Readable Writable Triggerable

OVF_HSAT Binary x

OVF_IN1 - OVF_IN6 Binary x

OVF_LSAT Binary x

OVF_OFFS Binary x

OVF_SEL Binary x

OVF_SETP Binary x

OVF_SWCH Binary x

OVR_RPT Integer x x

PERIOD Integer x x

PID_CALC Float. Pt. x

PIDA_REL Binary x x

PREFIX Binary x

PROPBAND Float. Pt. x x

RELIABLE Binary x x

REPORT Binary x

SCALAR1 - SCALAR6 Float. Pt. x x

SCAN Binary x

SEL_FLAG Binary x x

SEL _INP Float. Pt. x

SEL_OUT Float. Pt. x

SEL_PRI Integer x

SEL_REF Binary x

SELTYPE Binary x x

SETPOINT Float. Pt. x

STATDISP Integer x

STP_PRI Integer x

STP_REF Binary x

SWCH_OUT Float. Pt. x

TRIGGER Binary x

TUNE_BND Float. Pt. x x

TUNEMODE Integer x

TUNE_WT Float. Pt. x x

UNR_TYPE Binary x x

VALUE Float. Pt. x

76 Appendix

Attribute Name Type Readable Writable Triggerable

ACC_INT Integer x x

ACC_SEC Binary x x

ALR_MSG Integer x x

ALR_RPT Integer x x

AL_SHUNT Integer x x

ANTI_PAS Binary x x

ANTI_TAI Binary x x

AUX_ACC Binary x x

CARD_TYP Integer x x

DIAL_UP Binary x x

FAC_BAK Binary x x

GLO_ACC Binary x x

GRAPHIC Integer x x

INSTRUCT Integer x x

NOR_RPT Integer x x

OFFLINE Binary x x

OVER_SCH Binary x

OVER_TZ Integer x x

PASS_INT Integer x x

PIN_BAK Binary x x

PIN_TZ Integer x x

PREFIX Binary x

RDR_TYP Integer x x

RDR_TZ Integer x x

REPORT Binary x

SCAN Binary x

STATDISP Integer x

TRIGGER Binary x

VALUE Binary x

READER Object

Appendix 77

Attribute Name Type Readable Writable Triggerable

DEV_ADDR Integer x x

DEV_CODE Integer x

DIAL_UP Binary x x

DISCONCT Binary x x

GRAPHIC Integer x x

INSTRUCT Integer x x

OFFLINE Binary x x

POLL_PRI Integer x x

PREFIX Binary x

SCAN Binary x

STATDISP Integer x

TRIGGER Binary x

TRUNK Integer x x

TC9100 Hardware
Object

78 Appendix

Attribute Name Type Readable Writable Triggerable

DEV_ADDR Integer x x

DEV_TYPE Integer x

DIAL_UP Binary x x

DISCONCT Binary x x

GRAPHIC Integer x x

INSTRUCT Integer x x

OFFLINE Binary x x

POLL_PRI Integer x x

PREFIX Binary x

SCAN Binary x

STATDISP Integer x

TRIGGER Binary x

TRUNK Integer x x

XM Hardware
Objects (XBN,
XRM, XRL)

Appendix 79

Attribute Name Type Readable Writable Triggerable

DEV_ADDR Integer x x

DEV_CODE Integer x

DIAL_UP Binary x x

DISCONCT Binary x x

GRAPHIC Integer x x

INSTRUCT Integer x x

OFFLINE Binary x x

POLL_PRI Integer x x

PREFIX Binary x

SCAN Binary x

STATDISP Integer x

TRIGGER Binary x

TRUNK Integer x x

XT9100/XTM
Hardware Object

80 Appendix

Attribute Name Type Readable Writable Triggerable

ALARM Binary x x

ALR_MSG Integer x x

ALR_RPT Integer x x

ANN_PANL Integer x

ANN_PNT Integer x

APPLICAT Integer x

DIAL_UP Binary x x

DIS_MSG Integer x x

DISABLED Binary x

DNLD_ENB Binary x

GRAPHIC Integer x x

INSTRUCT Integer x x

NOR_MSG Integer x x

NOR_RPT Integer x x

OFFLINE Binary x x

OVR_RPT Integer x x

PREFIX Binary x

REPORT Binary x

SCAN Binary x

STATDISP Integer x

STATUS Integer x x

TBL_RPT Integer x x

TIME_STP Hexadecimal x

TRIGGER Binary x

TROUBLE Binary x x

VALUE Binary x

ZONE_NO Integer x

ZONE Object

Appendix 81

Appendix H:
GPL Advanced Concepts

Metasys advanced concepts documents are created to help
continuously improve existing Metasys skills.

GPL programming satisfies life/safety applications and/or very
complex HVAC systems. If the programs go beyond standard
HVAC applications, programmers need to expand programming
skills into full network integration. Programmers implement
Priority schemes of processes and objects to ensure proper
sequence of operations between standard HVAC applications
and life/safety applications.

This appendix suggests ways to improve efficiency when
executing in the NCM memory and help control traffic on the
N1 and N2 networks.

The information provided here should increase GPL
programming performances by:

• reducing programming time

• reducing traffic on the N1 and N2 busses

• reducing the time it takes to execute a GPL process in the
NCM

• maximizing the effectiveness of AD and BD objects

• maximizing the use of the NCM Memory

Who Should
Read this
Document?

cwoodti
Text Box
Code No. LIT-631110H

82 Appendix

Appendix 83

 GPL Efficiency Issues

 Consider the how to address the following three GPL
efficiency issues:

• a single GPL process

• all the GPL processes in an NCM

• GPL in the network

 There are trade-offs to efficiency with each application having
a different set of criteria. The most important criteria may be
saving memory in the NCM, faster execution time, or response
time of certain processes.

 The NCM execution queue cannot begin until the current
process is finished. Only one process is executed at a time and
if a lower Priority process is executing when a Priority 1
process is triggered, the lower Priority process must complete
before the Priority 1 process begins. The following sections
provide suggestions for improving single GPL process
efficiency.

 If all the attributes read by a process are triggerable, do not use
a period. Any change to an attribute causes the process to
execute and recalculate any changes to the control, which
wastes processor time.

 All period timers are supported by the operating system in the
NCM. Every second the NCM’s operating system must check
the period timers to see if they have expired. Although the
operating system is extremely efficient, over time (years) the
wasted processor time from a single unnecessary period timer
can add up.

 Efficiency of a
Single GPL
Process

 Use Binary
Change-of-State
(COS) Triggers
Instead of Periods

84 Appendix

 If some attributes are analog and do not trigger, a period may
not be necessary. If the analog value is only used when a
binary trigger changes, then a period is unnecessary. If an
analog value is only necessary when a binary is in a certain
state (for example, room temperature only considered if in
occupied mode) then the process should be programmed to
conditionally set the period to a non-zero time when the binary
is in a certain state (occupied mode). Conditional periods can
be used to vary the period.

 Example

 A process may need to execute once a minute in occupied
mode, but only once every 10 minutes in unoccupied mode.
If the period is exceptionally long (12-24 hours) weekly
schedule the process to run once or twice a day. Scheduling a
process to execute at a time when there is less demand on the
NCM can be a good alternative to a period. Weekly schedule a
process that needs to execute once a day to execute when a
building is unoccupied.

 If a process runs periodically because of analog data, consider
eliminating all or most of the triggers.

 Examples

 If a process is monitoring room temperature every 5 minutes
and when room temperature is outside the comfort level, the
process checks the status of certain equipment to determine if
additional equipment should be turned on or off. The status
attributes of the additional equipment should not trigger the
process, their change of value only cause unnecessary process
execution. Therefore, exempt all the triggers to the process.

 If a process needs to open a damper when two fans are on and
the fans are sequenced by another process such that when
Fan 1 goes on Fan 2 is commanded on 10 minutes later, there
is no need to trigger the process until Fan 2 is on. Therefore,
exempt Fan 1 as a trigger. If Fan 1 triggered the process before
Fan 2 is on, the damper would not be opened anyway, and the
processor time used to execute the process would be wasted.

 Eliminate Triggers
Unnecessary for
Process Execution

Appendix 85

 Set the process period for as long as possible.

 Example

 A process that needs to react to a change in outdoor air
temperature probably doesn’t need to execute much faster than
once every 15 minutes.

 A process that only needs to run once every 15 minutes with a
period of 5 minutes is executing three times as often as
necessary. That makes it three times as likely to be executing
when a critical process needs to execute. That means it uses up
three times the NCM processor time.

 For every data line out of an object block or a reference block
an attribute read is done during the execution of the process.

 Each attribute causes the process execution to pause. The
length of the pause varies based on many factors including:

• the amount of available acquired memory

• where the data must be retrieved from (e.g., across N1,
from N2 device, and traffic on either/both)

• number of messages queued up at object manager

• other activity on the NCM

• if the object does not respond within 1 minute, the process
will use the last known reliable value for the attribute,
flagged unreliable, and continue execution.

Note: If an NC’s N2 Bus is very busy, this message may
return after the time-out. This will require additional
processor time by the JCB-Interpreter, put an error
message in the NC error log, and may affect the
results of another attribute read.

 There are a few rare cases where an attribute must be reread by
a single execution of a process (after a command to the object
or after a Wait block). For most applications, if an attribute
value is needed more than once in a process, then read it once,
store in a Value Holder, and fan-out of the Value Holder
where needed. The Value Holder read is faster than the
attribute read is to execute.

 Set the Period to a
Reasonable Value

 Reduce the
Number of
Attribute Reads a
Process Must
Execute

86 Appendix

 In general, a Value Holder block should be used when the data
it contains is used only inside a single process. A shared
variable is 6 bytes bigger in size and 2 bytes bigger per
reference than a Value Holder. Each reference to a shared
variable takes a few nanoseconds longer than a Value Holder
reference. In most cases 2 bytes and a few nanoseconds are
insignificant, but it is worth considering getting into good
programming habits. Do not redo a GPL process in a well
running NCM to use Value Holder blocks in place of shared
variables.

 For every data line out of a command block, a command is
sent to an object when the line is executed. If the command
block’s enable input is true or there is no enable input, a
command will be sent every execution of the process.
Similarly if a 2CMD block has no edge trigger and the enable
in is true (or there is no enable input), then a command will be
sent every execution of the process. The amount of time it
takes a process to execute the command depends on several
factors. However, it takes longer to create and send a
command than it does to process an edge trigger on a 2CMD
or a one shot pulse into the enable input of a command.

 Every command sent requires the following:

• memory acquired for the command message

• object receiving the command must process it

• message may have to travel across the N1

• message may cause N2 command (although in most cases
a repeated command will not cause N2 traffic)--with the
SYS91 and DX91xx N2 devices, it may now be more
common for the command to be repeatedly sent. When a
command is received by the NC object manager, it goes
out on the N2 and gets the bit state. If the bit does change
then the command goes out on the N2; if it doesn’t
change, there is “no” additional N2 traffic. So every
command to the DX is at least one and maybe
two messages on the N2.

 Use the Value
Holder (VH) Block
Instead of the
Shared Variable
(SVAR) Block

 Reduce the
Number of
Commands a
Process Executes

Appendix 87

 There are a few, rare, cases where a command must be re-sent
for each execution of a process even though the command
does not change. In general, if a command is sent once, it does
not need to be sent again until the command itself changes.
When a command must be resent, determines if the process is
in competition with another process, or scheduled commands,
for control of the object.

 If a process sends a lot of commands, consider using an MCO
to issue the commands. The MCO provides automatic edge
triggers.

 Positioning a single GPL process in the NCM with the
majority of the inputs (attribute reads) and MCOs in the NCMs
with the objects to be commanded reduces N1 traffic from
commands to a single command per MCO. In fire applications,
sending out one command to an MCO in each NC provides
faster response (damper commands) than a single process
commanding objects in all the NCMs.

 Example

 For damper control, a process can perform the logic of which
state the dampers should be in and send a single command to
an MCO to issue the commands to all the dampers. For a fire
application, an MCO in each NC would be more efficient than
a single GPL process.

 If a network has 5 NCs and each NC has 8 dampers to
command in the event of a fire a single fire process would
have to send out 40 commands to all the dampers (32 across
the N1). With 5 MCOs, the fire process would only be sending
5 commands (4 across the N1), the MCOs would be
commanding their subordinates (dampers) in parallel and all
commands would be issued quicker. The GPL process would
also execute faster allowing other processes to execute in the
NCM.

Note: Don’t use the MCO in a GPL process when there is
only one or two subordinates to be commanded
because there may be more commands to the
subordinate objects than if you would use
standard GPL blocks and command the objects
straight from GPL.

 Remove Fixed
Commands from
the Process into
an MCO (Multiple
Command Object)

88 Appendix

 Use an MCO to trigger processes. If you want to order the
execution of processes as a result of the mode change, an
MCO could do that with subordinate order or delay times and
you could create more finely tuned process prioritization.

 The MCO provides edge triggering of commands because it
only sends out the commands when the MCO changes state,
therefore if a process sends the same command (same state) to
the MCO every execution the MCO gets the command and
remains at its state, if the state changes the MCO immediately
starts sending out its commands for the new state.

Note: The MCO can send commands at the same time the
process is commanding other objects or ending
execution or another process is starting execution.
This could cause many reads on the N2 or N1 LAN.

 The following sections provide ways processes in an NCM can
be designed to work together to make an NCM more efficient.

 In GPL, for every data line out of an object block or a
reference block, an attribute read is performed. Five data lines
out of a single object block into five different processes means
five processes reading the same value. Examine the
application, if the attribute value does not need to be
absolutely current, choose one of the processes (periodic for
an analog value or triggered by the attribute for a binary or
integer value) to be the only process that actually reads the
attribute. The chosen process should write to a shared variable
that all the other processes use to get the attribute value.

 Reading an attribute from only one process in an NCM does
all of the following:

• reduces execution time of all processes using a shared
variable instead of doing read of the attribute

• reduces N2 traffic on NCM when the attribute must be
read from N2 device

• reduces N1 traffic to and from NCM if object is on
different NCM

• increases total NCM process memory usage by
approximately 34 bytes

 Efficiency of All
GPL Processes
in an NCM

Reduce the
Number of
Attribute Reads
the Processes
Execute

Appendix 89

If several processes read the same attributes and do the same
calculation on the values, the process designated to do the
reads should do the common calculations and share the results
in SVARs. This reduces execution time of the other processes.

 Any event which causes a process to be executed places the
process on the queue (e.g., change of a triggerable non-exempt
attribute or shared variable; wait, period, delay or pulse timer
expiration; manual, scheduled, or programmed trigger
command, etc.). The length of time the process spends on the
queue is based on three things:

• process’s Priority

• processes of higher Priority in the queue

• execution time of the process currently executing

 Breaking up large processes into smaller processes reduces the
time a process of higher Priority waits. If a large process of
Priority 3 is broken into three processes of Priority 3, any
one of the smaller processes executes faster than the original.
A Priority 1 process, which is queued during the execution of
one of the smaller processes, waits less time to execute.

 Smaller processes are easier to understand and troubleshoot.
However, the trade-off is memory; each process has a fixed
amount of overhead.

When breaking apart large processes, look at triggers and
periods. If a process has both trigger and periods, see if the
process can be broken apart so that the smaller processes have
either triggers or periods. This reduces the executions of the
smaller processes.

Note: This is the exact opposite of the efficiency described
above. Larger processes are more difficult to
understand, to troubleshoot, and require more
acquired memory to upload and download.

 Larger process are harder to debug and understand. The single
large process has a longer execution time during which a
higher Priority process must wait on the queue.

 Break Large
Processes Down
into Smaller
Processes

 Combine Small
Processes Into
Large Processes

90 Appendix

 Reasons to combine processes would be:

• if they were performing duplicate reads and calculations

• if the NCM has reached the 255 process limit

• If you decide to combine small processes into larger
processes consider the following when doing so:

- combine processes with the same period

- combine processes with the same inputs

 The following is a list of ways processes can be designed to
improve the entire FMS Network.

 Using both AD and BD in a process input or value is a waste
of resources (memory and processor time). Do not define an
AD or BD with an associated input and using a process to
command its value (SET_BD or SET_AD) at Priority 3. Every
30 seconds an AD polls its associated input and resets its
Value. Every 4 seconds (may vary on a very busy system), a
BD polls its (non-triggerable) associated input attribute and
resets its Value. Thus, if a process changed an AD’s value with
a Priority 3 SET_AD command, the value sent by the process
will be lost in less than 30 seconds. If an AD or BD is
commanded at Priority 1 or 2, the value of the AD or BD will
be the highest Priority commanded value. If an AD or BD with
an associated input is commanded at Priority 1 or 2, the AD or
BD continues to poll for its associated input.

 If the Associated Inputs for BDs use triggerable attributes,
then the BD will change its value when the Associated Input
triggers. The Key here is if the input is triggerable. Most
CS object binary attributes do not trigger (as well as other
non-triggerable attributes), therefore they will be polled at the
4-second rate.

 An attribute read from a process to an object on a different
NCM requires two messages across the N1 (one to request the
data, one to respond to the request). A process output to an
object (command or write) on a different NCM requires
one message across the N1. If a process inputs and outputs to
multiple NCMs total up the messages in and out of each NCM
and place the process in the NCM, that minimizes the N1
messages.

 Efficiency of the
Entire Network

 Select Either AD or
BD in a Process
Input or Value

 Proper NCM
Placement of a
Process can
Reduce N1 Traffic

Appendix 91

 If a process that reads a specific attribute resides on the same
NCM as an AD or BD associated to that attribute, read the
value from the AD or BD instead of from the object. The
reasons include:

• ADs and BDs never poll the N2 in response to a read
attribute request

• reading an attribute from an object on the same NCM
eliminates two messages across the N1

 Writing a process to replace the associated input of an AD or
BD can reduce N1 and/or N2 traffic.

 The following describes how an AD or BD to get its
associated input.

Note: A BD with an associated input initiates this every
4 seconds. An AD with an associated input initiates
this every 30 seconds.

1. A message is sent to the object for the attribute’s value:

The requesting task (AD or BD manager) acquires
memory for the message, fills in the message with the
appropriate information, and sends the message to the
object.

If the object is on a different NCM, the message is sent
across the N1 (via network manager). The memory
acquired for the message is released. When the message
arrives at the proper NCM, that NCM’s network manager
acquires memory for the message.

2. Waits for a return message from the object or 1 minute,
whichever occurs first.

• If the information requires an N2 read the object
manager passes the message to the N2 poll task. The
N2 poll task polls the N2 device for the information,
the N2 device responds to the poll.

• The object manager (or the N2 poll task if the
message was passed on) usually uses the request
message to respond putting all requested attribute
value information in the message. Once the response
message is filled in the object manager (or the N2
poll tasks), it returns the message to the requesting
task.

 Read the AD or BD
Value Directly

 Replace the
Associated Input
of an AD or BD
with a Process

92 Appendix

• If the object is on a different NCM, the message is
sent back across the N1 (via network manager). The
memory acquired for the message is released. When
the message arrives at the requesting NCM, that
NCM’s network manager acquires memory for the
message. And then sends the message back to the
requesting task.

3. If a message was returned it assumes the returned value as
its Priority 3 value and releases the memory acquired for
the message. If the message "times-out" (no return after
1 minute) it maintains the last Priority 3 value it had.

In the case of an AD, a simple process written to read the
attribute from the object and command the AD to the
value could greatly reduce N1 traffic if the period of the
process is set to a value greater than 30 seconds.

 Example

 Assume an AD is associated to an AI whose value averages a
1% change every 10 minutes. The AD sends a message every
30 seconds requesting the AI’s value and the AI returns the
message, or two request messages per minute and two returned
messages per minute. A simple process that reads the AI and
commands the AD to the value read, with a period of 10
minutes in place of the associated input, can greatly reduce the
messages sent. The process will request the attribute value
once every 10 minutes the object will return the attribute value
once every 10 minutes, and the process will command the AD
once every 10 minutes.

 A total of three messages every 10 minutes, depending on the
NCM placement of the process one, two, or three messages
across the N1. Depending on the attribute that is associated
with the AD, this could also reduce N2 traffic.

 There are drawbacks to this approach:

• Memory. The simple process takes up considerably more
memory than the associated input.

• Complexity. When viewing the AD on a Focus window, it
is no longer obvious where the value is coming from extra
engineering time to create the processes.

• This adds another process, which needs to be executed.

Appendix 93

• When a process reads an unreliable value, it uses the last
known reliable value for the attribute, flagged unreliable.
So, the AD would be commanded to the last known
reliable value of the attribute, not the attribute's unreliable
value. The use of the AD should be considered when
contemplating this approach.

 Reducing N1 traffic can increase the efficiency of other NCMs
as well. Consider how many messages the NCM with outdoor
air temperature must handle in a system with many NCMs all
needing outdoor air temperature. Every N1 message
eliminated is one less message that needs to be acquired.

4. Writing a process to replace the associated input of
multiple ADs or BDs can reduce N1 and/or N2 traffic.
Writing a single process that reads an attribute and sends
(set commands) values to multiple ADs or BDs can
significantly reduce N1 and N2 traffic. See the earlier
outdoor air temperature example.

The drawbacks to this approach are the same as Step 3
above.

Using an AD or BD in the same NC could eliminate
GPL code. An AD or BD can be assigned an initial value;
the initial value could eliminate special code written to
determine if an NC is responding. If the GPL process does
an attribute read and never gets a response, it uses 0 or
false as the default. Using an Initial value can provide a
better value to use in case NC to NC communication is
unavailable.

94 Appendix

Appendix 95

 GPL Libraries

 If you need information about a compound in the GPL HVAC
library refer to the appropriate application notes in the Metasys
Network Technical Manual (FAN 636).

 The same information in the text of the application notes is
available through the Description icon. Highlight the
compound name and click on the Description icon. Page Up
and Page Down keys move you through the text.

 The text for the example files is available in the same way.

 We recommend when you modify or add any compound or
example files to the GPL HVAC library, you also modify or
add the corresponding descriptor file. It may be helpful to
make additions to the GPL HVAC library or create a new
library to create a standard for applications that are unique.

 The easiest way to build a GPL library is that every time you
make a compound, save it to the disk instead of the screen.
Then load the compound into your strategy file when you need
it.

 When you make a process, keep the template a Group
compound. Give it a name that helps describe the compound
and save it to the disk. Then when you need it, load it into your
strategy file and change it to a process compound.

 Don’t forget to share your library compounds with others in
the company.

 HLIB - GPL
HVAC Library

 Recommendations

 Using the
Metasys GPL
HVAC Library

 Building Your
Own Library of
GPL Compounds

96 Appendix

 In order to understand process prioritization, some background
information on the process queues is needed. There are five
process queues in the NCM, one queue for each of the four
priorities and a fifth for TIME SLICED processes (see the
Process Statuses section for an explanation of Time Sliced
processes). A queue is nothing more than list. In this case the
lists are of processes requesting execution. With
two exceptions, whenever an event occurs that requires a
process to be executed the process is placed at the bottom of
its Priority queue. The two exceptions are:

• when the process is already on its Priority queue or Time
Sliced.

• when the process is in a state (Disabled, Error) that can
not be executed.

 If a trigger is received for a process on its Priority queue in a
Wait state the process maintains its position on the queue,
however, its Wait state is canceled.

 Processes are removed from the queues one process at a time
and executed.

 The process that has been on the Priority 1 queue the longest
(i.e., the one on the top of the list) executes next. If there is no
process on the Priority 1 queue then the one that has been on
the Priority 2 queue the longest executes. If there is no process
on the Priority 2 queue then the one that has been on the
Priority 3 queue the longest executes and the same is true for
Priority 4. The last to execute is any process that has been
Time Sliced.

 The order in which processes are removed from the queues
explains the effects of process prioritization. In a NCM with
processes of all priorities, a Priority 2 process spends less time
on the queue between the event that caused it to be queued and
its execution than an identical process with a Priority of 3.
Process Priority should be assigned based on the application.
The most critical and ideally the least frequent processes
should have the highest Priority.

 Process Priority cannot guarantee that a critical process will
execute immediately or at a constant period. When any event
causes a process to be queued the only way it will be executed
immediately is if there is no process currently executing. Only
one process at a time is executed.

 Prioritization of
Processes

Appendix 97

Each process must finish execution before another process can
begin execution. Once a process has started, even if it is at
Priority 4, it will continue until it finishes. This is true even if a
Priority 1 process was added to the queue immediately after
the Priority 4 started. Finish execution means all blocks
executed, or a STOP, ABRT, or Wait block is executed, or
the process is ERROR or Time Sliced, or the process is
commanded DISABLED. Therefore, if there is a process that
absolutely, positively must execute immediately, then it
absolutely, positively must be the only ENABLED process
(other than the RESTART process) in the NCM.

 There are two types of memory in the NCM: allocated and
acquired. Allocated memory is used for long-term or
permanent storage. This includes the NCM programs
themselves, processes, databases, etc. Acquired memory on the
other hand is used for short term storage such a sending
messages between tasks in the NCM, sending or receiving
messages on the N1 or N2, sending commands to objects, etc.
During process execution a process may acquire memory.
When a process acquires memory it is for the purpose of
communication. The communication is to obtain information
or send information. The communication may be to objects
and features in the same NCM or a different NCM, it may be
to a printer or OWS. The following are all the times a process
will acquire memory:

• to read an attribute value (data line out of object block or
REF block)

• to read a totalization value (TOT block)

• to time a period or wait (Wait blocks, STOP blocks or all
blocks executed)

• to send an advisory message (ADV block)

• to send a print message (PRNT block)

• to time a pulse or delay (PULS, DLAY, and BSEQ
blocks)

• to send a command (CMD or 2CMD blocks)

• to write an attribute value (WRIT block)

• to trigger for a binary shared variable change (trigger
other processes)

 Types of
Memory

98 Appendix

 When a process acquires memory, it affects the NCM that the
process is executing in, but it may also affect other NCMs on
the network. The following may cause memory to be acquired
in another NCM when the object read/commanded or the
printer written to is associated with another NCM:

• to read an attribute value

• to read a totalization value

• to send an advisory message

• to send a print message

• to send a command

• to write an attribute value (WRIT block)

 A process has only one of the following acquired at a time:

• to read an attribute value

• to read a totalization value

• to time a period or wait

 A process acquires the following and may have many of these
acquired at a time:

• to send an advisory message

• to send a print message

• to time a pulse or delay (PULS, DLAY and BSEQ blocks)

• to send a command (CMD and 2CMD blocks)

• to write an attribute value (WRIT block)

• to trigger for a binary shared variable change (this does
not affect other NCMs)

 The difference between the two categories listed above is the
one at a time category issues a message and does not proceed
until the message is returned. The many at a time category
issues a message and continues with the potential to
immediately issue another.

Appendix 99

 A one at a time read attribute value sends the message and
pauses execution until the message is returned; during the
pauses, it is not executing, it is not asking for any other
messages. An example of the many at a time is a command
sent to an object with process execution continuing, the
process may immediately send another command. Several
commands may be sent by a single process before the first
commanded object has processed the command.

Note: An NCM has a single processor and each piece
(object/feature) must share the use of the processor,
thus an executing process may send many messages
before an object gets its turn.

 If an NCM is running out of (or running low on) acquired
memory, the following blocks in a GPL process may be
contributing to the problem:

Note: Processes are not the only users of acquired memory,
however, this document deals strictly with processes.

• ADV (advisory) block

• PRNT (print) block

• PULS (pulse) block (except one-shot)

• DLAY (delay) block (except one-shot)

• BSEQ (binary sequencer) block

• CMD block

• 2CMD block

• WRIT block

• binary SVAR blocks with any non-exempted output
connections

 Advisory and print messages are particularly large and a
printer is a slow device. A process was not designed to be a
report generator. Use print messages with extreme care. The
timer messages (period, wait, pulse, delay, and binary
sequencer) stick around for the length of the timer, or until
they are canceled. The other messages only exist until they are
processed by their receiver. In the case if Print Messages, they
may accumulate in the NCM that has the printer.

 Example

100 Appendix

 A shared variable is a data storage location in a NCM. A
shared variable’s purpose is to give a name to a specific data
location so the data in the data storage location can be shared
between processes on the same NCM. In GPL there are
two ways to create this data storage location:

• a SVAR block

• by drawing a data connection line that connects
two operation blocks across two different processes.
In JC-BASIC this data storage location is created by
declaring a variable SHARED.

 In GPL or in JC-BASIC a shared variable should be used
when data (usually calculated) in one process needs to be used
by another process.

 A binary shared variable that is not exempted in a process that
reads its value triggers the process each time the value
changes. Therefore, when using a binary SVAR block to
reduce attribute reads exempt the shared variable in the
process that reads the attribute and assigns the attribute's value
to the SVAR.

 The following is a list of ways a shared variable can be used to
increase process and NCM efficiency. If the data does not
need to be shared with another process, use a Value Holder
block instead of the Shared Variable block for greatest
efficiency. In JC-BASIC, if the data does not need to be shared
with another process use a local variable.

1. Instead of doing a fan-out from an object or REF block,
drag a single line out to an SVAR block and do the
fan-out from the SVAR block to reduce N1 traffic and/or
N2 traffic.

This does a single read of the attribute value, at most
one poll of the N2, and at most one read and reply on the
N1. By using the SVAR block the attribute value does not
change during the process, every comparison uses the
same value of the attribute.

 Shared Variables

 Using Shared
Variables

Appendix 101

 If a process wants to start a fan with the temperature between
60 and 80 degrees, there are two compare blocks both needing
the temperature value. If a shared variable is used to store the
temperature, both compare blocks will get the identical
temperature value; if both compares have a line direct to the
object block, two reads of the object (probably to the N2
device) will occur, and chances are the value may vary slightly
between reads. In this example, a few tenths or hundredths of a
degree difference may not matter; however, you may have an
application where it does matter. Also, if the attribute value is
binary, the change in value could make a dramatic difference.
The first half of a process could execute as if the BI were open
and the second half could execute as if the BI were closed.

2. A shared variable takes up less NCM memory than an AD
or BD object. Therefore, if a calculated value does not
need to be seen by the customer or used by another
NCM’s process but does need to be used by multiple
processes on a single NCM, put it in a shared variable to
save memory. The shared variable will have an added
bonus; in this case, it is faster to access a shared variable
than to access an AD or BD attribute.

3. Use a shared variable as described above to decrease
process execution time and reduce N1/N2 traffic. Each
attribute read involves a pause of up to 1 minute while
message passing occurs to retrieve the data. Reducing the
number of reads (even on the same NCM) decreases
process execution time.

 If the data does not need to be shared with another process, use
a Value Holder block instead of the Shared Variable block for
greatest efficiency. In JC-BASIC if the data does not need to
be shared with another process use a local variable.

 Example

 Value Holder
Block vs. Shared
Variable Block

102 Appendix

 Some facts that may help you make wise choices concerning
when to use a Value Holder block (local variable in the NCM)
and when to use a Shared Variable block (shared variable in
the NCM) follow:

1. In the NCM, a local variable and a shared variable do not
use the same amount of memory to store the variable data
(name, value, reliability, array information). However, a
shared variable must store extra information to provide its
extra capabilities. Each shared variable has 6 bytes more
of information per variable than a local variable (2 bytes
for location information, 4 bytes that signify whether the
variable is a trigger to any process).

If the shared variable is binary and triggers any process, it
uses an additional 32 bytes (regardless of how many
processes it triggers) to store the information on which
processes to trigger. The shared variable has a small
amount of overhead that a local variable does not, the
overhead averages 1/4 byte per shared variable.

2. Each NCM process object contains references to shared
and local variables. The reference to a shared variable is a
long pointer, the reference to a local variable is a near
pointer. The ramifications this has to you is a long pointer
is 4 bytes, a near pointer is 2 bytes. A long pointer takes a
few nanoseconds longer to execute than a short pointer. In
most cases, 2 bytes and a few nanoseconds are
insignificant, but it is worth considering getting into good
programming habits. There is a variable reference in the
NCM process object every time the variable value is read
or written, in GPL this is every line in or out of a SVAR
or VH block. In JC-BASIC, this is every time a local or
shared variable name is used.

Appendix 103

3. If NCM memory is extremely full shared variables can be
used instead of local variables to save memory. Instead of
having a VH block in every process, reusing a SVAR
could save memory. The memory saved is the memory
each local variable would take up vs. the overhead of a
shared variable. There are some important considerations:

a. Space must be more important than speed.

b. Space must be more important than program
readability.

c. The VH block must be assigned a new value before it
is used elsewhere for every process substituting the
common SVAR. Another way of saying this is that
the value assigned to the Value Holder now will not
be used for the next execution of the process, the
value is reassigned (either by a calculation or attribute
read).

d. There are enough processes in the NCM to justify this
substitution (if the type is binary all processes must
exempt it as a trigger) the VH block has less than 12
connections (12 or more connections no longer saves
memory because the process object code required for
an access of a shared variable is 2 bytes per access
larger than the process object code for VH’s local
variable) extreme caution should be used if making
this substitution, and this is not recommended as a
good programming practice. Other options should be
explored before attempting this.

4. A shared variable can be used to decrease N1/N2 traffic
and increase an NCM’s performance as follows:

• Analyze all processes, which read the same attribute.

• Determine the acceptable age of the attribute’s value
that will provide proper operation. Acceptable age
means how old can the value be, for example, since
outdoor air usually doesn’t change very fast, an
acceptable age may be 15-20 minutes.

104 Appendix

• Choose a process accessing the attribute value whose
period is less than or equal to the acceptable age. For
the outdoor air example, if three processes use the
variable, with periods of 50 seconds, 2 minutes and
5 minutes, then choose the 5 minute process since its
period falls closest to the acceptable age.

• In the chosen process, read the attribute value and
store in a shared variable in the chosen process and
all other processes. In the outdoor air example
(assuming outdoor air on another NCM), this reduces
N1 traffic to read outdoor air from an average of
3.4 messages per minute to an average of 1 message
per 2.5 minutes (a read is 2 messages, a request and
a reply). In the outdoor air example (regardless of the
NCM containing outdoor air) this reduces N2 traffic
generated by these processes from 1.7 polls per
minute to 0.4 polls per minute for outdoor air. In
addition all processes not reading the attribute will
reduce their execution time by the time that they
previously spent creating the message, waiting for the
response, and cleaning up after the message.

 The process compound object in the archive database is
referred to in this document as a disk process. The process
compound object in the online database of the NCM is
referred to in this document as a Field process. The terms Disk
and Field are taken from the compound’s System name process
window.

 A disk process has two states: enabled and disabled. A process
in the disabled state (disk) is in the disabled state (field) when
download is complete. A process in the enabled state (disk)
downloads into the Ready state (field). A process in a single
process downloads into the Held state.

 A process has eight statuses that can appear in the field
process focus window:

1. Not fully downloaded

This status would appear in the focus window while a
process is being downloaded. It will also appear when an
error occurred during download and the process cannot be
executed because of the error.

 Process
Statuses

Appendix 105

2. Error

A process can be in the Error state for two reasons:

• the process executed an abort (ABRT block in GPL
or an ABORT statement in JC-BASIC)

• an unrecoverable error, usually floating point,
occurred. Whenever an unrecoverable error places
the process in the Error state an advisory is generated
by the process.

A process in the Error state does not execute, as long as
the process is in the Error state. No trigger will cause a
process in the Error state to execute. A process can be
changed out of the Error state, by an enable command
(manual or programmed),or by downloading a process of
the same name (system\object name).

3. Disabled

A process can be in the Disabled state for two reasons:

• the process received a disable command (manual or
programmed)

• the process was downloaded in the disabled state

A process in the Disabled state will not execute, as long as
the process is in the Disabled state. No trigger will cause a
process in the Disabled state to execute. A process can be
changed out of the Disabled state by an enable command
(manual or programmed), or by downloading a process of
the same name in the enabled state (disk).

4. Held

A process can be held for four reasons:

• A process is placed in the Held state when a full
download of the NCM has completed, the process
was downloaded in the enabled state (disk), and a
restart process was downloaded.

• A process is placed in the Held state when the NCM
it resides in resets, the process was in the Ready,
Executing, Waiting, Time Sliced, or Held state when
the NCM reset and a restart process exists in the
NCM.

106 Appendix

• A restart process cannot be placed in the Held state. If
the NCM does not have a Restart process, no
processes in the NCM can be in the Held state.

• When a restart process exists in the NCM, no other
process will execute until the restart process has
successfully completed. The restart process completes
successfully when it has executed a stop (STOP block
in GPL or stop statement in JC-BASIC) or has
reached the end of the process (all blocks executed in
GPL, end process statement in JC-BASIC). If the
restart process is in the disabled or not fully
downloaded state when a full download completes or
if the restart process is in the disabled, error, or not
fully downloaded state when the NCM resets no other
process executes. All processes placed in the Held
state remain in the Held state. If the restart process
finishes unsuccessfully and is placed in the Error state
(see above), all processes placed in the Held state
remain in the Held state.

5. Ready

A process in the Ready state is available for execution
when triggered. The only process in the NCM in the
Ready state that cannot be triggered is the restart process.
A process is placed in the Ready state when:

• the process finishes execution by executing a stop
(GPL STOP block or JC-BASIC stop statement) or
by executing a end process (all GPL blocks executed
or JC-BASIC end process)

• the process is disabled and receives an enable
command (manual or programmed)

• the process is downloaded (single process download)
successfully in the enabled state (disk). The restart
process has finished if a restart process exists on the
NCM.

• the process is in the Waiting state and the process is
triggered

Appendix 107

6. Executing

The process is in the Executing state when the process is
being executed. The Interpreter is the task in the NCM
that executes a process. When the process is removed
from the queue for execution the interpreter changes the
status to executing. A process must be in the Ready,
Waiting, or Time Sliced state to be on the queue. When
the process is done executing it is placed in the Ready or
Waiting state if the process executed normally. The
process is placed in the Error state if the process executed
abnormally. The process is placed in the Time Sliced state
if the process is in an infinite loop or too large (see
below).

The process is placed in the Disabled state if a disable
command (manual or programmed) is received for the
process, in this case where a process is executing, when a
disable is received the process, halts wherever it is, in the
code. Care should be taken when disabling a process that
does two or more commands that if the first command
occurs the second command must be sent. For example, if
the pump is started the damper must be commanded open,
consider that if the disabled command is received after the
pump is started but before the camper is commanded the
damper command will not be issued.

Only one process per NCM can be in the Executing state
at a time.

7. Waiting

The process is placed in the Waiting state when the
process executes a wait (GPL Wait block or JC-BASIC
wait statement). When the wait timer expires, the process
is put on its Priority queue. The process remains in the
Waiting state until:

• the wait timer has expired and the process is removed
from the queue for execution, at which time the
process state is changed to Executing.

• a trigger is received for the process. The process state
is changed to Ready. If the wait timer has not expired,
the wait timer is canceled and the process is placed on
its Priority queue. If the wait timer has expired, the
process stays on its Priority queue where it had been
placed by the wait timer expiration.

108 Appendix

 Any of the following can trigger the process:

• non-exempt triggerable attribute read by the process

• manual trigger command

• programmed trigger command

• scheduled trigger command

• binary shared variable read by the process

• expiration of the pulse timer (BSEQ, PULS, and
DLAY blocks or JC-BASIC canc_pulse and
n_canc_pulse functions)

 The following removes the process from the Wait state:

• the process receives a disable command (manual or
triggered) and the process is changed to the Disabled
state. If the wait timer has not expired, the timer is
canceled, or if the wait timer has expired, the process
is removed from the queue.

8. Time Sliced

Each time a process’s status is set to Executing, an
op-code counter is set to 32767. For every op-code
executed in the process, the counter is decremented. If the
counter reaches zero, the process is Time Sliced.

When a process is GPL translated, it is converted to
JC-BASIC source code. When a process is compiled, it is
converted from JC-BASIC source code to process
op-codes that the NCM's Interpreter task can execute. The
number of op-codes compiled per GPL block or
JC-BASIC statement varies greatly. The number 32768 is
large enough that any reasonable application can execute
without being Time Sliced. The maximum size of a
process is 32 Kb; only a portion of the 32 Kb can be
op-codes. If a process exceeds its op-code count there is a
loop where it is executing some of the op-codes more than
once. If a process executes more than 32768 op-codes, it
may be in an infinite loop.

Once a process exceeds it 32768 op-codes its state is
changed to Time Sliced and it is placed on the Time
Sliced queue and an advisory message is issued. A process
is removed from the Time Sliced queue and execution
continues at the exact op-code it left off whenever there
are no processes on the Priority queues.

Appendix 109

Each time execution of a Time Sliced process is begun,
the op-code counter is divided by 2 until the op-code
counter reaches 500 or less (i.e., if the process is removed
from the Time sliced queue for the first time it will start
with a op-code counter of 16383, if the process is
removed from the Time sliced queue for the fifth
consecutive time the op-code counter will start at 1027).
A process with a status of Time Sliced cannot be triggered.

When a Time Sliced process has been removed from the
queue for execution its status is changed to Executing,
except for the reduced op-code counter it is executed the
same as any other process.

A disable command (manual or programmed) will change
a Time Sliced process to the disabled state.

Process status is a readable attribute of a process object.
The process status attribute is an integer attribute. The
status attribute has a range of 1-8. Listed below is the
integer value of the process status and the corresponding
state the process is in:

Attribute Value Process Status (field)

1 Not Fully Downloaded

2 Error

3 Disabled

4 Held

5 Ready

6 Executing

7 Waiting

8 Time Sliced

JC-BASIC allows reading any readable integer attribute.
A GPL user’s block can be used to access the status
attribute of any field process. The attribute name is
STATUS.

110 Appendix

Some processes may go unreliable the first time they run after
the NCM starts up because some of the field objects being
read by the processes are initially offline/unreliable. This
happens when the field objects have not reported to the NCM
at the time the processes run, but eventually come online.

If you have this situation, then create a Restart process that
includes a Wait block with a wait time of xx seconds. If a
Restart process already exists, add the Wait block to it. This
Wait block should be placed in the process so it executes
before any objects are read. The amount of wait time needed
will be job dependent but you may wish to start at 30 seconds
and decrease the value if no problems occur.

The process period timer is set when the execution of the
process is complete and the period is not 00:00:00. The
process period timer is not set if the process goes into a Wait
state (a Wait block in GPL or a Wait statement in JC-BASIC).
The process period timer is not set if the process is put into the
Time Sliced or Error states. When the process period timer
expires the process is placed on the queue and will be executed
as soon as possible based on process Priority.

A fixed process period does not guarantee that the process will
execute at that rate. For example, a process with a 5-minute
period and no triggers will execute every 5+x minutes where x
is variable and is the sum of the process execution time, the
time spent on the queue, and any time spent Waiting. The
process execution time varies based on the size and complexity
of the process object code, the response time of attribute reads,
and the other NCM activity while the process is executing. The
time spent on the queue is based on the Priority of the process
and the execution time of all processes ahead of it on the
queue (either higher Priority or same Priority but queued first).

A process period timer is canceled whenever the process is
triggered. Therefore, a process with a 5 minute period timer that
has been timing for 2.5 minutes will be placed on the queue
immediately if any trigger for the process is received. A process
period need not be fixed. The period can be calculated. If a
process has more than one Period statement (block) the last one
executed determines the length of the process’s period to be
started at the end of the current execution.

When to Use the
Restart Process

How a Process
Period Works

Appendix 111

A process period of 00:00:00 does not start the period timer at
the end of execution, therefore a process with a period of
00:00:00 will not execute again until it is triggered.

When set, the process period timer is set to the value last
assigned to the period (process template’s period or PERD
block in GPL, PERIOD statement in JC-BASIC). The timer
has a range of 1 second to 23 hours-59 minutes-59 seconds.
When the period timer expires, the process is placed on a
queue and executes in order based on process Priority and time
on the queue.

The process period timer is canceled and the process is
immediately queued if any event occurs that requires a process
to be executed (change of a triggerable, non-exempted
attribute or shared variable; delay or pulse timer expires;
manual, scheduled, or programmed trigger command). The
process period timer is canceled and the process is not queued
for execution if the process is Disabled.

112 Appendix

If a process is executing and encounters a wait or delay
block, say 10 minutes, will other processes waiting to be
executed go ahead and run during the 10-minute delay or
will they set until the first process has fully executed?

The wait and delay blocks have different actions. The Wait
block when executed immediately stops the current process
execution (as long as wait is not 00:00:00), sets the process
status to Waiting and lets the other processes on the queue
execute. A Wait block stops process execution immediately,
means that all blocks whose execution follows the Wait block
in the process will not execute until the Wait timer expires.

When the wait timer expires, execution of the process begins
at the block immediately following the WAIT block. When a
delay or pulse block timer expires, the execution of the process
starts at the beginning of the process.

The delay and pulse blocks do not stop the execution of the
process. When they set their timer, the process continues to
execute the process. A process can have multiple delay and
pulse timers active at the same time (one for each delay and
pulse block). Expiration of a delay timer does not cancel the
timer of other delay or pulse timers (expiration of a delay or
pulse timer will cancel the WAIT timer).

Only one process can be executed at a time in the NCM. The
process that is executing has a process status of EXECUTING.
Whenever the Interpreter changes the process from
EXECUTING to any other status, the Interpreter is
immediately available to execute another process.

Will a CS object (Reference Block) trigger a GPL process,
or must you use a process timer?

Some attributes of a CS object are triggerable. (See the
CS object attribute list in Appendix G: Attributes for
triggerable attributes). When using the other CS object
attributes, a process timer is necessary. If in doubt about the
triggers of a GPL process, check the trigger table in the
compile listing.

Frequently
Asked
Questions

Question

Answer

Question

Answer

Appendix 113

Is last known value table cleared when NCM reboots?

First, let’s redefine reboot to be coldstart and warmstart.
A coldstart is hitting the reset button or performing a full
download, and warmstart is after a powerfail where the battery
has maintained memory.

On a coldstart, the last known value table is built by the
process object manager as processes are downloaded. As the
last known value table is built the last known values are set to
0.0 for real, 0 for integer, 00:00:00 for time, and False for
Boolean.

On a warmstart, the last known value table is maintained.
The last known values are not changed.

Likewise, shared variables are initialized on a coldstart as they
are downloaded, and shared variable values are maintained on
a warmstart. In contrast, Value Holders and other local
variables are initialized on both a coldstart and on a warmstart.

What is the maximum number of commands an NCM can
execute per minute?

There are 600 Commands per minute.

These commands come from the GPL processes executing as
well as features that produce reads and writes to objects.

For the DX, every command requires three messages on the
N2. For every DX command, the bits are read (one message to
the DX to read the bits, one message back with the data); if the
command changes the bits then a third message with the new
settings is sent on the N2.

Question

Answer

Question

Answer

114 Appendix

GPL Programmer’s Manual

Glossary

Analog option that displays on the Connection menu. Clicking
on it displays analog connections only.

ANA Option

Numeric field (0.00) that is on the Tools option menu.
Clicking on it brings a numeric display to the screen, which
can be associated with a block’s output to indicate its value
during simulation.

Analog Display

Database stored at an Operator Workstation for a particular
Network Control Module. It contains process objects, and
databases of hardware objects, point objects, and feature
software.

Archive Database

Timer that the Simulator uses to execute Analog Data and
Binary Data blocks. You define the parameter by running the
SYSGEN program. It has a value of 1 to 255 seconds (default
is 30 seconds).

Associated Input
Timer

Data element of an object. Attribute

Binary option that displays on the Connection menu. Clicking
on it displays binary connections only.

BIN Option

Option that displays on the Remote Connection and Find
option menus. Clicking on it displays the names of all named
operation and special blocks.

BLK Option

See Function Block Category. Block Category

See Function Block Class. Block Class

See Function Block Directory. Block Directory

© November, 1999 Johnson Controls, Inc. 1
 Code No. LIT-631120

A user-specified name for a function block or compound
block.

Block Name

A fixed name given to a function block that identifies it. For
example, each Binary Input block is labeled with a “BI” block
type name.

Block Type Name

A section of the GPL Simulator that indicates various
information about a function block, such as its name and
output value.

Block Window

A program that translates DDL+ files into GPL control
strategy diagrams.

CAE Translator

A category of function blocks. These blocks perform common
control calculations; included are RAMP (Ramp), SPAN
(Span), and FILT (Filter).

Calculation Blocks

The strategy file name extension for the file that contains
connection information (.CI=Connection Information).

.CI extension

Pressing the left mouse button (two or three button mouse)
once to perform an operation.

Click Left

Pressing the right button (two button mouse) or middle button
(three button mouse) once to perform an operation.

Click Right/Middle

Pressing the mouse button to perform an operation. Clicking

GPL Editor field that is on the Erase option menu. Clicking on
it clears the control strategy currently in memory. The display
cannot be returned by the Undo function.

CLR ALL Option

Command option that displays on the connection menu for the
2CMD operation block. CMD0 is the command sent when the
input is False (logical 0). When this option is highlighted, the
menu shows all commands that can be sent when the input of
the block is False.

CMD0 Option

2 Glossary

Command option that displays on the connection menu for the
2CMD operation block. CMD1 is the command sent when the
input is True (logical 1). When this option is highlighted, the
menu shows all commands that can be sent when the input of
the block is True.

CMD1 Option

The strategy file name extension for the file that contains
compound data (.CMP=Compound).

.CMP extension

GPL utility that compiles intermediate source code into object
code that an NCM can execute. The compiler also adds the
code to the archive database.

Compiler

A user-created block that represents a grouping of many
underlying function blocks. For example, a number of blocks
can be interconnected and then grouped under a Heating
compound.

Compound

GPL Editor icon that offers several Compound functions.
These include: making, editing, loading, and deleting
compounds, loading an expanded compound, loading a
compound description file, changing disk drives, and
changing compound directories. Clicking on this icon also
shows the names of all GPL compound directories and file
names.

Compound Icon

The execution of a block or process that occurs only when
specified conditions are satisfied.

Conditional
Execution

An attribute of an object that must be defined in the object’s
database template before the object can be added to the
archive database. The attribute’s value is stored in the archive
database.

Configuration
Attribute

A line drawn between two blocks that is not actually a data or
control flow line, but a representation of an “association”
made between the blocks on the database template of the
destination block.

Configuration
Connection

Glossary 3

A line drawn between two blocks on a GPL diagram to
represent data or control flow. The types of connections
include binary, analog, time, control flow, command, dual
command, read, write, and configuration.

Connection

GPL Editor icon that enables you to draw data and control
flow lines between function blocks. Double-clicking on this
icon displays the Connection option menu.

Connection Icon

Version of GPL that is specially designed for engineering
consultants and educators. Includes GPL Editor, Expert
Checker, and Simulator. Excludes archive database interface
and translator/compiler.

Consultant
Version

A category of function blocks. These blocks perform analog
or binary control functions; included are PIR (PI Reset),
BSEQ (Binary Sequencer), COMP (Simple Compare), DFCM
(Differential Compare), and DBCM (Deadband Compare).

Control Blocks

The order of block execution. The order is specified by the
data and control flow lines.

Control Flow

A line drawn between two function blocks that helps to
determine which block is to execute first.

Control Flow
Connection

A GPL file that is composed of compounds, function blocks,
objects, connections, and text. The control strategy defines the
software objects and defines the control logic for the Network
Control Module, based on the sequence of operations. Static
pressure control and dry bulb economizer are examples of
control strategies. A strategy is actually stored in a set of
three files, which have these DOS file name extension names:
.TX, .DB, and .CI.

Control Strategy

Storage location of a GPL control strategy. The file is actually
composed of three DOS files with these extensions: .TX, .DB,
and .CI. The file name can be up to eight alphanumeric
characters long.

Control Strategy
File

4 Glossary

A category of function blocks. These blocks represent various
control functions or field controllers; included are PIDL (PID
Loop), LCG (Lighting Control Group), 210A (C210A),
260A (C260A), and ZONE (Fire Zone).

Controllers

GPL Editor icon that is on the Move option menu. Clicking on
it lets you copy a group of blocks, connections, analog
displays and text.

Copy Group Icon

GPL Editor icon that lets you copy a single block, connection,
analog display, or text.

Copy Icon

The x- and y-coordinates of the cursor’s current position. The
coordinates are displayed on the bottom left side of the GPL
Editor screen.

Cursor
Coordinates

Software program that GPL uses when you add, change, or
delete objects to or from the archive database.

Database Manager
(DBM)

A category of function blocks. These blocks store data;
included are SVAR (Shared Variable), CNST (Constant),
CONN (Connection), VH (Value Holder), AD (Analog Data),
and BD (Binary Data)

Data Blocks

The passing of data from one function block to another. Data
that can be passed between blocks includes analog and time
values, and binary states.

Data Flow

A Metasys software language in ASCII text syntax used to
create system databases.

Data Definition
Language (DDL)

The strategy file name extension for the file that contains
database information (.DB=Database).

.DB extension

Software program that GPL uses when you add, change, or
delete objects to or from the archive database.

DBM (Database
Manager)

A Metasys software language in ASCII text syntax used to
create system databases.

DDL (Data
Definition
Language)

Glossary 5

A function or compound block that has all required template
fields specified. Or, an object or process compound block that
has been successfully added to the archive database. In the
GPL Editor, the borders of a defined block are solid and
colored brown.

Defined Block

GPL Editor icon that is on the File, Compound, and Print
option menus. It lets you delete control strategy files,
compounds, and items on the print queue.

Delete Icon

GPL Editor icon that displays a text description file associated
with a control strategy or a compound.

Description Icon

The block into which a connection line ends. Destination Block

A connection that references the destination block, in which
the remote connection accepts an input from an origin block.

Destination
Remote
Connection

A single screen in the GPL Editor that may be composed of
connected function blocks, text, and analog displays.

Diagram

GPL Editor field that is on the File and Compound option
menus used for creating directories.

DIR Option

A continuous line between two function blocks that are
contained in the same file. The line passes data, specifies
control, or directs a command.

Direct Connection

Quickly pressing a mouse button twice without moving the
mouse.

Double Click

Moving the mouse while holding down one of its buttons,
then releasing.

Drag

GPL Editor field that is on the print queue and on the
following menus: File, Compound, Connection, and Find.
Clicking on it displays the next page of the queue or menu.

DWN Option

6 Glossary

GPL Editor field that is on the File and Compound option
menus. Clicking on it allows you to access a different disk
drive.

DRIV Option

GPL Editor field that is on the Compound option menu.
Clicking on it brings the specified compound to the work area
for editing.

EDIT Option

GPL utility that you use to create, modify, and delete control
strategies. The editor is the central “hub” from which all other
GPL utilities are available (i.e., Expert Checker, Simulator,
and Translator).

Editor

GPL Editor icon that enables the erase and delete operations.
Double-clicking on this icon displays the Erase option menu.

Erase Icon

To prevent an object’s binary attribute or a binary shared
variable from triggering a process.

Exempt

GPL Editor icon that enables the exempt function, which lets
you exempt an attribute of a particular object from triggering a
process. An exempted connection is indicated by an open
square over the arrowhead.

Exempt
Connection Icon

GPL Editor icon that lets you exit GPL to return to DOS or
the FMS.

Exit Icon

The full contents of a compound; that is, all of its blocks,
connections, analog displays, and text. The expanded
compound can be pasted down on the screen by clicking left
on the XPND option (located on Compound option menu).

Expanded
Compound

GPL utility that checks a control strategy for completeness
and correctness, and outputs any errors it finds to the list file.

Expert Checker

Glossary 7

GPL Editor icon that is on the Tools option menu. Clicking on
it runs the Expert Checker.

Expert Checker
Icon

Multiple output connections fed into one input. Fan In

One output connection fed into multiple inputs. Fan Out

An area on the screen that contains or can hold information. Field

A function block that represents and is a throughway to an
external GPL control strategy. The block is pasted down on a
diagram of a control strategy, and its contents can be accessed
by double-clicking on it.

FILE Block

An arrow pointing up that displays in the upper right corner of
the work area when you have accessed a FILE block. Clicking
left on it returns you to the parent file.

FILE Block Icon

GPL Editor icon that lets you perform directory and file
functions. These include: saving, loading and deleting control
strategies, changing disk drives, changing directories,
displaying a strategy description file, and listing the directory.
Clicking on this icon also shows the names of all GPL
directories and files.

File Icon

GPL Editor field that is on the Query option menu. Clicking
on it enables the Find feature. Find is similar to a Search
feature on a word processor. It locates each place in a control
strategy where a function block name is used.

FIND Option

A grouping of blocks that have some functions in common,
such as mathematical equations or logic operations. GPL
features 16 block categories.

Function Block
Category

A grouping of function blocks that have similar definition
requirements. GPL features three block classes: object,
operation, and special.

Function Block
Class

8 Glossary

The row of function blocks on the bottom of the GPL Editor
screen. Clicking on a block selects it for pasting on the work
area.

Function Block
Directory

Rectangles that represent Metasys software objects, process
objects, and operation or special blocks. There are three
classes of function blocks: object, operation, and special.
A block is pasted down on the work area, and connection lines
are drawn to it and from it to show data and control flow.

Function Blocks

The central database that is common for all NCMs on the
Metasys Network.

Global Database

See Graphic Programming Language. GPL

See Consultant Version. GPL Consultant
Version

See Editor. GPL Editor

See Expert Checker. GPL Expert
Checker

A defined, tested control strategy that is provided by the
factory. Static pressure control and dry bulb economizer are
examples of GPL HVAC applications.

GPL HVAC
Application

See Simulator. GPL Simulator

See Translator. GPL Translator

A unique graphics-oriented language used for writing control
logic for HVAC and lighting control equipment based on a
sequence of operation.

Graphic
Programming
Language (GPL)

An invisible background grid on the work area of the GPL
Editor. When the grid is on, blocks and connections “snap”
into place, which helps you line up and orient these items on
the screen.

Grid

Glossary 9

A functional grouping of blocks, connections, and text that is
represented by a block.

Group Compound

Brief descriptions and instructions that are available for any
icon, option, function block, or screen position on the GPL
Editor. Help screens are context sensitive and are displayed by
pressing the F1 key.

Help Screens

A graphic symbol that represents a function. You activate the
function by clicking or double-clicking on the icon.

Icon

Menu that shows all available input connection names for a
selected function block.

Input Connection
Menu

A category of function blocks. These blocks represent input
and output software and hardware objects; included are BI
(Binary Input), BO (Binary Output), AI (Analog Input), AOS
(Analog Output: Setpoint), AOD (Analog Output: Digital),
ACM (Accumulator), and REF (Generic Object Reference).

Input/Output
Blocks

An error that the GPL Editor finds when you try to save the
changes made to a database template. The error involves the
interaction between two fields. For example, if the high limit
is lower than the low limit, the Editor will notify you with an
error message.

Interfield Error

File that the GPL Translator creates that contains textual
statements of the translated GPL diagrams. To retain this file,
you select the “Save Translated Source” option in the
Translator submenu.

Intermediate
Source File

Johnson Controls BASIC language, a high-level, textual
programming language developed to implement control
strategies.

JC-BASIC (JCB)

GPL Editor field that you click on to show all the function
block categories. The categories display down the right side of
the work area. Clicking inside the red checkbox next to a
category changes the block directory to those blocks that
belong to the category.

Library Field

10 Glossary

A single section of a connection line. Line Segment

A file in ASCII format that contains all errors that the Expert
Checker, Session Read, Translator, and Compiler found. The
error file is viewed by clicking on the VIEW option. Its name
is the file name of the control strategy with a .LST extension.

List File

GPL Editor field that is on the File and Compound option
menus. Clicking on it loads a control strategy or compound
block into the work area.

LOAD Option

A category of function blocks. These blocks perform logical
operations; included are AND (And), OR (Or), XOR
(Exclusive Or), NOT (Not), LTCH (Latch), PULS (Pulse),
and DLAY (Delay).

Logic Blocks

Two or more function blocks feeding input and output
connections into each other. If a loop is formed, the GPL
Editor cannot determine which block to execute first. All
loops in GPL must be arbitrated (i.e., you must choose which
block will execute first by designating the Loop-master
block).

Loop

The first block to execute in a loop. A Loop-master block is
indicated by a white circle at its input connection.

Loop-Master
Block

JC-BASIC source statements and connection names that the
GPL Translator uses to translate operation blocks.

Macro File

The upper part of the screen that is displayed when the GPL
Simulator begins execution. The blocks and connections of
the GPL diagram are visible in this window.

Main Window

GPL Editor field that is on the Compound option menu.
Clicking on it lets you create a compound. A white enclosing
box comes to the screen with which you enclose the area of
the diagram you wish to compound.

MAKE Option

Glossary 11

A category of function blocks. These blocks perform
mathematical operations; included are ADD (Addition),
SUB (Subtraction), MUL (Multiply), DIV (Division),
AVG (Average), and EQN (Equation).

Math Blocks

Figure in percent that indicates how large the loaded file is in
relation to its maximum allowable size. The figure appears in
the lower left corner of the GPL Editor.

Memory Usage
Figure

A category of function blocks. These blocks perform various
functions not related to the other blocks; included are
TOT (Totalization), USER (User), and FILE (File).

Miscellaneous
Blocks

Template fields that you can change by typing the desired
value before or after the object has been added to the archive
database.

Modifiable Fields

GPL Editor icon that is on the Move option menu. Clicking on
it lets you move a group of blocks, connections, analog
displays and text.

Move Group Icon

A category of function blocks that require special NCM
software that is currently available in the European market
only; included are MSD (Multistate Data), MSI (Multistate
Input), MSO (Multistate Output).

Multistate Blocks

A process object that has been downloaded into and is being
executed by the NCM.

NCM Process
Object

GPL Editor field that displays which network archive database
is selected.

Network Name
field

Mode of the GPL Editor in which no archive database
interaction occurs. Among other advantages, this mode allows
you to create control strategies more efficiently.

No Archive Mode

Template fields that cannot be changed once the object has
been added to the archive database.

Non-Modifiable
Fields

12 Glossary

Object option that displays on the Remote Connection and
Find menus. When clicked on, this option shows the names of
all defined system names for the objects.

OBJ Option

A software database record that corresponds to and
characterizes a field device, a data point, an N2 address, or a
control function.

Object

A class of function blocks. These blocks represent software
objects in the Network Control Module. They generate a
database that the NCM uses.

Object Blocks

See Process Object Code. Object Code

A category of function blocks. These blocks control objects;
included are CMD (Command), 2CMD (Dual Command),
READ (Read Attribute), and WRIT (Write Attribute).

Object Control
Blocks

The strategy file name extension for the file that contains
previous connection information (.OCI=Old Connection
Information). This is a backup file that can be used in case the
original file is accidentally erased or unintentionally changed.

.OCI extension

The strategy file name extension for the file that contains
previous compound information (.OCM=Old Com-pound).
This is a backup file that can be used in case the original file is
accidentally erased or unintentionally changed.

.OCM extension

The strategy file name extension for the file that contains
previous database information (.ODB=Old Database). This is
a backup file that can be used in case the original file is
accidentally erased or unintentionally changed.

.ODB extension

Single execution of a process. One-Shot
Execution

Glossary 13

See Help Screens. Online Help
Screens

A class of function blocks. These blocks instruct the Network
Control Module to perform an operation, such as selecting
between two values, executing some logic or calculation, or
issuing an advisory. They also provide process control
functions, such as wait and stop. GPL translates operation
blocks into code.

Operation Blocks

Menu that provides additional functions. The option menu is
displayed by clicking or double-clicking left on an icon or
option.

Option Menu

A connection line that is not required by the block’s algorithm
and may have an equivalent template field for its value.

Optional
Connection

A block from which a connection line exits. Origin Block

A connection that references the origin block, in which the
remote connection enters a destination block.

Origin Remote
Connection

The strategy file name extension for the file that contains
previous text information (.OTX=Old Text). This is a backup
file that can be used in case the original file is accidentally
erased or unintentionally changed.

.OTX extension

Menu that shows all available output connection names for a
selected function block.

Output
Connection Menu

GPL Editor icon that lets you move across, up, and down a
zoomed diagram.

Pan Icon

A value in the database template that can be viewed and
modified.

Parameter

Procedure of placing down an item on the work area. Pasting Down

14 Glossary

An empty compound that you intend to fill in later. Used in a
top-down system design.

Place Holder
Compound

GPL Editor icon that lets you perform printing functions.
These include: print one or more diagrams and templates, start
printing process, and delete item from print queue.

Print Icon

Listing in the Print option menu of diagrams and templates
that are ready to be sent to the printer.

Print Queue

Menu that allows you to create print files for diagrams or
templates.

Print Submenu

A self-sufficient, modular block of computer instruction for an
NCM. Processes are used to implement control strategies.

Process

A grouping of blocks, connections, and text that generates a
process.

Process
Compound

A category of function blocks. These blocks control or affect
the execution of processes; included are PERD (Period),
WAIT (Wait), STOP (Stop), and ABRT (Abort).

Process Control
Blocks

A control object that can be downloaded to and executed by
the NCM.

Process Object

A downloadable process object that has been compiled from
the intermediate source file.

Process Object
Code

A protected grouping of blocks, connections, and text. You
cannot edit or view the diagrams under this type of compound,
because they contain proprietary information.

Protected
Compound

Glossary 15

GPL Editor field that is on the Print option menu. Clicking on
it displays the Print submenu with which you select whether to
print multiple diagrams or templates. The function then prints
to the queue the currently displayed diagram or templates and
all of its lower level diagrams or templates.

PRT MANY Option

GPL Editor field that is on the Print option menu. Clicking on
it displays the Print submenu with which you select whether to
print a diagram or template. The function then prints to the
queue the currently displayed diagram or templates of the
diagram.

PRT ONE Option

A category of function blocks. These blocks perform
psychrometric calculations; included are ENRH (Enthalpy:
Relative Humidity), ENDP (Enthalpy: Dewpoint), WBRH
(Wetbulb: Relative Humidity), WBDP (Wetbulb: Dewpoint),
DWPT (Dewpoint), and RH (Relative Humidity).

Psychrometric
Equation Blocks

A category of function blocks. These blocks control or affect
the reliability of outputs; included are FREL (Force Reliable)
and UNRD (Unreliable).

Reliability Blocks

GPL Editor icon that lets you view, read, and modify an
object in the archive database (single-click), edit a function or
compound block template (single-click), and view a
connection description (single-click). It also lets you view the
contents of a compound (double-click on com-pound block).
Double-clicking on the icon displays the Query option menu.

Query Icon

GPL Editor field that is on the Query option menu. Clicking
on it performs a Session Read, which synchronizes a control
strategy database with the archive database.

READ Option

A noncontinuous line between two function blocks in the
same file. Most often, a remote connection is used to
conveniently connect two blocks that are on different
diagrams, but can also connect two blocks on the same
diagram.

Remote
Connection

16 Glossary

GPL Editor field that is on the Query option menu. Clicking
on it allows you to globally replace system names of object
blocks in a strategy file.

REPL Option

A category of function blocks. These blocks send reports to
I/O devices; included are PRNT (Print) and ADV (Advisory).

Report Blocks

A connection line that is required by the block’s algorithm and
may have an equivalent template field for its value.

Required
Connection

Special process created for a Network Control Module that
performs required startup processing. Selecting a compound
type of “Restart” in the compound template creates a Restart
process.

Restart Process

GPL Editor field that lets you save a control strategy or
compound to a file.

SAVE Option

GPL Editor icon that lets you move and size blocks, and move
connection lines, text, and analog displays to any open area of
the screen.

Scissors Icon

A single section of a connection line. Segment

A category of function blocks. These blocks select between
two or more inputs; included are HSEL (High Select), LSEL
(Low Select), SWCH (Switch), SAMP (Sample and Hold),
and MSEL (Mode Selector).

Selector Blocks

Process of synchronizing a control strategy database with the
archive database for the purpose of matching the databases.
See also READ Option.

Session Read

GPL Editor field that is on the Tools option menu. Clicking on
it executes the Simulator. The Simulator screen replaces the
GPL Editor screen.

SIM Option

Glossary 17

GPL utility that emulates a process. Used to verify control
logic before downloading a process to a Network Control
Module.

Simulator

Pressing the mouse button once to perform an operation. Single-Click

A class of function blocks. These blocks perform special
functions; included are CONN (Connection), CNST
(Constant), and FILE (File).

Special Blocks

GPL Editor field that is on the Print option menu. Clicking on
it starts the printing of all diagrams and templates in the print
queue.

START OUTPUT
Option

See Control Strategy. Strategy

See Control Strategy File. Strategy File

A program (SYSGEN.EXE) that defines several parameters:
the type of mouse used with GPL, whether the Operator
Workstation or PC has a Drive B, whether to allow printing to
any Windows printer, and the value of the Associated Input
Timer.

SYSGEN Program

A user-specified name that identifies an object. System/Object
Name

Template fields with two or more entries that are displayed by
pressing Tab.

Tab Fields

An entry form of database information for a function or
compound block. This information defines the characteristics
of the block.

Template

An open area on the template into which you enter
information.

Template Field

GPL Editor field that is on the Tools option menu. Clicking on
it allows you to type comments on a diagram.

TEXT Option

18 Glossary

A class of function blocks. These blocks perform timing
functions; included are TIME (Time), RTOT (Real to Time),
and TTOR (Time to Real).

Time Blocks

GPL Editor icon that offers several miscellaneous functions.
These include: grid on/off, type text, analog display, Expert
Checker, Simulator, Translator, and Compiler. Clicking on the
Tools icon turns the grid on and off; double-clicking on the
icon displays the Tools option menu.

Tools Icon

GPL Editor field that is on the Tools option menu. Clicking on
it executes the Translator. The Translator screen replaces the
GPL Editor screen.

TRAN Option

GPL utility that translates a control strategy into intermediate
source code.

Translator

An action that causes a process to run. Triggering

Any point where a connection line changes direction. Turn

The strategy file name extension for the file that contains text
information (.TX=Text).

.TX Extension

An object block that has not yet been added to the archive
database. The border of an undefined block is dashed and
colored magenta.

Undefined Block

GPL Editor field under the Erase icon that lets you restore
items (blocks, connections, text, and analog displays) on the
screen that you previously erased.

UNDO Option

Data that is outside the prescribed range. Unreliable Data

GPL Editor field that is on the File and Compound icon option
menus, Connection and Find menus, and the print queue.
Clicking on it displays the previous page of the menu.

UP Option

Glossary 19

A generic operation block that can be configured and linked to
user block macro code to create a customized function.

USER Block

GPL Editor field that shows the errors that the Session Read,
Expert Checker, Translator, or Compiler found. The error file
is in ASCII format and can be up to ten pages.

VIEW Option

Area of the GPL Editor screen used to draw and edit
diagrams.

Work Area

Position of the cursor on the x axis (range=0 to 1000). The
current x-coordinate is shown on the GPL Editor in the lower
left corner.

X-Coordinate

GPL Editor field that lets you bring into the work area the
expanded version (entire contents) of a compound.

XPND Option

Position of the cursor on the y axis (range=0 to 1000). The
current y-coordinate is shown on the GPL Editor in the lower
left corner.

Y-Coordinate

GPL Editor icon that lets you zoom a diagram up to
four times. The amount of zoom is inversely proportional to
the size of the white enclosing box (i.e., the smaller the white
box, the larger the zoom). Double-clicking on this icon
displays the Zoom and Pan option menu.

Zoom Icon

20 Glossary

	GPL Programmer's Manual Table of Contents
	Section 1: Introduction (LIT-631010)
	Welcome to Graphic Programming
	What GPL Provides
	About This Manual
	Another Resource

	What You Create With GPL
	System Requirements
	Hardware Requirements
	Software Requirements

	Knowledge Up-Front
	Controls Knowledge
	PC Knowledge
	Product Knowledge

	Getting Started
	Installing GPL
	Running the System Generation Program
	Setting Up the Printer
	Starting GPL with Windows€95, Windows 98, or Windows NT
	Some Terms

	Overview of the Steps

	Section 2: Graphic Programming (LIT-631020)
	Overview of the Control Strategy
	Components
	Structure
	Storage
	Example
	Viewing
	Creating

	Function Blocks
	Introduction
	Categories and Classes
	Features
	Templates
	Template Error Checking

	Compounds
	Introduction
	Types
	Features
	Templates
	Compounds in the Applications Library
	Compound Design

	Processes
	Introduction
	Process Triggering
	Process Priorities
	Restart Process

	Connecting Function Blocks
	Data and Control Flow
	Forming a Loop
	Required and Optional Lines
	Types of Lines
	Direct Connections
	Remote Connections
	Fan-In and Fan-Out Connections

	Commanding Objects and Processes
	Commanding Objects
	Commanding Process Objects

	Documenting Control Strategies
	Text as Comments
	Analog Displays for Simulation
	Text Description File

	Order of Process Execution
	Process Level
	Process Execution
	Conditional Execution
	One-Shot Execution

	Sharing Data and Explaining Unreliable Data
	Sharing Data Between Processes
	Sharing Data Between NCMs
	Explaining Unreliable Data

	Archive Database Interface
	Interactions

	No Archive Mode
	Editor
	Expert Checker
	Translator and Compiler

	Section 3: Editor (LIT-631030)
	Overview
	Starting the Editor
	Mouse and Keyboard
	Editor Screen
	Prerequisites

	Icons
	Tutorial
	Name the Diagram
	Paste Down Function Blocks
	Define Function Blocks
	Connect Function Blocks
	Compound the Diagram
	Save the Compound Into a File
	Erase a Function Block and Undo the Erased Block
	Erase a Connection and Undo the Erased Connection
	Print the Diagram
	Exit GPL
	Review

	Exiting GPL
	Directory and Control Strategy Functions
	Using the File Option Menu
	Paging the Directory
	Selecting a Network
	Saving a Control Strategy
	Loading a Control Strategy
	Displaying a Strategy Description File
	Changing Disk Drives
	Creating a Directory
	Deleting a Control Strategy

	Compound Functions
	Using the Compound Option Menu
	Paging the Directory
	Making a Compound
	Editing a Compound
	Loading a Compound Block
	Loading the Contents of a Compound
	Displaying a Compound Description File
	Changing Disk Drives
	Creating a Directory
	Deleting a Compound

	Zoom and Pan Functions
	Zooming In and Out
	Panning

	Erase and Delete Functions
	Erasing an Item
	Erasing a Group of Items
	Deleting an Object
	Clearing Memory
	Undoing an Erased Item or Group of Items

	Move, Copy, and Resize Functions
	Moving an Item
	Copying an Item
	Moving a Group of Items
	Copying a Group of Items
	Resizing an Item
	Resizing a Group of Items
	Adding a Line Segment

	Block Connection and Command Functions
	Learning the Basics of Connecting Blocks
	Connecting Two Blocks
	Connecting Two Blocks in Separate Compounds
	Connecting Two Blocks Remotely
	Commanding an Object
	Commanding a Process
	Exempting a Connection from Triggers

	Query Functions
	Viewing and Editing a Block Template
	Reading and Modifying an Object
	Querying a Compound?
	Accessing a FILE Block
	Viewing a USER Block Macro File
	Querying a Connection
	Finding a Function Block
	Replacing System Names
	Viewing the List File
	Performing a Session Read

	Print Functions
	Using the Print Option Menu and Submenu
	Learning the Basics of Printing
	Paging the Print Queue
	Creating a Diagram Print File
	Creating a Template Print File
	Printing Diagrams and Templates
	Deleting a Print File

	Tools Functions
	Turning the Grid On and Off
	Typing Text
	Pasting Down Analog Displays
	Running the Expert Checker
	Running the Simulator
	Running the Translator and Compiler

	Miscellaneous Functions
	Displaying a Help Screen
	Selecting a Function Block Category
	Sizing and Pasting Down a Function Block

	User Messages

	Section 4: Expert Checker (LIT-631040)
	Overview
	Using the Expert Checker
	Running the Expert Checker
	During the Expert Check
	Viewing Errors in the List File

	Error Messages
	Fatal Errors
	Initialization Errors
	Operation Block Errors
	Object Block Errors
	USER Block Errors
	Shared Variable Block Errors
	Diagrammatic Errors
	File Nesting Errors

	Section 5: Simulator (LIT-631050)
	Overview
	Purpose of Simulator

	Getting Started
	Preparing a Strategy File for Simulation
	Starting the Simulator
	The Simulator Screen
	Moving Around the Simulator Screen
	Changing Block’s Data or Outputs
	Exiting the Simulator

	Tutorial
	Starting the Tutorial
	Executing a Process
	Modifying a Block Output
	Saving Changes Made in the Simulator
	Exiting the Simulator

	Using the Control Window
	QUIT
	SAVE DB
	FIND
	NC START
	DIAGRAM
	ADVISORY
	PRINTER
	RUNTIME
	Message Similarities
	FAST Execution Mode
	NORMAL Execution Mode
	SUSPEND Execution Mode
	Execution Mode Details

	Simulator Functions
	Automatic Mode
	Manual Mode
	Simulating Processes
	Order of Execution of Function Blocks
	Modifying Object Block Configuration
	Simulating Configuration Connections
	Simulating Unreliability
	Simulating Manual Commands
	Simulating a PID Loop Object
	Simulating TIME Blocks
	Simulating CONN, CNST, and SVAR Blocks
	Simulating PULS, DLAY, and BSEQ Timers
	Simulating Local Control

	Differences Between Simulator and NCM Execution
	Manual Mode
	PID Loop
	Lighting Control Group
	Configuration Connections
	Restart Processes
	Process Priority
	Change-of-State Analysis
	Change-of-State Feedback Delay Timers
	Blocks and Commands Not Fully Simulated
	Object Attributes Not Simulated

	User Messages
	Fatal Initialization Error Messages
	User Status Messages
	User Error Messages
	Runtime Operation Block Error Messages

	Section 6: Translator (LIT-631060)
	Overview
	Expert Checker

	Using the Translator
	Running the Translator
	During Translation
	Viewing Errors in the List File

	Error Messages
	Fatal Errors
	Non-Fatal Errors
	Compiler Errors

	Section 7: Function Blocks (LIT-631070)
	Introduction
	Object Blocks
	Operation and Special Blocks

	Section 8: Object Blocks (LIT-631080)
	Introduction
	Category
	Template Fields
	Connections
	Example

	ACM (Accumulator) Object
	Category
	Purpose
	Details
	Template Fields (First Screen)
	Template Fields (Second Screen)
	Connections
	Reliability
	Example

	AD (Analog Data) Object
	Category
	Purpose
	Details
	Template Fields (First Screen)
	Template Fields (Second Screen)
	Connections
	Reliability
	Example

	AI (Analog Input) Object
	Category
	Purpose
	Details
	Template Fields (First Screen)
	Template Fields (Second Screen)
	Connections
	Reliability
	Example

	AOD (Analog Output Digital) Object
	Category
	Purpose
	Details
	Template Fields (First Screen)
	Template Fields (Second Screen)
	Connections
	Reliability
	Example

	AOS (Analog Output Setpoint) Object
	Category
	Purpose
	Details
	Template Fields (First Screen)
	Template Fields (Second Screen)
	Connections
	Reliability
	Example

	BD (Binary Data) Object
	Category
	Purpose
	Details
	Template Fields (First Screen)
	Template Fields (Second Screen)
	Connections
	Reliability
	Example

	BI (Binary Input) Object
	Category
	Purpose
	Details
	Template Fields (First Screen)
	Template Fields (Second Screen)
	Connections
	Reliability
	Example

	BO (Binary Output) Object
	Category
	Purpose
	Details
	Template Fields (First Screen)
	Template Fields (Second Screen)
	Connections
	Reliability
	Example

	LCG (Lighting Control Group) Object
	Category
	Purpose
	Details
	Template Fields (First Screen)
	Template Fields (Second Screen)
	Template Fields (Third Screen)
	Connections
	Reliability
	Example

	MSD Object
	Category
	Purpose
	Details
	Template Fields (First Screen)
	Template Fields (Second Screen)
	Connections
	Reliability
	Example

	MSI Object
	Category
	Purpose
	Details
	Template Fields (First Screen)
	Template Fields (Second Screen)
	Connections
	Reliability
	Example

	MSO Object
	Category
	Purpose
	Details
	Template Fields (First Screen)
	Template Fields (Second Screen)
	Corrections
	Reliability
	Example

	PIDL (PID Loop) Object
	Category
	Purpose
	Details
	Template Fields (First Screen)
	Template Fields (Second Screen)
	Template Fields (Third Screen: Port Definition)
	Template Fields (Fourth Screen: Port Definition)
	Template Fields (Fifth Screen: Output Definition)
	Connections
	Reliability
	Example

	REF (Generic Object Reference) Block
	Category
	Purpose
	Details
	Template Fields (First Screen)
	Template Fields (Second Screen)
	Connections
	Reliability
	Example

	210A (C210A) Block
	Category
	Purpose
	Details
	Template Fields (First Screen)
	Template Fields (Second Screen)
	Connections
	Reliability
	Example

	260A (C260A) Block
	Category
	Purpose
	Details
	Template Fields (First Screen)
	Template Fields (Second Screen)
	Connections
	Reliability
	Example

	Zone (Fire Zone) Block
	Category
	Purpose
	Details
	Template Fields (First Screen)
	Template Fields (Second Screen)
	Connections
	Reliability
	Example

	Section 9: Operation and Special Blocks (LIT-631090)
	Introduction
	Category
	Information Table
	Example

	ABRT (Abort) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	ADD (Addition) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	ADV Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	AND Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	AVG (Average) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	BSEQ (Binary Sequencer) Block
	Category
	Purpose
	Details
	Information Table (First Screen)
	Information Table (Second Screen)
	Reliability
	Example

	CMD (Command) Block
	Category
	Purpose
	Details
	Information Tables
	Reliability
	Example

	CNST (Constant) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	COMP (Compare) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	CONN (Connection) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	DBCM (Deadband Compare) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	DFCM (Differential Compare) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	DIV (Divide) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	DLAY (Delay) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	DWPT (Dew Point) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	ENDP (Enthalpy Dew Point) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	ENRH (Enthalpy Relative Humidity) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	EQN (Equation) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	FILE Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	FILT (Filter) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	FREL (Force Reliable) Block
	Category
	Purpose
	Information Table
	Reliability
	Example

	HSEL (High Select) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	LSEL (Low Selector) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	LTCH (Latch) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	MSEL (Mode Selector) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	MUL (Multiply) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	NOT Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	OR Block
	Category
	Purpose
	Information Table
	Reliability
	Example

	PERD (Period) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	PIR (PI Reset) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	PRNT (Print) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	PULS (Pulse) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	RAMP Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	READ (Read Attribute) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	RH (Relative Humidity) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	RTOT (Real-to-Time) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	SAMP (Sample and Hold) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	SPAN Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	STOP Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	SUB (Subtraction) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	SVAR (Shared Variable) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	SWCH (Switch) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	TIME Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	TOT (Totalization) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	TTOR (Time-to-Real) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	2CMD (Dual Command) Block
	Category
	Purpose
	Details
	Information Tables
	Reliability

	UNRD (Unreliable Data) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	USER Block
	Category
	Purpose
	Details
	Information Table (First Screen)
	Information Table (Second Screen)
	Reliability
	Example

	VH (Value Holder) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	WAIT Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	WBDP (Wet Bulb Dew Point) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	WBRH (Wet Bulb Relative Humidity) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	WRIT (Write Attribute) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	XOR (Exclusive OR) Block
	Category
	Purpose
	Details
	Information Table
	Reliability
	Example

	Section 10: Template Field Descriptions (LIT-631100)
	Active Output Mode Flag
	Adjust Disabled
	Advisory Type
	Alarm
	Alarm #
	Alarm Delay
	Alarm if Set
	Analog Con Units
	Analog Connections Attribute (A1 to A8)
	Analog Connections Description (A1 to A8)
	Analog Inputs
	Analog Outputs
	Analog Type
	Analog Units
	Associated Input Attribute Name
	Associated Input Object Name
	Associated Input System Name
	Attribute Name (Output 1-8 of PIDL Block)
	Auto Dialout
	Auto Restore
	Aux Delta P
	Aux Humid
	Aux Humid 1
	Aux Humid 2
	AUX Sensor
	For 210A Block:
	For 260A Block:

	Aux Switch Ena
	Aux Switch Input Object Name
	Aux Switch Input Reference Select
	Aux Switch Input System Name
	Aux Switch�Input Value
	Aux Temp
	Aux Temp 1
	Aux Temp 2
	Auxiliary Binary
	For 210A Block:
	For 260A Block:

	Barometric Press.
	BI Point Number
	Binary Connections Attribute �(B1 to B8)
	Binary Connections Description (B1 to B8)
	Binary Inputs
	Binary Outputs
	Binary Type
	Blnk at Turn OFF
	Block Label
	Block Name
	Block Name�(Attribute Name)
	Block Name�(Variable Name)
	Break Setpoint 1-8
	Cleaning Crew Switches
	Comm Disabled
	Command
	Command (0)
	Command (1)
	Command Outputs
	Constant 1 (C1)- Constant 4 (C4)
	Damper
	Date?
	Deadband
	For DBCM Block:
	For PIDL and PIR Blocks:

	Debounce Filter
	Decimal Position
	Default
	Delay All Alarms
	Delay Off
	Delay On
	Derivative Wgt
	Description
	Differential
	For AI Block:
	For DFCM Block:

	Disable #
	Display Units
	Display Value AI
	Edge Trigger
	Enable PT Hist.
	End Value
	Equation (Output)
	Exempt All?
	Expanded ID
	Fail-Safe Stage
	Fan
	Fan On/Comp Off
	Feedback (Closed for Start)
	Feedback Object Name
	Feedback System Name
	Feedback Units
	File Name
	Filter Tolerance
	Filter Weight
	For ACM and AI Blocks:
	For FILT Block:
	For PIDL Block:

	Fire Zone #
	Flow Coefficient
	Graphic Symbol #
	Group Number
	Hardware Object Name
	Hardware System Name
	Hardware Reference
	Hardware Type
	Heat
	Heavy Equip Dlay
	High Alarm Limit
	High Input
	High Output
	High Saturation Object Name
	High Saturation Reference Select
	High Saturation System Name
	High Saturation Value
	HW Reference
	HW Type
	Hysteresis Comp.
	Identification Object Name
	Identification System Name
	Initial Value
	Input
	Input 0
	Input 1
	Input 1 (I1)-4 (I4)
	Input 1 (I1)-8 (I8)
	Input 1-6 Object Name
	Input 1-6 Reference Select
	Input 1-6 System Name
	Inputs 1-6 Value
	Input 2
	Input Function
	Input Type
	I/O Connections
	Integral Time
	Interlock Statement
	Latching Point
	LED ON when CLO
	Linear. Parm. 1
	Linear. Parm. 2
	Linear Parm. 3
	Linear. Parm. 4
	Local Control
	Logical Pnt Nmbr
	Logical Pnt Type
	Low Alarm Limit
	Low Input
	Low Output
	Low Saturation �Object Name
	Low Saturation Reference Select
	Low Saturation System Name
	Low Saturation Value
	Make Setpoint 1-8
	Max Starts/Hour
	Min OFF Time
	Min ON Time
	NC Name
	Normal
	Normal #
	Normalband
	Normal State
	Num. of Outputs
	Num. of Stages
	Number of Inputs
	Number of Modes
	Object Name �(Printer Name)
	Occupied/Unocc
	For 210A Block:
	For 260A Block:

	Off Switch Inp #
	Offset
	Offset Object Name
	Offset Reference Select
	Offset System Name
	Offset Value
	Operating Instr #
	Operation
	Output 1-8 �Object Name
	Output 1-8 �System Name
	Output Range 1
	Output Range 2
	Output Relay �(Closed for Start)
	Override
	Ovrd Def Delay
	Panel #
	Period
	PID Loop Number
	Point #
	Point Address
	Point Type
	Priority
	For Commands:
	For Processes:

	Process Obj Name
	Process Sys Name
	Proportional Bnd
	Prop Band
	Protected?
	PT Enabled
	Pulse Constant
	Pulse Duration
	Quiet if Reset
	Rate Constant
	Reader Number
	Ref. Object Type
	Relay Outputs
	Resolution
	Sample Period
	Saturation Size
	Save PT History
	Scalar
	Select Unrl Dflt
	Selector Input Object Name
	Selector Input Reference Select
	Selector Input System Name
	Selector Input Value
	Selector Type = HI
	Setpoint
	For ACM, AD, AI, and PIR Blocks:
	For 210A and 260A Blocks:

	Setpoint Object Name
	Setpoint Reference Select
	Setpoint System Name
	Setpoint Value
	Setpt for NT SP
	Shutdown
	For 210A Block:
	For 260A Block:

	Slot Number
	Span High Input
	Span High Output
	Span Low Input
	Span Low Output
	Stage 1-8/Delay Off
	Stage 1-8/Delay On
	Stage 1-8/�Outputs 1-8
	Start Value
	State 0 (Units)
	State 1 (Units)
	STD Range Type
	Step Ratio
	Step Size
	Subslot Number
	Suppress TZ
	Switch Input #
	Switch Type
	Text
	Time
	For CNST Block:
	For DLAY, PULS, and WAIT Blocks:

	Time?
	Time Connections Attribute (T1 to T8)
	Time Connections Description (T1 to T8)
	Time Inputs
	Time Outputs
	Totalization Typ
	Trouble
	Tune Chng Factor
	Tune Noise Band
	Type
	Type/File Name
	Type Name
	Units
	Unrel Dflt Resp
	Value
	Warmup
	Warning
	Warning #
	Warning Delay
	Write Outputs

	Appendix A (LIT-631110A)
	Major Icons
	Minor Icons

	Appendix B: Summary of Keys (LIT-631110B)
	GPL Editor Keys
	GPL Simulator Keys

	Appendix C: Summary of File Names and Extensions (LIT-631110C)
	Appendix D: Capabilities (LIT-631110D)
	Appendix E: External Functions (LIT-631110E)
	Restoring Backup Files and Compounds
	Deleting a Directory
	Writing a Text Description File
	Writing a USER Block File

	Appendix F: Characters, Symbols, and Reserved Words (LIT-631110F)
	International Language Characters
	Character and Symbol Table
	Reserved Words

	Appendix G: Attributes (LIT-631110G)
	Appendix H: GPL Advanced Concepts (LIT-631110H)
	Who Should Read this Document?
	GPL Efficiency Issues
	Efficiency of a Single GPL Process
	Efficiency of All GPL Processes in an NCM
	Efficiency of the Entire Network

	GPL Libraries
	HLIB - GPL HVAC Library
	Using the Metasys GPL HVAC Library
	Building Your Own Library of GPL Compounds
	Prioritization of Processes
	Types of Memory
	Shared Variables
	Using Shared Variables
	Value Holder Block vs. Shared Variable Block
	Process Statuses
	When to Use the Restart Process
	How a Process Period Works
	Frequently Asked Questions

	Glossary (LIT-631120)
	ANA Option
	Analog Display
	Archive Database
	Associated Input Timer
	Attribute
	BIN Option
	BLK Option
	Block Category
	Block Class
	Block Directory
	Block Name
	Block Type Name
	Block Window
	CAE Translator
	Calculation Blocks
	.CI extension
	Click Left
	Click Right/Middle
	Clicking
	CLR ALL Option
	CMD0 Option
	CMD1 Option
	.CMP extension
	Compiler
	Compound
	Compound Icon
	Conditional Execution
	Configuration Attribute
	Configuration Connection
	Connection
	Connection Icon
	Consultant Version
	Control Blocks
	Control Flow
	Control Flow Connection
	Control Strategy
	Control Strategy File
	Controllers
	Copy Group Icon
	Copy Icon
	Cursor Coordinates
	Database Manager (DBM)
	Data Blocks
	Data Flow
	Data Definition Language (DDL)
	.DB extension
	DBM (Database Manager)
	DDL (Data Definition Language)
	Defined Block
	Delete Icon
	Description Icon
	Destination Block
	Destination Remote Connection
	Diagram
	DIR Option
	Direct Connection
	Double Click
	Drag
	DWN Option
	DRIV Option
	EDIT Option
	Editor
	Erase Icon
	Exempt
	Exempt Connection Icon
	Exit Icon
	Expanded Compound
	Expert Checker
	Expert Checker Icon
	Fan In
	Fan Out
	Field
	FILE Block
	FILE Block Icon
	File Icon
	FIND Option
	Function Block Category
	Function Block Class
	Function Block Directory
	Function Blocks
	Global Database
	GPL
	GPL Consultant Version
	GPL Editor
	GPL Expert Checker
	GPL HVAC Application
	GPL Simulator
	GPL Translator
	Graphic Programming Language (GPL)
	Grid
	Group Compound
	Help Screens
	Icon
	Input Connection Menu
	Input/Output Blocks
	Interfield Error
	Intermediate Source File
	JC-BASIC (JCB)
	Library Field
	Line Segment
	List File
	LOAD Option
	Logic Blocks
	Loop
	Loop-Master Block
	Macro File
	Main Window
	MAKE Option
	Math Blocks
	Memory Usage Figure
	Miscellaneous Blocks
	Modifiable Fields
	Move Group Icon
	Multistate Blocks
	NCM Process Object
	Network Name field
	No Archive Mode
	Non-Modifiable Fields
	OBJ Option
	Object
	Object Blocks
	Object Code
	Object Control Blocks
	.OCI extension
	.OCM extension
	.ODB extension
	One-Shot Execution
	Online Help Screens
	Operation Blocks
	Option Menu
	Optional Connection
	Origin Block
	Origin Remote Connection
	.OTX extension
	Output Connection Menu
	Pan Icon
	Parameter
	Pasting Down
	Place Holder Compound
	Print Icon
	Print Queue
	Print Submenu
	Process
	Process Compound
	Process Control Blocks
	Process Object
	Process Object Code
	Protected Compound
	PRT MANY Option
	PRT ONE Option
	Psychrometric Equation Blocks
	Reliability Blocks
	Query Icon
	READ Option
	Remote Connection
	REPL Option
	Report Blocks
	Required Connection
	Restart Process
	SAVE Option
	Scissors Icon
	Segment
	Selector Blocks
	Session Read
	SIM Option
	Simulator
	Single-Click
	Special Blocks
	START OUTPUT Option
	Strategy
	Strategy File
	SYSGEN Program
	System/Object Name
	Tab Fields
	Template
	Template Field
	TEXT Option
	Time Blocks
	Tools Icon
	TRAN Option
	Translator
	Triggering
	Turn
	.TX Extension
	Undefined Block
	UNDO Option
	Unreliable Data
	UP Option
	USER Block
	VIEW Option
	Work Area
	X-Coordinate
	XPND Option
	Y-Coordinate
	Zoom Icon

