Quantum GIS

User, Installation and Coding
Guide

Version 1.0.0 'Kore’

Preamble

This document is the original user, installation and coding guide of the described software Quantum
GIS. The software and hardware described in this document are in most cases registered trademarks
and are therefore subject to the legal requirements. Quantum GIS is subject to the GNU General
Public License. Find more information on the Quantum GIS Homepage http://qgis.osgeo.org.

The details, data, results etc. in this document have been written and verified to the best of knowledge
and responsibility of the authors and editors. Nevertheless, mistakes concerning the content are
possible.

Therefore, all data are not liable to any duties or guarantees. The authors, editors and publishers do
not take any responsibility or liability for failures and their consequences. Your are always welcome
to indicate possible mistakes.

This document has been typeset with IKTEX. It is available as IATEX source code via subversion and
online as PDF document via http://qgis.osgeo.org/documentation/manuals.html. Translated
versions of this document can be downloaded via the documentation area of the QGIS project as
well. For more information about contributing to this document and about translating it, please visit:
http://wiki.qgis.org/qgiswiki/DocumentationWritersCorner

Links in this Document

This document contains internal and external links. Clicking on an internal link moves within the
document, while clicking on an external link opens an internet address. In PDF form, internal links
are shown in blue, while external links are shown in red and are handled by the system browser. In
HTML form, the browser displays and handles both identically.

User, Installation and Coding Guide Authors and Editors:

Tara Athan Radim Blazek Godofredo Contreras
Otto Dassau Martin Dobias Jurgen E. Fischer
Stephan Holl Marco Hugentobler Magnus Homann
Lars Luthman Gavin Macaulay Werner Macho

Tyler Mitchell Brendan Morely Gary E. Sherman
Tim Sutton David Willis

With thanks to Tisham Dhar for preparing the initial msys (MS Windows) environment
documentation, to Tom Elwertowski and William Kyngesburye for help in the MAC OSX Installation
Section and to Carlos Davila, Paolo Cavallini and Christian Gunning for revisions. If we have
neglected to mention any contributors, please accept our apologies for this oversight.

Copyright (©) 2004 - 2009 Quantum GIS Development Team
Internet: http://qgis.osgeo.org

http://qgis.osgeo.org
http://wiki.qgis.org/qgiswiki/DocumentationWritersCorner
http://qgis.osgeo.org/documentation/manuals.html
http://wiki.qgis.org/qgiswiki/DocumentationWritersCorner
http://qgis.osgeo.org

Contents

Contents

Title

Preamble

Table of Contents
List of Figures
List of Tables

List of QGIS Tips

1 Forward

1.1 Features. e
1.2 ConventionS.

2 Introduction To GIS

3 Getting Started

3.1 Installation
3.2 SampleData
3.3 SampleSession 000,

4 Features at a Glance

4.1 Startingand StoppingQGIS
4.1.1 CommandLineOptions
42 QGISGUI e
421 MenuBar 0o
422 Toolbars
423 Maplegend,
424 MapView
425 MapOverview
426 StatusBar. oo
43 Rendering
4.3.1 Scale DependentRendering
4.3.2 Controlling Map Rendering
4.4 Measuring v i e e e e e
441 Measurelengthandareas.
45 Projects

Xii

Xiv

FNQEN

N ~NOo o

O © ©

QGIS 1.0.0 User, Installation and Coding Guide

Contents

4.6 OUIPUL 23
4.7 GUIOPLIONS e e e e e e 24
4.8 Spatial Bookmarks 25
4.8.1 CreatingaBookmark 26
4.8.2 Working with Bookmarks 26
4.8.3 ZoomingtoaBookmark 26
4.8.4 DeletingaBookmark. 26

5 Working with Vector Data 27
5.1 ESRIShapefiles 27
5.1.1 LoadingaShapefile 27
5.1.2 Improving Performance 28
5.1.3 Loading a Mapinfo Layer 29
5.1.4 Loading an Arcinfo Coverage e 30

5.2 PoStGIS Layers e e e 30
5.2.1 Creatingastored Connection 30
5.2.2 LoadingaPostGIS Layer 31
5.2.3 Some details about PostgreSQL layers 32
5.2.4 Importing Data into PostgreSQL 32
5.2.5 Improving Performance 34

5.3 The Vector PropertiesDialog 35
531 GeneralTab. e 36
5.3.2 Symbology Tab e 36
533 MetadataTab 38
534 LabelsTab 38
535 ActionsTab 40
5.3.6 AttributesTab 43

54 Editing e 44
5.4.1 Setting the Snapping Tolerance and Search Radius 45
5.4.2 Topological editing e 46
5.4.3 Editing an Existing Layer 46
5.4.4 CreatingaNew Layer 53

55 QueryBuilder e 53
5.6 Selectby query e e 55
6 Working with Raster Data 56
6.1 Whatisrasterdata? e 56
6.2 Loadingrasterdatain QGIS 56
6.3 Raster PropertiesDialog e 57
6.3.1 Symbology Tab e 58
6.3.2 Transparency Tab e 59
6.3.3 Colormap 60
QGIS 1.0.0 User, Installation and Coding Guide iv

Contents

6.3.4 GeneralTab. e 61

6.3.5 MetadataTab 61

6.3.6 PyramidsTab e 61

6.3.7 HistogramTab e 62

7 Working with OGC Data 63
7.1 WhatisOGCData e e e 63
7.2 WMSClient e 63
7.2.1 Overview of WMS Support e 63

7.2.2 SelectingWMS Servers i e e 64

7.2.3 Loading WMS Layers i i e 65

7.2.4 Usingtheldentify Tool 67

7.2.5 Viewing Properties 67

7.2.6 WMS Client Limitations e 68

7.3 WESClient e e 69
7.3.1 LoadingaWFS Layer i e 69

8 Working with Projections 71
8.1 Overview of Projection Support e 71
8.2 Specifyinga Projection 71
8.3 Define On The Fly (OTF) Projection, 72
8.4 Custom Coordinate Reference System 74

9 GRASS GIS Integration 76
9.1 Startingthe GRASS plugin e 76
9.2 Loading GRASS rasterand vectorlayers. 77
9.3 GRASS LOCATION and MAPSET e e e e e 78
9.3.1 Creatinganew GRASSLOCATION 78

9.3.2 Addinganew MAPSET e 80

9.4 Importing data into a GRASS LOCATION i 81
9.5 The GRASSvectordatamodel 82
9.6 Creatinganew GRASS vectorlayer 82
9.7 Digitizing and editing a GRASS vector layer 83
9.8 The GRASSregiontool e 87
9.9 The GRASStoolbox e 87
9.9.1 Workingwith GRASSmodules 87

9.9.2 Working with the GRASS LOCATION browser 89

9.9.3 Customizingthe GRASS Toolbox 90

10 Print Composer 92
10.1 Using Print Composer 0 e e e e e 92
10.1.1 Adding a current QGIS map canvas to the Print Composer 94

10.1.2 Adding other elements to the Print Composer 95

QGIS 1.0.0 User, Installation and Coding Guide \%

Contents

10.1.3 Navigation tools 96

10.1.4 Creating OQUIpUL o o 97

11 QGIS Plugins 98
11.1 Managing Plugins 98
11.1.1 Loadinga QGIS Core Plugin 98

11.1.2 Loading an external QGIS Plugin 98

11.1.3 Using the QGIS Python Plugin Installer 99

11.2 Data Providers 101

12 Using QGIS Core Plugins 102
12.1 Coordinate Capture Plugin e 103
12.2 Decorations Plugins e 104
12.2.1 Copyright Label Plugin 104

12.2.2 North Arrow Plugin 105

12.2.3 Scale Bar Plugin 105

12.3 Delimited Text Plugin 107
12.4 Dxf2Shp Converter Plugin 109
12.5 Georeferencer Plugin e 110
12.6 Quick Print Plugin e 114
12.7 GPS Plugin 115
12.7.1 Whatis GPS? e 115

12.7.2 Loading GPS datafromafile, 115

12.7.3 GPSBabel 115

12.7.4 Importing GPS data 116

12.7.5 Downloading GPS data fromadevice 116

12.7.6 Uploading GPS datatoadevice, 117

12.7.7 Defining new device types o 118

12.8 Graticule Creator Plugin 120
12.9 Interpolation Plugin e 121
12.1MapServer Export Plugin 123
12.10.1Creating the Project File o 123
12.10.2Creatingthe Map File 124
12.10.3Testingthe Map File e 126
12.110GR Converter Plugin e 127

13 Using external QGIS Python Plugins 128
14 Writing a QGIS Plugin in C++ 129
14.1 Why C++ and what aboutlicensing 129
14.2 Programming a QGIS C++ Plugininfoursteps 129
14.3 Further information L 147

QGIS 1.0.0 User, Installation and Coding Guide Vi

Contents

15 Writing a QGIS Plugin in Python 148
15.1 Why Python and what about licensing 148
15.2 What needs to be installedtogetstarted 148
15.3 Programming a simple PyQGIS Plugininfoursteps 149
15.4 Committing the pluginto repository 152
15.5 Further information L 152

16 Creating C++ Applications 154
16.1 Creating a simple mappingwidget 154
16.2 Working with QgsMapCanvas i 158

17 Creating PyQGIS Applications 161
17.1 Designingthe GUI e 161
17.2 Creating the MainWindow 162
17.3 FinishingUp 166
17.4 Running the Application e 167

18 Help and Support 169
18.1 Mailinglists o e e e 169
18.2 IRC . . . 170
18.3 BugTracker e e e 170
184 BIOg o o 171
185 WIKi . . . e e 171

A Supported Data Formats 172
A.l Supported OGR Formats i e e e e e 172
A.2 GDAL Raster Formats e 172

B GRASS Toolbox modules 175
B.1 GRASS Toolbox data import and export modules 175
B.2 GRASS Toolbox data type conversionmodules 176
B.3 GRASS Toolbox region and projection configuration modules 177
B.4 GRASS Toolbox rasterdatamodules 178
B.5 GRASS Toolbox vectordatamodules 182
B.6 GRASS Toolbox imagery datamodules 185
B.7 GRASS Toolbox database modules. 186
B.8 GRASS Toolbox 3D modules e 187
B.9 GRASS Toolbox helpmodules 187

C Installation Guide 188
C.1 GeneralBuild Notes e 188
C.2 An overview of the dependencies required for building 188

D Building under windows using msys 189

QGIS 1.0.0 User, Installation and Coding Guide Vil

Contents

D.1 MSYS: . . 189
D.2 Qtd.3 . . . 189
D.3 Flexand Bison 190
D.4 Python stuff: (optional) 190
D.4.1 Download and install Python - use Windows installer 190
D.4.2 Download SIP and PyQt4 sources i 190
D.4.3 Compile SIP e 191
D.4.4 Compile PyQt. e e 191
D.4.5 Finalpythonnotes e 191
D.5 Subversion: L 191
D.6 CMake: 191
D.7 QGIS: . . 191
D.8 Compiling: e e e e e e 192
D.9 Configuration e 192
D.10 Compilation and installation 193

D.11 Run qgis.exe from the directory where it's installed (CMAKE_INSTALL_PREFIX) . . . 193

D.12 Create the installation package: (optional) 193

E Building on Mac OSX using frameworks and cmake (QGIS > 0.8) 193
E.1 Install XCODE 194
E.2 Install Qt4 from.dmg 194
E.3 Install development frameworks for QGIS dependencies 195
E.3.1 Additional Dependencies: GSL e 195

E.3.2 Additional Dependencies: Expat 195

E.3.3 Additional Dependencies: SIP e 196

E.3.4 Additional Dependencies: PyQt 196

E.3.5 Additional Dependencies: Bison o, 197

E.4 Install CMAKE for OSX 198
E.5 Install subversion for OSX 198
E.6 Checkout QGISfrom SVN e 199
E.7 Configurethebuild 200
E.8 Building 201

F Building on GNU/Linux 201
F.1 Building QGIS with Qt4.X 201
F2 Prepareapt e e 201
F3 Install Qtd 202
F.4 Install additional software dependencies required by QGIS 202
F5 GRASS Specific Steps o e 203
F6 Setupccache (Optional) e 203
F.7 Prepare your development environment 0. 203
F.8 Checkoutthe QGIS Source Code 204
QGIS 1.0.0 User, Installation and Coding Guide Viii

Contents

F9 Startingthecompile
F.10 Building Debian packages
F11 Running QGIS

G Creation of MSYS environment for compilation of Quantum GIS
G.1 Initialsetup
G.1.1 MSYS . . .
G.1.2 MInGW e
G.1.3 FlexandBison
G.2 Installing dependencies
G.2.1 Gettingready o
G.2.2 GDALIlevelone
G.23 GRASS
G.24 GDALleveltwo,
G.25 GEOS
G.26 SQLITE
G.27 GSL e
G.28 EXPAT
G.29 POSTGRES
G3 Cleanup o e e

H Building with MS Visual Studio

H.1 Setup Visual Studio
H.1.1 ExpressEdition.
H.1.2 AllEditions

H.2 Download/Install Dependencies
H.2.1 FlexandBison
H.2.2 To include PostgreSQL support in Qt
H23 Qt e
H2.4 Proj.d e
H25 GSL e
H2.6 GEOS e
H2.7 GDAL e
H28 PostGIS
H.2.9 Expat
H210CMake i

H.3 Building QGIS withCMAKE

| Building under Windows using MSVC Express

.1 System preparation
I.2 Install the libraries archive
I.3 Install Visual Studio Express 2005
1.4 Install Microsoft Platform SDK2

QGIS 1.0.0 User, Installation and Coding Guide

Contents

.5 Edityourvsvars. e 223
.6 Environment Variables e 224
.7 Building Qt4.3.2 e e e 225
.7.1 Compile Qt e e e e e 225

[.7.2 Configure Visual C++touse Qt i 226

.8 Install Python 227
.9 Install SIP e 227
.10 Install PyQtd e 227
.11 Install CMake e e e e e 228
.12 Install Subversion. e e e e e 228
[.13 Initial SYVN Checkout 228
I.14 Create Makefiles using cmakesetup.exe 229
.15 Running and packaging 229
J QGIS Coding Standards 230
J1 ClasSesS e e 230
J. 1.1 Names e e e e 230
J1.2 Members 230
J.1.3 Accessor Functions 231
J.1.4 Functions e e 231

J.2 QEDESIgNer o 231
J21 Generated Classes e 231
J.2.2 Dialogs e e 231

J3 CHtFiles e 232
J.3. 1 Names e e e e e 232
J.3.2 Standard Header and License 232
J.3.3 CVSKeyword o e e e 232

J.4 Variable Names L 233
J5 Enumerated TYPES 233
J.6 GlobalConstants e e 233
J7 Editing e e e 233
J7.1 Tabs . . . e 233
J.7.2 Indentation e e 234
J.7.3 Braces. e e e e e 234

J.8 APl Compatibility e e 234
J.9 Coding Style e e e 235
J.9.1 Where-ever Possible Generalize Code 235
J.9.2 Prefer Having Constants Firstin Predicates 235
J.9.3 Whitespace CanBe Your Friend 235
J.9.4 Add Trailing Identifying Comments 236
J.9.5 Use Braces Even for Single Line Statements 236
J.9.6 Bookrecommendations 237

QGIS 1.0.0 User, Installation and Coding Guide X

Contents

K SVN Access 237
K.1 Accessing the Repository e 237
K.2 ANONYMOUS ACCESS . . . v v o e e e e e e e e e e e e e e e e e 237
K.3 QGIS documentation SOUICES i i i e e e e e e e e e 238
K.4 Documentation 238
K.5 Developmentinbranches e 238

K.5.1 PUIPOSE e e e e e e e 238
K.5.2 Procedure. e 239
K.5.3 Creatingabranch 239
K.5.4 Merge regularly fromtrunktobranch 239
K.6 Submitting Patches 240
K.6.1 Patchfilenaming e 240
K.6.2 Create your patch in the top level QGIS sourcedir 240
K.6.3 Including non version controlled filesinyourpatch 241
K.6.4 Getting yourpatchnoticed. 241
K.6.5 DueDiligence. e 241
K.7 Obtaining SVN Write ACCESS i i e e e e e 241
K.7.1 Procedureonceyouhaveaccess. 241

L Unit Testing 243
L.1 The QGIS testing framework - an overview e 243
L.2 Creatingaunittest 244
L.3 Adding your unit testto CMakelLists.txt L o 250
L.4 Buildingyourunittest e 252
L5 RUNYOUrtestS e e e e e e e e e e e e 252

M HIG (Human Interface Guidelines) 254

N GNU General Public License 255
N.1 Quantum GIS Qtexceptionfor GPL, 260

Cited literature 261

QGIS 1.0.0 User, Installation and Coding Guide Xi

List of Figures

List of Figures

1 A Simple QGIS Session B 11
2 QGIS GUI with Alaska sample data &7 14
3 Measure toolsinaction & 23
4 Open an OGR Supported Vector Layer Dialog S 28
5 QGIS with Shapefile of Alaskaloaded & 29
6 Vector Layer Properties Dialog B, 36
7 Symbolizing-options B 37
8 Select feature and choose action & 43
9 Edit snapping options on a layer basis 6 Y 45
10 Enter Attribute Values Dialog after digitizing a new vector feature L. 49
11 Creating a New Vector Dialog B 54
12 QueryBuilder & 55
13 Raster Layers Properties Dialog B 58
14 Dialog for adding a WMS server, showing its available layers S 65
15 Adding a WFS layer B 70
16 CRStabinthe QGIS Options Dialog & 72
17 Projection Dialog B 73
18 Custom CRS Dialog B 75
19 GRASS data in the alaska LOCATION (adapted from Neteler & Mitasova 2008 (2)) . . 78
20 Creating a new GRASS LOCATION or a new MAPSET in QGIS o N 79
21 GRASS Digitizing Toolbar & 83
22 GRASS Digitizing Category Tab & 85
23 GRASS Digitizing Settings Tab B 85
24 GRASS Digitizing Symbolog Tab & 86
25 GRASS Digitizing Table Tab & 86
26 GRASS Toolbox and searchable Modules List & 88
27 GRASS Toolbox Module Dialogs & 88
28 GRASSLOCATIONbrowserd 90
29 Print Composer B 93
30 Print Composer map item tab content B 94
31 Customize print composer label and images S 95
32 Customize print composer legend and scalebar S 96
33 Print Composer with map view, legend, scalebar, and text added LS. 97
34 Plugin Manager B 99
35 Installing external python plugins B 100
36 Coordinate Cature Plugin B, 103
37 Copyright Label Plugin B 104
38 North Arrow Plugin B 105
39 ScaleBarPlugin @, 106
40 Delimited Text Dialog B 108
QGIS 1.0.0 User, Installation and Coding Guide Xii

List of Figures

41 Dxf2Shape Converter Plugin B 109
42 Select an image to georeference B, 110
43 Arrange plugin window with the ggis map canvas S 111
44 Add points to the raster image B, 112
45 Georeferenced map with overlayed roads from spearfish60 location L. 113
46 Quick PrintDialog & 114
47 Quick Print result as DIN A4 POF . . . 114
48 The GPS Tools dialogwindow & 116
49 File selection dialog for the import tool & 117
50 Thedownloadtool & 118
51 Create a graticule layer B 120
52 Interpolation Plugin B 121
53 Interpolation of elevp data using IDW method S 122
54 Arrange raster and vector layers for QGIS project file S 123
55 Export to MapServer Dialog o Y 124
56 Test PNG created by shp2img with all MapServer Export layers S 126
57 OGR Layer Converter Plugin B 127
58 Simple C++ Application X o 157
59 QMainWindow application with a menu, toolbar and canvas area) G 160
QGIS 1.0.0 User, Installation and Coding Guide xiii

List of Tables

List of Tables

© 00N Ol WN P

NNRNONRNRNRNNNNNRERRERRRRER R
© O NOUEWNRPRO®O©OON®U™WNRO

PostGIS Connection Parameters 31
WMS Connection Parameters 64
Example Public WMS URLS 65
GRASS Digitizing ToOIS e 84
Print Composer ToOIS e e e e e 92
QGIS Core Plugins e e e e e e e 102
Current moderated external QGIS Plugins 128
GRASS Toolbox: Dataimportmodules 175
GRASS Toolbox: Data exportmodules 176
GRASS Toolbox: Data type conversionmodules 176
GRASS Toolbox: Region and projection configuration modules 177
GRASS Toolbox: Develop raster map modules 178
GRASS Toolbox: Raster color managementmodules 178
GRASS Toolbox: Spatial raster analysismodules 179
GRASS Toolbox: Surface managementmodules 180
GRASS Toolbox: Change raster category values and labels modules 180
GRASS Toolbox: Hydrologic modelling modules 181
GRASS Toolbox: Reports and statistic analysismodules 181
GRASS Toolbox: Develop vector mapmodules 182
GRASS Toolbox: Database connection modules 183
GRASS Toolbox: Change vector field modules 183
GRASS Toolbox: Working with vector points modules 183
GRASS Toolbox: Spatial vector and network analysis modules 184
GRASS Toolbox: Vector update by other maps modules 184
GRASS Toolbox: Vector report and statistic modules 184
GRASS Toolbox: Imagery analysismodules 185
GRASS Toolbox: Database modules o 186
GRASS Toolbox: 3D Visualization 187
GRASS Toolbox: Reference Manual 187

QGIS 1.0.0 User, Installation and Coding Guide Xiv

QGIS Tips

QGIS Tips
1 UP-TO-DATE DOCUMENTATION ot i e e e e e e e e e e e e e e e e e e e 1
2 EXAMPLE USING COMMAND LINE ARGUMENTS i i i i e e i e e e e 13
3 RESTORING TOOLBARS i v i e e e e e e e e e e e e e e e e e e s e e 17
4 ZOOMING THE MAP WITH THE MOUSE WHEEL v v v v i it e e e e e 19
5 PANNING THE MAP WITH THE ARROW KEYS AND SPACEBAR 19
6 CALCULATING THE CORRECT SCALE OF YOUR MAP CANVAS 20
7 LAYER COLORS i e e e e e e e e e e e e e e e e e e 28
8 QGIS USER SETTINGS AND SECURITY . . . o v i i e e e e e e e e e e e e e 31
9 POSTGIS LAYERS o o e e e e e e e e e e 32
10 EXPORTING DATASETS FROM POSTGIS o .. 33
11 IMPORTING SHAPEFILES CONTAINING POSTGRESQL RESERVED WORDS 33
12 DATAINTEGRITY . . o o o o e e e e e s e e e e e e e e e e e 47
13 MANIPULATING ATTRIBUTE DATA . . . o v i et e e e e e e e e e e s e e e e s e 47
14 SAVE REGULARLY . . v o v i e e e e e e e e e e e e e e e e e e 48
15 CONCURRENT EDITS e e e e e e e e e e e e s e e e e 48
16 ZOOMIN BEFORE EDITING v o i i e e e e e e e e e e e e e s e e 49
17 VERTEX MARKERS o i e e e e e e e e e e e s e e e e s e e e 49
18 ATTRIBUTE VALUE TYPES & o o i i e e e e e e e e e e e e s e e 50
19 CONGRUENCY OF PASTED FEATURES i i i e i e e e e e e e e 52
20 FEATURE DELETION SUPPORT i v i e et i e e e e e e e e e e s e e e e e 52
21 CHANGING THE LAYER DEFINITION o e e e e e e e e e e e e e e e e 55
22 VIEWING A SINGLE BAND OF A MULTIBAND RASTER i i i v v v 59
23 GATHERING RASTER STATISTICS« v o o o e e e e e e e e e e e e e e e e 62
24 ONWMS SERVERURLS e 65
25 IMAGE ENCODING i i it e e e e e e e e e e e e e e 66
26 WMS LAYER ORDERING . . v v v v v e e e e e e e e e e e e e e e e e 66
27 WMS LAYER TRANSPARENCY o i v i e e e e e e e e e e e e e s e e e e e 66
28 WMS PROJECTIONS . . . i v o o e e e e e e e e e e e e e s e e e 67
29 ACCESSING SECURED OGC-LAYERS v i i e e e e e e e e e e s e e e e e 69
30 FINDING WMS AND WFS SERVERS i i it e e i e e e e e s e e e e e e 70
31 PROJECT PROPERTIES DIALOG o e e e e e e e e e e e e e e 74
32 GRASS DATALOADING . . . v o o e e e e e e e e e e e e e e 77
33 LEARNING THE GRASS VECTOR MODEL v v v i e it e e e e e e e e e 82
34 CREATING AN ATTRIBUTE TABLE FOR A NEW GRASS VECTORLAYER 83
35 DIGITIZING POLYGONES IN GRASS e e 83
36 CREATING AN ADDITIONAL GRASS 'LAYER'WITHQGIS 84
37 GRASSEDITPERMISSIONS i i e e e e e e e e e e e e 86
38 DISPLAY RESULTS IMMEDIATELY . . .« v v o e e e e e e e e e e e e e e e e e e e 89
39 SAVING A PRINT COMPOSER LAYOUT & v v it e e e e e e e e e e e e e e 95
40 CRASHING PLUGINS o e e e s e e e e e e e 98

QGIS 1.0.0 User, Installation and Coding Guide XV

QGIS Tips

41 PLUGINS SETTINGS SAVED TO PROJECTt v v i e e e e e e e e e e e 102
42 CHOOSING THE TRANSFORMATION TYPE . .+ v v v e v e e e e e e e e e e e e e e 112
43 ADD MORE EXTERNAL PLUGINS e e e e e e e e e 128
44 Two QGIS PYTHON PLUGIN FOLDERS & v i v e e e e e e e e e e e e e e 149
45 DOCUMENTATION FOR PYQGIS e 168

QGIS 1.0.0 User, Installation and Coding Guide XVi

1 Forward

Welcome to the wonderful world of Geographical Information Systems (GIS)! Quantum GIS (QGIS)
is an Open Source Geographic Information System. The project was born in May of 2002 and was
established as a project on SourceForge in June of the same year. We've worked hard to make
GIS software (which is traditionally expensive proprietary software) a viable prospect for anyone with
basic access to a Personal Computer. QGIS currently runs on most Unix platforms, Windows, and
OS X. QGIS is developed using the Qt toolkit (http://www.trolltech.com) and C++. This means
that QGIS feels snappy to use and has a pleasing, easy-to- use graphical user interface (GUI).

QGIS aims to be an easy-to-use GIS, providing common functions and features. The initial goal was
to provide a GIS data viewer. QGIS has reached the point in its evolution where it is being used
by many for their daily GIS data viewing needs. QGIS supports a number of raster and vector data
formats, with new format support easily added using the plugin architecture (see Appendix A for a full
list of currently supported data formats).

QGIS is released under the GNU General Public License (GPL). Developing QGIS under this license
means that you can inspect and modify the source code, and guarantees that you, our happy user,
will always have access to a GIS program that is free of cost and can be freely modified. You should
have received a full copy of the license with your copy of QGIS, and you also can find it in Appendix
N.

Tip 1 UP-TO-DATE DOCUMENTATION
The latest version of this document can always be found at http://download.osgeo.org/qgis/doc/manual/,
or in the documentation area of the QGIS website at http://qgis.osgeo.org/documentation/

1.1 Features

QGIS offers many common GIS functionalities provided by core features and plugins. As a short
summary they are presented in six categories to gain a first insight.

View data

You can view and overlay vector and raster data in different formats and projections without conver-
sion to an internal or common format. Supported formats include:

e spatially-enabled PostgreSQL tables using PostGIS, vector formats * supported by the installed
OGR library, including ESRI shapefiles, Mapinfo, SDTS and GML.

e Raster and imagery formats supported by the installed GDAL (Geospatial Data Abstraction
Library) library, such as GeaoTiff, Erdas Img., Arcinfo Ascii Grid, JPEG, PNG,

1OGR-supported database formats such as Oracle or mySQL are not yet supported in QGIS.

QGIS 1.0.0 User, Installation and Coding Guide 1

http://www.trolltech.com
http://download.osgeo.org/qgis/doc/manual/
http://qgis.osgeo.org/documentation/

1 FORWARD

e GRASS raster and vector data from GRASS databases (location/mapset),

¢ Online spatial data served as OGC-compliant Web Map Service (WMS) or Web Feature Service
(WFS).

Explore data and compose maps

You can compose maps and interactively explore spatial data with a friendly GUI. The many helpful
tools available in the GUI include:

e on the fly projection

e map composer

e overview panel

e spatial bookmarks

o identify/select features

o edit/view/search attributes

o feature labeling

e change vector and raster symbology

e add a graticule layer

e decorate your map with a north arrow scale bar and copyright label

e save and restore projects

Create, edit, manage and export data

You can create, edit, manage and export vector maps in several formats. Raster data have to be
imported into GRASS to be able to edit and export them into other formats. QGIS offers the following:

e digitizing tools for OGR supported formats and GRASS vector layer
e create and edit shapefiles and GRASS vector layer
e geocode images with the georeferencer plugin

e GPS tools to import and export GPX format, and convert other GPS formats to GPX or
down/upload directly to a GPS unit

e create PostGIS layers from shapefiles with the SPIT plugin

e manage vector attribute tables with the table manager plugin

Analyse data

You can perform spatial data analysis on PostgreSQL/PostGIS and other OGR supported formats
using the ftools python plugin. QGIS currently offers vector analysis, sampling, geoprocessing, ge-

QGIS 1.0.0 User, Installation and Coding Guide 2

1.1 Features

ometry and database management tools. You can also use the integrated GRASS tools, which
include the complete GRASS functionality of more than 300 modules (See Section 9).

Publish maps on the internet

QGIS can be used to export data to a mapfile and to publish them on the internet using a webserver
with UMN MapServer installed. QGIS can also be used as a WMS or WFS client, and as WMS
server.

Extend QGIS functionality through plugins

QGIS can be adapted to your special needs with the extensible plugin architecture. QGIS provides
libraries that can be used to create plugins. You can even create new applications with C++ or Python!

e Core Plugins

Add WFS Layer

Add Delimited Text Layer

Coordinate Capture

Decorations (Copyright Label, North Arrow and Scale bar)
Georeferencer

Dxf2Shp Converter

GPS Tools

GRASS integration

Graticules Creator

Interpolation Plugin

OGR Layer Converter

Quick Print

SPIT Shapefile to PostgreSQL/PostGIS Import Tool
Mapserver Export

Python Console

Python Plugin Installer

e Python Plugins

QGIS offers a growing number of external python plugins that are provided by the com-
munity. These plugins reside in the the official PyQGIS repository, and can be easily installed
using the python plugin installer (See Section 11).

QGIS 1.0.0 User, Installation and Coding Guide 3

1 FORWARD

1.2 Conventions

This section describes a collection of uniform styles throughout the manual. The conventions used in
this manual are as follows:

GUI Conventions

The GUI convention styles are intended to mimic the appearance of the GUI. In general, the objective
is to use the non-hover appearance, so a user can visually scan the GUI to find something that looks
like the instruction in the manual.

e Menu Options:]Layer] > ’ﬁ Add a Raster Layer

or

Settings | > Toolbars|> &Digitizingl

e Tool: ﬁ ’Add a Raster Layer‘

e Button: | Save as Default|

e Dialog Box Title: ‘Layer Properties ‘

o Tab:

e Toolbox Item: |=. nviz - Open 3D-View in NVIZ

e Checkbox: |[X] Render

e Radio Button: ® Postgis SRID [O] EPSG ID

e Select a Number: | Hue 60@

e Select a String: | Outline style ’—Solid Line E]‘

o Browse for a File: |---

e Select a Color: | Outline color

e Slider: | Transparency 0% [j——— ‘
e Input Text: | Display Name

A shadow indicates a clickable GUI component.

QGIS 1.0.0 User, Installation and Coding Guide 4

1.2 Conventions

Text or Keyboard Conventions

The manual also includes styles related to text, keyboard commands and coding to indicate different
entities, such as classes, or methods. They don’t correspond to any actual appearance.

e Hyperlinks: http://qgis.org
e Single Keystroke: press @

e Keystroke Combinations: press , meaning press and hold the Ctrl key and then press
the B key.

e Name of a File: lakes.shp
e Name of a Class: NewLayer
e Method: classFactory

e Server: myhost.de

e User Text: qgis --help

Code is indicated by a fixed-width font:

PROJCS["NAD_1927_Albers",
GEOGCS["GCS_North_American_1927",

Platform-specific instructions

GUI sequences and small amounts of text can be formatted inline: Click {& {"Y File X QGIS} > Quit
to close QGIS. This indicates that on Linux, Unix and Windows platforms, click the File menu option
first, then Quit from the dropdown menu, while on Macintosh OSX platforms, click the QGIS menu
option first, then Quit from the dropdown menu. Larger amounts of text may be formatted as a list:

° .Q do this;

° {‘{ do that;

° X do something else.

or as paragraphs.

& X Do this and this and this. Then do this and this and this and this and this and this and this
and this and this.

{’ Do that. Then do that and that and that and that and that and that and that and that and that and
that and that and that and that and that and that.

Screenshots that appear throughout the user guide have been created on different platforms; the
platform is indicated by the platform-specific icons at the end of the figure caption.

QGIS 1.0.0 User, Installation and Coding Guide 5

http://qgis.org

2 INTRODUCTION TO GIS

2 Introduction To GIS

A Geographical Information System (GIS)(1)? is a collection of software that allows you to create,
visualize, query and analyze geospatial data. Geospatial data refers to information about the geo-
graphic location of an entity. This often involves the use of a geographic coordinate, like a latitude
or longitude value. Spatial data is another commonly used term, as are: geographic data, GIS data,
map data, location data, coordinate data and spatial geometry data.

Applications using geospatial data perform a variety of functions. Map production is the most easily
understood function of geospatial applications. Mapping programs take geospatial data and render
it in a form that is viewable, usually on a computer screen or printed page. Applications can present
static maps (a simple image) or dynamic maps that are customised by the person viewing the map
through a desktop program or a web page.

Many people mistakenly assume that geospatial applications just produce maps, but geospatial data
analysis is another primary function of geospatial applications. Some typical types of analysis include
computing:

distances between geographic locations

the amount of area (e.g., square meters) within a certain geographic region

what geographic features overlap other features

the amount of overlap between features

the number of locations within a certain distance of another

2 T o A

and so on...

These may seem simplistic, but can be applied in all sorts of ways across many disciplines. The re-
sults of analysis may be shown on a map, but are often tabulated into a report to support management
decisions.

The recent phenomena of location-based services promises to introduce all sorts of other features,
but many will be based on a combination of maps and analysis. For example, you have a cell phone
that tracks your geographic location. If you have the right software, your phone can tell you what kind
of restaurants are within walking distance. While this is a novel application of geospatial technology,
it is essentially doing geospatial data analysis and listing the results for you.

2.1 Why is all this so new?

Well, it's not. There are many new hardware devices that are enabling mobile geospatial services.
Many open source geospatial applications are also available, but the existence of geospatially fo-

2This chapter is by Tyler Mitchell (http://www.oreillynet.com/pub/wlg/7053) and used under the Creative Com-
mons License. Tyler is the author of Web Mapping lllustrated, published by O’Reilly, 2005.

QGIS 1.0.0 User, Installation and Coding Guide 6

http://www.oreillynet.com/pub/wlg/7053

2.1 Why is all this so new?

cused hardware and software is nothing new. Global positioning system (GPS) receivers are be-
coming commonplace, but have been used in various industries for more than a decade. Likewise,
desktop mapping and analysis tools have also been a major commercial market, primarily focused
on industries such as natural resource management.

What is new is how the latest hardware and software is being applied and who is applying it. Tra-
ditional users of mapping and analysis tools were highly trained GIS Analysts or digital mapping
technicians trained to use CAD-like tools. Now, the processing capabilities of home PCs and open
source software (OSS) packages have enabled an army of hobbyists, professionals, web developers,
etc. to interact with geospatial data. The learning curve has come down. The costs have come down.
The amount of geospatial technology saturation has increased.

How is geospatial data stored? In a nutshell, there are two types of geospatial data in widespread use
today. This is in addition to traditional tabular data that is also widely used by geospatial applications.

2.1.1 Raster Data

One type of geospatial data is called raster data or simply "a raster". The most easily recognised form
of raster data is digital satellite imagery or air photos. Elevation shading or digital elevation models
are also typically represented as raster data. Any type of map feature can be represented as raster
data, but there are limitations.

A raster is a regular grid made up of cells, or in the case of imagery, pixels. They have a fixed number
of rows and columns. Each cell has a numeric value and has a certain geographic size (e.g. 30x30
meters in size).

Multiple overlapping rasters are used to represent images using more than one colour value (i.e. one
raster for each set of red, green and blue values is combined to create a colour image). Satellite
imagery also represents data in multiple "bands". Each band is essentially a separate, spatially
overlapping raster, where each band holds values of certain wavelengths of light. As you can imagine,
a large raster takes up more file space. A raster with smaller cells can provide more detail, but takes
up more file space. The trick is finding the right balance between cell size for storage purposes and
cell size for analytical or mapping purposes.

2.1.2 Vector Data

Vector data is also used in geospatial applications. If you stayed awake during trigonometry and
coordinate geometry classes, you will already be familiar with some of the qualities of vector data.
In its simplest sense, vectors are a way of describing a location by using a set of coordinates. Each
coordinate refers to a geographic location using a system of x and y values.

This can be thought of in reference to a Cartesian plane - you know, the diagrams from school

QGIS 1.0.0 User, Installation and Coding Guide 7

2 INTRODUCTION TO GIS

that showed an x and y-axis. You might have used them to chart declining retirement savings or
increasing compound mortgage interest, but the concepts are essential to geospatial data analysis
and mapping.

There are various ways of representing these geographic coordinates depending on your purpose.
This is a whole area of study for another day - map projections.

Vector data takes on three forms, each progressively more complex and building on the former.

1. Points - A single coordinate (x y) represents a discrete geographic location

2. Lines - Multiple coordinates (x1 y1, x2 y2, x3 y4, ... Xn yn) strung together in a certain order, like
drawing a line from Point (x1 y1) to Point (x2 y2) and so on. These parts between each point
are considered line segments. They have a length and the line can be said to have a direction
based on the order of the points. Technically, a line is a single pair of coordinates connected
together, whereas a line string is multiple lines connected together.

3. Polygons - When lines are strung together by more than two points, with the last point being at
the same location as the first, we call this a polygon. A triangle, circle, rectangle, etc. are all
polygons. The key feature of polygons is that there is a fixed area within them.

QGIS 1.0.0 User, Installation and Coding Guide 8

3 Getting Started

This chapter gives a quick overview of installing QGIS, some sample data from the QGIS web page
and running a first and simple session visualizing raster and vector layers.

3.1 Installation

Installation of QGIS is very simple. Standard installer packages are available for MS Windows and
Mac OS X. For many flavors of GNU/Linux binary packages (rpm and deb) or software repositories
to add to your installation manager are provided. Get the latest information on binary packages at
the QGIS website at http://qgis.osgeo.org/download/.

If you need to build QGIS from source, this is documentated in Appendix D for MS Windows {’. ,

Appendix E for Mac OSX X and Appendix F for GNU/Linux & . The Installation instructions are
distributed with the QGIS source code and also available at http://qgis.osgeo.org.

3.2 Sample Data

The user guide contains examples based on the QGIS sample dataset.

{? The Windows installer has an option to download the QGIS sample dataset. If checked, the data
will be downloaded to your My Documents folder and placed in a folder called GIS Database. You
may use Windows Explorer to move this folder to any convenient location. If you did not select the
checkbox to install the sample dataset during the initial QGIS installation, you can either

e use GIS data that you already have;
¢ download the sample data from the QGIS website http://qgis.osgeo.org/download; Or

¢ uninstall QGIS and reinstall with the data download option checked.

f}. X For GNU/Linux and Mac OSX there are not yet dataset installation packages available as rpm,
deb or dmg. To use the sample dataset download the file qgis_sample_data as ZIP or TAR archive
from http://download.osgeo.org/qgis/data/ and unzip or untar the archive on your system. The
Alaska dataset includes all GIS data that are used as examples and screenshots in the user guide,
and also includes a small GRASS database. The projection for the QGIS sample dataset is Alaska
Albers Equal Area with unit feet. The EPSG code is 2964.

PROJCS["Albers Equal Area",
GEOGCS ["NAD27",
DATUM["North_American_Datum_1927",

QGIS 1.0.0 User, Installation and Coding Guide 9

http://qgis.osgeo.org/download/
http://qgis.osgeo.org
http://qgis.osgeo.org/download
http://download.osgeo.org/qgis/data/

3 GETTING STARTED

SPHEROID["Clarke 1866",6378206.4,294.978698213898,
AUTHORITY ["EPSG","7008"]],
TOWGS84[-3,142,183,0,0,0,0],
AUTHORITY ["EPSG","6267"1],
PRIMEM["Greenwich",O,
AUTHORITY["EPSG","8901"]],
UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9108"1],
AUTHORITY ["EPSG","4267"]1],
PROJECTION["Albers_Conic_Equal_Area"],
PARAMETER["standard_parallel_1",55],
PARAMETER ["standard_parallel_2",65],
PARAMETER["latitude_of_center",50],
PARAMETER["longitude_of_center",-154],
PARAMETER["false_easting",0],
PARAMETER["false_northing",0],
UNIT["us_survey_feet",0.3048006096012192]]

If you intend to use QGIS as graphical frontend for GRASS, you can find a selection
of sample locations (e.g. Spearfish or South Dakota) at the official GRASS GIS-website
http://grass.osgeo.org/download/data.php.

3.3 Sample Session

Now that you have QGIS installed and a sample dataset available, we would like to demonstrate
a short and simple QGIS sample session. We will visualize a raster and a vector layer. We will
use the landcover raster layer qgis_sample_data/raster/landcover.img and the lakes vector layer
qgis_sample_data/gml/lakes.gml.

start QGIS
. i\, Start QGIS by typing: qgis at a command prompt.
° f’ Start QGIS using the Start menu or desktop shortcut, or double click on a QGIS project file.

. X double click the icon in your Applications folder.

Load raster and vector layers from the sample dataset

1. Click on the ﬁ Load Raster |icon.

QGIS 1.0.0 User, Installation and Coding Guide 10

http://grass.osgeo.org/download/data.php

3.3 Sample Session

2. Browse to the folder qgis_sample_data/raster/, select the ERDAS Img file landcover. img

and click | Open | .

3. Now click on the ﬁ Load Vector | icon.

4. browse to the folder qgis_sample_data/gml/, select the GML file 1akes.gml and click| Open | .

5. Zoom in a bit to your favorite area with some lakes.

6. Double click the 1akes layer in the map legend to open the | Layer Properties ‘dialog.

7. Click on the | Symbology I tab and select a blue as fill color.

8. Click on the tab and check the

9. Click | Apply | .

i S = DN ERDT e

File Edit ‘Miew Laver Settings Plugins Tools

Display labels

checkbox to enable labeling.

Figure 1: A Simple QGIS Session

Help

a

| oA RQARRAO & i vy 4 -

Legend :
|
= (%] landcover

¥

__"":-hﬂ@&iéﬁ‘:“i".‘ﬂ.@

Y-

| [] 7803774210186 ||S:ale ||[1:3589[J?6]|||2|er'nder | |
ol

You can see how easy it is to visualize raster and vector layers in QGIS. Let’s move on to the sections
that follow to learn more about the available functionality, features and settings and how to use them.

QGIS 1.0.0 User, Installation and Coding Guide

11

4 FEATURES AT A GLANCE

4 Features at a Glance

After a first and simple sample session in Section 3 we now want to give you a more detailed overview
of the features of QGIS. Most features presented in the following chapters will be explained and
described in own sections later in the manual.

4.1 Starting and Stopping QGIS

In Section 3.3 you already learned how to start QGIS. We will repeat this here and you will see that
QGIS also provides further command line options.

° & assuming that QGIS is installed in the PATH, you can start QGIS by typing: qgis at a
command prompt or by double clicking on the QGIS application link (or shortcut) on the desktop.
. {7 start QGIS using the Start menu or desktop shortcut, or double click on a QGIS project file.

° X double click the icon in your Applications folder.

To stop QGIS, click the menu options {& {Y File X QGIS} > Quit, or use the shortcut .

4.1.1 Command Line Options

& QGIS supports a number of options when started from the command line. To get a list of the
options, enter qgis --help on the command line. The usage statement for QGIS is:

qgis --help

Quantum GIS - 1.0.0 ’Kore’

Quantum GIS (QGIS) is a viewer for spatial data sets, including
raster and vector data.

Usage: qgis [options] [FILES]

options:
[--snapshot filename] emit snapshot of loaded datasets to given file
[--lang language] use language for interface text

[--project projectfile] load the given QGIS project
[--extent xmin,ymin,xmax,ymax] set initial map extent
[--help] this text

FILES:
Files specified on the command line can include rasters,
vectors, and QGIS project files (.qgs):
1. Rasters - Supported formats include GeoTiff, DEM
and others supported by GDAL

QGIS 1.0.0 User, Installation and Coding Guide 12

4.2 QGIS GUI

2. Vectors - Supported formats include ESRI Shapefiles
and others supported by OGR and PostgreSQL layers using
the PostGIS extension

Tip 2 EXAMPLE USING COMMAND LINE ARGUMENTS

You can start QGIS by specifying one or more data files on the command line. For example, assuming you
are in the qgis_sample_data directory, you could start QGIS with a vector layer and a raster file set to load on
startup using the following command: qgis ./raster/landcover.img ./gml/lakes.gml

Command line option --snapshot

This option allows you to create a snapshot in PNG format from the current view. This comes in
handy when you have a lot of projects and want to generate snapshots from your data.

Currently it generates a PNG-file with 800x600 pixels. A filename can be added after --snapshot.

Command line option --lang

Based on your locale QGIS, selects the correct localization. If you would like to change your
language, you can specify a language code. For example: --lang=it starts QGIS in ital-
ian localization. A list of currently supported languages with language code is provided at
http://wiki.qgis.org/qgiswiki/TranslatorsCorner

Command line option --project

Starting QGIS with an existing project file is also possible. Just add the command line option
-project followed by your project name and QGIS will open with all layers loaded described in the
given file.

Command line option --extent

To start with a specific map extent use this option. You need to add the bounding box of your extent
in the following order separated by a comma:

-—-extent xmin,ymin,xmax,ymax

4.2 QGIS GUI
When QGIS starts, you are presented with the GUI as shown below (the numbers 1 through 6 in
yellow ovals refer to the six major areas of the interface as discussed below):

Note: Your window decorations (title bar, etc.) may appear different depending on your operating
system and window manager.

QGIS 1.0.0 User, Installation and Coding Guide 13

http://wiki.qgis.org/qgiswiki/TranslatorsCorner

4 FEATURES AT A GLANCE

Figure 2: QGIS GUI with Alaska sample data 4

@ Quantum GIS - 1.0.0-Kore \:\\‘E‘\Z\
File Edit View Layer Settings Plugins Help 1

12l oRRPEFP Z2L.LOODKRCL2. 00 FaD
2RAAXARLRRAO HR&®Q *’T-e%aﬁzﬁﬁém‘?ﬁ Vo

=
3
Legend [F)= TR

= [railroads

= x[E landcover

Overview @] Ji

Toggles the editing state of the current layer 6 []| 5933851332501 | Scale [343547475531 [Render)

The QGIS GUI is divided into six areas:

1. Menu Bar 4. Map View
2. Tool Bar 5. Map Overview
3. Map Legend 6. Status Bar

These six components of the QGIS interface are described in more detail in the following sections.

4.2.1 Menu Bar

The menu bar provides access to various QGIS features using a standard hierarchical menu. The
top-level menus and a summary of some of the menu options are listed below, together with the icons
of the corresponding tools as they appear on the toolbar, as well as keyboard shortcuts. Although
most menu options have a corresponding tool and vice-versa, the menus are not organized quite like
the toolbars. The toolbar containing the tool is listed after each menu option as a checkbox entry. For
more information about tools and toolbars, see Section 4.2.2.

QGIS 1.0.0 User, Installation and Coding Guide 14

4.2 QGIS GUI

Menu Option Shortcut

+ [Fie]

| New Project Ctrl+N

= Open Project Ctrl+O

| Open Recent Projects |

’d Save Project Ctrl+S
| Save Project As|| Ctrl+Shift+S

’.__"4 Save as Image

’:Q Print Composer Ctrl+P

O Exit

:
Cut Features| Ctrl+X
’ 2 Copy Features Ctrl+C

|24 Paste Features| Ctrl+V
<. Capture Point

2. Capture Line

L2 Capture Polygon Ctrl+/
And Other Edit Menu ltems

-
2 Pan Mapl

'88"' i' I["
3
O

& Zoom In] Ctrl++
Q Zoom OutI Ctrl+-

% Select Featuresl
¥ ldentify Features

]ﬁ Measure Linel

|& Measure Areal

=1 Zoom FuIII

’& Zoom To Layer
| Zoom To Selection] (Ctrl+J

€@ Zoom LastI

| Zoom Actual Size |

g = g

Reference

see Section 4.5
see Section 4.5
see Section 4.5
see Section 4.5
see Section 4.5
see Section 4.6
see Section 10

see Section 5.4.3
see Section 5.4.3
see Section 5.4.3
see Section 5.4.3
see Section 5.4.3
see Section 5.4.3
see Section 5.4.3

Toolbar

X File
X File

X File
X File

X File

X Digitizing
X Digitizing
X Digitizing
X Digitizing
X Digitizing
X Digitizing
X Digitizing

L e

| X Map Navigation

| X Map Navigation

X Map Navigation
X Attributes
X Attributes
X Attributes
X Attributes

Ji

QGIS 1.0.0 User, Installation and Coding Guide

15

4 FEATURES AT A GLANCE

Map Tips

& New Bookmarkl Ctrl+B see Section 4.8 X Attributes
& Show Bookmarksl see Section 4.8 X Attributesl

Q Refresh Ctrl+R | X Map Navigation

:
’u New Vector Layer

]@2 Add a Vector Layer
’ﬁ Add a Raster Layer

N

see Section 5.4.4 | X Manage Layers|

see Section 5
see Section 6
’9 Add a PostGIS Layer see Section 5.2
® Add a WMS Layer see Section 7.2

| = Open Attribute Table X Attributes]
’Z Toggle editing X Digitizingl

| Save As Shapefile

FEEEE

| Save Selection As Shapefile

]& Remove Layer Ctrl+D] X Manage Layers

| Properties

& Add to Overview|
s+ Add All To Overview |

’Q?f Remove All From Overviewl)

|2 Hide All Layers | X Manage Layers

’ie‘b Show All Layers | X Manage Layers

o |Settings I
Toolbars I

| Toggle Fullscreen Mode |

’_r Project Properties @ see Section 4.5
4 Custom CRS see Section 8.4

% Optionsl see Section 4.7

. - (Futher menu items are added by plugins as they are loaded.)
& Plugin Manager see Section 11.1| X Plugins|

8

| X Manage Layers|

QGIS 1.0.0 User, Installation and Coding Guide

4.2 QGIS GUI

.
' Help Contents
/@ QGIS Home Page|

| Check QGIS Version|

o Aboutl

4.2.2 Toolbars

The toolbars provide access to most of the same functions as the menus, plus additional tools for
interacting with the map. Each toolbar item has popup help available. Hold your mouse over the item
and a short description of the tool’'s purpose will be displayed.

Every menubar can be moved around according to your needs. Additionally every menubar can be
switched off using your right mouse button context menu holding the mouse over the toolbars.

Tip 3 RESTORING TOOLBARS
If you have accidentally hidden all your toolbars, you can get them back by choosing menu option | Settings | >

-

4.2.3 Map Legend

The map legend area is used to set the visibility and z-ordering of layers. Z-ordering means that
layers listed nearer the top of the legend are drawn over layers listed lower down in the legend. The
checkbox in each legend entry can be used to show or hide the layer.

Layers can be grouped in the legend window by adding a layer group and dragging layers into the
group. To do so, move the mouse pointer to the legend window, right click, choose . A
new folder appears. Now drag the layers onto to the folder symbol. It is then possible to toggle the
visibility of all the layers in the group with one click. To bring layers out of a group, move the mouse
pointer to the layer symbol, right click, and choose | Make to toplevel item|_ To give the folder a new

name, choose in the right click menu of the group.

The content of the right mouse button context menu depends on whether the loaded legend item you
hold your mouse over is a raster or a vector layer. For GRASS vector layers the] toggle editing| is
not available. See section 9.7 for information on editing GRASS vector layers.

¢ Right mouse button menu for raster layers

— | Zoom to layer extent|

QGIS 1.0.0 User, Installation and Coding Guide 17

4 FEATURES AT A GLANCE

— | Zoom to best scale (100%)

— [Show in overview]

— | Remove
— | Properties
— | Rename
— | Add Group

— | Expand a

i

— | Collapse all I

— | Show file groups

e Right mouse button menu for vector layers

— | Zoom to layer extent|

— | Show in overview|

— | Remove

— | Open attribute table

-] Toggle editing (not available for GRASS layers)

— | Save as shapefile|

-] Save selection as shapefile|

— | Properties

— | Make to toplevel item|

— | Rename

p

|
ollm|>
oIX|1 &
=||5|[2
L E
D o

R =
Q=

— | Show file groups

¢ Right mouse button menu for layer groups

— | Remove
— | Rename
— | Add Group

il

|
m
x
o
Q
>
o
Q

— | Collapse all I

H

— | Show file groups

QGIS 1.0.0 User, Installation and Coding Guide

18

4.2 QGIS GUI

If several vector data sources have the same vector type and the same attributes, their symbolisations
may be grouped. This means that if the symbolisation of one data source is changed, the others
automatically have the new symbolisation as well. To group symbologies, open the right click menu
in the legend window and choose \ Show file groups I The file groups of the layers appear. It is
now possible to drag a file from one file group into another one. If this is done, the symbologies are
grouped. Note that QGIS only permits the drag if the two layers are able to share symbology (same
vector geometry type and same attributes).

4.2.4 Map View

This is the 'business end’ of QGIS - maps are displayed in this area!l The map displayed in this
window will depend on the vector and raster layers you have chosen to load (see sections that follow
for more information on how to load layers). The map view can be panned (shifting the focus of the
map display to another region) and zoomed in and out. Various other operations can be performed
on the map as described in the toolbar description above. The map view and the legend are tightly
bound to each other - the maps in view reflect changes you make in the legend area.

Tip 4 ZOOMING THE MAP WITH THE MOUSE WHEEL

You can use the mouse wheel to zoom in and out on the map. Place the mouse cursor inside the map area
and roll the wheel forward (away from you) to zoom in and backwards (towards you) to zoom out. The mouse
cursor position is the center where the zoom occurs. You can customize the behavior of the mouse wheel

zoom using the | Map t00|$I tab under the’SettingS|>\ Optionsl menu.

Tip 5 PANNING THE MAP WITH THE ARROW KEYS AND SPACE BAR

You can use the arrow keys to pan in the map. Place the mouse cursor inside the map area and click on the
right arrow key to pan East, left arrow key to pan West, up arrow key to pan North and down arrow key to pan
South. You can also pan the map using the space bar: just move the mouse while holding down space bar.

4.2.5 Map Overview

The map overview area provides a full extent view of layers added to it. Within the view is a rectangle
showing the current map extent. This allows you to quickly determine which area of the map you are
currently viewing. Note that labels are not rendered to the map overview even if the layers in the map
overview have been set up for labeling. You can add a single layer to the overview by right-clicking

on it in the legend and select Show in overview |, You can also add layers to, or remove all layers
from the overview using the Overview tools on the toolbar.

If you click and drag the red rectangle in the overview that shows your current extent, the main map
view will update accordingly.

QGIS 1.0.0 User, Installation and Coding Guide 19

4 FEATURES AT A GLANCE

4.2.6 Status Bar

The status bar shows you your current position in map coordinates (e.g. meters or decimal degrees)
as the mouse pointer is moved across the map view. To the left of the coordinate display in the status
bar is a small button that will toggle between showing coordinate position or the view extents of the
map view as you pan and zoom in and out.

A progress bar in the status bar shows progress of rendering as each layer is drawn to the map view.
In some cases, such as the gathering of statistics in raster layers, the progress bar will be used to
show the status of lengthy operations.

If a new plugin or a plugin update is available, you will see a message in the status bar. On the
right side of the status bar is a small checkbox which can be used to temporarily prevent layers being
rendered to the map view (see Section 4.3 below). At the far right of the status bar is a projector icon.
Clicking on this opens the projection properties for the current project.

Tip 6 CALCULATING THE CORRECT SCALE OF YOUR MAP CANVAS
When you start QGIS, degrees is the default unit, and it tells QGIS that any coordinate in your layer is in
degrees. To get correct scale values, you can either change this to meter manually in the tab

under ’ Settings | >\ Project Properties| or you can select a project Coordinate Reference System (CRS)

clicking on the @ projector | icon in the lower right-hand corner of the statusbar. In the last case, the units
are set to what the project projection specifies, e.g. '+units=m’.

4.3 Rendering

By default, QGIS renders all visible layers whenever the map canvas must be refreshed. The events
that trigger a refresh of the map canvas include:

Adding a layer

Panning or zooming

Resizing the QGIS window

Changing the visibility of a layer or layers

QGIS allows you to control the rendering process in a number of ways.

4.3.1 Scale Dependent Rendering

Scale dependent rendering allows you to specify the minimum and maximum scales at which a layer
will be visible. To set scale dependency rendering, open the dialog by double-clicking

QGIS 1.0.0 User, Installation and Coding Guide 20

4.3 Rendering

on the layer in the legend. On the Generall tab, set the minimum and maximum scale values and

then click on the || X] Scale dependent visibility | checkbox.

You can determine the scale values by first zooming to the level you want to use and noting the scale
value in the QGIS status bar.

4.3.2 Controlling Map Rendering

Map rendering can be controlled in the following ways:

a) Suspending Rendering

To suspend rendering, click the Render | checkbox in the lower right corner of the statusbar.

When the Render | box is not checked, QGIS does not redraw the canvas in response to any of
the events described in Section 4.3. Examples of when you might want to suspend rendering include:

Add many layers and symbolize them prior to drawing

Add one or more large layers and set scale dependency before drawing

Add one or more large layers and zoom to a specific view before drawing

Any combination of the above

Checking the Render | hox enables rendering and causes and immediate refresh of the map
canvas.

b) Setting Layer Add Option

You can set an option to always load new layers without drawing them. This means the layer will be
added to the map, but its visibility checkbox in the legend will be unchecked by default. To set this

option, choose menu option Settingsl > OptionSI and click on the |[Rendering | tab. Uncheck the

By default new layers added to the map should be displayed | checkbox. Any layer added to the
map will be off (invisible) by default.

¢) Updating the Map Display During Rendering

You can set an option to update the map display as features are drawn. By default, QGIS does
not display any features for a layer until the entire layer has been rendered. To update the display
as features are read from the datastore, choose menu option \Settings > \ Options| click on the

Rendering I tab. Set the feature count to an appropriate value to update the display during rendering.
Setting a value of 0 disables update during drawing (this is the default). Setting a value too low

QGIS 1.0.0 User, Installation and Coding Guide 21

4 FEATURES AT A GLANCE

will result in poor performance as the map canvas is continually updated during the reading of the
features. A suggested value to start with is 500.

d) Influence Rendering Quality

To influence the rendering quality of the map you have 3 options. Choose menu option | Settings | >

click on the | Rendering I tab and select or deselect following checkboxes.

. Make lines appear less jagged at the expense of some drawing performance

. Fix problems with incorrectly filled polygons

. Continuously redraw the map when dragging the legend/map divider

4.4 Measuring

Measuring works within projected coordinate systems only (e.g., UTM). If the loaded map is defined
with a geographic coordinate system (latitude/longitude), the results from line or area measurements
will be incorrect. To fix this you need to set an appropriate map coordinate system (See Section 8).

4.4.1 Measure length and areas

| S—
[QGIS is also able to measure real distances between given points according to a defined el-

lipsoid. To configure this, choose menu option \Settingsl >\ Options|, click on the |[Map tOOlSI tab
and choose the appropriate ellipsoid. The tool then allows you to click points on the map. Each
segment-length shows up in the measure-window and additionally the total length is printed. To stop
measuring click your right mouse button.

[Areas can also be measured. The window shows the accumulated area-size in the measure
window

4.5 Projects

The state of your QGIS session is considered a Project. QGIS works on one project at a time.
Settings are either considered as being per-project, or as a default for new projects (see Section
4.7). QGIS can save the state of your workspace into a project file using the menu options >

\d Save Project] or [File | >]'J- Save Project As|.

QGIS 1.0.0 User, Installation and Coding Guide 22

4.6 Output

Figure 3: Measure tools in action A

AN Easiilie INSENES

5.194,20

Total: 24,76 mile 6.409,03 sq mile
[l 1 (i

Help [hew | | Close |

(@) Measure lines (b) Measure areas

N

Load saved projects into a QGIS session using |[File] > \ﬁ Open Project] or [File] >

Open Recent PrOjectl. If you wish to clear your session and start fresh, choose >

_I New Project l Either of these menu options will prompt you to save the existing project if changes
have been made since it was opened or last saved.

The kinds of information saved in a project file include:

e Layers added
e Layer properties, including symbolization
e Projection for the map view

e Last viewed extent

The project file is saved in XML format, so it is possible to edit the file outside QGIS if
you know what you are doing. The file format was updated several times compared to ear-
lier QGIS versions. Project files from older QGIS versions may not work properly anymore.

To be made aware of this, in the tab under SettingSI > Optionsl you can select

Warn when opening a project file saved with an older version of QGIS ‘

4.6 Output

There are several ways to generate output from your QGIS session. We have discussed one already
in Section 4.5: saving as a project file. Here is a sampling of other ways to produce output files:

e Menu option \3 Save as Image | opens a file dialog where you select the name, path and type
of image (PNG or JPG format).

e Menu option \Q Print Composer | opens a dialog where you can layout and print the current
map canvas (see Section 10).

QGIS 1.0.0 User, Installation and Coding Guide 23

4 FEATURES AT A GLANCE

4.7 GUI Options

"0 Some basic options for QGIS can be selected using the dialog. Select the menu

option]Settings >|= Options |. The tabs where you can optmize your options are:

General Tab

. Ask to save project changes when required

. Warn when opening a project file saved with an older version of QGIS

° Change Selection and backgroud Color

e Change the icon theme (choose between default, classic, gis and nkids)

R Capitalise layer names in legend

. Display classification attribute names in legend

R Hide splash screen at startup

R Open attribute table in a dock window

Define attribute table behavior (choose between show all features, show selected features and
show features in current canvas)

Rendering Tab

. By deafult new layers added to the map should be displayed

¢ Define number of features to draw before updating the display.

° Make lines appear less jagged at the expense of some drawing performance

. Fix problems with incorrectly filled polygons

. Continously redraw when dragging the legend/map divider

Map tools Tab

e Define Search Radius as a percentage of the map width
e Define Ellipsoid for distance calculations
e Define Rubberband Color for Measure Tools

¢ Define Mouse wheel action (Zoom, Zoom and recenter, Zoom to mouse cursor, Nothing)

QGIS 1.0.0 User, Installation and Coding Guide 24

4.8 Spatial Bookmarks

e Define Zoom factor for wheel mouse

Digitizing Tab

¢ Define Rubberband Color and line width for Digitizing

Define default snap mode (to vertex, to segment, to vertex and segment)

Define default snapping tolerance in layer units

Define search radius for vertex edits in layer units

Define vertex marker style (Cross or semi transparent circle)

CRS Tab

R Prompt for Coordinate Reference System (CRS)

° Project wide default Coordinate Reference System (CRS) will be used

. Global default Coordinate Reference System (CRS) displayed below will be used

Select global default Coordinate Reference System (CRS)

Locale Tab

° Overwrite system locale and use defined locale instead

e Information about active system locale

Proxy Tab

o Use proxy for web access | and define host, port, user, and password.

You can modify the options according to your needs. Some of the changes may require a restart of
QGIS before they will be effective.

. .Q settings are saved in a texfile: $SHOME/.config/QuantumGIS/qgis.conf
. X you can find your settings in: $HOME/Library/Preferences/org.qgis.qgis.plist

. [? settings are stored in the registry under:
\\HKEY\CURRENT\USER\Software\QuantumGIS\qgis

4.8 Spatial Bookmarks

Spatial Bookmarks allow you to “bookmark” a geographic location and return to it later.

QGIS 1.0.0 User, Installation and Coding Guide 25

4 FEATURES AT A GLANCE

4.8.1 Creating a Bookmark

To create a bookmark:

. Zoom or pan to the area of interest.

1

2. Select the menu option [View | > | New Bookmark] or press (Ctrl-B .
3. Enter a descriptive name for the bookmark (up to 255 characters).
4

. Click to add the bookmark or to exit without adding the bookmark.

Note that you can have multiple bookmarks with the same name.

4.8.2 Working with Bookmarks

To use or manage bookmarks, select the menu option [View] > | Show Bookmarks]. The

‘Geospatial Bookmarks ‘ dialog allows you to zoom to or delete a bookmark. You can not edit
the bookmark name or coordinates.

4.8.3 Zooming to a Bookmark

From the ‘Geospatial Bookmarks | dialog, select the desired bookmark by clicking on it, then click
. You can also zoom to a bookmark by double-clicking on it.

4.8.4 Deleting a Bookmark

To delete a bookmark from the ‘Geospatial Bookmarks ‘ dialog, click on it then click .
Confirm your choice by clicking or cancel the delete by clicking .

QGIS 1.0.0 User, Installation and Coding Guide 26

5 Working with Vector Data

QGIS supports vector data in a number of formats, including those supported by the OGR library
data provider plugin, such as ESRI shapefiles, Mapinfo MIF (interchange format) and Mapinfo TAB
(native format). You find a list of OGR supported vector formats in Appendix A.1.

QGIS also supports PostGIS layers in a PostgreSQL database using the PostgreSQL data provider
plugin. Support for additional data types (eg. delimited text) is provided by additional data provider
plugins.

This section describes how to work with two common formats: ESRI shapefiles and PostGIS layers.
Many of the features available in QGIS work the same regardless of the vector data source. This is
by design and includes the identify, select, labeling and attributes functions.

Working with GRASS vector data is described in Section 9.

5.1 ESRI Shapefiles

The standard vector file format used in QGIS is the ESRI Shapefile. It's support is provided by
the OGR Simple Feature Library (http://www.gdal.org/ogr/) . A shapefile actually consists of a
minimum of three files:

e .shp file containing the feature geometries.

e .dbf file containing the attributes in dBase format.

e .shx index file.
Ideally it comes with another file with a .prj suffix, that contains the projection information for
the shapefile. There can be more files belonging to a shapefile dataset. To have a closer look

at this we recommend the technical specification for the shapefile format, that can be found at
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf. .

5.1.1 Loading a Shapefile

ﬁ To load a shapefile, start QGIS and click on the ﬁ ‘Add a vector Iayer\ toolbar button or

simply type . This same tool can be used to load any of the formats supported by the OGR library.

Clicking on the tool brings up a standard open file dialog (see Figure 4) which allows you to nav-
igate the file system and load a shapefile or other supported data source. The selection box

Files of type allows you to preselect some OGR supported file formats.

QGIS 1.0.0 User, Installation and Coding Guide 27

http://www.gdal.org/ogr/
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

5 WORKING WITH VECTOR DATA

You can also select the Encoding type for the shapefile if desired.

Figure 4: Open an OGR Supported Vector Layer Dialog)

| ty Open an OGR Supported Vector Layer

Look in: |_fhomefstephanfgrassd..._EUNmapD_shapeﬁles |v| 3 0 QN |ﬁ] =

® | compu... |||/ airports.shp | | swamp.shp

Y st ‘_i: alaska.shp [trails.shp

L& [builtups.shp [! trees.shp
elevp.shp [tundra.shp

| grassland.shp

| | lakes.shp

| landice.shp

majrivers.shp

pipelines.shp

| popp.shp

|| railroads shp

rivers .shp

| storagep.shp

File name: || I Open
Files of type: | [OGR] ESRI Shapefiles (*.shp *.SHP) :'vl Cancel ‘

Encoding: | System |v|

Selecting a shapefile from the list and clicking | Open I loads it into QGIS. Figure 5 shows QGIS after
loading the alaska. shp file.

Tip 7 LAYER COLORS

When you add a layer to the map, it is assigned a random color. When adding more than one layer at a time,
different colors are assigned to each layer.

Once loaded, you can zoom around the shapefile using the map navigation tools. To change the
symbology of a layer, open the |Layer Properties ‘ dialog by double clicking on the layer name or

by right-clicking on the name in the legend and choosing from the popup menu. See
Section 5.3.2 for more information on setting symbology of vector layers.

5.1.2 Improving Performance

To improve the performance of drawing a shapefile, you can create a spatial index. A spatial index
will improve the speed of both zooming and panning. Spatial indexes used by QGIS have a .qix
extension.

QGIS 1.0.0 User, Installation and Coding Guide 28

5.1 ESRI Shapefiles

4 Quantum GIS - 1. 0.0-Kore

Figure 5: QGIS with Shapefile of Alaska loaded a

Legend
\rrTTT—
-

Fle Edit Wiew Layer Settings Plugins Help
TREdd oRRPP HREBQ 7L OO0 AN
FRE=Ea29KRK vw»

eRARAQLRLUO

Overview

W F

[%]| -z42188,1496368 || Scale |[1525427 75363 | [6@] [Render

Use these steps to create the index:

e Load a shapefile.

e Open the ‘ Layer Properties ‘dialog by double-clicking on the shapefile name in the legend or

by right-clicking and choosing | Properties
e Inthe tab click the | Create Spatial Index

5.1.3 Loading a Maplnfo Layer

To load a Maplnfo layer, click on the

the file type filter to
you want to load.

R

Ifrom the popup menu.

button.

Add a vector layer

Files of Type

[OGR] Maplnfo (*.mif *.tab *.MIF *. TAB) [XJ

toolbar bar button or type , change

and select the layer

QGIS 1.0.0 User, Installation and Coding Guide

29

5 WORKING WITH VECTOR DATA

5.1.4 Loading an Arcinfo Coverage

Loading an Arcinfo coverage is done using the same method as with a shapefiles and

Maplinfo layers. Click on the ﬁ

‘Add a vector Iayer\ toolbar button or type to

open the ‘Open on OGR Supported Vector Layer ‘ dialog and change the file type filter to

files (if present in your coverage):

Files of Type‘AII files (*.*) E]‘ . Navigate to the coverage directory and select one of the following

e .lab - to load a label layer (polygon labels or standing points).

e .cnt - to load a polygon centroid layer
e .arc - to load an arc (line) layer.

e .pal - to load a polygon layer.

5.2 PostGIS Layers

PostGIS layers are stored in a PostgreSQL database. The advantages of PostGIS are the spatial
indexing, filtering and query capabilities it provides. Using PostGIS, vector functions such as select
and identify work more accurately than with OGR layers in QGIS.

To use PostGIS layers you must:

e Create a stored connection in QGIS to the PostgreSQL database (if one is not already defined).

Connect to the database.

Select the layer to add to the map.

Load the layer.

5.2.1 Creating a stored Connection

Optionally provide a SQL where clause to define which features to load from the layer.

ﬁ The first time you use a PostGIS data source, you must create a connection to the PostgreSQL

database that contains the data. Begin by clicking on the ﬁ ‘Add a PostGIS Layer‘ toolbar

button, selecting the EAdd a PostGIS Layer... | option from the menu or typing @ The

‘Add PostGIS Table(s)j dialog will be displayed. To access the connection manager, click on the

button to display the |Create a New PostGIS Connection | dialog. The parameters required

for a connection are shown in table 1.

QGIS 1.0.0 User, Installation and Coding Guide 30

5.2 PostGIS Layers

Table 1: PostGIS Connection Parameters

Name A name for this connection. Can be the same as Database.

Host Name of the database host. This must be a resolvable host name the
same as would be used to open a telnet connection or ping the host. If
the database is on the same computer as QGIS, simply enter 'localhost’

here.

Database Name of the database.

Port Port number the PostgreSQL database server listens on. The default port
is 5432.

Username | User name used to login to the database.
Password Password used with Username to connect to the database.

Optional you can activate follwing checkboxes:

o Save Password

R Only look in the geometry_columns table

R Only look in the "public’ schema

Once all parameters and options are set, you can test the connection by clicking on the
Test Connect | button.

Tip 8 QGIS USER SETTINGS AND SECURITY

Your customized settings for QGIS are stored based on the operating system. & , the settings are stored in

your home directory in .qt/qgisrc. { . , the settings are stored in the registry. Depending on your
computing environment, storing passwords in your QGIS settings may be a security risk.

5.2.2 Loading a PostGIS Layer

f Once you have one or more connections defined, you can load layers from the PostgreSQL
database. Of course this requires having data in PostgreSQL. See Section 5.2.4 for a discussion on
importing data into the database.

To load a layer from PostGIS, perform the following steps:

o If the Add PostGIS Table(s) ‘ dialog is not already open, click on the ﬁ
‘Add a PostGIS Layer ‘ toolbar button.

QGIS 1.0.0 User, Installation and Coding Guide 31

5 WORKING WITH VECTOR DATA

e Choose the connection from the drop-down list and click .
¢ Find the layer you wish to add in the list of available layers.

e Select it by clicking on it. You can select multiple layers by holding down the key while
clicking. See Section 5.5 for information on using the PostgreSQL Query Builder to further
define the layer.

e Click on the button to add the layer to the map.

Tip 9 POSTGIS LAYERS

Normally a PostGIS layer is defined by an entry in the geometry _columns table. From version 0.11.0 on,
QGIS can load layers that do not have an entry in the geometry columns table. This includes both tables and
views. Defining a spatial view provides a powerful means to visualize your data. Refer to your PostgreSQL
manual for information on creating views.

5.2.3 Some details about PostgreSQL layers

This section contains some details on how QGIS accesses PostgreSQL layers. Most of the time
QGIS should simply provide you with a list of database tables that can be loaded, and load them on
request. However, if you have trouble loading a PostgreSQL table into QGIS, the information below
may help you understand any QGIS messages and give you direction on changing the PostgreSQL
table or view definition to allow QGIS to load it.

QGIS requires that PostgreSQL layers contain a column that can be used as a unique key for the
layer. For tables this usually means that the table needs a primary key, or a column with a unique
constraint on it. QGIS additionally requires that this column be of type int4 (an integer of size 4 bytes).
If a table lacks these items, the oid column will be used instead. Performance will be improved if the
column is indexed (note that primary keys are automatically indexed in PostgreSQL).

If the PostgreSQL layer is a view, the same requirements exists, but views don’t have primary keys or
columns with unique constraints on them. In this case QGIS will try to find a column in the view that
is derived from a table column that is suitable. If one cannot be found, QGIS will not load the layer.
If this occurs, the solution is to alter the view so that it does include a suitable column (a type of int4
and either a primary key or with a unique constraint, preferably indexed).

5.2.4 Importing Data into PostgreSQL

shp2pgsql

Data can be imported into PostgreSQL using a number of methods. PostGIS includes a utility called
shp2pgsql that can be used to import shapefiles into a PostGIS enabled database. For example, to

QGIS 1.0.0 User, Installation and Coding Guide 32

5.2 PostGIS Layers

import a shapefile named lakes. shp into a PostgreSQL database named gis_data, use the following
command:

shp2pgsql -s 2964 lakes.shp lakes_new | psql gis_data

This creates a new layer named lakes_new in the gis_data database. The new layer will have a
spatial reference identifier (SRID) of 2964. See Section 8 for more information on spatial reference
systems and projections.

Tip 10 EXPORTING DATASETS FROM POSTGIS
Like the import-tool shp2pgsql there is also a tool to export PostGIS-datasets as shapefiles: pgsql2shp. This
is shipped within your PostGIS distribution.

SPIT Plugin

m QGIS comes with a plugin named SPIT (Shapefile to PostGIS Import Tool). SPIT can be used to
load multiple shapefiles at one time and includes support for schemas. To use SPIT, open the Plugin

Manager from the menu, check the box next to the SPIT plugin | and click . The
SPIT icon will be added to the plugin toolbar.

To import a shapefile, click on the ED SPIT| tool in the toolbar to open the

‘SPIT - Shapefile to PostGIS Import Tool ‘ dialog. Select the PostGIS database you want to con-
nect to and click on . Now you can add one or more files to the queue by clicking on the

button. To process the files, click on the button. The progress of the import as well as
any errors/warnings will be displayed as each shapefile is processed.

Tip 11 IMPORTING SHAPEFILES CONTAINING POSTGRESQL RESERVED WORDS

If a shapefile is added to the queue containing fields that are reserved words in the PostgreSQL database a
dialog will popup showing the status of each field. You can edit the field names prior to import and change any
that are reserved words (or change any other field names as desired). Attempting to import a shapefile with
reserved words as field names will likely fail.

ogr2ogr
Beside shp2pgsql and SPIT there is another tool for feeding geodata in PostGIS: ogr2ogr. This is

part of your GDAL installation. To import a shapefile into PostGIS, do the following:

ogr2ogr -f "PostgreSQL" PG:"dbname=postgis host=myhost.de user=postgres \
password=topsecret" alaska.shp

QGIS 1.0.0 User, Installation and Coding Guide 33

5 WORKING WITH VECTOR DATA

This will import the shapefile alaska.shp into the PostGIS-database postgis using the user
postgres with the password topsecret on host myhost.de.

Note that OGR must be built with PostgreSQL to support PostGIS. You can see this by typing
ogrinfo --formats | grep -i post

If you like to use PostgreSQLs COPY-command instead of the default INSERT INTO method you can
export the following environment-variable (at least available on & and X):

export PG_USE_COPY=YES

ogr2ogr does not create spatial indexes like shp2pgsl does. You need to create them manually
using the normal SQL-command CREATE INDEX afterwards as an extra step (as described in the next
section 5.2.5).

5.2.5 Improving Performance

Retrieving features from a PostgreSQL database can be time consuming, especially over a network.
You can improve the drawing performance of PostgreSQL layers by ensuring that a spatial index
exists on each layer in the database. PostGIS supports creation of a GiST (Generalized Search Tree)
index to speed up spatial searches of the data.

The syntax for creating a GiST® index is:

CREATE INDEX [indexname] ON [tablename]
USING GIST ([geometryfield] GIST_GEOMETRY_OPS);

Note that for large tables, creating the index can take a long time. Once the index is created, you
should perform a VACUUM ANALYZE. See the PostGIS documentation (4) for more information.

The following is an example of creating a GiST index:

gsherman@madison: ~/current$ psql gis_data
Welcome to psql 8.3.0, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\?7 for help with psql commands

3GiST index information is taken from the PostGIS documentation available at http://postgis.refractions.net

QGIS 1.0.0 User, Installation and Coding Guide 34

http://postgis.refractions.net

5.3 The Vector Properties Dialog

\g or terminate with semicolon to execute query
\q to quit

gis_data=# CREATE INDEX sidx_alaska_lakes ON alaska_lakes
gis_data-# USING GIST (the_geom GIST_GEOMETRY_OPS);
CREATE INDEX

gis_data=# VACUUM ANALYZE alaska_lakes;

VACUUM

gis_data=# \q

gsherman@madison:~/current$

5.3 The Vector Properties Dialog

The ‘Layer Properties ‘ dialog for a vector layer provides information about the layer, symbology
settings and labeling options. If your vector layer has been loaded from a PostgreSQL / PostGIS
datastore, you can also alter the underlying SQL for the layer - either by hand editing the SQL on

the | General | tab or by invoking the ‘Query Builder ‘ dialog on the tab. To access the

‘ Layer Properties ‘ dialog, double-click on a layer in the legend or right-click on the layer and select

from the popup menu.

QGIS 1.0.0 User, Installation and Coding Guide 35

5 WORKING WITH VECTOR DATA

Figure 6: Vector Layer Properties Dialog)

? 4 Layer Properties

General | Symbology | Metadata | Labels | Actions | Attributes ‘
~Options
Display name |a|aska !
Display field |cat |v|
[+proj=longlat +ellps=wGS84 +datum=wGS84 +no_dsfs |
| Create Spatial Index ‘ | Change CRS |
J
|| Use scale dependent rendering
Minimurm 1 i—:{ Maximum 100000000 i%'
- Subset
Query Buw\der|
Y
‘ Restore Default Style ” Save As Default || Load Style ... || Save Style .. ‘
| Help ‘ | oK | | Apply | ‘ Cancel |

5.3.1 General Tab

The tab is essentially like that of the raster dialog. It allows you to change the display
name, set scale dependent rendering options, create a spatial index of the vector file (only for OGR
supported formats and PostGIS) and view or change the projection of the specific vetor layer.

The ’ Query Builder | button allows you to create a subset of the features in the layer - but this button
currently only is available when you open the attribute table and select the button.

5.3.2 Symbology Tab

QGIS supports a number of symbology renderers to control how vector features are displayed. Cur-
rently the following renderers are available:

Single symbol - a single style is applied to every object in the layer.

Graduated symbol - objects within the layer are displayed with different symbols classified by the
values of a particular field.

QGIS 1.0.0 User, Installation and Coding Guide 36

5.3 The Vector Properties Dialog

Continuous color - objects within the layer are displayed with a spread of colours classified by the
numerical values within a specified field.

Unique value - objects are classified by the unique values within a specified field with each value
having a different symbol.

To change the symbology for a layer, simply double click on its legend entry and the vector
Layer Properties | dialog will be shown.

Figure 7: Symbolizing-options)

[General | Symbology | Metadata | Labels | Actions | Attributes | General | Symbology | Metadata | Labels | Actions | Attributes
Legend type | single Symbol F\ 0% | Graduated symbol [+ %
cat g
Equal interval i)
[2]
et Classify I e |
Label
~Style Op
outline style — Solid Line [~ e
— P—
outline width [0:40 g ﬁ
il style [m=soid S| \—
= solid H[-]
[Restore Defaut style Save As Default I Load Style ... Save Style ... | | Restore pefauitstyle || Save As Default | Load Style .. H Save Style ...
[hep [avply | [cancel | relp | E [aopy | [cancel

(a) Single symbol

(b) Graduated symbol

General | Symbology | Metadata | Labels | Actions | Attributes General | Symbology | Metadata | Labels | Actions | Attributes |
Legend type | continuous Color | Tansparency: 0% Legend type Unique Value I8 %
Classification field cat [+
Classify | Adddass ” Delete classes ﬂaandom.ze Colors. Reset Colors \
Classffcation Field cat -
Label
Minimurm Value: I
Style Options
[~ solid Line =)
Maximum Value: | ‘
Outline Width: (040 2] ® praw polygon outline Fill style [= solid [~ \
‘ Restore Default style || Save As Default Load Style ... H Save Style Restore Default Style H Save As Default Load Style .. J Save Style ... |
[veb | [apply | [cancel Help oK apply | [cancel |

Style Options

Within this dialog you can style your vector layer. Depending on the selected rendering option you

(c) Continous color

have the possibility to also classify your mapfeatures.

(d) Unique value

At least the following styling options apply for nearly all renderers:

QGIS 1.0.0 User, Installation and Coding Guide

5 WORKING WITH VECTOR DATA

Outline style - pen-style for your outline of your feature. you can also set this to 'no pen'.
Outline color - color of the ouline of your feature
Outline width - width of your features

Fill color - fill-color of your features.

Fill style - Style for filling. Beside the given brushes you can select| Fill style and click

the | - - - | button for selecting your own fill-style. Currently the fileformats *. jpeg, *.xpm, and
*.png are supported.

Once you have styled your layer you also could save your layer-style to a separate file (with *.qml-

ending). To do this, use the button| Save Style ... | . No need to say that‘ Load Style ... | loads your
saved layer-style-file.

If you wish to always use a patrticular style whenever the layer is loaded, use the \ Save As Defaultl
button to make your style the default. Also, if you make changes to the style that you are not happy

with, use the | Restore Default Styel | putton to revert to your default style.

Vector transparency

QGIS 1.0.0 allows to set a transparency for every vector layer. This can be done with the slider

Transparency 0% [/ jr——— ‘ inside the Symb0|OQYI tab (see fig. 6). This is very useful for
overlaying several vector layers.

5.3.3 Metadata Tab

The tab contains information about the layer, including specifics about the type and
location, number of features, feature type, and the editing capabilities. The Layer Spatial Reference
System section, providing projection information, and the Attribute field info section, listing fields and
their data types, are displayed on this tab. This is a quick way to get information about the layer.

5.3.4 Labels Tab
The tab allows you to enable labeling features and control a number of options related to
fonts, placement, style, alignment and buffering.
We will illustrate this by labelling the lakes shapefile of the qgis_example_dataset:
1. Load the Shapefile alaska.shp and GML file lakes.gml in QGIS.

2. Zoom in a bit to your favorite area with some lake.

3. Make the lakes layer active.

QGIS 1.0.0 User, Installation and Coding Guide 38

5.3 The Vector Properties Dialog

4. Open the ‘Layer Properties ‘dialog.

5. Click on the tab.

6. Check the |[X] Display labels | checkbox to enable labeling.

7. Choose the field to label with. We'll use | Field containing label | NAMES [¥]||.

8. Enter a default for lakes that have no name. The default label will be used each time QGIS
encounters a lake with no value in the NAMES field.

9. Click |Apply | .

Now we have labels. How do they look? They are probably too big and poorly placed in relation to
the marker symbol for the lakes.

Select the entry and use the [Font] and | Color | buttons to set the font and color. You can
also change the angle and the placement of the text-label.

To change the position of the text relative to the feature:

1. Click on the entry.

2. Change the placement by selecting one of the radio buttons in the Placement group. To fix our
labels, choose the ® Right radio button.

3. the Font size units allows you to select between © Points or ® Map units.

4. Click Apply| to see your changes without closing the dialog.

Things are looking better, but the labels are still too close to the marker. To fix this we can use the
options on the entry. Here we can add offsets for the X and Y directions. Adding an X
offset of 5 will move our labels off the marker and make them more readable. Of course if your marker
symbol or font is larger, more of an offset will be required.

The last adjustment we’ll make is to the labels. This just means putting a backdrop around
them to make them stand out better. To buffer the lakes labels:

. Click the tab.

2. Click the Buffer Labels? | checkbox to enable buffering.

3. Choose a size for the buffer using the spin box.

=

4. Choose a color by clicking on and choosing your favorite from the color selector. You
can also set some transparency for the buffer if you prefer.

5. Click AIOPWI to see if you like the changes.

If you aren’t happy with the results, tweak the settings and then test again by clicking ADDWI .

QGIS 1.0.0 User, Installation and Coding Guide 39

5 WORKING WITH VECTOR DATA

A buffer of 1 points seems to give a good result. Notice you can also specify the buffer size in map
units if that works out better for you.

The remaining entries inside the tab allow you control the appearance of the labels using

attributes stored in the layer. The entries beginning with | Data defined] allow you to set all the

parameters for the labels using fields in the layer.

Not that the tab provides a preview-box where your selected label is shown.

5.3.5 Actions Tab

QGIS provides the ability to perform an action based on the attributes of a feature. This can be
used to perform any number of actions, for example, running a program with arguments built from the
attributes of a feature or passing parameters to a web reporting tool.

Actions are useful when you frequently want to run an external application or view a web page based
on one or more values in your vector layer. An example is performing a search based on an attribute
value. This concept is used in the following discussion.

Defining Actions

Attribute actions are defined from the vector ‘Layer Properties ‘ dialog. To define an action, open

the vector | Layer Properties dialog and click on the tab. Provide a descriptive name for
the action. The action itself must contain the name of the application that will be executed when the
action is invoked. You can add one or more attribute field values as arguments to the application.
When the action is invoked any set of characters that start with a % followed by the name of a field will
be replaced by the value of that field. The special characters %% will be replaced by the value of the
field that was selected from the identify results or attribute table (see Using Actions below). Double
quote marks can be used to group text into a single argument to the program, script or command.
Double quotes will be ignored if preceded by a backslash.

If you have field names that are substrings of other field names (e.g., col1 and co110) you should in-
dicate so, by surrounding the field name (and the % character) with square brackets (e.g., [%co0110]).
This will prevent the %co0110 field name being mistaken for the %col1 field name with a 0 on the end.
The brackets will be removed by QGIS when it substitutes in the value of the field. If you want the
substituted field to be surrounded by square brackets, use a second set like this: [[%co0110]].

The ‘ Identify Results | dialog box includes a (Derived) item that contains information relevant to the
layer type. The values in this item can be accessed in a similar way to the other fields by using
preceeding the derived field name by (Derived) .. For example, a point layer has an X and Y field
and the value of these can be used in the action with % (Derived) .X and % (Derived) .Y. The derived
attributes are only available from the ‘ Identify Results ‘dialog box, not the \Attribute Table \dialog
box.

QGIS 1.0.0 User, Installation and Coding Guide 40

5.3 The Vector Properties Dialog

Two example actions are shown below:

e konqueror http://www.google.com/search?q=}nam

e konqueror http://www.google.com/search?q=%%

In the first example, the web browser konqueror is invoked and passed a URL to open. The URL per-
forms a Google search on the value of the nam field from our vector layer. Note that the application or
script called by the action must be in the path or you must provided the full path. To be sure, we could
rewrite the first example as: /opt/kde3/bin/konqueror http://www.google.com/search?q=/nam.
This will ensure that the konqueror application will be executed when the action is invoked.

The second example uses the %% notation which does not rely on a particular field for its value.
When the action is invoked, the %% will be replaced by the value of the selected field in the identify
results or attribute table.

Using Actions

Actions can be invoked from either the ‘Identify Results ‘ dialog or an \Attribute Table \ dialog.

(Recall that these dialogs can be opened by clicking | == ‘ Identify Features‘or =—=!|| Open Table |)
To invoke an action, right click on the record and choose the action from the popup menu. Actions
are listed in the popup menu by the name you assigned when defining the actions. Click on the action
you wish to invoke.

If you are invoking an action that uses the %% notation, right-click on the field value in the
‘Identify Results ‘ dialog or the \Attribute Table \ dialog that you wish to pass to the application
or script.

Here is another example that pulls data out of a vector layer and inserts them into a file using bash

and the echo command (so it will only work & or perhaps X). The layer in question has fields for a
species hame taxon_name, latitude 1at and longitude long. | would like to be able to make a spatial
selection of a localities and export these field values to a text file for the selected record (shown in
yellow in the QGIS map area). Here is the action to achieve this:

bash -c "echo \"%taxon_name %lat %long\" >> /tmp/species_localities.txt"

After selecting a few localities and running the action on each one, opening the output file will show
something like this:

Acacia mearnsii -34.0800000000 150.0800000000
Acacia mearnsii -34.9000000000 150.1200000000
Acacia mearnsii -35.2200000000 149.9300000000
Acacia mearnsii -32.2700000000 150.4100000000

QGIS 1.0.0 User, Installation and Coding Guide 41

5 WORKING WITH VECTOR DATA

As an exercise we create an action that does a Google search on the lakes layer. First we need
to determine the URL needed to perform a search on a keyword. This is easily done by just going
to Google and doing a simple search, then grabbing the URL from the address bar in your browser.
From this little effort we see that the format is: http://google.com/search?q=qgis, where qgis is
the search term. Armed with this information, we can proceed:

1. Make sure the lakes layer is loaded.

2. Open the ‘ Layer Properties ‘ dialog by double-clicking on the layer in the legend or right-click
and choose | Properties | from the popup menu.

3. Click on the tab.

4. Enter a name for the action, for example Google Search.

5. For the action, we need to provide the name of the external program to run. In this case, we
can use Firefox. If the program is not in your path, you need to provide the full path.

6. Following the name of the external application, add the URL used for doing a Google search,
up to but not included the search term: http://google.com/search?q=

7. The text in the Action field should now look like this:
firefox http://google.com/search?q=

8. Click on the drop-down box containing the field names for the 1lakes layer. It's located just to

the left of the | Insert Field | button.
9. From the drop-down box, select| | NAMES [X]||and click | Insert Field | .

10. Your action text now looks like this:
firefox http://google.com/search?q=%NAMES

11. Fo finalize the action click the button.

This completes the action and it is ready to use. The final text of the action should look like this:

firefox http://google.com/search?q=%NAMES

We can now use the action. Close the ‘ Layer Properties |dialog and zoom in to an area of interest.
Make sure the 1lakes layer is active and identify a lake. In the result box you'll now see that our action
is visible:

QGIS 1.0.0 User, Installation and Coding Guide 42

http://google.com/search?q=qgis
http://google.com/search?q=
http://google.com/search?q=
http://google.com/search?q=%NAMES
http://google.com/search?q=%NAMES

5.3 The Vector Properties Dialog

Figure 8: Select feature and choose action)

iy Identify Results -lakes - 1 2 O X

Feature Value
E-icat 31
- (Denved)

Area 2,637,194,215.301 sq.
AREA_KMZ 2637.194219

NAMES lliamna Lake
#% action Google Search
cat 31

=

<]
Help Close

When we click on the action, it brings up Firefox and navigates to the URL
http://wuw.google.com/search?q=Tustumena. It is also possible to add further attribute fields to
the action. Therefore you can add a “+” to the end of the action text, select another field and click on
. In this example there is just no other field available that would make sense to search
for.

You can define multiple actions for a layer and each will show up in the ‘ Identify Results | dialog. You
can also invoke actions from the attribute table by selecting a row and right-clicking, then choosing
the action from the popup menu.

You can think of all kinds of uses for actions. For example, if you have a point layer containing
locations of images or photos along with a file name, you could create an action to launch a viewer
to display the image. You could also use actions to launch web-based reports for an attribute field or
combination of fields, specifying them in the same way we did in our Google search example.

5.3.6 Attributes Tab

Within the Attributesl tab the attributes of the selected dataset can be manipulated. The buttons

\New Colurrﬂ and FDeIete Column| can be used, when the dataset is in editing mode. At the

QGIS 1.0.0 User, Installation and Coding Guide 43

http://www.google.com/search?q=Tustumena

5 WORKING WITH VECTOR DATA

moment only columns from PostGIS layers can be edited, because this feature is not yet supported
by the OGR library.

The | Toggle editing mode | button toggles this mode.

edit widget

Within the | Attributes | tab you also find an edit widget and a value column. These two columns
can be used to define values or a range of values that are allowed to be added to the specific attribute
table columns. They are used to produce different edit widgets in the attribute dialog. These widgets
are:

e line edit: an edit field which allows to enter simple text (or restrict to numbers for numeric
attributes).

e unique value: a list of unique attribute values of all pre-existing features is produced and pre-
sented in a combo box for selection.

e unique value (editable): a combination of ‘line edit’ and ‘unique value’. The edit field completes
entered values to the unique value, but also allows to enter new values.

e value map: a combobox to select from a set of values specified in the value column the
tab. The possible values are delimited by a semicolon (e.g. high;medium;low).
It is also possible to prepend a label to each value, which is delimited with an equal sign (e.g.
high=1;medium=2;low=3). The label is shown in the combobox instead of the value.

e classification: if a unique value renderer is selected for the layer, the values used for the classes
are presented for selection in a combobox.

e range (editable): A edit field that allows to restrict numeric values to a given range. That range
is specified by entering minium and maximum value delimited by a semicolon (e.g. 0;360) in

the value column of the | Attributes | tab.

e range (slider): A slider widget is presented that allows selection of a value in a given range and
precision. The range is specifed by minimum, maximum value and a step width (e.g. 0;360;10)

in the value column of the | Attributes | tab.

o file name: the line edit widget is accompanied by a push button. When pressed it allows to
select a filename using the standard file dialog.

5.4 Editing

QGIS supports basic capabilities for editing vector geometries. Before reading any further you should
note that at this stage editing support is still preliminary. Before performing any edits, always make a
backup of the dataset you are about to edit.

Note - the procedure for editing GRASS layers is different - see Section 9.7 for details.

QGIS 1.0.0 User, Installation and Coding Guide 44

5.4 Editing

5.4.1 Setting the Snapping Tolerance and Search Radius

Before we can edit vertices, it is very important to set the snapping tolerance and search radius to a
value that allows us an optimal editing of the vector layer geometries.

Snapping tolerance

Snapping tolerance is the distance QGIS uses to search for the closest vertex and/or segment you
are trying to connect when you set a new vertex or move an existing vertex. If you aren’t within the
snap tolerance, QGIS will leave the vertex where you release the mouse button, instead of snapping
it to an existing vertex and/or segment.

= Options

1. A general, project wide snapping tolerance can be defined choosing | Settings | >

In the | Digitizing I tab you can select between to vertex, to segment or to vertex and segment
as default snap mode. You can also define a default snapping tolerance and a search radius
for vertex edits. Remember the tolerance is in layer units. In our digitizing project (working with
the Alaska dataset), the units are in feet. Your results may vary, but something on the order of
300ft should be fine at a scale of 1:10 000 should be a reasonable setting.

2. A layer based snapping tolerance can be defined by choosing Settingsl >

“, Project PrOperties...I. In the tab, section Digitize you can click on

Snapping options...l to enable and adjust snapping mode and tolerance on a layer
basis (see Figure 9).

Figure 9: Edit snapping options on a layer basis A

y Spapping options

Layer |Mode |T0|erance |
[built... ito vertex le l
[Jairpo... [to vertex vIU l
[Tlakes [to vertex vIU l
[Jalaska [to vertex le l

| o || cancel |

QGIS 1.0.0 User, Installation and Coding Guide 45

5 WORKING WITH VECTOR DATA

Search radius

Search radius is the distance QGIS uses to search for the closest vertex you are trying to move when
you click on the map. If you aren’t within the search radius, QGIS won't find and select any vertex for
editing and it will pop up an annoying warning to that effect. Snap tolerance and search radius are
set in map units so you may find you need to experiment to get them set right. If you specify too big
of a tolerance, QGIS may snap to the wrong vertex, especially if you are dealing with a large number
of vertices in close proximity. Set search radius too small and it won't find anything to move.

The search radius for vertex edits in layer units can be defined in the | Digitizing I tab under Settingsl
> |~ Options | The same place where you define the general, project wide snapping tolerance.

5.4.2 Topological editing

Besides layer based snapping options the tab in menu |[Settings] ->
\\'z Project Properties. .. Jalso provides some topological functionalities. In the Digitizing option group

you can || X] Enable topological editing | and/or activate |[X] Avoid intersections of new polygons |

Enable topological editing

The option Enable topological editing | js for editing and maintaining common boundaries in poly-
gon mosaics. QGIS "detects" a shared boundary in a polygon mosaic and you only have to move the
vertex once and QGIS will take care about updating the other boundary.

Avoid intersections of new polygons

The second topological option called |[X] Avoid intersections of new polygons | avoids overlaps in
polygon mosaics. It is for quicker digitizing of adjacent polygons. If you already have one poly-
gon, it is possible with this option to digitise the second one such that both intersect and qgis then
cuts the second polygon to the common boundary. The advantage is that users don’t have to digitize
all vertices of the common boundary.

5.4.3 Editing an Existing Layer

By default, QGIS loads layers read-only: This is a safeguard to avoid accidentally editing a layer if
there is a slip of the mouse. However, you can choose to edit any layer as long as the data provider
supports it, and the underlying data source is writable (i.e. its files are not read-only).

Layer editing is most versatile when used on PostgreSQL/PostGIS data sources.

QGIS 1.0.0 User, Installation and Coding Guide 46

5.4 Editing

Tip 12 DATA INTEGRITY
It is always a good idea to back up your data source before you start editing. While the authors of QGIS have
made every effort to preserve the integrity of your data, we offer no warranty in this regard.

Tip 13 MANIPULATING ATTRIBUTE DATA

Currently only PostGIS layers are supported for adding or dropping attribute columns within this dialog. In
future versions of QGIS, other datasources will be supported, because this feature was recently implemented
in GDAL/OGR > 1.6.0

All editing sessions start by choosing the | < Toggle editing] option. This can be found in the con-

text menu after right clicking on the legend entry for that layer. Alternately, you can use the z
Toggle editing | button from the toolbar to start or stop the editing mode. Once the layer is in edit

mode, markers will appear at the vertices, and additional tool buttons on the editing toolbar will be-
come available.

Zooming with the mouse wheel

While digitizing you can use the mouse wheel to zoom in and out on the map Place the mouse cursor
inside the map area and roll it forward (away from you) to zoom in and backwards (towards you) to
zoom out. The mouse cursor position will be the center of the zoomed area of interest. You can

customize the behavior of the mouse wheel zoom using the | Map tOOlSI tab under the Settingsl

> Options I menu.

Panning with the arrow keys

Panning the Map during digitizing is possible with the arrow keys. Place the mouse cursor inside the
map area and click on the right arrow key to pan east, left arrow key to pan west, up arrow key to pan
north and down arrow key to pan south.

You can also use the spacebar to temporarily cause mouse movements to pan then map. The PgUp
and PgDown keys on your keyboard will cause the map display to zoom in or out without interrupting
your digitising session.

You can perform the following editing functions:

g »
e Add Features: |® @ ‘Capture Point ‘ ®-4 || Capture Line |and a ‘Capture Polygon

° @ Add Ring
. & Add Island

QGIS 1.0.0 User, Installation and Coding Guide 47

5 WORKING WITH VECTOR DATA

Tip 14 SAVE REGULARLY

Remember to toggle Z Toggle editing | off regularly. This allows you to save your recent changes, and
also confirms that your data source can accept all your changes.

Tip 15 CONCURRENT EDITS

This version of QGIS does not track if somebody else is editing a feature at the same time as you. The last

person to save their edits wins.

i ﬁﬁ ’ Split Features‘

e | || Move Features|

Move Vertex
Add Vertex

| Delete Vertex |

] Delete Selected \

Cut Features

’ Copy Features‘

PEaEEs

] Paste Features\

Adding Features

Before you start adding features, use the
first navigate to the area of interest.

@ pan|and Q. zoom-in

Q{, 'm‘ tools to

»

Then you can use the | ® @ ’Capture point

o-d

Capture line | Or

84

’Capture polygon ‘ icons

on the toolbar to put the QGIS cursor into digitizing mode.

For each feature, you first digitize the geometry, then enter its attributes.

To digitize the geometry, left-click on the map area to create the first point of your new feature.

QGIS 1.0.0 User, Installation and Coding Guide

48

5.4 Editing

Tip 16 ZooM IN BEFORE EDITING
Before editing a layer, you should zoom in to your area of interest. This avoids waiting while all the vertex
markers are rendered across the entire layer.

Tip 17 VERTEX MARKERS
The current version of QGIS supports two kinds of vertex-markers - a semi-transparent circle or a cross. To

change the marker style, choose |~ Options I from the menu and click on the | Digitizing I tab and

select the appropriate entry.

For lines and polygons, keep on left-clicking for each additional point you wish to capture. When
you have finished adding points, right-click anywhere on the map area to confirm you have finished
entering the geometry of that feature.

The attribute window will appear, allowing you to enter the information for the new feature. Figure 10
shows setting attributes for a fictitious new river in Alaska.

Figure 10: Enter Attribute Values Dialog after digitizing a new vector feature)

(; Enter Attribute Values 7 — 0 X
cat (dbl) [l
F_CODEDESC (txt) ||
NAM (txt) [MyN ewRiver]
F_CODE (txt) [ShinyNewCode here l
l oK] [Cancel l
Move Feature
4‘P
You can move features using the | '« \ Move Eeature | icon on the toolbar.

Split Feature

You can split features using the g‘-\ ‘Split Features | icon on the toolbar.

QGIS 1.0.0 User, Installation and Coding Guide 49

5 WORKING WITH VECTOR DATA

Tip 18 ATTRIBUTE VALUE TYPES
At least for shapefile editing the attribue types are validated during the entry. Because of this, it is not possible
to enter a number into the text-column in the dialog \ Enter Attribute Values \ or vica versa. If you need to do

S0, you should edit the attributes in a second step within the \Attribute table \ dialog.

Editing Vertices of a Feature
For both PostgreSQL/PostGIS and shapefile-based layers, the vertices of features can be edited.

Vertices can be directly edited, that is, you don’'t have to choose which feature to edit before you
can change its geometry. In some cases, several features may share the same vertex and so the
following rules apply when the mouse is pressed down near map features:

e Lines - The nearest line to the mouse position is used as the target feature. Then (for moving
and deleting a vertex) the nearest vertex on that line is the editing target.

e Polygons - If the mouse is inside a polygon, then it is the target feature; otherwise the nearest
polygon is used. Then (for moving and deleting a vertex) the nearest vertex on that polygon is
the editing target.

You will need to set the property | Settings |>|« Options >’ Digitizing | > Search Radius | 10 m to a

number greater than zero. Otherwise QGIS will not be able to tell which feature is being edited.

Adding Vertices of a Feature

L Y
You can add new vertices to a feature by using the w || Add Vertex | icon on the toolbar.

Note, it doesn’'t make sense to add more vertices to a Point feature!

In this version of QGIS, vertices can only be added to an existing line segment of a line feature. If
you want to extend a line beyond its end, you will need to move the terminating vertex first, then add
a new vertex where the terminus used to be.

Moving Vertices of a Feature

You can move vertices using the 'é' Move Vertex | icon on the toolbar.

Deleting Vertices of a Feature

You can delete vertices by using the ‘Q \ Delete Vertex | icon on the toolbar.

Note, it doesn’'t make sense to delete the vertex of a Point feature! Delete the whole feature instead.

QGIS 1.0.0 User, Installation and Coding Guide 50

5.4 Editing

Similarly, a one-vertex line or a two-vertex polygon is also fairly useless and will lead to unpredictable
results elsewhere in QGIS, so don't do that.

Warning: A vertex is identified for deletion as soon as you click the mouse near an eligible feature.
To undo, you will need to toggle Editing off and then discard your changes. (Of course this will mean
that other unsaved changes will be lost, too0.)

Add Ring

You can create ring polygons using the @ Add Ring | icon in the toolbar. This means inside an

existing area it is possible to digitize further polygons, that will occur as a 'whole’, so only the area in
between the boundaries of the outer and inner polygons remain as a ring polygon.

Add Island

You can & add island | polygons to a selected multipolygon. The new island polygon has to be
digitized outside the selected multipolygon.

Cutting, Copying and Pasting Features

Selected features can be cut, copied and pasted between layers in the same QGIS project, as long

as destination layers are set to z \Toggle editing ‘ beforehand.

Features can also be pasted to external applications as text: That is, the features are represented in
CSV format with the geometry data appearing in the OGC Well-Known Text (WKT) format.

However in this version of QGIS, text features from outside QGIS cannot be pasted to a layer within
QGIS. When would the copy and paste function come in handy? Well, it turns out that you can edit
more than one layer at a time and copy/paste features between layers. Why would we want to do
this? Say we need to do some work on a new layer but only need one or two lakes, not the 5,000 on
our big_lakes layer. We can create a new layer and use copy/paste to plop the needed lakes into it.

As an example we are copying some lakes to a new layer:

1. Load the layer you want to copy from (source layer)
2. Load or create the layer you want to copy to (target layer)
3. Start editing for both layers

4. Make the source layer active by clicking on it in the legend

=
[.
5. Use the| “t || select|tool to select the feature(s) on the source layer

QGIS 1.0.0 User, Installation and Coding Guide 51

5 WORKING WITH VECTOR DATA

6. Click on the 'jﬂ ’ Copy Features ‘ tool

7. Make the destination layer active by clicking on it in the legend

8. Click on the j ’ Paste Features ‘ tool

9. Stop editing and save the changes

What happens if the source and target layers have different schemas (field names and types are not
the same)? QGIS populates what matches and ignores the rest. If you don’t care about the attributes
being copied to the target layer, it doesn’t matter how you design the fields and data types. If you want
to make sure everything - feature and its attributes - gets copied, make sure the schemas match.

Tip 19 CONGRUENCY OF PASTED FEATURES

If your source and destination layers use the same projection, then the pasted features will have geometry
identical to the source layer. However if the destination layer is a different projection then QGIS cannot
guarantee the geometry is identical. This is simply because there are small rounding-off errors involved when
converting between projections.

Deleting Selected Features

If we want to delete an entire polygon, we can do that by first selecting the polygon using the regular

“& || Select Features \ tool. You can select multiple features for deletion. Once you have the selec-

tion set, use the X \Delete Selected | tool to delete the features. There is no undo function, but
remember your layer isn't really changed until you stop editing and choose to save your changes. So
if you make a mistake, you can always cancel the save.

i
The)P Cut Features | tool on the digitizing toolbar can also be used to delete features. This
effectively deletes the feature but also places it on a “spatial clipboard". So we cut the feature to

delete. We could then use the 2] paste tool | to put it back, giving us a one-level undo capability.

Cut, copy, and paste work on the currently selected features, meaning we can operate on more than
one at a time.

Tip 20 FEATURE DELETION SUPPORT

When editing ESRI shapefiles, the deletion of features only works if QGIS is linked to a GDAL version 1.3.2 or
greater. The OS X and Windows versions of QGIS available from the download site are built using GDAL
1.3.2 or higher.

QGIS 1.0.0 User, Installation and Coding Guide 52

5.5 Query Builder

Snap Mode

QGIS allows digitized vertices to be snapped to other vertices of the same layer. To set the snapping

tolerance, go to \Settings|>\\‘; Options |->| Digitizing | . Note that the snapping tolerance is in map
units.

Saving Edited Layers

When a layer is in editing mode, any changes remain in the memory of QGIS. Therefore they are
not committed/saved immediately to the data source or disk. When you turn editing mode off (or quit
QGIS for that matter), you are then asked if you want to save your changes or discard them.

If the changes cannot be saved (e.g. disk full, or the attributes have values that are out of range), the
QGIS in-memory state is preserved. This allows you to adjust your edits and try again.

5.4.4 Creating a New Layer

To create a new layer for editing, choose T \New Vector Layer\ from the menu. The

‘ New Vector Layer ‘ dialog will be displayed as shown in Figure 11. Choose the type of layer (point,
line or polygon).

Note that QGIS does not yet support creation of 2.5D features (i.e. features with X,Y,Z coordinates) or
measure features. At this time, only shapefiles can be created. In a future version of QGIS, creation
of any OGR or PostgreSQL layer type will be supported.

Creation of GRASS-layers is supported within the GRASS-plugin. Please refer to section 9.6 for
more information on creating GRASS vector layers.

To complete the creation of the new layer, add the desired attributes by clicking on the but-

Type attributes are supported. Once you are happy with the attributes, click and

provide a name for the shapefile. QGIS will automatically add a .shp extension to the name you
specify. Once the layer has been created, it will be added to the map and you can edit it in the same
way as described in Section 5.4.3 above.

ton and specifying a name and type for the attribute. Only | Type

5.5 Query Builder

The Query Builder allows you to define a subset of a table and display it as a layer in QGIS. It can
currently only be used with PostGIS layers. For example, if you have a towns layer with a population
field you could select only larger towns by entering population > 100000 in the SQL box of the query

QGIS 1.0.0 User, Installation and Coding Guide 53

5 WORKING WITH VECTOR DATA

Figure 11: Creating a New Vector Dialog o)

L New Vector Layer

File format ESRI Shapefile |v]
Type
@ Point () Line () Polygon
Attributes
Name [Name l
Type [String |v]

MName |Type
o Real

ERE

builder. Figure 12 shows an example of the query builder populated with data from a PostGIS layer
with attributes stored in PostgreSQL.

The query builder lists the layer’s database fields in the list box on the left. You can get a sample of
the data contained in the highlighted field by clicking on the SampIeI button. This retrieves the first
25 distinct values for the field from the database. To get a list of all possible values for a field, click
on the button. To add a selected field or value to the query, double-click on it. You can use the
various buttons to construct the query or you can just type it into the SQL box.

To test a query, click on the button. This will return a count of the number of records that will

be included in the layer. When satisfied with the query, click . The SQL for the where clause
will be shown in the SQL column of the layer list.

QGIS 1.0.0 User, Installation and Coding Guide 54

5.6 Select by query

Figure 12: Query Builder)

[iy PostgreSQL Query Builder

Table be_hospitals in database bc on host localhost, user stephan

~Fields ~Values
gid Cowichan District Hospital E_I
id Dawson Creek and District Hospital
authority Delta Hospital
Eage Fidge Hospital & Health Ca..
the_geom East Kootenay Regional Hospital
Fort St John General Hospital
G.R. Baker Memorial Hospital
Kelowna General Hospital
Kitimat General Hospital 7S
Kootenay Boundary Regional Hos... H
| Sample | | All |
~Operators
= = 0= v L= Jln []
| == || >= || = || wuke || A || or || wNoT |
)))
~SQL where clause
I“name" LIKE %% Generalys'
| Clear | | Test l | ok | | Cancel |

Tip 21 CHANGING THE LAYER DEFINITION

You can change the layer definition after it is loaded by altering the SQL query used to define the layer. To do
this, open the vector ‘ Layer Properties ‘ dialog by double-clicking on the layer in the legend and click on the

Query Builder | button on the | General I tab. See Section 5.3 for more information.

5.6 Select by query

With QGIS it is possible also to select features using a similar query builder interface to that used
in 5.5. In the above section the purpose of the query builder is to only show features meeting the
filter criteria as a 'virtual layer’ / subset. The purpose of the select by query function is to highlight all
features that meet a particular criteria. Select by query can be used with all vector data providers.

To do a ‘select by query’ on a loaded layer, click on the button | ==

Open Table |to open the attribute

table of the layer. Then click the button at the bottom. This starts the Query Builder
that allows to define a subset of a table and display it as described in Section 5.5.

QGIS 1.0.0 User, Installation and Coding Guide

55

6 WORKING WITH RASTER DATA

6 Working with Raster Data

This Section describes how to visualize and set raster layer properties. QGIS supports a number of
different raster formats. Currently tested formats include:

e Arc/Info Binary Grid
Arc/Info ASCII Grid
GRASS Raster
GeoTIFF

e JPEG

Spatial Data Transfer Standard Grids (with some limitations)
USGS ASCII DEM

Erdas Imagine

Because the raster implementation in QGIS is based on the GDAL library, other raster formats
implemented in GDAL are also likely to work - if in doubt try to open a sample and see if
it is supported. You find more details about GDAL supported formats in Appendix A.2 or at
http://www.gdal.org/formats_list.html. If you want to load GRASS raster data, please refer
to Section 9.2.

6.1 What is raster data?

Raster data in GIS are matrices of discrete cells that represent features on, above or below the
earth’s surface. Each cell in the raster grid is the same size, and cells are usually rectangular (in
QGIS they will always be rectangular). Typical raster datasets include remote sensing data such as
aerial photography or satellite imagery and modelled data such as an elevation matrix.

Unlike vector data, raster data typically do not have an associated database record for each cell.
They are geocoded by its pixel resolution and the x/y coordinate of a corner pixel of the raster layer.
This allows QGIS to position the cata correctly in the map canvas.

QGIS makes use of georeference information inside the raster layer (e.g. GeoTiff) or in an appropriate
world file to properly display the data.

6.2 Loading raster data in QGIS

Raster layers are loaded either by clicking on the ﬁ Load Raster| icon or by selecting the

View|>\ﬁ Add Raster Layer| menu option. More than one layer can be loaded at the same

QGIS 1.0.0 User, Installation and Coding Guide 56

http://www.gdal.org/formats_list.html

6.3 Raster Properties Dialog

time by holding down the or key and clicking on multiple items in the dialog

Open a GDAL Supported Raster Data Source

Once a raster layer is loaded in the map legend you can click on the layer name with the right mouse
button to select and activate layer specific features or to open a dialog to set raster properties for the
layer.

Right mouse button menu for raster layers

e | Zoom to layer extent|

e | Zoom to best scale (100%) |

e | Show in overview|

e | Properties

e | Rename

¢ | Add Group

e | Expand a

¢ | Collapse al

« | Show file groups

6.3 Raster Properties Dialog

To view and set the properties for a raster layer, double click on the layer name in the map legend or
right click on the layer name and choose from the context menu: Figure 13 shows the
‘ Raster Layer Properties ‘ dialog. There are several tabs on the dialog:

o | Symbology I

i

=
Q
>
(%]
e
Q
=
[¢)
>
Q
<

e | Colormap I

e | General

e | Metadata

[EE

e | Pyramids

i

¢ | Histogram

i

QGIS 1.0.0 User, Installation and Coding Guide 57

6 WORKING WITH RASTER DATA

Figure 13: Raster Layers Properties Dialog &2

(>

{4 Raster Layer Properties

§Symbo|ogy§| Transparency | Colormap | General | Metadata | Pyramids | Histogram

—Render as

() Single band gray ® Three band color

[] Invert coler map

-RGE mode band selection and scaling

|v|

)

Red band |Not Set
Green band |Not Set
Elue band |Not Set

|T|

() Custorm min f max values

o

Green min |0 ‘

Red min

Default R:1 G:2 B:3

El

Red max 255 |

%)
[¥1)
in

Green max

—

@ Use standard deviation

Blue rmin

wn

Blue max 25

.00 2

-

MNote:

~Load min { max values from band

- Contrast enhancement

() Estimate (faster) Current

Mo Stretch

O Actual (slower) Default Mo Stretch

| Load

(8]

I Restore Default Style ” Save As Default “ Load Style ... “ Sawve Style ...
‘ Help [oK] l Apply J l Cancel ‘

6.3.1 Symbology Tab

QGIS can render raster layers in two different ways :

e Single band - one band of the image will be rendered as gray or in pseudocolors.

e Three band color - three bands from the image will be rendered, each band representing the
red, green or blue component that will be used to create a color image.

Within both rendertypes you can invert the color output using the

Invert color map

checkbox.

QGIS 1.0.0 User, Installation and Coding Guide

58

6.3 Raster Properties Dialog

Single Band Rendering

This selection offers you two possibilites to choose. At first you can select which band you like to use
for rendering (if the dataset has more than one band).

The second option offers a selection of available colortables for rendering.

The following settings are available through the dropdownbox | color map | Grayscale [X]||, where

grayscale is the default setting. Also available are

e Pseudocolor
e Freak Out
e Colormap

When selecting the entry | color map | Colormap [¥] ||, the tab Colormapl becomes available. See

more on that at chapter 6.3.3.

QGIS can restrict the data displayed to only show cells whose values are within a given number of
standard deviations of the mean for the layer. This is useful when you have one or two cells with
abnormally high values in a raster grid that are having a negative impact on the rendering of the
raster. This option is only available for pseudocolor images.

Three band color

This selection offers you a wide range of options to modify the appereance of your rasterlayer. For
example you could switch color-bands from the standard RGB-order to something else.

Also scaling of colors are available.

Tip 22 VIEWING A SINGLE BAND OF A MULTIBAND RASTER

If you want to view a single band (for example Red) of a multiband image, you might think you would set the
Green and Blue bands to “Not Set”. But this is not the correct way. To display the Red band, set the image
type to grayscale, then select Red as the band to use for Gray.

6.3.2 Transparency Tab

QGIS has the ability to display each raster layer at varying transparency levels. Use the transparency
slider to indicate to what extent the underlying layers (if any) should be visible though the current
raster layer. This is very useful, if you like to overlay more than one rasterlayer, e.g. a shaded relief-
map overlayed by a classified rastermap. This will make the look of the map more three dimensional.

Additionally you can enter a rastervalue, which should be treated as NODATA.

QGIS 1.0.0 User, Installation and Coding Guide 59

6 WORKING WITH RASTER DATA

An even more flexible way to customize the transparency can be done in the Custom transparency
options section. The transparency of every pixel can be set in this tab.

As an example we want to set the water of our example rasterfile landcover.tif to a transparency
of 20%. The following steps are neccessary:

1. Load the rasterfile landcover

2. Open the dialog by double-clicking on the rasterfile-name in the legend or by

right-clicking and choosing from the popup meun.

3. select the | Transparency | tab

L]

4. Click the ‘Add values manually‘ button. A new row will appear in the pixel-list.

5. enter the the raster-value (we use 0 here) and adjust the transparency to 20%

6. press the AIO|0|YI button and have a look at the map

You can repeat the steps 4 and 5 to adjust more values with custom transparency.

As you can see this is quite easy set custom transparency, but it can be quite a lot of work. Therefor

you can use the button I-_'i Export to file | t0 save your transparency-list to a file. The button ﬁ
Import from file ‘ loads your transparency-settings and applies them to the current rasterlayer.

6.3.3 Colormap

The tab is only available, when you have selected a single-band-rendering within the tab

Symbology | (see chapt. 6.3.1).

Three ways of color interpolation are available:

e Discrete
e Linear

e Exact

The button |Add Entry | adds a color to the individual color-table. Double-Clicking on the value-
column lets you inserting a specific value. Double clicking on the color-column opens the dialog

Select color |where you can select a color to apply on that value.

L

Alternativly you can click on the button
table from the band (if it has any).

[Load colormap from Band | , which tries to load the

QGIS 1.0.0 User, Installation and Coding Guide 60

6.3 Raster Properties Dialog

The block Generate new color map allows you to create newly categorized colormaps. You only need

to select the | number of classes |15 @ you need and press the button Classifyl, Currently only

one | Classification mode | Equal Interval E]‘ is supported.

6.3.4 General Tab

The tab displays basic information about the selected raster, including the layer source
and display name in the legend (which can be modified). This tab also shows a thumbnail of the
layer, its legend symbol, and the palette.

Additionally scale-dependent visability can be set in this tab. You need to check the checkbox and
set an appropriate scale where your data will be displayed in the map canvas.

Also the spatial reference system is printed here as a PROJ.4-string. This can be modified by hitting

the | Change | button.

6.3.5 Metadata Tab

The | Metadata | tab displays a wealth of information about the raster layer, including statistics about
each band in the current raster layer. Statistics are gathered on a 'need to know’ basis, so it may well
be that a given layers statistics have not yet been collected.

This tab is mainly for information. You cannot change any values printed inside this tab. To update

the statistics you need to change to tab | Histogram | and press the button on the bottom
right, see ch. 6.3.7.

6.3.6 Pyramids Tab

Large resolution raster layers can slow navigation in QGIS. By creating lower resolution copies of
the data (pyramids), performance can be considerably improved as QGIS selects the most suitable
resolution to use depending on the level of zoom.

You must have write access in the directory where the original data is stored to build pyramids.
Several resampling methods can be used to calculate the pyramides:

e Average

¢ Nearest Neighbour

QGIS 1.0.0 User, Installation and Coding Guide 61

6 WORKING WITH RASTER DATA

When checking the checkbox Build pyramids internally if possible | QGIS tries to build pyramids
internally.

Please note that building pyramids may alter the original data file and once created they cannot be
removed. If you wish to preserve a 'non-pyramided’ version of your raster, make a backup copy prior
to building pyramids.

6.3.7 Histogram Tab

The | Histogram I tab allows you to view the distribution of the bands or colors in your raster. You must

first generate the raster statistics by clicking the W button. You can choose which bands to
display by selecting them in the list box at the bottom left of the tab. Two different chart types are
allowed:

e Bar chart

e Line graph

You can define the number of chart columns to use and decide wether you want to
[X] Allow approximation | or display |[X] out of range | values Once you view the histogram, you'll
notice that the band statistics have been populated on the tab.

Tip 23 GATHERING RASTER STATISTICS

To gather statistics for a layer, select pseudocolor rendering and click the | Apply | button. Gathering statistics
for a layer can be time consuming. Please be patient while QGIS examines your data!

QGIS 1.0.0 User, Installation and Coding Guide 62

7 Working with OGC Data

QGIS supports WMS and WFS as data sources. The support is native; WFS is implemented as a
plugin.

7.1 What is OGC Data

The Open Geospatial Consortium (OGC), is an international organization with more than 300 com-
mercial, governmental, nonprofit and research organisations worldwide. Its members develop and
implement standards for geospatial content and services, GIS data processing and exchange.

Describing a basic data model for geographic features an increasing number of specifications are
developed to serve specific needs for interoperable location and geospatial technology, including
GIS. Further information can be found under http://www.opengeospatial.org/.

Important OGC specifications are:

e WMS - Web Map Service

e WFS - Web Feature Service

e WCS - Web Coverage Service

e CAT - Web Catalog Service

e SFS - Simple Features for SQL

e GML - Geography Markup Language
OGC services are increasingly being used to exchange geospatial data between different GIS imple-
mentations and data stores. QGIS can now deal with three of the above specifications, being SFS

(though support of the PostgreSQL / PostGIS data provider, see Section 5.2); WFS and WMS as a
client.

7.2 WMS Client
7.2.1 Overview of WMS Support

QGIS currently can act as a WMS client that understands WMS 1.1, 1.1.1 and 1.3 servers. It has
particularly been tested against publicly accessible servers such as DEMIS and JPL OnEarth.

WMS servers act upon requests by the client (e.g. QGIS) for a raster map with a given extent, set of
layers, symbolisation style, and transparency. The WMS server then consults its local data sources,
rasterizes the map, and sends it back to the client in a raster format. For QGIS this would typically be
JPEG or PNG.

QGIS 1.0.0 User, Installation and Coding Guide 63

http://www.opengeospatial.org/

7 WORKING WITH OGC DATA

WMS is generically a REST (Representational State Transfer) service rather than a fully-blown Web
Service. As such, you can actually take the URLs generated by QGIS and use them in a web browser
to retrieve the same images that QGIS uses internally. This can be useful for troubleshooting, as
there are several brands of WMS servers in the market and they all have their own interpretation of
the WMS standard.

WMS layers can be added quite simply, as long as you know the URL to access the WMS server, you
have a serviceable connection to that server, and the server understands HTTP as the data transport
mechanism.

7.2.2 Selecting WMS Servers

The first time you use the WMS feature, there are no servers defined. You can begin by clicking

the 49 ‘Add WMS Iayer\ button inside the toolbar, or through the \Layer|>\4" Add WMS Layer...
menu.

The dialog ‘Add Layer(s) from a Server ‘ for adding layers from the WMS server pops up. Fortu-
nately you can add some servers to play with by clicking the \ Add default serversl button. This will
add at least three WMS servers for you to use, including the NASA (JPL) WMS server. To define a

new WMS server in the | Server Connections | section, select . Then enter in the parameters
to connect to your desired WMS server, as listed in table 2:

Table 2: WMS Connection Parameters

Name | A name for this connection. This name will be used in the Server Connec-
tions drop-down box so that you can distinguish it from other WMS Servers.
URL URL of the server providing the data. This must be a resolvable host name;
the same format as you would use to open a telnet connection or ping a
host.

If you need to set up a proxy-server to be able to receive WMS-services from the internet,
you can add your proxy-server in the options. Choose menu |Settings| > |- Options| and click

on the tab. There you can add your proxy-settings and enable them by setting the

Use proxy for web access |,

Once the new WMS Server connection has been created, it will be preserved for future QGIS ses-
sions.

Table 3 shows some example WMS URLs to get you started. These links were last checked in
December 2006, but could change at any time:

An exhaustive list of WMS servers can be found at http://wms-sites. com.

QGIS 1.0.0 User, Installation and Coding Guide 64

http://wms-sites.com

7.2 WMS Client

Tip 24 ON WMS SERVER URLS
Be sure, when entering in the WMS server URL, that you have the base URL. For example, you shouldn’t
have fragments such as request=GetCapabilities Or version=1.0.0 in your URL.

Table 3: Example Public WMS URLs

Name URL
Atlas of Canada http://atlas.gc.ca/cgi-bin/atlaswms_en?
DEMIS http://mww2.demis.nl/wms/wms.asp?wms=WorldMap&

Geoscience Australia | http://www.ga.gov.au/bin/getmap.pl?dataset=national
NASA JPL OnEarth http://wms.jpl.nasa.gov/iwms.cgi?
QGIS Users http://qgis.org/cgi-bin/mapserv?map=/var/www/maps/main.map&

7.2.3 Loading WMS Layers

Once you have successfully filled in your parameters you can select the W button to retrieve
the capabilities of the selected server. This includes the Image encoding, Layers, Layer Styles, and
Projections. Since this is a network operation, the speed of the response depends on the quality
of your network connection to the WMS server. While downloading data from the WMS server, the
download progress is visualized in the left bottom of the WMS Plugin dialog.

Your screen should now look a bit like Figure 14, which shows the response provided by the NASA
JPL OnEarth WMS server.

Figure 14: Dialog for adding a WMS server, showing its available layers Ko

— Server Connection

[masa ey ||

[Cannect H e H Edlt H Delete HAddderaulLsewers]

— Image encoding

® JFEG O PG () TFF

— Layer.

D Mame Title Abstract ﬂ

1 glubal mosaic ‘WS Global Mosai., Release 2 of the WMS Global Masaic, a seamless mosaic .,

— Goordinate Reference Gystem (2 available)

Response is complete

QGIS 1.0.0 User, Installation and Coding Guide 65

7 WORKING WITH OGC DATA

Image Encoding

The | Image encoding | section now lists the formats that are supported by both the client and server.
Choose one depending on your image accuracy requirements.

Tip 25 IMAGE ENCODING

You will typically find that a WMS server offers you the choice of JPEG or PNG image encoding. JPEG is a
lossy compression format, whereas PNG faithfully reproduces the raw raster data.

Use JPEG if you expect the WMS data to be photographic in nature and/or you don’'t mind some loss in
picture quality. This trade-off typically reduces by 5 times the data transfer requirement compared to PNG.
Use PNG if you want precise representations of the original data, and you don’t mind the increased data
transfer requirements.

Layers

The Layersl section lists the layers available from the selected WMS server. You may notice that
some layers are expandible, this means that the layer can be displayed in a choice of image styles.

You can select several layers at once, but only one image style per layer. When several layers are
selected, they will be combined at the WMS Server and transmitted to QGIS in one go.

Tip 26 WMS LAYER ORDERING
In this version of QGIS, WMS layers rendered by a server are overlaid in the order listed in the Layers section,

from top to bottom of the list. If you want to overlay layers in the opposite order, then you can select 4 :

Add WMS layer ‘ a second time, choose the same server again, and select the second group of layers that

you want to overlay the first group.

Transparency

In this version of QGIS, the transparency setting is hard-coded to be always on, where available.

Tip 27 WMS LAYER TRANSPARENCY
The availability of WMS image transparency depends on the image encoding used: PNG and GIF support
transparency, whilst JPEG leaves it unsupported.

Coordinate Reference System
A Coordinate Reference System (CRS) is the OGC terminology for a QGIS Projection.

Each WMS Layer can be presented in multiple CRSs, depending on the capability of the WMS server.
You may notice that the x changes in the Coordinate Reference System (x available) header as you

select and deselect layers from the Layersl section.

QGIS 1.0.0 User, Installation and Coding Guide 66

7.2 WMS Client

To choose a CRS, select |Change... | and a screen similar to Figure 17 in Section 8.3 will appear.
The main difference with the WMS version of the screen is that only those CRSs supported by the
WMS Server will be shown.

Tip 28 WMS PROJECTIONS

For best results, make the WMS layer the first layer you add in the project. This allows the project projection
to inherit the CRS you used to render the WMS layer. On-the-fly projection (see Section 8.2) can then be
used to fit any subsequent vector layers to the project projection. In this version of QGIS, if you add a WMS
layer later, and give it a different CRS to the current project projection, unpredictable results can occur.

7.2.4 Using the Identify Tool

Once you have added a WMS server, and if any layer from a WMS server is queryable, you can then

| _ :
use the ['\‘-hi Identify | tool to select a pixel on the map canvas. A query is made to the WMS server
for each selection made.

The results of the query are returned in plain text. The formatting of this text is dependent on the
particular WMS server used.

7.2.5 Viewing Properties

Once you have added a WMS server, you can view its properties by right-clicking on it in the legend,

and selecting | Properties | .

Metadata Tab

The | Metadata | tab displays a wealth of information about the WMS server, generally collected from
the Capabilities statement returned from that server.

Many definitions can be gleaned by reading the WMS standards (5), (6), but here are a few handy
definitions:

e Server Properties

— WMS Version - The WMS version supported by the server.

— Image Formats - The list of MIME-types the server can respond with when drawing the
map. QGIS supports whatever formats the underlying Qt libraries were built with, which is
typically at least image/png and image/jpeg.

— ldentity Formats - The list of MIME-types the server can respond with when you use the
Identify tool. Currently QGIS supports the text-plain type.

QGIS 1.0.0 User, Installation and Coding Guide 67

7 WORKING WITH OGC DATA

e Layer Properties

Selected - Whether or not this layer was selected when its server was added to this project.

Visible - Whether or not this layer is selected as visible in the legend. (Not yet used in this
version of QGIS.)

Can Identify - Whether or not this layer will return any results when the Identify tool is
used on it.

Can be Transparent - Whether or not this layer can be rendered with transparency. This
version of QGIS will always use transparency if this is Yes and the image encoding sup-
ports transparency .

Can Zoom In - Whether or not this layer can be zoomed in by the server. This version
of QGIS assumes all WMS layers have this set to Yes. Deficient layers may be rendered
strangely.

Cascade Count - WMS servers can act as a proxy to other WMS servers to get the raster
data for a layer. This entry shows how many times the request for this layer is forwarded
to peer WMS servers for a result.

Fixed Width , Fixed Height - Whether or not this layer has fixed source pixel dimensions.
This version of QGIS assumes all WMS layers have this set to nothing. Deficient layers
may be rendered strangely.

WGS 84 Bounding Box - The bounding box of the layer, in WGS 84 coordinates. Some
WMS servers do not set this correctly (e.g. UTM coordinates are used instead). If this
is the case, then the initial view of this layer may be rendered with a very “zoomed-out”
appearance by QGIS. The WMS webmaster should be informed of this error, which they
may know as the WMS XML elements LatLonBoundingBox, EX_GeographicBoundingBox
or the CRS:84 BoundingBox.

Available in CRS - The projections that this layer can be rendered in by the WMS server.
These are listed in the WMS-native format.

Available in style - The image styles that this layer can be rendered in by the WMS server.

7.2.6 WMS Client Limitations

Not all possible WMS Client functionality had been included in this version of QGIS. Some of the
more notable exceptions follow:

Editing WMS Layer Settings

Once you've completed the ‘p ‘Add WMS layer | procedure, there is no ability to change the set-

tings.

A workaround is to delete the layer completely and start again.

QGIS 1.0.0 User, Installation and Coding Guide 68

7.3 WEFS Client

WMS Servers Requiring Authentication

Only public WMS servers are accessible. There is no ability to apply a user name and password
combination as an authentication to the WMS server.

Tip 29 ACCESSING SECURED OGC-LAYERS

If you need to access secured layers, you could use InteProxy as a transparent proxy, which does supports
several authentification methods. More information can be found at the InteProxy-manual found on the
website http://inteproxy.wald.intevation.org.

7.3 WES Client

In QGIS, a WFS layer behaves pretty much like any other vector layer. You can identify and select
features and view the attribute table. An exception is that editing is not supported at this time. To start

the WFS plugin you need to open \Pluginsl > \@ Plugin Manager... |, activate the WFS plugin

checkbox and click .

A new @ ‘Add WFS Layer ‘ icon appears next to the WMS icon. Click on it to open the dialog. In

General adding a WFS layer is very similar to the procedure used with WMS. The difference is there
are no default servers defined, so we have to add our own.

7.3.1 Loading a WFS Layer

As an example we use the DM Solutions WFS server and display a layer. The URL is:

http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap?VERSION=1.0.0&SERVICE=
wis&REQUEST=GetCapabilities

1. Make sure the WFS plugin is loaded; if not, open the Plugin Manager and load it

2. Click on the @ ‘Add WES Layer‘tool on the plugins toolbar

3. Click on

4. Enter|Name |DM Solutions ||as the name

5. Enter the URL (see previous page)
6. Click | OK|

7. Choose | Server Connections‘ DM Solutions E]‘ from the drop-down box

QGIS 1.0.0 User, Installation and Coding Guide 69

http://inteproxy.wald.intevation.org

7 WORKING WITH OGC DATA

8. CIick

9. Wait for the list of layers to be populated

10. Click on the | Canadian Land | layer

11. Click to add the layer to the map
12. Wait patiently for the features to appear

Figure 15: Adding a WFS layer)

Ad AN ESHEEY 0 7 Y, 2 &

(ML

— Server Connection:

[Dl Solutions WFS serwver

ot |

|

ot H Delete]

Title

Iame

| Ahstract

Canadian Land
LS Land

Parks

S Lakes

Provincial Bar...
Fecleral Limit
Railroacls
Roads

Cities

Grid

prov_land
land_fn
park
drain_frn

drainage
prov_hound
fedlimit

rail

road

popplace
oricl

— Coordinate Reference System

EPSG: 42304
ERN

You'll notice the download progress is visualized in the left bottom of the QGIS main window. Once
the layer is loaded, you can identify and select a province or two and view the attribute table.

Remember this plugin works best with UMN MapServer WFS servers. It still could be, that you might
experience random behavior and crashes. You can look forward to improvements in a future version
of the plugin.

Tip 30 FINDING WMS AND WFS SERVERS
You can find additional WMS and WFS servers by using Google or your favorite search engine. There are a
number of lists with public URLs, some of them maintained and some not.

QGIS 1.0.0 User, Installation and Coding Guide 70

8 Working with Projections

QGIS allows users to define a global and project-wide CRS (Coordinate Reference System) for layers
without a pre-defined CRS. It also allows the user to define custom coordinate reference systems and
supports on-the-fly (OTF) projection of vector layers. All these features allow the user to display layers
with different CRS and have them overlay properly.

8.1 Overview of Projection Support

QGIS has support for approximately 2,700 known CRS. Definitions for each of these CRS are stored
in a SQLite database that is installed with QGIS. Normally you do not need to manipulate the
database directly. In fact, doing so may cause projection support to fail. Custom CRS are stored
in a user database. See Section 8.4 for information on managing your custom coordinate reference
systems.

The CRS available in QGIS are based on those defined by EPSG and are largely abstracted from the
spatial_references table in PostGIS version 1.x. The EPSG identifiers are present in the database
and can be used to specify a CRS in QGIS.

In order to use OTF projection, your data must contain information about its coordinate reference
system or you have to define a global, layer or project-wide CRS. For PostGIS layers QGIS uses
the spatial reference identifier that was specified when the layer was created. For data supported by
OGR, QGIS relies on the presence of a format specific means of specifying the CRS. In the case
of shapefiles, this means a file containing the Well Known Text (WKT) specification of the CRS. The
projection file has the same base name as the shapefile and a prj extension. For example, a shapefile
named alaska.shp would have a corresponding projection file named alaska.prj.

8.2 Specifying a Projection

QGIS no longer sets the map CRS to the coordinate reference system of the first layer loaded. When
you start a QGIS session with layers that do not have a CRS, you need to control and define the
CRS definition for these layers. This can be done globally or project-wide in the tab under

‘Settingsl > ‘\‘\'J Options | (See Figure 16).

o Prompt for CRS

« |[X] Project wide default CRS will be used

° Global default CRS displayed below will be used

QGIS 1.0.0 User, Installation and Coding Guide 71

8 WORKING WITH PROJECTIONS

The global default CRS proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs comes predefined
in QGIS but can of course be changed, and the new definition will be saved for subsequent QGIS

sessions.

Figure 16: CRS tab in the QGIS Options Dialog)

C)6) =) Cleyi]e

M\

=i o L3

| Gereral | Rendering | Maptools | Digtizing | CRS | Locale | Prosy |

()} Prampt for GRS

— \Wher layer is loaded that has no coordinate reference system (CRS)

() Project wide cefault CRS will be used

O EGIDbaI default, CRS cisplayed below will be used§

+proj=longlat +ellps="W3584 +datum="W3534 +no_cefs

Select Global Default ...

o [om

If you want to define the coordinate reference system for a certain layer without CRS information, you

can also do that in the

tab of the raster properties (6.3.4) and vector properties (5.3.1)

dialog. If your layer already has a CRS defined, it will be displayed as shown in Figure 6.

8.3 Define On The Fly (OTF) Projection

QGIS does not have OTF projection enabled by default, and this function is currently only supported
for vector layers. To use OTF projection, you must open the \“\'v Project Properties | dialog, select a

CRS and activate the Enable on the fly projection | checkbox. There are two ways to open the

dialog:

1. Select|= Project Properties

from the | Settings I menu.

QGIS 1.0.0 User, Installation and Coding Guide 72

8.3 Define On The Fly (OTF) Projection

2. Click on the @ projector | icon in the lower right-hand corner of the statusbar.

If you have already loaded a layer, and want to enable OTF projection, the best practice is to open
the ‘ Coordinate Reference System| tab of the ‘ Project Properties ‘ dialog and find the CRS of the

currently loaded layer in the list of CRS, and activate the Enable on the fly projection | checkbox.
All subsequently loaded vector layers will then be OTF projected to the defined CRS.

The ‘ Coordinate Reference System | tab of the ‘ Project Properties ‘ dialog contains four important
components as humbered in Figure 17 and described below.

Figure 17: Projection Dialog Ko

iy Project Properties

General | Coordinate Reference System (CRS) l

[] Enable 'on the fly' CRS transformation

Coordinate Reference System |EPSG |ID ’a
DGMOS [Indonesia TM-2 zone 52.1 23841 1953
DGMNI5 [Indonesia TM-3 zone 52.2 23842 15954
DGMIS [Indonesia TM-3 zone 53.1 23843 1955
DGMSS [Indonesia TM-3 zone 53.2 23844 1856 |:|
DGMYS [Indonesia TM-3 zone 54.1 23845 1857

DHDM / 3-degree Gauss zone 1 (depreca... 31461 2534
DHDN (3-degree Gauss zone 2 (depreca... 31462 2535
DHDM | 3-degree Gauss zone 3 (depreca... 31463 2536
DHDM / 3-degree Gauss zone 4 (depreca... 31464 2537
DHDN [3-degree Gauss zone 5 (depreca... 31465 2538
DHDM f Gauss-Kruger zone 2 31466 2539
- DHDMN / Gauss-Kruger zone 3 31467 2540

+proj=tmerc +lat_0=0 +lon_0=9 +k=1 +x_0=3500000 +y 0=0
+ellps=bessel +datum=potsdam +units=m +no_defs

~Search

® EPSGID () Name [3145?

[oK H Apply H Cancel l

1. Enable on the fly projection - this checkbox is used to enable or disable OTF projection.
When off, each layer is drawn using the coordinates as read from the data source. When on,

QGIS 1.0.0 User, Installation and Coding Guide 73

8 WORKING WITH PROJECTIONS

the coordinates in each layer are projected to the coordinate reference system defined for the
map canvas.

2. Coordinate Reference System - this is a list of all CRS supported by QGIS, including Geo-
graphic, Projected and Custom coordinate reference systems. To use a CRS, select it from the
list by expanding the appropriate node and selecting the CRS. The active CRS is preselected.

3. Proj4 text - this is the CRS string used by the Proj4 projection engine. This text is read-only
and provided for informational purposes.

4. Search - if you know the EPSG identifier or the name for a Coordinate Reference System, you
can use the search feature to find it. Enter the identifier and click on .

Tip 31 PROJECT PROPERTIES DIALOG
If you open the | Project Properties ‘dialog from the | Settings | menu, you must click on the

Coordinate Reference System | tab to view the CRS settings. Opening the dialog from the @ projector

icon will automatically bring the ‘ Coordinate Reference System | tab to the front.

8.4 Custom Coordinate Reference System

If QGIS does not provide the coordinate reference system you need, you can define a custom CRS.
To define a CRS, select |« Custom CRS| from the |Settings| menu. Custom CRS are stored in
your QGIS user database. In addition to your custom CRS, this database also contains your spatial
bookmarks and other custom data.

Defining a custom CRS in QGIS requires a good understanding of the Proj.4 projection library. To
begin, refer to the Cartographic Projection Procedures for the UNIX Environment - A User's Man-
ual by Gerald I. Evenden, U.S. Geological Survey Open-File Report 90-284, 1990 (available at
ftp://ftp.remotesensing.org/proj/0F90-284.pdf). This manual describes the use of the proj.4
and related command line utilities. The cartographic parameters used with proj.4 are described in
the user manual, and are the same as those used by QGIS.

The |Custom Coordinate Reference System Definition ‘ dialog requires only two parameters to
define a user CRS:

1. a descriptive name and

2. the cartographic parameters in PROJ.4 format.

To create a new CRS, click the New | button and enter a descriptive name and the CRS

parameters. After that you can save your CRS by clicking the button I-_'i Save |

QGIS 1.0.0 User, Installation and Coding Guide 74

ftp://ftp.remotesensing.org/proj/OF90-284.pdf

8.4 Custom Coordinate Reference System

Figure 18: Custom CRS Dialog)

i Custom Coordinate Reference System Definition

—Define

You can define your own custorm Coordinate Reference System
(CRS) here. The definition must conform to the proj4 format for
specifying a CRS.,

Mame || ‘

Parameters [

l
@E‘ *of D E]E]D

—Test

Use the text boxes below to test the CRS definition you are
creating. Enter a coordinate where both the latflong and the
transformed result are known (for example by reading off a map).
Then press the calculate button to see if the CRS definition you are
creating is accurate.

Parameters [l

Geographic jf WGS84 Destination CRS

North []| |

= | |

l Calculate l

Note that the Parameters must begin with a +proj=-block, to represent the new coordinate reference
system.

You can test your CRS parameters to see if they give sane results by clicking on the
button inside the Test block and pasting your CRS parameters into the Parameters field. Then en-
ter known WGS 84 latitude and longitude values in North and East fields respectively. Click on
and compare the results with the known values in your coordinate reference system.

QGIS 1.0.0 User, Installation and Coding Guide 75

9 GRASS GIS INTEGRATION

9 GRASS GIS Integration

The GRASS plugin provides access to GRASS GIS (3) databases and functionalities. This includes
visualization of GRASS raster and vector layers, digitizing vector layers, editing vector attributes, cre-
ating new vector layers and analysing GRASS 2D and 3D data with more than 300 GRASS modules.

In this Section we'll introduce the plugin functionalities and give some examples on managing and
working with GRASS data. Following main features are provided with the toolbar menu, when you
start the GRASS plugin, as described in Section 9.1:

A ﬂ \Open mapset‘

New mapset

\Close mapset‘

‘Add GRASS vector Iayer‘

A

‘Add GRASS raster Iayer‘

\ Create new GRASS vector\

\ Edit GRASS vector Iayer\

‘Open GRASS tools‘

‘ Display current GRASS region ‘

===

‘ Edit current GRASS region ‘

9.1 Starting the GRASS plugin

To use GRASS functionalities and/or visualize GRASS vector and raster layers in QGIS, you must
select and load the GRASS plugin with the Plugin Manager. Therefore click the menu >

\Manage Plugins|, select and click .

QGIS 1.0.0 User, Installation and Coding Guide 76

9.2 Loading GRASS raster and vector layers

You can now start loading raster and vector layers from an existing GRASS LOCATION (see Section

9.2).

Or you create a new GRASS LOCATION with QGIS (see Section 9.3.1) and import some raster

and vector data (see Section 9.4) for further analysis with the GRASS Toolbox (see Section 9.9).

9.2 Loading GRASS raster and vector layers

With the GRASS plugin, you can load vector or raster layers using the appropriate button on the
toolbar menu. As an example we use the QGIS alaska dataset (see Section 3.2). It includes a small
sample GRASS LOCATION with 3 vector layers and 1 raster elevation map.

1.

10.

Create a new folder grassdata, download the QGIS alaska dataset qgis_sample_data.zip
from http://download.osgeo.org/qgis/data/ and unzip the file into grassdata.

. Start QGIS.

If not already done in a previous QGIS session, load the GRASS plugin clicking on >
\Manage Plugins| and selecting | GRASS|. The GRASS toolbar appears on the toolbar menu.

. In the GRASS toolbar, click the ﬂ ‘Open mapset | icon to bring up the MAPSET wizard.

. For Gisdbase browse and select or enter the path to the newly created folder grassdata.

You should now be able to select the LOCATION alaska and the MAPSET demo.

. Click . Notice that some previously disabled tools in the GRASS toolbar are now enabled.

. Click on & ‘Add GRASS raster layer ‘ choose the map name gtopo30 and click . The

elevation layer will be visualized.

. Click on & ’Add GRASS vector layer ‘ choose the map name alaska and click . The

alaska boundary vector layer will be overlayed on top of the gtopo30 map. You can now adapt
the layer properties as described in chapter 5.3, e.g. change opacity, fill and outline color.

Also load the other two vector layers rivers and airports and adapt their properties.

As you see, it is very simple to load GRASS raster and vector layers in QGIS. See following Sections
for editing GRASS data and creating a new LOCATION. More sample GRASS LOCATIONs are available
at the GRASS website at http://grass.osgeo.org/download/data. php.

Tip 32 GRASS DATA LOADING

If you have problems loading data or QGIS terminates abnormally, check to make sure you have loaded the
GRASS plugin properly as described in Section 9.1.

QGIS 1.0.0 User, Installation and Coding Guide 77

http://download.osgeo.org/qgis/data/
http://grass.osgeo.org/download/data.php

9 GRASS GIS INTEGRATION

9.3 GRASS LOCATION and MAPSET

GRASS data are stored in a directory referred to as GISDBASE. This directory often called
grassdata, must be created before you start working with the GRASS plugin in QGIS. Within this
directory, the GRASS GIS data are organized by projects stored in subdirectories called LOCATION.
Each LOCATION is defined by its coordinate system, map projection and geographical boundaries.
Each LOCATION can have several MAPSETs (subdirectories of the LOCATION) that are used to subdivide
the project into different topics, subregions, or as workspaces for individual team members (Neteler
& Mitasova 2008 (2)). In order to analyze vector and raster layers with GRASS modules, you must
import them into a GRASS LOCATION. 4

Figure 19: GRASS data in the alaska LOCATION (adapted from Neteler & Mitasova 2008 (2))

GRASS Database |[LOCATION| MAPSET |Geometry and attribute data

PERMANENT |

icell_misc E|
| rcats | [icolr | E'
[jcen | Hficell] §|
'i J'[:ellhd| hist | -
| &
/home/user grasscata |--| lalaska H idemo |— — — = _____l
coor
dbin
| vector | ralaska |—“?;’T E|
sidx
| |
| .
| airports.dbf E |
lant [laska.dnr | ~

9.3.1 Creating a new GRASS LOCATION

As an an example you find the instructions how the sample GRASS LOCATION alaska, which is
projected in Albers Equal Area projection with unit meter was created for the QGIS sample dataset.
This sample GRASS LOCATION alaska will be used for all examples and exercises in the following
GRASS GIS related chapters. It is useful to download and install the dataset on your computer 3.2).

4This is not strictly true - with the GRASS modules r.external and v.external you can create read-only links to
external GDAL/OGR-supported data sets without importing them. But because this is not the usual way for beginners to

QGIS 1.0.0 User, Installation and Coding Guide 78

9.3 GRASS LOCATION and MAPSET

Figure 20: Creating a new GRASS LOCATION or a new MAPSET in QGIS)

vWeawr Mancef

- = I i?l 2%
GRASS Location

Location

() Select location | spearfishB0 -

@ Create new location | alaska

The GRASS location is a collection of maps for a particular territary or
project,

[< Back H et = H Cancel l

1. Start QGIS and make sure the GRASS plugin is loaded
2. Visualize the alaska.shp Shapefile (see Section 5.1.1) from the QGIS alaska dataset 3.2.

3. In the GRASS toolbar, click on the H ‘Open mapset‘ icon to bring up the MAPSET wizard.

4. Select an existing GRASS database (GISDBASE) folder grassdata or create one for the new
LOCATION using a file manager on your computer. Then click .

5. We can use this wizard to create a new MAPSET within an existing LOCATION (see Section 9.3.2)
or to create a new LOCATION altogether. Click on the radio button ® Create new location (see
Figure 20).

6. Enter a name for the LOCATION - we used alaska and click
7. Define the projection by clicking on the radio button ® Projection to enable the projection list

8. We are using Albers Equal Area Alaska (meters) projection. Since we happen to know that it is
represented by the EPSG ID 5000, we enter it in the search box. (Note: If you want to repeat
this process for another LOCATION and projection and haven't memorized the EPSG ID, click on

the @ projector | icon in the lower right-hand corner of the status bar (see Section 8.3)).

work with GRASS, this functionality will not be described here.

QGIS 1.0.0 User, Installation and Coding Guide 79

9 GRASS GIS INTEGRATION

10.
11.

12.

13.

14.
15.

16.

Click to select the projection
Click

To define the default region, we have to enter the LOCATION bounds in north, south, east, and
west direction. Here we simply click on the button | Set current QGIS extentl, to apply the
extend of the loaded layer alaska.shp as the GRASS default region extend.

Click

We also need to define a MAPSET within our new LOCATION. You can name it whatever you like -
we used demo. °

Check out the summary to make sure it's correct and click

The new LOCATION alaska and two MAPSETs demo and PERMANENT are created. The currently
opened working set is MAPSET demo, as you defined.

Notice that some of the tools in the GRASS toolbar that were disabled are now enabled.

If that seemed like a lot of steps, it's really not all that bad and a very quick way to create a LOCATION.
The LOCATION alaska is now ready for data import (see Section 9.4). You can also use the already
existing vector and raster data in the sample GRASS LOCATION alaska included in the QGIS alaska
dataset 3.2 and move on to Section 9.5.

9.3.2 Adding a new MAPSET

A user has only write access to a GRASS MAPSET he created. This means, besides access to his own
MAPSET, each user can also read maps in other user’'s MAPSETs, but he can modify or remove only the
maps in his own MAPSET. All MAPSETs include a WIND file that stores the current boundary coordinate
values and the currently selected raster resolution (Neteler & Mitasova 2008 (2), see Section 9.8).

1.

Start QGIS and make sure the GRASS plugin is loaded

In the GRASS toolbar, click on the ﬂ ’Open mapset | icon to bring up the MAPSET wizard.

Select the GRASS database (GISDBASE) folder grassdata with the LOCATION alaska, where
we want to add a further MAPSET, called test.

Click .

5. We can use this wizard to create a hew MAPSET within an existing LOCATION or to create a

new LOCATION altogether. Click on the radio button ® Select location (see Figure 20) and click

o]

. Enter the name text for the new MAPSET. Below in the wizard you see a list of existing MAPSETs

and its owners.

SWhen creating a new LOCATION, GRASS automatically creates a special MAPSET called PERMANENT designed to store
the core data for the project, its default spatial extend and coordinate system definitions (Neteler & Mitasova 2008 (2)).

QGIS 1.0.0 User, Installation and Coding Guide 80

9.4 Importing data into a GRASS LOCATION

7.

Click , check out the summary to make sure it's all correct and click

9.4 Importing data into a GRASS LOCATION

This Section gives an example how to import raster and vector data into the alaska GRASS LOCATION
provided by the QGIS alaska dataset. Therefore we use a landcover raster map landcover.tif and
a vector polygone Shape lakes.shp from the QGIS alaska dataset 3.2.

1.

10.

11.

12.

Start QGIS and make sure the GRASS plugin is loaded.

. In the GRASS toolbar, click the ﬂ ‘Open MAPSET ‘ icon to bring up the MAPSET wizard.

. Select as GRASS database the folder grassdata in the QGIS alaska dataset, as LOCATION

alaska, as MAPSET demo and click .

. Now click the ﬁ ‘Open GRASS tools‘ icon. The GRASS Toolbox (see Section 9.9) dialog

appears.

. To import the raster map landcover.tif, click the module r.in.gdal in the \ Modules Tree|

tab. This GRASS module allows to import GDAL supported raster files into a GRASS LOCATION.
The module dialog for r.in.gdal appears.

. Browse to the folder raster in the QGIS alaska dataset and select the file landcover.tif.

. As raster output name define landcover_grass and click . In the OUtPUtl tab you

see the currently running GRASS command r.in.gdal -o input=/path/to/landcover.tif
output=landcover_grass.

. When it says Succesfully finished click | View OUtIOUtI. The landcover_grass raster layer is

now imported into GRASS and will be visualized in the QGIS canvas.

. To import the vector shape lakes.shp, click the module v.in.ogr in the] Modules Tree| tab.

This GRASS module allows to import OGR supported vector files into a GRASS LOCATION. The
module dialog for v.in.ogr appears.

Browse to the folder vmapO_shapefiles in the QGIS alaska dataset and select the file
lakes.shp as OGR file.

As vector output name define lakes_grass and click |Run]. You don't have to care about

the other options in this example. In the OUtpUtI tab you see the currently running GRASS
command v.in.ogr -o dsn=/path/to/lakes.shp output=lakes_grass.

When it says Succesfully finished click | View output I . The lakes_grass vector layer is now
imported into GRASS and will be visualized in the QGIS canvas.

QGIS 1.0.0 User, Installation and Coding Guide 81

9 GRASS GIS INTEGRATION

9.5 The GRASS vector data model

It is important to understand the GRASS vector data model prior to digitizing. In general, GRASS
uses a topological vector model. This means that areas are not represented as closed polygons, but
by one or more boundaries. A boundary between two adjacent areas is digitized only once, and it is
shared by both areas. Boundaries must be connected without gaps. An area is identified (labeled)
by the centroid of the area.

Besides boundaries and centroids, a vector map can also contain points and lines. All these geometry
elements can be mixed in one vector and will be represented in different so called 'layers’ inside one
GRASS vector map. So in GRASS a layer is not a vector or raster map but a level inside a vector
layer. This is important to distinguish carefully. ©

It is possible to store more ’layers’ in one vector dataset. For example, fields, forests and lakes can be
stored in one vector. Adjacent forest and lake can share the same boundary, but they have separate
attribute tables. It is also possible to attach attributes to boundaries. For example, the boundary
between lake and forest is a road, so it can have a different attribute table.

The ’layer’ of the feature is defined by ’layer’ inside GRASS. 'Layer’ is the number which defines if
there are more than one layer inside the dataset, e.g. if the geometry is forest or lake. For now, it can
be only a number, in the future GRASS will also support names as fields in the user interface.

Attributes can be stored inside the GRASS LOCATION as DBase or SQLITES or in external database
tables, for example PostgreSQL, MySQL, Oracle, etc.

Attributes in database tables are linked to geometry elements using a 'category’ value. 'Category’
(key, ID) is an integer attached to geometry primitives, and it is used as the link to one key column in
the database table.

Tip 33 LEARNING THE GRASS VECTOR MODEL

The best way to learn the GRASS vector model and its capabilities is to download one of the many GRASS
tutorials where the vector model is described more deeply. See http://grass.osgeo.org/gdp/manuals.php
for more information, books and tutorials in several languages.

9.6 Creating a new GRASS vector layer

To create a new GRASS vector layer with the GRASS plugin click the ‘_!

Create new GRASS vector | toolbar icon. Enter a name in the text box and you can start digi-
tizing point, line or polygone geometries, following the procedure described in Section 9.7.

®Although it is possible to mix geometry elements, it is unusual and even in GRASS only used in special cases such
as vector network analysis. Normally you should prefere to store different geometry elements in different layers.

QGIS 1.0.0 User, Installation and Coding Guide 82

http://grass.osgeo.org/gdp/manuals.php

9.7 Digitizing and editing a GRASS vector layer

In GRASS it is possible to organize all sort of geometry types (point, line and area) in one layer,
because GRASS uses a topological vector model, so you don't need to select the geometry type
when creating a new GRASS vector. This is different from Shapefile creation with QGIS, because
Shapefiles use the Simple Feature vector model (see Section 5.4.4).

Tip 34 CREATING AN ATTRIBUTE TABLE FOR A NEW GRASS VECTOR LAYER
If you want to assign attributes to your digitized geometry features, make sure to create an attribute table with
columns before you start digitizing (see Figure 25).

9.7 Digitizing and editing a GRASS vector layer

The digitizing tools for GRASS vector layers are accessed using the @ ‘ Edit GRASS vector layer
icon on the toolbar. Make sure you have loaded a GRASS vector and it is the selected layer in the
legend before clicking on the edit tool. Figure 22 shows the GRASS edit dialog that is displayed when
you click on the edit tool. The tools and settings are discussed in the following sections.

Tip 35 DIGITIZING POLYGONES IN GRASS

If you want to create a polygone in GRASS, you first digitize the boundary of the polygone, setting the mode
to No category. Then you add a centroid (label point) into the closed boundary, setting the mode to Next not
used. The reason is, that a topological vector model links attribute information of a polygon always to the
centroid and not to the boundary.

Toolbar
In Figure 21 you see the GRASS digitizing toolbar icons provided by the GRASS plugin. Table 4

explains the available functionalities.

Figure 21: GRASS Digitizing Toolbar £

. == = = = 1
"lt—lm-? ..Qirif;ﬁ'\m_gg‘

Category Tab

The Categoryl tab allows you to define the way in which the category values will be assigned to a
new geometry element.

e Mode: what category value shall be applied to new geometry elements.

— Next not used - apply next not yet used category value to geometry element.

QGIS 1.0.0 User, Installation and Coding Guide 83

9 GRASS GIS INTEGRATION

Table 4. GRASS Digitizing Tools

Icon | Tool Purpose

¢

® ®» | New Point Digitize new point

»

o-& | New Line Digitize new line (finish by selecting new tool)

New Boundary

Digitize new boundary (finish by selecting new tool)

New Centroid

Digitize new centroid (label existing area)

Move vertex

Move one vertex of existing line or boundary and identify new position

Add vertex

Add a new vertex to existing line

Delete vertex

Delete vertex from existing line (confirm selected vertex by another click)

Pk 404°,

A
v

Move element

Move selected boundary, line, point or centroid and click on new position

Split line

Split an existing line to 2 parts

2|

Delete element

Delete existing boundary, line, point or centroid (confirm selected element
by another click)

Edit attributes

Edit attributes of selected element (note that one element can represent
more features, see above)

B

Close

Close session and save current status (rebuilds topology afterwards)

— Manual entry - manually define the category value for the geometry element in the
'Category’-entry field.

— No category - Do not apply a category value to the geometry element. This is e.g. used
for area boundaries, because the category values are connected via the centroid.

e Category - A number (ID) is attached to each digitized geometry element. It is used to connect

each geometry element with its attributes.

e Field (layer) - Each geometry element can be connected with several attribute tables using

different GRASS geometry layers. Default layer number is 1.

Tip 36 CREATING AN ADDITIONAL GRASS 'LAYER’ WITH QGIS

If you would like to add more layers to your dataset, just add a new number in the 'Field (layer)’ entry box and
press return. In the Table tab you can create your new table connected to your new layer.

QGIS 1.0.0 User, Installation and Coding Guide 84

9.7 Digitizing and editing a GRASS vector layer

Settings Tab

Mode I Mext not used | 5 |
7]

Categary |?? | Layer |1

The Settingsl tab allows you to set the snapping in screen pixels. The threshold defines at what
distance new points or line ends are snapped to existing nodes. This helps to prevent gaps or dangles
between boundaries. The default is set to 10 pixels.

Symbology Tab

The Symbologyl

Figure 2

e

. GRASS Digitizing Settings Tab &
e — _"- . Il x\

:.:‘a.é‘\u‘:’%\{\;@
| category | Settings | Symhnlogy | Table |

Shapping in screen pixels !10 |%|

tab allows you to view and set symbology and color settings for various geometry

types and their topological status (e.g. closed / opened boundary).

QGIS 1.0.0 User, Installation and Coding Guide 85

9 GRASS GIS INTEGRATION

Figure 24: GRASS Digitizing Symbolog Tab A
ol

Category | Sethings | Symbology

AW
:.:‘m.? -

QR EB

Takle

Lire wicth Marker size

Disp | Calor | Type

| Irncies

Line

Boundary (o area)
Boundary (1 area)
Boundary (2 areas)
Centraid (in area)

1] 3¢ 3¢ 3¢ 3¢
il

4

[N]

-

g
L]
@15

Table Tab

The tab provides information about the database table for a given 'layer’. Here you can add
new columns to an existing attribute table, or create a new database table for a new GRASS vector

layer (see Section 9.6).

Figure 25: GRASS Digitizing Table Tab Ko

S le 3 (e N

[Category | Settings | Symibnlorgy | Tahle |

Laver m

QeMvEDB

| Calum | Type

cat int

strl

{30

| i Cnlumn| [Createa’.<ar Table

Tip 37 GRASS EDIT PERMISSIONS

You must be the owner of the GRASS MAPSET you want to edit. It is impossible to edit data layers in a MAPSET

that is not yours, even if you have write permissions.

QGIS 1.0.0 User, Installation and Coding Guide

86

9.8 The GRASS region tool

9.8 The GRASS region tool

The region definition (setting a spatial working window) in GRASS is important for working with
raster layers. Vector analysis is per default not limited to any defined region definitions. All newly-
created rasters will have the spatial extension and resolution of the currently defined GRASS region,
regardless of their original extension and resolution. The current GRASS region is stored in the
$LOCATION/$MAPSET/WIND file, and it defines north, south, east and west bounds, number of columns
and rows, horizontal and vertical spatial resolution.

It is possible to switch on/off the visualization of the GRASS region in the QGIS canvas using the

I] ‘Display current GRASS region‘bUtton- :

With the Ij ‘ Edit current GRASS region ‘ icon you can open a dialog to change the current region

and the symbology of the GRASS region rectangle in the QGIS canvas. Type in the new region
bounds and resolution and click m . It also allows to select a new region interactively with your
mouse on the QGIS canvas. Therefore click with the left mouse button in the QGIS canvas, open a
rectangle, close it using the left mouse button again and click . The GRASS module g.region
provide a lot more parameters to define an appropriate region extend and resolution for your raster
analysis. You can use these parameters with the GRASS Toolbox, described in Section 9.9.

9.9 The GRASS toolbox

The ﬁ ‘ Open GRASS Tools ‘ box provides GRASS module functionalities to work with data inside
a selected GRASS LOCATION and MAPSET. To use the GRASS toolbox you need to open a LOCATION
and MAPSET where you have write-permission (usually granted, if you created the MAPSET). This is
necessary, because new raster or vector layers created during analysis need to be written to the
currently selected LOCATION and MAPSET.

9.9.1 Working with GRASS modules

The GRASS Shell inside the GRASS Toolbox provides access to almost all (more than 300) GRASS
modules in command line modus. To offer a more user friendly working environment, about 200
of the available GRASS modules and functionalities are also provided by graphical dialogs. These
dialogs are grouped in thematic blocks, but are searchable as well. You find a complete list of GRASS
modules available in QGIS version 1.0.0 in appendix B. It is also possible to customize the GRASS
Toolbox content. It is described in Section 9.9.3.

As shown in Figure 26, you can look for the appropriate GRASS module using the thematically

QGIS 1.0.0 User, Installation and Coding Guide 87

9 GRASS GIS INTE

GRATION

Ivl LN GEHASSHoBISalasikadErmo .?.g.x.

Figure 26: GRASS Toolbox and searchable Modules List A

Moclules Tree I Macules List | Browser | l

Ivl LN GERASSNIo0ISalasicaldemo .?.g.x.

GRASS MODULES

[} shei - crass
1 File
Impart,
(=] Expart.
[=] Expart. raster

 roout.gcal.otiff - Expart raster layer to Geo TIFF

' rout.are - Converts a raster map layer into an Ef
 rout.gridath - Exports GRASS raster map to GRI
~ rout.mat - Exports a GRASS raster to a binary i

0 r.out.bin - Exports a GRASS raster to a binary a =]
Bt e Fr et AT ko i unid T
L]

shell t

Mociules Tree Modules List Browser
v % r.out.gdal gtiff E
Export raster layer to Geo TIFF

v Wroutarc
Converks a raster map layer into an ESRI ARCGRID file

¥ % rout.gridatb
Exports GRASS raster map Lo GRIDATB.FOR map file (TOPMODEL) @

£ | [

[r.ou

|

s |

(]

(a) Modules Tree

(b) Searchable Modules List

grouped | Modules Tree | or the searchable | Modules List | tab.

Clicking on a grapical module icon a new tab will be added to the toolbox dialog providing three

new sub-tabs | Options

, | Output

module v.buffer.

Ivl LN ERNSSNIo0ISTalaSIEaTc .?|=|x|

Figure 27: GRASS Toolbox Module Dialogs o)

Ivl LN ERNS SN OGS RIS c .?.g.x.

Close

Ivl LN ERNS SN0 SIRaIESIEa 0 .?|=|x.

[Modules Tree | Modules List | Browser ‘

[Modules Tree | Mocules List | Browser ‘

[Modules Tree | Mocules List ‘ Browser ‘

Mocule: v, buffer

Options Output Ianual

Mociule; v, buffer

Mocule; . buffer

Optians J Output l Manual }

~— Mame cler “/ektoreingabekarte,

[rivers { riversiddema 1 ling)

4

— Pufterdlistanz in Karteneinheiten,

[200

— Mame cler Wektorausgabekarte,

* v.buffer input =rivers@demo type=Iline
layer=1 buffer=200 output =rivers200

Taleranz in Karteneinheiten: 2

vbuffer - Creates a bufter around f
of given type (areas must contain ¢

KEYWORDS

Options | Output | Manual
A1 || W 5
NAME

eatures
entroid).

(a) Module Options

e —

(b) Modules Output

|riversZDE| I @ Lines buffers.., @ mi.tn.;\‘ [III]
[)
[Rurn l [Wigw output l [Close] I Stop l [Wigw output. l [Close l [Stap l [igwy output. l [Close l
[Close l I Helpy] [Close l I Help l

(c) Module Manual

and . In Figure 27 you see an example for the GRASS

QGIS 1.0.0 User, Installation and Coding Guide

88

9.9 The GRASS toolbox

Options

The | Options | tab provides a simplified module dialog where you can usually select a raster or vector
layer visualized in the QGIS canvas and enter further module specific parameters to run the module.
The provided module parameters are often not complete to keep the dialog clear. If you want to use
further module parameters and flags, you need to start the GRASS Shell and run the module in the
command line.

Output

The OUtIOUtI tab provides information about the output status of the module. When you click the

button, the module switches to the OUtpUtI tab and you see information about the analysis
process. If all works well, you will finally see a Successfully finished message.

Manual

The tab shows the HTML help page of the GRASS module. You can use it to check further
module parameters and flags or to get a deeper knowledge about the purpose of the module. At the
end of each module manual page you see further links to the Main Help index, the Thematic index
and the Full index. These links provide the same information as if you use the module g.manual

Tip 38 DISPLAY RESULTS IMMEDIATELY
If you want to display your calculation results immediately in your map canvas, you can use the 'View Output’
button at the bottom of the module tab.

9.9.2 Working with the GRASS LOCATION browser

Another useful feature inside the GRASS Toolbox is the GRASS LOCATION browser. In Figure 28 you
can see the current working LOCATION with its MAPSETS.

In the left browser windows you can browse through all MAPSETs inside the current LOCATION. The right
browser window shows some meta information for selected raster or vector layers, e.g. resolution,
bounding box, data source, connected attribute table for vector data and a command history.

The toolbar inside the tab offers following tools to manage the selected LOCATION:

° & Add selected map to canvasI

° Copy selected map

e | M1 Rename selected map

QGIS 1.0.0 User, Installation and Coding Guide 89

9 GRASS GIS INTEGRATION

The

Figure 28: GRASS LOCATION browser o)

o e

iv" LRSS LISIE S5 kcald EnmoT T
| Modules Tree | Moduies List | Browser |
OO0
B | []
= dEmo |Veclnr |airpurts I—j
= [E5 raster _
: ghopa3n Fints 76
LR yeckor Lines 1]
B alrprts Baundaries |0
lask
= a.as - Centroids |0
[rivers |
[rivers200 [F|||areas 0
PERM&MENT | ||lslancks |0
i Marth 1981991,58212934
| | |5outh 436940,041 86938 =
|
| |||East 1406708, 41471556
| | [wiest -1365575,11220648
aD ha
Higkary
COMMANMD: w.inogr -0 dsn="C:
\Downloadshois_databwvmapOhairports,sh(« |
| | p" output="airports" min_area=0.0001 |E|
o |

O Delete selected map

[T set current region to selected map

0 Refresh browser window

'Rename selected map

and

0 Delete selected map

only work with maps inside your cur-

rently selected MAPSET. All other tools also work with raster and vector layers in another MAPSET.

9.9.3 Customizing the GRASS Toolbox

Nearly all GRASS modules can be added to the GRASS toolbox. A XML interface is provided to
parse the pretty simple XML files which configures the modules appearance and parameters inside
the toolbox.

A sample XML file for generating the module v.buffer (v.buffer.gqgm) looks like this:

QGIS 1.0.0 User, Installation and Coding Guide

90

9.9 The GRASS toolbox

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE qgisgrassmodule SYSTEM "http://mrcc.com/qgisgrassmodule.dtd">

<ggisgrassmodule label="Vector buffer" module="v.buffer">
<option key="input" typeoption="type" layeroption="layer" />
<option key="buffer"/>
<option key="output" />

</qgisgrassmodule>

The parser reads this definition and creates a new tab inside the toolbox when you select the module.
A more detailed description for adding new modules, changing the modules group, etc. can be found
on the QGIS wiki at
http://wiki.qgis.org/qgiswiki/Adding_New_Tools_to_the_GRASS_Toolbox.

QGIS 1.0.0 User, Installation and Coding Guide 91

http://wiki.qgis.org/qgiswiki/Adding_New_Tools_to_the_GRASS_Toolbox

10 PRINT COMPOSER

10 Print Composer

The print composer provides growing layout and printing capabilities. It allows you to add elements
such as the QGIS map canvas, legend, scalebar, images, and text labels. You can size, group and
position each element and adjust the properties to create your layout. The result can be printed (also
to Postscript and PDF), exported to image formats or to SVG.” See a list of tools in table 5:

Table 5: Print Composer Tools

Purpose Icon | Purpose

&

Export to an image format Export print composition to SVG

O
[W

Print or export as PDF or Postscript Zoom to full extend

Zoom in Zoom out

Refresh view Add new map from QGIS map canvas

EOPIREs

Add Image to print composition Add label to print composition

i

Add new scalebar to print composition

"

Add new legend to print composition

Select/Move item in print composition Move content within an item

Group items of print composition Ungroup items of print composition

Lower selected items in print composi-
tion

Raise selected items in print composition

& BB
IR B L

Move selected items to bottom

Move selected items to top

To access the print composer, click on the |i\—=] | print| button in the toolbar or choose >

:

= Print Composer|.

10.1 Using Print Composer

Before you start to work with the print composer, you need to load some raster and vector layers in

the QGIS map canvas and adapt their properties to suite your own convinience. After everything is
I

-

rendered and symbolized to your liking you click the | b= ‘ Print Composer | icon.

"Export to SVG supported, but it is not working properly with some recent QT4 versions. You should try and check
individual on your system

QGIS 1.0.0 User, Installation and Coding Guide 92

10.1 Using Print Composer

Figure 29: Print Composer)

s D/
we o RAAQLOORsTEBRR O G @ %%
e i

Composition |EE]

GIS = phnt composer

— Paper
Size | Ad (2104287) | = |
Units | mm -
with | 297 |
Heght | 210 |
Oriertation | Landscape Bd
Print guality (cpi) @|

=

| Help | Close

Opening the print composer provides you with a blank canvas to which you can add the current QGIS
map canvas, legend, scalebar, images and text. Figure 29 shows the initial view of the print composer
before any elements are added. The print composer provides two tabs:

e The tab allows you to set paper size, orientation, and the print quality for the output
file in dpi.

e The tab displays the properties for the selected map element. Click the Rﬂ

|Select/Move item| icon to select an element (e.g. legend, scalebar or label) on the canvas.
Then click the Item tab and customize the settings for the selected element.

You can add multiple elements to the composer. It is also possible to have more than one map view

or legend or scalebar in the print composer canvas. Each element has its own properties and in the
case of the map, its own extent.

QGIS 1.0.0 User, Installation and Coding Guide 93

10 PRINT COMPOSER

10.1.1 Adding a current QGIS map canvas to the Print Composer

To add the QGIS map canvas, click on the ﬁ ’Add new map from QGIS map canvas‘ button in

the print composer toolbar and drag a rectangle on the composer canvas with the left mouse button
to add the map. You will see an empty box with a "Map will be printed here" message. To display the

current map, choose | Preview in the map tab.

Figure 30: Print Composer map item tab content)

General e
Map
Yificlthy k]

Preview | Rectangle = | | Update preview

Height | 62,3942
Composer item properties
Scale 1: | 4617966575239

Color: Frame... Background..,
Mapy extent g
Opacit}l: :O
X mir; -Z260028.875 | X max: [FO0.875
Outlire wiclk b 0,30 =
% mnin: -46687.509 | ¥ max F89.572
K| Frame
et bo map cahas extent
(a) Width, height and extend dialog (b) Properties dialog

You can resize the map later by clicking on the E@]Select/Move item | button, selecting the el-
ement, and dragging one of the blue handles in the corner of the map. With the map selected,
you can now adapt more properties in the map tab. Resize the map item specifying the
width and height or the scale. Define the map extend using Y and X min/max values or clicking the
set to map canvas extend | putton. Update the map preview and select, whether to see a preview
from cache or an empty rectangle with a "Map will be printed here" message. Define colors and
outline width for the element frame, set a background color and opacity for the map canvas. And you

can also select or unselect to display an element frame with the frame | checkbox (see Figure 30).
If you change the view on the QGIS map canvas by zooming or panning or changing vector or raster
properties, you can update the print composer view selecting the map element in the print composer
and clicking the | Update Preview | button in the map tab (see Figure 30).

To move layers within the map element select the map element, click the @]Move item content
icon and move the layers within the map element frame with the left mouse button.

QGIS 1.0.0 User, Installation and Coding Guide 94

10.1 Using Print Composer

Tip 39 SAVING A PRINT COMPOSER LAYOUT

If you want to save the current state of a print composer session, click on | File | > "J Save Project As | to save

the state of your workspace including the state of the current print composer session. It is planned but
currently not possible to save print composer templates itself.

10.1.2 Adding other elements to the Print Composer

Besides adding a current QGIS map canvas to the Print Composer, it is also possible to add, move
and customize legend, scalebar, images and label elements.

Label and images

To add a label or an image, click the 0 Add label | Or j Add image | icon and place the

element with the left mouse button on the print composer canvas.

Figure 31: Customize print composer label and images)

Gereral Ibern

General ltem

Guantum Gig
rmagesnarkh_arraws/default. png
Wriclth: a0
Heigght: a0
Fort) Fy
Rotation; 0.00 =
Margin (rm; 1,00 =

Composer iem properties Kl Jer [e

Colar: Frame... BaCkground.. Colar: Frame.., Background...
Cpacity: Opacity:
Cutline wickh: | 0,30 = Cutling width: | 0,30 =
%/ Frame ®| Frame

(a) label item tab (b) image item tab

QGIS 1.0.0 User, Installation and Coding Guide 95

10 PRINT COMPOSER

Legend and scalebar

To add a map legend or a scalebar, click the

-
o j—
B=

‘Add new legend \ or

&=

| Add new scalebar

icon and place the element with the left mouse button on the print composer canvas.

Figure 32: Customize print composer legend and scalebar &2

General ltem

— General
Title: [Legend]
Fant: [Title... H Layer... H ltern...]
Symbol width: 7,00 [2] symoolheight; a0 2]
Layer space: | 3,00 E Gymbol space;
Icon label space: | 2,00 s Bio space: 200 E
— Legend itemn:
[cawn H up H Temave H edit... H upcate Hupdale aII]
airporks
alaska
landcover
rivers
Caomposer item properti
Calor: Frame... l [Background...l
Oppacity:)
Outiine width: [030 E
[%€] Frame

General ltern

>

Segment size Map units per bar
400000,0000 b 1.00
(map units); -ﬂ unit: -ﬂ
Mumkber of =] =]
segmerts: SRS [_ﬂ
Styles Single Box | = | Map:
Height (nmy (5 |21 Line with 1.00 <
Laboel space: | 3,00 a Box space: 1.00 E
Unit abel: [[Fant...] [Calar..]

— Composer item properti

Calor: [Frame...] [Backoround... l
Opacity: —_—)
Outline width: (030 =
[3€] Frame

(a) legend item tab

10.1.3 Navigation tools

(b) scalebar item tab

For map navigation the print composer provides 4 general tools:

Zoom in |
Zoom out |

. Qz- | Zoom to full extend | and

\ Refresh the view \ if you find the view in an inconsistent state.

QGIS 1.0.0 User, Installation and Coding Guide

96

10.1 Using Print Composer

10.1.4 Creating Output

Figure 33 shows the print composer with an example print layout including each type of map element
described in the sections above.

Figure 33: Print Composer with map view, legend, scalebar, and text added Ko

FCOMmposer:

BEeefSaas %

Gereral ltem
Composition
— Paper
Units i -
Width 297
Height. 210

Orientation | Landscage

Legend - . ; Print guality (dpi) | 300
airports el

+

Bae lggrounc] image: phoq e e evation

Help

The print composer allows you to create several output formats and it is possible to define the reso-
lution (print quality) and paper size:

e The @ Print | icon allows to print the layout to a connected printer or as PDF or Postscript
file depending on installed printer drivers.

k|
e The | Export as image | icon exports the composer canvas in several image formats such

as PNG, BPM, TIF, JPG, ...

e The ,E—l | Export as SVG | icon saves the print composer canvas as a SVG (Scalable Vector

Graphic). Note: Currently the SVG output is very basic. This is not a QGIS problem, but a
problem of the underlaying Qt library. This will hopefully be sorted out in future versions.

QGIS 1.0.0 User, Installation and Coding Guide 97

11 QGIS PLUGINS

11 QGIS Plugins

QGIS has been designed with a plugin architecture. This allows new features/functions to be easily
added to the application. Many of the features in QGIS are actually implemented as core or external
plugins.

e Core Plugins are maintained by the QGIS Development Team and are automatically part of
every QGIS distribution. They are written in one of two languages: C++ or Python. More
information about core plugins are provided in Section 12.

e External Plugins are currently all written in Python. They are stored in external repositories
and maintained by the individual author. They can be added to QGIS using the core plugin
called Plugin Installer. More information about external plugins are provided in Section 13.

11.1 Managing Plugins

Managing plugins in general means loading or unloading them using the Plugin Manager plugin.
External plugins need to be first installed using the Plugin Installer plugin.

11.1.1 Loading a QGIS Core Plugin

Loading a QGIS Core Plugin is provided in the main menu \ Plugins| > ’t‘ Manage Plugins... |.

The Plugin Manager lists all the available plugins and their status (loaded or unloaded). All available
means all core plugins and all external plugins you added using Plugin Installer plugin (see Sec-
tion 13). Figure 34 shows the Plugin Manager dialog. Loaded plugins are "remembered" when you
exit the application and restored the next time you run QGIS.

Tip 40 CRASHING PLUGINS
If you find that QGIS crashes on startup, a plugin may be at fault. You can stop all plugins from loading by
editing your stored settings file (see 4.7 for location). Locate the plugins settings and change all the plugin

values to false to prevent them from loading. & For example, to prevent the Delimited text plugin from
loading, the entry in $HOME/.config/QuantumGIS/qgis.conf on Linux should look like this:Add Delimited
Text Layer=false. Do this for each plugin in the [Plugins] section. You can then start QGIS and add the
plugins one at a time from the Plugin Manger to determine which is causing the problem.

11.1.2 Loading an external QGIS Plugin

To be able to integrate external plugins into QGIS you first need to load the P1lugin Installer plugin
as desribed in Section 11.1.1. Then you can load external QGIS python plugin in two steps:

QGIS 1.0.0 User, Installation and Coding Guide 98

11.1 Managing Plugins

Figure 34: Plugin Manager)

[\ L EISHEITERNVIETE G e

To enable | disable a plugin, click its checkhos or description

Add Delimited Text Layer =
Loads and displays delimited text files containing =,y coordinates

CopyrightLabel
Draws copyright infarmation

Dxf2Shp Converter
Corverts from def to ship file format

GPS Tools
Tools for Ioadding and imparting GRS data ’;

iter | |

Plugin Directary: fusrflocal/lib/ogis

I Select Al][Clear Al][0K][Cancel l

1. Download an external plugin from a repository using the Plugin Installer (Section 11.1.3).
The new external plugin will be integrated into the list of available plugins in the Plugin

Manager.

2. Load the plugin using the Plugin Manager.

11.1.3 Using the QGIS Python Plugin Installer

In order to download and install an external Python plugin, click the menu F’luginSI >
i Fetch Python Plugins...]. The Plugin Installer window will appear (figure 35) with the tab

, containing the list of all Python plugins available in remote repositories as well as installed
ones. Each plugin can be either:

e notinstalled - it means the plugin is available in the repository, but is not installed yet. In order
to install, select it from the list and click the | Install pIuginI button.

e new - the same as before but the plugin is seen for the first time.

e installed - the plugin is installed. If it's also available in any repository the | Reinstall plugin

QGIS 1.0.0 User, Installation and Coding Guide 99

11 QGIS PLUGINS

Figure 35: Installing external python plugin

CIG) |55 Favpimjeip) Fluje)] ShllE

s

. = H

Plugins | Repositories]

Filker: all repositaries w | | any status I~
Status | [ame | Yersion | Descriptian [ﬂ
not installed Geoprocessing 0.41 The plugin REQUIRES QGIS 0.10.0 ar higher! The Pludin offers the geoprocessit
not installed MapSheetautoGeoRer 0,90 Map Sheet Mass Georefrencing Autamation for QGIS, Requires goal-hin an unis
not installed PostGPS 0.0 & set of dialogs for converting a point layer inta a . gps file and o take a any po
ot installed Scattergram 0.1 Plot the scattergram of bwo raster layers, Requires CiGis 1.0 and Ciwts
notk installed Spatial Operations 0.z Buffer, conves hull, difference, union, intersection of vector layers, Yersion 0.2
notk ingtalled RasterAlgebra 0.1 Thiz software provides a basic raster algebra facility for GDAL raster layers ()
not installed Threacing 0.01 An example of a plugin that operates in a QThread
installed Image Map Plugin 0.2 This plugin generates a HTML-image map file+img from the active polygon lay
installed MapServer Export 0.1 Export a saved QGIS project file Lo a MapSerwver maj file
installed Plugin Inst aller 0.06.2 Downloads and installs GGIS python plugins

(] | (1*)

The plugins will be installed Lo ™ . gois/python/pluging

Installiupgrade plugin

Uninstall plugin

Cloze

But if the available version is olde
button appears instead.

button is enabled.
’ Downgrade plugin

e upgradeable
’ Upgrade plugin

button is enabled.

- the plugin is installed, but there is an updated version available.

r than the installed one, the

The

e invalid - the plugin is installed, but is unworkable. The reason is explained in the plugin de-

scription.

Plugins tab

To install a plugin, select it from the list and click the | Install plugin
in its own directory, e.g. for L\. under $HOME/ .qgis/python/plugin

I button. The plugin is installed

s and is only visible for the user

who has installed it. See a list of other OS specific subdirectory used for plugins in Section 15.3. If
the installation is successful, a confirmation message will appear. Then you need go to the

> |8 Manage Plugins... | and load the installed plugin.

If the installation fails, the reason is displayed. The most often troubles are related to connection
errors and missing Python modules. In the former case you'll probably need to wait some minutes

or hours, in the latter one you need to install the missing modules in

your operating system prior to

using the plugin. & For Linux, most required modules should be available in a package manager.

QGIS 1.0.0 User, Installation and Coding Guide

100

11.2 Data Providers

(Y For install instructions in Windows visit the module home page. If you use a proxy, you may need
to configure it under the menu [Settings | > | Options | on the PFOXYI tab.

The \Uninstall plugin| button is enabled only if the selected plugin is installed and it's not a core
plugin. Note that if you have installed an update of a core plugin, you can still uninstall this update
with the \Uninstall plugin] and revert to the version shipped within Quantum GIS install package.
This one cannot be uninstalled.

Repositories tab

The second tab Repositoriesl contains a list of plugin repositories available for the Plugin Installer.
By default, only the QGIS Official Repository is used. You can add some user-contributed reposito-
ries, including the central QGIS Contributed Repository and a few author repositories by clicking the
Add 3rd party repositories | button. Those repositories contain a huge number of more or less use-
ful plugins but please note that they aren’t maintained by the QGIS Development Team and we can’t
take any responsibility for them. You can also manage the repository list manually, that is add, re-
move and edit the entries. Temporary disabling a particular repository is possible clicking the
button.

The Check for updates on startup | checkbox makes QGIS looking for plugin updates and news.

If it's enabled, all repositories listed and enabled on the Repositories I tab are checked whenever the
program is starting. If a new plugin or an update for one of installed plugins is available, a clickable
notification appears in the Status Bar. If the checkbox is disabled, looking for updates and news is
performed only when Plugin Installer is being launched from the menu.

In case of some internet connection problems a Looking for new plugins... indicator in the Status Bar
may stay visible during whole QGIS session and cause a program crash when exiting. In this case
please disable the checkbox.

11.2 Data Providers

Data Providers are "special" plugins that provides access to a data store. By default, QGIS supports
PostGIS layers and disk-based data stores supported by the GDAL/OGR library (Appendix A.1). A
Data Provider plugin extends the ability of QGIS to use other data sources.

Data Provider plugins are registered automatically by QGIS at startup. They are not managed by the
Plugin Manager but used behind the scenes when a data type is added as a layer in QGIS.

QGIS 1.0.0 User, Installation and Coding Guide 101

12 USING QGIS CORE PLUGINS

12 Using QGIS Core Plugins

QGIS currently contains 17 core plugins that can be loaded using the Plugin Manager. Table 6 lists
each of the core plugins along with a description of their purpose and the toolbar-icon.®

Table 6: QGIS Core Plugins

Icon

Plugin

Description

L

Add Delimited Text Layer

Loads and displays delimited text files containing x,y coordinates

+

Coordinate Capture

Capture mouse coordinate in different CRS

©

Copyright Label

Draws a copyright label with information

dzs DXF2Shape Converter Converts from DXF to SHP file format

ﬂ GPS Tools Tools for loading and importing GPS data
@ GRASS Activates the mighty GRASS Toolbox
j;{‘* Georeferencer Adding projection info to Rasterfiles

[

Graticule Creator

Create a latitude/longitude grid and save as a shapefile

Interpolation plugin

Interpolation on base of vertices of a vector layer

MapServer Export Plugin

Export a saved QGIS project file to a MapServer map file

North Arrow

Displays a north arrow overlayed onto the map

OGR Layer Converter

Translate vector layers between OGR suported formats

Plugin Installer

Downloads and installs QGIS python plugins

HE My Sk @

SPIT Shapefile to PostgreSQL/PostGIS Import Tool
Qucik Print Quickly print a map with minimal effort
== | Scalebar Draws a scale bar
@ WFS Load and display WFS layer

Tip 41 PLUGINS SETTINGS SAVED TO PROJECT

When you save a .qgs project, any changes you have made to NorthArrow, ScaleBar and Copyright plugins
will be saved in the project and restored next time you load the project.

8The MapServer Export Plugin and the Plugin Installer Plugin are external Python Plugins, but they are part of the
QGIS sources and automatically loaded and selectable inside the QGIS Plugin Manager.

QGIS 1.0.0 User, Installation and Coding Guide

102

12.1 Coordinate Capture Plugin

12.1 Coordinate

Capture Plugin

The coordinate capture plugin is easy to use and provides the capability to display coordinates on
the map canvas for two selected Coordinate Reference Systems (CRS). You can click a certain point
and copy the coordinates to the clipboard or you use the mouse tracking functionality

1. Start QGIS, select | Project Properties

Figure 36: Coordinate Cature Plugin)

Coordinate Caphure
17041263414

-2A064585,432,5.251754, 253

E Copy bo clipboard

from the | Settings | menu and click on the | Projection I

tab. As an alternative you you can also click on the @l projector |icon in the lower right-hand
corner of the statusbar.)

2. Click on the

Enable on the fly projection

checkbox and select the projected coordinate sys-

tem "NAD27/Alaska Albers" with EPSG 2964 (see also Section 8).

3. Load the alaska.shp vector layer from the qgis sample dataset.

4. Load the coordinate capture plugin in the Plugin Manager (see Section 11.1.1) and click on the

5. Click on the

+ ‘ Coordinate Capture ‘ icon. The cordinate capture dialog appears as shown in Figure 36.

E ‘Click to the select the CRS to use for coordinate display | icon and select

Geographic Coordinate System WGS84 (EPSG 4326).

6. You can now click anywhere on the map canvas and the plugin will show the "NAD27/Alaska
Albers" and WGS84 coordinates for your selected points as shown in Figure 36.

iy |
7. To enable mouse coordinate tracking click the ’mouse tracking | icon.

8. You can also copy selected coordinates to the clipboard.

QGIS 1.0.0 User, Installation and Coding Guide

103

12 USING QGIS CORE PLUGINS

12.2 Decorations Plugins

The Decorations Plugins includes the Copyright Label Plugin, the North Arrow Plugin and the Scale
Bar Plugin. They are used to “decorate” the map by adding cartographic elements.

12.2.1 Copyright Label Plugin

The title of this plugin is a bit misleading - you can add any random text to the map.

5.
6.

Figure 37: Copyright Label Plugin 06)

L A Cejeairieinre Lz

= Rije ?=|x|

Description

 Bold text < /B>

&ropy; QOGS 2008

Flacement

Help

Enter your copyright kel below, This plugin supports basic html
markup tags for formatting the lbel, For example: @

Eiottom Right -

%| Enable Copyright Lael

Make sure the plugin is loaded

Click on Pluginsl > Decorationsl > ’@ Copyright Label

button from the Toolbar.

or use the @l ‘Copyright Label

Enter the text you want to place on the map. You can use HTML as shown in the example

Choose the placement of the label from the

Placement | Bottom Right [¥]

Make sure the |[X] Enable Copyright Label

Click

checkbox is checked

drop-down box

In the example above, the first line is in bold, the second (created using
) contains a copyright
symbol, followed by our company name in italics.

QGIS 1.0.0 User, Installation and Coding Guide

104

12.2 Decorations Plugins

12.2.2 North Arrow Plugin

The North Arrow plugin places a simple north arrow on the map canvas. At present there is only one
style available. You can adjust the angle of the arrow or let QGIS set the direction automatically. If
you choose to let QGIS determine the direction, it makes its best guess as to how the arrow should
be oriented. For placement of the arrow you have four options, corresponding to the four corners of
the map canvas.

Figure 38: North Arrow Plugin o)
& I L m e R AR F e] 20
North Arrow Plugin

L
Flacernent [Bnttum Latt |v]
[3€] Enable Marth Arrow
[%] Set direction automatically

ER

12.2.3 Scale Bar Plugin
The Scale Bar plugin adds a simple scale bar to the map canvas. You control the style and placement,
as well as the labeling of the bar.

QGIS only supports displaying the scale in the same units as your map frame. So if the units of your
layers are in meters, you can't create a scale bar in feet. Likewise if you are using decimal degrees,
you can't create a scale bar to display distance in meters.

To add a scale bar:

1. Click on PluginSI > Decorationsl > |= Scale BarI or use the | ™™ || Scale Bar | button from

the Toolbar.

QGIS 1.0.0 User, Installation and Coding Guide 105

12 USING QGIS CORE PLUGINS

2. Choose the placement from the Placement‘ Bottom Left [X]

3. Choose the style from the | Scale bar style ‘ Tick Down E]‘ list

drop-down list

4. Select the color for the bar | Color of bar _ or use the default black color

5. Set the size of the bar and its label | Size of bar | 30 degrees m

6. Make sure the

Enable scale bar | checkbox is checked

7. Optionally choose to automatically snap to a round number when the canvas is resized

Automatically snap to round number on resize

8. CIick

Figure 39: Scale Bar Plugin)

i o Sies = BiEpp Rugeg ?=Ix|

Scale Bar Plugin

This plugin draws a scale bar on the map. Please note the size
option belove is a ‘preferred’ size and may have Lo be altered by
QGIS depending on the level of zoom, The size is measured
according to the map units specified in the project properties,

Placement: Top Left ~
Scale bar style: Tick Down ~
Colour of bar: @
Size of bar: 30 degrees =

3| Enahle scale bar
%| Automatically snap Lo round numkser on resize

Help Ok Cancel

QGIS 1.0.0 User, Installation and Coding Guide

106

12.3 Delimited Text Plugin

12.3 Delimited Text Plugin
The Delimited Text plugin allows you to load a delimited text file as a layer in QGIS.

Requirements

To view a delimited text file as layer, the text file must contain:

1. A delimited header row of field names. This must be the first line in the text file.
2. The header row must contain an X and Y field. These fields can have any name.

3. The x andy coordinates must be specified as a number. The coordinate system is not important.

As an example of a valid text file we import the elevation point data file elevp.csv coming with the
QGIS sample dataset (See Section 3.2):

X;Y;ELEV
-300120;7689960;13
-654360;7562040;52
1640;7512840;3
[...]

Some items of note about the text file are:

. The example text file uses ; as delimiter. Any character can be used to delimit the fields.

. The first row is the header row. It contains the fields X, Y and ELEV.

1

2

3. No quotes (") are used to delimit text fields.

4. The x coordinates are contained in the X field.
5

. The y coordinates are contained in the Y field.

Using the Plugin

To use the plugin you must have QGIS running and use the Plugin Manager to load the plugin:

Start QGIS, then open the Plugin Manager by choosing \ Plugins| > ‘K‘ Plugin Manager... | The Plugin
Manager displays a list of available plugins. Those that are already loaded have a check mark to the

left of their name. Click on the checkbox to the left of the Add Delimited Text Layer | plugin and
click to load it as described in Section 11.1.

Click the new toolbar icon m ‘Add Delimited Text Layer\ to open the Delimited Text dialog as
shown in Figure 40.

QGIS 1.0.0 User, Installation and Coding Guide 107

12 USING QGIS CORE PLUGINS

Figure 40: Delimited Text Dialog)

=) Bi= i ¢ O E:

Delimited Text Layer

Description

Select a delimited text file containing a header row and one or more rows of % and v
coordinates that wou would like b0 use as 3 point layer and this pludgin will do the job E
for ol -

Dielimited text file |Iarheita'grassdata.n‘qgis_sample_data.n‘csw'elwp.csv ‘ | Browsze,,,

Layer riame [elevp]

Celimiter [; l @ Plaincharacters () Regular expression

B K fele [- | ¥ field | ¥ -

— Sample best

HRIELEY

-3001 20, 763996013

-A54.360; YBE2040; 52
1640;7512840,3
=775 20: 749644049

_756040;7489830;49 E
SEPA40 7453005 &

Help Parse | | OK | | Cancel

First select the file qgis_sample_data/csv/elevp.csv to import by clicking on the button.
Once the file is selected, the plugin attempts to parse the file using the last used delimiter, in this case
;. To properly parse the file, it is important to select the correct delimiter. To change the delimiter to tab
use \t (this is a regular expression for the tab character). After changing the delimiter, click .

Choose the X and Y fields from the drop down boxes and enter a Layer name elevp as shown in

Figure 40. To add the layer to the map, click | Add Layer I . The delimited text file now behaves as any
other map layer in QGIS.

QGIS 1.0.0 User, Installation and Coding Guide 108

12.4 Dxf2Shp Converter Plugin

12.4 Dxf2Shp Converter Plugin

The dxf2shape converter plugin allows to convert vector data from DXF to Shapefile format. It is very
simple to handle and provides following functionality as shown in Figure 41.

Input DXF file : Enter path to the DXF file to be converted
Output Shp file : Enter desired name of the shape file to be created

Output file type : specifies the type of the output Shapefile. Currently supported is polyline,
polygone and point.

Export text labels : If you enable this checkbox, an additional Shapefile points layer will be
created, and the associated dbf table will contain information about the "TEXT" fields found in
the dxf file, and the text strings themselves.

Figure 41: Dxf2Shape Converter Plugin Ko

= Pl i IFLE I ?I I

Input D il | Ahomeuser/geacdata, o] E]

Output file [Ihnmea‘user!gendata.shp] E]
— Ckput file bype

) Palyline i@ Palygon (" Paint

..

Help | 0K | | Cancel

Start QGIS, load the Dxf2Shape plugin in the Plugin Manager (see Section 11.1.1) and click

d
on the | 2s ‘DXfZShape Converter | icon which appears in the QGIS toolbar menu. The

Dxf2Shape plugin dialog appears as shown in Figure 41.

. Enter input DXF file, a name for the output Shapefile and the Shapefile type.

. Enable the Export text labels | checkbox, if you want to create an extra point layer with

labels.

. Click|Ok] .

QGIS 1.0.0 User, Installation and Coding Guide 109

12 USING QGIS CORE PLUGINS

12.5 Georeferencer Plugin

The i'{"i \Georeferencer\ allows to generate world files for rasters. Therefore you select points on
the raster, add their coordinates, and the plugin will compute the world file parameters. The more
coordinates you provide the better the result will be.

As an example we will generate a world file for a topo sheet of South Dakota from SDGS. It can later
be visualized together with in the data of the GRASS spearfish60 location. You can download the
topo sheet here: http://grass.osgeo.org/sampledata/spearfish_toposheet.tar.gz

As a first step we download the file and untar it.

wget http://grass.osgeo.org/sampledata/spearfish_toposheet.tar.gz
tar xvzf spearfish_toposheet.tar.gz
cd spearfish_toposheet

The next step is to start QGIS, load the georeferencer plugin and select the file spearfish_-
topo24.tif.

Figure 42: Select an image to georeference o)

S GEO! ehelence 2) a

x

Raster file: |..fspearfish_tu:lpusheEt.fspearfish_tupuzﬂ.tif

| Descriptior... | | Arrange plugin windows

Now click on the button \Arrange plugin window | to open the image in the georeferencer and to
arrange it with the reference map in the ggis map canvas on your desktop (see Figure 43).

With the button | Add Point] you can start to add points on the raster image and enter their coordi-
nates, and the plugin will compute the world file parameters (see Figure 44). The more coordinates
you provide the better the result will be. For the procedure you have two options:

1. You click on a point in the raster map and enter the X and Y coordinates manually

2. You click on a point in the raster map and choose the button ‘from map canvas | to add the X
and Y coordinates with the help of a georeferenced map already loaded in QGIS.

QGIS 1.0.0 User, Installation and Coding Guide 110

http://grass.osgeo.org/sampledata/spearfish_toposheet.tar.gz

12.5 Georeferencer Plugin

Figure 43: Arrange plugin window with the qgis map canvas)

\ L - E i B
29w Guzntum G5 - 10, U-ore-trunls)= 1]1X)
Fle Edit visw Layer Seftihgs Pluging Tools Help

a 4 = - 1) :
Raster file; E.a'spearfish_Loposheetxspearfish_topom.tif |:] BIE E B S » [# = wWeoWws

-

x J CGizursfzrznear) L7l

FRAIXNILLQ0 +0 -

- TILE
TR 400
A 1m

i adliitsiananes poln s) \2) |2 (%]

1 Enter ¥ and % coorcinates which correspond with the selected poink on the
image, Alternativaly, click the button with icon of a pencil and then click a
correspanding point on map caryvas of GGIS Lo filin coordinates of that point,

Transform type: |Linear |v! W 1|
Wiodlified rasker; | | | | i |
Warle file: [Pestspearfist_topo2dwi | [: -F

Creste | | Greate and Iod ayer | @[|.f from map canvas | g || ok |

For this example we use the second option and enter the coordinates for the selected
points with the help of the roads map provided with the spearfish60 location from:
http://grass.osgeo.org/sampledata/spearfish_grass60data-0.3.tar.gz

If you don’t know how to integrate the spearfish60 location with the GRASS plugin, information are
provided in Section 9. As you can see in Figure 44, the georeferencer provides buttons to zoom, pan,
add and delete points in the image.

After you added enough points to the image you need to select the transformation type for the geo-
referencing process and save the resulting world file together with the Tiff. In our example we choose

Transform type |linear transformation [¥]|| although a | Transform type | Helmert transformationlz]‘

might be sufficient as well.

The points we added to the map will be stored in a spearfish_topo24.tif.points file together with
the raster image. This allows us to reopen the georeferencer plugin and to add new points or delete
existing ones to optimize the result. The spearfish_topo24.tif.points file of this example shows

QGIS 1.0.0 User, Installation and Coding Guide 111

http://grass.osgeo.org/sampledata/spearfish_grass60data-0.3.tar.gz

12 USING QGIS CORE PLUGINS

Figure 44: Add points to the raster image)

Q)| e| (S

A, L _E.'_::'.l
K ._'_'Ii‘._.:b- gty o 8l

7 A% BA0250, 672452

Transform type: [Lirear | -

Wiarld file: [.l'spearfish_tu:upu:usheet.l'spearfish_tnpnzd.wld] |

Modified raster: [] [l
Cregte and |oad layer l

|

Tip 42 CHOOSING THE TRANSFORMATION TYPE

The linear (affine) transformation is a 1st order transformation and is used for scaling, translation and rotation
of geometrically correct images. With the Helmert transformation you simply add coordinate information to the
image like geocooding. If your image is contorted you will need to use software that provides 2nd or 3rd order
polynomial transformation, e.g. GRASS GIS.

the points:

mapX mapY pixelX pixelY

591630.196867999969982
608453.589164100005291
602554 .903929700027220
591511.138448899961077

4927104 .309682800434530 591647
4924878.995150799863040 608458
4915579.220743400044739 602549
4915952.302661700174212 591563

4.9271e+06

4.92487e+06
4.91556e+06
4.91593e+06

QGIS 1.0.0 User, Installation and Coding Guide

112

12.5 Georeferencer Plugin

602649.526155399973504 4919088.353569299913943 602618 4.91907e+06

We used 5 coordinate points to georeference the raster image. To get correct results it is important to
disperse the points regulary in the image. Finally we check the result and load the new georeferenced
map spearfish_topo24.tif and overlay it with the map roads of the spearfish60 location.

Figure 45: Georeferenced map with overlayed roads from spearfish60 location Ko

S S QUaT b Gl = O O =ROT =t e

A

File Edit Mew Laver Settings Pluging Tools Help

JmddcoRRPRPPEH P wu- Q-
BAAXALRO *OMEHO.L ~
CLLA0S- aaRAWAAAT

Legend -

=8 @ﬁk spearfish_topo24

®

O || 591266,4927725 || S % Render

QGIS 1.0.0 User, Installation and Coding Guide 113

12 USING QGIS CORE PLUGINS

12.6 Quick Print Plugin

The @ Quick Print | Plugin allows to print the current map canvas with minimal effort into PDF

format. All the user needs to add is a Map Title, a Map Name and the Paper Size (See Figure 46).

Figure 46: Quick Print Dialog o)
(o LGgis e Balat Bludin) | 7)) x)

Quick Print

Ilap Tikle &g, ACHE inc.

[Quantum GIS Cuick Print

Iap Mame e.g. Water Features

[Southeast Alaska

Copyright
|2 o5 2009 ~
Page Size
[M (210 % 237 mm, 8.26 % 11,69 inches) |v]

man composer function in QGIS,

I4OLE IF {0L) Want More concral Over the map 13your please use the

|

O) | cancal |

Figure 47 below shows a DIN A4 quick print result from the alaska sample dataset. If you want more

control over the map layout, please use the print composer plugin, described in Section 10.

Figure 47: Quick Print result as DIN A4 PDFA

~Quantum GIS Quick Print

04.01.09

Southeast Alaska

I e iz
[ke

[% {c) QGIS 2009
+«~<

QGIS 1.0.0 User, Installation and Coding Guide

114

12.7 GPS Plugin

12.7 GPS Plugin
12.7.1 What is GPS?

GPS, the Global Positioning System, is a satellite-based system that allows anyone with a GPS
receiver to find their exact position anywhere in the world. It is used as an aid in navigation, for
example in airplanes, in boats and by hikers. The GPS receiver uses the signals from the satellites
to calculate its latitude, longitude and (sometimes) elevation. Most receivers also have the capability
to store locations (known as waypoints), sequences of locations that make up a planned route and
a tracklog or track of the receivers movement over time. Waypoints, routes and tracks are the three
basic feature types in GPS data. QGIS displays waypoints in point layers while routes and tracks are
displayed in linestring layers.

12.7.2 Loading GPS data from a file

There are dozens of different file formats for storing GPS data. The format that QGIS uses is called
GPX (GPS eXchange format), which is a standard interchange format that can contain any number
of waypoints, routes and tracks in the same file.

To load a GPX file you first need to load the plugin. \PIugins] > \f‘ Plugin Manager...| >

GPS Tools || When this plugin is loaded a button with a small handheld GPS device will show
up in the toolbar. An example GPX file is available in the QGIS sample dataset: /qgis_sample_-
data/gps/national_monuments.gpx. See Section 3.2 for more information about the sample data.

1. Click on the H GPS Tools | icon and open the \ Load GPX fiIe| tab.

2. |Browse I to the folder qgis_sample_data/gps/, select the GPX file national_monuments.gpx
and click | Open]|.

Use the browse button |- - - | to select the GPX file, then use the checkboxes to select the feature
types you want to load from that GPX file. Each feature type will be loaded in a separate layer when
you click . The file national_monuments.gpx only includes waypoints.

12.7.3 GPSBabel

Since QGIS uses GPX files you need a way to convert other GPS file formats to GPX.
This can be done for many formats using the free program GPSBabel, which is available at
http://www.gpsbabel.org. This program can also transfer GPS data between your computer and a

QGIS 1.0.0 User, Installation and Coding Guide 115

http://www.gpsbabel.org

12 USING QGIS CORE PLUGINS

Figure 48: The GPS Tools dialog window)
2 EESROOIS] e

Load GPX file I Import other file | Download from GPS | Upload to GPS | GPY Conversinns]

GP¥ is the GPS eXchange file format, which is used b0 store information about waypoints, routes, and tracks,

Select a GPX file anc then select. the feature Eypes that wou want to load,

Files

[.n'home.n'user.fqgis_sample_data.l'gps.fnational_mnnuments. P]
Feature kypes:

%] Wavpoints

[Tracks

(o) o

GPS device. QGIS uses GPSBabel to do these things, so it is recommended that you install it. How-
ever, if you just want to load GPS data from GPX files you will not need it. Version 1.2.3 of GPSBabel
is known to work with QGIS, but you should be able to use later versions without any problems.

12.7.4 Importing GPS data

To import GPS data from a file that is not a GPX file, you use the tool | Import other file | in the GPS
Tools dialog. Here you select the file that you want to import, which feature type you want to import
from it, where you want to store the converted GPX file and what the name of the new layer should
be.

When you select the file to import you must also select the format of that file by using the menu in
the file selection dialog (see figure 49). All formats do not support all three feature types, so for many
formats you will only be able to choose between one or two types.

12.7.5 Downloading GPS data from a device

QGIS can use GPSBabel to download data from a GPS device directly into vector layers. For this
you use the tool | Download from GPS| (see Figure 50), where you select your type of GPS device,
the port that it is connected to, the feature type that you want to download, the GPX file where the

QGIS 1.0.0 User, Installation and Coding Guide 116

12.7 GPS Plugin

Figure 49: File selection dialog for the import tool)

Look in: |.|'homal’darssau lv| Q @ = |j| —I
backup rmuell

bilder oertliche

bilder_grass openapp_isodist

E daten privates

Desktop programmierung
downl radardaten
firefox rvr

grassdata SOURCES
joomila SPECS

larissa wImware

== Mail

mantmartre

File name:; |

Cancel

Files of type: |

4

CoPilot Flight Planner [*.*)
DONA [*%)

Delorme GPS Log (*.%)

Delorme Routes (*.*)

Delorme Strest Atlas 2004 Plus {*.*)
EasyGPS Binary Format (*.%)
Fugawi (*.%)

GPSDrive (*.*)

GPSU (*.7)

GPaman **)

E F)

GIr]

data should be stored, and the name of the new layer.

The device type you select in the GPS device menu determines how GPSBabel tries to communicate
with the device. If none of the types works with your GPS device you can create a new type (see
section 12.7.7).

The port is a file name or some other name that your operating system uses as a reference to the
physical port in your computer that the GPS device is connected to. & On Linux this is something
like /dev/ttySO or /dev/ttyS1 and on {y Windows it's COM1 or COM2.

When you click the data will be downloaded from the device and appear as a layer in QGIS.

12.7.6 Uploading GPS data to a device

You can also upload data directly from a vector layer in QGIS to a GPS device, using the tool
Upload to GPS | . The layer must be a GPX layer. To do this you simply select the layer that you want
to upload, the type of your GPS device and the port that it's connected to. Just as with the download
tool you can specify new device types if your device isn't in the list.

QGIS 1.0.0 User, Installation and Coding Guide 117

12 USING QGIS CORE PLUGINS

Figure 50: The download tool)

Load GPH file | Import other fle | Downioad from GPS | Upload Lo GPS | GPX Conwersians |

This taal will el wou download data from a GPS device. Choose your GPS device, the part it is connected bo, the feature
tue you wank to download, 3 name for your new layer, and the GPX file where you want to store the data, If wour device
ist't lisked, or if yau wank to change some settings, vou can also edit the cevices,

This toal uses the program GPSBabel (bt faw, gpshatel org) bo transfer the data, This requires that wou have
GPEBabel installed where QGIS can find it

GPS device: | Garmin serial [Edit devices... Fark: | ddew/thyS0 I~ Refresh
Feature type: | Waypoinks I~

Qutput file: Bave As..

Layer name:

K Cancel

This tool is very useful together with the vector editing capabilities of QGIS. You can load a map,
create some waypoints and routes and then upload them and use them in your GPS device.

12.7.7 Defining new device types

There are lots of different types of GPS devices. The QGIS developers can't test all of them, so if
you have one that does not work with any of the device types listed in the | Download from GPS|

and | Upload to GPS | tools you can define your own device type for it. You do this by using the GPS

device editor, which you start by clicking the button in the download or the upload
window.

To define a new device you simply click the | New deviceI button, enter a name, a download com-

mand and an upload command for your device, and click the \ Update device | button. The name
will be listed in the device menus in the upload and download windows, and can be any string. The
download command is the command that is used to download data from the device to a GPX file. This
will probably be a GPSBabel command, but you can use any other command line program that can
create a GPX file. QGIS will replace the keywords %type, %in, and %out when it runs the command.

%type will be replaced by “-w” if you are downloading waypoints, “-r” if you are downloading routes
and “-t” if you are downloading tracks. These are command line options that tell GPSBabel which
feature type to download.

QGIS 1.0.0 User, Installation and Coding Guide 118

12.7 GPS Plugin

%in will be replaced by the port name that you choose in the download window and %out will
be replaced by the name you choose for the GPX file that the downloaded data should be
stored in. So if you create a device type with the download command “gpsbabel %type -i
garmin -o gpx %in %out” (this is actually the download command for the predefined device type

GPS device: | Garmin serial [Y]

to the file “output.gpx”, QGIS will replace the keywords and run the command “gpsbabel -w -i
garmin -o gpx /dev/ttySO output.gpx”.

)and then use it to download waypoints from port “/dev/ttyS0”

The upload command is the command that is used to upload data to the device. The same keywords
are used, but %in is now replaced by the name of the GPX file for the layer that is being uploaded,
and %out is replaced by the port name.

You can learn more about GPSBabel and it's available command line options at
http://wuw.gpsbabel.org

Once you have created a new device type it will appear in the device lists for the download and upload
tools.

QGIS 1.0.0 User, Installation and Coding Guide 119

http://www.gpsbabel.org

12 USING QGIS CORE PLUGINS

12.8 Graticule Creator Plugin

The graticule creator allows to create a “grid” of points or polygons to cover our area of interest. All
units must be entered in decimal degrees. The output is a shapefile which can be projected on the
fly to match your other data.

Here is an example how to create a graticule:

1.

Figure 51: Create a graticule layer)

WislSNaRaL

Graticule Builder

map viewer.

This plugin will help you to build a graticule shapefile that you can use as an overlay within your ggis

Please enter all units in decimal degrees

- Tep

o il ® Paeon
—~ Origin (lowser lefty

% [-20 v [0 |
 Encl point (upper right

% [20 | (a0 |
— Graticle siz

R interval: [5 | Vintervat |5 |

— Dutput (shape) fil

I alaska_graticule. sty]

Start QGIS, load the Graticule Creator Plugin in the Plugin Manager (see Section 11.1.1) and

click on the

@

] Graticule Creator | icon which appears in the QGIS toolbar menu.

2. Choose the type of graticule you wish to create: point or polygon.

3. Enter the latitude and longitude for the lower left and upper right corners of the graticule.

4. Enter the interval to be used in constructing the grid. You can enter different values for the X

and Y directions (longitude, latitude)

Choose the name and location of the shapefile to be created.

Click to create the graticule and add it to the map canvas.

QGIS 1.0.0 User, Installation and Coding Guide

120

12.9 Interpolation Plugin

12.9 Interpolation Plugin

The Interplation plugin allows to interpolate a TIN or IDW raster layer from a vector point layer loaded
in the QGIS canvas. It is very simple to handle and provides functionalities as shown in Figure 52.

e Input vector layer : Select vector point layer loaded in the QGIS canvas.

Interpolation attribute
Use Z-Coordinate

checkbox.

Select attribute column used for

interpolation or enable

Interpolation Method : Select interpolation method

Triangulated Irregular Network (TIN)

or | Inverse Distance Weighted (IDW) !

Number of columns/rows

Output file : Define a name for the output raster file

Figure 52: Interpolation Plugin s

& o)z 0]e Ljel 20 Ballx
— Input.
Input weckor layver [alevp | v]
[[] Use z-Coordinate for interpolation
Interpolation attribute [ELEV |vl
— Output

Interpolation method [Triangular interpolation (TIM)

Mumber af columns [SDD l%l
Mumber of rows [SDD l%l
Output file |."home."user."elevation_tid E]

: define number colums and.rows for the output raster file

1. Start QGIS and load the elevp.csv CSV table with elevation points in the QGIS canvas using
the delimited text plugin as described in Section 12.3.

2. Load the Interpolation plugin in the Plugin Manager (see Section 11.1.1) and click on the .Lh

icon which appears in the QGIS toolbar menu. The Interpolation plugin dialog

appears as shown in Figure 52.

3. Select

elevp

as input vector and column ELEV for interpolation.

QGIS 1.0.0 User, Installation and Coding Guide

121

12 USING QGIS CORE PLUGINS

4. Select | Triangular interpolation | ... [¥J|| as interpolation method, define 3663 cols and 1964

rows (this is equivalent to a 1000 meter pixel resolution) as raster output filename elevation_-
tin.

5. Click|Ok].

6. Double click elevation_tin in the map legend to open the Raster Layer Properties dialog and

select | Pseudocolor as Color Map in the Symbologyl tab. Or you can define a new

color table as described in Section 6.3.

In Figure 53 you see the IDW interpolation result with a 366 cols x 196 rows (10 km) resolution for
the elevp.csv data visualized using the Pseudocolor color table. The processing takes a couple of
minutes, although the data only cover the northern part of Alaska.

Figure 53: Interpolation of elevp data using IDW method Ko

A Quantium Gl o1, 0. 0-Rore-previewl =2=

.Eile Edit Miew Layer Seftings Fluging Help
T REd cRREPPE P - @ U
ERAXAeQ0 OME ® O - - .-

Legend

5 % & alaska

S
ead

E| (% I+ elevp
B |
= /[1DW Interpolation

—.xl?lllll

Owvervism

: g}
310570,7542883 || Scale |[1:0430725 |||@ Pender |[[EI| A

]

QGIS 1.0.0 User, Installation and Coding Guide 122

12.10 MapServer Export Plugin

12.10 MapServer Export Plugin

You can use QGIS to “compose” your map by adding and arranging layers, symbolizing them, cus-
tomizing the colors and then create a map file for MapServer. In order to use the MapServer Export
plugin, you must have Python >= 2.4 installed on your system and QGIS must have been compiled
with support for it. All binary packages include Python Support.

The MapServer Export plugin in QGIS 1.0.0 is a Python Plugin, that is automatically loaded into the
Plugin Manager as a core plugin (see Section 12).

12.10.1 Creating the Project File

The MapServer Export Plugin operates on a saved QGIS project file and not on the current contents
of the map canvas and legend. This has been a source of confusion for a number of people. As
described below, before you start using the MapServer Export Plugin, you need to arrange the raster
and vector layers you want to use in MapServer and save this status in a QGIS project file

Figure 54: Arrange raster and vector layers for QGIS project file o)

[&(A ez
Fie Edibt Mew Layer Settings Pluging Help

I BEHECRREPPPE URERWQ £l
PLEERORR BRAAAAQR -+ v .-

Legend [=JES) m Jld)
i

majrivers

o

LI
Exa® 9

=

m

| 1andcover

o
3

Overview &=

In this example we show the four steps to get us to the point where we are ready to create the

QGIS 1.0.0 User, Installation and Coding Guide 123

12 USING QGIS CORE PLUGINS

MapServer map file. We use raster and vector files from the QGIS sample dataset 3.2.

1. Add the raster layer 1landcover.tif clicking on the i ‘Add Raster Layer‘icon.

2. Add the vector Shapefiles 1akes.shp, majrivers.shp and airports.shp from the QGIS sam-

ple dataset clicking on the ﬁ ‘Add Vector Layer ‘ icon.

3. Change the colors and symbolize the data as you like (see Figure 54)

4. Save a new project named mapserverproject.qgs using File | > \ id Save Project].

12.10.2 Creating the Map File

The tool msexport to export a QGIS project file to a MapServer map file is installed in your QGIS
binary directory and can be used independently of QGIS. From QGIS you need to load the MapServer
Export Plugin first with the Plugin Manager. CIick\PluginSI >\ Manage Plugins... I to open the Plugin

Manager, choose MapServer export Plugin and cIickm . Now start the | &l ‘ MapServer Export‘
dialog (see Figure 55) clicking the icon in the toolbar menu.

Figure 55: Export to MapServer Dialog o)

= viEe

v RPOTNSLONVI SRS ERrE —?H_Heﬂxh
Map file [qgispruject.map]
QIGIS project. file [mapserverpmject.qgs]

[] Ewport LAYER information only

— Map

Mame [Iyhap]

width |600 | Height |400]

— et Interface Definition

Template [l
Hesaler [l
Footer [l

(=][om]

Units T

Map file
Enter the name for the map file to be created. You can use the button at the right to browse for

QGIS 1.0.0 User, Installation and Coding Guide 124

12.10 MapServer Export Plugin

the directory where you want the map file created.

Qgis project file
Enter the full path to the QGIS project file (.qgs) you want to export. You can use the button at
the right to browse for the QGIS project file.

Map Name
A name for the map. This name is prefixed to all images generated by the mapserver.
Map Width
Width of the output image in pixels.
Map Height
Height of the output image in pixels.
Map Units
Units of measure used for output
Image type
Format for the output image generated by MapServer
Web Template
Full path to the MapServer template file to be used with the map file
Web Header

Full path to the MapServer header file to be used with the map file

Web Footer
Full path to the MapServer footer file to be used with the map file

Only the Map file and QGIS project file inputs are required to create a map file, however you
may end up with a non-functional map file, depending on your intended use. Although QGIS is good
at creating a map file from your project file, it may require some tweaking to get the results you
want. But let’s create a map file using the project file mapserverproject.qgs we just created (see
Figure 55):

Open the MapServer Export Plugin clicking the .ﬂ \MapServer Export | icon.

Enter the name ggisproject.map for your new map file.

Browse and find the QGIS project file mapserverproject.qgs you just saved.
Enter a name MyMap for the map.

Enter 600 for the width and 400 for the height.

Our layers are in meters so we change the units to meters.

Choose “png” for the image type.

© N o g > w P

Click to generate the new map file qgisproject.map. QGIS displays the success of your
efforts.

QGIS 1.0.0 User, Installation and Coding Guide 125

12 USING QGIS CORE PLUGINS

You can view the map file in an text editor or visualizer. If you take a look, you'll notice that the export
tool adds the metadata needed to enable our map file for WMS.

12.10.3 Testing the Map File

We can now test our work using the shp2img tool to create an image from the map file. The shp2img
utility is part of MapServer and FWTools. To create an image from our map:

e Open aterminal window
o If you didn’t save your map file in your home directory, change to the folder where you saved it
e Run shp2img -m qgisproject.map -o mapserver_test.png and display the image

This creates a PNG with all the layers included in the QGIS project file. In addition, the extent of the

PNG will be the same as when we saved the project. As you can see in Figure 56, all inforamtion
except the airport symbols are included.

Figure 56: Test PNG created by shp2img with all MapServer Export layers o)

If you plan to use the map file to serve WMS requests, you probably don’t have to tweak anything. If
you plan to use it with a mapping template or a custom interface, you may have a bit of manual work
to do. To see how easy it is to go from QGIS to serving maps on the web, take a look at Christopher
Schmidt’s 5 minute flash video. He used QGIS version 0.8, but it is still useful. °

%nttp://openlayers.org/presentations/mappingyourdata/

QGIS 1.0.0 User, Installation and Coding Guide 126

http://openlayers.org/presentations/mappingyourdata/

12.11 OGR Converter Plugin

12.11 OGR Converter Plugin

The OGR layer converter plugin allows to convert vector data from one OGR-supported vector format
to another OGR-supported vector format. It is very simple to handle and provides functionalities as
shown in Figure 57. The supported formats can vary according to the installed GDAL/OGR package.

e Source Format/Datset/Layer : Enter OGR format and path to the vector file to be converted

e Target Format/Datset/Layer : Enter OGR format and path to the vector output file

Figure 57: OGR Layer Converter Plugin 06

AN (EHNEEE BIVETLE 7).
— Sourc
Format [ESRI Shapefil | vl
w File () Directory () Remobe source
Dataset lqgis_sample_data.fvmapﬂ_shapefilesﬁalaska.shp] [Browse l
Laver [alaska | vl
— Target
Format | G -
Dataset [Ihnme!userialaska.gml] [Erovise l
Layer [l
OK] l Cancel]

1. Start QGIS, load the OGR converter plugin in the Plugin Manager (see Section 11.1.1) and

click on the 3' ‘OGR Layer Converter‘ icon which appears in the QGIS toolbar menu. The
OGR Layer Converter plugin dialog appears as shown in Figure 57.

2. Select the OGR-supported format | ESRI Shapefile and the path to the vector input file

alaska.shp in the Source area.

3. Select the OGR-supported format | GML

name alaska.gml in the Target area.

4. Click|Ok].

and define a path and the vector output file-

QGIS 1.0.0 User, Installation and Coding Guide

127

13 USING EXTERNAL QGIS PYTHON PLUGINS

13 Using external QGIS Python Plugins

External QGIS plugins are written in python. They are stored in an official, moderated repository and
maintained by the individual author. Table 7 shows a list of plugins currently available with a short
description.10 11

When this manual was released, the external moderated QGIS plugin repository was not fully estab-
lished. A detailed documentation about the usage, the author and other important information are
provided with the external plugin itself and is not part of this manual.

You find an up-to-date list of moderated external plugins in the QGIS Official Repository of the
i Fetch Python Plugins...]) and at http://qgis.osgeo.org/download/plugins.html.

Table 7: Current moderated external QGIS Plugins

Icon | external Plugin Description

]
E-T‘Jh Zoom To Point Zooms to a coordinate specified in the input dialog. You can spec-
ify the zoom level as well to control the view extent.

A detailed install description for external python plugins can be found in Section 11.1.2.

User-Contributed Python Plugin Repository and author repositor ies

Apart from the moderated external plugins there exists another unofficial Python Plugin repository.
It contains plugins that are not yet mature enough to include them to the official repository, how-
ever some of them can be quite useful. Furthermore a few of our contributors maintain their own
repositories.

To add the unofficial repository and the author repositories open the Plugin Installer (>

. Fetch Python Plugins...|), go to the Repositoriesl tab and click the | Add 3rd party repositoriesl
button. If you don’t want one or more of the added repositories, disable it with the | Edit... | button or

completely remove with the button.

Tip 43 ADD MORE EXTERNAL PLUGINS
Apart from the official QGIS plugin repository you can add more external repositories. Therefore select the
Repositories tab in the Python Plugins Installer

10Also updates of core plugins may be available in this repository as external overlays.
1 The Python Plugin Installer is also an external Python Plugin, but it is part of the QGIS sources and automatically
loaded and selectable inside the QGIS Plugin Manager (see Section 11.1.2).

QGIS 1.0.0 User, Installation and Coding Guide 128

http://qgis.osgeo.org/download/plugins.html

14 Writing a QGIS Plugin in C++

In this section we provide a beginner’s tutorial for writing a simple QGIS C++ plugin. It is based on a
workshop held by Dr. Marco Hugentobler.

QGIS C++ plugins are dynamically linked libraries (.so or .dll). They are linked to QGIS at runtime
when requested in the plugin manager and extend the functionality of QGIS. They have access to the
QGIS GUI and can be devided into core and external plugins.

Technically the QGIS plugin manager looks in the lib/qgis directory for all .so files and loads them
when it is started. When it is closed they are unloaded again, except the ones with a checked box.
For newly loaded plugins, the classFactory method creates an instance of the plugin class and the
initGui method of the plugin is called to show the GUI elements in the plugin menu and toolbar. The
unload() function of the plugin is used to remove the allocated GUI elements and the plugin class
itself is removed using the class destructor. To list the plugins, each plugin must have a few external
'C’ functions for description and of course the classFactory method.

14.1 Why C++ and what about licensing

QGIS itself is written in C++, so it also makes sense to write plugins in C++ as well. It is an object-
oriented programming (OOP) language that is viewed by many developers as a prefered language
for creating large-scale applications.

QGIS C++ plugins use functionalities of libqgis*.so libraries. As they are licensed under GNU GPL,
QGIS C++ plugins must be licenced under the GPL, too. This means you may use your plugins for
any purpose and you are not forced to publish them. If you do publish them however, they must be
published under the conditions of the GPL license.

14.2 Programming a QGIS C++ Plugin in four steps

The example plugin is a point converter plugin and intentionally kept simple. The plugin searches
the active vector layer in QGIS, converts all vertices of the layer features to point features keeping
the attributes and finally writes the point features into a delimited text file. The new layer can then be
loaded into QGIS using the delimited text plugin (see Section 12.3).

Step 1: Make the plugin manager recognise the plugin

As a first step we create the QgsPointConverter.h and QgsPointConverter. cpp files. Then we add
virtual methods inherited from QgisPlugin (but leave them empty for now), create necessary external
'C’ methods and a .pro file, which is a Qt mechanism to easily create Makefiles. Then we compile the
sources, move the compiled library into the plugin folder and load it in the QGIS plugin manager.

QGIS 1.0.0 User, Installation and Coding Guide 129

14 WRITING A QGIS PLUGIN IN C++

a) Create new pointconverter.pro file and add

#base directory of the qgis installation
QGIS_DIR = /home/marco/src/qgis

TEMPLATE = 1ib

CONFIG = qt

QT += xml gt3support

unix:LIBS += -L/$$QGIS_DIR/1ib -1lqgis_core -lqgis_gui

INCLUDEPATH += $$QGIS_DIR/src/ui $$QGIS_DIR/src/plugins $$QGIS_DIR/src/gui \
$$QGIS_DIR/src/raster $$QGIS_DIR/src/core $$QGIS_DIR

SOURCES = ggspointconverterplugin.cpp

HEADERS = ggspointconverterplugin.h

DEST = pointconverterplugin.so

DEFINES += GUI_EXPORT= CORE_EXPORT=

b) Create new ggspointconverterplugin.h file and add

#ifndef QGSPOINTCONVERTERPLUGIN_H
#define QGSPOINTCONVERTERPLUGIN_H

#include "qgisplugin.h"

/**A plugin that converts vector layers to delimited text point files.
The vertices of polygon/line type layers are converted to point features*/
class (gsPointConverterPlugin: public QgisPlugin
{
public:
QgsPointConverterPlugin(QgisInterface* iface);
~QgsPointConverterPlugin() ;
void initGui();
void unload();

private:
QgisInterface* mIface;
+;
#endif

c¢) Create new qgspointconverterplugin.cpp file and add

#include "ggspointconverterplugin.h"

QGIS 1.0.0 User, Installation and Coding Guide 130

14.2 Programming a QGIS C++ Plugin in four steps

#ifdef WIN32

#define QGISEXTERN extern "C" __declspec(dllexport)
#else

#define QGISEXTERN extern "C"

#endif

QgsPointConverterPlugin: :QgsPointConverterPlugin(QgisInterface* iface): mIface(iface)
{
}

QgsPointConverterPlugin: : "QgsPointConverterPlugin()
{
}

void QgsPointConverterPlugin::initGui()
{
}

void QgsPointConverterPlugin::unload()
{
}

QGISEXTERN QgisPlugin* classFactory(QgisInterfacex iface)
{

return new QgsPointConverterPlugin(iface);

¥

QGISEXTERN QString name()
{

return "point converter plugin";

}

QGISEXTERN QString description()
{

return "A plugin that converts vector layers to delimited text point files";

¥

QGISEXTERN QString version()

{
return "0.00001";

QGIS 1.0.0 User, Installation and Coding Guide 131

14 WRITING A QGIS PLUGIN IN C++

// Return the type (either UI or MapLayer plugin)
QGISEXTERN int type()
{
return QgisPlugin: :UI;
X

// Delete ourself
QGISEXTERN void unload(QgisPlugin* theQgsPointConverterPluginPointer)
{

delete theQgsPointConverterPluginPointer;

}

Step 2: Create an icon, a button and a menu for the plugin

This step includes adding a pointer to the QgisInterface object in the plugin class. Then we create a
QAction and a callback function (slot), add it to the QGIS GUI using Qgislface::addToolBarlcon() and
Quislface::addPluginToMenu() and finally remove the QAction in the unload() method.

d) Open ggspointconverterplugin.h again and extend existing conten tto:

#ifndef QGSPOINTCONVERTERPLUGIN_H
#define QGSPOINTCONVERTERPLUGIN_H

#include "qggisplugin.h"
#include <Q0Object>

class QAction;

/**A plugin that converts vector layers to delimited text point files.
The vertices of polygon/line type layers are converted to point features*/
class (gsPointConverterPlugin: public QObject, public QgisPlugin
{
Q_OBJECT

public:

QgsPointConverterPlugin(QgisInterface* iface);
~QgsPointConverterPlugin() ;

void initGui();

void unload();

private:

QGIS 1.0.0 User, Installation and Coding Guide 132

14.2 Programming a QGIS C++ Plugin in four steps

QgisInterface* mIface;
QAction* mAction;

private slots:
void convertToPoint();

};

#endif

e) Open ggspointconverterplugin.cpp again and extend existing cont entto:

#include "ggspointconverterplugin.h"
#include "qgisinterface.h"
#include <QAction>

#ifdef WIN32

#define QGISEXTERN extern "C" __declspec(dllexport)
#else

#define QGISEXTERN extern "C"

#endif

QgsPointConverterPlugin: :QgsPointConverterPlugin(QgisInterfacex iface): \
mIface(iface), mAction(0)

QgsPointConverterPlugin: : "QgsPointConverterPlugin()

{

void QgsPointConverterPlugin::initGui ()

{
mAction = new QAction(tr("&Convert to point"), this);
connect (mAction, SIGNAL(activated()), this, SLOT(convertToPoint()));
mIface->addToolBarIcon(mAction);
mIface->addPluginToMenu(tr("&Convert to point"), mAction);

void QgsPointConverterPlugin::unload()

QGIS 1.0.0 User, Installation and Coding Guide 133

14 WRITING A QGIS PLUGIN IN C++

mIface->removeToolBarIcon(mAction);
mIface->removePluginMenu(tr("&Convert to point"), mAction);
delete mAction;

¥

void QgsPointConverterPlugin::convertToPoint ()

{

gWarning("in method convertToPoint");

}

QGISEXTERN QgisPlugin* classFactory(QgisInterface* iface)
{

return new QgsPointConverterPlugin(iface);

¥

QGISEXTERN QString name()
{

return "point converter plugin'";

}

QGISEXTERN QString description()
{

return "A plugin that converts vector layers to delimited text point files';

¥

QGISEXTERN QString version()

{
return "0.00001";

// Return the type (either UI or MapLayer plugin)
QGISEXTERN int type()
{
return QgisPlugin: :UI;
X

// Delete ourself
QGISEXTERN void unload(QgisPlugin* theQgsPointConverterPluginPointer)
{

delete theQgsPointConverterPluginPointer;

}

QGIS 1.0.0 User, Installation and Coding Guide 134

14.2 Programming a QGIS C++ Plugin in four steps

Step 3: Read point features from the active layer and write to text fi le

To read the point features from the active layer we need to query the current layer and the location
for the new text file. Then we iterate through all features of the current layer, convert the geometries
(vertices) to points, open a new file and use QTextStream to write the x- and y-coordinates into it.

f) Open ggspointconverterplugin.h again and extend existing conten tto

class (QgsGeometry;
class QTextStream;

private:

void convertPoint(QgsGeometry* geom, const QString& attributeString, \
QTextStream& stream) const;

void convertMultiPoint (QgsGeometry* geom, const QString& attributeString, \
QTextStream& stream) const;

void convertLineString(QgsGeometry* geom, const QString& attributeString, \
QTextStream& stream) const;

void convertMultilineString(QgsGeometry* geom, const QString& attributeString, \
QTextStream& stream) const;

void convertPolygon(QgsGeometry* geom, const QString& attributeString, \
QTextStream& stream) const;

void convertMultiPolygon(QgsGeometry* geom, const QString& attributeString, \

QTextStream& stream) const;

g) Open qgspointconverterplugin.cpp again and extend existing cont entto:

#include "qgsgeometry.h"

#include "qgsvectordataprovider.h"
#include "qgsvectorlayer.h"
#include <QFileDialog>

#include <QMessageBox>

#include <QTextStream>

void QgsPointConverterPlugin: :convertToPoint ()
{
gWarning("in method convertToPoint");
QgsMapLayer* theMaplLayer = mIface->activelayer();
if (!theMapLayer)
{

QMessageBox: :information(0, tr("no active layer"), \

QGIS 1.0.0 User, Installation and Coding Guide 135

14 WRITING A QGIS PLUGIN IN C++

tr("this plugin needs an active point vector layer to make conversions \
to points"), QMessageBox::0k);
return;
}
QgsVectorLayer* theVectorLayer = dynamic_cast<QgsVectorLayer*>(theMapLayer) ;
if ('theVectorLayer)
{
QMessageBox: :information(0, tr("no vector layer"), \
tr("this plugin needs an active point vector layer to make conversions \
to points"), QMessageBox::0k);
return;

}

QString fileName = QFileDialog::getSaveFileName();
if ('fileName.isNull())
{
gWarning ("The selected filename is: " + fileName);
QFile f(fileName);
if ('f.open(QIODevice: :WriteOnly))
{
QMessageBox: :information(0, "error", "Could not open file", QMessageBox::0k);
return;
}
QTextStream theTextStream(&f);
theTextStream.setRealNumberNotation(QTextStream: :FixedNotation) ;

QgsFeature currentFeature;
QgsGeometry* currentGeometry = O;

QgsVectorDataProvider* provider = theVectorLayer->dataProvider();
if (!provider)
{

return;

theVectorLayer->select (provider->attributeIndexes(), \
theVectorLayer->extent (), true, false);

//write header
theTextStream << "x,y";
theTextStream << endl;

QGIS 1.0.0 User, Installation and Coding Guide 136

14.2 Programming a QGIS C++ Plugin in four steps

while(theVectorLayer->nextFeature (currentFeature))

{
QString featureAttributesString;

currentGeometry = currentFeature.geometry();
if (!currentGeometry)

{

continue;

switch(currentGeometry->wkbType())

{
case (Gis::WKBPoint:
case QGis::WKBPoint25D:
convertPoint (currentGeometry, featureAttributesString, \
theTextStream) ;
break;
case QGis::WKBMultiPoint:
case (Gis::WKBMultiPoint25D:
convertMultiPoint (currentGeometry, featureAttributesString, \
theTextStream) ;
break;
case (Gis::WKBLineString:
case (QGis::WKBLineString25D:
convertLineString(currentGeometry, featureAttributesString, \
theTextStream) ;
break;
case (QGis::WKBMultiLineString:
case (Gis::WKBMultilLineString25D:
convertMultiLineString(currentGeometry, featureAttributesString \
theTextStream) ;
break;
case (QGis::WKBPolygon:
case (Gis::WKBPolygon25D:
convertPolygon(currentGeometry, featureAttributesString, \
theTextStream) ;

break;

QGIS 1.0.0 User, Installation and Coding Guide 137

14 WRITING A QGIS PLUGIN IN C++

case (Gis::WKBMultiPolygon:
case (Gis::WKBMultiPolygon25D:
convertMultiPolygon(currentGeometry, featureAttributesString, \
theTextStream) ;
break;

//geometry converter functions
void QgsPointConverterPlugin::convertPoint (QgsGeometry* geom, const QString& \
attributeString, QTextStream& stream) const

{
QgsPoint p = geom->asPoint();
stream << p.x() << "," << p.y(O);
stream << endl;

3

void QgsPointConverterPlugin::convertMultiPoint (QgsGeometry* geom, const QString& \
attributeString, QTextStream& stream) const

{
QgsMultiPoint mp = geom->asMultiPoint();
QgsMultiPoint::const_iterator it = mp.constBegin();
for(; it != mp.constEnd(); ++it)
{
stream << (*¥it).x() << "," << (*¥it).y(Q);
stream << endl;
}
+

void QgsPointConverterPlugin::convertLineString(QgsGeometry* geom, const QString& \
attributeString, QTextStream& stream) const

{
QgsPolyline line = geom->asPolyline();
QgsPolyline::const_iterator it = line.constBegin();
for(; it != line.constEnd(); ++it)
{
stream << (*it).x() << "," << (*it).y(O);
stream << endl;
b
}

QGIS 1.0.0 User, Installation and Coding Guide 138

14.2 Programming a QGIS C++ Plugin in four steps

void QgsPointConverterPlugin::convertMultilineString(QgsGeometry* geom, const QString& \
attributeString, QTextStream& stream) const

{
QgsMultiPolyline ml = geom->asMultiPolyline();
QgsMultiPolyline: :const_iterator lineIlt = ml.constBegin();
for(; lineIt != ml.constEnd(); ++linelt)
{
QgsPolyline currentPolyline = *linelt;
QgsPolyline: :const_iterator vertexIt = currentPolyline.constBegin();
for(; vertexIt '= currentPolyline.constEnd(); ++vertexIt)
{
stream << (*vertexIt).x() << "," << (*vertexIt).y();
stream << endl;
b
X
3

void QgsPointConverterPlugin::convertPolygon(QgsGeometry* geom, const QString& \
attributeString, QTextStream& stream) const

{
QgsPolygon polygon = geom->asPolygon();
QgsPolygon: :const_iterator it = polygon.constBegin();
for(; it !'= polygon.constEnd(); ++it)
{
QgsPolyline currentRing = *it;
QgsPolyline: :const_iterator vertexIt = currentRing.constBegin();
for(; vertexIt != currentRing.constEnd(); ++vertexIt)
{
stream << (*vertexIt).x() << "," << (xvertexIt).y();
stream << endl;
}
}
}

void QgsPointConverterPlugin::convertMultiPolygon(QgsGeometry* geom, const QString& \
attributeString, QTextStream& stream) const
{

QgsMultiPolygon mp = geom->asMultiPolygon() ;

QgsMultiPolygon: :const_iterator polyIt = mp.constBegin();

for(; polyIt !'= mp.constEnd(); ++polyIt)

{

QGIS 1.0.0 User, Installation and Coding Guide 139

14 WRITING A QGIS PLUGIN IN C++

QgsPolygon currentPolygon = *polylt;
QgsPolygon: :const_iterator ringlt = currentPolygon.constBegin();
for(; ringlt != currentPolygon.constEnd(); ++ringlt)

{
QgsPolyline currentPolyline = *ringlt;
QgsPolyline: :const_iterator vertexIt = currentPolyline.constBegin();
for(; vertexIt != currentPolyline.constEnd(); ++vertexIt)
{
stream << (*vertexIt).x() << "," << (xvertexIt).y();
stream << endl;
}
b

Step 4: Copy the feature attributes to the text file

At the end we extract the attributes from the active layer using QgsVectorDat-
aProvider::fieldNameMap(). For each feature we extract the field values using QgsFea-
ture::attributeMap() and add the contents comma separated behind the x- and y-coordinates for each
new point feature. For this step there is no need for any furter change in ggspointconverterplugin.h

h) Open qggspointconverterplugin.cpp again and extend existing cont entto:

#include "qgspointconverterplugin.h"
#include "qgisinterface.h"

#include "qgsgeometry.h"

#include "qgsvectordataprovider.h"
#include "qgsvectorlayer.h"

#include <QAction>

#include <QFileDialog>

#include <QMessageBox>

#include <QTextStream>

#ifdef WIN32

#define QGISEXTERN extern "C" __declspec(dllexport)
#else

#define QGISEXTERN extern "C"

#endif

QgsPointConverterPlugin: :QgsPointConverterPlugin(QgisInterfacex iface): \
mIface(iface), mAction(0)

QGIS 1.0.0 User, Installation and Coding Guide 140

14.2 Programming a QGIS C++ Plugin in four steps

QgsPointConverterPlugin: : "QgsPointConverterPlugin()

{

void QgsPointConverterPlugin::initGui ()

{

mAction = new QAction(tr("&Convert to point"), this);

connect (mAction, SIGNAL(activated()), this, SLOT(convertToPoint()));
mIface->addToolBarIcon(mAction);
mIface->addPluginToMenu(tr("&Convert to point"), mAction);

void QgsPointConverterPlugin::unload()

{

mIface->removeToolBarIcon(mAction);
mIface->removePluginMenu(tr("&Convert to point"), mAction);
delete mAction;

void QgsPointConverterPlugin::convertToPoint ()

{

gWarning("in method convertToPoint");
QgsMapLayer* theMapLayer = mIface->activelLayer();
if (! theMapLayer)
{
QMessageBox: :information(0, tr("no active layer"), \
tr("this plugin needs an active point vector layer to make conversions \
to points"), QMessageBox: :0k) ;
return;
}
QgsVectorLayer* theVectorLayer = dynamic_cast<QgsVectorLayer*>(theMapLayer) ;
if (!theVectorLayer)
{
QMessageBox: :information(0, tr("no vector layer"), \
tr("this plugin needs an active point vector layer to make conversions \
to points"), QMessageBox::0k);

return;

QGIS 1.0.0 User, Installation and Coding Guide 141

14 WRITING A QGIS PLUGIN IN C++

QString fileName = QFileDialog::getSaveFileName();
if ('fileName.isNull())
{
gWarning ("The selected filename is: " + fileName);
QFile f(fileName);
if (1f.open(QI0Device: :WriteOnly))
{
QMessageBox: :information(0, "error", "Could not open file", QMessageBox::0k);
return;
}
QTextStream theTextStream(&f);
theTextStream.setRealNumberNotation(QTextStream: :FixedNotation) ;

QgsFeature currentFeature;
QgsGeometry* currentGeometry = O;

QgsVectorDataProvider* provider = theVectorLayer->dataProvider();
if (!provider)
{

return;

theVectorLayer->select (provider->attributeIndexes(), \
theVectorLayer->extent (), true, false);

//write header
theTextStream << "x,y";
QMap<QString, int> fieldMap = provider->fieldNameMapQ) ;
//We need the attributes sorted by index.
//Therefore we insert them in a second map where key / values are exchanged
QMap<int, QString> sortedFieldMap;
QMap<QString, int>::const_iterator fieldIt = fieldMap.constBegin();
for(; fieldIt != fieldMap.constEnd(); ++fieldIt)
{
sortedFieldMap.insert(fieldIt.value(), fieldIt.key());
X

QMap<int, QString>::const_iterator sortedFieldIt = sortedFieldMap.constBegin();
for(; sortedFieldIt != sortedFieldMap.constEnd(); ++sortedFieldIt)
{

QGIS 1.0.0 User, Installation and Coding Guide 142

14.2 Programming a QGIS C++ Plugin in four steps

theTextStream << "," << sortedFieldIt.value();

theTextStream << endl;

while(theVectorLayer->nextFeature (currentFeature))
{
QString featureAttributesString;
const QgsAttributeMap& map = currentFeature.attributeMap();
QgsAttributeMap: :const_iterator attributelt = map.constBegin();
for(; attributelt != map.constEnd(); ++attributelt)
{
featureAttributesString.append(",");
featureAttributesString.append(attributelIt.value().toString());

currentGeometry = currentFeature.geometry();
if (!currentGeometry)

{

continue;

switch(currentGeometry->wkbType())

{
case (Gis::WKBPoint:
case (Gis::WKBPoint25D:
convertPoint (currentGeometry, featureAttributesString, \
theTextStream) ;
break;
case (QGis::WKBMultiPoint:
case (Gis::WKBMultiPoint25D:
convertMultiPoint (currentGeometry, featureAttributesString, \
theTextStream) ;
break;
case (Gis::WKBLineString:
case (Gis::WKBLineString25D:
convertLineString(currentGeometry, featureAttributesString, \
theTextStream) ;

break;

QGIS 1.0.0 User, Installation and Coding Guide 143

14 WRITING A QGIS PLUGIN IN C++

case (Gis::WKBMultiLineString:
case (Gis::WKBMultiLineString25D:
convertMultiLineString(currentGeometry, featureAttributesString \
theTextStream) ;

break;

case (Gis::WKBPolygon:
case (Gis::WKBPolygon25D:
convertPolygon(currentGeometry, featureAttributesString, \
theTextStream) ;
break;

case (Gis::WKBMultiPolygon:
case (Gis::WKBMultiPolygon25D:
convertMultiPolygon(currentGeometry, featureAttributesString, \
theTextStream) ;

break;

//geometry converter functions
void QgsPointConverterPlugin::convertPoint (QgsGeometry* geom, const QString& \
attributeString, QTextStream& stream) const

{
QgsPoint p = geom->asPoint();
stream << p.x() << "," << p.y(O);
stream << attributeString;
stream << endl;

+

void QgsPointConverterPlugin::convertMultiPoint (QgsGeometry* geom, const QString& \
attributeString, QTextStream& stream) const
{
QgsMultiPoint mp = geom->asMultiPoint();
QgsMultiPoint::const_iterator it = mp.constBegin();
for(; it != mp.constEnd(); ++it)
{
stream << (*it).x() << "," << (*¥it).y(Q);
stream << attributeString;

QGIS 1.0.0 User, Installation and Coding Guide 144

14.2 Programming a QGIS C++ Plugin in four steps

stream << endl;

void QgsPointConverterPlugin::convertLineString(QgsGeometry* geom, const QString& \
attributeString, QTextStream& stream) const
{
QgsPolyline line = geom->asPolyline();
QgsPolyline: :const_iterator it = line.constBegin();
for(; it !'= line.constEnd(); ++it)
{
stream << (*it).x() << "," << (*xit).y(O);
stream << attributeString;
stream << endl;

void QgsPointConverterPlugin::convertMultilineString(QgsGeometry* geom, const QString& \
attributeString, QTextStream& stream) const

{
QgsMultiPolyline ml = geom->asMultiPolyline();
QgsMultiPolyline: :const_iterator linelt = ml.constBegin();
for(; lineIt != ml.constEnd(); ++linelt)
{
QgsPolyline currentPolyline = *linelt;
QgsPolyline: :const_iterator vertexIt = currentPolyline.constBegin();
for(; vertexIt != currentPolyline.constEnd(); ++vertexIt)
{
stream << (*vertexIt).x() << "," << (xvertexIt).y();
stream << attributeString;
stream << endl;
}
}
}

void QgsPointConverterPlugin::convertPolygon(QgsGeometry* geom, const QString& \
attributeString, QTextStream& stream) const
{

QgsPolygon polygon = geom->asPolygon();

QgsPolygon: :const_iterator it = polygon.constBegin();

for(; it !'= polygon.constEnd(); ++it)

{

QGIS 1.0.0 User, Installation and Coding Guide 145

14 WRITING A QGIS PLUGIN IN C++

QgsPolyline currentRing = *it;
QgsPolyline: :const_iterator vertexIt = currentRing.constBegin();
for(; vertexIt != currentRing.constEnd(); ++vertexIt)
{
stream << (*vertexIt).x() << "," << (xvertexIt).y(Q);
stream << attributeString;
stream << endl;

void QgsPointConverterPlugin::convertMultiPolygon(QgsGeometry* geom, const QString& \
attributeString, QTextStream& stream) const

{
QgsMultiPolygon mp = geom->asMultiPolygon() ;
QgsMultiPolygon: :const_iterator polyIt = mp.constBegin();
for(; polyIt !'= mp.constEnd(); ++polyIt)
{
QgsPolygon currentPolygon = *polylt;
QgsPolygon: :const_iterator ringlt = currentPolygon.constBegin();
for(; ringlt != currentPolygon.constEnd(); ++ringlIt)
{
QgsPolyline currentPolyline = *ringlt;
QgsPolyline: :const_iterator vertexIt = currentPolyline.constBegin();
for(; vertexIt !'= currentPolyline.constEnd(); ++vertexIt)
{
stream << (kvertexIt).x() << "," << (xvertexIt).y();
stream << attributeString;
stream << endl;
b
b
}
}

QGISEXTERN QgisPlugin* classFactory(QgisInterface*x iface)
{

return new QgsPointConverterPlugin(iface);

}

QGISEXTERN QString name()
{

return "point converter plugin'";

QGIS 1.0.0 User, Installation and Coding Guide 146

14.3 Further information

QGISEXTERN QString description()
{

return "A plugin that converts vector layers to delimited text point files";

¥

QGISEXTERN QString version()
{
return "0.00001";

// Return the type (either UI or MapLayer plugin)
QGISEXTERN int type()

{
return QgisPlugin::UI;
b

// Delete ourself
QGISEXTERN void unload(QgisPlugin* theQgsPointConverterPluginPointer)
{

delete the(gsPointConverterPluginPointer;

}

14.3 Further information

As you can see, you need information from different sources to write QGIS C++ plugins. Plugin writers
need to know C++, the QGIS plugin interface as well as Qt4 classes and tools. At the beginning it is
best to learn from examples and copy the mechanism of existing plugins.

There is a a collection of online documentation that may be usefull for QGIS C++ programers:
e QGIS Plugin Debugging: http://wiki.qgis.org/qgiswiki/DebuggingPlugins

e QGIS API Documentation: http://svn.qgis.org/api_doc/html/

e Qt documentation: http://doc.trolltech.com/4.3/index.html

QGIS 1.0.0 User, Installation and Coding Guide 147

http://wiki.qgis.org/qgiswiki/DebuggingPlugins
http://svn.qgis.org/api_doc/html/
http://doc.trolltech.com/4.3/index.html

15 WRITING A QGIS PLUGIN IN PYTHON

15 Writing a QGIS Plugin in Python

In this section you find a beginner’s tutorial for writing a QGIS Python plugins. It is based on the
workshop "Extending the Functionality of QGIS with Python Plugins” held at FOSS4G 2008 by Dr.
Marco Hugentobler, Dr. Horst Duster and Tim Sutton.

Apart from writing a QGIS Python plugin, it is also possible to use PyQGIS from a python command
line console which is mainly interesting for debugging or to write standalone applications in Python
with their own user interfaces using the functionality of the QGIS core library.

15.1 Why Python and what about licensing

Python is a scripting language which was designed with the goal of being easy to program. It has
a mechanism that automatically releases memory that is no longer used (garbagge collector). A
further advantage is that many programs that are written in C++ or Java offer the possibility to write
extensions in Python, e.g. OpenOffice or Gimp. Therefore it is a good investment of time to learn the
Python language.

PyQGIS plugins use functionality of libqgis_core.so and libggis_gui.so. As both are licensed under
GNU GPL, QGIS Python plugins must be licenced under the GPL, too. This means you may use your
plugins for any purpose and you are not forced to publish them. If you do publish them however, they
must be published under the conditions of the GPL license.

15.2 What needs to be installed to get started

On the lab computers, everything for the workshop is already installed. If you program Python plugins
at home, you will need the following libraries and programs:

e QGIS
e Python
e Qt

e PyQT

e PyQt development tools

If you use Linux, there are binary packages for all major distributions. For Windows, the PyQt installer
already contains Qt, PyQt and the PyQt development tools.

QGIS 1.0.0 User, Installation and Coding Guide 148

15.3 Programming a simple PyQGIS Plugin in four steps

15.3 Programming a simple PyQGIS Plugin in four steps

The example plugin is intentionally kept simple. It adds a button to the menu bar of QGIS. If the
button is clicked, a file dialog appears where the user may load a shape file.

For each python plugin, a dedicated folder that contains the plugin files needs to be created.
By default, QGIS looks for plugins in two locations: $QGIS_DIR/share/qgis/python/plugins and
$HOME/.qgis/python/plugins. Note that plugins installed in the latter location are only visible for
one user.

Step 1: Make the plugin manager recognise the plugin

Each Python plugin is contained in its own directory. When QGIS starts up it will scan each OS
specific subdirectory and initialize any plugins it finds.

° & Linux and other unices:
Ishare/qgis/python/plugins
/home/$USERNAME/.qgis/python/plugins

. X Mac OS X:
.IContents/MacOS/share/qgis/python/plugins
/Users/$USERNAME/.qgis/python/plugins

o I3 7 Windows:
C:\Program Files\QGIS\python\plugins
C:\Documents and Settings\SUSERNAME\.qgis\python\plugins

Once that’s done, the plugin will show up in the |2 Plugin Manager...

Tip 44 Two QGIS PYTHON PLUGIN FOLDERS

There are two directories containing the python plugins. $QGIS_DIR/share/qgis/python/plugins is designed
mainly for the core plugins while $HOME/.qgis/python/plugins for easy installation of the external plugins.
Plugins in the home location are only visible for one user but also mask the core plugins with the same name,
what can be used to provide main plugin updates

To provide the neccessary information for QGIS, the plugin needs to implement the methods hame(),
description(), version(), ggisMinimumVersion() and authorName() which return descriptive strings.
The ggisMinimumVersion() should return a simple form, for example “1.0“. A plugin also needs a
method classFactory(QgisInterface) which is called by the plugin manager to create an instance of
the plugin. The argument of type QGisInterface is used by the plugin to access functions of the QGIS
instance. We are going to work with this object in step 2.

Note that, in contrast to other programing languages, indention is very important. The Python inter-
preter throws an error if it is not correct.

QGIS 1.0.0 User, Installation and Coding Guide 149

15 WRITING A QGIS PLUGIN IN PYTHON

For our plugin we create the plugin folder 'foss4g_plugin’ in $H0ME/ .qgis/python/plugins. Then we
add two new textfiles into this folder, foss4gplugin.py and __init__.py.

The file foss4gplugin.py contains the plugin class:

—*x- coding: utf-8 —-*-

Import the PyQt and QGIS libraries

from PyQt4.QtCore import *

from PyQt4.QtGui import *

from qgis.core import *

Initialize Qt resources from file resources.py

import resources
class FOSS4GPlugin:

def __init__(self, iface):
Save reference to the QGIS interface

self.iface = iface

def initGui(self):
print ’Initialising GUI’

def unload(self):
print ’Unloading plugin’

The file __init__.py contains the methods name(), description(), version(), qgisMinimumVersion()
and authorName() and classFactory. As we are creating a new instance of the plugin class, we need
to import the code of this class:

—-*- coding: utf-8 —*-
from foss4gplugin import FO0SS4GPlugin
def name():
return "FO0SS4G example"
def description():
return "A simple example plugin to load shapefiles"
def version():
return "0.1"
def ggisMinimumVersion():
return "1.0"
def authorName() :
return "John Developer"
def classFactory(iface):

QGIS 1.0.0 User, Installation and Coding Guide 150

15.3 Programming a simple PyQGIS Plugin in four steps

return FOSS4GPlugin(iface)

At this point the plugin already the neccessary infrastructure to appear in the QGIS
& Plugin Manager... | to be loaded or unloaded.

Step 2: Create an Icon for the plugin

To make the icon graphic available for our program, we need a so-called resource file. In the resource
file, the graphic is contained in hexadecimal notation. Fortunately, we don’t need to care about its
representation because we use the pyrcc compiler, a tool that reads the file resources.qrc and
creates a resource file.

The file foss4g.png and the resources.qrc we use in this little workshop can be downloaded from
http://karlinapp.ethz.ch/python_foss4g. Move these 2 files into the directory of the example
plugin $HOME/ .qgis/python/plugins/foss4g_plugin and enter there: pyrcc4 -0 resources.py re-
sources.grc.

Step 3: Add a button and a menu

In this section, we implement the content of the methods initGui() and unload(). We need an instance
of the class QAction that executes the run() method of the plugin. With the action object, we are
then able to generate the menu entry and the button:

import resources

def initGui(self):
Create action that will start plugin configuration
self.action = QAction(QIcon(":/plugins/foss4g_plugin/fossé4g.png"), "FO0SS4G plugin",
self.iface.getMainWindow())
connect the action to the run method
QObject.connect(self.action, SIGNAL("activated()"), self.run)

Add toolbar button and menu item
self.iface.addToolBarIcon(self.action)
self.iface.addPluginMenu("FOSS-GIS plugin...", self.action)

def unload(self):

Remove the plugin menu item and icon
self.iface.removePluginMenu("FOSSGIS Plugin...", self.action)
self.iface.removeToolBarIcon(self.action)

QGIS 1.0.0 User, Installation and Coding Guide 151

http://karlinapp.ethz.ch/python_foss4g

15 WRITING A QGIS PLUGIN IN PYTHON

Step 4: Load a layer from a shape file

In this step we implement the real functionality of the plugin in the run() method. The Qt4 method
QFileDialog::getOpenFileName opens a file dialog and returns the path to the chosen file. If the user
cancels the dialog, the path is a null object, which we test for. We then call the method addVectorLayer
of the interface object which loads the layer. The method only needs three arguments: the file path,
the name of the layer that will be shown in the legend and the data provider name. For shapefiles,
this is 'ogr’ because QGIS internally uses the OGR library to access shapefiles:

def run(self):

fileName = QFileDialog.getOpenFileName(None,QString.fromLocal8Bit("Select a file:

||l|, "*.Shp *.gml")
if fileName.isNull():

QMessageBox.information(None, "Cancel", "File selection canceled")
else:
vlayer = self.iface.addVectorLayer(fileName, "myLayer", "ogr")

15.4 Committing the plugin to repository

If you have written a plugin you consider to be useful and you want to share with other users you're
welcome to upload it to the QGIS User-Contributed Repository.

e Prepare a plugin directory containing only necessary files (ensure that there is no compiled .pyc
files, Subversion .svn directories etc).

e Make a zip archive of it, including the directory. Be sure the zip file name is exactly the same
as the directory inside (except the .zip extension of course). In other case the Plugin Installer
won't be able to relate the available plugin with its locally installed instance.

e Upload it to the repository: http://pyggis.org/admin/contributed (you will need to register
at first time). Please pay attention when filling the form. Especially the Version Number field is
often filled wrongly what confuses the Plugin Installer and causes false notifications of available
updates.

15.5 Further information

As you can see, you need information from different sources to write PyQGIS plugins. Plugin writers
need to know Python and the QGIS plugin interface as well as the Qt4 classes and tools. At the
beginning it is best to learn from examples and copy the mechanism of existing plugins. Using the
QGIS plugin installer, which itself is a Python plugin, it is possible to download a lot of existing Python
plugins and to study their behaviour.

There is a a collection of online documentation that may be usefull for PyQGIS programers:

QGIS 1.0.0 User, Installation and Coding Guide 152

2,

http://pyqgis.org/admin/contributed

15.5 Further information

e QGIS wiki: http://wiki.qgis.org/qgiswiki/PythonBindings
e QGIS API documentation: http://doc.qgis.org/index.html

Qt documentation: http://doc.trolltech.com/4.3/index.html

PyQt: http://www.riverbankcomputing.co.uk/pyqt/

Python tutorial: http://docs.python.org/

A book about desktop GIS and QGIS. It contains a chapter about PyQGIS plugin programing:
http://wuw.pragprog.com/titles/gsdgis/desktop-gis

You can also write plugins for QGIS in C++. See Section 14 for more information about that.

QGIS 1.0.0 User, Installation and Coding Guide 153

http://wiki.qgis.org/qgiswiki/PythonBindings
http://doc.qgis.org/index.html
http://doc.trolltech.com/4.3/index.html
http://www.riverbankcomputing.co.uk/pyqt/
http://docs.python.org/
http://www.pragprog.com/titles/gsdgis/desktop-gis

16 CREATING C++ APPLICATIONS

16 Creating C++ Applications

Not everyone wants a full blown GIS desktop application. Sometimes you want to just have a widget
inside your application that displays a map while the main goal of the application lies elsewhere. Per-
haps a database frontend with a map display? This Section provides two simple code examples by
Tim Sutton. They are available in the qgis subversion repository together with more interesting tuto-
rials. Check out the whole repository from: https://svn.osgeo.org/qgis/trunk/code_examples/

16.1 Creating a simple mapping widget

With this first tutorial we take a little walk through creating a simple mapping widget. It won't do
anything much - just load a shape file and display it in a random colour. But it should give you an
idea of the potential for using QGIS as an embedded mapping component. Before we carry on, many
thanks to Francis Bolduc who wrote the beginnings of this demo. He kindly agreed to make his work
generally available.

We start with typical adding the neccessary includes for our app:

//

// QGIS Includes

//

#include <ggsapplication.h>
#include <qggsproviderregistry.h>
#include <qggssinglesymbolrenderer.h>
#include <ggsmaplayerregistry.h>
#include <qgsvectorlayer.h>
#include <qgsmapcanvas.h>

//

// Qt Includes

//

#include <QString>

#include <QApplication>

#include <QWidget>

We use QgsApplication instead of Qt's QApplication, and get some added benifits of various static
methods that can be used to locate library paths and so on.

The provider registry is a singleton that keeps track of vector data provider plugins. It does all the work
for you of loading the plugins and so on. The single symbol renderer is the most basic symbology
class. It renders points, lines or polygons in a single colour which is chosen at random by default
(though you can set it yourself). Every vector layer must have a symbology associated with it.

QGIS 1.0.0 User, Installation and Coding Guide 154

16.1 Creating a simple mapping widget

The map layer registry keeps track of all the layers you are using. The vector layer class inherits from
maplayer and extends it to include specialist functionality for vector data.

Finally the mapcanvas is really the nub of the matter. Its the drawable widget that our map will be
drawn onto.

Now we can move on to initialising our application....

int main(int argc, char ** argv)

{
// Start the Application
QgsApplication app(argc, argv, true);

QString myPluginsDir "/home/timlinux/apps/lib/qgis";
"/home/timlinux/gisdata/brazil/BR_Cidades/";

"Brasil_Cap";

QString myLayerPath

QString myLayerBaseName
QString myProviderName = "ogr";

So now we have a qgsapplication and we have defined some variables. Since | tested this on the
Ubuntu 8.10, I just specified the location of the vector provider plugins as being inside the my devel-
opment install directory. It would probaby make more sense in general to keep the QGIS libs in one
of the standard library search paths on your system (e.g. /usr/lib) but this way will do for now.

The next two variables defined here just point to the shapefile | am going to be using (and you should
substitute your own data here).

The provider name is important - it tells qgis which data provider to use to load the file. Typically you
will use 'ogr’ or 'postgres’.

Now we can go on to actually create our layer object.

// Instantiate Provider Registry
QgsProviderRegistry: :instance (myPluginsDir) ;

First we get the provider registry initialised. Its a singleton class so we use the static instance call
and pass it the provider lib search path. As it initialises it will scan this path for provider libs.

Now we go on to create a layer...
QgsVectorLayer * myplLayer =

new QgsVectorLayer (myLayerPath, myLayerBaseName, myProviderName) ;
QgsSingleSymbolRenderer *mypRenderer = new

QGIS 1.0.0 User, Installation and Coding Guide 155

16 CREATING C++ APPLICATIONS

QgsSingleSymbolRenderer (mypLayer->geometryType()) ;
QList <QgsMapCanvasLayer> myLayerSet;

mypLayer->setRenderer (mypRenderer) ;
if (mypLayer->isValid())
{
gDebug("Layer is valid");
}
else
{
gDebug("Layer is NOT valid");
}

// Add the Vector Layer to the Layer Registry
QgsMapLayerRegistry: :instance()->addMapLayer (mypLayer, TRUE);
// Add the Layer to the Layer Set

myLayerSet.append (QgsMapCanvasLayer (mypLayer, TRUE));

The code is fairly self explanatory here. We create a layer using the variables we defined earlier.
Then we assign the layer a renderer. When we create a renderer, we need to specify the geometry
type, which do do by asking the vector layer for its geometry type. Next we add the layer to a layerset
(which is used by the QgsMapCanvas to keep track of which layers to render and in what order) and
to the maplayer registry. Finally we make sure the layer will be visible.

Now we create a map canvas on to which we can draw the layer.

// Create the Map Canvas

QgsMapCanvas * mypMapCanvas = new QgsMapCanvas(0, 0);
mypMapCanvas->setExtent (mypLayer->extent ()) ;
mypMapCanvas->enableAntiAliasing(true);
mypMapCanvas->setCanvasColor (QColor (255, 255, 255));
mypMapCanvas->freeze(false);

// Set the Map Canvas Layer Set
mypMapCanvas->setLayerSet (myLayerSet) ;
mypMapCanvas->setVisible(true);
mypMapCanvas->refresh() ;

Once again there is nothing particularly tricky here. We create the canvas and then we set its extents
to those of our layer. Next we tweak the canvas a bit to draw antialiased vectors. Next we set the
background colour, unfreeze the canvas, make it visible and then refresh it.

QGIS 1.0.0 User, Installation and Coding Guide 156

16.1 Creating a simple mapping widget

// Start the Application Event Loop
return app.exec();

}

In the last step we simply start the Qt event loop and we are all done. You can check out, compile

and run this example using cmake like this:

svn co
https://svn.osgeo.org/qgis/trunk/code_examples/1_hello_world_qgis_style
cd 1_hello_world_qgis_style

mkdir build

#optionally specify where your QGIS is installed (should work on all
platforms)

#if your QGIS is installed to /usr or /usr/local you can leave this next step
out

export LIB_DIR=/home/timlinux/apps

cmake ..

make

./timtutl

When we compile and run it here is what the running app looks like:

Figure 58: Simple C++ Application X

] " F
L 1 1 1
@
o
® g
L a2
o
. !
® @ s
8
i &
[8 g
e ®
&
™
2 &

QGIS 1.0.0 User, Installation and Coding Guide

157

16 CREATING C++ APPLICATIONS

16.2 Working with QgsMapCanvas

In Section 16.1 we showed you the usage of the QgsMapCanvas api to create a simple application
that loads a shapefile and displays the points in it. But what good is a map that you can't interact
with?

In this second tutorial | will extend the last tutorial by making it a QMainWindow application with a
menu, toolbar and canvas area. We show you how to use QgsMapTool - the base class for all tools
that need to interact with the map canvas. The purpose is to provide a demonstrator project, so |
wont promise to write the most elegant or robust C++ code. The project will provide 4 toolbar icons
for

loading a map layer (layer name is hard coded in the application

zooming in

zooming out

panning

In the working directory for the tutorial code you will find a number of files including c++ sources,
icons and a simple data file under data. There is also the .ui file for the main window.

Note: You will need to edit the .pro file in the above svn directory to match your system.

Since much of the code is the same as the previous tutorial, | will focus on the MapTool specifics
- the rest of the implementation details can be investigated by checking out the project form SVN.
A QgsMapTool is a class that interacts with the MapCanvas using the mouse pointer. QGIS has a
number of QgsMapTools implemented, and you can subclass QgsMapTool to create your own. In
mainwindow.cpp you will see | include the headers for the QgsMapTools near the start of the file:

//

// QGIS Map tools

//

#include "ggsmaptoolpan.h"

#include "ggsmaptoolzoom.h"

//

// These are the other headers for available map tools
// (not used in this example)

//

//#include "qgsmaptoolcapture.h"
//#include "qgsmaptoolidentify.h"
//#include "qgsmaptoolselect.h"
//#include "qgsmaptoolvertexedit.h"
//#include "qgsmeasure.h"

QGIS 1.0.0 User, Installation and Coding Guide 158

16.2 Working with QgsMapCanvas

As you can see, | am only using two types of MapTool subclasses for this tutorial, but there are more
available in the QGIS library. Hooking up our MapTools to the canvas is very easy using the normal
Qt4 signal/slot mechanism:

//create the action behaviours

connect (mActionPan, SIGNAL(triggered()), this, SLOT(panMode()));

connect (mActionZoomIn, SIGNAL(triggered()), this, SLOT(zoomInMode()));
connect (mActionZoomOut, SIGNAL(triggered()), this, SLOT(zoomOutMode()));
connect (mActionAddLayer, SIGNAL(triggered()), this, SLOT(addLayer()));

Next we make a small toolbar to hold our toolbuttons. Note that the mpAction* actions were created
in designer.

//create a little toolbar

mpMapToolBar = addToolBar(tr("File"));
mpMapToolBar->addAction(mpActionAddLayer) ;
mpMapToolBar->addAction(mpActionZoomIn) ;
mpMapToolBar->addAction(mpActionZoomQOut) ;
mpMapToolBar->addAction(mpActionPan) ;

Thats really pretty straightforward Qt stuff too. Now we create our three map tools:

//create the maptools

mpPanTool = new QgsMapToolPan(mpMapCanvas) ;
mpPanTool->setAction(mpActionPan);

mpZoomInTool = new QgsMapToolZoom(mpMapCanvas, FALSE); // false = in
mpZoomInTool->setAction (mpActionZoomIn) ;

mpZoomQOutTool = new QgsMapToolZoom(mpMapCanvas, TRUE); //true = out
mpZoomQutTool->setAction(mpActionZoomQut) ;

Again nothing here is very complicated - we are creating tool instances, each of which is associated
with the same mapcanvas, and a different QAction. When the user selects one of the toolbar icons,
the active MapTool for the canvas is set. For example when the pan icon is clicked, we do this:

void MainWindow: :panMode ()

{
mpMapCanvas->setMapTool (mpPanTool) ;

QGIS 1.0.0 User, Installation and Coding Guide 159

16 CREATING C++ APPLICATIONS

Figure 59: QMainWindow application with a menu, toolbar and canvas area X

By By MainWindow =

| OO S

e

Conclusion

As you can see extending our previous example into something more functional using MapTools is
really easy and only requires a few lines of code for each MapTool you want to provide.

You can check out and build this tutorial using SVN and CMake using the following steps:

svn co https://svn.osgeo.org/qgis/trunk/code_examples/2_basic_main_window

cd 2_basic_main_window

mkdir build

#optionally specify where your QGIS is installed (should work on all platforms)
#if your QGIS is installed to /usr or /usr/local you can leave this next step out
export LIB_DIR=/home/timlinux/apps

cmake ..

make

./timtut?2

QGIS 1.0.0 User, Installation and Coding Guide 160

17 Creating PyQGIS Applications

One of the goals of QGIS is to provide not only an application, but a set of libraries that can be used
to create new applications. This goal has been realized with the refactoring of libraries that took
place after the release of 0.8. Since the release of 0.9, development of standalone applications using
either C++ or Python is possible. We recommend you use QGIS 1.0.0 or greater as the basis for your
pythong applications because since this version we now provide a stable consistent API.

In this chapter we’ll take a brief look at the process for creating a standalone Python application.
The QGIS blog has several examples of creating PyQGIS?!? applications. We'll use one of them as a
starting point to get a look at how to create an application.

The features we want in the application are:

e Load a vector layer

e Pan

e Zoom in and out

e Zoom to the full extent of the layer

e Set custom colors when the layer is loaded

This is a pretty minimal feature set. Let’s start by designing the GUI using Qt Designer.

17.1 Designing the GUI

Since we are creating a minimalistic application, we’ll take the same approach with the GUI. Using
Qt Designer, we create a simple MainWindow with no menu or toolbars. This gives us a blank slate
to work with. To create the MainWindow:

Create a directory for developing the application and change to it

Run Qt Designer

The New Form dialog should appear. If it doesn’t, choose New Form... from the File menu.
Choose Main Window from the templates/forms list

Click Create

Resize the new window to something manageable

N o bk~ wbd P

Find the Frame widget in the list (under Containers) and drag it to the main window you just
created

8. Click outside the frame to select the main window area

2An application created using Python and the QGIS bindings

QGIS 1.0.0 User, Installation and Coding Guide 161

17 CREATING PYQGIS APPLICATIONS

9. Click on the Lay Out in a Grid tool. When you do, the frame will expand to fill your entire main
window

10. Save the form as mainwindow.ui

11. Exit Qt Designer

Now compile the form using the PyQt interface compiler:

pyuic4 -o mainwindow_ui.py mainwindow.ui

This creates the Python source for the main window GUI. Next we need to create the application
code to fill the blank slate with some tools we can use.

17.2 Creating the MainWindow

Now we are ready to write the MainWindow class that will do the real work. Since it takes up quite a
few lines, we'll look at it in chunks, starting with the import section and environment setup:

Loosely based on:

Original C++ Tutorial 2 by Tim Sutton

ported to Python by Martin Dobias

with enhancements by Gary Sherman for F0SS4G2007
Licensed under the terms of GNU GPL 2

from PyQt4.QtCore import *
from PyQt4.QtGui import *
from ggis.core import *

© 00 N O O & W N =

[
o

from qgis.gui import *

[EEY
[EEY

import sys

[ae
N

import os
Import our GUI
from mainwindow_ui import Ui_MainWindow

e
> 01 b W

Environment variable QGISHOME must be set to the 1.0 install directory
before running this application

=
o0 N

qgis_prefix = os.getenv("QGISHOME")

Some of this should look familiar from our plugin, especially the PyQt4 and QGIS imports. Some
specific things to note are the import of our GUI in line 14 and the import of our CORE library on line
9.

QGIS 1.0.0 User, Installation and Coding Guide 162

17.2 Creating the MainWindow

Our application needs to know where to find the QGIS installation. Because of this, we set the
QGISHOME environment variable to point to the install directory of QGIS 1.x In line 20 we store this
value from the environment for later use.

Next we need to create our MainWindow class which will contain all the logic of our application.

21 class MainWindow(QMainWindow, Ui_MainWindow) :

22

23 def __init__(self):

24 QMainWindow.__init__(self)

25

26 # Required by Qt4 to initialize the UI

27 self.setupUi(self)

28

29 # Set the title for the app

30 self.setWindowTitle ("QGIS Demo App")

31

32 # Create the map canvas

33 self.canvas = QgsMapCanvas()

34 # Set the background color to light blue something

35 self.canvas.setCanvasColor (QColor (200,200,255))

36 self.canvas.enableAntiAliasing(True)

37 self.canvas.useQImageToRender (False)

38 self.canvas.show()

39

40 # Lay our widgets out in the main window using a

41 # vertical box layout

42 self.layout = QVBoxLayout(self.frame)

43 self.layout.addWidget (self.canvas)

44

45 # Create the actions for our tools and connect each to the appropriate
46 # method

47 self.actionAddLayer = QAction(QIcon("(qgis_prefix + "/share/qgis/themes/classic/mActio:
48 \

49 "Add Layer", self.frame)

50 self.connect (self.actionAddLayer, SIGNAL("activated()"), self.addLayer)
51 self.actionZoomIn = QAction(QIcon("(qgis_prefix + "/share/qgis/themes/classic/mActionZ
52 "Zoom In", self.frame)

53 self.connect(self.actionZoomIn, SIGNAL("activated()"), self.zoomIn)

54 self.actionZoomOut = QAction(QIcon("(qgis_prefix + "/share/qgis/themes/classic/mAction:
55 "Zoom Out", self.frame)

56 self.connect(self.actionZoomOut, SIGNAL("activated()"), self.zoomOut)

QGIS 1.0.0 User, Installation and Coding Guide 163

17 CREATING PYQGIS APPLICATIONS

57 self.actionPan = QAction(QIcon("(qgis_prefix + "/share/qgis/themes/classic/mActionPan.pn
58 "Pan", self.frame)

59 self.connect(self.actionPan, SIGNAL("activated()"), self.pan)

60 self.actionZoomFull = QAction(QIcon("(qgis_prefix + "/share/qgis/themes/classic/mActionZ
61 "Zoom Full Extent", self.frame)

62 self.connect(self.actionZoomFull, SIGNAL("activated()"),

63 self.zoomFull)

64

65 # Create a toolbar

66 self.toolbar = self.addToolBar("Map")

67 # Add the actions to the toolbar

68 self.toolbar.addAction(self.actionAddLayer)

69 self.toolbar.addAction(self.actionZoomIn)

70 self.toolbar.addAction(self.actionZoomOut) ;

71 self.toolbar.addAction(self.actionPan) ;

72 self.toolbar.addAction(self.actionZoomFull) ;

73

74 # Create the map tools

75 self.toolPan = QgsMapToolPan(self.canvas)

76 self.toolZoomIn = QgsMapToolZoom(self.canvas, False) # false = in
7 self.toolZoomOut = QgsMapToolZoom(self.canvas, True) # true = out

Lines 21 through 27 are the basic declaration and initialization of the MainWindow and the set up of
the user interface using the setupUi method. This is required for all applications.

Next we set the title for the application so it says something more interesting than MainWindow (line
30). Once that is complete, we are ready to complete the user interface. When we created it in
Designer, we left it very sparse—just a main window and a frame. You could have added a menu and
the toolbar using Designer, however we’ll do it with Python.

In lines 33 through 38 we set up the map canvas, set the background color to a light blue, and enable
antialiasing. We also tell it not to use a Qlmage for rendering (trust me on this one) and then set the
canvas to visible by calling the show method.

Next we set the layer to use a vertical box layout within the frame and add the map canvas to itin line
43.

Lines 48 to 63 set up the actions and connections for the tools in our toolbar. For each tool, we create
a QAction using the icon we defined in the QGIS classic theme. Then we connect up the activated
signal from the tool to the method in our class that will handle the action. This is similar to how we
set things up in the plugin example.

Once we have the actions and connections, we need to add them to the toolbar. In lines 66 through
72 we create the toolbar and add each tool to it.

QGIS 1.0.0 User, Installation and Coding Guide 164

17.2 Creating the MainWindow

Lastly we create the three map tools for the application (lines 75 through 77). We'll use the map
tools in a moment when we define the methods to make our application functional. Let’s look at the
methods for the map toaols.

78 # Set the map tool to zoom in

79 def zoomIn(self):

80 self.canvas.setMapTool(self.toolZoomIn)
81

82 # Set the map tool to zoom out

83 def zoomOut(self):

84 self.canvas.setMapTool (self.toolZoomOut)
85

86 # Set the map tool to

87 def pan(self):

88 self.canvas.setMapTool(self.toolPan)

89

90 # Zoom to full extent of layer

91 def zoomFull(self):

92 self.canvas.zoomFullExtent ()

For each map tool, we need a method that corresponds to the connection we made for each action.
In lines 79 through 88 we set up a method for each of the three tools that interact with the map. When
a tool is activated by clicking on it in the toolbar, the corresponding method is called that “tells” the
map canvas it is the active tool. The active tool governs what happens when the mouse is clicked on
the canvas.

The zoom to full extent tool isn’'t a map tool—it does its job without requiring a click on the map.
When it is activated, we call the zoomFullExtent method of the map canvas (line 92). This completes
the implementation of all our tools except one—the Add Layer tool. Let’s look at it next:

93 # Add an 0GR layer to the map
94 def addLayer(self):

95 file = QFileDialog.getOpenFileName(self, "Open Shapefile", ".", "Shapefiles
96 (x.shp)")

97 fileInfo = QFileInfo(file)

98

99 # Add the layer

100 layer = QgsVectorLayer(file, fileInfo.fileName(), "ogr")

101

102 if not layer.isValid(Q):

103 return

104

QGIS 1.0.0 User, Installation and Coding Guide 165

17 CREATING PYQGIS APPLICATIONS

1056 # Change the color of the layer to gray

106 symbols = layer.renderer() .symbols()

107 symbol = symbols[0]

108 symbol.setFillColor(QColor.fromRgb(192,192,192))
109

110 # Add layer to the registry

111 QgsMapLayerRegistry.instance() .addMapLayer (layer) ;
112

113 # Set extent to the extent of our layer

114 self.canvas.setExtent(layer.extent())

115

116 # Set up the map canvas layer set

117 cl = QgsMapCanvasLayer (layer)

118 layers = [cl]

119 self.canvas.setLayerSet(layers)

In the addLayer method we use a QFileDialog to get the name of the shapefile to load. This is done
in line 96. Notice that we specify a “filter” so the dialog will only show files of type . shp.

Next in line 97 we create a QFilelnfo object from the shapefile path. Now the layer is ready to be
created in line 100. Using the QFilelnfo object to get the file name from the path we specify it for
the name of the layer when it is created. To make sure that the layer is valid and won't cause any
problems when loading, we check it in line 102. If it's bad, we bail out and don’t add it to the map
canvas.

Normally layers are added with a random color. Here we want to tweak the colors for the layer to
make a more pleasing display. Plus we know we are going to add the world_borders layer to the
map and this will make it look nice on our blue background. To change the color, we need to get the
symbol used for rendering and use it to set a new fill color. This is done in lines 106 through 108.

All that's left is to actually add the layer to the registry and a few other housekeeping items (lines 111
through 119). This stuff is standard for adding a layer and the end result is the world borders on a
light blue background. The only thing you may not want to do is set the extent to the layer, if you are
going to be adding more than one layer in your application.

That's the heart of the application and completes the MainWindow class.

17.3 Finishing Up

The remainder of the code shown below creates the QgsApplication object, sets the path to the QGIS
install, sets up the main method and then starts the application. The only other thing to note is that
we move the application window to the upper left of the display. We could get fancy and use the Qt

QGIS 1.0.0 User, Installation and Coding Guide 166

17.4

Running the Application

API to center it on the screen.

120 def main(argv):

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142 i

143

create (t application
app = QApplication(argv)

Initialize qgis libraries
QgsApplication.setPrefixPath(qgis_prefix, True)
QgsApplication.initQgis()

create main window

wnd = MainWindow()

Move the app window to upper left
wnd .move (100, 100)

wnd. show ()

run!

retval = app.exec_(Q)

exit
QgsApplication.exitQgis ()
sys.exit(retval)

__name__ == "__main__":

main(sys.argv)

17.4 Running the Application

Now we can run the application and see what happens. Of course if you are like most developers,
you've been testing it out as you went along.

Before we can run the application, we need to set some environment variables.

ax

export LD_LIBRARY_PATH=$HOME/qgis/lib%$
export PYTHONPATH=$HOME/qgis/share/qgis/python
export QGISHOME=$HOME/qgis%$

£

QGIS 1.0.0 User, Installation and Coding Guide

167

17 CREATING PYQGIS APPLICATIONS

set PATH=C:\qgis;%PATHY

set PYTHONPATH=C:\qgis\python

set QGISHOME=C:\qgis

We assume
. & X QGIS is installed in your home directory in qgis.
. [QGIS is installed in C:\qgis.

When the application starts up, it looks like this:

To add the world_borders layer, click on the Add Layer tool and navigate to the data directory. Select
the shapefile and click | Open I to add it to the map. Our custom fill color is applied and the result is:

Creating a PyQGIS application is really pretty simple. In less than 150 lines of code we have an
application that can load a shapefile and navigate the map. If you play around with the map, you’ll
notice that some of the built-in features of the canvas also work, including mouse wheel scrolling and

panning by holding down the bar and moving the mouse.

Some sophisticated applications have been created with PyQGIS and more are in the works. This is
pretty impressive, considering that this development has taken place even before the official release
of QGIS 1.0.

Tip 45 DOCUMENTATION FOR PYQGIS

Whether you are writing a plugin or a PyQGIS application, you are going to need to refer to both the QGIS
API documentation (http://doc.qgis.org) and the PyQt Python Bindings Reference Guide
(http://www.riverbankcomputing.com/Docs/PyQt4/pyqtdref .html). These documents provide information
about the classes and methods you'll use to bring your Python creation to life.

QGIS 1.0.0 User, Installation and Coding Guide 168

http://doc.qgis.org
http://www.riverbankcomputing.com/Docs/PyQt4/pyqt4ref.html

18 Help and Support

18.1 Mailinglists

QGIS is under active development and as such it won’t always work like you expect it to. The preferred
way to get help is by joining the qgis-users mailing list.

ggis-users

Your questions will reach a broader audience and answers will benefit others. You can subscribe to
the ggis-users mailing list by visiting the following URL:
http://lists.osgeo.org/mailman/listinfo/qgis-user

ggis-developer

If you are a developer facing problems of a more technical nature, you may want to join the qgis-
developer mailing list here:
http://lists.osgeo.org/mailman/listinfo/qgis-developer

ggis-commit

Each time a commit is made to the QGIS code repository an email is posted to this list. If you want
to be up to date with every change to the current code base, you can subscribe to this list at:
http://lists.osgeo.org/mailman/listinfo/qgis-commit

ggis-trac

This list provides email notification related to project management, including bug reports, tasks, and
feature requests. You can subscribe to this list at:
http://lists.osgeo.org/mailman/listinfo/qgis-trac

ggis-community-team

This list deals with topics like documentation, context help, user-guide, online experience including
web sites, blog, mailing lists, forums, and translation efforts. If you like to work on the user-guide as
well, this list is a good starting point to ask your questions. You can subscribe to this list at:
http://lists.osgeo.org/mailman/listinfo/qgis-community-team

ggis-release-team

This list deals with topics like the release process, packaging binaries for various OS and announcing
new releases to the world at large. You can subscribe to this list at:
http://lists.osgeo.org/mailman/listinfo/qgis-release-team

QGIS 1.0.0 User, Installation and Coding Guide 169

http://lists.osgeo.org/mailman/listinfo/qgis-user
http://lists.osgeo.org/mailman/listinfo/qgis-developer
http://lists.osgeo.org/mailman/listinfo/qgis-commit
http://lists.osgeo.org/mailman/listinfo/qgis-trac
http://lists.osgeo.org/mailman/listinfo/qgis-community-team
http://lists.osgeo.org/mailman/listinfo/qgis-release-team

18 HELP AND SUPPORT

qgis-psc

This list is used to discuss Steering Committee issues related to overall management and direction
of Quantum GIS. You can subscribe to this list at:
http://lists.osgeo.org/mailman/listinfo/qgis-psc

You are welcome to subscribe to any of the lists. Please remember to contribute to the list by answer-
ing questions and sharing your experiences. Note that the ggis-commit and qgis-trac are designed
for notification only and not meant for user postings.

18.2 IRC

We also maintain a presence on IRC - visit us by joining the #qgis channel on irc.freenode.net.
Please wait around for a response to your question as many folks on the channel are doing other
things and it may take a while for them to notice your question. Commercial support for QGIS is also
available. Check the website http://qgis.org/content/view/90/91 for more information.

If you missed a discussion on IRC, not a problem! We log all discussion so you can easily catch up.
Just go to http://logs.qgis.org and read the IRC-logs.

18.3 BugTracker

While the ggis-users mailing list is useful for general ’how do | do xyz in QGIS’ type questions, you
may wish to notify us about bugs in QGIS. You can submit bug reports using the QGIS bug tracker
at https://trac.osgeo.org/qgis/. When creating a new ticket for a bug, please provide an email
address where we can request additional information.

Please bear in mind that your bug may not always enjoy the priority you might hope for (depending
on its severity). Some bugs may require significant developer effort to remedy and the manpower is
not always available for this.

Feature requests can be submitted as well using the same ticket system as for bugs. Please make
sure to select the type enhancement.

If you have found a bug and fixed it yourself you can submit this patch also. Again, the lovely trac
ticketsystem at https://trac.osgeo.org/qgis/ has this type as well. Select patch from the type-
menu. Someone of the developers will review it and apply it to QGIS.

Please don't be alarmed if your patch is not applied straight away - developers may be tied up with
other committments.

QGIS 1.0.0 User, Installation and Coding Guide 170

http://lists.osgeo.org/mailman/listinfo/qgis-psc
irc.freenode.net
http://qgis.org/content/view/90/91
http://logs.qgis.org
https://trac.osgeo.org/qgis/
https://trac.osgeo.org/qgis/

18.4 Blog

18.4 Blog

The QGIS-community also runs a weblog (BLOG) at http://blog.qgis.org which has some in-
teresting articles for users and developers as well. You are invited to contribute to the blog after
registering yourself!

18.5 Wiki

Lastly, we maintain a WIKI web site at http://wiki.qgis.org where you can find a variety of
useful information relating to QGIS development, release plans, links to download sites, message
translation-hints and so on. Check it out, there are some goodies inside!

QGIS 1.0.0 User, Installation and Coding Guide 171

http://blog.qgis.org
http://wiki.qgis.org

A SUPPORTED DATA FORMATS

A Supported Data Formats

A.1 Supported OGR Formats

At the date of this document, the following formats are supported by the OGR library. Formats known
to work in QGIS are indicated in bold .

¢ Arc/Info Binary Coverage
e Comma Separated Value (.csv)
e DODS/OPeNDAP

e ESRI Shapefile

e FMEObjects Gateway

e GML

e IHO S-57 (ENC)

e Mapinfo File

e Microstation DGN

e OGDI Vectors

e ODBC

e Oracle Spatial

e PostgreSQL13

e SDTS

e SQLite

o UK .NTF

e U.S. Census TIGER/Line

o VRT - Virtual Datasource

A.2 GDAL Raster Formats

At the date of this document, the following formats are supported by the GDAL library. Note that
not all of these format may work in QGIS for various reasons. For example, some require external
commercial libraries. Only those formats that have been well tested will appear in the list of file types
when loading a raster into QGIS. Other untested formats can be loaded by selecting the All other files
(*) filter. Formats known to work in QGIS are indicated in bold .

BQGIS implements its own PostgreSQL functions. OGR should be built without PostgreSQL support

QGIS 1.0.0 User, Installation and Coding Guide 172

A.2 GDAL Raster Formats

e Arc/Info ASCII Grid

e Arc/Info Binary Grid (.adf)

e Microsoft Windows Device Independent Bitmap (.bmp)
e BSB Nautical Chart Format (.kap)

e VTP Binary Terrain Format (.bt)

e CEOS (Spot for instance)

e First Generation USGS DOQ (.doq)

e New Labelled USGS DOQ (.doq)

e Military Elevation Data (.dtO, .dt1)

e ERMapper Compressed Wavelets (.ecw)

e ESRI .hdr Labelled

e ENVI .hdr Labelled Raster

e Envisat Image Product (.n1)

e EOSAT FAST Format

e FITS (fits)

e Graphics Interchange Format (.gif)

e GRASS Rasters 14

e TIFF / GeoTIFF (.tif)

e Hierarchical Data Format Release 4 (HDF4)
e Erdas Imagine (.img)

e Atlantis MFF2e

e Japanese DEM (.mem)

e JPEG JFIF (.jpg)

e JPEG2000 (.jp2, .j2k)

e JPEG2000 (.jp2, .j2K)

e NOAA Polar Orbiter Level 1b Data Set (AVHRR)
e Erdas 7.x .LAN and .GIS

e In Memory Raster

e Atlantis MFF

e Multi-resolution Seamless Image Database MrSID
e NITF

14GRASS raster support is supplied by the QGIS GRASS data provider plugin

QGIS 1.0.0 User, Installation and Coding Guide 173

A SUPPORTED DATA FORMATS

e NetCDF

e OGDI Bridge

e PCI .aux Labelled

e PCl Geomatics Database File

e Portable Network Graphics (.png)
e Netpbm (.ppm,.pgm)

e USGS SDTS DEM (*CATD.DDF)
¢ SAR CEOS

e USGS ASCII DEM (.dem)

e X11 Pixmap (.xpm)

QGIS 1.0.0 User, Installation and Coding Guide 174

B GRASS Toolbox modules

The GRASS Shell inside the GRASS Toolbox provides access to almost all (more than 300) GRASS
modules in command line modus. To offer a more user friendly working environment, about 200 of
the available GRASS modules and functionalities are also provided by graphical dialogs.

B.1 GRASS Toolbox data import and export modules

This Section lists all graphical dialogs in the GRASS Toolbox to import and export data into a currently
selected GRASS location and mapset.

Table 8: GRASS Toolbox: Data import modules

Data import modules in the GRASS Toolbox

Module name Purpose

rin.arc Convert an ESRI ARC/INFO ascii raster file (GRID) into a (binary) raster
map layer

r.in.ascii Convert an ASCII raster text file into a (binary) raster map layer

r.in.aster Georeferencing, rectification, and import of Terra-ASTER imagery and
relative DEM's using gdalwarp

r.in.gdal Import GDAL supported raster file into a GRASS binary raster map
layer

r.in.gdal.loc Import GDAL supported raster file into a GRASS binary raster map
layer and create a fitted location

r.in.gridatb Imports GRIDATB.FOR map file (TOPMODEL) into GRASS raster map

r.in.mat Import a binary MAT-File(v4) to a GRASS raster

r.in.poly Create raster maps from ascii polygon/line data files in the current di-
rectory

r.in.srtm Import SRTM HGT files into GRASS

i.in.spotvgt Import of SPOT VGT NDVI file into a raster map

v.in.dxf Import DXF vector layer

v.in.e00 Import ESRI EQO file in a vector map

v.in.garmin Import vector from gps using gpstrans

v.in.gpsbabel Import vector from gps using gpsbabel

v.in.mapgen Import MapGen or MatLab vectors in GRASS

v.in.ogr Import OGR/PostGIS vector layers

v.in.ogr.loc Import OGR/PostGIS vector layers and create a fitted location

v.in.ogr.all Import all the OGR/PostGIS vector layers in a given data source

v.in.ogr.all.loc Import all the OGR/PostGIS vector layers in a given data source and
create a fitted location

QGIS 1.0.0 User, Installation and Coding Guide

175

B GRASS TOOLBOX MODULES

Table 9: GRASS Toolbox: Data export modules

Data export modules in the GRASS Toolbox

Module name Purpose

r.out.gdal.gtiff Export raster layer to Geo TIFF

r.out.arc Converts a raster map layer into an ESRI ARCGRID file

r.gridatb Exports GRASS raster map to GRIDATB.FOR map file (TOPMODEL)

r.out.mat Exports a GRASS raster to a binary MAT-File

r.out.bin Exports a GRASS raster to a binary array

r.out.png Export GRASS raster as non-georeferenced PNG image format

r.out.ppm Converts a GRASS raster map to a PPM image file at the pixel resolu-
tion of the CURRENTLY DEFINED REGION

r.out.ppm3 Converts 3 GRASS raster layers (R,G,B) to a PPM image file at the
pixel resolution of the CURRENTLY DEFINED REGION

r.out.pov Converts a raster map layer into a height-field file for POVRAY

r.out.tiff Exports a GRASS raster map to a 8/24bit TIFF image file at the pixel
resolution of the currently defined region

r.out.vrml Export a raster map to the Virtual Reality Modeling Language (VRML)

v.out.ogr Export vector layer to various formats (OGR library)

v.out.ogr.gml Export vector layer to GML

v.out.ogr.postgis Export vector layer to various formats (OGR library)

v.out.ogr.mapinfo Mapinfo export of vector layer

v.out.ascii Convert a GRASS binary vector map to a GRASS ASCII vector map

v.out.dxf converts a GRASS vector map to DXF

B.2 GRASS Toolbox data type conversion modules

This Section lists all graphical dialogs in the GRASS Toolbox to convert raster to vector or vector to
raster data in a currently selected GRASS location and mapset.

Table 10: GRASS Toolbox: Data type conversion modules

Data type conversion modules in the GRASS Toolbox

Module name

Purpose

r.to.vect.point

Convert a raster to vector points

r.to.vect.line

Convert a raster to vector lines

r.to.vect.area

Convert a raster to vector areas

v.to.rast.constant

Convert a vector to raster using constant

v.to.rast.attr

Convert a vector to raster using attribute values

QGIS 1.0.0 User, Installation and Coding Guide

176

B.3 GRASS Toolbox region and projection configuration modules

B.3 GRASS Toolbox region and projection configuration module S

This Section lists all graphical dialogs in the GRASS Toolbox to manage and change the current
mapset region and to configure your projection.

Table 11: GRASS Toolbox: Region and projection configuration modules

Region and projection configuration modules in the GRASS Toolbox

Module name Purpose

g.region.save Save the current region as a named region

g.region.zoom Shrink the current region until it meets non-NULL data from a given
raster map

g.region.multiple.raster | Set the region to match multiple raster maps

g.region.multiple.vector | Set the region to match multiple vector maps

g.proj.print Print projection information of the current location

g.proj.geo Print projection information from a georeferenced file (raster, vector or
image)

g.proj.ascii.new Print projection information from a georeferenced ASCII file containing
a WKT projection description

g.proj.proj Print projection information from a PROJ.4 projection description file

g.proj.ascii.new Print projection information from a georeferenced ASCII file containing
a WKT projection description and create a new location based on it

g.proj.geo.new Print projection information from a georeferenced file (raster, vector or
image) and create a new location based on it

g.proj.proj.new Print projection information from a PROJ.4 projection description file
and create a new location based on it

m.cogo A simple utility for converting bearing and distance measurements to
coordinates and vice versa. It assumes a cartesian coordinate system

QGIS 1.0.0 User, Installation and Coding Guide 177

B GRASS TOOLBOX MODULES

B.4 GRASS Toolbox raster data modules

This Section lists all graphical dialogs in the GRASS Toolbox to work with and analyse raster data in
a currently selected GRASS location and mapset.

Table 12: GRASS Toolbox: Develop raster map modules

Develop raster map modules in the GRASS Toolbox

Module name

Purpose

r.compress

Compresses and decompresses raster maps

r.region.region

Sets the boundary definitions to current or default region

r.region.raster

Sets the boundary definitions from existent raster map

r.region.vector

Sets the boundary definitions from existent vector map

r.region.edge

Sets the boundary definitions by edge (n-s-e-w)

r.region.alignTo

Sets region to align to a raster map

r.null.val Transform cells with value in null cells
r.null.to Transform null cells in value cells
r.quant This routine produces the quantization file for a floating-point map

r.resamp.stats

Resamples raster map layers using aggregation

r.resamp.interp

Resamples raster map layers using interpolation

rresample

GRASS raster map layer data resampling capability. Before you must
set new resolution

r.resamp.rst

Reinterpolates and computes topographic analysis using regularized
spline with tension and smoothing

r.support

Allows creation and/or modification of raster map layer support files

r.support.stats

Update raster map statistics

r.proj

Re-project a raster map from one location to the current location

Table 13: GRASS Toolbox: Raster color management modules

Raster color management modules in the GRASS Toolbox

Module name

Purpose

r.colors.table

Set raster color table from setted tables

r.colors.rules

Set raster color table from setted rules

r.colors.rast

Set raster color table from existing raster

r.blend Blend color components for two raster maps by given ratio
r.composite Blend red, green, raster layers to obtain one color raster
r.his Generates red, green and blue raster map layers combining hue, in-

tensity, and saturation (his) values from user-specified input raster map
layers

QGIS 1.0.0 User, Installation and Coding Guide 178

B.4 GRASS Toolbox raster data modules

Table 14: GRASS Toolbox: Spatial raster analysis modules

Spatial raster analysis modules in the GRASS Toolbox

Module name

Purpose

r.buffer Raster buffer

r.mask Create a MASK for limiting raster operation

r.mapcalc Raster map calculator

r.mapcalculator Simple map algebra

r.neighbors Raster neighbors analyses

v.neighbors Count of neighbouring points

r.cross Create a cross product of the category value from multiple raster map
layers

r.series Makes each output cell a function of the values assigned to the corre-
sponding cells in the output raster map layers

r.patch Create a new raster map by combining other raster maps

r.statistics Category or object oriented statistics

r.cost Outputs a raster map layer showing the cumulative cost of moving be-
tween different geographic locations on an input raster map layer whose
cell category values represent cost

r.drain Traces a flow through an elevation model on a raster map layer

r.shaded.relief

Create shaded map

r.slope.aspect.slope

Generate slope map from DEM (digital elevation model)

r.slope.aspect.aspect

Generate aspect map from DEM (digital elevation model)

r.param.scale

Extracts terrain parameters from a DEM

r.texture

Generate images with textural features from a raster map (first serie of
indices)

r.texture.bis

Generate images with textural features from a raster map (second serie
of indices)

r.los Line-of-sigth raster analysis

r.clump Recategorizes into unique categories contiguous cells

r.grow Generates a raster map layer with contiguous areas grown by one cell
r.thin Thin no-zero cells that denote line features

QGIS 1.0.0 User, Installation and Coding Guide

179

B GRASS TOOLBOX MODULES

Table 15: GRASS Toolbox: Surface management modules

Surface management modules in the GRASS Toolbox

Module name

Purpose

rrandom Creates a random vector point map contained in a raster
r.random.cells Generates random cell values with spatial dependence

v.kernel Gaussian kernel density

r.contour Produces a contours vector map with specified step from a raster map
r.contour2 Produces a contours vector map of specified contours from a raster

map

r.surf.fractal

Creates a fractal surface of a given fractal dimension

r.surf.gauss

GRASS module to produce a raster map layer of gaussian deviates
whose mean and standard deviation can be expressed by the user

r.surf.random

Produces a raster map layer of uniform random deviates whose range
can be expressed by the user

r.bilinear Bilinear interpolation utility for raster map layers

v.surf.bispline Bicubic or bilinear spline interpolation with Tykhonov regularization
r.surf.idw Surface interpolation utility for raster map layers

r.surf.idw2 Surface generation program

r.surf.contour Surface generation program from rasterized contours

v.surf.idw Interpolate attribute values (IDW)

v.surf.rst Interpolate attribute values (RST)

r.fillnulls Fills no-data areas in raster maps using v.surf.rst splines interpolation

Table 16: GRASS Toolbox: Change raster category values and labels modules

Raster category and label modules in the GRASS Toolbox

Module name

Purpose

r. reclass.area.greater

Reclasses a raster map greater than user specified area size (in
hectares)

r.reclass.area.lesser

Reclasses a raster map less than user specified area size (in hectares)

r.reclass Reclass a raster using a reclassification rules file
r.recode Recode raster maps
r.rescale Rescales the range of category values in a raster map layer

QGIS 1.0.0 User, Installation and Coding Guide 180

B.4 GRASS Toolbox raster data modules

Table 17: GRASS Toolbox: Hydrologic modelling modules

Hydrologic modelling modules in the GRASS Toolbox
Module name Purpose
r.carve Takes vector stream data, transforms it to raster, and subtracts depth
from the output DEM
r.fill.dir Filters and generates a depressionless elevation map and a flow direc-
tion map from a given elevation layer
r.lake.xy Fills lake from seed point at given level
rlake.seed Fills lake from seed at given level
r.topidx Creates a 3D volume map based on 2D elevation and value raster maps
r.basins.fill Generates a raster map layer showing watershed subbasins
r.water.outlet Watershed basin creation program

Table 18: GRASS Toolbox: Reports and statistic analysis modules

Reports and statistic analysis modules in the GRASS Toolbox

Module name Purpose

r.category Prints category values and labels associated with user-specified raster
map layers

r.sum Sums up the raster cell values

r.report Reports statistics for raster map layers

r.average Finds the average of values in a cover map within areas assigned the
same category value in a user-specified base map

r.median Finds the median of values in a cover map within areas assigned the
same category value in a user-specified base map

r.mode Finds the mode of values in a cover map within areas assigned the
same category value in a user-specified base map.reproject raster im-
age

r.volume Calculates the volume of data clumps, and produces a GRASS vector
points map containing the calculated centroids of these clumps

r.surf.area Surface area estimation for rasters

r.univar Calculates univariate statistics from the non-null cells of a raster map

r.covar Outputs a covariance/correlation matrix for user-specified raster map
layer(s)

r.regression.line Calculates linear regression from two raster maps: y=a + b * x

r.coin Tabulates the mutual occurrence (coincidence) of categories for two
raster map layers

QGIS 1.0.0 User, Installation and Coding Guide 181

B GRASS TOOLBOX MODULES

B.5 GRASS Toolbox vector data modules

This Section lists all graphical dialogs in the GRASS Toolbox to work with and analyse vector data in
a currently selected GRASS location and mapset.

Table 19: GRASS Toolbox: Develop vector map modules

Develop vector map modules in the GRASS Toolbox

Module name

Purpose

v.build.all Rebuild topology of all vectors in the mapset
v.clean.break Break lines at each intersection of vector map
v.clean.snap Cleaning topology: snap lines to vertex in threshold

v.clean.rmdangles

Cleaning topology: remove dangles

v.clean.chdangles

Cleaning topology: change the type of boundary dangle to line

v.clean.rmbridge

Remove bridges connecting area and island or 2 islands

v.clean.chbridge

Change the type of bridges connecting area and island or 2 islands

v.clean.rmdupl

Remove duplicate lines (pay attention to categories!)

v.clean.rmdac

Remove duplicate area centroids

v.clean.bpol

Break polygons. Boundaries are broken on each point shared between
2 and more polygons where angles of segments are different

v.clean.prune

Remove vertices in threshold from lines and boundaries

v.clean.rmarea

Remove small areas (removes longest boundary with adjacent area)

v.clean.rmline

Remove all lines or boundaries of zero length

v.clean.rmsa

Remove small angles between lines at nodes

v.type.lb Convert lines to boundaries

v.type.bl Convert boundaries to lines

v.type.pc Convert points to centroids

v.type.cp Convert centroids to points

v.centroids Add missing centroids to closed boundaries

v.build.polylines Build polylines from lines

v.segment Creates points/segments from input vector lines and positions
v.to.points Create points along input lines

v.parallel Create parallel line to input lines

v.dissolve Dissolves boundaries between adjacent areas

v.drape Convert 2D vector to 3D vector by sampling of elevation raster
v.transform Performs an affine transformation on a vector map

V.proj Allows projection conversion of vector files

v.support Updates vector map metadata

generalize Vector based generalization

QGIS 1.0.0 User, Installation and Coding Guide 182

B.5 GRASS Toolbox vector data modules

Table 20: GRASS Toolbox: Database connection modules

Database connection modules in the GRASS Toolbox

Module name

Purpose

v.db.connect

Connect a vector to database

v.db.sconnect

Disconnect a vector from database

v.db.what.connect Set/Show database connection for a vector

Table 21: GRASS Toolbox: Change vector field modules

Change vector field modules in the GRASS Toolbox

Module name

Purpose

v.category.add Add elements to layer (ALL elements of the selected layer type!)
v.category.del Delete category values

v.category.sum Add a value to the current category values

v.reclass.file Reclass category values using a rules file

v.reclass.attr

Reclass category values using a column attribute (integer positive)

Table 22: GRASS Toolbox: Working with vector points modules

Working with vector points modules in the GRASS Toolbox

Module name

Purpose

v.in.region

Create new vector area map with current region extent

v.mkgrid.region

Create grid in current region

v.in.db

Import vector points from a database table containing coordinates

v.random Randomly generate a 2D/3D GRASS vector point map
v.kev Randomly partition points into test/train sets

v.outlier Romove outliers from vector point data

v.hull Create a convex hull

v.delaunay.line

Delaunay triangulation (lines)

v.delaunay.area

Delaunay triangulation (areas)

v.voronoi.line

Voronoi diagram (lines)

v.voronoi.area

Voronoi diagram (areas)

QGIS 1.0.0 User, Installation and Coding Guide

183

B GRASS TOOLBOX MODULES

Table 23: GRASS Toolbox: Spatial vector and network analysis modules

Spatial vector and network analysis modules in the GRASS Toolbox

Module name

Purpose

v.extract.where

Select features by attributes

v.extract.list

Extract selected features

v.select.overlap

Select features overlapped by features in another map

v.buffer

Vector buffer

v.distance Find the nearest element in vector 'to’ for elements in vector 'from’.
v.net.nodes Create nodes on network

v.net.alloc Allocate network

v.net.iso Cut network by cost isolines

v.net.salesman

Connect nodes by shortest route (traveling salesman)

v.net.steiner

Connect selected nodes by shortest tree (Steiner tree)

v.patch

Create a new vector map by combining other vector maps

v.overlay.or

Vector union

v.overlay.and

Vector intersection

v.overlay.not

Vector subtraction

v.overlay.xor

Vector non-intersection

Table 24: GRASS Toolbox: Vector update by other maps modules

Vector update by other maps modules in the GRASS Toolbox

Module name

Purpose

v.rast.stats

vector objects

Calculates univariate statistics from a GRASS raster map based on

v.what.vect Uploads map for which to edit attribute table
v.what.rast Uploads raster values at positions of vector points to the table
v.sample Sample a raster file at site locations

Table 25: GRASS Toolbox: Vector report and statistic modules

Vector report and statistic modules in the GRASS Toolbox

Module name

Purpose

v.to.db

Put geometry variables in database

v.report Reports geometry statistics for vectors

v.univar Calculates univariate statistics on selected table column for a GRASS
vector map

v.normal Tests for normality for points

QGIS 1.0.0 User,

Installation and Coding Guide

184

B.6 GRASS Toolbox imagery data modules

B.6 GRASS Toolbox imagery data modules

This Section lists all graphical dialogs in the GRASS Toolbox to work with and analyse imagery data
in a currently selected GRASS location and mapset.

Table 26: GRASS Toolbox: Imagery analysis modules

Imagery analysis modules in the GRASS Toolbox

Module name

Purpose

i.image.mosaik

Mosaic up to 4 images

i.rgb.his Red Green Blue (RGB) to Hue Intensity Saturation (HIS) raster map
color transformation function

i.his.rgh Hue Intensity Saturation (HIS) to Red Green Blue (RGB) raster map
color transform function

i.landsat.rgb Auto-balancing of colors for LANDSAT images

i.fusion.brovey

Brovey transform to merge multispectral and high-res pancromatic
channels

i.zC Zero-crossing edge detection raster function for image processing

i.mfilter

i.tasscap4 Tasseled Cap (Kauth Thomas) transformation for LANDSAT-TM 4 data

i.tasscap5 Tasseled Cap (Kauth Thomas) transformation for LANDSAT-TM 5 data

i.tasscap? Tasseled Cap (Kauth Thomas) transformation for LANDSAT-TM 7 data

i.fft Fast fourier transform (FFT) for image processing

i.ifft Inverse fast fourier transform for image processing

r.describe Prints terse list of category values found in a raster map layer

r.bitpattern Compares bit patterns with a raster map

r.kappa Calculate error matrix and kappa parameter for accuracy assessment
of classification result

i.oif Calculates optimal index factor table for landsat tm bands

QGIS 1.0.0 User, Installation and Coding Guide 185

B GRASS TOOLBOX MODULES

B.7 GRASS Toolbox database modules

This Section lists all graphical dialogs in the GRASS Toolbox to manage, connect and work with
internal and external databases. Working with spatial external databases is enabled via OGR and
not covered by these modules.

Table 27: GRASS Toolbox: Database modules

Database management and analysis modules in the GRASS Toolbox

Module name

Purpose

db.connect

Sets general DB connection mapset

db.connect.schema

Sets general DB connection mapset with a schema

v.db.reconnect.all

Reconnect vector to a new database

db.login Set user/password for driver/database

db.in.ogr Imports attribute tables in various formats

v.db.addtable Create and add a new table to a vector

v.db.addcol Adds one or more columns to the attribute table connected to a given
vector map

v.db.dropcol Drops a column from the attribute table connected to a given vector

map

v.db.renamecol

Renames a column in a attribute table connected to a given vector map

v.db.update_const

Allows to assign a new constant value to a column

v.db.update_query

Allows to assign a new constant value to a column only if the result of
a query is TRUE

v.db.update_op

Allows to assign a new value, result of operation on column(s), to a
column in the attribute table connected to a given map

v.db.update_op_query

Allows to assign a new value to a column, result of operation on col-
umn(s), only if the result of a query is TRUE

db.execute Execute any SQL statement
db.select Prints results of selection from database based on SQL
v.db.select Prints vector map attributes

v.db.select.where

Prints vector map attributes with SQL

v.db.join

Allows to join a table to a vector map table

v.db.univar

Calculates univariate statistics on selected table column for a GRASS
vector map

QGIS 1.0.0 User, Installation and Coding Guide 186

B.8 GRASS Toolbox 3D modules

B.8 GRASS Toolbox 3D modules

This Section lists all graphical dialogs in the GRASS Toolbox to work with 3D data. GRASS provides
more modules, but they are currently only available using the GRASS Shell.

Table 28: GRASS Toolbox: 3D Visualization

3D visualization and analysis modules in the GRASS Toolbox
Module name Purpose
nviz Open 3D-View in nviz

B.9 GRASS Toolbox help modules

The GRASS GIS Reference Manual offers a complete overview of the available GRASS modules, not
limited to the modules and their often reduced functionalities implemented in the GRASS Toolbox.

Table 29: GRASS Toolbox: Reference Manual

Reference Manual modules in the GRASS Toolbox
Module name Purpose
g.manual Display the HTML manual pages of GRASS

QGIS 1.0.0 User, Installation and Coding Guide 187

C INSTALLATION GUIDE

C Installation Guide

The following chapters provide build and installation information for QGIS Version 1.0.0. This docu-
ment corresponds almost to a IATEX conversion of the INSTALL.t2t file coming with the QGIS sources
from December, 16th 2008.

A current version is also available at the wiki, see: http://wiki.qgis.org/qgiswiki/BuildingFromSource

C.1 General Build Notes

At version 0.8.1 QGIS no longer uses the autotools for building. QGIS, like a number of major projects
(eg. KDE 4.0), now uses cmake (http://www.cmake.org) for building from source. The configure script
in this directory simply checks for the existence of cmake and provides some clues to build QGIS.

For complete information, see the wiki at: http://wiki.qgis.org/qgiswiki/Building_with_CMake

C.2 An overview of the dependencies required for building

Required build deps :

e CMake >=2.4.3

e Flex, Bison
Required runtime deps :

e Qt >=4.3.0

Proj >= ? (known to work with 4.4.x)

GEOS >= 2.2 (3.0 is supported, maybe 2.1.x works too)
Sqlite3 >= ? (probably 3.0.0)
e GDAL/OGR >=1.4.x

Optional dependencies :

o for GRASS plugin - GRASS >= 6.0.0

for georeferencer - GSL >= ? (works with 1.8)

for postgis support and SPIT plugin - PostgreSQL >= 8.0.x

for gps plugin - expat >= ? (1.95 is OK)

for mapserver export and PyQGIS - Python >= 2.3 (2.5+ preferred)
for PyQGIS - SIP >= 4.5, PyQt >= must match Qt version

QGIS 1.0.0 User, Installation and Coding Guide 188

http://wiki.qgis.org/qgiswiki/BuildingFromSource
http://www.cmake.org
http://wiki.qgis.org/qgiswiki/Building_with_CMake

Recommended runtime deps

e for gps plugin - gpsbabel

D Building under windows using msys

Note: For a detailed account of building all the dependencies yourself you can visit Marco Pasetti's
website here:

http://www.webalice.it/marco.pasetti/qgis+grass/BuildFromSource.html

Read on to use the simplified approach with pre-built libraries...

D.1 MSYS:

MSYS provides a unix style build environment under windows. We have created a zip archive that
contains just about all dependencies.

Get this:

http://download.osgeo.org/qgis/win32/msys.zip

and unpack to c:\msys

If you wish to prepare your msys environment yourself rather than using our pre-made one, detailed
instructions are provided elsewhere in this document.

D.2 Qt4.3

Download qt4.3 opensource precompiled edition exe and install (including the download and install
of mingw) from here:

http://www.trolltech.com/developer/downloads/qt/windows

When the installer will ask for MinGW, you don’t need to download and install it, just point the installer
to c:\msys\mingw

When Qt installation is complete:
Edit C:\Qt\4.3.0\bin\gtvars.bat and add the following lines:

set PATH=YPATHY;C:\msys\local\bin;c:\msys\local\lib
set PATH=YPATHY;"C:\Program Files\Subversion\bin"

QGIS 1.0.0 User, Installation and Coding Guide 189

http://www.webalice.it/marco.pasetti/qgis+grass/BuildFromSource.html
http://download.osgeo.org/qgis/win32/msys.zip
http://www.trolltech.com/developer/downloads/qt/windows

D BUILDING UNDER WINDOWS USING MSYS

| suggest you also add C:\Qt\4.3.0\bin\ to your Environment Variables Path in the windows system
preferences.

If you plan to do some debugging, you'll need to compile debug version of Qt:
C:\Qt\4.3.0\bin\qgtvars.bat compile_debug

Note: there is a problem when compiling debug version of Qt 4.3, the script ends with this message
"mingw32-make: *** No rule to make target ‘debug’. Stop.". To compile the debug version you have
to go out of src directory and execute the following command:

c:\Qt\4.3.0 make

D.3 Flex and Bison

Note: | think this section can be removed as it should be installed int the msys image already.
Get Flex

http://sourceforge.net/project/showfiles.php?group_id=23617&package_id=16424 (the zip
bin) and extract it into c:\msys\mingw\bin

D.4 Python stuff: (optional)

Follow this section in case you would like to use Python bindings for QGIS. To be able to compile
bindings, you need to compile SIP and PyQt4 from sources as their installer doesn’t include some
development files which are necessary.

D.4.1 Download and install Python - use Windows installer

(It doesn't matter to what folder you'll install it)

http://python.org/download/

D.4.2 Download SIP and PyQt4 sources

http://www.riverbankcomputing.com/software/sip/download
http://www.riverbankcomputing.com/software/pyqt/download

Extract each of the above zip files in a temporary directory. Make sure to get versions that match
your current Qt installed version.

QGIS 1.0.0 User, Installation and Coding Guide 190

http://sourceforge.net/project/showfiles.php?group_id=23617&package_id=16424
http://python.org/download/
http://www.riverbankcomputing.com/software/sip/download
http://www.riverbankcomputing.com/software/pyqt/download

D.5 Subversion:

D.4.3 Compile SIP

c:\Qt\4.3.0\bin\gtvars.bat
python configure.py -p win32-g++
make

make install

D.4.4 Compile PyQt

c:\Qt\4.3.0\bin\gtvars.bat
python configure.py

make

make install

D.4.5 Final python notes

Note: You can delete the directories with unpacked SIP and PyQt4 sources after a successfull install,
they’re not needed anymore.

D.5 Subversion:

In order to check out QGIS sources from the repository, you need Subversion client. This installer
should work fine:

http://subversion.tigris.org/files/documents/15/36797/svn-1.4.3-setup.exe

D.6 CMake:

CMake is build system used by Quantum GIS. Download it from here:

http://www.cmake.org/files/v2.4/cmake-2.4.6-win32-x86.exe

D.7 QGIS:

Start a cmd.exe window (Start -> Run -> cmd.exe) Create development directory and move into it

md c:\dev\cpp
cd c:\dev\cpp

QGIS 1.0.0 User, Installation and Coding Guide 191

http://subversion.tigris.org/files/documents/15/36797/svn-1.4.3-setup.exe
http://www.cmake.org/files/v2.4/cmake-2.4.6-win32-x86.exe

D BUILDING UNDER WINDOWS USING MSYS

Check out sources from SVN For svn head:

svn co https://svn.osgeo.org/qgis/trunk/qgis

For svn 0.8 branch

svn co https://svn.osgeo.org/qgis/branches/Release-0_8_0 qgis0.8

D.8 Compiling:

As a background read the generic building with CMake notes at the end of this document.

Start a cmd.exe window (Start -> Run -> cmd.exe) if you don’t have one already. Add paths to
compiler and our MSYS environment:

c:\Qt\4.3.0\bin\qgtvars.bat

For ease of use add c:\Qt\4.3.0\bin\ to your system path in system properties so you can just type
gtvars.bat when you open the cmd console. Create build directory and set it as current directory:

cd c:\dev\cpp\qgis
md build
cd build

D.9 Configuration

cmakesetup ..

Note: You must include the '.. above.
Click 'Configure’ button. When asked, you should choose 'MinGW Makefiles’ as generator.

There’s a problem with MinGW Makefiles on Win2K. If you're compiling on this platform, use '"MSYS
Makefiles’ generator instead.

All dependencies should be picked up automatically, if you have set up the Paths correctly. The
only thing you need to change is the installation destination (CMAKE_INSTALL_PREFIX) and/or set
'Debug’.

QGIS 1.0.0 User, Installation and Coding Guide 192

D.10 Compilation and installation

For compatibility with NSIS packaging cripts | recommend to leave the install prefix to its default
c:\program files\

When configuration is done, click 'OK’ to exit the setup utility.

D.10 Compilation and installation

make make install

D.11 Run qgis.exe from the directory where it’s installed (C MAKE_INSTALL_ PREFIX)

Make sure to copy all .dll:s needed to the same directory as the qgis.exe binary is installed to, if not
already done so, otherwise QGIS will complain about missing libraries when started.

The best way to do this is to download both the QGIS current release installer package from
http://qgis.org/uploadfiles/testbuilds/ and install it. Now copy the installation dir from C:\Program
Files\Quantum GIS into c:\Program Files\qgis-0.8.1 (or whatever the current version is. The name
should strictly match the version no.) After making this copy you can uninstall the release version
of QGIS from your c:\Program Files directory using the provided uninstaller. Double check that the
Quantum GIS dir is completely gone under program files afterwards.

Another possibility is to run qgis.exe when your path contains c:\msys\local\bin and
c:\msys\local\lib directories, so the DLLs will be used from that place.

D.12 Create the installation package: (optional)

Downlad and install NSIS from (http://nsis.sourceforge.net/Main_Page)

Now using windows explorer, enter the win_build directory in your QGIS source tree. Read the
READMEfile there and follow the instructions. Next right click on qgis.nsi and choose the option
‘Compile NSIS Script'.

E Building on Mac OSX using frameworks and cmake (QGIS > 0.8)

In this approach | will try to avoid as much as possible building dependencies from source and rather
use frameworks wherever possible.

Included are a few notes for building on Mac OS X 10.5 (Leopard).

QGIS 1.0.0 User, Installation and Coding Guide 193

http://qgis.org/uploadfiles/testbuilds/
http://nsis.sourceforge.net/Main_Page

E BUILDING ON MAC OSX USING FRAMEWORKS AND CMAKE (QGIS > 0.8)

E.1 Install XCODE
| recommend to get the latest xcode dmg from the Apple XDC Web site. Install XCODE after the
“941mb download is complete.

Note: It may be that you need to create some symlinks after installing the XCODE SDK (in particular
if you are using XCODE 2.5 on tiger):

cd /Developer/SDKs/Mac0SX10.4u.sdk/usr/
sudo mv local/ local_
sudo 1ln -s /usr/local/ local

E.2 Install Qt4 from .dmg

You need a minimum of Qt4.3.0. | suggest getting the latest (at time of writing).

ftp://ftp.trolltech.com/qt/source/qt-mac-opensource-4.3.2.dmg

If you want debug libs, Qt also provide a dmg with these:

ftp://ftp.trolltech.com/qt/source/qt-mac-opensource-4.3.2-debug-libs.dmg

| am going to proceed using only release libs at this stage as the download for the debug dmg is
substantially bigger. If you plan to do any debugging though you probably want to get the debug libs
dmg. Once downloaded open the dmg and run the installer.

Note: you need admin access to install.

After installing you need to make two small changes:

First edit /Library/Frameworks/QtCore.framework/Headers/qconfig.h and change
Note: this doesnt seem to be needed since version 4.2.3
QT_EDITION_Unknown to QT_EDITION_OPENSOURCE

Second change the default mkspec symlink so that it points to macx-g++:

cd /usr/local/Qt4.3/mkspecs/
sudo rm default
sudo 1n -sf macx-g++ default

QGIS 1.0.0 User, Installation and Coding Guide 194

E.3 Install development frameworks for QGIS dependencies

E.3 Install development frameworks for QGIS dependencies

Download William Kyngesburye’s excellent all in one framework that includes proj, gdal, sqlite3 etc

http://wuw.kyngchaos.com/wiki/software:frameworks

Once downloaded, open and install the frameworks.

William provides an additional installer package for Postgresql/PostGIS. Its available here:

http://wuw.kyngchaos.com/wiki/software:postgres

There are some additional dependencies that at the time of writing are not provided as frameworks
so we will need to build these from source.

E.3.1 Additional Dependencies : GSL

Retrieve the Gnu Scientific Library from

curl -0 ftp://ftp.gnu.org/gnu/gsl/gsl-1.8.tar.gz

Then extract it and build it to a prefix of /usr/local:

tar xvfz gsl-1.8.tar.gz

cd gsl-1.8

./configure --prefix=/usr/local
make

sudo make install

cd ..

E.3.2 Additional Dependencies : Expat

Get the expat sources:

http://sourceforge.net/project/showfiles.php?group_id=10127

QGIS 1.0.0 User, Installation and Coding Guide 195

E BUILDING ON MAC OSX USING FRAMEWORKS AND CMAKE (QGIS > 0.8)

tar xvfz expat-2.0.0.tar.gz

cd expat-2.0.0

./configure --prefix=/usr/local
make

sudo make install

cd ..

E.3.3 Additional Dependencies : SIP

Make sure you have the latest Python fom

http://www.python.org/download/mac/

Leopard note: Leopard includes a usable Python 2.5. Though you can install Python from python.org
if preferred.

Retrieve the python bindings toolkit SIP from
http://www.riverbankcomputing.com/software/sip/download

Then extract and build it (this installs by default into the Python framework):

tar xvfz sip-<version number>.tar.gz

cd sip-<version number>

python configure.py

make

sudo make install

cd ..

Leopard notes

If building on Leopard, using Leopard’s bundled Python, SIP wants to install in the system path — this

is not a good idea. Use this configure command instead of the basic configure above:

python configure.py -d /Library/Python/2.5/site-packages -b \
/usr/local/bin -e /usr/local/include -v /usr/local/share/sip

E.3.4 Additional Dependencies : PyQt

If you encounter problems compiling PyQt using the instructions below you can also try adding python
from your frameworks dir explicitly to your path e.g.

QGIS 1.0.0 User, Installation and Coding Guide 196

http://www.riverbankcomputing.com/software/sip/download

E.3 Install development frameworks for QGIS dependencies

export PATH=/Library/Frameworks/Python.framework/Versions/Current/bin:$PATH$

Retrieve the python bindings toolkit for Qt from

http://www.riverbankcomputing.com/software/pyqt/download

Then extract and build it (this installs by default into the Python framework):

tar xvfz PyQt-mac<version number here>
cd PyQt-mac<version number here>

export QTDIR=/Developer/Applications/Qt
python configure.py

yes

make

sudo make install

cd ..

Leopard notes

If building on Leopard, using Leopard’s bundled Python, PyQt wants to install in the system path —
this is not a good idea. Use this configure command instead of the basic configure above:

python configure.py -d /Library/Python/2.5/site-packages -b /usr/local/bin

There may be a problem with undefined symbols in QtOpenGL on Leopard. Edit QtOpenGL/makefile
and add -undefined dynamic_lookup to LFLAGS.

E.3.5 Additional Dependencies : Bison

Leopard note: Leopard includes Bison 2.3, so this step can be skipped on Leopard.
The version of bison available by default on Mac OSX is too old so you need to get a more recent
one on your system. Download if from:

curl -0 http://ftp.gnu.org/gnu/bison/bison-2.3.tar.gz

Now build and install it to a prefix of /usr/local :

QGIS 1.0.0 User, Installation and Coding Guide 197

E BUILDING ON MAC OSX USING FRAMEWORKS AND CMAKE (QGIS > 0.8)

tar xvfz bison-2.3.tar.gz

cd bison-2.3

./configure --prefix=/usr/local
make

sudo make install

cd ..

E.4 Install CMAKE for OSX

Get the latest release from here:

http://www.cmake.org/HTML/Download.html

At the time of writing the file | grabbed was:

curl -0 http://www.cmake.org/files/v2.4/cmake-2.4.6-Darwin-universal.dmg

Once downloaded open the dmg and run the installer

E.5 Install subversion for OSX

Leopard note: Leopard includes SVN, so this step can be skipped on Leopard.

The http://sourceforge.net/projects/macsvn/ project has a downloadable build of svn. If you
are a GUl inclined person you may want to grab their gui client too. Get the command line client here:

curl -0 http://ufpr.dl.sourceforge.net/sourceforge/macsvn/Subversion_1.4.2.zip

Once downloaded open the zip file and run the installer.

You also need to install BerkleyDB available from the same
http://sourceforge.net/projects/macsvn/. At the time of writing the file was here:

curl -0 http://ufpr.dl.sourceforge.net/sourceforge/macsvn/Berkeley_DB_4.5.20.zip

Once again unzip this and run the installer therein. Lastly we need to ensure that the svn command-
line executeable is in the path. Add the following line to the end of /etc/bashrc using sudo:

QGIS 1.0.0 User, Installation and Coding Guide 198

http://sourceforge.net/projects/macsvn/
http://sourceforge.net/projects/macsvn/

E.6 Check out QGIS from SVN

sudo vim /etc/bashrc
And add this line to the bottom before saving and quiting:
export PATH=/usr/local/bin:$PATH:/usr/local/pgsql/bin

{/usr/local/bin needs to be first in the path so that the newer bison (that will be built from source further
down) is found before the bison (which is very old) that is installed by MacOSX.

Now close and reopen your shell to get the updated vars.

E.6 Check out QGIS from SVN
Now we are going to check out the sources for QGIS. First we will create a directory for working in:
mkdir -p ~/dev/cpp cd ~/dev/cpp

Now we check out the sources:

Trunk:

svn co https://svn.osgeo.org/qgis/trunk/qgis qgis

For svn 0.8 branch

svn co https://svn.osgeo.org/qgis/branches/Release-0_8_0 qgis0.8

For svn 0.9 branch

svn co https://svn.qgis.org/qgis/branches/Release-0_9_0 qgis0.9

The first time you check out QGIS sources you will probably get a message like this:

Error validating server certificate for ’https://svn.qgis.org:443’:

- The certificate is not issued by a trusted authority. Use the fingerprint to
validate the certificate manually! Certificate information:

- Hostname: svn.qgis.org

- Valid: from Apr 1 00:30:47 2006 GMT until Mar 21 00:30:47 2008 GMT

- Issuer: Developer Team, Quantum GIS, Anchorage, Alaska, US

- Fingerprint: 2f:cd:fl1:5a:c7:64:da:2b:d1:34:a5:20:¢c6:15:67:28:33:ea:7a:9b

(R)eject, accept (t)emporarily or accept (p)ermanently?

QGIS 1.0.0 User, Installation and Coding Guide 199

E BUILDING ON MAC OSX USING FRAMEWORKS AND CMAKE (QGIS > 0.8)

| suggest you press 'p’ to accept the key permanently.

E.7 Configure the build

CMake supports out of source build so we will create a 'build’ dir for the build process. By convention
| build my software into a dir called "apps’ in my home directory. If you have the correct permissions
you may want to build straight into your /Applications folder. The instructions below assume you are
building into a pre-existing ${HOME}/apps directory ...

cd qgis

mkdir build

cd build

cmake -D CMAKE_INSTALL_PREFIX=$HOME/apps/ -D CMAKE_BUILD_TYPE=Release ..

Leopard note: To find the custom install of SIP on Leopard, add "- D SIP_BINARY_-
PATH=/usr/local/bin/sip™ to the cmake command above, before the .. at the end, ie:

cmake -D CMAKE_INSTALL_PREFIX=$HOME/apps/ -D CMAKE_BUILD_TYPE=Release -
D SIP_BINARY_PATH=/usr/local/bin/sip ..

To use the application build of GRASS on OSX, you can optionally use the following cmake invocation
(minimum GRASS 6.3 required, substitute the GRASS version as required):

cmake -D CMAKE_INSTALL_PREFIX=${HOME}/apps/ \
-D GRASS_INCLUDE_DIR=/Applications/GRASS-6.3.app/Contents/Mac0S/
include \
-D GRASS_PREFIX=/Applications/GRASS-6.3.app/Contents/Mac0S \
-D CMAKE_BUILD_TYPE=Release \

Or, to use a Unix-style build of GRASS, use the following cmake invocation (minimum GRASS version
as stated in the Qgis requirements, substitute the GRASS path and version as required):

cmake -D CMAKE_INSTALL_PREFIX=${HOME}/apps/ \
-D GRASS_INCLUDE_DIR=/user/local/grass-6.3.0/include \
-D GRASS_PREFIX=/user/local/grass-6.3.0 \
-D CMAKE_BUILD_TYPE=Release \

QGIS 1.0.0 User, Installation and Coding Guide 200

E.8 Building

E.8 Building

Now we can start the build process:
make
If all built without errors you can then install it:

make install

F Building on GNU/Linux

F.1 Building QGIS with Qt4.x

Requires: Ubuntu Hardy / Debian derived distro

These notes are current for Ubuntu 7.10 - other versions and Debian derived distros may require
slight variations in package names.

These notes are for if you want to build QGIS from source. One of the major aims here is to show
how this can be done using binary packages for *all* dependencies - building only the core QGIS
stuff from source. | prefer this approach because it means we can leave the business of managing
system packages to apt and only concern ourselves with coding QGIS!

This document assumes you have made a fresh install and have a 'clean’ system. These instructions
should work fine if this is a system that has already been in use for a while, you may need to just skip
those steps which are irrelevant to you.

F.2 Prepare apt

The packages qgis depends on to build are available in the "universe" component of Ubuntu. This is
not activated by default, so you need to activate it:

1. Edit your /etc/apt/sources.list file. 2. Uncomment the all the lines starting with "deb"

Also you will need to be running (K)Ubuntu 'edgy’ or higher in order for all dependencies to be met.

Now update your local sources database:

sudo apt-get update

QGIS 1.0.0 User, Installation and Coding Guide 201

F BUILDING ON GNU/LINUX

F.3 Install Qt4

sudo apt-get install libqt4-core libqt4-debug \
libqt4-dev libqt4-gui libqt4-qt3support libqt4-sql 1lsb-qt4 qté4-designer \
qt4-dev-tools qt4-doc qté4-qtconfig uim-qt gcc libapt-pkg-perl resolvconf

A Special Note: If you are following this set of instructions on a system where you already have Qt3
development tools installed, there will be a conflict between Qt3 tools and Qt4 tools. For example,
gmake will point to the Qt3 version not the Qt4. Ubuntu Qt4 and Qt3 packages are designed to live
alongside each other. This means that for example if you have them both installed you will have three
gmake exe’s:

/usr/bin/gqmake -> /etc/alternatives/qmake
/usr/bin/qmake-qt3
/usr/bin/qmake-qt4

The same applies to all other Qt binaries. You will notice above that the canonical ‘gmake’ is managed
by apt alternatives, so before we start to build QGIS, we need to make Qt4 the default. To return Qt3
to default later you can use this same process.

You can use apt alternatives to correct this so that the Qt4 version of applications is used in all cases:

sudo update-alternatives --config gmake
sudo update-alternatives —-—config uic

sudo update-alternatives ——config designer
sudo update-alternatives --config assistant
sudo update-alternatives --config qtconfig
sudo update-alternatives --config moc

sudo update-alternatives --config lupdate
sudo update-alternatives --config lrelease
sudo update-alternatives --config linguist

Use the simple command line dialog that appears after running each of the above commands to
select the Qt4 version of the relevant applications.

F.4 Install additional software dependencies required by Q GIS

sudo apt-get install gdal-bin libgdali-dev libgeos-dev proj \
libgdal-doc libhdf4g-dev libhdf4g-run python-dev \
libgslO-dev g++ libjasper-dev libtiff4-dev subversion \

QGIS 1.0.0 User, Installation and Coding Guide 202

F5 GRASS Specific Steps

libsqlite3-dev sqlite3 ccache make libpg-dev flex bison cmake txt2tags \
python-qt4 python-qt4-dev python-sip4 sip4 python-sip4-dev

Note: Debian users should use libgdal-dev above rather

Note: For python language bindings SIP >= 4.5 and PyQt4 >= 4.1 is required! Some stable
GNU/Linux distributions (e.g. Debian or SUSE) only provide SIP < 4.5 and PyQt4 < 4.1. To in-
clude support for python language bindings you may need to build and install those packages from
source.

If you do not have cmake installed already:

sudo apt-get install cmake

F.5 GRASS Specific Steps

Note: If you don’t need to build with GRASS support, you can skip this section.

Now you can install grass from dapper:
sudo apt-get install grass libgrass-dev libgdall-1.4.0-grass

/"\ You may need to explicitly state your grass version e.g. libgdall-1.3.2-grass

F.6 Setup ccache (Optional)

You should also setup ccache to speed up compile times:

cd /usr/local/bin
sudo 1ln -s /usr/bin/ccache gcc
sudo 1n -s /usr/bin/ccache g++

F.7 Prepare your development environment

As a convention | do all my development work in $HOME/dev/<language>, so in this case we will
create a work environment for C++ development work like this:

mkdir -p ${HOME}/dev/cpp
cd ${HOME}/dev/cpp

QGIS 1.0.0 User, Installation and Coding Guide 203

F BUILDING ON GNU/LINUX

This directory path will be assumed for all instructions that follow.

F.8 Check out the QGIS Source Code

There are two ways the source can be checked out. Use the anonymous method if you do not have
edit privaleges for the QGIS source repository, or use the developer checkout if you have permissions
to commit source code changes.

1. Anonymous Checkout

cd ${HOME}/dev/cpp
svn co https://svn.osgeo.org/qgis/trunk/qgis qgis

2. Developer Checkout

cd ${HOME}/dev/cpp
svn co --username <yourusername> https://svn.osgeo.org/qgis/trunk/qgis qgis

The first time you check out the source you will be prompted to accept the qgis.org certificate. Press
'p’ to accept it permanently:

Error validating server certificate for ’https://svn.qgis.org:443’:

- The certificate is not issued by a trusted authority. Use the
fingerprint to validate the certificate manually! Certificate
information:

- Hostname: svn.qgis.org

- Valid: from Apr 1 00:30:47 2006 GMT until Mar 21 00:30:47 2008 GMT

- Issuer: Developer Team, Quantum GIS, Anchorage, Alaska, US

- Fingerprint:
2f:cd:fl1:5a:c7:64:da:2b:d1:34:a5:20:¢c6:15:67:28:33:ea:7a:9b (R)eject,

accept (t)emporarily or accept (p)ermanently?

F.9 Starting the compile

Note: The next section describes howto build debian packages

| compile my development version of QGIS into my “/apps directory to avoid conflicts with Ubuntu
packages that may be under /usr. This way for example you can use the binary packages of QGIS
on your system along side with your development version. | suggest you do something similar:

QGIS 1.0.0 User, Installation and Coding Guide 204

F.10 Building Debian packages

mkdir -p ${HOME}/apps

Now we create a build directory and run ccmake:

cd qgis
mkdir build
cd build
ccmake ..

When you run ccmake (note the .. is required!), a menu will appear where you can configure various
aspects of the build. If you do not have root access or do not want to overwrite existing QGIS installs
(by your packagemanager for example), set the CMAKE_BUILD_PREFIX to somewhere you have
write access to (I usually use /homef/timlinux/apps). Now press 'c’ to configure, 'e’ to dismiss any
error messages that may appear. and 'g’ to generate the make files. Note: that sometimes 'c’
needs to be pressed several times before the 'g’ option becomes available. After the 'g’ generation is
complete, press 'q’ to exit the ccmake interactive dialog.

Now on with the build:

make
make install

It may take a little while to build depending on your platform.

F.10 Building Debian packages

Instead of creating a personal installation as in the previous step you can also create debian package.
This is done from the qgis root directory, where you'll find a debian directory.

First you need to install the debian packaging tools once:

apt-get install build-essential

The QGIS packages will be created with:

dpkg-buildpackage -us -us -b

Note: If dpkg-buildpackage complains about unmet build dependencies you can install them using
apt-get and re-run the command.

QGIS 1.0.0 User, Installation and Coding Guide 205

G CREATION OF MSYS ENVIRONMENT FOR COMPILATION OF QUANTUM GIS

Note: If you have 1libqgisi-dev installed, you need to remove it first using dpkg -r libqgisl-dev.
Otherwise dpkg-buildpackage will complain about a build conflict.

The the packages are created in the parent directory (ie. one level up). Install them using dpkg. E.g.:
sudo dpkg -i \

../qgis_1.0previewl6_amd64.deb \

../libggis-guil_1.0previewl6_amd64.deb \

../1libggis-corel_1.0previewl6_amd64.deb \

../qgis-plugin-grass_1.0previewl6_amd64.deb \
../python-qgis_1.0previewl6_amd64.deb

F.11 Running QGIS
Now you can try to run QGIS:
$HOME/apps/bin/qgis

If all has worked properly the QGIS application should start up and appear on your screen.

G Creation of MSYS environment for compilation of Quantum GIS

G.1 Initial setup
G.1.1 MSYS

This is the environment that supplies many utilities from UNIX world in Windows and is needed by
many dependencies to be able to compile.

Download from here:
http://puzzle.dl.sourceforge.net/sourceforge/mingw/MSYS-1.0.11-2004.04.30-1.exe

Install to c:\msys

All stuff we're going to compile is going to get to this directory (resp. its subdirs).

G.1.2 MinGW

Download from here:

QGIS 1.0.0 User, Installation and Coding Guide 206

http://puzzle.dl.sourceforge.net/sourceforge/mingw/MSYS-1.0.11-2004.04.30-1.exe

G.2 Installing dependencies

http://puzzle.dl.sourceforge.net/sourceforge/mingw/MinGW-5.1.3.exe
Install to c: \msys\mingw

It suffices to download and install only g++ and mingw-make components.

G.1.3 Flex and Bison

Flex and Bison are tools for generation of parsers, they're needed for GRASS and also QGIS compi-
lation.

Download the following packages:
http://gnuwin32.sourceforge.net/downlinks/flex-bin-zip.php
http://gnuwin32.sourceforge.net/downlinks/bison-bin-zip.php
http://gnuwin32.sourceforge.net/downlinks/bison-dep-zip.php

Unpack them all to c:\msys\local

G.2 Installing dependencies
G.2.1 Getting ready

Paul Kelly did a great job and prepared a package of precompiled libraries for GRASS. The package
currently includes:

e 7lib-1.2.3
e libpng-1.2.16-noconfig

xdr-4.0-mingw?2

freetype-2.3.4
fftw-2.1.5
PDCurses-3.1
proj-4.5.0
e gdal-1.4.1

It's available for download here:
http://www.stjohnspoint.co.uk/grass/wingrass-extralibs.tar.gz

Moreover he also left the notes how to compile it (for those interested):

QGIS 1.0.0 User, Installation and Coding Guide 207

http://puzzle.dl.sourceforge.net/sourceforge/mingw/MinGW-5.1.3.exe
http://gnuwin32.sourceforge.net/downlinks/flex-bin-zip.php
http://gnuwin32.sourceforge.net/downlinks/bison-bin-zip.php
http://gnuwin32.sourceforge.net/downlinks/bison-dep-zip.php
http://www.stjohnspoint.co.uk/grass/wingrass-extralibs.tar.gz

G CREATION OF MSYS ENVIRONMENT FOR COMPILATION OF QUANTUM GIS

http://www.stjohnspoint.co.uk/grass/README.extralibs

Unpack the whole package to c:\msys\local

G.2.2 GDAL level one

Since Quantum GIS needs GDAL with GRASS support, we need to compile GDAL from source -
Paul Kelly’s package doesn't include GRASS support in GDAL. The idea is following:

1. compile GDAL without GRASS
2. compile GRASS
3. compile GDAL with GRASS

So, start with downloading GDAL sources:
http://download.osgeo.org/gdal/gdall4l.zip
Unpack it to some directory, preferably c:\msys\local\src.

Start MSYS console, go to gdal-1.4.1 directory and run the commands below. You can put them all
to a script, e.g. build-gdal.sh and run them at once. The recipe is taken from Paul Kelly’s instructions
- basically they just make sure that the library will be created as DLL and the utility programs will be
dynamically linked to it...

CFLAGS="-02 -s" CXXFLAGS="-02 -s" LDFLAGS=-s ./configure --without-libtool \
--prefix=/usr/local --enable-shared --disable-static --with-libz=/usr/local \
--with-png=/usr/local

make

make install

rm /usr/local/lib/libgdal.a

g++ -s -shared -o ./libgdal.dll -L/usr/local/lib -1z -lpng ./frmts/o/*.o ./gcore/*.o \
./port/*.o ./alg/*.o0 ./ogr/ogrsf_frmts/o/*.o ./ogr/ogrgeometryfactory.o \
./ogr/ogrpoint.o ./ogr/ogrcurve.o ./ogr/ogrlinestring.o ./ogr/ogrlinearring.o \
./ogr/ogrpolygon.o ./ogr/ogrutils.o ./ogr/ogrgeometry.o ./ogr/ogrgeometrycollection.o \
./ogr/ogrmultipolygon.o ./ogr/ogrsurface.o ./ogr/ogrmultipoint.o \
./ogr/ogrmultilinestring.o ./ogr/ogr_api.o ./ogr/ogrfeature.o ./ogr/ogrfeaturedefn.o \
./ogr/ogrfeaturequery.o ./ogr/ogrfeaturestyle.o ./ogr/ogrfielddefn.o \
./ogr/ogrspatialreference.o ./ogr/ogr_srsnode.o ./ogr/ogr_srs_proj4.o \
./ogr/ogr_fromepsg.o ./ogr/ogrct.o ./ogr/ogr_opt.o ./ogr/ogr_srs_esri.o \
./ogr/ogr_srs_pci.o ./ogr/ogr_srs_usgs.o ./ogr/ogr_srs_dict.o ./ogr/ogr_srs_panorama.o \
./ogr/swuq.o ./ogr/ogr_srs_validate.o ./ogr/ogr_srs_xml.o ./ogr/ograssemblepolygon.o \
./ogr/ogr2gmlgeometry.o ./ogr/gml2ogrgeometry.o

QGIS 1.0.0 User, Installation and Coding Guide 208

http://www.stjohnspoint.co.uk/grass/README.extralibs
http://download.osgeo.org/gdal/gdal141.zip

G.2 Installing dependencies

install libgdal.dll /usr/local/lib

cd ogr

g++ -s ogrinfo.o -o ogrinfo.exe -L/usr/local/lib -lpng -1z -lgdal

g++ -s ogr2ogr.o -o ogr2ogr.exe -lgdal -L/usr/local/lib -lpng -1z -lgdal

g++ -s ogrtindex.o -o ogrtindex.exe -lgdal -L/usr/local/lib -lpng -1z -lgdal
install ogrinfo.exe ogr2ogr.exe ogrtindex.exe /usr/local/bin

cd ../apps

g+t+ -s gdalinfo.o -o gdalinfo.exe -L/usr/local/lib -lpng -1z -lgdal

g+t+ -s gdal_translate.o -o gdal_translate.exe -L/usr/local/lib -lpng -1z -lgdal
g++ -s gdaladdo.o -o gdaladdo.exe -L/usr/local/lib -lpng -1z -lgdal

g++ -s gdalwarp.o -o gdalwarp.exe -L/usr/local/lib -lpng -1z -lgdal

g++ -s gdal_contour.o -o gdal_contour.exe -L/usr/local/lib -lpng -1z -lgdal

g++ -s gdaltindex.o -o gdaltindex.exe -L/usr/local/lib -lpng -1z -lgdal

g++ -s gdal_rasterize.o -o gdal_rasterize.exe -L/usr/local/lib -lpng -1z -lgdal
install gdalinfo.exe gdal_translate.exe gdaladdo.exe gdalwarp.exe gdal_contour.exe \
gdaltindex.exe gdal_rasterize.exe /usr/local/bin

Finally, manually edit gdal-config in c:\msys\local\bin to replace the static library reference with
-lgdal:

CONFIG_LIBS="-L/usr/local/lib -lpng -1z -lgdal"

GDAL build procedure can be greatly simplified to use libtool with a libtool line patch: con-
figure gdal as below: ./configure —with-ngpython —with-xerces=/local/ —with-jasper=/local/ —with-
grass=/local/grass-6.3.cvs/ —with-pg=/local/pgsql/bin/pg_config.exe

Then fix libtool with: mv libtool libtool.orig cat libtool.orig | sed 's/max_cmd_len=8192/max_cmd_-
len=32768/g’ > libtool

Libtool on windows assumes a line length limit of 8192 for some reason and tries to page the linking
and fails miserably. This is a work around.

Make and make install should be hassle free after this.

G.2.3 GRASS

Grab sources from CVS or use a weekly snapshot, see:
http://grass.itc.it/devel/cvs.php

In MSYS console go to the directory where you've unpacked or checked out sources (e.g.
c:\msys\local\src\grass-6.3.cvs)

QGIS 1.0.0 User, Installation and Coding Guide 209

http://grass.itc.it/devel/cvs.php

G CREATION OF MSYS ENVIRONMENT FOR COMPILATION OF QUANTUM GIS

Run these commands:

export PATH="/usr/local/bin:/usr/local/lib:$PATH"

./configure --prefix=/usr/local --bindir=/usr/local --with-includes=/usr/local/include \
--with-libs=/usr/local/lib --with-cxx --without-jpeg --without-tiff --with-postgres=yes \
--with-postgres-includes=/local/pgsql/include --with-pgsql-libs=/local/pgsql/lib \
--with-opengl=windows --with-fftw --with-freetype \
--with-freetype-includes=/mingw/include/freetype2 \

--without-x --without-tcltk \

--enable-x11=no --enable-shared=yes --with-proj-share=/usr/local/share/proj

make

make install

It should get installed to c:\msys\local\grass-6.3.cvs
By the way, these pages might be useful:

o http://grass.gdf-hannover.de/wiki/WinGRASS_Current_Status
e http://geni.ath.cx/grass.html

G.2.4 GDAL level two

At this stage, we'll use GDAL sources we've used before, only the compilation will be a bit different.

But first in order to be able to compile GDAL sources with current GRASS CVS, you need to patch
them, here’s what you need to change:

http://trac.osgeo.org/gdal/attachment/ticket/1587/plugin_patch_grass63.diff

(you can patch it by hand or use patch.exe in c:\msys\bin)

Now in MSYS console go to the GDAL sources directory and run the same commands as in level
one, only with these differences:

1) when running ./configure add this argument:
--with-grass=/usr/local/grass-6.3.cvs

2) when calling g++ on line 5 (which creates libgdal.dll), add these arguments:
-L/usr/local/grass-6.3.cvs/1ib -lgrass_vect -lgrass_dig2 -lgrass_dgl -lgrass_rtree \
-lgrass_linkm -lgrass_dbmiclient -lgrass_dbmibase -lgrass_I -lgrass_gproj \
-lgrass_vask -lgrass_gmath -lgrass_gis -lgrass_datetimel}

QGIS 1.0.0 User, Installation and Coding Guide 210

http://grass.gdf-hannover.de/wiki/WinGRASS_Current_Status
http://geni.ath.cx/grass.html
http://trac.osgeo.org/gdal/attachment/ticket/1587/plugin_patch_grass63.diff

G.2 Installing dependencies

Then again, edit gdal-config and change line with CONFIG_LIBS

CONFIG_LIBS="-L/usr/local/lib -lpng -L/usr/local/grass-6.3.cvs/lib -lgrass_vect \
-lgrass_dig2 -lgrass_dgl -lgrass_rtree -lgrass_linkm -lgrass_dbmiclient \
-lgrass_dbmibase -lgrass_I -lgrass_gproj -lgrass_vask -lgrass_gmath -lgrass_gis \
-lgrass_datetime -1z -L/usr/local/lib -1lgdal"

Now, GDAL should be able to work also with GRASS raster layers.

G.2.5 GEOS

Download the sources:
http://geos.refractions.net/geos-2.2.3.tar.bz2
Unpack to e.g. c:\msys\local\src

To compile, | had to patch the sources: in file source/headers/timeval.h line 13. Change it from:

#ifdef _WIN32

to:

#if defined(_WIN32) && defined(_MSC_VER)

Now, in MSYS console, go to the source directory and run:

./configure --prefix=/usr/local
make
make install

G.2.6 SQLITE

You can use precompiled DLL, no need to compile from source:
Download this archive:
http://www.sqlite.org/sqlitedl11-3_3_17.zip

and copy sqlite3.dll from it to c: \msys\local\lib

QGIS 1.0.0 User, Installation and Coding Guide 211

http://geos.refractions.net/geos-2.2.3.tar.bz2
http://www.sqlite.org/sqlitedll-3_3_17.zip

G CREATION OF MSYS ENVIRONMENT FOR COMPILATION OF QUANTUM GIS

Then download this archive:
http://www.sqlite.org/sqlite-source-3_3_17.zip

and copy sqlite3.h to c:\msys\local\include

G.2.7 GSL

Download sources:
ftp://ftp.gnu.org/gnu/gsl/gsl-1.9.tar.gz
Unpack to c:\msys\local\src

Run from MSYS console in the source directory:
./configure

make
make install

G.2.8 EXPAT

Download sources:
http://dfn.dl.sourceforge.net/sourceforge/expat/expat-2.0.0.tar.gz
Unpack to c:\msys\local\src

Run from MSYS console in the source directory:

./configure
make
make install

G.2.9 POSTGRES
We're going to use precompiled binaries. Use the link below for download:

http://wwwmaster.postgresql.org/download/mirrors-ftp?file=\%2Fbinary\%2Fv8.2.4\%2Fwin32 \
\%2Fpostgresql-8.2.4-1-binaries-no-installer.zip

copy contents of pgsql directory from the archive to c:\msys\local

QGIS 1.0.0 User, Installation and Coding Guide 212

http://www.sqlite.org/sqlite-source-3_3_17.zip
ftp://ftp.gnu.org/gnu/gsl/gsl-1.9.tar.gz
http://dfn.dl.sourceforge.net/sourceforge/expat/expat-2.0.0.tar.gz

G.3 Cleanup

G.3 Cleanup

We're done with preparation of MSYS environment. Now you can delete all stuff in
c:\msys\local\src - it takes quite a lot of space and it's not necessary at all.

H Building with MS Visual Studio

"\ This section describes a process where you build all dependencies yourself. See the section after
this for a simpler procedure where we have all the dependencies you need pre-packaged and we
focus just on getting Visual Studio Express set up and building QGIS.

Note: that this does not currently include GRASS or Python plugins.

H.1 Setup Visual Studio

This section describes the setup required to allow Visual Studio to be used to build QGIS.

H.1.1 Express Edition

The free Express Edition lacks the platform SDK which contains headers and so on that are needed
when building QGIS. The platform SDK can be installed as described here:

http://msdn.microsoft.com/vstudio/express/visualc/usingpsdk/
Once this is done, you will need to edit the <vsinstalldir>\Common7\Tools\vsvars file as follows:

Add PlatformSDKDir%\Include\atl and %PlatformSDKDir%\Include\mfc to the
O@set INCLUDE entry.

This will add more headers to the system INCLUDE path. Note: that this will only work when you use
the Visual Studio command prompt when building. Most of the dependencies will be built with this.
You will also need to perform the edits described here to remove the need for a library that Visual
Studio Express lacks:

http://www.codeproject.com/wtl/WILExpress.asp

QGIS 1.0.0 User, Installation and Coding Guide 213

http://msdn.microsoft.com/vstudio/express/visualc/usingpsdk/
http://www.codeproject.com/wtl/WTLExpress.asp

H BUILDING WITH MS VISUAL STUDIO

H.1.2 All Editions

You will need stdint.h and unistd.h. unistd.h comes with GnuWin32 version of flex & bison binaries
(see later). stdint.h can be found here:

http://www.azillionmonkeys.com/qed/pstdint.h

Copy both of these to <vsinstalldir>\VC\include.

H.2 Download/Install Dependencies

This section describes the downloading and installation of the various QGIS dependencies.

H.2.1 Flex and Bison

Flex and Bison are tools for generation of parsers, they're needed for GRASS and also QGIS compi-
lation.

Download the following packages and run the installers:

http://gnuwin32.sourceforge.net/downlinks/flex.php
http://gnuwin32.sourceforge.net/downlinks/bison.php

H.2.2 To include PostgreSQL support in Qt

If you want to build Qt with PostgreSQL support you need to download PostgreSQL, install it and
create a library you can later link with Qt.

Download from .../binary/v8.2.5/win32/postgresql-8.2.5-1.zip from an PostgreSQL.org Mirror and in-
stall.

PostgreSQL is currently build with MinGW and comes with headers and libraries for MinGW. The
headers can be used with Visual C++ out of the box, but the library is only shipped in DLL and
archive (.a) form and therefore cannot be used with Visual C++ directly.

To create a library copy following sed script to the file mkdef.sed in PostgreSQL lib directory:

/Dump of file / {

s/Dump of file \([~ 1x\)$/LIBRARY \1/p
a\

EXPORTS

QGIS 1.0.0 User, Installation and Coding Guide 214

http://www.azillionmonkeys.com/qed/pstdint.h
http://gnuwin32.sourceforge.net/downlinks/flex.php
http://gnuwin32.sourceforge.net/downlinks/bison.php

H.2 Download/Install Dependencies

}
/[JIxordinal hint/,/~[]*Summary/ {
/70 IN+[0-91\+/ {
s/~[IN+[0-9]1\+[I\+[0-9A-Fa-f]\+[I1\+[0-9A-Fa-fI\+[I\+\([" =]1\+\).x$/ \1/p

and process execute in the Visual Studio C++ command line (from Programs menu):

cd c:\Program Files\PostgreSQL\8.2\bin

dumpbin /exports ..\bin\libpq.dll | sed -nf ../lib/mkdef.sed >..\lib\libpq.def
cd ..\lib

1lib /def:1libpq.def /machine:x86

You'll need an sed for that to work in your path (e.g. from cygwin or msys).

That's almost it. You only need to the include and lib path to INCLUDE and LIB in vcvars.bat respec-
tively.

H.2.3 Qt

Build Qt following the instructions here:

http://wiki.qgis.org/qgiswiki/Building QT_4_with_Visual_C%2B%2B_2005

H.2.4 Proj.4

Get proj.4 source from here:
http://proj.maptools.org/

Using the Visual Studio command prompt (ensures the environment is setup properly), run the fol-
lowing in the src directory:

nmake -f makefile.vc

Install by running the following in the top level directory setting PROJ_DIR as appropriate:

set PROJ_DIR=c:\lib\proj

QGIS 1.0.0 User, Installation and Coding Guide 215

http://wiki.qgis.org/qgiswiki/Building_QT_4_with_Visual_C%2B%2B_2005
http://proj.maptools.org/

H BUILDING WITH MS VISUAL STUDIO

mkdir %PROJ_DIR%\bin
mkdir %PR0OJ_DIR%\include
mkdir %PROJ_DIR%\1lib

copy src*.dll %PROJ_DIR}\bin
copy src*.exe %PROJ_DIR}\bin
copy src*.h %PROJ_DIR)\include
copy src*.1lib %PROJ_DIR%\1lib

This can also be added to a batch file.

H.2.5 GSL

Get gsl source from here:
http://david.geldreich.free.fr/downloads/gsl-1.9-windows-sources.zip

Build using the gsl.sIn file

H.2.6 GEOS

Get geos from svn (svn checkout hitp://svn.refractions.net/geos/trunk geos). Edit
geos\source\makefile.vc as follows:

Uncomment lines 333 and 334 to allow the copying of version.h.vc to version.h.

Uncomment lines 338 and 339.

Rename geos_c.h.vc to geos_c.h.in on lines 338 and 339 to allow the copying of geos_c.h.in to
geos_c.h.

Using the Visual Studio command prompt (ensures the environment is setup properly), run the fol-
lowing in the top level directory:

nmake -f makefile.vc

Run the following in top level directory, setting GEOS_DIR as appropriate:

set GEOS_DIR="c:\lib\geos"

mkdir %GEOS_DIRY%\include

QGIS 1.0.0 User, Installation and Coding Guide 216

http://david.geldreich.free.fr/downloads/gsl-1.9-windows-sources.zip
http://svn.refractions.net/geos/trunk

H.2 Download/Install Dependencies

mkdir %GEOS_DIR%\1lib
mkdir %GEOS_DIRY%\bin

xcopy /S/Y source\headers*.h %GEOS_DIR’\include
copy /Y capil*.h %GEOS_DIRY\include

copy /Y source*.lib %GEOS_DIR%\1lib
copy /Y source*.dll %GEOS_DIR/%\bin

This can also be added to a batch file.

H.2.7 GDAL

Get gdal from svn (svn checkout https://svn.osgeo.org/gdal/branches/1.4/gdal gdal).
Edit nmake.opt to suit, it's pretty well commented.

Using the Visual Studio command prompt (ensures the environment is setup properly), run the fol-
lowing in the top level directory:

nmake -f makefile.vc

and

nmake -f makefile.vc devinstall

H.2.8 PostGIS

Get PostGIS and the Windows version of PostgreSQL from here:
http://postgis.refractions.net/download/

Note: the warning about not installing the version of PostGIS that comes with the PostgreSQL in-
staller. Simply run the installers.

H.2.9 Expat

Get expat from here:

http://sourceforge.net/project/showfiles.php?group_id=10127

QGIS 1.0.0 User, Installation and Coding Guide 217

https://svn.osgeo.org/gdal/branches/1.4/gdal
http://postgis.refractions.net/download/
http://sourceforge.net/project/showfiles.php?group_id=10127

H BUILDING WITH MS VISUAL STUDIO

You'll need expat-win32bin-2.0.1.exe.

Simply run the executable to install expat.

H.2.10 CMake

Get CMake from here:
http://www.cmake.org/HTML/Download.html

You'll need cmake-<version>-win32-x86.exe. Simply run this to install CMake.

H.3 Building QGIS with CMAKE

Get QGIS source from svn (svn co https://svn.osgeo.org/qgis/trunk/qgis qgis).

Create a 'Build’ directory in the top level QGIS directory. This will be where all the build output will be
generated.

Run Start—>All Programs—>CMake—>CMake.
In the 'Where is the source code:’ box, browse to the top level QGIS directory.

In the 'Where to build the binaries:” box, browse to the 'Build’ directory you created in the top level
QGIS directory.

Fill in the various *_INCLUDE_DIR and *_LIBRARY entries in the 'Cache Values'’ list.

Click the Configure button. You will be prompted for the type of makefile that will be generated. Select
Visual Studio 8 2005 and click OK.

All being well, configuration should complete without errors. If there are errors, it is usually due to an
incorrect path to a header or library directory. Failed items will be shown in red in the list.

Once configuration completes without error, click OK to generate the solution and project files.

With Visual Studio 2005, open the ggis.sIn file that will have been created in the Build directory you
created earlier.

Build the ALL_BUILD project. This will build all the QGIS binaries along with all the plugins.

Install QGIS by building the INSTALL project. By default this will install to c:\Program
Files\qgis<version> (this can be changed by changing the CMAKE_INSTALL_PREFIX variable in
CMake).

You will also either need to add all the dependency dlls to the QGIS install directory or add their

QGIS 1.0.0 User, Installation and Coding Guide 218

http://www.cmake.org/HTML/Download.html
https://svn.osgeo.org/qgis/trunk/qgis

respective directories to your PATH.

| Building under Windows using MSVC Express

Note: : Building under MSVC is still a work in progress. In particular the following dont work yet:
python, grass, postgis connections.

"\ This section of the document is in draft form and is not ready to be used yet.

Tim Sutton, 2007

.1 System preparation

| started with a clean XP install with Service Pack 2 and all patches applied. | have already com-
piled all the dependencies you need for gdal, expat etc, so this tutorial wont cover compiling those
from source too. Since compiling these dependencies was a somewhat painful task | hope my pre-
compiled libs will be adequate. If not | suggest you consult the individual projects for specific build
documentation and support. Lets go over the process in a nutshell before we begin:

* Install XP (I used a Parallels virtual machine) * Install the premade libraries archive | have made for
you * Install Visual Studio Express 2005 spl * Install the Microsoft Platform SDK * Install command
line subversion client * Install library dependencies bundle * Install Qt 4.3.2 * Check out QGIS sources
* Compile QGIS * Create setup.exe installer for QGIS

[.2 Install the libraries archive

Half of the point of this section of the MSVC setup procedure is to make things as simple as possible
for you. To that end | have prepared an archive that includes all dependencies needed to build QGIS
except Qt (which we will build further down). Fetch the archive from:

http://qgis.org/uploadfiles/msvc/qgis_msvc_deps_except_qt4.zip
Create the following directory structure:
c:\dev\cpp\

And then extract the libraries archive into a subdirectory of the above directory so that you end up
with:

QGIS 1.0.0 User, Installation and Coding Guide 219

| BUILDING UNDER WINDOWS USING MSVC EXPRESS

c:\dev\cpp\ggislibs-release

Note: that you are not obliged to use this directory layout, but you should adjust any instructions that
follow if you plan to do things differently.

[.3 Install Visual Studio Express 2005

First thing we need to get is MSVC Express from here:
http://msdn2.microsoft.com/en-us/express/aa975050.aspx

The page is really confusing so dont feel bad if you cant actually find the download at first! There
are six coloured blocks on the page for the various studio family members (vb / c# / j# etc). Simply
choose your language under the 'select your language’ combo under the yellow C++ block, and your
download will begin. Under internet explorer | had to disable popup blocking for the download to be
able to commence.

Once the setup commences you will be prompted with various options. Here is what | chose :

* Send useage information to Microsoft (No) * Install options: * Graphical IDE (Yes) * Microsoft MSDN
Express Edition (No) * Microsoft SQL Server Express Edition (No) * Install to folder: C:\Program
Files\Microsoft Visual Studio 8\ (default)

It will need to download around 90mb of installation files and reports that the install will consume
554mb of disk space.

|.4 Install Microsoft Platform SDK2

Go to this page:
http://msdn2.microsoft.com/en-us/express/aa700755.aspx
Start by using the link provided on the above page to download and install the platform SDK2.

The actual SDK download page is once again a bit confusing since the links for downloading are
hidden amongst a bunch of other links. Basically look for these three links with their associated
'Download’ buttons and choose the correct link for your platform:

PSDK-amd64.exe 1.2 MB Download
PSDK-ia64.exe 1.3 MB Download
PSDK-x86.exe 1.2 MB Download

QGIS 1.0.0 User, Installation and Coding Guide 220

http://msdn2.microsoft.com/en-us/express/aa975050.aspx
http://msdn2.microsoft.com/en-us/express/aa700755.aspx

.4 Install Microsoft Platform SDK2

When you install make sure to choose 'custom install’. These instructions assume you are installing

into the default path of:

C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\

We will go for the minimal install that will give us a working environment, so on the custom installation

screen | made the following choices:

Configuration Options
+ Register Environmental Variables
Microsoft Windows Core SDK
+ Tools
+ Tools (AMD 64 Bit)
+ Tools (Intel 64 Bit)
+ Build Environment
+ Build Environment (AMD 64 Bit)
+ Build Environment (Intel 64 Bit)
+ Build Environment (x86 32 Bit)
Documentation
Redistributable Components
Sample Code

+ o+ o+ o+

Source Code
+ AMD 64 Source
+ Intel 64 Source
Microsoft Web Workshop
+ Build Environment
+ Documentation
+ Sample Code
+ Tools
Microsoft Internet Information Server (IIS) SDK
Microsoft Data Access Services (MDAC) SDK
+ Tools
+ Tools (AMD 64 Bit)
+ Tools (AMD 64 Bit)
+ Tools (x86 32 Bit)
+ Build Environment
+ Tools (AMD 64 Bit)
+ Tools (AMD 64 Bit)
+ Tools (x86 32 Bit)
+ Documentation
+ Sample Code

(Yes)

(Yes)
(No unless this applies)
(No unless this applies)

(No unless this applies)

(No unless this applies)
(Yes)

(No)

(Yes)

(No)

(No)

(No)

(No)

(Yes) (needed for shlwapi.h)
(Yes)

(No)

(No)

(No)

(No)

(Yes) (needed by GDAL for odbc)

(No)
(No)
(Yes)

(No)
(No)
(Yes)
(No)
(No)

QGIS 1.0.0 User, Installation and Coding Guide

221

| BUILDING UNDER WINDOWS USING MSVC EXPRESS

Microsodt Installer SDK (No)
Microsoft Table PC SDK (No)
Microsoft Windows Management Instrumentation (No)
Microsoft DirectShow SDK (No)
Microsoft Media Services SDK (No)
Debuggin Tools for Windows (Yes)

Note: that you can always come back later to add extra bits if you like.

Note: that installing the SDK requires validation with the Microsoft Genuine Advantage application.
Some people have a philosophical objection to installing this software on their computers. If you are
one of them you should probably consider using the MINGW build instructions described elsewhere
in this document.

The SDK installs a directory called

C:\Officel0

Which you can safely remove.

After the SDK is installed, follow the remaining notes on the page link above to get your MSVC
Express environment configured correctly. For your convenience, these are summarised again below,
and | have added a couple more paths that | discovered were needed:

1) open Visual Studio Express IDE
2) Tools -> Options -> Projects and Solutions -> VC++ Directories
3) Add:

Executable files:
C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\Bin

Include files:
C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\Include
C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\Include\atl
C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\Include\mfc
Library files: C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\Lib

4) Close MSVC Express IDE

5) Open the following file with notepad:

C:\Program Files\Microsoft Visual Studio 8\VC\VCProjectDefaults\corewin_express.vsprops

QGIS 1.0.0 User, Installation and Coding Guide 222

I.5 Edit your vsvars

and change the property:

AdditionalDependencies="kernel32.1ib"

To read:

AdditionalDependencies="kernel32.1ib user32.1ib gdi32.1lib winspool.lib comdlg32.1lib
advapi32.1lib shell32.1lib o0le32.1ib oleaut32.1lib uuid.lib"

The notes go on to show how to build a mswin32 application which you can try if you like - I'm not
going to recover that here.

1.5 Edit your vsvars

Backup your vsvars32.bat file in

C:\Program Files\Microsoft Visual Studio 8\Common7\Tools

and replace it with this one:

O@SET VSINSTALLDIR=C:\Program Files\Microsoft Visual Studio 8

@SET VCINSTALLDIR=C:\Program Files\Microsoft Visual Studio 8\VC

OSET FrameworkDir=C:\WINDOWS\Microsoft.NET\Framework

O@SET FrameworkVersion=v2.0.50727

@SET FrameworkSDKDir=C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0
@if "),VSINSTALLDIR)"=="" goto error_no_VSINSTALLDIR

@if "),VCINSTALLDIR)"=="" goto error_no_VCINSTALLDIR

@echo Setting environment for using Microsoft Visual Studio 2005 x86 tools.

Orem

Orem Root of Visual Studio IDE installed files.

Orem

@set DevEnvDir=C:\Program Files\Microsoft Visual Studio 8\Common7\IDE

@set PATH=C:\Program Files\Microsoft Visual Studio 8\Common7\IDE;C:\Program \
Files\Microsoft Visual Studio 8\VC\BIN;C:\Program Files\Microsoft Visual Studio 8\ \
Common7\Tools;C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\bin; \
C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727;C:\Program Files\Microsoft Visual \

QGIS 1.0.0 User, Installation and Coding Guide 223

| BUILDING UNDER WINDOWS USING MSVC EXPRESS

Studio 8\VC\VCPackages;%PATH,

Orem added by Tim

@set PATH=C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\Bin;%PATHY
@set INCLUDE=C:\Program Files\Microsoft Visual Studio 8\VC\INCLUDE; \

%INCLUDEY

@rem added by Tim

@set INCLUDE=C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\ \
Include;%INCLUDEY,

@set INCLUDE=C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\ \
Include\mfc;%INCLUDEY,

@set INCLUDE=J,INCLUDEY;C:\dev\cpp\qgislibs-release\include\postgresql

@set LIB=C:\Program Files\Microsoft Visual Studio 8\ \

VC\LIB;C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\1lib;’%LIBY

@rem added by Tim

@set LIB=C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\Lib;’%LIBY
@set LIB=),LIB%;C:\dev\cpp\ggislibs-release\lib

@set LIBPATH=C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727

@goto end

:error_no_VSINSTALLDIR

@echo ERROR: VSINSTALLDIR variable is not set.
@goto end

:error_no_VCINSTALLDIR

Q@echo ERROR: VCINSTALLDIR variable is not set.

@goto end

:end

.6 Environment Variables

Right click on "My computer’ then select the 'Advanced’ tab. Click environment variables and create
or augment the following ’System™ variables (if they dont already exist):

Variable Name Value

EDITOR vim

INCLUDE C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2 \
\Include\.

QGIS 1.0.0 User, Installation and Coding Guide 224

.7 Building Qt4.3.2

LIB C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2 \
\Lib\.
LIB_DIR C:\dev\cpp\gqgislibs-release
PATH C:\Program Files\CMake 2.4\bin;
%SystemRoot%\system32;
%SystemRoot%;

%SystemRoot’\System32\Wbem;
C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2 \
\Bin\.;
C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\ \
\Bin\WinNT\;
C:\Program Files\svn\bin;C:\Program Files\Microsoft Visual Studio 8 \
\VC\bin;
C:\Program Files\Microsoft Visual Studio 8\Common7\IDE;
"c:\Program Files\Microsoft Visual Studio 8\Common7\Tools";
c:\Qt\4.3.2\bin;
"C:\Program Files\PuTTY"

QTDIR c:\Qt\4.3.2

SVN_SSH "C:\\Program Files\\PuTTY\\plink.exe"

1.7 Building Qt4.3.2

You need a minimum of Qt 4.3.2 here since this is the first version to officially support building the
open source version of Qt for windows under MSVC.

Download Qt 4.x.x source for windows from

http:\\www.trolltech.com

Unpack the source to

c:\Qt\4.x.x\

[.7.1 Compile Qt

Open the Visual Studio C++ command line and cd to c:\Qt\4.x.x where you extracted the source and
enter:

configure -platform win32-msvc2005

QGIS 1.0.0 User, Installation and Coding Guide 225

| BUILDING UNDER WINDOWS USING MSVC EXPRESS

nmake

nmake install

Add -qgt-sgl-odbc -gt-sql-psql to the configure line if your want odbc and PostgreSQL support build
into Qt.

Note: For me in some cases | got a build error on gscreenshot.pro. If you are only interested in having
the libraries needed for building Qt apps, you can probably ignore that. Just check in c:\Qt\4.3.2\bin
to check all dlls and helper apps (assistant etc) have been made.

I.7.2 Configure Visual C++ to use Qt

After building configure the Visual Studio Express IDE to use Qt:
1) open Visual Studio Express IDE
2) Tools -> Options -> Projects and Solutions -> VC++ Directories

3) Add:

Executable files:
$(QTDIR)\bin

Include files:
$(QTDIR) \include
$(QTDIR)\include\Qt
$(QTDIR) \include\QtCore
$(QTDIR) \include\QtGui
$(QTDIR) \include\QtNetwork
$(QTDIR) \include\QtSvg
$(QTDIR)\include\QtXml
$(QTDIR) \include\Qt3Support
$(LIB_DIR)\include (needed during qgis compile to find stdint.h and unistd.h)

Library files:
$(QTDIR)\1lib

Source Files:
$(QTDIR) \src

Hint: You can also add

QGIS 1.0.0 User, Installation and Coding Guide 226

[.8 Install Python

QString = t=<d->data, su>, size=<d->size, i>

to AutoExp.DAT in C:\Program Files\Microsoft Visual Studio 8\Common7\Packages\Debugger be-
fore

[Visualizer]

That way the Debugger will show the contents of QString when you point at or watch a variable in the
debugger. There are probably much more additions - feel free to add some - | just needed QString
and took the first hit in google | could find.

I.8 Install Python

Download http://python.org/ftp/python/2.5.1/python-2.5.1.msi and install it.

1.9 Install SIP

Download http://www.riverbankcomputing.com/Downloads/sip4/sip-4.7.1.zip and extract it into your
c:\dev\cpp directory. From a Visual C++ command line cd to the directory where you extract SIP and
run:

c:\python25\python configure.py -p win32-msvc2005
nmake
nmake install

1.10 Install PyQt4

Download http://www.riverbankcomputing.com/Downloads/PyQt4/GPL/PyQt-win-gpl-4.3.1.zip and
extract it into your c:\dev\cpp directory. From a Visual C++ command line cd to the directory where
you extracted PyQt4 and run:

c:\python25\python configure.py -p win32-msvc2005
nmake
nmake install

QGIS 1.0.0 User, Installation and Coding Guide 227

http://python.org/ftp/python/2.5.1/python-2.5.1.msi
http://www.riverbankcomputing.com/Downloads/sip4/sip-4.7.1.zip
http://www.riverbankcomputing.com/Downloads/PyQt4/GPL/PyQt-win-gpl-4.3.1.zip

| BUILDING UNDER WINDOWS USING MSVC EXPRESS

.11 Install CMake

Download and install cmake 2.4.7 or better, making sure to enable the option: Update path for all

users

.12 Install Subversion

You "must” install the command line version if you want the CMake svn scripts to work. Its a bit tricky
to find the correct version on the subversion download site as they have som misleadingly named
similar downloads. Easiest is to just get this file:

http://subversion.tigris.org/downloads/1.4.5-win32/apache-2.2/svn-win32-1.4.5.zip

Extract the zip file to
C:\Program Files\svn

And then add

C:\Program Files\svn\bin

To your path.

.13 Initial SVN Check out

Open a cmd.exe window and do:

cd \

cd dev

cd cpp

svn co https://svn.osgeo.org/qgis/trunk/qgis

At this point you will probably get a message like this:

C:\dev\cpp>svn co https://svn.osgeo.org/qgis/trunk/qgis
Error validating server certificate for ’https://svn.qgis.org:4437:
- The certificate is not issued by a trusted authority. Use the
fingerprint to validate the certificate manually!
Certificate information:

QGIS 1.0.0 User, Installation and Coding Guide 228

http://subversion.tigris.org/downloads/1.4.5-win32/apache-2.2/svn-win32-1.4.5.zip

I.14 Create Makefiles using cmakesetup.exe

- Hostname: svn.qgis.org

Valid: from Sat, 01 Apr 2006 03:30:47 GMT until Fri, 21 Mar 2008 03:30:47 GMT
- Issuer: Developer Team, Quantum GIS, Anchorage, Alaska, US

- Fingerprint: 2f:cd:fl1:5a:c7:64:da:2b:d1:34:a5:20:¢c6:15:67:28:33:ea:7a:9
(R)eject, accept (t)emporarily or accept (p)ermanently?

Press 'p’ to accept and the svn checkout will commence.

.14 Create Makefiles using cmakesetup.exe

| wont be giving a detailed description of the build process, because the process is explained in the
first section (where you manually build all dependencies) of the windows build notes in this document.
Just skip past the parts where you need to build GDAL etc, since this simplified install process does
all the dependency provisioning for you.

cd qgis
mkdir build
cd build

cmakesetup ..

Cmakesetup should find all dependencies for you automatically (it uses the LIB_DIR environment to
find them all in c:\dev\cpp\qgislibs-release). Press configure again after the cmakesetup gui appears
and when all the red fields are gone, and you have made any personalisations to the setup, press ok
to close the cmake gui.

Now open Visual Studio Express and do: File -> Open -> Project / Solution

Now open the cmake generated QGIS solution which should be in :
c:\dev\cpp\qgis\build\qgisX.X.X.sln

Where X.X.X represents the current version number of QGIS. Currently | have only made release
built dependencies for QGIS (debug versions will follow in future), so you need to be sure to select
'Release’ from the solution configurations toolbar. Next right click on ALL_BUILD in the solution
browser, and then choose build. Once the build completes right click on INSTALL in the solution
browser and choose build. This will by default install qgis into c:\program files\qgisX.X.X.

1.15 Running and packaging

To run QGIS you need to at the minimum copy the dlls from c:\dev\cpp\qgislibs-release\bin into the
c:\program files\qgisX.X.X directory.

QGIS 1.0.0 User, Installation and Coding Guide 229

J QGIS CODING STANDARDS

J QGIS Coding Standards

The following chapters provide coding information for QGIS Version 1.0.0. This document corre-
sponds almost to a ISTEX conversion of the CODING.t2t file coming with the QGIS sources from
December, 16th 2008.

These standards should be followed by all QGIS developers. Current information about QGIS Coding
Standards are also available from wiki at:

http://wiki.qgis.org/qgiswiki/CodingGuidelines
http://wiki.qgis.org/qgiswiki/CodingStandards
http://wiki.qgis.org/qgiswiki/UsingSubversion
http://wiki.qgis.org/qgiswiki/DebuggingPlugins
http://wiki.qgis.org/qgiswiki/DevelopmentInBranches
http://wiki.qgis.org/qgiswiki/SubmittingPatchesAndSvnAccess

J.1 Classes
J.1.1 Names

Class in QGIS begin with Qgs and are formed using mixed case.

Examples:
QgsPoint
QgsMapCanvas
QgsRasterLayer

J.1.2 Members

Class member names begin with a lower case m and are formed using mixed case.

mMapCanvas
mCurrentExtent

All class members should be private. Public class members are STRONGLY discouraged

QGIS 1.0.0 User, Installation and Coding Guide 230

http://wiki.qgis.org/qgiswiki/CodingGuidelines
http://wiki.qgis.org/qgiswiki/CodingStandards
http://wiki.qgis.org/qgiswiki/UsingSubversion
http://wiki.qgis.org/qgiswiki/DebuggingPlugins
http://wiki.qgis.org/qgiswiki/DevelopmentInBranches
http://wiki.qgis.org/qgiswiki/SubmittingPatchesAndSvnAccess

J.2 Qt Designer

J.1.3 Accessor Functions

Class member values should be obtained through accesssor functions. The function should be
named without a get prefix. Accessor functions for the two private members above would be:

mapCanvas ()

currentExtent ()

J.1.4 Functions

Function names begin with a lowercase letter and are formed using mixed case. The function name
should convey something about the purpose of the function.

updateMapExtent ()
setUserOptions ()

J.2 Qt Designer

J.2.1 Generated Classes

QGIS classes that are generated from Qt Designer (ui) files should have a Base suffix. This identifies
the class as a generated base class.

Examples:
QgsPluginMangerBase
QgsUserOptionsBase

J.2.2 Dialogs

All dialogs should implement the following: * Tooltip help for all toolbar icons and other relevant
widgets * WhatsThis help for all widgets on the dialog * An optional (though highly recommended)
context sensitive Help button that directs the user to the appropriate help page by launching their web
browser

QGIS 1.0.0 User, Installation and Coding Guide 231

J QGIS CODING STANDARDS

J.3 C++ Files

J.3.1 Names

C++ implementation and header files should be have a .cpp and .h extension respectively. Filename
should be all lowercase and, in the case of classes, match the class name.

Example:
Class (QgsFeatureAttribute source files are
qgsfeatureattribute.cpp and qgsfeatureattribute.h

J.3.2 Standard Header and License

Each source file should contain a header section patterned after the following example:

/***

ggsfield.cpp - Describes a field in a layer or table

Date : 01-Jan-2004
Copyright : (C) 2004 by Gary E.Sherman
Email : sherman at mrcc.com

[/ okokok ok ok sk sk sk sk sk sk sk sk sk sk s s s s o sk sk sk o ok ok ok ko ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ke ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk ko o ok
*

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

L I R

(at your option) any later version.

¥ ¥ ¥ ¥ ¥

*

ok sk ok ok ok ok K ok ok ok sk ok ok ok ok ok ok ok K s ok sk sk ok s ok ok ok sk ok sk ok sk sk ok sk sk ok sk ok ok s ok ok ok sk ok sk ok sk sk ok ok ok ok ok ok k ok /

J.3.3 CVS Keyword

Each source file should contain the Id keyword. This will be expanded by CVS to contain useful
information about the file, revision, last committer, and date/time of last checkin.

Place the keyword right after the standard header/license that is found at the top of each source file:

/* $1d$ */

QGIS 1.0.0 User, Installation and Coding Guide 232

J.4 Variable Names

J.4 Variable Names

Variable names begin with a lower case letter and are formed using mixed case.

Examples:
mapCanvas
currentExtent

J.5 Enumerated Types

Enumerated types should be named in CamelCase with a leading capital e.g.:

enum UnitType
{

Meters,
Feet,
Degrees,
UnknownUnit

}

Do not use generic type names that will conflict with other types. e.g. use "UnkownUnit" rather than
"Unknown"

J.6 Global Constants

Global constants should be written in upper case underscore separated e.g.:

const long GEOCRS_ID = 3344;

J.7 Editing

Any text editor/IDE can be used to edit QGIS code, providing the following requirements are met.

J.7.1 Tabs

Set your editor to emulate tabs with spaces. Tab spacing should be set to 2 spaces.

QGIS 1.0.0 User, Installation and Coding Guide 233

J QGIS CODING STANDARDS

J.7.2 Indentation

Source code should be indented to improve readability. There is a .indent.pro file in the QGIS src
directory that contains the switches to be used when indenting code using the GNU indent program.
If you don’t use GNU indent, you should emulate these settings.

J.7.3 Braces

Braces should start on the line following the expression:

if (foo == 1)
{
// do stuff
}else
{

// do something else

J.8 API Compatibility

From QGIS 1.0 we will provide a stable, backwards compatible API. This will provide a stable basis
for people to develop against, knowing their code will work against any of the 1.x QGIS releases
(although recompiling may be required).Cleanups to the API should be done in a manner similar to
the Trolltech developers e.g.

class Foo
{
public:
/** This method will be deprecated, you are encouraged to use
doSomethingBetter() rather.
@see doSomethingBetter ()
*/
bool doSomething();

/** Does something a better way.
@note This method was introduced in QGIS version 1.1

*/

QGIS 1.0.0 User, Installation and Coding Guide 234

J.9 Coding Style

bool doSomethingBetter();

J.9 Coding Style

Here are described some programming hints and tips that will hopefully reduce errors, development
time, and maintenance.

J.9.1 Where-ever Possible Generalize Code

If you are cut-n-pasting code, or otherwise writing the same thing more than once, consider consoli-
dating the code into a single function.

This will allow changes to be made in one location instead of in multiple places

¢ help prevent code bloat

e make it more difficult for multiple copies to evolve differences over time, thus making it harder
to understand and maintain for others

J.9.2 Prefer Having Constants First in Predicates

Prefer to put constants first in predicates.

"0 == value" instead of "value == 0"

This will help prevent programmers from accidentally using "=" when they meant to use "==", which
can introduce very subtle logic bugs. The compiler will generate an error if you accidentally use "="
instead of "==" for comparisons since constants inherently cannot be assigned values.

J.9.3 Whitespace Can Be Your Friend

Adding spaces between operators, statements, and functions makes it easier for humans to parse
code.

Which is easier to read, this:

if (la&&b)

QGIS 1.0.0 User, Installation and Coding Guide 235

J QGIS CODING STANDARDS

or this:

if (! a&& b))

J.9.4 Add Trailing Identifying Comments

Adding comments at the end of function, struct and class implementations makes it easier to find
them later.

Consider that you're at the bottom of a source file and need to find a very long function — without
these kinds of trailing comments you will have to page up past the body of the function to find its
name. Of course this is ok if you wanted to find the beginning of the function; but what if you were
interested at code near its end? You'd have to page up and then back down again to the desired part.

E.g.,

void foo::bar()
{

// ... imagine a lot of code here

} // foo::bar()

J.9.5 Use Braces Even for Single Line Statements
Using braces for code in ifithen blocks or similar code structures even for single line statements
means that adding another statement is less likely to generate broken code.

Consider:

if (foo)

bar();
else

baz();

Adding code after bar() or baz() without adding enclosing braces would create broken code. Though
most programmers would naturally do that, some may forget to do so in haste.

So, prefer this:

if (foo)
{

QGIS 1.0.0 User, Installation and Coding Guide 236

bar(Q);

}
else
{
baz();
}

J.9.6 Book recommendations

Effective C++ http://www.awprofessional.com/title/0321334876

More Effective C++ http://www.awprofessional.com/bookstore/product.asp?isbn=020163371X&rl=1
Effective STL http://www.awprofessional.com/title/0201749629

Design Patterns http://wuw.awprofessional.com/title/0201634988

You should also really read this article from Qt Quarterly on designing Qt style
http://doc.trolltech.com/qq/qql3-apis.html

K SVN Access

This page describes how to get started using the QGIS Subversion repository

K.1 Accessing the Repository

To check out QGIS HEAD:

svn --username [your user name] co https://svn.qgis.org/repos/qgis/trunk/qgis

K.2 Anonymous Access

You can use the following commands to perform an anonymous checkout from the QGIS Subversion
repository. Note we recommend checking out the trunk (unless you are a developer or really HAVE
to have the latest changes and dont mind lots of crashing!).

You must have a subversion client installed prior to checking out the code. See the Subversion
website for more information. The Links page contains a good selection of SVN clients for various
platforms.

To check out a branch

QGIS 1.0.0 User, Installation and Coding Guide 237

http://www.awprofessional.com/title/0321334876
http://www.awprofessional.com/bookstore/product.asp?isbn=020163371X&rl=1
http://www.awprofessional.com/title/0201749629
http://www.awprofessional.com/title/0201634988
http://doc.trolltech.com/qq/qq13-apis.html

K SVN ACCESS

svn co https://svn.qgis.org/repos/qgis/branches/<branch name>
To check out SVN stable trunk:
svn co https://svn.qgis.org/repos/qgis/trunk/qgis qgis_unstable

/"\ Note: If you are behind a proxy server, edit your “/subversion/servers file to specify your proxy
settings first!

"\ Note: In QGIS we keep our most stable code in trunk. Periodically we will tag a release off trunk,
and then continue stabilisation and selective incorporation of new features into trunk.

See the INSTALL file in the source tree for specific instructions on building development versions.

K.3 QGIS documentation sources

If you're interested in checking out Quantum GIS documentation sources:
svn co https://svn.qgis.org/repos/qgis_docs/trunk qgis_docs

You can also take a look at DocumentationWritersCorner for more information.

K.4 Documentation

The repository is organized as follows:
http://wiki.qgis.org/images/repo.png

See the Subversion book http://svnbook.red-bean.com for information on becoming a SVN master.

K.5 Development in branches
K.5.1 Purpose

The complexity of the QGIS source code has increased considerably during the last years. Therefore
it is hard to anticipate the side effects that the addition of a feature will have. In the past, the QGIS
project had very long release cycles because it was a lot of work to reetablish the stability of the
software system after new features were added. To overcome these problems, QGIS switched to a
development model where new features are coded in svn branches first and merged to trunk (the
main branch) when they are finished and stable. This section describes the procedure for branching
and merging in the QGIS project.

QGIS 1.0.0 User, Installation and Coding Guide 238

http://wiki.qgis.org/images/repo.png
http://svnbook.red-bean.com

K.5 Development in branches

K.5.2 Procedure

* Initial announcement on mailing list Before starting, make an announcement on the developer mail-
ing list to see if another developer is already working on the same feature. Also contact the technical
advisor of the project steering committee (PSC). If the new feature requires any changes to the QGIS
architecture, a request for comment (RFC) is needed. * Create a branch Create a new svn branch for
the development of the new feature (see UsingSubversion for the svn syntax). Now you can start de-
veloping. * Merge from trunk regularly It is recommended to merge the changes in trunk to the branch
on a regular basis. This makes it easier to merge the branch back to trunk later. * Documentation
on wiki It is also recommended to document the intended changes and the current status of the work
on a wiki page. * Testing before merging back to trunk When you are finished with the new feature
and happy with the stability, make an announcement on the developer list. Before merging back, the
changes will be tested by developers and users. Binary packages (especially for OsX and Windows)
will be generated to also involve non-developers. In trac, a new Component will be opened to file
tickets against. Once there are no remaining issues left, the technical advisor of the PSC merges the
changes into trunk.

K.5.3 Creating a branch

We prefer that new feature developments happen out of trunk so that trunk remains in a stable state.
To create a branch use the following command:

svn copy https://svn.qgis.org/repos/qgis/trunk/qgis \
https://svn.qgis.org/repos/qgis/branches/qgis_newfeature
svn commit -m "New feature branch"

K.5.4 Merge regularly from trunk to branch

When working in a branch you should regularly merge trunk into it so that your branch does not
diverge more than necessary. In the top level dir of your branch, first type ‘svn info‘ to determine
the revision numbers of your branch which will produce output something like this:

timlinux@timlinux-desktop:~/dev/cpp/qgis_raster_transparency_branch$ svn info
Caminho:

URL: https://svn.qgis.org/repos/qgis/branches/raster_transparency_branch
Raiz do Repositorio: https://svn.qgis.org/repos/qgis

UUID do repositorio: c8812cc2-4d05-0410-92ff-de0c093fc19c

Revisao: 6546

Tipo de No: diretorio

QGIS 1.0.0 User, Installation and Coding Guide 239

K SVN ACCESS

Agendado: normal

Autor da Ultima Mudanca: timlinux

Revisao da Ultima Mudanca: 6495

Data da Ultima Mudanca: 2007-02-02 09:29:47 -0200 (Sex, 02 Fev 2007)
Propriedades da Ultima Mudanca: 2007-01-09 11:32:55 -0200 (Ter, 09 Jan 2007)

The second revision number shows the revision number of the start revision of your branch and the
first the current revision. You can do a dry run of the merge like this:

svn merge --dry-run -r 6495:6546 https://svn.qgis.org/repos/qgis/trunk/qgis

After you are happy with the changes that will be made do the merge for real like this:

svn merge -r 6495:6546 https://svn.qgis.org/repos/qgis/trunk/qgis
svn commit -m "Merged upstream changes from trunk to my branch"

K.6 Submitting Patches

There are a few guidelines that will help you to get your patches into QGIS easily, and help us deal
with the patches that are sent to use easily.

K.6.1 Patch file naming

If the patch is a fix for a specific bug, please name the file with the bug number in it e.qg.
bug777fix.diff , and attach it to the original bug report in trac (https://trac.osgeo.org/qgis/).

If the bug is an enhancement or new feature, its usually a good idea to create a ticket in trac
(https://trac.osgeo.org/qgis/) first and then attach you

K.6.2 Create your patch in the top level QGIS source dir

This makes it easier for us to apply the patches since we don’t need to navigate to a specific place
in the source tree to apply the patch. Also when | receive patches | usually evaluate them using
kompare, and having the patch from the top level dir makes this much easier. Below is an example
of you you can include multiple changed files into your patch from the top level directory:

cd qgis
svn diff src/ui/somefile.ui src/app/somefile2.cpp > bug872fix.diff

QGIS 1.0.0 User, Installation and Coding Guide 240

https://trac.osgeo.org/qgis/
https://trac.osgeo.org/qgis/

K.7 Obtaining SVN Write Access

K.6.3 Including non version controlled files in your patch

If your improvements include new files that don't yet exist in the repository, you should indicate to svn
that they need to be added before generating your patch e.g.

cd qgis
svn add src/lib/somenewfile.cpp
svn diff > bug7887fix.diff

K.6.4 Getting your patch noticed

QGIS developers are busy folk. We do scan the incoming patches on bug reports but sometimes
we miss things. Don't be offended or alarmed. Try to identify a developer to help you - using the
['Project Organigram”] and contact them asking them if they can look at your patch. If you dont
get any response, you can escalate your query to one of the Project Steering Committee members
(contact details also available on the ['Project Organigram"]).

K.6.5 Due Diligence

QGIS is licensed under the GPL. You should make every effort to ensure you only submit patches
which are unencumbered by conflicting intellectual property rights. Also do not submit code that you
are not happy to have made available under the GPL.

K.7 Obtaining SVN Write Access

Write access to QGIS source tree is by invitation. Typically when a person submits several (there is
no fixed number here) substantial patches that demonstrate basic competance and understanding
of C++ and QGIS coding conventions, one of the PSC members or other existing developers can
nominate that person to the PSC for granting of write access. The nominator should give a basic
promotional paragraph of why they think that person should gain write access. In some cases we
will grant write access to non C++ developers e.g. for translators and documentors. In these cases,
the person should still have demonstrated ability to submit patches and should ideally have submtted
several substantial patches that demonstrate their understanding of modifying the code base without
breaking things, etc.

K.7.1 Procedure once you have access

Checkout the sources:

QGIS 1.0.0 User, Installation and Coding Guide 241

K SVN ACCESS

svn co https://svn.qgis.org/repos/qgis/trunk/qgis qgis

Build the sources (see INSTALL document for proper detailed instructions)

cd qgis

mkdir build

ccmake .. (set your preferred options)

make

make install (maybe you need to do with sudo / root perms)

Make your edits

cd ..

Make your changes in sources. Always check that everything compiles before making any commits.
Try to be aware of possible breakages your commits may cause for people building on other platforms
and with older / newer versions of libraries.

Add files (if you added any new files). The svn status command can be used to quickly see if you
have added new files.

svn status src/pluguns/grass/modules

Files listed with ? in front are not in SVN and possibly need to be added by you:

svn add src/pluguns/grass/modules/foo.xml

Commit your changes

svn commit src/pluguns/grass/modules/foo.xml

Your editor (as defined in $EDITOR environment variable) will appear and you should make a com-
ment at the top of the file (above the area that says 'dont change this’. Put a descriptive comment and
rather do several small commits if the changes across a number of files are unrelated. Conversely
we prefer you to group related changes into a single commit.

Save and close in your editor. The first time you do this, you should be prompted to put in your
username and password. Just use the same ones as your trac account.

QGIS 1.0.0 User, Installation and Coding Guide 242

L Unit Testing

As of November 2007 we require all new features going into trunk to be accompanied with a unit test.
Initially we have limited this requirement to qgis_core, and we will extend this requirement to other
parts of the code base once people are familiar with the procedures for unit testing explained in the
sections that follow.

L.1 The QGIS testing framework - an overview

Unit testing is carried out using a combination of QTestLib (the Qt testing library) and CTest (a frame-
work for compiling and running tests as part of the CMake build process). Lets take an overview of
the process before | delve into the details:

e There is some code you want to test , e.g. a class or function. Extreme programming advo-
cates suggest that the code should not even be written yet when you start building your tests,
and then as you implement your code you can immediately validate each new functional part
you add with your test. In practive you will probably need to write tests for pre-existing code
in QGIS since we are starting with a testing framework well after much application logic has
already been implemented.

e You create a unit test. This happens under <QGIS Source Dir>/tests/src/core in the case of
the core lib. The test is basically a client that creates an instance of a class and calls some
methods on that class. It will check the return from each method to make sure it matches the
expected value. If any one of the calls fails, the unit will fail.

e You include QtTestLib macros in your test class. This macro is processed by the Qt meta
object compiler (moc) and expands your test class into a runnable application.

e You add a section to the CMakeLists.txt in your tests directory that will build your test.

e You ensure you have ENABLE_TESTING enabled in ccmake / cmakeset up. This will en-
sure your tests actually get compiled when you type make.

e You optionally add test datato <QGIS Source Dir >/tests/testdata if your test is data driven
(e.g. needs to load a shapefile). These test data should be as small as possible and wherever
possible you should use the existing datasets already there. Your tests should never modify this
data in situ, but rather may a temporary copy somewhere if needed.

e You compile your sources and install. Do this using normal make && (sudo) make install
procedure.

e You run your tests. This is normally done simply by doing make test after the make install
step, though | will explain other aproaches that offer more fine grained control over running
tests.

QGIS 1.0.0 User, Installation and Coding Guide 243

L UNIT TESTING

Right with that overview in mind, | will delve into a bit of detail. I've already done much of the
configuration for you in CMake and other places in the source tree so all you need to do are the easy
bits - writing unit tests!

L.2 Creating a unit test

Creating a unit test is easy - typically you will do this by just creating a single .cpp file (not .h file is
used) and implement all your test methods as public methods that return void. I'll use a simple test
class for QgsRasterLayer throughout the section that follows to illustrate. By convention we will name
our test with the same name as the class they are testing but prefixed with "Test’. So our test imple-
mentation goes in a file called testggsrasterlayer.cpp and the class itself will be TestQgsRasterLayer.
First we add our standard copyright banner:

QGIS 1.0.0 User, Installation and Coding Guide 244

L.2 Creating a unit test

/***

testqgsvectorfilewriter.cpp

Date : Frida Nov 23 2007
Copyright : (C) 2007 by Tim Sutton
Email : tim@linfiniti.com

>k 3k 3k 3k 5k >k >k 3k 3k 3k >k >k 5k 3k 5k 5k >k >k 3k 3k 3k >k >k 5k 3k 3k 5k >k %k 5k 5k 3k 5k >k %k 5k 5k 3k >k >k %k 5k 5k 5k >k >k >k >k 5k 3k >k >k >k 5k 5k >k >k >k >k %k %k >k >k >k %k %k %k >k >k %k %k %k %k >k %k

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

¥ ¥ ¥ X X

*
*
*
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.

%

*

stk ok ok sk 3 ok sk ok ok ok ok ok sk 3 ok sk sk ok s ok ok ok ok ok sk 3 ok sk sk ok sk ok ok s ok ok ok ok ok sk ok sk s ok sk sk ok ok ok ok ok ok ok ok ok ok sk k ok ok /

Next we use start our includes needed for the tests we plan to run. There is one special include all
tests should have:

#include <QtTest>

Beyond that you just continue implementing your class as per normal, pulling in whatever headers
you may need:

//Qt includes...
#include <Q0Object>
#include <QString>
#include <Q0Object>
#include <QApplication>
#include <QFileInfo>
#include <QDir>

//qgis includes...

#include <qgsrasterlayer.h>
#include <ggsrasterbandstats.h>
#include <ggsapplication.h>

Since we are combining both class declaration and implementation in a single file the class decla-
ration comes next. We start with our doxygen documentation. Every test case should be properly
documented. We use the doxygen ingroup directive so that all the UnitTests appear as a module in
the generated Doxygen documentation. After that comes a short description of the unit test:

QGIS 1.0.0 User, Installation and Coding Guide 245

L UNIT TESTING

/** \ingroup UnitTests
* This is a unit test for the (QgsRasterLayer class.

*/

The class must inherit from QObject and include the Q_OBJECT macro.

class Test(QgsRasterLayer: public QObject

{
Q_OBJECT;

All our test methods are implemented as private slots . The QtTest framework will sequentially call
each private slot method in the test class. There are four 'special’ methods which if implemented will
be called at the start of the unit test (initTestCase), at the end of the unit test (cleanupTestCase).
Before each test method is called, the init() method will be called and after each test method is
called the cleanup() method is called. These methods are handy in that they allow you to allocate
and cleanup resources prior to running each test, and the test unit as a whole.

private slots:
// will be called before the first testfunction is executed.
void initTestCase();
// will be called after the last testfunction was executed.
void cleanupTestCase(){};
// will be called before each testfunction is executed.
void init(){};
// will be called after every testfunction.
void cleanup();

Then come your test methods, all of which should take no parameters and should return void .
The methods will be called in order of declaration. | am implementing two methods here which
illustrates to types of testing. In the first case | want to generally test the various parts of the class
are working, | can use a functional testing approach. Once again, extreme programmers would
advocate writing these tests before implementing the class. Then as you work your way through
your class implementation you iteratively run your unit tests. More and more test functions should
complete sucessfully as your class implementation work progresses, and when the whole unit test
passes, your new class is done and is now complete with a repeatable way to validate it.

Typically your unit tests would only cover the public API of your class, and normally you do not need
to write tests for accessors and mutators. If it should happen that an acccessor or mutator is not
working as expected you would normally implement a regression test to check for this (see lower
down).

QGIS 1.0.0 User, Installation and Coding Guide 246

L.2 Creating a unit test

//
// Functional Testing
//

/** Check if a raster is valid. */
void isValid();

// more functional tests here ...

Next we implement our regression tests . Regression tests should be implemented to replicate the
conditions of a particular bug. For example | recently received a report by email that the cell count
by rasters was off by 1, throwing off all the statistics for the raster bands. | opened a bug (ticket
#832) and then created a regression test that replicated the bug using a small test dataset (a 10x10
raster). Then | ran the test and ran it, verifying that it did indeed fail (the cell count was 99 instead of
100). Then I went to fix the bug and reran the unit test and the regression test passed. | committed
the regression test along with the bug fix. Now if anybody breakes this in the source code again in
the future, we can immediatly identify that the code has regressed. Better yet before committing any
changes in the future, running our tests will ensure our changes dont have unexpected side effects -
like breaking existing functionality.

There is one more benifit to regression tests - they can save you time. If you ever fixed a bug that
involved making changes to the source, and then running the application and performing a series of
convoluted steps to replicate the issue, it will be immediately apparent that simply implementing your
regression test before fixing the bug will let you automate the testing for bug resolution in an efficient
manner.

To implement your regression test, you should follow the naming convention of regression<TicketID >
for your test functions. If no trac ticket exists for the regression, you should create one first. Using this
approach allows the person running a failed regression test easily go and find out more information.

//
// Regression Testing

//

/** This is our second test case...to check if a raster
reports its dimensions properly. It is a regression test
for ticket #832 which was fixed with change r7650.

*/

void regression832(Q);

// more regression tests go here ...

QGIS 1.0.0 User, Installation and Coding Guide 247

L UNIT TESTING

Finally in our test class declaration you can declare privately any data members and helper methods
your unit test may need. In our case | will declare a QgsRasterLayer * which can be used by any of
our test methods. The raster layer will be created in the initTestCase() function which is run before
any other tests, and then destroyed using cleanupTestCase() which is run after all tests. By declaring
helper methods (which may be called by various test functions) privately, you can ensure that they
wont be automatically run by the QTest executeable that is created when we compile our test.

private:
// Here we have any data structures that may need to
// be used in many test cases.
QgsRasterLayer * mpLayer;
s

That ends our class declaration. The implementation is simply inlined in the same file lower down.
First our init and cleanup functions:

void TestQgsRasterLayer::initTestCase()

{
// init QGIS’s paths - true means that all path will be inited from prefix
QString qgisPath = QCoreApplication::applicationDirPath ();
QgsApplication: :setPrefixPath(qgisPath, TRUE);

#ifdef Q_OS_LINUX
QgsApplication::setPkgDataPath(qgisPath + "/../share/qgis");

#endif

//create some objects that will be used in all tests...

std::cout << "Prefix PATH: " << QgsApplication::prefixPath().toLocal8Bit().data() \
<< std::endl;

std::cout << "Plugin PATH: " << QgsApplication::pluginPath().toLocal8Bit().data() \
<< std::endl;

std::cout << "PkgData PATH: " << QgsApplication::pkgDataPath().toLocal8Bit().data() \
<< std::endl;

std::cout << "User DB PATH: " << QgsApplication::qgisUserDbFilePath().toLocal8Bit() \
.data() << std::endl;

//create a raster layer that will be used in all tests...

QString myFileName (TEST_DATA_DIR); //defined in CmakelLists.txt
myFileName = myFileName + QDir::separator() + "tenbytenraster.asc";
QFileInfo myRasterFileInfo (myFileName) ;

mpLayer = new QgsRasterLayer (myRasterFileInfo.filePath(),

QGIS 1.0.0 User, Installation and Coding Guide 248

L.2 Creating a unit test

myRasterFileInfo.completeBaseName());

void TestQgsRasterLayer: :cleanupTestCase()

{
delete mpLayer;

by

The above init function illustrates a couple of interesting things.

1. | needed to manually set the QGIS application data path so that resources such as srs.db can
be found properly. 2. Secondly, this is a data driven test so we needed to provide a way to gener-
ically locate the 'tenbytenraster.asc file. This was achieved by using the compiler define TEST_-
DATA_PATH. The define is created in the CMakeLists.txt configuration file under <QGIS Source
Root>/tests/CMakelLists.txt and is available to all QGIS unit tests. If you need test data for your test,
commit it under <QGIS Source Root>/tests/testdata. You should only commit very small datasets
here. If your test needs to modify the test data, it should make a copy of if first.

Qt also provides some other interesting mechanisms for data driven testing, so if you are interested
to know more on the topic, consult the Qt documentation.

Next lets look at our functional test. The isValid() test simply checks the raster layer was correctly
loaded in the initTestCase. QVERIFY is a Qt macro that you can use to evaluate a test condition.
There are a few other use macros Qt provide for use in your tests including:

QCOMPARE (actual, expected)
QEXPECT_FAIL (dataIndex, comment, mode)
QFAIL (message)

QFETCH (type, name)

QSKIP (description, mode)
QTEST (actual, testElement)
QTEST_APPLESS_MAIN (TestClass)
QTEST_MAIN (TestClass)
QTEST_NOOP_MAIN ()

QVERIFY2 (condition, message)
QVERIFY (condition)

QWARN (message)

Some of these macros are useful only when using the Qt framework for data driven testing (see the
Qt docs for more detail).

void TestQgsRasterLayer::isValid()

QGIS 1.0.0 User, Installation and Coding Guide 249

L UNIT TESTING

QVERIFY (mpLayer->isValid());
}

Normally your functional tests would cover all the range of functionality of your classes public API
where feasible. With our functional tests out the way, we can look at our regression test example.

Since the issue in bug #832 is a misreported cell count, writing our test if simply a matter of using
QVERIFY to check that the cell count meets the expected value:

void TestQgsRasterLayer::regression832()
{
QVERIFY (mpLayer->getRasterXDim() == 10);
QVERIFY (mpLayer->getRasterYDim() == 10);
// regression check for ticket #832
// note getRasterBandStats call is base 1
QVERIFY (mpLayer->getRasterBandStats(l).elementCountInt == 100);

With all the unit test functions implemented, there one final thing we need to add to our test class:

QTEST_MAIN(TestQgsRasterLayer)
#include "moc_testqgsrasterlayer.cxx"

The purpose of these two lines is to signal to Qt's moc that his is a QtTest (it will generate a main
method that in turn calls each test funtion. The last line is the include for the MOC generated sources.
You should replace 'testqgsrasterlayer’ with the name of your class in lower case.

L.3 Adding your unit test to CMakeLists.txt

Adding your unit test to the build system is simply a matter of editing the CMakeLists.txt in the test
directory, cloning one of the existing test blocks, and then search and replacing your test class name
into it. For example:

#

(QgsRasterLayer test

#

SET(qgis_rasterlayertest_SRCS testqgsrasterlayer.cpp)
SET(qgis_rasterlayertest_MOC_CPPS testqgsrasterlayer.cpp)

QGIS 1.0.0 User, Installation and Coding Guide 250

L.3 Adding your unit test to CMakeLists.txt

QT4_WRAP_CPP(qgis_rasterlayertest_MOC_SRCS ${qgis_rasterlayertest_MOC_CPPS})
ADD_CUSTOM_TARGET (qgis_rasterlayertestmoc ALL DEPENDS ${qgis_rasterlayertest_MOC_SRCS})
ADD_EXECUTABLE(qgis_rasterlayertest ${qgis_rasterlayertest_SRCS})

ADD_DEPENDENCIES (qgis_rasterlayertest qgis_rasterlayertestmoc)
TARGET_LINK_LIBRARIES(qgis_rasterlayertest ${QT_LIBRARIES} qgis_core)

INSTALL(TARGETS qgis_rasterlayertest RUNTIME DESTINATION ${QGIS_BIN_DIR})
ADD_TEST(qgis_rasterlayertest ${QGIS_BIN_DIR}/qgis_rasterlayertest)

I'll run through these lines briefly to explain what they do, but if you are not interested, just clone the
block, search and replace e.g.

:’<,’>s/rasterlayer/mynewtest/
y y g

Lets look a little more in detail at the individual lines. First we define the list of sources for our
test. Since we have only one source file (following the methodology | described above where class
declaration and definition are in the same file) its a simple statement:

SET(qgis_rasterlayertest_SRCS testqgsrasterlayer.cpp)

Since our test class needs to be run through the Qt meta object compiler (moc) we need to provide a
couple of lines to make that happen too:

SET(qgis_rasterlayertest_MOC_CPPS testqgsrasterlayer.cpp)
QT4_WRAP_CPP(qgis_rasterlayertest_MOC_SRCS ${qgis_rasterlayertest_MOC_CPPS})
ADD_CUSTOM_TARGET (qgis_rasterlayertestmoc ALL DEPENDS ${qgis_rasterlayertest_MOC_SRCS})

Next we tell cmake that it must make an executeable from the test class. Remember in the previous
section on the last line of the class implementation | included the moc outputs directly into our test
class, so that will give it (among other things) a main method so the class can be compiled as an
executeable:

ADD_EXECUTABLE (qgis_rasterlayertest ${qgis_rasterlayertest_SRCS})
ADD_DEPENDENCIES (qgis_rasterlayertest qgis_rasterlayertestmoc)

Next we need to specify any library dependencies. At the moment classes have been implemented
with a catch-all QT_LIBRARIES dependency, but | will be working to replace that with the specific Qt
libraries that each class needs only. Of course you also need to link to the relevant qgis libraries as
required by your unit test.

QGIS 1.0.0 User, Installation and Coding Guide 251

L UNIT TESTING

TARGET_LINK_LIBRARIES(qgis_rasterlayertest ${QT_LIBRARIES} qgis_core)

Next | tell cmake to the same place as the qgis binaries itself. This is something | plan to remove in
the future so that the tests can run directly from inside the source tree.

INSTALL(TARGETS qgis_rasterlayertest RUNTIME DESTINATION ${QGIS_BIN_DIR})

Finally here is where the best magic happens - we register the class with ctest. If you recall in the
overview | gave in the beginning of this section we are using both QtTest and CTest together. To
recap, QtTest adds a main method to your test unit and handles calling your test methods within the
class. It also provides some macros like QVERIFY that you can use as to test for failure of the tests
using conditions. The output from a QtTest unit test is an executeable which you can run from the
command line. However when you have a suite of tests and you want to run each executeable in
turn, and better yet integrate running tests into the build process, the CTest is what we use. The next
line registers the unit test with CMake / CTest.

ADD_TEST(qgis_rasterlayertest ${QGIS_BIN_DIR}/qgis_rasterlayertest)

The last thing | should add is that if your test requires optional parts of the build process (e.g. Post-
gresql support, GSL libs, GRASS etc.), you should take care to enclose you test block inside a IF ()
block in the CMakeLists.txt file.

L.4 Building your unit test

To build the unit test you need only to make sure that ENABLE_TESTS=true in the cmake configura-
tion. There are two ways to do this:

1. Run ccmake .. (cmakesetup .. under windows) and interactively set the ENABLE_TESTS flag to
ON. 1. Add a command line flag to cmake e.g. cmake -DENABLE_TESTS=true ..

Other than that, just build QGIS as per normal and the tests should build too.
L.5 Run your tests

The simplest way to run the tests is as part of your normal build process:
make && make install && make test

The make test command will invoke CTest which will run each test that was registered using the
ADD_TEST CMake directive described above. Typical output from make test will look like this:

QGIS 1.0.0 User, Installation and Coding Guide 252

L.5 Run your tests

Running tests...
Start processing tests
Test project /Users/tim/dev/cpp/qgis/build

1/ 3 Testing qgis_applicationtest ***xException: Other
2/ 3 Testing qgis_filewritertest *%* Passed
3/ 3 Testing qgis_rasterlayertest ***x Passed

0% tests passed, 3 tests failed out of 3

The following tests FAILED:

1 - ggis_applicationtest (OTHER_FAULT)
Errors while running CTest

make: *** [test] Error 8

If a test fails, you can use the ctest command to examine more closely why it failed. User the -R
option to specify a regex for which tests you want to run and -V to get verbose output:

[build] ctest -R appl -V

Start processing tests

Test project /Users/tim/dev/cpp/qgis/build

Constructing a list of tests

Done constructing a list of tests

Changing directory into /Users/tim/dev/cpp/qgis/build/tests/src/core

1/ 3 Testing qgis_applicationtest

Test command: /Users/tim/dev/cpp/qgis/build/tests/src/core/qgis_applicationtest

*kkkkkkkkx Start testing of Test(gsApplication sskskskskkokkk
Config: Using QTest library 4.3.0, Qt 4.3.0

PASS : TestQgsApplication::initTestCase()
Prefix PATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/../
Plugin PATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/..//1lib/qgis
PkgData PATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/..//share/qgis
User DB PATH: /Users/tim/.qgis/qgis.db

PASS : TestQgsApplication: :getPaths()
Prefix PATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/../
Plugin PATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/..//1ib/qgis
PkgData PATH: /Users/tim/dev/cpp/qgis/build/tests/src/core/..//share/qgis
User DB PATH: /Users/tim/.qgis/qgis.db
QDEBUG : TestQgsApplication::checkTheme() Checking if a theme icon exists:
QDEBUG : TestQgsApplication::checkTheme ()
/Users/tim/dev/cpp/qgis/build/tests/src/core/.. \
//share/qgis/themes/default//mIconProjectionDisabled.png

QGIS 1.0.0 User, Installation and Coding Guide 253

M HIG (HUMAN INTERFACE GUIDELINES)

FAIL! : TestQgsApplication::checkTheme() ’!myPixmap.isNull()’ returned FALSE. ()
Loc: [/Users/tim/dev/cpp/qgis/tests/src/core/testqgsapplication.cpp(59)]

PASS

: TestQgsApplication::cleanupTestCase()

Totals: 3 passed, 1 failed, O skipped
ffkkkkkkx Finished testing of TestQgsApplication skkkokkskkx

Process completed

*x*x*xFailed

0%

tests passed, 1 tests failed out of 1

The following tests FAILED:
1 - ggis_applicationtest (Failed)

Errors while running CTest

Well that concludes this section on writing unit tests in QGIS. We hope you will get into the habit of
writing test to test new functionality and to check for regressions. Some aspects of the test system
(in particular the CMakelLists.txt parts) are still being worked on so that the testing framework works
in a truly platform way. | will update this document as things progress.

M HIG (Human Interface Guidelines)

In order for all graphical user interface elements to appear consistant and to all the user to instinctively
use dialogs, it is important that the following guidelines are followed in layout and design of GUIs.

1.

Group related elements using group boxes: Try to identify elements that can be grouped to-
gether and then use group boxes with a label to identify the topic of that group. Avoid using
group boxes with only a single widget / item inside.

Capitalise first letter only in labels: Labels (and group box labels) should be written as a phrase
with leading capital letter, and all remaing words written with lower case first letters

. Do not end labels for widgets or group boxes with a colon: Adding a colon causes visual noise

and does not impart additional meaning, so dont use them. An exception to this rule is when
you have two labels next to each other e.g.: Labell Plugin Label2 [/path/to/plugins]

Keep harmful actions away from harmless ones: If you have actions for 'delete’, 'remove’ etc,
try to impose adequate space between the harmful action and innocuous actions so that the
users is less likely to inadvertantly click on the harmful action.

Always use a QButtonBox for 'OK’, "Cancel’ etc buttons: Using a button box will ensure that the
order of 'OK’ and 'Cancel’ etc, buttons is consistent with the operating system / locale / desktop
environment that the user is using.

QGIS 1.0.0 User, Installation and Coding Guide 254

Path:

N GNU General Public License

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software—to
make sure the software is free for all its users. This General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you
to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of
the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you
legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is
no warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any problems introduced by others will not
reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary.
To prevent this, we have made it clear that any patent must be licensed for everyone’s free use or not licensed
at all.

The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS
FOR COPYING, DISTRIBUTION AND MODIFICATION

QGIS 1.0.0 User, Installation and Coding Guide 255

N GNU GENERAL PUBLIC LICENSE

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The "Program”, below, refers to
any such program or work, and a "work based on the Program" means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included without limitation in
the term "modification”.) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its
scope. The act of running the Program is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the date
of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from
the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of
this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when started
running for such interactive use in the most ordinary way, to print or display an announcement including an
appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling the user how to view a copy of
this License. (Exception: if the Program itself is interactive but does not normally print such an announcement,
your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived
from the Program, and can be reasonably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the Program, the distribution of
the whole must be on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the
Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under

QGIS 1.0.0 User, Installation and Coding Guide 256

the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more
than your cost of physically performing source distribution, a complete machine-readable copy of the corre-
sponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

¢) Accompany it with the information you received as to the offer to distribute corresponding source code. (This
alternative is allowed only for noncommercial distribution and only if you received the program in object code
or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an exe-
cutable work, complete source code means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is normally distributed (in
either source or binary form) with the major components (compiler, kernel, and so on) of the operating system
on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automat-
ically terminate your rights under this License. However, parties who have received copies, or rights, from you
under this License will not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain entirely from

QGIS 1.0.0 User, Installation and Coding Guide 257

N GNU GENERAL PUBLIC LICENSE

distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of
the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copy-
righted interfaces, the original copyright holder who places the Program under this License may add an explicit
geographical distribution limitation excluding those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of
this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and "any later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Program does
not specify a version number of this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are
different, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVIC-
ING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PRO-

QGIS 1.0.0 User, Installation and Coding Guide 258

GRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPE-
CIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED IN-
ACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

QGIS 1.0.0 User, Installation and Coding Guide 259

N GNU GENERAL PUBLIC LICENSE

N.1 Quantum GIS Qt exception for GPL

In addition, as a special exception, the QGIS Development Team gives permission to
link the code of this program with the Qt library, including but not limited to the following
versions (both free and commercial): Qt/Non-commerical Windows, Qt/Windows, Qt/X11,
Qt/Mac, and Qt/Embedded (or with modified versions of Qt that use the same license as
Qt), and distribute linked combinations including the two. You must obey the GNU General
Public License in all respects for all of the code used other than Qt. If you modify this file,
you may extend this exception to your version of the file, but you are not obligated to do
so. If you do not wish to do so, delete this exception statement from your version.

QGIS 1.0.0 User, Installation and Coding Guide 260

Literature

[1] T. Mitchell. Web mapping illustrated, published by o'reilly, 2005.

[2] M. Neteler and H. Mitasova. Open source gis: A grass gis approach. 3. edition, springer, new
york, 2008.

Web-References

[3] GRASS GIS. http://grass.osgeo.org, 2008.
[4] PostGIS. http://postgis.refractions.net/, 2006.

[5] Web Map Service (1.1.1) Implementation Specification. http://portal.opengeospatial.org,
2002.

[6] Web Map Service (1.3.0) Implementation Specification. http://portal.opengeospatial.org,
2004.

http://grass.osgeo.org
http://postgis.refractions.net/
http://portal.opengeospatial.org
http://portal.opengeospatial.org

	Title
	Preamble
	Table of Contents
	List of Figures
	List of Tables
	List of QGIS Tips
	Forward
	Features
	Conventions

	Introduction To GIS
	Why is all this so new?
	Raster Data
	Vector Data

	Getting Started
	Installation
	Sample Data
	Sample Session

	Features at a Glance
	Starting and Stopping QGIS
	Command Line Options

	QGIS GUI
	Menu Bar
	Toolbars
	Map Legend
	Map View
	Map Overview
	Status Bar

	Rendering
	Scale Dependent Rendering
	Controlling Map Rendering

	Measuring
	Measure length and areas

	Projects
	Output
	GUI Options
	Spatial Bookmarks
	Creating a Bookmark
	Working with Bookmarks
	Zooming to a Bookmark
	Deleting a Bookmark

	Working with Vector Data
	ESRI Shapefiles
	Loading a Shapefile
	Improving Performance
	Loading a MapInfo Layer
	Loading an ArcInfo Coverage

	PostGIS Layers
	Creating a stored Connection
	Loading a PostGIS Layer
	Some details about PostgreSQL layers
	Importing Data into PostgreSQL
	Improving Performance

	The Vector Properties Dialog
	General Tab
	Symbology Tab
	Metadata Tab
	Labels Tab
	Actions Tab
	Attributes Tab

	Editing
	Setting the Snapping Tolerance and Search Radius
	Topological editing
	Editing an Existing Layer
	Creating a New Layer

	Query Builder
	Select by query

	Working with Raster Data
	What is raster data?
	Loading raster data in QGIS
	Raster Properties Dialog
	Symbology Tab
	Transparency Tab
	Colormap
	General Tab
	Metadata Tab
	Pyramids Tab
	Histogram Tab

	Working with OGC Data
	What is OGC Data
	WMS Client
	Overview of WMS Support
	Selecting WMS Servers
	Loading WMS Layers
	Using the Identify Tool
	Viewing Properties
	WMS Client Limitations

	WFS Client
	Loading a WFS Layer

	Working with Projections
	Overview of Projection Support
	Specifying a Projection
	Define On The Fly (OTF) Projection
	Custom Coordinate Reference System

	GRASS GIS Integration
	Starting the GRASS plugin
	Loading GRASS raster and vector layers
	GRASS LOCATION and MAPSET
	Creating a new GRASS LOCATION
	Adding a new MAPSET

	Importing data into a GRASS LOCATION
	The GRASS vector data model
	Creating a new GRASS vector layer
	Digitizing and editing a GRASS vector layer
	The GRASS region tool
	The GRASS toolbox
	Working with GRASS modules
	Working with the GRASS LOCATION browser
	Customizing the GRASS Toolbox

	Print Composer
	Using Print Composer
	Adding a current QGIS map canvas to the Print Composer
	Adding other elements to the Print Composer
	Navigation tools
	Creating Output

	QGIS Plugins
	Managing Plugins
	Loading a QGIS Core Plugin
	Loading an external QGIS Plugin
	Using the QGIS Python Plugin Installer

	Data Providers

	Using QGIS Core Plugins
	Coordinate Capture Plugin
	Decorations Plugins
	Copyright Label Plugin
	North Arrow Plugin
	Scale Bar Plugin

	Delimited Text Plugin
	Dxf2Shp Converter Plugin
	Georeferencer Plugin
	Quick Print Plugin
	GPS Plugin
	What is GPS?
	Loading GPS data from a file
	GPSBabel
	Importing GPS data
	Downloading GPS data from a device
	Uploading GPS data to a device
	Defining new device types

	Graticule Creator Plugin
	Interpolation Plugin
	MapServer Export Plugin
	Creating the Project File
	Creating the Map File
	Testing the Map File

	OGR Converter Plugin

	Using external QGIS Python Plugins
	Writing a QGIS Plugin in C++
	Why C++ and what about licensing
	Programming a QGIS C++ Plugin in four steps
	Further information

	Writing a QGIS Plugin in Python
	Why Python and what about licensing
	What needs to be installed to get started
	Programming a simple PyQGIS Plugin in four steps
	Committing the plugin to repository
	Further information

	Creating C++ Applications
	Creating a simple mapping widget
	Working with QgsMapCanvas

	Creating PyQGIS Applications
	Designing the GUI
	Creating the MainWindow
	Finishing Up
	Running the Application

	Help and Support
	Mailinglists
	IRC
	BugTracker
	Blog
	Wiki

	Supported Data Formats
	Supported OGR Formats
	GDAL Raster Formats

	GRASS Toolbox modules
	GRASS Toolbox data import and export modules
	GRASS Toolbox data type conversion modules
	GRASS Toolbox region and projection configuration modules
	GRASS Toolbox raster data modules
	GRASS Toolbox vector data modules
	GRASS Toolbox imagery data modules
	GRASS Toolbox database modules
	GRASS Toolbox 3D modules
	GRASS Toolbox help modules

	Installation Guide
	General Build Notes
	An overview of the dependencies required for building

	Building under windows using msys
	MSYS:
	Qt4.3
	Flex and Bison
	Python stuff: (optional)
	Download and install Python - use Windows installer
	Download SIP and PyQt4 sources
	Compile SIP
	Compile PyQt
	Final python notes

	Subversion:
	CMake:
	QGIS:
	Compiling:
	Configuration
	Compilation and installation
	Run qgis.exe from the directory where it's installed (CMAKE_INSTALL_PREFIX)
	Create the installation package: (optional)

	Building on Mac OSX using frameworks and cmake (QGIS > 0.8)
	Install XCODE
	Install Qt4 from .dmg
	Install development frameworks for QGIS dependencies
	Additional Dependencies : GSL
	Additional Dependencies : Expat
	Additional Dependencies : SIP
	Additional Dependencies : PyQt
	Additional Dependencies : Bison

	Install CMAKE for OSX
	Install subversion for OSX
	Check out QGIS from SVN
	Configure the build
	Building

	Building on GNU/Linux
	Building QGIS with Qt4.x
	Prepare apt
	Install Qt4
	Install additional software dependencies required by QGIS
	GRASS Specific Steps
	Setup ccache (Optional)
	Prepare your development environment
	Check out the QGIS Source Code
	Starting the compile
	Building Debian packages
	Running QGIS

	Creation of MSYS environment for compilation of Quantum GIS
	Initial setup
	MSYS
	MinGW
	Flex and Bison

	Installing dependencies
	Getting ready
	GDAL level one
	GRASS
	GDAL level two
	GEOS
	SQLITE
	GSL
	EXPAT
	POSTGRES

	Cleanup

	Building with MS Visual Studio
	Setup Visual Studio
	Express Edition
	All Editions

	Download/Install Dependencies
	Flex and Bison
	To include PostgreSQL support in Qt
	Qt
	Proj.4
	GSL
	GEOS
	GDAL
	PostGIS
	Expat
	CMake

	Building QGIS with CMAKE

	Building under Windows using MSVC Express
	System preparation
	Install the libraries archive
	Install Visual Studio Express 2005
	Install Microsoft Platform SDK2
	Edit your vsvars
	Environment Variables
	Building Qt4.3.2
	Compile Qt
	Configure Visual C++ to use Qt

	Install Python
	Install SIP
	Install PyQt4
	Install CMake
	Install Subversion
	Initial SVN Check out
	Create Makefiles using cmakesetup.exe
	Running and packaging

	QGIS Coding Standards
	Classes
	Names
	Members
	Accessor Functions
	Functions

	Qt Designer
	Generated Classes
	Dialogs

	C++ Files
	Names
	Standard Header and License
	CVS Keyword

	Variable Names
	Enumerated Types
	Global Constants
	Editing
	Tabs
	Indentation
	Braces

	API Compatibility
	Coding Style
	Where-ever Possible Generalize Code
	Prefer Having Constants First in Predicates
	Whitespace Can Be Your Friend
	Add Trailing Identifying Comments
	Use Braces Even for Single Line Statements
	Book recommendations

	SVN Access
	Accessing the Repository
	Anonymous Access
	QGIS documentation sources
	Documentation
	Development in branches
	Purpose
	Procedure
	Creating a branch
	Merge regularly from trunk to branch

	Submitting Patches
	Patch file naming
	Create your patch in the top level QGIS source dir
	Including non version controlled files in your patch
	Getting your patch noticed
	Due Diligence

	Obtaining SVN Write Access
	Procedure once you have access

	Unit Testing
	The QGIS testing framework - an overview
	Creating a unit test
	Adding your unit test to CMakeLists.txt
	Building your unit test
	Run your tests

	HIG (Human Interface Guidelines)
	GNU General Public License
	Quantum GIS Qt exception for GPL

	Cited literature

