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ABSTRACT
AI models are increasingly applied in high-stakes domains like

health and conservation. Data quality carries an elevated signifi-

cance in high-stakes AI due to its heightened downstream impact,

impacting predictions like cancer detection, wildlife poaching, and

loan allocations. Paradoxically, data is the most under-valued and

de-glamorised aspect of AI. In this paper, we report on data practices

in high-stakes AI, from interviews with 53 AI practitioners in India,

East and West African countries, and USA. We define, identify, and

present empirical evidence on Data Cascades—compounding events

causing negative, downstream effects from data issues—triggered

by conventional AI/ML practices that undervalue data quality. Data

cascades are pervasive (92% prevalence), invisible, delayed, but

often avoidable. We discuss HCI opportunities in designing and

incentivizing data excellence as a first-class citizen of AI, resulting

in safer and more robust systems for all.
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1 INTRODUCTION
Data is the critical infrastructure necessary to build Artificial In-

telligence (AI) systems [44]. Data largely determines performance,

fairness, robustness, safety, and scalability of AI systems [44, 81].

Paradoxically, for AI researchers and developers, data is often the

least incentivized aspect, viewed as ‘operational’ relative to the
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lionized work of building novel models and algorithms [46, 125]. In-

tuitively, AI developers understand that data quality matters, often

spending inordinate amounts of time on data tasks [60]. In practice,

most organisations fail to create or meet any data quality standards

[87], from under-valuing data work vis-a-vis model development.

Under-valuing of data work is common to all of AI develop-

ment [125]
1
. We pay particular attention to undervaluing of data

in high-stakes domains2 that have safety impacts on living beings,

due to a few reasons. One, developers are increasingly deploying

AI models in complex, humanitarian domains, e.g., in maternal

health, road safety, and climate change. Two, poor data quality

in high-stakes domains can have outsized effects on vulnerable

communities and contexts. As Hiatt et al. argue, high-stakes efforts
are distinct from serving customers; these projects work with and

for populations at risk of a litany of horrors [47]. As an example,

poor data practices reduced accuracy in IBM’s cancer treatment AI

[115] and led to Google Flu Trends missing the flu peak by 140%

[63, 73]). Three, high-stakes AI systems are typically deployed in

low-resource contexts with a pronounced lack of readily available,

high-quality datasets. Applications span into communities that

live outside of a modern data infrastructure, or where everyday

functions are not yet consistently tracked, e.g., walking distances
to gather water in rural areas—in contrast to, say, click data [26].

Finally, high-stakes AI is more often created at the combination of

two or more disciplines; for example, AI and diabetic retinopathy,

leading to greater collaboration challenges among stakeholders

across organizations and domains [75, 121].

Considering the above factors, currently data quality issues in AI

are addressed with the wrong tools created for, and fitted to other

technology problems—they are approached as a database problem,

legal compliance issue, or licensing deal. HCI and CSCW scholar-

ship have long examined the practices of collaboration, problem

formulation, and sensemaking, by humans behind the datasets,

including data collectors and scientists, [69, 86, 127], and are de-

signing computational artefacts for dataset development [53]. Our

research extends this scholarship by empirically examining data

practices and challenges of high-stakes AI practitioners impacting

vulnerable groups.

We report our results from a qualitative study on practices and

structural factors among 53 AI practitioners in India, the US, and

1
Data work is broadly under-valued in many sociotechnical domains like [58, 85]

2
We extend the vision of AI for Social Good (i.e., using AI for social and environmental

impact) and Data for Good (i.e., providing data and education to benefit non-profit or

government agencies) with AI for high-stakes domains involving safety, well-being

and stakes (e.g., road safety, credit assessment).
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East and West African countries
3
, applying AI to high-stakes do-

mains including landslide detection, suicide prevention, and cancer

detection. Our research aimed to understand how practitioners

conceptualised and navigated the end-to-end AI data life cycles.

In this paper, we define and identify Data Cascades: compounding
events causing negative, downstream effects from data issues, result-
ing in technical debt4 over time. In our study, data cascades were

widely prevalent: 92% of AI practitioners reported experiencing

one or more, and 45.3% reported two or more cascades in a given

project. Data cascades often resulted from applying conventional

AI practices that undervalued data quality. For example, eye dis-

ease detection models, trained on noise-free training data for high

model performance, failed to predict the disease in production upon

small specks of dust on images. Data cascades were opaque and de-

layed, with poor indicators and metrics. Cascades compounded into

major negative impacts in the downstream of models like costly

iterations, discarding projects, and harm to communities. Cascades

were largely avoidable through intentional practices.

The high prevalence of fairly severe data cascades point to a

larger problem of broken data practices, methodologies, and incen-

tives in the field of AI. Although the AI/ML practitioners in our

study were attuned to the importance of data quality and displayed

deep moral commitment to vulnerable groups, data cascades were

disturbingly prevalent even in the high stakes domains we studied.

Additionally, our results point to serious gaps in what AI practition-

ers were trained and equipped to handle, in the form of tensions in

working with field partners and application-domain experts, and

in understanding human impacts of models—a serious problem as

AI developers seek to deploy in domains where governments, civil

society, and policy makers have historically struggled to respond.

The prevalence of data cascades point to the contours of a larger

problem: residual conventions and perceptions in AI/ML drawn

fromworlds of ‘big data’—of abundant, expendable digital resources

and worlds in which one user has one account [108]; of model val-

ourisation [125]; of moving fast to proof-of-concept [8]; and of

viewing data as grunt work in ML workflows [111]. Taken together,

our research underscores the need for data excellence in building

AI systems, a shift to proactively considering care, sanctity, and

diligence in data as valuable contributions in the AI ecosystem. Any

solution needs to take into account social, technical, and structural

aspects of the AI ecosystem, which we discuss in our paper.

Our paper makes three main contributions:

(1) Conceptualising and documenting data cascades, their charac-
teristics, and impact on the end-to-end AI lifecycle, drawn

from an empirical study of data practices of international AI

practitioners in high-stakes domains.

(2) Empirically derived awareness for the need of urgent structural
change in AI research and development to incentivise care

in data excellence, through our case study of high-stakes AI.

(3) Implications for HCI : we highlight an under-explored but sig-

nificant new research path for the field in creating interfaces,

processes, and policy for data excellence in AI.

3
We sampled more widely in Sub-Saharan Africa due to the nascent AI Ecosystem and

redact identifiable details like country, to protect participant identity (see Methodology

for more details).

4
In 1992, Ward Cunningham put forward the metaphor of technical debt to describe the
build-up of cruft (deficiencies in internal quality) in software systems as debt accrual,

similar to financial debt [29] (also observed in ML [111].)

2 RELATEDWORK
2.1 Data in HCI
Prior research in HCI has drawn particular attention to work prac-

tices and challenges faced by practitioners in working with data

[48, 65, 86, 93, 96]. Feinberg describes data as a design material

and our role as designers of data, not its appropriators [35]. Re-

searchers have also studied the ways in which data is rarely used as

given, and often needs to be created or handcrafted using intricate

transformation practices [67, 96].

An emerging stream of research in HCI and CSCW focuses on the

work and collaboration practices of data scientists [66, 77, 94, 127].

Muller et al. extend and outline five approaches of data scientists to
perform analyses: discovery, capture, design, curation, and creation

of data [86]. Koesten et al. identify a need to understand the ways in
which collaboration occurs for data on a spectrum—from creating

and sharing inside and outside the organisation or reusing another

person’s data with limited interaction with the creator [69]. Practi-

tioners have been shown to collaborate much less around datasets,

relative to collaboration around code [127]. Data documentation,

which is a crucial aspect of facilitating collaboration, is well studied

in the database and data management community [19, 23]. How-

ever, documentation of data suffers from a lack of standards and

conventions within the ML community [40].

Prior work in HCI and CSCW does not appear to explicitly focus

on data practices in high-stakes domains, which are proliferating,

and are marked by complex challenges of data scarcity, downstream

impacts, and specialised inter-disciplinary knowledge for working

with and understanding data (e.g., what a fractured bone looks like
in an X-Ray might be beyond an AI practitioner’s area of expertise).

Several studies have focused on data practices of data scientists; our

research extends the focus on data to ML practitioners, including

engineers, researchers, and academics who build and deploy AI/ML

technologies. Prior research has focused primarily on Western pop-

ulations, that often have fewer resource constraints, and greater

acceptance and understanding of AI in their communities. Our re-

search presents an international analysis of data-related practices

and issues in India, East and West African countries, and the US.

2.2 Politics of data
There is substantial work in HCI and STS to establish that data

is never ‘raw’ [41], but rather is shaped through the practices of

collecting, curating and sensemaking, and thus is inherently so-

ciopolitical in nature. Through their study of public health data,

Pine and Liboiron [99] demonstrate how data collection is shaped by

values and decisions about “what is counted and what is excluded,

and what is considered the best unit of measurement.” Vertisi and

Dourish [123] examine data in an interactional context and ar-

gue for considering the contexts of production in data economies,

alongside use and exchange to clarify the ways in which data ac-

quires meaning. Taylor et al. [118] drew attention to this need in

their research on considering the physical and social geography in

which data, people, and things are situated, and to represent the

rich geo-tapestry within which data is entangled.

Critical data studies researchers have demonstrated longstand-

ing interest in the ‘discretionary’ [95] practices shaping data-driven

systems and how they are designed and used [6, 16, 33], and the
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ways in which data science teams are constituted [106]. Passi and

Jackson [93] describe how data work is often invisibilized through

a focus on rules, arguing that empirical challenges render invisi-

ble the efforts to make algorithms work with data. This makes it

difficult to account for the situated and creative decisions made

by data analysts, and leaving behind a stripped down notion of

‘data analytics’. Passi and Sengers [95] turn their attention to the

negotiations in designing data science systems, on how a system

should work and is evaluated.

Beyond data scientists, there are many roles in the process of

preparing, curating, and nurturing data, which are often under-paid

and over-utililized. Many researchers have pointed to the under-

valued human labour that powers AI models (e.g., heteromation

[34], fauxtomation [117], and “menial” vs. “innovative” work dis-

tinctions [56]. Møller et al. [85] describe the crucial data work

through a framework of meaningful registration, digital organizing,

and concern for ethics. They discuss how the data work of clerical

hospital workers is complex, skillful, and effortful [85]. However,

data work has been shown to be invisibilized among Mechanical

Turkers by Martin et al. [79], and among frontline health workers

in India by Ismail and Kumar [58]. Through a post-colonial fem-

inist perspective, Ismail and Kumar [58] highlight how frontline

health workers in India navigate the multiple demands placed on

them, and how their data work is severely under-compensated. Our

research extends discourses on how data workers play a critical

role in creating and maintaining AI systems, and the ways in which

their work can have downstream impacts.

2.3 Data quality interventions
Real-world datasets are often ‘dirty’ and come with a variety of data

quality problems [1]. However, data quality is crucial to ensure that

the ML system using the data can accurately represent and predict

the phenomenon it is claiming to measure. A well-established, and

steadily growing, body of work focuses on understanding and im-

proving data quality to avoid the garbage in, garbage out problem
[45, 103].

Kandel et al. reveal that practitioners consider data wrangling
tedious and time-consuming [62]. Thus, improving quality through

transformations [52] and building human-in-the-loop data cleaning

systems[61] are well-studied research areas in the data management

community. Practitioners often work with a set of assumptions

about their data during analysis and visualisation, which guides

their data transformations [62]. Interactive data cleaning focuses

on making this process easier, because data transformations can be

difficult to specify and reuse across multiple tasks [61, 72, 102]. For

instance, Wrangler suggests potentially relevant transforms, and

maintains a history of transformation scripts to support review and

refinement [61]. Data cleaning and wrangling systems address data

quality issues by using integrity constraints [27], type inference

[36], schema matching [43], outlier detection [51] and more.

Researchers have created several tools to support the creation

of ML ‘pipelines’ and make these workflows manageable [21, 54,

70, 72, 76]. Similar to Code Linters common in traditional SE, Data

Linter is a tool to inspect ML datasets, identify potential data issues

and suggest transformations to fix these issues [54]. Breck et al.
created a data validation system to detect anomalies in Machine

learning pipelines [21]. Other frameworks to discover data bugs

and clean data include ActiveClean and BoostClean [70, 72]. Such

interventions highlight the importance of catching data errors using

mechanisms specific to data validation, instead of using model

performance as a proxy for data quality [120]. In addition to this, it

is crucial to test andmonitor data as much as we focus on the testing

of code. Breck et al. provided a set of 28 actionable tests for features,
data and models [21]. There is extensive literature on ML testing for

detecting differences between the actual and expected behaviour

of ML pipelines; for a survey, see [129]. Researchers in the field

of HCI and HCOMP have demonstrated a longstanding interest

in making use of crowdsourcing to generate ML data [25, 128], to

support creation of better task designs for raters [59], compute inter-

rater reliability, design incentives [50], and improve the quality of

crowdsourced data [30], though these areas are less well known in

the ML community [122].

Prior research on developing data quality systems has largely

focused on data cleaning and wrangling. However, high-stakes do-

mains extend both, into upstream (data creation) and downstream

(live data after deployment)—our research extends this growing

body of work by focusing on the end-to-end lifecycle of data in

high-stakes domains. For example, viewing data as a dynamic entity

points us to drifts and hidden skews
5
. Prior work on data systems

appears to be built for intra-organisational AI development. Our

research extends current discourses to high-stakes AI which typi-

cally involve cross-organisational and inter-disciplinary work; for

example, dataset definition and labelling accuracy all depend on

application-domain expertise that comes from collaboration with

field partners and domain experts.

2.4 Machine Learning in production
Production is the process of deploying systems ‘live’, with a need

to keep systems running smoothly and scaling efficiently
6
. Prior

work has substantially advanced and documented issues in produc-

tionizing software, including ML code. The extra effort to add new

features is the interest paid on the technical debt [29], which is

particularly challenging for production systems. Sculley et al. [111]
extend the notion of technical debt to ML systems by identifying

and outlining the various ways in which teams could accumulate

debt through aspects of ML-specific design elements. Fowler ar-

gues that unacknowledged debts are bad, further characterized as

reckless or inadvertent [39]. In particular, due to the complexities

of data-driven ML systems, they point out that is important to be

aware of, and engage with debt trade-offs, which can cause harm

in the long term.

Multiple recent studies examine the challenges of production

machine learning [6, 100, 101]. For example, ML practitioners spend

a significant portion of their time analysing their raw datasets [100].

Regardless, ML teams continue to struggle the most with aspects of

data acquisition and management [6]. Since ML largely depends on

its data, having high-quality data has a critical role in developing

reliable and robust ML models, as opposed to only a good training

algorithm [101]. Nevertheless, practitioners often face issues with

5
Drifts are supported by end-to-end cloud platforms like AWS and Azure, but cloud

platforms are not uniformly adopted, including in our study [9, 60]

6
https://engineering.fb.com/category/production-engineering/
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understanding the datawithout context, validating data, and dealing

with distribution skews between training and serving data [100].

Machine Learning workflows are fundamentally iterative and

exploratory in nature [7, 52, 71, 96]. These iterations are charac-

terised as loops which occur within an ML system (direct) or due

to influence from another system (hidden) [111]. To achieve the

desired performance, practitioners have to iterate both on data and

ML model architectures. Hohman et al. identified common types of

data iterations and created a tool to visualise them [52].

Our work extends this body of research by presenting complex

downstream impacts from data cascades, which were widely preva-

lent and fairly severe in our study. Data cascades largely manifest in

deployments of AI systems, affecting communities downstream.We

also describe the ways in which some of these iterations and feed-

back loops can be inefficient, extremely costly for teams working

with multiple resource constraints and cause long-term harm.

3 METHODOLOGY
Between May and July 2020, we conducted semi-structured inter-

views with a total of 53 AI practitioners
7
working in high-stakes

applications of AI development. Interviews were focused on (1)

data sources and AI lifecycles; (2) defining data quality; (3) feedback

loops from data quality; (4) upstream and downstream data effects;

(5) stakeholders and accountability; (6) incentive structures; and

(7) useful interventions. Each session focused on the participant’s

experiences, practices, and challenges in AI development and lasted

about 75 minutes each.

Participant recruitment and moderation. In our sample, AI

practitioners were located in, or worked primarily on projects based

in, India (23), the US (16), or East and West African countries (14).

We sampled more widely in Africa due to the nascent AI Ecosys-

tem compared to other continents [84], with 14 total interviews

including Nigeria (10), Kenya (2), Uganda (1), and Ghana (1). We

interviewed 45 male and 8 female AI practitioners. Refer to Table 1

for details on participant demographics. Interviews were conducted

using video conferencing, due to COVID-19 travel limitations.

On average, an AI practitioner in our study had one or more

higher education degrees in AI related fields and had worked for

greater than 4-5 years in AI. While we interviewed AI practitioners

working in multiple institution types, varying from startups (28),

large companies (16), to academia (9), all participants were involved

in AI development in critical domains with safety implications.

Participants in our study were technical leads, founders, or AI

developers.

Many participants had experience with multiple AI technologies,

and had applied AI technologies to multiple domains; we report the

primary AI technology and domain of application at the time of the

interview. Applied uses of AI technology in academia meant there

were partnerships with government, private business, and startups.

For a characterisation of the type of AI [113], refer to table 1.

We recruited participants through a combination of developer

communities, distribution lists, professional networks, and personal

contacts, using snowball and purposive sampling [89] that was it-

erative until saturation. We conducted all interviews in English

7
Although our participants had different job roles (including, in research), all were

focused on applied deployments in high-stakes domains.

(preferred language of participants). Each participant received a

thank you gift in the form of a gift card, with amounts localised in

consultation with regional experts (100 USD for the US, 27 USD for

India, 35 USD for East and West African countries). Due to work-

place restrictions, we were not able to compensate government

employees. Interview notes were recorded in the form of field notes

or video recordings, transcribed within 24 hours of each interview

by the corresponding moderator. Our research team is constituted

by members with HCI, AI, human computation, and data quality

research backgrounds. Interviews were conducted by authors lo-

cated in India, West Africa, and the United States. All researchers

were involved in the research framing, data analysis, and synthesis.

Analysis and coding. Following [119], two members of the

research team independently read all units multiple times, and cate-

gories (unit of analysis) were initially identified by each researcher,

together with a description and examples of each category, until

a saturation point was reached. Our upper level categories were

guided by the evaluation aims, comprising (1) defining the right

data for a project; (2) practices to define data quality; (3) entry

points of data problems; (4) impacts and measurement of data qual-

ity; (5) model production challenges; (6) incentives; (7) other human

factors; and (8) resourcing and infrastructure. The categories were

iteratively refined through group discussions with meeting, diverg-

ing, and synthesizing during the analysis phase. Further iterations

resulted in the formation of lower-level categories such as “domain

expertise: misaligned goals”. These categories were consolidated

into three top-level categories of characteristics of data cascades,

motivating factors, and cascade types, and 18 nested categories such

as incentives, signals, domain experts, and impacts. Since codes are

our process, not product [80], IRR was not used.

While we present general data practices and basic AI practi-

tioner development models, all interventions, practices, and work-

ingmethods were reported by participants as part of their own expe-

riences, rather than as “best practices” (see [97]). Numbers reported

throughout the paper represent the percentage of participants who

self-reported a trigger, impact, or signal of data challenges in the

interviews. Percentages are derived from coding each transcript for

each individual’s experiences of cascades.

Research ethics and anonymization.During recruitment, par-

ticipants were informed of the purpose of the study, the question

categories, and researcher affiliations. Participants signed informed

consent documents acknowledging their awareness of the study

purpose and researcher affiliation prior to the interview. At the

beginning of each interview, the moderator additionally obtained

verbal informed consent. We stored all data in a private Google

Drive folder, with access limited to the research team. To protect par-

ticipant identities, we deleted all personally identifiable information

in research files. We redact identifiable details when quoting par-

ticipants, e.g., we use East Africa or West Africa, given the limited

number of AI practitioners in high-stakes domains in Sub-Saharan

Africa, and our limited sampling.

Limitations. All interviews and analysis were conducted over

video and phone, due to the COVID-19 pandemic. As a result of

travel restrictions, we were unable to include shadowing of work

flows and contextual inquiry that would have otherwise been pos-

sible. However, we feel that the self-reported data practices and

challenges have validity, and sufficient rigour and care was applied
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Type Count

Roles AI Engineer (17), Startup Founder (17), Professor (6), Data Scientist (6), Research Scientist (6),
Program Manager (1)

Location India (23), US (16), Nigeria (10), Kenya (2), Ghana (1), Uganda (1)

Gender Male (45), Female (8)

Setting Startup (28), Large company (16), Academic (9)

Domain Health and wellness (19) (e.g., maternal health, cancer diagnosis, mental health)

Food availability and agriculture health (10) (e.g., regenerative farming, crop illness)

Environment and climate (7) (e.g., solar energy, air pollution)
Credit and finance (7) (e.g., loans, insurance claims)

Public safety (4) (e.g., traffic violations, landslide detection, self driving cars)

Wildlife conservation (2) (e.g., poaching and ecosystem health)

Aquaculture (2) (e.g., marine life)

Education (1) (e.g., loans, insurance claims)

Robotics (1) (e.g., physical arm sorting)

Fairness in ML (1) (e.g., representativeness)

AI Type Machine Learning: (24), Computer Vision: (21), Natural Language Processing: (5), Game Theory: (2),
Robotics: (1)

Table 1: Summary of participant demographics

in covering the themes through multiple questions and solicitation

of examples. Gender distribution in our study is reflective of the AI

industry’s gender disparities [126] and sampling limitations.

4 FINDINGS
In this section we present data cascades, their indicators and im-

pacts (section 4.1), and position them in a broader landscape of

high-stakes domains and the AI ecosystem (section 4.2). Our study

identifies four root causes for data cascades and corresponding

practitioner behaviours (section 4.3).

4.1 Overview of data cascades
We define Data Cascades based on the empirical results in this

study as compounding events causing negative, downstream effects
from data issues, that result in technical debt over time. In our study,

92% experienced at least one cascade. Data cascades are influenced

by, (a) the activities and interactions of actors involved in the AI

development (e.g., developers, governments, and field partners),

(b) the physical world and community in which the AI system is

situated (e.g., rural hospitals where sensor data collection occurs).

We observed the following properties of data cascades:

• Opaque: data cascades are complex, long-term, occur fre-

quently and persistently; they are opaque in diagnosis and

manifestation—with no clear indicators, tools, and metrics to

detect andmeasure their effects on the system. In the absence

of well-defined and timely signals, practitioners turned to

proxy metrics (e.g., accuracy, precision, or F1 score), where
the unit of measurement is the entire system, not datasets.

• Triggered by: data cascades are triggered when conven-

tional AI practices are applied in high-stakes domains, which

are characterised by high accountability, inter-disciplinary

work, and resource constraints. For example, practitioners

viewed data as operations, moved fast, hacked model perfor-

mance (through hyperparameters rather than data quality),

and did not appear to be equipped to recognise upstream

and downstream people issues.

• Negative impact: data cascades have negative impacts on

the AI development and deployment process, leading to mul-

tiple and unexpected strategies sometimes spurring further

cascades, always causing technical debt. Some of the severe

data cascades in our study led to harm to beneficiary commu-

nities, burnout of relationships with stakeholders, discarding

entire datasets, and performing costly iterations.

• Multiple cascades, 45.3% experienced two or more cas-

cades each, typically triggered in the upstream of model

building, manifesting in the downstream of the model devel-

opment or deployment.

• Cascades are often avoidable by step-wise and early inter-
ventions in the development process, which were, however,

exceptional due to factors like undervaluing data, scarcity

of data, and partner dependencies.

4.2 Broader landscape for data cascades
Before we turn to specific cascades in the next section, here we

provide an understanding of cross-cutting factors that influence

data cascades in high-stakes domains.

Incentives and currency in AI An overall lack of recognition

for the invisible, arduous, and taken-for-granted data work in AI

led to poor data practices, resulting in the data cascades below. Care

of, and improvements to data are not easily ‘tracked’ or rewarded,

as opposed to models. Models were reported to be the means for

prestige and upward mobility in the field [112] with ML publica-

tions that generated citations, making practitioners competitive

for AI/ML jobs and residencies. “Everyone wants to do the model
work, not the data work” (P4, healthcare, India). Many practitioners

described data work as time-consuming, invisible to track, and of-

ten done under pressures to move fast due to margins—investment,

constraints, and deadlines often came in the way of focusing on im-

proving data quality. Additionally, it was difficult to get buy-in from

clients and funders to invest in good quality data collection and

annotation work, especially in price-sensitive and nascent markets

like East and West African countries and India. Clients expected
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Figure 1: Data cascades in high-stakes AI. Cascades are opaque and protracted, withmultiplied, negative impacts. Cascades are
triggered in the upstream (e.g., data collection) and have impacts on the downstream (e.g.,model deployment). Thick red arrows
represent the compounding effects after data cascades start to become visible; dotted red arrows represent abandoning or re-
starting of the ML data process. Indicators are mostly visible in model evaluation, as system metrics, and as malfunctioning
or user feedback.

‘magic’ from AI—a high performance threshold without much con-

sideration for the underlying quality, safety, or process—which led

to model performance ‘hacking’ for client demonstrations among

some practitioners.

Data education Lack of adequate training on AI data quality,

collection, and ethics led to practitioner under-preparedness in

dealing with the complexity of creating datasets in high-stakes

domains. AI courses focused on toy datasets with clean values

(e.g., UCI Census, Kaggle datasets), but AI in practice required the

creation of data pipelines, often from scratch, going from ground

truth to model maintenance. As P37 working on healthcare in a

West African country explained, “In real life, we never see clean data.
Courses and trainings focus on models and tools to use but rarely
teach about data cleaning and pipeline gaps.”; also illustrated by P27,
a faculty in the US, “we in CS are never trained, nor [are we] thinking
actively about data collection.” Computer Science curricula did not

include training for practical data aspects such as dealing with

domain-specific ‘dirty data’
8
, dealing with live data, defining and

documenting datasets, designing data collection, training raters,

or creating labelling task designs. In the US, most practitioners

completed AI specialisation in graduate programs. In India and

East and West African countries, most practitioners self-learned

after their Computer Science degrees—but in all these routes, data

engineering was under-emphasised.

Data bootstrappingHigh-stakes AI domains required specialised

datasets by region, demographics, phenomena, or species, especially

in under-digitised environments (e.g., spread of Malaria in rural

Tamil Nadu, elephant movements in Maasai Mara). 74% of prac-

titioners undertook data collection efforts from scratch, through

field partners—a task which many admitted to being unprepared

for, and some reported giving up on AI projects as a result. Practi-

tioners from the US largely bootstrapped from existing sources and

established digital infrastructures, e.g., satellite data, sensor data,
and public datasets, whereas the majority of practitioners in East

8
‘Dirty data’ is common parlance in AI/ML to refer to data errors. Richardson et al.
. [104] complicate how dirty data can be influenced by corrupt, biased, or unlawful

practices.

and West African countries and India collected data from scratch

with field partners and made online datasets work for local con-

texts (to avoid bureaucratic and local regulatory processes) [116].

Bootstrapping with data from another locale led to generalizability

limitations, e.g., P20 (clean energy, US) used satellite data from

Northeast US to bootstrap model training, but were unable to apply

to the target location due to different terrain, clouds, and pollution.

Practitioners reported facing situations where they had to “work
with what they have” (P16, healthcare, US), and did not always have
the “selectable capability” (P29, environment and climate, US) to

discard poor quality examples because of limited data in the first

place. Many practitioners reported using data collected for non-

AI purposes, e.g., migration surveys, but ran into issues with ML

feature-richness.

Downstream accountability One of the defining characteris-

tics of high-stakes AI is the implied accountability to living beings.

Data cascades occurred as practitioners ran up against challenges

because of data scarcity and downstream methodologies in work-

ing with vulnerable groups. Stakes from poor performance were

primarily in the form of harm to the community, but also resulted

in poor performance and low user trust. “If you build this model
(e.g., predicting [eye disease]) and it predicts that this person does
not have it when they do, you leave this person to go blind.” (P30,

healthcare, a West African country). Many reported how consumer

AI, e.g., ad tech, typically aimed for 70-75% accuracy, whereas for

high-stakes every extra 1% was crucial. “There isn’t a clear method-
ology for how to do it [test models] effectively without leading to some
kind of harm to the patient. Everything starts with risk.” (P10, P11,
P12, healthcare, USA). Application domains in the US in our study

could be described as ‘second wave’ AI, a broader interpretation

focused on ecology, climate, and well-being, whereas domains in

India and East and West African countries were more closely tied

to sustainable development goals like micro-finance, healthcare,

and farming, more directly tied to human impacts.
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4.3 Data cascade triggers and practices
We present the various data cascades and surrounding behaviours

observed in our study, sorted by frequency. Table 2 gives an overview

of four core cascades—triggers, impacts and signals—and their dis-

tribution. Impacts varied in severity, from wasted time and effort

to harms to beneficiaries. The most severe data cascades were also

long-drawn and completely unknown to practitioners; in some

cases, taking 2-3 years to manifest.

4.3.1 Interacting with physical world brittleness (54.7%). In high-

stakes domains, AI systems transitioned fromwell defined, digitised,

and understood environments to brittle deployments closely inter-

acting with previously not-digitised physical worlds (almost by

definition due to its involvement in socio-economic domains), e.g.,
air quality sensing, ocean sensing, or ultrasound scanning. While

all production AI systems are challenged by the inevitable changes

in the external world, high-stakes AI have have even more reasons

for a model to break—due to limited training data, complex under-

lying phenomena, volatile domains, and changes to regulations. In

high-stakes domains, interaction with the external world spanned

both the upstream (data sources) and downstream (live data and

data instruments) of ML models. Data cascades often appeared in

the form of hardware, environmental, and human knowledge drifts.

As an example of a cascade, for P3 and P4 (road safety, India), even

the slightest movement of a camera due to environmental condi-

tions resulted in failures in detecting traffic violations, “10 different
sources may have undergone changes. Cameras might move from the
weather. AI models can fail completely.”. Conventional AI practices
on pristine training data (but messy live data), as well as a lack of

training on working with messy real-world data appeared to trigger

these cascades. Data cascades here took the longest to manifest,

taking up to 2-3 years to emerge, almost always in the production

stage. Impacts included complete model failure, abandonment of

projects, and harms to beneficiaries from mispredictions.

Cascades triggered by ‘hardware drifts’: e.g., cameras and sen-

sors, during the data generation for the training dataset and upon

deployment. 75% of practitioners used a hardware component as

a part of their data capture infrastructure. To ensure good model

performance, data collection efforts often occurred in controlled

environments in-house or by giving data capture specifications to

their data collection teams. As described by practitioners, produc-

tion environments are “utter chaos” and bring in various forms of

“bad data” (P4, healthcare, India). P44 (healthcare, India) described
how technical errors filtered through if the “[eye disease] hard-
ware is not serviced properly every 12 months”. Similarly, P9 (water

consumption, India) described their complex approach of digging

into the earth, cutting into pipes, and inserting sensing hardware,

making it hard to detect subterranean sensor drifts. Artefacts like

fingerprints, shadows, dust on the lens, improper lighting, and pen

markings were reported to affect predictions. Rain and wind moved

image sensors in the wild (e.g., in camera traps and traffic detection),

leading to incorrect model results. Models were reported to mistake

spurious events as signals for phenomena, leading to complete AI

system failures in some cases, e.g., “Suppose an image is out of focus,
there is a drop of oil, or a drop of water on the image, appearing blurry
or diffused. A model which is looking at this can easily get confused
that an out-of-focus image is cancer.” (P52, healthcare, India).

Cascades triggered by ‘environmental drifts’: resulted from changes

in the environment or climate, e.g., P29 (landslide segmentation,

US) reported that presence of cloud cover, new houses or roads,

or vegetation growth posed challenges because their model was

comparing pre- and post-images and misconstruing the changes

as landslides. In some cases, joins of live data across different ge-

ographies and environments triggered cascades, such as disparate

emissions standards across countries (P20, clean energy, US), or

different medical scanning procedures (P44, healthcare, India).

Cascades triggered by ‘human drifts’: where social phenomena

or community behaviour led to changes in live data. Furthermore,

with amendments to policies and regulations in the problem do-

main, features may cease to be relevant (e.g., banking regulations
affecting data capture). P15, a researcher in the US recalled a case

where someone they knew built a medication tracking system for

older adults. They had stopped receiving data from a user, who was

detected to have unfortunately died and had stopped recording data

a few days prior. The user presented behaviours that the model

could not account for (e.g., they switched off phone sensors). P15

was concerned that lack of continuous data for mental health con-

ditions could be a sign of worsening conditions or suicide (“the best
data to detect in time”). Similarly, P48 (healthcare, US) explained

how creating an AI model for the COVID-19 pandemic on day 1

versus day 100 required a total change in various assumptions since

the pandemic and human responses were volatile and dynamic.

To address these cascades, a few practitioners consistently moni-

tored their data sources (often, at an example level), and looked for

spurious changes through model performance degradation, and re-

trained models. In rare cases, practitioners intentionally introduced

noise in training data to improve robustness, through noisy images

or synthetically modified data. As P44 above shared, “Many times,
the quality of the dataset goes down. But it makes the model better and
robust enough to ignore that image”. A few practitioners invested in

scalable data literacy for system operators and field partners, noting

how operator trust and comfort with the AI system ultimately led

to better data and inferences.

4.3.2 Inadequate application-domain expertise (43.4%). A data cas-

cade was triggered when AI practitioners were responsible for data

sense-making (defining ground truth, identifying the necessary fea-

ture sets, and interpreting data) in social and scientific contexts in

which they did not have domain expertise. Answering these ques-

tions entailed an understanding of the application domain, social

aspects, and embedding context [118, 123]. For instance, diagnos-

ing fractured bones, identifying locations that could be poaching

targets, and congenital conditions leading to preterm babies all

depended on expertise in biological sciences, social sciences, and

community context. Several practitioners worked with domain ex-

perts and field partners; however, they were largely involved in

data collection or trouble-shooting, rather than in deep, end-to-end

engagements. Practitioners described having to take a range of

data decisions that often surpassed their knowledge, not always

involving application-domain experts e.g., discarding data, correct-

ing values, merging data, or restarting data collection—leading to

long, unwieldy and error-prone data cascades. As an example of

a cascade, P18 (wildlife conservation, India) described how after

deploying their model for making predictions for potential poach-

ing locations, patrollers contested the predicted locations as being



CHI ’21, May 8–13, 2021, Yokohama, Japan Sambasivan et al.

Cascades Triggers Impacts Signals

Interacting with physical
world brittleness (54.7%)
IN: 56.5%, EA & WA: 42.9%, US: 62.5%

• Pristine training data (messy live

data)

• Ill-equipped to work with volatile

real-world data

• Harms to beneficiaries

• Complete model failure

• Abandonment of projects

• System performance in de-

ployment

Inadequate application-
domain expertise (43.4%)
IN: 47.8%, EA & WA: 57.1%, US: 25%

• Overt reliance on technical expertise

in sensemaking

• Moving fast to proof-of-concept

• Harms to beneficiaries

• Costly iterations

• System performance

• Post-hoc consulting with

domain experts

Conflicting reward
systems (32.1%)
IN: 30.4%, EA & WA: 57.1%, US: 12.5%

• Misaligned incentives

• Inadequate data literacy among part-

ners

• Viewing data as non-technical

• Costly iterations

• Moving to a new data source

• Quitting the project

• System performance

• Burned partner relations

Poor cross-organisational
documentation (20.8%)
IN:17.4%, EA & WA: 35.7%, US: 12.5%

• Neglecting value of data documenta-

tion

• Discarding part/entire dataset

• Wasted time and effort

• Manual instances reviews,

mostly by ‘chance’

Table 2: Prevalence and distribution of data cascades. IN is short for India, EA&WAfor EastAfrican andWestAfrican countries
respectively, and US for the United States.
incorrect. Upon further collaboration with the patrollers, P18 and

team learned that most of the poaching attacks were not included

in the data. As the patrollers were already resource-constrained,

the mispredictions of the model ran the risk of leading to over-

patrolling in specific areas, leading to poaching in other places.

In some cases, data collection was expensive and could only be

done once (e.g., underwater exploration, road safety survey, farmer

survey) and yet, application-domain experts could not always be

involved. Conventional AI practices like overt reliance on techni-

cal expertise and unsubstantiated assumptions of data reliability

appeared to set these cascades off. Application-domain expertise

cascades were costly: impacts came largely after building models,

through client feedback and system performance, and long-winded

diagnoses. Impacts included costly modifications like going back to

collect more data, improving labels, adding new data sources, or

severe unanticipated downstream impacts if the model had already

been deployed (see figure 1)

Next, we describe two prominent examples of application-domain

expertise issues that occurred in the AI lifecycle: dealing with sub-

jectivity in ground truth, defining and finding representative data.

Cascades triggered by dealing with subjectivity in ground truth
High-stakes AI requires specialised, subjective decision-making

in defining the ground truth, and breadth and number of labels

[13]. Example of ground truth decisions are detecting cancer in

pathology images, identifying quality of agriculture produce, and

analysing insurance claims for acceptance or rejection. Cascades

often occurred as a result of limited application-domain understand-

ing of subjective labelling. In our study, practitioners often worked

with several resource constraints of domain expertise and time,

unable to use best practice data quality metrics for computing inter-

and intra-rater reliability (e.g., [10]). With no direct indicators of

subjective shortcomings in data, cascades from ground truth issues

were discovered through ‘manual reviews’ of data with clients or

field partners, and often, through downstream impacts. Consider an

example of P28, an educational AI engineer building an interactive

writing model for students (country blinded) reported that they

had not considered the impacts on low-income students or students

with different English writing styles [5]. In some cases, ground

truth was inaccurate but deeply embedded into systems, as in the

case of P6 (credit assessment, India), “decisions taken by insurance
companies in the past about accepting or denying claims, for 10-15%

of the time, the ground truth itself is inaccurate. If the wrong decision
[subjective] was taken, there is no way to go back in historical data to
correct [...] Two different people have different perspectives on whether
claims should be accepted or rejected. How can you tell whether data
is inaccurate or accurate? It introduces errors in our models.”

Cascades triggered by poor application-domain expertise in finding
representative data
For an AI model to generalise well, it needs to be trained on rep-

resentative data reflective of real-world settings. Second to data

collection, understanding and collecting representative data was the

biggest challenge for practitioners in high-stakes domains. Cascades

occurred because of a default assumption that datasets were reliable

and representative, and application-domain experts were mostly

approached only when models were not working as intended. Cas-

cades from non-representative data from poor application-domain

expertise manifested as model performance issues, resulting in re-

doing data collection and labelling upon long-winded diagnoses. It

is important to note that representativeness has a different inter-

pretation for every domain and problem statement. With limited

application-domain expertise, practitioners described how incom-

plete knowledge and false assumptions got incorporated into model

building. A few practitioners relied on domain experts to define

what representative data meant for their problem statement, e.g.,
the classification of carcinomas in West African countries and how

it varied in different populations (P39, healthcare, a West African

country), or how farm produce defects manifest in different va-

rieties and geographies (P24, agriculture, India). In cases where

practitioners understood the need for representative data and its

meaning in their context, they faced challenges in collecting this

data without the right field partnerships. Representative data cas-

cades sometimes stemmed from a disparity in contexts between

data collection and system deployment. As P52 (healthcare, India)

describes in the context of sampling, “are we taking 90% of the data
from one hospital and asking to generalise for the entire world?”.

4.3.3 Conflicting reward systems (32.1%). Misaligned incentives

and priorities between practitioners, domain experts, and field part-

ners led to data cascades. An example of this cascade is how P27’s

(wildlife conservation, US) dataset rendered their ML model dys-

functional, “Often they forgot to reset their setting on the GPS app
and instead of recording every 5 minutes, it was recording [the data]
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every 1 hour. Then it is useless, and it messes up my whole ML algo-
rithm”. Conventional AI data practices of viewing data collection
as outsourced and non-technical tasks, and a lack of understanding

provenance, as well as misaligned incentives and poor data literacy

among stakeholders, appeared to contribute to this data cascade.

Practitioners saw the impacts of this cascade discovered well into

deployment, through costly iterations, moving to an alternate data

source, or quitting the project altogether.

As mentioned earlier, high-stakes domains lacked pre-existing

datasets, so practitioners were necessitated to collect data from

scratch. ML data collection practices were reported to conflict with

existing workflows and practices of domain experts and data col-

lectors. Limited budgets for data collection often meant that data

creation was added as extraneous work to on-the-ground partners

(e.g., nurses, patrollers, farmers) who already had several responsi-

bilities, and were not adequately compensated for these new tasks.

Data collection and labelling tasks was often a competing priority

with field partners’ primary responsibility. As P7 (healthcare, India)

shared, “when a clinician spends a lot of time punching in data, not
paying attention to the patient, that has a human cost”.

Field partners, especially at the frontlines, were reported to have

limited data literacy and face information symmetry issues with

not knowing the importance of their data collection, purpose of

the AI system, and the importance of such constraints for the ML

data, e.g., in P21’s (healthcare, India) case, “doctors didn’t want
to do the test [for AI data collection] for so long. Almost 25-30%
recordings were less than 10 minutes which are not useful for any
[AI] analysis. We had to work with the doctor to tell them why it is
important to capture that kind of length of the data.”. A healthcare

startup founder from India, P22, shared an account of speaking to

a community health worker in India, and why the health worker

eventually became unmotivated to complete their data work: “[they
quoted] Whatever work I do or I don’t do, my salary is 3K [INR] per
month. Earlier I did everything (collected good data), but my salary
did not increase.”. Top-level management was reported to often

enter mutually synergistic partnerships, through joint research

publications ormedia attention, but not the frontlineworkerswhose

labour benefited AI data collection. In a few cases, field workers

were reported to fabricate data from either no or per-task incentives.

Some AI practitioners were aware of, and explicitly discussed

problematic incentives for their data collectors or domain experts,

and shared how they were resource-constrained (echoing Ismail

and Kumar [58]). Some reflected on how providing more trans-

parency and information about the scope of the project could have

helped their field partners. In practice, data literacy training (e.g.,
entering well-formatted values, educating about the impacts of

their data collection) was rarely conducted, resulting in numerous

data quality challenges like data collectors not recording data for a

specific duration or frequency. In the rare case where practitioners

trained their field partners, data quality was reported to go up, as

in the case of P7 (healthcare, India), who described how provid-

ing real-time data quality indicators enabled their field partners

to become conscious of data quality in-situ. (In a few cases, data

collectors gathered specialised domain expertise from working on

ML projects and up-skilled to starting new businesses, e.g., seed

identification.) In a few cases where incentives were explicitly dis-

cussed as being provided, high monetary incentives sometimes led

to over-sampling, skewing the data.

4.3.4 Poor cross-organisational documentation (20.8%). Data cas-
cades were set off by a lack of documentation across various cross-

organisational relations (within the organisation, with field partner

organisations and data collectors, and with external sources). Prac-

titioners discussed several instances where collected and inherited

datasets lacked critical details. Missing metadata led practitioners

to make assumptions, ultimately leading to costly discarding of

datasets or re-collecting data. As an example of a data cascade, P8

(robotics, US), described how a lack of metadata and collaborators

changing schema without understanding context led to a loss of

four months of precious medical robotics data collection. As high-

stakes data tended to be niche and specific, with varying underlying

standards and conventions in data collection, even minute changes

rendered datasets unusable. Conventional AI practice of neglecting

the value of data documentation, and field partners not being aware

of constraints in achieving good quality AI appeared to set these

cascades off. Cascades became visible through manual reviews, but

often by ‘chance’. The impacts of cascades here included wasted

time and effort from using incorrect data, being blocked on build-

ing models, and discarding subsets or entire datasets (not always

feasible to re-collect resource-intensive data, as we explain above).

Metadata on equipment, origin, weather, time, and collection

process was reported to be critical information to assess quality,

representativeness, and fit for use cases. As P7, a researcher in India

explained the importance of context in data, “In my experience, in
medicine, the generalisation is very poor. We have been trying to
look at what really generalises in cross continental settings, across
[American hospitals] and [Indian hospitals]. More than data quality
it is the auxiliary, lack of metadata that makes all the difference [...] If
we look at signals without the context, it makes it difficult to generalise
the data.” However, in most cases where practitioners did not have

access to the metadata, they had to discard the data point or subset

of data altogether. P13, working on criminal justice systems in India

explained, “We have seen that it depends a lot on when the data was
collected. If it was over a year [ago], there is some correlation between
the season and the time of year the data was collected.[...] again in
most of the data we have missing information. We have to reject the
entire data that might be relevant for this particular problem.”

In dealing with a lack of metadata, practitioners made assump-

tions about the datasets, like in the case of P20 (clean energy, US),

who assumed certain timestamps on power plant data because meta-

data was missing, “but the plant was mapped incorrectly, mismatch
of timestamps between power plant and satellite. Very hard to tell
when you don’t own the sensors. You have to make assumptions and
go with it.” Many practitioners expressed frustration from a lack

of standards to help document datasets (e.g., using Lagos versus

Lagos State due to lack of metadata).

In a few cases where metadata cascades were avoided, practi-

tioners created reproducible assets for data through data collection

plans, data strategy handbooks, design documents, file conventions,

and field notes. For example, P46 and P47 (aquaculture, US) had an

opportunity for data collection in a rare Nordic ocean environment,

for which they created a data curation plan in advance and took

ample field notes. A note as detailed as the time of a lunch break
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saved a large chunk of their dataset when diagnosing a data issue

downstream, saving a precious and large dataset.

5 DISCUSSION
Our results indicate the sobering prevalence of messy, protracted,

and opaque data cascades even in domains where practitioners

were attuned to the importance of data quality. Individuals can

attempt to avoid data cascades in their model development, but a

broader, systemic approach is needed for structural, sustainable

shifts in how data is viewed in AI praxis. We need to move from

current approaches that are reactive and view data as ‘grunt work’.

We need to move towards a proactive focus on data excellence—
focusing on the practices, politics, and values of humans of the

data pipeline to improve the quality and sanctity of data, through

the use of processes, standards, infrastructure and incentives (and

other interventions, as identified by Paritosh et al. [92]). Any no-

tion of data excellence should also explicitly engage with shifting

the power centres in data resources between the Global South and

North. We identify opportunities to further expand HCI’s role as the

conscience of the computing world and its long-standing commit-

ment to data, through implications for human-centred incentives,

processes, metrics, and interfaces for data excellence in high-stakes

domains. While our analysis is limited to high-stakes AI projects,

we believe these challenges may exist in more or less amplified

forms in all of AI development.

From goodness-of-fit to goodness-of-data The current AI

revolution is metrics-driven, as Thomas points out ([120]), but

practitioners largely used system metrics to measure the goodness

of the fit of the model to the data. Goodness-of-fit metrics, such as

F1, Accuracy, AUC, do not tell us much about the phenomenological

fidelity (representation of the phenomena) and validity (how well

the data explains things related to the phenomena captured by

the data) aspects of the data. Currently, there are no standardised

metrics for characterising the goodness-of-data [11, 13]; research on

metrics is emerging [15, 91] but not yet widely adopted in AI system

building. As a result, there is an extreme reliance on goodness-of-fit

metrics and post-deployment product metrics. First, these metrics

give us no assurances about the quality of the data. Second, they

are too late to detect and course-correct from the unforeseen effects

of data cascades. Even more importantly, deployment of AI systems

in high-stakes domains eventually exposes aspects of phenomenon

that were not captured in the dataset, which can produce spurious

and risky outcomes, as pointed out by Floridi et al. [37] and Burt

and Hall [24]. To illustrate the importance of goodness-of-data

metrics, consider a model that is trying to recognise whether a

given location can be a poaching target. Given an arbitrary dataset

of labelled, prior poaching attempts, one can train and evaluate the

model on a held-out set to estimate the goodness-of-fit of the model

to the data. Note that while these metrics tell us about the fit of the

model, they do not tell us anything about the quality of the dataset.

Wildlife AI practitioners reported how they retroactively needed

to understand information on where poaching typically took place;

whether a human was a villager, wildlife professional, or poacher;

whether an area was a farmland or forest; where the water sources

were, and so on—which they had not captured in their datasets and

ground truth. It is easy to imagine a model with a perfect fit to a

very narrow slice of the data—and show high performance—and

starting to reveal its weaknesses as it is used to make decisions

outside of that narrow slice, where it can fail in immeasurable and

unforeseen ways.

While collecting rigorous data from, and about, humans is rel-

atively uncharted waters for AI researchers, there is a rich body

of research in HCI that is crucial in even framing these questions

appropriately—opening up a whole new space for HCI to act as the

compass for AI by answering questions about goodness, fidelity,

and validity of data by itself, as HCOMP researchers have pointed

out [12, 90]. Similarly, recognizing the relevance of viewing data-
in-place [118]—the situatedness of data within social and physical

geographies—i.e., the dynamic after-life of data once models are

deployed, will help evaluate how models interact and impact liv-

ing beings and artefacts. Emerging scholarship like Beede et al. ’s
evaluation of real-world deep learning systems [17] point to the

need for incorporating HCI early and throughout in AI data. A

whole new science of data is needed, with HCI partnership, where

sorely needed phenomenological goodness-of-data metrics need

to be developed. Making progress on measuring goodness-of-data

will enable early-stage assessment and feedback in the data collec-

tion process, and will likely surface data-phenomena gaps earlier,

avoiding data cascades. Focusing on phenomenological validity of

data will further increase the scientific value and reusability of the

data (a precious entity in high-stakes domains). Such research is

necessary for enabling better incentives for data, as it is hard to

improve something we can not measure.

Incentives for data excellence Contrary to the scientific, de-

signerly, and artful practices observed in prior HCI studies on data

scientists by Feinberg [35], Muller et al. [86], and Patel et al. [96], AI
practitioners in our study tended to view data as ‘operations’. Such

perceptions reflect the larger AI/ML field reward systems: despite

the primacy of data, novel model development is the most glamor-

ised and celebrated work in AI—reified by the prestige of publishing

new models in AI conferences, entry into AI/ML jobs and residency

programs, and the pressure for startups to double up as research di-

visions. Critics point to how novel model development and reward

systems have reached a point of ridicule: Lipton calls ML scholar-

ship ‘alchemy’ [74], Sculley et al. describe ML systems as ‘empirical

challenges to be ‘won” [112], Bengio describes ML problems as ‘in-

cremental’ [18], and plagiarism by ML educators has been labelled

as the ‘future of plagiarism’ [14]. In contrast, datasets are relegated

to benchmark publications and non-mainstream tracks in AI/ML

conferences [46, 82]. New AI models are measured against large,

curated data sets that lack noise (to report high performances), in

contrast to the dynamic nature of the real world [64, 78]. In addition

to the ways in which business goals were orthogonal to data (also

observed by Passi and Sengers [95]), practitioners described how

publication prestige, time-to-market, revenue margins, and com-

petitive differentiation often led them to rush through the model

development process and sometimes artificially increase model ac-

curacy to deploy systems promptly, struggling with the moral and

ethical trade-offs.

We take inspiration from Sculley et al. [112] and Soergel et al.
[114] to propose starting points for changing structural incentives

for the market, academy, and capital of AI/ML. Conferences are a

good starting point: data powers the inferences, and empiricism on
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data should be mainstream. Conferences like SIGCHI, CSCW, and

AAAI are good examples of recognising the importance of research

on data through their disciplinary conventions, e.g., crowd work,

human computation, and data visualization. Papers on AI/ML tech-

niques should evolve to offer dataset documentation, provenance,

and ethics as mandatory disclosure. Standard research process as

relevant to the research community, e.g., hypotheses, design, ex-
periments, and testing should also be followed with data [28, 55].

Organisations should reward data collection, pipeline maintenance,

gluework, data documentation, and dataset repairs in promotions

and peer reviews, similar to how good software engineering is re-

warded. Similarly, complementing Møller et al. [85], we note that
data labour is currently lopsided, fuelling the benefit of AI practi-

tioners, and dis-empowering application-domain experts and field

partners. Data excellence emphasises the value in sustained part-

nerships, as opposed to engagements with experts on a one-off

basis (during problem formulation or sensemaking only). Some in-

stances of partnerships needed throughout the ML pipeline include

formulating the problem and outcomes, identifying anomalies, de-

termining optimal frequency for data collection, verifying model

outcomes, and giving feedback on model behaviour. Greater collab-

oration, transparency into AI application use-cases, data literacy,

and ‘shared rewards’ (e.g., joint publications and releases) are some

ways to engender ‘data compassion’ (P37), and recognise and learn

from expertise. Learning from HCI scholarship on ways to recog-

nise the human labour in preparing, curating, and nurturing data

that powers AI models [34, 117], among crowd workers [34, 57, 79],

office clerks [85], and health workers [58] can be helpful. For ex-

ample, Martin et al. [79] through their understanding of MTurker

perspectives, call for tools to help reduce and manage all the in-

visible, background work by Mturkers. Møller et al. [85] created a

toolkit for stakeholders to identify and value data work, and Ismail

and Kumar call for embracing solidarity through design [58].

Real-world data literacy in AI education A majority of cur-

ricula for degrees, diplomas, and nano-degrees in AI are concen-

trated onmodel development [42], leaving graduates under-prepared

for the science, engineering, and art of working with data, includ-

ing data collection, infrastructure building, data documentation,

and data sense-making. Toy datasets and open datasets with un-

known characteristics are abundant in AI education, like in the UCI

census dataset [4]. In practice, cutting-edge AI applications often

require unique datasets created from scratch, as a necessity, and

a competitive advantage; but the practical data skill gaps among

our practitioners were quite large from their formal education

and training. Data collection in high-stakes domains is an inter-

disciplinary activity, and requires engaging in data sensemaking

activities as described by Koesten et al. [68], often without ade-

quate application-domain expertise, working with domain experts,

as well as knowledge of methodologies for collecting data from

experts. Unfortunately, as it stands, there is often a lack of involve-

ment and appreciation for application-domain experts in AI/ML.

An oft-quoted quip in the Natural Language Processing community:

“Every time I fire a linguist, the performance of the speech recognizer
goes up” attributed to Frederick Jelinek [49], reflects the hostility

towards domain expertise. Early progress in the field—the low hang-

ing fruits relying on quantity alone—no longer applies to harder,

more subjective problems and edge cases. Entire under-represented

groups can show up as edge cases, with profound social implica-

tions [88]. For instance, Scheuerman et al. [110] found that facial

analysis technologies were unable to identify non-binary genders.

Training on data collection, curation, and inter-disciplinary collab-

oration can help prepare future practitioners. Fortunately, there is

a massive body of research in HCI, Human Computation, and allied

fields on empirical methods [32] that can be added to AI curricula.

Data ethics and responsible AI education, oversight boards e.g.,
IRB, and ethics standards should be necessary components of AI

education and praxis, given the field’s increasing expansion into

high-stakes, humanitarian areas (e.g., how our practitioners, despite

their intentionality, were under-equipped to understand human

impacts)—a call to action invoked by ethics and education scholars

like Saltz et al. [105].
Better visibility in the AI data lifecycle Data cascades point

to the need for several feedback channels at different time scales in

the AI life cycle. With delayed and hidden manifestation, practition-

ers struggled with understanding the impact of data scrutiny, and

utilised ‘launch and get feedback’ approaches frequently, often at

great cost. The teamswith the least data cascades had step-wise feed-

back loops throughout, ran models frequently, worked closely with

application-domain experts and field partners, maintained clear

data documentation, and regularly monitored incoming data. Data

cascades were by-and-large avoidable through intentional practices,

modulo extrinsic resources (e.g., accessible application-domain ex-

perts in the region, access to monetary resources, relaxed time

constraints, stable government regulations, and so on). Although

the behaviour of AI systems is critically determined by data, even

more so than code [111]; many of our practitioner strategies mir-

rored best practices in software engineering [38, 83]. Anticipatory

steps like shared style guides for code, emphasising documentation,

peer reviews, and clearly assigned roles—adapted to data—reduced

the compounding uncertainty and build-up of data cascades.

Current inspection and analysis tools tend to focus on dataset

distributions and wrangling (e.g., Trifacta9, FACETS10, and Open-

Refine
11
) as ways to improve data quality, whereas the upstream

work of defining dataset requirements and downstream challenges

of monitoring incoming live data and measuring impacts often

does not receive the critical attention it needs from the HCI and

AI communities. Just as designer Bret Victor described, we now

have tools “to adapt unthinkable thoughts to the way that our minds
work” [124], we now need better tools to collect, interpret, and

observe data to transform the current practices in the upstream and

downstream. Customizable tools for dataset collection and labelling

can significantly improve data quality, in the place of in-house, cob-

bled together solutions. Live data from systems in production was

consistently reported to spring up surprise drifts and affect model

inferences, but comprehensive solutions are lacking. Dataset docu-

mentation is under-developed, unlike code documentation [127],

e.g., design documents, meeting notes, project diaries, and rater

instructions; but standards here can help reduce uncertainty.

Data equity in the Global South Our study points to how

AI/ML technologies were widely accessible and democratic to new

entrants, across geographies, through open-sourced and pre-trained

9
https://www.trifacta.com/

10
https://pair-code.github.io/facets/

11
https://openrefine.org/
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models, easy-to-access courses and codebases, and grassroots com-

munities. AI practitioners across geographies appeared to have

similar access to models. However, we find drastic differences when

it comes to data and compute in East andWest African countries [2]

and India [3], compared to the US. With limited digital infrastruc-

tures and fewer socio-economic datasets, data collection was often

done from scratch through field partners and in-house efforts. Data

collection involved navigating vague data policies and regulation,

manual efforts to hand-curate data, and introducing AI literacy to

partners—efforts above and beyond what practitioners were trained

or equipped to do. Our findings echo the insights of ICTD and

AI4SG scholarship on the realities of data scarcity and quality chal-

lenges e.g., [31, 98, 107], understanding socio-cultural factors e.g.,
[20, 109], and complex partner and government relations e.g., [22]
in AI projects in the Global South. Invoking Sambasivan et al. , we
argue that the data disparities are symptoms of the larger, uneven

ML capital relations in the world, where the Global South is viewed

as a site for low-level data annotation work, an emerging market

for extraction from ‘bottom billion’ data subjects, or a beneficiary of

AI for social good [107]. Developing and publishing open-sourced

(de-identified) datasets, data collection tools, and trainings for defin-

ing the right data with application-domain expert knowledge can

help mitigate the cold start problem. Greater ML literacy among

civil society and clients can evolve high-stakes AI into a synergistic

endeavour; being aware of, and asking the right questions of ML

systems could help shift the focus from hacking model accuracy

for performative reasons, to data excellence. Highlighting ongo-

ing high-stakes AI projects and successes to both raise awareness

and to provide a roadmap is essential to addressing the current

inequities in data resources globally.

6 CONCLUSION
As AI becomes part and parcel of decision-making of core aspects

of life, the sanctity and quality of data powering these models

takes on high importance. We presented a qualitative study of data

practices and challenges among 53 AI practitioners in India, East

and West African countries, and the US, working on cutting-edge,

high-stakes domains of health, wildlife conservation, food systems,

road safety, credit, and environment. We observed and presented

data cascades, often long-run, invisible, and compounding effects

on AI models. The effects typically occurred as a result of applying

conventional AI/ML practices in high-stakes domains—many of the

conventional practices did not transfer neatly, and often resulted

in serious impacts like community harms, discarded projects, and

redoing data collection. Data cascades were typically triggered in

the upstream and appeared unexpectedly in the downstream of

deployment. System-level proxy metrics were utilised, which are

only available towards the end of the development lifecycle, and do

not shed light on data quality and its fidelity to phenomena. HCI

has a crucial role to play in AI data excellence, through interfaces,

measurement, incentives, and education, especially in fragile and

vulnerable domains.
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