

for ARM®

Migration Guide

IAR Embedded Workbench®

to Atollic TrueSTUDIO®

Document Data

ii | P a g e

COPYRIGHT
© Copyright 2009-2016 Atollic AB. All rights reserved. No part of this document may be reproduced
or distributed without prior written consent of Atollic AB. The software product described in this
document is furnished under a license and may only be used, or copied, according to the license
terms.

TRADEMARKS

Atollic, Atollic TrueSTUDIO and Atollic TrueSTORE and the Atollic logotype are trademarks or
registered trademarks owned by Atollic. ARM, ARM7, ARM9 and Cortex are trademarks, or
registered trademarks, of ARM Limited. ECLIPSE is a registered trademark of the Eclipse foundation.
Microsoft, Windows, Word, Excel and PowerPoint are registered trademarks of Microsoft
Corporation. Adobe and Acrobat are registered trademarks of Adobe Systems Incorporated. All other
product names are trademarks, or registered trademarks, of their respective owners.

DISCLAIMER

The information in this document is subject to change without notice and does not represent a
commitment of Atollic AB. The information contained in this document is assumed to be accurate,
but Atollic assumes no responsibility for any errors or omissions. In no event shall Atollic AB, its
employees, its contractors, or the authors of this document be liable for any type of damage, losses,
costs, charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

DOCUMENT IDENTIFICATION

TS-MG-ARM-IAR October 2016 – Rewrite of TS-IAMG of January 2011

REVISION

1st October 2016 – Applies to Atollic TrueSTUDIO® v7.0.0

Atollic AB
Science Park
Gjuterigatan 7
SE- 553 18 Jönköping
Sweden

+46 (0) 36 19 60 50

Email: sales@atollic.com
Web: www.atollic.com

Atollic Inc.
241 Boston Post Rd. West (1st Floor)
Marlborough,
Massachusetts 01752
United States

+1 (973) 784 0047 (Voice)
+1 (877) 218 9117 (Toll Free)

Email: sales.usa@atollic.com
Web: www.atollic.com

mailto:sales@atollic.com
http://www.atollic.com/
mailto:sales.usa@atollic.com
http://www.atollic.com/

Table of Contents

iii | P a g e

Contents
About this Document ... 9

Intended Readers .. 9

Document Conventions ... 10

 Migration Decisions ... 11

Why migrate? ... 12

When to Migrate? .. 13

What to migrate and the implications of migration?............................... 14

Project and build control ... 14

Infrastructure and work-flow .. 14

Application source and firmware .. 14

Third party O/S and libraries ... 15

Re-validation ... 15

How can migration be made easier? .. 17

Automated Project creation .. 17

CMSIS - Cortex® Microcontroller Software Interface Standard 17

Migration of Legacy Firmware .. 18

ABI Compliance ... 18

 Starting the Migration with Atollic TrueSTUDIO® . 20

Before you start .. 21

Workspaces & projects ... 21

Creating a new project ... 23

Configuring the project .. 27

Building the project .. 30

Build, Rebuild all .. 31

Importing Source Files .. 32

Using files in an external location ... 37

Using directories in an external location .. 38

Table of Contents

iv | P a g e

Using IAR Eclipse plugin .. 41

 Migrating Source Files ... 51

C/C++ Source changes .. 52

The Pre-processor ... 52

Language extensions ... 54

Inline assembler ... 55

Inline functions .. 55

RAM based functions ... 56

Interrupt and exception functions ... 56

Nested interrupt functions .. 57

Non-returning functions .. 57

ARM® specific functions... 58

Weak functions/data ... 58

Root functions and unreferenced data .. 58

Packed Data ... 59

Alignment of data .. 59

Endian setting of data .. 59

Non-initialised data .. 60

Location control of data ... 60

Built-in functions ... 63

Assembler source changes ... 65

Startup code ... 67

 Detailed Project Build Control 69

Migrating Build files .. 70

Compiler setup and control .. 71

Optimization .. 71

Implementation Specific Options .. 72

Link management ... 77

Table of Contents

v | P a g e

Linker Script/Command Files .. 77

Library management .. 84

Standard Libraries ... 84

Library Creation and Management ... 86

Migrating 3rd Party files ... 88

Vendor supplied ports ... 88

Source level porting .. 88

Binary level porting ... 88

Creating a binary interface .. 89

Function call/return ... 90

Use the compiler to create an interface for you 90

List of Figures

vi | P a g e

Figures
Figure 1 - Workspaces and projects ... 22

Figure 2 - Starting the project wizard .. 24

Figure 3 - C Project ... 24

Figure 4 - Hardware configuration ... 25

Figure 5 - Debugger configuration .. 26

Figure 6 - Open C/C++ Build settings ... 27

Figure 7 - C/C++ Target settings ... 28

Figure 8 - C/C++ Tool settings .. 29

Figure 9 - Adding C/C++ pre-defined symbol ... 29

Figure 10 - Workspace Build Preferences .. 30

Figure 11 - C/C++ Build Console View .. 31

Figure 12 - Project Explorer .. 32

Figure 13 - Deleting project files .. 34

Figure 14 - Project Explorer view ... 35

Figure 15 - Adding files, step 1 ... 35

Figure 16 - Adding files, step 2 ... 35

Figure 17 - Adding files, step 3 ... 36

Figure 18 - Linking to files .. 37

Figure 19 - Linking to directories, step 1 .. 38

Figure 20 - Linking to directories, step 2 .. 38

Figure 21 - Linking to directories, step 3 .. 39

Figure 22 - Project Explorer, final ... 40

Figure 23 - Import EWARM Eclipse project, step 1 41

Figure 24 - Import EWARM Eclipse project, step 2 42

Figure 25 - Import EWARM Eclipse project, step 3 42

Figure 26 – Delete multiple folders and files ... 43

Figure 27 – Drag-and-drop folders in TrueSTUDIO® 44

Figure 28 – Importing files to a project, step 1 .. 45

Figure 29 – Importing files to a project, step 2 .. 45

Figure 30 – Importing files to a project, step 3 .. 46

Figure 31 – Importing files to a project, step 4 .. 47

Figure 32 - C/C++ Include Path setting (start) .. 48

Figure 33 - C/C++ Include Path setting (end) ... 50

Figure 34 - Linker script, adding .ramfunc ... 56

file:///C:/Users/ASW-HG-Admin/Documents/Business/TrueSTUDIO/MatsP/IAR%20Migration%20Guide/IAR_2_Atollic_TrueSTUDIO_MigrationGuide_ARM_20161005-1.docx%23_Toc463423239

List of Figures

vii | P a g e

Figure 35 - C/C++ remove <intrinsics.h> .. 61

Figure 36 - C/C++ enable/disable IRQ .. 61

Figure 37 - C/C++ Adding TIM1_UP_IRQHandler ... 62

Figure 38 - C/C++ finding start, end and size of sections 63

Figure 39 - Linker finding start, end and size of sections 64

Figure 40 - EWARM linker script file .. 80

Figure 41 - Linker script, defining symbols ... 80

Figure 42 - Linker script, defining memory and regions 81

Figure 43 - Linker script, adding stack and heap .. 81

Figure 44 - Linker script, initialized data .. 82

Figure 45 - Linker script, modifying memory regions 83

Figure 46 - Linker script, removing section placements 83

Figure 47 - Linker script, place sections in regions 83

List of Tables

viii | P a g e

Tables
Table 1 – Typographic Conventions ... 10

Table 2 - Files to keep, copy or link to .. 33

Table 3 - Matching example project include paths 49

Table 4 - IAR Embedded Workbench® Specific Predefined Symbols 53

Table 5 - Cross-assembler differences ... 66

Table 6 - Startup Code symbols.. 68

Table 7 - Compiler option cross-reference .. 76

Table 8 - Standard Libraries ... 86

Introduction

9 | P a g e

ABOUT THIS DOCUMENT
Welcome to the Atollic TrueSTUDIO® Migration Guide. The purpose of this document is to
help you to migrate an IAR Embedded Workbench® project to Atollic TrueSTUDIO®.

INTENDED READERS
This document is primarily intended for embedded systems developers and project
managers who want to understand the process of migrating a project (existing or new)
from using the IAR Embedded Workbench® C/C++ compiler to Atollic TrueSTUDIO® for the
ARM® processors.

Introduction

10 | P a g e

DOCUMENT CONVENTIONS
The text in this document is formatted to ease understanding and provide clear and
structured information on the topics covered. The following typographic conventions
apply:

Table 1 – Typographic Conventions

 Style Use

Command Keyboard Command or Source Code Section.

Object Name Name of a User Interface Object (Menu, Menu Command,
Button, Dialog Box, etc.) that appears on the computer
screen.

Cross Reference Cross reference within the document, or to an external
document.

Product Name Name of Atollic product.

Identifies instructions specific to the Graphical User
Interface (GUI).

Identifies instructions specific to the Command Line
Interface (CLI).

Identifies Help Tips and Hints.

Identifies a Caution.

 Migration Decisions

11 | P a g e

 MIGRATION DECISIONS
This document has been created to enable development teams to understand the need for,
the mechanisms, and the implications of migrating from one development toolchain to
another for a given processor or processor family.

The example used throughout the process is for migration from the IAR Systems®
development toolchain to the Atollic TrueSTUDIO® IDE for ARM® processors. However the
principles will remain constant across processor families and development tool vendors.

The reader should refer to the GNU C/C++ compiler documentation available with Atollic
TrueSTUDIO® for detailed documentation on the usage and extensions supported by the
compiler toolchain.

In addition, the Application Binary Interface (ABI) document is available directly from ARM
Ltd. at the following location: www.arm.com. Finally, the user should cross-reference this
information with that provided by their current compiler vendor (IAR Systems® in this
example).

This section covers the high-level questions which need to be addressed before embarking
on a project migration:

 Why migrate?

 When to migrate?

 What to migrate and the implications of migration?

 How can migration be made easier?

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.swdev.abi/index.html

Migration Decisions

12 | P a g e

WHY MIGRATE?
Migration to a new development toolchain has to be driven by need; the need for better
performance (of the embedded code), the need for standards compliance, the need for a
better development workflow using higher functionality and more integrated
development environments and/or the need for a better support model from the tools
vendor.

The choice may be largely driven by engineering or commercial concerns, but ideally
should provide benefits in both areas. As an example, the benefits of the Atollic
TrueSTUDIO® IDE over its competitors could be summarized as:

 Cost: The Atollic TrueSTUDIO® product is partly based on open-source
components that have been extended to match and surpass the feature-set in
most other commercial offerings. By reusing some open-source components, the
product can be offered at a substantially lower price than many other vendors.

 Performance: The GNU C/C++ compiler provides a world class compiler
development toolchain, enhanced and maintained by thousands of developers
and many companies worldwide. In recent years, it has become the de-facto
standard toolchain for compiler research, further enhancing its capabilities in
terms of optimization and processor support.

 Standards: The GNU C/C++ compiler supports C and C++ development with full
support for both languages along with runtime libraries for both 'bare-metal'
(where the runtime system runs directly on the processor) or Linux user-mode
(where the runtime system interacts with the Linux kernel via system calls).

 Workflow: The Atollic TrueSTUDIO® IDE provides a modern and highly integrated
development environment which directly supports the use of advanced workflow
tools such as version control, bug tracking, code review, code analysis and
distributed task-based development, along with tailored control for project and
build control and a fully integrated debugger.

 Support Model: The Atollic TrueSTUDIO® IDE comes in a variety of packages
enabling customers to select the features/price model best suited to their
development needs. As the underlying compiler toolchain is based on the GNU
C/C++ compiler, there is no worry about a 'proprietary' toolchain becoming out of
date, or unavailable. The same goes for the Atollic TrueSTUDIO® IDE, as it is
based on the open Eclipse framework.

Migration Decisions

13 | P a g e

WHEN TO MIGRATE?
Once the decision has been made to migrate to a new toolchain, the migration has to be
planned according to the needs of the organization. Typically there are three scenarios for
migration:

 At the start of a new project

 Parallel to a running project

 In a failing project to bring it back on line

Perhaps the simplest time to perform migration is at the start of a new project as the
effort can be factored into the project plan, with resources and time being allocated
before the project has started.

However, provided that the effort can be reasonably assessed, and the benefit from
migrating can be measured (in performance, development time, cost or other terms),
there is no reason why migration can't happen while a project is in progress.

Either resources can be allocated to do migration setup tasks while the rest of the team
gets on with other areas of development, or the whole team can focus on the migration to
enable a rapid transition.

Where companies are using version control systems, it makes sense to 'branch' the
existing project to allow for migration changes to be contained in one development flow,
allowing any other code changes on the original code base to be merged in as required
later. In fact, as the Atollic TrueSTUDIO® IDE fully supports version control system
integration, it facilitates this mode of operation.

Migration Decisions

14 | P a g e

WHAT TO MIGRATE AND THE IMPLICATIONS

OF MIGRATION?
The Atollic TrueSTUDIO® IDE provides a wealth of facilities on top of the basic necessities
such as the compiler toolchain, debugger and editor. It is entirely possible to phase the
migration, taking advantage of certain features of the IDE when appropriate. The key
areas to consider are described below.

The remainder of the document will examine some of the main issues raised.

PROJECT AND BUILD CONTROL
The Atollic TrueSTUDIO® IDE provides the ability to auto-generate projects for the
supported embedded processors. These auto-generated projects provide a framework in
terms of describing the source files and libraries that make up the project, and also
provide a way to generate the scripts to automate the build process.

INFRASTRUCTURE AND WORK-FLOW
The Atollic TrueSTUDIO® IDE provides a complete project and build infrastructure for the
GNU compiler toolchain, to include GUI level support for configuring target (processor)
specific options.

It will auto-generate build scripts and linker command files which may be controlled
entirely through the GUI, or edited by the user. This is however not mandatory, and so
customers migrating legacy projects which have make files already may wish to continue
to use them.

The IDE provides a mechanism to switch to make file use, and even provides a make file
editor. Similarly, if version control and/or bug tracking systems are being used as
independent applications, there is no requirement to switch to using them via the IDE.
Use of such tools integrated within the IDE can be phased into the project as required.

APPLICATION SOURCE AND FIRMWARE
The majority of application code is usually written in a high level language (C or C++), in
fact using common compiler extensions such as support for interrupt service routines in C,
and it is possible to write nearly all of an application without using assembler.

Migration Decisions

15 | P a g e

Even assembler modules can be converted relatively simply as most cross-assemblers
support similar functionality, differing only slightly in syntax (for example the way that
some addressing modes are indicated, or that macros and other high level features are
implemented), a simple search and replace or perhaps writing a file to map one symbol to
another may suffice.

THIRD PARTY O/S AND LIBRARIES
Ideally, it should be possible to get a ported and supported version of your third party OS
and/or library for the new GNU compiler toolchain. Make files and build control can then
relatively simply be setup in the IDE.

Alternatively, some vendors sell source licenses, with the OS/library being provided in a
portable high level language. In that case, the work is similar to that which was already
undertaken when originally buying the license – i.e. configuration, build and test. The final
possibility is that the OS/library is only available in a binary form, and no port for the GNU
compiler toolchain is available.

It is still feasible to use a binary library as you are not changing the underlying processor
being used, and for ARM® architectures there is a 'standard' Application Binary Interface
(ABI) defined by ARM® which most compilers targeting ARM® processors implement.

You may be fortunate and discover that the libraries you wish to link into your new ported
application will link and work without issue, however careful checking of how the two
compiler implementations differ in their ABI compliance may be required. In the case of
there being some difference, it is entirely possible to write an ABI compliance wrapper (in
assembler) which ensures that the transition from GNU functions to legacy code works
correctly.

RE-VALIDATION
One of the major tasks of migration is re-validation. This is of course required, regardless
of whether any code changes have been performed or not. The act of moving from one
compiler to another will mean that slightly different code will be generated, as no two
compilers (or even versions of a single compiler) will generate the same code, as each will
optimize in a different way.

It should be remembered that those pre-compiled binaries may have
dependencies on 'standard' libraries such as the standard C library, and on
compiler specific libraries such as intrinsic functions which are implicitly
referenced according to the code.

Replacing the standard libraries with those provided by the GNU toolchain
should present no problem, but the nature of the intrinsic libraries may mean
that you have to include them in your final binary in order to make it work.

Migration Decisions

16 | P a g e

For new projects, the efforts of constructing new tests should not be any greater than with
the legacy tools, for existing projects, the testing infrastructure may also require porting
(depending on your application and system), which will need to be factored into the
overall migration plan.

Migration Decisions

17 | P a g e

HOW CAN MIGRATION BE MADE EASIER?
Firstly, the assumption in this document is that the migration does not entail switching
processor architectures, and most probably that it is based on the same chip vendor and
product family.

In this case there is no additional learning curve regarding the processor, the peripherals
and interfaces – i.e. the system design problem has already been solved. In such a case
the task is reduced to migration of project and build control, application source files and
firmware.

AUTOMATED PROJECT CREATION
The Atollic TrueSTUDIO® IDE supports automated, wizard-based project generation, which
allows rapid creation of the project and build level control required for any project.

Part of the project generation allows the user to select the device being used (i.e. vendor
and chip family), and will then auto-generate firmware code compliant to the
processor/chip vendor's firmware library to support the device.

CMSIS - CORTEX® MICROCONTROLLER SOFTWARE

INTERFACE STANDARD
A standard firmware library infrastructure has been created by ARM Ltd. along with
semiconductor and toolchain vendors. The Cortex® Microcontroller Software Interface
Standard (CMSIS) defines a hardware abstraction layer which is available as a firmware
library coded to support compilation by a number of compilers, including the GNU C/C++
compiler and the IAR Embedded Workbench® C/C++ compiler. Details can be found on the
ARM® website www.arm.com.

The firmware generated by the Atollic TrueSTUDIO® IDE for the ARM® Cortex® series of
processors includes all low-level device control via the CMSIS firmware library (including
startup, interrupt and exception handlers) along with chip vendor supplied peripheral
device drivers.

As the firmware library complies to a standard, and has been written to support both the
GNU and IAR Embedded Workbench® compilers (by using conditional compilation), users

It is recommended to use the Atollic TrueSTUDIO® project generation code,
whether a fully integrated build, or a makefile based build is being used, as it
greatly simplifies the creation of a new project and can be used as a
framework to compare to existing projects and to paste legacy files into
where needed.

http://www.arm.com/

Migration Decisions

18 | P a g e

should find that they have a familiar Application Programming Interface (API) to code
against, which reduces the porting exercise to one of tuning the build control and porting
application source files.

MIGRATION OF LEGACY FIRMWARE
Even when the legacy project has not made use of the chip vendor's firmware library, the
developer still has options on how to proceed:

1. The legacy firmware can be ported to the GNU C/C++ compiler (if a port is not
already available).

2. For ARM® Cortex® processors, the legacy firmware library can be replaced within
the migration project, by the CMSIS firmware library, providing a high quality and
portable hardware abstraction layer which is supported and easily portable.

The initial investment in firmware porting may be significant, as firmware is by its nature
at the closest level to the underlying hardware. This implies that compiler extensions have
been used to directly interact with the underlying processor and peripherals to generate
special functions (interrupts), control placement of data and code, control processor mode
and initialization (using intrinsic functions) and control memory mapped hardware devices.

ABI COMPLIANCE
The Application Binary Interface (ABI) defines implementation specific details of how a
given toolchain supports a processor family. The ABI is usually owned and maintained by
the processor vendor or on their behalf by a nominated third party.

ARM Ltd. provide and maintain a series of ABI documents which cover all aspects required
for building code for the ARM® architectures on various platforms (bare-metal, Linux and
mobile based). The ABI documentation set can be downloaded from the ARM® website at
www.arm.com.

This document describes migration issues related to bare-metal applications, and
therefore only requires an understanding of a subset of the ABI documentation.

Where it is not feasible to use the CMSIS firmware library, it may be prudent
to review the code to understand how the various hardware and compiler
specific control is achieved.

http://www.arm.com/

Migration Decisions

19 | P a g e

The ABI is therefore important at two levels:

 Assembler to C/C++ interface level (procedure call, return and stack frame
definition)

 Object code format and manipulation

The IAR Embedded Workbench® and GNU toolchains both support the Procedure Call
Standard for the ARM® architecture (AAPCS), which means that users can assume that
functions written in assembler for IAR Embedded Workbench® based projects can be
simply migrated to GNU based projects.

At the source level no changes will be required to change the calling/return mechanism.
However changes may be required to conform to the instruction syntax defined by the
GNU cross-assembler.

Alternatively, ABI compliance means that assembler source files which have been cross-
assembled into relocatable object files using the IAR Embedded Workbench® toolchain
(but not yet linked), may be linked with files built with the GCC toolchain successfully. This
is because both toolchains support the same object file formats and relocation types.

Knowledge of the ABI is not required if migration at a C/C++ source level only
is to be performed. The ABI defines the low-level information required for
writing assembler functions which are callable from C/C++, and required by
toolchain developers to enable interoperability between toolchains.

 Migrating Source Files

20 | P a g e

 STARTING THE

MIGRATION WITH ATOLLIC

TRUESTUDIO®
The simplest way to start your migration project is to use the Atollic TrueSTUDIO® to
generate a complete skeleton project for you, including all required build control files (linker
scripts and make files if required).

Once this has been created, the existing source files can be added into the project, and the
build control files adjusted as necessary.

This section describes the process of creating a skeleton project, importing source files, and
performing simple project configuration and build.

 Before you start

 Creating a new project

 Configuring the project

 Building the project

 Importing source files

Starting the Migration

21 | P a g e

BEFORE YOU START
Atollic TrueSTUDIO® is built using the ECLIPSE™ framework, and thus inherits some
characteristics that may be unfamiliar to new users. The following sections outline
important information to users without previous experience with ECLIPSE™.

WORKSPACES & PROJECTS
As Atollic TrueSTUDIO® is built using the ECLIPSE™ framework, it inherits its project and
workspace model. The basic concept is outlined here:

 A workspace contains projects. Technically, a workspace is a directory containing
project directories.

 A project contains files. Technically, a project is a directory containing files (that
may be organized in sub-directories).

 Project directories cannot be located outside a workspace directory, and project
files can generally not be located outside its project directory. Projects can
contain files that are located outside the project directory using links to files and
directories located anywhere.

 There can be many workspaces on your computer at various locations in the file
system, and every workspace can contain many projects.

 Only one workspace can be active at the same time, but you can switch to
another workspace at any time.

 You can access all projects in the active workspace at the same time, but you
cannot access projects that are located in a different workspace.

 Switching workspace is a very quick way of shifting work from one set of projects
to another set of projects.

In practice, this creates a very structured hierarchy of workspaces with projects that
contains files.

Starting the Migration

22 | P a g e

Atollic TrueSTUDIO®

Workspace 1
(C:\Joe\Workspace)

Project A

Project B

. . .

Workspace 2
(C:\Customer1)

Project C

Project D

. . .

Workspace 3
(X:\NewProjects)

Project E

Project F

. . .

Currently inactive

workspace

Currently active

workspace

Currently inactive

workspace

Figure 1 - Workspaces and projects

Starting the Migration

23 | P a g e

CREATING A NEW PROJECT
Atollic TrueSTUDIO® supports both managed and unmanaged projects. Managed projects
are completely handled by the IDE and can be configured using GUI settings, whereas
unmanaged projects require a makefile that has to be maintained manually.

We will be using one and the same example project from IAR throughout this migration
guide and we will at the end have a working copy of that project migrated into
TrueSTUDIO®. The example we will be using is the IAR_STM32_SK GettingStarted project
that comes with EWARM. This project is using a Cortex-M3 device family from
STMicroelectronics, the STM32F103xB and we will for this exercise be using the
STM32F103VB device.

Migrating a project from one tool to another can be done in many different ways. The way
we will do this migration is just a suggestion but one that has been used many times and
usually works well. The different steps we will take during the migration are as follows.

a) Create a C project that uses the same core/device as the original project we are
migrating from

b) Configure our new project to match project setting of the original project

c) Import the source files and libraries from the original project

d) Set compiler (and if needed assembler) include file directories

e) Modify part of the source code to make it GCC compatible

f) Modify the linker script file in order to correctly locate the application in memory

As we go along the migration process we will also give you tips and ideas in general
regarding migrating from one tool to another. Things that will be helpful when you migrate
a more complex project than the example we use here and that is meant to give you an
idea of the steps involved when doing a migration.

To create a new managed mode C project, perform the following steps:

1. First, make sure you know what device the original project was using. As for us,
we will be using STMicroelectronics STM32F103VB.

Starting the Migration

24 | P a g e

3. Start the C Project Wizard in TrueSTUDIO®. Click the icon as shown highlighted
with a red square below.

Figure 2 - Starting the project wizard

4. Name your project, select “Embedded C Project” as project type and “Atollic ARM
Tools” as Toolchain. Click Next to get to the next step in the Project Wizard.

Figure 3 - C Project

Starting the Migration

25 | P a g e

5. Select Vendor, Microcontroller Family, Microcontroller and click Next.

Figure 4 - Hardware configuration

6. The next page is the Software Configuration and we will accept the defaults and

click Next.

Starting the Migration

26 | P a g e

7. After this we get to the Debugger Configuration page. Here we select one of

the listed debug solutions, depending on what debug solution we have. For

our example we will select SEGGER J-LINK.

Figure 5 - Debugger configuration

8. The last step is creating two build configurations, Debug and a Release. We

accept this since we easily can add, remove or modify these build

configurations later if needed.

At this point we have a simple project for a STM32F103VB device. Next we need to make

sure that the most important build options are set correctly. It is helpful to have the

original IAR project open when we do this, just so that we can compare build configuration

settings for our two projects.

Starting the Migration

27 | P a g e

CONFIGURING THE PROJECT
Managed mode projects can be configured using dialog boxes (unmanaged mode projects

require a manually maintained makefile). To configure a managed mode project, perform

the following steps:

1. First select myProject in TrueSTUDIO® Project Explorer, and after that you click the

“C/C++ Build settings for project ‘myProject’” button in the Toolbar.

(It is important to make sure the top of the project is selected when configuring the

entire project. It you would have a folder or file selected, then the configuration

changes would only apply to that file or files in that folder.)

Figure 6 - Open C/C++ Build settings

Starting the Migration

28 | P a g e

2. The project Properties dialog box is displayed and by default the “Target Settings” tab

is selected. Here you can view and modify the target selected if needed but we set this

up during project creation so we will leave it as is. Note that project settings relevant

for both managed mode projects and unmanaged mode projects are collected under

the Target Settings tab.

Figure 7 - C/C++ Target settings

3. Select the “Tool Settings” tab to display options for our build tools. We will have a look

at some of the options here and compare them to how our original IAR project

options were set. Let us first have a look at the selected C standard. From the IAR tool

we see that they use C99 as default so we change our C language from gnu11 to

“gnu99 (c99 + gnu extensions)”.

Starting the Migration

29 | P a g e

Figure 8 - C/C++ Tool settings

4. Second we will have a look at the preprocessor defines set for the compiler. The

original project have EMB_FLASH , STM32F10X_MD and USE_STDPERIPH_DRIVER

defined. So we are missing EMB_FLASH and to add this symbol, click “Add…” button

 and type in EMB_FLASH into the Enter Value dialog that pops up. When done,

click OK to commit to this new preprocessor define.

Figure 9 - Adding C/C++ pre-defined symbol

5. We are done for now configuring our build tools so we click OK to commit to the

changes made and get out of the project Properties dialog.

Take some time to look around in the Tool Settings for TrueSTUDIO® to familiarize yourself

with the different options here. Advanced users may want to enter command line options

manually, and this can be done in the Miscellaneous panel for any tool. When done

exploring the Tool Settings, click OK to accept the new settings.

In the C compiler -> Directories we have a list of include paths that the
compiler will use when search for include files. These include paths differs
from what you will see in the IAR tool, but this is ok for now. Once we have
decided which files to add and how to add them, then we can update the list
for compiler include paths and all this will be done later in this guide.

Starting the Migration

30 | P a g e

BUILDING THE PROJECT
By default, Atollic TrueSTUDIO® builds the project automatically whenever any file in the

build dependency is updated. This feature can be toggled with the “Build automatically”

option. You find this option if you select the Preferences entry in TrueSTUDIO® Windows

menu. In the Preferences dialog you select General and Workspace.

Figure 10 - Workspace Build Preferences

Starting the Migration

31 | P a g e

BUILD, REBUILD ALL
You have easy access to the different build commands from the Toolbar. You can do a

Build, which would only build files that was changed since the last build. Or you can do a

Clean which, would mark all source files in your project as in need of a build. A Rebuild will

simply rebuild all your files, similar to doing a Clean followed by a Build.

Now we do a Rebuild to ensure that we have a project that builds without warnings and

errors. In our TrueSTUDIO® IDE you have a Window at the bottom that has multiple views.

One is the Report view and should not have reported any errors or warnings. If you select

the Console view you can see the command line options for each build step together with

the output from our build tools.

Figure 11 - C/C++ Build Console View

There are by default five build buttons in the Toolbar
and if you hover over them with the mouse you will get a tooltip on what they
do.

Starting the Migration

32 | P a g e

IMPORTING SOURCE FILES
Importing source files from the old IDE into Atollic TrueSTUDIO® is generally very simple. It

is only a matter of copying the files into the Atollic TrueSTUDIO® project source directory.

This can be done in Windows Explorer or from within the Atollic TrueSTUDIO® IDE.

If you have a large amount of source files in the project that you are migrating to Atollic

TrueSTUDIO® then it might be worth considering using the IAR Eclipse plugin for ARM.

With that plugin installed in Atollic TrueSTUDIO® you will have access to all source files for

both the original EWARM project and the new Atollic TrueSTUDIO® project in the same

Workspace. If this is the way you like to migrate your project, then go ahead and jump

forward to section “Using IAR Eclipse plugin” below.

If you want to include specific source code files (or entire directories containing many

source code files) that you wish to keep in an external location (i.e. in a location other than

in the project directory tree), this can be facilitated with links to the external file or

directory.

Using Project Explorer, we can have a look at the file and folder structure for our new

TrueSTUDIO® project.

Figure 12 - Project Explorer

Our project “myProject” we have five folders. Binaries, Includes and Debug are generated

for us and we can safely ignore them for now. Our source folders are Libraries and src.

(The C in the folder map icon indicates that this is a source folder.)

Starting the Migration

33 | P a g e

So we can see that we have two different libraries, CMSIS and

STM32F10x_StdPeriph_Driver. Going back to our original IAR project we see that these

libraries are included in that project as well. So for these libraries we have two options.

Either we use the new library that came with TrueSTUDIO®, and in that case we can just

leave them unmodified. Or we can use the libraries we have in our original IAR project. In

that case we can either copy them over to our TrueSTUDIO® project or we can link to their

current IAR project location. (A rule of thumb here would be that if you will modify files,

then copy them to your TrueSTUDIO® project location since modifications you make might

corrupt the original project.) Since we do not expect to modify CMSIS or STM32F10x

peripheral libraries we decide to link to the original library files from TrueSTUDIO®.

A closer look at the CMSIS library folder shows that the this folder in the original IAR

project contains two files, startup_stm32f10x_md.s and system_stm32f10x.c. Both these

files are located in the src folder for our new TrueSTUDIO® project. And the CMSIS Library

folder in TrueSTUDIO® contains only header files. So if we reorganize our IAR project to

TrueSTUDIO® format we really do not need the CMSIS library folder since it does not

contain any C source files, only header files. We just need to make sure to point the

compiler to the correct folders when the preprocessor searches for include files and we

will do that in just a moment.

Next we have the src folder that contains our main application (in main.c) and some other

system files. For each of these files we need to decide if we should keep it, replace it, or

simply remove it. In the table below we have listed all files and added a not one how we

will handle that file for our migration process.

File Content Decision

startup_stm32f10x_md.s Startup code for our device We will keep the TrueSTUDIO® startup file. If we had
a __low_level_init function defined in IAR them we
would move that code in to TrueSTUDIO®.

stm32f10x_conf.h Configuration setup for
STM32F10x_StdPeriph_Driver
library

We will copy the original file from IAR to
TrueSTUDIO® since we need to make sure we use the
same peripheral configuration for both projects, but
we might also want to change this configuration in
the future

stm32f1xx_it.c

stm32f1xx_it.h

Contains the main ISR’s and
the original IAR project has
added a ISR handler for
TIM1_UP_IRQHandler

We will keep the version provided by TrueSTUDIO®
and just add TIM1_UP_IRQHandler and make sure it
behaves the same as for the original project

system_stm32f10x.c This is the access layer to the
device drivers

We should use the same version as we use for our
STM32F10x peripheral library so we will link to the
file that is in the original IAR project

tiny_printf.c This is a “small” version of
printf, more suitable for small
embedded applications

We will just keep this since we really don’t use any
printf or similar calls in our application

Table 2 - Files to keep, copy or link to

Starting the Migration

34 | P a g e

Before we start adding files from the original project and our new TrueSTUDIO® project we

need to remove some source files from TrueSTUDIO® that would otherwise conflict with

the new files. In our example that would be the files “main.c”, “STM32F10x_conf.h” and

“system_stm32f10x.c” as well as the two library folders “CMSIS” and

“STM32F10x_StdPeriph_Driver”.

To remove these files, in TrueSTUDIO® Project Explorer you right-click the file or folder to

remove and select Delete.

Figure 13 - Deleting project files

Do the same for files STM32F10x_conf.h, system_stm32f10x.c and folders CMSIS and

STM32F10x_StdPeriph_Driver. Your Project Explorer should look something like this now.

Starting the Migration

35 | P a g e

Figure 14 - Project Explorer view

Now we are ready to Import new source files, either by copying or by creating links to the

original source file or folder.

COPY FILES TO NEW PROJECT LOCATION

1. In TrueSTUDIO® Project Explorer, right-click on the src folder and select Import…

Figure 15 - Adding files, step 1

2. In the Import Dialog, select General and Filesystem and click Next.

Figure 16 - Adding files, step 2

If you don’t know where a file is physically located in your IAR project, you can
find the location if you in the EWARM IDE right-click on that file and select File
Properties. The Location entry will have a path to the physical location of that
file.

Starting the Migration

36 | P a g e

3. At last page of the import wizard, we Browse to the location of the original main.c and

select main.c as well as stm32f10x_conf.h since they both are at the same location.

When done we click Finish to have these two files copied to our new TrueSTUDIO®

project location.

Figure 17 - Adding files, step 3

Starting the Migration

37 | P a g e

USING FILES IN AN EXTERNAL LOCATION
For the rest of the files we need we will, instead of copying files to our project, create a

links to the source files. We have one file and two folders to link to and we start by

creating a link to the file system_stm32f10x.c.

1. Just as we did in step 1 when copying files, we right-click on the src folder in our

Project Explorer and select Import…

2. Step 2 is also the same as when copying files, so select General and File System,

and click Next.

3. Now we click the Advanced button and check the box “Create links in workspace”.

Then we Browse to the location of system_stm32f10x.c and after that we can

select the same file in the Import dialog. When done click Finish.

Figure 18 - Linking to files

Starting the Migration

38 | P a g e

USING DIRECTORIES IN AN EXTERNAL LOCATION
Now we will link to the folder STM32F10x_StdPeriph_Driver and with that have access to

all the source files in our TrueSTUDIO® project. (Remember we did not need the CMSIS

folder for source code.)

1. Right-click on the Libraries folder and select Import. We selected Libraries instead of

src just to keep a nice and consistent structure for our project.

Figure 19 - Linking to directories, step 1

2. Next we select General and File System and click Next.

Figure 20 - Linking to directories, step 2

Starting the Migration

39 | P a g e

3. Now we select Advanced and check the “Create links in workspace” option. Then we

Browse to the location of the original STM32F10x_StdPeriph_Driver. Once there we

expand the content of that folder to the left in the Import dialog and check the src

box. (We could also select inc to add the include folder but we don’t have to.) Click

Finish when done.

Figure 21 - Linking to directories, step 3

Starting the Migration

40 | P a g e

Now we have all our source files in TrueSTUDIO® and your Project Explorer should look

something like this.

Figure 22 - Project Explorer, final

Next chapter is only for users who uses the IAR Eclipse plugin to import files and if you are
not doing this, then move on directly to section “THE PREPROCESSOR INCLUDE
DIRECTORIES”.

Starting the Migration

41 | P a g e

USING IAR ECLIPSE PLUGIN
Before we can start using the IAR Eclipse plugin we have to install it in Atollic
TrueSTUDIO®. The link below describes how this is done.
http://eclipse-update.iar.com/plugin-manager-install.html

Once we have this plugin installed in Atollic TrueSTUDIO® we can import the original
EWARM project as described below. The basic idea when migrating IAR projects to
TrueSTUDIO® using the Eclipse plugin is this. We import the original EWARM project into
the same Workspace as our new TrueSTUDIO® project using links to the files in that
project. When this is done we can simply drag-and-drop folders and files that we link to
link to from the original EWARM project to our new TrueSTUDIO® project. For files in the
original EWARM project that we need to physically have in the new TrueSTUDIO® project
we will import them into the appropriate source folder.

1. First we import the original EWARM project into Atollic TrueSTUDIO®.

Figure 23 - Import EWARM Eclipse project, step 1

http://eclipse-update.iar.com/plugin-manager-install.html

Starting the Migration

42 | P a g e

2. Next we select “Import IAR Embedded Workbench project” and click Next.

Figure 24 - Import EWARM Eclipse project, step 2

3. In the last step of this import wizard you browse to the original EWARM project file.
Make sure that the option “Create links” are checked before clicking Finish.

Figure 25 - Import EWARM Eclipse project, step 3

Starting the Migration

43 | P a g e

Now we have the original EWARM project we like to migrate from in the same
Workspace as the new TrueSTUDIO® project we are building up. Below is a short
description of what files to move to the new TrueSTUDIO® project using the IAR
Eclipse plugin. For details on why we are moving some files and not others you should
just read through section “Importing Source Files” above.

1. We start by deleting the folders and files in our new TrueSTUDIO® project that we
later will get from the original EWARM project. The files to delete are main.c,
stm32f10x_conf.h, system_stm32f10x.c and we will also delete the folder
STM32F10x_StdPeriph_Driver.

Figure 26 – Delete multiple folders and files

Starting the Migration

44 | P a g e

2. Now we need to make sure we use the STM32F1 peripheral library that were
used in the original EWARM project. We can easily do this by dragging the folder
StdPeriph_Driver from GettingStarted to myProject. Note that we are actually not
moving any files around with this since the content in that folder links and not
physical files.

Figure 27 – Drag-and-drop folders in TrueSTUDIO®

Starting the Migration

45 | P a g e

3. Next we need to get the physical file stm32f10x_conf.h and main.c from the
original project into the new TrueSTUDIO® project. We can do this by right-
clicking on the src folder in myProject and selecting Import.

Figure 28 – Importing files to a project, step 1

4. Next we select File System and click Next.

Figure 29 – Importing files to a project, step 2

Starting the Migration

46 | P a g e

5. In the last step we browse to the location of the original EWARM project and
select the two files main.c and stm32f10x_conf.h. Make sure that the “Into
folder” edit box says “myProject/src”.

Figure 30 – Importing files to a project, step 3

Starting the Migration

47 | P a g e

6. We also need to link to system_stm32f10x.c in the original project and we can do
this by importing a link to that file. It is the same procedure as when we added
main.c and stm32f10x_conf.h above, except for one thing. In the final step we
click the “Advanced>>” button and making sure that the “Create links in
workspace” is checked before clicking Finish.

Figure 31 – Importing files to a project, step 4

Now we are done with the step to removing and adding files and folders to our
new Atollic TrueSTUDIO® project and are ready to continue to the next section.

Starting the Migration

48 | P a g e

THE PREPROCESSOR INCLUDE DIRECTORIES

Before we modify the source code and do any build we need to make sure that the

preprocessor will be able to find the correct include files. The safest and fastest way to do

this would be to have a look at the compiler include directories for the original IAR project.

When we do we will find that the following include paths were set up for that project.

$PROJ_DIR$\

$PROJ_DIR$\board\

$PROJ_DIR$\..\library\CMSIS\CM3\DeviceSupport\ST\STM32F10x

$PROJ_DIR$\..\library\STM32F10x_StdPeriph_Driver\inc\

The “$PROJ_DIR$\” correspond to the our “../src” include path so we have that

covered. The “$PROJ_DIR$\board\” is a mistake by IAR since there are no “board”

folder in the IAR project directory. We can safely ignore that path. The last two paths we

will need to “translate” into something useful for new TrueSTUDIO® project.

There is also an extra include path used in IAR if the EWRM IDE option General options ->

Library configuration -> Use CMSIS is checked. In that case the IAR will also include

“<EWARM-Installation-path>\CMSIS\Include” for the preprocessor search paths. Our

original IAR project do have the Use CMSIS checked so we need to add that path to our

TrueSTUDIO® project.

Going back to TrueSTUDIO® and looking C Compiler Directories Include paths we see that

our project corresponds almost 100% with what we have in the original IAR project.

Figure 32 - C/C++ Include Path setting (start)

Starting the Migration

49 | P a g e

What we need to do now is to make sure that the include paths to

STM32F10x_StdPeriph_Driver and CMSIS are correct and correct is to use the include files

that are in the original IAR project.

The table below shows which include path to delete and add in order to replace the

deleted path.

Delete Add

..\Libraries\STM32F10x_StdPeriph_Dri

ver\inc

$PROJ_DIR$\..\library\STM32F10x_StdPeri

ph_Driver\inc

..\Libraries\CMSIS\Device\ST\STM32F1

0x\Include

$PROJ_DIR$\..\library\CMSIS\CM3\DeviceS

upport\ST\STM32F10x

..\Libraries\CMSIS\Include <EWARM-Installation-path>\CMSIS\Include

Table 3 - Matching example project include paths

You will have to replace $PROJ_DIR$ with the path to the folder where your original IAR project file
(GettingStarted.ewp) is located, and replace <EWARM-Installation-path> with where your EWARM installation is
located. One way to find these paths is to have a look in the Messages View in EWARM. If you compile for example
main.c in EWARM then you can see the full command line in the Messages View and that command line will have all
the include paths expanded as parameters to the -I option. For a EWARM project located at C:\Projects\STM32\... we
could have the following command line where the paths we are interested in are highlighted.

Starting the Migration

50 | P a g e

The Compiler Include path configuration page should look something like this when we are

done. Note that we need to use double-quotes (“) around paths with spaces.

Figure 33 - C/C++ Include Path setting (end)

We are now done with adding files and setting the options to match the original project.
The new TrueSTUDIO® project will not build yet without errors, but we will soon fix that as
well. In the next section we will modify the source code in order to make it TrueSTUDIO®
compatible and GNU.

 Migrating Source Files

51 | P a g e

 MIGRATING SOURCE

FILES
Changes may be required to your source files in order for them to be accepted by the GNU
compiler toolchain. These changes can be due to a number of factors as detailed in this
section:

 C/C++ source level changes

 Assembler source changes

 Startup code

Migrating Source Files

52 | P a g e

C/C++ SOURCE CHANGES
Dependent on your current implementation of source code files, you may or may not need
to make modifications to your source code files.

THE PRE-PROCESSOR
The pre-processor runs before the compiler and is used to do textual insertion of header
files, and definitions along with macro expansion. All C/C++ compiler toolchains support
standard pre-processor directives, but also all compilers implement compiler specific
definitions which allow you to write source files which can be conditionally compiled
according to the compiler in use.

Before considering any compiler extensions, it is worth noting that the level of
'compliance' to the C and C++ standards varies between all compilers.

The GNU compiler toolchain can claim a high level of standards compliance,
so the chances of your legacy code using some feature of C or C++ which it
doesn't support is remote.

The GNU compiler documents supplied with Atollic TrueSTUDIO® detail all
aspects of compliance, and are worth checking if you are in any doubt.

Much more likely is the different behaviour of the compilers in terms of
warnings and errors. You may find code that was compiling using the IAR
tools with no errors, and perhaps few or no warnings, suddenly generates
many warnings, and even errors.

A lot of work as gone into the GNU compiler in recent years to improve the
error and warning checks, which means that it may be quite a lot stricter than
you have experienced using IAR.

The recommended guidelines are that all errors should be treated as such,
and serious review of the code should be undertaken to understand why the
compiler is generating an error. It is possible that incorrect code either 'just
worked' before, or was never actually exercised, so the bug went unnoticed.

Warnings are a matter of taste. Some companies require that all applications
compile without warnings, but it is likely that due to the complexity of the
code, this is not achievable.

Instead, it is worth reviewing all warnings, and where the warnings do not
represent anything that you can or are willing to fix, they may be disabled
using one of the many command line options.

For example, your code may use a deprecated library function. This may be
intentional and therefore you do not wish your build logs to be polluted with
such messages. Judicious use of command line options to reduce warnings
should mean that any warnings which are generated can be easily caught,
reviewed and dealt with appropriately.

Migrating Source Files

53 | P a g e

This allows code sharing and is typically employed in writing libraries, operating systems
and cross-platform software. Therefore it is important to understand the compiler specific
pre-processor directives and symbols for each compiler to enable you to migrate your
source cleanly.

Some compiler extensions are also expressed using pre-processor directives known as
'pragmas'. These are however covered in the next section which looks at C and C++
language extensions.

Each compiler will have its own set of compiler specific symbols which may be used to
write code that is only compiled by a specific toolchain, or even version of a toolchain. The
GNU C/C++ compiler documentation can be referenced to understand the symbols
provided, or alternatively the pre-processor cpp can be run directly in order to display the
symbols for the specific architecture as below:

 gcc -E -dM test.c

The compiler specific predefined symbols for IAR Embedded Workbench® are listed below
along with the equivalent/counterpart symbols for the GNU compiler (GCC).

Note that the asterisk '*' values show where there are multiple variants of a symbol.

IAR Symbol GCC Symbol Comment

__BUILD_NUMBER__ __GNUC__,
__GNUC_MINOR__,
__GNUC__PATCHLEVEL__

GCC provides individual symbols for each level of the
build number X.Y.Z

__CORE__ __ARM_ARCH_*__ Architecture variant being built for

__ARMVFP__ __VFP_FP__ VFP usage

__CPU_MODE__ __THUMB_INTERWORK__
__thumb__

Whether running in ARM, thumb or interwork mode.

__embedded_cplusplus N/A GCC does not have a single switch to restrict support
of C++ features. Instead individual features (e.g.
RTTI) can be controlled using the command line.

__IAR_SYSTEMS_ICC__ __GNUC__ Used to check the compiler toolchain in use.

__ICC_ARM__ __arm__ Symbol denoting building for ARM®

__LITTLE_ENDIAN__ __IEEE_LITTLE_ENDIAN,
__IEEE_BIG_ENDIAN

Endian setting for compilation

__VER__ __VERSION__ String representation of compiler version “x.y.z”

__TID__ N/A Target identifier, may be formed using other GNU
symbols.

Table 4 - IAR Embedded Workbench® Specific Predefined Symbols

Generally the pre-defined pre-processor symbols are used to control compilation of code
that has been specifically written for compilation for more than one project, architecture
or toolchain. In such cases the user can simply select the GNU equivalent from the table.

Migrating Source Files

54 | P a g e

The simplest way to determine the symbol(s) required is to compile a test file with the
required switches, but to only run the pre-processor, with the -dM setting.

For example:

 gcc -E -dM -mthumb test.c

Will show the __thumb__ symbol , whereas

 gcc -E -dM test.c

will show the __arm__ symbol (which is the default).

It can sometimes be useful to have a list of the compiler defined macros when porting the

source code. We can get that from the IAR compiler if add the EWARM compiler option '--

predef_macros' to the command line, or to the Extra Options tab in the IDE. The syntax is:

 --predef_macros {filename|directory}

Below are a couple of pages that explains some of the differences between IAR and GCC
language extensions. After that section we will continue the example we started to see
what we need to modify in in our code in order to make it GCC compatible, maintaining
the same behavior as our original project.

LANGUAGE EXTENSIONS
All C/C++ compilers provide language extensions to allow programmers to be more
productive, and to allow fine control over the code generation process. Language
extensions can be classified in the following way:

 Generic extensions, not targeted to any architecture, but providing some feature
seen to be missing in the language (e.g. inline functions in C, macros that can
return values).

 Extensions designed to allow the programmer to control the placement of code
and/or data (e.g. definition of the owning section).

 Extensions to provide special 'attributes' to functions or data to change the way
they are treated by the compiler (e.g. interrupt handler functions, packed
structures).

 Extensions to provide access to low level programming (in line assembler and
intrinsic functions).

The extensions can be implemented as one or more of the following:

Migrating Source Files

55 | P a g e

 Keywords: Very commonly used features (such as inline functions, or inline
assembler) warrant a keyword to enable clear code to be written. The number of
extended keywords is usually restricted to limit 'namespace pollution'.

 Attributes set via a single __attribute__ keyword: This mechanism allows any
number of attributes to be applied to the definition of a data object or function
using a single extended keyword. This is the recommended approach for using
the GNU C/C++ compiler.

 #pragma directives: These look like pre-processor directives, and have
implementation specific behavior. They have the advantage of not requiring any
new keywords to support extended features, but suffer from the fact that they
cannot be used in macros (like other directives), and usually toggle a feature
on/off for the rest of the file, or until another #pragma directive is used to change
the behavior.

The GNU Compiler toolchain provides a large number of language extensions, allowing for
generation of powerful and highly targeted code. This document does not cover all GNU
extensions, but rather examines the extension provided by the IAR Embedded
Workbench® toolchain, and discusses how they may be supported in a file to be compiled
using the GNU toolchain.

INLINE ASSEMBLER

 IAR GCC

Keyword: __asm __asm

Pragma:

Syntax: __asm(“<assembler>”) __asm(“<assembler>”)

Comment: GCC supports a superset of the IAR Embedded Workbench® functionality. Allowing for C level variables to
be accessed from the assembler. Advanced inline assembly is beyond the scope of this document. Please
see the GNU compiler manual for details. Note that GNU uses the semi-colon character to delimit
instructions, whilst the IAR Embedded Workbench® toolchain uses the newline character '\n'.

INLINE FUNCTIONS

 IAR GCC

Keyword: inline inline

Pragma: inline inline

Syntax: #pragma inline

void foo (void)

{…}

inline void foo2 (void)

{...}

inline void foo2 (void)

{...}

Comment: GCC supports only the keyword. The pragma extension is seen to be unnecessary, particularly with C99
support for inline functions.

Migrating Source Files

56 | P a g e

RAM BASED FUNCTIONS

 IAR GCC

Keyword: __ramfunc __attribute__((section(“NAME”)))

Pragma:

Syntax: __ramfunc void foo (void)

{...}

__attribute__ ((section (".ramfunc"))) void

foo (void) {…}

Comment: GCC does not directly support RAM functions which are copied from ROM to RAM at startup. However this
uses the same mechanism as initialized data, and so can be achieved by creating a section to contain RAM
functions (“.ramfunc” in the example), and modifying the linker script as shown below.

Figure 34 - Linker script, adding .ramfunc

INTERRUPT AND EXCEPTION FUNCTIONS

 IAR GCC

Keyword: __swi

__fiq

__irq

__attribute__((interrupt(“SWI”)))

__attribute__((interrupt(“FIQ”)))

__attribute__((interrupt(“IRQ”)))

Pragma: swi_number=NN

Syntax: __irq void foo (void)

{...}

void foo (void)__attribute__

((interrupt("IRQ")))

{...}

Comment: The IAR Embedded Workbench® “#pragma swi_number=N” is required in addition to the __swi keyword to
define the SWI number used.

Migrating Source Files

57 | P a g e

NESTED INTERRUPT FUNCTIONS

 IAR GCC

Keyword: __nested __attribute__((nesting))

Pragma:

Syntax: __nested __irq

void foo (void)

{...}

void foo (void)__attribute__ ((nesting))

{...}

Comment: The tagged function is marked as non-returning.

NON-RETURNING FUNCTIONS

 IAR GCC

Keyword: __noreturn __attribute__((noreturn))

Pragma:

Syntax: __noreturn void foo (void)

{...}

void foo (void)__attribute__ ((noreturn))

{...}

Comment: The tagged function is marked as non-returning.

Migrating Source Files

58 | P a g e

ARM® SPECIFIC FUNCTIONS

 IAR GCC

Keyword: __arm

__thumb

__interwork

__attribute__((arm))
__attribute__((thumb)

Pragma: long_calls

Syntax: __arm void foo (void)

{...}

Comment: The command line options can be used to enable any of the above at a module level. No feature is directly
added to support control at an individual function level in GCC currently. However the long_call and
short_call attributes can be used to achieve calling to/from thumb functions from code located far away in
the address map.

WEAK FUNCTIONS/DATA

 IAR GCC

Keyword: __weak __attribute__((weak))

Pragma: weak Weak

Syntax: __weak int i;

__weak void foo (void)

{...}

int i __attribute__((weak));

void foo (void) __attribute__((weak))

{...}

Comment: The option to generate interwork code is set as a command line option in Atollic TrueSTUDIO® and is only
available for targets that support both ARM and Thumb instructions.

ROOT FUNCTIONS AND UNREFERENCED DATA

 IAR GCC

Keyword: __root __attribute__((used))

Pragma: required

Syntax: #pragma required=i

int i;

__root void foo (void)

{...}

int i __attribute__((used));

void foo (void) __attribute__((used))

{...}

Comment: IAR Embedded Workbench® uses two separate mechanisms to force the inclusion of unreferenced
code/data at link time, GCC uses a single attribute.

Migrating Source Files

59 | P a g e

PACKED DATA

 IAR GCC

Keyword: __packed __attribute__((packed))

Pragma: pack Pack

Syntax: #pragma pack(4)

struct tag1

{

 char a;

 int b;

} mystruct1;

#pragma pack()

__packed struct tag1

{

 char a;

 int b;

} mystruct1;

#pragma pack(4)

struct tag

{

 char a;

 int b;

} mystruct;

#pragma pack()

struct tag1

{

 char a;

 int b __attribute__ ((packed));

} mystruct1;

Comment: GCC supports extension using the '__attribute__' keyword, and allows packing on individual elements of a
structure.

ALIGNMENT OF DATA

 IAR GCC

Keyword: __attribute__((aligned(N)))

Pragma: data_alignment

Syntax: #pragma data_alignment(8)

int i;

int i __attribute__((aligned(8)));

Comment: The IAR Embedded Workbench® toolchain only supports a #pragma, whereas GCC supports an
__attribute__

ENDIAN SETTING OF DATA

 IAR GCC

Keyword: __big_endian

__little_endian

Pragma:

Syntax: __big_endian int i;

Comment: The GNU toolchain only supports defining the endian setting at a module level.

Migrating Source Files

60 | P a g e

NON-INITIALISED DATA

 IAR GCC

Keyword: __no_init __attribute__((section(“no_init”)))

Pragma:

Syntax: __no_init int i;

int i __attribute__((section(“no_init”)));

Comment: The variable will not be initialized at startup as it is placed in a separate section. Use the GNU section
attribute to achieve the same thing.

LOCATION CONTROL OF DATA

 IAR GCC

Keyword: @ __attribute__((section(“NAME”)))

Pragma: location

Syntax: #pragma location i=0x0100

int i;

__no_init int j @ 0x0104;

#define i (*(int *)0x0100)

Comment: The GNU toolchain only supports defining the location of variables at a section level. Use the section
attribute to control the link location of a variable. The #define shown would also produce the same
functionality.

If we go back to our example project and do a Rebuild we will get an error and the build

process will stop. The error is because the compiler cannot find the include file

“intrinsics.h”. This is an IAR special header file that declares intrinsic functions that are

provided by the IAR compiler.

Doing builds like this is a good way to find problems where the IAR and GCC compiler

differs in language extensions and where some code modification is needed to migrate

from one toll to another.

To solve the problem with IAR intrinsic functions we can try to manually find where in our

code intrinsic functions are used, or we can decide to not include intrinsics.h, build again

and the compiler will tell us this where intrinsic functions are being used. We go for the

second option and comment out the line including intrinsics.h.

Migrating Source Files

61 | P a g e

Figure 35 - C/C++ remove <intrinsics.h>

When we now do a Build we get three warnings. One is about main() having the wrong

return type and the others are about two intrinsic functions that are not declared before

they are used. So we found our intrinsic functions and reading the IAR manual we see that

these functions, __disable_interrupt and __enable_interrupt, modifies PRIMASK to disable

and enable interrupts. Knowing CMSIS we know we have access the same functionality

with __disable_irq and _enable_irq. This will also make our code more portable, using the

CMSIS standard and not tool vendor specific extension. After modification our code now

looks like this.

Figure 36 - C/C++ enable/disable IRQ

We Build again and now we are left with one warning, the one saying main has the wrong

return type. We can fix that by defining main as returning an int or just ignore the

problem. It is not really important for our embedded application since it will not return

anyway. It’s going to be stuck in the while(1) loop above and only do something else when

an interrupt/exception occur.

From section 2 in this guide we know that the IAR version of stm32f10x_it.c contains a

definition of TIM1_UP_IRQHandler and we need to create the same behavior for our

TIM1_UP_IRQHandler ISR. Having a look at the original stm32f10x_it.c we see that it only

calls the function Timer1IntrHandler(), and Timer1IntrHandler is already defined in our

main.c. To make it simple we can just copy the definition of TIM1_UP_IRQHandler from

the original project to our stm32f10x_it.c and paste it in at the end of that C file.

Migrating Source Files

62 | P a g e

Note that we add a declaration of Timer1IntrHandler before we start using it to make sure

the compiler knows the return type and any parameters used by that function.

Figure 37 - C/C++ Adding TIM1_UP_IRQHandler

With this we have migrated the source code over to Atollic TrueSTUDIO® and GCC and it
should build without any errors. What we still have to do is to make sure that we are
locating all sections at the correct locations and we will do this in later on in this guide. But
before we go there let us have a look at assembler code and more importantly the startup
code.

Migrating Source Files

63 | P a g e

BUILT-IN FUNCTIONS
In addition to built-in functions to access processor instructions, the IAR Embedded
Workbench® compiler supports access to the start address of any named section using the
below functions.

void * __section_begin(char const * section)

void * __section_end (char const * section)

size_t * __section_size (char const * section)

These convenience functions are not supported by GCC, though the user can simply
determine the values by defining link-time symbols at the start and end of the sections of
interest within the linker command file. The symbols can then be used to determine the
start, end and size of any section.

As an example, if you have a global variable and you need to have access the start address,
end address or size of that variable, then you can do something like this in your C source
code.

Figure 38 - C/C++ finding start, end and size of sections

So first we tell the compiler that __start_myData1__ and __end_myData1__ will be
defined later in the build process. Second we define a variable and locate this in section
“.myData1”. After that is done we can start using __start_myData1__ and
__end_myData1__ in the code. What remains to get this to build is to add some code to
the linker script file and for the example above we would add this.

Migrating Source Files

64 | P a g e

Figure 39 - Linker finding start, end and size of sections

Migrating Source Files

65 | P a g e

ASSEMBLER SOURCE CHANGES
Although the underlying instructions and the addressing modes supported by them
remains constant in a development tools migration project, the one non-standardized part
of the toolchain is the syntax supported by the cross-assembler.

At the lowest level, cross-assemblers simply provide support for creating application code
by directly specifying which instructions get executed. In order to make the programmer's
task simpler, cross-assemblers offer additional 'productivity' features which include:

 Support for symbols and labels for symbolic addressing

 Support for pre-processing to allow for conditional cross-assembly and for the use
of definitions and macros

 Support for external file inclusion to allow for common definitions to be shared

 Support for arithmetic expressions and strings

 Support for some high-level language features (e.g. structures)

Unfortunately, some cross-assemblers do not only differ in the 'value added' features, but
also in the characters used for describing instructions (for example the symbols used to
differentiate between different addressing modes, or to define numeric constants).

This kind of variance between toolchains is simply resolved by using a simple mapping
scheme.

The table below summarizes the key differences between the two toolchains in assembler
syntax. Note that there are too many directives to list, in many cases there is a direct
equivalent, but the user's manual should be consulted to check.

Area GNU IAR

The GNU toolchain supports a directive to force the instruction syntax to be
the same as defined by the ARM Instruction Set reference. The IAR toolchain
is also compliant, which greatly simplifies porting. To enable the compliance
add the following line to your source file:

 .syntax unified

This ensures that the instructions and registers used in the source file will be
consistent with any other toolchain compliant to the ARM Instruction Set
reference.

Migrating Source Files

66 | P a g e

Area GNU IAR

Directive naming .<name> <NAME>

Multiline comment /* … */ /* … */

Single line comment # or @ // or ;

Statement delimiter ; or newline Newline only

Binary Constants 0bnnn or 0Bnnn b'nnn or nnnb

Octal Constants 0nnn q'nnn or nnnq

Decimal Constants Nnn nnn or d'nnn

Hexadecimal constants 0xnnn 0Xnnn 0nnnh or 0xnnn or h'nnn

Table 5 - Cross-assembler differences

Migrating Source Files

67 | P a g e

STARTUP CODE
On reset/power-up, startup code should be executed to initialize the runtime system (C
and/or C++). This includes initialization of the stack, heap and data sections, along with the
execution of global constructors for C++ applications. This functionality is automatically
supported by the standard C runtime provided with every toolchain.

 A vector table should be set up to connect reset, exception and interrupt table
entries to the respective handlers.

 Other processor specific initialization should be performed (e.g. clock and
memory subsystem initialization).

For the majority of systems only the hardware specific code may need to be modified,
there is usually a function which is called as part of the system startup code, before the
main function which may be used to do things such as setup clocks, PLLs and memory
controllers.

The hardware specific function (SystemInit in the case of the GCC tools for ARM®
processors) is written in C, and supplied as a source module which can be modified
according to need.

The interrupt vector table and interrupt handlers are also included in the startup code. For
the GNU toolchain, the vector table will be populated with links to a default interrupt
handler unless the user includes a function of the same name in their source code – this is
possible due to the use of weak symbols.

A weak symbol (and the data or function associated with it) will be included in the final
executable file unless another symbol of the same name is included in the link – when the
non-weak symbol is discovered by the linker, the weak symbol is discarded. This
mechanism allows default behavior to be defined in low-level code with override code
existing in the user's high level source files.

The table below summarizes the functions and symbols used by the IAR Embedded
Workbench® and the GNU toolchains for startup code.

The standard (CMSIS) startup sequence for Cortex-M devices is that ResetHander in
cstartup_<device>.s is the starting point when the device is reset. The function
ResetHandler will call SystemInit just after C/C++ has been initialized.

There are some differences between how Atollic TrueSTUDIO® and EWARM behave during
startup and we recommended that you use the starup file that comes with the project
created by TrueSTUDIO. Atollic TrueSTUDIO® follow the CMSIS standard and IAR might
have some extensions to the startup process. IAR have a symbol called
__iar_program_start that by default is the starting point for the linker and it can be the
starting point for the application (reset address). IAR also have a special function called
__low_level_init that is called at the very beginning of the application. Usually it returns an
int that has no meaning for anyone except IAR libraries and you can in that case safely
ignore that function. It is however possible to create your own version of __low_level_init
and if your application has that function defined then you should bring that function

Migrating Source Files

68 | P a g e

definition over to Atollic TrueSTUDIO® and call __low_level_init at the beginning of
SystemInit.

Property GNU IAR

Startup file startup_<device>.s

(e.g. startup_stm32f10x_cl.s)
startup_<device>.s
or

cstartup_M.s

Entry point ResetHandler ResetHandler
or

__iar_program_start

Hardware Initialization SystemInit SystemInit
and/or
__low_level_init

Interrupt Service routines xxHandler

(e.g. USART2_IRQHandler)

xxHandler

Default IRQ Handler Default_Handler Infinite loop for each

xxHandler

Top of Stack _estack sfe(CSTACK)

Bottom of Heap _end sfb(HEAP)

Start of BSS _sbss

End of BSS _ebss

Start of Init Values for Data _sidata

Start of Data _sdata

End of Data _edata

Table 6 - Startup Code symbols

Note the IAR toolchain uses special directives (sfb,sfe) to determine the
start/end of sections.

 Detailed Project Build Control

69 | P a g e

 DETAILED PROJECT

BUILD CONTROL
Having determined the source level changes required to make your application build in the
desired manner with the new compiler, you may find that the default compiler settings don't
generate a working system, or perhaps generate a system that doesn't match your
performance or size requirements.

At this stage knowledge of the underlying tools is important, as it allows you to take the best
possible advantage of the features and functionality offered.

The placement of code and data on your target are often of critical importance. Linker script
files offer the ability to control the placement of all parts of your application, but are
compiler toolchain specific. Therefore at some point it may become necessary to edit a
linker script file.

In addition, in more complicated migrations, you may need to migrate binary files, and/or
libraries. This requires understanding of how libraries are constructed.

This section covers the above topics in detail, allowing the final control and customization of
your migrated project.

Detailed Project Build Control

70 | P a g e

MIGRATING BUILD FILES

The gcc program is in fact a wrapper around the underlying tools (pre-
processor, C and C++ compilers and linker). This means that unless explicitly
instructed to do otherwise, it will attempt to create an executable binary from
the provided input files, selecting the correct compilation engine and
performing linkage using a default linker control script.

In most embedded applications the user requires to have precise control over
the location of code and data, so a two-stage compile and link process is
required. Thus the compiler and cross-assembler are used to generate
relocatable object files, and the linker is used to combine the selected
relocatable object files into a single 'resolved' executable file. This is shown
below.

GCC

cpp

cc1

g++

gas

ld

Pre-processor

C Compiler

C++ Compiler

Cross-assembler

Linker

Detailed Project Build Control

71 | P a g e

COMPILER SETUP AND CONTROL
The GNU C and C++ compilers offer a huge range of options allowing the user to tailor the
compiler according to the target architecture, the required level of optimization, the use of
language extensions and/or the generation of warnings and errors.

This document does not cover every option in detail; users should refer to the GCC
manual. The options discussed here are those required to perform a basic compilation in
addition to those directly associated with the underlying target.

Simple compilation of a C file can be achieved using the below command line

 gcc -c myfile.c -o myfile.o

This results in a relocatable object file being created (defined by using the '-c' option) from
the compilation of myfile.c with the resulting file being called myfile.o.

Debugging information (Dwarf2 format) can be generated by using the '-g' switch

 gcc -c myfile.c -g -o myfile.o

Section 3.9 of the GCC manual details the additional control over the generation of
debugging information.

OPTIMIZATION
Optimization can be selected by using one of the 'collection' optimization switches -O1,
-O2, -O3 or -Os which correspond to increasing levels of optimization for performance in
the case of the numeric options, or optimization for code size in the case of -Os. The
option -O0 is the default which ensures that the code generated can be debugged and
minimizes compilation time.

Use -Og to further optimize debugging. -Og enables optimizations that do not interfere
with debugging. It offers a reasonable level of optimization while maintaining fast
compilation and a good debugging experience. In many cases, it is the best option for
debugging.

Detailed Project Build Control

72 | P a g e

Details of the optimization settings available can be found in section 3.10 of the GCC
manual.

IMPLEMENTATION SPECIFIC OPTIONS
There are a large number of options to control the GNU compiler toolchain, which allow
for fine grained control of all aspects of the build process. Many of which are used to fine-
tune optimization, or provide more information to other tools, or the user.

However particular notice should be taken of any options which enable, disable or
otherwise alter the way in which the compiler generates code for source that complies to
the C or C++ language standard – this 'transparent' behavior can cause problems with
migration of code that either assumed a different behavior, or when linked against
libraries that were built with non-compatible options.

The areas which should be double checked include:

 Size of standard types (integers, floats, wide characters)

 Default signed or unsigned for 'char'

 Size of enumerated types

 Structure packing

 Bit-field layout

The documentation for both compilers should be checked to determine any conflicts in
default behavior, along with the build files for the original project to check if any specific
controls have been applied to modify the default behavior.

It should be noted that these options represent a collection of sub-options
which control individual optimization passes of the compiler.

The user may add additional sub-options to the command line to fine tune the
optimization performed. The individual optimization controls are detailed in
the GCC manual and are usually prefixed by '-f''.

For example '-fomit-frame-pointer' is commonly used in production code as
frame pointers are useful for debugging, but may not otherwise be required.

The higher optimization levels will target performance over code size, which
can result in inlining of code and loop unrolling. Where the code size increase
needs to be tightly controlled additional command line switches are available
to control the amount of inlining and unrolling. An example command line
using such switches is given below.

 gcc -c myfile.c -O3 -fomit-frame-pointer -finline-

limit=16 -o myfile.o

Detailed Project Build Control

73 | P a g e

A summary of the command line options provided by the IAR Embedded Workbench®
toolchain with exact or similar GCC options is provided below. Where the GCC option
shown includes an asterisk '*' this implies that more than one option is available to
provide fine grained control.

Detailed Project Build Control

74 | P a g e

IAR Option GNU Option GCC manual
section

Comment

--aapcs -mabi=aapcs 3.17.2 Specifies the calling convention

--aeabi -mabi=aapcs 3.17.2 Enables AEABI-compliant code generation

--align_sp_on_irq N/A The Stack is aligned by default.

--arm (default behaviour) N/A Sets the default function mode to ARM®

--char_is_signed -fsigned-char 3.17.2 Treats char as signed

--cpu -mcpu
-mtune
-march

3.17.2 Specifies a processor variant

--cpu_mode --mthumb
--mthumb-interwork

3.17.2 Selects the default mode for functions

-D -D 3.11 Define preprocessor symbol

--debug -g* 3.9 Generate debug information

--dependencies -M* 3.11 Lists file dependencies

--diag_error N/A 3.7 Diagnostic (compiler debug and analysis)
information can be controlled using the GCC
options -d*. This allows very fine grained
control.

--diag_remark N/A

--diag_suppress N/A

--diag_warning N/A

--diagnostics_tables N/A

--discard_unused_publics --discard-all
--discard-locals

2.1
LD manual

Discards unused public symbols (IAR
Embedded Workbench®), GCC allows control
over various types of symbols to discard.

--dlib_config N/A Determines the library configuration file

-e -std=gnu90
-std=gnu99
-std=gnu++98

3.4 Enables language extensions based on C90,
C99 and C++98 respectively.

--ec++,--eec++ -fno-* 3.5 Disable certain features of C++

--
enable_hardware_workaroun
d

N/A Enables a specific hardware workaround

--enable_multibytes N/A Enables support for multibyte characters in
source files. Default behaviour of GCC.

--endian -mlittle-endian
-mbig-endian

3.17.2 Specifies the byte order of the generated
code and data

--enum_is_int -fshort-enums 3.18 Specify the size of an enumerated type

--error_limit N/A Specifies the allowed number of errors before
compilation stops

-f N/A Extends the command line

Detailed Project Build Control

75 | P a g e

IAR Option GNU Option GCC manual
section

Comment

--fpu -mfloat-abi
-mfpu

3.17.2 Selects the type of floating-point unit

--header_context -M* 3.11 Lists all referred source files and header files

-I -I 3.11 Specifies include file path

--interwork -mthumb-interwork 3.17.2 Generates interworking code

-l (objdump) -S Binutils manual Creates a list file (file must have been built
with debug)

--legacy N/A Generates object code linkable with older tool
chains

--mfc -fwhole-program 3.1 Whole program optimisation

--migration_preprocessor...
_extensions

N/A This is an inter-IAR compiler migration option
and is not relevant for Atollic TrueSTUDIO®
project migrations.

--misrac1998 , --misrac_ N/A Misra is not supported by GCC

--no_clustering N/A Locality of access is enabled by default in GCC
along with support for profile based
optimisation.

--no_code_motion -fno-sched-interblock 3.1 GCC has a number of scheduling options.

--no_const_align N/A

--no_cse -fno-gcse 3.1 Disables common sub-expression elimination

--no_fragments -fno-reorder-functions 3.1 Disables section fragment handling

--no_guard_calls N/A Disables guard calls for static initializers

--no_inline -fno-inline 3.1 Disables function inlining

--no_path_in_file_macros N/A Removes the path from the symbols __FILE__
and __BASE_FILE__

--no_scheduling -fno-schedule-insns 3.1 Disables the instruction scheduler

--no_tbaa -fno-strict-aliasing 3.1 Disables type-based alias analysis

--no_typedefs_in_diagnostics N/A Disables the use of typedef names in
diagnostics

--no_unaligned_access -fno-align-* 3.1 Avoids unaligned accesses

--no_unroll -fno-unroll-loops 3.1 Disables loop unrolling

--no_warnings -w 3.8 Disables all warnings

--no_wrap_diagnostics -fmessage-length 3.7 Disables wrapping of diagnostic messages

-O* -O* 3.1 Sets the optimization level

-o -o 3.2 Sets the output file name

Detailed Project Build Control

76 | P a g e

IAR Option GNU Option GCC manual
section

Comment

--only_stdout N/A Uses standard output only – this can be
achieved by the shell used to invoke the
compiler.

--output -o 3.2 Sets the object filename

--predef_macros -E -dM 3.11 Lists the predefined symbols

--preinclude -include 3.11 Includes an include file before reading the
source file

--preprocess -E 3.11 Generates preprocessor output

--public_equ --def-sym 2.1
LD manual

Defines a global named assembler label

-r -g* 3.9 Generates debug information

--remarks N/A Enables remarks

--require_prototypes -Wmissing-prototype 3.8 Verifies that functions are declared before
they are defined

--section --unique 2.1
LD manual

Changes a section name

--separate_cluster_for...
_initialized_variables

N/A Separates initialized and non-initialized
variables

--silent N/A Sets silent operation

--strict_ansi -ansi
-pedantic

3.4 & 3.8 Checks for strict compliance with ISO/ANSI C

--thumb -mthumb 3.17.2 Sets default function mode to Thumb

--
use_unix_directory_separator
s

N/A Uses / as directory separator in paths. This is
the default behaviour in GCC.

--warnings_affect_exit_code N/A Warnings affects exit code. This is the default
behaviour in GCC

--warnings_are_errors -Werror 3.8 Warnings are treated as errors

Table 7 - Compiler option cross-reference

Detailed Project Build Control

77 | P a g e

LINK MANAGEMENT
All modern compiler toolchains include a linker which is used to combine the output of the
compiler, the cross-assembler and any libraries into an executable file. The linker
therefore can have 3 types of input:

 Required application relocatable object files

 Library files used to provide library modules required by the application

 A linker control file

This section examines the linker control file usage and format, but before going into detail
it's worth understanding how the linker may be invoked. As the GCC wrapper application
supports automatic invocation of the correct underlying tool, it is possible to run the linker
directly, or indirectly.

 gcc myfile.o -lc -o myfile.elf is equivalent to

 ld myfile.o -lc -o myfile.elf

Both of the above commands will take the relocatable object file myfile.o, link it with the
standard C library file libc.a and produce an executable (ELF) format file called myfile.elf.

The '-lc' option uses a shorthand notation where '-l' tells the linker to link a library which it
will find using default search paths, the environment or other command line hints, and the
'c' suffix will be expanded to 'libc.a' or 'libc.so' (static and dynamic libraries respectively).
Many embedded systems will not be running with a port of Linux, so only static libraries
are available.

It is possible to perform compilation and linkage at the same time, using the below
command line:

 gcc myfile.c -lc -o myfile.elf

The only problem with using the GCC wrapper application is that there are situations
where similar options are available for the compiler and the linker. Where there is a need
to specify a linker option, while still using GCC, those commands may be prefixed by the -
Wl switch as below

 gcc myfile.o -lc -Wl,--entry=ResetHandler -o myfile.elf

A separate manual is provided which details how the linker is used, called ld.pdf in the
Atollic distribution.

LINKER SCRIPT/COMMAND FILES
Linker script files are used to control what gets linked, where it gets placed in memory and
to define any symbols which may be used to initialize the system on startup.

Detailed Project Build Control

78 | P a g e

Most modern linkers provide similar functionality to one-another, so in migration, the
main task is to understand how to convert the syntax of one linker command format to
that of the other.

Some projects never require changing the default behavior of the linker away from that
either provided by the compiler toolchain, or more likely by the IDE which created the
project.

When starting a migration it is strongly recommended to use the Atollic TrueSTUDIO® IDE
to create a project along with the associated build files which may then be tailored
according to need.

The wizard provided by the IDE will allow the user to select the target processor and even
development board, which will greatly simplify the process. It should also be remembered
that all embedded systems have the same basic requirements:

 On reset/power-up, startup code should be executed to initialize the runtime system
(C and or C++), this includes initialization of the stack, heap and data sections, along
with the execution of global constructors for C++ applications. This functionality is
automatically supported by the standard C runtime provided with every toolchain.

 A vector table should be set up to connect reset, exception and interrupt table entries
to the respective handlers.

 Other processor specific initialization should be performed (e.g. clock and memory
subsystem initialization).

The GNU linker LD supports a high-level command syntax to enable placement of code and
data. An extract of example file is provided below along with explanatory comments to
highlight the main features.

Note that the '.' directive defines the current location pointer.

Detailed Project Build Control

79 | P a g e

ENTRY(Reset_Handler) Define the entry point of the application as
'ResetHandler'

_estack = 0x20010000;

_Min_Heap_Size = 0;

_Min_Stack_Size = 0x200;

Define symbols with constant values

MEMORY

{

 FLASH (rx) : ORIGIN = 0x08000000, LENGTH =

256K

 RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 64K

 MEMORY_B1 (rx) : ORIGIN = 0x60000000, LENGTH =

0K

}

Define memory regions:

 'FLASH' with read / execute permissions,
size 256kB, start address 0x8000000

 'RAM' with read / write / execute
permissions, size 64kB, start address
0x20000000

 'MEMORY_B1' with read/execute
permissions, size 0kB, start address
0x60000000

SECTIONS

{

Start allocation of sections to memory

 .isr_vector :

 {

 . = ALIGN(4);

 KEEP(*(.isr_vector))

 . = ALIGN(4);

 } >FLASH

Allocate the '.isr_vector' section to FLASH. 4-byte
alignment is maintained to ensure correct
placement.

 .sidata = .;

 .data : AT (_sidata)

 {

 . = ALIGN(4);

 _sdata = .;

 *(.data)

 (.data)

 . = ALIGN(4);

 _edata = .;

 } >RAM

Define the symbol '.sidata' to be at the current
location in memory (just after the vector table).
Using the'AT' directive, place the contents of the
.data* sections at the addres specified by .sidata,
but link references to the data as if it exists in the
RAM section. This allows for initial values to be
placed in non-volatilve memory, and copied at
startup into the runtime memory image.
Symbols _sdata and _edata are defined for the
start and end addresses of the collection of '.data'
sections. Thus initialisation copies from .sidata to
_sdata.

 PROVIDE (end = _ebss);

 PROVIDE (_end = _ebss);

Provide the symbols end and _end only if they are
referenced, but not defined anywhere in the
included files (to ensure a linker symbol clash
doesn't occur)

 ._user_heap_stack :

 {

 . = ALIGN(4);

 . = . + _Min_Heap_Size;

 . = . + _Min_Stack_Size;

 . = ALIGN(4);

 } >RAM

Allocate an area in the RAM memory which is at
least as big as the minimum heap and stack sizes
defined earlier in the file.

} Complete the section allocation

Detailed Project Build Control

80 | P a g e

If we have a look at the IAR linker script file from our example project we will see
something like the code below. Here we have highlighted different parts of the linker
script file and we will have a look at how the corresponding GCC linker script file would do
the same thing.

Figure 40 - EWARM linker script file

Line 1 to 14 is defining symbols that later are used in the script. In our GCC script we would
define symbols the same way we define variables in C, like this.

Figure 41 - Linker script, defining symbols

Detailed Project Build Control

81 | P a g e

Line 17 to 23 defines the memory space and the different regions inside this memory. The
corresponding way to do this in GCC is to use the MEMORY command and define the
different regions inside this MEMORY command. Our example project defines our memory
and regions like this.

Figure 42 - Linker script, defining memory and regions

Line 27 to 28 is defines the stack and heap blocks. In our GCC linker script we would do the
same thing inside the SECTIONS command and the screenshot below shows an example of
this.

Figure 43 - Linker script, adding stack and heap

Here we align the stack and heap to 4, provide the symbols “end” and “_end” as addresses
to the end of the heap block and then locates the heap and stack after each other. The
“>RAM” makes sure that all of this is located in the RAM memory region.

Line 30 to 32 is specifying what to initialize or not. We do the same thing in our script file
when we locate our sections inside the SECTIONS command. In the example above for the
stack and heap sections we used “>RAM” at the end to specify that this is none initialized
sections. A section that needs to be initialized would in our example use “RAM AT> FLASH”
to tell the linker to store this section at FLASH and copy the content to RAM at startup.
Below is an example of this.

Detailed Project Build Control

82 | P a g e

Figure 44 - Linker script, initialized data

Line 34 to 39 is locating the different sections into memory regions. This is what we
already have done inside the SECTIONS command for the stack, heap and initialized data.
Our GCC linker script contains many more commands inside the SECTION command in
order to make sure that all sections in our example application gets located correctly.

Line 34 in the IAR linker script file contains a “place at’ directive in order to make sure that
the interrupt vector table is located at the beginning of our Flash memory. In our GCC
script we can accomplish the same thing if we, in the SECTIONS command, start be
locating our vector table in the FLASH memory region. Anything else that is located in
FLASH will be located after our vector table.

We see that we are missing the USB_PKG_RAM_region and that we have a memory region
call MEMORY_B1that we really don't need for our application after we compare the two
linker script files. We can also see in the IAR linker script that USB_PKG_RAM_region
should not be initialized. The rest is behaving basically the same and we can keep the
Atollic TrueSTUDIO® linker script file as it is for those other parts.

To create a linker script file that will, in all essential parts, locate our application and
initialize memory in the same way as the original project we need to do the following

Replace the memory region MEMORY_B1 with USB_PKG_RAM_region.

Remove the code that locates sections into MEMORY_B1.

Add section placement for the sections that goes into USB_PKG_RAM_region, making sure
that this section should not be initialized.

Comparing the memory start addresses and sizes with IAR we see that ROM/FLASH and
RAM matches up, but we need to modify the start address and size for our USB memory.
We modify the MEMORY command in our linker script file to this.

Detailed Project Build Control

83 | P a g e

Figure 45 - Linker script, modifying memory regions

We also remove the code locating code and data into MEMORY_B1 to avoid getting a
warning from the linker saying none declared memory region.

Figure 46 - Linker script, removing section placements

After this code is removed we add code to locate our USB_PACKET_MEMORY into
uninitialized USB_PKG_RAM_region memory region. We can do this with the code below.

Figure 47 - Linker script, place sections in regions

In order to locate variables into the USB_PACKET_MEMORY we can use the
__attribute keyword “__attribute((section("USB_PACKET_MEMORY")))”.

Detailed Project Build Control

84 | P a g e

LIBRARY MANAGEMENT
Libraries are collections of relocatable object files that are commonly used by applications.
The collection, or archive, may be used by the linker to resolve (i.e. find a match for) a
function or data item which has been referenced by the user's application code.

Every compiler ships with a number of libraries such as the standard C library, the C
mathematics library, the C++ runtime library etc. Such 'system' libraries usually include
default startup code and intrinsic libraries which implement the low-level functionality
required to make an application work.

Startup code ensures that the processor is initialized correctly on reset and that the
runtime environment is set up correctly (global variables get their correct values, the heap
is initialized etc).

Intrinsic libraries implement low level operations which the compiler requires to support
high level language types and features, which are not easily implemented using one or a
small number of assembler instructions. Examples of intrinsic functions may include 64-bit
arithmetic on 32-bit machines, floating point operations on machines with no floating
point unit and function prolog/epilog code used when optimizing for size.

Each relocatable module contained within a library will only be included in the generated
executable file if one or more of the symbols it exports (which correspond to functions or
data items) is referenced, either directly from application code, or indirectly from another
library which itself was directly referenced. This enables the generated executable file to
only include the required functions and data, rather than always including the complete C
or C++ runtime.

There are two types of library, static and dynamic. The library code contained within static
libraries will form part of the executable (if referenced) – i.e. all references are resolved
once ('statically') at build time.

As most embedded systems are single applications, this is the normal model. Dynamic
libraries allow the library code to be linked to the application at runtime, which leads to
smaller application binaries, but requires a runtime linker/loader such as that provided by
Linux. This document covers static libraries only, as systems migrating from the IAR
Embedded Workbench® toolchain will not be Linux based.

STANDARD LIBRARIES
The C and C++ standards don't just define the language, but also specify a set of runtime
libraries that need to be supported.

The 'standard libraries provide facilities to manipulate data at a level not supported
directly by the language (e.g. strings), to manage memory allocation dynamically (malloc
and free for C, or new and delete for C++), and to interact with the underlying system (file
input/output, time management etc).

Detailed Project Build Control

85 | P a g e

In addition to the standard libraries, compilers typically ship with what are called 'intrinsic'
libraries.

These are compiler specific and usually provide low level routines which the compiler
invokes automatically as part of the build process. Intrinsic functions are usually written to
implement a language feature which the underlying processor cannot support simply.

For example 64-bit arithmetic on a 16 or 32-bit CPU, or floating-point arithmetic on any
CPU without a dedicated floating-point unit. Programmers don't call intrinsic libraries
directly (they don't need to) and there is no guarantee that the functions comply to the
normal ABI.

The intrinsic functions are usually hand optimized, written in assembler, and
undocumented. The programmer simply needs to ensure that the intrinsic, or 'language
support' library is included in the build to enable the correct low-level functions to be
included in the final application.

A further type of library file usually shipped with a compiler is used to support systems
where 'objects' need initialization at startup. This includes calling constructors for global
objects in C++ applications; along with the corresponding destructors should the
application ever exit. Special initialization and finalization sections are included in the
executable file which contains code to iterate through a list of supplied
constructors/destructors.

In order to aid migration, the below table provides an insight into the libraries shipped
with the GNU C/C++ compiler:

Detailed Project Build Control

86 | P a g e

Library Language Usage

Libc.a C This is the standard C runtime library (not including maths)

Libg.a C This is a debug build of the standard C runtime library

Libm.a C This is the C standard mathematic library

Libgcc.a C This is the intrinsic 'compiler support' library required to support C
applications

Libiberty.a C a collection of subroutines used by various GNU programs including
getopt, obstack, strerror, strtol and strtoul.

Libgcov.a C GCC supports automatic instrumentation of code, by including gcov, it is
possible to analyze programs to help create more efficient, faster
running code through optimization

Libsupc++.a C++ This library provides support for the C++ programming language (among
other things, libsupc++ contains routines for exception handling). This
library can be used where the full C++ standard library is not required.

Libstdc++.a C++ The C++ standard library. It is used by C++ programs and contains
functions that are frequently used in C++ programs. This includes the
Standard Template Library (STL).

crtbegin.o & crtend.o C++ Constructors and destructor support files

Table 8 - Standard Libraries

LIBRARY CREATION AND MANAGEMENT
Static libraries are simply a collection of compiled source modules, they can be created
and managed using a standard 'archiving' tool, in the case of the GNU C/C++ compiler, and
this tool is called 'ar'.

To create an archive from one or more relocatable object files, use the command line
below, which will create a new archive called libmyfiles.a, or update it if it already exists,
replacing old versions of modules file1.o and file2.o if they exist.

 ar cru libmyfiles.a file1.o file2.o

By convention static libraries have the '.a' extension.

The IAR Embedded Workbench® library management tool (iarchive) is similar in concept
and capability to the GNU one, which makes migration of library build files relatively
simple.

In the case where legacy IAR Embedded Workbench® binaries are to be used in the
migrated application, it is useful to extract those modules from the libraries they currently
exist in, in order to create a 'migration library' which may also include any ABI wrapper
code required.

Detailed Project Build Control

87 | P a g e

It is not recommended to simply link against original IAR Embedded Workbench® libraries,
as they may (will) include modules which define functions or data items which are also
defined in the GNU libraries – this will create link time errors due to duplicate symbols, or
in the worst case override weak symbols in the GNU libraries resulting in a successfully
linked application which has unexpected behavior.

Example commands to determine the location of a symbol in a library, to extract the
containing relocatable module, and to include it into a migration library are shown below.

For iarchive to find and extract the relocatable file (module)

 iarchive --symbols mylib.a list the symbols in library

 iarchive -x mylib.a module.o extract module.o from the library

For GNU to create/update the migration library

 ar cru libmigration.a module.o

Unless a specific third party library is used, in all other cases the
recommended way to solve library dependencies is as below.

1. Link the application against the GNU libraries only, noting any
'unresolved external' linker errors.

2. Determine the source of each of the symbols in the legacy libraries.
This can be done using a combination of the library management tool
and an object file utility as shown in the following example.

3. Extract only the source modules that contain the required symbols
from the legacy libraries creating/updating a migration library.

4. Repeat from step 1 above linking against the updated migration
library until all unresolved externals are resolved.

Detailed Project Build Control

88 | P a g e

MIGRATING 3RD PARTY FILES
If your existing project contains third party libraries, which you wish, or need, to include in
the migration project, then the scope of the migration needs to be enlarged to encompass
the effort to achieve this.

As the GNU Compiler toolchain port to the ARM® architecture is ubiquitous, it is extremely
likely that a port has already been done to GCC. Depending on the way that the library is
supplied, you may already have a port!

VENDOR SUPPLIED PORTS
Some vendors supply libraries in source form with build/configuration files. In such cases,
it is likely that the source files already support GCC compilation through the use of
conditional compilation. The documentation supplied with the library should provide
information on building with the GNU tools.

Often the libraries are supplied in a binary format, in order to protect the intellectual
property of the vendor. In such cases it is likely that a binary distribution for the GNU
compiler toolchain is available, though it will be necessary to check licensing arrangements
with the vendor.

SOURCE LEVEL PORTING
The method to port third party source libraries to GCC is essentially the same as for the
rest of the project. You may however need to check on the terms of the license to check
whether porting the source files to another toolchain is permitted.

In order to make the ported library available to other projects, it is worth creating a new
project in the Atollic TrueSTUDIO® workspace to contain it. The workspace environment
supports multiple projects, each of which may be an application or a library. In addition,
dependencies between projects may be defined to ensure that the build order is correct
(i.e. build the libraries first), and that if the library is changed, then the main application
will be rebuilt too.

BINARY LEVEL PORTING
From a technical perspective this is the hardest of the porting exercises to achieve. The
assumption here is that there is a binary library with associated header files, and the user
is unable to convince the vendor to supply a version of the library which has been ported
to the GNU compiler toolchain.

Detailed Project Build Control

89 | P a g e

The requirement is to be able to call all of the library functions from your GCC based
application, passing data into, and receiving data from them.

The steps to follow for simple integration are:

1. Use the IAR Embedded Workbench® archive tool to extract all modules from the
IAR Embedded Workbench® archive

2. Use the GNU archive tool to create a new archive, importing all of the library
modules

3. Add the new library as file to the main application project

An example of this process is shown below:

iarchive -x tplib.a module.o extract module.o from the library

ar -cru libtplib.a *.o create a new library with all the modules

CREATING A BINARY INTERFACE
In a small number of cases it may be necessary to construct an interface library to the third
party library. For C libraries, the process is relatively straight forward. For C++ libraries,
the process may be much more complex; depending on the nature of the library it may be
prudent to create a C wrapper around the underlying C++ library, effectively masking the
differences in the ABI between compilers.

In some situations this may not be acceptable, in which case C++ wrappers will need to be
constructed – this requires a high level of understanding of the low level implementation
of C++ (how objects are constructed in memory, how polymorphism is supported using
virtual function pointer tables, how exceptions are thrown and caught), and is beyond the
scope of this document.

Here follows a series of methods which the user can employ to perform the majority of
migration tasks.

As detailed previously in this document, both the GNU and IAR compilers
support the ARM procedure call standard, and have consistent object file
formats, which may enable the library functions to be directly linked into your
end application. It is worth checking this route first, before embarking on
generating ABI wrappers.

Detailed Project Build Control

90 | P a g e

FUNCTION CALL/RETURN

Before going into the methods used to construct binary interfaces, the first thing that
needs to be understood is the function call/return mechanism. This defines the registers
that get used in passing parameters and returning results when calling functions, in
addition to rules on which registers may be modified by a called function without needing
to be preserved (i.e. saved on entry and restored on exit).

The input parameters are stored first in registers, and then on the stack.

Item Description

Input Parameters r0 to r3
r0:r1 and r2:r3 pairs may be used for 64-bit parameters.
The first parameter may be an address:

 the 'this' pointer for C++

 the address of a large/composite return value

Return Value r0, or r0:r1 for 64-bit values
r0 may contain the address of the return data for large/composite data

Work registers r0 to r3 and r12 may be modified by the called function without saving

Saved registers r4 to r11 must be saved if modified and restored before returning

Special registers r13 is the stack pointer
r14 is the link register
r15 is the program counter

Thus on return from a function, registers r4 to r11 must contain the same values as when
it was called, as should the stack pointer and link register. Register r0 contains the return
value. Registers r1 to r3 and r12 may contain any data.

USE THE COMPILER TO CREATE AN INTERFACE FOR YOU

The 'outgoing' compiler may be used to construct a call/return interface for use by the
new compiler by simply using its ability to emit assembler source files from C/C++ level
input. This relies on using the legacy toolchain to create a valid assembler interface,
callable from C or C++ which may then be integrated with the new tools.

As an example, assume the third party library has a function 'foo' with the below
prototype.

It should be noted that this procedure assumes that the two C/C++ compilers
produce code with incompatible interfaces, if this is not the case, then please
refer to previous sections in this manual for integrating compatible libraries
into your new project.

Detailed Project Build Control

91 | P a g e

typedef struct s

{

 int a;

 char *str;

} S;

S foo (int a, char *str);

The function takes two parameters, one of which is a pointer, and returns a structure. It is
assumed that for whatever reason, the structure layout varies between the two compilers,
which present the worst case scenario to deal with.

First of all, create a wrapper function in C as a basis for the interface and save in a file
called wrapper.c.

S foo_w (int a, char *str)

{

 S s = foo (a,str);

 return (s);

}

The aim is to produce function prolog/epilog code suitable for GCC, and a function body
suitable for calling the underlying IAR Embedded Workbench® function.

To generate two assembler files using the two compilers:

gcc -S wrapper.c -o wrapper_g.s -O0 -fomit-frame-pointer

iccarm wrapper.c -lb wrapper_i.s -On --interwork

This will cause files wrapper_g.s and wrapper_i.s to be generated, both of which have
compiled the input code and generated an assembler source file.

Looking at the two files, it is possible to see the parts of the code responsible for managing
the function 'prolog' and 'epilog' – i.e. setting up the stack frame, managing incoming
parameters and setting the return value, plus the parts of the code responsible for calling
the library function 'foo'.

The source file should be compiled twice, using both the IAR and GNU
compilers, in both cases using the compiler's facility to emit assembler source
files, and in both cases with optimization disabled. It is important to remove
optimization, as otherwise the compiler may produce code which is extremely
hard to adapt.

Detailed Project Build Control

92 | P a g e

The table below shows how the generated code can be partitioned and merged to form a
new function. In this simple example, as both compilers conform to the procedure call
standard, there was no need to create the wrapper file, but it enables the mechanism to
be shown. The prolog and epilog code is shown in blue, the function call code in green, and
the return value processing in red.

IAR GNU Merged

foo_w:

 PUSH {R2-R6,LR}

 MOVS R4,R0

 MOVS R5,R1

 MOVS R6,R2

 MOVS R2,R6

 MOVS R1,R5

 MOVS R0,SP

 BL foo

 MOVS R0,SP

 LDR R2,[R0, #+0]

 LDR R3,[R0, #+4]

 STM R4,{R2,R3}

 POP {R1,R2,R4-R6,LR}

 BX LR

foo_w:

 stmfd sp!, {r4, lr}

 sub sp, sp, #16

 mov r4, r0

 str r1, [sp, #4]

 str r2, [sp, #0]

 add r3, sp, #8

 mov r0, r3

 ldr r1, [sp, #4]

 ldr r2, [sp, #0]

 bl foo

 mov r3, r4

 add r2, sp, #8

 ldmia r2, {r0, r1}

 stmia r3, {r0, r1}

 mov r0, r4

 add sp, sp, #16

 ldmfd sp!, {r4, lr}

 bx lr

foo_w:

 stmfd sp!, {r4, lr}

 sub sp, sp, #16

 mov r4, r0

 str r1, [sp, #4]

 str r2, [sp, #0]

 add r3, sp, #8

 MOVS R2,R2 ;not needed

 MOVS R1,R1 ;not needed

 MOVS R0,R3

 BL foo

 mov r3, r4

 add r2, sp, #8

 ldmia r2, {r0, r1}

 stmia r3, {r0, r1}

 mov r0, r4

 add sp, sp, #16

 ldmfd sp!, {r4, lr}

 bx lr

Once the prolog and epilog code has been identified, and as the resulting function is to be
called by code generated by GCC, the prolog, epilog and return value processing code is
copied from the GNU generated code. The function call code is then copied from the IAR
Embedded Workbench® generated code, which ensures that the function which is to be
called has the parameters set in the correct manner.

However the function call code has to be modified to reflect the locations where the
incoming values were stored by the GNU compiler. In fact, by inspection, it can be seen
that the input values remain in registers r1 and r2, so the modified IAR Embedded
Workbench® code as shown is really not required. Finally, the r0 parameter should point

As defined earlier, the procedure call standard states that if the return value is
a composite type (structure) which is larger than 4 bytes, then an extra
argument is used to specify the location the return value is to be stored. Thus
r0 is used to pass in the address of the memory to contain the return value. In
the case of the IAR generated code, the memory is put at the top of the stack,
whereas for the GNU generated code, the memory is located at an 8-byte
offset into the stack.

Note that if the location of the input data varied between compilers, this
section of code would vary between the two assembler files. In such cases,
the code highlighted in green would need to map the incoming data from the
prolog to the format required for the underlying function.

Detailed Project Build Control

93 | P a g e

to the memory which has been set aside by the GNU compiler for the return value, so the
merged code is modified to use r3 rather than the stack pointer.

Having completed the merged file, it may be included as an assembler source file into the
overall project and built accordingly.

	About this Document
	Intended Readers
	Document Conventions

	Section 1. Migration Decisions
	Why migrate?
	When to Migrate?
	What to migrate and the implications of migration?
	Project and build control
	Infrastructure and work-flow
	Application source and firmware
	Third party O/S and libraries
	Re-validation

	How can migration be made easier?
	Automated Project creation
	CMSIS - Cortex® Microcontroller Software Interface Standard
	Migration of Legacy Firmware
	ABI Compliance

	Section 2. Starting the Migration with Atollic TrueSTUDIO®
	Before you start
	Workspaces & projects

	Creating a new project
	Configuring the project
	Building the project
	Build, Rebuild all

	Importing Source Files
	Using files in an external location
	Using directories in an external location

	Using IAR Eclipse plugin

	Section 3. Migrating Source Files
	C/C++ Source changes
	The Pre-processor
	Language extensions
	Inline assembler
	Inline functions
	RAM based functions
	Interrupt and exception functions
	Nested interrupt functions
	Non-returning functions
	ARM® specific functions
	Weak functions/data
	Root functions and unreferenced data
	Packed Data
	Alignment of data
	Endian setting of data
	Non-initialised data
	Location control of data

	Built-in functions

	Assembler source changes
	Startup code

	Section 4. Detailed Project Build Control
	Migrating Build files
	Compiler setup and control
	Optimization
	Implementation Specific Options

	Link management
	Linker Script/Command Files

	Library management
	Standard Libraries
	Library Creation and Management

	Migrating 3rd Party files
	Vendor supplied ports
	Source level porting
	Binary level porting
	Creating a binary interface
	Function call/return
	Use the compiler to create an interface for you

