

Thorne & Derrick +44 (0) 191 490 1547 www.heatingandprocess.com

Technical Description

MULTICAL[®] 602

MULTICAL[®] 602

List of contents

1	Gen	eral description	6
2	Tec	hnical Data	7
	2.1	Approved meter data	7
	2.2	Electrical data	8
	2.3	Mechanical data	10
	2.4	Materials	10
-	2.5	Accuracy	10
3	Тур	e overview	.11
1	3.1	Type and programming overview	11
1	3.2	Type number combination	12
-	3.3	PROG, A-B-CCC-CCC	14
1	3.4	Display coding	21
1	3.5	>EE< Configuration of MULTITARIFF	23
-	3.6	>FF< Input A (VA) - pulse divider, >GG< Input B (VB) - pulse divider	25
-	3.7	Configuration of pulse outputs in the top module	26
1	3.8	>MN< Configuration of leak limits	26
-	3.9	>T< Configuration of encryption level	26
-	3.10	Data for configuration	27
4	Dim	ientional sketches	.28
5	Inst	allation	.29
5 :	Inst 5.1	t allation Inlet pipe and outlet pipe placing	.29 29
5 !	Inst 5.1 5.2	t allation Inlet pipe and outlet pipe placing EMC conditions	.29 29 30
5 : :	Inst 5.1 5.2 5.3	t allation Inlet pipe and outlet pipe placing EMC conditions Climatic conditions	.29 29 30 30
5	Inst 5.1 5.2 5.3 5.4	allation Inlet pipe and outlet pipe placing EMC conditions Climatic conditions Electric installations	.29 30 30 30
5	inst 5.1 5.2 5.3 5.4 Cale	tallation Inlet pipe and outlet pipe placing EMC conditions Climatic conditions Electric installations culator functions	.29 30 30 30 30
5 	inst 5.1 5.2 5.3 5.4 Cal e 5.1	tallation Inlet pipe and outlet pipe placing EMC conditions Climatic conditions Electric installations culator functions Energy calculation	.29 30 30 30 30 31
5 	Inst 5.1 5.2 5.3 5.4 Cale 5.1 5.2	tallation Inlet pipe and outlet pipe placing EMC conditions Climatic conditions Electric installations culator functions Energy calculation Application types	.29 30 30 30 30 31 31
5 	Inst 5.1 5.2 5.3 5.4 Cale 5.1 5.2 5.3	tallation Inlet pipe and outlet pipe placing EMC conditions Climatic conditions Electric installations culator functions Energy calculation Application types Calculator with two flow sensors	.29 30 30 30 30 31 31 32 37
5 6 6	Inst 5.1 5.2 5.3 5.4 Calo 5.1 5.2 5.3 5.4	tallation Inlet pipe and outlet pipe placing EMC conditions Climatic conditions Electric installations culator functions Energy calculation Application types Calculator with two flow sensors Combined heat/cooling metering	.29 30 30 30 31 31 32 37 38
5 	Inst 5.1 5.2 5.3 5.4 Cal 5.1 5.2 5.3 5.4 5.3 5.4	tallation Inlet pipe and outlet pipe placing EMC conditions Climatic conditions Electric installations culator functions Energy calculation Application types Calculator with two flow sensors Combined heat/cooling metering Flow measurement, V1 and V2	.29 30 30 30 31 31 32 37 38 39
5 6 6	Inst 5.1 5.2 5.3 5.4 Cal 5.1 5.2 5.3 5.4 5.3 5.4 5.5 5.6	tallation Inlet pipe and outlet pipe placing EMC conditions Climatic conditions Electric installations culator functions Energy calculation Application types Calculator with two flow sensors Combined heat/cooling metering Flow measurement, V1 and V2 Power measurement, V1	29 30 30 31 31 32 37 38 39 40
5	Inst 5.1 5.2 5.3 5.4 Cal 5.1 5.2 5.3 5.4 5.3 5.4 5.5 5.6 5.6	tallation Inlet pipe and outlet pipe placing EMC conditions Climatic conditions Electric installations culator functions Energy calculation Application types Calculator with two flow sensors Combined heat/cooling metering Flow measurement, V1 and V2 Power measurement, V1 Min. and max. flow and power, V1	.29 30 30 31 31 32 37 38 39 40 41
5 	Inst 5.1 5.2 5.3 5.4 Calc 5.1 5.2 5.3 5.4 5.2 5.3 5.4 5.5 5.6 5.6 5.7 5.8	tallation Inlet pipe and outlet pipe placing EMC conditions Climatic conditions Electric installations culator functions Energy calculation Application types Calculator with two flow sensors Combined heat/cooling metering Flow measurement, V1 and V2 Power measurement, V1 Min. and max. flow and power, V1 Temperature measurement	.29 30 30 31 31 31 37 38 39 40 41 42
5 	Inst 5.1 5.2 5.3 5.4 Cal 5.1 5.2 5.3 5.4 5.3 5.4 5.5 5.6 5.7 5.8 5.9	tallation Inlet pipe and outlet pipe placing EMC conditions Climatic conditions Electric installations culator functions Energy calculation Application types Calculator with two flow sensors Combined heat/cooling metering Flow measurement, V1 and V2 Power measurement, V1 Min. and max. flow and power, V1 Temperature measurement Display functions	29 30 30 31 31 32 37 38 39 40 41 42 44
5	Inst 5.1 5.2 5.3 5.4 Cal 5.1 5.2 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	tallation	.29 30 30 31 31 32 37 38 39 40 41 42 44 44
5 	Inst 5.1 5.2 5.3 5.4 Calo 5.1 5.2 5.3 5.4 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.7 5.8 5.9 5.10 5.11	tallation	29 30 30 31 31 31 37 38 37 38 39 40 41 44 44 44
5 	Inst 5.1 5.2 5.3 5.4 Cal 5.1 5.2 5.3 5.4 5.2 5.3 5.4 5.5 5.6 5.6 5.7 5.8 5.9 5.10 5.11 5.12	tallation	.29 30 30 31 31 31 31 32 37 38 39 40 41 42 44 47 48 51

MULTICAL[®] 602

6.14	Leak surveillance	58
6.15	Reset functions	
6.16	SMS Commands	
6.17	Set-up via the front keys	
6.18	Reset via the front keys	
6.19	Preset the pulse value for V1 and V2	66
Flov	w sensor connection	
7.1 Vo	lume inputs V1 and V2	67
7.2	Flow sensor with active 24 V pulse output	
7.3	Pulse inputs VA and VB	72
Ten	nperature sensors	
8.1	Sensor types	
8.2	Cable influence and compensation	
8.3	Pocket sensors	
8.4	Pt500 short direct sensor set	
Vol	tage supply	
9.1	Integral D-cell lithium battery	80
9.2	Battery lifetimes	
9.3	High Power supply module 230 VAC	
9.4	High Power supply module 24 VAC	
9.5	Supply module 230 VAC	
9.6	Supply module 24 VAC	
9.7	Exchanging the supply unit	
9.8	Mains supply cables	
9.9	Back-up of data during power down	
9.10	Danish regulations for connection of mains operated meters	
) P	lug-in modules	
10.1	Top modules	
10.2	Base modules	
10.3	Retrofitting modules	
D	ata communication	
11.1	MULTICAL [®] 602 data protocol	
11.2	MULTICAL [®] 602 communication paths	
11.3	Optical eye	
2 C	alibration and verification	
12.1	High-resolution energy reading	
12.2	High-resolution volume for test	
12.3	Verification adapter	
12.4	True energy calculation	
	6.14 6.15 6.16 6.17 6.18 6.19 Flov 7.1 Vo 7.2 7.3 Ten 8.1 8.2 8.3 8.4 Vol 9.2 9.3 9.4 9.2 9.3 9.4 9.2 9.3 9.4 9.2 9.3 9.4 9.2 9.3 9.4 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.7 9.8 9.7 9.8 9.7 9.8 9.7 9.8 9.7 9.8 9.7 9.10 P 10.1 10.2 10.3 I 11.1 11.2 11.3 I 11.1 11.2 11.3 I 11.1 11.2 11.3 I 11.1 11.2 11.3	6.14 Leak surveillance 6.15 Reset functions 6.16 SMS Commands 6.17 Set-up via the front keys 6.18 Reset via the front keys 6.19 Preset the pulse value for V1 and V2 Flow sensor connection

13	METERTOOL and LogView for MULTICAL® 602	111
13.1	Introduction	111
13.1	How to use METERTOOL HCW for MULTICAL [®] 602	112
13.2	2 Verification with METERTOOL MULTICAL [®] 602	118
13.3	B LogView HCW	121
14	Approvals	123
14.1	CE marking	123
14.2	2 Measuring instrument directive	123
15	Trouble-shooting	125
16	Disposal	126
17	Documents	127
18	Appendix A - MULTICAL [®] 602 vs. previous meters	
19	Appendix B - MULTICAL [®] 602 vs. MULTICAL [®] 6L2	128
20	Appendix C - MULTICAL [®] 6M2, a calculator for mixed fluids	

1 General description

 $MULTICAL^{\circ}$ 602 is a thermal energy meter with many applications. In addition to being a precise and reliable heat meter for battery or mains operation, $MULTICAL^{\circ}$ 602 is also used for:

- Cooling measurement in water-based systems
- Bifunctional heat/cooling measurements in separate registers
- Leak surveillance of hot and cold-water installations
- Power and flow limiter with valve control
- Data logger
- Data communication
- Energy measurement in open systems

In designing the MULTICAL[®] 602 we have attached great importance to flexibility via programmable functions and plug-in modules (see chapter 10) in both the calculator top as well as in the base unit to ensure optimal use in a large number of applications. In addition, the construction ensures that already installed MULTICAL[®] 602 meters can be updated via the PC program METERTOOL.

This technical description is prepared to give utility managers, meter electricians, consulting engineers and distributors the possibility of utilizing all functions available in the MULTICAL[®] 602. Furthermore, the description is made for laboratories for the testing and verification process.

2 Technical Data

2.1 Approved meter data

Standard	EN 1434:2007, prEN 1434:2009 and OIML R75:2002			
EU directives	Measuring Instrument Directive, Low Voltage Directive, Electromagnetic Compatibity Directive			
Heat meter approval Temperature range Differential range	DK-0200-MI004-020 θ: 2°C180°C ΔΘ: 3 K170 K	The stated minimum temperatures apply to the type approval only. The meter has no cut-off for low		
Cooling meter Temperature range Differential range	θ: 2°C50°C ΔΘ: 3 K40 K	temperature and thus measures as low temperatures as 0.01°C and 0.01 K.		
Accuracy	$E_{c} \pm (0.5 + \Delta\Theta_{min}/\Delta\Theta)$	%		
Temperature sensors	-Type 602-A -Type 602-B and 602-I -Type 602-C	Pt100 – EN 60 751, 2-wire connection Pt500 – EN 60 751, 4-wire connection Pt500 – EN 60 751, 2-wire connection		
Compatible flow sensor types	-ULTRAFLOW [®] -Electronic meters with an active 24 V pulse output -Mechanical meters with an electronic pick-up unit -Mechanical meters with a Reed switch			
Flow sensor sizes	[kWh] qp 0.6 m [MWh] qp 0.6 m [GJ] qp 0.6 m	¹³ /h15 m³/h ¹³ /h1500 m³/h ³ /h3000 m³/h		
EN 1434 designation	Environmental class A and C			
MID designation	Mechanical environment: Class M1			
	Electromagnetic enviro	Electromagnetic environment: Class E1 and E2		
	555 °C, non condensing, closed location (indoor installation)			

2.2 Electrical data

Calculator data

Typical accuracy	Calculator: $E_{c} \pm (0.15 + 2/\Delta\Theta) \%$ Sensor set: $E_{T} \pm (0.4 + 4/\Delta\Theta) \%$
Display	LCD – 7 (8) digits with a digit height of 7.6 mm
Resolution	9999.999 – 99999.99 – 999999.9 – 9999999
Energy units	MWh – kWh – GJ – Gcal
Data logger (EEPROM)	Standard: 1392 hours, 460 days, 36 months, 15 years, 50 info codes
	Option: Data loggers with programmable interval
Clock/calendar	Clock, calendar, compensation for leap years, target date, Real time clock with battery back-up
Data communication	KMP protocol with CRC16 used for optical communication and for top and base modules
Power in temperature sensors	$<$ 10 μ W RMS
Supply voltage	3.6 VDC ± 0.1 VDC
Battery	3.65 VDC, D-cell lithium
Stand-by current	<15 µA excluding flow sensor
Replacement interval	
- Mounted on the wall	12+1 years @ $t_{BAT} < 30 \text{ °C}$
- Mounted on the flow sensor	10 years @ t_{BAT} < 40 °C
	The replacement interval is reduced when using data modules, frequent data communication and high ambient temperature. See chapter 9.2.
Mains supply	230 VAC +15/-30 %, 50/60 Hz 24 VAC ±50 %, 50/60 Hz, see paragraph 9.6.1 re choice of transformer
Insulation voltage	4 kV
Power supply	< 1W
Back-up supply	Integral super-cap eliminates operational disturbances due to short-term power cuts (Power supply modules type 602-0000-7 and type 602-0000-8 only)
EMC data	Meets prEN 1434-4:2009 class C (MID class E2)

Temperature measurement

		T1	T2	T3	T4
602-A	Measuring range	0.00185.00°C	0.00185.00°C	0.00185.00°C	N/A
2-W Pt100	Preset range	0.01180.00°C	0.01180.00°C	0.01180.00°C	0.01180.00°C
				NI / A	N1 / A
602-B/D	Measuring range	0.00185.00°C	0.00185.00°C	N/A	N/A
4-W Pt500	Preset range	0.01180.00°C	0.01180.00°C	N/A	0.01180.00°C
-	1				
602-C	Measuring range	0.00185.00°C	0.00185.00°C	0.00185.00°C	N/A
2-W Pt500	Preset range	0.01180.00°C	0.01180.00°C	0.01180.00°C	0.01180.00°C

Max. cable lengths	Pt100, 2-wire	Pt500, 2-wire	Pt500, 4-wire
Max. ø6mm cable	2 x 0.25 mm ² : 2.5 m	2 x 0.25 mm ² : 10 m	4 x 0.25 mm ² : 100 m
	2 x 0.50 mm ² : 5 m	2 x 0.50 mm ² : 20 m	-
	2 x 1.00 mm ² :10 m		

MULTICAL[®] 602

Flow measuring V1 and V2	ULTRAFLOW [®] V1: 9-10-11 and V2: 9-69-11	Reed switches V1: 10-11 and V2: 69-11	FET switches V1: 10-11 and V2: 69-11	24 V active pulses V1: 10B-11B and V2: 69B-79B
CCC-code	1xx and 2xx	0xx	9хх	2xx and 9xx
EN 1434 pulse class	IC	IB	IB	(IA)
Pulse input	680 k Ω pull-up for 3.6 V	680 k Ω pull-up for 3.6 V	680 k Ω pull-up for 3.6 V	12 mA at 24 V
Pulse ON	< 0.4 V in > 0.5 msec.	< 0.4 V in > 100 msec.	< 4 V i > 3 msec.	< 4 V in $>$ 3 msec.
Pulse OFF	> 2.5 V in > 10 msec.	> 2.5 V in > 100 msec.	> 12 V i > 10 msec.	> 12 V in > 10 msec.
Pulse frequency	< 128 Hz	< 1 Hz	< 4 Hz	< 128 Hz
Integration frequency	< 1 Hz	< 1 Hz	< 2 Hz	< 1 Hz
Electrical isolation	No	No	No	2 kV
Max. cable length	10 m	25 m	25 m	100 m

Pulse inputs <u>without</u> bounce damping:

Pulse inputs VA and VB	Water meter connection	Electricity meter connection
VA: 65-66 and VB: 67-68	FF(VA) and GG(VB) = 7190	FF(VA) and $GG(VB) = 5070$
Pulse input	680 k Ω pull-up for 3.6 V	680 k Ω pull-up for 3.6 V
Pulse ON	< 0.4 V in > 30 msec.	< 0.4 V in > 30 msec.
Pulse OFF	> 2.5 V in > 100 msec.	> 2.5 V in > 100 msec.
Pulse frequency	< 1 Hz	< 3 Hz
Electrical isolation	No	No
Max. cable length	25 m	25 m
Requirements to external contact	Leakage current at function	open < 1 μ A

Pulse inputs with bounce damping:

Pulse inputs VA and VB	Water meter connection
VA: 65-66 and VB: 67-68	FF(VA) and $GG(VB) = 0140$
Pulse input	680 k Ω pull-up for 3.6 V
Pulse ON	< 0.4 V i > 200 ms.
Pulse OFF	> 2.5 V i > 500 ms.
Pulse frequency	< 1 Hz
Electrical isolation	None
Max. Cable length	25 m
Requirements to external contact	Leakage current at function open < 1 μA

Pulse outputs CE and CV

602-0A/0C	67-0B
Open collector (OB)	Opto FET
530 VDC	548 VDC/AC
110 mA	150 mA
U _a ≈ 1 V at 10 mA	$R_{s} \le 40 \Omega$
2 kV	2 kV
25 m	25 m
Optional 32 msec. or 100 m	isec.
	602-0A/0C Open collector (OB) 530 VDC 110 mA U _a ≈ 1 V at 10 mA 2 kV 25 m Optional 32 msec. or 100 m

MULTICAL[®] 602

2.3 Mechanical data

Environmental class	Meets EN 1434 class A and C		
Ambient temperature	555 °C non condensing, closed location (indoor installation)		
Protection class	IP54		
Storage temperature	-2060 °C (drained meter)		
Weight	0.4 kg excluding sensors and flow sensor		
Connection cables	ø3.56 mm		
Supply cable	ø510 mm		
2.4 Materials			

Top cover	PC
Base unit	ABS with TPE packings (thermoplastic elastomer)
Print box	ABS
Wall brackets	PC + 30 % glass
DIN rail bracket	PC + 20 % glass

2.5 Accuracy

Figure 1. MULTICAL[®] *602 typical accuracy compared with EN 1434.*

3 Type overview

MULTICAL[®] 602 can be ordered in a countless number of combinations as required by the customer. First the required hardware is selected in the type overview. Then "Prog", "Config" and "Data" are selected to suit the application in question.

The meter is delivered completely configured and ready for use from the factory but it can also be retrofitted/reconfigured after installation.

Please note that the items marked "Totalprog" can only be changed when the verification seal is broken. This requires that the change must be made at an accredited meter laboratory.

New functions and modules for MULTICAL[®] 602 are constantly being developed. Please contact Kamstrup A/S, if the described variants do not meet your requirements.

3.1 Type and programming overview

Type number (Total prog.)

602-X-X-XX-X-XX-X-XXX

Selection of Pt100/Pt500 calculator, modules, supply, sensor set, flow sensor and language on label

PROG (Total prog.)

A-B-CCC-CCC

- Inlet pipe/Outlet pipe
- Energy unit
- Inlet meter code

CONFIG (Partial prog.) DDD-EE-FF-GG-M-N-T

- Display
- Tariff
- Pulse inputs
- Leak sensibility
- Pulse outputs
- AMR Encryption level

DATA (Partial prog.)

- Customer no.
- Target date
- Tariff limits
- Average peak time max./min.
- Date/time

3.2 Type number combination

	MULTICAL [®] 602	Туре 602-								
Sensor connection Pt100 2-wire (T1-T2) Pt500 4-wire (T1-T2) Pt500 2-wire (T1-T2-T3) Pt500 4-wire (T1-T2) w/24 V pulse inputs Too module	5		A B C D							
No module AEnergy calculation + hourly data logger PQ or At-limiter + hourly data logger Data output + hourly data logger M-Bus AVolume + hourly data logger 2 pulse outputs for CE and CV + hourly data RTC + 2 pulse outputs for CE and CV + prog. 2 Pulse outputs CE and CV	logger + scheduler data logger			0 2 3 5 7 9 A B C						
Base module No module Data + pulse inputs M-Bus + pulse inputs Radio Router + pulse inputs Prog. data logger + RTC + 420 mA inputs + 0/420 mA outputs LonWorks + pulse inputs (internal antenna) 43/2 Radio + pulse inputs (internal antenna) 43/2 Radio + pulse inputs (external antenna) 43/2 Radio + pulse inputs (It Wireless M-Bus, Mode C1 + pulse inputs (It Wireless M-Bus, Mode C1 Alt. reg. + pulse i Wireless M-Bus, Mode C1 (Common Key) ZigBee 2.4 GHz int.ant. + pulse inputs SIOX module (Auto detect Baud rate) BACnet MS/TP + pulse inputs Modbus RTU + pulse inputs	- pulse inputs or 444 MHz nection) 434 or 444 MH pulse inputs + pulse inputs rulse inputs nulse inputs d. Key) . Key) . Key)	Iz			00 10 20 21 22 23 24 25 26 27 28 29 30 31 35 36 38 60 62 62 64 66 67					
GSM/GPRS (GSM6H) 3G GSM/GPRS module (GSM8H) Ethernet/IP (IP201) High Power RadioRouter + pulse inputs			Req High- sup mod	uire Power ply ules	80 81 82 84					
Supply No supply Battery, D-cell 230 VAC high power isolated SMPS 24 VAC high power isolated SMPS 230 VAC isolated linear supply 24 VAC isolated linear supply Pt500 sensor set						0 2 3 4 7 8				
No sensor set Pocket sensor set w/1.5 m cable Pocket sensor set w/3.0 m cable Pocket sensor set w/5 m cable Pocket sensor set w/10 m cable Short direct sensor set w/1.5 m cable 3 Pocket sensors in sets w/1.5 m cable 3 Short direct sensors in sets w/1.5 m cable Flow sensor /pick-up unit	e						00 0A 0B 0C 0D 0F 0G 0L Q3			
Supplied w/1 pcs. ULTRAFLOW [®] Supplied w/2 pcs. (identical) ULTRAFLOW [®] Prepared for 1 pcs. ULTRAFLOW [®] Prepared for 2 pcs. (identical) ULTRAFLOW [®] Prepared for meters w/electronic pulse out Prepared for meters w/Reed switch output Prepared for meters w/24 V active pulses	(Please specify type) (Please specify type) (Please specify type) (Please specify type) (Please specify type) put (Both V1 and V2)							1 2 7 8 K L M		
meter type Heat meter, (MID module B+D) Heat meter, (MID module B+D) Heat meter, closed systems Cooling meter Heat/Cooling meter Volume meter, hot water Volume meter, cooling water Energy meter, open systems									2 3 4 5 6 7 8 9	
Country code (language on label etc.)										XX

Comments to the Type number survey

When placing orders please state ULTRAFLOW[®] type numbers separately. ¹⁾ See paragraph 10.2 for further details. ²⁾ Requires two identical flow sensors.

3.2.1 Accessories

D-cell battery
24 VAC high power isolated SMPS
230 VAC high power isolated SMPS
24 VAC isolated linear supply
230 VAC isolated linear supply
Pulse transmitter/divider for 602-A and 602-C
4-wire connection PCB with pulse inputs for 24 V active pulses (for 602-D)
Data cable w/USB plug
Infrared optical reading head w/USB plug
Infrared optical reading head for Kamstrup/EVL w/USB plug
Infrared optical reading head w/D-sub 9F
Data cable RS 232, D-sub 9F
Verification unit (used with METERTOOL)
Temperature sensor set with connection head (2/4-wire)
External Communication Box
METERTOOL for HCW
LogView for HCW
DIN rail bracket

Please contact Kamstrup A/S for questions concerning further accessories.

3.3 PROG, A-B-CCC-CCC

The legal parameters of the meter are determined by Prog, which can only be changed when the verification seal is broken. The change must then be made at an accreditated meter laboratory.

The A-code indicates whether the flow sensor (V1) is installed in inlet or outlet pipe. As water has a larger volume at higher temperatures, the calculator must be adjusted for the current installation type. Wrong programming or installation results in measuring errors. For further details on placing the flow sensor in the inlet or outlet pipe in connection with heat and cooling meters, see paragraph 5.1.

The B-code indicates the measuring unit used for the energy register. GJ, kWh or MWh are used most frequently, whereas Gcal is only used in some countries outside the EEA.

The CCC code indicates the calculator's adaptation to a specific flow sensor type, i.e. the calculation speed and display resolution are optimised to the selected flow sensor type and at the same time the type approval regulations concerning min. resolution and max. register overflow are met. The CCC codes are divided into several tables to give a better survey.

CCC(V1) indicates the CCC code of the flow sensor and is connected to flow sensor input V1 on terminal 9-10-11 (or 10B-11B), which in most applications is the flow sensor used for calculating energy.

CCC(V2) indicates the CCC code of an extra flow sensor, if any, to be connected to terminal 9-69-11 (or 69B-79B). If V2 is not used, CCC(V2) = CCC(V1). In connection with leakage surveillance CCC(V2) = CCC(V1).

Prog. numbe	r	A	ċ	B	-	CCC (V1)	-	CCC (V2)
Flow sensor	placing:							
k-factor table	- Inlet pipe (at T1) - Outlet pipe (at T2)	3 4						
Measuring u	nit, energy			2				
- kWh - MWh - Gcal				- 3 4 5				
Flow sensor (CCC-table)	coding					ССС		ССС

3.3.1 CCC-table for MULTICAL[®] 602

The CCC tables are divided into fast pulse codes (CCC=4XX, 2XX and 1XX) for electronic meters, e.g. ULTRAFLOW[®], and slow codes for e.g. reed contacts (CCC=0XX, 9XX).

CCC= 4XX	Electronic meters with fast and bounce-free pulses as well as info codes for ULTRAFLOW $^{\circ}$ X4
	Max. pulse frequency: 128 Hz
	Max. integration frequency: 1 Hz
CCC= 1XX, 2XX	Electronic meters with fast and bounce-free pulses
	Max. pulse frequency: 128 Hz
	Max. integration frequency: 1 Hz
CCC= 0XX	Mechanical meters delivering slow pulses with bounce (flow sensor type "L")
	Max. pulse frequency: 1 Hz
	Max. integration frequency: 1 Hz
CCC=9XX	Electronic meters with slow and bounce free pulses
	Max. pulse frequency: 1 Hz (CCC=91X), or 4 Hz (CCC=92X)
	Max. integration frequency: 1 Hz

Max. integration frequency is 1 Hz for all types. The CCC codes are arranged in a way that qs+20 % (or Qmax+20 %) does not exceed the 1 Hz in the integration frequency.

Example: CCC=107 (applies for a qp 1.5 m³/h meter) : 1 Hz in the integration frequency is obtained at $q = 3.6 \text{ m}^3/\text{h}$.

EN 1434 makes demands on the resolution and registre size of the energy reading. MULTICAL[®] 602 meets these demands when connected to below flow sensor sizes:

[kWh]	qp 0.6 m³/h15 m³/h
[MWh]	qp 0.6 m³/h1500 m³/h
[GJ]	qp 0.6 m ³ /h3000 m ³ /h

3.3.2 CCC codes for mechanical flow sensors with Reed switch

				Number of decimals on the display										
CCC no.	Pre- counter	Flow factor	kWh	MWh Gcal	GJ	m³ [ton]	m³/h	l/h	kW	MW	l/pulses	Pulses/l	Qmax [m³/h]	Flow sensor
010	1	921600	1	-	3	3	-	0	1	-	1	1	≤ 3,0	L
011	1	921600	-	3	2	2	2	-	0	-	10	0.1	130	L
012	1	921600	-	2	1	1	1	-	-	2	100	0.01	10300	L
013	1	921600	-	1	0	0	0	-	-	1	1000	0.001	1003000	L
020	4	230400	0	3	2	2	2	-	0	-	2.5	0.4	≤6	L
021	4	230400	-	2	1	1	1	-	-	2	25	0.04	360	L
022	4	230400	-	1	0	0	0	-	-	1	250	0.004	30600	L

Current flow (l/h or m^3/h) reading is calculated on the basis of the measured period between 2 volume pulses (see paragraph 6.5)

When one of above CCC codes has been selected both CCC (V1) and CCC (V2) must be selected from this table.

Note: Continuous maximum water flow and permanent $\Delta \Theta > 75$ K may cause overflow in the daily data logger at CCC=010-011-012-013-150-202-205. With these combinations we recommend you to use Prog. data logger type 67-0B or type 67-00-22.

				Number of decimals on the display										
CCC no.	Pre- counter	Flow factor	kWh	MWh Gcal	GJ	m³ [ton]	l/h	m³/h	kW	MW	Pulses/l	qp [m³/h]	Type no.	Flow sensor
116	3000	78642	0	3	2	2	0	-	1	-	300	0.6	65 54 A8X 65 54 AAX	1-2-7-8-K
119	1000	235926	0	3	2	2	0	-	1	-	100	1.5	65 54 A6X 65 54 A7X 65 54 A1X 65 54 A2X 65 54 A3X	1-2-7-8-K
136	500	471852	0	3	2	2	0	-	1	-	50.0	2.5	65 54 A4X 65 54 ADX	1-2-7-8-K
151	5000	471852	-	2	1	1	0	-	1	-	50.0	3.5	65 54 B1X 65 54 B7X	1-2-7-8-K
137	2500	943704	-	2	1	1	0	-	1	-	25.0	6.0 6.0 10 10	65 54 B2X 65 54 B5X 65 54 BGX 65 54 BHX	1-2-7-8-К
120	1000	2359260	-	2	1	1	0	-	1	-	10.0	15 25	65 54 B4X 65 54 B8X	1-2-7-8-K
158	5000	471852	-	1	0	0	-	2	0	-	5.0	40	65 54 B9X	1-2-7-8-K
170	2500	943704	-	1	0	0	-	2	-	3	2.5	60	65 54 BAX	1-2-7-8-K
147	1000	2359260	-	1	0	0	-	2	-	3	1.0	150	65 54 BBX	1-2-7-8-K
194	400	5898150	-	1	0	0	-	2	-	3	0.4	400	65 54 BCX	1-2-7-8-K
195	250	9437040	-	1	0	0	-	2	-	3	0.25	1000	65 54 BKX	1-2-7-8-K

3.3.3 CCC codes for ULTRAFLOW[®] II, type 65 54 XXX

Current flow reading (l/h or m^3/h) is calculated on the basis of volume pulses/10 sec. (see paragraph 6.5)

3.3.4 CCC codes for electronic flow sensors with slow and bounce free pulses (only MC6
--

				1	Number o	of decima	als on th							
CCC no.	Pre- counter	Flow factor	kWh	MWh Gcal	GJ	m³	m³/h	l/h	kW	MW	l/ Pulses	Pulses/l	qp	Flow sensor
910	1	921600	1	-	3	3	-	0	1	-	1	1	0.6-1.5	К
911	1	921600	-	3	2	2	2	-	0	-	10	0.1	1.5-15	K
912	1	921600	-	2	1	1	1	-	-	2	100	0.01	15-150	K
913	1	921600	-	1	0	0	0	-	-	1	1000	0.001	150-1500	К
920	4	230400	0	3	2	2	2	-	0	-	2.5	0.4	0.6-15	К
921	4	230400	-	2	1	1	1	-	-	2	25	0.04	3.5-150	К
922	4	230400	-	1	0	0	0	-	-	1	250	0.004	40-1500	К

Note: CCC=9XX can only be used for MULTICAL® 602, and not for MULTICAL[®] 601 or MULTICAL[®] 801.

MULTICAL[®] 602

3.3.5 CCC codes for ULTRAFLOW[®] type 65-SRT

				Number of decimals on the display										
CCC no.	Pre- counter	Flow- factor	kWh	MWh Gcal	GJ	m³ [ton]	l/h	m³/h	kW	MW	Pulses/l	qp [m³/h]	Type no.	Flow part
116	3000	78642	0	3	2	2	0	-	1	-	300	0.6	65-X-CAAA-XXX 65-X-CAAD-XXX	1-2-7-8-K
119	1000	235926	0	3	2	2	0	-	1	-	100	1.5	65-X-CDAC-XXX 65-X-CDAD-XXX 65-X-CDAE-XXX 65-X-CDAF-XXX 65-X-CDAF-XXX	1-2-7-8-K-M
136	500	471852	0	3	2	2	0	-	1	-	50.0	3.0	65-X-CFAF-XXX 65-X-CFBA-XXX	1-2-7-8-K-M
151	5000	471852	-	2	1	1	0	-	1	-	50.0	3.5	65-X-CGAG-XXX 65-X-CGBB-XXX	1-2-7-8-K-M
137	2500	943704	-	2	1	1	0	-	1	-	25.0	6 6 10 10	65-X-CHAG-XXX 65-X-CHBB-XXX 65-X-C1AJ-XXX 65-X-C1BD-XXX	1-2-7-8-K-M
178	1500	1572840	-	2	1	1	0	-	1	-	15.0	10	65-X-CJAJ-XXX 65-X-CJBD-XXX	1-2-7-8-K-M
120	1000	2359260	-	2	1	1	0	-	1	-	10.0	15	65-X-CKBE-XXX	1-2-7-8-M
179	600	3932100	-	2	1	1	0	-	1	-	6.0	25	65-X-CLBG-XXX	1-2-7-8-K
120	1000	2359260	-	2	1	1	0	-	1	-	10.0	25	65-X-C2BG-XXX	1-2-7-8-K-M
158	5000	471852	-	1	0	0	-	2	0	-	5.0	40	65-X-CMBH- XXX	1-2-7-8-K-M
170	2500	943704	-	1	0	0	-	2	-	3	2.5	60	65-X-FABL-XXX 65-X-FACL-XXX	1-2-7-8-K-M
180	1500	1572840	-	1	0	0	-	2	-	3	1.5	100	65-X-FBCL-XXX	1-2-7-8-K
147	1000	2359260	-	1	0	0	-	2	-	3	1.0	150	65-X-FCBN-XXX 65-X-FCCN-XXX	1-2-7-8-K-M
181	600	3932100	-	1	0	0	-	2	-	3	0.6	250	65-X-FDCN-XXX	1-2-7-8-K
191	400	589815	-	1	0	0	-	1	-	2	0.4	400	65-X-FEBN-XXX 65-X-FEBR-XXX 65-X-FECN-XXX 65-X-FECP-XXX 65-X-FECR-XXX	1-2-7-8-K-M
192	250	943704	-	1	0	0	-	1	-	2	0.25	600 600 1000 1000	65-X-FFCP-XXX 65-X-FFCR-XXX 65-X-F1BR-XXX 65-X-F1CR-XXX	1-2-7-8KM
193	150	1572840	-	1	0	0	-	1	-	2	0.15	1000	65-X-FGBR-XXX	1-2-7-8-K-M

Current flow reading (l/h or m^3/h) is calculated on the basis of volume pulses/10 sec. (see paragraph 6.5)

					Number	of decim	als on th	e display						
CCC no.	Pre- counter	Flow factor	kWh	MWh Gcal	GJ	m³ [ton]	l/h	m³/h	kW	MW	Pulses/l	qp [m³/h]	Type no.	Flow sensor
184	300	78642	1	-	3	3	0	-	1	-	300	0.6		1-2-7-8-K-M
107	100	235926	1	-	3	3	0	-	1	-	100	1.5		1-2-7-8-K-M
136	500	471852	0	3	2	2	0	-	1	-	50.0	3.5		1-2-7-8-K-M
138	250	943704	0	3	2	2	0	-	1	-	25.0	6.0		1-2-7-8-K-M
100	1.50											10		
183	150	15/2840	0	3	2	2	0	-	1	-	15.0	10		1-2-7-8-K-M
185	100	2359260	0	3	2	2	0	-	1	-	10.0	15		1-2-7-8-K-M
186	500	471852	-	2	1	1	-	2	0	-	5.0	40		1-2-7-8-K-M
187	250	943704	-	2	1	1	-	2	-	3	2.5	60		1-2-7-8-K-M
188	150	1572840	-	2	1	1	-	2	-	3	1.5	100		1-2-7-8-K-M
189	100	2359260	-	2	1	1	-	2	-	3	1.0	150		1-2-7-8-K-M
191	400	589815	-	1	0	0	-	1	-	2	0.4	400		1-2-7-8-K-M
192	250	943704	-	1	0	0	-	1	-	2	0.25	600 1000		1-2-7-8-K-M
193	150	1572840	-	1	0	0	-	1	-	2	0.15	1000		1-2-7-8-K-M

3.3.6 CCC codes with high resolution for ULTRAFLOW[®] (for cooling meters etc.)

Current flow reading (l/h or m³/h) is calculated on the basis of volume pulses/10 sec. (see paragraph 6.5)

3.3.7 CCC codes for other electronic meters with a <u>passive</u> output

				Numbe	r of dec	imals on	the disp	olay					
CCC no.	Pre- counter	Flow factor	MWh Gcal	GJ	m³ [ton]	m³/h	kW	MW	l/pulse	Pulses/l	Qmax [m³/h]	Туре	Flow sensor
147	1000	2359260	1	0	0	2	-	3	1	-	1875	SC-18	K-M
148	400	5898150	1	0	0	2	-	3	2.5	-	120300	SC-120	K-M
149	100	2359260	1	0	0	1	-	2	10	-	4501200	SC-450	K-M
150	20	11796300	1	0	0	1	•	2	50	-	18003000	SC-1800	K-M
175	7500	314568	1	0	0	2	-	3	-	7.5	1530	DF-15	K-M
176	4500	524280	1	0	0	2	-	3	-	4.5	2550	DF-25	K-M
177	2500	943704	1	0	0	2	-	3	-	2.5	4080	DF-40	K-M

			Numb	er of d	lecimals	on the d	isplay						
CCC no.	Pre- counter	Flow factor	MWh Gcal	GJ	m³ [ton]	m³/h	MW	l/pulse	Pulse/l	Qp range [m³/h]	Qs (m³/h)	Туре	Flow sensor
201	100	235926	2	1	1	1	2	1	1	10100	75	FUS380 DN50-65	K-M
202	40	589815	2	1	1	1	2	2.5	0.4	40200	240	FUS380 DN80-100	K-M
203	400	589815	1	0	0	1	2	2.5	0.4	100400	500	FUS380 DN125	K-M
204	100	235926	1	0	0	0	1	10	0.1	1501200	1600	FUS380 DN150-250	K-M
205	20	1179630	1	0	0	0	1	50	0.02	5003000	3600	FUS380 DN300-400	K-M

Current flow reading (l/h or m^3/h) is calculated on the basis of volume pulses/10 pcs. (see paragraph 6.5)

3.3.8 CCC codes for other electronic meters with an <u>active</u> output

Flow sensor with active 24 V pulse output, see paragraph 7.2

			Number of decimals on the display							1				
CCC no.	Pre- counter	Flow factor	kWh	MWh Gcal	GJ	m³ [ton]	l/h	m³/h	kW	MW	Pulses/l	qp [m³/h]	Туре	Flow sensor
102	560	421296	0	3	2	2	0	-	1	-	56.0	1.5/2.5	GWF-MT3	K
103	300	786420	0	3	2	2	0	-	1	-	30.0	3.5	GWF-MT3	K
104	2520	936214	-	2	1	1	0	-	1	-	25.2	6	GWF-MT3	K
105	1230	1918098	-	2	1	1	0	-	1	-	12.3	10	GWF-MT3	К
106	1080	2184500	-	2	1	1	0	-	1	-	10.8	15	GWF-MT3	K
108	1403	168158	0	3	2	2	0	-	1	-	140.3	0.6	GWF	К
109	957	246527	0	3	2	2	0	-	1	-	95.7	1.0	GWF	К
110	646	365211	0	3	2	2	0	-	1	-	64.6	1.5	GWF	К
111	404	583975	0	3	2	2	0	-	1	-	40.4	1.5 (2.5)	HM (GWF)	К
112	502	469972	0	3	2	2	0	-	1	-	50.2	1.5 – 2.5*	GWF	K
113	2350	1003940	-	2	1	1	0	-	1	-	23.5	3.5 - 6*	GWF	К
114	712	331357	-	2	1	1	0	-	1	-	7.12	10 - 15*	GWF	K
115	757	311659	0	3	2	2	0	-	1	-	75.7	1.0*	GWF	K
116	3000	78642	0	3	2	2	0	-	1	-	300.0	0.6*	GWF	K
117	269	877048	0	3	2	2	0	-	1	-	26.9	1.5	Brunata	K
118	665	354776	0	3	2	2	0	-	1	-	66.5	1.5	Aquastar	K
119	1000	235926	0	3	2	2	0	-	1	-	100.0	0.6	HM	К
121	294	802469	0	3	2	2	0	-	1	-	29.4	1.5 – 2.5		K
122	1668	141442	0	3	2	2	0	-	1	-	166.8	0.6	НМ	К
123	864	273063	0	3	2	2	0	-	1	-	86.4	0.75 - 1*	НМ	K
124	522	451966	0	3	2	2	0	-	1	-	52,2	2.5 (1.5*)	CG (HM)	K
125	607	388675	0	3	2	2	0	-	1	-	60.7	1.5 - 1* 1.5*	НМ	К
126	420	561729	0	3	2	2	0	-	1	-	42.0	1.0 (2.5*)	CG (HM)	К
127	2982	791167	-	2	1	1	0	-	1	-	29.82	2.5 3.5*	НМ	К
128	2424	973292	-	2	1	1	0	-	1	-	24.24	3.5*	НМ	К
129	1854	1272524	-	2	1	1	0	-	1	-	18.54	6*	НМ	К
130	770	3063974	-	2	1	1	0	-	1	-	7.7	10*	НМ	К
131	700	3370371	-	2	1	1	0	-	1	-	7.0	15*	НМ	К
132	365	645665	0	3	2	2	0	-	1	-	36.54	2.5	Wehrle	К
133	604	390154	0	3	2	2	0	-	1	-	60.47	1.5	Wehrle	K
134	1230	191732	0	3	2	2	0	-	1	-	123.05	0.6	Wehrle	К
135	1600	1474538	-	2	1	1	0	-	1	-	16.0	10*	НМ	К
139	256	921586	0	3	2	2	0	-	1	-	25.6	1.5 – 2.5	GWF	К
140	1280	1843172	-	2	1	1	0	-	1	-	12.8	3.5 – 5.0	GWF	К
141	1140	2069526	-	2	1	1	0	-	1	-	11.4	6	GWF	К
142	400	589815	-	2	1	1	-	2	-	3	4	10	GWF	К
143	320	737269	-	2	1	1	-	2	-	3	3.2	10 - 15	GWF	K
144	1280	1843172	-	1	0	0	-	2	-	3	1.28	25 - 40	GWF	К
145	640	3686344	-	1	0	0	-	2	-	3	0.64	60	GWF	К
146	128	18431719	-	1	0	0	-	2	-	3	0.128	125	GWF	K
152	1194	1975930	-	2	1	1	0	-	1	-	11.94	10	GWF	K
153	1014	2326686	-	2	1	1	0	-	1	-	10.14	15	GWF	K
156	594	397182	0	3	2	2	0	-	1	-	59.4	1.5	Metron	K
157	3764	626796	-	2	- 1	1	0	-	1	-	37.64	2.5	Metron	ĸ
163	1774	192750	0	3	2	2	0	-	1	<u> </u>	122.4	0.6 – 1 0	GWF/U2	к
164	852	280064	0	3	2	2	0	-	1	<u> </u>	85.24	1.5	GWF/112	ĸ
165	599	393735	0	3	2	2	0	-	1	<u> </u>	59.92	2.5	GWF/112	к
168	449	5259161	-	2	1	1	0	-	1	- 1	4.486	15/25	HM/WS	к
169	1386	1702208	-	1	0	0	-	2	0	<u> </u>	1.386	40	HM/WS	к
173	500	471852	-	1	0	0	-	- 1	-	2	0.5	80	Westland	ĸ
-15	200	11 10 12		· ·	v	v		· ·		-		55	·····	

3.3.9 CCC codes for vane wheel meters with an electronic pick-up unit

Current flow reading $(l/h \text{ or } m^3/h)$ is calculated on the basis of volume pulses/10 sec. (see paragraph 6.5) * Multiple-jet water meter

3.3.10 ULTRAFLOW[®] X4 CCC-codes

			Number of decimals on the display											
CCC no.	Pre- counter	Flow factor	kWh	MWh Gcal	GJ	m³ [ton]	l/h	m³/h	kW	MW	Pulses/l	qp [m³/h]	Туре	Flow sensor
416	3000	78642	0	3	2	2	0	-	1	-	300	0.6	65-X-CAAA-XXX	1-2-7-8
													65-X-CAAD-XXX	
													65-X-CAAF-XXX	
484	300	78642	1	-	3	3	0	-	1	-	300	0.6		1-2-7-8
419	1000	235926	0	3	2	2	0	-	1	-	100	1.5	65-X-CDA1-XXX	1-2-7-8
													65-X-CDAA-XXX	
													65-X-CDAC-XXX	
													65-X-CDAD-XXX	
													65-X-CDAE-XXX	
													65-X-CDAF-XXX	
													65-X-CDBA-XXX	
407	100	235926	1	-	3	3	0	-	1	-	100	1.5		1-2-7-8
498	600	393210	0	3	2	2	0	-	1	-	60	2.5	65-X-CEAF-XXX	1-2-7-8
													65-X-CEBA/CECA-XXX	
													65-X-CEAD-XXX	
451	5000	471852	-	2	1	1	0	-	1	•	50	3.5	65-X-CGAG-XXX	1-2-7-8
													65-X-CGBB/CGCB-XXX	
436	500	471852	0	3	2	2	0	-	1	-	50	3.5		1-2-7-8
437	2500	943704		2	1	1	0		1		25	6	65-X-CHAF-XXX	1-2-7-8
													65-X-CHAG-XXX	
													65-X-CHAH-XXX	
													65-X-CHBB/CHCB-XXX	
438	250	943704	0	3	2	2	0	-	1	-	25	6		1-2-7-8
478	1500	1572840	-	2	1	1	0	-	1	-	15	10	65-X-CJAJ-XXX	1-2-7-8
													65-X-CJB2/CJC2-XXX	
													65-X-CJBD/CJCD-XXX	
483	150	1572840	0	3	2	2	0	-	1	-	15	10		1-2-7-8
420	1000	2359260	-	2	1	1	0	-	1	-	10	15	65-X-CKB4/CKC4-XXX	1-2-7-8
													65-X-CKBE/CKCE-XXX	
485	100	2359260	0	3	2	2	0	-	1	-	10	15		1-2-7-8
479	600	3932100	-	2	1	1	0	-	1	-	6	25	65-X-CLBG/CLCG -XXX	1-2-7-8
458	5000	471852	-	1	0	0	-	2	0	-	5	40	65-X-CMBH/CMCH -XXX	1-2-7-8
													65-X-CMBJ/CMCJ -XXX	
486	500	471852	-	2	1	1	-	2	0	-	5	40		1-2-7-8
470	2500	943704		1	0	0		2	-	3	2.5	60	65-X-FACL-XXX	1-2-7-8
487	250	943704	-	2	1	1	-	2	-	3	2.5	60		1-2-7-8
480	1500	1572840		1	0	0		2	-	3	1.5	100	65-X-FBCL-XXX	1-2-7-8
488	150	1572840	-	2	1	1	-	2	-	3	1.5	100		1-2-7-8
447	1000	2359260		1	0	0		2		3	1	150	65-X-FCCN-XXX	1-2-7-8
489	100	2359260		2	1	1		2		3	1	150		1-2-7-8
481	600	3932100		1	0	0		2		3	0.6	250	65-X-FDCN-XXX	1-2-7-8
4.0.1	(00	E 0 0 0 1 F		4	~	0		4		2	<u> </u>	400	65-X-FECN-XXX	1 7 7 0
491	400	207012		1	0	0		1		2	0.4	400	65-X-FECR-XXX	1-2-7-0
492	250	943704		1	0	0		1		2	0.25	600	65-X-FFCP-XXX	1-2-7-8
402	150	1572040		1	0	0		-		-	0.15	1000		1 2 7 0
493	150	1572840		1	U	U		1		2	0.15	1000		1-7-\-Q

ULTRAFLOW[®] CCC- codes with high resolution

3.4 Display coding

The display code "DDD" indicates the active readings for the individual meter type. "1" is the first primary reading whereas e.g. "1A" is the first secondary reading. The display automatically returns to reading "1" after 4 minutes.

	\bigcirc			Date stamp	Heat meter DDD=210	Cooling meter DDD=510	Heat/cooling DDD=610	Heat volume DDD=710	Cold Volume DDD=810	Energy meter DDD=910
1.0	Heat energy (E1)				1		1			1
		1.1	Yearly data	•	1A		1A			
		1.2	Monthly data	٠	1B		1B			1A
2.0	Cooling energy (E3)					1	2			
		2.1	Yearly data	•		1A	2A			
		2.2	Monthly data)	•		1B	2B			
				_						
3.X		3.1	E2	_						
		3.2	E4	_						2
		3.3	E5	_						2A 2P
		3.4	E0 E7							20
		3.6	E8 (m3*tf)		2					20
		3.7	E9 (m3*tr)		2A					
4.0	Volume V1	5.7			3	2	3	1	2	3
		4.1	Yearly data	•	3A	2A	3A	1A	2A	
		4.2	Monthly data	•	3B	2B	3B	1B		3A
		4.3	Mass 1							3B
		4.4	P1							3C
5.0	Volume V2									4
		5.1	Yearly data	•						
		5.2	Monthly data	•						4A
		5.3	Mass 2							4B
		5.4	P2							4C
6.0	Hour counter			_	4	3	4	2	2	5
7.0	T4 (1-1-4)	6.1	Error hour counter (N° 60)	_	4A	3A	4A	2A	2A	5A
7.0	11 (intet)	71	Vegr to data guarage		5	4	5			0
		7.1	Month-to date average		5R	4A 4B	5A 5B			
80	T2 (Outlet)	7.2			6	- <i>4D</i>	6			7
0.0		8.1	Year-to-date average		6A	5A	6A			
-		8.2	Month-to-date average		6B	5B	6B			
9.0	T1-T2 (Δt) - = cooling	-			7	6	7			8
10.0	T3									9
11.0	T4 (prog.)									10
12.0	Flow (V1)				8	7	8	3	3	11
		12.1	Max this year	•	8A	7A	8A	ЗA	ЗA	
		12.2	Max. yearly data	•						
		12.3	Min. this year	•						
		12.4	Min. yearly data	•						
		12.5	Max. this month	•						
-		12.6	Max. monthly data	•	8B	7B	8B	3B	3B	11A
-		12.7	Min. this month	•						
12.0	51 (4)	12.8	Min. monthly data	•	80	7C	8C	3C	3C	11B
13.0	Flow (V2)			-	9		•	4	4	12
14.0	Power (V1)	14.1	Max this year	-	104	0	3			13
		14.1	Max yearly data	-	IUA	ŏА	ЭA			┼──┤
		14.2	Min this year	-						+
		14.5	Min. uns year	-						+1
		14.4	Max this month	-						┼──┤
<u> </u>		14.6	Max monthly data		10R	8R	0R			+
<u> </u>		14 7	Min. this month		100	55	30			+
		14.8	Min. monthly data	•	10C	8C	9C			+

	\bigcirc			Date stamp	Heat meter DDD=210	Cooling meter DDD=510	Heat/cooling DDD=610	Heat volume DDD=710	Cold volume DDD=810	Energy meter DDD=910
15.0	VA (Innut A)		1		11	•	10	5	5	14
15.0	VA (IIIput A)	15 1	Mater no VA	_	110	9 0/	104	5/	5/	14
		15.2	Vearly data		11R	9A 0B	10A	5R	5R	14A 1/B
		15.2	Monthly data	-	110	9D 0C	100	50	50	140
		15./	I /Imp for VA (Nº 65)	-	110	90	100	50	50	140
16.0	VB (Input B)	1).4		_	12	9D 10	100	5D 6	50	140
10.0	VD (IIIput D)	16.1	Meter no VB	-	124	10A	114	64	6A	154
		16.2	Vearly data		12R	10A	11R	6R	6B	15R
		16.3	Monthly data		120	100	110	60	6C	150
		16.4	I /Imp for VB (Nº 67)	•	120	100	110	60	6D	150
17.0	τΔ2	10.4		-	120	100	12	00	00	150
17.0	162	171	TI 2	-	134		12			
18.0	TA3	17.1	12		14		13			
10.0		18 1	TI 3		144		15			
19.0	Info code	10.1			15	11	14	7	7	16
		191	Info event counter		15A	11A	14A	7A	7A	16A
-		19.2	Info logger (last 36 events)		15R	11R	14R	7R	7R	16R
20.0	Customer number (N° 1+2)				16	12	15	8	8	17
		20.1	Date		16A	12A	15A	8A	8A	17A
		20.2	Time		16B	12B	15B	8B	8B	17B
		20.3	Target date		16C	12C	15C	8C	8C	17C
		20.4	Serial no. (N° 3)		16D	12D	15D	8D	8D	17D
		20.5	Prog. (A-B-CCC-CCC) (N° 4)		16E	12E	15E	8E	8E	17E
		20.6	Config 1 (DDD-EE) (N° 5)		16F	12F	15F	8F	8F	17F
		20.7	Config 2 (FF-GG-M-N-T) (N° 6)		16G	12G	15G	8G	8G	17G
		20.8	Software edition (N° 10)		16H	12H	15H	8H	8H	17H
		20.9	Software check-sum (N° 11)		161	121	15I	81	81	171
		20.10	Segment test		16J	12J	15J	8J	8J	17J
		20.11	Top module type (N° 20)	_	16K	12K	15K	8K	8K	17K
		20.12	Top module primary adr. (N° 21)		16L	12L	15L	8L	8L	17L
		20.13	Top module second. adr. (N° 22)	_	16M	12M	15M	8M	8M	17M
		20.14	Base module type (N° 30)	_	16N	12N	15N	8N	8N	17N
		20.15	Base module primary adr. (N° 31)		160	120	150	80	80	170
		20.16	Base module second. adr. (N° 32)		16P	12P	15P	8P	8P	17P
Numbe	er of vearly data shown in	the display	(115)		2	2	2	2	2	2
Numbe	r of monthly data shown	in the displ	av (136)		12	12	12	12	12	12

DDD=210 is the "standard code" for heat meters with meter type 602xxxxxx2xx. Please contact Kamstrup for other combinations. Max. number of readings of a DDD code is 110. Of these, reading of data logger counts for 4 readings. Top module no. and base module no. to be left out of account.

A complete survey of existing display codes (DDD) appears from a separate document. Please contact Kamstrup for further details.

Note: Data reading can retrieve up to 36 monthly data and up to 15 yearly data. Number of yearly and monthly data to be shown in the display is determined by the DDD code in each case.

3.4.1 Energy overview

Formula	ΔΘ	Example of an application	Included in Application No. (see paragraph 6.2)	Register type
E1=V1(T1-T2)k _{T1: Inlet / T2: Outlet}	T1 > T2	Heat energy (V1 in inlet or outlet pipe)	1+2+3+4+5+6+8+10	Legal Display/Data/Log
E2=V2(T1-T2)k _{T2: Outlet}	T1 > T2	Heat energy (V2 in outlet pipe)	2+7	Display/Data/Log
E3=V1(T2-T1)k _{T2: Inlet / T1: Outlet}	T2 > T1	Cooling energy (V1 in inlet or outlet pipe)	1+11	Legal Display/Data/Log
E4=V1(T1-T3)k _{T1: inlet}	T1 > T3	Inlet energy	7+9+11	Display/Data/Log
E5=V2(T2-T3)k _{T2: Inlet}	T2 > T3	Outlet energy or tap from outlet pipe	5+7+9	Display/Data/Log
E6=V2(T3-T4)k _{T3: Inlet}	T3 > T4	Tap water energy, separate	3+6	Display/Data/Log
E7=V2(T1-T3)k T3: Outlet	T1 > T3	Outlet energy or tap from inlet pipe	4+8	Display/Data/Log
E8=m ³ x T1	-	Average temperature in inlet pipe	Soo paragraph (2 2	Display/Data/Log
E9=m ³ x T2	-	Average temperature in outlet pipe	See paragraph 6.2.2	Display/Data/Log

Above energy types E1 to E9 are calculated as follows:

3.5 >EE< Configuration of MULTITARIFF

MULTICAL[®] 602 has 2 extra registers, TA2 and TA3, that accumulates energy E1 or E3 (EE=20 accumulates volume) in parallel with the main register based on the limits programmed to tariff limits TL2 and TL3.

Example: EE=11 (power tariff)

TA2 shows the energy consumed ...

... above the power limit TL2 (but below TL3)

MULTICAL[®] 602

Example: Power tariff (EE=11); TL2=20 kW; TL3=30 kW; the meter is a heat meter.

The heat energy E1 is always counted in the main register. When the power exceeds the limit set for TL2, i.e. 20 kW, but is below the limit set for TL3, i.e. 30 kW, the heat energy E1 is counted in TA2, but only as long as TL2 exceeds 20 kW and is lower than 30 kW. It functions as a contact T2, which closes the moment TL2 surpasses 20 kW. As soon as the power either surpasses 30 kW or falls below 20 kW, the contact breaks again and counting stops in the TA-register. If the power surpasses 30 kW the contact T3 closes and now all the energy E1, which is consumed as long as the power remains above 30 kW is counted in T3. This energy E1 is counted in both the main register and in TA3.

EE=	TARIFF TYPE	FUNCTION	Country code 2xx	Country code 4xx	Country code 5xx	Country code 6xx	Country code 7xx	Country code 8xx	Country code 9xx
00	No tariff active	No function							
11	Power tariff	Energy is accumulated in TA2 and TA3 based on the power limits in TL2 and TL3.	٠	•	•				
12	Flow tariff	Energy is accumulated in TA2 and TA3 based on the flow limits in TL2 and TL3.	•	•	•				
13	Cooling tariff	Energy is accumulated in TA2 and TA3 based on the Δt limits in TL2 and TL3.	•	•	•				
14	Inlet temperature tariff	Energy is accumulated in TA2 and TA3 based on the tF-limits in TL2 and TL3.	•	•	•				
15	Outlet temperature tariff	Energy is accumulated in TA2 and TA3 based on the tR-limits in TL2 and TL3.	•	•	•				
19	Time-controlled tariff	TL2=Starting time for TA2 TL3=Starting time for TA3	•	•	•				
20	Heat/cooling volume tariff (TL2 and TL3 are not used)	Volume (V1) is split up into TA2 for heat (T1>T2) and TA3 for cooling (T1 <t2) (recommended="" applications)<="" cooling="" heating="" on="" th=""><th></th><th></th><th></th><th>•</th><th>•</th><th>•</th><th></th></t2)>				•	•	•	
21	PQ tariff	Energy at P>TL2 is stored in TA2 and energy at Q>TL3 is stored in TA3	•	•	•				

Please note that only tariff No. 20 can be used in a combined heat / cooling meter. All other tariffs may only be used for either a heat meter or a cooling meter. The meter can not distinguish heat energy (E1) from cooling energy (E3) and vice versa.

See paragraph 6.12 for further details on the tariff registers.

3.6 >FF< Input A (VA) - pulse divider, >GG< Input B (VB) - pulse divider

MULTICAL[®] 602 has 2 extra pulse inputs, VA and VB, that are placed on the base modules (see paragraph 7.3 for further information). The inputs are configured via the FF and the GG codes as shown in below diagram. By default the inputs are configured to FF = 24 and GG = 24, unless otherwise informed by the customer.

Input A Input B									
Ter	minal 65-66	Tei	rminal 67-68			1	1	1	
FF	Max. input f≤1Hz	GG	Max. input f≤1 Hz		Pre-counter	Wh/pulses	l/pulse	Measuring unit poir	and decimal It
Pulse	input with bounce	e dampin	g (for meters with	ı R	leed-switch):				
01	100 m³/h	01	100 m³/h	1	1	-	100	vol A/vol b (m ³)	000000.0
02	50 m ³ /h	02	50 m³/h		2	-	50	$vol A/vol b (m^3)$	0,0000.0
03	25 m³/h	03	25 m³/h	1	4	-	25	vol A/vol b (m ³)	000000.0
04	10 m³/h	04	10 m³/h	1	10	-	10	vol A/vol b (m ³)	000000.0
05	5 m³/h	05	5 m³/h	1	20	-	5.0	vol A/vol b (m ³)	000000.0
06	2.5 m³/h	06	2.5 m³/h	1	40	-	2.5	vol A/vol b (m ³)	000000.0
07	1 m³/h	07	1 m³/h		100	-	1.0	vol A/vol b (m ³)	000000.0
24	10 m³/h	24	10 m³/h		1	-	10	vol A/vol b (m ³)	00000.00
25	5 m³/h	25	5 m³/h		2	-	5.0	vol A/vol b (m ³)	00000.00
26	2.5 m³/h	26	2.5 m³/h		4	-	2.5	vol A/vol b (m ³)	00000.00
27	1 m³/h	27	1 m³/h		10	-	1.0	vol A/vol b (m ³)	00000.00
40	1000 m³/h	40	1000 m³/h		1	-	1000	vol A/vol b (m ³)	0000000
Pulse	input without bou	unce dam	ping (for meters v	Nit	th electronic pu	lse output):			
71	100 m³/h	71	100 m³/h		1	-	100	vol A/vol b (m ³)	000000.0
72	50 m³/h	72	50 m³/h		2	-	50	vol A/vol b (m ³)	000000.0
73	25 m³/h	73	25 m³/h		4	-	25	vol A/vol b (m ³)	000000.0
74	10 m³/h	74	10 m³/h		10	-	10	vol A/vol b (m ³)	000000.0
75	5 m³/h	75	5 m³/h	l	20	-	5.0	vol A/vol b (m ³)	000000.0
76	2.5 m³/h	76	2.5 m³/h		40	-	2.5	vol A/vol b (m ³)	000000.0
77	1 m³/h	77	1 m³/h		100	-	1.0	vol A/vol b (m ³)	000000.0
84	10 m³/h	84	10 m³/h	1	1	-	10	vol A/vol b (m ³)	00000.00
85	5 m³/h	85	5 m³/h		2	-	5.0	vol A/vol b (m ³)	00000.00
86	2.5 m³/h	86	2.5 m³/h		4	-	2.5	vol A/vol b (m ³)	00000.00
87	1 m³/h	87	1 m³/h		10	-	1.0	vol A/vol b (m ³)	00000.00
90	1000 m³/h	90	1000 m³/h	İ	1	-	1000	vol A/vol b (m ³)	0000000
	Max Input		Max Input	1				Moscuring unit	and docimal
FF	$f \le 3 Hz$	GG	f≤3 Hz		Pre-counter	Wh/pulses	l/pulses	poir	nt uechnat
50	2500 kW	50	2500 kW	1	1	1000	-	EL A/EL b (kWh)	0000000
51	150 kW	51	150 kW		60	16.67	-	EL A/EL b (kWh)	0000000
52	120 kW	52	120 kW		75	13.33	-	EL A/EL b (kWh)	0000000
53	75 kW	53	75 kW		120	8.333	-	EL A/EL b (kWh)	0000000
54	30 kW	54	30 kW		240	4.167	-	EL A/EL b (kWh)	0000000
55	25 kW	55	25 kW		340	2.941	-	EL A/EL b (kWh)	0000000
56	20 kW	56	20 kW	l	480	2.083	-	EL A/EL b (kWh)	0000000
57	15 kW	57	15 kW		600	1.667	-	EL A/EL b (kWh)	0000000
58	7,5 kW	58	7,5 kW		1000	1.000	-	EL A/EL b (kWh)	0000000
59	750 kW	59	750 kW		10	100	-	EL A/EL b (kWh)	0000000
60	1250 kW	60	1250 kW		2	500	-	ELA/ELb (kWh)	0000000
61	75 kW	61	75 kW		100	10.00	-	ELA/ELb (kWh)	0000000
62	15 kW	62	15 kW]	500	2.000	-	ELA/ELb (KWh)	0000000
70	25000 kW	70	25000 kW	1	1	10000	-	EL A/EL b (MWh)	00000.00

FF and GG are only used for configuration of inputs.

l/pulse can also be set via the front bottons. Please see 6.17 for further information.

3.7 Configuration of pulse outputs in the top module

See paragraph 10.1

3.8 >MN< Configuration of leak limits

When MULTICAL[®] 602 is used for leakage surveillance, the sensitivity is "M-N" in connection with configuration.

District heat leakage	search (V1-V2) Sensitivity in leakage	Cold-water leakage se	arch (VA) Constant leakage at no consumption (pulse recolution 10 L(pulsec)
M=	Search	N=	resolution to (pulses)
0	OFF	0	OFF
1	1.0 % qp + 20 % q	1	20 l/h 3x10 min. (½ hour without pulses)
2	1.0 % qp + 10 % q	2	10 l/h 6x10 min. (1 hour without pulses)
3	0.5 % qp + 20 % q	3	5 l/h 12x10 min. (2 hours without pulses)
4	0.5 % gp + 10 % g		

NB: M=2 and N=2 are default values when leakage surveillance is used. Higher degree of sensitivity, e.g. M=4 can <u>only</u> be obtained by means of METERTOOL.

Info codes for leakage/bursting (info 256/512) are only active when M > 0 or N > 0.

3.8.1 Example of District Heat Leakage level (Leak level)

In this example M=2. Having a qp= $0.6 \text{ m}^3/\text{h}$ flowmeter, qp must be converted to l/h: qp=600 l/h.

If we assume that there has been a means flow of 50 l/h then there will be counted approximately 1200 l/day. 10 % of this value is 120 l/day. Further, 1 % of qp=600 l/h is 6 l/h equivalent to 24 x 6 l/h = 144 l/day. Leak level in this case will be 120 + 144 = 264 l/day or equivalent of 6 l/h.

3.9 >T< Configuration of encryption level

MULTICAL[®] 602 must be ordered with encryption of data transmission. 128 bit AES counter mode encryption is used for encryption of data. The encryption level cannot be changed after production.

Encryption level								
T=								
2	Encryption with common key (customer specific)							
3	Encryption with separately forwarded key (individual key)							

T=2

A common, customer specific encryption key is used to read the meters. The encryption key is created by Kamstrup. or specified by the customer. A customer can have several different encryption keys, eg. one for each meter type.

T=3

The meter can only be read if the reading system recognizes the individual meter's encryption key. The encryption key is forwarded to the customer and "matched" with the individual meter's serial number in the reading system.

If the encryption key is lost, the meter cannot be read. A new encryption key must be supplied by Kamstrup.

Only encrypted data via the base modules can be read by Wireless M-Bus.

3.10 Data for configuration

	Automatic	To be stated when ordering	Default
Serial no. (S/N) and year	E.g. 65.000.000/2012	-	-
Customer number	-	Up to 16 digits.	Customer number = S/N
Display No. 1 = 8 digits MSD		Limited to 11 digits	
Display No. 2 = 8 digits LSD		regarding PcBase compatibility	
Target date	-	MM=1-12 and DD=1-28	Depending on country code
TL2	-	5 digits	0
TL3	-	5 digits	0
Max./min. average peak time	-	11440 min.	60 min.
H/C change over (θ_{hc})	-	0.01180.00°C	25°C at DDD=5xx and 6xx
T2 prog.		0.01180°C	-
T3 prog.		0.01180°C	5°C
T4 prog.		0.01180°C	0°C
Date/time	YYYY.MM.DD/hh.mm.ss	$GMT \pm 12.0$ hours	-
	GMT+offset according to country code	(0.5 hour in jumps)	

Data registers for configuration of top/base modules

qp [l/h]	from CCC table	-	-
Valve traction time	-	20500 sec.	300 sec.
hysteresis	-	0.55 sec.	0.5 sec.
Telephone number #1	-	Max. 16 (0-9+P)	-
Telephone number #2	-	Max. 15 (0-9+P)	-
Telephone number #3	-	Max. 15 (0-9+P)	-
Primary Data Address			
Secondary Data Address			
Baud-rate			
Reserved			
Reserved			
Reserved			
Reserved			

Reserved: These registers are prepared for later extensions of the funcitonality of the modules and therefore, they have not yet any concrete designations.

- COUNTRY CODES

For information on country codes see 55 14-414.

- MAINTENANCE

See instruction no. 55 08-781 concerning updating of programming, configuration and country codes.

4 Dimentional sketches

Wall-mounted MULTICAL® 602 seen from the side

Panel-mounted ${\rm MULTICAL}^{\circledast}$ 602 seen from the front

MULTICAL[®] 602's front dimensions

Panel-mounted MULTICAL $^{\rm @}$ 602 seen from the side

DIN rail mounting of MULTICAL $^{\odot}$ 602 is possible with a DIN rail bracket

5 Installation

5.1 Inlet pipe and outlet pipe placing

Prog. n	umber	A	MULTICAL [®] 602 is programmed for flow sensor placing in either inlet or outlet pipe. Below diagram shows the installation conditions for:
Flow se	nsor placing:		♦ Heat meters
k-factor	- Inlet pipe (at T1)	3	♦ Cooling meters
table	- Outlet pipe (at T2)	4	 Heat/cooling meters

Formula:	k-factor	Prog.:	Hot pipe	Cold pipe	Installation:
Heat meter	k-factor with T1 in Inlet table	A=3 (Flow sensor in Inlet pipe)	V1 and T1	T2	Hot Hot V1 T1 (red) T2 (blue) Cold
Heat meter E1=V1(T1-T2)k	k-factor with T2 in Outlet table	A=4 (Flow sensor in Outlet pipe)	T1	V1 and T2	Hot Hot T1 (red)
Cooling meter	k-factor with T1 in Outlet table	A=3 (Flow sensor in Inlet pipe)	T2	V1 and T1	Cold T1 (red) V1 T2 (blue) Hot
E3=V1(T2-T1)k	k-factor with T2 in Inlet table	A=4 (Flow sensor in Outlet pipe)	V1 and T2	T1	Cold Cold T1 (red)

5.2 EMC conditions

MULTICAL[®] 602 is designed and CE marked in accordance with EN 1434 Class A and Class C (corresponding to Electromagnetic environment: Class E1 and E2 in the Measuring Instruments Directive) and can therefore be installed in domestic and industrial environments.

All control cables must be installed separately and <u>not</u> in parallel with e.g. power cables or other cables with the risk of induction of electromagnetic interferences. Control cables are laid at a min. distance of 25 cm from other installations.

5.3 Climatic conditions

MULTICAL[®] 602 is designed for indoor installation in noncondensing environments with ambient temperatures from 5...55°C, however, max. 30°C for optimal battery lifetime.

Protection class IP54 allows periodic splashes of water, but the apparatus cannot stand constant moisture and flooding.

5.4 Electric installations

See paragraph 9.

6 Calculator functions

6.1 Energy calculation

MULTICAL[®] 602 calculates energy based on the formula in EN 1434-1:2007 in which the international temperature scale from 1990 (ITS-90) and the pressure definition of 16 bar is used.

The energy calculation can in a simplified way be expressed as: Energy = $V \times \Delta \Theta \times k$.

The calculator always calculates energy in [Wh], and then it is converted into the selected measuring unit.

E [Wh] =	$\begin{array}{cccc} V \ X & \Delta\Theta & X & k & X \\ 1000 & & & \end{array}$
E [kWh] =	E [Wh] / 1,000
E [MWh] =	E [Wh] / 1,000,000
E [GJ] =	E [Wh] / 277,780
E [Gcal] =	E[Wh]/1,163,100

- V is the supplied (or simulated) water volume in m³. E.g. if a CCC code = 119 is used, the calculator will be programmed to receive 100 pulses/liter. E.g. if 10,000 pulses are added this corresponds to 10,000/100 = 100 liters or 0.1 m³.
- $\Delta \Theta$ is the temperature difference measured, e.g. $\Delta \Theta$ = inlet temperature outlet temperature. Please note, that various temperatures are used to calculate $\Delta \Theta$ as MULTICAL[®] 602 calculates various different energy types. Both in the display and during data reading each energy type is uniquely defined, e.g.:

Heat energy: E1 = V1(T1-T2)k

Cooling energy: E3 = V1 (T2-T1)k

k is the thermal coefficient of water which is calculated on the basis of formula in EN 1434-1:2007 (identical with the energy formula in OIML R75-1:2002). For control calculations Kamstrup can supply an energy calculator :

🤜 Heat energy calculator - 0IML R75-1:2002 💦 📃 🖂							
Exit Options About							
Input	Flow position	Return position					
Temparature:	70	30	°C				
Pressure:		16	bar				
Volume:		1	m3				
Calculations							
	Flow position	Return position					
Specific volume:	1,0220	1,0037	l/kg				
Specific enthalpy:	81,7502	35,3333	Wh/kg				
Heat coefficient:	1,1354	1,1561	kWh/m3/K				
Energy:	45,4160	46,2459	kWh				
Unit: kWh Resolution: 4 digits							

6.2 Application types

MULTICAL[®] 602 operates with 9 different energy formulas, E1...E9, that are all calculated in parallel with each integration no matter how the meter is configured.

Formula	ΔΘ	Example of an application	Included in Application No.	Register type
E1=V1(T1-T2)k _{T1: Inlet / T2: Outlet}	T1 > T2	Heat energy (V1 in inlet or outlet pipe)	1+2+3+4+5+6+8+10	Legal Display/Data/Log
E2=V2(T1-T2)k _{T2: Outlet}	T1 > T2	Heat energy (V2 in outlet inlet)	2+7	Display/Data/Log
E3=V1(T2-T1)k _{T2: Inlet / T1: Outlet}	T2 > T1	Cooling energy (V1 in inlet or outlet pipe)	1+11	Legal Display/Data/Log
E4=V1(T1-T3)k _{T1: inlet}	T1 > T3	Inlet energy	7+9+11	Display/Data/Log
E5=V2(T2-T3)k _{T2: Inlet}	T2 > T3	Outlet energy or tap from outlet pipe	5+7+9	Display/Data/Log
E6=V2(T3-T4)k _{T3: Inlet}	T3 > T4	Tap water energy, separate	3+6	Display/Data/Log
E7=V2(T1-T3)k T3: Outlet	T1 > T3	Outlet energy or tap from inlet pipe	4+8	Display/Data/Log
E8=m ³ x T1	- Average temperature in inlet pipe		Cash and an	Display/Data/Log
E9=m ³ x T2	-	Average temperature in outlet pipe	See palagiapii 6.2.2	Display/Data/Log

6.2.1 E1...E7

The energy types E1...E7 are described with application examples below.

* M2 = V2 (Kmass t3)* only on selected country codes (930...939)!

6.2.2 E8 and E9

Resolution on E8 and E9

resolution (m³)

E8 and E9 are depending on the volume

E8 and E9 are used as calculation basis for calculating volume based average temperatures in inlet and outlet pipe, respectively. For each integration (every 0.01 m³ for qp 1.5 m³/h) the registers are accumulated with the product of $m^3 \times c$, for such purposes E8 and E9 is a suitable basis for calculating volume based average temperatures.

E8 and E9 can be used for average calculation in any period of time as long as the volume register is read at the same time as E8 and E9.

E8= m³ × \mathbf{t}_{F} E8 is accumulated with the product of m³ × \mathbf{t}_{R} E9 is accumulated with the product of m³ × \mathbf{t}_{R}

Volume resolution	E8 and E9 resolution
0000.001 m ³	m³ X ∘c X 10
00000.01 m ³	m³ X ∘C
000000.1 m ³	m³ × ∘C × 0.1
0000001 m ³	m³ X ∘C X 0.01

Example 1: After 1 year a heat installation has consumed 250.00 m³ of district heating water and the average temperatures have been 95°C in inlet and 45°C in outlet pipe. E8 = 23750 and E9 = 11250.

Example 2: It is required that the average temperatures are measured at the same time as the yearly reading, and therefore E8 and E9 are included in the yearly reading.

Reading date	Volume	E8	Average inlet	E9	Average outlet
2003.06.01	534.26 m ³	48236		18654	
2002.06.01	236.87 m ³	20123		7651	

Yearly consumption	297.39 m ³	28113	28113/297.39 = 94.53°C	11003	11003/297.39 = 36.99°C
-----------------------	-----------------------	-------	----------------------------------	-------	----------------------------------

Table 1
6.3 Calculator with two flow sensors

MULTICAL[®] 602 can be used in various applications with two flow sensors, e.g. leak surveillance or open systems. When two ULTRAFLOW[®] are direct connected to one MULTICAL[®] 602, a close electric coupling between the two pipes ought to be carried out as a main rule. If the two pipes are installed in a heat exchanger, close to the flow sensors, however, the heat exchanger will provide the necessary electric coupling.

- Inlet and outlet pipes are closely electrically coupled
- No welded joints occur

In installations where the electric coupling cannot be carried out, or where welding in the pipe system can occur, the cable from one ULTRAFLOW[®] must be routed through a Pulse Transmitter with galvanic separation before the cable enters MULTICAL[®] 602.

- Inlet and outlet pipes are not necessarily closely coupled
- Electric welding *) can occur

^{*)} Electric welding must always be carried out with the earth pole closest to the welding point. Damage to meters due to welding is **not** comprised by our factory warranty.

6.4 Combined heat/cooling metering

 $MULTICAL^{\circ}$ 602 is available as e.g. heat meter (Meter type 2xx), cooling meter (Meter type 5xx) or combined heat/cooling meter (Meter type 6xx).

Meter type		
Heat meter with MID marking	2	
Heat meter with MID marking	3	
Heat meter, closed systems	4	
Cooling meter	5	
Heat/cooling meter	6	
Volume meter, hot water	7	
Volume meter, cooling water	8	
Energy meter, open systems	9	
Delivery code (language on label etc.)		ХХ

If MULTICAL[®] 602 has been supplied as a combined heat/cooling meter (meter type 6xx), it measures heat energy (E1) at a positive temperature difference (T1 > T2), whereas it measures cooling energy (E3) at a negative temperature difference (T2 > T1). Temperature sensor T1 (with a red type sign) must be installed in the hydraulic inlet pipe, whereas T2 (with a blue type sign) is installed in the outlet pipe.

6.4.1 H/C field of activity

If the current T1 exceeds, or equals θ_{hc} only heat energy can be measured. If the current T1 is lower than or equals θ_{hc} only cooling energy can be measured.

 θ_{hc} is the temperature point used to change between heat and cooling measurement. θ_{hc} is configurable in temperature range 0.01...160.00°C.

In combined heat/cooling meters θ_{hc} should correspond to the highest occurring inlet pipe temperature in connection with cooling, e.g. 25°C. If the meter is to be used for "purchase and sale of heat", θ_{hc} is set at 180.00°C, which cancels the θ_{hc} function.

If you want to switch the qhc function on or off compared to current condition, it is necessary to perform a total programming of the meter by means of METERTOOL.

The change between heat and cooling measurement involves no hysteresis ($\Delta \theta_{hc} = 0.00$ K).

 θ_{hc} is configured by means of METERTOOL (see paragraph 13.2). θ_{hc} is also mentioned as H/C change-over.

6.5 Flow measurement, V1 and V2

MULTICAL® 602 calculates current water flow according to two different principles depending on the connected flow sensor type:

Fast volume pulses (100 < CCC < 900) 6.5.1

The current water flow for fast volume pulses is calculated, without average determination, as the number of volume pulses per 10 sec. multiplied by a scaling factor.

q = (pulses/10 sec. x flow factor)/65535 [l/h] or [m³/h]

Example:

- ULTRAFLOW[®] qp 1.5 m³/h with 100 pulses/l (CCC=119), flow factor = 235926
- Current water flow = 317 l/h corresponding to 88 pulses/10 sec.

 $q = (88 \times 235926)/65535 = 316.8$ which is shown in the display as 316 [l/h]

Current water flow in V1

6.5.2 Resolution of the actual flow rate (100 < CCC < 900)

The display resolution of the actual flow rate can be derived from the flow factor and the number of decimals. Example 1:

ULTRAFLOW[®] qp 1.5 m³/h with 100 pulses/l (CCC=119), flow factor = 235926

Resolution = 235926/65535 = 3.6 which is shown in the display as 3 [l/h]

Example 2:

```
FUS380 Qs 75 m^3/h with 1 pulses/l (CCC=201), flow factor = 235926
```

Resolution = 235926/65535 = 3.6 which is shown in the display as $3.6 [m^3/h]$

6.5.3 Slow volume pulses (CCC = 0XX, 9XX)

The current water flow for slow volume pulses (typically from flow sensors with a Reed switch) is calculated without average determination as a scaling factor divided by the period of time between two volume pulses.

q = flow factor/(256 x period in sec.) [l/h] or [m³/h]

Example:

- Mechanical flow sensor Qn 15 qp m^3/h with 25 l/pulse (CCC=021), flow factor = 230400
- Current water flow = $2.5 \text{ m}^3/\text{h}$ corresponding to 36 sec. in the period of time between 2 pulses

 $q = 230400/(256 \times 36) = 25$, which is shown in the display as 2.5 [m³/h]

V1 and V2 must be the same type (either quick (CCC >100) or slow (CCC=0XX)) but can have different qp-codings (CCC).

Using top modules 67-02 or 67-09, V1 and V2 must have identical qp-codings (CCC).

The actual flow rate on the display will be shown a "0", when the period between pulses exceed 15 min.

6.6 Power measurement, V1

MULTICAL[®] 602 calculates the current power based on the current water flow and the temperature difference measured at the last integration based on following formula:

 $P = q (T1 - T2) \times k [kW] or [MW]$

where "k" is the water's heat coefficient that is constantly calculated by $MULTICAL^{\circledast}$ 602 according to EN 1434:2007.

Example:

- Current water flow, q = 316 l/h and flow sensor is placed in outlet pipe
- $T1 = 70.00^{\circ}C$ and $T2 = 30.00^{\circ}C$, k-factor is calculated for 1.156 kWh/m³/K

 $P = 0.316 (70-30) \times 1.156 = 14.6 [kW]$

Current power in V1

Both heat power and cooling power are shown numerically

6.7 Min. and max. flow and power, V1

MULTICAL[®] 602 registers both minimum and maximum flow and power both on a monthly and on a yearly basis. These values can be read in full via data communication. In addition, a small number of monthly and yearly registers can be read on the display depending on the selected DDD code.

Registration type:	Max. data	Min. data	Yearly data	Monthly data
Max. this year (since last target date)	•		•	
Max. yearly data, up to 15 years back	•		•	
Min. this year (since last target date)		•	•	
Min. yearly data, up to 15 years back		•	•	
Max. this month (since last target date)	•			•
Max. monthly data, up to 36 months back	•			•
Min. this month (since last target date)		•		•
Min. monthly data, up to 36 months back		•		•

Min. and Max. registration comprises following flow and power values including date.

All max. and min. values are calculated as largest and smallest average of a number of current flow or power measurements. The average period used for all calculations are selected in the interval 1...1440 min. in jumps in 1 min. (1440 min. = 1 full day).

The average period and target date are stated in connection with orders or re-configured by means of METERTOOL. Where nothing has been stated when the order was placed the average period is set at 60 min. and the target date is set at the standard applying for the country code used.

In connection with commencement of a new year or month the max. and min. values are stored in the data logger and the current max. and min. registers are "reset" according to the selected target date and the internal clock and calendar of the meter.

"Reset" is made by putting the max. value at zero and min. value at 10000.0 kW at e.g. CCC=119.

Date for year-to-date max.

Date for min. in the current month

Value for year-to-date max.

Value for min. in the current month

6.8 Temperature measurement

MULTICAL[®] 602 has a high resolution analog/digital converter that measures the temperatures T1, T2 and T3 with a resolution of 0.01°C (T3 is not available on meters with 4-wire sensor inputs). The same measuring circuit is used for all 3 temperature inputs to obtain the lowest possible measuring error on the temperature difference. Prior to each temperature measurement an automatic adjustment of the internal measuring circuit is made on the basis of integral reference resistances at 0°C and 100°C, respectively. This ensures a very good accuracy and a very stable long-term operation.

Current T1

Temperature measurings are made in connection with each integration (energy calculation) and every 10 sec. when the display shows temperature. The measuring circuit has a temperature range of 0.00°C...185.00°C. In case of a disconnected temperature sensor the display shows 200.00°C and in connection with a short-circuited temperature sensor it shows 0.00°C. In both cases the info code for sensor error will appear.

To reduce the influence from the mains frequency which can e.g. be inducted to long sensor cables, double measurings are made with a delay of $\frac{1}{2}$ period, and the average of the 2 measurings make up the temperature measurement used for calculation and display. Supressing of the mains frequency is optimised to either 50 Hz or 60 Hz depending on the selected country code.

6.8.1 Measuring current and power

Measuring current is only sent through the temperature sensors in the short period of time it takes to measure the temperature. However, the effective power that is consumed in the sensor elements is minimal and the influence on the self-heating of the temperature sensors is typically less than 1/1000 K.

	Pt100	Pt500
Testing current	< 3 mA	< 0.5 mA
Peak power	< 1.5 mW	< 0.2 mW
RMS power	$<$ 10 μ W	< 1 µW

6.8.2 Average temperatures

MULTICAL[®] 602 constantly calculates the average temperatures for inlet and outlet (T1 and T2) in the entire °C range and the background calculations E8 and E9 ($m^3 x$ T1 and $m^3 x$ T2) are made for each energy calculation (e.g. for each 0.01 m^3 for qp 1.5 meter size), whereas the display value is updated every day. Thereby the average calculations are weighted according to volume and can therefore be used for control purposes.

Registration type:		Average	Yearly data	Monthly data
Year-to-date average (since last target date)		٠	٠	
Month-to-date average (since last target date)	ſ	•		•

Year-to-date average for T1.

(Current date with "comma lines" under year or month is shown just BEFORE this reading)

6.8.3 Programmed temperatures

The temperatures T3 and T4 can be programmed in the memory of the calculator, and these temperatures can be used for calculating energy with fixed temperature reference, as used in connection with the calculations of the energy types E4, E5, E6 and E7 (see the application drawings in paragraph 6.2)

The temperatures can be programmed when placing orders or by means of METERTOOL in the range 0.01...180°C, once the meter is installed.

6.9 Display functions

MULTICAL[®] 602 is equipped with a clear LC display including 8 digits, units of measurement and information panel. In connection with energy and volume readings 7 digits and the corresponding units of measurement are used, whereas 8 digits are used when e.g. a meter number is shown.

As a starting point the display shows the accumulated energy. When the push buttons are activated the display reacts immediately by showing other readings. The display automatically returns to energy reading 4 minutes after last activation of the push buttons.

6.9.1 Primary and secondary readings

The upper button is used to switch between the primary readings of which the consumers typically use the first primary readings in connection with self-reading for billing purposes.

The lower push button is used to show secondary information on the primary reading that has been selected.

Example: When the primary reading selected is "Heat energy" the secondary readings will be yearly data and monthly data for heat energy.

6.9.2 Display structure

Below diagram shows the display structure with up to 20 primary readings and a number of secondary readings under most primary readings. The number of secondary readings for yearly data and monthly data has been laid down under the DDD code. If nothing is informed in connection with placing the order, the reading is set at 2 yearly data and 12 monthly data. The target date is set at the standard valid for the country code used.

As the display is configured according to the needs of the customer (by selecting DDD code), the display will usually contain fewer readings than shown below.

Figure 2

6.9.3 Display grouping

MULTICAL[®] 602 can be configured for a number of various applications, which creates the need for various display groupings. In the overview below the <u>possible</u> readings [•] will appear for heat meter, cooling meter etc., which readings are supported by date stamps, and which reading is automatically shown 4 min. after last activation of the push buttons [1•]. (This chapter applies to design of DDD-codes only).

	\bigcirc				Date stamp	Heat meter DDD=2xx/4xx	Cooling meter DDD=5xx	Heat/cooling DDD=6xx	Heat volume DDD=7xx	Cold volume DDD=8xx	Energy Meter DDD=9xx
1.0	Heat energy (F1)					1.		1.			1.
1.0	ficut circity (LL)	1.1	Yearly data		•	•		•			•
		1.2	Monthly data		٠	•		•			•
2.0	Cooling energy (E3)						1•	•			٠
		2.1	Yearly data		٠		•	•			•
		2.2	Monthly data		٠		•	•			•
A Y			50								•
3.X	Other energy types	3.1	E2								•
		3.2	E4								•
		3.5	E5 E6								•
		3.5	E0 F7								•
		3.6	E7 F8 (m3*tf)			•					
		3.7	E9 (m3*tr)			•					•
4.0	Volume V1					•	٠	•	1•	1•	•
		4.1	Yearly data		•	•	•	•	•	•	•
		4.2	Monthly data		٠	•	٠	•	•	•	•
		4.3	Mass 1			•	•	•	•	•	•
		4.4	P1			•	٠	•	•	•	•
5.0	Volume V2								•	•	•
		5.1	Yearly data		٠				•	•	•
		5.2	Monthly data		٠				•	•	•
		5.3	Mass 2						•	•	•
6.0	Hour countor	5.4	P2			_	-	_	•	•	•
0.0		61	Error hour counter	Nº 60)		•	•	•	•	•	•
7.0	T1 (Inlet)	0.1		1 00)		•	•	•	•	•	
7.0		7.1	Year-to-date average			•	•	•			•
		7.2	Month-to-date average			•	•	•			•
8.0	T2 (Outlet)		<u>y</u>			•	•	•			•
		8.1	Year-to-date average			•	•	•			•
		8.2	Month-to-date average			•	•	•			•
9.0	T1-T2 (Δt) - = cooling					•	•	•			•
10.0	T3					•	٠	•			•
11.0	T4 (programmed)										•
12.0	Flow (V1)	12.1	AA 44			•	•	•	•	•	•
		12.1	wux. this year Max yoarly data		•	•	•	•	•	•	•
		12.2	Min this year		•	•	•	•	•	•	•
		12.5	Min. uns yeu Min. vearly data		•	•	•	•	•	•	•
		12.5	Max. this month		•	•	•	•	•	•	•
		12.6	Max. monthly data		•	•	•	•	•	•	•
		12.7	Min. this month		٠	•	•	•	•	•	•
		12.8	Min. monthly data		•	•	•	•	•	•	•
13.0	Flow (V2)					•			•	•	•
14.0	Power (V1)					•	٠	•			•
		14.1	Max. this year		•	•	•	•			•
		14.2	Max. yearly data		•	•	•	•			•
		14.3	win. this year		•	•	•	•			•
		14.4	Max this month		•	•	•	•			•
		14.5	Max monthly data		•	•	•	•			•
		14.0	Min this month			•	•	•			•
		14.8	Min. monthly data		•	•	•	•			•

	\bigcirc				Date stamp	Heat meter DDD=2xx/4xx	Cooling meter DDD=5xx	Heat/cooling DDD=6xx	Heat volume DDD=7xx	Cold volume DDD=8xx	Energy meter DDD=9xx
15.0	VA (Input A)										
15.0	VA (Iliput A)	15.1	Meterno VA			•	•	•	•	•	
		15.2	Yearly data		•	•	•	•	•	•	•
		15.3	Monthly data		•	•	•	•	•	•	•
		15.4	L/imp for VA (N° 65))	-	•	•	•	•	•	•
16.0	VB (Input B)		-,,, ,			•	•	•	•	•	•
		16.1	Meter no. VB			•	•	•	•	•	•
		16.2	Yearly data		٠	•	•	•	•	•	•
-		16.3	Monthly data		•	•	•	•	•	•	•
		16.4	L/imp for VB (N° 67)		•	•	•	•	•	•
17.0	TA2			•		•	•	•			
		17.1	TL2			•	•				
18.0	TA3					•	•	٠			
		18.1	TL3			•	•				
19.0	Info code					•	•	•	•	•	•
		19.1	Info event counter			•	•	•	•	•	•
		19.2	Info logger (last 36 events)		٠	•	•	•	•	•	•
20.0	Customer number (N° 1+2)					•	•	•	•	•	•
		20.1	Date			•	•	•	•	•	•
		20.2	Time			•	•	•	•	•	٠
		20.3	Target date			•	•	•	•	•	•
		20.4	Serial no. (N°	3)		•	•	•	•	•	٠
		20.5	Prog. (A-B-CCC-CCC) (N°	4)		•	•	•	•	•	•
		20.6	Config 1 (DDD-EE) (N°	5)		•	•	•	•	•	•
		20.7	Config 2 (FF-GG-M-N-T) (N°	6)		•	•	•	•	•	•
		20.8	Software edition (N°	' 10)		٠	٠	٠	•	•	•
		20.9	Software check-sum (N°	11)		٠	٠	•	•	•	•
		20.10	Segment test			•	•	•	•	•	•
		20.11	Top module type (N°	° 20)		•	•	•	•	•	•
		20.12	Top module primary adr. (N	° 21)		•	•	•	•	•	•
		20.13	Top module second. adr. (N	° 22)		•	•	•	•	•	•
		20.14	Base module type (N°	° 30)		•	•	•	•	•	•
		20.15	Base module primary adr. (N	° 31)		•	•	•	•	•	•
		20.16	Base module second. adr. (N	° 32)		•	•	•	•	•	•

Display example showing the PROG number.

A complete survey of existing display codes (DDD) appears from a separate document. Please contact Kamstrup for further details.

6.10 Real Time Clock (RTC)

MULTICAL[®] 602 has built-in real time clock and battery backup. This is valuable for applications where correct date/time in data loggers as well as time-controlled tariffs are important. The battery will ensure the RTC function for at least 3 years without power during the entire lifetime of MULTICAL[®] 602. This small battery will only back-up the RTC, meaning that the display will go blank, when the main supply or main battery is off.

If a top module with RTC is mounted, the top module's RTC will not have any effect on the meter's own RTC.

6.11 Info codes

MULTICAL[®] 602 constantly surveys a number of important functions. Where serious errors have occured in the measuring system or in the installation, a flashing "INFO" will appear in the display while the error exists. The "INFO" panel will flash for as long as the error exists no matter which reading is selected. The "INFO " panel will automatically turn off, when the source of error has been corrected.

EX. 1	
INFO E (Flashing " INFO"
00056.41	If the info code exceeds 0 a flashing " INFO " will appear in the information panel.
GJ	
Ex. 2	
INFO	Current info code
256	When the upper (primary) push button is activated several times the current info code can be shown on the display.
Ex. 3	
INFO N°	Info event counter
	- indicates how many times the info code has been changed.
Ex. 4	
	Info logger
20110104	By pressing the lower push button once more the data logger for the info code is displayed.
	First, the date of the first change is displayed
INFO 1	then the info code appearing on that particular
	date is displayed. In this case there has been a "bursting alarm" on 4 th January 2011.
	The data logger stores the last 50 changes, of which the last 36 changes are shown in the display. All 50 changes can be read by means of LogView/MT Pro.

Time, E1 (heat energy) and E3 (Cooling energy – if available) will be logged when the info code is changed. Naturally, the info code will still be logged during changed info codes. To read out Time and E1 together with the info code it is necessary to use LogView.

In addition, the info code is stored in the hourly logger, the daily logger, the monthly logger and the yearly logger for diagnostic purposes.

6.11.2 Types of info codes

Info code	Description	Response time				
0	No irregularities	-				
1	Supply voltage has been cut off	-				
8	Temperature sensor T1 outside measuring range	110 min.				
4	Temperature sensor T2 outside measuring range	110 min.				
32	Temperature sensor T3 outside measuring range	110 min.				
64	Leak in the cold-water system	1 day				
256	Leak in the heating system	1 day				
512	512 Burst in the heating system 120 sec.					
	ULTRAFLOW [®] X4 info (if activated CCC=4XX)					
16	Flow sensor V1, Datacomm error	After 1 day (00:00)				
1024	Flow sensor V2, Datacomm error	After 1 day (00:00)				
2048	Flow sensor V1, Wrong meter factor	After 1 day (00:00)				
128	Flow sensor V2, Wrong meter factor	After 1 day (00:00)				
4096	Flow sensor V1, Signal too low (Air)	After 1 day (00:00)				
8192	Flow sensor V2, Signal too low (Air)	After 1 day (00:00)				
16384	Flow sensor V1, Wrong flow direction	After 1 day (00:00)				
32768	Flow sensor V2, Wrong flow direction	After 1 day (00:00)				

Info code 1 will be logged when the mains supply/main battery is switched OFF and Info code 1 will be deleted when the mains supply/main battery is switched ON. Thereby the time without power can be retrieved from the logger data.

If several info codes appear at the same time the sum of the info codes is shown. E.g. if both temperature sensors are outside measuring range, info code 12 will appear.

During configuration at the factory the individual info - active or passive - are set and in this way a standard heat meter not using T3, cannot display info code 32.

Info = 16-1024-2048-128-4096-8192-16384-32768 functions via data communication between MULTICAL[®] and ULTRAFLOW[®] 54. See paragraph 13.2.4, Info code setup, in order to change the settings.

Important: Forced info code update for ULTRAFLOW[®] X4 info codes

In certain cases, e.g. after installation of a meter, a shorter response time may be required for the ULTRAFLOW® X4 info codes than stated in the table above. These info codes are only available if CCC=4xx has been selected. In order to perform a forced info code update, press the main key until the info code panel is displayed. After 10-20 seconds the meter will update the display with the current info code. The display is then updated every ten seconds until the display returns to the main reading (accumulated energy) after about 4 minutes. This procedure may not be repeated more than 25 times per day.

6.11.3 Transport mode

When the meter leaves the factory it is in transport mode, and the info codes are only active on the display and not in the data logger. This prevents both "info event" to increment and the storage of non relevant data in the info logger. When the meter has summed up the volume register for the first time after installation the info code is automatically set at active.

6.11.4 Info event counter

Info event counter

Counting takes place every time the info code is changed.

The info event counter will be 0 on receipt, as "transport mode" prevents counting during transport

Info code	"INFO" on display	Registration in the info, daily, monthly or yearly logger	Counting of info events
1	No	Yes	At each "Power-On-Reset"
4, 8, 32	Yes	Yes	When info 4, 8, 32 are set or removed. Max. 1 per measurement of temperature
64, 256	Yes	Yes	When info is set and when info is deleted. Max. 1 time/day
512	Yes	Yes	When info is set and when info is deleted. Max. 1 time/120 sec.
16, 1024, 2048, 4096, 8192, 16384, 32768	Yes	Yes	When info is set and when info is deleted. Max. 1 time/day

6.11.5 Error hour counter

An error hour counter is added. This will sum up the approx. number of hours with info code > zero.

6.12 Tariff functions

MULTICAL[®] 602 has 2 extra registers TA2 and TA3 to accumulate heat energy or cooling energy (EE=20 accumulates volume) in parallel to the main register based on a programmed tariff condition. No matter which tariff form is selected the tariff registers are indicated as TA2 and TA3 in the display.

The main register is always accumulated as it is considered a legal billing register, irrespective of the selected tariff function. The tariff conditions TL2 and TL3 are monitored before each integration. When the tariff conditions are fulfilled the consumed heat energy is counted in either TA2 or TA3, in parallel to the main register.

To each tariff function two tariff conditions, TL 2 and TL3 are connected, which are always used in the same tariff type. Therefore, it is not possible to "mix" two tariff types.

Example: EE=11 (Power tariff)

TA2 shows the consumed energy...

...over the power limit TL2 (but under TL3)

6.12.1 Tariff types

Below table indicates which tariff types MULTICAL[®] 602 can be configured to:

EE=	TARIFF TYPE	FUNCTION	Country code 2xx	Country code 4xx	Country code 5xx	Country code 6xx
00	No tariff active	No function				
11	Power tariff	Energy is accumulated in TA2 and TA3 based on the power limits in TL2 and TL3	•	•	•	
12	Flow tariff	Energy is accumulated in TA2 and TA3 based on the flow limits in TL2 and TL3	•	•	•	
13	Cooling tariff	Energy is accumulated in TA2 and TA3 based on the Δt limits in TL2 and TL3	•	•	•	
14	Inlet temperature tariff	Energy is accumulated in TA2 and TA3 based on the tF-limits in TL2 and TL3	•	•	•	
15	Outlet temperature tariff	Energy is accumulated in TA2 and TA3 based on the tR-limits in TL2 and TL3	•	•	•	
19	Time-controlled tariff	TL2=Starting time for TA2 TL3=Starting time for TA3	•	•	•	
20	Heat/cooling volume tariff (TL2 and TL3 are not used)	Volume (V1) is split up into TA2 for heat (T1>T2) and TA3 for cooling (T1 <t2) (recommended="" applications)<="" cooling="" heating="" on="" td=""><td></td><td></td><td></td><td>•</td></t2)>				•
21	PQ tariff	Energy at P>TL2 is stored in TA2 and energy at Q>TL3 is stored in TA3	•	•	•	

Please note that only tariff No. 20 can be used in a combined heat / cooling meter. All other tariffs can only be used with either a heat meter or a cooling meter. The meter cannot distinguish heat energy (E1) from cooling energy (E3) and vice versa.

EE=00 No tariff active

If the tariff function should not be used, select the set-up for EE=00.

However, the tariff function can be made active at a later date by a reconfiguring the function by means of METERTOOL for $MULTICAL^{\$}$ 602. See paragraph 13 METERTOOL.

EE=11 Power controlled tariff

When the current power is higher than TL2, but lower than/equal to TL3, the energy is counted in TA2 in parallel to the main register. If the current power exceeds TL3, the energy is counted in TA3 in parallel to the main register.

$P \le TL2$	Counting in main register only	
$TL3 \ge P > TL2$	Counting in TA2 and the main register	TL3 > TL2
P > TL3	Counting in TA3 and the main register	

When setting up data TL3 must always be higher than TL2. Among other things the power controlled tariff is used as a basis for calculating the individual consumer's connection costs. Furthermore, this tariff form can provide valuable statistical data when the energy supplier evaluates new installation activities.

EE=12 Flow controlled tariff

When the current water flow is higher than TL2 but lower than/equal to TL3, the energy is counted in TA2 in parallel to the main register. If the current water flow becomes higher than TL3, the energy is counted in TA3 in parallel to the main register. When setting up data, TL3 must always be higher than TL2.

$q \le TL2$	Counting in main register only	
$TL3 \ge q > TL2$	Counting in TA2 and the main register	TL3 > TL2
q > TL3	Counting in TA3 and the main register	

Among other things the flow controlled tariff is used as a basis for calculating the individual consumer's connection costs. Furthermore, this tariff form provides valuable statistical data when the energy supplier evaluates new installation activities.

When the power or flow tariff is used it is possible to get a total overview of the total consumption compared to the part of the consumption, that is used above the tariff limits.

EE=13 Differential temperature tariff (Δt)

When the current T1-T2 (Δt) is lower than TL2, but higher than TL3, the energy is counted in TA2 in parallel to the main register. If the current cooling drops to less than/equal to TL3, the energy is counted in TA3 in parallel to the main register.

$\Delta t \ge TL2$	Counting in main register only	
$TL3 < \Delta t < TL2$	Counting in TA2 and the main register	TL3 < TL2
$\Delta t \leq TL3$	Counting in TA3 and the main regiser	

When setting up tariff limits TL3 must always be lower than TL2.

The T1-T2 tariff can be used to form the basis for a weighted user payment. Low Δt (small difference between inlet and outlet temperatures) is uneconomical for e.g. the heat supplier.

EE=14 Inlet temperature tariff

When the current inlet temperature (T1) is higher than TL2, but lower than/equal to TL3, the energy is counted in TA2 in parallel to the main register. If the current inlet temperature becomes higher than TL3, the energy is counted in TA3 in parallel to the main register.

$T1 \leq TL2$	Counting in main register only	
$TL3 \ge T1 > TL2$	Counting in TA2 and the main register	TL3 > TL2
T1 > TL3	Counting in TA3 and the main register	

When setting up data TL3 must always be higher than TL2.

The inlet temperature tariff can form the basis of billing of those customers who are guaranteed a given inlet temperature. When the "guaranteed" minimum temperature set at TL3, the calculated consumption is accumulated in TA3.

MULTICAL[®] 602

EE=15 Outlet temperature tariff

When the current outlet temperature (T2) is higher than TL2 but lower than/equal to TL3, the energy is counted in TA2 in parallel to the main register. If the current outlet temperature becomes higher than TL3, the energy is counted in TA3 in parallel to the main register.

$T2 \leq TL2$	Counting in main register only	
$TL3 \ge T2 > TL2$	Counting in TA2 and the main register	TL3 > TL2
T2 > TL3	Counting in TA3 and the main register	

When setting up data TL3 must always be higher than TL2.

The outlet temperature tariff can form the basis of a weighted user payment. A high outlet temperature indicates insufficient heat utilization which is uneconomical for e.g. the heat supplier.

EE=19 Time-controlled tariff

The time-controlled tariff is used for time division of the heat consumption. If TL2 = 08:00 and TL3 = 16:00 the consumption of the entire day from 08:00 till 16:00 will be accumulated in TA2, whereas the consumption of the evening and the night from 16:01 till 07:59 will be accumulated in TA3.

TL2 must have a lower number of hours than TL3.

TL 3 \geq Clock \geq TL2	Counting in TA2 and the main register	TI3 > TI2
TL 2 > Clock > TL3	Counting in TA3 and the main register	

Among other things the time tariff is suitable for billing in housing sectors close to industrial sectors with a large consumption of district heating and for billing industrial customers.

EE=20 Heat/cooling volume tariff

The heat/cooling volume tariff is used for dividing volume into heat and cooling consumption. TA2 accumulates the volume consumed together with E1 (heat energy) and TA3 accumulates the volume consumed together with E3 (cooling energy).

$T1 \ge T2$	Volume is accumulated in TA2 and V1	TL2 and TL3 are
T2 > T1	Volume is accumulated in TA3 and V1	not used

In connection with combined heat/cooling measurement the total volume in the V1 register is accumulated, whereas the heat energy is accumulated in E1 and the cooling energy in E3. The heat/cooling tariff divides the consumed volume into heating and cooling volume.

EE=20 should always be selected together with combined heat/cooling meters, type 602-xxxxxxx-6xx.

EE=21 PQ tariff

The PQ tariff is a combined power and inlet tariff. TA2 functions as a power tariff and TA3 as a inlet tariff.

$P \le TL2$ and $q \le TL3$	Counting in the main register only	
P > TL2	Counting in TA2 and the main register	TL2 = power limit (P)
q > TL3	Counting in TA3 and the main register	TL3 = flow limit (q)
P > TL2 and q > TL3	Counting in TA2, TA3 and the main register	

Among other things the PQ tariff is used for customers paying a fixed duty based on max. power and max. flow.

6.13 Data loggers

MULTICAL[®] 602 contains a permanent memory (EEPROM), where the results of a number of various data loggers are stored. The meter contains the following data loggers:

Data logging interval Data logging depth I		Logged value	Logger read-out		
Yearly logger	15 years	Counter registers	LogView/MT Pro •		
Monthly logger	36 months	Counter registers	LogView/MT Pro •		
Daily logger	460 days	Consumption (increase)/day	LogView/MT Pro 🔶		
Hourly logger	1392 hours	Consumption (increase)/hour	LogView/MT Pro 🔶		
Programmable data logger top module 67-0B and base module 67-00-22	1080 loggings Logging interval 1-1440 min. (e.g. 45 days' hour loggings or 11 days' 15 min. loggings)	30 registers and values	AMR *), LogView/MT Pro		
Info logger	50 events (36 events can be displayed)	Info code, date, time and energy (E1/E3) **)	LogView/MT Pro		

*) Example of AMR (Automatic Meter Reading) for the data logger is GSM/GPRS. See chapter 13.4 about LogView.

**) Only info code and date appear from the display.

The loggers are static and therefore the register types cannot be changed, furthermore, the logging intervals are fixed. When the last record has been written in the EEPROM the oldest one is overwritten.

6.13.1 Yearly, monthly, daily and hourly loggers

Following registers are logged every year and every month on target date as counter values. In addition, the increases of the day and the hour are logged at midnight.

Register type	Description	Yearly logger	Monthly logger	Daily logger	Hourly logger	67-0B 67-00-22 Prog. logger
Date (YY.MM.DD)	Year, month and day for logging times	•	•	•	•	•
Clock (hh.mm.ss.)	Time	-	-	-	-	•
Log Info	Status, quality stamping of log record	-	-	-	-	•
E1	E1=V1(T1-T2)k Heat energy	•	•	•	•	•
E2	E2=V2(T1-T2)k Heat energy	•	•	•	•	•
E3	E3=V1(T2-T1)k Cooling energy	•	•	•	•	•
E4	E4=V1(T1-T3)k Inlet energy	•	•	•	•	•
E5	E5=V2(T2-T3)k Returned energy or tap from outlet	•	•	•	•	•
E6	E6=V2(T3-T4)k Tap water energy, separate	•	•	•	•	•
E7	E7=V2(T1-T3)k Tap water energy from inlet	•	•	•	•	•
E8	E8=m ³ x T1 (inlet)	•	•	•	-	•
E9	E9=m ³ x T2 (outlet)	•	•	•	-	•
TA2	Tariff register 2	•	•	-	-	-
TA3	Tariff register 3	•	•	-	-	-
V1	Volume register for Volume 1 • •		•	•		
V2	Volume register for Volume 2	•	•	•	•	•
VA	Extra water or electricity meter connected to Input A	•	•	•	•	•
VB	Extra water or electricity meter connected to Input B	•	•	•	•	•
M1	Mass corrected V1	-	-	•	•	•
M2	Mass corrected V2	-	-	•	•	•
INFO	Information code	•	•	•	•	•
DATE FOR MAX. FLOW V1	Date stamp for max. flow in the period	•	•	-	-	-
MAX. FLOW V1	Value for max. flow in the period	•	•	-	-	-
DATE FOR MIN. FLOW V1	Date stamp for min. flow in the period	•	•	-	-	-
MIN. FLOW V1	Value for min. flow in the period	•	•	-	-	-
DATE FOR MAX. POWER V1	Date stamp for max. power in the period	•	•	-	-	-

MAX. POWER V1	Value for max. power in the period	•	•	-	-	-
DATE FOR MIN. POWER V1	Date stamp for min. power in the period	•	•	-	-	-
MIN. POWER V1	Value for min. power in the period	•	•	-	-	-
T1avg	Time based average for T1	-	-	•	•	-
T2avg	Time based average for T2	-	-	•	•	-
T3avg	Time based average for T3	-	-	•	•	-
P1avg	Time based average for P1	-	-	•	•	-
P2avg	Time based average for P2	-	-	•	•	-
Operating hour counter	Accumulated number of operating hours	•	•	-	-	•
T1	Current value of T1	-	-	-	-	•
T2	Current value of T2	-	-	-	-	•
Т3	Current value of T3	-	-	-	-	•
T4	Current value of T4	-	-	-	-	•
T1-T2 (∆t)	Current differential value	-	-	-	-	•
Flow (V1)	Current water flow of V1	-	-	-	-	•
Flow (V2)	Current water flow of V2	-	-	-	-	•
Power (V1)	Actual power	-	-	-	-	•
P1	Current pressure of inlet	-	-	-	-	•
P2	Current pressure of outlet	-	-	-	-	•

Note: Continuous maximum water flow and permanent $\Delta \Theta > 75$ K may cause overflow in the daily data logger at CCC=010-011-012-013-150-202-205. With these combinations we recommend you to use Prog. data logger type 67-0B or type 67-00-22.

6.13.2 Info logger

Every time the information code is changed, date and info code are logged. Thereby, it is possible to data read the last 50 changes in the information code and the date of the change.

Register type	Description
Date (YY.MM.DD)	Year, month and day for the logging time
Info	Information code on above date
E1	Heat energy
E3	Cooling energy
Clock (hh.mm.ss.)	Time

When the info logger is read on the display the last 36 changes including dates can be read. Heat energy, cooling Energy, and time can be read out via LogView only. Please see 6.11 for more information.

6.14 Leak surveillance

6.14.1 District heating installations

The leak surveillance system is primarily intended for directly connected district heating installations, i.e. installations without heat exchanger between the district heating network and the heating system of the housing. The surveillance system consists of two water meters based on the ultrasonic principle placed in both inlet and outlet pipe, and of temperature sensors in both pipes. In addition, the electronic unit MULTICAL[®] 602, which in addition to calculating the heat energy also surveys the mass difference (temperature compensated volume) that may appear between inlet and outlet pipe.

If a difference of more than 20 % of the measuring range (corresponding to 300 l/h in a single-family house) is registered, an alarm will be sent within 120 sec. via remote communication.

Small leaks from 15 kg/h and upwards for qp 1.5 m^3 /h are under surveillance on the basis of a 24-hour average to rule out incorrect alarms as a consequence of air pockets and fast flow changes e.g. from hot-water exchangers.

District heating leak surveillance (V1-V2)			
M=	Sensitivity in leak surveillance		
0	OFF		
1	1.0 % qp + 20 % q		
2	1.0 % qp + 10 % q		
3	0.5 % qp + 20 % q		
4	0.5 % qp + 10 % q		

NB: M=2 is a default value when leak surveillance is used. Higher degrees of sensitivity, e.g. M=4 is <u>only</u> possible by means of METERTOOL. Please see 3.8.1 for an example of how the sensitivity is calculated.

Info codes for leak/bursting are only active when M > 0 or N > 0, respectively.

Example: The curve below illustrates the difference between Mass V1 and Mass V2 in an extract of 60 days before the leak in a floor heating pipe was the reason for a leak alarm. As will appear from below, there is a fluctuation of approx. ± 1 kg/hour in the first 43 days which is a normal fluctuation for installations without leaks.

6.14.2 District heating bursting

Every 30 sec. the current flow in the inlet pipe is compared with that in the outlet pipe. If the difference at 4 measurings in a row (120 sec.) is larger than 20 % of the nominal flow info = 00512 and a "bursting alarm" will be sent via remote communication.

6.14.3 Cold-water systems

In addition to above functions MULTICAL[®] 602 can be connected to the pulse signal from the cold-water meter of the house. In this way it can survey the cold-water consumption. A flushing toilet cistern, leaky heating coils in the water tanks or other leaks will cause that impulses from the cold-water meter are received 24 hours a day.

If MULTICAL[®] 602 does not register e.g. at least one continous hour/day without pulses from the water meter, this is a sign of a leak in the water system and an alarm will be sent via remote communication.

Cold-water leak search (VA)		
N=	Constant leak at no consumption (pulse resolution 10 l/pulse)	
0	OFF	
1	20 l/h (1/2 hour without pulses)	
2	10 l/h (1 hour without pulses)	
3	5 l/h (2 hours without pulses)	

NB: N=2 is a default value in connection with leak surveillance. Higher degree of sensitivity, e.g. N=3 is <u>only</u> possible if using METERTOOL. Infocodes for leak/bursting are only active when M > 0 or N > 0, respectively.

6.14.4 Receiving alarm messages

When the meter has registered a leak or bursting it will send an alarm message to a receiving station, where incoming alarms are handled on the basis of an encoded action pattern that is laid down for each individual customer, e.g. starting with an SMS message to the customer's mobile phone. At the same time the utility on duty receives the message. Regular data readings from MULTICAL[®] 602 to the receiving station/monitoring center ensure that defective remote readings, if any, are detected.

6.14.5 Surveillance, but no automatic blocking

The leak surveillance system is based on installation at a large number of private district heating customers'. Usually, the individual utility installs and maintains the leak surveillance, integrated with the compulsory heat metering at all district heating customers in their area. In this way, the individual private district heating customers neither maintain the system nor perform other technical tasks in connection with the installed leak surveillance system, and the surveillance system must not imply an increased risk of faulty blocking that may lead to frost bursts. As a consequence of this the entire system must have a reliability that ensures operation for 12 years without maintenance. As neither thermally nor electrically activated shut-off valves can be expected to have such a long lifetime it will not be possible to use automatic blocking.

6.14.6 First day after reset

The first day after installation (when the meter has had no supply voltage) no infocodes will be set and no alarms will be sent in case of calculated district heating or cold-water leak.

This limitation has been introduced to avoid wrong alarms as a result of the installation and the shortened metering period.

The alarm function can be tested via remote communication by pressing both push buttons simultaneously, until a "Call" appears in the display.

6.15 Reset functions

6.15.1 Resetting the hour counter

As the hour counter usually is used to control that the meter has been in operation in the entire billing period (e.g. 1 year = 8760 hours) the district heating supplier must always be informed which meters have had their hour counter reset.

The operational hour counter can only be reset via the front bottons. Please see 6.18.

6.15.2 Resetting data loggers

Separate reset of data loggers, info loggers, max. & min. loggers (without resetting the legal registers) are only possible by means of METERTOOL. See paragraph 13 for further details.

6.15.3 Resetting all registers

Resetting all legal and non-legal registers including all data loggers, info loggers, max. & min. loggers can only be made by using METERTOOL, if the verification seal is broken and the internal "Total programming lock" is short-circuited. As the verification seal is broken, this can only be made at an accredited laboratory.

Following registers are reset:

All legal and non-legal registers including all data loggers, info loggers, max. & min. loggers (max. values are set at zero, whereas min. values are set at 100000).

After reset "Date" is set at 2000.01.01 and is then changed to current date/time of the PC used for the task. Remember to check correct date/time (technical standard time = "winter-time") on the PC before the reset function is initiated.

6.16 SMS Commands

MULTICAL[®] 602 can be read by means of an SMS. In order to do so, a GSM-module (68G6xxxxx) fitted with a SIMcard must be connected to the meter. To read the meter you send an SMS from a mobile phone direct to the meter. Subsequently, you receive a reply with the following values:

- Acc. energy: [kWh], [MWh], [GJ] or [Gcal]
- Current power: [kW] or [MW]
- Hour counter
- Meter number

It is also possible to read the modem's signal strength by means of an SMS. You receive a reply with the modem's current signal strength on a scale of 0 to 31, the best value being 31. The signal strength must be minimum 12. See the examples on the next page.

NOTE: SMS commands must be written in **either** capital letters **or** small letters, i.e. an SMS command must not include a mixture of capital and small letters.

READ_HEAT_METER – for reading a MULTICAL [®] 602					
Syntax	=READ_HEAT_METER#				
Return reply, error	NO ANSWER				
Example of SMS command	=READ_HEAT_METER#				
Example of correct reply	12.067Gj, 120.0kW 6930 Hours, Meter No.: 6055524				

SIGNAL – for reading the signal strength						
Syntax, command	=SIGNAL#					
Return reply, error	NO ANSWER					
Example of SMS command	=SIGNAL#					
Example of correct reply	Signal: 16(0-31)					

6.17 Set-up via the front keys

Via the main key 🕑 and the sub-key 🔍 on MULTICAL[®] 602, a number of settings can be selected.

6.17.1 Activate the setup-menu

The setup-menu is activated in the following way:

- 1) Select the display reading that you wish to change
- 2) Remove the calculator from the base
- 3) Wait until the display goes blank (up to 2.5 minutes). Meanwhile do not touch the front keys
- 4) While replacing the calculator on the base, press and hold the main key for approx. 8 seconds
- 5) The setup-menu is now active

Having activated the setup-menu, the register that you wish to change is now displayed with the rightmost digit flashing (in the below example the "Date" has been selected):

DATE	MIN RLO	I MAX TA IG Nº EL V	12t88
20	1		1.14
bar ∘ ton∕ _h			

If a display register that is not supported by the front key set-up is selected, the meter will show the normal display without activating the setup-menu.

6.17.2 Setup of a display register

When the setup-menu is activated, the actual value in the register selected will be displayed (in the below example the date 2011.07.14)

The value of the flashing digit can be increased by pressing the sub-key:

DATE		DATE ADR LOG MELVOL TO T
20 1.07, 14	∎ ⇒	20 107, 15

When pressing the main key, the next digit to the left will be flashing:

6.17.3 Exit setup-menu

When the display value has been changed as required, hold the main key for 10 seconds, until the "OK" segment is displayed. The display reverts to legal reading.

The new value is checked. If it is valid, the new value is saved. If it is invalid, the old value is kept and the "OK" segment will not be displayed within approx. 3 seconds. The display reverts to legal reading.

If you wish to exit the setup-menu without saving the new value:

- 1) Remove the calculator from the base
- 2) Wait until the display goes blank (up to 2.5 minutes). Meanwhile do not touch the front keys
- 3) Replace the calculator on the base without pressing the front keys

Allow some seconds for the meter to boot-up without pressing the front keys. The normal display register is now shown and the setup menu is deactivated.

Note that if the front keys are not activated for 4 minutes in the setup-menu, the setup-menu will be deactivated and the meter will automatically return to normal operation.

No data will be stored in the meter's memory, unless the "OK" segment is displayed.

6.17.4 Display registers supported by the setup-menu

The following registers are supported by the setup-menu:

- Date
- Clock
- Primary M-Bus address (for both top and base module if mounted)
- Preset of Input A
- Preset of Input B
- Meter No. for Input A
- Meter No. for input B
- Pulse value for Input A
- Pulse value for Input B

6.18 Reset via the front keys

Via the the main key 🧼 and the sub-key 🔍 on MULTICAL® 602, a number of reset functions can be made.

6.18.1 Activate the reset-menu

The reset-menu is activated in the following way:

- 1) Select the display reading that you wish to reset
- 2) Remove the calculator from the base
- 3) Wait until the display goes blank (up to 2.5 minutes). Meanwhile do not touch the front keys
- 4) While replacing the calculator on the base, press and hold the main key for approx. 8 seconds
- 5) The reset-menu has now been activated

Having activated the reset menu, either the operation hour counter, the infoevent-counter or the error hour counter will be displayed, depending on the register which was selected before activating the reset menu.

When the reset menu has been activated,"0" will be displayed. It is not possible to change to any other value. It is only possible to "save" the value = 0 in order to reset the register, or to leave the reset menu without reset.

If a display register that is not supported by the reset-menu is selected, the meter will show the normal display without activating the reset menu.

6.18.2 Exit the reset menu

When the operation hour counter, the info-event counter or the error hour counter displayes "0", hold the main key for 5-6 seconds, until the "OK" segment is displayed, and the display reverts to legal reading.

If you wish to exit the reset menu without resetting any registers:

- 4) Remove the calculator from the base
- 5) Wait until the display goes blank (up to 2.5 minutes). Meanwhile do not touch the front keys
- 6) Replace the calculator on the base without pressing the front keys

Allow some seconds for the meter to boot-up without pressing the front keys. The normal display register is now displayed and the reset menu is deactivated.

Note that if the front keys are not activated for 4 minutes in the setup-menu, the setup-menu will be deactivated and the meter will automatically return to normal operation.

No data will be reset in the meter's memory, unless the "OK" segment is shown.

6.18.3 Display registers supported by the reset menu

The following registers are supported by the reset menu:

- Operating hour counter
- Error hour counter
- Info event counter

6.19 Preset the pulse value for V1 and V2

It is possible to preset the pulse value for V1 and V2 in MULTICAL[®] 602 by changing the CCC-codes. In order to do so the meter must be connected via an optical eye to a PC with the METERTOOL software running. Break the verification seal and short circuit the TOTAL PROG button on the inside of the calculator top with a short circuit pen.

Note! This should only be done by an accredited laboratory, since breaking of the verification seal revokes the legal verification as well as the factory warranty.

After shorting the total programming circuit, the meter is set in programming mode for 4 minutes. Set the pulse value by selecting a suitable CCC-code. As long as METERTOOL is communicating with the meter, the time for programming mode is extended, and after 4 minutes of inactivity the meter will return to normal mode. When the desired pulse values for V1 and V2 are set, METERTOOL can be used to terminate the programming mode by a reset, and the meter returns to normal mode ready for use.

Figure 4

7 Flow sensor connection

MULTICAL[®] 602 can be used with up to 4 pulse inputs, of which V1 and V2 are used for energy calculation and leak surveillance, whereas VA and VB are used to accumulate pulses e.g. from tap-water meters and electricity meters.

V1 and V2 can either be used for fast pulses (CCC = 4XX, 2XX, 1XX) or for slow pulses (CCC = 0XX, 9XX). Fast and slow pulses cannot be used simultaneously.

7.1 Volume inputs V1 and V2

MULTICAL[®] 602 can be connected to one or two flow sensors depending on the required application. Typical heat installations with one flow sensor are always connected to V1 irrespective if this flow sensor is installed in inlet pipe or outlet pipe.

Almost all available flow sensor types with pulse output can be connected as the standard connection PCB receives pulses from both electronic and mechanical meters. In addition, a connection PCB that receives 24 V active pulses is also available.

7.1.1 Flow sensor with transistor- or FET output $extsf{0}$

Typically, the signaller is an optocoupler with a transistor or a FET outpt. V1 is connected to terminal 10(+) and 11(-), V2 is connected to terminals 69(+) and 11(-). Terminal 9 is not used in this application.

The leak current in the transistor or FET output must not exceed $1\mu A$ in OFF state and there must be max. 0.4 V in ON state.

A suitable CCC code must be selected with the same number of pulses/liter as the flow part, and for this flow sensor type the CCC code must be 100 < CCC < 900.

Example: CCC=147 fits an electronic meter with 1 pulse/liter and qp of 150 m³/h.

7.1.2 Flow sensor with Reed switch output @

The signaller is a Reed switch typically mounted on vane wheel or Woltmann meters, or a relay output from e.g. a magnetic inductive flow sensor. V1 is connected to the terminals 10(+) and 11(-), V2 is connected to the terminals 69(+) and 11(-). Terminal 9 is not used in this application.

The leak current must not exceed 1 μA in OFF state and there must be max. 10 k Ω in ON state.

A suitable CCC code must be selected with the same number of pulses/liter as the flow part, and for this flow sensor type the CCC code must be in the range $010 \le CCC \le 022$, or $910 \le CCC \le 922$.

Example: CCC=012 fits a mechanical flow sensor with 100 liter/pulse. Flow sensors with Qmax. in the range $10...300 \text{ m}^3$ /h can use this CCC code.

7.1.3 Flow sensor with active output supplied from MULTICAL[®] ③

This connection is used both together with Kamstrup's ULTRAFLOW[®] and Kamstrup's electronic pick-up units for vane wheel meters. The power consumption in these units is very low and is adapted to MULTICAL[®]'s battery lifetime.

A suitable CCC code must be selected with the same number of pulses/litre as the flow part, and for this flow sensor type the CCC code must be 100 < CCC < 900.

Example: CCC=119 fits an electronic meter with 100 pulses/litre and typical qp is 1.5 m³/h.

V1 and V2 are connected as shown in below diagram.

	V1	V2
Red (3.6 V)	9	9
Yellow (Signal)	10	69
Blue (GND)	11	11

Table 2

7.1.3.1 Use of Pulse Transmitter between ULTRAFLOW[®] and MULTICAL[®]

In general it is permissible to use up to 10 m cable between MULTICAL[®] and ULTRAFLOW[®]. If longer cable is required, a Pulse Transmitter can be inserted between ULTRAFLOW[®] and MULTICAL[®]. In this way the cable length can be extended up to 50 m.

When a Pulse Transmitter is used between ULTRAFLOW[®] and MULTICAL[®], volume pulses from the flow meter will be transferred to the calculator. However, the calculator is unable to data communicate with the flow meter. In order to avoid erroneous info codes it is, therefore, necessary to deselect the info codes, which are based on data communication between MULTICAL[®] and ULTRAFLOW[®] 54 (Info = 16-1024-2048-128-4096-8192-16384-32768).

The above-mentioned info codes can be deselected by means of the PC-program METERTOOL, either by changing from CCC-code 4xx to 1xx, or by using the "Info code setup" function under "Utility". See paragraph 13.2.4 Info code setup.

7.2 Flow sensor with active 24 V pulse output ④

When $MULTICAL^{\$}$ is connected to "industrial" flow sensors with a 24 V active pulse output, the connection board type 6699-614 must be used in $MULTICAL^{\$}$ 602 type 602-B or 602-D, with a 4 wire temperature sensor connection.

602-D is mounted with 6699-614 from the factory.

Technical data

Pulse input voltage	1232 V
Pulse current	Max. 12 mA at 24 V
Pulse frequency	Max. 128 Hz
Pulse duration	Min. 3 msec.
Cable length V1 and V2	Max. 100 m (including min. 25 cm distance to other cables)
Galvanic insulation	The inputs V1 and V2 are both individually insulated and insulated from MULTICAL $^{\ensuremath{\mathbb{B}}}$
Insulation voltage	2 kV
Net supply to MULTICAL [®]	24 VAC or 230 VAC
Battery life time for MULTICAL [®]	When using V1: 12+1 years When using both V1 and V2: 10 years

If in addition, a data communication modules is used in MULTICAL[®] the battery lifetime will be reduced further. See paragraph 9.2 for further details.

MULTICAL[®] 602

7.2.1 Connection examples

Figure 5

7.2.2 Flow sensor coding

In connection with installation it is important that both the flow sensor and the MULTICAL[®] are programmed correctly. Below table states the possibilities:

		_	Number of decimals on the display										
CCC no.	Pre- counter	Flow factor	MWh Gcal	GJ	m³ [ton]	m³/h	MW	l/pulse	Pulse/l	Qp range [m³/h]	Qs [m³/h]	Туре	Flow sensor
201	100	235926	2	1	1	1	2	1	1	10100	75	FUS380 DN50-65	K-M
202	40	589815	2	1	1	1	2	2.5	0.4	40200	240	FUS380 DN80-100	K-M
203	400	589815	1	0	0	1	2	2.5	0.4	100400	500	FUS380 DN125	K-M
204	100	235926	1	0	0	0	1	10	0.1	1501200	1600	FUS380 DN150-250	K-M
205	20	1179630	1	0	0	0	1	50	0.02	5003000	3600	FUS380 DN300-400	K-M

Table 3

7.3 Pulse inputs VA and VB

In additions to the pulse inputs V1 and V2 MULTICAL[®] 602 has two extra pulse inputs, VA and VB, to collect and accumulate pulses remotely, e.g from cold-water meters and electricity meters. The pulse inputs are physically placed on the "base modules" as for instance on the "data/pulse input module" that can be placed in the connection base, however, accumulation and data logging of values are made by the calculator.

The pulse inputs VA and VB function independantly of the other inputs/outputs and thereby they are not included in any energy calculations.

Both pulse inputs are constructed identically and can individually be set up to receive pulses from water meters with max. 1 Hz or pulses from electricity meters with max. 3 Hz.

Configuration to correct pulse value is made at the factory on the basis of order information or are configured by means of METERTOOL. See paragraph 3.6 concerning configuration of VA (FF codes) and VB (GG codes).

MULTICAL[®] 602 registers the accumulated consumption for the meters connected to VA and VB and stores the registers every month and every year on the target date. To facilitate the identification during data reading it is also possible to store the meter numbers for the two meters that are connected to VA and VB. Programming is made by means of METERTOOL, or in the Set-up menu described in paragraph 6.17.

The registers that can both be read on the display (by selecting a suitable DDD code) and via data communication contains the following information as well as date of yearly and monthly data:

Registration type:	Count	Identification	Yearly data	Monthly data
VA (accumulated register)	•			
Meter number VA		•		
Yearly data, up to 15 years back			•	
Monthly data, up to 36 months back				•
VB (accumulated register)	•			
Meter number VB		•		
Yearly data, up to 15 years back			•	
Monthly data, up to 36 months back				•

By using METERTOOL the registers VA and VB can be preset to the value of the connected meters at the time of installation.
7.3.1 Display example, VA

In the example below VA is configured to FF=24, which corresponds to 10 liters/pulse and a max. flow of 10 m^3/h . The meter that is connected to VA has meter number 75420145 which is stored in MULTICAL[®] 602's internal memory by means of METERTOOL.

8 Temperature sensors

For MULTICAL[®] 602 either Pt100 or Pt500 temperature sensors are used according to EN 60751 (DIN/IEC 751). A Pt100 or Pt500 temperature sensor is a platinum sensor with a nominal ohmic resistance of 100.000 Ω and 500.000 Ω , respectively, at 0.00°C and 138.506 Ω and 692.528 Ω at 100.00°C, respectively. All values for the ohmic resistance are laid down in the international standard IEC 751 valid for Pt100 temperature sensors. The values for the ohmic resistances in Pt500 sensors are 5 times higher. In below tables the resistance values in [Ω] are stated for every whole degree celcius for both Pt100 and for Pt500 sensors:

	Pt100									
°C	0	1	2	3	4	5	6	7	8	9
0	100.000	100.391	100.781	101.172	101.562	101.953	102.343	102.733	103.123	103.513
10	103.903	104.292	104.682	105.071	150.460	105.849	106.238	106.627	107.016	107.405
20	107.794	108.182	108.570	108.959	109.347	109.735	110.123	110.510	110.898	111.286
30	111.673	112.060	112.447	112.835	113.221	113.608	113.995	114.382	114.768	115.155
40	115.541	115.927	116.313	116.699	117.085	117.470	117.856	118.241	118.627	119.012
50	119.397	119.782	120.167	120.552	120.936	121.321	121.705	122.090	122.474	122.858
60	123.242	123.626	124.009	124.393	124.777	125.160	125.543	125.926	126.309	126.692
70	127.075	127.458	127.840	128.223	128.605	128.987	129.370	129.752	130.133	130.515
80	130.897	131.278	131.660	132.041	132.422	132.803	133.184	133.565	133.946	134.326
90	134.707	135.087	135.468	135.848	136.228	136.608	136.987	137.367	137.747	138.126
100	138.506	138.885	139.264	139.643	140.022	140.400	140.779	141.158	141.536	141.914
110	142.293	142.671	143.049	143.426	143.804	144.182	144.559	144.937	145.314	145.691
120	146.068	146.445	146.822	147.198	147.575	147.951	148.328	148.704	149.080	149.456
130	149.832	150.208	150.583	150.959	151.334	151.710	152.085	152.460	152.835	153.210
140	153.584	153.959	154.333	154.708	155.082	155.456	155.830	156.204	156.578	156.952
150	157.325	157.699	158.072	158.445	158.818	159.191	159.564	159.937	160.309	160.682
160	161.054	161.427	161.799	162.171	162.543	162.915	163.286	163.658	164.030	164.401
170	164.772	165.143	165.514	165.885	166.256	166.627	166.997	167.368	167.738	168.108

Pt100, IEC 751 Amendment 2-1995-07

Table 4

	Pt500									
°C	0	1	2	3	4	5	6	7	8	9
0	500.000	501.954	503.907	505.860	507.812	509.764	511.715	513.665	515.615	517.564
10	519.513	521.461	523.408	525.355	527.302	529.247	531.192	533.137	535.081	537.025
20	538.968	540.910	542.852	544.793	546.733	548.673	550.613	552.552	554.490	556.428
30	558.365	560.301	562.237	564.173	566.107	568.042	569.975	571.908	573.841	575.773
40	577.704	579.635	581.565	583.495	585.424	587.352	589.280	591.207	593.134	595.060
50	596.986	598.911	600.835	602.759	604.682	606.605	608.527	610.448	612.369	614.290
60	616.210	618.129	620.047	621.965	623.883	625.800	627.716	629.632	631.547	633.462
70	635.376	637.289	639.202	641.114	643.026	644.937	646.848	648.758	650.667	652.576
80	654.484	656.392	658.299	660.205	662.111	664.017	665.921	667.826	669.729	671.632
90	673.535	675.437	677.338	679.239	681.139	683.038	684.937	686.836	688.734	690.631
100	692.528	694.424	696.319	698.214	700.108	702.002	703.896	705.788	707.680	709.572
110	711.463	713.353	715.243	717.132	719.021	720.909	722.796	724.683	726.569	728.455
120	730.340	732.225	734.109	735.992	737.875	739.757	741.639	743.520	745.400	747.280
130	749.160	751.038	752.917	754.794	756.671	758.548	760.424	762.299	764.174	766.048
140	767.922	769.795	771.667	773.539	775.410	777.281	779.151	781.020	782.889	784.758
150	786.626	788.493	790.360	792.226	794.091	795.956	797.820	799.684	801.547	803.410
160	805.272	807.133	808.994	810.855	812.714	814.574	816.432	818.290	820.148	822.004
170	823.861	825.716	827.571	829.426	831.280	833.133	834.986	836.838	838.690	840.541

Pt500, IEC 751 Amendment 2-1995-07

Table 5

8.1 Sensor types

	MULTICAL [®] 602	Type 602-			
Pt500 sensor set					
No sensor set					00
Pocket sensor set w/	1.5 m cable				0A
Pocket sensor set w/	3.0 m cable				0B
Pocket sensor set w/	5 m cable				0C
Pocket sensor set w/	10 m cable				0D
Short direct sensor se	et w/1.5 m cable				0F
Short direct sensor se	et w/3.0 m cable				0G
3 Pocket sensors in s	ets w/1.5 m cable				0L
3 Pocket sensors in s	ets w/3.0 m cable				0M
3 Pocket sensors in s	ets w/5 m cable				ON
3 Pocket sensors in s	ets w/10 m cable				0P
3 Short direct sensor	s in sets w/1.5 m cable				Q3
3 Short direct sensor	s in sets w/3.0 m cable				Q4

8.2 Cable influence and compensation

8.2.1 2 wire sensor set

Small and medium-sized heat meters only need a relatively short temperature sensor length, and the 2 wire sensor set can be used with the advantage of easy installation.

The cable length and the cross sectional area must always be identical for the 2 sensors used as a temperature sensor pair for a heat meter. The length of the cable sensors must neither be shortened nor extended.

The limitations attached to using the 2 wire sensor set according to EN 1434-2:2007 are stated in below table. Kamstrup supply Pt500 sensor sets with up to 10 m cable ($2 \times 0.25 \text{ mm}^2$)

	Pt100 s	sensors	Pt500 sensors			
Cable cross section [mm ²]	Max. cable length [m]	Temperature increase [K/m]	Max. cable length [m]	Temperature increase [K/m]		
	according to EN 1434-2:2007	Copper @ 20 °C	according to EN 1434-2:2007	Copper @ 20℃		
0.25	2.5	0.450	12.5	0.090		
0.50	5.0	0.200	25.0	0.040		
0.75	7.5	0.133	37.5	0.027		
1.50	15.0	0.067	75.0	0.013		

Table 6

8.2.2 4 wire sensor set

For installations requiring longer cable lengths than stated in above table, we recommend a 4 wire sensor set and a MULTICAL[®] 602 type 602-B with 4 wire connection.

The 4 wire construction uses two conductors for testing current and the two other conductors for measuring signal. In this way, the construction will in theory not be affected by long sensor cables. However, in practice cables longer than 100 m should not be used. We recommend to use $4 \times 0.25 \text{ mm}^2$.

The connection cable should have an outside diameter of 5-6 mm to obtain optimal tightening in both MULTICAL® 602 and in the cable gland on the 4 wire sensor. The insulation material/cover of the cable should be selected based on the max. temperature in the installation. PVC cables are typically used up to 80 °C and in connection with higher temperatures silicone cables are often used.

4 wire sensor set from Kamstrup has an interchangeable sensor pocket and is available in the lengths 90, 140 and 180 mm.

8.3 Pocket sensors

The Pt500 cable sensor is constructed with a 2 wire silicone cable and closed with a shrinked-on stainless steel tube with a diamenter of *ø*5.8 mm that protects the sensor element.

The steel tube is fitted in a sensor pocket (pocket) which has an inside diameter of ø6 and an outside diameter of ø8 mm. The sensor pockets are supplied with an R¹/₂ (conical ¹/₂") connection in stainess steel with a length of 65, 90 or 140 mm. The sensor construction with separate pocket allows replacement of sensors without turning off the water flow. The large selection of pocket lengths also ensures that the sensors can be fitted in all pipe sizes.

The stainless steel pockets is used in PN25 installations!

8.4 Pt500 short direct sensor set

The Pt500 short direct sensor is constructed according to the European standard for thermal heat meters EN 1434-2. The sensor is constructed for fitting directly in the measuring medium, i.e. without sensor pocket. In this way an extremely fast response time on temperature changes from e.g. domestic water exchangers is obtained.

The sensor is based on a 2 wire silicone cable. The sensor tube is made of stainless steel and has a diameter of ø4 mm at the tip where the sensor element is placed. Fitting can also be made directly in many flow sensor types, which reduces the installation costs.

Figure 8

The sensor is fitted in special T-sections, that is available for $\frac{1}{2}$, $\frac{3}{4}$ and 1" pipe installations.

In addition, the short direct sensor is fitted by means of a $R^{1/2}$ or $R^{3/4}$ for M10 nipple in a standard 90° tee.

Figure 9

To obtain the best serviceability during meter replacements, the short direct sensor can be placed in a ball valve with a sensor connecting piece.

Ball valves with a sensor connecting piece are available in $G^{1/2}$, $G^{3/4}$ and G1.

No.	6556-474	6556-475	6556-476
	G1⁄2	G3⁄4	G1
Max. 1	30 °C and PN	16	

Figure 10

MULTICAL[®] 602

9 Voltage supply

 $MULTICAL^{\circ}$ 602 must always be supplied internally with 3.6 VDC (± 0.1 VDC) on the supply connector. This is obtained by one of the following supply modules:

	MULTICAL 602 [®]	Туре 602-				
Supply						
Battery, D-cell				2		
230 VAC high pow	ver isolated SMPS			3		
24 VAC high powe	er isolated SMPS			4		
230 VAC isolated	linear supply			7		
24 VAC isolated li	near supply			8		

The above supply modules are all included in the extensive type test made on MULTICAL[®] 602. Within the frameworks of the type approval, the CE declaration and the factory guarantee, no other types of supply modules must be used than those mentioned above.

The supply unit is connected to MULTICAL[®] 602 with a connector plug. On previous models (before June 2014) of MULTICAL[®] 602, screw terminals (terminals 60(+) and 61(-)) were used instead of the connector. The PCBs with screw terminals and with connectors are fully interchangeable. However, it is not possible to use a previous type of supply unit with a new meter.

If a supply unit with connector is used in a MULTICAL[®] 602 with screw terminals, the connector plug must be removed. The change from screw terminals to connector was done in three steps:

Type 602-A and 602-C: June, 2014. Type 602-B: March, 2014.

Type 602-D: April, 2014.

9.1 Integral D-cell lithium battery

A lithium D-cell battery (Kamstrup type 66-00-200-100) must be used for the meter. The battery is placed at the right in the base unit and can easily be replaced just by disconnecting the used battery and connecting the replacement battery.

The battery lifetime partly depends on the temperature to which the battery is exposed and partly of the selected meter application.

9.2 Battery lifetimes

Supply options and battery lifetime for wall mounted MULTICAL[®] 602 with ULTRAFLOW[®] 54.

Estimated battery lifetime in years.

Top ⇒ Base↓	67-00 Without Top module	67-02 ΔΕ 67-09 ΔV	67-03 PQ 67-07 M-Bus	67-05 Data	67-0A 2 pulse out + scheduler	67-0B 2 pulse out + prog. datalogger	602-0C 2 pulse out
67-00-00 Without base module	12+1	12+1	Mains only	12+1	10	9	10
67-00-10 Data+ pulse inp.	Monthly: 12 daily: 12 hourly: 10 min.: 5	Monthly: 12 daily: 12 hourly: 10 min.: 5	Mains only	Monthly: 12 daily: 12 hourly: 10 min.: 5	Monthly: 10 daily: 9 hourly: 8 min.: 5	Monthly: 9 daily: 8 hourly: 7 min.: 4	Monthly: 10 daily: 9 hourly: 8 min.: 5
67-00-20/27/28/29 M-Bus+ pulse inp.	Monthly: 12 daily: 11 hourly: 9 min.: 1	Monthly: 12 daily: 11 hourly: 9 min.: 1	Mains only	Monthly: 12 daily: 11 hourly: 9 min.: 1	Monthly: 10 daily: 9 hourly: 7 min.: 1	Monthly: 9 daily: 8 hourly: 6 min.: 1	Monthly: 10 daily: 9 hourly: 7 min.: 1
67-00-21 Radio Router +pulse inp.	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only
67-00-22 Prog. datalogger + analog inputs 67-00-23	Mains only Mains	Mains only Mains	Mains only Mains	Mains only Mains	Mains only Mains	Mains only Mains	Mains only Mains
0/4-20 Analogue Out 67-00-24 LONWorks +pulse inp.	Only Mains Only	only Mains only	only Mains only	only Mains only	only Mains only	only Mains only	only Mains only
67-00-25/26 RF+p/i, read by Hand Held Terminal	Monthly: 10 daily: 9 hourly: - min.: -	Monthly: 9 daily: 8 hourly: - min.: -	Mains only	Monthly: 9 daily: 8 hourly: - min.: -	Monthly: 8 daily: 7 hourly: - min.: -	Monthly: 7 daily: 6 hourly: - min.: -	Monthly: 8 daily: 7 hourly: - min.: -
67-00-30/31/35/38 wM-Bus, Mode C1+pulse inp. wM-Bus, Mode T1 OMS 15 min. wM-Bus, Mode C1 Alt.reg.+pulse inp. wM-Bus, Mode T1 OMS 16 sec. wM-Bus, ModeC1 Fixed Network	12+1	12+1	Mains only	12+1	10	9	10
602-00-36 wM-Bus, Mode T1 OMS 16 sec.	11	11	Mains only	11	7	6	7
67-00-60 ZigBee + pulse inp.	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only
67-00-62 Metasys N2 +pulse inp.	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only
602-00-64 SIOX	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only
67-00-66 BACnet MS/TP + pulse inputs	Mains only	Mains	Mains only	Mains	Mains	Mains only	Mains only
602-00-067 Modbus RTU + pulse inputs	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only
602-00-80 GSM/GPRS	HP Mains only	HP Mains only	HP Mains only	HP Mains only	HP Mains only	HP Mains only	HP Mains only
602-00-81 3G GSM/GPRS modul (GSM8H)	HP Mains only	HP Mains only	HP Mains only	HP Mains only	HP Mains only	HP Mains only	HP Mains only
602-00-82 Ethernet/IP	HP Mains only	HP Mains only	HP Mains only	HP Mains only	HP Mains only	HP Mains only	HP Mains only
602-00-84 High Power RF + pulse inp.	HP Mains only	HP Mains only	HP Mains only	HP Mains only	HP Mains only	HP Mains only	HP Mains only

Note 1: Battery lifetime in [years] at one data reading per month, day, hour or minute.

Note 2: Battery temperature between 30 and 45°C (pipe mounted calculator) will reduce the lifetime by 1-3 years.

Note 3: Connection of 2 ULTRAFLOW[®] will reduce the lifetime by 3 years.

Note 4: With top module 67-0B, log intervals from 60 to 1 min. will reduce the battery lifetime by up to 3 years.

Note 5: Connecting ULTRAFLOW[®] 65 instead of ULTRAFLOW[®] 54 will reduce the lifetime by 3 years.

Note 6: Pulse outputs are calculated at an average of 50 % qp for standard CCC-codes and 32 ms. pulse duration.

9.3 High Power supply module 230 VAC

This PCB module is galvanically separated from the mains supply and is suited for direct 230 V mains installation. The module is a **S**witch **M**ode **P**ower **S**upply (SMPS) that meets the demands for double insulation when the calculator top is mounted. The power consumption is less than 1.7 VA/1 W.

National electricity installation requirements must be met. The 230 VAC module must be connected/disconnected by the utility staff, whereas the fixed 230 V installation for the switch cabinet must only be made by an authorised electrician. If mains disappears, this SMPS will keep the meter running for a few seconds.

9.4 High Power supply module 24 VAC

This PCB module is galvanically separated from the 24 VAC mains supply and is suited for industrial installations with joint 24 VAC supply and individual installations supplied from a separate 230/24 V safety transformer in the switch cabinet. The module is a **S**witch **M**ode **P**ower **S**upply (SMPS) that meets the demands for double insulation when the calculator top has been mounted. The power consumption is less than 1.7 VA/1 W.

National electricity installation requirements must be met. The 24 VAC module must be connected/disconnected by the utility staff, whereas installation of 230/24 V in the switch cabinet must only be made by an authorised electrician.

The module is specially suited for installation together with a 230/24 V safety transformer, e.g. type 6699-403, that can be installed in the switch cabinet <u>before</u> the safety relay. When the transformer is used the power consumption will be less than 1.7 W for the entire meter including the 230/24 V transformer. If mains disappears, this SMPS will only keep the meter running for a few seconds.

9.5 Supply module 230 VAC

This PCB module is galvanically separated from the mains supply and is suited for direct 230 V mains installation. The module contains a double chamber safety transformer that meets the demands for double insulation when the calculator top has been mounted. The power consumption is less than 1.5 VA/0.7 W.

National electricity installation requirements must be met. The 230 VAC module must be connected/disconnected by the utility staff, whereas the fixed 230 V installation for the switch cabinet must only be made by an authorised electrician. If mains disappears, this power supply will keep the meter running for a few minutes.

9.6 Supply module 24 VAC

This PCB module is galvanically separated from the 24 VAC mains supply and is suited for industrial installations with joint 24 VAC supply and individual installations supplied from a separate 230/24 V safety transformer in the switch cabinet. The module contains a double chamber safety transformer that meets the demands for double insulation when the calculator top has been mounted. The power consumption (without an external 230/24 V transformer) is less than 1.5 VA/0.7 W.

National electricity installation requirements must be met. The 24 VAC module must be connected/disconnected by the utility staff, whereas installation of 230/24 V in the switch cabinet must only be made by an authorised electrician.

MULTICAL[®] 602

The module is especially suited for installation together with a 230/24 V safety transformer, e.g. type 6699-403, that can be installed in the switch cabinet <u>before</u> the safety relay. When the transformer is used the power consumption will be less than 2.2 W for the entire meter including the 230/24 V transformer. If mains disappears, this power supply will keep the meter running for a few minutes.

9.6.1 Requirements for the transformer 230/24 V

Transformer type 6699-403 is recommended for connection to a 24 VAC high-power supply module. Other types may be used, however it ought to be secured that the transformer has the correct output voltage. This is the case if the transformer has an off-load voltage of \leq 26 VAC and a voltage of \geq 20 VAC loaded at 100 Ohm (or at two times 47 Ohm connected in series).

9.7 Exchanging the supply unit

The power supply unit for MULTICAL[®] 602 can be exchanged from mains supply to battery or vice versa as the needs at the utility change. In this way, mains supplied meters can be exchanged for battery meters with advantage in connection with buildings in the course of construction, as the mains supply may be unstable or lack periodically.

Previous versions of MULTICAL[®] 602 (before 2014-04-01) use screw terminals for connection of the supply unit. When replacing the supply unit in previous versions, cut off the plug and strip the cable insulation before connecting the cables to the screw terminals.

Exchange from battery to mains supply does <u>not</u> require reprogramming, as MULTICAL[®] 602 does not contain an information code for worn out batteries.

However, exchange from mains supply to battery <u>must not</u> be made on MULTICAL[®] 602 with the following base modules:

MULTICAL 602 [®]	Type 602-					
Base module						
Radio Router/pulse inputs			21			
Prog. data logger + RTC + 420 mA inputs + pul	se inputs		22			
0/420 mA outputs			23			
LonWorks + pulse inputs			24			
ZigBee 2.4 GHz int.ant. + pulse inputs			60			
Metasys N2 (RS485 + pulse inpts			62			
SIOX module (Auto detect Baud rate)			64			
BACnet MS/TP + pulse inputs			66			
Modbus RTU + pulse inputs			67			
GSM/GPRS module (GSM6H)			80			
3G GSM/GPRS modul (GSM8H)			81			
Ethernet/IP module (IP201)			82			
High Power Radio Router + pulse inputs			84			

See paragraph 10.1.5 re supply options for top and base modules.

9.8 Mains supply cables

 $MULTICAL^{(0)}$ 602 is available with mains cables H05 VV-F for either 24 V or 230 V (l=1.5 m):

Mains cable, type 5000-286 (2x0.75 mm²), max. 6 A fuse

"H05 VV-F" is the designation for a heavy PVC cable, that stands max. 70°C. The supply cable must therefore be installed with a sufficient distance to hot pipes and the like.

9.9 Back-up of data during power down

An early warning circuit and corresponding software is added, securing safety back-up of all main registers during power down. In fact, this will function as the hourly data back-up, but also during power down. This will ensure that the meter always starts up with the same display values as before the power break.

This will be effective for both 24V and 230V power break and also when the top part of MULTICAL® 602 is removed from the base, or in case of a battery failure.

The battery has been constructed to maintain a constanct voltage level of $3.6 \text{ VDC} \pm 0.1 \text{ V}$ throughout its entire life-time. Shortly before the battery's energy is used up completely, the voltage falls. When the battery reaches 3.1 V the meter performs a safety back-up. When the voltage is further reduced, "bAt LO" is displayed to indicate that the battery voltage of the meter is too low to carry out measurements. At 2.1 V info code = 1 is logged in the info event logger with time and date, to make it possible to see when the battery's energy has been completely used up.

9.10 Danish regulations for connection of mains operated meters

Installation to electric mains operated equipment for consumption registration (<u>www.sik.dk</u>, safety notification electric services no. 27/09, February 2009).

The consumption of energy and resources (electricity, heat, gas and water) of the individual consumer is to an increasing extent registered by electronic meters, and often equipment for remote reading and remote control of both electronic and non-electronic meters is used.

General regulations for carrying out installations must be observed. However, the following modifications are permitted:

• If meter or equipment for remote reading or remote control is double-isolated, it is not necessary to run the protective conductor all the way to the connection point. This also applies if the connection point is a plug socket provided that it is placed in a canning which is sealable or can be opened with key or tool only.

If meter or equipment used for remote reading and remote control is connected to a safety transformer mounted in the panel and direct connected to the branch conductor, no on-off switch or separate overcurrent protection in either primary or secondary circuit is required, provided that the following conditions are fulfilled:

- The safety transformer must either be inherently short-circuit-proof or fail-safe
- The conductor of the primary circuit must either be short-circuit protected by the overcurrent protection of the branch conductor or short-circuit safely run.
- The conductor of the secondary circuit must have a cross section of at least 0.5 mm² and a current value which exceeds the absolute maximum current deliverable by the transformer
- It must be possible to separate the secondary circuit, either by separators, or it must appear from the installation instructions that the secondary circuit can be disconnected at the transformer's terminals

General information

Work on the fixed installation, including any intervention in the group panel, must be carried out by an authorized electrician.

It is not required that service work on equipment comprised by this notification as well as connection and disconnection of the equipment outside the panel is carried out by an authorized electrician. These tasks can also be carried out by persons or companies, who professionally produce, repair or maintain equipment if only the person carrying out the work has the necessary expert knowledge.

10 Plug-in modules

Plug-in modules can be added to MULTICAL[®] 602 both in the calculator top (top modules) and in the base unit (base modules), in this way the meter adaps to a number of various applications.

All plug-in modules are included in the extensive type test which $MULTICAL^{\$}$ 602 has gone through. Within the framework of the type approval, the CE declaration and the factory warranty other types of plug-in modules than those mentioned below cannot be used:

10.1 Top modules

	MULTICAL 602 [®]	Туре 602- 🛛				
Top module						
∆Energy calculation			2			
PQ or ∆t-limiter			3			
Data output			5			
M-Bus			7			
∆Volume			9			
2 pulse outputs CE and	CV + scheduler		Α			
RTC + 2 pulse outputs C	E and CV + prog. data logg	er	В			
2 Pulse outputs CE and	CV		С			

Topmodule functional block diagram

The top modules are built up on the above joint hardware platform. The application program in the micro controller and the component location vary according to the task.

Modules developed for MULTICAL[®] 601 can also be used in MULTICAL[®] 602 (except for the 67-06 module that does not work in MC602), but only with the functions from MULTICAL[®] 601. When a top module with RTC is mounted in MULTICAL[®] 602 the top module's RTC will not have any effect on the meter's own RTC.

10.1.1 Top module overview

10.1.2 Top modules 67-0A, 67-0B and 602-0C pulse outputs

These top modules has two configurable pulse outputs, which are suitable for combined heating/cooling applications among other things:

Meter function	Output C (16-17)		Output D (18-19)		Pulse duration
Heat meter	CE+ Heat energy ((E1)	CV+ Volume	(V1)	22
Volume meter	CV+ Volume (V1)	CV+ Volume	(V1)	32 msec.
Cooling meter	CE- Cooling energy ((E3)	CV+ Volume	(V1)	01 100 mcoc
Heat/cooling meter	CE+ Heat energy ((E1)	CE- Cooling energy	/ (E3)	100 msec.

Pulse resolution follows the display (fixed in CCC-code). E.g. CCC=119: 1 pulse/kWh and 1 puls/0.01m³

The module includes the configuration data, which will also follow the module in case of replacement.

CV- (TA3) is only used in connection with tariff EE=20.

10.1.3 Fitting and removing the top module

The top module is released by pressing downwards in the middle of the plastic piece on the left, and at the same time pushing the top module towards the left.

Figure 12

10.1.4 Supply options for top and base modules

ГГ	(7.02	(7.02	(7.05	(7.04	(7 OD	(02.00
	67-02	67-03	67-05	67-UA	67-0B	602-0C
Top ⇒	ΔE	PQ	Data	H-Log + 2	RIC + 2 pulse	2 puise
Base	67-09	67-07		pulse out	out +	outputs
Dase v	ΔV	M-Bus		+scheduler	prog.datalog	(CE/CV)
	-					
67.00.10	Patton/ or		Pattony or	Patton/ or	Patton: or	Pattony or
Data u pulso inp	Ballery Of	Mains only	mains	mains	maine	maine
	Batton/ or	· · · · · · · · · · · · · · · · · · ·	Batton/ or	Inaliis Battony or	Datton: or	Datton: or
67-00-20/27/26/29	Ballery of	Mains only	Ballery of	Ballery of	ballery of	ballery of
67 00 21	manis		manis	manis	manis	manis
Badio Bouter , pulso inp	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only
	-					
67-00-22	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only
4-20 mp.	-					
0/4-20 out	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only
67 00 24						
LonWorks + pulse inp	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only
67-00-25	Battery or		Battery or	Battery or	Battery or	Battery or
RF + pulse inp.	mains	Mains only	mains	mains	mains	mains
67-00-26	Battery or		Battery or	Battery or	Battery or	Battery or
RE + pulse inp	mains	Mains only	mains	mains	mains	mains
67-00-30	Battery or		Battery or	Battery or	Battery or	Battery or
wM-Bus + pulse inp	mains	Mains only	mains	mains	mains	mains
67-00-31	Battery or		Battery or	Battery or	Battery or	Battery or
wM-Bus 15 min	mains	Mains only	mains	mains	mains	mains
602-00-35						
wM-Bus Alt reg + pulse	Battery or	Mains only	Battery or	Battery or	Battery or	Battery or
inp.	mains	,	mains	mains	mains	mains
602-00-36	Battery or		Battery or	Battery or	Battery or	Battery or
wM-Bus, 16 sec.	mains	Mains only	mains	mains	mains	mains
67-00-38	Battery or		Battery or	Battery or	Battery or	Battery or
wM-Bus Fixed Network	mains	Mains only	mains	mains	mains	mains
67-00-60			indino i		indino i	indino
ZigBee + pulse inp.	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only
67-00-62						
Metasys N2 + pulse inp.	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only
602-00-64					A4 1	
SIOX	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only
67-00-66						
BACnet MS/TP +	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only
pulse inputs		-				
607-00-067						
Modbus RTU +	Mains only	Mains only	Mains only	Mains only	Mains only	Mains only
pulse inputs						
602-00-80	HP Mains	HP Mains	HP Mains	HP Mains	HP Mains only	HP Mains only
GSM/GPRS	only	only	only	only	III Mailis only	III mailis only
602-00-81	HP Mains	HP Mains	HP Mains	HP Mains		
3G GSM/GPRS modul	only	only	only	only	HP Mains only	HP Mains only
(GSM8H)						
602-00-82	HP Mains	HP Mains	HP Mains	HP Mains	HP Mains only	HP Mains only
Ethernet/IP (IP201)	only	only	only	only		,, ,
602-00-84	HP Mains	HP Mains	HP Mains	HP Mains		
High power Radio Router	only	only	only	only	HP Mains only	HP Mains only
+ pulse inp.		•				

Top ⇒	67-05	Comments/restrictions in use
Ext box	Data	
EXI. DOX V	Data	
(7.00.10	NI / A	
67-00-10	N/A	
67-00-20/27/28/29	N/A	
67-00-21	N/A	
67-00-22	N/A	
67-00-23	N/A	
67-00-24 LonWorks	Mains only	The module type in the external communication box is not displayed in MC602. Only accumulated and actual data. No hourly/daily/monthly/yearly data loggers can be read through the data port on the 602-05 top module. LonWorks always requires mains supply.
67-00-25	N/A	
67-00-26	N/A	
67-00-30	N/A	
67-00-31	N/A	
602-00-35	N/A	
602-00-36	N/A	
67-00-38	N/A	
67-00-60	N/A	
67-00-62	N/A	
602-00-64	N/A	
67-00-66	N/A	
67-00-67	N/A	
602-00-80	N/A	
602-00-81	N/A	
602-00-82	N/A	
602-00-84	N/A	

10.1.5 Module survey for Top module 67-05 with external communication box

Note: Pulse inputs for VA and VB (terminals 65-66-67-68) are not connected when a module is installed in an external connection box.

10.2 Base modules

The base modules for ${\sf MULTICAL}^{\circledast}$ 602 can be divided into 4 groups:

602-00- <u>8</u> X	Modules specifically developed for MULTICAL [®] 602 to be used together with 230 VAC or 24 VAC high power SMPS module.
67/602-00-6X, 67/602-00- <u>3</u> X	Modules specifically developed for MULTICAL $^{\$}$ 602 and the KMP protocol.
67-00- <u>2</u> X	Modules specifically developed for MULTICAL $^{ m \$}$ 602 and the KMP protocol.
67-00- <u>1</u> X	Modules with simple functions and without a microprocessor.

٨	AULTICAL [®] 602	Type 602-					
Base module							
No module				00			
Data + pulse inputs				10			
M-Bus + pulse inputs				20			
Radio Router + pulse inputs	5			21			
Prog. data logger + 420 m	A inputs + pulse inputs			22			
0/420 mA outputs				23			
LonWorks + pulse inputs				24			
Radio + pulse inputs (interr	nal antenna) 434 or 444 M	ЛHz*		25			
Radio + pulse inputs (extern	nal antenna connection)	434 or 444 MHz*		26			
M-Bus module with alterna	tive registers + pulse inp	uts		27			
M-Bus module with medium	n data package + pulse ir	iputs		28			
M-Bus module with MC-III d	lata package + pulse inpu	ıts		29			
Wireless M-Bus, Mode C1 + p	oulse inputs (Ind. Key)*			30			
Wireless M-Bus, Mode T1 OM	IS 15 min. (Ind. Key)*			31			
Wireless M-Bus, Mode C1 Alt	. reg. + pulse inputs*			35			
Wireless M-Bus, Mode T1 OM	IS 16 sec. (ind. Key)*			36			
Wireless M-Bus, Mode C1 (Co	ommon Key)*			38			
ZigBee 2.4 GHz int.ant. + pt	ulse inputs			60			
Metasys N2 (RS485) + puls	e inputs			62			
SIOX module (Auto detect E	Baud rate)			64			
BACnet MS/TP + pulse inpu	its			66			
Modbus RIU + pulse inputs	i			67			
GSM/GPRS (GSM6H)			Require	80			
3G GSM/GPRS modul (GSM	18H)		High Powe	r 81			
Ethernet/IP (IP201)			supply	82			
High Power RadioRouter + p	oulse inputs		modules	84			

*Kamstrup recommend that an external antenna is mounted on this module if the meter is fitted with a top module too. This ensures the best possible radio range.

MULTICAL[®] 602

10.2.1 Data + pulse inputs (67-00-10) (PCB 5550-369)

The module has a galvanically separated data port that functions with the KMP protocol. The data output can be used for connection of external communication units or another wired data communication which is not suitable to perform via optical communication on the front of the meter.

See paragraph 7.3 Pulse inputs VA and VB concerning functioning of the pulse inputs.

The module comprises data connection, which can be used for external data plug, designed for use with the hand-held terminal from Kamstrup, or as a semi-permanent PC connection.

The data connection is galvanically isolated from the optocouplers which makes it necessary to use data cable type 6699-105 or 6699-106 in order to adjust the signal to RS-232 level, which is used by PC and with the handheld terminal from Kamstrup. See section 11. *Data communication* for information on data strings and protocols. If the computer does not have a COM port, a data cable with USB connection, type 6699-098, can be used.

10.2.2 M-Bus + pulse inputs (67-00-20) (PCB 5550-831)

The M-Bus module is supplied via the M-Bus network and is independent of the meter's own supply. M-Bus and the energy meters communicate two-way via opto couplers which gives galvanically separation between M-Bus and the meter. The module supports primary, secondary and enhanced secondary addressing.

The M-Bus module has 2 extra inputs. See paragraph 7.3 Pulse inputs VA and VB concerning functioning of the pulse inputs.

In order to function correctly in a MC602, minimum program version H1, released in March 2011, is required.

10.2.3 RadioRouter + pulse inputs (67-00-21) (PCB 5550-805)

The radio module is supplied as standard to operate in a licence-free frequency band but can also be supplied to other frequences requiring licence.

The radio module is prepared to form part of a Kamstrup radio network, where the data are automatically transferred to system software via the network components RF Router and RF Concentrator.

The radio module has 2 extra inputs. See paragraph 7.3 Pulse inputs VA and VB regarding functioning of the pulse inputs. The RadioRouter module must be used with mains supply.

Kamstrup recommend that an external antenna is mounted on this module if the meter is fitted with a top module too. This ensures the best possible radio range.

10.2.4 Prog. data logger + RTC + 4...20 mA inputs + pulse inputs (67-00-22) (PCB 5550-925)

The module has connection possibility for two pressure transmitters on terminals 57, 58 and 59 and can be adjusted for current reading or pressure ranges of 6, 10 or 16 bar.

The module is prepared for remote reading, data from meter/module being transferred to the system software via the connected external GSM/GPRS modem on terminals 62, 63 and 64.

The prog. data logger function is configured for the specific meter where it is installed by using the serial number. If the module is removed and installed in another meter, the configuration is set to default values.

Furthermore, the module has two extra pulse inputs, see section 7.3: Pulse inputs VA and VB as to function. The module must always be powered by 24 VAC.

Pressure transmitter requirements: 4...20 mA, 2-wire, loop-powered, loop voltage max. 16 VDC (e.g. type CTL from Baumer A/S)

10.2.5 0/4...20 mA outputs (67-00-23) (PCB 5550-1005)

The module is furnished with two active analogue outputs, which can both be configured for 0...20 mA or for 4...20 mA. In addition, the outputs can be configured to any measuring value (power, flow, or temperature) and to any range scaling. All values of the two analog outputs are updated every 10 seconds. The total response time however may be up to 30-40 seconds including the response time for the flow sensor, the calculator and the digital to analog conversion. This response time has to be considered when using the analog outputs for other purposes than remote displaying. The module must be mounted in MULTICAL[®] 602. It cannot be used separately together with flow meters.

The configuration is carried out via the menu "Base module" in METERTOOL.

The module must be powered by 24 VAC.

10.2.6 LonWorks + pulse inputs (67-00-24) (PCB 5550-1128)

The LON-module is used for data transfer from MULTICAL[®] 602 either for data reading or for regulation purposes via the LON-bus, which is ideal for climate control and building automation among other things. The high-speed data communication makes it possible to connect many applications to a LON-network.

The cabling between the LON-module and and the other LON-nodes consists of standard twisted pair cable of up to 2700 m length at bus topology or 500 m length at free topology.

The module requires that MULTICAL[®] 602 is externally supplied (24-VAC /230-VAC), battery supply of MULTICAL[®] 602 is not possible. See paragraph 7.3 as to the function of pulse inputs VA and VB.

Regarding network variable list (SNVT) and further information on the LonWorks module we refer to data sheet 5810-1144. GB-version 5810-1043 and DE-version 5810-1044. As to installation we refer to Installation instructions 5512-1101 (DK) or 5512-1105 (GB).

As the module is de-energised when the calculator top is not mounted, it is not possible to send Neuron ID by activating the button on the module.

Neuron ID is sent by simultaneous activation of both front plate keys of MULTICAL[®] 602. When "Call" is displayed the Neuron ID has been sent.

10.2.7 Radio + pulse inputs (67-00-25/26) (PCB 5550-608/640)

The radio module is supplied as standard to operate in a licence-free frequency band but can also be supplied to other frequences requiring licence.

The radio module is prepared to form part of a Kamstrup radio network, where read data automatically is transferred to system software via the network components RF Router and RF Concentrator.

The radio module has 2 extra inputs. See paragraph 7.3 Pulse inputs VA and VB regarding functioning of the pulse inputs.

Kamstrup recommend that an external antenna is mounted on this module if the meter is fitted with a top module too. This ensures the best possible radio range.

67-00-25: Internal antenna

67-00-26: External antenna connection

10.2.8 M-Bus module with alternative registers + pulse inputs (67-00-27) (PCB 5550-997)

The M-Bus module is supplied via the M-Bus network and is independent of the meter's own supply. M-Bus and the energy meters communicate two-way via opto couplers which gives galvanic separation between M-Bus and the meter. The module supports primary, secondary and enhanced secondary addressing.

The M-Bus module has 2 extra inputs. See paragraph 7.3 Pulse inputs VA and VB concerning functioning of the pulse inputs.

In order to function correctly in a MC602, minimum program version F1 released in April 2011, is required.

10.2.9 M-Bus module with medium data package + pulse inputs (67-00-28) (PCB 5550-1104)

This M-Bus base module was developped specifically for MULTICAL[®] 602 and can solely be used in MULTICAL[®] 602.

The "Error hour counter" has been added to the M-Bus telegram and the following registers has been removed: TA2, TA3 in actual and target data and E8, E9, TL2, TL3 in manufacture specified data.

In order to function correctly in a MC602, minimum program version D1 released in April 2011, is required.

10.2.10 M-Bus module with MC-III data package + pulse inputs (67-00-29) (PCB 5550-1125)

The M-Bus module 670029 comprises the same data packet as M-Bus module 6604 for MC III/66-C and module 660S for MCC/MC 401.

The module can e.g. be used together with the old M-Bus master with display, old regulators and old reading systems not supporting the newer M-Bus modules.

In order to function correctly in a MC602, minimum program version E1, released in June 2011, is required.

10.2.11 Wireless M-Bus + 2 pulse inputs (67-00-30, 602-00-35) (PCB 5550-1098/1200)

The radio module has been designed to form part of Kamstrup's hand-held Wireless M-Bus Reader systems, which operate within the unlicensed frequency band in the 868 MHz area.

The module fulfils the C-mode specifications of EN13757-4:2013 and can thus form part of other systems using Wireless M-Bus C-mode communication.

The radio module comes with internal antenna and external antenna connection as well as two pulse inputs (VA + VB). Paragraph 7.3 "Pulse inputs VA and VB" describes how the pulse inputs function.

The Wireless M-Bus radio transmitter is switched off before dispatch from the factory. It switches on automaticaly when one litre of water has run through meter. The radio transmitter can also be switched on by making a forced call (keep both front keys activated for approx. 5 sec. until CALL is displayed).

Kamstrup recommend that an external antenna is mounted on this module if the meter is fitted with a top module too. This ensures the best possible radio range.

10.2.12 Wireless M-Bus (67-00-31, 602-00-36) (PCB 5550-1386/1421)

The Wireless M-Bus module has been developed to be integrated in an "Open Metering System" (OMS) solution without further configuration, and operates within the unlicensed frequency band in the 868 MHz area.

The communication protocol is T-mode according to OMS specifications: Volume 2: Primary Communication Version 4.0.2, and the module uses one-way communication, data being automatically sent from the meter after installation, every 15 minutes from module 67-00-31 and every 16 seconds from module 602-00-36.

The T1 OMS module supports individual encryption and comes with internal antenna as well as MCX connection for external antenna.

Kamstrup recommend that an external antenna is mounted on this module if the meter is fitted with a top module too. This ensures the best possible radio range.

Photo see above paragraph 10.2.11.

10.2.13 Wireless M-Bus (67-00-38) (PCB 5550-1356)

The Wireless M-Bus module has been specifically developed to be integrated in a Wireless M-Bus network (Radio Link Network) and operates within the unlicensed frequency band in the 868 MHz area.

The communication protocol is C-mode according to the standard EN13757-4 and the module uses one-way communication, data being automatically sent from the meter every 96 seconds after installation.

The Wireless M-Bus module for fixed network supports individual encryption and comes with internal antenna as well as MCX connection for external antenna.

Kamstrup recommend that an external antenna is mounted on this module if the meter is fitted with a top module too. This ensures the best possible radio range.

10.2.14 ZigBee + 2 pulse inputs (67-00-60) (PCB 5550-992)

The ZigBee module is mounted direct in the meter and is powered by the meter's supply. The module operates within the 2.4 GHz area and is ZigBee Smart Energy certified. The certification secures that the meter can form part of other ZigBee networks, e.g. reading several meter types from different meter suppliers.

To be able to offer a compact solution the module uses an internal antenna.

Paragraph 7.3 "Pulse inputs VA and VB" describes how the pulse inputs function.

10.2.15 Metasys N2 (RS485) + 2 pulse inputs (VA, VB) (67-00-62) (PCB 5550-1110)

The N2 module is used for data transfer from MULTICAL[®] heat and cooling meters to an N2 Master in a Johnson Controls System. The N2 module transfers accumulated energy and volume, current temperatures, flow and power from the heat or cooling meter to an N2 Master. N2 Open from Johnson Controls is a widespread and established field bus protocol used within building automation. The N2 module for MULTICAL[®] ensures simple integration from Kamstrup's heat and cooling meters to N2 Open based systems. Adress area is 1-255 determined by the last three digits of the meters customer number.

Further details about the Metasys N2 module appear from data sheet 5810-925, GB-version.

10.2.16 SIOX module (Auto detect Baud rate) (602-00-64) (PCB 5920-193)

SIOX is used for data reading of small and medium size groups of heat meters via cable, the data reading being presented by the main system, e.g. MCom, Fix or Telefrang. Further information on these systems can be ordered from the supplier in question. Furthermore, a configuration tool is available from Telefrang.

The two-wire serial SIOX bus connection is optoisolated from the meter and is connected without regard to polarity (i.e. the polarity is unimportant). The module is powered by the SIOX bus. Communication speed between 300 and 19,200 baud. The module automatically uses the highest possible communication speed. The module converts data from KMP protocol to SIOX protocol.

10.2.17 BACnet MS/TP (B-ASC) RS485 + 2 pulse inputs (VA, VB) (67-00-66) (PCB 5550-1240)

The BACnet module is used for data transfer from MULTICAL heat cooling and water meters into BACnet systems. The BACnet module transfers Meter number (programmable), Serial number, Accumulated heat energy (E1), Accumulated cooling energy (E3), Accumulated volume flow (V1), Inlet temperature, Outlet temperature, Temperature difference, Actual flow, Actual power, Accumulated values from additional meters via puls InA, InB, Info codes from the heat, cooling and water meter to the BACnet system. BACnet is a widespread and established field bus protocol used within building automation. The BACnet module for MULTICAL ensures simple integration from Kamstrup's heat, cooling and water meters to BACnet based systems. The Module can be used as both master or slave, depending on the used MAC address.

Further details about the BACnet MS/TP module appear from data sheet 5810-1055, GB-version.

10.2.18 Modbus RS485 RTU* Slave Module with 2 pulse inputs (VA, VB) (67-00-67) (PCB 5550-1277)

The Modbus base module for MULTICAL® ensures a simple integration from Kamstrup's heat, cooling and water meters in to a Modbus based systems.

Modbus is an open, widespread and well established serial communication protocol used within building automation.

Further details about the Modbus MS/TP module appear from data sheet 5810-1253, GB-version. *) RTU : Remote Terminal Unit

10.2.19 GSM/GPRS module (GSM6H) (602-00-80) (PCB 5550-1137)

The GSM/GPRS module functions as transparent communication path between reading software and MULTICAL[®]602 and is used for data reading. The module includes an external dual-band GSM antenna which must always be used. The module itself includes a line of light emitting diodes indicating signal strength which are very useful during installation.

Further details about the GSM/GPRS module appear from data sheet 5810-627. GB-version 5810-628, DE-version 5810-629, SE-version 5810-630.

Regarding mounting we refer to installation instructions DK-version 5512-686, GB-version 5512-687, DE-version 5512-688.

The GSM/GPRS module (602-00-80) must be used together with the High Power mains supply (230 VAC: 602-00-00-3 and 24 VAC: 602-00-00-4).

10.2.20 3G GSM/GPRS module (GSM8H) (67-00-81) (PCB - 5550-1209)

Like GSM6H this module functions as transparent communication path between reading software and MULTICAL[®]602 and is used for data reading.

However, this module supports both 2G (GSM/GPRS) and 3G (UMTS) which makes it applicable in areas with 3G coverage only.

The module requires an external Antenna, which covers both 900 MHz, 1800 MHz and 2100 MHz.

The module itself is fitted with a line of light emitting diodes indicating signal strength which are very useful during installation. Furthermore, it is indicated whether the module is connected to a 2G or a 3G network.

Additional details about the 3G module appear from data sheet 58101057 DK-version, 55101058 GB-version, 58101059 DE-version, 58101061 FI-version and 58101060 SE-version.

Regarding mounting we refer to installation instructions 55121121 DK-version, 55121122 GB-version, 55121123 DE-version, 55121124 FI-version and 55121125 SE-version.

10.2.21 Ethernet/IP module (IP201) (602-00-82) (PCB 5550-844)

The IP module functions as transparent communication between reading software and MULTICAL[®] 602 and is used for data reading. The module supports both dynamic and static addressing. This is specified in the order or selected during subsequent configuration. The module has no built-in security and must, therefore, always be used in connection with a firewall or NAT.

Further details appear from the data sheet, DK-version 5810-541, GB-version 5810-542, DE-version 5810-543, SE-version 5810-544. As far as installation is concerned we refer to installation instructions, DK version 5512-934, GB-version 5512-937, DE-version 5512-938, SE-version 5512-939.

The Ethernet/IP module (602-00-82) must be used together with the High Power mains supply (230 VAC: 602-00-00-3 and 24 VAC: 602-00-00-4).

10.2.22 High Power Radio Router + 2 pulse inputs (VA, VB) (602-00-84) (PCB 5550-1116)

The High Power RadioRouter module has built-in router functionality and is thus optimized to form part of a Kamstrup radio network, the read data being automatically transferred to system software via the network unit RF Concentrator.

Furthermore, the module can be read by Kamstrup's hand-held reading systems, e.g. USB Meter Reader and MT Pro.

The RadioRouter module is available for operation in both licence-free and licence demanding frequences permitting a transmitting strength of up to 500 mW. The module is by default fitted with internal antenna, connection for external antenna, and two extra pulse inputs.

See paragraph 7.3 Pulse inputs VA and VB regarding the function of the pulse inputs.

The High Power RadioRouter module (602-00-84) must be used together with the High Power mains supply (230 VAC: 602-00-00-3 and 24 VAC: 602-00-00-4).

Kamstrup recommend that an external antenna is mounted on this module if the meter is fitted with a top module too. This ensures the best possible radio range.

10.3 Retrofitting modules

Top as well as base modules for MULTICAL[®] 602 can be supplied separately for retrofitting. The modules are configured from the factory and ready to be mounted. Some of the modules, however, need individual configuration after installation, which can be carried out by means of METERTOOL. Top module Possible configuration after installation

A Energy calculation	2	N/A
	- 2	Magnification, hysteresis and possible flow cut-off must be adjusted
PQ or ∆t-limiter	3	during commissioning. All parameters and limits can be changed via METERTOOL
Data output	5	N/A
M-Bus	7	Primary and secondary M-Bus addresses can be changed via METERTOOL or M-Bus. Furthermore, monthly logger data can be selected instead of yearly logger data by means of M-Bus
ΔVolume	9	N/A
2 pulse outputs for CE and CV + scheduler	Α	Configuration of pulse outputs.
RTC + 2 pulse outputs for CE and CV + prog. data log.	В	Configuration of pulse outputs and logger interval.
2 pulse outputs for CE and CV	С	Configuration of pulse outputs.
Base module		
Data/pulse inputs	10	Pulse values of VA and VB are changed via METERTOOL
M-Bus/pulse inputs	20	Pulse values of VA and VB are changed via METERTOOL Primary and secondary M-Bus addresses can be changed via METERTOOL or M-Bus. Furthermore, monthly logger data can be selected instead of yearly logger data via M-Bus
Radio Router/pulse inputs	21	Pulse values of VA and VB are changed via METERTOOL
Prog. data logger + RTC + 420 mA inputs + pulse inputs	22	Pulse values of VA and VB, and logger interval are changed via METERTOOL
0/420 mA outputs	23	Config data must be programmed into the calculator by means of METERTOOL in case of retrofitting. Furthermore, all parameters can be changed via METERTOOL
LonWorks + pulse inputs	24	Pulse values of VA and VB are changed via METERTOOL. All other configurations via LonWorks
Radio + pulse inputs (internal antenna)	25	Pulse values of VA and VB are changed via METERTOOL
Radio + pulse inputs (external antenna)	26	Pulse values of VA and VB are changed via METERTOOL
M-Bus module with alternative registers + pulse inputs	27	Pulse values of VA and VB are changed via METERTOOL. Primary and secondary M-Bus addresses can be changed via METERTOOL or M-Bus. Furthermore, monthly logger data can be selected instead of yearly logger data via M-Bus
M-Bus module with medium data package + pulse inputs	28	Pulse values of VA and VB are changed via METERTOOL. Primary and secondary M-Bus addresses can be changed via METERTOOL or M-Bus. Furthermore, yearly logger data can be selected instead monthly logger via M-Bus.
M-Bus module with MC-III data package + pulse inputs	29	Pulse values of VA and VB are changed via METERTOOL. Primary and secondary M-Bus addresses can be changed via METERTOOL or M-Bus.
Wireless M-Bus + pulse inputs	30/31/ 35/36/ 38	Pulse values of VA and VB are changed via METERTOOL
ZigBee 2.4 GHz internal antenna + pulse inputs	60	Pulse values of VA and VB are changed via METERTOOL
Metasys N2 (RS485) + pulse inputs	62	Pulse values of VA and VB are changed via METERTOOL
SIOX module (Auto detect Baud Rate)	64	N/A
BACnet MS/TP + pulse inputs	66	N/A
Modbus RTU + pulse inputs	67	N/A
GSM/GPRS module (GSM6H)	80	N/A
3G GSM/GPRS modul (GSM8H)	81	N/A
Ethernet/IP module (IP201)	82	N/A
High Power Radio Router + pulse inputs	84	Pulse values of VA and VB are changed via METERTOOL

11 Data communication

11.1 MULTICAL[®] 602 data protocol

Internally in MULTICAL[®] 602 the data communication is built up with a Kamstrup Meter Protocol (KMP) that both gives a fast and flexible reading structure, and fulfils future demands on data reliability.

The KMP protocol is common for all Kamstrup consumption meters introduced in 2006 and later. The protocol is used on the optical eye and via pins to the base module. Base modules with e.g. M-Bus interface uses the KMP protocol internally and the M-Bus protocol externally.

The KMP protocol is constructed to handle point-to-point communication in a master/slave system (bus system, if required) and is used for data reading of Kamstrup energy meters.

Software and parameter protection

The meter's software is implemented into ROM and can after that not be changed neither deliberately nor nondeliberately. The legal parameters cannot be changed via data communication without breaking the legal seal and short-circuiting the "total programming lock".

Software conformity

The check sum of the software, based on CRC16, is available via data communication and on the display.

Integrity and authenticity of data

All data parameters contain type, measuring unit, scaling factor and CRC16 check sum. Each meter produced contains a unique identification number.

In the communication between master and slave two different formats are used. Either a data frame format or an application knowledge.

- Request from master to slave always takes place with a data frame.
- Response from the slave either takes place with a data frame or an application knowledge.

The data frame is based on the OSI model, in which the physical layer, data link layer and the application layer are used.

Number of bytes in each field	1	1	1	0-?	2	1
Field description	Start byte	Destination address	CID	Data	CRC	Stop byte
OSI – lag			Application layer			
			Physica	al layer		

The protocol is based on half duplex serial asynchronous communication with the setup: 8 databits, no parity and 2 stopbits. The data bit rate is 1200 or 2400 baud. CRC16 is used in both request and response.

Data is transferred byte for byte in a binary data format where the 8 databits thereby represent a byte data.

"Byte Stuffing" is used to extend the data domain.

ID Register Description Current date (YYMMDD) 1003 DATE 60 E1 Energy register 1: Heat energy 94 E2 Energy register 2: Control energy 63 E3 Energy register 3: Cooling energy 61 E4 Energy register 4: Inlet energy (forwarded energy) E5 62 Energy register 5: Outlet energy (returned energy) 95 Energy register 6: Tap water energy E6 Energy register 7: Heat energy Y 96 E7 97 F8 Energy register 8: [m³ x T1] E9 110 Energy register 9: [m³ x T2] 64 TA2 Tariff register 2 Tariff register 3 65 TA3 V1 68 Volume register V1 V2 69 Volume register V2 84 VA Input register VA VB 85 Input register VB M1 Mass register V1 72 73 M2 Mass register V2 HR Operational hour counter 1004 113 INFOEVENT Info-event counter 1002 CLOCK Current time (hhmmss) INFO 99 Infocode register, current T1 86 Current inlet temperature Current outlet temperature T2 87 88 T3 Current temperature T3 122 T4 Current temperature T4 89 T1-T2 Current temperature difference 91 P1 Pressure in inlet P2 29 Pressure in outlet 74 FLOW1 Current flow in inlet pipe FLOW2 Current flow in outlet pipe 75 Current power calculated on the basis of V1-T1-T2 80 FFFFKT1 MAX FLOW1DATE/ÅR 123 Date for max. this year MAX FLOW1/ÅR 124 Max. value this year 125 MIN FLOW1DATE/ÅR Date for min. this year 126 MIN FLOW1/ÅR Min. value this year MAX EFFEKT1DATE/ÅR 127 Date for max. this year 128 MAX EFFEKT1/ÅR Max. value this year MIN EFFEKT1DATE/ÅR 129 Date for min. this year 130 MIN EFFEKT1/ÅR Min. value this year MAX FLOW1DATE/MÅNED 138 Date for max. this month 139 MAX FLOW1/MÅNED Max. value this month 140 MIN FLOW1DATE/MÅNED Date for min. this month MIN FLOW1/MÅNED 141 Min. value this month 142 MAX EFFEKT1DATE/MÅNED Date for max. this month MAX EFFEKT1/MÅNED Max, value this month 143 144 MIN EFFEKT1DATE/MÅNED Date for min. this month 145 MIN EFFEKT1/MÅNED Min. value this month 146 AVR T1/ÅR Year-to-date average for T1 AVR T2/ÅR 147 Year-to-date average for T2 AVR T1/MÅNED Month-to-date average for T1 149 150 AVR T2/MÅNED Month-to-date average for T2 TL2 Tariff limit 2 66 67 TL3 Tariff limit 3 XDAY Target date (reading date) 98 152 PROG NO Program no. ABCCCCCC 153 **CONFIG NO 1** Config no. DDDEE Config. no. FFGGMN 168 CONFIG NO 2 SERIE NO 1001 Serial no. (unique number for each meter) 112 METER NO 2 Customer number (8 most important digits) 1010 MFTFR NO 1 Customer number (8 less important digits) 114 METER NO VA Meter no. for VA METER NO VB Meter no. for VB 104 1005 METER TYPE Software edition CHECK SUM 1 154 Software check sum 155 HIGH RES High-resolution energy register for testing purposes 157 TOPMODUL ID ID number for top module **BOTMODUL ID** ID number for base module 158 175 INFOHOUR Error hour counter 234 IMPINa l/imp. for VA IMPINb 235 l/imp. for VB

11.1.1 MULTICAL[®] 602 Register ID's

11.1.2 Data protocol under NDA

Having accepted Kamstrup's standard Non-Disclosure Agreement you can order a demonstration program in C# (.net based) as well as a detailed protocol description.

11.2 MULTICAL[®] 602 communication paths

Physically, it is possible to communicate directly as shown below. Via destination addresses data communication can be routed internally between modules and calculator.

11.3 Optical eye

For data communication via the optical interface an optical eye can be used. The optical eye must be located at the front of the calculator, just above the IR-diode as shown on the photo below. Please note that the optical eye contains a very powerful magnet that should be protected with the magnet protector when not in use.

Different variants of the optical eye can be found in the list of accessories (see chapter 3.2.1).

11.3.1 Current saver for the optical eye

The circuit around the optical eye has been improved by a magnet sensor that only allows current consumption for the optical eye when a magnet (optical head) is attached to the meter.

12 Calibration and verification

12.1 High-resolution energy reading

If a need for high resolution of the energy reading arises during testing and verification it can be initialised as follows:

- Lift up the calculator top from the base unit and wait for the display to turn off
- Press both push buttons simultaneously while the calculator top is placed in the base unit again and keep pressing both push buttons until the display becomes active
- The display now shows energy with a 0.1 [Wh] resolution until one of the push buttons are activated

The display example shows 345.4 [Wh] which corresponds to the energy accumulated at inlet = 43.00 °C and outlet = 40.00 °C and an outlet volume of 0.1 m³.

The high-resolution energy reading is displayed in Wh at a volume resolution of 0.01 m³ (qp 1.5 m³/h). In connection with large meters the energy shown must be multiplied by 10 or 100.

m ³	Wh
0.001	x 0.1
0.01	x 1
0.1	x 10
1	x 100

The high-resolution energy can be used for both heat energy (E1) and for cooling energy (E3).

12.1.1 Data reading of high-resolution energy

Data reading of the register "HighRes" is possible with ID = 155.

The read value will show correct measuring unit and value irrespective of the meter size.

12.2 High-resolution volume for test

Should high-resolution reading of volume (V1HighRes) be required for test or verification it can be initialised as follows:

- Lift the calculator top off the connection base and wait for the display to turn off.
- Press the sub-button wand re-mount the calculator top keeping the button pressed for approx. 8 seconds until the display becomes active in HighRes mode.
- The display remains active in HighRes verification mode until one of the push buttons is activated, or the calculator top is reset.

Example:

V1	V1HighRes
0.001 m3	0.0001 L
0.01 m3	0.001 L
0.1 m3	0.01 L
1 m3	0.1 L

Example of a high-resolution volume (V1HighRes) reading:

The example below starts at a display value of 573.24 m³ (v1). Having activated HighRes mode the display changes to a high resolution and reading in litres appears. Subsequently, a pulse value for Verification can be added, in this example 20.205.

```
00573.24 m<sup>3</sup>
(0057)3.240000 m<sup>3</sup>
3240.000 L
+ 20.205 L
3260.205 L
```

Note:

- V1HighRes is periodically updated every 10 seconds.

12.2.1 Data reading of high-resolution Volume

The register "HighRes" can be data read via ID = 239.

Data reading provides correct measuring unit and measuring value irrespective of meter size.
12.3 Verification adapter

During test and verification of MULTICAL[®] 602, where high resolution energy pulses are needed, the verification adapter, type 6699-275, can be used in the module area of the connection bracket.

The verification adapter gets serial data from $MULTICAL^{\mbox{\tiny B}}$ 602 every 7. sec. and converts these to high resolution energy pulses with the same resolution as the high resolution display mode. (see chapter 12.1)

The verification adapter must be power supplied on terminal 97-98 from an external 5...30 VDC. The current consumption is max. 5 mA.

The high resolution energy pulses is a open collector signal on terminal 13-12. An additional pull-up resistor on 10 kOhm can be connected via terminal 13A.

12.3.1 Meter types

Verification adapter type 6699-275 can be used for verification of the below 4 variants of MULTICAL[®] 602, if the correct connection PCB and the correct temperature sensors/simulators and flow simulator is used.

Meter type	602-A	602-B	602-C	602-D
Connection PCB	5550-1293	5550-1294	5550-1293	5550-1295
Sensor type	Pt100, 2-Wire	Pt500, 4- Wire	Pt500, 2- Wire	Pt500, 4- Wire
Volume input	ULTRAFLOW [®] (11-9-10) or Reed-contact (11-10)			24 V pulses (10B-11B)

Verificationprint 5550-888 (to the right) with connection PCB 5550-1293 (to the left)

MULTICAL® 602

12.3.2 Technical data	
Power supply (97-98):	530 VDC
Current consumption:	Max. 5 mA
Volume simulation:	Max. 128 Hz for CCC=1xx (ULTRAFLOW [®])
	Max. 1 Hz for CCC=0xx (Reed-contact)
HF-energy output (13-12):	Open collector, 530 VDC max. 15 mA
Pulse frequency (13-12):	Max. 32 kHz as burst per integration
Data interval:	Ca. 7 sec.
Time-out with no data:	Ca. 35 sec.

12.4 True energy calculation

During test and verification the energy calculation of the heat meter is compared with the "true energy" calculated according to the formular stated in EN 1434-1:2007 or OIML R75:2002.

An energy calculator like the one shown below can be ordered from Kamstrup A/S:

┥ Heat energy	calculator - OIM	ML R75-1:2002	_ 🗆 🗙	
Exit Options Ab	out			
Input	Flow position	Return position		
Temperature:	175.000	20.000	۰c	
n emparatore.	110,000	10		
Pressure:		116	bar	
Volume:		0,1	m3	
— Calaudatiana —				
Calculations	Flow position	Return position		
Specific volume:	1,12014	1,00111	l/kg	
Specific enthalpy:	205,97851	23,72847	Wh/kg	
Heat coefficient:	1,04970	1,17450	kWh/m3/K	
Energy:	16,27032	18,20478	kWh	
Unit: kWh Resolution: 5 digits				

The conventional true energy at the most frequent verification points is stated in below table.

T1 [°C]	T2 [°C]	∆ Θ [K]	Inlet [Wh/0.1 m ³]	Outlet [Wh/0.1 m³]
42	40	2	230.11	230.29
43	40	3	345.02	345.43
53	50	3	343.62	344.11
50	40	10	1146.70	1151.55
70	50	20	2272.03	2295.86
80	60	20	2261.08	2287.57
160	40	120	12793.12	13988.44
160	20	140	14900.00	16390.83
175	20	155	16270.32	18204.78
175	20	155	16270.32	18204.78

13 METERTOOL and LogView for MULTICAL[®] 602

13.1 Introduction

"METERTOOL HCW" (Item no. 6699-724) is configuration and verification software for reconfiguration and test/verification of MULTICAL[®] 602 **as well as configuration of other Kamstrup heat, cooling and water meters.**

"LogView HCW" (Item no. 6699-725) for log data read-out as well as interval logging. The read data can be used for analysis and diagnostic test of the heating installation. Data can be presented as table and graphics, tables can be exported direct to "Windows Office Excel".

13.1.1 System requirements

METERTOOL/LogView requires minimum Windows XP SP3, Windows 7 Home Premium SP1 or newer, as well as Windows Internet Explorer 5.01.

Minimum:	1 GB RAM	Recommended:	4 GB RAM
	10 GB free HD space		20 GB free HD space
	Display resolution 1280 x 720		1920 x 1080
	USB		
	Printer installed		

Administrator rights to the PC are needed in order to install and use the programs. They must be installed under the user login of the person, who is to use the programs.

13.1.2 Interface

The following interfaces can be used:

Verification equipment	type	6699-399	Verification of 67-C (2-W/Pt500) and total/partial reconfiguration
Verification equipment	type	6699-398	Verification of 67-B/D(4-W/Pt500) and total/partial reconfiguration
Verification equipment	type	6699-397	Verification of 67-A (2-W/Pt100) and total/partial reconfiguration
Programming base	type	S7590-014	Total/partial reconfiguration
Programming base	type	6699-360	Configuration/programming hardware for MC602/S6, to be used together with optical eye
Optical eye USB	type	6699-099	Partial reconfiguration
Optical eye COM port	type	6699-102	Partial reconfiguration
USB 3-wire	type	6699-098	Partial reconfiguration via module
Bluetooth Optical Eye	type	6696-005	Partial reconfiguration

Using equipment with Kamstrup USB, the USB driver must be installed before connection.

13.1.3 Installation

Check that system requirements are fulfilled.

Close other open programs before starting the installation.

Download the METERTOOL and/or LogView software from Kamstrup's FTP-server and follow the program's directions through the installation.

During installation of the METERTOOL-program the USB-driver for the optical read-out head is automatically installed if not already existing.

When the installation is completed, the icon "METERTOOL HCW" will appear in the 'All Programs' menu under 'Kamstrup METERTOOL' (or from the menu "start" for Windows XP) and as a link on the desktop. Double-click on link or icon in order to start the program.

13.1 How to use METERTOOL HCW for MULTICAL[®] 602

13.1.1 General information

It is important to be familiar with the calculator's functions before starting programming.

The Kamstrup Software product "METERTOOL HCW" (6699-724) is used for MULTICAL[®] 602.

Before running the program, connect your optical read-out head to your computer and place it in the bottom lefthand corner of the face of the meter, resting on the two plastic studs with the cable pointing downwards.

Start up METERTOOL HCW and click "Connect".

METERTOOL HCW responds by showing a picture of MULTICAL® 602 with S/W revision information etc.

From the menu in the left side of the screen a number of different options are available, depending on mode (Basic/Advanced).

13.1.2 Configuration (Basic/Advanced Mode)

There are two programming modes; "Partial programming" and "Total programming".

"Partial programming" does not allow change of coding which is important to energy calculation, e.g. Type number and Program number.

"Total programming" makes it possible also to change the rest of the values. Programming is only possible if the internal programming lock is closed (short circuit pen 6699-278).

It is not possible to change the serial number, as this is a unique number which is allocated to the meter during production.

"V2(CCC)", "T1", "T2" and "Max T1 for cooling" can be disabled, depending on the meter type in question.

The program is self-explanatory as to most coding numbers (see text in "combo-boxes"), further details can be found in the respective paragraphs of the technical description.

13.1.3 Total programming

To do total programming the meter must, via an optical eye, be connected to a PC with the METERTOOL software running. Break the verification seal and short circuit the TOTAL PROG button on the inside of the calculator top with a short circuit pen (6699-278).

Note! This should only be done by an accredited laboratory since breaking of the verification seal voids the legal verification as well as the factory warranty.

The TOTAL PROG button is activated by short circuiting the two points on the PCB during programming. When the desired values have been set, METERTOOL terminates programming mode by a reset, and the meter returns to normal mode ready for use.

Figure 13

Figure 14

13.1.4 Time / date (Basic/Advanced Mode)

In this menu the built-in clock in the meter can be read out and adjusted either manually or by setting the meter to the clock of the PC, on which METERTOOL is running. Having corrected the time, the new time and date can be written to the meter.

13.1.5 Flow sensor Communication on/off (Advanced Mode)

In this menu the digital communication between flow sensor and meter can be turned on or off – see below.

13.1.6 Modules (Advanced Mode)

This is the module setup menu used for configuration of top and base modules.

13.1.7 Preset VA / VB (Advanced Mode)

If the external pulse inputs (VA and/or VB) are used, the preset values can be entered here.

13.1.8 Print label (Advanced Mode)

If the meter configuration has been read prior to entering this menu, the front label can be printed here.

13.1.9 Verification (Advanced Mode)

This is the verification menu where the calculator can be verified to check if the accuracy is within the given limits. See verification description in next chapter of this document.

13.1.10 Verification unit settings (Advanced Mode)

In this menu the verification unit settings can be read from the unit altered, and programmed into the verification unit.

13.1.11 Verification unit calibration (Advanced Mode)

Used for changing between temperature set points during calibration.

13.1.12 Certificate (Advanced Mode)

In this menu previously saved verification results can be printed out in certificate form.

13.1.13 Reset (Advanced Mode)

This menu comprises three different types of reset.

1. Normal Reset

This reset does not zero any registers. The data logger structure implemented in the meter permits logging at intervals: hour, day, month, year. Furthermore, info events and configuration events are logged. In addition to the logs mentioned, which are dedicated to reading, a backup log, which is used in case of voltage failure or reset, is logged. "Normal Reset" updates the backup log, the meter restarts and restores the configuration parameters. It may be necessary to perform a "Normal Reset" if the configuration parameters are changed as a "Normal Reset" restores the configuration parameters, which means that the meter registers the changes.

2. Data logger reset

This reset zeroes the meter's data protocols, including yearly, monthly, daily and hourly logs as well as info code and configuration log.

3. Total reset

Resets all registers including historical and legal registers.

13.1.14 Flow sensor communication on/off (Advanced Mode)

"Flow sensor communication" is used for disabling/enabling data communication between MULTICAL[®] 602 and ULTRAFLOW[®] 14/54. "Info code setup" is carried out via optical reading head without breaking the meter's verification sealing.

MULTICAL[®] 602 can communicate with ULTRAFLOW[®] 54 in order to receive error messages from the flow meter. This communication is only supported if MULTICAL[®] 602 and ULTRAFLOW[®] 54 are direct connected (not via Pulse Transmitter). In case of connection via Pulse Transmitter, or if ULTRAFLOW[®] 65 is used, communication must be disabled, otherwise MULTICAL[®] 602 will display the info code for missing communication.

In MULTICAL[®] 602 and ULTRAFLOW[®] 14 (cooling meter) communication is supported if using Pulse Transmitter type 6699-618.

	METERTOOL HOW
E METERTOO	L HCW
MULTICAL® 602 (Advan	
Meter details	Flow sensor communication
Configuration	Flow sensor (VI) communication
Time / date	
How sensor communication	T OT
Modules	Powsewor N71 contrainer at on
Preset VA / VB	Film
Print Label	
Verification	
Verification unit settings	Get Set
Verification unit calibration	
Certificate	
Reset	

Open "Flow sensor communication" and activate "Get" in order to read the meter's setup of communication with flow sensors.

Select the required values for flow sensor 1 and flow sensor 2.

Subsequently, activate "Set" in order to send the change to the meter.

The meter now supports the selected setup.

NOTE! If the meter is subsequently configured, the communication setup is reset to standard setup. The change of communication setup must, therefore, be repeated.

MULTICAL[®] 602

13.1.15 Settings Select language By clicking the "Settings" tab the following can be changed: Dansk Deutsch Change language The program language can be changed to 6 different Français languages: Danish, German, English, French, Polish and Polska Russian. Русский Cancel **COM port settings** The COM port can be selected manually instead of the COM-port settings automatically selected default setting. COM22 - Standard Serial over Bluetooth link 🔹 🔹 Exit Update program Update program In this menu the METERTOOL program can be updated if a newer revision is available on Kamstrup's FTP-server. Also, the driver for the USB optical read-out head can be installed manually from this menu. 362443494 byte Update Cancel Update database In this menu the METERTOOL database can be updated if a newer revision is available on Kamstrup's FTP-server.

Backup & Rest. databases	In this menu you can backup and restore verification data used by MULTICAL [®] 602 as well as equipment data.
Install USB driver	This button manually installs the USB driver used for the optical read-out head.
13.1.16 Help button	
Contact	The contact button gives you the links to Kamstrup's website and mailbox.
Output	This function shows the latest functions used in the program.
User manual	Links to the user manual for the meter on Kamstrup's website.

13.1.17 About button

Lists the METERTOOL program version and revision numbers as well as all sub-programs, their type numbers and revision numbers for the entire METERTOOL HCW program.

13.1.18 Application

Double-click on link or icon in order to start the program.

Select "Configuration" in the menu to the left in order to start meter configuration.

		METERTOOL HCW	
METERTOO	LHCW		
deter details	MATICALE 502	Type No.	3
onliguration			
ime / date	Serial No. BUILDAU		
low sensor communication	Customer No. 69182349	Base module 1011 Normadule	
lodules.	Type No. 2007 Alles 2008 2008 2008	Power supply . (1) No hipping	
reset VA / VB	(2) (C.C.) (A.C.)		
vint Label	Pios No. 🔝 🛛 🚮 🖬		
renflication		Country code, (1997) Critiking mintur	
enfication unit settings	(000) TEL TEL COT (VI. 191	50	
ferification unit calibration	Config.No. 510 00 24 24 0 0	Prog. No.	
ertificate	12		
Veset		Energy Unit: 101100	
Part of the second s	Peak Avg. time 0060 minutes		
	Farget date 01-01 (MM-dd)	V2 (4134) 100 pulses/	
	Default temperatures 200,00 200,00 180,00 000,01	Config No.	
	Heat/Cooling Change Over 180.00 1C	Ocplay Code 510	12
	Read meter Prog	gram Tant Type (00). No Tarif	
		Input A (24) 10 Vimp	12
		Input 8, (24) 10 l/imp	12
		Leak V1 - V2 (0) OFF	12
		Leak Input A (0) OFF	

Enter the present configuration by activating "Read meter".

Make the required coding changes and activate "Program" in order to carry out the changes in the meter.

13.2 Verification with METERTOOL MULTICAL[®] 602

13.2.1 General information

Verification of MULTICAL[®] 602 requires verification equipment, and verification data must be entered into the METERTOOL HCW program.

13.2.2 Verification equipment

Verification equipment, e.g. type 6699-399, is used for verification of the calculator MULTICAL[®] 602. Verification includes energy verification of "E1" and "E3", test of volume inputs "V1", "V2", "VA" and "VB" as well as test of temperature input "T3".

Different temperatures are simulated for the two sensor inputs, "T1" and "T2", which form the basis of the verification of the energy calculation together with the volume simulation.

The equipment was primarily constructed for use in laboratories, to test and verify heat meters, but can also be used for performance testing the meter.

The computer program "METERTOOL HCW 6699-724 is used for configuration, test and verification.

Verification equipment for MULTICAL[®] 602 includes USB interface (type 6699-098) as well as corresponding driver software. During installation this interface creates a "Virtual COM port" which figures in the computer as an optional COM port of the METERTOOL HCW software. As this "Virtual COM port" only exists when the equipment is connected, the verification equipment *must* always be connected to the computer before the program "METERTOOL HCW" is started.

Furthermore, the verification equipment requires mains supply via the included mains adapter.

Verification does not apply to temperature sensors and flow part(s).

The verification equipment is available in three different types, depending on the MULTICAL[®] 602 type used and the temperature points to be tested.

6699-397 Standard (EN1434/MID) Type 67-A (2-wire Pt100)	T1 [°C] 160 80 43	T2 [°C] 20 60 40	T3 [°C] 5
6699-398 Standard (EN1434/MID) Type 67-B/D (4-wire Pt500)	T1 [°C] 160 80 43	T2 [°C] 20 60 40	T3 [°C] -
6699-399 Standard (EN1434/MID) Type 67-C (2-wire Pt500)	T1 [°C] 160 80 43	T2 [°C] 20 60 40	T3 [°C] 5

For other equipment variants (types or temperature points), please contact Kamstrup A/S.

13.2.3 Function

Verification equipment, e.g. type 6699-399, which is mounted in a standard MULTICAL[®] base, includes battery, verification PCB with connection terminals, microprocessor, control relays and precision resistors.

The calculator can simply be mounted on this base instead of the calculator base.

During test the calculator is supplied by the battery. The verification PCB is powered with 12 VDC by the enclosed external mains adapter. The microprocessor simulates volume based on pulse frequency and the number of pulses per test point selected in the computer program. The temperature simulation is obtained by means of fixed precision resistors, which are automatically changed via relays controlled by the microprocessor.

After test the computer reads all registers of the calculator and compares these values to the calculated values.

The calibration result in percentage of each test point can be stored in the computer under the serial number of the tested MULTICAL[®] 602 to be printed out later on a test certificate.

13.2.4 Verification data

The first time METERTOOL HCW and the verification equipment are used a number of calibration data must be entered into the menu "Verification unit settings" in the program METERTOOL HCW. Calibration data is electronically included in the verification equipment (also enclosed with the verification equipment as a certificate on paper). In order to transfer calibration data from the equipment to the program, select "Verification unit settings" from the menu and activate "Read". Calibration data is now transferred to and saved in the program METERTOOL HCW.

The calibration data of the equipment and the program verification data are compared every time the verification equipment is connected in order to secure that verification data is updated if the calibration data of the equipment have been changed. For instance, this can be due to recalibration of verification equipment. Calibration data of the verification equipment can be maintained by changing the verification data in the program METERTOOL HCW and klicking on "Write" this new data into the equipment. In order to avoid unintentional change of calibration data "write" is protected by a password, which can be obtained from Kamstrup A/S.

Calibration data include test points, permissible error, uncertainty, ambient temperature (fixed value) and number of Integrations per test.

Having entered verification data the program automatically calculates the true k-factor in accordance with the formula of EN 1434 and OIML R75:2002.

MULTICAL[®] 602

13.2.5 Verification

The verification program menu is opened by activating "Verification" in the main menu.

Klick on "Start verification" in order to start test/verification.

When the test has been completed the result will be displayed. Click on "Save" and the result is now saved in the database under the serial number of the calculator. You can save several results under one serial number without overwriting earlier results.

13.2.6 Certificate

If you want to print out a certificate with saved results, select "Certificate" in the menu. You can now find the test/verification result according to serial number, and the certificate can be printed out.

METERTOOL HCW MULTICAL* 801 (Advance) Meter details Configuration Time / date Serial No. fo Serial No. fo Calibrated from 27:05-2014 Calibrated from 27:05-2014 Calibrated from 27:05-2014 Calibrated from 27:05-2014 Serial No. fo Calibrated from 27:05-2014 Calibrated from 27:05-2014 Serial No. fo Calibrated from 27:05-2014 Calibrated from 27:05-2014 Serial No. fo Serial No. fo Serial No. fo Serial No. fo Print Serial No. fo Serial No. fo	r — 🗆 💈
MULTICAL* 801 (Advanced) Connect Meter details Create Certificate Configuration Serial No. from Info code setup Senal No. from Info code setup Calibrated from 27-05-2014 Modules Calibrated from 27-05-2014 Preset VA / VB Search Verification Search Verification unit calibration Print Serial No. from Search Search Signature Reset Serial No. from	Settings
Meter details Create Certificate Configuration Search criterias: Time / date Search criterias: Features Search criterias: Info code setup Calibrated from 27:05:2014 Modules Calibrated from 27:05:2014 Preset VA / VB Search Verification unit settings Verification unit settings Verificate Search Print Search Print Search Stati No. Time Signature Search Signature Reset Stati No. Time	ct new meter
Configuration Time / date Features Info code setup Modules Preset VA / VB Prinet Label Verification unit settings Verification unit settings Verificate Search Prinet Search Search Prinet Search Search Search Search Prinet Search Search Search Search	
Time / date. Second checks. Features Scrial No. from Info code setup: Second checks. Modules Calibrated from Priset VA / VB Search Verification unit settings Search Verification unit settings Search Verification unit settings Serial No. * Reset Signature	
Features Senal No. to Info code setup Calibrated from 27:05:2014 Modules Calibrated from 27:05:2014 Preset VA / VB Search Print Label Search Verification unit settings Print Verification unit calibration Print Search Signature Reset Signature	
Info code setup Collibrated from 27-05-2014 Address 2 Modules Calibrated from 27-05-2014 Address 2 Preset VA / VB Search Address 3 Print Label Search Signature Verification unit settings Print Search Verification unit settings Serial No. Time Serial No. Time Signature Serial No. Time Signature Signature Reset Signature	
Modules Collbrated to 27-05-2014 Indexes 3 Preset VA / VB Search Address 3 Print Label Search Signature Verification unit settings Print Verification unit calibration Print Secular Verification Print Reset Signature	
Preset VA / V8 Address 4 Print Label Search Verification Print Verification unit calibration Print Verification unit calibration Print Serial No. Time Sature Serial No. Serial No. Time Sature Sature Reset Sature	
Print Label Search Signature Verification unit settings Print Report type English Verification unit calibration Serial No. Time Serial No. Serial No. Serial No. Time Serial No. Serial No. Serial No. Serial No. Serial No. Serial No. Serial No. Serial No.	
Verification Print Report type English Verification unit calibration - Serial No. * Time Serial No. * Time Ser	
Verification unit calibration Print report spectral Certificate 5322293 27-05-2014 15:50:19 Reset 5322293 27-05-2014 15:50:19	
Verification unit calibration Certificate Reset S322293 27-05-2014 15:50:19	
Certificate 5222293 27-05-2014 15:50:19 Reset	
Reset	

13.3 LogView HCW

13.3.1 Introduction and installation

Regarding "Introduction", "Interface" and "Installation" see paragraph **13.1 Introduction METERTOOL HCW** since it is similar for LogView HCW.

13.3.2 General information

"LogView HCW" is used for read-out of logging data from MULTICAL[®] 602 calculator and top modules (e.g. hourly data) as well as interval logging. The read out data can be used for analysis and diagnostic test of the heating installation. Data can be presented as table and graphics, tables can be exported to "Windows Office Excel" (ordering no. 6699-725).

For available logging data see paragraph 6.13 Data loggers.

13.3.3 "Log"

Select the required data function.

Interval Data allows interval reading of current MULTICAL[®] 602 counts at optional intervals between 1 and 1440 minutes as well as an optional number of repetitions of the reading between 1 and 9999 times.

For read-out of "current" counts, enter interval: 1 and repetition: 1. Thereby you obtain one "instantaneous" reading.

Daily Data, Monthly Data and Yearly Data allow read-out of data logged by MULTICAL[®] 602, with optional data period and values.

Info Data allows read-out of the latest 50 info events from MULTICAL[®] 602, reading includes date and info code of the info event.

13.3.4 "Top Module Log"

This function makes it possible to read out logging data, which have been logged by and stored in a top module. This will mainly be read-out of e.g. "Hourly Logging Data". For other possibilities see paragraph 10.1.1 Top modules.

13.3.5 "Bottom Module Log"

Is used for reading of logger data collected in base modules.

13.3.6 Help button

Contact The contact button gives you the links to Kamstrup's website and mailbox.

Output This function shows the latest functions used in the program.

User manual Links to the user manual for the meter on Kamstrup's website.

13.3.7 About button

Lists the LogViews program version and revision numbers as well as all sub-programs, their type numbers and revision numbers for the entire LogView HCW program.

About LogView HCW LogView HCW Version 1030 - 6600725 - Copyright O Kenstrup A/S	suct 2005
Central Als	La Mandalan
PresentationFramework	PreservationTransported
Windowsilase	WindowsBase.dll
PresentationCore	PreservationCore.dll
PresentationFrameworkAe	so Presentation Framework Aero.dll
MC21Communication	5097128 Rev N2 · MC2LCommunication
MC302Communication	5097151 Rev C1 - MC802Communication
MC402Communication	5097116 Rev EL - MC402Communication
mc601Communication	5097057 Rev. VI - MC601Communication
MC602Communication	5097134 Rev P1 - MC602Communication
MC801Communication	5097108 Rev. G1 - MC801Communication

13.3.8 Application

Double-click on link or icon for "LogView HCW" in order to start the program, and select the required data function.

Meter identification! Click "connect to meter"

"Daily Data" is used as an example:

Select the required registers by clicking on the box next to the register name. To read out all data, activate "Select All" to select all values.

When read-out has been completed the read values can be saved by clicking "Save". We recommend to save the read-outs, securing that data can be reopened later for further analysis or documentation.

The values appear in graphs or list form by activating "Graph"/"Table" (toggle function).

In order to carry out a new data read-out, you just select a new period and new data registers. If the formerly read values are not already saved you will be asked if you want to do so.

legende de legende de

Tables can be exported direct to "Windows Office Excel" or printed.

To zoom in activate (+), to zoom out activate (-) on the axes.

The arrows $(\uparrow \downarrow \rightarrow \leftarrow)$ on the axes are used for manoeuvring in the graph area.

14 Approvals

14.1 CE marking

MULTICAL[®] 602 is CE-marked in accordance with following directives:

EMC directive 2004/108/EC LV directive 2006/95/EC

14.2 Measuring instrument directive

 $MULTICAL^{\circ}$ 602 is available with CE-marking according to MID (2004/22/EC). The certificates have the following numbers:

B-Module: DK-0200-MI004-020

D-Module: DK-0200-MIQA-001

We Vi Nous Wir My Nosotros Noi Mēs

Declaration of Conformity

Overensstemmelseserklæring Déclaration de conformité Konformitätserklärung Deklaracja Zgodności Declaración de conformidad Declaratie de conformitate Atbilstības deklarācija Kamstrup A/S Industrivej 28, Stilling DK-8660 Skanderborg Denmark Tel: +45 89 93 10 00

declare under our sole responsibility that the product(s): erklærer under eneansvar, at produkt(erne): déclarons sous notre responsabilité que le/les produit(s): erklären in alleiniger Verantwortung, dass/die Produkt(e): Deklarujemy z pełną odpowiedzialnością, że produkt(y): Declaramos, bajo responsabilidad propia que el/los producto declaram pe proprie raspundere ca produsul/produsele: ar pilnu mūsu atbildību apliecinām, ka produkts(-i):

Instrument	Туре	Type No.:	Classes	Type Approval Ref.:
Heat Meter	MULTICAL [®] 402	402-V, 402-W, 402-T		DK-0200-MI004-013
Heat Meter	MULTICAL [®] 302	302-T	CI 2/3,E1,M1,M2	DK-0200-MI004-031
Temperature Sensors	PL and DS	65-00-0A/B/C/D 66-00-0F/G 65-00-0L/M/N/P 66-00-0Q3/4 65-56-4	Ml	DK-0200-MI004-002 DK-0200-MI004-036
Flow Sensor	ULTRAFLOW® qp 0.6400 m3/h	65-S/R/T	CI 3, M1, E1	DK-0200-MI004-003
Flow Sensor	ULTRAFLOW* qp 0.640 m3/h and qp 150400 m3/h	65-S/R/T	CI 2/3, M1, E1	DK-0200-MI004-003
Calculator	MULTICAL® 601 MULTICAL® 601+ MULTICAL® 602 MULTICAL® 6L2 SVM S6 MULTICAL® 801	67-A/B/C/D 67-E 602-A/B/C/D 6L2-F S6-A/B/C/D 67-F/G/K/L	M1, E1/E2 M1, E1/E2 M1, E1/E2 M1, E1/E2 M1, E1/E2 M1, E1/E2	DK-0200-MI004-004 DK-0200-MI004-004 DK-0200-MI004-020 DK-0200-MI004-020 DK-0200-MI004-020 DK-0200-MI004-009
Flow Sensor	ULTRAFLOW® 54/34 qp 0.6100 m3/h qp 1501000 m3/h ULTRAFLOW® 54	65-5/65-3 65-5	CI 2/3 M1, E1/E2 M1/M2, E1/E2 M1/M2, E1/E2 M1/M2, E1/E2	DK-0200-MI004-008 DK-0200-MI004-033
Water Meter	MULTICAL® 21 MULTICAL® 62 flowIQ® 2101 flowIQ® 3100	021 62-Z 021 031	Cl 2, M1, E1/E2 Cl 2, M1, E1, B Cl 2, M1, E1/E2 Cl 2, M1, E1/E2	DK-0200-MI001-015 DK-0200-MI001-016 DK-0200-MI001-015 DK-0200-MI001-017

are in conformity with the requirements of the following directives:

Sign.:

er i overensstemmelse med kravene i følgende direktiver

sont conforme(s) aux exigences de la/des directives:

mit den Anforderungen der Richtlinie(n) komform ist/sind:

są zgodne z wymaganiami następujących dyrektyw

es/son conformes con los requerimientos de las siguintes directivas:

este/sunt in conformitate cu cerintele urmatoarelor directive:

atbilst šādu direktīvu prasibām

Measuring Instrument Directive EMC Directive LVD Directive PE-Directive (Pressure) R&TTE **RoHS II Directive** Date: 2015/11/24

2004/22/EC, Module D 2004/108/EC 2006/95/EC 97/23/EC, Module A1 1999/5/EC 2011/65/EU

Notified Body, Module D Certificate: Force Certification A/S EC Notified Body nr. 0200 Park Alle 345, 2605 Brøndby Denmark

Viggo Andersen

Quality Assurance Manager

5518-050, Rev.: AB1, Kamstrup A/S, DK8660 Skanderborg, Denmark

15 Trouble-shooting

MULTICAL[®] 602 is constructed with a view to fast and simple mounting as well as long-term, reliable operation at the heat consumer's.

Should you, however, experience an operating problem with the meter, the error detection table below may help you clairfy the possible reason.

In connection with repair, if necessary, we recommend to replace only battery and temperature sensors and communication modules. Alternatively, the entire meter must be replaced.

Major repairs must be made in our factory.

Before sending in the meter for repair, you must go through below error detection table to help clarify the possible cause of the problem.

Symptom	Possible cause	Suggested corrections
No display function (blank display)	No power supply.	Replace the battery or check the mains supply. Is there 3.6 VDC on terminal 60(+) and 61(-) ?
No accumulation of energy (e.g. MWh) and volume (m ³)	Read "info" on the display.	Check the error indicated by the info code (see section 6.8)
	lf "info" = 000, 16384 or 32768 ⇒	Check that the flow direction corresponds with the arrow on the flow sensor
	If "info" = 004, 008 or $012 \Rightarrow$	Check the temperature sensors. If defects are detected, replace the sensor set.
	If "info" = 4096 or 8192 \Rightarrow	There is air in the installation. Ventilation necessary.
Accumulation of volume (m ³), but not of energy (e.g. MWh)	Inlet and outlet sensors have been reversed, either during installation or connection.	Mount the sensors correctly
No accumulation of volume (m ³)	No volume pulses	Check that the flow direction corresponds with the arrow on the flow sensor.
		Check the flow sensor connection
Incorrect accumulation of volume (m ³)	Incorrect programming. If "info" = 128 or 2048 ⇒	Check if the pulse figure on the flow sensor corresponds with the calculator
Incorrect temperature indication	Defective temperature sensor	Replace the sensor set.
	Insufficient installation	Check the installation
Temperature display is too low	Poor thermal sensor contact	Place the sensors in the bottom of
little (e.g. MWh)	Heat dissiptation	Insulate the sensor pockets
	Sensor pockets too short	Replace sensor pockets with longer ones.

16 Disposal

Kamstrup A/S is environmentally certified according to ISO 14001, and as far as possible and as part of our environmental policy we use materials that can be recycled in an environmentally correct way.

Kamstrup A/S has calculated carbon footprint of all meters.

As of August 2005 heat meters from Kamstrup are marked according to the EU directive 2002/96/EEA and the standard EN 50419.

The purpose of marking is to inform that the heat meter cannot be disposed of as ordinary waste.

• Disposal by Kamstrup A/S

Kamstrup accepts worn-out meters for environmentally correct disposal according to previous agreement. The disposal is free of charge to the customer, except for the cost of transportation to Kamstrup A/S.

• The customer sends for disposal

The meters must <u>not</u> be disassembled prior to dispatch. The complete meter is handed in for approved national/local disposal. Enclose a copy of this **chapter** in order to inform the recipient of the contents.

Please note that lithium cells, and meters containing lithium cells must be shipped as dangerous goods. Please see Kamstrup document 5509-682 "Shipping of battery powered heat meters and lithium batteries"

Subject	Material	Recommended destruction
Lithium cells in MULTICAL [®] 602	Lithium and Thionylclorid >UN 3090< D-cell: 4.9 g lithium	Approved destruction of lithium cells
PC boards in MULTICAL [®] 602 (LC-display must be removed)	Copper epoxide laminate with soldered componenets	Print board scrap for concentration of noble metals
LC-display	Glass and liquid crystals	Approved processing of LC displays
Cables for flow sensor and sensors	Copper with silicone mantle	Cable recycling
Transparent top cover	PC	Plastic recycling
Print box and base unit	Noryl and ABS with TPE gaskets	Plastic recycling
Other plastic parts, cast	PC + 20 % glass	Plastic recycling
Meter case, ULTRAFLOW [®]	> 84 % alpha brass/redbrass < 15 % standard steel (St 37) < 1 % stainless steel	Metal recycling
Packing	Environmental cardboard	Cardboard recycling (Resy)
Packing	Polystyrene	EPS recycling

Please direct any questions you may have concerning environmental matters to:

Kamstrup A/S FAO: Environmental and quality assurance department Fax.: +45 89 93 10 01 info@kamstrup.com

17 Documents

	Danish	English	German	Russian
Technical description	5512-930	5512-931	5512-932	5512-933
Data sheet	5810-938	5810-939	5810-940	5810-957
Installation and user guide	5512-951	5512-952	5512-953	5512-956

18 Appendix A - MULTICAL[®] 602 vs. previous meters

This paragraph briefly describes the compatibility with other/previous meters. The description is not final.

18.1 Kamstrup Meter Protocol (KMP)

MULTICAL[®] 602 uses Kamstrup's Meter Protocol (KMP) and, thus, has the same communication platform as MULTICAL[®] 402/61/601/801. KMP is used internally in the meter as well as via the optical eye and contact pins for the base module. Thus, base modules with e.g. M-Bus interface use the KMP protocol internally and the M-Bus protocol externally. Further information on the KMP protocol appears from paragraph 11.1.

18.2 M-Bus module with MULTICAL® III compatible data packet (67-00-29)

A variety of M-Bus modules are available for the Kamstrup MULTICAL[®] 61/601/801 meters. The contents of the module's M-Bus data package are similar to the data of the M-Bus modules for MULTICAL[®] III and MULTICAL[®] Compact, allowing installation in older applications originally designed for e.g. MULTICAL[®] III.

The module can also be used together with the old 40-slave M-Bus Master with display from Kamstrup as well as older regulators and reading software. The module is mounted in the meter's module area and is used for remote reading and programming of MULTICAL[®] 61/601/602/801.

18.3 SIOX module (602-00-64)

The SIOX module can be used in a series of Kamstrup's meters, e.g. $MULTICAL^{\otimes}$ 61/601/602/801, making it possible to read meter data via the SIOX-bus. The SIOX-bus is a well-known bus-system, which has been used in many meter relations. This module makes it possible to use $MULTICAL^{\otimes}$ 61/601/602/801 in a SIOX-network.

18.4 MULTICAL[®] 66-C compatibility module (67-06)

Concerning MULTICAL[®] 601 a top module made MULTICAL[®] 601 data compatible with MULTICAL[®] 66-C, making it possible to use a series of previous base modules for MULTICAL[®] 66-C in MULTICAL[®] 601 too. This module has been discontinued and does not function together with MULTICAL[®] 602.

19 Appendix B - MULTICAL[®] 602 vs. MULTICAL[®] 6L2

MULTICAL[®] 6L2 is a light version of the MULTICAL[®] 602 and this paragraph briefly describes the differences between the two calculators and not the similarities. For further information about the MULTICAL[®] 6L2 please see the calculators datasheet.

Besides the differences shown below there is another major difference worth noticing. The MULTICAL[®] 6L2 has only got a main-key and no sub-key. With only a main-key, it is no longer a possible to setup or reset the meter via the front keys. Neither can the communication modules be initialized or the M-Bus address changed. Furthermore with no sub-key the dataloggers can not be viewed on the display.

	MULTICAL [®] 602	MULTICAL [®] 6L2
Type approval	\checkmark	\checkmark
Top module	\checkmark	-
Wired communication	\checkmark	\checkmark
Wireless communication	\checkmark	-
1 pcs. ULTRAFLOW [®]	\checkmark	\checkmark
2 pcs. ULTRAFLOW [®]	\checkmark	-
3 rd party flow meters	\checkmark	-

20 Appendix C - MULTICAL[®] 6M2, a calculator for mixed fluids

Tailored for mixed fluids

Mixed fluids have a lower specific heat capacity compared to that of water. The type of antifreeze liquid and the concentration are freely programmable and thus MULTICAL[®] 6M2 can compensate for the unique specific heat capacity and thereby ensuring a high accuracy regardless of the chemical composition or the application.

Functionalities

MULTICAL[®] 6M2 is an all-purpose energy calculator for mixed fluid applications which works together with a pulsed flow sensor and a pair of 2-wire temperature sensors. The calculator can be used with different types of flow sensors such as mechanical or electronic pick-up units as well as magnetic inductive flow parts. The calculator can be used with flow parts up to qp 3,000 m³/h. The temperature sensors fitted to this calculator are Pt500 sensors. MULTICAL[®] 6M2 is used for heat or cooling measurements in all mixed fluid-based systems with medium temperatures from -40 ° C to +140° C.

Plug-in modules

MULTICAL[®] 6M2 is compatible with the following plug-in modules:

Top module:	602-0C, 2 pulse outputs for CE and CV	
Base modules:	67-00-20, wired M-Bus + pulse inputs	(rev. B1 or higher).
	67-00-24, LonWorks + pulse inputs	(rev. A1 or higher).
	67-00-66, BACnet [®] + pulse inputs	(rev. J1 or higher).
	67-00-67, Modbus + pulse inputs	(rev. B1 or higher).

N.B.: Pay attention to the revision number of the modules, since earlier revisions than stated above will not work in MULTICAL[®] 6M2. Other plug-in modules may not be used in MULTICAL[®] 6M2 since their function cannot be guaranteed, especially in connection with negative temperatures.

Fluid types

MULTICAL[®] 6M2 is compatible with the most commonly used antifreeze liquids, e.g. ethylene glycol and propylene glycol. The type of antifreeze liquid and the concentration level are freely programmable with the MULTICAL[®] 6M2.

From factory the calculator is programmed with a 4 digit fluid type code, which states what fluid type and concentration level (vol. %) the calculator is programmed to. The 4 digit fluid type code can be viewed in the calculators display (reference number 71). Furthermore the fluid type code is configurable through METERTOOL, which means that it is possible to reconfigure the chemical (fluid type) as well as the concentration level.

More fluid types may be added continuously, and the complete overview of compatible fluid types can be viewed online at: <u>www.Kamstrup.com</u>

Please refer to the datasheet of the MULTICAL[®] 6M2 for further information about this meter, which also is available online.

Fluid type	No #
Monoethylene glycol (EG)	11
Propylene glycol (PG)	13
Tyfocor (EG)	20
Tyfocor L (PG)	21
Tyfocor LS Standard	22
Tyfocor LS Arctic	23
Tyfocor LS Medit.	24
Antifrogen N (EG)	30
Antifrogen L (PG)	31
Antifrogen SOL HT	32

THORNE &Thorne & DerrickDERRICK+44 (0) 191 490 1547INTERNATIONALwww.heatingandprocess.com

131