
TM

September 2013

TM 2

• CodeWarrior Development Studio

− Features, Suites, Pricing, Downloads, Upgrade Policy

• Basic Processor Expert Concepts & Terms

• Lab 1: FRDM-KL46Z Board Project

− Create a new project with the New Project Wizard

− Import existing components and files

− Build the project

− Test the application’s functionality

3 TM

• CodeWarrior Development Studio for Microcontrollers v10.4
integrates the development tools for ColdFire, ColdFire+, DSC,
Kinetis L Series, Kinetis K Series, Qorivva, PX Series, RS08, S08 and
S12Z architectures into a single product based on the Eclipse open
development platform.

3

4 TM

• Special Edition – Available at no charge and allows projects to be

developed with code size limitations

• New Project Wizard – Allows a project to be created in as few as six

clicks

• LiveView – Allows registers, memory and global variables to be

monitored without stopping the processor

• Processor Expert – Creates tested, optimized initialization code and

low-level drivers tuned to application needs and selected Freescale

derivative

− Built-in knowledge base immediately flags resource conflicts and incorrect

settings, so errors are caught early in design cycle

− Processor Expert for ColdFire+ and Kinetis works with and extends the

capabilities of MQX

• Trace and Profile support for on-chip trace buffer – provides

sophisticated emulator-like debug capability without additional trace

capture hardware

5 TM

Special Editions

Standard Suite

Professional Suite

$2495
TS-$495

$4995
TS-$995

Basic Suite

$995
TS-$195

FREE

$995

$1995

$395

Perpetual
Includes perpetual use of product suite,

plus technical support and maintenance

for 12 months
Additional years of technical support indicated

by “TS”

Annual Subscription
Includes use of product suite, plus

technical support and maintenance,

for 12 months

6 TM

Special Edition Basic Edition Standard Edition Professional

Edition

Key Features

Unlimited Project Files X X X X

Unlimited Assembler X X X X

Processor Expert Software X X X X

Component Development Environment Non-commercial Non-commercial Non-commercial Commercial

Task Aware Debug X

C++ X

Licensing: Annual or Permanent X X X

1 Year Support X X X

Code/Debug Size Limits

RS08, S08 64K 128K None None

S12Z 64K 128K None None

Coldfire V1, Coldfire+ 64K 128K None None

Coldfire V2-V4 128K 512K None None

DSC 64K 256K None None

Kinetis L 64K 128K None None

Kinetis K 128K 512K None None

Qorrivva, PX 512K 1M None None

Pricing

Pricing: Annual License/Support Free $395 $995 $1995

Pricing: Permanent License Free $995 $2495 $4995

Pricing: Annual Support Permanent License Free $195 $495 $995

7 TM

Annual Subscription License

• If you have an active annual subscription license, you can download CodeWarrior MCU

v10.4 at no cost

• If your annual subscription license has expired, you must purchase another license

before downloading CodeWarrior MCU v10.4

− Basic Suite: $395

− Standard Suite: $995

− Professional Suite: $1,995

Perpetual License

• If you purchased a perpetual license within the last 12 months, you can download

CodeWarrior MCU v10.4 at no cost

• If you have an active technical support agreement (after the first 12 months), you can

download CodeWarrior MCU v10.4 at no cost

• If your technical support agreement has expired, you must purchase another technical

support agreement before downloading CodeWarrior MCU v10.4

− Basic Suite: $195

− Standard Suite: $495

− Professional Suite: $995

Valid technical support agreement equals

NO cost to upgrade

8 TM

A new license is required for CW MCU v10.4. Licenses for previous

versions will NOT work.

• New purchase: If you just purchased a CodeWarrior Suite, the process to activate and

license your product is simple:

− Log in to “My Freescale”

− Select “ CodeWarrior Licensing”

− Navigate to your product in “Products you are entitled to license”

− Click the “Get License” button to retrieve your license

• Existing customer: If you already own a CodeWarrior suite and have obtained

previous versions of CodeWarrior for Microcontrollers (e.g., 10.0, 10.1, 10.2 or 10.3),

the process is a little different:

− Log in to “My Freescale”

− Select “ CodeWarrior Licensing”

− Navigate to your product in “Products that you have licensed”

− Click the “Version Renewal” button next to your existing CodeWarrior for Microcontrollers product

to retrieve your license

TM

10 TM

Processor Expert Software is a development system to create,

configure, optimize, migrate, and deliver software components that

generate source code for Freescale silicon.

• Features

− Extensive and comprehensive knowledgebase for all supported silicon encapsulating

all pins, registers, etc.

− Silicon resource conflicts flagged at design time, allowing early correction

− Simple creation of optimized peripheral drivers without reading silicon documentation

− Easy integration of an RTOS with peripheral drivers using RTOS adaptor component

− Enables straightforward migration to new hardware

− Can configure, package, and deliver components to your team

− Available as part of the CodeWarrior tool suite or as an Eclipse-based plug-in feature

for installation into an independent Eclipse environment.

− Support for CodeWarrior, IAR, Keil and gcc build environments (Red Suite)

11 TM

• Embedded Components encapsulate the functionality of basic elements of

embedded systems.

− CPU core

− CPU on-chip peripherals

− Standalone peripherals

− Virtual devices

− Software – an RTOS, a library (e.g. FSL’s touch sensing library)

• Processor components include support for the following architectures

− ColdFire/ColdFire+

− 56800/E (DSC)

− Kinetis

− RS08/S08

− S12Z

12 TM

Processor Expert Project Design Timeline

Create Project

• Create a new project
with Processor Expert

Add Components
• Select components required

in the project from
Components Library

Configure Components

• Use Inspector to set all
component settings

Verify Settings
• Make sure there are no

design-time errors in the
project

Generate Code

• Let Processor Expert
generate all components
drivers code

Write Code
• Write application code using

code generated for
components

Build and Debug
• Build the application common way

• Debug the application with
CodeWarriror

13 TM

Components Library

Component

Inspector
Projects View

Problems View

Components

View

14 TM

Component

Inspector

Problems View

Processor View

Configuration

Registers View

15 TM

• Available components are displayed in

Components Library

• Select appropriate TAB to change how

components are organized and displayed

− Categories

− Alphabetical

− Assistant

− Processors

• Select filter to toggle displayed components

− Show only components available for selected

processor.

− Show all components available .

16 TM

Properties

Recently

changed items

are highlighted

Property Value

Details

Select level of

information

displayed

17 TM

• Properties define design-time

settings

• Code is generated based on the

property settings

• Recently changed properties are

highlighted

• Properties that are undefined will be

displayed in red text

• Properties with resource conflicts

will be displayed in red text and

tagged with an exclamation mark.

• Errors will be displayed in the

Problems View and must be

resolved before code can be

generated.

18 TM

• Select the Methods TAB

• Select “generate code” for each
function required in the
application

• Code will only be generated for
the functions selected

• To enable code generation for a
method in the Components
View, right-click on the method.

• Select “Toggle Enable/Disable”

Change Tab

to see

Methods

Select “generate

code” for each

function needed in

application

19 TM

• Select the Events TAB

• Select “generate code” for each

event required in the application

• Code will only be generated for

the events selected

• To enable code generation for

an event in the Components

View, right-click on the event.

• Select “Toggle Enable/Disable”

Change Tab

to see

Events

Select “generate

code” for each event

needed in application

20 TM

Operating Systems
Configurations

Processors Components

Methods

Generate Code

21 TM

• To generate code

− Select Generate Code icon in the

Components View

• To turn off code generation for a

component

− Right-click on component

− Select Code Generation

− Select Don’t write Generated

Component Modules

TM

23 TM

• Board Support

− Configuration file (template) including

 CPU component
 One or more pre-configured peripheral components

• CPU External Devices

− Embedded Component support for Console I/O,
LED displays, etc.

• CPU Internal Peripherals (High level)

− Embedded Component support for internal
peripherals

− Standard API ensures generated code is
portable

− Generates initialization code and low level device
drivers.

• Peripheral Initialization

− Hardware specific support, which is not portable

− Generates initialization code only

24 TM

• Logical Device Drivers

− Embedded Component support for internal
peripherals

− Uses a standard API, which allows generated
device drivers to be adapted for used with bare-
metal applications as well as RTOS
applications.

• Operating Systems

− RTOS adapter components

− Adapter defines the RTOS API

 How memory is allocated
 How a critical section is created
 How interrupt vectors are allocated

− Generated device drivers are adapted to work
with the RTOS API

• Software

− Encapsulate software algorithms

− Add functionality to an existing component

25 TM

• Right-click on the Component in

the Components Library

• Select Help on Component in the

pop-up menu

• Component documentation will be

displayed with the following topics

− General Info

− Properties

− Methods

− Events

− Typical Usage

26 TM

TM

28 TM

• Peripheral drivers…

− Always include Physical Device Driver (PDD) layer. PDD uses base

address and control registers to interface with the device.

− May include Logical Device Driver (LDD) component. LDD handles

buffering and state machine type logic.

− May include interrupt or deferred service (ISR) routine. ISR provides

callback functionality.

UART

LDD
Logical Device Driver

PDD
Physical Device Driver

ISR

29 TM

• With an RTOS adapter…

− ISRs are linked into kernel’s
service handler functionality

− PDD functionality is available as
set of header files

− LDDs encapsulate device-specific
functions into a system API

UART

LDD
Logical Device Driver

PDD
Physical Device Driver

ISR

ISR

LDD

PDD

ISR

LDD

PDD

OS

Interrupt

Service

Handler

ISR

ISR

<device>_pdd.h PDDPDD

LDD LDD

Processor

Expert

Components

30 TM

• Every component has Init() method

− Only one parameter - UserDataPtr.

− Initializes appropriate peripheral and driver.

• Every component has Deinit() method

− De-initializes appropriate peripheral and driver.

• First parameter for every method is pointer to device structure
returned from Init() method.

• Code generation is based on information in RTOS adapter

• Events can be enabled/disabled at runtime.

• Components can be disabled in Low Power Modes.

• CPU component

− Does not automatically initialize components by default.

− Auto-initialization can be enabled/disabled.

31 TM

• Designed to provide standard API to functionality

• Component categories include:

− Port I/O (i.e. BitIO, BitsIO, ByteIO)

− Timers (i.e. TimerInt, PWM, Capture)

− Communication (i.e. AsynchroSerial, SynchroMaster, SynchroSlave, I2C)

− ADC

− Internal memories

• Eases porting to another microcontroller supported by Processor Expert

software

• Sets functionality based on application needs and does not require

knowledge of hardware registers

• MCU specific features are supported as CPU specific settings or methods

and are not portable

32 TM

• Developed high level software components, which inherit from

PDD or LDD, to migrate S08 projects to Kinetis L Series

devices

− Provides same application program interface (API)

− Software wrapper at the level required to provide the necessary functionality

• High level components available for Kinetis

− AsynchroSerial

− SynchroMaster

− SynchroSlave

− ADC

− ExtInt

− FreescaleAnalogComp

- IntFlash

– BitIO

– BitsIO

– PWM

– TimerInt

TM

34 TM

• Unplug the USB cable

• Press and hold the Reset button

• Plug in the USB Cable

• Release the Reset button

• Green LED Blinking

• A removable drive should now be visible in the Windows

Explorer with a volume label of BOOTLOADER

Reset Button

Open SDA USB Connection

Green LED Blinking

35 TM

• Drag & Drop the DEBUG-APP-Pemicro_v10x.SDA to the

BOOTLOADER

• C:\Freescale\CW MCU v10.5\OpenSDA\firmware

36 TM

• You will now see the “debug
app” on the drive.

• Unplug the USB

• Re-Plug the USB

• BOOTLOADER Disappears

• Check for “solid” Green LED

• You are ready to go!

Green LED ON

Before

After

37 TM

• Check for “solid” Green LED

• You are ready to go!

Green LED ON

TM

39 TM

• This hands-on lab shows you how to…

− Create a new project with the New Project Wizard

− Configure Components with the Component Inspector

− Use High Level Device functions

− Import existing files

− Build the project

− Test the application’s functionality

− Trace the Code

• The lab uses the FRDM-KL46Z board

• The application will blink an LED periodically, and light a LED

with button presses.

40 TM

• This hands-on lab shows you how to…

− Create a new project with the New Project Wizard

− Select & Configure Components

− Configure Components with the Component Inspector

− Use High Level Device functions

− Import existing components

− Build the project

− Test the application’s functionality

− Trace the Code

Next up!

41 TM

Click “Next”

Enter “project_1”

You can change the project

location to another directory.

Default location is used.

Click “New MCU project”

42 TM

Select “MKL46Z256”

Click “Next”

Enter “kl46” in filter

Click “Next”

De - Select:

“P&E USB

MultiLink

Universal…”

Select “Open

Source SDA”

43 TM

Click “Next”

 Leave default

selections:

C, Software,

UART, GCC

Click “Finish”

Select

“Processor Expert”

Select

“Hardware Configuration”

44 TM

45 TM

Component

Inspector

Component View

Register View

46 TM

• Select C++ Perspective

Click “C/C++”

Click “>>”

47 TM

Component Inspector

Component View

Project View

48 TM

• This hands-on lab shows you how to…

− Create a new project with the New Project Wizard 

− Select & Configure Components

− Configure Components with the Component Inspector

− Use High Level Device functions

− Import existing components

− Build the project

− Test the application’s functionality

− Trace the Code

Next up!

49 TM

• Components Needed:

− Processor: CPU: MKL46Z256VMC4 (Preselected based on project wizard

information)

• Peripheral Initialization:

− GPIO: Init_GPIO

• Other components needed for project (High Level Components)

− GPIO: BitIO: for SW1

− GPIO: BitIO: for SW2

− GPIO: BitIO: for Red LED

− GPIO: BitIO: for Green LED

− Timer: TimerInt: Flashing the LED

− AsynchroSerial: Serial UART for debug output

50 TM

Drag Down

51 TM

• Switch to Component Library

Click on

“Component Library”

to bring up the library

52 TM

• Double Click on “Init_GPIO”

Double Click

on Init_GPIO

Double Click on

BITIO 4 Times

53 TM

Init_GPIO

BITIO (x4)

54 TM

Double Click on

TimerInt

Double Click on

AsynchroSerial

55 TM

• The component list should look like this:

TimerInt

AsynchroSerial

56 TM

• 8.0 MHz External Clock Input

− EXTAL0 – pin 50

− XTAL0 – pin 51

57 TM

• Configure the CPU component as follows:

− Package 100 pin LQFP

− System Oscillator Enabled

− External Clock 8MHz input

− MCG Mode PEE

− PLL Output 96MHz

− Core Clock 48MHz

− Bus Clock 24MHz

58 TM

Select “Component Inspector”

Select “Cpu”

59 TM

Select “LQFP 100-pin package”

Click on far left edge

60 TM

61 TM

Expand

“Clock Settings”

62 TM

Select

“Enable”

63 TM

Select

“PEE”

64 TM

Enter “96”

65 TM

Enter “48”

Enter “24”

66 TM

48

24

Enabled

PEE

96

67 TM

• Change to “Advanced” Mode

Click on “Advanced”

68 TM

• Configure the AsynchroSerial component as follows:
− Baud rate 115200

− Receiver RxD UART0

− Transmitter TxD UART0

− Leave all other settings at their default settings

 Channel: UART0

 Parity: none
 Width: 8 bits
 Stop bit: 1
 Receiver: Enabled
 RxD: TSIO_CH2/…
 Transmitter: Enabled
 TxD: TSIO_CH3/…
 Stop in wait mode: no
 Idle line mode: starts after start bit
 Enable in init code: yes

69 TM

70 TM

Select “AsynchroSerial”

71 TM

Select

“115200”

Select

“UART 0”

Select

“UART 0”

72 TM

Select “TI1:TimerInt”

73 TM

Enter “25Hz”

Select

“LED_TMR”

74 TM

• LED1(green) on PTD5

• LED2 (red) on PTE29

75 TM

Select “Bit4:BitIO”

76 TM

Enter

“LED_RED”

Select

“CMP0_IN5/…”

Select “Output”

Enter “1”

77 TM

Click on “Methods”

Change “Value” to

“Generate code”

78 TM

Select “Bit3:BitIO”

79 TM

Enter

“LED_GRN”

Select

“LCD_P45/…”

Select “Output”

Enter “1”

80 TM

Select “Bit2:BitIO”

81 TM

Enter “SW2”

Select

“LCD_P32/…”

Select “Input”

82 TM

Select “Bit1:BitIO”

83 TM

Enter “SW1”

Select

“LCD_P23/…”

Select “Input”

84 TM

Select “PTA:Init_GPIO”

85 TM

Select “PTC”

Expand “Pins”

86 TM

Select

“Pin 3”

Select “Enabled”

87 TM

Right

Click

Select “Pin

Sharing Enabled”

88 TM

Pin sharing

is enabled

89 TM

Select

“Enable”
Expand

“Pin 12”

90 TM

Notice error

message.

This pin must

be “shared”

91 TM

Right

Click

Select “Pin Sharing Enabled”

92 TM

Close

“Pins”

93 TM

Expand

“Setting”

Expand

“Pin 3”

94 TM

Click Down Arrow

95 TM

Select “Initialize”

96 TM

Select “Input”

Select “Enabled”

Select “Pull Up”

97 TM

Select “Input”

Select “Enabled”

Select “Pull Up”

Select “Initialize” Expand

“Pin 12”

98 TM

No Errors

99 TM

• This hands-on lab shows you how to…

− Create a new project with the New Project Wizard 

− Select and setup High Level Components 

− Generate Processor Expert Code

− Import existing files

− Build the project

− Test the application’s functionality

Next up!

100 TM

• Now that the components have been setup, its time to generate

code. This can be done in one of two ways…

Right

click

Select

Generate

Code Icon
Select

Generate

Code

101 TM

102 TM

Minimize

Processor Expert View

Expand

Project_1

103 TM

Double Click

“Events.c”
Opens

“Events.c”

Scroll down to

“LED_TMR_OnInterrupt

104 TM

• Add code to the Timer Interrupt - LED_TMR_OnInterrupt()

Expand

“LED_GRN:BitIO

105 TM

• Add code to the Timer Interrupt - LED_TMR_OnInterrupt()

Drag & Drop

“NegVal”

106 TM

• This hands-on lab shows you how to…

− Create a new project with the New Project Wizard 

− Select and setup High Level Components 

− Generate Processor Expert Code 

− Import existing files

− Build the project

− Test the application’s functionality

Next up!

107 TM

108 TM

Use Windows Explorer to navigate to:

..\Desktop\PEx_MCU Training\Lab_1

109 TM

110 TM

Click “OK”

Select “Copy Files”

111 TM

Double click “my_main.c”

112 TM

Click “Minimize”

113 TM

114 TM

• Open “Processor Expert.c to add our code

Add declaration here

Add call here

115 TM

• This hands-on lab shows you how to…

− Create a new project with the New Project Wizard 

− Select and setup High Level Components 

− Generate Processor Expert Code 

− Import existing files 

− Build the project

 Select the project

 Clean

 Build

− Test the application’s functionality

Next up!

116 TM

Select

“project_1”

 Select “Clean”

117 TM

118 TM

 Select “Build”

119 TM

PEx #includes here

120 TM

Your declarations here

Main.c

Hardware initializations

Your code goes here

121 TM

Timer Interrupt code goes here

122 TM

#includes copied from

ProcessorExpert.c

Declarations needed for our code

123 TM

Main loop – watch for switch presses

Switch press routine

Delay loop

124 TM

• This hands-on lab shows you how to…

− Create a new project with the New Project Wizard 

− Select and setup High Level Components 

− Generate Processor Expert Code 

− Import existing files 

− Build the project 

− Test the application’s functionality

 Download and debug

 Inspect the registers

 Setting breakpoints

Next up!

125 TM

 Select “Debug”

 Select “project_1”

126 TM

Progress Bar

127 TM

Console View Stack

Editor

Debug View

Variable View Stack

 Breakpoint

Disassembly

View

Commander View

128 TM

 Reset Suspend Disconnect Step Into Step Return

 Resume Terminate Restart Step Over

129 TM

 The application uses the uart to “print”

data. An easy way to see this is to use

the built in “terminal” in CodeWarrior.

 Select “Window”

 Select “Show Views”

 Select “Other”

130 TM

 Expand “Terminal”

 Select “Terminal”

 Click “OK”

131 TM

132 TM

• Connection Type: Serial

• Port – See your Device Manager

• Baud Rate: 115200

• 8,1, none, none

 Select “Settings”

Setup the parameters

133 TM

 Click “Step Over”

 Editor moves

to next line

134 TM

 Click “Step Into”

 Editor moves

to next line

135 TM

 Editor moves

to next line

 Click “Step Into”

136 TM

 Editor moves to line

after the called routine

 Click “Step Return”

137 TM

 Click “Step Into”

138 TM

UART “prints”

message to

Terminal View

139 TM

 Click “Suspend”

140 TM

 Select “Register View”

 Expand “User/System

Mode Registers”

141 TM

 Click “Step Over”

 Changed registers

are highlighted

142 TM

 Click “Terminate” to stop debug session

143 TM

 Double click

at line 38

and line 41

to set breakpoints

144 TM

 Click “Debug” to restart

the debug session

145 TM

• This error occurs because the number of break points set exceeds
the number of breakpoints available on the chip.

• The KL46 only has 2 breakpoints available.

• There are 3 breakpoints set

− At main

− At line 38

− At line 41

 Click “OK”

to continue

debug session

146 TM

• Code stopped at first user breakpoint and not at the system set

breakpoint at “main”.

• Click “Resume”

147 TM

 Stopped at the

next Break Point

• Click “Step Return”

148 TM

• This error message is displayed since there are too many

break points.

 Click “OK”

to continue

debug session

149 TM

• Click “Resume”

150 TM

 Stops at next

breakpoint

151 TM

 Click “Terminate”

 Click “>>”

 Click “C/C”++

152 TM

• This hands-on lab shows you how to…

− Create a new project with the New Project Wizard 

− Select and setup High Level Components 

− Generate Processor Expert Code 

− Import existing files 

− Build the project 

− Test the application’s functionality 

− This concludes our Lab session

− Question?

TM

TM

TM

156 TM

• Workbench = desktop development environment

− Contains all C/C++ development-related tools

− Shows different perspectives of the working environment

− Main window that appears when CodeWarrior Eclipse starts:

157 TM

157

• Workspace = directory that stores the source code, files and

settings related to your work

− Specify the workspace on startup

− More than one project can be in a workspace

− To switch workspaces select File > Switch Workspace

158 TM

• Project = container for organizing files and folders

− All C/C++ work is done in the context of projects

− CodeWarrior creates projects in new folders by default

− New files and folders can be added to a project

 File > New > File: Creates a new file in project directory within the workspace directory

 File > New > Folder: Creates a new directory in project directory within the workspace
directory.

 Files dragged into a project are physically copied into the project directory

− Files outside the project folder (or outside the workspace) can be linked to a
project

 File > New > File > Advanced > Link to File System: Creates new link in project
directory within the workspace, which refers to a file in the file system

 File > New > Folder > Advanced > Link to File System: Creates new link to a directory
in project folder within the workspace. The link points to a directory in the user’s file
system. Creating this link will pull the directory and all sub-components into the
CodeWarrior project.

159 TM

• View = a “visual” panel in the Workbench

− Displays information about the contents of your workbench

− Different views are provided for different tasks

 Problems – Compile or other problems

 Console – Standard run window console

 C/C++ Projects – View of projects in workspace

 Breakpoints – Debugging breakpoints in open projects

− Editors are special “views” for editing files

160 TM

• Perspective = collection of Eclipse views and action sets
organized into a layout that suits an assigned task

− Current perspective is highlighted at the top of the perspective window

− Perspectives are shown on perspective shortcut bar (top right)

− Click the perspective icon to switch among open perspectives

− To open a perspective:

 Select Window > Open Perspective > [select -or- Other]

 On the perspective view, choose Open Perspective > [select -or- Other]

− To close a perspective:

 Select Window > Close Perspective

Open Perspective Icon

TM

162 TM

• Default views:

− CodeWarrior Projects View

− Editor (Area)

− Problems View

− Console View

− Commander View

• Each view has an optional toolbar and menu that is separate from
those on the main workbench window.

163 TM

• File space (folder) organization for source and object files

• Project folders are at the top level, but you can drill down:

Right-click folder > Go Into

• Filters types/status of resources to show (Toolbar menu >

Filters)

• Other folders include:

− Debug

− Includes (compiler dependent) - contains makefiles

− Binaries (generated by the compiler)

164 TM

• There are multiple editors for multiple file types
− C/C++ editor for source code

− Text editor for text files

• To open a file:
− Double click on the file in CodeWarrior Projects or Navigator view

 - or -

− Select File > Open File

• Each file opens up in a new tab in editor area

• Editors show changes in files since last save
− See the change bar (left side of text)

− Additions and modifications are color coded

− Hover cursor over change bar to see previous text

− Dirty file – indicated by * in editor tab.

• Marker area on left side of
editor indicates task,
bookmarks or breakpoint

165 TM

• To configure editors:

− Select Window > Preferences

 Expand General folder

 Select Editors > Text Editors

− Configure options:

 Show line numbers

 Highlight current line

 Color options

 Etc.

166 TM

• Shows errors and warnings

− Filters on problems to display:

 Location of defective resource

 Type of defect

 Type of problem

− Double click an error/warning message to navigate to offending source

code

167 TM

• Displays standard I/O

• Echoes Make files

• Displays program output

• Console toolbar:

− Scroll Lock

− Clear Console

− Pin Console (save this console in separate view)

− Display Selected Console

− Open Console

TM

169 TM

• One click access to most common operations

− Project Creation

− Build/Debug

− Settings

− Miscellaneous

170 TM

171 TM

172 TM

173 TM

174 TM

175 TM

176 TM

177 TM

178 TM

179 TM

180 TM

181 TM

TM

183 TM

Debug Perspective

• Default views:

− Debug View

− Variables View

− Breakpoints View

− Memory View

− Modules View

− Editor (Area)

− Disassembly View

− Problems View

− Console View

− Commander View

• Each view has an optional toolbar and menu that is separate
from those on the main workbench window.

184 TM

• Shows the target debugging information in a tree hierarchy

• Use this view to perform the following tasks:

− Clear all terminated processes

− Start a new debug session for the selected process

− Resume execution of the currently suspended debug target

− Halt execution of the currently selected thread in a debug target

− Terminate the selected debug session and/or process

− Detach the debugger from the selected process

− Execute the current line, including any routines, and proceed to the next statement

− Execute the current line, following execution inside a routine

− Re-enter the selected stack frame

− Examine a program as it steps into disassembled code

185 TM

• Lists all global and static variables for each process

• Variables changed since last update are highlighted

• To add a global variable:

− Select in the Variable View

− Select the global variables from the Global Variable dialog box

186 TM

• Lists all breakpoints set in the workbench projects

• Allows breakpoints to be grouped by type, project, file, or

working sets

• A breakpoint can temporarily be disabled without losing the

information it contains

187 TM

• Allows memory to be monitored and modified

• Contains two panes:

− Monitors panel - Displays the list of memory monitors added to the

debug session currently selected in the Debug view

− Renderings panel - Displays memory renderings.

 Content is controlled by the selection in the Monitors panel.

 Can be configured to display two renderings simultaneously.

188 TM

• Displays information about the modules loaded in the current debug
session

− Executables

− Shared libraries

• View consists of
two areas:

− Modules tree

− Detail pane

• Detail pane displays the detail information for the module selected in
the modules tree

• Expanding a module enables users to view the module's internals

− Functions

− Global variables

− Associated source files

189 TM

• There are multiple editors for multiple file types

− C/C++ editor for source code

− Text editor for text files

• To open a file:

− Double click on the file in CodeWarrior Projects or Navigator view

 - or -

− Select File > Open File

• Each file opens up in a new tab in editor area

• Editors show changes in files since last save

− See the change bar (left side of text)

− Additions and modifications color

 coded.

− Hover cursor over change bar to see

 previous text

− Dirty file – indicated by * in editor tab

• Marker area on left side of editor indicates task, bookmarks, or breakpoint

190 TM

• Shows the loaded program as assembler instructions mixed
with source code for comparison

• The currently executing line is indicated by an arrow marker
and highlighted in the view

• The following tasks can be performed:

− Set breakpoints at the start of any
 assembler instruction

− Enable and disable
breakpoints and set their
properties

− Step through the disassembly
 instructions of the program

− Jump to specific instructions

 in the program

191 TM

• Shows errors and warnings

− Filters on problems to display:

 Location of defective resource

 Type of defect

 Type of problem

− Double click an error/warning message to navigate to offending source

code

192 TM

• Displays standard I/O

• Echoes Make files

• Displays program output

• Console toolbar:

− Scroll Lock

− Clear Console

− Pin Console (save this console in separate view)

− Display Selected Console

− Open Console

TM

