
 SMART ARM-based Microcontrollers

 AT10842: Using the Timer Counter for Control
Applications in SAM L22

 APPLICATION NOTE

Introduction

This application note describes the following features of the Timer/Counter
for Control Applications available on the Atmel® | SMART SAM L22.

1. Circular Buffer
2. One-shot Operation
3. Output Matrix with DTI
4. Swap
5. Pattern Generation
6. Ramp2
7. Ramp2A
8. Dual Slope PWM
9. Counter Operation
10. Fault Operation
11. Dithering
12. Capture Operation

It provides details for configuring the above features of the Timer/Counter for
Control Applications. It also contains code examples to simplify the use of
TCC in typical applications.

All the software examples specified in this document are provided in ASF
(Atmel® Software Framework).

For more information about the features of TCC module, refer SAM L22
device datasheet.

Features

• Up to four compare/capture channels (CC) with
– Double buffered period setting
– Double buffered compare or capture channel
– Circular buffer on period and compare channel registers

• Waveform generation
– Frequency generation

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

http://www.atmel.com/tools/avrsoftwareframework.aspx

– Single-slope pulse-width modulation (PWM)
– Dual-slope pulse-width modulation with half-cycle reload capability

• Input capture
– Event capture
– Frequency capture
– Pulse-width capture

• Waveform extensions
– Configurable distribution of compare channels outputs across port pins
– Low- and high-side output with programmable dead-time insertion
– Waveform swap option with double buffer support
– Pattern generation with double buffer support
– Dithering support

• Fault protection for safe drivers disabling
– Two recoverable fault sources
– Two non-recoverable fault sources
– Debugger can be source of non-recoverable fault

• Input event
– Two input events for counter
– One input event for each compare channel

• Output event
– Three output events (Count, Retrigger, and Overflow) available for counter
– One Compare Match/Input Capture output event for each channel

• Interrupts
– Overflow and Retrigger interrupt
– Compare Match/Input Capture interrupt
– Interrupt on fault detection

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

2

Table of Contents

Introduction..1

Features.. 1

1. Abbreviations...4

2. Pre-requisites...5

3. TCC... 6
3.1. TCC Overview.. 6
3.2. Functional Description..6
3.3. Special Considerations...7

4. Setup... 8
4.1. Hardware Setup..8
4.2. Software Setup...8

5. TCC Features Demonstration..13
5.1. Timer Mode Configuration.. 13
5.2. Circular Buffer...13
5.3. One-shot Operation..16
5.4. Output Matrix with DTI for PWM...17
5.5. SWAP Operation.. 22
5.6. Pattern Generation... 25
5.7. Ramp2 Operation... 27
5.8. Ramp2A Operation...29
5.9. Dual Slope PWM Operations..31
5.10. Counter Operations.. 33
5.11. Fault Operations...34
5.12. DITHERING..37
5.13. Capture Operations.. 39

6. Revision History...42

1. Abbreviations
ASF Atmel Software Framework

CC Compare/capture

DTI Dead-time Insertion

EDGB Embedded Debugger

EVSYS Event System

GCLK Generic clock

IDE Integrated Development Environment

OTMX Output Matrix

PER Period

SMPS Switching Mode Power Supply

TCC Timer/Counter for Control Applications

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

4

2. Pre-requisites
The solutions discussed in this document require basic familiarity with the following tools.

• Atmel Studio 7 or above
• SAM L22 Xplained Pro

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

5

3. TCC

3.1. TCC Overview
The Timer/Counter for Control Applications (TCC) module provides a set of timing and counting related
functionalities, such as the generation of periodic waveforms, the capture of a periodic waveform's
frequency/duty cycle, software timekeeping for periodic operations, waveform extension control, fault
detection etc. It enables low- and high-side output with optional dead-time insertion. It can also generate
a synchronized bit pattern across the waveform output pins. The fault options enable fault protection for
safe and deterministic handling, disabling, and/or shut down of external drivers. Waveform extensions are
intended for use in different types of motor control, ballast, LED, H-bridge, power converter, and other
types of power control applications. The counter size of the TCC module is 24-bit.

Figure 3-1. Timer/Counter Block Diagram

3.2. Functional Description
The TCC module consists of following sections:

• Base Counter
• Compare/Capture channels, with waveform generation
• Waveform extension control and fault detection
• Interface to the event system, DMAC, and the interrupt system

The base counter can be configured to either count a pre-scaled generic clock or events from the event
system (TCCx, with event action configured to counting). The counter value can be used by compare/
capture channels which can be set up either in compare mode or capture mode. In capture mode, the

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

6

counter value is stored when a configurable event occurs. This mode can be used to generate
timestamps used in event capture, or it can be used for the measurement of a periodic input signal's
frequency/duty cycle.

In compare mode, the counter value is compared against one or more of the configured channels'
compare values. When the counter value coincides with a compare value, an action can be taken
automatically by the module, such as generating an output event or toggling a pin when used for
frequency or PWM signal generation.

The connection of events between modules requires the use of the SAM Event System Driver (EVSYS) to
route output event of one module to the input event of another. For more information on event routing,
refer to the event driver (EVSYS) documentation.

In compare mode, when output signal is generated, extended waveform controls are available, to arrange
the compare outputs into specific formats. The output matrix can change the channel output routing;
Pattern generation unit can overwrite the output signal lines to specific states. The fault protection feature
of the TCC supports recoverable and non-recoverable faults.

3.3. Special Considerations
As the TCC module have more waveform output pins than the number of compare/capture channels, the
free pins (with number higher than number of channels) will reuse the waveform generated by channels
subsequently. E.g., if the number of channels is four and number of wave output pins is eight, channel 0
outputs will be available on out pin 0 and 4, channel 1 output on wave out pin 1 and 5, and so on.

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

7

4. Setup
The example code provided in this application note uses the SAM L22 Xplained Pro kit and as the
hardware and Atmel Studio 7 as IDE for application development.

The overview of this section contains information about hardware setup and software setup.

4.1. Hardware Setup
The SAM L22 Xplained Pro kit will be used to run the example application. This is an evaluation kit that
allows connecting multiple external components via a wing connector. A wing board is a self-contained
board that can be connected to the Xplained Pro using a wing connector. The SAM L22 Xplained Pro kit
has three such wing connector marked as EXT1, EXT2, and EXT3.

There are two USB ports on the SAM L22 Xplained Pro board - DEBUG USB and TARGET USB. For
debugging using the Embedded debugger EDBG, DEBUG USB port has to be connected.

Figure 4-1. SAM L22 Xplained Pro Board

4.2. Software Setup
When SAM L22 Xplained Pro kit is connected to the PC, the Windows® Task bar will pop-up a message
as shown in the following figure:

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

8

Figure 4-2. SAM L22 Xplained Pro Driver Installation

If the driver installation is successful, EDBG will be listed in the Device Manager as shown in the following
figure:

Figure 4-3. Successful EDBG Driver Installation

To ensure that the EDBG tool is getting detected in Atmel Studio,
1. Open Atmel Studio7, Go to View → Available Atmel Tools. The EDBG should get listed in the

tools as "EDBG" and the tool status should display as Connected. This indicates that the tool is
communicating with Atmel Studio.

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

9

Figure 4-4. EDBG under Available Atmel Tools

2. If the tool does not get displayed in Available Atmel Tools, disconnect the tool and reconnect
again.

3. Right click on the tool in the Available Tools list, click on Upgrade. This will check whether the
firmware in the tool is up to date. Click on upgrade to upgrade the firmware of the tool to latest
version. In case you get "upgrade failed" error, cycle power the tool and then try upgrading again.

The SAM L22 TCC Features example code is available in the latest ASF with Atmel Studio. Following
steps should be followed to load the SAM L22 TCC features example code in the Atmel Studio:

• To load the example project in Atmel Studio, go to File → New and click on Example Project. The
shortcut key for to do this is (CTRL +Shift + E).

Figure 4-5. Creating Example Project in Atmel Studio

• Enter SAM L22 TCC Features Example in the search box from New Example Project from ASF
so that it will show the SAM L22 TCC Features Example project solution available in the ASF

• Provide a name for the project and select the destination path and click OK. The location of the
project is selected by choosing a specific Folder in Location Tab.

• After clicking OK, the SAM L22 TCC Features Example project has been loaded in the Atmel
Studio as shown in the following figure

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

10

Figure 4-6. Solution Explorer View of SAM L22 TCC Features Example Project

• SAM L22 TCC Features Example project contains conf_example.h file, which has the macro
definitions for each feature. Only one feature should be enabled at a time for the proper operation
of this application.

Figure 4-7. TCC Features Definition in conf_example.h

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

11

• After enabling the desired feature in conf_example.h file, compile the project by selecting Build
→ Build solution.

• To debug this example project code in Atmel Studio, Configure the Tool and Interface in the Project
properties. To open the project properties, go to Project menu → Properties. In the project
properties, go to Tool tab → Under the Selected Debugger/Programmer, select the tool as
EDBG and interface as SWD as shown in the following figure.

Figure 4-8. Tool and Interface Settings

To program and execute the application, there are two options in Atmel Studio:
• Start a debug session on the board, where the user will be able to program and debug.
• Program the generated hex file into the controller and execute the application.

Both these options can be done on SAM L22 Xplained Pro as shown in the following figures.

Figure 4-9. Start without Debugging

Figure 4-10. Start Debugging and Break

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

12

5. TCC Features Demonstration

5.1. Timer Mode Configuration
The example application code (SAM L22 TCC Features Example Project) contains the source code for
each configuration for the following features . The conf_example.h contains the macro definitions
related to each configuration and it helps to configure each mode by enabling each feature in
conf_example.h.
TCC clock frequency, TCC clock divider, and PERIOD values are defined based on the GLCK_SOURCE,
TCC_CLOCK_DIVIDER, and TCC_PERIOD_VALUE values in the conf_example.h for each TCC
features.

Also configurations specific to the feature can also be modified by the user for example RAMP2
configuration will have TCC_RAMP2_MATCH_CHANNEL_0 and TCC_RAMP2_MATCH_CHANNEL_1 as well.

5.2. Circular Buffer
The Period register (PER) and the compare channels register (CC0 to CC3) support circular buffer
operation. When circular buffer operation is enabled, at each update condition, the PER or CCx values
are copied into the corresponding buffer registers and the values in the buffer registers are copied into the
PER or CCx registers. This mode uses compare channels of TCC to generate output signals with
different pulse width in alternate cycles. It is mainly used in RAMP operations.

Figure 5-1. Circular Buffer on Channel 0

5.2.1. Circular Buffer Mode Configuration
The Circular Buffer feature has been enabled through #define TCC_MODE_CIRCULAR_BUFFER and
#undef the rest of the TCC features in the conf_example.h.
For example, here two different compare values are loaded in the CC0 and CC0B register respectively to
view the circular buffer effect on the channel 0. Hence the WO [0] and circular buffer for the channel 0 are
enabled; the output signals are obtained with different pulse width on alternate cycles.

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

13

5.2.2. Code Snippet
/* Configure the TCC Waveform Output pins for waveform generation output
 */
 config_tcc.pins.enable_wave_out_pin[TCC_MATCH_CAPTURE_CHANNEL_0] =
true;
 config_tcc.pins.wave_out_pin[TCC_MATCH_CAPTURE_CHANNEL_0] =
PIN_PB18F_TCC0_WO0;/* Configure the Alternate function of GPIO pins for TCC
 functionality */

 config_tcc.pins.wave_out_pin_mux[TCC_MATCH_CAPTURE_CHANNEL_0] =
MUX_PB18F_TCC0_WO0;/* Load the CC0 and CCB0 values respectively for the circular
buffer
 operation */
 stat = tcc_set_double_buffer_compare_values(&tcc_instance,
TCC_MATCH_CAPTURE_CHANNEL_0, CC0_Value, CCB0_Value);/* Enable the Circular Buffer
feature for the Compare Channel 0
 */

 stat = tcc_enable_circular_buffer_compare(&tcc_instance,
TCC_MATCH_CAPTURE_CHANNEL_0);

5.2.3. Waveform Output
The output scope snapshots Figure 5-2  Circular Buffer Enable CC0 = 0xC0 on page 15 and Figure
5-3  Circular Buffer Enable CC0 = 0x80 on page 16 are captured from the SAM L22 Xplained Pro PB18
available in the EXT3 connector Pin No 9.

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

14

Figure 5-2.  Circular Buffer Enable CC0 = 0xC0

The TCC clock frequency = 48MHz

The TCC Clock divider = 1

Time Period for 1 Count = 1/48000000 = 20.83333ns

For the CC0 value 0xC0 = 192 * 20.8333ns

= 4.0000µs

For the CC0 value 0x80 = 128* 20.8333ns

= 2.666µs

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

15

Figure 5-3.  Circular Buffer Enable CC0 = 0x80

5.3. One-shot Operation
When one-shot feature is enabled, the counter automatically stops on the next counter overflow or
underflow condition. When the counter is stopped, STOP bit in the STATUS register will be set.

This one-shot operation can be enabled by writing a one to the One-Shot bit in the Control B Set register
(CTRLBSET.ONESHOT) and disabled by writing a one to the One-Shot bit in the Control B Clear register
(CTRLBCLR.ONESHOT). The one-shot operation can be restarted by using retrigger software command,
a retrigger event or a start event. When the counter restarts its operation, Stop bit in the Status register
(STATUS.STOP) is get cleared.

5.3.1. One-shot Operation Configuration
The one-shot operation feature has been enabled through #define TCC_MODE_ONESHOT and #undef
the rest of the TCC features in the conf_example.h.
In this mode, configure the compare match value in CC2 channel WO [6] for the waveform output. Since
the Port pin PC27 is connected with LED0 of the SAM L22 Xplained Pro, it will control the ON time of
LED0. Pressing BUTTON_0 of the SAM L22 Xplained Pro restarts the timer as the pulse will be obtained
on the PC27 pin it will drive the LED0. It is important to enable the inversion of waveform input WO [3],
since the PC27 pin is connected to the cathode pin of LED0.

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

16

5.3.2. Code Snippet
/* Configure the TCC Waveform Output pins for waveform generation output
 */
 config_tcc.pins.enable_wave_out_pin[TCC_CHANNEL_NUM_3] = true;
 config_tcc.pins.wave_out_pin[TCC_CHANNEL_NUM_3] = PIN_PC27F_TCC0_WO3;/*
Configure the alternate function of GPIO pins for TCC
 functionality */

 config_tcc.pins.wave_out_pin_mux[TCC_CHANNEL_NUM_3] = MUX_PC27F_TCC0_WO3;/*
Configure the Match value for the compare channel 2 for LED0 ON
 time*/

 config_tcc.compare.match[2] = 31250;
 /* Invert the Waveform output[6] channel to drive LED0
 */

 config_tcc.wave_ext.invert[TCC_CHANNEL_NUM_3] = true;
 /* Enable the One shot Feature */

 config_tcc.counter.oneshot = true;void oneshot_operation(void)
{
 while(port_pin_get_input_level(BUTTON_0_PIN));
 while(!port_pin_get_input_level(BUTTON_0_PIN));
 tcc_set_count_value(&tcc_instance, 0);
 tcc_restart_counter(&tcc_instance);
}

5.3.3. LED0 Output
After enabling this mode, LED0 will blink once for the time period loaded in CC2 channel. As the one-shot
feature is enabled the counter will be stopped . If the Button [Button_0] is pressed, then it will restart the
counter operation by retrigger command and blinks LED0 once again.

5.4. Output Matrix with DTI for PWM
The output matrix (OTMX) can distribute and route the TCC waveform outputs across the port pins in
different configurations, each optimized for different application types. The OTMX [1:0] bits in the
WEXCTRL register define the output matrix configuration. The block diagram of waveform extension
detail is shown in the following figure.

Figure 5-4. Waveform Extension Stage Details

The output matrix (OTMX) unit distributes compare channels, according to the selectable configurations,
as shown in the following table.

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

17

Table 5-1. Output Matrix Channel Pin Routing Configuration

Value OTMX[x]

0x0 CC3 CC2 CC1 CC0 CC3 CC2 CC1 CC0

0x1 CC1 CC0 CC1 CC0 CC1 CC0 CC1 CC0

0x2 CC0 CC0 CC0 CC0 CC0 CC0 CC0 CC0

0x3 CC1 CC1 CC1 CC1 CC1 CC1 CC1 CC0

• Configuration 0x0 is default configuration. The channel location is the default one and channels are
distributed on outputs modulo the number of channels. Channel 0 is routed to the Output matrix
output OTMX [0], Channel 1 to OTMX [1]. If there are more outputs than channels, then channel 0
is duplicated to the Output matrix output OTMX[CC_NUM], channel 1 to OTMX[CC_NUM+1] and
so on.

• Configuration 0x1 distributes the channels on output modulo half the number of channels; this gives
the lower channels twice the number of output locations than the default configuration. This
provides for example, control of the four transistors of a full bridge using only two compare
channels. Using pattern generation, some of these four outputs can be overwritten by a constant
level, enabling flexible drive of a full bridge in all quadrant configurations.

• Configuration 0x2 distributes the compare channel 0 (CC0) to all port pins. With pattern generation,
this configuration can control a stepper motor.

• Configuration 0x3 distributes the compare channel CC0 to first output and the channel CC1 to all
other outputs. Together with pattern generation and the fault extension this configuration can
control up to seven LED strings, with a boost stage.

5.4.1. Dead Time Insertion (DTI)
In a system driven by a pair of transistors operating in the Complementary Output mode it is completely
forbidden to enable simultaneously the two FETs on the same side. This would lead to Shoot Through (a
short circuit from power supply to ground).

Because the power output devices cannot switch instantaneously, some amount of time must be provided
between the turn-off event of one PWM output in a complementary pair and the turn-on event of the other
transistor.

The dead time insertion (DTI) unit splits the four lower OTMX outputs into two non-overlapping signals,
the non-inverted low side (LS) and inverted high side (HS) of the waveform output with optional dead-time
insertion between LS and HS switching.

The dead-time insertion (DTI) unit generates OFF time with the non-inverted low side (LS) and inverted
high side (HS) of the WG output forced at low level. This OFF time is called dead time, and dead-time
insertion ensures that the LS and HS will never switch simultaneously. The DTI stage consists of four
equal dead-time insertion generators; one for each of the first four channels. The four channels have a
common register which controls the dead time and is independent of high side and low side setting.

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

18

Figure 5-5. Block Diagram of Dead Time Generator

DTIENx [x=3-0] Dead-time Insertion Generator x Enable (8 -11) bits in the WEXCTRL register enable the
Dead Time Insertion function for each channel.

The dead time function in the PWM control avoids the drivers of the same set of PWMs (PWMxH and
PWMxL) from being ON simultaneously due to the operating speed of the driver during output generation.

Dead time must be inserted when any of the PWM I/O pin pairs are operating in the Complementary
Output mode. Four DTI insertion functions (DTIEN0 to DTIEN3) control the four lowest OTMX outputs.

The 8-bit dead-time counter is decremented by one for each peripheral clock cycle, until it reaches zero.
A nonzero counter value will force both the low side and high side outputs into their OFF state. When the
output matrix (OTMX) output changes, the dead-time counter is reloaded according to the edge of the
input. When the output changes from low to high (positive edge) it initiates counter reload of the DTLS
register, and when the output changes from high to low (negative edge) reload the DTHS register.

Figure 5-6. Dead Time Generator Timing Diagram

5.4.2. Output Matrix with DTI Configuration
The Output Matrix with DTI for PWM mode feature has been enabled through #define
TCC_MODE_OTMX_DTI and #undef the rest of the TCC features in the conf_example.h.

In this mode, the waveform outputs 0, 1, 2, and 6 for the PWM output signals are enabled. The waveform
output 0 and 1 are configured to view the Dead Time Insertion effect on the waveform output pins 2 and
6. Also the waveform output 1 is inverted, since the Dead time for the channel CC0 is not enabled . By

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

19

enabling the DTIEN bit for the channel, the complementary output for the particular channel can be
obtained.

Load the Compare match values on the CC0, CC1, and CC2 channels appropriately to generate the
waveform outputs. Enable the DTI on the channel and define the DTHS (dead time high side) and DTLS
(dead time low side) using WEXCTRL register as per application need.

5.4.3. Code Snippet
/* Configure the TCC Waveform Output pins for waveform generation output
 */
 config_tcc.pins.enable_wave_out_pin[0] = true;
 config_tcc.pins.enable_wave_out_pin[1] = true;
 config_tcc.pins.enable_wave_out_pin[2] = true;
 config_tcc.pins.enable_wave_out_pin[6] = true;
 config_tcc.pins.wave_out_pin[0] =
PIN_PB184F_TCC0_WO0;
 config_tcc.pins.wave_out_pin[1] = PIN_PA09F_TCC0_WO1;
 config_tcc.pins.wave_out_pin[2] = PIN_PA18F_TCC0_WO2;
 config_tcc.pins.wave_out_pin[6] = PIN_PA12F_TCC0_WO6;/* Configure the
Alternate function of GPIO pins for TCC
 functionality */

 config_tcc.pins.wave_out_pin_mux[0] = MUX_PB184F_TCC0_WO0;
 config_tcc.pins.wave_out_pin_mux[1] = MUX_PA09F_TCC0_WO1;
 config_tcc.pins.wave_out_pin_mux[2] = MUX_PA18F_TCC0_WO2;
 config_tcc.pins.wave_out_pin_mux[6] = MUX_PA12F_TCC0_WO6;/* Configure the
compare channel values for the duty cycle control
 and load the 0x80 value for 50% duty cycle */
 config_tcc.counter.period = TCC_PERIOD_VALUE;
 config_tcc.compare.match[0] = TCC_PERIOD_VALUE/2;
 config_tcc.compare.match[1] = TCC_PERIOD_VALUE/2;
 config_tcc.compare.match[2] = TCC_PERIOD_VALUE/2;
 /* Invert the Waveform output[1] channel to view the DTI effect */
 config_tcc.wave_ext.invert[1] = true;

5.4.4. OTMX with DTI Enable for Channel 2 Waveform Output
The output scope snapshots Figure 5-7 OTMX with DTI for DTHS Measurement on page 21 and Figure
5-8 OTMX with DTI for DTLS Measurement on page 22 are captured from the SAM L22 Xplained Pro
of EXT2 and EXT3 connector.

• PB18 – Waveform Output 0
• PA09 – Waveform Output 1
• PA18 – Waveform Output 2
• PA12 – Waveform Output 6

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

20

Figure 5-7. OTMX with DTI for DTHS Measurement

In the diagram above, the DTHS is measured for the PWM complementary output.

The TCC clock frequency = 48MHz

The TCC Clock divider = 1

Time Period for 1 Count = 1/48000000

= 20.833ns

DTHS time = 16 * 20.83333

= 333.333ns

DTLS time = 64 * 20.8333

= 1.3333µs

Since this application uses the internal OSC 8MHz as a source for the CPU clock, the DTLS, and DTHS
have some tolerance.

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

21

Figure 5-8. OTMX with DTI for DTLS Measurement

5.5. SWAP Operation
The SWAP feature is useful to switch simultaneously two output signals. The swap (SWAP) unit can be
used to swap waveform pin outputs. The SWAP units in the TCC module can be seen as a four port pair
of slices.

• SWAP0 acting on port pins (WO[0], WO[WO_NUM/2 +0])
• SWAP1 acting on port pins (WO[1], WO[WO_NUM/2 +1])

And more generally:
• SWAPx acting on port pins (WO[x], WO[WO_NUM/2 +x])

The Bits 27:24 – SWAPx [x=3-0] of WAVE register: Setting these bits enables output swap of DTI outputs
[x] and [x+WO_NUM/2].

The swap function is very useful in BLDC motor control and can be used for fast decay motor control. It
allows the immediate change of top and bottom transistors in the phase. Using this function the rotor
commutation and speed control can be divided into two independent program parts. The state of the
control signals can be changed immediately when required by the motor position (phase commutation)
without changing the content of the PWM value registers. These changes can be accomplished
asynchronously to the PWM duty cycle update.

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

22

When chopping current threshold is reached, the H-bridge can operate in two different current
recirculation modes:

• An asynchronous mode if current re-circulates through the diodes (in FETs or external). The user
cannot control the occurrence of the alternate path creation.

• A synchronous mode if enabling and disabling FETs in order to promote an alternate path

Two synchronous modes can be used: fast decay or slow decay. Fast and slow refer to the current decay
mode and not the motor speed. It is the opposite for speed. In fast decay mode, the motor will slow down
in speed while in slow decay mode, the motor stops very quickly.

Figure 5-9. SWAP Operation Illustration

5.5.1. SWAP Mode Configuration
The SWAP feature has been enabled through #define TCC_MODE_SWAP and #undef the rest of the
TCC features in the conf_example.h.
In this mode configure and enable the Waveform outputs 0 and 4 for single slope PWM waveform
generation, by enabling the DTIEN0 bit for the channel 0, the complementary output for the channel is
obtained on the WO [4] pin. Using the WEXCTRL register, the DTLS and DTHS for the complementary
output is defined. After the configuration part is done, it continuously waits for the Button press [Button_0]
available in the SAM L22 Xplained Pro. If the button is pressed, then it will toggle the SAWP0 bit in the
WAVE register for the SWAP operation. So that WO [0] pin waveform can be output on the WO [4] and
vice versa.

5.5.2. Code Snippet
/* Configure the TCC Waveform Output pins for waveform generation output
 */
 config_tcc.pins.enable_wave_out_pin[0] = true;
 config_tcc.pins.enable_wave_out_pin[4] = true;
 config_tcc.pins.wave_out_pin[0] = PIN_PA04F_TCC0_WO0;
 config_tcc.pins.wave_out_pin[4] = PIN_PA22F_TCC0_WO4;/* Configure the
alternate function of GPIO pins for TCC
 functionality */

 config_tcc.pins.wave_out_pin_mux[0] = MUX_PA04F_TCC0_WO0;
 config_tcc.pins.wave_out_pin_mux[4] = MUX_PA22F_TCC0_WO4;/* Configure the
compare channel values for the duty cycle control
 and load the 0x80 value for 50% duty cycle */

 config_tcc.compare.match[0] = 0x80;/* Enable the Dead Time Insertion
Generator for the channel 0 (CC0)
 */

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

23

 TCC0->WEXCTRL.reg |= TCC_WEXCTRL_DTIEN0; /* Define the High side time and
Low side time for Dead Time
 generation */

 TCC0->WEXCTRL.reg |= TCC_WEXCTRL_DTLS(0x20) | TCC_WEXCTRL_DTHS(0x60);void
swap_operation(void) {
 while(port_pin_get_input_level(BUTTON_0_PIN));
 while(!port_pin_get_input_level(BUTTON_0_PIN));
 TCC0->WAVE.reg ^= TCC_WAVE_SWAP0;
 }

5.5.3. SWAP Waveform Output
The output scope snapshot in Figure 5-10 SWAP Operation on page 24 is captured from the SAM L22
Xplained Pro of EXT1, EXT2, and EXT3 .

• PA04 – Waveform Output 0
• PA22 – Waveform Output 4
• PA14 – BUTTON_0_PIN

Figure 5-10. SWAP Operation

The TCC clock frequency = 48MHz

The TCC Clock divider = 1

Time Period for 1 Count = 1/48000000 = 20.833ns

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

24

5.6. Pattern Generation
The pattern generation unit is used to generate synchronized bit pattern across the waveform output pins.
As with other double buffered timer/counter registers, the register update is synchronized to the UPDATE
condition set by the timer/counter waveform generation mode. If the application does not need
synchronization, the application code can simply access the PGEx and PGVx registers directly. A value 1
in the PGEx bit group of PATT register overrides the corresponding SWAP output with the corresponding
PGVx value. The PATTBV bit of the STATUS register used to set when a new value is written to the
PATTB register. The PATTBV bit is automatically cleared by hardware on UPDATE condition or by writing
a one to this bit. When double buffering is enabled, PGVB and PGEB bits value of PATTB register is
copied into the corresponding PGV and PGE bits value of PATT register on an update condition. Pattern
Generator can be used with PWM signals which have built-in DTI. A block diagram of the pattern
generator is shown in Figure 5-11 Block Diagram of Pattern Generator on page 25.

Figure 5-11. Block Diagram of Pattern Generator

5.6.1. Pattern Generation Configuration
The Pattern Generation feature has been enabled through #define
TCC_MODE_PATTERN_GENERATION and #undef the rest of the TCC features in the
conf_example.h.
In this mode, the waveform outputs 0, 1, 2, and 3 for the pattern generation are enabled. Here four
patterns are defined for bipolar stepper motor with the waveform output . Configure the OTMX [1:0] bits
into 0x2 in the WEXCTRL register in such way that to get the CC0 waveform output on all the four
waveform output pins.

The application waits for the compare match flag to set and then clears the Compare Match Interrupt flag
of the same. Then it will load the next pattern on the PGVB (Pattern Generation Value Buffer)
appropriately for the next pattern.

• In this application note the delay required between the patterns is not implemented. Add the
appropriate delay between loading the pattern as mentioned in the stepper motor datasheet.

5.6.2. Code Snippet

/* Configure the TCC
 Waveform Output pins for waveform generation output */

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

25

 config_tcc.pins.enable_wave_out_pin[0] = true;
 config_tcc.pins.enable_wave_out_pin[1] = true;
 config_tcc.pins.enable_wave_out_pin[2] = true;
 config_tcc.pins.enable_wave_out_pin[3] = true;
 config_tcc.pins.wave_out_pin[0] = PIN_PB18F_TCC0_WO0;
 config_tcc.pins.wave_out_pin[1] = PIN_PA09F_TCC0_WO1;
 config_tcc.pins.wave_out_pin[2] = PIN_PA18F_TCC0_WO2;
 config_tcc.pins.wave_out_pin[3] = PIN_PB21F_TCC0_WO3;/* Configure the
Alternate function of GPIO pins for TCC
 functionality */

 config_tcc.pins.wave_out_pin_mux[0] = MUX_PB18F _TCC0_WO0;
 config_tcc.pins.wave_out_pin_mux[1] = MUX_PA09F _TCC0_WO1;
 config_tcc.pins.wave_out_pin_mux[2] = MUX_PA18F _TCC0_WO2;
 config_tcc.pins.wave_out_pin_mux[3] = MUX_PB21F _TCC0_WO3;
 config_tcc.double_buffering_enabled = true;/* Configure the compare channel
values for the duty cycle control
 and Load the 0x7FFF value for 50% duty cycle */

 config_tcc.compare.match[0] = 0x7FFF;/* Configure the Output Matrix Channel
for Pattern Generation of
 Stepper Motor */

 TCC0->WEXCTRL.reg |= TCC_WEXCTRL_OTMX(2); /* Enable the Pattern Generator
Output for 4 Waveform Outputs
 and Load the PATT and PATTB register values respectively for Stepper Motor
Pattern
 Generation */

 TCC0->PATT.reg = TCC_PATT_PGE(0x0F) | TCC_PATT_PGV(SM_Pattern[i+
+]);
 TCC0->PATTB.reg = TCC_PATTB_PGEB(0x0F) | TCC_PATTB_PGVB(SM_Pattern[i++]);
 void pattern_generation(void) {
 if(i == 4)
 i = 0;
 while(!TCC0->INTFLAG.bit.MC0);
 TCC0->INTFLAG.bit.MC0 = 1;
 TCC0->PATTBUF.reg = TCC_PATTBUF_PGEB(0x0F) | TCC_PATTBUF_PGVB(SM_Pattern[i+
+]);
 while (CONF_PWM_MODULE->SYNCBUSY.reg & (1u << 16));
 }

5.6.3. Pattern Generation Waveform Output
The following scope snapshot is captured from the SAM L22 Xplained Pro of EXT1, EXT2, and EXT3.

• PB18F – Waveform Output 0
• PA09F – Waveform Output 1
• PA18F – Waveform Output 2
• PB21F – Waveform Output 3

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

26

Figure 5-12.  Pattern Generation

The TCC clock frequency = 16MHz

The TCC Clock divider = 1

Time Period for 1 Count = 1/16000000 = 62.5ns

For the CC0 value 0x7FFF = 0x7FFF * 62.5ns

= 2.047ms

5.7. Ramp2 Operation
These operations are dedicated for Half-Bridge and Push-Pull SMPS topologies, where two consecutive
Timer/counter cycles are interleaved, as shown in Figure 5-13 RAMP2 Standard Operation on page 28.
In cycle A, odd channels output is disabled, and in cycle B, even channels output are disabled.

Ramp A and B periods are controlled through PER register value. Period register value can have different
values on each ramp by enabling the circular buffer option CIPEREN bit in the WAVE register. The 4th
and 5th bits RAMP [1:0] in the WAVE register configure the RAMP mode. The RAMP2 mode uses two
compare channels TCC to generate two output signals, or one output signal with another CC channel
enabled in capture mode.

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

27

Figure 5-13. RAMP2 Standard Operation

5.7.1. RAMP2 Configuration
The RAMP2 feature has been enabled through #define TCC_MODE_RAMP2 and #undef the rest of the
TCC features in the conf_example.h.

In this mode, the Waveform outputs 0 and 1 for the single slope PWM output signals are enabled.
Configure the Compare match channel values for the Channel 0 and 1. RAMP2 mode can be configured
through WAVE register.

5.7.2. Code Snippet
/* Configure the TCC Waveform Output pins for waveform generation output
 */
 config_tcc.pins.enable_wave_out_pin[0] = true;
 config_tcc.pins.enable_wave_out_pin[1] = true;
 config_tcc.pins.wave_out_pin[0] = PIN_PB18F_TCC0_WO0;
 config_tcc.pins.wave_out_pin[1] = PIN_PA09E_TCC0_WO1;/* Configure the
Alternate function of GPIO pins for TCC
 functionality */

 config_tcc.pins.wave_out_pin_mux[0] = MUX_PB18F _TCC0_WO0;
 config_tcc.pins.wave_out_pin_mux[1] = MUX_PA09E _TCC0_WO1;
 /* Configure the RAMP mode operation as RAMP2 mode */

 config_tcc.compare.wave_ramp = TCC_RAMP_RAMP2;
 /* Configure the compare channel values for the duty cycle
 control and load the 0xB333 value for 70% duty cycle */

 config_tcc.compare.match[0] = 0xB333;/* Load the 0x4CCC value for 30% duty
cycle */

 config_tcc.compare.match[1] = 0x4CCC;

5.7.3. RAMP2 Waveform Output
The following output scope snapshot is captured from the SAM L22 Xplained Pro of EXT3 connector.

• PB18 – Waveform Output 0
• PA09 – Waveform Output 1

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

28

Figure 5-14. RAMP2 Operation

The TCC clock frequency = 16MHz

The TCC Clock divider = 1

Time Period for 1 Count = 1/16000000 = 125ns

For the CC0 value 0xB333 = 0xFFFF-0xB333 * 125ns

= 5.7343ms

For the CC1 value 0x4CCC = 0X4CCC * 125ns

= 2.4575ms

5.8. Ramp2A Operation
RAMP2 Alternate operation is similar to RAMP2 except that the CC0 register controls both WO [0] and
WO [1] compare outputs. For RAMP2A operation mode, the circular buffer mode allows having two
dedicated period and compare values for each of the cycle A/B. This is similar to RAMP2 mode, with the
difference that only one channel is used for waveform generation and the second channel can be used for
capture operation.

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

29

Figure 5-15. RAMP2A Operation

5.8.1. RAMP2A Configuration
The RAMP2A feature has been enabled through #define TCC_MODE_RAMP2A and #undef the rest of
the TCC features in the conf_example.h.

In this mode, the Waveform outputs WO[0] and WO[1] for the single slope PWM output signals are
enabled. Configure the Compare match channel value for the Channel 0 only. RAMP2A mode can be
configured in the WAVE register.

5.8.2. Code Snippet
/* Configure the TCC Waveform Output pins for waveform generation output
*/ config_tcc.pins.enable_wave_out_pin[0] = true;
 config_tcc.pins.enable_wave_out_pin[1] = true;
 config_tcc.pins.wave_out_pin[0] = PIN_PB18F _TCC0_WO0;
 config_tcc.pins.wave_out_pin[1] = PIN_PA09E _TCC0_WO1;
 /* Configure the Alternate function of GPIO pins for TCC functionality */
 config_tcc.pins.wave_out_pin_mux[0] = MUX_PB18F _TCC0_WO0;
 config_tcc.pins.wave_out_pin_mux[1] = MUX_PA09E _TCC0_WO1;
 /* Configure the RAMP mode operation as RAMP2 mode */
 config_tcc.compare.wave_ramp = TCC_RAMP_RAMP2A;
 /* Configure the compare channel values for the duty cycle control and load
the 0xB333 value
 for 70% duty cycle */
 config_tcc.compare.match[0] = 0xB333;

5.8.3. RAMP2A Waveform Output
The following output scope snapshot is captured from the SAM L22 Xplained Pro of EXT3 connector.

• PB18 – Waveform Output 0
• PA09 – Waveform Output 1

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

30

Figure 5-16. RAMP2A Operation Output

Output showcasing both waveform outputs have alternate ON/OFF cycles between them with pulse width
always corresponds to CC0 value in both cycles.

The TCC clock frequency = 8MHz

The TCC Clock divider = 1

Time Period for 1 Count = 1/8000000 = 125ns

For the CC0 value 0xB333 = 0xB333 * 125ns

= 5.7343ms

5.9. Dual Slope PWM Operations
For dual-slope PWM generation, the period (TOP) is controlled by PER, while CCx control the duty cycle
of the generated waveform output. Following figure shows how the counter repeatedly counts from ZERO
(BOTTOM) to PER and then from PER to ZERO. The waveform generator output is set on compare
match when up-counting, and cleared on compare match when down-counting.

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

31

Figure 5-17. Dual-Slope Pulse Width Modulation

Using dual-slope PWM results in a lower maximum operation frequency compared to single-slope PWM
operation. The Period register (PER) defines the PWM resolution. The PWM can be configured for one of
the following Dual Slope configurations.

TCC_WAVE_GENERATION_DOUBLE_SLOPE_CRITICAL:

Double-slope (count up and down), non-center-aligned: Top is the PER register, CC[x] controls duty cycle
while counting up and CC[x+N/2] controls it while counting down.

TCC_WAVE_GENERATION_DOUBLE_SLOPE_BOTTOM:

Double-slope (count up and down), interrupt/event at Bottom .Top is the PER register, output becomes
active when count is greater than CCx.

TCC_WAVE_GENERATION_DOUBLE_SLOPE_BOTH:

Double-slope (count up and down), interrupt/event at Bottom and Top. Top is the PER register, output
becomes active when count is lower than CCx.

TCC_WAVE_GENERATION_DOUBLE_SLOPE_TOP:

Double-slope (count up and down), interrupt/event at Top . Top is the PER register, output becomes
active when count is greater than CCx.

5.9.1. Dual Slope Configuration
The Dual Slope feature has been enabled through #define TCC_MODE_DUAL_SLOPE and #undef the
rest of the TCC features in the conf_example.h.

In this mode, the Waveform outputs for the dual slope PWM output signals are enabled. Configure the
Compare match channel values for the Compare Channel 0. In this mode, it is observed that the
waveform output shows twice the pulse width compared to single slope PWM. This uses
TCC_WAVE_GENERATION_DOUBLE_SLOPE_BOTH configuration explained above.

5.9.2. Code Snippet
config_tcc.compare.wave_generation = TCC_WAVE_GENERATION_DOUBLE_SLOPE_TOP;
 /* Configure the TCC clock source and its divider value */
 config_tcc.counter.clock_source = GLCK_SOURCE;
 config_tcc.counter.clock_prescaler = TCC_CLOCK_DIVIDER;

 /* Configure the value for TOP value */
 config_tcc.counter.period = TCC_PERIOD_VALUE;

5.9.3. Dual Slope Waveform Output
The following output scope snapshot is captured from the SAM L22 Xplained Pro of EXT3 connector.

PB18 – Waveform Output

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

32

Figure 5-18. Dual-Slope Pulse Width Modulation Output

Output showcasing waveform outputs have twice the pulse width size because of Dual slope advantage.

The TCC clock frequency = 8MHz

The TCC Clock divider = 1

Time Period for 1 Count = 1/8000000 = 125ns

ON TIME (0x3FF-0x1FF)*2 = 2*512 * 125ns

= 0.128ms

5.10. Counter Operations
The counter can be set to count up or down. When the counter is counting up and the top value is
reached, the counter will wrap around to zero on the next clock cycle. When counting down, the counter
will wrap around to the top value when zero is reached.

5.10.1. Counter Configuration
The Counter feature has been enabled through #define TCC_MODE_COUNTER and #undef the rest of
the TCC features in the conf_example.h. In this mode, the led is toggled at four different intervals,
based on different initial startup value of the compare channel.

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

33

5.10.2. Code Snippet
/* Configure different channels with different compare match values */
 config_tcc.compare.match[0] = 900;
 config_tcc.compare.match[1] = 930;
 config_tcc.compare.match[2] = 1100;
 config_tcc.compare.match[3] = 1250; //!
 [setup_register_callback]
 tcc_register_callback(&tcc_instance,
tcc_callback_to_toggle_led,TCC_CALLBACK_OVERFLOW);
 tcc_register_callback(&tcc_instance,
tcc_callback_to_toggle_led,TCC_CALLBACK_CHANNEL_0);
 tcc_register_callback(&tcc_instance,
tcc_callback_to_toggle_led,TCC_CALLBACK_CHANNEL_1);
 tcc_register_callback(&tcc_instance,
tcc_callback_to_toggle_led,TCC_CALLBACK_CHANNEL_2);
 tcc_register_callback(&tcc_instance,
tcc_callback_to_toggle_led,TCC_CALLBACK_CHANNEL_3);
 //! [setup_register_callback]
 //! [setup_enable_callback]
 tcc_enable_callback(&tcc_instance, TCC_CALLBACK_OVERFLOW);
 tcc_enable_callback(&tcc_instance, TCC_CALLBACK_CHANNEL_0);
 tcc_enable_callback(&tcc_instance, TCC_CALLBACK_CHANNEL_1);
 tcc_enable_callback(&tcc_instance, TCC_CALLBACK_CHANNEL_2);
 tcc_enable_callback(&tcc_instance, TCC_CALLBACK_CHANNEL_3);
 //! [setup_change_events_faults]

5.10.3. Output
The LED toggles at various speeds based on four different counter channels.

5.11. Fault Operations
Recoverable faults can restart or halt the timer/counter. Two faults, called Fault A and Fault B, can trigger
recoverable fault actions on compare channels CC0 and CC1 from the timer/counter. The compare
channels outputs can be clamped to inactive state as long as the fault condition is present, or from the
first valid fault condition detection and until the end of the timer/counter cycle. In case of Non Recoverable
fault, the fault can drive the output to a pre-defined output level.

5.11.1. Fault Configuration
The Fault configuration feature has been enabled through #define TCC_MODE_FAULT and #undef the
rest of the TCC features in the conf_example.h. In this mode, a fault trigger (recoverable fault) by
external condition (button press) is identified and the LED is turn ON (trigger fault) and turn OFF the
fault /LED in the next button press event. The PA07 pin is connected to the fault line pin PA18, a button
press can toggle the output port of PA07 to toggle fault lines, based on which LED is on if fault is ON,
otherwise LED is OFF.

5.11.2. Code Snippet I – To Configure TCC module for Fault Configuration
void configure_tcc(void)
 {
 /* Structure used to store the TCC configuration parameters */
 struct tcc_config config_tcc;

 /* Fill the Structure with the default values */
 tcc_get_config_defaults(&config_tcc, CONF_PWM_MODULE);
 config_tcc.compare.match[TCC_MATCH_CAPTURE_CHANNEL_0] =
DEFAULT_MATCH_COMPARE;
 config_tcc.counter.period = DEFAULT_PERIOD;

 /* Configure the single slope PWM waveform generation for waveform output
*/

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

34

 config_tcc.compare.wave_generation =
TCC_WAVE_GENERATION_SINGLE_SLOPE_PWM;

 /* Configure the TCC clock source and its divider value */
 config_tcc.counter.clock_source = GLCK_SOURCE;
 config_tcc.counter.clock_prescaler = TCC_CLOCK_DIVIDER;

 /* Configure the TCC Waveform Output pins for waveform generation output
*/
 config_tcc.pins.enable_wave_out_pin[0] = true;
 config_tcc.pins.wave_out_pin[0] = PIN_PB18F_TCC0_WO0;

 /* Configure the Alternate function of GPIO pins for TCC functionality
*/
 config_tcc.pins.wave_out_pin_mux[0] = MUX_PB18F_TCC0_WO0;
 config_tcc.wave_ext.recoverable_fault[TCC_MATCH_CAPTURE_CHANNEL_0].source =
TCC_FAULT_SOURCE_ENABLE;

config_tcc.wave_ext.recoverable_fault[TCC_MATCH_CAPTURE_CHANNEL_0].halt_action =
TCC_FAULT_HALT_ACTION_SW_HALT;

 /* Initialize the TCC0 channel and define the its registers with
configuration defined in the config_tcc */
 stat = tcc_init(&tcc_instance, TCC0, &config_tcc);
 //! [setup_events]
 struct tcc_events events;
 memset(&events, 0, sizeof(struct tcc_events));
 //! [setup_change_events_faults]
 events.on_event_perform_channel_action[0] = true;
 //! [setup_events_enable]
 tcc_enable_events(&tcc_instance, &events);
 /* Enable the TCC module */
 tcc_enable(&tcc_instance);
 }

5.11.3. Code Snippet II - To Configure EIC module and Event System for Fault Configuration

//! [callback_eic]
 static void eic_callback_to_clear_halt_fault(void)
 { port_pin_set_output_level(CONF_TEST_PIN_OUT, true);
 }
 //! [callback_eic]

 //! [config_eic]
 static void configure_eic(void)
{
 //! [eic_chan_setup]
 //! [eic_setup_1]
 struct extint_chan_conf config;
 extint_chan_get_config_defaults(&config);
 config.filter_input_signal = true;
 config.detection_criteria = EXTINT_DETECT_BOTH;
 config.gpio_pin = CONF_FAULT_EIC_PIN;
 config.gpio_pin_mux = CONF_FAULT_EIC_PIN_MUX;
 extint_chan_set_config(CONF_FAULT_EIC_LINE, &config);
 //! [eic_setup_4]
 struct extint_events events;
 memset(&events, 0, sizeof(struct extint_events));
 events.generate_event_on_detect[CONF_FAULT_EIC_LINE] = true;
 //! [eic_event_setup_2]
 extint_enable_events(&events);

extint_register_callback(eic_callback_to_clear_halt_fault,CONF_FAULT_EIC_LINE,
EXTINT_CALLBACK_TYPE_DETECT);

extint_chan_enable_callback(CONF_FAULT_EIC_LINE,EXTINT_CALLBACK_TYPE_DETECT);}
 //! [config_eic]
 //! [config_event]

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

35

 static void configure_event(void)
{
 //! [event_setup_1]
 struct events_config config;
 events_get_config_defaults(&config);
 config.generator = CONF_EVENT_GENERATOR_ID;
 config.path = EVENTS_PATH_ASYNCHRONOUS;
 events_allocate(&event_resource, &config);
 events_attach_user(&event_resource, CONF_FAULT_EVENT_USER);
}

5.11.4. Code Snippet III – Main Application Code to Detect Fault and Turn ON/OFF Fault.

 //Inside Main
 uint32_t tcStatus=0;
 unsigned long temp = TCC_STATUS_RECOVERABLE_FAULT_OCCUR(0);
 port_get_config_defaults(&config_pin);

 config_pin.direction = PORT_PIN_DIR_OUTPUT;
 port_pin_set_config(CONF_TEST_PIN_OUT, &config_pin);
 port_pin_set_output_level(CONF_TEST_PIN_OUT, true);
 configure_eic();
 configure_event();
 tcc_clear_status(&tcc_instance,TCC_STATUS_RECOVERABLE_FAULT_OCCUR(0));

 if (!port_pin_get_input_level(SW0_PIN))
 {
 /* Set fault */
 while(!port_pin_get_input_level(SW0_PIN));
 port_pin_set_output_level(CONF_TEST_PIN_OUT, false);
 tcStatus = tcc_get_status(&tcc_instance);
 if(!port_pin_get_output_level(LED_0_PIN))
 {
 // Turn off LED and clearm alarm status..

tcc_clear_status(&tcc_instance,TCC_STATUS_RECOVERABLE_FAULT_OCCUR(0));
 LED_Off(LED_0_PIN);
 }
 else if((tcStatus & temp) == temp)
 {
 // If alarm set, drive LED.
 LED_On(LED_0_PIN);
 port_pin_set_output_level(CONF_TEST_PIN_OUT, true);
 }
 }
 // end of common fault and capture condition

5.11.5. Output
Output showcasing normal PWM. PA18 is the Fault input pin and should be connect to PA07. PA07 is the
pin which is set to 0 or 1 to simulate the fault input. When SW0 button is for first time, fault input is
generated and output waveform is stopped.When switch is pressed for second time, the fault input clears
and the output waveform resumes again on PB18. This behavior continues every time the button is
pressed.

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

36

Figure 5-19. Fault Output

5.12. DITHERING
The TCC supports dithering on Pulse-width or Period on a 16, 32, or 64 PWM cycles frame.

Dithering consists in adding some extra clocks cycles in a frame of several PWM cycles (16, 32, or 64
depending the configuration). The extra clock cycles are added on some of the compare match signal,
one at a time, through a "blue noise" process that minimizes the flickering on the resulting dither patterns.

Dithering makes possible to improve the accuracy of the average output pulses width or period.

Dithering is enabled by writing the corresponding configuration in the CTRLA.RESOLUTION field:
• DITH4 enable dithering every 16 PWM frames
• DITH5 enable dithering every 32 PWM frames
• DITH6 enable dithering every 64 PWM frames

The least significant bits of COUNT, PER, CCx registers define the number of extra cycles to add into the
frame (DITHERCY). The remaining bits of COUNT, PER, CCx registers define the compare value itself.

Display hardware, including early computer video adapters and many modern LCDs used in mobile
phones and inexpensive digital cameras, show a much smaller color range than more advanced displays.
One common application of dithering is to more accurately display graphics containing a greater range of
colors than the hardware is capable of showing. For example, dithering might be used in order to display

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

37

a photographic image containing millions of colors on video hardware that is only capable of showing 256
colors at a time. The 256 available colors would be used to generate a dithered approximation of the
original image. Without dithering, the colors in the original image might simply be "rounded off" to the
closest available color, resulting in a new image that is a poor representation of the original. Dithering
takes advantage of the human eye's tendency to "mix" two colors in close proximity to one another. It is
also used in Lighting control system.

5.12.1. DITHERING Configuration
The Dithering feature has been enabled through #define TCC_MODE_DITHER and #undef the rest of
the TCC features in the conf_example.h.

In this mode, the Waveform outputs 0 for the single slope PWM output signals (the default configuration)
is enabled. The Dithering option with Dithering on every 32 PWM frames is also enabled, since adding
only the following configuration is sufficient to enable dithering feature, irrespective of the TCC feature
used.

5.12.2. Code Snippet

 /* Configure the TCC Waveform Output pins for waveform generation output */
 config_tcc.pins.enable_wave_out_pin[TCC_MATCH_CAPTURE_CHANNEL_0] = true;
 config_tcc.pins.wave_out_pin[TCC_MATCH_CAPTURE_CHANNEL_0] =
PIN_PB18F_TCC0_WO0;

 /* Configure the Alternate function of GPIO pins for TCC functionality
*/
 config_tcc.pins.wave_out_pin_mux[TCC_MATCH_CAPTURE_CHANNEL_0] =
MUX_PB18F_TCC0_WO0;
 TCC0->CTRLA.bit.RESOLUTION = 2;

 while (TCC0->SYNCBUSY.reg & TCC_SYNCBUSY_CTRLB)
 { /* Wait for sync */
 }

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

38

5.12.3. Dithering Waveform Output

Information can be verified by capturing the waveform output using laptop/computer. Verify that the
number of pulses available for 32 PWM cycles is more, because of DITHERING feature.

5.13. Capture Operations
To enable and use capture operations, the Match or Capture Channel x Event Input Enable (MCEIx) bit
must be enabled in the Event Control register (EVCTRL.MCEIx). The capture channels to be used must
also be enabled in the Capture Channel x Enable bit in the Control A register (CTRLA.CPTENx) before
capture can be performed.

TCC supports Event Capture, Period and Pulse-Width Capture Action (PPW), Capture Operation is
triggered based on when event is triggered, in Event capture, the COUNT value is identified on event
trigger, whereas in PPW mode, the Period and Pulse width are captured in CC0 and CC1 respectively.

5.13.1. Capture Configuration
The capture feature has been enabled through #define TCC_MODE_CAPTURE and #undef the rest of
the TCC features in the conf_example.h.

In this example, the pulse width and period ofthe input signalis captured. TCC0 is configured with event
action 1 enabled and the event action is set to PWP (Pulse Width Period)which captures the pulse width
of the input signal in CC0 register and period in CC1 register.

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

39

The square wave input signal is applied to an EIC channel which is configured to detect and generate
event on high level. This event is routed to TCC0 through an event system channel which is configured in
asynchronous mode.

5.13.2. Code Snippet I – Configure USART

 struct usart_config config_usart;
 usart_get_config_defaults(&config_usart);
 config_usart.baudrate = 115200;
 config_usart.mux_setting = EDBG_CDC_SERCOM_MUX_SETTING;
 config_usart.pinmux_pad0 = EDBG_CDC_SERCOM_PINMUX_PAD0;
 config_usart.pinmux_pad1 = EDBG_CDC_SERCOM_PINMUX_PAD1;
 config_usart.pinmux_pad2 = EDBG_CDC_SERCOM_PINMUX_PAD2;
 config_usart.pinmux_pad3 = EDBG_CDC_SERCOM_PINMUX_PAD3;
 stdio_serial_init(&usart_instances,EDBG_CDC_MODULE, &config_usart);
 usart_enable(&usart_instances);

5.13.3. Code Snippet II – Configures Event and the Main Application for Capture Operation

void configu_eic(void)
 {
 struct extint_chan_conf config_extint_chan;
 extint_chan_get_config_defaults(&config_extint_chan);
 config_extint_chan.gpio_pin = PIN_PA07A_EIC_EXTINT7;
 config_extint_chan.gpio_pin_mux = MUX_PA07A_EIC_EXTINT7;
 config_extint_chan.gpio_pin_pull = EXTINT_PULL_NONE;
 config_extint_chan.detection_criteria = EXTINT_DETECT_HIGH;
 extint_chan_set_config(7, &config_extint_chan);
 struct extint_events config_events =
 {
 .generate_event_on_detect[7] = true
 };
 extint_enable_events(&config_events);
 }
void configure_evsys(void)
 {
 struct events_config config;
 events_get_config_defaults(&config);
 config.clock_source = GCLK_GENERATOR_3;
 config.generator = EVSYS_ID_GEN_EIC_EXTINT_7;
 config.path = EVENTS_PATH_ASYNCHRONOUS;
 config.edge_detect = EVENTS_EDGE_DETECT_BOTH;
 events_allocate(&event_resources, &config);
 events_attach_user(&event_resources, EVSYS_ID_USER_TCC0_EV_1);
 }

5.13.4. Code Snippet III – Configure TCC for Capture Operation

void configu_tcc(void)
 {
 struct tcc_config config_tcc;
 tcc_get_config_defaults(&config_tcc, TCC0);
 config_tcc.counter.clock_source = GCLK_GENERATOR_3;
 config_tcc.counter.clock_prescaler = TCC_CLOCK_PRESCALER_DIV1;
 config_tcc.compare.channel_function[0] =
TCC_CHANNEL_FUNCTION_CAPTURE;
 config_tcc.compare.channel_function[1] =
TCC_CHANNEL_FUNCTION_CAPTURE;
 config_tcc.compare.channel_function[2] =
TCC_CHANNEL_FUNCTION_CAPTURE;
 config_tcc.compare.channel_function[3] =
TCC_CHANNEL_FUNCTION_CAPTURE;

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

40

 config_tcc.double_buffering_enabled = false;
 tcc_init(&tcc_instances, TCC0, &config_tcc);
 struct tcc_events events_tcc =
 {
 .input_config[0].modify_action = false,
 .input_config[1].modify_action = true,
 .on_input_event_perform_action[1] = true,
 .input_config[1].action =
TCC_EVENT1_ACTION_PULSE_WIDTH_PERIOD_CAPTURE,
 };
 tcc_enable_events(&tcc_instances, &events_tcc);
 tcc_enable(&tcc_instances);
 }

#ifdef TCC_MODE_CAPTURE
configure_usart();
configu_eic();
configure_evsys();
while (1)
{
while(!(TCC0->INTFLAG.bit.MC1));
TCC0->INTFLAG.bit.MC1 = 1;
period = tcc_get_capture_value(&tcc_instances, 1);
pulse_width = tcc_get_capture_value(&tcc_instances, 0);
printf("period=%ld , pulse width =%ld \r\n", period , pulse_width);
}
#endif

5.13.5. Output
The output is displayed using EDBG console. Open the EDBG serial console (Terminal window of Atmel
Studio) with the following setting 115200 Baud Rate, 8-bits, No Parity, 1 Stop Bit and Flow Control is set
as None.

Figure 5-20. Input Capture Output

Output showing the Period (CC1) and Pulse width (CC0) of the input signal in UART Terminal.

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

41

6. Revision History
Doc. Rev. Date Comments

42625A 02/2016 Initial document release

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

42

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo and others are the registered trademarks or trademarks of ARM Ltd. Windows®is a registered trademark of Microsoft
Corporation in U.S. and or other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Features
	Table of Contents
	1. Abbreviations
	2. Pre-requisites
	3. TCC
	3.1. TCC Overview
	3.2. Functional Description
	3.3. Special Considerations

	4. Setup
	4.1. Hardware Setup
	4.2. Software Setup

	5. TCC Features Demonstration
	5.1. Timer Mode Configuration
	5.2. Circular Buffer
	5.2.1. Circular Buffer Mode Configuration
	5.2.2. Code Snippet
	5.2.3. Waveform Output

	5.3. One-shot Operation
	5.3.1. One-shot Operation Configuration
	5.3.2. Code Snippet
	5.3.3. LED0 Output

	5.4. Output Matrix with DTI for PWM
	5.4.1. Dead Time Insertion (DTI)
	5.4.2. Output Matrix with DTI Configuration
	5.4.3. Code Snippet
	5.4.4. OTMX with DTI Enable for Channel 2 Waveform Output

	5.5. SWAP Operation
	5.5.1. SWAP Mode Configuration
	5.5.2. Code Snippet
	5.5.3. SWAP Waveform Output

	5.6. Pattern Generation
	5.6.1. Pattern Generation Configuration
	5.6.2. Code Snippet
	5.6.3. Pattern Generation Waveform Output

	5.7. Ramp2 Operation
	5.7.1. RAMP2 Configuration
	5.7.2. Code Snippet
	5.7.3. RAMP2 Waveform Output

	5.8. Ramp2A Operation
	5.8.1. RAMP2A Configuration
	5.8.2. Code Snippet
	5.8.3. RAMP2A Waveform Output

	5.9. Dual Slope PWM Operations
	5.9.1. Dual Slope Configuration
	5.9.2. Code Snippet
	5.9.3. Dual Slope Waveform Output

	5.10. Counter Operations
	5.10.1. Counter Configuration
	5.10.2. Code Snippet
	5.10.3. Output

	5.11. Fault Operations
	5.11.1. Fault Configuration
	5.11.2. Code Snippet I – To Configure TCC module for Fault Configuration
	5.11.3. Code Snippet II - To Configure EIC module and Event System for Fault Configuration
	5.11.4. Code Snippet III – Main Application Code to Detect Fault and Turn ON/OFF Fault.
	5.11.5. Output

	5.12. DITHERING
	5.12.1. DITHERING Configuration
	5.12.2. Code Snippet
	5.12.3. Dithering Waveform Output

	5.13. Capture Operations
	5.13.1. Capture Configuration
	5.13.2. Code Snippet I – Configure USART
	5.13.3. Code Snippet II – Configures Event and the Main Application for Capture Operation
	5.13.4. Code Snippet III – Configure TCC for Capture Operation
	5.13.5. Output

	6. Revision History

