Altmel

SMART ARM-based Microcontrollers

AT10842: Using the Timer Counter for Control
Applications in SAM L22

APPLICATION NOTE

Introduction

This application note describes the following features of the Timer/Counter
for Control Applications available on the Atmel® | SMART SAM L22.

N O RN~

©

10.
11.
12.

Circular Buffer
One-shot Operation
Output Matrix with DTI
Swap

Pattern Generation
Ramp2

Ramp2A

Dual Slope PWM
Counter Operation
Fault Operation
Dithering

Capture Operation

It provides details for configuring the above features of the Timer/Counter for
Control Applications. It also contains code examples to simplify the use of
TCC in typical applications.

All the software examples specified in this document are provided in ASF
(Atmel® Software Framework).

For more information about the features of TCC module, refer SAM L22
device datasheet.

Features

Up to four compare/capture channels (CC) with

— Double buffered period setting

— Double buffered compare or capture channel

— Circular buffer on period and compare channel registers
Waveform generation

— Frequency generation

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

http://www.atmel.com/tools/avrsoftwareframework.aspx

— Single-slope pulse-width modulation (PWM)
— Dual-slope pulse-width modulation with half-cycle reload capability
* Input capture
— Event capture
— Frequency capture
— Pulse-width capture
* Waveform extensions
— Configurable distribution of compare channels outputs across port pins
— Low- and high-side output with programmable dead-time insertion
— Waveform swap option with double buffer support
— Pattern generation with double buffer support
— Dithering support
« Fault protection for safe drivers disabling
— Two recoverable fault sources
— Two non-recoverable fault sources
— Debugger can be source of non-recoverable fault
* Input event
— Two input events for counter
— One input event for each compare channel
¢ Output event
— Three output events (Count, Retrigger, and Overflow) available for counter
— One Compare Match/Input Capture output event for each channel
* Interrupts
— Overflow and Retrigger interrupt
— Compare Match/Input Capture interrupt
— Interrupt on fault detection

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 2
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

Table of Contents

INEFOAUCTION. ... 1
FALUIES. ..., 1
1. ADBDIEVIAtioONS. ... ——————————— 4
2. Pre-reqUISIteS......cooi i 5
G T 0 RRRRRRRRN 6
L I 01 O @ 1YY 1SRRI 6
JC T2 W] Tox (o] b= I D 7= Yo o] o] o TSR 6
3.3, SpeCial CoNSIAEIAtIONS.citiiiii ittt bbb e nne e 7
1= (U o DTSR PPTPPOTRR 8
o B Lo = 1L IS T=) (F o TSR PPRS 8
4.2, SOFWAIE SEUUP....eeiii ittt ettt e e e e e e e e st e e e e e e e eabraeeeeeasatbeeeeeesanbreeeaeeeaanrreeaeaanns 8
5. TCC Features Demonstration.................ueeeieeiiiiiiiiiiiiiieieeeeeeeeeeeeee e 13
5.1. Timer Mode Configuration............ooiiiiiiiiii ittt e et e e e e e s beeeeans 13
LT O o B | =T o =T =Y SRS 13
5.3, ONE-ShOt OPEIatioN.........eeiiiiitii ittt ettt b et e it et e st e e be e sebeenneenenas 16
5.4. Output Matrix With DTIOr PWM.......cc.ooiiiiiieiieectee ettt ettt 17
5.5, SWAP OPEIAtION.ttt e e et e e e e et e e e e e et e e e e e e setb e e e e e e eaaabeaaeeaanraneaaeaannes 22
Lo G = (=14 I €T 0 T= = o o TS 25
5.7. RAMP2 OPEIAtION....cciiiiiiiiiieetiie ettt sb e e e e s b s e e e 27
5.8, RAMP2A OPEIAtION.cutiiiiiiii ittt e et e et b e 29
5.9. Dual SIope PWM OPEIatiONS........ccccuuviiieeiiiiiiiie e ettt eee e e e et e e e e et e e e e s eabaeeeaeeannreeeaeeaas 31
5.10. CoUNtEr OPErationS..........ciiiiiiiiiiiii ettt et e e e et e e e s et e e e e e et b e e e e e e eenbeeeeaeeannraeeens 33
5,11, FAUIE OPEIAtiONS. .. .couiiiiieiie ettt st b ettt b et esae et e st e b e e s ebeeaeenanes 34
5.12. DITHERING........eoi ittt ettt e e e et et e et e e et e e be e e aaeebeesaseebeesabeeaseeenbeeareeenreees 37
5.13. Capture OPErationS..........ciiiiiiieiiiii ettt ec e e e e e e e et e e e e e e st e e e e e e sataeeeeesensbeaeaaesannreeaens 39
6. ReVISION HISTOIY.......uuiiiiiiiiiiii ettt e e e e e eeeeeeeeeeeeeas 42

1. Abbreviations

ASF Atmel Software Framework

CcC Compare/capture

DTI Dead-time Insertion

EDGB Embedded Debugger

EVSYS Event System

GCLK Generic clock

IDE Integrated Development Environment
OTMX Output Matrix

PER Period

SMPS Switching Mode Power Supply

TCC Timer/Counter for Control Applications

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

4

2. Pre-requisites
The solutions discussed in this document require basic familiarity with the following tools.

e Atmel Studio 7 or above
* SAM L22 Xplained Pro

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 5
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

3.1.

3.2.

TCC

TCC Overview

The Timer/Counter for Control Applications (TCC) module provides a set of timing and counting related
functionalities, such as the generation of periodic waveforms, the capture of a periodic waveform's
frequency/duty cycle, software timekeeping for periodic operations, waveform extension control, fault
detection etc. It enables low- and high-side output with optional dead-time insertion. It can also generate
a synchronized bit pattern across the waveform output pins. The fault options enable fault protection for
safe and deterministic handling, disabling, and/or shut down of external drivers. Waveform extensions are
intended for use in different types of motor control, ballast, LED, H-bridge, power converter, and other
types of power control applications. The counter size of the TCC module is 24-bit.

Figure 3-1. Timer/Counter Block Diagram

Base Counter
P S —— " '
:Counter < ";‘:i:" = OVF (INT/Evert/DMA Reqg)
1 L 4 < - > ERR (INT Req.)
| [INCOUNIII | | control Logic
:_ - ‘ "TCCx_EV(Q"
D "TCCx_EV1"
A
Y_ or
= E "TCCx_MCx" | Ewvent
) 4 System
—o] BoTTOM _|3|&
7y > = > B WorT
[
r e B e > PXworel
Compare/Capture -
(Unit x={0,1,...3}) —— > o 4 wors]
= o
Y vy 5 x r %_’;E_"%E _‘EWOH]
A . . &% - = B 82
capture’ Control Logic o= » 7 EE : —DEWOB]
[=
2 > Pl PT pXworm
Ee IEQ
Waveform EE — I ” ort
[=]
Generation > ™ B _.EWO[D]
" mnn —
= i H > MCx (INT/EvertDMA Regq)

Functional Description
The TCC module consists of following sections:
+ Base Counter
* Compare/Capture channels, with waveform generation
* Waveform extension control and fault detection
* Interface to the event system, DMAC, and the interrupt system
The base counter can be configured to either count a pre-scaled generic clock or events from the event

system (TCCx, with event action configured to counting). The counter value can be used by compare/
capture channels which can be set up either in compare mode or capture mode. In capture mode, the

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 6

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

3.3.

counter value is stored when a configurable event occurs. This mode can be used to generate
timestamps used in event capture, or it can be used for the measurement of a periodic input signal's
frequency/duty cycle.

In compare mode, the counter value is compared against one or more of the configured channels'
compare values. When the counter value coincides with a compare value, an action can be taken
automatically by the module, such as generating an output event or toggling a pin when used for
frequency or PWM signal generation.

The connection of events between modules requires the use of the SAM Event System Driver (EVSYS) to
route output event of one module to the input event of another. For more information on event routing,
refer to the event driver (EVSYS) documentation.

In compare mode, when output signal is generated, extended waveform controls are available, to arrange
the compare outputs into specific formats. The output matrix can change the channel output routing;
Pattern generation unit can overwrite the output signal lines to specific states. The fault protection feature
of the TCC supports recoverable and non-recoverable faults.

Special Considerations

As the TCC module have more waveform output pins than the number of compare/capture channels, the
free pins (with number higher than number of channels) will reuse the waveform generated by channels
subsequently. E.g., if the number of channels is four and number of wave output pins is eight, channel 0
outputs will be available on out pin 0 and 4, channel 1 output on wave out pin 1 and 5, and so on.

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 7

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

41.

4.2.

Setup
The example code provided in this application note uses the SAM L22 Xplained Pro kit and as the
hardware and Atmel Studio 7 as IDE for application development.

The overview of this section contains information about hardware setup and software setup.

Hardware Setup

The SAM L22 Xplained Pro kit will be used to run the example application. This is an evaluation kit that
allows connecting multiple external components via a wing connector. A wing board is a self-contained
board that can be connected to the Xplained Pro using a wing connector. The SAM L22 Xplained Pro kit
has three such wing connector marked as EXT1, EXT2, and EXT3.

There are two USB ports on the SAM L22 Xplained Pro board - DEBUG USB and TARGET USB. For
debugging using the Embedded debugger EDBG, DEBUG USB port has to be connected.

Figure 4-1. SAM L22 Xplained Pro Board

Software Setup

When SAM L22 Xplained Pro kit is connected to the PC, the Windows® Task bar will pop-up a message
as shown in the following figure:

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 8

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

Figure 4-2. SAM L22 Xplained Pro Driver Installation

r Y
"_'! Driver Software Installation u
Your device is ready to use
EDBG Virtual COM Port (COMLS) q/ Ready to use
EDBG Data Gateway q/Ready to use

If the driver installation is successful, EDBG will be listed in the Device Manager as shown in the following
figure:

Figure 4-3. Successful EDBG Driver Installation

r Y
Device Manager E@g
E=) g

File Action View Help

&= | T E HE & B xS

a = CHELT0219
4 B Atmel
[EDBG Data Gateway |
b-% Batteries
|.>-- Bluetooth Radios
|.>--;-;| Computer

|.>-u Disk drives

|.>--‘;','I Display adapters

) DVD/CD-ROM drives

b l:% Human Interface Devices

D—ﬁ Imaging devices

|>l‘7" Jungo Connectivity

b Keyboards

E--ﬂ Mice and other pointing devices
|>|,-_:| Maonitors

|>l‘7" MNetwerk adapters

473" Ports (COM & LPT)

-f? Communications Port (COML)
TZ' ECP Printer Port (LPT1)

- L.J3" EDBG Virtual COM Port (COML5)
I.>-n Processors

|.> ﬁ| Sound, video and game controllers
|.>-C— Storage controllers

|.>--;-;| System devices

[- i Universal Serial Bus controllers

L = 4

To ensure that the EDBG tool is getting detected in Atmel Studio,
1. Open Atmel Studio7, Go to View — Available Atmel Tools. The EDBG should get listed in the
tools as "EDBG" and the tool status should display as Connected. This indicates that the tool is
communicating with Atmel Studio.

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 9
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

Figure 4-4. EDBG under Available Atmel Tools

Available Tools * B8 X

Tools and Simulators Status

x EDBG (ATML2547020200000475) Connected

& Sirmulator Connected

2. If the tool does not get displayed in Available Atmel Tools, disconnect the tool and reconnect
again.

3. Right click on the tool in the Available Tools list, click on Upgrade. This will check whether the
firmware in the tool is up to date. Click on upgrade to upgrade the firmware of the tool to latest
version. In case you get "upgrade failed" error, cycle power the tool and then try upgrading again.

The SAM L22 TCC Features example code is available in the latest ASF with Atmel Studio. Following
steps should be followed to load the SAM L22 TCC features example code in the Atmel Studio:

* To load the example project in Atmel Studio, go to File — New and click on Example Project. The
shortcut key for to do this is (CTRL +Shift + E).

Figure 4-5. Creating Example Project in Atmel Studio

File edit View VASSISTA AbF I"rOJECt UEDUg lools window HEIp
MNew '3 Project. Ctrl+Shift+N B
Open Y File.. Ctrl+N
Close Atmel Start Configurator
Close Solution & Bample Project... Ctrls Shift+ E

* Enter SAM L22 TCC Features Example in the search box from New Example Project from ASF
so that it will show the SAM L22 TCC Features Example project solution available in the ASF

* Provide a name for the project and select the destination path and click OK. The location of the
project is selected by choosing a specific Folder in Location Tab.

« After clicking OK, the SAM L22 TCC Features Example project has been loaded in the Atmel
Studio as shown in the following figure

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 10
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

Figure 4-6. Solution Explorer View of SAM L22 TCC Features Example Project

Solution Explorer
@ o-a@| p -
Search Solution Explorer (Ctrl+;)

‘@l Solution 'SAM L22 TCC Features' (1 project)
| SAM 122 TCC Features
|=d| Dependencies
[=d| Qutput Files
gl Libraries
4 [src
b3 ASF
4 [config
h| conf_board.h
n conf_clocks.h

4
3
3

B conf_exampleh
h| conf_extint.h
h asfh
¢ TCC_examplec

Solution Explorer

SAM L22 TCC Features Example project contains conf _example.h file, which has the macro
definitions for each feature. Only one feature should be enabled at a time for the proper operation

of this application.

Figure 4-7. TCC Features Definition in conf_example.h

SAM L22 Xplained Pro - 0475 TCC_example.c

conf_exampleh + X [EARUFETG]

// The following are the list of features, supported by this example.
// The user can enable only one feature at a time, to avoid unnecessary

// coding complexity, it is left to the user to ensure that only one feature is enabled at &
// To enable a feature, the user just enables the feature at the start of feature definitior

// List of Feature definitions, that can be used by this application note.

#undef
#undef
#undef
#undef
#undef
#undef
#undef
#undef
#undef
#undef
#undef
#undef

TCC_MODE_CIRCULAR_BUFFER
TCC_MODE_ONESHOT
TCC_MODE_OTMX_DTI
TCC_MODE_SWAP
TCC_MODE_PATTERN_GENERATION
TCC_MODE_RAMP2
TCC_MODE_RAMP2A
TCC_MODE_DUAL_SLOPE
TCC_MODE_COUNTER
TCC_MODE_FAULT
TCC_MODE_DITHERING
TCC_MODE_CAPTURE

FELTETERTETERTTTERTET A8 00T E8 0080000008008 00 800800 E8 080T Ei 0T iiiiiiiiiiiiiiii

// start of feature definitions used by this project

// specify which feature needs to be tested here

// For example, if you want to test feature TCC_MODE_CAPTURE, only TCC_MODE_CAPTURE needs tc
// #define TCC_MODE_CAPTURE

// There should be no other definitions to be done by user.

#define TCC_MODE_COUNTER

// End of feature definitions.

FELTETERTETERTTTERTET A8 00T E8 0080000008008 00 800800 E8 080T Ei 0T iiiiiiiiiiiiiiii

JEEEIEEIE0E070740717477) START of enumeration constants /////770700707000007000007000007010007074

// The enumeration constant to indicate, which TCC channel is being used by the system.
-4

100 % »

olution Explorer

@ o-a@| p -

Search Solution Explorer (Ctrl+;)

‘@l Solution 'SAM L22 TCC Features' (1 project)
| SAM L22 TCC Features
|=d| Dependencies
[=d| Qutput Files
gl Libraries
4 [src
4 [ASF
I [common
4[5 sam
4 [boards
4 [saml22_xplained_pro
¢ board_init.c

4
3
3

h saml22_xplained_pro.h
I 3 drivers
B3 utils
b [thirdparty
4 [config
! conf_board.h
h conf_clocks.h
n conf_example.h
! conf_extint.h
h asfh
¢ TCC_examplec

Atmel

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]

1

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

* After enabling the desired feature in conf example.h file, compile the project by selecting Build
— Build solution.

« To debug this example project code in Atmel Studio, Configure the Tool and Interface in the Project
properties. To open the project properties, go to Project menu — Properties. In the project
properties, go to Tool tab — Under the Selected Debugger/Programmer, select the tool as
EDBG and interface as SWD as shown in the following figure.

Figure 4-8. Tool and Interface Settings

sz e - < I

Build

N/A Platform: | N/A
Build Events

Toolchain

Selected debugger/programmer
Device

Components

EDBG = ATML2547020200000475

Interface:

Advanced
SWD Clock

1 4MHz

The clock frequency should not exceed target CPU speed * 10.

Pragramming settings
Erase entire chip ~

External programming tool
[Z] Program using external tool

Command:

Debug settings

To program and execute the application, there are two options in Atmel Studio:
« Start a debug session on the board, where the user will be able to program and debug.
* Program the generated hex file into the controller and execute the application.

Both these options can be done on SAM L22 Xplained Pro as shown in the following figures.

Figure 4-9. Start without Debugging

Window Help
I | b %ﬂﬂ Debug = Debug Browser -

Start Without Debugging (Ctrl+Alt+F5) ISAMLEN:

Figure 4-10. Start Debugging and Break

Window Help
| P Bl Debug = Debug Browser ~

R " | e
Start Debugging and Break (Alt+F5) 'SAML

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 12
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

5.1.

5.2.

5.2.1.

TCC Features Demonstration

Timer Mode Configuration

The example application code (SAM L22 TCC Features Example Project) contains the source code for
each configuration for the following features . The conf example.h contains the macro definitions

related to each configuration and it helps to configure each mode by enabling each feature in
conf example.h.

TCC clock frequency, TCC clock divider, and PERIOD values are defined based on the GLCK_SOURCE,
TCC_CLOCK DIVIDER, and TCC PERIOD VALUE values inthe conf example.h foreach TCC
features.

Also configurations specific to the feature can also be modified by the user for example RAMP2
configuration will have TCC_RAMP2 MATCH CHANNEL 0 and TCC_RAMP2 MATCH CHANNEL 1 as well.

Circular Buffer

The Period register (PER) and the compare channels register (CCO to CC3) support circular buffer
operation. When circular buffer operation is enabled, at each update condition, the PER or CCx values
are copied into the corresponding buffer registers and the values in the buffer registers are copied into the
PER or CCx registers. This mode uses compare channels of TCC to generate output signals with
different pulse width in alternate cycles. It is mainly used in RAMP operations.

Figure 5-1. Circular Buffer on Channel 0

"write enable” "data write"

— UPDATE

UPDATE

Circular Buffer Mode Configuration

The Circular Buffer feature has been enabled through #define TCC_MODE CIRCULAR BUFFER and
#undef the rest of the TCC features in the conf example.h.

For example, here two different compare values are loaded in the CCO and CCOB register respectively to
view the circular buffer effect on the channel 0. Hence the WO [0] and circular buffer for the channel 0 are
enabled; the output signals are obtained with different pulse width on alternate cycles.

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 13

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

5.2.2.

5.2.3.

Code Snippet

/* Configure the TCC Waveform Output pins for waveform generation output
*/
config tcc.pins.enable wave out pin[TCC MATCH CAPTURE CHANNEL 0] =
true;
config tcc.pins.wave out pin[TCC MATCH CAPTURE CHANNEL 0] =
PIN PB18F TCCO WOO;/* Configure the Alternate function of GPIO pins for TCC
functionality */

config tcc.pins.wave out pin mux[TCC MATCH CAPTURE CHANNEL 0] =
MUX PB18F TCCO WOO;/* Load the CCO and CCBO values respectively for the circular
buffer

operation */

stat = tcc_set double buffer compare values(&tcc instance,
TCC_MATCH CAPTURE CHANNEL 0, CCO_Value, CCBO Value);/* Enable the Circular Buffer

feature for the Compare Channel 0

*/

stat = tcc_enable circular buffer compare(&tcc instance,
TCC_MATCH CAPTURE CHANNEL 0) ;

Waveform Output

The output scope snapshots Figure 5-2 Circular Buffer Enable CCO = 0xCO0 on page 15 and Figure
5-3 Circular Buffer Enable CCO = 0x80 on page 16 are captured from the SAM L22 Xplained Pro PB18
available in the EXT3 connector Pin No 9.

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 14

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

Figure 5-2. Circular Buffer Enable CC0 = 0xC0
M 200us

‘I CCU:UKCU_\‘JO[U]_ ...

Zoom Factor: 100 X Zoom Position: 0.00 s

—3.9800Ms 24.06mv
A4.0000us A3.183V |

[—7.9800us 3.207 V ‘

[CCO=0XC0—WO[0]

(Z 2.00us ‘ (500MS/s ‘ ‘
value Mean Min Max Std pey | \W2¥0.00000s J|1M points]|
| @ +width 4.0004s 3.9944 2.6644 4.0094 100.6n |

(@ 2.00V

|"'16 oct 2015"’|
106:58:02 |

The TCC clock frequency = 48MHz

The TCC Clock divider = 1

Time Period for 1 Count = 1/48000000 = 20.83333ns
For the CCO value 0xCO = 192 * 20.8333ns
=4.0000pus

For the CCO value 0x80 = 128* 20.8333ns

= 2.666ps

/ItmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 15

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

Figure 5-3. Circular Buffer Enable CC0O = 0x80

Zoom Factor: 100 X

[P CCO=0X80—WO[0]

Zoom Position: 0.00 s

M 200us

—9.3600Ms
—6.7000s
A2.6600us

—8.125mV |
3.2355V
A3.263V |

5.3.

5.3.1.

Atmel

(@ 2.00V

| @ +width

.00ps ‘ (500MS/s H

(2 2
Std Dey | \W»¥0.00000s |
12.12n

1M points »2. ?Ups

Mean Min Max
2.668u 2.664u 4.009u

Value
2.668us

16 Oct 2015)
l07:01:18

One-shot Operation

When one-shot feature is enabled, the counter automatically stops on the next counter overflow or
underflow condition. When the counter is stopped, STOP bit in the STATUS register will be set.

This one-shot operation can be enabled by writing a one to the One-Shot bit in the Control B Set register
(CTRLBSET.ONESHOT) and disabled by writing a one to the One-Shot bit in the Control B Clear register
(CTRLBCLR.ONESHOT). The one-shot operation can be restarted by using retrigger software command,
a retrigger event or a start event. When the counter restarts its operation, Stop bit in the Status register
(STATUS.STOP) is get cleared.

One-shot Operation Configuration

The one-shot operation feature has been enabled through #define TCC MODE ONESHOT and #undef
the rest of the TCC features in the conf example.h.

In this mode, configure the compare match value in CC2 channel WO [6] for the waveform output. Since
the Port pin PC27 is connected with LEDO of the SAM L22 Xplained Pro, it will control the ON time of
LEDO. Pressing BUTTON_O of the SAM L22 Xplained Pro restarts the timer as the pulse will be obtained
on the PC27 pin it will drive the LEDOQO. It is important to enable the inversion of waveform input WO [3],
since the PC27 pin is connected to the cathode pin of LEDO.

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 16
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

5.3.2. Code Snippet

/* Configure the TCC Waveform Output pins for waveform generation output

*/
config tcc.pins.enable wave out pin[TCC CHANNEL NUM 3] = true;
config tcc.pins.wave out pin[TCC CHANNEL NUM 3] = PIN PC27F TCCO WO3;/*

Configure the alternate function of GPIO pins for TCC
functionality */

config tcc.pins.wave out pin mux[TCC_CHANNEL NUM 3] = MUX PC27F TCCO_WO3;/*
Configure the Match value for the compare channel 2 for LEDO ON
time*/

config tcc.compare.match[2] = 31250;
/* Invert the Waveform output[6] channel to drive LEDO
=

config tcc.wave ext.invert[TCC CHANNEL NUM 3] = true;
/* Enable the One shot Feature */

config tcc.counter.oneshot = true;void oneshot operation (void)

while (port pin get input level (BUTTON O PIN));
while (!port pin get input level (BUTTON O PIN));
tcc_set count value(&tcc_instance, 0);

tcc restart counter (&tcc_instance);

5.3.3. LEDO Output
After enabling this mode, LEDO will blink once for the time period loaded in CC2 channel. As the one-shot
feature is enabled the counter will be stopped . If the Button [Button_Q0] is pressed, then it will restart the
counter operation by retrigger command and blinks LEDO once again.

5.4. Output Matrix with DTI for PWM
The output matrix (OTMX) can distribute and route the TCC waveform outputs across the port pins in
different configurations, each optimized for different application types. The OTMX [1:0] bits in the
WEXCTRL register define the output matrix configuration. The block diagram of waveform extension
detail is shown in the following figure.

Figure 5-4. Waveform Extension Stage Details

WEX PORTS

OTMX. omn SWAP PATTERN

OTMX[x+WO_NUMZ]

LS

OTMX DTix | DTIXEN |
HS

OTMX[x]

The output matrix (OTMX) unit distributes compare channels, according to the selectable configurations,
as shown in the following table.

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 17

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

5.4.1.

Table 5-1. Output Matrix Channel Pin Routing Configuration

0x0 CC3 CC2 CC1 CCO CC3 CC2 CC1 CCo
0x1 CC1 CCo CC1 CCo CC1 CCo CC1 CCo
0x2 CCo CCo CCo CCo CCo CCo CCo CCo
0x3 CC1 CC1 CC1 CC1 CC1 CC1 CC1 CCo

« Configuration 0x0 is default configuration. The channel location is the default one and channels are
distributed on outputs modulo the number of channels. Channel 0 is routed to the Output matrix
output OTMX [0], Channel 1 to OTMX [1]. If there are more outputs than channels, then channel 0
is duplicated to the Output matrix output OTMX[CC_NUM], channel 1 to OTMX[CC_NUM+1] and
so on.

« Configuration 0x1 distributes the channels on output modulo half the number of channels; this gives
the lower channels twice the number of output locations than the default configuration. This
provides for example, control of the four transistors of a full bridge using only two compare
channels. Using pattern generation, some of these four outputs can be overwritten by a constant
level, enabling flexible drive of a full bridge in all quadrant configurations.

* Configuration 0x2 distributes the compare channel 0 (CCO) to all port pins. With pattern generation,
this configuration can control a stepper motor.

« Configuration 0x3 distributes the compare channel CCO to first output and the channel CC1 to all
other outputs. Together with pattern generation and the fault extension this configuration can
control up to seven LED strings, with a boost stage.

Dead Time Insertion (DTI)

In a system driven by a pair of transistors operating in the Complementary Output mode it is completely
forbidden to enable simultaneously the two FETs on the same side. This would lead to Shoot Through (a
short circuit from power supply to ground).

Because the power output devices cannot switch instantaneously, some amount of time must be provided
between the turn-off event of one PWM output in a complementary pair and the turn-on event of the other
transistor.

The dead time insertion (DTI) unit splits the four lower OTMX outputs into two non-overlapping signals,
the non-inverted low side (LS) and inverted high side (HS) of the waveform output with optional dead-time
insertion between LS and HS switching.

The dead-time insertion (DTI) unit generates OFF time with the non-inverted low side (LS) and inverted
high side (HS) of the WG output forced at low level. This OFF time is called dead time, and dead-time
insertion ensures that the LS and HS will never switch simultaneously. The DTI stage consists of four
equal dead-time insertion generators; one for each of the first four channels. The four channels have a
common register which controls the dead time and is independent of high side and low side setting.

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 18

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

5.4.2.

Figure 5-5. Block Diagram of Dead Time Generator

Dead Time Generator

LOAD
Counter

EN
IE'EI
>
"DTLS"
| OTMX output D Q }_"(ToPORT)

"DTHS"
(To PORT)

Edge Detect s

DTIENx [x=3-0] Dead-time Insertion Generator x Enable (8 -11) bits in the WEXCTRL register enable the
Dead Time Insertion function for each channel.

The dead time function in the PWM control avoids the drivers of the same set of PWMs (PWMxH and
PWMxL) from being ON simultaneously due to the operating speed of the driver during output generation.

Dead time must be inserted when any of the PWM 1/O pin pairs are operating in the Complementary
Output mode. Four DTl insertion functions (DTIENO to DTIEN3) control the four lowest OTMX outputs.

The 8-bit dead-time counter is decremented by one for each peripheral clock cycle, until it reaches zero.
A nonzero counter value will force both the low side and high side outputs into their OFF state. When the
output matrix (OTMX) output changes, the dead-time counter is reloaded according to the edge of the
input. When the output changes from low to high (positive edge) it initiates counter reload of the DTLS
register, and when the output changes from high to low (negative edge) reload the DTHS register.

Figure 5-6. Dead Time Generator Timing Diagram

F—tomLs—| —tomHs—
"OTMX output” |
oTLS* [] |
"DTHS" | I

Output Matrix with DTl Configuration
The Output Matrix with DTI for PWM mode feature has been enabled through #define
TCC_MODE_OTMX DTI and #undef the rest of the TCC features in the conf example.h.

In this mode, the waveform outputs 0, 1, 2, and 6 for the PWM output signals are enabled. The waveform
output 0 and 1 are configured to view the Dead Time Insertion effect on the waveform output pins 2 and
6. Also the waveform output 1 is inverted, since the Dead time for the channel CCO is not enabled . By

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 19

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

enabling the DTIEN bit for the channel, the complementary output for the particular channel can be
obtained.

Load the Compare match values on the CC0O, CC1, and CC2 channels appropriately to generate the
waveform outputs. Enable the DTI on the channel and define the DTHS (dead time high side) and DTLS
(dead time low side) using WEXCTRL register as per application need.

5.4.3. Code Snippet

/* Configure the TCC Waveform Output pins for waveform generation output

*/

config tcc.pins.enable wave out pin[0] = true;
config tcc.pins.enable wave out pin[l] = true;
config tcc.pins.enable wave out pin[2] = true;
config tcc.pins.enable wave out pin[6] = true;

config tcc.pins.wave out pin[0] =
PIN PB184F TCCO WOO;
config tcc.pins.wave out pin[l] = PIN PAOSF TCCO WO1;
config tcc.pins.wave out pin[2] PIN PA18F TCCO WO2;
config tcc.pins.wave out pin[6] = PIN PA12F TCCO _WO6;/* Configure the
Alternate function of GPIO pins for TCC
functionality */

config tcc.pins.wave out pin mux[0] MUX PB184F TCCO WOO;
config tcc.pins.wave out pin mux[1l] = MUX PAOSF TCCO WO1;
config tcc.pins.wave out pin mux([2] MUX PA18F TCCO WO2;
config tcc.pins.wave out pin mux[6] = MUX PAL2F TCCO WO6;/* Configure the
compare channel values for the duty cycle control
and load the 0x80 value for 50% duty cycle */
config tcc.counter.period = TCC PERIOD VALUE;

config tcc.compare.match[0] = TCC PERIOD VALUE/2;
config tcc.compare.match[1l] = TCC_ PERIOD VALUE/2;
config tcc.compare.match[2] = TCC_PERIOD VALUE/2;

/* Invert the Waveform output[1l] channel to view the DTI effect */
config tcc.wave ext.invert[l] = true;

5.4.4. OTMX with DTI Enable for Channel 2 Waveform Output
The output scope snapshots Figure 5-7 OTMX with DTI for DTHS Measurement on page 21 and Figure
5-8 OTMX with DTI for DTLS Measurement on page 22 are captured from the SAM L22 Xplained Pro
of EXT2 and EXT3 connector.

* PB18 — Waveform Output 0
« PAQ09 — Waveform Output 1
* PA18 — Waveform Output 2
* PA12 — Waveform Output 6

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 20
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

Figure 5-7. OTMX with DTI for DTHS Measurement

:.CC'I -WwI[1]m

[:‘..2..00.\; . ..2.00.\;. . N N N 00”5. ST H 0 — '1.'64'\!""
\m»v—1.412000p¢) [5M points ||

27 Oct 2015
121:50:47

In the diagram above, the DTHS is measured for the PWM complementary output.
The TCC clock frequency = 48MHz

The TCC Clock divider = 1

Time Period for 1 Count = 1/48000000

= 20.833ns

DTHS time = 16 * 20.83333
= 333.333ns

DTLS time = 64 * 20.8333
=1.3333ps

Since this application uses the internal OSC 8MHz as a source for the CPU clock, the DTLS, and DTHS
have some tolerance.

/ItmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 21

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

5.5.

Figure 5-8. OTMX with DTI for DTLS Measurement

1.840 v
3.120 ¥
A1.280V
969.7kV/s | |

[P CCo-w[o0]

IRy e e,

TR —— : g st vl

[CC2-wW[B]mse=

(@ 2.00v__ @ 200V &) 200V @ 2.00vV__ J(2.00ps ‘500[\15!5 H '1.'08'\:""

\+¥0.000000s |[10k points

4 Nov 2015
l18:27:19

SWAP Operation

The SWAP feature is useful to switch simultaneously two output signals. The swap (SWAP) unit can be
used to swap waveform pin outputs. The SWAP units in the TCC module can be seen as a four port pair
of slices.

* SWAPQO acting on port pins (WO[0], WO[WO_NUM/2 +0])
* SWAP1 acting on port pins (WO[1], WO[WO_NUM/2 +1])

And more generally:
* SWAPx acting on port pins (WOI[x], WO[WO_NUM/2 +x])

The Bits 27:24 — SWAPx [x=3-0] of WAVE register: Setting these bits enables output swap of DTI outputs
[x] and [x*WO_NUM/2].

The swap function is very useful in BLDC motor control and can be used for fast decay motor control. It
allows the immediate change of top and bottom transistors in the phase. Using this function the rotor
commutation and speed control can be divided into two independent program parts. The state of the
control signals can be changed immediately when required by the motor position (phase commutation)
without changing the content of the PWM value registers. These changes can be accomplished
asynchronously to the PWM duty cycle update.

/ItmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 22

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

5.5.1.

5.5.2.

When chopping current threshold is reached, the H-bridge can operate in two different current
recirculation modes:

* An asynchronous mode if current re-circulates through the diodes (in FETs or external). The user
cannot control the occurrence of the alternate path creation.

* A synchronous mode if enabling and disabling FETs in order to promote an alternate path

Two synchronous modes can be used: fast decay or slow decay. Fast and slow refer to the current decay
mode and not the motor speed. It is the opposite for speed. In fast decay mode, the motor will slow down
in speed while in slow decay mode, the motor stops very quickly.

Figure 5-9. SWAP Operation lllustration

OTMX culput

~ T N

SWAP

BWAP ocours here

SWAP Mode Configuration
The SWAP feature has been enabled through #define TCC_MODE SWAP and #undef the rest of the
TCC features in the conf _example.h.

In this mode configure and enable the Waveform outputs 0 and 4 for single slope PWM waveform
generation, by enabling the DTIENO bit for the channel 0, the complementary output for the channel is
obtained on the WO [4] pin. Using the WEXCTRL register, the DTLS and DTHS for the complementary
output is defined. After the configuration part is done, it continuously waits for the Button press [Button_0]
available in the SAM L22 Xplained Pro. If the button is pressed, then it will toggle the SAWPO bit in the
WAVE register for the SWAP operation. So that WO [0] pin waveform can be output on the WO [4] and
vice versa.

Code Snippet

/* Configure the TCC Waveform Output pins for waveform generation output

*/

config tcc.pins.enable wave out pin[0] = true;

config tcc.pins.enable wave out pin[4] = true;

config tcc.pins.wave out pin[0] = PIN PAO4F TCCO WOO;

config tcc.pins.wave out pin[4] PIN PA22F TCCO WO4;/* Configure the
alternate function of GPIO pins for TCC

functionality */

config tcc.pins.wave out pin mux[0] = MUX PAO4F TCCO WOO;

config tcc.pins.wave out pin mux([4] = MUX PA22F TCCO WO4;/* Configure the
compare channel values for the duty cycle control

and load the 0x80 value for 50% duty cycle */

config tcc.compare.match[0] = 0x80;/* Enable the Dead Time Insertion
Generator for the channel 0 (CCO)
=

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 23

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

TCCO->WEXCTRL.reg |= TCC WEXCTRL DTIENO; /* Define the High side time and
Low side time for Dead Time
generation */

TCCO->WEXCTRL.reg |= TCC WEXCTRL DTLS (0x20) | TCC WEXCTRL DTHS (0x60) ;void

swap_ operation (void) {
while (port pin get input level (BUTTON O PIN));

while (!port pin get input level (BUTTON O PIN));
TCCO->WAVE.reg "= TCC WAVE SWAPO;
}

5.5.3. SWAP Waveform Output
The output scope snapshot in on page 24 is captured from the SAM L22
Xplained Pro of EXT1, EXT2, and EXT3.

* PAO4 — Waveform Output 0
* PA22 — Waveform Output 4
« PA14-BUTTON_O_PIN

Figure 5-10. SWAP Operation

[P CCO=WO[0IDTLS

2ICCO-WO[4]DTHS

(@ 2.00v @ 200V @& 200V) (40.0ps 50G5/5 H ® X '2.'20'\:""

| +V300 0000ns HH\I 1M points ||

16 Oct 2015)
109:52:04

The TCC clock frequency = 48MHz
The TCC Clock divider =1
Time Period for 1 Count = 1/48000000 = 20.833ns

/ItmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 24

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

5.6.

5.6.1.

5.6.2.

Pattern Generation

The pattern generation unit is used to generate synchronized bit pattern across the waveform output pins.
As with other double buffered timer/counter registers, the register update is synchronized to the UPDATE
condition set by the timer/counter waveform generation mode. If the application does not need
synchronization, the application code can simply access the PGEx and PGVx registers directly. A value 1
in the PGEXx bit group of PATT register overrides the corresponding SWAP output with the corresponding
PGVx value. The PATTBV bit of the STATUS register used to set when a new value is written to the
PATTB register. The PATTBYV bit is automatically cleared by hardware on UPDATE condition or by writing
a one to this bit. When double buffering is enabled, PGVB and PGEB bits value of PATTB register is
copied into the corresponding PGV and PGE bits value of PATT register on an update condition. Pattern
Generator can be used with PWM signals which have built-in DTI. A block diagram of the pattern
generator is shown in Figure 5-11 Block Diagram of Pattern Generator on page 25.

Figure 5-11. Block Diagram of Pattern Generator

COUNT
UPDATE

o 2= o SWaP oupur

(] g
/ o
e *‘_

WOX[7:0]

Pattern Generation Configuration
The Pattern Generation feature has been enabled through #define

TCC_MODE_PATTERN GENERATION and #undef the rest of the TCC features in the
conf example.h.

In this mode, the waveform outputs 0, 1, 2, and 3 for the pattern generation are enabled. Here four
patterns are defined for bipolar stepper motor with the waveform output . Configure the OTMX [1:0] bits
into 0x2 in the WEXCTRL register in such way that to get the CCO waveform output on all the four
waveform output pins.

The application waits for the compare match flag to set and then clears the Compare Match Interrupt flag
of the same. Then it will load the next pattern on the PGVB (Pattern Generation Value Buffer)
appropriately for the next pattern.

* In this application note the delay required between the patterns is not implemented. Add the
appropriate delay between loading the pattern as mentioned in the stepper motor datasheet.
Code Snippet

/* Configure the TCC
Waveform Output pins for waveform generation output */

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 25

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

= true;
= true;
= true;
= true;

config tcc.pins.enable wave out pin[0
config tcc.pins.enable wave out pin[l
config tcc.pins.enable wave out pin[2
config tcc.pins.enable wave out pin[3
config tcc.pins.wave out pin[0] = PIN PB18F TCCO WOO;
config tcc.pins.wave out pin[l] = PIN_PAOSF TCCO_WO1;

]
]
]
]

config tcc.pins.wave out pin[2] PIN PA18F TCCO WO2;
config tcc.pins.wave out pin[3] = PIN PB21F TCCO WO3;/* Configure the

Alternate function of GPIO pins for TCC

functionality */

config tcc.pins.wave out pin mux[0] = MUX PB18F TCCO WOO;
config tcc.pins.wave out pin mux[1l] = MUX PAO9F TCCO WO1;
config tcc.pins.wave out pin mux[2] = MUX PA18F _TCCO_WO2;
config tcc.pins.wave out pin mux[3] = MUX PB21F TCCO WO3;

config_tcc.double_buffering_enabled = true;/* ConiguEe the compare channel

values for the duty cycle control

and Load the O0x7FFF value for 50% duty cycle */

config tcc.compare.match[0] = Ox7FFF;/* Configure the Output Matrix Channel

for Pattern Generation of

Stepper Motor */

TCCO->WEXCTRL.reg |= TCC WEXCTRL OTMX(2); /* Enable the Pattern Generator

Output for 4 Waveform Outputs

Pattern

and Load the PATT and PATTB register values respectively for Stepper Motor

Generation */

TCCO->PATT.reg = TCC PATT PGE(0xOF) | TCC_PATT PGV (SM Pattern[i+
TCCO->PATTB.reg = TCC_PATTB PGEB (0x0F) | TCC_PATTB PGVB(SM Pattern[i++]);
void pattern generation (void) {

if (i == 4)

i = 0;

while (!TCCO->INTFLAG.bit.MCO) ;
TCCO->INTFLAG.bit.MCO = 1;
TCCO->PATTBUF.reg = TCC_PATTBUF PGEB (0x0F) | TCC_PATTBUF PGVB(SM Pattern[i+

while (CONF_PWM MODULE->SYNCBUSY.reg & (lu << 16));
}

5.6.3. Pattern Generation Waveform Output
The following scope snapshot is captured from the SAM L22 Xplained Pro of EXT1, EXT2, and EXT3.

Atmel

PB18F — Waveform Output 0
PAO9F — Waveform Output 1
PA18F — Waveform Output 2
PB21F — Waveform Output 3

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 26

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

5.7.

[P.CCo—wO[0]-Patternval—1

Figure 5-12. Pattern Generation

—-12.35ms -73.13mv |||
4.150ms —77.50mV

A16.50ms A4.375mV |||
dv/dt —265.2mv/s |||

23 CcCo-wO[o0]=Patternval—4

[CCo0-WO[0]=Patternval-2—

7> cco-wolo]-Patternval-8'

(@ 2.00v__@ 200v___ @) 200V @ J(10.0ms | (10.0MS/s H o '1.'88'\:""
\»¥0.000000s ||1M points ||

Coupling Termination Invert e P
0 _STnaHo S cc‘o!\%b[%l] Ve 2 Nov 2015
Ioc/ ac [1MQ| 50@ On |Offf L YOL0]... ' 120:52:50

The TCC clock frequency = 16MHz

The TCC Clock divider = 1

Time Period for 1 Count = 1/16000000 = 62.5ns
For the CCO value Ox7FFF = Ox7FFF * 62.5ns
= 2.047ms

Ramp2 Operation

These operations are dedicated for Half-Bridge and Push-Pull SMPS topologies, where two consecutive
Timer/counter cycles are interleaved, as shown in on page 28.
In cycle A, odd channels output is disabled, and in cycle B, even channels output are disabled.

Ramp A and B periods are controlled through PER register value. Period register value can have different
values on each ramp by enabling the circular buffer option CIPEREN bit in the WAVE register. The 4th
and 5th bits RAMP [1:0] in the WAVE register configure the RAMP mode. The RAMP2 mode uses two
compare channels TCC to generate two output signals, or one output signal with another CC channel
enabled in capture mode.

/ItmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 27

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

Figure 5-13. RAMP2 Standard Operation

5.7.1.

COUNT

Ramp

ZERO
wo[o]

WO[1]

FaultA input

FaultB input

RAMP2 Configuration

A B A B "clear" update
"match”
TOP(B) Retrigger TOP(B)
TOP(A) on CIPEREN =1
FaultA

cco !

h Keep on FaultB

1

POLO=1

POL1=1

-

The RAMP2 feature has been enabled through #define TCC MODE RAMP2 and #undef the rest of the
TCC features in the conf example.h.

In this mode, the Waveform outputs 0 and 1 for the single slope PWM output signals are enabled.
Configure the Compare match channel values for the Channel 0 and 1. RAMP2 mode can be configured
through WAVE register.

5.7.2.

Code Snippet

/* Configure the TCC Waveform Output pins for waveform generation output

*/

config tcc
config tcc
config tcc
config tcc

Alternate function

/*

/*

cycle */

5.7.3.

functionality */

config tcc
config tcc
Configure

config tcc.

Configure

config tcc.compare.match[0]

config tcc.compare.match[1]

.pins.
.pins.
.pins
.pins

.wave out pin([1]

enable wave out pin[0] = true;
enable wave out pin[l] = true;
.wave out pin[0] = PIN PB18F TCCO WOO;

PIN PAO9E TCCO WOl;/* Configure the

of GPIO pins for TCC

.pins.
.pins.
the RAMP mode operation as

= MUX_PB18F _TCCO_WOO;
MUX_PAO9E _TCCO WOL;

RAMP2 mode */

wave out pin mux[0]
wave out pin mux[1]

compare.wave ramp = TCC_RAMP RAMPZ;
the compare channel values for the duty cycle
control and load the 0xB333 value for 70% duty cycle */

RAMP2 Waveform Output

0xB333;/* Load the 0x4CCC value for 30% duty

0x4CCC;

The following output scope snapshot is captured from the SAM L22 Xplained Pro of EXT3 connector.
* PB18 — Waveform Output 0
« PAQ9 — Waveform Output 1

Atmel

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]

28

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

5.8.

Figure 5-14. RAMP2 Operation

[P CCO-70%Dutycycle=wo[0]

2N CC1-30%Dutycycle=wo[1]-

(@ 2.00v @ 200v oms ‘ (10.0MS/s H o '1.'16'\:""

value Mean Min Max 3 \»¥0.000000s |[1M points ||

&P +width 5.766ms 5.766m 5.766m 5.766m .
| @D +width 2.471ms 2.471m_ 2.471m 2.471m . 16 Oct 20153
111:02:53

The TCC clock frequency = 16MHz

The TCC Clock divider = 1

Time Period for 1 Count = 1/16000000 = 125ns

For the CCO value 0xB333 = OxFFFF-0xB333 * 125ns
= 5.7343ms

For the CC1 value 0x4CCC = 0X4CCC * 125ns

= 2.4575ms

Ramp2A Operation

RAMP?2 Alternate operation is similar to RAMP2 except that the CCO register controls both WO [0] and
WO [1] compare outputs. For RAMP2A operation mode, the circular buffer mode allows having two
dedicated period and compare values for each of the cycle A/B. This is similar to RAMP2 mode, with the
difference that only one channel is used for waveform generation and the second channel can be used for
capture operation.

/ItmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 29

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

Figure 5-15. RAMP2A Operation

Ramp | A B A L B “clear” update
“match”
TOP(B) Retrigger TOP(B)
TOP(A) on CIPEREN = 1
FaultA
CCo(B Ccco(B _
COUNT CCO(A CcCo(A CICCENO =1
ZERO
¥ ¥ ¥
wo[o]
_ k Y POLO=1
WO[1] Keep on FaultB
)
FaultA input B
FaultB input

5.8.1. RAMP2A Configuration

The RAMP2A feature has been enabled through #define TCC MODE RAMP2A and #undef the rest of

the TCC features in the conf example.h.

In this mode, the Waveform outputs WO[0] and WOI1] for the single slope PWM output signals are
enabled. Configure the Compare match channel value for the Channel 0 only. RAMP2A mode can be

configured in the WAVE register.

5.8.2. Code Snippet

/* Configure the TCC Waveform Output pins for waveform generation output

=y config tcc.pins.enable wave out pin[0] = true;
config tcc.pins.enable wave out pin[l] = true;
config tcc.pins.wave out pin[0] = PIN PB18F TCCO WOO;

config tcc.pins.wave out pin[1]

/* Configure the Alternate function of GPIO pins for TCC functionality */

PIN PAO9E _TCCO WO1;

config tcc.pins.wave out pin mux[0] =

config tcc.pins.wave out pin mux([1l] = _
/* Configure the RAMP mode operation as RAMP2 mode */
TCC_RAMP RAMP2A;

config tcc.compare.wave ramp =

/* Configure the compare channel values for the_duty cycle control and load

the 0xB333 value
for 70% duty cycle */

config tcc.compare.match[0] = 0xB333;

5.8.3. RAMP2A Waveform Output

The following output scope snapshot is captured from the SAM L22 Xplained Pro of EXT3 connector.

* PB18 — Waveform Output 0
« PAQ9 — Waveform Output 1

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

MUX_PB18F TCCO WOO;
MUX_PAO9E _TCCO_WOL;

5.9.

Figure 5-16. RAMP2A Operation Output

[:‘.. S . KRV N N . ._. —— .
value Mean Min Max Std Dey |\W2¥0.000000s [I1M points]|
&P +width 5.765ms 5.765m 5.764dm 5.767m 602.9n

| @D +width 5.765ms_ 5.765m 5.763m_ 5.767m_ 583.8n |

Output showcasing both waveform outputs have alternate ON/OFF cycles between them with pulse width
always corresponds to CCO value in both cycles.

The TCC clock frequency = 8MHz

The TCC Clock divider = 1

Time Period for 1 Count = 1/8000000 = 125ns
For the CCO value 0xB333 = 0xB333 * 125ns
= 5.7343ms

Dual Slope PWM Operations

For dual-slope PWM generation, the period (TOP) is controlled by PER, while CCx control the duty cycle
of the generated waveform output. Following figure shows how the counter repeatedly counts from ZERO
(BOTTOM) to PER and then from PER to ZERO. The waveform generator output is set on compare
match when up-counting, and cleared on compare match when down-counting.

/ItmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 31

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

5.9.1.

5.9.2.

5.9.3.

Figure 5-17. Dual-Slope Pulse Width Modulation

«—Period (T)—— | CCx=ZERO | | CCx=TOP | ;.é “reload" update
MAX \ “match"
CCx / \
TOP »

COUNT

ZERO &

WOIx]

Using dual-slope PWM results in a lower maximum operation frequency compared to single-slope PWM
operation. The Period register (PER) defines the PWM resolution. The PWM can be configured for one of
the following Dual Slope configurations.

TCC_WAVE_GENERATION_DOUBLE_SLOPE_CRITICAL:

Double-slope (count up and down), non-center-aligned: Top is the PER register, CC[x] controls duty cycle
while counting up and CC[x+N/2] controls it while counting down.

TCC_WAVE_GENERATION_DOUBLE_SLOPE_BOTTOM:

Double-slope (count up and down), interrupt/event at Bottom .Top is the PER register, output becomes
active when count is greater than CCx.

TCC_WAVE_GENERATION_DOUBLE_SLOPE_BOTH:

Double-slope (count up and down), interrupt/event at Bottom and Top. Top is the PER register, output
becomes active when count is lower than CCx.

TCC_WAVE_GENERATION_DOUBLE_SLOPE_TOP:

Double-slope (count up and down), interrupt/event at Top . Top is the PER register, output becomes
active when count is greater than CCx.

Dual Slope Configuration
The Dual Slope feature has been enabled through #define TCC MODE DUAL SLOPE and #undef the
rest of the TCC features in the conf example.h.

In this mode, the Waveform outputs for the dual slope PWM output signals are enabled. Configure the
Compare match channel values for the Compare Channel 0. In this mode, it is observed that the
waveform output shows twice the pulse width compared to single slope PWM. This uses

TCC_WAVE GENERATION DOUBLE SLOPE BOTH configuration explained above.

Code Snippet

config tcc.compare.wave generation = TCC WAVE GENERATION DOUBLE SLOPE_TOP;
/* Configure the TCC clock source and its divider value */
config tcc.counter.clock source = GLCK SOURCE;
config tcc.counter.clock prescaler = TCC CLOCK DIVIDER;

/* Configure the value for TOP value */

config tcc.counter.period = TCC PERIOD VALUE;

Dual Slope Waveform Output
The following output scope snapshot is captured from the SAM L22 Xplained Pro of EXT3 connector.

PB18 — Waveform Output

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 32

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

5.10.

5.10.1.

Figure 5-18. Dual-Slope Pulse Width Modulation Output

|o100\; M M M M M .ggm.s M ‘ "'.10.0[\.;15,.;5 H o _,r. .1..14.\;__.‘

value Mean Min Max Std Dev | *¥0.000000s J|1M points ||

| @ +width 128.7us 128.74 128.74 128.84 15.40n |

16 Oct 2015
111:33:43

Output showcasing waveform outputs have twice the pulse width size because of Dual slope advantage.
The TCC clock frequency = 8MHz

The TCC Clock divider = 1

Time Period for 1 Count = 1/8000000 = 125ns

ON TIME (0Ox3FF-0x1FF)*2 = 2*512 * 125ns

=0.128ms

Counter Operations

The counter can be set to count up or down. When the counter is counting up and the top value is
reached, the counter will wrap around to zero on the next clock cycle. When counting down, the counter
will wrap around to the top value when zero is reached.

Counter Configuration

The Counter feature has been enabled through #define TCC MODE COUNTER and #undef the rest of
the TCC features in the conf _example.h. In this mode, the led is toggled at four different intervals,
based on different initial startup value of the compare channel.

/ItmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 33

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

5.10.2.

5.10.3.

5.11.

5.11.1.

5.11.2.

Code Snippet

/* Configure different channels with different compare match values */
config tcc.compare.match[0] = 900;

config tcc.compare.match[1l] = 930;
config tcc.compare.match[2] = 1100;
config tcc.compare.match[3] = 1250; A

[setup register callback]
tcc register callback(&tcc instance,
tcc callback to toggle led, TCC_CALLBACK_OVERFLOW);
tcc _register callback(&tcc instance,
tee_ callback to toggle led, TCC CALLBACK CHANNEL O0);
tcc reglster callback(&tcc 1nstance,
tcc callback to toggle led, TCC_CALLBACK_CHANNEL_I);
tcc _register callback(&tcc instance,
Cee_ callback to toggle led, TCC CALLBACK CHANNEL 2);
tcc reglster callback(&tcc 1nstance,
tcc callback to toggle led, TCC CALLBACK_CHANNEL_3);
//! [setup register callback]
//! [setup enable callback]
tcc enable callback(&tcc_lnstance, TCC_ CALLBACK OVERFLOW) ;
tcc_enable_callback(&tcc_instance, TCC CALLBACK CHANNEL O) ;
tcc_enable callback(&tcc_instance, TCC CALLBACK CHANNEL 1)
tcc_enable callback(stcc instance, TCC CALLBACK CHANNEL 2);
tcc_enable callback(&tcc_instance, TCC CALLBACK CHANNEL 3) ;
//! [setup change events faults]

Output
The LED toggles at various speeds based on four different counter channels.

Fault Operations

Recoverable faults can restart or halt the timer/counter. Two faults, called Fault A and Fault B, can trigger
recoverable fault actions on compare channels CC0 and CC1 from the timer/counter. The compare
channels outputs can be clamped to inactive state as long as the fault condition is present, or from the
first valid fault condition detection and until the end of the timer/counter cycle. In case of Non Recoverable
fault, the fault can drive the output to a pre-defined output level.

Fault Configuration

The Fault configuration feature has been enabled through #define TCC MODE FAULT and #undef the
rest of the TCC features in the conf example.h. In this mode, a fault trigger (recoverable fault) by
external condition (button press) is identified and the LED is turn ON (trigger fault) and turn OFF the

fault /LED in the next button press event. The PAQ7 pin is connected to the fault line pin PA18, a button
press can toggle the output port of PAQ7 to toggle fault lines, based on which LED is on if fault is ON,
otherwise LED is OFF.

Code Snippet | - To Configure TCC module for Fault Configuration

void configure tcc(void)
{
/* Structure used to store the TCC configuration parameters */
struct tcc config config tcc;

/* Fill the Structure with the default values */

tcc get config defaults (&config tcc, CONF PWM MODULE) ;

config tcc.compare.match[TCC MATCH CAPTURE CHANNEL 0] =
DEFAULT MATCH COMPARE;

“config tcc.counter.period = DEFAULT PERIOD;

/* Configure the single slope PWM waveform generation for waveform output

*/

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 34

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

config tcc.compare.wave generation =
TCC_WAVE GENERATION SINGLE SLOPE PWM;

/* Configure the TCC clock source and its divider value */
config tcc.counter.clock source = GLCK SOURCE;
config tcc.counter.clock prescaler = TCC CLOCK DIVIDER;

/* Configure the TCC Waveform Output pins for waveform generation output

*/

config tcc.pins.enable wave out pin[0] = true;

config tcc.pins.wave out pin[0] = PIN PB18F TCCO WOO;

/* Configure the Alternate function of GPIO pins for TCC functionality
*/

config tcc.pins.wave out pin mux[0] = MUX PB18F TCCO WOO;

config tcc.wave ext. Tecoverable fault[TCC MATCH CAPTURE _CHANNEL 0] .source

TCC_FAULT SOURCE ENABLE;

config tcc.wave ext.recoverable fault[TCC MATCH CAPTURE CHANNEL O] .halt action =
TCC FAULT HALT ACTION SW HALT;

/* Initialize the TCCO channel and define the its registers with
configuration defined in the config tcc */
stat = tcc_init(&tcc instance, TCCO, &config tcc);
//! [setup events]
struct tcc events events;
memset (&events, 0, sizeof (struct tcc events));
//! [setup change events faults]
events.on event perform channel _action[0] = true;
//! [setup events enable]
tcc_enable_events(&tcc_lnstance, Sevents) ;
/* Enable the TCC module */
tcc_enable(&tcc_instance);

}

5.11.3. Code Snippet Il - To Configure EIC module and Event System for Fault Configuration

//! [callback eic]
static void eic callback to clear halt fault (void)
{ port pln set output level(CONF TEST PIN OUT, true);

}
//! [callback eic]

//! [config eic]
static void configure eic(void)

//! [eic_chan setup]
//! [eic_setup 1]
struct extint chan conf config;
extint chan get conflg defaults (&confiqg);
config.filter _input signal = true;
config.detection criteria = EXTINT DETECT BOTH;
config.gpio pin = CONF FAULT EIC PIN;
config.gpio pin mux = CONF FAULT EIC PIN MUX;
extint chan set conflg(CONF FAULT EIC LINE, &config);
//! leic_setup 4]
struct extint_events events;
memset (&events, 0, sizeof (struct extint events));
events.generate event on detect[CONF FAULT EIC LINE] = true;
//! leic_event setup 2]
extint enable events (&events);

extint register callback(eic callback to clear halt fault,CONF FAULT EIC LINE,
EXTINT CALLBACK TYPE DETECT),

extint chan enable callback (CONF FAULT EIC LINE,EXTINT CALLBACK TYPE DETECT);}
//! [conflg eic]
//! [config event]

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

static void configure event (void)

//! [event setup 1]

struct events config config;

events get config defaults(&config);

config.generator = CONF_ EVENT GENERATOR ID;

config.path = EVENTS PATH ASYNCHRONOUS;

events allocate(&event resource, &config);
events_attach user (&event resource, CONF FAULT EVENT USER);

5.11.4. Code Snippet lll - Main Application Code to Detect Fault and Turn ON/OFF Faulit.

//Inside Main

uint32 t tcStatus=0;

unsigned long temp = TCC STATUS RECOVERABLE FAULT OCCUR(0);
port get config defaults(&config pin);

config pin.direction = PORT PIN DIR OUTPUT;

port pin set config (CONF TEST PIN OUT, &config pin);

port pin set output level (CONF TEST PIN OUT, true);

configure eic();

configure event();

tcc clear status (&tcc_instance, TCC_STATUS RECOVERABLE FAULT OCCUR(0)) ;

if (!port pin get input level (SWO PIN))
{
/* set fault */
while (!port pin get input level (SWO PIN))
port pin set output level (CONF _TEST PIN OUT, false);
tcStatus = tcc get status(&tcc instance);
if (!port pin get output level (LED 0 PIN))
{

// Turn off LED and clearm alarm status..

tcc clear status (&tcc_instance, TCC_STATUS RECOVERABLE FAULT OCCUR(0)) ;
LED Off (LED 0 PIN);
}
else if((tcStatus & temp) == temp)

{
// If alarm set, drive LED.
LED On (LED 0 PIN);
port pin set output level (CONF TEST PIN OUT, true);
}
}

// end of common fault and capture condition

5.11.5. Output
Output showcasing normal PWM. PA18 is the Fault input pin and should be connect to PA07. PAQ7 is the
pin which is set to 0 or 1 to simulate the fault input. When SWO button is for first time, fault input is
generated and output waveform is stopped.When switch is pressed for second time, the fault input clears
and the output waveform resumes again on PB18. This behavior continues every time the button is
pressed.

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 36
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

5.12.

Figure 5-19. Fault Output
M 100ms

L1
Zoom Factor: 250 X Zoom Position: —276ms _

|o1gg\; . ..2.00.\;. M M M : M ‘ "ﬁ_hg[‘\.-ls.gs H . _\-. .3..32.\;__.‘

value Mean Min Max Std Dev J1IM points]|

@D +Width 64.324s 64.324 64.324 64.324 0.000 |
16 Oct 20153
12:40:43

DITHERING
The TCC supports dithering on Pulse-width or Period on a 16, 32, or 64 PWM cycles frame.

Dithering consists in adding some extra clocks cycles in a frame of several PWM cycles (16, 32, or 64
depending the configuration). The extra clock cycles are added on some of the compare match signal,
one at a time, through a "blue noise" process that minimizes the flickering on the resulting dither patterns.

Dithering makes possible to improve the accuracy of the average output pulses width or period.

Dithering is enabled by writing the corresponding configuration in the CTRLA.RESOLUTION field:
* DITH4 enable dithering every 16 PWM frames
* DITHS5 enable dithering every 32 PWM frames
« DITH6 enable dithering every 64 PWM frames

The least significant bits of COUNT, PER, CCx registers define the number of extra cycles to add into the
frame (DITHERCY). The remaining bits of COUNT, PER, CCx registers define the compare value itself.

Display hardware, including early computer video adapters and many modern LCDs used in mobile
phones and inexpensive digital cameras, show a much smaller color range than more advanced displays.
One common application of dithering is to more accurately display graphics containing a greater range of
colors than the hardware is capable of showing. For example, dithering might be used in order to display

/ItmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 37

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

5.12.1.

5.12.2.

a photographic image containing millions of colors on video hardware that is only capable of showing 256
colors at a time. The 256 available colors would be used to generate a dithered approximation of the
original image. Without dithering, the colors in the original image might simply be "rounded off" to the
closest available color, resulting in a new image that is a poor representation of the original. Dithering
takes advantage of the human eye's tendency to "mix" two colors in close proximity to one another. It is
also used in Lighting control system.

DITHERING Configuration
The Dithering feature has been enabled through #define TCC_MODE DITHER and #undef the rest of
the TCC features in the conf example.h.

In this mode, the Waveform outputs 0 for the single slope PWM output signals (the default configuration)
is enabled. The Dithering option with Dithering on every 32 PWM frames is also enabled, since adding
only the following configuration is sufficient to enable dithering feature, irrespective of the TCC feature
used.

Code Snippet

/* Configure the TCC Waveform Output pins for waveform generation output */
config tcc.pins.enable wave out pin[TCC MATCH CAPTURE CHANNEL 0] = true;
config tcc.pins.wave out pin[TCC MATCH CAPTURE CHANNEL 0] =

PIN PB18F TCCO WOO;

/* Configure the Alternate function of GPIO pins for TCC functionality
*/

config tcc.pins.wave out pin mux[TCC MATCH CAPTURE CHANNEL 0] =
MUX_PB18F TCCO WOO;

TCCO->CTRLA.bit.RESOLUTION = 2;

while (TCCO->SYNCBUSY.reg & TCC_SYNCBUSY_CTRLB)
{ /* Wait for sync */
}

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 38

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

5.12.3.

5.13.

5.13.1.

Dithering Waveform Output

ek Run

o

R — R R . 30.0”5 VN ":Z.SUCSEES ‘ ‘ p— .1..14.\;__.‘
value Mean Min Max Std Dey | \WP¥176.1200ms J|1M points ||
| @ +width 2.011ps 2.006 1.885 2.012p 24.71n |

16 Oct 2015]
112:44:43

Information can be verified by capturing the waveform output using laptop/computer. Verify that the
number of pulses available for 32 PWM cycles is more, because of DITHERING feature.

Capture Operations

To enable and use capture operations, the Match or Capture Channel x Event Input Enable (MCEIx) bit

must be enabled in the Event Control register (EVCTRL.MCElIx). The capture channels to be used must
also be enabled in the Capture Channel x Enable bit in the Control A register (CTRLA.CPTENX) before

capture can be performed.

TCC supports Event Capture, Period and Pulse-Width Capture Action (PPW), Capture Operation is
triggered based on when event is triggered, in Event capture, the COUNT value is identified on event
trigger, whereas in PPW mode, the Period and Pulse width are captured in CCO and CC1 respectively.

Capture Configuration
The capture feature has been enabled through #define TCC MODE CAPTURE and #undef the rest of
the TCC features in the conf example.h.

In this example, the pulse width and period ofthe input signalis captured. TCCO is configured with event
action 1 enabled and the event action is set to PWP (Pulse Width Period)which captures the pulse width
of the input signal in CCO register and period in CC1 register.

/ItmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 39

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

5.13.2.

The square wave input signal is applied to an EIC channel which is configured to detect and generate
event on high level. This event is routed to TCCO through an event system channel which is configured in
asynchronous mode.

Code Snippet | - Configure USART

struct usart config config usart;
usart get config defaults (&config usart);

config usart.
.mux_setting =
.pinmux pad0
.pinmux padl
config usart.
.pinmux pad3 =

config usart
config usart
config usart

baudrate

pinmux pad2

115200;

EDBG_CDC_SERCOM MUX SETTING;
EDBG_CDC_SERCOM_PINMUX PADO;
EDBG_CDC_SERCOM_PINMUX PAD1;
EDBG_CDC_SERCOM PINMUX PAD2;
EDBG_CDC_SERCOM PINMUX PAD3;

5.13.3.

config usart
stdio serial init (&usart 1nstances EDBG CcDC MODULE
usart enable(&usart instances) ;

&config usart);

Code Snippet Il - Configures Event and the Main Application for Capture Operation

void configu eic(void)
{
struct extint chan conf config extint chan;
extint chan get Conflg defaults(&conflg extint chan);
CODflg extint chan.gpio pin = PIN PAO7A EIC EXTINT7;
config extint chan.gpio pin mux = MUX PAO7A EIC EXTINT7;
config extint chan.gpio pin pull = EXTINT PULL NONE;
config extint chan.detection criteria = EXTINT DETECT HIGH;
extint chan set config(7, &config extint chan),
struct extint events config events =
{
.generate event on detect[7] = true
}i
extint enable events (&config events);
}
void configure evsys(void)
{
struct events config config;
events get config defaults(&config);
config.clock source = GCLK GENERATOR 3;
config.generator = EVSYS ID GEN EIC EXTINT 7;
config.path = EVENTS PATH ASYNCHRONOUS;
config.edge detect = EVENTS EDGE DETECT BOTH;
events allocate(&event resources, &config);
events attach user(&event _resources, EVSYS ID USER TCCO EV 1);
}

5.13.4. Code Snippet lll - Configure TCC for Capture Operation

Atmel

void configu tcc(void)

{

struct tcc _config config tcc;

tcc get config defaults (&config tcc, TCCO);

config tcc.counter.clock source = GCLK GENERATOR 3;

config tcc.counter.clock prescaler = TCC CLOCK PRESCALER DIV1;

config tcc.compare.channel function[0] =
TCC_CHANNEL FUNCTION CAPTURE;

conflg tcc.compare.channel function[1]
TCC_CHANNEL FUNCTION CAPTURE;

config tcc.compare.channel function[2]
TCC_CHANNEL FUNCTION CAPTURE;

conflg tcc.compare.channel function[3]
TCC_CHANNEL FUNCTION CAPTURE;

Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE]
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

40

5.13.5.

config tcc.double buffering enabled = false;
tcc init(&tcc_instances, TCCO, &config tcc);
struct tcc_events events tcc =
{
.input config[0] .modify action = false,
.input config[l] .modify action = true,
.on_input event perform action[l] = true,
.input config[l].action =

TCC_EVENT1 ACTION PULSE WIDTH PERIOD CAPTURE,
bi
tcc enable events (&tcc instances, &events tcc);
tcc_enable (&tcc instances);

}

#ifdef TCC_MODE CAPTURE

configure usart();

configu eic();

configure evsys();

while (1)

{

while (! (TCCO->INTFLAG.bit.MC1)) ;

TCCO->INTFLAG.bit.MC1 = 1;

period = tcc _get capture value(&tcc instances, 1);
pulse width = tcc get capture value(&tcc_instances, 0);
printf ("period=%1ld , pulse width =%1d \r\n", period , pulse width);
}

#endif

Output

The output is displayed using EDBG console. Open the EDBG serial console (Terminal window of Atmel
Studio) with the following setting 115200 Baud Rate, 8-bits, No Parity, 1 Stop Bit and Flow Control is set
as None.

Figure 5-20. Input Capture Output

e Widom Tox
% Connect| coms [Baue] 115200 5[ascu 3 5 (-l savetofile | Options

H

-15908
-15007

Output showing the Period (CC1) and Pulse width (CCO0) of the input signal in UART Terminal.

AtmeL Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 41

Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

6. Revision History

Doc. Rev. Date Comments

42625A 02/2016 | Initial document release

Atmel Atmel AT10842: Using the Timer Counter for Control Applications in SAM L22 [APPLICATION NOTE] 42
Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

Atmel | enabling Unlimited Possibilities® OORROSE

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

©2016 Atmel Corporation. / Rev.: Atmel-42625A-Using-the-Timer-Counter-for-Control-Applications-in-SAM L22_AT10842_Application Note-02/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo and others are the registered trademarks or trademarks of ARM Ltd. Windows®is a registered trademark of Microsoft
Corporation in U.S. and or other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Features
	Table of Contents
	1. Abbreviations
	2. Pre-requisites
	3. TCC
	3.1. TCC Overview
	3.2. Functional Description
	3.3. Special Considerations

	4. Setup
	4.1. Hardware Setup
	4.2. Software Setup

	5. TCC Features Demonstration
	5.1. Timer Mode Configuration
	5.2. Circular Buffer
	5.2.1. Circular Buffer Mode Configuration
	5.2.2. Code Snippet
	5.2.3. Waveform Output

	5.3. One-shot Operation
	5.3.1. One-shot Operation Configuration
	5.3.2. Code Snippet
	5.3.3. LED0 Output

	5.4. Output Matrix with DTI for PWM
	5.4.1. Dead Time Insertion (DTI)
	5.4.2. Output Matrix with DTI Configuration
	5.4.3. Code Snippet
	5.4.4. OTMX with DTI Enable for Channel 2 Waveform Output

	5.5. SWAP Operation
	5.5.1. SWAP Mode Configuration
	5.5.2. Code Snippet
	5.5.3. SWAP Waveform Output

	5.6. Pattern Generation
	5.6.1. Pattern Generation Configuration
	5.6.2. Code Snippet
	5.6.3. Pattern Generation Waveform Output

	5.7. Ramp2 Operation
	5.7.1. RAMP2 Configuration
	5.7.2. Code Snippet
	5.7.3. RAMP2 Waveform Output

	5.8. Ramp2A Operation
	5.8.1. RAMP2A Configuration
	5.8.2. Code Snippet
	5.8.3. RAMP2A Waveform Output

	5.9. Dual Slope PWM Operations
	5.9.1. Dual Slope Configuration
	5.9.2. Code Snippet
	5.9.3. Dual Slope Waveform Output

	5.10. Counter Operations
	5.10.1. Counter Configuration
	5.10.2. Code Snippet
	5.10.3. Output

	5.11. Fault Operations
	5.11.1. Fault Configuration
	5.11.2. Code Snippet I – To Configure TCC module for Fault Configuration
	5.11.3. Code Snippet II - To Configure EIC module and Event System for Fault Configuration
	5.11.4. Code Snippet III – Main Application Code to Detect Fault and Turn ON/OFF Fault.
	5.11.5. Output

	5.12. DITHERING
	5.12.1. DITHERING Configuration
	5.12.2. Code Snippet
	5.12.3. Dithering Waveform Output

	5.13. Capture Operations
	5.13.1. Capture Configuration
	5.13.2. Code Snippet I – Configure USART
	5.13.3. Code Snippet II – Configures Event and the Main Application for Capture Operation
	5.13.4. Code Snippet III – Configure TCC for Capture Operation
	5.13.5. Output

	6. Revision History

