

DESCRIPTION

The AP62600 is a 6A, synchronous buck converter with a wide input voltage range of 4.5V to 18V. The device fully integrates a $36m\Omega$ high-side power MOSFET and a $14m\Omega$ low-side power MOSFET to provide high-efficiency step-down DC-DC conversion.

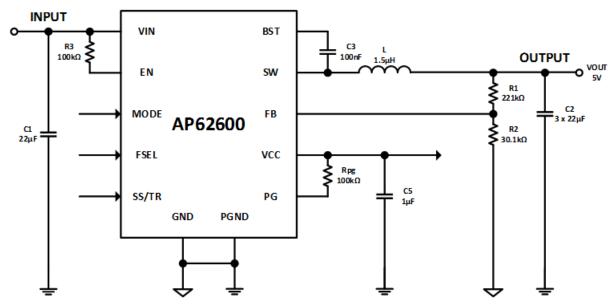
The AP62600 device is easily used by minimizing the external component count due to its adoption of Constant On-Time (COT) control to achieve fast transient response, easy loop stabilization, and low output voltage ripple.

The AP62600 design is optimized for Electromagnetic Interference (EMI) reduction. The device has a proprietary gate driver scheme to resist switching node ringing without sacrificing MOSFET turn-on and turn-off times, which reduces high-frequency radiated EMI noise caused by MOSFET switching.

The device is available in a V-QFN2030-12 (Type A) package.

FEATURES

- VIN: 4.5V to 18V
- Output Voltage (VOUT): 0.6V to 7V
- 6A Continuous Output Current
- 0.6V ± 1% Reference Voltage
- 360µA Quiescent Current
- Selectable Operation Modes
 - Pulse Frequency Modulation (PFM)
 - Ultrasonic Mode (USM)
 - Pulse Width Modulation (PWM)
- Selectable Switching Frequency
 - o 400kHz
 - o 800kHz
 - o 1.2MHz


- Programmable Soft-Start Time
- Proprietary Gate Driver Design for Best EMI Reduction
- Power-Good Indicator
- Precision Enable Threshold to Adjust UVLO
- Protection Circuitry
 - Undervoltage Lockout (UVLO)
 - Cycle-by-Cycle Valley Current Limit
 - Thermal Shutdown

APPLICATIONS

- 5V and 12V Input Distributed Power Bus Supplies
- Television Sets and Monitors
- White Goods and Small Home Appliances
- FPGA, DSP, and ASIC Supplies
- Home Audio
- Network Systems
- Gaming Consoles
- Consumer Electronics
- General Purpose Point of Load

APPLICATIONS

Figure 1. Typical Application Circuit

FUNCTIONAL BLOCK

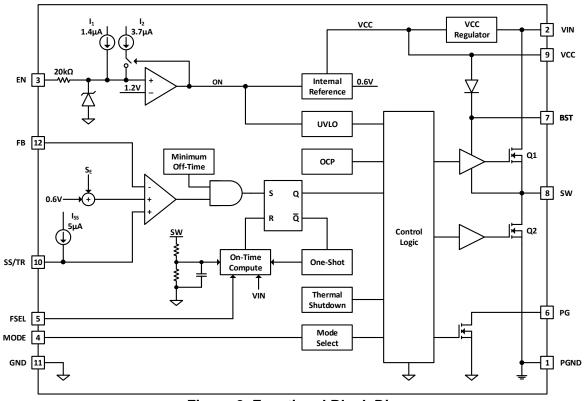


Figure 2. Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Rating	Unit		
VIN	Supply Pin Voltage	-0.3 to +20.0 (DC)	V		
VIIN	Supply Fill Voltage	-0.3 to 22.0 (400ms)	¬		
VCC	VCC Pin Voltage	` '			
V _{EN}	Enable/UVLO Pin Voltage	-0.3V to +6.0	V		
V _{MODE}	MODE Select Pin Voltage	-0.3V to +6.0	V		
V _{FSEL}	Frequency Select Pin Voltage	-0.3V to +6.0	V		
V_{PG}	Power-Good Pin Voltage	-0.3V to +6.0	V		
V _{BST}	Bootstrap Pin Voltage	V _{SW} - 0.3 to V _{SW} + 6.0	V		
Vsw	Switch Pin Voltage	-1.0 to VIN + 0.3 (DC)	V		
VSW	Switch Fill Voltage	-2.5 to VIN + 2.0 (20ns)			
V _{SS/TR}	Soft-Start/Tracking Pin Voltage	art/Tracking Pin Voltage -0.3V to +6.0			
V _{FB}	Feedback Pin Voltage	-0.3V to +6.0	V		
T _{ST}	Storage Temperature	Storage Temperature -65 to +150			
TJ	Junction Temperature +150		°C		
TL	Lead Temperature	+260	°C		
ESD Susceptibility		•	•		
HBM	Human Body Mode	±2000	V		
CDM	Charge Device Model	±500	V		

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
VIN	Supply Voltage	4.5	18.0	V
VOUT	Output Voltage	0.6	7.0	V
T _A	Operating Ambient Temperature	-40	+85	°C
TJ	Operating Junction Temperature	-40	+125	°C

EVALUATION BOARD

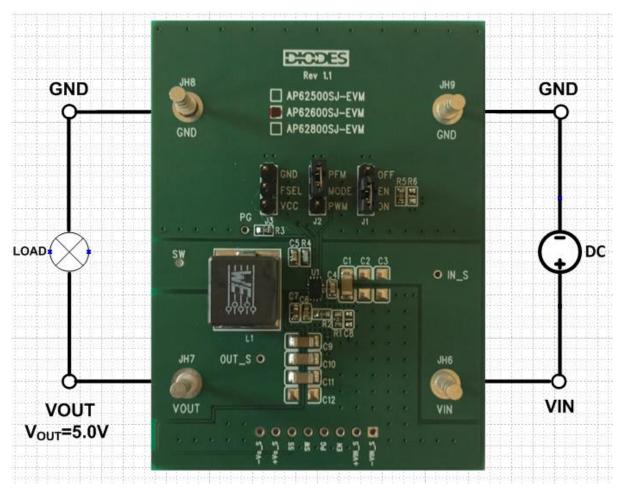


Figure 3. AP62600SJ-EVM

AP62600SJ-EVM

4.5V TO 18V INPUT, 6A SYNCHRONOUS BUCK CONVERTER

QUICK START GUIDE

The AP62600SJ-EVM has a simple layout and allows access to the appropriate signals through test points. The board is targeted to be used in providing a simple and convenient evaluation environment for the AP62600.

To operate the EVM, set jumpers J1, J2 and J3 to the desired positions per below shown.

- J1 = EN pin input jumper. For Enable, to enable IC, place a jumper at J1 to "ON" position to connect EN pin to Vin through 100KΩ resistor or leave it OPEN. Jump to "OFF" position to disable IC.
- J2 = PFM, PWM or USM mode selection. At J2, connect a jumper to PWM to force the device in Pulse Width Modulation (PWM) operation mode. Connect a jumper to PFM to ground the pin to operate the device in Pulse Frequency Modulation (PFM) operation mode without Ultrasonic Mode (USM). Leave J2 OPEN to float the pin to operate the device in PFM with USM mode.
- J3 = Switching frequency selection. At J3, connect a jumper to GND to set clock frequency to 400kHz. Leave J3 OPEN to float the pin to set clock frequency to 800kHz. Connect a jumper to VCC to set clock frequency to 1.2MHz.

To evaluate the performance of the AP62600SJ-EVM, follow the procedure below:

- 1. Connect a power supply to the input terminals VIN and GND. Set VIN to 12V.
- 2. Connect the positive terminal of the electronic load to Vout and negative terminal to GND.
- 3. By default, the evaluation board should now power up with a 5.0V output voltage. Frequency is 800kHz.
- Check for the proper output voltage of 5.0V (±1%) at the output terminals Vou⊤ and GND.
 Measurement can also be done with a multimeter with the positive and negative leads between Vou⊤ and GND.
- 5. Set the load to 6A through the electronic load. Check for the stable operation of the SW signal on the oscilloscope. Measure the switching frequency.

MEASUREMENT/PERFORMANCE GUIDELINES:

- When measuring the output voltage ripple, maintain the shortest possible ground lengths on the oscilloscope probe. Long ground leads can erroneously inject high frequency noise into the measured ripple.
- 2) For efficiency measurements, connect an ammeter in series with the input supply to measure the input current. Connect an electronic load to the output for output current.

APPLICATION INFORMATION

Setting the Output Voltage of AP62600

(1) Setting the output voltage

The AP62600 features external programmable output voltage by using a resistor divider network R2 and R1 as shown in the typical application circuit. The output voltage is calculated as below,

$$R1 = R2 \cdot \left(\frac{VOUT}{0.6V} - 1 \right)$$

First, select a value for R1 according to the value recommended in the table 1. Then, R3 is determined. The output voltage is given by Table 1 for reference. For accurate output voltage, 1% tolerance is required.

Table 1. Resistor selection for output voltage setting

Vo	R2	R1
1.05V	30 KΩ	22.5 ΚΩ
1.2V	30 KΩ	30 KΩ
1.5V	30 KΩ	45ΚΩ
1.8V	30 KΩ	60ΚΩ
2.5V	30 KΩ	95ΚΩ
3.3V	30 KΩ	135ΚΩ
5V	30 KΩ	221 ΚΩ

EXTERNAL COMPONENT SELECTION:

- 1) Input & output Capacitors
 - (1) For lower output ripple, low ESR is required.
 - (2) Low leakage current needed, X5R/X7R ceramic recommend, multiple capacitor parallel connection.
 - (3) The C1-3 are input capacitors of supply input pin, capacitances is greater than 22uF.
 - (4) The C7 is input capacitors of VCC pin, capacitances are greater than 1uF
 - (5) The C9-11 are output capacitors, recommended in Table 2.
- 2) Bootstrap Voltage Regulator

An external 0.1uF ceramic capacitor is required as bootstrap capacitor between BST and SW pin to work as high side power MOSFET gate driver

3) Soft-start time control capacitor

C6 controls the soft-start time of the output voltage. It can be changed for a shorter or slower ramp up of Vout. The capacitor along with an internal ISS of 5μ A, sets the soft-start interval of the converter, TSS, according to equation below:

$$Css(nF) = 8.33*Tss(ms)$$

- 4) Inductor (L)
 - (1) Low DCR for good efficiency
 - (2) Inductance saturate current must higher than the output current
 - (3) The recommended inductance is shown in the table 2 below.

Table 2. Recommended inductors and output capacitor

Frequency	Output Voltage	1.05V	1.2V	1.8V	2.5 V	3.3 V	5.0 V
400KHz	Output Capacitor	88uF	66uF	66uF	66uF	66uF	66uF
	Inductor	3.3uH	3.3uH	3.3uH	3.3uH	4.7uH	4.7uH
	Würth PART	7443330330	7443330330	7443330330	7443330330	7443330470	7443330470
800 KHz	Output Capacitor	44uF	66uF	66uF	66uF	66uF	66uF
	Inductor	1.0uH	1.0uH	1.0uH	1.0uH	1.0uH	1.5 uH
	Würth PART	7443330100	7443330100	7443330100	7443330100	7443330100	7443330150
1.2MHz	Output Capacitor	66uF	66uF	66uF	66uF	66uF	66uF
	Inductor	0.47uH	0.47uH	0.68uH	0.68uH	0.82uH	1.0 uH
	Würth PART	7443330047	7443330047	7443330068	7443330068	7443330082	7443330100

EVALUATION BOARD SCHEMATIC

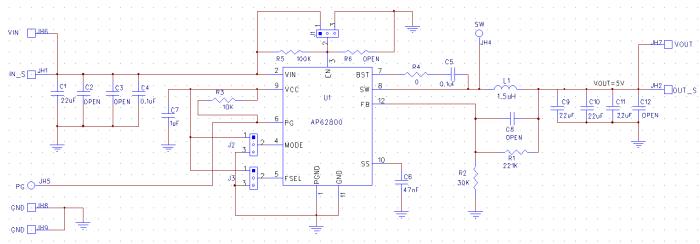


Figure 3. AP2600SJ-EVM Schematic

PCB TOP LAYOUT

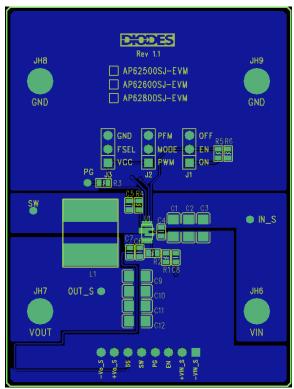


Figure 4. AP62600SJ-EVM - Top Layer

PCB BOTTOM LAYOUT

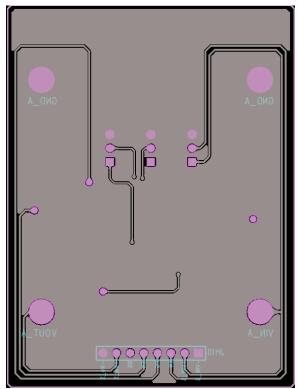


Figure 5. AP62600SJ-EVM – Bottom Layer 8 of 12

BILL OF MATERIALS for AP62600SJ-EVM for V_{OUT}=5V

Ref	Value	Description	Qty	Size	Vendor	Manufacturer PN	PCB Layer
C1, C9,		Ceramic					
C10, C11	22µF	Capacitor, 25V, X6S	4	1206	Samsung	CL31X226KAHN3NE	Тор
C4, C5	0.1µF	Ceramic Capacitor, 50V, X7R, 10%	2	0603	Wurth Electronics	885012206095	Тор
C6	47nF	Ceramic Capacitor, 50V, X7R, 10%	1	0603	Wurth Electronics	885012206093	Тор
C7	1µF	Ceramic Capacitor, 25V, X7R, 10%	1	0603	Wurth Electronics	885012206076	Тор
L1	1.5µH	DCR=2.5mΩ, Ir=18A	1	10.9x10x 9.7mm	Wurth Electronics	7443330150	Тор
R1	221ΚΩ	RES SMD 1%	1	0603	Yageo	RC0603FR-07221KL	Тор
R2	30ΚΩ	RES SMD 1%	1	0603	Yageo	RC0603FR-0730KL	Тор
R3	10ΚΩ	RES SMD 1%	1	0603	Yageo	RC0603FR-0710KL	Тор
R4	0Ω	RES SMD 1%	1	0603	Vishay	MCT06030Z0000ZP500	Тор
R5	100ΚΩ	RES SMD 1%	1	0603	Yageo	RC0603FR-07100KL	Тор
J1, J2, J3		PCB Header, 40 POS	3	1X3	3M	2340-6111TG	Тор
JH6, JH7, JH8, JH9	1598	Terminal Turret Triple 0.094" L (Test Points)	4	Through- Hole	Keystone Electronics	1598-2	Тор
U1	AP62600	6A Sync DC/DC Converter	1	QFN2030- 12	Diodes Inc	AP62600SJ	Тор

TYPICAL PERFORMANCE CHARACTERISTICS

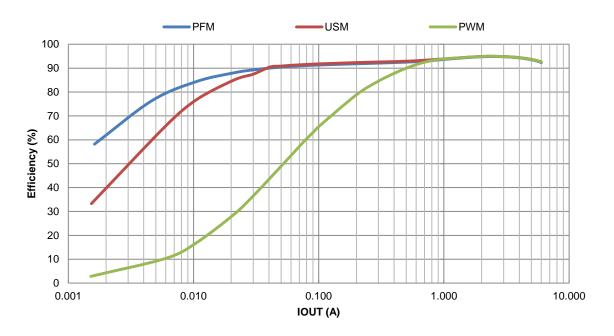


Figure 6. Efficiency vs. Output Current, VIN = 12V, VOUT = 5V, L = $1.5\mu H$, $f_{SW} = 800kHz$

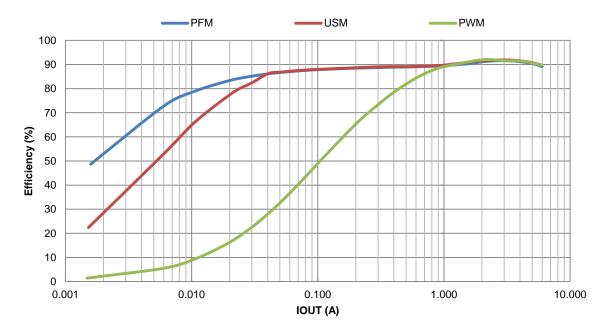


Figure 7. Efficiency vs. Output Current, VIN = 12V, VOUT = 3.3V, L = $1.2\mu H$, f_{SW} = 800kHz

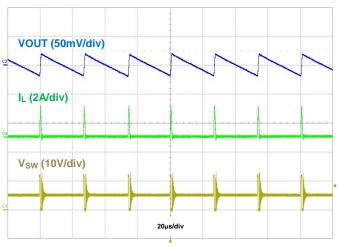


Figure 8. Output Voltage Ripple, IOUT = 50mA VIN = 12V, VOUT = 5V PFM f_{SW} = 800kHz

Figure 9. Output Voltage Ripple, IOUT = 6A VIN = 12V, VOUT = 5V PFM f_{SW} = 800kHz

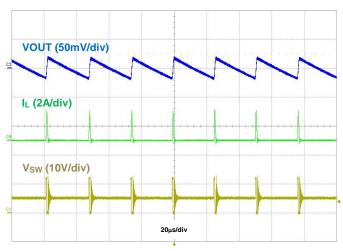


Figure 10. Output Voltage Ripple, IOUT = 50mA VIN = 12V, VOUT = 5V USM f_{SW} = 800kHz

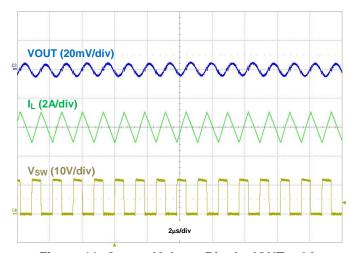


Figure 11. Output Voltage Ripple, IOUT = 6A VIN = 12V, VOUT = 5V USM f_{SW} = 800kHz

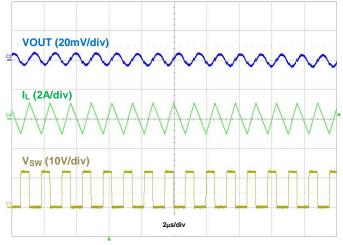


Figure 12. Output Voltage Ripple, IOUT = 50mA VIN = 12V, VOUT = 5V PWM f_{SW} = 800kHz

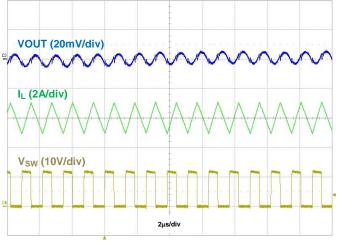


Figure 13. Output Voltage Ripple, IOUT = 6A VIN = 12V, VOUT = 5V PWM f_{sw} = 800kHz

AP62600SJ-EVM

4.5V TO 18V INPUT, 6A SYNCHRONOUS BUCK CONVERTER

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2019, Diodes Incorporated

www.diodes.com