Apple File System Reference

Developer

Contents

About Apple File System

General-Purpose Types

paddr_t . . e e e e e e e e e e e s e e e e
PTanNge_T . . . o e e e e e e e
UULA T . . e e e s

Objects

obJ_phys_t . . . e
Supporting Data Types e e e e e e e e e e e e e e e e e
Object Identifier Constants L e e e e e e e e e e e e e e
Object Type Masks o e e e e e e e e e e e e e e
Object Types o e e e e e e e e s e
Object Type Flags o e e e e e e e e e e e e

EFI Jumpstart

Booting from an Apple File System Partitiono oL
nx_efi_jumpstart_t. e e e
Partition UUIDS e e e e e e e e e e e

Container

Mounting an Apple File System Partition e e e e e e
nx_superblock_t L e e e e e e e e e e e
Container Flags o e e e e e e e e e e e e e e e e e e
Optional Container Feature Flags @ e e e e e
Read-Only Compatible Container Feature Flags v i i
Incompatible Container Feature Flags e e e
Block and Container Sizes L e e e e e e e e e e
nx_counter_id_t e e
checkpoint_mapping_t e e e
checkpoint_map_phys_t e e
CheckpointFlags o e e e e e e e e e e e
evict_mapping_val_t e

Object Maps

omap_pPhysS_T . . o e e e e e e e e e e e e e e
omap_Key_t . . . e e e e e e e e
omap_val_t . . . e e e e e e
omap_snapshot_t e e e e e e
ObjectMap Value Flags o e e e e e e e e e
Snapshot Flags o o L e e e e e e
ObjectMap Flags e e e e e e e e e e e e
Object Map Constants e e e e e e e e e e e e e e e e e e
Object Map Reaper Phases i e e e e e e e e e e e e e

© © ©o ©

10
10
1
12
13
14
20

22
22
24
25

26
26
27
36
37
38
38
39
39
40
41
42
42

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

2

Volumes

apfs_superblock_t e e e e e e
apfs_modified_by_t. e e
Volume Flags o e e e e e e e e e e e e e e e e e e e
Volume Roles e e e e e e e
Optional Volume Feature Flags 0 . e e e e e e e e e e e e e e e
Read-Only Compatible Volume FeatureFlags e
Incompatible Volume Feature Flags e e e e e

File-System Objects

JoKeY T e e e
j_inode_key_t e e
Joinode_val_t . . . o e e s
j_drec_key_ T . . . o e e e e e e
j_drec_hashed_key_t e
Jodrec_val_t . . . o e
j_dir_stats_Key_t e e
jodir_stats_val_t e e
Joxattr_Key_t e e
Joxattr_val_t e

File-System Constants

J_obJ_types . ..o e e
J_obj_Kkinds . .. e
J_inode_flags e e
Joxattr_flags e e e
dir_rec_flags e e e
Inode Numbers L e e e e e e e e
Extended Attributes Constants L L e e e e e e e
File-System Object Constants e e e e e e e e e e
File Extent Constants L L e e e e e e e
FileModes L e e e e e e e e e e e
Directory Entry File Types o o e e e e e e e e e e e e e e e e

Data Streams

Jophys_ext_Key_t e e e
J_phys_ext_val_t e
j_file_extent_key_t e e
j_file_extent_val_t e
j_dstream_id_Kkey_t e e e
j_dstream_id_val_t e
Joxattr_dstream_t e e e
Jodstream_t e e e

Extended Fields

XT_blob _t . . e e e e e e e e
X_Field T . . o o e e e e e
Extended-Field Types e e e e e e e e e e e e e
Extended-Field Flags e e e e e e e e e e

51
51
60
61
63
67
68
68

Al
72
73
73
78
78
79
80
81
82
82

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

3

Siblings 115

j_sibling_key_t L e e 115
Josibling_val_t e e e 115
j_sibling_map_key_t e e 116
j_sibling_map_val_t e e e e e e 116
Snapshot Metadata 117
j_snap_metadata_key_t e 17
j_snap_metadata_val_t e 117
j_snap_name_Key_t e e e 119
j_snap_name_val_t e e e 119
snap_meta_flags L e e e e 119
snap_meta_ext_obj_phys_t e 120
snap_meta_ext_t e e e e e e e e e e e e e s e e 120
B-Trees 122
btree_node_phys_t e e e e e e 123
btree_info_fixed_t. e 125
btree_inTo_t o o e s 126
btn_index_node_val_t e 127
NLOC_T . . . e e 128
KVIOC _t . . o e e e e e e e e 128
KVoTf _t . o e e e e e 129
B-Tree Flags o L o e e e e e e 129
B-Tree Table of Contents Constants i i i e e e e e e e e 131
B-TreeNode Flags L o o e e e e e 132
B-Tree Node Constants e e e e e e e e e e e e e e e 133
Encryption 135
Accessing Encrypted Objects L L L e e e 136
J_crypto_Key_t . ..o e e e 137
j_crypto_val_t e e e e e e 137
wrapped_crypto_state_t e e e e e 138
wrapped_meta_crypto_state_t L e 140
Encryption Types e e e e e e e e e e e e e e 141
Protection Classes e e e e e e e e e e 142
Encryption Identifiers L L L e e e e e e e 144
kKb_Tocker_t e e e s 144
keybag_entry_t L L e e e e e e 146
media_keybag_t e e e 147
Keybag Tags o o e e e e e e e e 147
Sealed Volumes 150
integrity_meta_phys_t e 150
Integrity Metadata Version Constants L L. Lo e e 151
Integrity Metadata Flags e e e e e e e e e 152
apfs_hash_type_t e e e e 152
fext_tree_Key_ T . . . o . . e e e e e e e e 154
fext_tree_val_t e e e e e e e e e e e 155

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

4

j_file_info_key_ Tt e e
j_file_info_val_t e
j_obj_file_info_type e e e e
j_file_data_hash_val_t e e

Space Manager

chunk_InTo_t o s
chunk_info_block e e
cib_addr_block e s
spaceman_free_queue_entry_t e e e e e e
spaceman_free_queue_key_t L e e e
spaceman_free_queue_t L L e e e e e e e e e e
spaceman_devicCe_t e e
spaceman_allocation_zone_boundaries_t
spaceman_allocation_zone_info_phys_t e
spaceman_datazone_info_phys_t e
spaceman_phys_T e
ST . o e e e e e e e e e s e s
SMABY . . o o e e e e e e e e e e e e e e
Chunk InfoBlock Constants e e e e e e e e
Internal-Pool Bitmap e e e e e e e e e e

Reaper

nXx_reaper_phys_t e e e e e e e e e e e e e e e e e
nx_reap_list_phys_t e e
nx_reap_list_entry_t e e
Volume Reaper States L e e e e e e e e e e e e e
ReaperFlags o . o e e e e e e e e e e e e e
Reaper ListEntry Flags o o . o e e e e e e
Reaper ListFlags o . o e e e e e e e e e e
omap_reap_state_t e e e
omap_cleanup_state_t L e e e e e e e e
apfs_reap_state_t e e e e e e e e e e e e

Encryption Rolling

er_state_phys_t e e e e e e e e e e e e e
er_phase_t e e e e e e e e e e e e e e e e e e e
er_recovery_block_phys_t e e e e e e
gbitmap_block_phys_t e e
gbhitmap_phys_t e e
Encryption-Rolling Checksum Block Sizes oL
EncryptionRolling Flags o e e e e e e e e
Encryption-Rolling Constants e e e e e e e e e e e e e

Fusion

fusion_wbc_phys_t e e
fusion_wbc_list_entry_t e e
fusion_wbc_list_phys_t e e
Address Markers L L L e e e e e e e e e

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

5

fusion_mt_Key_t e e 173
fusion_mt_val_t e s 173

Fusion Middle-Tree Flags o 0 0 i e e e e e e e e e e e e e e e e 173
Symbol Index 174
Revision History 179

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

6

About Apple File System

Apple File System is the default file format used on Apple platforms. Apple File System is the successor to HFS
Plus, so some aspects of its design intentionally follow HFS Plus to enable data migration from HFS Plus to Apple File
System. Other aspects of its design address limitations with HFS Plus and enable features like cloning files, snapshots,
encryption, and sharing free space between volumes.

Most apps interact with the file system using high-level interfaces provided by Foundation, which means most de-
velopers don't need to read this document. This document is for developers of software that interacts with the file
system directly, without using any frameworks or the operating system — for example, a disk recovery utility or an
implementation of Apple File System on another platform. The on-disk data structures described in this document
make up the file system; software that interacts with them defines corresponding in-memory data structures.

Note

If you need to boot from an Apple File System volume, but don’t need to mount the volume or interact with the
file system directly, read Booting from an Apple File System Partition.

Layered Design

The Apple File System is conceptually divided into two layers, the container layer and the file-system layer. The con-
tainer layer organizes file-system layer information and stores higher level information, like volume metadata, snap-
shots of the volume, and encryption state. The file-system layer is made up of the data structures that store informa-
tion, like directory structures, file metadata, and file content. Many types are prefixed with nx_ or j_, which indicates
that they're part of the container layer or the file-system layer, respectively. The abbreviated prefixes don’t have a
meaningful long form; they're an artifact of how Apple's implementation was developed.

There are several design differences between the layers. Container objects are larger, with a typical size measured
in blocks, and contain padding fields that keep data aligned on 64-bit boundaries, to avoid the performance penalty
of unaligned memory access. File-system objects are smaller, with a typical size measured in bytes, and are almost
always packed to minimize space used.

Numbers in both layers are stored on disk in little-endian order. Objects in both layers begin with a common header
that enables object-oriented design patterns in implementations of Apple File System, although the layers have dif-
ferent headers. Container layer objects begin with an instance of obj_phys_t and file-system objects begin with an
instance of j_key_t,

Container Layer

Container objects have an object identifier that you use to locate the object; the steps vary depending on how the
object is stored:

* Physical objects are stored on disk at a particular physical block address.

o Ephemeral objects are stored in memory while the container is mounted and in a checkpoint when the container
isn't mounted.

o Virtual objects are stored on disk at a location that you look up in an object map (an instance of omap_phys_t).

The object map includes a B-tree whose keys contain a transaction identifier and an object identifier and whose values
contain a physical block address where the object is stored.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

7

https://developer.apple.com/documentation/foundation/file_system

About Apple File System

An Apple File System partition has a single container, which provides space management and crash protection. A
container can contain multiple volumes (also known as file systems), each of which contains a directory structure for
files and folders. For example, the figure below shows a storage device that has one Apple File System partition, and
it shows the major divisions of the space inside that container.

Storage Device
GUID partition table

EFI system partition

Container superblock
Apple File System

container Checkpoint area

Space manager area

Storage for objects
and file data

Although there’s only one container, there are several copies of the container superblock (an instance of nx_super
block_t) stored on disk. These copies hold the state of the container at past points in time. Block zero contains
a copy of the container superblock that's used as part of the mounting process to find the checkpoints. Block zero
is typically a copy of the latest container superblock, assuming the device was properly unmounted and was last
modified by a correct Apple File System implementation. However, in practice, you use the block zero copy only to
find the checkpoints and use the latest version from the checkpoint for everything else.

Within a container, the checkpoint mechanism and the copy-on-write approach to modifying objects enable crash pro-
tection. In-memory state is periodically written to disk in checkpoints, followed by a copy of the container superblock
at that point in time. Checkpoint information is stored in two regions: The checkpoint descriptor area contains in-
stances of checkpoint_map_phys_t and nx_superblock_t, and the checkpoint data area contains ephemeral
objects that represent the in-memory state at the point in time when the checkpoint was written to disk.

When mounting a device, you use the most recent checkpoint information that's valid, as discussed in Mounting
an Apple File System Partition. If the process of writing a checkpoint is interrupted, that checkpoint is invalid and
therefore is ignored the next time the device is mounted, rolling the file system back to the last valid state. Because the
checkpoint stores in-memory state, mounting an Apple File System partition includes reading the ephemeral objects
from the checkpoint back into memory, re-creating that state in memory.

File-System Layer

File-system objects are made up of several records, and each record is stored as a key and value in a B-tree (an
instance of btree_node_phys_t). For example, a typical directory object is made up of an inode record, several
directory entry records, and an extended attributes record. A record contains an object identifier that's used to find it
within the B-tree that contains it.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

8

General-Purpose Types

Basic types that are used in a variety of contexts, and aren’t associated with any particular functionality.
paddr_t

A physical address of an on-disk block.
typedef inté4_t paddr_t;

Negative numbers aren’t valid addresses. This value is modeled as a signed integer to match I0Kit.
prange_t

A range of physical addresses.

struct prange {
paddr_t pr_start_paddr;
uinté4_t pr_block_count;
}i
typedef struct prange prange_t;

pr_start_paddr

The first block in the range

paddr_t pr_start_paddr;
pr_block_count

The number of blocks in the range.

uinté64_t pr_block_count;
uuld_t

A universally unique identifier.

typedef unsigned char uuid_t[16];

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

9

Objects

Depending on how they’re stored, objects have some differences, the most important of which is the way you use an
object identifier to find an object. At the container level, there are three storage methods for objects:

o Ephemeral objects are stored in memory for a mounted container, and are persisted across unmounts in a
checkpoint. Ephemeral objects for a mounted partition can be modified in place while they're in memory, but
they're always written back to disk as part of a new checkpoint. They're used for information that’s frequently
updated because of the performance benefits of in-place, in-memory changes.

o Physical objects are stored at a known block address on the disk, and are modified by writing the copy to a new
location on disk. Because the object identifier for a physical object is its physical address, this copy-on-write
behavior means that the modified copy has a different object identifier.

» Virtual objects are stored on disk at a block address that you look up using an object map. Virtual objects are
also copied when they are modified; however, both the original and the modified copy have the same object
identifier. When you look up a virtual object in an object map, you use a transaction identifier, in addition to the
object identifier, to specify the point in time that you want.

Regardless of their storage, objects on disk are never modified in place, and modified copies of an object are always
written to a new location on disk. To access an object, you need to know its storage and its identifier. For virtual objects,
you also need a transaction identifier. The storage for an object is almost always implicit from the context in which
that identifier appears. For example, the object identifier for the space manager is stored in the nx_spaceman_oid
field of nx_superblock_t, and the documentation for that field says that the space manager is always an ephemeral
object.

Object identifiers are unique inside the entire container, within their storage method. For example, no two virtual
objects can have the same identifier — even when stored in different object maps — because their storage methods
are the same. However, a virtual object and a physical object can have the same identifier because their storage
methods are different. For information about determining the identifier for a new object, see oid_t.

When writing a new object to disk, fill all unused space in the block with zeros. Future versions of Apple File System
add new fields at the end of a structure; zeroing out the uninitialized bytes makes it possible to determine whether data
has been stored in a field that was added later, such as the apfs_cloneinfo_xid field of apfs_superblock_t.

obj_phys_t

A header used at the beginning of all objects.

struct obj_phys {

uint8_t o_cksum[MAX_CKSUM_SIZE];
oid_t o_oid;
xid_t o_xid;

uint32_t o_type;
uint32_t o_subtype;
+i
typedef struct obj_phys obj_phys_t;

#define MAX_CKSUM_SIZE 8

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

10

Objects
Supporting Data Types

o_cksum

The Fletcher 64 checksum of the object.

uint8_t o_cksum[MAX_CKSUM_SIZE];
o_oid

The object’s identifier.

oid_t o_oid;
o_xid

The identifier of the most recent transaction that this object was modified in.

xid_t o_xid;
o_type

The object’s type and flags.

uint32_t o_type;

An object type is a 32-bit value: The low 16 bits indicate the type using the values listed in Object Types, and the high
16 bits are flags using the values listed in Object Type Flags.

o_subtype

The object’s subtype.
uint32_t o_subtype;
For the values used in this field, see Object Types.

Subtypes indicate the type of data stored in a data structure such as a B-tree. For example, a node in a B-tree that
contains volume records has a type of OBJECT_TYPE_BTREE_NODE and a subtype of OBJECT_TYPE_FS.

MAX_CKSUM_SIZE

The number of bytes used for an object checksum.

#define MAX_CKSUM_SIZE 8
Supporting Data Types

Types used as unique identifiers within an object.

typedef uinté64_t oid_t;
typedef uinté4_t xid_t;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

(K

Objects
Object Identifier Constants

oid_t

An object identifier.

typedef uinté64_t oid_t;

Objects are identified by this number as follows:
» For a physical object, its identifier is the logical block address on disk where the object is stored.
o For an ephemeral object, its identifier is a number.
o For avirtual object, its identifier is a number.

For more information about physical, ephemeral, or virtual objects, see Objects.

To determine the identifier for a new physical object, find a free block using the space manager, and use that block’s
address. To determine the identifier for a new ephemeral or virtual object, check the value of nx_superblock_t.
nx_next_oid. New ephemeral and virtual object identifiers must be monotonically increasing.

Note

Although both ephemeral and virtual objects use nx_next_oid field of nx_superblock_t in Apple's imple-
mentation, this isn't guaranteed or required. Ephemeral and virtual objects are stored in different places, so it's
valid to encounter (or create) an ephemeral object and a virtual object that have the same identifier.

xid_t

A transaction identifier.
typedef uinté64_t xid_t;
Transactions are uniquely identified by a monotonically increasing number.

The number zero isn’t a valid transaction identifier. Implementations of Apple File System can use it as a sentinel value
in memory — for example, to refer to the current transaction — but must not let it appear on disk.

This data type is sufficiently large that you aren’t expected to ever run out of transaction identifiers. For example,
if you created 1,000,000 transactions per second, it would take more than 5,000 centuries to exhaust the available
transaction identifiers.

If a new transaction identifier isn't available, that's an unrecoverable error. Identifiers aren’t allowed to restart from
one or to be reused.

Object Identifier Constants

Constants used for virtual objects that always have a given identifier.

#define OID_NX_SUPERBLOCK 1
#define OID_INVALID OULL
#define OID_RESERVED_COUNT 1024

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

12

Objects
Object Type Masks

OID_NX_SUPERBLOCK

The ephemeral object identifier for the container superblock.
#define OID_NX_SUPERBLOCK 1

Although the container superblock is stored in memory like other ephemeral objects, it isn't saved on disk in the same
area. For details, see Mounting an Apple File System Partition.

OID_INVALID

An invalid object identifier.

#define OID_INVALID @QULL
OID_RESERVED_COUNT

The number of object identifiers that are reserved for objects with a fixed object identifier.
#define OID_RESERVED_COUNT 1024
This range of identifiers is reserved for physical, virtual, and ephemeral objects.

Currently, the only object with a reserved identifier is the container superblock, as described in 0OID_NX_SUPERBLOCK.
All other object identifiers less than OID_RESERVED_COUNT are reserved by Apple.

Object Type Masks

Bit masks used to access specific portions of an object type.

#define OBJECT_TYPE_MASK 0x0000ffff
#define OBJECT_TYPE_FLAGS_MASK oxffffoooe
#define OBJ_STORAGETYPE_MASK 0xCc0000000

#define OBJECT_TYPE_FLAGS_DEFINED_MASK 0xf8000000
OBJECT_TYPE_MASK

The bit mask used to access the type.
#define OBJECT_TYPE_MASK ©x0000ffff

For the values that appear in this bit field, see Object Types.
OBJECT_TYPE_FLAGS_MASK

The bit mask used to access the flags.
#define OBJECT_TYPE_FLAGS_MASK 0xffffo0000

For the values that appear in this bit field, see Object Type Flags.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

13

Objects

Object Types

OBJ_STORAGETYPE_MASK

The bit mask used to access the storage portion of the object type.

#define

OBJ_STORAGETYPE_MASK 0xc0000000

For the values that appear in this bit field, see Object Type Flags.

OBJECT_TYPE_FLAGS_DEFINED_MASK

A bit mask of all bits for which flags are defined.

#define OBJECT_TYPE_FLAGS_DEFINED_MASK 0xf8000000

Object Types

Values used as types and subtypes by the obj_phys_t structure

#define

#define
#define

#define
#define
#define
#define
#define

#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define

OBJECT_TYPE_NX_SUPERBLOCK

OBJECT_TYPE_BTREE
OBJECT_TYPE_BTREE_NODE

OBJECT_TYPE_SPACEMAN
OBJECT_TYPE_SPACEMAN_CAB
OBJECT_TYPE_SPACEMAN_CIB
OBJECT_TYPE_SPACEMAN_BITMAP
OBJECT_TYPE_SPACEMAN_FREE_QUEUE

OBJECT_TYPE_EXTENT_LIST_TREE
OBJECT_TYPE_OMAP
OBJECT_TYPE_CHECKPOINT_MAP

OBJECT_TYPE_FS
OBJECT_TYPE_FSTREE
OBJECT_TYPE_BLOCKREFTREE
OBJECT_TYPE_SNAPMETATREE

OBJECT_TYPE_NX_REAPER
OBJECT_TYPE_NX_REAP_LIST
OBJECT_TYPE_OMAP_SNAPSHOT
OBJECT_TYPE_EFI_JUMPSTART
OBJECT_TYPE_FUSION_MIDDLE_TREE
OBJECT_TYPE_NX_FUSION_WBC
OBJECT_TYPE_NX_FUSION_WBC_LIST
OBJECT_TYPE_ER_STATE

OBJECT_TYPE_GBITMAP
OBJECT_TYPE_GBITMAP_TREE
OBJECT_TYPE_GBITMAP_BLOCK

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

0x00000001

0x00000002
0x00000003

0x00000005
0x00000006
0x00000007
0x00000008
0x00000009

0x0000000a
0x0000000b
0x0000000C

0x0000000d
0x0000000e
0x0000000T
0x00000010

0x00000011
0x00000012
0x00000013
0x00000014
0x00000015
0x00000016
0x00000017
0x00000018

0x00000019

0x0000001a
0x0000001b

14

Objects
Object Types

#define OBJECT_TYPE_ER_RECOVERY_BLOCK 0x0000001c

#define OBJECT_TYPE_SNAP_META_EXT 0x0000001d
#define OBJECT_TYPE_INTEGRITY_META 0x0000001e
#define OBJECT_TYPE_FEXT_TREE 0x0000001f
#define OBJECT_TYPE_RESERVED_20 0x00000020
#define OBJECT_TYPE_INVALID 0x00000000
#define OBJECT_TYPE_TEST 0x000000ff
#define OBJECT_TYPE_CONTAINER_KEYBAG 'keys'
#define OBJECT_TYPE_VOLUME_KEYBAG 'recs'
#define OBJECT_TYPE_MEDIA_KEYBAG 'mkey'

The value of obj_phys_t.o_type & OBJECT_TYPE_MASK is one of these constants.
OBJECT_TYPE_NX_SUPERBLOCK

A container superblock (nx_superblock_t).

#define OBJECT_TYPE_NX_SUPERBLOCK 0x00000001
OBJECT_TYPE_BTREE

A B-tree root node (btree_node_phys_t).

#define OBJECT_TYPE_BTREE 0x00000002
OBJECT_TYPE_BTREE_NODE

A B-tree node (btree_node_phys_t).

#define OBJECT_TYPE_BTREE_NODE 0x00000003
OBJECT_TYPE_SPACEMAN

A space manager (spaceman_phys_t).

#define OBJECT_TYPE_SPACEMAN 0x00000005
OBJECT_TYPE_SPACEMAN_CAB

A chunk-info address block (cib_addr_block) used by the space manager.

#define OBJECT_TYPE_SPACEMAN_CAB 0x00000006
OBJECT_TYPE_SPACEMAN_CIB

A chunk-info block (chunk_info_block) used by the space manager.

#define OBJECT_TYPE_SPACEMAN_CIB 0x00000007

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

15

Objects
Object Types

OBJECT_TYPE_SPACEMAN_BITMAP

A free-space bitmap used by the space manager.

#define OBJECT_TYPE_SPACEMAN_BITMAP 0x00000008
OBJECT_TYPE_SPACEMAN_FREE_QUEUE

A free-space queue (a mapping from spaceman_free_queue_key_t to spaceman_free_queue_t), used by the
space manager.

#define OBJECT_TYPE_SPACEMAN_FREE_QUEUE 0x00000009

This type is used only as a subtype of a tree.
OBJECT_TYPE_EXTENT_LIST_TREE

An extents-list tree (a mapping from paddr_t to prange_t).
#define OBJECT_TYPE_EXTENT_LIST_TREE 0x0000000a

The keys are an offset into the logical start of the extent, and the value is the physical location where that data is
stored.

This type is used only as a subtype of a tree.
OBJECT_TYPE_OMAP

As a type, an object map (omap_phys_t); as a subtype, a tree that stores the records of an object map (a mapping
fromomap_key_t toomap_val_t).

#define OBJECT_TYPE_OMAP 0©x0000000b
OBJECT_TYPE_CHECKPOINT_MAP

A checkpoint map (checkpoint_map_phys_t).

#define OBJECT_TYPE_CHECKPOINT_MAP 0x0000000c
OBJECT_TYPE_FS

A volume (apfs_superblock_t).

#define OBJECT_TYPE_FS 0x0000000d
OBJECT_TYPE_FSTREE

A tree containing file-system records.
#define OBJECT_TYPE_FSTREE 0©x0000000e
This type is used only as a subtype of a tree.

The keys and values stored in the tree vary. Each key begins with j_key_t, which contains a field that indicates the
type of that key and its value.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

16

Objects
Object Types

OBJECT_TYPE_BLOCKREFTREE

A tree containing extent references (a mapping from j_phys_ext_key_tto j_phys_ext_val_t).
#define OBJECT_TYPE_BLOCKREFTREE ©x0000000f

This type is used only as a subtype of a tree.
OBJECT_TYPE_SNAPMETATREE

A tree containing snapshot metadata for a volume (a mapping from j_snap_metadata_key_t to j_snap_
metadata_val_t).

#define OBJECT_TYPE_SNAPMETATREE 0x00000010

This type is used only as a subtype of a tree.
OBJECT_TYPE_NX_REAPER

Areaper (nx_reaper_phys_t).

#define OBJECT_TYPE_NX_REAPER 0x00000011
OBJECT_TYPE_NX_REAP_LIST

A reaper list (nx_reap_list_phys_t).

#define OBJECT_TYPE_NX_REAP_LIST 0x00000012
OBJECT_TYPE_OMAP_SNAPSHOT

A tree containing information about snapshots of an object map (a mapping from xid_t to omap_snapshot_t).
#define OBJECT_TYPE_OMAP_SNAPSHOT ©x00000013

This type is used only as a subtype of a tree.
OBJECT_TYPE_EFI_JUMPSTART

EFl information used for booting (nx_efi_jumpstart_t).

#define OBJECT_TYPE_EFI_JUMPSTART 0x00000014
OBJECT_TYPE_FUSION_MIDDLE_TREE

A tree used for Fusion devices to track blocks from the hard drive that are cached on the solid-state drive (a mapping
from fusion_mt_key_tto fusion_mt_val_t).

#define OBJECT_TYPE_FUSION_MIDDLE_TREE 0x00000015

This type is used only as a subtype of a tree.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

17

Objects
Object Types

OBJECT_TYPE_NX_FUSION_WBC

A write-back cache state (fusion_wbc_phys_t) used for Fusion devices.

#define OBJECT_TYPE_NX_FUSION_WBC ©x00000016
OBJECT_TYPE_NX_FUSION_WBC_LIST

A write-back cache list (fusion_wbc_1list_phys_t) used for Fusion devices.

#define OBJECT_TYPE_NX_FUSION_WBC_LIST 0x00000017
OBJECT_TYPE_ER_STATE

An encryption-rolling state (er_state_phys_t).

#define OBJECT_TYPE_ER_STATE 0x00000018
OBJECT_TYPE_GBITMAP

A general-purpose bitmap (gbitmap_phys_t).

#define OBJECT_TYPE_GBITMAP 0x00000019
OBJECT_TYPE_GBITMAP_TREE

A B-tree of general-purpose bitmaps (a mapping from uinté4_t touinté4_t).
#define OBJECT_TYPE_GBITMAP_TREE 0x0000001a

This type is used only as a subtype of a tree.
OBJECT_TYPE_GBITMAP_BLOCK

A block containing a general-purpose bitmap (gbitmap_block_phys_t).

#define OBJECT_TYPE_GBITMAP_BLOCK 0x0000001b
OBJECT_TYPE_ER_RECOVERY_BLOCK

Information that can be used to recover from a system crash if one occurs during the encryption rolling process
(er_recovery_block_phys_t).

#define OBJECT_TYPE_ER_RECOVERY_BLOCK 0x0000001c
OBJECT_TYPE_SNAP_META_EXT

Additional metadata about snapshots (snap_meta_ext_obj_phys_t.)

#define OBJECT_TYPE_SNAP_META_EXT 0©x0000001d

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

18

Objects
Object Types

OBJECT_TYPE_INTEGRITY_META

An integrity metadata object (integrity_meta_phys_t).

#define OBJECT_TYPE_INTEGRITY_META 0x0000001e
OBJECT_TYPE_FEXT_TREE

A B-tree of file extents (a mapping from fext_tree_key_tto fext_tree_val_t).
#define OBJECT_TYPE_FEXT_TREE 0x0000001f

This type is used only as a subtype of a tree.
OBJECT_TYPE_RESERVED_20

Reserved.

#define OBJECT_TYPE_RESERVED_20 0x00000020
OBJECT_TYPE_INVALID

As a type, an invalid object; as a subtype, an object with no subtype.

#define OBJECT_TYPE_INVALID 0x00000000
OBJECT_TYPE_TEST

Reserved for testing.
#define OBJECT_TYPE_TEST 0x000000ff

Don't create objects of this type on disk. If you find an object of this type in production, file a bug against the Apple
File System implementation.

This type isn't reserved by Apple; non-Apple implementations of Apple File System can use it during testing.
OBJECT_TYPE_CONTAINER_KEYBAG

A container’s keybag (media_keybag_t).

#define OBJECT_TYPE_CONTAINER_KEYBAG 'keys'
OBJECT_TYPE_VOLUME_KEYBAG

A volume's keybag (media_keybag_t).

#define OBJECT_TYPE_VOLUME_KEYBAG 'recs’
OBJECT_TYPE_MEDIA_KEYBAG

A media keybag (media_keybag_t).

#define OBJECT_TYPE_MEDIA_KEYBAG 'mkey'

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

19

Objects
Object Type Flags

Object Type Flags

The flags used in the object type to provide additional information.

#define OBJ_VIRTUAL 0x00000000
#define OBJ_EPHEMERAL 0x80000000
#define OBJ_PHYSICAL 0x40000000
#define OBJ_NOHEADER 0x20000000
#define OBJ_ENCRYPTED 0x10000000
#define OBJ_NONPERSISTENT 0x08000000

The value of obj_phys_t.o_type & OBJECT_TYPE_FLAGS_MASK uses these constants. The value of obj_
phys_t.o_type & OBJ_STORAGETYPE_MASK usesonly OBJ_VIRTUAL, OBJ_EPHEMERAL, and OBJ_PHYSICAL.

The flags on an object’s type must indicate whether the object is virtual, ephemeral, or physical by setting either the
OBJ_EPHEMERAL or OBJ_PHYSICAL flag, or setting neither flag. An object type that contains both flags is invalid.

The absence of both flags indicates a virtual object. The OBJ_VIRTUAL constant is defined to allow code that tests
for virtual objects to match code testing for physical or ephemeral objects, even though there’s no corresponding bit
set in the object’s type. For example:

obj_phys_t obj = /% assume this exists */

if ((obj.o_type & OBJ_STORAGETYPE_MASK) == OBJ_VIRTUAL) { ...}
elif ((obj.o_type & OBJ_STORAGETYPE_MASK) == OBJ_EPHEMERAL) { ... }
elif ((obj.o_type & OBJ_STORAGETYPE_MASK) == OBJ_PHYSICAL) { ... }

else { /* error */ }
OBJ_VIRTUAL

A virtual object.

#define OBJ_VIRTUAL 0©x00000000
OBJ_EPHEMERAL

An ephemeral object.

#define OBJ_EPHEMERAL 0x80000000
OBJ_PHYSICAL

A physical object.

#define OBJ_PHYSICAL 0x40000000
OBJ_NOHEADER

An object stored without an obj_phys_t header.
#define OBJ_NOHEADER 0x20000000

This flag is used, for example, by the space manager's bitmap.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

20

Objects
Object Type Flags

OBJ_ENCRYPTED

An encrypted object.

#define OBJ_ENCRYPTED 0x10000000
OBJ_NONPERSISTENT

An ephemeral object that isn't persisted across unmounting.
#define OBJ_NONPERSISTENT 0x08000000

Objects with this flag never appear on disk. If you find an object of this type in production, file a bug against the Apple
File System implementation.

This flag isn't reserved by Apple; non-Apple implementations of Apple File System can mark their runtime-only data
structures with OBJ_NONPERSISTENT | OBJ_EPHEMERAL.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

21

EFl Jumpstart

A partition formatted using the Apple File System contains an embedded EFI driver that's used to boot a machine from

that partition.

Booting from an Apple File System Partition

You can locate the EFI driver by reading a few data structures, starting at a known physical address on disk. You don’t
need any support for reading or mounting Apple File System to locate the EFI driver. This design intentionally simplifies
the steps needed to boot, which means the code needed to boot a piece of hardware or virtualization software can
likewise be simpler. To boot using the embedded EFI driver, do the following:

1.

10.

1.

Read physical block zero from the partition. This block contains a copy of the container superblock, which is
aninstance of nx_superblock_t.

Read the nx_o field of the superblock, which is an instance of obj_phys_t. Then read the o_cksum field
of the nx_o field of the superblock, which contains the Fletcher 64 checksum of the object. Verify that the
checksum is correct.

Read the nx_magic field of the superblock. Verify that the field's value is NX_MAGIC (the four-character code
'BSXN"').

Read the nx_efi_jumpstart field of the superblock. This field contains the physical block address
(also referred to as the physical object identifier) for the EFI jumpstart information, which is an instance of
nx_efi_jumpstart_t.

Read the nej_magic field of the EFI jumpstart information. Verify that the field’s value is NX_EFI_JUMP
START_MAGIC (the four-character code 'RDSJ"').

Read the nej_o field of the EFI jumpstart information, which is an instance of obj_phys_t. Then read the
o_cksumfield of the nej _o field of the jumpstart information, which contains the Fletcher 64 checksum of the
object. Verify that the checksum is correct.

Read the nej_version field of the EFI jumpstart information. This field contains the EFI jumpstart version
number. Verify that the field’s value is NX_EFI_JUMPSTART_VERSION (the number one).

Read the nej_efi_file_1len field of the jumpstart information. This field contains the length, in bytes, of
the embedded EFI driver. Allocate a contiguous block of memory of at least that size, which you'll later use to
store the EFI driver.

Read the nej_num_extents field of the jumpstart information, and then read that number of prange_t
records from the nej_rec_extents field.

Read each extent of the EFI driver into memory, contiguously, in the order they're listed.

Load the EFI driver and start executing it.

Implementation Outline

The code listing below shows one way to boot using the embedded EFI driver, assuming the functions listed at the
beginning are defined.

nx_superblock_t* read_superblock(int address) {

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

22

EFl Jumpstart
Booting from an Apple File System Partition

// Read the given physical block from disk
// and return its contents as a pointer to an nx_superblock_t.

nx_efi_jumpstart_t*x read_jumpstart(int address) {
// Read the given physical block from disk
// and return its contents as a pointer to an nx_efi_jumpstart_t.

void* read_block(int address) {
// Read the given physical block from disk
// and return a pointer to its contents.

uint8_tx fletcheré64_checksum(void*x object) {
// Calculate and return a Fletcher 64 checksum.

void assert_arrays_equal(int length, uint8_tx x, uint8_tx y) {
// Assert that the given arrays contain the same data.

void load_and_execute(voidx address) {
// Load the EFI driver at the specified address
// and then start executing it.

int main() {
nx_superblock_t* superblock = read_superblock(0);
assert(superblock->nx_o.o_cksum == fletcheré64_checksum(&superblock));
assert(superblock->nx_magic == 'BSXN');

paddr_t jumpstart_address = superblock->nx_efi_jumpstart;
nx_efi_jumpstart_t*x jumpstart = read_jumpstart(jumpstart_address);

uint8_tx checksum = fletcher64_checksum(&jumpstart);
assert_arrays_equal (MAX_CKSUM_SIZE, jumpstart->nej_o.o_cksum, checksum);
assert(jumpstart->nej_version == 1);

void* efi_driver = malloc(jumpstart->nej_efi_file_len);
void* efi_driver_cursor = efi_driver;

for (int 1 = @; i < jumpstart->nej_num_extents; i++) {
prange_t efi_extent_address = jumpstart->nej_rec_extents[il];
for (int j = 0; j < efi_extent_address.pr_block_count; j++) {
void* efi_block = read_block(efi_extent_address.pr_start_paddr + j);
memcpy (efi_driver_cursor, efi_block, superblock->nx_block_size);
efi_driver_cursor += superblock->nx_block_size;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

23

EFl Jumpstart
nx_efi_jumpstart_t

load_and_execute(efi_driver);

return 9;

H
nx_efi_jumpstart_t

Information about the embedded EFI driver that's used to boot from an Apple File System partition.

struct nx_efi_jumpstart {
obj_phys_t nej_o;

uint32_t nej_magic;

uint32_t nej_version;

uint32_t nej_efi_file_len;

uint32_t nej_num_extents;

uinté64_t nej_reserved[16];

prange_t nej_rec_extents[];
+i
typedef struct nx_efi_jumpstart nx_efi_jumpstart_t;
#define NX_EFI_JUMPSTART_MAGIC '"RDSJ'

#define NX_EFI_JUMPSTART_VERSION 1
nej_o

The object’s header.

obj_phys_t nej_o;
nej_magic

A number that can be used to verify that you're reading an instance of nx_efi_jumpstart_t.
uint32_t nej_magic;

The value of this field is always NX_EFI_JUMPSTART_MAGIC.
nej_version

The version of this data structure.
uint32_t nej_version;
The value of this field is always NX_EFI_JUMPSTART_VERSION.

nej_efi_file_1len

The size, in bytes, of the embedded EFI driver.

uint32_t nej_efi_file_len;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

24

EFl Jumpstart
Partition UUIDs

nej_num_extents

The number of extents in the array.

uint32_t nej_num_extents;
nej_reserved

Reserved.
uinté4_t nej_reserved[16];

Populate this field with zero when you create a new instance, and preserve its value when you modify an existing
instance.

nej_rec_extents

The locations where the EF| driver is stored.

prange_t nej_rec_extents[];
NX_EFI_JUMPSTART_MAGIC

The value of the nej_magic field.
#define NX_EFI_JUMPSTART_MAGIC 'RDSJ'

This magic number was chosen because in hex dumps it appears as “"JSDR", which is an abbreviated form of jumpstart
driver record.

NX_EFI_JUMPSTART_VERSION

The version number for the EFI jumpstart.

#define NX_EFI_JUMPSTART_VERSION 1
Partition UUIDs

Partition types used in GUID partition table entries.

#define APFS_GPT_PARTITION_UUID "7C3457EF-0000-11AA-AA11-00306543ECAC”
APFS_GPT_PARTITION_UUID

The partition type for a partition that contains an Apple File System container.

#define APFS_GPT_PARTITION_UUID "7C3457EF-0000-11AA-AA11-00306543ECAC"

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

25

Container

The container includes several top-level objects that are shared by all of the container’s volumes:

o Checkpoint description and data areas store ephemeral objects in a way that provides crash protection. At the
end of each transaction, new state is saved by writing a checkpoint.

o The space manager keeps track of available space within the container and is used to allocate and free blocks
that store objects and file data.

o The reaper manages the deletion of objects that are too large to be deleted in the time between transactions.
It keeps track of the deletion state so these objects can be deleted across multiple transactions.

The container superblock describes the location of all of these objects.

Because a single container can have multiple volumes, configurations that would require multiple partitions under
other file systems can usually share a single partition with Apple File System. For example, a drive can be configured
with two bootable volumes — one with a shipping version of macOS and one with a beta version — as well as a user
data volume. All three of these volumes share free space, meaning you don’t have to decide ahead of time how to
divide space between them.

Mounting an Apple File System Partition

To mount the volumes of a partition that's formatted using the Apple File System, do the following:

1. Read block zero of the partition. This block contains a copy of the container superblock (an instance of
nx_superblock_t). It might be a copy of the latest version or an old version, depending on whether the
drive was unmounted cleanly.

2. Use the block-zero copy of the container superblock to locate the checkpoint descriptor area by reading the
nx_xp_desc_base field.

3. Read the entries in the checkpoint descriptor area, which are instances of checkpoint_map_phys_t or
nx_superblock_t.

4. Find the container superblock that has the largest transaction identifier and isn't malformed. For example,
confirm that its magic number and checksum are valid. That superblock and its checkpoint-mapping blocks
comprise the latest valid checkpoint. The superblock’s fields, like nx_xp_desc_blocks and nx_data_1len,
indicate which checkpoint-mapping blocks belong to that superblock.

Note

The checkpoint description area is a ring buffer stored as an array. Walking backward from the latest valid
superblock to read all of its checkpoint-mapping blocks sometimes requires wrapping around from the
first block to the last block.

5. Read the ephemeral objects listed in the checkpoint from the checkpoint data area into memory. If any of the
ephemeral objects is malformed, the checkpoint that contains that object is malformed; go back to the previous
step and mount from an older checkpoint.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

26

Container
nx_superblock_t

The details of this step vary. For example, if you're mounting the partition read-only and performance isn't a
consideration, you can skip this step and read from the checkpoint every time you need to access an ephemeral
object.

6. Locate the container object map using the nx_omap_o1id field of the container superblock.

7. Read the list of volumes from the nx_fs_oid field of the container superblock. If you're mounting only a
particular volume, you can ignore the virtual object identifiers for the other volumes.

8. For each volume, look up the specified virtual object identifier in the container object map to locate the volume
superblock (an instance of apfs_superblock_t). If you're mounting only a particular volume, you can skip
this step for the other volumes.

9. For each volume, read the root file system tree’s virtual object identifier from the apfs_root_tree_oid field,
and then look it up in the volume object map indicated by the apfs_omap_oid field. If you're mounting only a
particular volume, you can skip this step for the other volumes.

10. Walk the root file system tree as needed by your implementation to mount the file system.
nx_superblock_t

A container superblock.

struct nx_superblock {
obj_phys_t nx_o;

uint32_t nx_magic;

uint32_t nx_block_size;

uinté4_t nx_block_count;

uinté4_t nx_features;

uintés4_t nx_readonly_compatible_features;
uinté4_t nx_incompatible_features;
uuid_t nx_uuid;

oid_t nx_next_oid;

xid_t nx_next_xid;

uint32_t nx_xp_desc_blocks;
uint32_t nx_xp_data_blocks;
paddr_t nx_xp_desc_base;

paddr_t nx_xp_data_base;

uint32_t nx_xp_desc_next;

uint32_t nx_xp_data_next;

uint32_t nx_xp_desc_index;
uint32_t nx_xp_desc_1len;

uint32_t nx_xp_data_index;

uint32_t nx_xp_data_len;

oid_t nx_spaceman_oid;
oid_t nx_omap_oid;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

27

Container
nx_superblock_t

oid_t nx_reaper_oid;

uint32_t nx_test_type;

uint32_t nx_max_file_systems;

oid_t nx_fs_oid[NX_MAX_FILE_SYSTEMS];
uintés4_t nx_counters[NX_NUM_COUNTERS];
prange_t nx_blocked_out_prange;

oid_t nx_evict_mapping_tree_oid;
uintés4_t nx_flags;

paddr_t nx_efi_jumpstart;

uuid_t nx_fusion_uuid;

prange_t nx_keylocker;

uintés4_t nx_ephemeral_info[NX_EPH_INFO_COUNT];

oid_t nx_test_oid;

oid_t nx_fusion_mt_oid;

oid_t nx_fusion_wbc_oid;
prange_t nx_fusion_wbc;

uinté4_t nx_newest_mounted_version;
prange_t nx_mkb_locker;

}i
typedef struct nx_superblock nx_superblock_t;

#define NX_MAGIC 'BSXN'
#define NX_MAX_FILE_SYSTEMS 100

#define NX_EPH_INFO_COUNT

#define NX_EPH_MIN_BLOCK_COUNT

#define NX_MAX_FILE_SYSTEM_EPH_STRUCTS
#define NX_TX_MIN_CHECKPOINT_COUNT
#define NX_EPH_INFO_VERSION_1

[l S S 0 e S A

Note that all fields are 64-bit aligned.
NnXx_o

The object’s header.

obj_phys_t nx_o;
nx_magic
A number that can be used to verify that you're reading an instance of nx_superblock_t.

uint32_t nx_magic;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

28

Container
nx_superblock_t

The value of this field is always NX_MAGIC.
nx_block_size

The logical block size used in the Apple File System container.
uint32_t nx_block_size;

This size is often the same as the block size used by the underlying storage device, but it can also be an integer
multiple of the device’s block size.

nx_block_count

The total number of logical blocks available in the container.

uint64_t nx_block_count;
nx_Tfeatures

A bit field of the optional features being used by this container.
uinté64_t nx_features;
For the values used in this bit field, see Optional Container Feature Flags.

If your implementation doesn’t implement an optional feature that's in use, ignore that feature in this list and mount
the container’s volumes as usual.

nx_readonly_compatible_features

A bit field of the read-only compatible features being used by this container.
uint64_t nx_readonly_compatible_features;
For the values used in this bit field, see Read-Only Compatible Container Feature Flags.

If your implementation doesn’t implement a read-only compatible feature that's in use, mount the container’s volumes
as read-only.

nx_incompatible_features

A bit field of the backward-incompatible features being used by this container.
uinté64_t nx_incompatible_features;
For the values used in this bit field, see Incompatible Container Feature Flags.

If your implementation doesn’'t implement a read-only feature that's in use, it must not mount the container’s volumes.
nx_uuid

The universally unique identifier of this container.

uuid_t nx_uuid;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

29

Container
nx_superblock_t

nx_next_oid

The next object identifier to be used for a new ephemeral or virtual object.

oid_t nx_next_oid;
nx_next_xid

The next transaction to be used.

xid_t nx_next_xid;
nx_xp_desc_blocks

The number of blocks used by the checkpoint descriptor area.

uint32_t nx_xp_desc_blocks;

The highest bit of this number is used as a flag, as discussed in nx_xp_desc_base. Ignore that bit when accessing
this field as a count.

nx_xp_data_blocks

The number of blocks used by the checkpoint data area.

uint32_t nx_xp_data_blocks;

The highest bit of this number is used as a flag, as discussed in nx_xp_data_base. Ignore that bit when accessing
this field as a count.

nx_xp_desc_base

Either the base address of the checkpoint descriptor area or the physical object identifier of a tree that contains the
address information.

paddr_t nx_xp_desc_base;

If the highest bit of nx_xp_desc_blocks is zero, the checkpoint descriptor area is contiguous and this field contains
the address of the first block. Otherwise, the checkpoint descriptor area isn't contiguous and this field contains the
physical object identifier of a B-tree. The tree's keys are block offsets into the checkpoint descriptor area, and its
values are instances of prange_t that contain the fragment'’s size and location.

nx_xp_data_base

Either the base address of the checkpoint data area or the physical object identifier of a tree that contains the address
information.

paddr_t nx_xp_data_base;

If the highest bit of nx_xp_data_blocks is zero, the checkpoint data area is contiguous and this field contains the
address of the first block. Otherwise, the checkpoint data area isn’t contiguous and this field contains the object
identifier of a B-tree. The tree's keys are block offsets into the checkpoint data area, and its values are instances of
prange_t that contain the fragment's size and location.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

30

Container
nx_superblock_t

nx_xp_desc_next

The next index to use in the checkpoint descriptor area.
uint32_t nx_xp_desc_next;

If the superblock is part of a checkpoint, this field must have a value. Otherwise, ignore the value of this field when
reading, and use zero as the value when creating a new instance. For example, this field has no meaning for the copy
of the superblock that’s stored in block zero.

nx_xp_data_next

The next index to use in the checkpoint data area.
uint32_t nx_xp_data_next;

If the superblock is part of a checkpoint, this field must have a value. Otherwise, ignore the value of this field when
reading, and use zero as the value when creating a new instance. For example, this field has no meaning for the copy
of the superblock that's stored in block zero.

nx_xp_desc_index

The index of the first valid item in the checkpoint descriptor area.
uint32_t nx_xp_desc_index;

If the superblock is part of a checkpoint, this field must have a value. Otherwise, ignore the value of this field when
reading, and use zero as the value when creating a new instance. For example, this field has no meaning for the copy
of the superblock that’s stored in block zero.

nx_xp_desc_1len

The number of blocks in the checkpoint descriptor area used by the checkpoint that this superblock belongs to.
uint32_t nx_xp_desc_len;

If the superblock is part of a checkpoint, this field must have a value. Otherwise, ignore the value of this field when
reading, and use zero as the value when creating a new instance. For example, this field has no meaning for the copy
of the superblock that's stored in block zero.

nx_xp_data_index

The index of the first valid item in the checkpoint data area.
uint32_t nx_xp_data_index;

If the superblock is part of a checkpoint, this field must have a value. Otherwise, ignore the value of this field when
reading, and use zero as the value when creating a new instance. For example, this field has no meaning for the copy
of the superblock that’s stored in block zero.

nx_xp_data_len
The number of blocks in the checkpoint data area used by the checkpoint that this superblock belongs to.

uint32_t nx_xp_data_len;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

31

Container
nx_superblock_t

If the superblock is part of a checkpoint, this field must have a value. Otherwise, ignore the value of this field when
reading, and use zero as the value when creating a new instance. For example, this field has no meaning for the copy
of the superblock that's stored in block zero.

nx_spaceman_oid

The ephemeral object identifier for the space manager.
oid_t nx_spaceman_oid;

nx_omap_oid

The physical object identifier for the container’s object map.
oid_t nx_omap_oid;

nx_reaper_oid

The ephemeral object identifier for the reaper.

oid_t nx_reaper_oid;

nx_test_type

Reserved for testing.
uint32_t nx_test_type;

This field never has a value other than zero on disk. If you find another value in production, file a bug against the Apple
File System implementation.

This field isn't reserved by Apple; non-Apple implementations of Apple File System can use it to store an object type
during testing.

nx_max_file_systems

The maximum number of volumes that can be stored in this container.
uint32_t nx_max_file_systems;

To calculate this value, divide the size of the container by 512 MiB and round up. For example, a container with 1.3 GiB
of space can contain three volumes. This value must not be larger than the value of NX_MAX_FILE_SYSTEMS.

nx_fs_oid

An array of virtual object identifiers for volumes.
oid_t nx_fs_oid[NX_MAX_FILE_SYSTEMS];

The objects’ types are all OBJECT_TYPE_BTREE and their subtypes are all OBJECT_TYPE_FSTREE.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

32

Container
nx_superblock_t

nx_counters

An array of counters that store information about the container.
uint64_t nx_counters[NX_NUM_COUNTERS];

These counters are primarily intended to help during development and debugging of Apple File System implementa-
tions. For the meaning of these counters, see nx_counter_id_t.

nx_blocked_out_prange

The physical range of blocks where space will not be allocated.
prange_t nx_blocked_out_prange;

This field is used with nx_evict_mapping_tree_oid while shrinking a partition. If nothing is currently blocked out,
the value of nx_blocked_out_prange.pr_block_count is zero and the value of nx_blocked_out_prange.
pr_start_paddr isignored.

nx_evict_mapping_tree_oid

The physical object identifier of a tree used to keep track of objects that must be moved out of blocked-out storage.
oid_t nx_evict_mapping_tree_oid;

The keys in this tree are physical addresses of blocks that must be moved, and the values are instances of
evict_mapping_val_t that describe where the blocks are being moved to.

This identifier is valid only while shrinking a partition. First, the blocks to be removed from the partition are added to the
nx_blocked_out_prange field. Next, every object that's stored in a blocked-out range is added to this tree. Finally,
every object in this tree has space allocated and is moved into the new space. Because the space manager honors
the blocked-out range, data is never moved from one blocked-out address to another address that's also blocked out.
After all data has been removed from the blocked-out range and this tree is empty, the partition shrinks and the block
count of nx_blocked_out_prange is set to zero, which clears the field.

nx_flags

Other container flags.
uinté4_t nx_flags;

For the values used in this bit field, see Container Flags.
nx_efi_jumpstart

The physical object identifier of the object that contains EFI driver data extents.
paddr_t nx_efi_jumpstart;

The object is an instance of nx_efi_jumpstart_t.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

33

Container
nx_superblock_t

nx_fusion_uuid

The universally unique identifier of the container’s Fusion set, or zero for non-Fusion containers.
uuid_t nx_fusion_uuid;

The hard drive and the solid-state drive each have a partition, which combine to make a single container. Each partition
has its own copy of the container superblock at block zero, and each copy has the same value for the low 127 bits of
this field. The highest bit is one for the Fusion set’s main device and zero for the second-tier device.

nx_keylocker

The location of the container’s keybag.
prange_t nx_keylocker;

The data at this location is an instance of kb_locker_t.
nx_ephemeral_info

An array of fields used in the management of ephemeral data.
uint64_t nx_ephemeral_info[NX_EPH_INFO_COUNT];
The first array entry records information about how the checkpoint data area’s size was chosen as follows:

nx_ephemeral_infol[@] = (min_block_count << 32)
| C(NX_MAX_FILE_SYSTEM_EPH_STRUCTS & OxFFFF) << 16)
| NX_EPH_INFO_VERSION_1;

The value of min_block_count depends on the size of the container. If the container is larger than 128 MiB, it takes
the value of NX_EPH_MIN_BLOCK_COUNT. Otherwise, it takes the value of spaceman_phys_t.sm_fq[SFQ_MAIN]
.sfg_tree_node_1limit from the space manager.

nx_test _oid

Reserved for testing.
oid_t nx_test_oid;

This field never has a value other than zero on disk. If you find another value in production, file a bug against the Apple
File System implementation.

This field isn't reserved by Apple; non-Apple implementations of Apple File System can use it to store an object iden-
tifier during testing.

nx_fusion_mt_oid

The physical object identifier of the Fusion middle tree (a B-tree mapping fusion_mt_key_ttofusion_mt_val_t),
or zero if for non-Fusion drives.

oid_t nx_fusion_mt_oid;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

34

Container
nx_superblock_t

nx_fusion_wbc_oid

The ephemeral object identifier of the Fusion write-back cache state (fusion_wbc_phys_t), or zero for non-Fusion
drives.

oid_t nx_fusion_wbc_oid;

nx_fusion_wbc

The blocks used for the Fusion write-back cache area, or zero for non-Fusion drives.
prange_t nx_fusion_wbc;

nx_newest_mounted_version

Reserved.
uint64_t nx_newest_mounted_version;

Apple's implementation uses this field to record the newest version of the software that ever mounted the container.
Other implementations of the Apple file System must not modify this field.

This integer is understood as a fixed-point decimal number of the form aaaaaaa.bbb.ccc.ddd.eee where ais a
major version number and b, ¢, d, and e are minor versions.

nx_mkb_locker

Wrapped media key.

prange_t nx_mkb_locker;
NX_MAGIC

The value of the nx_magic field.
#define NX_MAGIC 'BSXN'

This magic number was chosen because in hex dumps it appears as “NXSB”, which is an abbreviated form of NX
superblock.

NX_MAX_FILE_SYSTEMS

The maximum number of volumes that can be in a single container.

#define NX_MAX_FILE_SYSTEMS 100
NX_EPH_INFO_COUNT

The length of the array in the nx_ephemeral_info field.

#define NX_EPH_INFO_COUNT 4

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

35

Container
Container Flags

NX_EPH_MIN_BLOCK_COUNT

The default minimum size, in blocks, for structures that contain ephemeral data.
#define NX_EPH_MIN_BLOCK_COUNT 8

This value is used when choosing the size for a new container’s checkpoint data area, and the value used is recorded
inthe nx_ephemeral_info field.

NX_MAX_FILE_SYSTEM_EPH_STRUCTS

The number of structures that contain ephemeral data that a volume can have.
#define NX_MAX_FILE_SYSTEM_EPH_STRUCTS 4

This value is used when choosing the size for a new container’s checkpoint data area, and the value used is recorded
inthe nx_ephemeral_info field.

NX_TX_MIN_CHECKPOINT_COUNT

The minimum number of checkpoints that can fit in the checkpoint data area.
#define NX_TX_MIN_CHECKPOINT_COUNT 4

This value is used when choosing the size for a new container’s checkpoint data area.
NX_EPH_INFO_VERSION_1

The version number for structures that contain ephemeral data.
#define NX_EPH_INFO_VERSION_1 1

This value is recorded in the nx_ephemeral_info field.
Container Flags

The flags used for general information about a container.

#define NX_RESERVED_1 0x00000001LL
#define NX_RESERVED_2 0x00000002LL
#define NX_CRYPTO_SW 0x00000004LL

These flags are used by the nx_flags field of nx_superblock_t.
NX_RESERVED_1

Reserved.
#define NX_RESERVED_1 0x00000001LL

Don't set this flag, but preserve it if it's already set.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

36

Container
Optional Container Feature Flags

NX_RESERVED_2

Reserved.
#define NX_RESERVED_2 0x00000002LL

Don't add this flag to a container. If this flag is set, preserve it when reading the container, and remove it when modi-
fying the container.

NX_CRYPTO_SW

The container uses software cryptography.
#define NX_CRYPTO_SW Ox00000004LL
If this flag is set, the crypto_id field on all instances of j_file_extent_val_t has avalue of CRYPTO_SW_ID.

Note that a container that has no volumes never has this flag set, regardless of whether the container will use software
cryptography for new volumes. If you are creating a new volume in this scenario, determine whether to use software
or hardware cryptography by consulting the I/O Registry as discussed in |IOKit Fundamentals.

Optional Container Feature Flags

The flags used to describe optional features of an Apple File System container.

#define NX_FEATURE_DEFRAG 0x0000000000000001ULL
#define NX_FEATURE_LCFD 0x0000000000000002ULL
#define NX_SUPPORTED_FEATURES_MASK (NX_FEATURE_DEFRAG | NX_FEATURE_LCFD)

These flags are used by the nx_features field of nx_superblock_t.
NX_FEATURE_DEFRAG

The volumes in this container support defragmentation.

#define NX_FEATURE_DEFRAG 0x0000000000000001ULL
NX_FEATURE_LCFD

This container is using low-capacity Fusion Drive mode.
#define NX_FEATURE_LCFD 0x0000000000000002ULL

Low-capacity Fusion Drive mode is enabled when the solid-state drive has a smaller capacity and so the cache must
be smaller.

NX_SUPPORTED_FEATURES_MASK

A bit mask of all the optional features.

#define NX_SUPPORTED_FEATURES_MASK (NX_FEATURE_DEFRAG | NX_FEATURE_LCFD)

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

37

https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/TheRegistry/TheRegistry.html

Container
Read-Only Compatible Container Feature Flags

Read-Only Compatible Container Feature Flags

The flags used to describe read-only compatible features of an Apple File System container.
#define NX_SUPPORTED_ROCOMPAT_MASK (@x@ULL)

These flags are used by the nx_readonly_compatible_features field of nx_superblock_t. There are cur-
rently none defined.

NX_SUPPORTED_ROCOMPAT_MASK

A bit mask of all read-only compatible features.

#define NX_SUPPORTED_ROCOMPAT_MASK (©xQULL)
Incompatible Container Feature Flags

The flags used to describe backward-incompatible features of an Apple File System container.

#define NX_INCOMPAT_VERSION1 0x0000000000000001ULL
#define NX_INCOMPAT_VERSION2 0x0000000000000002ULL
#define NX_INCOMPAT_FUSION 0x0000000000000100ULL

#define NX_SUPPORTED_INCOMPAT_MASK (NX_INCOMPAT_VERSION2 | NX_INCOMPAT_FUSION)

These flags are used by the nx_incompatible_features field of nx_superblock_t.
NX_INCOMPAT_VERSION1

The container uses version 1 of Apple File System, as implemented in macOS 10.12.

#define NX_INCOMPAT_VERSION1 0x0000000000000001ULL

Important

Version 1 of the Apple File System was a prerelease that's incompatible with later versions. This document
describes only version 2 and later.

NX_INCOMPAT_VERSION2

The container uses version 2 of Apple File System, as implemented in macOS 10.13 and iOS 10.3.

#define NX_INCOMPAT_VERSION2 0x0000000000000002ULL
NX_INCOMPAT_FUSION

The container supports Fusion Drives.

#define NX_INCOMPAT_FUSION 0©x0000000000000100ULL

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

38

Container
Block and Container Sizes

NX_SUPPORTED_INCOMPAT_MASK

A bit mask of all the backward-incompatible features.

#define NX_SUPPORTED_INCOMPAT_MASK (NX_INCOMPAT_VERSION2 | NX_INCOMPAT_FUSION)

Block and Container Sizes

Constants used when choosing the size of a block or container.

The block size for a container is defined by the nx_block_size field of nx_superblock_t.

#define NX_MINIMUM_BLOCK_SIZE 4096
#define NX_DEFAULT_BLOCK_SIZE 4096
#define NX_MAXIMUM_BLOCK_SIZE 65536

#define NX_MINIMUM_CONTAINER_SIZE 1048576
NX_MINIMUM_BLOCK_SIZE

The smallest supported size, in bytes, for a block.
#define NX_MINIMUM_BLOCK_SIZE 4096

If you try to define a block size that's too small, some data structures won't be able to fit in a single block.
NX_DEFAULT_BLOCK_SIZE

The default size, in bytes, for a block.

#define NX_DEFAULT_BLOCK_SIZE 4096
NX_MAXIMUM_BLOCK_SIZE

The largest supported size, in bytes, for a block.
#define NX_MAXIMUM_BLOCK_SIZE 65536

If you try to define a block size that’s too large, parts of the block will be outside of the range of a 16-bit address.
NX_MINIMUM_CONTAINER_SIZE

The smallest supported size, in bytes, for a container.
#define NX_MINIMUM_CONTAINER_SIZE 1048576

This value is slightly less that the capacity of a floppy disk. For a container this size, statically allocated metadata
takes up about a third of the available space.

nx_counter_id_t

Indexes into a container superblock’s array of counters.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

39

Container
checkpoint_mapping_t

typedef enum {
NX_CNTR_OBJ_CKSUM_SET
NX_CNTR_OBJ_CKSUM_FAIL

In
P o

NX_NUM_COUNTERS = 32
} nx_counter_id_t;

These values are used as indexes into the array stored in the nx_counters field of nx_superblock_t
NX_CNTR_OBJ_CKSUM_SET

The number of times a checksum has been computed while writing objects to disk.

NX_CNTR_OBJ_CKSUM_SET = 0
NX_CNTR_OBJ_CKSUM_FATIL

The number of times an object’s checksum was invalid when reading from disk.

NX_CNTR_OBJ_CKSUM_FAIL = 1
NX_NUM_COUNTERS

The maximum number of counters.

NX_NUM_COUNTERS = 32
checkpoint_mapping_t

A mapping from an ephemeral object identifier to its physical address in the checkpoint data area.

struct checkpoint_mapping {
uint32_t cpm_type;
uint32_t cpm_subtype;

uint32_t cpm_size;
uint32_t cpm_pad;
oid_t cpm_fs_oid;
oid_t cpm_oid;
oid_t cpm_paddr;

i
typedef struct checkpoint_mapping checkpoint_mapping_t;

cpm_type

The object’s type.
uint32_t cpm_type;

An object type is a 32-bit value: The low 16 bits indicate the type using the values listed in Object Types, and the high
16 bits are flags using the values listed in Object Type Flags.

This field has the same meaning and behavior as the o_type field of obj_phys_t.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

40

Container
checkpoint_map_phys_t

cpm_subtype

The object’s subtype.
uint32_t cpm_subtype;
One of the values listed in Object Types.

Subtypes indicate the type of data stored in a data structure such as a B-tree. For example, a leaf node in a B-tree that
contains file-system records has a type of OBJECT_TYPE_BTREE_NODE and a subtype of OBJECT_TYPE_FSTREE.

This field has the same meaning and behavior as the o_subtype field of obj_phys_t
cpm_size

The size, in bytes, of the object.

uint32_t cpm_size;
cpm_pad

Reserved.
uint32_t cpm_pad;

Populate this field with zero when you create a new mapping, and preserve its value when you modify an existing
mapping.

This field is padding.
cpm_fs_oid

The virtual object identifier of the volume that the object is associated with.

oid_t cpm_fs_oid;
cpm_oid

The ephemeral object identifier.

oid_t cpm_oid;
cpm_paddr

The address in the checkpoint data area where the object is stored.

oid_t cpm_paddr;
checkpoint_map_phys_t

A checkpoint-mapping block.

struct checkpoint_map_phys {
obj_phys_t cpm_o;
uint32_t cpm_flags;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

41

Container
Checkpoint Flags

uint32_t cpm_count;
checkpoint_mapping_t cpm_mapl[];
}i

If a checkpoint needs to store more mappings than a single block can hold, the checkpoint has multiple checkpoint-
mapping blocks stored contiguously in the checkpoint descriptor area. The last checkpoint-mapping block is marked
with the CHECKPOINT_MAP_LAST flag.

cpm_o

The object’s header.

obj_phys_t cpm_o;

cpm_flags

A bit field that contains additional information about the list of checkpoint mappings.
uint32_t cpm_flags;

For the values used in this bit field, see Checkpoint Flags.

cpm_count

The number of checkpoint mappings in the array.

uint32_t cpm_count;

cpm_map

The array of checkpoint mappings.

checkpoint_mapping_t cpm_mapl[]1;
Checkpoint Flags

The flags used by a checkpoint-mapping block.

#define CHECKPOINT_MAP_LAST 0x00000001
CHECKPOINT_MAP_LAST

A flag marking the last checkpoint-mapping block in a given checkpoint.

#define CHECKPOINT_MAP_LAST 0x00000001
evict_mapping_val_t

A range of physical addresses that data is being moved into.

struct evict_mapping_val {
paddr_t dst_paddr;
uinté4_t len;

} __attribute__((packed));

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

42

Container
evict_mapping_val_t

typedef struct evict_mapping_val evict_mapping_val_t;

This data type is used by the evict-mapping tree, which is accessed through the nx_evict_mapping_tree_oid
field of nx_superblock_t.

dst_paddr

The address where the destination starts.

paddr_t dst_paddr;
len

The number of blocks being moved.

uinté4_t len;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

43

Object Maps

An object map uses a B-tree to store a mapping from virtual object identifiers and transaction identifiers to the physical
addresses where those objects are stored. The keys in the B-tree are instances of omap_key_t and the values are
instances of paddr_t.

To access a virtual object using the object map, perform the following operations:

1. Determine which object map to use. Objects that are within a volume use that volume’s object map, and all
other objects use the container’s object map.

2. Locate the object map for the volume by reading the apfs_omap_oid field of apfs_superblock_t or the
nx_omap_oid field of nx_superblock_t.

3. Locate the B-tree for the object map by reading the om_tree_oid field of omap_phys_t.

4. Search the B-tree for a key whose object identifier is the same as the desired object identifier, and whose
transaction identifier is less than or equal to the desired transaction identifier. If there are multiple keys that
satisfy this test, use the key with the largest transaction identifier.

5. Using the table of contents entry, read the corresponding value for the key you found, which contains a physical
address.

6. Read the object from disk at that address.
For example, assume the object map's B-tree contains the following mappings:

OID 588, XID 2101 -> Address 200
OID 588, XID 2202 -> Address 300
OID 588, XID 2300 —> Address 100

To access object 588 as of transaction 2300, you use the last entry — its object and transaction identifiers match
exactly — and read physical address 100.

To access object 588 as of transaction 2290, you use the second entry. There's no entry with the transaction identifier
2290, and 2202 is the largest transaction identifier in the object map that’s still less than 2290. That entry tells you
to read physical address 300.

omap_phys_t

An object map.

struct omap_phys {
obj_phys_t om_o;
uint32_t om_flags;
uint32_t om_snap_count;
uint32_t om_tree_type;
uint32_t om_snapshot_tree_type;

oid_t om_tree_oid;

oid_t om_snapshot_tree_oid;
xid_t om_most_recent_snap;
xid_t om_pending_revert_min;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

44

Object Maps
omap_phys_t

xid_t om_pending_revert_max;
}i
typedef struct omap_phys omap_phys_t;

om_o

The object’s header.

obj_phys_t om_o;
om_flags

The object map’s flags.
uint32_t om_flags;

For the values used in this bit field, see Object Map Flags.
om_tree_type

The type of tree being used for object mappings.

uint32_t om_tree_type;
om_tree_oid

The virtual object identifier of the tree being used for object mappings.

oid_t om_tree_oid;
om_snapshot_tree_oid

The virtual object identifier of the tree being used to hold snapshot information.

oid_t om_snapshot_tree_oid;
om_snapshot_tree_type

The type of tree being used for snapshots.

uint32_t om_snapshot_tree_type;
om_snap_count

The number of snapshots that this object map has.

uint32_t om_snap_count;
om_most_recent_snap

The transaction identifier of the most recent snapshot that’s stored in this object map.

xid_t om_most_recent_snap;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

45

Object Maps
omap_key_t

om_pending_revert_min

The smallest transaction identifier for an in-progress revert.

xid_t om_pending_revert_min;
om_pending_revert_max

The largest transaction identifier for an in-progress revert.

xid_t om_pending_revert_max;
omap_key_t

A key used to access an entry in the object map

struct omap_key {
oid_t ok_oid;
xid_t ok_xid;
+i
typedef struct omap_key omap_key_t;

ok_oid

The object identifier.

oid_t ok_oid;
ok_xid

The transaction identifier.

xid_t ok_xid;
omap_val_t

A value in the object map.

struct omap_val {
uint32_t ov_flags;
uint32_t ov_size;
paddr_t ov_paddr;
+i
typedef struct omap_val omap_val_t;

ov_flags

A bit field of flags.
uint32_t ov_flags;

For the values used in this bit field, see Object Map Value Flags.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

46

Object Maps
omap_snapshot_t

ov_size

The size, in bytes, of the object.
uint32_t ov_size;

This value must be a multiple of the container’s logical block size. If the object is smaller than one logical block, the
value of this field is the size of one logical block.

ov_paddr

The address of the object.

paddr_t ov_paddr;
omap_snhapshot_t

Information about a snapshot of an object map.

struct omap_snapshot {
uint32_t oms_flags;
uint32_t oms_pad;
oid_t oms_oid;
+i
typedef struct omap_snapshot omap_snapshot_t;

When accessing or storing a snapshot in the snapshot tree, use the transaction identifier as the key. This structure is
the value stored in a snapshot tree.

oms_flags

The snapshot’s flags.
uint32_t oms_flags;

For the values used in this bit field, see Snapshot Flags.
oms_pad

Reserved.
uint32_t oms_pad;

Populate this field with zero when you create a new snapshot, and preserve its value when you modify an existing
snapshot.

This field is padding.
oms_oid

Reserved.

oid_t oms_oid;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

47

Object Maps
Object Map Value Flags

Populate this field with zero when you create a new snapshot, and preserve its value when you modify an existing
snapshot.

Object Map Value Flags

The flags used by entries in the object map.

#define OMAP_VAL_DELETED 0x00000001
#define OMAP_VAL_SAVED 0x00000002
#define OMAP_VAL_ENCRYPTED 0x00000004
#define OMAP_VAL_NOHEADER 0x00000008

#define OMAP_VAL_CRYPTO_GENERATION 0©x00000010
OMAP_VAL_DELETED

The object has been deleted, and this mapping is a placeholder.

#define OMAP_VAL_DELETED 0x00000001
OMAP_VAL_SAVED

This object mapping shouldn't be replaced when the object is updated.
#define OMAP_VAL_SAVED ©x00000002

This flag is used only on mappings in an object map that's manually managed. In the current Apple implementation,
it's never used.

See also the OMAP_MANUALLY_MANAGED flag.
OMAP_VAL_ENCRYPTED

The object is encrypted.

#define OMAP_VAL_ENCRYPTED 0x00000004
OMAP_VAL_NOHEADER

The object is stored without an obj_phys_t header.

#define OMAP_VAL_NOHEADER 0x00000008
OMAP_VAL_CRYPTO_GENERATION

A one-bit flag that tracks encryption configuration.
#define OMAP_VAL_CRYPTO_GENERATION 0x00000010

During the transition from an old encryption configuration to a new one, not all objects have been reencrypted using
the new configuration. When the encryption configuration is changed, the object map's flag is toggled. After an object
is reencrypted, the object’s flag is also toggled.

If this flag doesn’t match the flag on the object map, the encryption configuration has changed, but the object hasn’t
been reencrypted yet. Use the previous encryption configuration to decrypt the object.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

48

Object Maps
Snapshot Flags

See also OMAP_CRYPTO_GENERATION, which is used by the omap_phys_t field of om_flags.

Snapshot Flags

The flags used to describe the state of a snapshot.

#define OMAP_SNAPSHOT_DELETED 0x00000001
#define OMAP_SNAPSHOT_REVERTED 0x00000002

OMAP_SNAPSHOT_DELETED

The snapshot has been deleted.

#define OMAP_SNAPSHOT_DELETED 0x00000001
OMAP_SNAPSHOT_REVERTED

The snapshot has been deleted as part of a revert.

#define OMAP_SNAPSHOT_REVERTED ©x00000002
Object Map Flags

The flags used by object maps.

#define OMAP_MANUALLY_MANAGED 0x00000001
#define OMAP_ENCRYPTING 0x00000002
#define OMAP_DECRYPTING 0x00000004
#define OMAP_KEYROLLING 0x00000008
#define OMAP_CRYPTO_GENERATION 0x00000010
#define OMAP_VALID_FLAGS 0x0000001f

OMAP_MANUALLY_MANAGED

The object map doesn’t support snapshots.
#define OMAP_MANUALLY_MANAGED 0x00000001

This flag must be set on the container’s object map and is invalid on a volume'’s object map.
OMAP_ENCRYPTING

A transition is in progress from unencrypted storage to encrypted storage.

#define OMAP_ENCRYPTING 0x00000002
OMAP_DECRYPTING

A transition is in progress from encrypted storage to unencrypted storage.

#define OMAP_DECRYPTING 0x00000004

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

49

Object Maps
Object Map Constants

OMAP_KEYROLLING

A transition is in progress from encrypted storage using an old key to encrypted storage using a new key.

#define OMAP_KEYROLLING 0x00000008
OMAP_CRYPTO_GENERATION

A one-bit flag that tracks encryption configuration.
#define OMAP_CRYPTO_GENERATION 0x00000010

For information about how this flag is used to track the old and new encryption configuration, see OMAP_VAL_
CRYPTO_GENERATION, which is used by the ov_flags field of omap_val_t.

OMAP_VALID_FLAGS

A bit mask of all valid object map flags.

#define OMAP_VALID_FLAGS 0x0000001f
Object Map Constants

Constants that specify size constraints of an object map.

#define OMAP_MAX_SNAP_COUNT UINT32_MAX
OMAP_MAX_SNAP_COUNT

The maximum number of snapshots that can be stored in an object map.

#define OMAP_MAX_SNAP_COUNT UINT32_MAX
Object Map Reaper Phases

Phases used by the reaper when deleting objects that are stored in an object map.

#define OMAP_REAP_PHASE_MAP_TREE 1
#define OMAP_REAP_PHASE_SNAPSHOT_TREE 2

OMAP_REAP_PHASE_MAP_TREE

The reaper is deleting entries from the object mapping tree.

#define OMAP_REAP_PHASE_MAP_TREE 1
OMAP_REAP_PHASE_SNAPSHOT_TREE

The reaper is deleting entries from the snapshot tree.

#define OMAP_REAP_PHASE_SNAPSHOT_TREE 2

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

50

Volumes

A volume contains a file system, the files and metadata that make up that file system, and various supporting data
structures like an object map.

apfs_superblock_t

A volume superblock.

struct apfs_superblock {

obj_phys_t apfs_o;

uint32_t apfs_magic;

uint32_t apfs_fs_index;

uintés_t apfs_features;

uintés4_t apfs_readonly_compatible_features;
uinté4_t apfs_incompatible_features;
uinté4_t apfs_unmount_time;

uinté4_t apfs_fs_reserve_block_count;
uintés4_t apfs_fs_quota_block_count;
uintés4_t apfs_fs_alloc_count;

wrapped_meta_crypto_state_t apfs_meta_crypto;

uint32_t apfs_root_tree_type;
uint32_t apfs_extentref_tree_type;
uint32_t apfs_snap_meta_tree_type;
oid_t apfs_omap_oid;

oid_t apfs_root_tree_oid;

oid_t apfs_extentref_tree_oid;
oid_t apfs_snap_meta_tree_oid;
xid_t apfs_revert_to_xid;

oid_t apfs_revert_to_sblock_oid;
uinté4_t apfs_next_obj_id;
uinté4_t apfs_num_files;

uintés4_t apfs_num_directories;
uinté4_t apfs_num_symlinks;
uintés4_t apfs_num_other_fsobjects;
uintés4_t apfs_num_snapshots;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

51

Volumes
apfs_superblock_t

uintés4_t apfs_total_blocks_alloced;
uinté4_t apfs_total_blocks_freed;
uuid_t apfs_vol_uuid;
uintés4_t apfs_last_mod_time;
uintés4_t apfs_fs_flags;
apfs_modified_by_t apfs_formatted_by;
apfs_modified_by_t apfs_modified_by[APFS_MAX_HIST];
uint8_t apfs_volname[APFS_VOLNAME_LEN];
uint32_t apfs_next_doc_id;
uintlé6_t apfs_role;
uintlé6_t reserved;
xid_t apfs_root_to_xid;
oid_t apfs_er_state_oid;
uintés4_t apfs_cloneinfo_id_epoch;
uintés4_t apfs_cloneinfo_xid;
oid_t apfs_snap_meta_ext_oid;
uuid_t apfs_volume_group_id;
oid_t apfs_integrity_meta_oid;
oid_t apfs_fext_tree_oid;
uint32_t apfs_fext_tree_type;
uint32_t reserved_type;
oid_t reserved_oid;

+i

#define APFS_MAGIC 'BSPA'

#define APFS_MAX_HIST 8

#define APFS_VOLNAME_LEN 256

apfs_o

The object’s header.

obj_phys_t apfs_o;
apfs_magic

A number that can be used to verify that you're reading an instance of apfs_superblock_t

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

52

Volumes
apfs_superblock_t

uint32_t apfs_magic;

The value of this field is always APFS_MAGIC.
apfs_fs_index

The index of the object identifier for this volume's file system in the container’s array of file systems.
uint32_t apfs_fs_index
The container’s array is stored in the nx_fs_oid field of nx_superblock_t.

When a volume is being deleted, it's removed from the container’s array of volumes before apfs_superblock_t
object is destroyed. If you read this field of a volume that's being deleted, the specified entry in the array might have
already been reused for another volume.

apfs_features

A bit field of the optional features being used by this volume.
uint64_t apfs_features;
For the values used in this bit field, see Optional Volume Feature Flags.

If your implementation doesn’t support an optional feature that's in use, ignore that feature in this list and mount the
volume as usual.

apfs_readonly_compatible_features

A bit field of the read-only compatible features being used by this volume.
uinté64_t apfs_readonly_compatible_features;
For the values used in this bit field, see Read-Only Compatible Volume Feature Flags.

If your implementation doesn't support a read-only compatible feature that's in use, mount the volume as read-only.
apfs_incompatible_features

A bit field of the backward-incompatible features being used by this volume.
uinté64_t apfs_incompatible_features;
For the values used in this bit field, see Incompatible Volume Feature Flags.

If your implementation doesn't support a backward-incompatible feature that's in use, it must not mount the volume.
apfs_unmount_time

The time that this volume was last unmounted.
uinté4_t apfs_unmount_time;

This timestamp is represented as the number of nanoseconds since January 1, 1970 at 0:00 UTC, disregarding leap
seconds.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

53

Volumes
apfs_superblock_t

apfs_fs_reserve_block_count

The number of blocks that have been reserved for this volume to allocate.

uinté4_t apfs_fs_reserve_block_count;
apfs_fs_quota_block_count

The maximum number of blocks that this volume can allocate.

uinté4_t apfs_fs_quota_block_count;
apfs_fs_alloc_count

The number of blocks currently allocated for this volume's file system.

uint64_t apfs_fs_alloc_count;
apfs_meta_crypto

Information about the key used to encrypt metadata for this volume.
wrapped_meta_crypto_state_t apfs_meta_crypto;

On devices running macQOS, the volume encryption key (VEK) is used to encrypt the metadata, as discussed in Ac-
cessing Encrypted Objects.

apfs_root_tree_type

The type of the root file-system tree.
uint32_t apfs_root_tree_type

The value is typically OBJ_VIRTUAL | OBJECT_TYPE_BTREE, with a subtype of OBJECT_TYPE_FSTREE. For pos-
sible values, see Object Types.

apfs_extentref_tree_type

The type of the extent-reference tree.
uint32_t apfs_extentref_tree_type

The value is typically OBJ_PHYSICAL | OBJECT_TYPE_BTREE, with a subtype of OBJECT_TYPE_BLOCKREF. For
possible values, see Object Types.

apfs_snap_meta_tree_type

The type of the snapshot metadata tree.
uint32_t apfs_snap_meta_tree_type

The value is typically OBJ_PHYSICAL | OBJECT_TYPE_BTREE, with a subtype of OBJECT_TYPE_BLOCKREF. For
possible values, see Object Types.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

54

Volumes
apfs_superblock_t

apfs_omap_oid

The physical object identifier of the volume’s object map.
oid_t apfs_omap_oid;

apfs_root_tree_oid

The virtual object identifier of the root file-system tree.
oid_t apfs_root_tree_oid;
apfs_extentref_tree_oid

The physical object identifier of the extent-reference tree.
oid_t apfs_extentref_tree_oid;

When a snapshot is created, the current extent-reference tree is moved to the snapshot. A new, empty, extent-
reference tree is created and its object identifier becomes the new value of this field.

apfs_snap_meta_tree_oid

The virtual object identifier of the snapshot metadata tree.

oid_t apfs_snap_meta_tree_oid;
apfs_revert_to_xid
The transaction identifier of a snapshot that the volume will revert to.

xid_t apfs_revert_to_xid;

When mounting a volume, if the value of this field nonzero, revert to the specified snapshot by deleting all snapshots
after the specified transaction identifier and deleting the current state, and then setting this field to zero.

apfs_revert_to_sblock_oid

The physical object identifier of a volume superblock that the volume will revert to.
oid_t apfs_revert_to_sblock_oid;

When mounting a volume, if the apfs_revert_to_xid field is nonzero, ignore the value of this field. Otherwise,
revert to the specified volume superblock.

apfs_next_obj_id

The next identifier that will be assigned to a file-system object in this volume.

uinté64_t apfs_next_obj_id;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

55

Volumes
apfs_superblock_t

apfs_num_files

The number of regular files in this volume.
uinté64_t apfs_num_files;
apfs_num_directories

The number of directories in this volume.

uinté64_t apfs_num_directories;
apfs_num_symlinks

The number of symbolic links in this volume
uinté64_t apfs_num_symlinks;
apfs_num_other_fsobjects

The number of other files in this volume.
uint64_t apfs_num_other_fsobjects;

The value of this field includes all files that aren’t included in the apfs_num_symlinks, apfs_num_directories,
orapfs_num_files fields.

apfs_num_snapshots

The number of snapshots in this volume.

uint64_t apfs_num_snapshots;
apfs_total_blocks_alloced

The total number of blocks that have been allocated by this volume.
uint64_t apfs_total_blocks_alloced;

The value of this field increases when blocks are allocated, but isn’t modified when they're freed. If the volume doesn’t
contain any files, the value of this field matches apfs_total_blocks_freed.

apfs_total_blocks_freed

The total number of blocks that have been freed by this volume.
uinté64_t apfs_total_blocks_freed;

The value of this field isn't modified when blocks are allocated, but increases when they're freed. If the volume doesn’t
contain any files, the value of this field matches apfs_total_blocks_alloced.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

56

Volumes
apfs_superblock_t

apfs_vol_uuid

The universally unique identifier for this volume.

uuid_t apfs_vol_uuid;
apfs_last_mod_time

The time that this volume was last modified.
uinté64_t apfs_last_mod_time;

This timestamp is represented as the number of nanoseconds since January 1, 1970 at 0:00 UTC, disregarding leap
seconds.

apfs_fs_flags

The volume's flags.
uinté4_t apfs_fs_flags;

For the values used in this bit field, see Volume Flags.
apfs_formatted_by

Information about the software that created this volume.
apfs_modified_by_t apfs_formatted_by;

This field is set only once, when the volume is created.
apfs_modified_by

Information about the software that has modified this volume.
apfs_modified_by_t apfs_modified_by[APFS_MAX_HIST]

The newest element in this array is stored at index zero. To update this field when you modify a volume, move each
element to the index that's larger by one, and then write the new modification information. When you create a new
volume, fill the array’s memory with zeros.

If the implementation’s information is already the last entry in this field, you can update the field as usual (creating a
duplicate), or leave the field’s value unmodified. Both behaviors are permitted.

apfs_volname

The name of the volume, represented as a null-terminated UTF-8 string.
uint8_t apfs_volname[APFS_VOLNAME_LEN]

The APFS_INCOMPAT_NON_UTF8_FNAMES flag has no effect on this field’s value.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

57

Volumes
apfs_superblock_t

apfs_next_doc_id

The next document identifier that will be assigned.
uint32_t apfs_next_doc_id
A document's identifier is stored in the INO_EXT_TYPE_DOCUMENT_ID extended field of the inode.

After assigning a new document identifier, increment this field by one. Valid document identifiers are greater than
MIN_DOC_ID and less than UINT32_MAX - 1. If a new document identifier isn't available, that's an unrecoverable
error. ldentifiers aren’t allowed to restart from one or to be reused.

apfs_role

The role of this volume within the container.
uintl6_t apfs_role

For possible values, see Volume Roles.
reserved

Reserved.
uintl6_t reserved

Populate this field with zero when you create a new volume, and preserve its value when you modify an existing volume.
apfs_root_to_xid

The transaction identifier of the snapshot to root from, or zero to root normally.

xid_t apfs_root_to_xid;

apfs_er_state_oid

The current state of encryption or decryption for a drive that's being encrypted or decrypted, or zero if no encryption
change is in progress.

oid_t apfs_er_state_oid;

apfs_cloneinfo_id_epoch

The largest object identifier used by this volume at the time INODE_WAS_EVER_CLONED started storing valid infor-
mation.

uinté4_t apfs_cloneinfo_id_epoch;

If the value of this field is zero, all information stored using INODE_WAS_EVER_CLONED is valid. For information about
how to this identifier is used, see INODE_WAS_EVER_CLONED.

This field was added to this data structure for macOS 10.13.3. Older implementations of Apple File System store zeroin
this field when initializing an instance of the structure, and they preserve the field's value when modifying the structure.
Because zero is a valid value for this field, check the value of apfs_cloneinfo_xid - if that field is also zero, the
structure was created by an older implementation.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

58

Volumes
apfs_superblock_t

apfs_cloneinfo_xid

A transaction identifier used with apfs_cloneinfo_id_epoch.
uinté4_t apfs_cloneinfo_xid;

When unmounting a volume, the value of this field is set to the latest transaction identifier, the same as the
apfs_modified_by field. For information about how to this identifier is used, see INODE_WAS_EVER_CLONED.

This field was added to this data structure for macOS 10.13.3. Older implementations of Apple File System store
zero in this field when initializing an instance of the structure, and they preserve the field's value when modifying the
structure.

apfs_snap_meta_ext_oid

The virtual object identifier of the extended snapshot metadata object.
oid_t apfs_snap_meta_ext_oid;

This field was added to this data structure for macOS 10.15. Older implementations of Apple File System store zero in
this field when initializing an instance of the structure, and they preserve the field's value when modifying the structure.

apfs_volume_group_id

The volume group the volume belongs to.
uuid_t apfs_volume_group_id;

If the volume doesn't belong to a volume group, the value of this field is zero and the APFS_FEATURE_VOLGRP_
SYSTEM_INO_SPACE flag must not be set. Otherwise, the APFS_FEATURE_VOLGRP_SYSTEM_INO_SPACE flag
must be set and this field must have a nonzero value.

This field was added to this data structure for macOS 10.15. Older implementations of Apple File System store zero in
this field when initializing an instance of the structure, and they preserve the field's value when modifying the structure.

apfs_integrity_meta_oid

The virtual object identifier of the integrity metadata object.
oid_t apfs_integrity_meta_oid;
If the value of this field is nonzero, the APFS_INCOMPAT_SEALED_VOLUME flag must also be set.

This field was added to this data structure for macOS 11. Older implementations of Apple File System store zero in this
field when initializing an instance of the structure, and they preserve the field's value when modifying the structure.

apfs_fext_tree_oid

The virtual object identifier of the file extent tree.
oid_t apfs_fext_tree_oid;
If the value of this field is nonzero, the APFS_INCOMPAT_SEALED_VOLUME flag must also be set.

This field was added to this data structure for macOS 11. Older implementations of Apple File System store zero in this
field when initializing an instance of the structure, and they preserve the field's value when modifying the structure.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

59

Volumes
apfs_modified_by_t

apfs_fext_tree_type

The type of the file extent tree.
uint32_t apfs_fext_tree_type;

The value is typically OBJ_PHYSICAL | OBJECT_TYPE_BTREE, with a subtype of OBJECT_TYPE_FEXT_TREE. For
possible values, see Object Types.

This field was added to this data structure for macOS 11. Older implementations of Apple File System store zero in this
field when initializing an instance of the structure, and they preserve the field's value when modifying the structure.

reserved_type

Reserved.

uint32_t reserved_type;
reserved_oid

Reserved.

oid_t reserved_oid;
APFS_MAGIC

The value of the apfs_magic field.
#define APFS_MAGIC 'BSPA'

This magic number was chosen because in hex dumps it appears as "APSB”, which is an abbreviated form of APFS
superblock.

APFS_MAX_HIST

The number of entries stored in the apfs_modified_by field.

#define APFS_MAX_HIST 8
APFS_VOLNAME_LEN

The maximum length of the volume name stored in the apfs_volname field.

#define APFS_VOLNAME_LEN 256
apfs_modified_by_t

Information about a program that modified the volume.

struct apfs_modified_by {

uint8_t id[APFS_MODIFIED_NAMELEN];
uinté4_t timestamp;
xid_t last_xid;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

60

Volumes
Volume Flags

typedef struct apfs_modified_by apfs_modified_by_t;

#define APFS_MODIFIED_NAMELEN 32

This structure is used by the apfs_modified_by and apfs_formatted_by fields of apfs_superblock_t
id

A string that identifies the program and its version.

uint8_t id[APFS_MODIFIED_NAMELEN];

timestamp

The time that the program last modified this volume.
uinté4_t timestamp;

This timestamp is represented as the number of nanoseconds since January 1, 1970 at 0:00 UTC, disregarding leap
seconds.

last_xid

The last transaction identifier that's part of this program’s modifications.

xid_t last_xid;
Volume Flags

The flags used to indicate volume status.

#define APFS_FS_UNENCRYPTED 0x00000001LL
#define APFS_FS_RESERVED_2 0x00000002LL
#define APFS_FS_RESERVED_4 0x00000004L L
#define APFS_FS_ONEKEY 0x00000008LL
#define APFS_FS_SPILLEDOVER 0x00000010LL

#define APFS_FS_RUN_SPILLOVER_CLEANER 0x00000020LL
#define APFS_FS_ALWAYS_CHECK_EXTENTREF ©x00000040LL

#define APFS_FS_RESERVED_80 0x00000080LL
#define APFS_FS_RESERVED_100 0x00000100LL
#define APFS_FS_FLAGS_VALID_MASK (APFS_FS_UNENCRYPTED \

APFS_FS_RESERVED_2 \
APFS_FS_RESERVED_4 \
APFS_FS_ONEKEY \
APFS_FS_SPILLEDOVER \
APFS_FS_RUN_SPILLOVER_CLEANER \
APFS_FS_ALWAYS_CHECK_EXTENTREF \
APFS_FS_RESERVED_80 \
APFS_FS_RESERVED_100)

#define APFS_FS_CRYPTOFLAGS (APFS_FS_UNENCRYPTED \

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

61

Volumes
Volume Flags

| APFS_FS_ONEKEY)
APFS_FS_UNENCRYPTED

The volume isn't encrypted.

#define APFS_FS_UNENCRYPTED 0x00000001LL
APFS_FS_RESERVED_2

Reserved.
#define APFS_FS_RESERVED_2 0©x00000002LL

Don't set this flag, but preserve it if it's already set.
APFS_FS_RESERVED_4

Reserved.
#define APFS_FS_RESERVED_4 0©x00000004LL

Don't set this flag, but preserve it if it's already set.
APFS_FS_ONEKEY

Files on the volume are all encrypted using the volume encryption key (VEK).
#define APFS_FS_ONEKEY 0x00000008LL

This flag is used only on devices running macQOS; devices running iOS always use per-file encryption keys. When this
flag is set, several encryption-related data structures store differentinformation, as discussed in Accessing Encrypted
Objects.

APFS_FS_SPILLEDOVER

The volume has run out of allocated space on the solid-state drive.
#define APFS_FS_SPILLEDOVER 0x00000010LL

See also INODE_ALLOCATION_SPILLEDOVER.
APFS_FS_RUN_SPILLOVER_CLEANER

The volume has spilled over and the spillover cleaner must be run.

#define APFS_FS_RUN_SPILLOVER_CLEANER 0x00000020LL
APFS_FS_ALWAYS_CHECK_EXTENTREF

The volume's extent reference tree is always consulted when deciding whether to overwrite an extent.

#define APFS_FS_ALWAYS_CHECK_EXTENTREF 0x00000040LL

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

62

Volumes

Volume Roles

APFS_FS_RESERVED_80

Reserved.

#define APFS_FS_RESERVED_80 0x00000080LL

APFS_FS_RESERVED_100

Reserved.

#define APFS_FS_RESERVED_100 0x00000100LL

APFS_FS_FLAGS_VALID_MASK

A bit mask of all volume flags.

#define

APFS_FS_FLAGS_VALID_MASK

APFS_FS_CRYPTOFLAGS

A bit mask of all encryption-related volume flags.

(APFS_FS_UNENCRYPTED \
APFS_FS_RESERVED_2 \
APFS_FS_RESERVED_4 \
APFS_FS_ONEKEY \
APFS_FS_RUN_SPILLOVER_CLEANER \
APFS_FS_ALWAYS_CHECK_EXTENTREF)

#define APFS_FS_CRYPTOFLAGS (APFS_FS_UNENCRYPTED \
| APFS_FS_RESERVED_2 \
| APFS_FS_ONEKEY)

Volume Roles

The values used to indicate a volume's roles.

#define

#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define

APFS_VOL_ROLE_NONE

APFS_VOL_ROLE_SYSTEM
APFS_VOL_ROLE_USER
APFS_VOL_ROLE_RECOVERY
APFS_VOL_ROLE_VM
APFS_VOL_ROLE_PREBOOT
APFS_VOL_ROLE_INSTALLER

APFS_VOL_ROLE_DATA
APFS_VOL_ROLE_BASEBAND
APFS_VOL_ROLE_UPDATE
APFS_VOL_ROLE_XART
APFS_VOL_ROLE_HARDWARE
APFS_VOL_ROLE_BACKUP
APFS_VOL_ROLE_RESERVED_7

0x0000

0x0001
0x0002
0x0004
0x0008
0x0010
0x0020

(1
(2
(3
(4
(5
(6
(7

<<
<<
<<
<<
<<
<<
<<

APFS_VOLUME_ENUM_SHIFT)
APFS_VOLUME_ENUM_SHIFT)
APFS_VOLUME_ENUM_SHIFT)
APFS_VOLUME_ENUM_SHIFT)
APFS_VOLUME_ENUM_SHIFT)
APFS_VOLUME_ENUM_SHIFT)
APFS_VOLUME_ENUM_SHIFT)

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

63

Volumes
Volume Roles

#define APFS_VOL_ROLE_RESERVED_8 (8 << APFS_VOLUME_ENUM_SHIFT)
#define APFS_VOL_ROLE_ENTERPRISE (9 << APFS_VOLUME_ENUM_SHIFT)
#define APFS_VOL_ROLE_RESERVED_10 (10 << APFS_VOLUME_ENUM_SHIFT)
#define APFS_VOL_ROLE_PRELOGIN (11 << APFS_VOLUME_ENUM_SHIFT)
#define APFS_VOLUME_ENUM_SHIFT 6

These values are used by the apfs_role field of apfs_superblock_t. A volume has at most one role.

For historical reasons, the underlying values of these constants have two variations. The roles whose constants use
only the six least significant bits and the APFS_VOL_ROLE_DATA and APFS_VOL_ROLE_BASEBAND roles are sup-
ported by all versions of macOS and iOS. The remaining roles that are stored using the ten most significant bits are
supported only by devices running macOS 10.15, iOS 13, and later.

APFS_VOL_ROLE_NONE

The volume has no defined role.
#define APFS_VOL_ROLE_NONE ©x0000

A volume whose role doesn’t have a constant defined doesn’t have any flags set.
APFS_VOL_ROLE_SYSTEM

The volume contains a root directory for the system.
#define APFS_VOL_ROLE_SYSTEM 0x0001

The file system for the system volume that contains the running OS is normally mounted at /. On devices running iOS
and macOS 10.15 or later, the system volume is mounted read-only.

See also APFS_FEATURE_VOLGRP_SYSTEM_INO_SPACE, which is used to mount the system and user data as a
single user-visible volume.

APFS_VOL_ROLE_USER

The volume contains users’ home directories.

#define APFS_VOL_ROLE_USER ©x0002
APFS_VOL_ROLE_RECOVERY

The volume contains a recovery system.
#define APFS_VOL_ROLE_RECOVERY 0x0004

This is used the same way as a recovery partition on HFS-Plus.
APFS_VOL_ROLE_VM

The volume is used as swap space for virtual memory.
#define APFS_VOL_ROLE_VM 0x0008

The file system for a virtual-memory volume is mounted at /var/vm.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

64

Volumes
Volume Roles

APFS_VOL_ROLE_PREBOOT

The volume contains files needed to boot from an encrypted volume.

#define APFS_VOL_ROLE_PREBOOT 0x0010
APFS_VOL_ROLE_INSTALLER

The volume is used by the OS installer.
#define APFS_VOL_ROLE_INSTALLER 0x0020

For example, the installer writes log files to this volume during the installation process.
APFS_VOL_ROLE_DATA

The volume contains mutable data.
#define APFS_VOL_ROLE_DATA (1 << APFS_VOLUME_ENUM_SHIFT)

This role is used only on devices running iOS and macOS 10.15 or later. It contains both user data and mutable system
data. Immutable system data is stored on the volume with the APFS_VOL_ROLE_SYSTEM flag.

See also APFS_FEATURE_VOLGRP_SYSTEM_INO_SPACE, which is used to mount the system and user data as a
single user-visible volume.

APFS_VOL_ROLE_BASEBAND

The volume is used by the radio firmware.
#define APFS_VOL_ROLE_BASEBAND (2 << APFS_VOLUME_ENUM_SHIFT)

This role is used only on devices running iOS.
APFS_VOL_ROLE_UPDATE

The volume is used by the software update mechanism.
#define APFS_VOL_ROLE_UPDATE (3 << APFS_VOLUME_ENUM_SHIFT)

This role is used only on devices running iOS.
APFS_VOL_ROLE_XART

The volume is used to manage OS access to secure user data.
#define APFS_VOL_ROLE_XART (4 << APFS_VOLUME_ENUM_SHIFT)

This role is used only on devices running iOS.
APFS_VOL_ROLE_HARDWARE

The volume is used for firmware data.

#define APFS_VOL_ROLE_HARDWARE (5 << APFS_VOLUME_ENUM_SHIFT)

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

65

Volumes
Volume Roles

This role is used only on devices running iOS.
APFS_VOL_ROLE_BACKUP

The volume is used by Time Machine to store backups.
#define APFS_VOL_ROLE_BACKUP (6 << APFS_VOLUME_ENUM_SHIFT)

This role is used only on devices running macQOS.
APFS_VOL_ROLE_RESERVED_7

Reserved.

#define APFS_VOL_ROLE_SIDECAR (7 << APFS_VOLUME_ENUM_SHIFT)
APFS_VOL_ROLE_RESERVED_8

Reserved.

#define APFS_VOL_ROLE_RESERVED_8 (8 << APFS_VOLUME_ENUM_SHIFT)
APFS_VOL_ROLE_ENTERPRISE

This volume is used to store enterprise-managed data.
#define APFS_VOL_ROLE_ENTERPRISE (9 << APFS_VOLUME_ENUM_SHIFT)

For more information, see Managing Devices & Corporate Data on iOS.
APFS_VOL_ROLE_RESERVED_10

Reserved.

#define APFS_VOL_ROLE_RESERVED_10 (10 << APFS_VOLUME_ENUM_SHIFT)
APFS_VOL_ROLE_PRELOGIN

This volume is used to store system data used before login.
#define APFS_VOL_ROLE_PRELOGIN (11 << APFS_VOLUME_ENUM_SHIFT)

This role is used only on devices running macQOS. The prelogin volume lets the system boot to the login screen, at
which point the user can log in and the user’s password can be used to mount encrypted volumes.

APFS_VOLUME_ENUM_SHIFT

The bit shift used to separate the old and new enumeration cases.

#define APFS_VOLUME_ENUM_SHIFT 6

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

66

https://www.apple.com/business/docs/resources/Managing_Devices_and_Corporate_Data_on_iOS.pdf

Volumes
Optional Volume Feature Flags

Optional Volume Feature Flags

The flags used to describe optional features of an Apple File System volume.

#define APFS_FEATURE_DEFRAG_PRERELEASE 0x00000001LL
#define APFS_FEATURE_HARDLINK_MAP_RECORDS 0x00000002LL
#define APFS_FEATURE_DEFRAG 0x00000004LL
#define APFS_FEATURE_STRICTATIME 0x00000008LL

#define APFS_FEATURE_VOLGRP_SYSTEM_INO_SPACE 0x00000010LL

#define APFS_SUPPORTED_FEATURES_MASK (APFS_FEATURE_DEFRAG \
| APFS_FEATURE_DEFRAG_PRERELEASE \
| APFS_FEATURE_HARDLINK_MAP_RECORDS \
| APFS_FEATURE_STRICTATIME \
| APFS_FEATURE_VOLGRP_SYSTEM_INO_SPACE)

These flags are used by the apfs_features field of apfs_superblock_t.
APFS_FEATURE_DEFRAG_PRERELEASE

Reserved.

#define APFS_FEATURE_DEFRAG_PRERELEASE 0x00000001LL

Warning
To avoid data corruption, this flag must not be set.

This flag enabled a prerelease version of the defragmentation system in macOS 10.13 versions. It's ignored by
macOS 10.13.6 and later.

APFS_FEATURE_HARDLINK_MAP_RECORDS

The volume has hardlink map records.
#define APFS_FEATURE_HARDLINK_MAP_RECORDS 0x00000002LL

For details about hardlink map records, see Siblings.
APFS_FEATURE_DEFRAG

The volume supports defragmentation.
#define APFS_FEATURE_DEFRAG 0x00000004LL

This flag is ignored by versions before macOS 10.14.
APFS_FEATURE_STRICTATIME

This volume updates file access times every time the file is read.

#define APFS_FEATURE_STRICTATIME ©x00000008LL

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

67

Volumes
Read-Only Compatible Volume Feature Flags

If this flag is set, the access_time field of j_inode_val_t is updated every time the file is read. Otherwise, that
field is updated when the file is read, but only if its value is prior to the timestamp stored in the mod_time field.

APFS_FEATURE_VOLGRP_SYSTEM_INO_SPACE

This volume supports mounting a system and data volume as a single user-visible volume.
#define APFS_FEATURE_VOLGRP_SYSTEM_INO_SPACE 0x00000010LL

This feature is used by macOS 10.15 and later to combine a read-only system volume with its corresponding
read-write user data volume. Both volumes have the same value for the apfs_volume_group_id field of apfs_
superblock_t, which indicates they form a volume group.

If this flag is set, inode numbers on those volumes are assigned as follows: The volume whose role is APFS_VOL _
ROLE_DATA uses inode numbers less than UNIFIED_ID_SPACE_MARK, and the volume whose role is APFS_VOL _
ROLE_SYSTEM uses inode numbers UNIFIED_ID_SPACE_MARK and larger. The first 16 inode numbers for both the
system and data volume are reserved, as described in Inode Numbers.

APFS_SUPPORTED_FEATURES_MASK

A bit mask of all the optional volume features.

#define APFS_SUPPORTED_FEATURES_MASK (APFS_FEATURE_DEFRAG \
APFS_FEATURE_DEFRAG_PRERELEASE \
APFS_FEATURE_HARDLINK_MAP_RECORDS \
APFS_FEATURE_STRICTATIME \

|
|
|
| APFS_FEATURE_VOLGRP_SYSTEM_INO_SPACE)

Read-Only Compatible Volume Feature Flags

The flags used to describe read-only compatible features of an Apple File System volume.
#define APFS_SUPPORTED_ROCOMPAT_MASK (exeuLL)

These flags are used by the apfs_readonly_compatible_features field of apfs_superblock_t. There are
currently none defined.

APFS_SUPPORTED_ROCOMPAT_MASK

A bit mask of all read-only compatible volume features.

#define APFS_SUPPORTED_ROCOMPAT_MASK (@x@ULL)
Incompatible Volume Feature Flags

The flags used to describe backward-incompatible features of an Apple File System volume.

#define APFS_INCOMPAT_CASE_INSENSITIVE 0x00000001LL
#define APFS_INCOMPAT_DATALESS_SNAPS 0x00000002LL
#define APFS_INCOMPAT_ENC_ROLLED 0x00000004LL
#define APFS_INCOMPAT_NORMALIZATION_INSENSITIVE 0x00000008LL
#define APFS_INCOMPAT_INCOMPLETE_RESTORE 0x00000010LL
#define APFS_INCOMPAT_SEALED_VOLUME 0x00000020LL

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

68

Volumes
Incompatible Volume Feature Flags

#define APFS_INCOMPAT_RESERVED_40 0x00000040LL

#define APFS_SUPPORTED_INCOMPAT_MASK (APFS_INCOMPAT_CASE_INSENSITIVE \
| APFS_INCOMPAT_DATALESS_SNAPS \
| APFS_INCOMPAT_ENC_ROLLED \
| APFS_INCOMPAT_NORMALIZATION_INSENSITIVE \
| APFS_INCOMPAT_INCOMPLETE_RESTORE \
| APFS_INCOMPAT_SEALED_VOLUME \
| APFS_INCOMPAT_RESERVED_40)

These flags are used by the apfs_incompatible_features field of apfs_superblock_t.
APFS_INCOMPAT_CASE_INSENSITIVE

Filenames on this volume are case insensitive.

#define APFS_INCOMPAT_CASE_INSENSITIVE 0x00000001LL
APFS_INCOMPAT_DATALESS_SNAPS

At least one snapshot with no data exists for this volume.

#define APFS_INCOMPAT_DATALESS_SNAPS 0x00000002LL
APFS_INCOMPAT_ENC_ROLLED

This volume’s encryption has changed keys at least once.

#define APFS_INCOMPAT_ENC_ROLLED ©x00000004LL
APFS_INCOMPAT_NORMALIZATION_INSENSITIVE

Filenames on this volume are normalization insensitive.
#define APFS_INCOMPAT_NORMALIZATION_INSENSITIVE 0x00000008LL

Normalization insensitivity is part of hashing filenames, as described in the name_len_and_hash field of j_drec_
hashed_key_t.

APFS_INCOMPAT_INCOMPLETE_RESTORE

This volume is being restored, or a restore operation to this volume was uncleanly aborted.

#define APFS_INCOMPAT_INCOMPLETE_RESTORE 0x00000010LL
APFS_INCOMPAT_SEALED_VOLUME

This volume can’t be modified.
#define APFS_INCOMPAT_SEALED_VOLUME 0x00000020LL

For more information, see Sealed Volumes.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

69

Volumes
Incompatible Volume Feature Flags

APFS_INCOMPAT_RESERVED_40

Reserved.

#define APFS_INCOMPAT_RESERVED_40 0x00000040LL
APFS_SUPPORTED_INCOMPAT_MASK

A bit mask of all the backward-incompatible volume features.

#define APFS_SUPPORTED_INCOMPAT_MASK (APFS_INCOMPAT_CASE_INSENSITIVE \
| APFS_INCOMPAT_DATALESS_SNAPS \
| APFS_INCOMPAT_ENC_ROLLED \
| APFS_INCOMPAT_NORMALIZATION_INSENSITIVE \
| APFS_INCOMPAT_INCOMPLETE_RESTORE)

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

70

File-System Objects

A file-system object stores information about a part of the file system, like a directory or a file on disk. These objects
are stored as one or more records. For example, the file-system object for a directory that contains two files is stored
as three records: a record of type APFS_TYPE_INODE for the inode, and two records of type APFS_TYPE_DIR_REC
for the directory entries. This record-based method of storing file-system objects helps make efficient use of disk

space.

File-systemrecords are stored as key/value pairs in a B-tree. The key contains information, like the object identifier and
the record type, used to look up a record. Keys begin with an instance of j_key_t, and many records use j_key_t

as their entire key.

For sorting file-system records — for example, to keep them ordered in a B-tree — the following comparison rules are

used:

1. Compare the object identifiers numerically:

j_key_t.obj_id_and_type & 0BJ_ID_MASK

2. Compare the object types numerically:

(j_key_t.obj_id_and_type & OBJ_TYPE_MASK) >> OBJ_TYPE_SHIFT

3. For extended attribute records and directory entry records, compare the names lexicographically:

j_drec_key_t.name

Because all of the records for a file-system object have the same object identifier, all of the records that make up a

single object are sorted next to each other.

The relationship between file-system objects and the records they're made up from is as follows:

Files

« APFS_TYPE_INODE Required
« APFS_TYPE_CRYPTO_STATE
o APFS_TYPE_DSTREAM_ID

o APFS_TYPE_EXTENT

o APFS_TYPE_FILE_EXTENT
e APFS_TYPE_SIBLING_LINK

e APFS_TYPE_XATTR

Directories

« APFS_TYPE_INODE Required
« APFS_TYPE_CRYPTO_STATE

e APFS_TYPE_DIR_REC

« APFS_TYPE_DIR_STATS

e APFS_TYPE_XATTR

Symbolic Links

e APFS_TYPE_INODE Required
e APFS_TYPE_XATTR Required

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

71

File-System Objects
j_key_t

APFS_TYPE_CRYPTO_STATE
APFS_TYPE_DSTREAM_ID

o APFS_TYPE_EXTENT

e APFS_TYPE_FILE_EXTENT

There must be an extended attribute whose name is SYMLINK_EA_NAME and whose value is the path to the target
file.

Snapshots

« APFS_TYPE_SNAP_METADATA Required
« APFS_TYPE_SNAP_NAME Required

o APFS_TYPE_CRYPTO_STATE

« APFS_TYPE_EXTENT

Sibling Maps

o APFS_TYPE_SIBLING_MAP Required

Tip

To simplify manipulating file-system objects, define custom types that combine the key and value of a record,
and custom types that combine the object’s records.

j_key_t

A header used at the beginning of all file-system keys.

struct j_key {

uinté4_t obj_id_and_type;
} __attribute__((packed));
typedef struct j_key j_key_t;

#define OBJ_ID_MASK OxOffFffffffffffffULL
#define OBJ_TYPE_MASK 0xT0000000000000OOULL
#define OBJ_TYPE_SHIFT 60

#define SYSTEM_OBJ_ID_MARK OxOfffffff00000000ULL

All file-system objects have a key that begins with this information. The key for some object types have additional
fields that follow this header, and other object types use j_key_t as their entire key.

The following record types use this structure as their key without adding any additional fields:
obj_id_and_type

A bit field that contains the object’s identifier and its type.

uinté4_t obj_id_and_type;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

72

File-System Objects
j_inode_key_t

The object’s identifier is a uint64_t value accessed as obj_id_and_type & 0BJ_ID_MASK. The object’s type
isauint8_t value accessed as (obj_id_and_type & OBJ_TYPE_MASK) >> OBJ_TYPE_SHIFT. The object’s
type is one of the constants defined by j_obj_types.

OBJ_ID_MASK

The bit mask used to access the object identifier.

#define OBJI_ID_MASK @xofffffffffffffffuLL
OBJ_TYPE_MASK

The bit mask used to access the object type.

#define OBJ_TYPE_MASK 0xf000000000000000ULL
OBJ_TYPE_SHIFT

The bit shift used to access the object type.

#define OBJ_TYPE_SHIFT 60
SYSTEM_OBJ_ID_MARK

The smallest object identifier used by the system volume.
#define SYSTEM_OBJ_ID_MARK OxOffffFfff00000000ULL

In a volume group, objects with an identifier less than this number are part of the data volume, and objects with an
identifier greater than or equal to this number are part of the system volume.

j_inode_key_t

The key half of a directory-information record.

struct j_inode_key {
j_key_t hdr;
} __attribute__((packed));
typedef struct j_inode_key_t j_inode_key_t;

hdr

The record'’s header.
j_key_t hdr;

The object identifier in the header is the file-system object'’s identifier, also known as its inode number. The type in
the header is always APFS_TYPE_INODE.

j_1node_val _t

The value half of an inode record.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

73

File-System Objects
j_inode_val_t

struct j_inode_val {

uinté4_t parent_id;
uintés4_t private_id;
uintés4_t create_time;
uinté4_t mod_time;
uintés4_t change_time;
uinté4_t access_time;
uintés4_t internal_flags;
union {
int32_t nchildren;
int32_t nlink;
+i

cp_key_class_t default_protection_class;

uint32_t write_generation_counter;
uint32_t bsd_flags;

uid_t owner;

gid_t group;

mode_t mode;

uintlé6_t padl;

uintés4_t uncompressed_size;
uint8_t xfields[]1;

} __attribute__((packed));

typedef struct j_inode_val j_inode_val_t;

typedef uint32_t uid_t;
typedef uint32_t gid_t;

parent_id

The identifier of the file system record for the parent directory.
uinté4_t parent_id;

private_id

The unique identifier used by this file's data stream.

uinté4_t private_id;

This identifier appears in the owning_obj_id field of j_phys_ext_val_t records that describe the extents where
the data is stored.

For an inode that doesn’t have data, the value of this field is the file-system object’s identifier.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

74

File-System Objects
j_inode_val_t

create_time

The time that this record was created.
uinté64_t create_time;

This timestamp is represented as the number of nanoseconds since January 1, 1970 at 0:00 UTC, disregarding leap
seconds.

mod_time

The time that this record was last modified.
uinté64_t mod_time;

This timestamp is represented as the number of nanoseconds since January 1, 1970 at 0:00 UTC, disregarding leap
seconds.

change_time

The time that this record’s attributes were last modified.
uinté4_t change_time;

This timestamp is represented as the number of nanoseconds since January 1, 1970 at 0:00 UTC, disregarding leap
seconds.

access_time

The time that this record was last accessed.
uinté4_t access_time;

This timestamp is represented as the number of nanoseconds since January 1, 1970 at 0:00 UTC, disregarding leap
seconds.

For details about when this field is updated, see APFS_FEATURE_STRICTATIME.
internal_flags

The inode's flags.
uinté4_t internal_flags;

For the values used in this bit field, see j_inode_flags.
nchildren

The number of directory entries.
int32_t nchildren;

This union field is valid only if the inode is a directory.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

75

File-System Objects
j_inode_val_t

nlink

The number of hard links whose target is this inode.

int32_t nlink;

This union field is valid only if the inode isn't a directory.

Inodes with multiple hard links — as indicated by a value greater than one in this field — have additional invariants:
e The parent_id field refers to the parent directory of the primary link.

e The name field contains the name of the primary link.

The INO_EXT_TYPE_NAME extended field contains the name of this link.

» The file-system object includes sibling-link records, as discussed in Siblings.
default_protection_class

The default protection class for this inode.
cp_key_class_t default_protection_class;

Files in this directory that have a protection class of PROTECTION_CLASS_DIR_NONE use the directory’s default
protection class.

write_generation_counter

A monotonically increasing counter that's incremented each time this inode or its data is modified.
uint32_t write_generation_counter;

This value is allowed to overflow and restart from zero.
bsd_flags

The inode’s BSD flags.
uint32_t bsd_flags;

For information about these flags, see the chflags(2) man page and the <sys/stat.h> header file.
owner

The user identifier of the inode’s owner.

uid_t owner;
group

The group identifier of the inode’s group.

gid_t group;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

76

File-System Objects
j_inode_val_t

mode

The file's mode.
mode_t mode;

For possible values, see File Modes.
padl

Reserved.
uintlé6_t padi;
Populate this field with zero when you create a new inode, and preserve its value when you modify an existing inode.

This field is padding.
uncompressed_size

The size of the file without compression.
uint64_t uncompressed_size;

This field is populated only for files that have the INODE_HAS_UNCOMPRESSED_SIZE flag set on the internal_
flags field.

For files that don't have the flag set, this field is treated as padding: Populate this field with zero when you create a
new inode, and preserve its value when you modify an existing inode.

xfields

The inode’s extended fields.
uint8_t xfields[];

This location on disk contains several pieces of data that have variable sizes. For information about reading extended
fields, see Extended Fields.

uid_t

A user identifier.

typedef uint32_t uid_t;
gid_t

A group identifier.

typedef uint32_t gid_t;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

77

File-System Objects
j_drec_key_t

j_drec_key_t

The key half of a directory entry record.

struct j_drec_key {

j_key_t hdr;
uintlé6_t name_len;
uint8_t name[0];

} __attribute__((packed));

typedef struct j_drec_key j_drec_key_t;
hdr

The record’s header.
j_key_t hdr;

The object identifier in the header is the file-system object’s identifier. The type in the header is always APFS_TYPE_
DIR_REC.

name_len_and_hash

The length of the name, including the final null character (U+0000).

uint32_t name_len_and_hash;
name

The name, represented as a null-terminated UTF-8 string.

uint8_t namel0];

j_drec_hashed_key_t

The key half of a directory entry record, including a precomputed hash of its name.

struct j_drec_hashed_key {

j_key_t hdr;
uint32_t name_len_and_hash;
uint8_t name[0];

} __attribute__((packed));

typedef struct j_drec_hashed_key j_drec_hashed_key_t;

#define J_DREC_LEN_MASK 0x000003ff
#define J_DREC_HASH_MASK oxfffff400
#define J_DREC_HASH_SHIFT 10

hdr

The record'’s header.

j_key_t hdr;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

78

File-System Objects
j_drec_val_t

name_len_and_hash

The hash and length of the name.
uint32_t name_len_and_hash;

The length is a 10-bit unsigned integer, accessed as name_len_and_hash & J_DREC_LEN_MASK. The length in-
cludes the final null character (U+0000).

The hash is an unsigned 22-bit integer, accessed as (name_len_and_hash & J_DREC_HASH_MASK) >>
J_DREC_HASH_SHIFT. The hash is computed as follows:

Start with the filename, represented as a null-terminated UTF-8 string.
Normalize the string using canonical decomposition (NFD).

Represent the normalized filename as a null-terminated UTF-32 string.
Compute the CRC-32C hash of the UTF-32 string.

Complement the bits of the hash.

Keep only the low 22 bits of the hash.

OOk WD -

If you implement your own CRC function, rather than calling one from a library, you can omit both the complement
operation that’s part of computing a CRC and the complement operation in the instructions above.

name

The name, represented as a null-terminated UTF-8 string.

uint8_t namel0@];
J_DREC_LEN_MASK

The bit mask used to access the length of the name.

#define J_DREC_LEN_MASK 0x000003ff
J_DREC_HASH_MASK

The bit mask used to access the hash of the name.

#define J_DREC_HASH_MASK Oxfffff400
J_DREC_HASH_SHIFT

The bit shift used to access the hash of the name.

#define J_DREC_HASH_SHIFT 10
j_drec_val_t

The value half of a directory entry record.

struct j_drec_val {
uintés4_t file_id;
uinté4_t date_added;
uintlé6_t flags;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

79

File-System Objects
j_dir_stats_key_t

uint8_t xfields[1;
} __attribute__((packed));
typedef struct j_drec_val j_drec_val_t;

file_id
The identifier of the inode that this directory entry represents.

uinté4_t file_id;
date_added

The time that this directory entry was added to the directory.
uinté4_t date_added;

This timestamp is represented as the number of hanoseconds since January 1, 1970 at 0:00 UTC, disregarding leap
seconds. It's not updated when modifying the directory entry — for example, by renaming a file without moving it to
a different directory.

flags

The directory entry’s flags.
uint1é6_t flags;

The bits that are set in DREC_TYPE_MASK store the inode’s file type, and the remaining bits are reserved. Populate the
reserved bits with zeros when you create a new directory entry, and preserve their values when you modify an existing
directory entry.

For possible values, see Directory Entry File Types.
xfields

The directory entry’s extended fields.
uint8_t xfields[];

This location on disk contains several pieces of data that have variable sizes. For information about reading extended
fields, see Extended Fields.

j_dir_stats_key_t

The key half of a directory-information record.

struct j_dir_stats_key {
j_key_t hdr;
} __attribute__((packed));
typedef struct j_dir_stats_key j_dir_stats_key_t;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

80

File-System Objects

j_dir_stats_val_t

hdr

The record'’s header.

j_key_t hdr;

The object identifier in the header is the file-system object’s identifier.

APFS_TYPE_DIR_REC.

j_dir_stats_val_t

The value half of a directory-information record.

struct j_dir_stats_val {

uintés4_t
uinté4_t
uintés4_t
uinté4_t

num_children;
total_size;
chained_key;
gen_count;

} __attribute__((packed));

typedef struct j_dir_stats_val j_dir_stats_val_t;

num_children

The number of files and folders contained by the directory.

uinté64_t num_children;

total_size

The type in the header is always

The total size, in bytes, of all the files stored in this directory and all of this directory’s descendants.

uinté4_t total_size;

Hard links contribute to the total_size of every directory they appear in.

chained_key

The parent directory’s file system object identifier.

uint64_t chained_key;

gen_count

A monotonically increasing counter that's incremented each time this inode or any of its children is modified.

uinté64_t gen_count;

Modifying the contents of a file requires updating the inode’s modification time and write generation, which means

this counter must be incremented for the directory that contains the file.

If this counter can’t be incremented without overflow, that's an unrecoverable error.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

81

File-System Objects
j_xattr_key_t

j_xattr_key_t

The key half of an extended attribute record.

struct j_xattr_key {

j_key_t hdr;
uintlé6_t name_len;
uint8_t name[0];

} __attribute__((packed));

typedef struct j_xattr_key j_xattr_key_t;
hdr

The record’s header.
j_key_t hdr;

The object identifier in the header is the file-system object’s identifier. The type in the header is always
APFS_TYPE_XATTR.

name_1len

The length of the extended attribute’s name, including the final null character (U+0000).

uintlé6_t name_len;
name

The extended attribute’s name, represented as a null-terminated UTF-8 string.

uint8_t namel0];
j_xattr_val_ t

The value half of an extended attribute record.

struct j_xattr_val {
uintlé6_t flags;
uintlé6_t xdata_len;
uint8_t xdatal0];

} __attribute__((packed));

typedef struct j_xattr_val j_xattr_val_t;
flags
The extended attribute record’s flags.

uintlé6_t flags;

For the values used in this bit field, see j_xattr_flags. Either the XATTR_DATA_EMBEDDED or XATTR_DATA_
STREAM flag must be set.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

82

File-System Objects
j_xattr_val_t

xdata_1len

The length of the extended attribute data.

uintl6_t xdata_len;

If the XATTR_DATA_EMBEDDED flag is set, this field is the length of the data in the xdata field. Otherwise, this field
is ignored.

xdata

The extended attribute data or the identifier of a data stream that contains the data.
uint8_t xdatal@];

If the XATTR_DATA_EMBEDDED flag is set, the extended attribute data is stored directly in this field. Otherwise, this
field contains the identifier (uint64_t) for a data stream record that stores the extended attribute data. See also
j_xattr_dstream_t.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

83

File-System Constants

File-system objects use several groups of constants to define values for record types, reserved inode numbers, and
flags and bit masks used in bit fields.

j_obj_types

The type of a file-system record.

typedef enum {

APFS_TYPE_ANY =0,
APFS_TYPE_SNAP_METADATA = 1,
APFS_TYPE_EXTENT =2,
APFS_TYPE_INODE = 3,
APFS_TYPE_XATTR = 4,
APFS_TYPE_SIBLING_LINK =5,
APFS_TYPE_DSTREAM_ID =6,
APFS_TYPE_CRYPTO_STATE =7,
APFS_TYPE_FILE_EXTENT = 8,
APFS_TYPE_DIR_REC =9,
APFS_TYPE_DIR_STATS = 10,
APFS_TYPE_SNAP_NAME = 11,
APFS_TYPE_SIBLING_MAP = 12,
APFS_TYPE_FILE_INFO = 13,
APFS_TYPE_MAX_VALID = 13,
APFS_TYPE_MAX = 15,
APFS_TYPE_INVALID = 15,

} j_obj_types;

This value is stored in the type bits of a j_key_t structure’s obj_id_and_type field.
APFS_TYPE_ANY

A record of any type.
APFS_TYPE_ANY = 0

This enumeration case is used only in search queries and in tests when iterating over objects. It's not valid as the type
of a file-system object.

APFS_TYPE_SNAP_METADATA

Metadata about a shapshot.
APFS_TYPE_SNAP_METADATA = 1

The key is an instance of j_snap_metadata_key_t and the value is an instance of j_snap_metadata_val_t.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

84

File-System Constants
j_obj_types

APFS_TYPE_EXTENT

A physical extent record.
APFS_TYPE_EXTENT = 2

The key is an instance of j_phys_ext_key_t and the value is an instance of j_phys_ext_val_t.
APFS_TYPE_INODE

An inode.
APFS_TYPE_INODE = 3

The key is an instance of j_inode_key_t and the value is an instance of j_inode_val_t.
APFS_TYPE_XATTR

An extended attribute.
APFS_TYPE_XATTR = 4

The key is an instance of j_xattr_key_t and the value is an instance of j_xattr_val_t.
APFS_TYPE_SIBLING_LINK

A mapping from an inode to hard links that the inode is the target of.
APFS_TYPE_SIBLING_LINK = 5

The key is an instance of j_sibling_key_t and the value is an instance of j_sibling_val_t.
APFS_TYPE_DSTREAM_ID

A data stream.
APFS_TYPE_DSTREAM_ID = 6

The key is an instance of j_dstream_id_key_t and the value is an instance of j_dstream_id_val_t.
APFS_TYPE_CRYPTO_STATE

A per-file encryption state.
APFS_TYPE_CRYPTO_STATE = 7

The key is an instance of j_crypto_key_t and the value is an instance of j_crypto_val_t. This object type is
used only by iOS devices, except for a placeholder object whose identifier is always CRYPTO_SW_1ID.

APFS_TYPE_FILE_EXTENT

A physical extent record for a file.
APFS_TYPE_FILE_EXTENT = 8

The key is aninstance of j_file_extent_key_t and the value is an instance of j_file_extent_val_t.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

85

File-System Constants
j_obj_types

APFS_TYPE_DIR_REC

A directory entry.
APFS_TYPE_DIR_REC = 9

The key is an instance of j_drec_key_t and the value is an instance of j_drec_val_t.
APFS_TYPE_DIR_STATS

Information about a directory.
APFS_TYPE_DIR_STATS = 10

The key is aninstance of j_dir_stats_key_t and the value is an instance of j_drec_val_t.
APFS_TYPE_SNAP_NAME

The name of a snapshot.
APFS_TYPE_SNAP_NAME = 11

The key is an instance of j_snap_name_key_t and the value is an instance of j_snap_name_val_t.
APFS_TYPE_SIBLING_MAP

A mapping from a hard link to its target inode.
APFS_TYPE_SIBLING_MAP = 12

The key is an instance of j_sibling_map_key_t and the value is an instance of j_sibling_map_val_t.
APFS_TYPE_FILE_INFO

Additional information about file data.
APFS_TYPE_FILE_INFO = 13

The key is an instance of j_file_info_key_t and the valueis aninstance of j_file_info_val_t.
APFS_TYPE_MAX_VALID

The largest valid value for a file-system object's type.

APFS_TYPE_MAX_VALID = 13
APFS_TYPE_MAX

The largest value for a file-system object’s type.

APFS_TYPE_MAX = 15

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

86

File-System Constants
j_obj_kinds

APFS_TYPE_INVALID

An invalid object type.

APFS_TYPE_INVALID = 15
j_obj_kinds

The kind of a file-system record.

typedef enum {
APFS_KIND_ANY =
APFS_KIND_NEW =
APFS_KIND_UPDATE =
APFS_KIND_DEAD =
APFS_KIND_UPDATE_REFCNT =

M OO NP OO

-

APFS_KIND_INVALID = 255
} j_obj_kinds;

This value is stored in the kind bits of a j_phys_ext_val_t structure’s 1en_and_kind field.
APFS_KIND_ANY
A record of any kind.

APFS_KIND_ANY = 0

This value isn't valid as the kind of a file-system record on disk. However, implementations of Apple File System can
use it internally — for example, in search queries and in tests when iterating over objects.

APFS_KIND_NEW

A new record.
APFS_KIND_NEW = 1

This record adds data that isn't part of any snapshots.
APFS_KIND_UPDATE

An updated record.
APFS_KIND_UPDATE = 2

This record changes data that's part of an existing snapshot.
APFS_KIND_DEAD

A record that's being deleted.
APFS_KIND_DEAD = 3

This value isn't valid as the kind of a file-system record on disk. However, implementations of Apple File System can
use it internally.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

87

File-System Constants
j_inode_flags

APFS_KIND_UPDATE_REFCNT

An update to the reference count of a record.
APFS_KIND_UPDATE_REFCNT = 4

This value isn't valid as the kind of a file-system record on disk. However, implementations of Apple File System can
use it internally.

APFS_KIND_INVALID

An invalid record kind.

APFS_KIND_INVALID = 255
j_inode_flags

The flags used by inodes.

typedef enum {

INODE_IS_APFS_PRIVATE = 0x00000001,
INODE_MAINTAIN_DIR_STATS = 0x00000002,
INODE_DIR_STATS_ORIGIN = 0x00000004,
INODE_PROT_CLASS_EXPLICIT = 0x00000008,
INODE_WAS_CLONED = 0x00000010,
INODE_FLAG_UNUSED = 0x00000020,
INODE_HAS_SECURITY_EA = 0x00000040,
INODE_BEING_TRUNCATED = 0x00000080,
INODE_HAS_FINDER_INFO = 0x00000100,
INODE_IS_SPARSE = 0x00000200,
INODE_WAS_EVER_CLONED = 0x00000400,
INODE_ACTIVE_FILE_TRIMMED = 0x00000800,
INODE_PINNED_TO_MAIN = 0x00001000,
INODE_PINNED_TO_TIER2 = 0x00002000,
INODE_HAS_RSRC_FORK = 0x00004000,
INODE_NO_RSRC_FORK = 0x00008000,
INODE_ALLOCATION_SPILLEDOVER = 0x00010000,
INODE_FAST_PROMOTE = 0x00020000,
INODE_HAS_UNCOMPRESSED_SIZE = 0x00040000,
INODE_IS_PURGEABLE = 0x00080000,
INODE_WANTS_TO_BE_PURGEABLE = 0x00100000,
INODE_IS_SYNC_ROOT = 0x00200000,
INODE_SNAPSHOT_COW_EXEMPTION = 0x00400000,

INODE_INHERITED_INTERNAL_FLAGS

(INODE_MAINTAIN_DIR_STATS \
| INODE_SNAPSHOT_COW_EXEMPTION),

INODE_CLONED_INTERNAL_FLAGS = (INODE_HAS_RSRC_FORK \
| INODE_NO_RSRC_FORK \

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

88

File-System Constants
j_inode_flags

| INODE_HAS_FINDER_INFO \
| INODE_SNAPSHOT_COW_EXEMPTION),
} j_inode_flags;

#define APFS_VALID_INTERNAL_INODE_FLAGS (INODE_IS_APFS_PRIVATE \
| INODE_MAINTAIN_DIR_STATS \
| INODE_DIR_STATS_ORIGIN \
| INODE_PROT_CLASS_EXPLICIT \
| INODE_WAS_CLONED \
| INODE_HAS_SECURITY_EA \
| INODE_BEING_TRUNCATED \
| INODE_HAS_FINDER_INFO \
| INODE_IS_SPARSE \
| INODE_WAS_EVER_CLONED \
| INODE_ACTIVE_FILE_TRIMMED \
| INODE_PINNED_TO_MAIN \
| INODE_PINNED_TO_TIER2 \
| INODE_HAS_RSRC_FORK \
| INODE_NO_RSRC_FORK \
| INODE_ALLOCATION_SPILLEDOVER \
| INODE_FAST_PROMOTE \
| INODE_HAS_UNCOMPRESSED_SIZE \
| INODE_IS_PURGEABLE \
| INODE_WANTS_TO_BE_PURGEABLE \
| INODE_IS_SYNC_ROOT \
| INODE_SNAPSHOT_COW_EXEMPTION)

#define APFS_INODE_PINNED_MASK (INODE_PINNED_TO_MAIN | INODE_PINNED_TO_TIER2)
INODE_IS_APFS_PRIVATE

The inode is used internally by an implementation of Apple File System.
INODE_IS_APFS_PRIVATE = 0x00000001

Inodes with this flag set aren’t considered part of the volume. They can’t be cloned, renamed, or deleted. They're
ignored by operations like counting the number of files on disk, and they‘re hidden from the user during operations
like listing the files of a directory.

This flag isn't reserved by Apple; implementations of the Apple File System must set this flag on any inodes they create
for their own record keeping. However, to prevent implementations from interfering with each other, animplementation
modifies inodes with this flag only if the implementation created that inode.

Apple’s implementation uses this flag for temporary files.

See also PRIV_DIR_INO_NUM.
INODE_MAINTAIN_DIR_STATS

The inode tracks the size of all of its children.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

89

File-System Constants
j_inode_flags

INODE_MAINTAIN_DIR_STATS = 0x00000002
This flag is only valid on a directory, and must also be set on the directory’s subdirectories.

When removing the INODE_MAINTAIN_DIR_STATS flag from a directory, walk its subdirectories and remove it from
any directories that inherited it from this directory. Directories that have the INODE_DIR_STATS_ORIGIN flag set,
and subdirectories of those directories, continue to have the INODE_MAINTAIN_DIR_STATS flag set, because they
don't inherit it from this directory.

INODE_DIR_STATS_ORIGIN

The inode has the INODE_MAINTAIN_DIR_STATS flag set explicitly, not due to inheritance.
INODE_DIR_STATS_ORIGIN = 0x00000004

More than one directory in a hierarchy can have this flag set.
INODE_PROT_CLASS_EXPLICIT

The inode's data protection class was set explicitly when the inode was created.

INODE_PROT_CLASS_EXPLICIT = 0x00000008
INODE_WAS_CLONED

The inode was created by cloning another inode.

INODE_WAS_CLONED = 0x00000010
INODE_FLAG_UNUSED

Reserved.
INODE_FLAG_UNUSED = 0x00000020

Leave this flag unset when you create a new inode, and preserve its value when you modify an existing inode.
INODE_HAS_SECURITY_EA

The inode has an access control list.

INODE_HAS_SECURITY_EA = 0x00000040
INODE_BEING_TRUNCATED

The inode was truncated.
INODE_BEING_TRUNCATED = 0x00000080
This flag is used as follows to allow the truncation operation to complete after a crash:

The system is asked to truncate an inode
This flag is set on the inode

The system starts truncating the file

A crash occurs

P wbN -

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

90

File-System Constants
j_inode_flags

5. In the post-crash recovery process, this flag is detected
6. The system finishes truncating the inode

Note that after a crash, the truncation operation might not resume until the next time the inode is accessed.
INODE_HAS_FINDER_INFO

The inode has a Finder info extended field.
INODE_HAS_FINDER_INFO = 0x00000100

See also INO_EXT_TYPE_FINDER_INFO.
INODE_IS_SPARSE

The inode has a sparse byte count extended field.
INODE_IS_SPARSE = 0x00000200

See also INO_EXT_TYPE_SPARSE_BYTES.
INODE_WAS_EVER_CLONED

The inode has been cloned at least once.
INODE_WAS_EVER_CLONED = 0x00000400

If this flag is set, the blocks on disk that store this inode might also be in use with another inode. For example, when
deleting this inode, you need to check reference counts before deallocating storage.

Versions of macOS prior to 10.13.3 had a known issue where this flag could be set incorrectly. Before reading this flag,
confirm that the inode’s object identifier is larger than the value stored in the apfs_cloneinfo_id_epoch field
of apfs_superblock_t. In addition, to ensure that the volume hasn’t been modified by an older OS version, con-
firm that the value of the apfs_cloneinfo_xid field and the apfs_modified_by field of apfs_superblock_t
contain the same value.

INODE_ACTIVE_FILE_TRIMMED

The inode is an overprovisioning file that has been trimmed.
INODE_ACTIVE_FILE_TRIMMED = 0x00000800

This file type is used only on devices running iOS. By allocating space for the file, but never writing to that space, extra
blocks are set aside for overprovisioning that's performed by the underlying NAND storage.

INODE_PINNED_TO_MAIN

The inode's file content is always on the main storage device.
INODE_PINNED_TO_MAIN = 0x00001000

This flag is only valid for Fusion systems. The main storage is a solid-state drive.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

91

File-System Constants
j_inode_flags

INODE_PINNED_TO_TIER2

The inode's file content is always on the secondary storage device.
INODE_PINNED_TO_TIER2 = ©x00002000

This flag is only valid for Fusion systems. The secondary storage is a hard drive.
INODE_HAS_RSRC_FORK

The inode has a resource fork.
INODE_HAS_RSRC_FORK = 0x00004000

If this flag is set, INODE_NO_RSRC_FORK must not be set. It's also valid for neither flag to be set, which implicitly
indicates that the inode doesn't have a resource fork.

INODE_NO_RSRC_FORK

The inode doesn’t have a resource fork.
INODE_NO_RSRC_FORK = 0x00008000

If this flag is set, INODE_HAS_RSRC_FORK must not be set. It's also valid for neither flag to be set, which implicitly
indicates that the inode doesn’t have a resource fork.

INODE_ALLOCATION_SPILLEDOVER

The inode’'s file content has some space allocated outside of the preferred storage tier for that file.
INODE_ALLOCATION_SPILLEDOVER = 0x00010000

See also APFS_FS_SPILLEDOVER.
INODE_FAST_PROMOTE

This inode is scheduled for promotion from slow storage to fast storage.
INODE_FAST_PROMOTE = 0x00020000

The promotion between tiers will happen the first time this inode is read.
INODE_HAS_UNCOMPRESSED_SIZE

This inode stores its uncompressed size in the inode.
INODE_HAS_UNCOMPRESSED_SIZE = 0x00040000
The uncompressed size is stored in the uncompressed_size field of j_inode_val_t.

Prior to macOS 10.15 and iOS 13.1, this flag was ignored and Apple’s implementation always treated the
uncompressed_size field as padding.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

92

File-System Constants
j_inode_flags

INODE_IS_PURGEABLE

This inode will be deleted at the next purge.
INODE_IS_PURGEABLE = 0x00080000

A purge is requested from user space by part of the operating system, and the process of deleting purgeable files is
the responsibility of the operating system.

INODE_WANTS_TO_BE_PURGEABLE

This inode should become purgeable when its link count drops to one.

INODE_WANTS_TO_BE_PURGEABLE = 0x001060000
INODE_IS_SYNC_ROOT

This inode is the root of a sync hierarchy for fileproviderd.
INODE_IS_SYNC_ROOT = 0x00200000
Don't add or remove this flag, but preserve the flag if it already exists.

To prevent data loss, Apple’s implementation coordinates with fileproviderd during operations such as renaming a
file in a sync hierarchy, moving a file from inside a sync hierarchy out of that hierarchy, and moving a file from outside of
a sync hierarchy into that hierarchy. Other implementations of the Apple File System should treat requests to perform
these operations as errors.

INODE_SNAPSHOT_COW_EXEMPTION

This inode is exempt from copy-on-write behavior if the data is part of a snapshot.
INODE_SNAPSHOT_COW_EXEMPTION = 0x00400000
Don't add or remove this flag, but preserve the flag if it already exists.

The number of files with this flag is tracked by the APFS_COW_EXEMPT_COUNT_NAME extended attribute.
INODE _INHERITED_INTERNAL_FLAGS

A bit mask of the flags that are inherited by the files and subdirectories in a directory.
INODE_INHERITED_INTERNAL_FLAGS = (INODE_MAINTAIN_DIR_STATS \

| INODE_SNAPSHOT_COW_EXEMPTION)
INODE_CLONED_INTERNAL_FLAGS

A bit mask of the flags that are preserved when cloning.

INODE_CLONED_INTERNAL_FLAGS = (INODE_HAS_RSRC_FORK
| INODE_NO_RSRC_FORK \
| INODE_HAS_FINDER_INFO \
| INODE_SNAPSHOT_COW_EXEMPTION)

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

93

File-System Constants
j_xattr_flags

APFS_VALID_INTERNAL_INODE_FLAGS

A bit mask of all valid flags.

#define APFS_VALID_INTERNAL_INODE_FLAGS (INODE_IS_APFS_PRIVATE \
| INODE_MAINTAIN_DIR_STATS \
| INODE_DIR_STATS_ORIGIN \
| INODE_PROT_CLASS_EXPLICIT \
| INODE_WAS_CLONED \
| INODE_HAS_SECURITY_EA \
| INODE_BEING_TRUNCATED \
| INODE_HAS_FINDER_INFO \
| INODE_IS_SPARSE \
| INODE_WAS_EVER_CLONED \
| INODE_ACTIVE_FILE_TRIMMED \
| INODE_PINNED_TO_MAIN \
| INODE_PINNED_TO_TIER2 \
| INODE_HAS_RSRC_FORK \
| INODE_NO_RSRC_FORK \
| INODE_ALLOCATION_SPILLEDOVER \
| INODE_FAST_PROMOTE \
| INODE_HAS_UNCOMPRESSED_SIZE \
| INODE_IS_PURGEABLE \
| INODE_WANTS_TO_BE_PURGEABLE \
| INODE_IS_SYNC_ROOT \
| INODE_SNAPSHOT_COW_EXEMPTION)

APFS_INODE_PINNED_MASK

A bit mask of the flags that are related to pinning.

#define APFS_INODE_PINNED_MASK (INODE_PINNED_TO_MAIN | INODE_PINNED_TO_TIER2)
J_xattr_flags

The flags used in an extended attribute record to provide additional information.

typedef enum {

XATTR_DATA_STREAM = 0x00000001,
XATTR_DATA_EMBEDDED = 0x00000002,
XATTR_FILE_SYSTEM_OWNED = 0x00000004,
XATTR_RESERVED_8 = 0x00000008,

} j_xattr_flags;
XATTR_DATA_STREAM

The attribute data is stored in a data stream.
XATTR_DATA_STREAM = 0x00000001

If this flag is set, XATTR_DATA_EMBEDDED must not be set.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

94

File-System Constants
dir_rec_flags

XATTR_DATA_EMBEDDED

The attribute data is stored directly in the record.
XATTR_DATA_EMBEDDED = 0x00000002

If this flag is set, the size of the value be smaller than XATTR_MAX_EMBEDDED_SIZE, and XATTR_DATA_STREAM
must not be set.

XATTR_FILE_SYSTEM_OWNED

The extended attribute record is owned by the file system.
XATTR_FILE_SYSTEM_OWNED = 0x00000004

For example, this flag is used on symbolic links. The links have an extended attribute whose name is SYMLINK_EA_
NAME, and this flag is set on that attribute.

XATTR_RESERVED_8

Reserved.
XATTR_RESERVED_8 = 0x00000008

Don't add this flag to an extended attribute record, but preserve the flag if it already exists.
dir_rec_flags

The flags used by directory records.

typedef enum {
DREC_TYPE_MASK
RESERVED_10

} dir_rec_flags;

0x000f,
0x0010

DREC_TYPE_MASK

The bit mask used to access the type.
DREC_TYPE_MASK = 0x000f

This bit mask is used with the flags field of j_drec_val_t.
RESERVED_10

Reserved.
RESERVED_10 = 0x0010

Don't set this flag. If you find a directory record with this flag set in production, file a bug against the Apple File System
implementation.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

95

File-System Constants
Inode Numbers

Inode Numbers

Inodes whose number is always the same.

#define INVALID_INO_NUM 0
#define ROOT_DIR_PARENT 1
#define ROOT_DIR_INO_NUM 2
#define PRIV_DIR_INO_NUM 3
#define SNAP_DIR_INO_NUM 6
#define PURGEABLE_DIR_INO_NUM 7
#define MIN_USER_INO_NUM 16
#define UNIFIED_ID_SPACE_MARK 0x0800000000000000ULL

If the APFS_FEATURE_VOLGRP_SYSTEM_INO_SPACE flag is set on the volume, the system volume reserves each of
the inode numbers listed above but with UNIFIED_ID_SPACE_MARK added to them. For example, the inode number
0x0800000000000002ULL is equal to ROOT_DIR_INO_NUM + UNIFIED_ID_SPACE_MARK, meaning this inode
number is reserved for the system volume's root directory.

INVALID_INO_NUM

An invalid inode number.

#define INVALID_INO_NUM @
ROOT_DIR_PARENT

The inode number for the root directory’s parent.
#define ROOT_DIR_PARENT 1

This is a sentinel value; there's no inode on disk with this inode number.
ROOT_DIR_INO_NUM

The inode number for the root directory of the volume.

#define ROOT_DIR_INO_NUM 2
PRIV_DIR_INO_NUM

The inode number for the private directory.
#define PRIV_DIR_INO_NUM 3

The private directory’s filename is “private-dir”. When creating a new volume, you must create a directory with this
name and inode number.

This directory isn't reserved by Apple; implementations of the Apple File System can use it to store their own record-
keeping information. However, to prevent implementations from interfering with each other, an implementation modi-
fies files in the private directory only if the implementation created the files.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

96

File-System Constants
Extended Attributes Constants

See also INODE_IS_APFS_PRIVATE.
SNAP_DIR_INO_NUM

The inode number for the directory where snapshot metadata is stored.
#define SNAP_DIR_INO_NUM 6

Snapshot inodes are stored in the snapshot metedata tree.
PURGEABLE_DIR_INO_NUM

The inode number used for storing references to purgeable files.
#define PURGEABLE_DIR_INO_NUM 7

This inode number and the directory records that use it are reserved. Other implementations of the Apple File System
must not modify them.

There isn't an actual directory with this inode number.

Purgeable files have the INODE_IS_PURGEABLE flag set on the internal_flags field of j_inode_val_t.
MIN_USER_INO_NUM

The smallest inode number available for user content.
#define MIN_USER_INO_NUM 16

All inode numbers less than this value are reserved.
UNIFIED_ID_SPACE_MARK

The smallest inode number used by the system volume in a volume group.
#define UNIFIED_ID_SPACE_MARK 0x0800000000000000ULL

For more information, see APFS_FEATURE_VOLGRP_SYSTEM_INO_SPACE.
Extended Attributes Constants

Constants used with extended attributes.

#define XATTR_MAX_EMBEDDED_SIZE 3804
#define SYMLINK_EA_NAME "com.apple.fs.symlink”
#define FIRMLINK_EA_NAME "com.apple.fs.firmlink”

#define APFS_COW_EXEMPT_COUNT_NAME “com.apple.fs.cow-exempt—file-count”
XATTR_MAX_EMBEDDED_SIZE

The largest size, in bytes, of an extended attribute whose value is stored directly in the record.
#define XATTR_MAX_EMBEDDED_SIZE 3804

For information about embedded values, see j_xattr_val_t.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

97

File-System Constants
File-System Object Constants

SYMLINK_EA_NAME

The name of an extended attribute for a symbolic link whose value is the target file on the data volume.

#define SYMLINK_EA_NAME "com.apple.fs.symlink”
FIRMLINK_EA_NAME

The name of an extended attribute for a firm link whose value is the target file.

#define FIRMLINK_EA_NAME “com.apple.fs.firmlink”
APFS_COW_EXEMPT_COUNT _NAME

The number of files on the volume that don’t use copy on write.
#define APFS_COW_EXEMPT_COUNT_NAME “com.apple.fs.cow-exempt—file-count”
Don’t add this extended attribute or modify its value, but preserve the attribute if it already exists.

The inodes that are counted here have the INODE_SNAPSHOT_COW_EXEMPTION flag set. This number is used by
Time Machine when making snapshots.

File-System Object Constants

No overview available.

#define OWNING_OBJ_ID_INVALID ~QULL
#define OWNING_OBJ_ID_UNKNOWN ~1ULL
#define JOBJ_MAX_KEY_SIZE 832
#define JOBJ_MAX_VALUE_SIZE 3808
#define MIN_DOC_ID 3
MIN_DOC_ID

The smallest document identifier available for user content.
#define MIN_DOC_ID 3

All document identifiers less than this value are reserved.
File Extent Constants

No overview available.

#define FEXT_CRYPTO_ID_IS_TWEAK 0x01
File Modes

The values used by the mode field of j_inode_val_t to indicate a file's mode.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

98

File-System Constants
File Modes

typedef uintilé6_t mode_t;

#define S_IFMT 0170000
#define S_IFIFO 0010000
#define S_IFCHR 0020000
#define S_IFDIR 0040000
#define S_IFBLK 0060000
#define S_IFREG 0100000
#define S_IFLNK 0120000
#define S_IFSOCK 0140000
#define S_IFWHT 0160000

The names, values, and meanings of these constants are the same as the constants provided by <sys/stat.h>.
These values are the same as the values defined in Directory Entry File Types, except for a bit shift.

mode_t

A file mode.

typedef uintlé_t mode_t;
S_IFMT

The bit mask used to access the file type.

#define S_IFMT 0170000
S_IFIFO

A named pipe.

#define S_IFIFO 0010000
S_IFCHR

A character-special file.

#define S_IFCHR 0020000
S_IFDIR

A directory.

#define S_IFDIR 0040000
S_IFBLK

A block-special file.

#define S_IFBLK 0060000

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

99

File-System Constants
Directory Entry File Types

S_IFREG

A regular file.

#define S_IFREG 0100000
S_TIFLNK

A symbolic link.

#define S_IFLNK 0120000
S_IFSOCK

A socket.

#define S_IFSOCK 0140000
S_IFWHT

A whiteout.

#define S_IFWHT 0160000

Directory Entry File Types

Values used by the flags field of j_drec_val_t to indicate a directory entry’s type.

#define DT_UNKNOWN
#define DT_FIFO
#define DT_CHR
#define DT_DIR
#define DT_BLK
#define DT_REG
#define DT_LNK
#define DT_SOCK
#define DT_WHT

These values are the same as the values defined in File Modes, except for a bit shift.

DT_UNKNOWN

An unknown directory entry.

#define DT_UNKNOWN @

DT_FIFO

A named pipe

#define DT_FIFO 1

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

100

File-System Constants
Directory Entry File Types

DT_CHR

A character-special file.

#define DT_CHR 2
DT_DIR

A directory.

#define DT_DIR 4
DT_BLK

A block-special file.

#define DT_BLK 6
DT_REG

A regular file.

#define DT_REG 8
DT_LNK

A symbolic link.

#define DT_LNK 10
DT_SOCK

A socket.

#define DT_SOCK 12
DT_WHT

A whiteout.

#define DT_WHT 14

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

101

Data Streams

Short pieces of information like a file's name are stored inside the data structures that contain metadata. Data that's
too large to store inline is stored separately, in a data stream. This includes the contents of files, and the value of some
attributes.

j_phys_ext_key_t

The key half of a physical extent record.

struct j_phys_ext_key {
j_key_t hdr;
} __attribute__((packed));
typedef struct j_phys_ext_key j_phys_ext_key_t;

hdr

The record'’s header.
j_key_t hdr;

The object identifier in the header is the physical block address of the start of the extent. The type in the header is
always APFS_TYPE_EXTENT.

j_phys_ext_val_t

The value half of a physical extent record.

struct j_phys_ext_val {
uinté4_t len_and_kind;
uinté4_t owning_obj_id;
int32_t refcnt;

} __attribute__((packed));

typedef struct j_phys_ext_val j_phys_ext_val_t;

#define PEXT_LEN_MASK OxofffffffffffffffULL
#define PEXT_KIND_MASK 0xf00000000000000OULL
#define PEXT_KIND_SHIFT 60

len_and_kind

A bit field that contains the length of the extent and its kind.
uinté4_t len_and_kind;

The extent’s length is a uint64_t value, accessed as len_and_kind & PEXT_LEN_MASK, and measured in
blocks. The extent’s kind is a j_obj_kinds value, accessed as (len_and_kind & PEXT_KIND_MASK) >>
PEXT_KIND_SHIFT.

For a volume that has no snapshots, the kind is always APFS_KIND_NEW.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

102

Data Streams
j_file_extent_key_t

owning_obj_id

The identifier of the file system record that's using this extent.
uinté4_t owning_obj_id;

If the owning record is an inode, this field contains the inode’s private identifier (the private_id field of
j_inode_val_t). If the owning record is an extended attribute, this field contains the extended attribute’s
record identifier (the identifier from the hdr field of j_xattr_key_t).

refcent

The reference count.
int32_t refcnt;

The extent can be deleted when its reference count reaches zero.
PEXT_LEN_MASK

The bit mask used to access the extent length.

#define PEXT_LEN_MASK OxofffffffffffffffuLL
PEXT_KIND_MASK

The bit mask used to access the extent kind.

#define PEXT_KIND_MASK 0xf000000000000000ULL
PEXT_KIND_SHIFT

The bit shift used to access the extent kind.

#define PEXT_KIND_SHIFT 60
j_file_extent_key_t

The key half of a file extent record.

struct j_file_extent_key {
j_key_t hdr;
uinté4_t logical_addr;
} __attribute__((packed));
typedef struct j_file_extent_key j_file_extent_key_t;

hdr
The record'’s header.

j_key_t hdr;

The object identifier in the header is the file-system object’s identifier. The type in the header is always
APFS_TYPE_FILE_EXTENT.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

103

Data Streams
j_file_extent_val_t

logical_addr

The offset within the file's data, in bytes, for the data stored in this extent.

uinté64_t logical_addr;
j_file_extent_val_t

The value half of a file extent record.

struct j_file_extent_val {
uintés4_t len_and_flags;
uinté4_t phys_block_num;
uinté4_t crypto_id;

} __attribute__((packed));

typedef struct j_file_extent_val j_file_extent_val_t;

#define J_FILE_EXTENT_LEN_MASK OxeOffffffffffffffULL
#define J_FILE_EXTENT_FLAG_MASK Oxff00000000000000ULL
#define J_FILE_EXTENT_FLAG_SHIFT 56

len_and_flags

A bit field that contains the length of the extent and its flags.
uinté4_t len_and_flags;

The extent's length is a uint64_t value, accessed as len_and_kind & J_FILE_EXTENT_LEN_MASK, and
measured in bytes. The length must be a multiple of the block size defined by the nx_block_size field of
nx_superblock_t. The extent’s flags are accessed as (1len_and_kind & J_FILE_EXTENT_FLAG_MASK) >>
J_FILE_EXTENT_FLAG_SHIFT.

There are currently no flags defined.
phys_block_num

The physical block address that the extent starts at.

uinté4_t phys_block_num;
crypto_id

The encryption key or the encryption tweak used in this extent.
uinté64_t crypto_id;

If the APFS_FS_ONEKEY flag is set on the volume, this field contains the AES-XTS tweak value. Otherwise, this value
matches the obj_id field of the j_crypto_key_t record that contains information about how this file extent is
encrypted, including the per-file encryption key.

The default value for this field is the value of the default_crypto_id field of the j_dstream_t for the data stream
that this extent is part of.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

104

Data Streams
j_dstream_id_key_t

J_FILE_EXTENT_LEN_MASK

The bit mask used to access the extent length.

#define J_FILE_EXTENT_LEN_MASK oxeoffffffffffffffuLL
J_FILE_EXTENT_FLAG_MASK

The bit mask used to access the flags.

#define J_FILE_EXTENT_FLAG_MASK 0xff00000000000000ULL
J_FILE_EXTENT_FLAG_SHIFT

The bit shift used to access the flags.

#define J_FILE_EXTENT_FLAG_SHIFT 56
j_dstream_id_key_t

The key half of a directory-information record.

struct j_dstream_id_key {
j_key_t hdr;
} __attribute__((packed));
typedef struct j_dstream_id_key j_dstream_id_key_t;

hdr

The record’s header.
j_key_t hdr;

The object identifier in the header is the file-system object’s identifier.
APFS_TYPE_DSTREAM_ID.

j_dstream_id val_t

The value half of a data stream record.

struct j_dstream_id_val {
uint32_t refcnt;
} __attribute__((packed));
typedef struct j_dstream_id_val j_dstream_id_val_t;

refcent

The reference count.
uint32_t refcnt;

The data stream record can be deleted when its reference count reaches zero.

The type in the header is always

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

105

Data Streams
j_xattr_dstream_t

j_xattr_dstream_t

A data stream for extended attributes.

struct j_xattr_dstream {
uintés4_t xattr_obj_id;
j_dstream_t dstream;
+i
typedef struct j_xattr_dstream j_xattr_dstream_t;

To access the data in the stream, read the object identifier and then find the corresponding extents.
xattr_obj_id

The identifier for the data stream.
uinté4_t xattr_obj_id;

This field contains the record identifier of the data stream that owns this record.
dstream

Information about the data stream.

j_dstream_t dstream;

j_dstream_t

Information about a data stream.

struct j_dstream {
uinté4_t size;
uintés4_t alloced_size;
uinté4_t default_crypto_id;
uintés4_t total_bytes_written;
uinté4_t total_bytes_read;

} __attribute__((aligned(8),packed));

typedef struct j_dstream j_dstream_t;

This structure is used inside j_xattr_dstream_t.
size

The size, in bytes, of the data.

uinté4_t size;
alloced_size

The total space allocated for the data stream, including any unused space.

uinté4_t alloced_size;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

106

Data Streams
j_dstream_t

default_crypto_id

The default encryption key or encryption tweak used in this data stream.
uinté4_t default_crypto_id;

This value matches the obj_id fieldinthe j_key_t key that correspondstoa j_crypto_val_t value. Foravolume
that uses software encryption, the value of this field is always CRYPTO_SW_1ID.

This value is used as the default value by file extents (j_file_extent_val_t) that make up this data stream.
total_bytes_written

The total number of bytes that have been written to this data stream.
uint64_t total_bytes_written;

The value of this field increases every time a write operation occurs. This value is allowed to overflow and restart from
zero.

total_bytes_read

The total number of bytes that have been read from this data stream.
uinté64_t total_bytes_read;

The value of this field increases every time a read operation occurs. This value is allowed to overflow and restart from
zero.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

107

Extended Fields

Directory entries and inodes use extended fields to store a dynamically extensible set of member fields.

To determine whether a directory entry or an inode has any extended fields, find the table of contents entry for the
file-system record, and then compare the recorded size to the size of the structure. For example:

kvloc_t toc_entry = /% assume this exists x/

if (toc_entry.v.len == sizeof(j_drec_val_t)) {
// no extended fields
} else {

// at least one extended field
H

Both j_drec_val_t and j_inode_val_t have an xfields field that contains several kinds of data, stored one
after another, ordered as follows:

1. Aninstance of xf_blob_t, which tells you how many extended fields there are, and how many bytes they take
up on disk.

2. An array of instances of x_field_t, one for each extended field, which tells you the field’s type and size
3. An array of extended-field data, aligned to eight-byte boundaries.

The arrays of extended-field metadata (x_field_t) and extended-field data are stored in the same order. The
extended-field data’s type depends on the field. For a list of field types, see Extended-Field Types.

xf_blob_t

A collection of extended attributes.

struct xf_blob {

uintl6_t xf_num_exts;
uintlé6_t xf_used_data;
uint8_t xf_datall;

1
typedef struct xf_blob xf_blob_t;

Directory entries (j_drec_val_t) andinodes (j_inode_val_t) use this data type to store their extended fields
Xxf_num_exts

The number of extended attributes.

uintl6_t xf_num_exts;
xf_used_data

The amount of space, in bytes, used to store the extended attributes.
uintl6_t xf_used_data;

This total includes both the space used to store metadata, as instances of x_field_t, and values.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

108

Extended Fields
x_field_t

xf_datal]

The extended fields.
uint8_t xf_datall;

This field contains an array of instances of x_field_t, followed by the extended field data.
Xx_field_t

An extended field's metadata.

struct x_field {

uint8_t x_type;
uint8_t x_flags;
uintl6_t X_size;

b
typedef struct x_field x_field_t;

This type is used by xf_blob_t to store an array of extended fields. Within the array, each extended field must have
a unique type.

The extended field’s data is stored outside of this structure, as part of the space set aside by the directory entry or
inode.

x_type

The extended field’s data type.
uint8_t x_type;

For possible values, see Extended-Field Types.
x_flags

The extended field's flags.
uint8_t x_flags;

For the values used in this bit field, see Extended-Field Flags.
X_size

The size, in bytes, of the data stored in the extended field.

uintlé6_t x_size;
Extended-Field Types

Values used by the x_type field of x_field_t toindicate an extended field's type.

#define DREC_EXT_TYPE_SIBLING_ID 1

#define INO_EXT_TYPE_SNAP_XID 1

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

109

Extended Fields
Extended-Field Types

#define INO_EXT_TYPE_DELTA_TREE_OID
#define INO_EXT_TYPE_DOCUMENT_ID
#define INO_EXT_TYPE_NAME

#define INO_EXT_TYPE_PREV_FSIZE
#define INO_EXT_TYPE_RESERVED_6
#define INO_EXT_TYPE_FINDER_INFO
#define INO_EXT_TYPE_DSTREAM
#define INO_EXT_TYPE_RESERVED_9
#define INO_EXT_TYPE_DIR_STATS_KEY
#define INO_EXT_TYPE_FS_UUID
#define INO_EXT_TYPE_RESERVED_12
#define INO_EXT_TYPE_SPARSE_BYTES
#define INO_EXT_TYPE_RDEV

#define INO_EXT_TYPE_PURGEABLE_FLAGS 15
#define INO_EXT_TYPE_ORIG_SYNC_ROOT_ID 16

O 00N O O B WN

PR R R R
NW NP

DREC_EXT_TYPE_SIBLING_ID

The sibling identifier for a directory record (uinté4_t).
#define DREC_EXT_TYPE_SIBLING_ID 1
The corresponding sibling-link record has the same identifier in the sibling_id field of j_sibling_key_t.

This extended field is used only for hard links.
INO_EXT_TYPE_SNAP_XID

The transaction identifier for a snapshot (xid_t).

#define INO_EXT_TYPE_SNAP_XID 1
INO_EXT_TYPE_DELTA_TREE_OID

The virtual object identifier of the file-system tree that corresponds to a snapshot’s extent delta list (oid_t).
#define INO_EXT_TYPE_DELTA_TREE_OID 2

The tree object’s subtype is always OBJECT_TYPE_FSTREE.
INO_EXT_TYPE_DOCUMENT_ID

The file's document identifier (uint32_t).
#define INO_EXT_TYPE_DOCUMENT_ID 3

The document identifier lets applications keep track of the document during operations like atomic save, where one
folder replaces another. The document identifier remains associated with the full path, not just with the inode that's
currently at that path. Implementations of Apple File System must preserve the document identifier when the inode
at that path is replaced.

Both documents that are stored as a bundle and documents that are stored as a single file can have a document
identifier assigned.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

110

Extended Fields
Extended-Field Types

Valid document identifiers are greater than MIN_DOC_1ID and less than UINT32_MAX - 1. For the next document
identifier that will be assigned, see the apfs_next_doc_id field of apfs_superblock_t.

INO_EXT_TYPE_NAME

The name of the file, represented as a null-terminated UTF-8 string.
#define INO_EXT_TYPE_NAME 4

This extended field is used only for hard links: The name stored in the inode is the name of the primary link to the file,
and the name of the hard link is stored in this extended field.

INO_EXT_TYPE_PREV_FSIZE

The file's previous size (uint64_t).
#define INO_EXT_TYPE_PREV_FSIZE 5

This extended field is used for recovering after a crash. Ifit's set on aninode, truncate the file back to the size contained
in this field.

INO_EXT_TYPE_RESERVED_6

Reserved.
#define INO_EXT_TYPE_RESERVED_6 6

Don't create extended fields of this type in your own code. Preserve the value of any extended fields of this type.
INO_EXT_TYPE_FINDER_INFO

Opaque data stored and used by Finder (32 bytes).

#define INO_EXT_TYPE_FINDER_INFO 7
INO_EXT_TYPE_DSTREAM

A data stream (j_dstream_t).

#define INO_EXT_TYPE_DSTREAM 8
INO_EXT_TYPE_RESERVED_9

Reserved.
#define INO_EXT_TYPE_RESERVED_9 9

Don't create extended fields of this type. When you modify an existing volume, preserve the contents of any extended
fields of this type.

INO_EXT_TYPE_DIR_STATS_KEY

Statistics about a directory (j_dir_stats_val_t).

#define INO_EXT_TYPE_DIR_STATS_KEY 10

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

m

Extended Fields
Extended-Field Flags

INO_EXT_TYPE_FS_UUID

The UUID of a file system that's automatically mounted in this directory (uuid_t).
#define INO_EXT_TYPE_FS_UUID 11

This value matches the value of the apfs_vol_uuid field of apfs_superblock_t.
INO_EXT_TYPE_RESERVED_12

Reserved.
#define INO_EXT_TYPE_RESERVED_12 12

Don't create extended fields of this type. If you find an object of this type in production, file a bug against the Apple
File System implementation.

INO_EXT_TYPE_SPARSE_BYTES

The number of sparse bytes in the data stream (uinté4_t).

#define INO_EXT_TYPE_SPARSE_BYTES 13
INO_EXT_TYPE_RDEV

The device identifier for a block- or character-special device (uint32_t).
#define INO_EXT_TYPE_RDEV 14

This extended field stores the same information as the st_rdev field of the stat structure definedin<sys/stat.h>.
INO_EXT_TYPE_PURGEABLE_FLAGS

Information about a purgeable file.
#define INO_EXT_TYPE_PURGEABLE_FLAGS 15

The value of this extended field is reserved. Don't create new extended fields of this type. When duplicating a file or
directory, omit this extended field from the new copy.

Purgeable files have the INODE_IS_PURGEABLE flag set onthe internal_flags field of j_inode_val_t.
INO_EXT_TYPE_ORIG_SYNC_ROOT_ID

The inode number of the sync-root hierarchy that this file originally belonged to.
#define INO_EXT_TYPE_ORIG_SYNC_ROOT_ID 16

The specified inode always has the INODE_IS_SYNC_ROOT flag set.
Extended-Field Flags

The flags used by an extended field's metadata.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

112

Extended Fields
Extended-Field Flags

#define XF_DATA_DEPENDENT 0x0001
#define XF_DO_NOT_COPY 0x0002
#define XF_RESERVED_4 0x0004
#define XF_CHILDREN_INHERIT 0x0008
#define XF_USER_FIELD 0x0010
#define XF_SYSTEM_FIELD 0x0020
#define XF_RESERVED_40 0x0040
#define XF_RESERVED_80 0x0080

These flags are used by the x_f1lags field of x_field_t.
XF_DATA_DEPENDENT

The data in this extended field depends on the file's data.
#define XF_DATA_DEPENDENT 0x0001

When the file data changes, this extended field must be updated to match the new data. If it's not possible to update
the field — for example, because the Apple File System implementation doesn’t recognize the field's type — the field
must be removed.

XF_DO_NOT_COPY

When copying this file, omit this extended field from the copy.

#define XF_DO_NOT_COPY 0x0002
XF_RESERVED_4

Reserved.
#define XF_RESERVED_4 0x0004

Don't set this flag, but preserve it if it's already set.
XF_CHILDREN_INHERIT

When creating a new entry in this directory, copy this extended field to the new directory entry.

#define XF_CHILDREN_INHERIT 0x0008
XF_USER_FIELD

This extended field was added by a user-space program.

#define XF_USER_FIELD 0x0010
XF_SYSTEM_FIELD

This extended field was added by the kernel, by the implementation of Apple File System, or by another system com-
ponent.

#define XF_SYSTEM_FIELD 0x0020

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

113

Extended Fields
Extended-Field Flags

Extended fields with this flag set can’t be removed or modified by a program running in user space.
XF_RESERVED_40

Reserved.
#define XF_RESERVED_40 0x0040

Don't set this flag, but preserve it if it's already set.

XF_RESERVED_80

Reserved.
#define XF_RESERVED_80 0x0080

Don't set this flag, but preserve it if it's already set.

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

114

Siblings

Hard links that all refer to the same inode are called siblings. Each sibling has its own identifier that's used instead
of the shared inode number when siblings need to be distinguished. For example, some Carbon APIs in macOS use
sibling identifiers.

The sibling whose identifier is the lowest number is called the primary link. The other siblings copy various properties
of the primary link, as discussed in j_inode_val_t.

You use sibling links and sibling maps to convert between sibling identifiers and inode numbers. Sibling-link records
let you find all the hard links whose target is a given inode. Sibling-map records let you find the target inode of a given
hard link.

j_sibling_key_t

The key half of a sibling-link record.

struct j_sibling_key {
j_key_t hdr;
uinté4_t sibling_id;
} __attribute__((packed));
typedef struct j_sibling_key j_sibling_key_t;

hdr

The record’s header.
j_key_t hdr;

The object identifier in the header is the file-system object’s identifier, that is, its inode number. The type in the header
is always APFS_TYPE_SIBLING_LINK.

sibling_id
The sibling’s unique identifier.

uinté4_t sibling_id;

This value matches the object identifier for the sibling map record (j_sibling_key_t).
j_sibling_val_t

The value half of a sibling-link record.

struct j_sibling_val {
uintés4_t parent_id;
uintlé6_t name_len;
uint8_t name[0];
} __attribute__((packed));
typedef struct j_sibling_val j_sibling_val_t;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

115

Siblings
j_sibling_map_key_t

parent_id

The object identifier for the inode that's the parent directory.

uinté4_t parent_id;
name_1len

The length of the name, including the final null character (U+0000).

uintl6_t name_len;
name

The name, represented as a null-terminated UTF-8 string.

uint8_t namel0];
j_sibling_map_key_t

The key half of a sibling-map record.

struct j_sibling_map_key {
j_key_t hdr;
} __attribute__((packed));
typedef struct j_sibling_map_key j_sibling_map_key_t;

hdr

The record'’s header.
j_key_t hdr;

The object identifier in the header is the sibling’s unique identifier, which matches the sibling_id field of
j_sibling_key_t. The type in the header is always APFS_TYPE_SIBLING_MAP.

j_sibling_map_val_t

The value half of a sibling-map record.

struct j_sibling_map_val {
uinté4_t file_id;
} __attribute__((packed));
typedef struct j_sibling_map_val j_sibling_map_val_t;

file_id

The inode number of the underlying file

uintés4_t file_id;

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

116

Snapshot Metadata

Snapshots let you get a stable, read-only copy of the filesystem at a given point in time — for example, while updating a
backup of the entire drive. Snapshots are designed to be fast and inexpensive to create; however, deleting a snapshot

involves more work.
j_snap_metadata_key_t

The key half of a record containing metadata about a snapshot.

struct j_snap_metadata_key {
j_key_t hdr;
} __attribute__((packed));
typedef struct j_snap_metadata_key j_snap_metadata_key_t;

hdr

The record'’s header.

j_key_t hdr;

The object identifier in the header is the snapshot’s transaction identifier.

APFS_TYPE_SNAP_METADATA.

j_snap_metadata_val_t

The value half of a record containing metadata about a snapshot.

struct j_snap_metadata_val {

oid_t extentref_tree_oid;
oid_t sblock_oid;
uintés4_t create_time;
uinté4_t change_time;
uintés4_t inum;

uint32_t extentref_tree_type;
uint32_t flags;
uintlé6_t name_len;
uint8_t name[0];
} __attribute__((packed));

typedef struct j_snap_metadata_val j_snap_metadata_val_t;
extentref_tree oid

The physical object identifier of the B-tree that stores extents information.

oid_t extentref_tree_oid;
sblock_oid

The physical object identifier of the volume superblock.

The type in the header is always

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

117

Snapshot Metadata
j_snap_metadata_val_t

oid_t sblock_oid;
create_time

The time that this snapshot was created.
uinté64_t create_time;

This timestamp is represented as the number of nanoseconds since January 1, 1970 at 0:00 UTC, disregarding leap
seconds.

change_time

The time that this snapshot was last modified.
uinté4_t change_time;

This timestamp is represented as the number of nanoseconds since January 1, 1970 at 0:00 UTC, disregarding leap
seconds.

inum

No overview available.

uinté4_t inum;
extentref_tree_type

The type of the B-tree that stores extents information.

uint32_t extentref_tree_type;
flags

A bit field that contains additional information about a snapshot metadata record.
uint32_t flags;

For the values used in this bit field, see snap_meta_flags.
name_1len

The length of the snapshot’s name, including the final null character (U+0000).

uintlé6_t name_len;
name

The snapshot’s name, represented as a null-terminated UTF-8 string.

uint8_t namel©@];

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

118

Snapshot Metadata
j_snap_name_key_t

j_snap_name_key_t

The key half of a snapshot name record.

struct j_snap_name_key {

j_key_t hdr;
uintlé6_t name_len;
uint8_t name[0];

} __attribute__((packed));

typedef struct j_snap_name_key j_snap_name_key_t;
hdr
The record’s header.

j_key_t hdr;

The object identifier in the header is always ~QULL. The type in the header is always APFS_TYPE_SNAP_NAME.
name_1len

The length of the extended attribute’s name, including the final null character (U+0000).

uintl6_t name_len;
name

The extended attribute’s name, represented as a null-terminated UTF-8 string.

uint8_t namel[0@];
j_snap_name_val_ t

The value half of a snapshot name record.

struct j_snap_name_val {
xid_t snap_xid;
} __attribute__((packed));
typedef struct j_snap_name_val j_snap_name_val_t;

snap_xid
The last transaction identifier included in the snapshot.
xid_t snap_xid;

snap_meta_flags

No overview available.

typedef enum {
SNAP_META_PENDING_DATALESS
SNAP_META_MERGE_IN_PROGRESS

0x00000001,
0x00000002,

2020-06-22 | Copyright © 2020 Apple Inc. All Rights Reserved.

119

Snapshot Metadata
snap_meta_ext_obj_phys_t

} snap_meta_flags;
snap_meta_ext_obj_phys_t

Additional metadata about snapshots.

struct snap_meta_ext_obj_phys {
obj_phys_t smeop_o;
snap_meta_ext_t smeop_sme;

}

typedef struct snap_meta_ext_obj_phys_t;

smeop_o

No overview available.

obj_phys_t smeop_o;
smeop_sme

No overview