# Care, Maintenance, and Troubleshooting of HPLC Columns

Columns and Consumables

Edward Kim Applications Engineer January 17, 2008

## **Goals for this presentation:**

- Introduce the most commonly observed column related problems in HPLC.
- 2. Explore the reasons for these column problems.
- 3. Propose preventative maintenance and method development/optimization approaches to minimize HPLC column problems and increase column lifetimes.



## **Troubleshooting in HPLC**



## Major Areas of Column Problems - Dramatic Changes in 3 Key Areas:

- 1. HPLC System Pressure
- 2. Chromatogram Peak Shape
- 3. Chromatogram Peak Retention/Selectivity

#### 1. Pressure Issues

#### **Column Observations**

Large pressure change

#### **Potential Problems**

Plugged inlet frit

Column contamination

Plugged packing

# Determining the Cause and Correcting High Back Pressure

 Check pressure with/without column - many pressure problems are due to blockages elsewhere in the system.

#### If Column pressure remains high:

- Rinse column (remove detector from flow path!)
  - Eliminate column contamination and plugged packing
  - high molecular weight/adsorbed compounds
  - precipitate from sample or buffer
- Back flush column may clear plugged column inlet frit
- Change column inlet frit (... or discard column)

Eliminate pressure issues — add a disposable 0.5 or 2 um in-line filter to system.

#### **Pressure Problem I**

# Pressure Too High

- Column inlet frit contaminated
- Frit in purge valve contaminated
- Column contaminated
- Blockage in a capillary, particularly needle seat capillary
- Rotor in injection valve plugged
- Injection needle or needle seat plugged



#### **Pressure Measurement**

#### **Pressure Problem II**

Pressure Too Low

- Solvent inlet frit plugged
- Leak in a capillary connection or other part (pump seals)
- Wrong solvent or flow rate
- AIV (Active inlet valve) defective
- Multichannel Gradient valve incorrectly proportioning
- Ball valve defective
- Column defective (stationary phase)



# 1100 and 1200 Pumps Exploded View





## **Pump Check Valves**



Active Inlet Valve (common to all)

1. Gold Washer 5001-3707

2. Plastic cap 01018-21207

3. Gold Seal 5001-3707

4. Cap(4pk) 5062-2485

5. Gold Seal 5001-3707

6. Cap(4pk) 5062-2485

7. PTFE (5pk) 01018-22707

## **Column Cleaning**

# Flush with stronger solvents than your mobile phase. Make sure detector is taken out of flow path.

# Reversed-Phase Solvent Choices in Order of Increasing Strength

#### Use at least 10 x V<sub>m</sub> of each solvent for analytical columns

- 1. Mobile phase without buffer salts (water/organic)
- 2. 100% Organic (MeOH or ACN)
- 3. Is pressure back in normal range?
- 4. If not, discard column or consider more drastic conditions: 75% Acetonitrile:25% Isopropanol, then
- 5. 100% Isopropanol
- 6. 100% Methylene Chloride\*
- 7. 100% Hexane\*

When using either Hexane or Methylene Chloride the column must be flushed with Isopropanol before returning to your reversed-phase mobile phase.

## **Column Cleaning**

#### **Normal Phase Solvent Choices**

in Order of Increasing Strength

- Use at least 50 mL of each solvent
- 50% Methanol: 50% Chloroform
- 100% Ethyl Acetate

# Preventing Back Pressure Problems: In-Line Devices



## **Preventing Column Back Pressure Problems**

- 1. Filter mobile phase:
  - filter non-HPLC grade solvents
  - filter buffer solutions
  - Install an in-line filter between auto-sampler and column (removes pump seal debris, ALS rotor debris, and sample particulates). Use 2 um frit for 3.5 um columns, use 0.5 um frit for 1.8 um columns.
- 2. Filter all samples and standards
- 3. Perform sample clean-up (i.e. SPE, LLE) on dirty samples.
- 4. Appropriate column flushing flush buffers from entire system at end of day with water/organic mobile phase.



## 2. Peak Shape Issues in HPLC

- Split peaks
- Peak tailing
- Broad peaks
- Poor efficiency (low N)
- Inconsistent response
- Many peak shape issues are also combinations i.e. broad and tailing or tailing with increased retention

## **Split Peaks**

#### Can be caused by:

- Column contamination
- Partially plugged frit
- Column void (gap in packing bed)
- Injection solvent effects

# Split Peaks Column Contamination

Column: StableBond SB-C8, 4.6 x 150 mm, 5 μm Mobile Phase: 60% 25 mM Na<sub>2</sub>HPO<sub>4</sub>, pH 3.0 : 40% MeOH Flow Rate: 1.0 mL/min Temperature: 35°C Detection: UV 254 nm Sample: Filtered OTC Cold Medication: 1. Pseudoephedrine 2. APAP 3. Unknown 4. Chlorpheniramine



• Column washing eliminates the peak splitting, which resulted from a contaminant on the column.

#### **Split Peaks**

## **Injection Solvent Effects**

Column: StableBond SB-C8, 4.6 x 150 mm, 5  $\mu$ m Mobile Phase: 82% H<sub>2</sub>O : 18% ACN Injection Volume: 30  $\mu$ L Sample: 1. Caffeine 2. Salicylamide







- Injecting in a solvent stronger than the mobile phase can cause peak shape problems, such as peak splitting or broadening.
- Note: earlier peaks (low k) most affected

Time (min)

## **Peak Shape Problems - Doublets**



- Void Volume in Column
- Partially Blocked Frit
- Only One-Peak a Doublet- Coeluting Components
- Early (low k) peaks most affected

## **Determining the Cause of Split Peaks**

- 1. Complex sample matrix or many samples analyzed likely column contamination or partially plugged column frit.
- 2. Mobile phase pH > 7 likely column void due to silica dissolution (unless specialty column used, Zorbax Extend-C18 stable to pH 11)
- 3. Injection solvent stronger than mobile phase likely split and broad peaks, shape dependent on injection volume and k value.

# Peak Tailing, Broadening and Loss of Efficiency (N, plates)

#### May be caused by:

- 1. Column "secondary interactions"
- 2. Column packing voids
- 3. Column contamination
- 4. Column aging
- 5. Column loading
- 6. Extra-column effects

## Peak Tailing

## Column "Secondary Interactions"

Column: Alkyl-C8,  $4.6 \times 150 \text{ mm}$ ,  $5\mu\text{m}$  Mobile Phase:  $85\% 25 \text{ mM Na}_2\text{HPO}_4 \text{ pH } 7.0 : 15\% \text{ ACN}$  Flow Rate: 1.0 mL/min Temperature:  $35^{\circ}\text{C}$  Sample: 1.0 Phenylpropanolamine Sample: 2.0 Ephedrine Sample: 2.0 Phenylpropanolamine Sample:  $2.0 \text{ Phenylp$ 



 Peak tailing of amine analytes eliminated with mobile phase modifier (TEA, triethylamine) at pH 7

# Peak Tailing Column "Secondary Interactions"

Column: Alkyl-C8,  $4.6 \times 150 \text{ mm}$ ,  $5 \mu \text{m}$  Mobile Phase:  $85\% \ 25 \text{ mM} \ \text{Na}_2 \text{HPO}_4$ :  $15\% \ \text{ACN}$  Flow Rate:  $1.0 \ \text{mL/min}$  Temperature:  $35^{\circ}\text{C}$  Sample:  $1. \ \text{Phenylpropanolamine}$   $2. \ \text{Ephedrine}$   $3. \ \text{Amphetamine}$   $4. \ \text{Methamphetamine}$   $5. \ \text{Phenteramine}$ 



• Reducing the mobile phase pH reduces interactions with silanols that cause peak tailing. No TEA modifier required.

# Peak Tailing Column Contamination

Column: StableBond SB-C8,  $4.6 \times 250 \text{ mm}$ ,  $5\mu\text{m}$  Mobile Phase:  $20\% \text{ H}_2\text{O}$ : 80% MeOH Flow Rate: 1.0 mL/min Temperature: R.T. Detection: UV 254 nm Sample: 1.0 Uracil 2. Phenol 3.4 -Chloronitrobenzene 4. Toluene

## QC test forward direction

# Plates TF 3 1. 7629 2.08 2. 12043 1.64 3. 13727 1.69 2 4 13355 1.32 0.0 2.5 5.0 Time (min)

#### **QC** test reverse direction



## QC test after cleaning 100% IPA, 35°C



# Analytical vs. Preparative Scale HPLC. Non-linear Adsorption Isotherms, or Overload Conditions:



# Peak Tailing/Broadening Sample Load Effects

Columns:  $4.6 \times 150 \text{ mm}$ ,  $5\mu\text{m}$  Mobile Phase:  $40\% 25 \text{ mM Na}_2\text{HPO}_4 \text{ pH } 7.0$ : 60% ACN Flow Rate: 1.5 mL/min Temperature:  $40^{\circ}\text{C}$  Sample: 1.5 Desipramine Sample: 1.5 Nortriptyline Sample:  $1.5 \text{ Nortriptyline$ 



В











# Broadening Competitive C8 Plates

|    | С    | D     |
|----|------|-------|
| 1. | 850  | 5941  |
| 2. | 815  | 7842  |
| 3. | 2776 | 6231  |
| 4. | 2539 | 8359  |
| 5. | 2735 | 10022 |
| 6. | 5189 | 10725 |

# Peak Broadening, Splitting Column Void



• Multiple peak shape changes can be caused by the same column problem. In this case a void resulted from silica dissolved at high pH.

# Peak Tailing Injector Seal Failure

Column: Bonus-RP,  $4.6 \times 75$  mm,  $3.5 \, \mu m$  Mobile Phase:  $30\% \, H_2O$ :  $70\% \, MeOH$  Flow Rate:  $1.0 \, mL/min$  Temperature: R.T. Detection: UV 254 nm Sample:  $1.0 \, mL/min$  Uracil  $2.0 \, mL/min$  Sample:  $1.0 \, mL/min$  Detection:  $1.0 \, mL/min$  Sample:  $1.0 \, mL/min$  Detection:  $1.0 \, mL/min$  Sample:  $1.0 \, mL/min$  Sample:  $1.0 \, mL/min$  Detection:  $1.0 \, mL/min$  Sample:  $1.0 \, mL/min$ 

#### After replacing rotor seal **Before** and isolation seal **USP TF (5%) Plates Plates USP TF (5%)** 1. 3670 1.45 1. 2235 1.72 2. 10457 1.09 2. 3491 1.48 3. 10085 1.00 3. 5432 1.15 1.0 1.5 0.5 1.0 Time (min)

• Overdue instrument maintenance can sometimes cause peak shape problems.

# Peak Tailing Extra-Column Volume

Column: StableBond SB-C18, 4.6 x 30 mm, 3.5 μm Mobile Phase: 85% H<sub>2</sub>O with 0.1% TFA : 15% ACN Flow Rate: 1.0 mL/min Temperature: 35°C Sample: 1. Phenylalanine 2. 5-benzyl-3,6-dioxo-2-piperazine acetic acid 3. Asp-phe 4. Aspartame





## **Determining the Cause of Peak Tailing**

- Evaluate mobile phase effects alter mobile phase pH and additives to eliminate secondary interactions
- Evaluate column choice try column with high purity silica or different bonding technology
- Reduce sample load volume injection and concentration
- Eliminate extra-column effects tubing, fittings, Uv cell
- Flush column and check for aging/void

## Reproducibility

Peak retention time precision:

⇒ with oven: <0.3%

⇒ without oven: <0.7%

Peak area precision: <1.5%

#### Typically,

- Area and Peak Height problems together point to the autosampler system
- Area and Retention Time problems together point to the pump



## **Problems with Reproducibility – Peak Areas**

Peak Areas not Reproducible

#### With peak height

- Rotor seal cross-port leak or injection valve not tight
- Piston seal of metering unit leaking
- Needle partially blocked

#### With retention time

Variable pump flow rate

#### Other

- Capillary from injector to detector not tight
- Detector equilibration problems



#### 3. Retention Issues

- Retention time changes (t<sub>r</sub>)
- Retention factor changes (k')
- Selectivity changes (a)



# Retention time $t_R$ , Retention factor k', and Selectivity factor $\alpha$

#### The Chromatogram



# **Changes in Retention (k) - Same Column, Over Time**

#### May be caused by:

- 1. Column aging
- 2. Column contamination
- 3. Insufficient column equilibration
- 4. Poor column/mobile phase combination
- 5. Change in mobile phase
- 6. Change in flow rate
- 7. Change in column temperature
- 8. Other instrument issues

# Mobile Phase Change Causes Change in Retention





- Volatile TFA evaporated/degassed from mobile phase. Replacing it solved problem.
- Chromatography is from a protein binding study and peak shape as expected.

# **Separation Conditions That Cause Changes in Retention\***

```
Flow Rate \pm 1\% \pm 1\% t_r

Temp \pm 1^{\circ} C \pm 1 \text{ to } 2\% t_r

%Organic \pm 1\% \pm 5 \text{ to } 10\% t_r

pH \pm 0.01\% \pm 0 \text{ to } 1\% t_r
```

<sup>\*</sup>excerpted from "Troubleshooting HPLC Systems", J. W. Dolan and L. R. Snyder, p 442.

# Determining the Cause of Retention Changes Same Column

- 1. Determine k', a, and t<sub>r</sub> for suspect peaks
- Wash column
- 3. Test new column note lot number
- 4. Review column equilibration procedures
- 5. Make up fresh mobile phase and test
- 6. Check instrument performance

# Change in Retention/Selectivity Column-to-Column

- 1. Different column histories (aging)
- 2. Insufficient/inconsistent equilibration
- 3. Poor column/mobile phase combination
- 4. Change in mobile phase
- 5. Change in flow rate
- 6. Other instrument issues
- 7. Slight changes in column bed volume (t<sub>r</sub> only)

## **Example Change in Retention/Selectivity**

#### Column-to-Column

#### **Mobile Phase Variation**



"I have experimented with our mobile phase, opening new bottles of all mobile phase components. When I use all fresh ingredients, the problem ceases to exist, and I have narrowed the problem to either a bad bottle of TEA or phosphoric acid. Our problem has been solved."

# Minimize Change in Retention/Selectivity Lot-to-Lot

#### **Evaluate:**

- All causes of column-to-column change\*
- 2. Method ruggedness (buffers/ionic strength)
- 3. pH sensitivity (sample/column interactions)

\*All causes of column-to-column change should be considered first, especially when only one column from a lot has been tested.

## Lot-to-Lot Selectivity Change - pH









- pH 4.5 shows selectivity change from lot-to-lot for basic compounds
- pH 3.0 shows no selectivity change from lot-to-lot, indicating silanol sensitivity at pH 4.5
- Evaluate several pH levels to establish most robust choice of pH

## **Problems with Reproducibility – Peak Areas**

Peak Areas not Reproducible

#### With peak height

- Rotor seal cross-port leak or injection valve not tight
- Piston seal of metering unit leaking
- Needle partially blocked

#### With retention time

Variable pump flow rate

#### Other

- Capillary from injector to detector not tight
- Detector equilibration problems



## **Problems with Reproducibiliy – Retention Time**

**Retention Times not Reproducible** 

- Pump Problems
  - –Mobile phase composition problems
  - -Valves AIV, ball valve defective
  - -Flow rate problems
- Column Oven Problems
  - -Temperature fluctuations
- Other
- -Column equilibration
- -Column deterioration



# Autosampler Principle of Operation

Standard loop volume300µl Total delay volume 300µl + Vinj Minimal (bypass) delay volume 6.2ul



## **Evaluate Retention Changes**

Lot-to-Lot

- 1. Eliminate causes of column-to-column selectivity change
- 2. Re-evaluate method ruggedness modify method
- 3. Determine pH sensitivity modify method
- 4. Classify selectivity changes
- 5. Contact manufacturer for assistance\*

Agilent Column Support: 800-227-9770, option 4, option 2 (LC columns)

## **Conclusions**

#### **HPLC** column problems are evident as:

- 1. High pressure
- 2. Undesirable peak shape
- 3. Changes in retention/selectivity

These problems are not always associated with the column and may be caused by instrument and experimental condition issues.



## The End – Thank You!

Agilent LC Column Tech Support: 800-227-9770 #4, #2 Email: Edward\_kim@agilent.com

# Agilent LC Columns and Agilent J&W GC Columns Scientific Technical Support

800-227-9770 (phone: US & Canada)\*

302-993-5304 (phone)

For LC columns

Select option 4, then option 2

For GC Columns

\* Select option 4, then option 1.

www.agilent.com/chem







# Looking for More Information on Agilent's LC Systems and Software?

Agilent offers a full range of LC training courses including hands-on courses with the latest 1200 series equipment including Rapid Resolution, and additional 1100 series courses.

Each course includes a course manual for future reference and a certificate of completion. All courses are taught by industry experts.

Call 800.227.9770, Option 5 or visit

www.agilent.com/chem/education to register today!



# New On Demand Webinar: Utilizing Sub-Two Micron Particles to Optimize HPLC Methods

A Four Part Workshop on Managing Chemistry and Pressure for Faster and More Efficient HPLC Separations

www.SeparationsNOW.com/agilentwebinar

Be sure to register after today's event.

### **Upcoming LC e-Seminars**

#### **New Technology for HPLC Environmental Assay**

**January 22, 2008 – 1:00 pm EST** 

A Look at Column Choices- Series 3

February 13, 2008 – 1:00 pm EST

**Method Development – Series 4** 

March 18, 2008 – 2:00 pm EST