SOLUTIONS MANUAL
CHAPTER 1

1. The energy contained in a volume dV is
Uy, T)dV =U (v, T)r’drsindd@e

when the geometry is that shown in the figure. The energy from this source that emerges
through a hole of area dA is

dAcos @
47

dE(v,T)=U(v,T)dV
The total energy emitted is
dE T _J'cAter*ﬁ/Zdej‘Zﬁd T . 0 0%
vT)= . . . U (v,T)sin Ocos o
= A 27CcAtU (V,T)qu d&sinfcosd
47 0

1
=3 CAtdAU (v,T)
By definition of the emissivity, this is equal to EAtdA. Hence
C
E(wT)=7U(T)

2. We have

c.c 8zhc 1
E)? = 25 el 4

W(A,T)=UW,T)|dv/dA EU(

This density will be maximal when dw(A,T)/dA = 0. What we need is

A 1
~ ) =0

eAM -1

D01 ) gl 1t
dﬂklseA/A_l =(- * r eA//l_l(

Where A = hc /KT . The above implies that with x = A/ A, we must have

5—-x=5e"

A solution of this is X = 4.965 so that



A T-—"C 5 e08x10°m

max ' =4 965k

In example 1.1 we were given an estimate of the sun’s surface temperature
as 6000 K. From this we get

gon _ 2898 10~ mK

- =4.83 x10"m= 483nm
max 6X103K X

3. The relationship is

hyv=K+W

where K is the electron kinetic energy and W is the work function. Here

(6.626x10738)(3x10°m/s)

=5.68x107"J =3.55eV
25010 5.68x107°J =3.55¢

hc
hV—7—

With K=1.60 eV, we get W=1.95¢eV

4. We use

hc hc
A A =Ki-K,

since W cancels. From ;this we get
he 1 A4,
cA, -4

~ (200x107"m)(258 x 10" m)
(3x10%m/s)(58 x 107 m)

—6.64x10°*) s

(K1 - Kz) =

% (2.3-0.9)eV x (1.60x 107°)J /eV

5. The maximum energy loss for the photon occurs in a head-on collision, with the
photon scattered backwards. Let the incident photon energy be hv, and the backward-
scattered photon energy be hv. Let the energy of the recoiling proton be E. Then its

recoil momentum is obtained from E :J p’c’+m’* . The energy conservation
equation reads

hv+mc® = hv+E
and the momentum conservation equation reads

hv_ v
c ¢ P



that is
hv=—-hv'+pc

We get E + pc —mc” = 2hv from which it follows that
p’c’ + m’c* =(2hv— pc+ mc?)’

so that

_ 4h*V' + 4hwmc’
~ 4hv+2mc?

The energy loss for the photon is the kinetic energy of the proton
K =E —mc’. Nowhv =100 MeV and mc*=938 MeV, so that

pc = 182MeV
and

E-mc’=K=17.6MeV

6. Let hv be the incident photon energy, hv' the final photon energy and p the outgoing
electron momentum. Energy conservation reads

hv+mc® = hv'+4/ p’c” + m’c?
We write the equation for momentum conservation, assuming that the initial photon

moves in the x —direction and the final photon in the y-direction. When multiplied by c it
read

ithv)= j(hv))+(ip,c + jp,C)

Hence pc=hv;pc=-hv. We use this to rewrite the energy conservation equation as
follows:

(hv+me?—hvy =mc’ +c’(p; + p;) =m’c’ +(hw)’ +(hv)’

From this we get

mc’ )
hv= hV(hv+mcz

We may use this to calculate the kinetic energy of the electron



2
K=hv-hv= h{l—sz= VLZ
hv+ mc hv+ mc
2
(L00keV) 16 akev

" 100keV + 510keV
Also
pc=i(100keV ) + j(—83.6keV)

which gives the direction of the recoiling electron.

7. The photon energy is

h 63x1071]. 10°
_c=(663>< 0 is)(3i<9 0m/s)=6.63x10‘”J
A 3x10°x107"m

6.63x1077)

T 1.60x10"°J eV

hyv=

=4.14x10™ MeV

The momentum conservation for collinear motion (the collision is head on for maximum
energy loss), when squared, reads

Here 7 =+1, with the upper sign corresponding to the photon and the electron moving in
the same/opposite direction, and similarly for 7, . When this is multiplied by c¢? we get

(hv)” +(pe)” +2(hv) pery, = (hv) +(p'e)” +2(hv) p'ery,

The square of the energy conservation equation, with E expressed in terms of
momentum and mass reads

(hv)? +(pc)’ +m*c* +2Ehv= (hv')’ +(p'c)’ + m’c* +2E'hv
After we cancel the mass terms and subtracting, we get
hWE —npc) = hv(E'-7,p'c)

From this can calculate hv and rewrite the energy conservation law in the form



(E_ﬂipc _1\

FET M E e,

The energy loss is largest if 77 = —1;7, = 1. Assuming that the final electron momentum is

(mc?)’

h
E so that

not very close to zero, we can write E + pc=2E and E'-p'c=
V(z E x2E' j
=h
(me?)’
1
It follows that =X E +16hv with everything expressed in MeV. This leads to
E’ =(100/1.64)=61 MeV and the energy loss is 39MeV.

8.We have 2’ =0.035x 10"° m, to be inserted into

h 6.63x107J.s

= =1.23%x10"m
2me 2x(0.9x 10 kg)(3x10°m/9) 8

A=
m

1-cos60”) =
< (1—-cos60")
Therefore A= A" =(3.50-1.23)x 10 m=2.3x 10" m.
The energy of the X-ray photon is therefore

hc  (6.63x107J5)(3x10°m/s) 5
= = 2% 10 Pmy 6 x 1077 Jayy ~ o410V

9. With the nucleus initially at rest, the recoil momentum of the nucleus must be equal
and opposite to that of the emitted photon. We therefore have its magnitude given by
p=hv/c, where hv=6.2 MeV . The recoil energy is

2
P Y 6omevy—2ZMY s 0 Mev
2M 2Mc’ 2% x 14 x (940MeV)

10. The formula A = 2asin@/n implies that A /sin@ <2a/3. Since A = h/p this leads to
p> 3h/2asin @, which implies that the kinetic energy obeys

_P, o
2m ~ 8ma’sin’ @
Thus the minimum energy for electrons is

~ 9(6.63x107*Js)’
~8(0.9%x107°°kg)(0.32x107°m)* (1.6 x 107 J /eV)

=3.35eV



For Helium atoms the mass is 4(1.67 x 10°"kg) /(0.9 x 10 °°kg) = 7.42 x 10’ larger, so
that

33.5eV 3
_ =28 451076V
Tarxig o 10Te

2

2mA?

2
11. We use Kzzp—m: with 2=15x 10” m to get

K- (6.63x107*Js)’
~2(0.9x107°°kg)(15 x 107°m)* (1.6 x 107 J /eV)

=6.78x107eV

For 4= 0.5 nm, the wavelength is 30 times smaller, so that the energy is 900 times larger.
Thus K=6.10¢V.

12. For a circular orbit of radius r, the circumference is 2xnr. If n wavelengths A are to fit
into the orbit, we must have 2zr = nA = nh/p. We therefore get the condition

pr=nh/27z =nh

which is just the condition that the angular momentum in a circular orbit is an integer in
units of 7.

13. We have a=nA/2sin@. Forn=1,A=0.5 x 10" m and 6= 5° . we get
a=2.87 x 10" m. For n = 2, we require sinf, = 2 sin0,. Since the angles are very
small, 0, =260;. So that the angle is 10°.

14. The relation F = ma leads to mv %/r = mor that is, v = or. The angular momentum

quantization condition is mvr = n %, which leads to maer* = nh. The total energy is
therefore

1 1
=3 mv> +3 me’r’ = me’r’ = nhw

The analog of the Rydberg formula is

E,—E, hwo(h-n)

" n n _ _ 'ﬁ
Un—-n')= b b =(n n)2ﬁ

The frequency of radiation in the classical limit is just the frequency of rotation

v, = /27 which agrees with the quantum frequency when n—n’=1. When the

selection rule An = 1 is satisfied, then the classical and quantum frequencies are the same
for all n.



15. With V(r) =V, (r/a)k , the equation describing circular motion is

v (1\
r | °\a)

so that

kv, ( r\ k2

The angular momentum quantization condition mvr = n# reads

k+2

yma’ky, GJT = nh

We may use the result of this and the previous equation to calculate
K
Loy (1) (' AR
= mv OK 2 —( k+1)V\ . —( +1V, matkv,
In the limit of k >>1, we get
k

1 2| p? [2 , L K 5
_ K42 | —— k+2
E— 2(kV0) 2 (nNH)*=* > Tma n

Note that V, drops out of the result. This makes sense if one looks at a
picture of the potential in the limit of large k. For r< a the potential is
effectively zero. For r > a it is effectively infinite, simulating a box with
infinite walls. The presence of Vj is there to provide something with the
dimensions of an energy. In the limit of the infinite box with the quantum
condition there is no physical meaning to V, and the energy scale is
provided by 7’ /2ma’.

16. The condition L = n% implies that

In a transition from n; to n, the Bohr rule implies that the frequency of the
radiation is given

E-E, #

o= S = (7 )= (0 )



Let n; =N, + An. Then in the limit of large n we have (n] —n>)— 2n,An, so
that

1 an, 1L
— 22 An=—=an
" _>27z I 27 |

Classically the radiation frequency is the frequency of rotation which is
o=L/,1e.

We see that this is equal to 1, when An = 1.

17. The energy gap between low-lying levels of rotational spectra is of the order of

7’ /1=(1/2z)hii/ MR?, where M is the reduced mass of the two nuclei, and R is their
separation. (Equivalently we can take 2 x m(R/2)* = MR?). Thus

hc 1 7]
= =2 "R

This implies that

-34 )
R:‘/ na na _J (LOSx 10990 m)

2aMc Yame ~ \ 2(.67 x 10 7kg)(3x 10°m /s)



CHAPTER 2

1. We have

N ikx ® N
s * = J‘_w dk 7—— coskx

w(x)=] " dkAK)e™ = | dk

ikx —

because only the even part of ™ = coskx + i sinkx contributes to the integral. The integral
can be looked up. It yields

—a|x|

T
X)=N—e
w(X) -

so that
2 2

Nz
lw(X) |2=7e

—2a|X|

If we look at JA(k)® we see that this function drops to 1/4 of its peak value at k =+ a... We
may therefore estimate the width to be Ak = 2a.. The square of the wave function drops to
about 1/3 of its value when

x =x1/2a. This choice then gives us Ak Ax = 1. Somewhat different choices will give
slightly different numbers, but in all cases the product of the widths is independent of a.

2. the definition of the group velocity is

do 27dv dv ,dv

— =) —

YoTTK T2d@n) T daiy -t da

The relation between wavelength and frequency may be rewritten in the form

2
2 2 C

V=V, =7
so that

2

dv ¢
—/Iza :W =C\[1—(VO /V)2

3. We may use the formula for vy derived above for

v [T e
P

to calculate



__pdv_3 22T
Ryt )

4. For deep gravity waves,

v=yg /272"

from which we get, in exactly the same way v, :—; ;—2 :

5. With o = #k¥/2m, B = #/m and with the original width of the packet w(0) = \2a., we
have

2,2 2,2 2.2
w) _ 1+ﬂ_t=‘/1+%=‘/1 2t

w(0) - Y 222 mZa Wt ()

(a) With t=15,m =0.9x 10°*° kg and w(0) = 10° m, the calculation yields w(1) = 1.7 x
10°m

With w(0) = 10™° m, the calculation yields w(1) = 1.7 x 10° m.

These are very large numbers. We can understand them by noting that the characteristic

velocity associated with a particle spread over a range Ax is v = #i/mAx and here m is very

small.

(b) For an object with mass 10° kg and w(0)= 10 m, we get

21i't° 2(1.05x107*J.5)%t?

_ _ —54
m’w*(0)  (10°%kg)?x (10°m)* 2:2x10

for t = 1. This is a totally negligible quantity so that w(t) = w(0).

6. For the 13.6 eV electron v /c = 1/137, so we may use the nonrelativistic expression
for the kinetic energy. We may therefore use the same formula as in problem 5, that is

w(t) 1+ﬂ2t2_J1+ e | 2wt
w(0) 2% 2m?a® m?w*(0)

We caclulate t for a distance of 10* km = 10" m, with speed (3 x 108m/137) to be 4.6 s.
We are given that w(0) = 10° m. In that case

s 2(1.05x107J.5)°(4.65)° 5
w(t)= (10 m)J1+ (0.9x10*°kg)*(10°m)* 7:5x107m

For a 100 MeV electron E = pc to a very good approximation. This means that 3 = 0 and
therefore the packet does not spread.



7. For any massless particle E = pc so that =0 and there is no spreading.

8. We have

¢( p) 7_.[ dXAe—HIXI —ipx/h _ 7;% {_Om dxe(#—ik)x n .[Ow dxe—(y+ik)x \:

A { 1 1 } A
27th Ik u+ik) N2 1’ + K

where k = p/h.

9. We want
_[ dxAZe 2 = A? { dxe®” +I dxe” 2“X}A ==1

A=

so that

10. Done in text.

11. Consider the Schrodinger equation with V(x) complex. We now have

ar(xd) _ih Fyxt) i
SV (9w (x,

a " 2m &2
and
Gy (X0 _ mw .
O,I 2m @(2 V (X)l//(x t)
Now
o o
—(t// w) =2 W+V/*Of{/
in Fy* i in SFp(x,0) i
= (— V* X * ___V X X!t
(2m = X))y )y +y (2m 3 - (X)w(x1))
in y* Lw(x1)
=—— - *_\/
om o Y 78 P — )+ (V 17874
_ofar, 2], 2V
2mo”x{ x VYV x[TT VY

Consequently



g]i dx |y (x,) [ =%ji dx(ImV (x)) [w(x,9) P

We require that the left hand side of this equation is negative. This does not tell us much
about ImV/(x)
except that it cannot be positive everywhere. If it has a fixed sign, it must be negative.

12. The problem just involves simple arithmetic. The class average

(9y=D.gn,=385

g
(Ag)’ = (g*)—(9° = D g°n, - (38.5)* = 1570.8-1482.3= 88.6
g

The table below is a result of the numerical calculations for this system

g Ng (g - <g>)°I(Ag)* = e” Ce”
60 1 5.22 0.0054 0.097
55 2 3.07 0.0463 0.833
50 7 1.49 0.2247 4.04
45 9 0.48 0.621 11.16
40 16 0.025 0.975 17.53
3B 13 0.138 0.871 15.66
30 3 0.816 0.442 7.96
25 6 2.058 0.128 230
20 2 3.864 0.021 0.38
15 0 6.235 0.002 0.036
10 1 9.70 0.0001 0.002
5 0 12.97 «Q “Q
(c) We want

sin’t
t2

sin® kx

1=4N?[ dx——— = ANk | dt=— = 47N’k

1
sothat N = m

(d) We have



= (%} yzj_i dxx"e™

Note that this integral vanishes for n an odd integer, because the rest of the integrand is
even.

For n = 2m, an even integer, we have

(0{\1/2 (a\\1/2( d \m‘[w dxe_m(z

ay ( d PANEGCANE AR
CM=12) =3 g YA

o/

For n =1 as well as n = 17 this is zero, while for n = 2, that is, m = 1, this is %.

© dp== | e~ Lape

The integral is easily evaluated by rewriting the exponent in the form

af ip)" p*

RN CI N A -
- 2\ e T 2ra

2

A shift in the variable x allows us to state the value of the integral as and we end up with

[71-\1/4e— p?/20h?

1
ﬂp)—m\a)
We have, for n even, i.e. n =2m,

2m_ - p?lah?

<p2m>:ﬂhK ) I dpp™e
@ 5

1 . .
where at the end we set f= g For odd powers the integral vanishes.
Specifically for m =1 we have We have

(AXY = (x*) ==
2

2

2 _ 2_%
(Ap)" =(p) = >



so that ApAx = > This is, in fact, the smallest value possible for the product of the

dispersions.

24. We have
Jjo dxy *(X)Xw(x) = Jl—J‘i;dx w* (X)X.fjo dpg(p)e™’”

e B AT O dp¢*(p),h_ﬁez

In working this out we have shamelessly interchanged orders of integration. The
justification of this is that the wave functions are expected to go to zero at infinity faster
than any power of x , and this is also true of the momentum space wave functions, in their
dependence on p.



CHAPTER 3.
1. The linear operators are (a), (b), (f)

2.We have
IRCEZCORPIZE)

To solve this, we differentiate both sides with respect to x, and thus get

A solution of this is obtained by writing dy /iy =(1/A)xdx from which we can
immediately state that

w(x)=Ce"
The existence of the integral that defines Og\y(x) requires that A < 0.

3, (a)
0,0y (x) — 00,y (x)
dy(x')
dx'
= xy(x)— jxwdx'dix'(x'z l//(x'))+ 2]; dx'x'w(x")
=204y (x)

= xd%c fw dx'x'w(x") —J.; dx'x"

Since this is true for every y(x) that vanishes rapidly enough at infinity, we conclude that

[O2, Os] = 205
(b)
00,(x) - 0,0y (x)
= l(x%) — 02(x31// = x4%— x% (x31/1)
= 3x’w(x) =-30w(x)
so that

[01, Oz] = -301



4. We need to calculate
2 ra . L NTIX
(x2>=—j dxx’sin® —
a“o a
With mx/a =u we have
2_293]‘” 2 .2 _azj‘” 2
(x )—;; . duu” sin m=—, duu” (1—cos2nu)

The first integral is simple. For the second integral we use the fact that

[ dar _ (i\zj”d _ (d) sinar
0 uu COSdu—-\da) 0 MCOSQM——KdaJ o

At the end we set o = nz. A little algebra leads to

2 2
a a

2 — — | ees—
)= 3 2707
2 2 2

. h :
For large n we therefore get Ax = 7% . Since (p*) = L 27[ , it follows that
a

h
Ap:—ﬂn, so that
a

7h
s

The product of the uncertainties thus grows as # increases.

2 2

. 7
5. With £, = >n” we can calculate
2ma

(1.05x 107 J )’ 1
2(0.9x 10kg)(10°m)* (1.6 x107°J / eV)

E,—E =3 =0.115¢V

-7
We have AE _he so that A = Zrhe _ 27(2.6x10 evm)

. -5
2 AE 0llsey  _LA2x10m

where we have converted #ic from J.m units to eV.m units.



6. (a) Here we write

L 2ma’E  200.9x10kg)(2x 10 m)’ (1.5eV)(1.6x 10" J /eV)

- - =1.59%10"
nr (1.05 %10 J sy 7 8
sothatn=4x10".
(b) We have
2 2 -34 2 2
AE =L Z_2nAn= (1.5 230 J.5) 24 x107)=12x102J
2ma 2(0.9x10"kg)2 x 10" m)
=7.6x10%eV

7. The longest wavelength corresponds to the lowest frequency. Since AE is
proportional to (n + 1)> —n* = 2n + 1, the lowest value corresponds to n = 1 (a state
with n = 0 does not exist). We therefore have

h2 2
hs =322
A 2ma
If we assume that we are dealing with electrons of mass m = 0.9 x 10" kg, then

, 3hrd  3r(1.05x107Js5)(4.5x10"m)

a = = = . =4.1x10"m’
4mc 4(0.9x107"kg)(3x10°m / s)
so that a = 6.4 x 10" m.
2_2 2
8. The solutions for a box of width a have energy eigenvalues E, = T with
ma

n =1,2,3,...The odd integer solutions correspond to solutions even under x — —x, while
the even integer solutions correspond to solutions that are odd under reflection. These
solutions vanish at x = 0, and it is these solutions that will satisfy the boundary conditions
for the “half-well” under consideration. Thus the energy eigenvalues are given by £,
above with n even.

9. The general solution is
w(x,t)= Z Cu, (x e
n=l
with the C, defined by

al2 «
Cn = J-—a/Z dxun (x)l//(xﬁo)



(a) It is clear that the wave function does not remain localized on the L.h.s. of the box at
later times, since the special phase relationship that allows for a total interference for
x > 0 no longer persists for ¢ # 0.

: . 20 .
(b) With our wave function we have C, = J% _[ R dxu,(x) .We may work this out by
-q

using the solution of the box extending from x = 0 to x = a, since the shift has no
physical consequences. We therefore have

/ J‘ / . N 2|_ a n7z'x_|a/2 2 [ nr |
dx —sm - ———Ccos—— 1—cos—
a al nrw a n72'|_ 2 J

4 1 4
Therefore P, =|C, |2:? and P, = C, |2:? [(1—-(-1)) |2=?

10. (a) We use the solution of the above problem to get

4
Pn:|Cn |2: nzﬂzfn

where f, =1 for n = odd integer; f, = 0 forn =4,8,12,...and f, =4 for n =2,6,10,...

(b) We have

< 4 4 8 1
2P ‘—Zn— = Z I —227=1
n=1 odd 2,6,10. odd

Note. There is a typo in the statement of the problem. The sum should be restricted to
odd integers.

11. We work this out by making use of an identity. The hint tells us that

. 1Y, 11 ‘ | . .
(SIHX)SZ(E) (ezx_ —zr) _Ez_(e&x 5631x+10€lx—10€_lx+5€_31X—€_5w)

| . .
= R (sin5x — 5sin 3x +10sinx)

Thus

(5.0)= Ay = (i ()~ Sus(x) + 100, (x)

(a) It follows that



w(x,t)= AJ; 16(u5( X)e iE st/h 5u3 (x)e” ~iE5t/h n 10u1(x)e zElt/h)

b) We can calculate 4 by noting that " dx w(x,0)['=1. This however is equivalent
0

to the statement that the sum of the probabilities of finding any energy eigenvalue

adds up to 1. Now we have

_apl p_ap2 , a 100
5 2A256P 2A256P 2A 256

so that

2 _ 256
" 63a

The probability of finding the state with energy E; is 25/126.

12. The initial wave function vanishes for x < -a and for x > a. In the region in between it

is proportional to cos2— , since this is the first nodeless trigonometric function that
a

vanishes at x = + a. The normalization constant is obtained by requiring that

a 2 /2
1:N2.[_ dXCOSZZ—ﬂZZNZ(—a) ) ducos u=N’a

so that N = J: . We next expand this in eigenstates of the infinite box potential with
a

boundaries at x =+ . We write

1 X ~
‘/— —=>C b
aCOS2a Z‘ u, (x;b)
so that

b a 1 P
C, = J-_bdx“n (x:b)y(x)= J-_adxun (x;b)Jg cos——

In particular, after a little algebra, using cosu cosv=(1/2)[cos(u-v)+cos(u+v)], we get



R R

4b\/_b 7za

- 5_CO
7r(b - ) 2b
so that
16ab’ m
=G ﬂz(bz_az)zcos 2

The calculation of C; is trivial. The reason is that while yAx) is an even function of x,
us(x) is an odd function of x, and the integral over an interval symmetric about x = 0 is
zero. Hence P, will

be zero.

13. We first calculate

nmx eipx/h 1 1 a i atp )
#n=l, dx‘[m Jznh_i\hﬂha(jo dxe ~(n > -m)
( lap/h( 1) eiap/h(_l)n_lj
V47Zha p/h—-nrxla pl/h+nxla
’ 1 2nrx/a
= -1 n —14i=1 no.
4rha (nz la)’ —(p /1) {( ) cospal h—1+i(-1) smpa/h}

From this we get

2n°r 1-(=1)"cospalh
@h [(nz/ay —p/n)’]

P(p)=|¢(p) ['=

The function P(p) does not go to infinity at p= ns#/ a, but if definitely peaks there. If
we write p/fi=nxz/a+¢, then the numerator becomes 1— cosas = a’¢” /2 and the

/
denominator becomes (2nze/ a)’, so that at the peak P(ﬂ) =a/ 4. The fact that the
a
peaking occurs at

2 2 2 2

p _hzn

2m 2ma’®

suggests agreement with the correspondence principle, since the kinetic energy of the
particle is, as the r.h.s. of this equation shows, just the energy of a particle in the infinite
box of width a. To confirm this, we need to show that the distribution is strongly peaked
for large n. We do this by looking at the numerator, which vanishes when as= 7 /2, that
is, when p/h=nn/a+nxn/2a=(n+1/2)x/a. This implies that the width of the



distribution is Ap = 7zfi/2a. Since the x-space wave function is localized to 0 <x < a we
only know that Ax = a. The result ApAx ~ (7 /2)#% is consistent with the uncertainty
principle.

14. We calculate

1/4
(a‘\ —wtn 1 ol

ap)=] =) e

27h
( )1/4( 1 j —a(x—iplah ' —p?2ah?
=\Z K2 s j_wdxe e
( \1/4 o, ,
kﬂ_ahzj p°/2ah

From this we find that the probability the momentum is in the range (p, p + dp) is

172
) —p?lah?

To get the expectation value of the energy we need to calculate

Ap)I d

2 1/2
p_ (1 ” - pPlan?
om’ 2m\ o) jwdpp e’
1 ( 1 \Uzﬁ(ahZ):S/Z ahz
" om\zai?) 2

An estimate on the basis of the uncertainty principle would use the fact that the “width”
of the packet is1/ Vo . From this we estimate Ap=h/Ax= ma , so that

[SS]

(4p)’ _ o

E = =—
2m 2m

The exact agreement is fortuitous, since both the definition of the width and
the numerical statement of the uncertainty relation are somewhat elastic.



15. We have

dt//(X) dy *(x)
dx

V()

j)= (vx )

= 2— [(A * o™ 4 B*e™ ) (ikde™ — ikBe ™) - c.c)]
im

= 2_—[ik | A =ik | B[ +ikAB*e"™ —ikA* Be™™
im

— (—ik)| A —(ik) | B[ —(=ik)A* Be ™™ — ikdB* ™™ ]
hk
=—[l4} - [Bf]
m
This is a sum of a flux to the right associated with 4 ¢™ and a flux to the left associated
with Be ™
16. Here

du(x) ot j
dx

j(x)= e {u(x)e‘”“"(zku(x)e”‘"‘+ )— c.cJ

——[(zku (x)+ u(x) ( )

)= e =K 2 ()
m

0
(c) Under the reflection x = -x both x and p = —iha— change sign, and since the
X

function consists of an odd power of x and/or p, it is an odd function of x. Now the
eigenfunctions for a box symmetric about the x axis have a definite parity. So that
u,(—x) = tu, (x). This implies that the integrand is antisymmetric under x =2 - x.
Since the integral is over an interval symmetric under this exchange, it is zero.

(d) We need to prove that

[ dxyon* wx) =] dey(0* )

The left hand side is equal to



LO dxy *(=x)y(x) =LO dyy* (V)y(=y)
with a change of variables x -y , and this is equal to the right hand side.
The eigenfunctions of P with eigenvalue +1 are functions for which u(x) = u(-x), while

those with eigenvalue —1 satisfy v(x) = -v(-x). Now the scalar product is

J‘:} dxu*(x)v(x)= J‘:} dyu* (—x)v(—x)= —ji dxu*(x)v(x)

so that
J_i dxu*(x)v(x)=0

(e) A simple sketch of y(x) shows that it is a function symmetric about x = a/2.
This means that the integral .[: dxy(x)u,(x) will vanish for the u,(x) which are odd

under the reflection about this axis. This means that the integral vanishes for n = 2,4,6,...






CHAPTER 4.

ikx —ikx

1. The solution to the left side of the potential region is w(X)= Ae" + Be
As shown in Problem 3-15, this corresponds to a flux

, Koo >
j0="=(AF-1BT)

ikx —ikxx

The solution on the right side of the potential is w(X)=Ce™ +De ™", and
as above, the flux is

. fik

j=""(C[-IDF)
Both fluxes are independent of X. Flux conservation implies that the two
are equal, and this leads to the relationship

|AF +IDF=IBF +ICF
If we now insert

C=S5,A+S,D
B=S,A+S,D

into the above relationship we get
[AF +[DF=(S,A+8,D)(S; A*+8,D%) + (A + §,D)(S;,A* +5,,D%)

Identifying the coefficients of |A|* and |DJ% and setting the coefficient of
AD* equal to zero yields

‘ 821 ’2 + ’Sn |2: 1
| Szz |2 + | S12 |2: 1
81282*2 + S’118’1*2 =0

Consider now the matrix
Str _ (SII SZI]
S12 S22

The unitarity of this matrix implies that



K 821][851 sf;Hl !
S, S,AS,, S,/ \0 1
that is,

| Sll |2 + |821 |2=| Slz |2 + | Szz |2:1
Snsl*z + S21822 =0

These are just the conditions obtained above. They imply that the matrix S"
is unitary, and therefore the matrix S is unitary.

2. We have solve the problem of finding R and T for this potential well in
the text.We take Vo < 0. We dealt with wave function of the form

e +Re™ x<-a

Te™ X>a

In the notation of Problem 4-1, we have found that if A= 1 and D = 0, then
C=S;; =T and B=S,; =R.. To find the other elements of the S matrix we
need to consider the same problem with A =0 and D = 1. This can be
solved explicitly by matching wave functions at the boundaries of the
potential hole, but it is possible to take the solution that we have and reflect
the “experiment” by the interchange X = - X. We then find that S;; =R and
S2, =T. We can easily check that

|Sll ‘2 + |Szl |2:| Slz ‘2 +|822 |2:‘R |2 +|T ‘2:1

Also
S,.S,, + S,,S,, = TR*+RT* = 2Re(TR*)

If we now look at the solutions for T and R in the text we see that the
product of T and R* is of the form (-1) x (real number), so that its real part
is zero. This confirms that the S matrix here is unitary.

3. Consider the wave functions on the left and on the right to have the
forms
v, (X)=Ae™ +Be ™

WR(X): Ceikx + De—ikx

Now, let us make the change k = - kand complex conjugate everything.
Now the two wave functions read



l//L(X)'z A*eikx + B*e—ikx

Now complex conjugation and the transformation k = - k changes the
original relations to

C*=S' (—k)A*+S’ (—k)D*
B*=S, (-k)A*+S,,(-k)D *

On the other hand, we are now relating outgoing amplitudes C*, B* to
ingoing amplitude A*, D*, so that the relations of problem 1 read

C*=S, (K)A* +S,(K)D*
B*=S, (k)A*+S,(K)D*

This shows that S;,(k) = S;,(=k); S,,(K) = S,,(=K); S,,(K)=S,,(~K). These

result may be written in the matrix form S(k)= S"(-k).

4. (a) With the given flux, the wave coming in from X =-—oo, has the
form e", with unit amplitude. We now write the solutions in the
various regions

x <b e +Re™  k’=2mE/F
-b<x<-a Ae®+Be™ *=2m(V,-E)/n’

—a<x<c Ce™4+De ™™

c<x<d Me™ + Ne™  g*=2m(E +V,)/#

d<x Te™

(b) We now have

X <0 ux)=0

0<x<a Asinkx k*=2mE /#’

a<x<b Be“+Ce™ x=2m(V,-E)/I
b <X e ™ 4+ Rel

The fact that there is total reflection at X = 0 implies that |R|* = 1



5. The denominator in (4- ) has the form
D =2kqcos2ga—i(q° + k’)sin2ga
With k =ik this becomes
D= i(2kq cos20a—(q° — ) sin2qa)
The denominator vanishes when

2tanga 29k
l1-tan’ga @ -«’

tan20a=

This implies that

2 2 2 2\ 2 2 2 2 2
tanqa:—q . 1+(q K) __4-x irq LY
2k( 2kq 2k( 2xq
This condition is identical with (4- ).

The argument why this is so, is the following: When k =ik the
wave functio on the left has the form e™ + R(ix)e" . The function
e™ blows up as X — —oo and the wave function only make sense if
this term is overpowered by the other term, that is when R(ix) = 0.
We leave it to the student to check that the numerators are the same
atk =ik.

6. The solutionis u(x) = Ae'™* + Be™ X<b
— Celkx + De—lkx X>b

The continuity condition at X = b leads to
Aet 1 Bk — caikh | parikh
And the derivative condition is
(ikAe™® —ikBe ™) - (ikCe™® —ikDe™ )= (A/a)( Ae™® + Be™)
With the notation
Ae*® = ¢ ; Be™ = p. Cel® =y De = §

These equations read



at+tB=y+d
ik(oe - B+1v-98)=a)a+ )

We can use these equations to write (y,3) in terms of (a.,8) as follows

B 2ika o A s
Y= ika- 1% " 2ika- A
A 2ika
4

== a+—
2ika— A4 2ika— A4

We can now rewrite these in terms of A,B,C,D and we get for the S matrix

( 2ika A e—zikb\
s_| 2ika-2  2ika-4
_L A 20 2ika
2ika— A 2ika— A

Unitarity is easily established:

4k’a’ Vs
|811 ‘2 + |Slz |2: 4k2a? + P + 4k2a? + P =1
(_2ika Y__ 2 —2|kb\ (_ 4 2|ka —2ika \_
Gika— 2\ ika—2° ) Gika-2°  Noika- 1/

S1131*2 + Snsz*z =

The matrix elements become infinite when 2ika =A. In terms of k= -ik, this condition
becomes k = -A/2a = |A|/2a.

7. The exponentin T=e" is

S =%jfdx,/2m(V(x)— E)
2 (B mo’ , X /1)
=5l dx\/@m(T(X B

where A and B are turning points, that is, the points at which the quantity
under the square root sign vanishes.
We first simplify the expression by changing to dimensionless variables:

=Nh/moy; n=a/Nh/meo <<1

The integral becomes



2_|.ny2 dyyy —my’ -1 with 7 <<l

where now Y; and Y, are the turning points. A sketch of the potential shows
that y, is very large. In that region, the —1 under the square root can be
neglected, and to a good approximation y, = 1/ 7. The other turning point
occurs for y not particularly large, so that we can neglect the middle term
under the square root, and the value of y; is 1. Thus we need to estimate

[ oy -1

The integrand has a maximum at 2y — 3ny*= 0, that is at y = 2n/3. We
estimate the contribution from that point on by neglecting the —1 term in
the integrand. We thus get

'y 2la-” a-m? 1" 8431
Lo, 1= = 1T T3 | Ty

2/3n

To estimate the integral in the region 1 <y < 2/3n is more difficult. In any
case, we get a lower limit on S by just keeping the above, so that

$>0.21/1?

The factor e® must be multiplied by a characteristic time for the particle to
move back and forth inside the potential with energy % /2 which is
necessarily of order 1/®. Thus the estimated time is longer

const. 2
than——g"*""

8. The barrier factor is 8> where

20 [RAQ+1)
S =7‘1IR0 dXJT—ZmE

where b is given by the value of X at which the integrand vanishes, that is,
with 2mE/ 7°=k?, b = y/I(1 + 1) /k .We have, after some algebra

=211+ D) /b%\h—uz
) |(|+1){1n1+“1(R°/b) ~J1=(R, /b)?

R, /b

We now introduce the variable f = (Ro/b) = kR, /| for large I. Then



for f << 1. This is to be multiplied by the time of traversal inside the box.
The important factor is 2. It tells us that the lifetime is proportional to
(kRo)™? so that it grows as a power of | for small k. Equivalently we can
say that the probability of decay falls as (kRo)*.

9. The argument fails because the electron is not localized inside the
potential. In fact, for weak binding, the electron wave function extends
over aregion R=1/a = h‘[2mEB , which, for weak binding is much
larger than a.

10. For a bound state, the solution for X > a must be of the

1 du
formu(x) = Ae™, where o =2mE; /7. Matching a&at X=a

yields —a = f(E;). Iff(E) is a constant, then we immediately know a... Even if f(E)
varies only slightly over the energy range that overlaps small positive E, we can
determine the binding energy in terms of the reflection coefficient. For positive energies
the wave function u(x) for X > a has the form e™ + R(k)e", and matching yields

e—ika _ Reika 1— Rezika
f(E)r—a=-ik————=-k———=
( ) a e—lka +Re|ka 1+R62|ka

so that

e K+l
R= 2ika -
€ k—ia

We see that R = 1.

11. Since the well is symmetric about X = 0, we need only match wave functions at X =Db
and a. We look at E < 0, so that we introduce and o> = 2m|E|/#” and

g = 2m(Vo-|E|)/ i*. We now write down
Even solutions:

u(x) = coshax 0<x<b
=Asingx + B cosgx b<x<a
=Ce™ a<x

Matching _L dux)

at X = b and at X = a leads to the equations
u(x) dx



Acosgb— Bsingb
Asingb + B cosgb

atanhab=q

__Acosga- Bsnga
Asinga + B cosga

From the first equation we get

B gcosgb—atanhabsingb
A gsingb +  tanhabcosgb

and from the second

gcosga +asinga
gsinga—acosqa

B
A

Equating these, cross-multiplying, we get after a little algebra
q’sinqg(a—b)— acosq(a—b) = atanh ab[asing(a— b)+ qcosq(@a—b)]
from which it immediately follows that

sing(@—b)  og(tanhab +1)
cosq(a—b) q*- o’tanhab

Odd Solution

Here the only difference is that the form for u(x) for 0 < x <b is sinhax.
The result of this is that we get the same expresion as above, with tanhob
replaced by cothab.

11. (a) The condition that there are at most two bound states is equivalent
to stating that there is at most one 0dd bound state. The relevant figure
is Fig. 4-8, and we ask for the condition that there be no intersection
point with the tangent curve that starts up at 3n/2. This means that

A=y
y
for y < 3m/2. This translates into 4 = y* with y <3w/2, i.e. A < 9n%/4.
(b) The condition that there be at most three bound states implies that there
be at most two even bound states, and the relevant figure is 4-7. Here the
conditon is that y < 27 so that A < 4.

=0



(c) We have y = &t so that the second even bound state have zero binding
energy. This means that A =7°. What does this tell us about the first bound
state? All we know is that y is a solution of Eq. (4-54) with 1= r’.
Eq.(4-54) can be rewritten as follows:

»o l-cos’y A-y' 1-(y/A)

BYETSyY Y A

so that the even condition is cosy =Y/ Vi , and in the same way, the odd

conditin is siny =Y/ \/E . Setting \/Z = rr still leaves us with a
transcendental equation. All we can say is that the binding energy f the
even state will be larger than that of the odd one.

13.(a) Asb > 0, tang(a-b) = tanga and the r.h.s. reduces to a/g. Thus we
get, for the even solution

tanga = o/q
and, for the odd solution,
tanga = - g/a.

These are just the single well conditions.
(b) This part is more complicated. We introduce notation ¢ = (a-b), which
will be held fixed. We will also use the notation z = ab. We will also use
the subscript “1” for the even solutions, and “2” for the odd solutions. For b
large,

z A -2z
eZ e_Z _ 1 e_22 ] 2e-2
e +e I+e

cothz=1=2e%

tanhz =

The eigenvalue condition for the even solution now reads

_ga(1+1-2e7) _ 2qa,

2 2
+
tanq,Cc = e

< 1 o2
G - (1-2e7) ¢'-af ( 0 —a )

The condition for the odd solution is obtained by just changing the sign of
the e term, so that

tang,c = 2% LH 1+ 2e7%)  2q,a,

2 2

q2+a2 -2z
— ~ 1+ e
Gail+27) " G-al ¢ -a



In both cases q2 +ol= 2mVy/ i is fixed. The two eigenvalue conditions
only differ in the e terms, and the difference in the eigenvalues is
therefore proportional to e , where z here is some mean value between
o b and apb.

This can be worked out in more detail, but this becomes an exercise in
Taylor expansions with no new physical insights.

14. We write

av o dv
0 - [ depoox Ty )

» d d
= J‘_w dx[& (I/IZXV )— 21//d—f XV — (//ZV}

The first term vanishes because v goes to zero rapidly. We next rewrite

2 2

—2j dX-XVl// —2j dx—x(E+2h 32)'”

dy’ h° (= d(dy)’
__EI X dx 2m i ax Uax )

Now
Im dxx—d v = Iw dx—d (x z//z)—jw dxy’
0 dx < dx 0

The first term vanishes, and the second term is unity. We do the same with
the second term, in which only the second integral

w dw)’
[ol$

remains. Putting all this together we get

av o (dy) e, p
(X dx>+<v>_2m —de\dx) +ELDdxz// _(2m>+E

so that
1 dv

Loy (2






CHAPTER 5.

1. We are given
[ ax(AP () *#(x) =] dx¥(x) *A¥(x)

Now let W(x)=¢@(x) + Aw(X) , where A is an arbitrary complex number. Substitution
into the above equation yields, on the l.h.s.

[ ax(AB(X) + Ay (X)) * (409 + 2 (x))

= [ (A9 =g+ 2AH* v+ 2 (Ap)*g+1 AT (Av)*v]
On the r.h.s. we get

[ dx(B(x) + 2y (X)) * (AG(x) + A p(x)

= [ oxfpApr Ay Ap g Ay AT yrAY]

Because of the hermiticity of A, the first and fourth terms on each side are equal. For the
rest, sine A is an arbitrary complex number, the coefficients of 4 and A* are independent ,
and we may therefore identify these on the two sides of the equation. If we consider A,
for example, we get

[7 dx(Ag0) * w0 =] dxg)* Ay (x)
the desired result.

2. Wehave A" = Aand B* =B, therefore (A + B)" = (A + B). Let us call (A + B) = X.
We have shown that X is hermitian. Consider now

(XH =X XX X=X XX X = (X)
which was to be proved.

3. We have
(A% = [ dxw* (OAT(X)

Now define Ay(x) = #(x). Then the above relation can be rewritten as



(A% = [ dxyp(AGX)= [ dx(Ap(x)*§(x)

= [ dAp () * Ap(x)2 0

. 0 in n
4. LetU=¢" =3

n=0

. Then U~ _Z( ) (H ) Z( )" (H L e, and thus

n!

the hermitian conjugate of e is e™ provided H = H".

5. We need to show that

Let us pick a particular coefficient in the series, say k = m + n and calculate its
coefficient. We get, with m=k — n, the coefficient of H is

G ) L& K
; ol (k—n)! klgn!(k—n)!' )
:E(i—i)kz

Thus in the product only the m = n = 0 term remains, and this is equal to unity.

6. We write 1(4,A%*)= j"; dx(A(X) + Aw(X))* (#(x) + Aw(x)) > 0. The left hand side, in
abbreviated notation can be written as

(.29 =] 19F +a*[ y*g+a] g*w+22*] |y F
Since A and A* are independent, he minimum value of this occurs when
2
(M* I 7 ¢+/1I ly "=
=I ¢*w+/1*I ly [ =
When these values of A and A* are inserted in the expression for 1(1,4*) we get

P*y| y*o
I(ﬂ“min’/fmin):_[ |¢|2_J‘ J‘ 9 >0
[lwl




from which we get the Schwartz inequality.
7. Wehave UU"= 1 and VV' =1. Now (UV)" =V*'U" so that
(UV)(UV)" = UW*'U* = UuU* =1
8. Let Uy(x) = Ay(X), so that A is an eigenvalue of U. Since U is unitary, U"U = 1. Now
[ axUpe)*Up(0=[" dey*(x)U Up(x)=
= [, oxp* (w9 =1

On the other hand, using the eigenvalue equation, the integral may be written in the form
[ axUw ) *Up)= 2% dxy *(w ()=l AF

It follows that | 4> = 1, or equivalently 2 = e, with a real.

9. We write

[ dxg(0* 909 =] dxUy(x)*Up() =] dxy*(x)U Up(x)=

= [ dy* (p(0 =1
10. We write, in abbreviated notation
_[ V.V, =j (Uu,)*Uu, =j u,U*Uu, =I uu, =5,

11. (a) We are given A" = A and B" = B. We now calculate
(i [A,B])" = (iAB —iBA)" = -i (AB)" - (-i)(BA)" = -i (B*A") +i(A"B")
=-iBA +iAB = i[AB]
(b) [AB,C] = ABC-CAB = ABC — ACB + ACB — CAB = A(BC — CB) — (AC - CA)B
=A[B,C]-[AC]B
(c) The Jacobi identity written out in detail is

[A[B.C]] + [B,ICAIl + [C,[AB]] =



A(BC — CB) — (BC — CB)A + B(CA— AC) — (CA - AC)B + C(AB - BA) — (AB — BA)C
=ABC - ACB - BCA + CBA + BCA-BAC - CAB + ACB + CAB - CBA - ABC + BAC
It is easy to see that the sum is zero.
12. We have
e Be? = (L+A+A%21 + A3+ AY41 +. )B (1- A+ A%21 - A3 + AY41 - )
Let us now take the term independent of A: it is B.
The terms of first order in A are AB — BA = [A,B].
The terms of second order in A are
A?B/2! — ABA + BA?/2! = (1/21)(A’B — 2ABA + BA?)
= (1/21)(A(AB — BA) — (AB — BA)A) = (1/21){A[A,B]-[A,B]A}
= (1/2)[A[AB]]

The terms of third order in A are A’B/3! — A2BA/2! + ABA?/2! — BA®. One can again
rearrange these and show that this termis (1/3D[A,[A,[A,B]]].

There is actually a neater way to do this. Consider
F(1) =e*Be™
Then

dF() _

T ABe ™ —e”BAe ™ =e™[A,Ble ™™

Differentiating again we get
d°F(D) _ o
dﬂ/Z =€ [A![Aa B]]e
and so on. We now use the Taylor expansion to calculate F(1) = ¢* B e™.
1 1 1 1 i
FQ=F@O)+F (0)+5F 0) +§F ©) +..,

— B+[AB]+ %[A,[A, B]] +§1' [A[A[AB]]] + ...

13. Consider the eigenvalue equation Hu = Au. Applying H to this equation we get



H>u=4%; H>u= 2% and H*%u = 2*u. We are given that H* = 1, which means
that H* applied to any function yields 1. In particular this means that A* = 1. The
solutions of thisare A =1, -1, i, and —i. However, H is hermitian, so that the
eigenvalues are real. Thus only 4 =+ 1 are possible eigenvalues. If H is not
hermitian, then all four eigenvalues are acceptable.

14. We have the equations

@ — @ 2
Bua - bllua + b12 ua

(2) _ @) (2)
Bua - b21ua + b22ua

Let us now introduce functions (v{”,v{?) that satisfy the equations

a

Bv =byv?:Bv!? = bv?). We write, with simplified notation,

Vi=a U+ Bu;
V2:’YU1+8U2

The b; - eigenvalue equation reads
bivi =B (o Uy + B uz) = o (b1g Us + biaz) + B (b21Us + b2olp)

We write the l.h.s. as b;(a u; + B uz). We can now take the coefficients
of u; and u, separately, and get the following equations

o (by — b11) = Bb2s
B (b1 —by) =abi

The product of the two equations yields a quadratic equation for b;, whose solution is

+b (b, —b,,)?
blzthz ZZiJ 11 422 +b12b21

We may choose the + sign for the b; eigenvalue. An examination of the equation
involving v, leads to an identical equation, and we associate the — sign with the b,
eigenvalue. Once we know the eigenvalues, we can find the ratios o/p and y/5. These
suffice, since the normalization condition implies that

ol +p*=1andy*+8°=1

15. The equations of motion for the expectation values are



d, .1 L e _p
S (0= 2 (H XD =— (XD =—(plp XD = ()

%<p> =7;<[H, o) = —%<[p§mw§x2 o)) = -Mai(X) - o,

16. We may combine the above equations to get

2

(=0 (x) - 2

“2
m
The solution of this equation is obtained by introducing the variable

_ W,
X_<X>+ma)2

1

The equation for X reads d?X/dt® = - @, X, whose solution is
X =Acosw; t+Bsina, t

This gives us

<X>t =

(4 .
2+ Acosat + Bsinat
ma;

Att=0

w
<X>o=_ma2)2 +A

1

d
(P)o =M= (K)o = MBay

We can therefore write A and B in terms of the initial values of < x > and
<p>,

(P)g

1

<X>t == ma)az)z + (<X>0 +

w, .
2] cosat + sinayt

May

17. We calculate as above, but we can equally well use Eq. (5-53) and (5-57),
to get

d 1
a<X>=E<p>

d oV (x1)
a(FJ) =_<T> =eEcosat

Finally



<H> ( > eE, wsin at(x)
18. We can solve the second of the above equations to get

eE, .
(P, =j°sma>t+<p>t:o

This may be inserted into the first equation, and the result is

<p>t 0

=
(X = =~ (Cos@t-1)+ === + (0, ,



CHAPTER 6

19. (a) We have
Ala> = ala>

It follows that
<alAla>=a<ala>=a

if the eigenstate of A corresponding to the eigenvalue a is normalized to unity.
The complex conjugate of this equation is

<alAla>* = <a|A’|ja> = a*

If A" = A, then it follows that a = a*, so that a is real.
13. We have

(wI(AB)" [w) =((AB)y |y)=(By |A" |y)=(y|B"A"|y)
This is true for every i, so that (AB)" = B*A"
2.

TrAB =Y (n|AB|n)= > (n|A1B|n)

=;;<n | Al m)m |B|n>=;;<m [BIn)n|A|m)

=Y (m|BlA|m)=) (m|BA|m)=TrBA
3. We start with the definition of |n> as
Imy=——(A")" 0)
“Vnt

We now take Eqg. (6-47) from the text to see that

Al n>=71n—!:°~(:°~+)n 10) =7r:]—!(N)”l 10) =7(;/jL1)!(A+)“ 0)=vn [n-1)

N
4. Let f(A")=).C,(A")".We then use Eq. (6-47) to obtain

n=1



Af (A7) |0)= AZCn(N)" |0y = ZHC?n(N)"‘1 |0)
df (A*)

Zc (A" [0y=——20)

dA+

5. We use the fact that Eq. (6-36) leads to

By A

p= iy T (A"~ A)

We can now calculate

)
<k|x|n>=‘/%}<k|A+A*|n>:‘/m(\/ﬁ<k|n—1>+\/F<k—l|n>)
_ /L i
- Zma)(ﬁé‘k,n—l-i_ I’]—’_:l'b‘k,ml)

which shows thatk =n + 1.

6. In exactly the same way we show that

. [moh N . [moh
kpIn)y=iyf == (k| A —A|n>=n‘/T(\/nH@,m—\/ﬁék,n1)
7. Let us now calculate

(k| px [ny=(k | plx|ny= D> <k |plaxq|x|n)
q

We may now use the results of problems 5 and 6. We get for the above

Z(J_é‘k -1q -V k+ k+1q (ﬁ5q,n—l +¥n +1§q,n+1)

= kg, VKD VKO 7D, 0~ K DO 7D,
S N (DN R GO

To calculate ¢k | xp |n) we may proceed in exactly the same way. It is also possible to
abbreviate the calculation by noting that since x and p are hermitian operators, it
follows that



klxp[n)y={n|px|k)*
so that the desired quantity is obtained from what we obtained before by

interchanging k and n and complex-conjugating. The latter only changes the overall
sign, so that we get

in
KIxpm)= -0 =N +DM +2)5 ., +¥ K +1)(K+2)J,,;,)
8.The results of problem 7 immediately lead to
(k[ xp—px|n)=ing,

9. This follows immediately from problems 5 and 6.

, h
X=4—(A+A"
2ma)( )

.| Mmoh , .
p=iy = (A = A)

10. We again use

to obtain the operator expression for

X% = Znil (A+A") A+ A*):% (A*+2ATA+(AY) +1)
w w

p*= ‘mTwh (A" - A)(A" - A)= —me(AZ—ZNAHA*)Z—l)

where we have used [A,A™] = 1.

The quadratic terms change the values of the eigenvalue integer by 2, so that they do not
appear in the desired expressions. We get, very simply

h
<n|x2|n>:m(2n+l)
<n|p2|n>=m7“m(2n+1)

14. Given the results of problem 9, and of 10, we have



(AX)* = _n (2n +1)
2M@
(apy =22 20 +1)
and therefore
1
AXAp = h(n + 5)
15. The eigenstate in Alo> = ajo> may be written in the form
|a)=f(A")[0)

It follows from the result of problem 4 that the eigenvalue equation reads

df (A%)

A (A7) 0) ==

0) = of (A") |0)

The solution of df (x) = o f(x) is f(x) = C e™ so that
| @)= Ce™ |0)

The constant C is determined by the normalization condition <oo> = 1
This means that

i_ a*Ag ()" (d)" poh
C2—<0|e *10)= Z =0l 3] & 10

) Z |0[ |2n |a|2

n=0
Consequently
C=gll®

We may now expand the state as follows

A" o
lay= D |nXn|a)= Y |nx0 7mce” 10

1 d\" .. "
=C§'”>ﬁ<o|(ﬁj e” I0>=ij|n>

The probability that the state |a> contains n quanta is



o[ 3 ()" olal’
n nl

P.=l(n|a)f=C
This is known as the Poisson distribution.
Finally
(@|N|a)y=(a|A'A|lay=a*a=|al

13. The equations of motion read

ax@® i _ipi® _ @)
0t xo1= 12 o= &
B0 fmgx(9), p(t] = -mo

This leads to the equation

d’x(t)
aw -9

The general solution is

x(t) :%gt2 + %H x(0)
14. We have, as always
x_p
dt m
Also
% :é[% M’ X’ +eéX, p]

=711@mw2x[x,p]+i2lmw2[x,p]x )

=—Ma’X -eé

Differentiating the first equation with respect to t and rearranging leads to

d’x , e& ef

2
—Z =X =—0 (X+—=
- (x+°2)



The solution of this equation is

X + e§2 = Acoswt + Bsinat
mw
= (x(0)+ e )coswt+ p(0 )sma)t
Mw

We can now calculate the commutator [x(t1),x(t2)], which should vanish

when t; = t,. In this calculation it is only the commutator [p(0), x(0)] that
plays a role. We have

[x(tl),x(tz)]z[x(O)coswtl+@sina)tl,x(0)coswtz+ pO)
mao m
(1 . . )

in .
mkmw(coswtlsma)t2 —sma;ticoswtzj = ma)sma)(tz— t)

——=sinat, |

16. We simplify the algebra by writing

o =~ [_h 1
V2rn =& Yome -

Then

1/

‘/_\_) u. (xX)=v,(x) = (ax—zla dd\ e

Now with the notation y = ax we get
1 d 7y2 7y2 7y2
vi(y)= (y—-—)e =(y+y)e” =2ye

V,(y) = (y— )(ZyE‘y) @y’ -1+2y%)e”

— (4y> -’

Next



Ld [,y oy
v =0-3 )@y -ve ]
= (@ -y- 4y +y@ay -Dp”

— By*-6y)e™”

. . ,m
The rest is substitution y = 2—;0x

17. We learned in problem 4 that

o dF(AD)
Iteration of this leads to
- d"f(A")
A"f(AT)|0)= 0
(A7) [0) A |0)
We use this to get
e 1(A)10) = S EA 1A 0= X (-1 (a0 = f(a + 2)]0)
Z < 'nilda*)

18. We use the result of problem 16 to write
JA +\ —AA + A + + + +
e” f(A)e " g(A)[0y=e"f(A)g(A" - 2)[0)= (A" +A)g(A") |0)
Since this is true for any state of the form g(A")|0> we have
e f(A)e ™ = f(A"+ 1)
In the above we used the first formula in the solution to 16, which depended on the
fact that [A,A"] = 1. More generally we have the Baker-Hausdorff form, which we
derive as follows:
Define
F(1) =e™A'e™
Differentiation w.r.t. 4 yields

F
% — elAAA+e—/1A _ e/lAA+Ae—/1A — eZA [A’A+]e—ﬂA = e/lACle—ﬂA

Iteration leads to



d’ F(/I)
dA?

d"F(4)
da"

/1A[A [A A ]] —A _elACZe—lA

= e*[A[A[A[A,...]]. ] = eC e

with A appearing n times in C,. We may now use a Taylor expansion for

2 " dF(/l) 20 A
F(A+o)= 2 = = e Cee

n

If we now set 4 =0 we get

o0

Fl@)=Y=C,

which translates into

2 3

e”Ae T = A +0[AA]+ [A[AA]]+ T [ATATA AT .

Note that if [A,A"] = 1 only the first two terms appear, so that
e f(AN)e ™ = f(A"+o[AA]) = (A" +0)
19. We follow the procedure outlined in the hint. We define F(1) by

Differentiation w.r.t 4 yields

(@A +bA")e™ F(1) = aAe™F (1) + em%
The first terms on each side cancel, and multiplication by e *** on the left yields

dF(4)

- —e™bAe™F(1)=bA" - 1ab[A A" ]F (1)

When [A,A"] commutes with A. We can now integrate w.r.t. A and after integration
Set 4 =1. We then get

F(l)z ebA*—ab[A,A*]/Z — ebA+e7ab/2



so that

aA+bA* aA bA* -ab/2
e =€ € €

20. We can use the procedure of problem 17, but a simpler way is to take the hermitian
conjugate of the result. For a real function f and A real, this reads

e™ f(Ae® = f(A+2)

Changing A to -1 yields
e™ f(A)e™ =f(A-2)

The remaining steps that lead to

aA+bA* bA* JaA _ab/2
e =€ € €

are identical to the ones used in problem 18.

20. For the harmonic oscillator problem we have

/ 7]
=4s—(A+A"
X 2ma)( +A)

This means that e is of the form given in problem 19 with a= b= ikvz /2me

This leads to

ikx ikd n/2m wA* _ikdn2moA —ik?/4mo
e =€ € e

Since A|0> =0 and <0JA" = 0, we get
<0 |eikx |O> _ e—hk2/4mw

21. An alternative calculation, given that u,(x) = (ma/ 27)"*e ™" is

mo ik k.
K h I dx e|kx ~-max®h (mh) .[ dx e_ h T me)ze 4dma
7l 7l

The integral is a simple gaussian integral and E dye ™" = ‘/% which just

cancels the factor in front. Thus the two results agree.






CHAPTER 7

1. (a) The system under consideration has rotational degrees of freedom, allowing it to
rotate about two orthogonal axes perpendicular to the rigid rod connecting the two
masses. If we define the z axis as represented by the rod, then the Hamiltonian has the
form

L+ 12—

21 21

where | is the moment of inertia of the dumbbell.

(b) Since there are no rotations about the z axis, the eigenvalue of L; is zero, so that the
eigenvalues of the Hamiltonian are

R +1)

E
21

with /=0,1,2,3,...

(c) To get the energy spectrum we need an expression for the moment of inertia. We use
the fact that

where the reduced mass is given by

M. = M. M, _12><14|vI

= = =6.46M
red MC + MN 26 nucleon

nucleon

If we express the separation a in Angstroms, we get
| =6.46 % (1.67 x 10 7kg)(10™'m / A)’a; =1.08 x 10 “a,

The energy difference between the ground state and the first excited state is 27 /21
which leads to the numerical result

_ (105105 1 _64x10"
- 1.08x10*a’kgm? = (1.6x10™°J/eV)  al

AE

. X . . . Z .
2. We use the connection 7= sinécos ¢, % = sin #sing; 7= cosé to write



,3 i . ,3 X +1y
Y, =- gre"’smé?:— 8—”( . )
3 3 2
Y = N4z cosf= v472(r)
3 *_/i_w. _’ix—iy
Y =Y, = 8”e sin@d= 87r( - )

Next we have

15 .. 15
Y, =——e? sin’ @ = |——(cos2¢+isin2¢p)sin’
2 =\32, V32, 0529 Psi

15 . .
Y32, (cos’ ¢—sin’ ¢ + 2isin gcosgd)sin’ &

_ |15 (xz—y2+2ixyj

_\/327z r’

_ ’1_5 ig . _ ’EM
Y, = 87ze sinfcos 0= Py

and

5 5 (222 -x' -y’
Y, = E(Zacoszé’—l):‘/m”( =

We may use Eq. (7-46) to obtain the form for Y, , and Y, _,.

. 1 i
3. Weuse L, =L, +IL to calculate L, ZE(L+ +L); L, =5(L_ - L,). We may now

proceed
1 1

(I,m, L, |I,m2>=5<l,ml |L, |I,m2>+5<l,m1 IL_|I,m))
i i

<I>m1 |Ly |I’m2>:E<|am1 | L7 ||7m2>_§<|7m1 | L+ ||5m2>

and on the r.h.s. we insert

<|,m1 IL,| I,m2> = hJ(I - mz)(l +m, + l)é‘mI M, +1
domy (L [Lm,) = 7yf(1+ m)(d —m, +1)3

m;,my—1

| .
.Againweuse L == (L, +L_); =—I(L_— L.) to work out
4. A 2(L+ L) L, > )



=L+l +L)=

1
:Z(Li+Lf+L2—LZZ+hI7 + - L2-nL)

1 1 1 1
-L+=-L+=L*-=-L
4 4 2 2

We calculate

<|am1 |L2+ | I’m2> = hJ(I - mz)(l +m, +1)<|=m1 L. | |,m2 +1)
= 1((1 = m,)(1 + m, + (1= m, — )1 + m, +2) "5,

1M, +2

and
d,m, (L2 L,m,y=(,m, | L} |l,m,)*
which is easily obtained from the preceding result by interchanging m; and m.

The remaining two terms yield

2

1 2 2 _n m2
Sm (L= L) [Lmy) == (0 + D= my)o, o,

The remaining calculation is simple, since
2 2 2 2
(Lm [L, [Lmy)=(l,m, [L° L, - L [l,m,)

5. The Hamiltonian may be written as



-G 4
21 21,

whose eigenvalues are

I(1+1) 1
h{zl +m(2I 2_|1ﬂ

where -l <m <.

(b) The plot is given on the right.

2

(c) The spectrum in the limit that I; >> I3 is justE = 7 m*

with m=0,1,2,...I1. The m = 0 eigenvalue is nondegenerate, while the other ones are

doubly degenerate (corresponding to the negative values of m).

i 0 : :
6. We will use the lowering operator L_= e~ ¢(—— +icot 9—) acting on Ya4. Since

o

we are not interested in the normalization, we will not carry the # factor.
: o . 0 i .
Y, ce'(——+ |cot(9—)[e4'¢ sin’ 0]
00 o¢

= g% {—4 sin’ fcos @— 4 cotHsin* (9}: —8e**sin® Ocos @

Y, ce™ (—aia+ Icot(9—¢)[ e’sin 60056]
— g% {—3 sin” Ocos” O+ sin” @— 3sin” Ocos’ 9}2

=e? {—6 sin® O+ 7sin* 0}
-ig o . 0 2ig 2 - 4
Y, «<e (—@ +Icot 96—¢)[e (—6sin” @+ 7sin 9]
=g ﬁZsin@cos 0 —28sin’ OcosH— 2(—6 sin@cos @+ 7sin’ Ocos 9)}

—e" {24 sin Ocos@— 42sin’ cos 6’}



Y, e (—i + icot@i)[ei¢(4sin0— 7sin’ 6)cos 49]
00 o¢
= {—4 cos O+ 21sin’ @cosB)cosd + (4 sin” @— 7sin* @) — (4 cos’ @— 7sin’ Ocos’ 9}

= {8 +40sin’ 0 35sin’ 6}

7. Consider the H given. The angular momentum eigenstates | /,m) are eigenstates of the

Hamiltonian, and the eigenvalues are

2
_RMes)

E
21

ahm

with —¢/ <m< /. Thus for every value of ¢ there will be (2/+1) states, no longer
degenerate.
8. We calculate

[x.L1=[xyp,~zp,]=0

[y,L1=[Y,yp, —zp,1=z[p,, y] = —ifz

[zL,]1=[zyp, —2p,]=-Y[p,.z] =iy

[x,L,1=[x2p, - xp,]=~2[p,.X] = iz

[y,L,1=1y,zp, = xp,]=0

[zL,]=[z2p, - Xp,]= X[ p,,2] = —ifx

The pattern is cyclical (X ,y)=> 1%z and so on, so that we expect (and can check) that

[Xa |7] = _Ihy
[y,L,]= inx
[zL,]=0

9. We again expect a cyclical pattern. Let us start with
[pxal—y] = [pxasz - sz] = _[px: X] P, = Ihpz

and the rest follows automatically.

10. (a) The eigenvalues of L, are known to be 2,1,0,-1,-2 in units of 7.

(b) We may write



(3/5)L, —(4/5L =neL
where N is a unit vector, since n; + n; = (3/5) +(-4/5)’ = 1. However, we may well

have chosen the n direction as our selected z direction, and the eigenvalues for this are
again 2,1,0,-1,-2.

(c) We may write
2L, 6L, +3L, :\/22+62+32(%LX —%Ly+3l7)
=T7nelL

Where n is yet another unit vector. By the same argument we can immediately state that

the eigenvalues are 7mi.e. 14,7,0,-7,-14.

11. For our purposes, the only part that is relevant is

w = sin’ @sin gcos¢ + (sing + cos @) sinfcos &

it g i ei¢+e"”j
A
21 2

1 . g g2 )
=—gsin’ f———— + s1n<900s6(
2 2

Comparison with the table of Spherical Harmonics shows that all of these involve
combinations of / =2 functions. We can therefore immediately conclude that the
probability of finding ¢ = 0 is zero, and the probability of finding 64° iz one, since this
value corresponds to /= 2.A look at the table shows that

e*’sin” f= "%ZYM; e sin’ = %TYZ,_Z

e'’sin @cos O = —‘,?—;[szl; e " sinfcos = «%YZ’_I

Thus

Xy+yz+zx 1 ., e¥_e? el —e? @l pe?
xyryr+x = —sin’ HT + sin Ocos 0
i

+
r’ 2 i 2
1 (32« 1 [327 —i+1 |87 i+1 |87
:—‘/—Y ——‘/—Y ——‘/—Y +—‘/—Y
4iV 15 > 4iY 15 > 2 Y152 2 Y15 !

This is not normalized. The sum of the squares of the coefficients is




2r 27 4r 4rxr 12x 4Arx . .
—t =t ——t——=——-= — 50 that for normalization purposes we must multiply

1515 15 15 15
by i Thus the probability of finding m = 2 is the same as getting m = -2, and it is

12.Since the particles are identical, the wave function €™ must be unchanged under the
rotation ¢ 2 ¢+ 27/N. This means that m(2z/N ) = 2nz, so that m = nN, with n =
0,£1,42,43,...
The energy is

’m’ AN,

E = =
IMRE - 2MR "

The gap between the ground state (n = 0) and the first excited state (n =1) is

N2

TMRE as N —>ow

AE =

If the cylinder is nicked, then there is no such symmetry and m = 0,+1,£23,...and

hZ

AE =SVRE






CHAPTER 8

1. The solutions are of the form v, . (x,3,2) = u, (x)u, (y)u,, (z)

2 . nnx .
where u, (x) = J: sin— ,and so on. The eigenvalues are
a a

2 2
W

2 2 2
E=E +E, +E, = S (n +n, +ny)

2. (a) The lowest energy state corresponds to the lowest values of the integers
{ni,nz,n3}, thatis, {1,1,1)Thus

nn’
ground = m x 3
272_2
In units of ——— the energies are
2ma
{111} >3 nondegenerate)

{1,1,2},(1,2,1},(2,1,1} - 6 (triple degeneracy)
{1,2,2}{2,1,2}{2,2,1}> 9 (triple degeneracy)
{3,1,1},{1,3,1},{1,1,3}> 11 (triple degeneracy)

{2,2,2}> 12 (nondegenrate)
{1,2,3}{1,3,2}{2,1,3},{2,3,1}.{3,1,2} {3,2,1}~> 14 (6-fold degenerate)
{2,2,3},{2,3,2},{3,2,2}>17 (triple degenerate)
{1,1,4}{1,4,1}{4,1,1}>18 (triple degenerate)
{1,3,3},{3,1,3},{3,3,1}> 19 (triple degenerate)
{1,2,4}{1,4,2}{2,1,4}{2,4,1} {4,1,2} {4,2,1}>21 (6-fold degenerate)

3. The problem breaks up into three separate, here identical systems. We know that the
energy for a one-dimensional oscillator takes the values 7ia(n +1/2), so that here the
energy eigenvalues are

E=hom, +n,+n,+3/2)

.3
The ground state energy correspons to the » values all zero. It is > ho.

4. The energy eigenvalues in terms of Zwwith the corresponding integers are

(0,0,0) 32 degeneracy 1
(0,0,1) etc 5/2 3
(0,1,1) (0,0,2) etc 712 6
(1,1,1),(0,0,3),(0,1,2) etc 9/2 10
(1,1,2),(0,0,4),(0,2,2),(0,1,3) 11/2 15

(0,0,5),(0,1,4),(0,2,3)(1,2,2)
(1,1,3) 13/2 21



(0,0,6),(0,1,5),(0,2,4),(0,3,3)

(1,1,4),(1,2,3),(2,2,2), 15/2 28
(0,0,7),(0,1,6),(0,2,5),(0,3,4)
(1,1,5),(1,2,4),(1,3,3),(2,2,3)  17/2 36

(0,0,8),(0,1,7),(0,2,6),(0,3,5)
(0,4,4),(1,1,6),(1,2,5),(1,3,4)
(2,2,4),(2,3,3) 19/2 45
(0,0,9),(0,1,8),(0,2,7),(0,3,6)
(0,4,5)(1,1,7),(1,2,6),(1,3,5)
(1,4,4),(2,.25) (2,3,4),(3,33)  21/2 55

5. It follows from the relations x = pcos¢,y = psin ¢ that
dx = dpcos¢— psingdg; dy =dpsing + pcosgd g
Solving this we get

dp = cosgdx + sin ¢dy; pd¢ = —singdx + coSgdy
so that

0 _%p0 20 _ .0 singd

o xop g %3, a9
and
0 _p0 200 .0 00540
o " vop oy os Mt T, 54
We now need to work out
o 0
L 2 _
ox?  oy?
0 sing o0 0 sing 0 os¢ 0
cos¢g— ————)(cosgp— sin
(cosg- ~—E 3 e0sd - == E =0+ ( ¢ 3

The time-independent Schrodinger equation now reads

(a ¥(od) 1 V()
2m

6p pZ a¢2 j + V(p)\P(p1¢) = ElP(p’ ¢)

¢_

cos¢ﬁ

p 09



The substitution of ¥ (p,¢) = R(p)®P(¢) leads to two separate ordinary differential
equations. The equation for ®(¢), when supplemented by the condition that the solution
is unchanged when ¢ > ¢+ 2z leads to

1
D(g) = 72—4””’ m=0,+1+2,...
7T
and the radial equation is then

dR(p) m’

_2mV(p)
0 R( P + (p) = R(p)

hZ
6. The relation between energy difference and wavelength is

1 1
27hs == m,,,C 20(2(1 Z)

so that

167 *h (1 m,)

iz?mec z 5 M)

where M is the mass of the second particle, bound to the electron. We need to evaluate
this for the three cases: M = mp; M =2my and M = me. The numbers are

Min m)=1215.0226x10"°(1 +%)

=1215.68  for hydrogen
=1215.35 for deuterium
= 2430.45 for positronium

7. The ground state wave function of the electron in tritium (Z =1) is

» 1 3/2 .
l//loo(r)=m -] e
0

This is to be expanded in a complete set of eigenstates of the Z = 2 hydrogenlike atom,
and the probability that an energy measurement will yield the ground state energy of the
Z = 2 atom is the square of the scalar product



B By 1002
@ o at \3) 7 27
L. 512
Thus the probability is P = 229
8. The equation reads
E’—m’c" 2ZaE1l (Za)’
Ve T LD, m=0

e he r r?
Compare this with the hydrogenlike atom case

) 2mE,, 2mzezgj _
v l//(r)-’_[ n? Are i’ r w(r)=0

and recall that

& 2d ()
dr*  rdr 7

We may thus make a translation

E*-m%* - -2mc’E,
_ZZaE_»_ZmZé

hc A7g,h?
((0+1) - Z2a® = (0 +1)

Thus in the expression for the hydrogenlike atom energy eigenvalue

m?z%e? 1

Ameh? (n, + 0 +1)°

2mE, =
we replace ¢ by ¢*, where ¢*((*+1)= ((¢ +1) - (Za)’, that is,

€*=—% +{(€+%} —(Za)ZT

mZe® ZoF E*—m’c
We also replace b and 2mE, by - ————
P Are,h ¥ = My DY c?




We thus get

A B
E2 — 2 4 l
m‘j{'kmr+£*+nz}
For (Za) << 1 this leads to
1

1
E —mc*=—-=mc*(Za)*

2 (n, +0*+1)?

This differs from the nonrelativisric result only through the replacement of /by /*.

9. We use the fact that

ze 1 me’(Za)*
T, —— =F =——F
< >nl 47[80 <r>nl nl 2”2
Since
Ze® <1> 3 zé 7 3 Ze® 2mca_m02220(2
brey ' r'" brg, an®  Adme, hn® n?
we get
252 2
meZ°a 1
(1), = .7 =3 Q)

10. The expectation value of the energy is

(E)= (%) E + (g} E,+ (—?13) E,+ [@] E,

~ mela? 21
2 36

o162 1]
2 36 3622

Similarly

2y 42| 16 @}_4_02
(L)-h{36x0+36x2 =25

Finally
(L.)= h[E X O+£ ><1+i X O+E X (—1)}
36 36 36 36
1
=——"

36



11. We change notation from « to £ to avoid confusion with the fine-structure constant
that appears in the hydrogen atom wave function. The probability is the square of the
integral

3/2 3/2
J.d3r( ﬁ j e—ﬁ2r2/2 2 [éj e—Zr/ao
Jr N4z \a,

32
— ?14 (Zﬂj IOO l"zd}’eiﬁ er/Ze—Zr/a0
0

7'\ a,
312
4 (7 o 2,2
_ 4 (_ﬂj [_2 dsz‘ dre~Pr12p-Zrlao
7 \a, dap/eo

The integral cannot be done in closed form, but it can be discussed for large and small

apf.

12. It follows from (% (per))=0 that (H,per])=0

Now

[i + V() ]—i(—‘h) ? +ih ﬂ——ih(p—z—rovv(r)j
2m PP I P P T o m

J

As a consequence

2

Ey—(revvi)
m

If
Ze’
V(r)__47rgor
then
(re V()= (2
= N a ey
so that
1 Ze® 1
(T)= > <47r80r>— -5 Vr)

13. The radial equation is



2 2
2 2 1
(d_ _,__in(,,)_,__m(E __ma,Z,,Z_M)R(,,): 0
rdr 2 2mr

With a change of variables to p= ‘,m?a)r and with E = 2w /2 this becomes

& 2d D)
(dpﬁpdp)R(p)Jr(ﬂ P jR(p)—O

—p?12

We can easily check that the large o behavior is e and the small p behavior is /.

The function H(p) defined by

R(p)= ple” "H(p)

obeys the equation

d2H(p) 2(1+1_ dH(p) . . B
0 + P pj p +(1-3-2)H(p)=0

Another change of variables to y = o” yields

d*H(y) [1+3/2 NdH(y) A-20-3
0 + 5 —1) 0 + 1y H(y)=0

This is the same as Eq. (8-27), if we make the replacement

21 > 21+3/2
A-21-3
4

A-1—>

This leads to the result that
A=4n,+2[+3

or, equivalently
E=ho(2n, +1+312)

While the solution is Z\”(y) with a = n.and b = (2/ + 3)/4






CHAPTER 9

(0 0 0 0 0
Jl o 0 0 o0
1. With At= |0 42 0 0 0
0 0 3 0 0
0 0 0 44 0
we have
(OO0 0 O OO0 O O O 0 (0 0 0 0 0
JL 0 0 0 ofl4/1 0 0 0 O 0 0 0 00
(AY=/0 J2 0 0 0|0 ¥2 0 0 0/=(v2 0 0 00O
0 0 43 0 o//l0 0 43 0 0 0 46 0 0 0
0 0 0 4 olo 0o 0 V4 0 0 0 <12 00
It follows that
(00O 0 O OO0 O O 0O (O 0 0 0 0)
JL o0 0 o0 oo 0o 0 00O 0 0 00 0
(AP=/0 J2 0 0 o042 0 0 0 0|= O 0 000
0 0 /3 0 0//l0 6 0 00 |¥321 0 00 O
0 0 0 +4 olo 0 412 00 0 432 00 O

The next step is obvious: In the 5 x 5 format, there is only one entry in the bottom left-
most corner, and it is v4.3.2.1.

2. [The reference should be to Eq. (6-36) instead of Eq. (6-4)

(0 J1 0 0 0)
Jq1 0o 42 0 o
X:J%(A+A*):J% 0 42 0 43 0
0 0 V3 0 V4
0 0 0 44 0

from which it follows that






5. We write

(0 0 0 0 0Y1) (0
. 0 0 0 0 ofo]| |0
u2=7§(A*)2u0= 2 0 0 o0 ofo|=]1
' o 6 0 o0 offo| |0
0o o 12 o0 ollo) o
Similarly
(0 0 0 0 0)1) (0
0 0 0 0 oflof |0
u3=71§(A+)3u0: 0 0 0 0 0f[0|=|0
4321 0 0 0 ofjo| |1
0 432 0 0 0/lo) \o
and
(0 0 0 0 0\1) (0)
. 0 0 0 0 o0][o|] |0
u =7=(A""'u,=| O 0 0 0 0[0|=|0
|
a 0 0 0 0 0[[0] |0
J4321 0 0 0 0lo) \1

The pattern is clear. uy, is represented by a column vector with all zeros, excepta 1 in the
(n+1)-th place.

6. (a)
(1/12 0 0

0)
H 11210h03/20 0112 3h
<>‘73( ot g g 52 0 |¥6l1] 2"
o 0 0 7/

o
o O w o

(
b 2y 1 1 21 oi
()<X>—73( )me@
0



(0 41 0 0) (1
1 n|d1 0 V2 012
=L 21 Noalo v3 0 346|217 V2
0 0 43 0 0
(1 0 -2 0) (1
o 1 mhw| O 3 0 —6|112
R T V- R %M
0 6 0 7 0
(0 <1 0 o0) (1
1 .Mmin 0 2 0]1]2
(p)z%(l 2 1 0 T 0 -\/E 0 _\/5 VgllJ—O
0 0 3 0 0
(c) We get
o n 5, N2 o n A2
X = a3 g AP =5 3 -7)
(AX)(Ap) = 2.23%
7. Consider

(-3 19/4@“ﬂ(ug__i(wj
\J1877e-+" 6 ) My

Suppose we choose u;=1. The equations then lead to

(A +3)+19/4e"%u, =0
V197467 + (6- A)u, =0

(a) Dividing one equation by the other leads to

(A+3)(A- 6)=- 19/4



The roots of this equation are A =-7/2 and A = 13/2. The values of u ; corresponding to
the two eigenvalues are

uz(—7/2)=71—9ei”’3 U,(13/2) = —19e 7"

(b) The normalized eigenvectors are

1 ( JE 1 (eizz/3j

Ek—e‘i””) ; 2019

It is easy to see that these are orthogonal.

(c) The matrix that diagonalizes the original matrix is, according to Eq. (9-55)

U 1 (1 —J19ei7R)
~ V20 Ul_ge-‘”” 1

It is easy to check that

oAl (13/2 02)
Lo -7/

8. We have, as a result of problem 7,

A=UA, U"

diag

From this we get
13/2
e 0
et =UeMmy = U( 0 e_7/2J U

The rest is rather trivial matrix multiplication.



9, The solution of

1
11

:

is equivalent to solving

1Ya) [(a)
1lbl Ibl

197

a+b+c+d=Aa=Ab=Ac=Ad

e
e

(1)

o . . ol
One solution is clearly a=b=c=d with A =4. The eigenvector is Em

We next observe that if any two (or more) of a, b, c, d are not equal, then 4 =0. These
are the only possibilities, so that we have three eigenvalues all equal to zero. The
Eigenvectors must satisfy a+ b + ¢ + d =0, and they all must be mutually orthogonal.
The following choices will work

(1) (0} (1)
1|—1|_ 1|O|_1|1|

MHR
0 _ _
10.An hermitian matrix A can always be diagonalized by a particular unitary matrix U,
such that
UAU+ = Adiag
Let us now take traces on both sides: TrUAU " = TrU 'UA = TrAwhile TrA;, = Zan

Where the a, are the eigenvalues of A.



111 .)
1111 .|
11. The product of two N x N matrices of the form M = |1 111 ...|is
1111 J
(NN N N .
IN N N N .|
|N N N N ...|. Thus M? =N M . This means that the eigenvalues can only be
N N N

N or zero. Now the sum of the eigenvalues is the trgice of M which is N (see problem
10). Thus there is one eigenvalue N and (N —1) eigenvalues 0.

. 1 0 1)
12. We found that the matrix U = Tt J has the property that
0 V2 0

M, =U(L, /7)U". We may now calculate

M, =U(L, /H)U" =
(1 0 1Yo 1 0Y1 —-i 0) (0 0 1)

I L L N

M, =U(L, /AU "=
(1 0 1Yo —-i oY1 -i 0) (0 0 0O

R N R A

We can easily check that

and



(000 1Yo 0 0) 0 0 0Y0 0 1)
[Ml,MZ]:LO 0 OJLO 0 1J—Lo 0 1JL0 0 oJ:
10 0001 0001 OAN1 00O
(0 1 0
:L—l 0 OJ:iMS
0 00O
This was to be expected. The set M1, M, and M3 give us another representation of
angular momentum matrices.

13. We have AB = BA. Now let U be a unitary matrix that diagonalizes A. In our case we
have the additional condition that in

(fa, 0 0 0)

. 0 a, 0 0
UAU :Adiag:LO O a3 OJ
0 0 0 a

all the diagonal elements are different. (We wrote this out for a 4 X 4 matrix)
Consider now

U[A,BJU "= UAU 'UBU " —UBU ‘UAU "= 0

This reads as follows (for a 4 x 4 matrix)

{ai 0 0 0 \{bll b12 bl3 blA\ {bll b12 bl3 b14 \{ai 0 0 0 \
0 a, 0 0lb, b, by b,| Ib, b, b, blo a o 0
to 0 a 0|b, b, by b, tbﬂ by by By |0 0 a OJ
0 O 0 a4 b4l b42 b43 b44 b4l b42 b43 b44 0 O 0 a4

If we look at the (12) matrix elements of the two products, we get, for example
aibiz = axbyo

and since we require that the eigenvalues are all different, we find that by, = 0. This
argument extends to all off-diagonal elements in the products, so that the only matrix
elements in UBU™ are the diagonal elements b;.

14. If M and M* commute, so do the hermitian matrices (M + M*) and i(M — M").
Suppose we find the matrix U that diagonalizes (M + M™). Then that same matrix
will diagonalize i( M — M"), provided that the eigenvalues of M + M" are all



different. This then shows that the same matrix U diagonalizes both M and M*
separately.

(The problem is not really solved, till we learn how to deal with the situation when
the eigenvalues of A in problem 13 are not all different).



CHAPTER 10

tweresrosoe 77 1) -+3()
. WWe need to solve >l o) = 2y

: : : : . 1 (1
For the + eigenvalue we have u = -iv, s that the normalized eigenstate is y, = 75 O

The — eigenstate can be obtained by noting that it must be orthogonal to the + state, and
1 (1
this leads to = ( j .
2=

2, We note that the matrix has the form

0,C0sa + 0, sinacosf+ o sinasinf=cen
n= (SinaCos f,sina sin 5,cosx)

This implies that the eigenvalues must be + 1. We can now solve

(cos(x sinae‘iﬂ](uj {uj
sinee” —cosa/\V) T\v

For the + eigenvalue we have u cosa + v sinae™ = u. We may rewrite this in the form

La a L a
2vsin—= cos— e ¥ =2usin’=
2 2 2

From this we get

( cosg )

Z+ = ) a
e’ sin—

2

The — eigenstate can be obtained in a similar way, or we may use the requirement of
orthogonality, which directly leads to

( )

e sin%
—Ccos—

2



[04 : . a
cos— e"ﬁsm—\

The matrix U = _ 2a a2
e’sin— —cos—
2 2

has the property that

.[ cosa singe 1 0
u’| . . U=
sinee”  —cosa 0 -

as is easily checked.

The construction is quite simple.

(3/12 0 0 0 )
- 0 1/2 0 0
=% 0 0 -1/2 0

0 0 0 -3/

To construct Sy we use (S, ), = 76, nv (I -m + (1 +m) and get

(0 ¥3 0 0)

0 0 2 0
=N 0 0 43

0 0 0 O

We can easily construct S. = (S+)*. We can use these to construct

(0 ¥3 0 0)

1 ald3 0 2 0
Sx:E(S++S)=§|O 2 0 Jé
0 0 43 0

and



(0 -iW3 0 0 )

' i3 0 -2i 0

S —1(s —s)-t 3 : .
Y2 2l 0 2i 0 -iV3

0 0 W3 0

The eigenstates in the above representation are very simple:

(1) (0) (0) (0)

0 1 0 0
K32 = 0 KNz = 0 X = 1 v X s = 0
0 0 0 1

5. We first need the eigenstates of (3Sy + 4S,)/5. The eigenvalues will be + 7/2since the
operator is of the form Se n, where n is a unit vector (3/5,4/5,0).The equation to be
solved is

KB Aoy
256x SGyZi_—ZZi

In paricular we want the eigenstate for the —ve eigenvalue, that is, we want to solve

[ 3240

s o A

5

3—-4i
This is equivalent to (3-4i) v =-5u A normalized state is 7;—0( 5 J

The required probability is the square of
1 1 3—43 1 1 .
2 1 ( = 6-8i—-5)= 1-8i
@ Y\ s =T )= 250 8
This number is 65/250 = 13/50.

6. The normalized eigenspinor of Sy corresponding to the negative eigenvalue was found

1
in problem 1. It isvlf(_ij' The answer is thus the square of



1 1 1) 1 :
7%(4 7)75[4 ~Ti3 (4—Ti)
which is 65/130 = 1/2.

7. We make use of o,0, =lioc,=-0,0,and so on, as well as o =1and so on, to work
out

(oA, +0,A +0,A)(0,B +0,B +0,B)

= AB, +AB,+AB, +ic,(AB,-AB,)+ic, (AB,—AB,)+ic,(AB,—AB))
=AeB+iceAxB

8. We may use the material in Eg. (10-26,27)., so that at time T, we start with
- 1 [e—inj
W - 75 eia)T

with @=egB/4m,. This now serves as an initial state for a spin 1/2 particle placed in a
magnetic field pointing in the y direction. The equation for y is according to Eq. (10-23)

.
i%:a’(i olj"’(t)

Thus with y(t) = (z((:))j we get % = —a)b;% = wa . The solutions are in general
a(t)=a(T)cosaw(t—T)—b(T)sinw(t-T)
b(t)=b(T)cosaw(t—T)+ a(T)sinw(t—T)

—ial iwT

We know that a(T) = 675— b(T) = eVE-

So that

(27— 1 (ei”ﬂ cosawT —e'’ sianJ
ieli=r, cosawT +e “TsinwT

ioT
e

The amplitude that a measurement of Sy yields 7/2 is



1 @ 1) 1 [e‘i“” cosawT —e“" sin a)Tj
2 V2 &' cos T +e ' sin T

= (cos? T —isin’ oT)
e . 1
Thus the probability is P = cos’ @T +sin* @T = S+ cos’2aT)

A+B, BX—iByj

. (e B
9. If we set an arbitrary matrix (7/ 5] equalto A+ oceB= [Bx +iB, A-B,

we see that allowing A, By ... to be complex we can match all of the &,5,....

(b) If the matrix M = A+ o e Bis to be unitary, then we require that
(A+oceB)(A*+oeB*) =
|Af +AceB*+A*ceB +BeB*+iceBxB*=1
which can be satisfied if
|AF +|B [ +]B, [ +|B,[=1
AB,*+A*B, +i(B,B,*~B,*B,)=0

If the matrix M is to be hermitian, we must require that A and all the components of B
be real.

10. Here we make use of the fact that (cea)(cea)=aea=a’ in the expansion

e . i2 i° i
el*d =1 t+j(cea) +§(0° a)* +§(0° a)® +Z(0° )’ +..

ol Loen oL@
_1—2!a +4!(a) +..+icea(a— 3!+...)
sina

=cosa+ioceasina=cosa+icea
11. We begin with the relation

(h  n Y i
SZ:KEOT’_EGZ) :Z(O-lz+o-22+201.0-2)



from which we obtain o, e o, =25(S +1) — 3. This = -3 for a singlet and +1 for a

triplet state.

We now choose € to point in the z direction, so that the first term in Sy, is equal to

30120-22'

(a) for a singlet state the two spins are always in opposite directions so that the
first term is —6 and the second is +3. Thus

S, X 0

singlet =

(b) For a triplet the first term is +1 when S, =1 and S, = -1 and -1 when S, =0.
This means that S;, acting on a triplet state in the first case is 3-1= 2, and in
the second case it is —3-1=- 4. Thus

(512 - 2)(512 + 4)X 0

triplet =

12. The potential may be written in the form
V(r)=Vi(r) + V,(nS;, + V5(n[25(S +1) - 3]
For a singlet state S;, has expectation value zero, so that
V(r) = Vi(r) - 3Vs(r)
For the triplet state S;, has a value that depends on the z component of the total spin.
What may be relevant
for a potential energy is an average, assuming that the two particles have equal

probability of being in any one of the three S; states. In that case the average value of S; is
(2+2-4)/3=0

: : 1 .
13. (a) Itis clear that for the singlet state, ., = 75(;(9);((_2) ~ 797?), if one of the

electrons is in the “up” state, the other must be in the “down” state.

(b). Suppose that we denote the eigenstates of Sy by &, . These are, as worked out in

problem 1,
o35

The spinors for particle (1) may be expanded in terms of the &, thus:



-0-330-50)- 36
SCRTETRYE M

Similarly, for particle (2), we want to expand the spinors in terms of the 7, , the

eigenstates of Sy
7o = 1 @ :p® = 1 (1]j
' 32 CT 32 -

thus
2=l -H U F ) - Fo o)
-3 40

We now pick out, in the expansion of the singlet wave function the coefficient of &V7”
and take its absolute square.Some simple algebra shows that it is

1 11-

EH

9. The state is (cosa, 7 +sinae™ y*)(cos e, 7' +sina,e”z ') . We need to calculate
the scalar product of this with the three triplet wave functions of the two-electgron
system. It is easier to calculate the probability that the state is found in a singlet state,
and then subtract that from unity.

The calculation is simple

1 . i . i
( \/—(zf)z(_z) 297?) [(cosa Y +sinae™ ) (cos a, 2 +sin a,e” 42))

—i(cos sina,e”? —sinae” cosa,)
2 2 2 1 2

The absolute square of this is the singlet probability. It is
1 . . . .
P, = E(cos2 a,sin’ a, + €0s” a, Sin” a, + 2siNn @, C0S @ Sina, CoSar, COS(f3, — €0S f3,))

and
Pi=1-P;



14. We use J = L +S so that J° = L? + S? + 2L.S, from which we get
1
LeS=3PQ+)-LL+D-2]

since S = 1. Note that we have taken the division by 7’ into account. For J = L + 1 this
takes on the value L; for J = L, it takes on the value -1, and forJ =L -1 itis-L - 1.
We therefore find

J=L+1 V=V, +LV,+LYV,

J=L V=V-V,+V,

J=L-1 V=V,—(L+1V,+(L+12V,



CHAPTER 11

1. The first order contribution is

© _ L i + +
EY=Xn|x*|ny= ;L(‘,mej n[(A+A)A+A)|n)

To calculate the matrix element (n | A> + AA* + A"A+ (A")* |n) we note that

A"y =vn+1|n+1); (n|A=v¥n+1(n+1]| so that (1) the first and last terms give

zero, and the second and third terms yield (n + 1) + (n — 1)=2n. Thus the first order shift
IS
S
" \ma

The second order calculation is quite complicated. What is involved is the calculation of

z( h \ Z(”I(A+A) [mm[(A+A")*|n)

E(Z)
" o ha(n—m)

This is manageable but quite messy. The suggestion is to write

2

N N e 2
H_2m+2ma)x+/1x

This is just a simple harmonic oscillator with frequency

2
a)*:\/a)2+22u/m:a)+i—E f2+...
am  2o°m

Whose spectrum is

ce Dy nofn Dy 2 dy A
E, =ho (n+2)_ha)(n+2)+wm(n =)- 2(n+ )+

The extra factor of 1/2 that goes with each n is the zero-point energy. We are only
interested in the change in energy of a given state |n> and thus subtract the zero-point
energy to each order of 1. Note that the first order A calculation is correct.

2. The eigenfunction of the rotator are the spherical harmonics. The first order energy
shift for | = 1 states is given by



AE =(Lm|E cosg|Lm)= E[ “dg] sinaddcos oY, , [

For m = +1, this becomes

3)

™ sin® 9= %jllduu(l— u’)=0

27E I:sin od dcos

The integral for m = 0 is also zero. This result should have been anticipated. The
eigenstates of L? are also eigenstates of parity. The perturbation cosé is odd under the
reflection r > - r and therefore the expectation value of an odd operator will always be
zero. Since the perturbation represents the interaction with an electric field, our result
states that a symmetric rotator does not have a permanent electric dipole moment.

The second order shift is more complicated. What needs to be evaluated is

AE(Z):EZ z |<1,m|C059||_,M>|2
L,M(L#1) El_ EL

2

with E, = % L(L +1). The calculation is simplified by the fact thatonly L=0and L = 2

terms contribute. This can easily be seen from the table of spherical harmonics. For L =1
we saw that the matrix element vanishes. For the higher values we see that
cosdY, , Y, , and cosdY,, o« aY,, +bY,,. The orthogonality of the spherical harmonics

for different values of L takes care of the matter. Note that because of the ¢ integration,
form =1 only the L =2 ,M = £ 1 term contributes, while for the m = 0 term, there will
be contributions from L =0and L =2, M = 0. Some simple integrations lead to

2|E2 1 2IE 1
AE(Z) . AE(Z) _
L T )

3. To lowest order in V, the shift is given by

2
2] Yot gewsin? ™
AE_(JIJ LIO dxxsin L
2\/ (L\ I duusin? nu:—j duu(l-cos2nu) = 1V

The result that the energy shift is just the value of the perturbation at the mid-
point is perhaps not surprising, given that the square of the eigenfunctions do not,
on the average, favor one side of the potential over the other.



(E 2 0 0)
: E 0 0 . : : :
4. The matrix 0 0 2E consists of two boxes which can be diagonalized
0 0 o O
) ) E A)\(u u
separately. The upper left hand box involves solving ( P EJ (vj = ”(vj

The result is that the eigenvalues are = E £ A. The corresponding eigenstates are easily

1
worked out and are 715(+ J for the two cases.

olp bj . Here we find that the

eigenvalues are £=E +YE” + o’ . The corresponding eigenstates are

2E o)\(a a
For the lower left hand box we have to solve ( - j( J = é{

o
N[_E +JE?+ o2 sz respectively, with % =o’+(-E+ [e7 ¢ 0_2')2.

5. The change in potential energy is given by
__ % (g

b 87[6‘0R3K

=0  elsewhere

1 2
—rz\ —
3

Thus
. R
AE = [dryy (M (1) =] PPdiv,RE(r)

We may now calculate this for various states.

3
Z R 2 —22r/a[ 3¢’ (Lo 1,) e’ ]
=1 AE,=4|— o _— I R?_=
" 10 (aoj Jo redre gre e 3 ) G

With a change of variables to x = r/Za, and with p = ZR/a, this becomes

z¢’ 1
AE10:4( ° ]Ipxde[_i+X_3+_je_zx
4drs,a,/70 2p 2p° X

Since x << 1 we may approximate e > ~1—2x, which simplifies the integrals. What
results is




Ze? j(4 ) )

A similar calculation yields

1Ze2jp2 2(3 G 1J_X[Ze2j(12 \
AEZO‘z(Mga Jo xeaxa=x) “2p 200 %) T anea,)\20° T

0™0

and

1 ZezJpz { 3 X’ 1)_X [z&)(l )
AE21_24[47r50a0 Jo xanx 25 20 "% T amea,)\1120” T

6. We need to calculate (0| x"* |0). One way of proceeding is to use the expression

/ h +
X = me(A+A)

((h )
KZma))

Then

20 x* |0y= 4 O(A+AY)A+A)A+A)A+AY) |0

The matrix element is

O[(A+A") A+ A YA+ A)A+AY)[0) =
(O|A"(A+A")(A+A)A"|0) =
A|(A+A)A+AY) D=

fol+v22 oy +v212)]- 3

Thus the energy shift is AE = 3/1(L\2
9y ~ " 2me/

It is easy to see that the same result is obtained from

J._O; dX(ﬂX4)|:(%) e—ma»<2/2h:|



7. The first order perturbation shift is

2¢e 0 (. nmx)
AE = bJ.O dxsin b SN

2 (7 . . 2
= 710 dusinu(sin nu)

2¢( 1 )
= )

8. It follows from [p, x]=—i% that

~ih =(a| px - xp |a)=
=Y {alp|nXn|x|a)—(a|x|nXn|p|a)}

Now
dx im im
@|pIny=meal- n)=—(al Hx - xH|n) == (E, - E,Xa| x [n)
Consequently
im

(n|play=<alplny= —7(Ea— E Xn[x|a)
Thus

. 2im
-in =2 ==(E,—E.)alx|nXn|x|a

from which it follows that

2

I
LE-E)l@lxImf=gr

9. For the harmonic oscillator, with |a> = |0>, we have

[ oy 7
(n|x]0)= m(nlA |0)= 2ma)5”'l

This means that in the sum rule, the left hand side is



N
Nomae/) ™ 2m

as expected.

10. For the n = 3 Stark effect, we need to consider the following states:

1=2: m=21,0,-1,-2
I=1: m=1,0,-1
I=0:m =0

In calculating matrix element of z we have selection rules A | = 1 (parity forbids
A 1 =0) and, since we are dealing with z, also A m; = 0. Thus the possible matrix

elements that enter are
(211211 =2,-1|z|L,-1)= A

(2,0|2|L,0Y=B
(1,0[2]0,0)=C

The matrix to be diagonalized is

(0 A

O o|lo m o|lo o
o o0 o W|lo o
O oo O o|lo o©
> olo o o|lo o©

o o|lo o o>
O olo o oo
o »lo o olo

The columns and rows are labeled by (2,1),(1,1) (2,0) (1,0),(0,0),(2,-1), (1,-1).
The problem therefore separates into three different matrices. The eigenvalues of
the submatrices that couple the (2,1) and (1,1) states, as well as those that couple
the (2,-1) and (1,-1) states are

A=A

where

A= j dQY,, cos Hfll.f: r?drR,, (r)rR,,(r)



(0 B 0)
The mixing among the m; = 0 states involves the matrix LB 0 CJ
0 C O

Whose eigenvalues are 1 =0, +vB*+C? .. Here

B= j dQY,, cos 6’\(10_[: r’drR,, (r)rR,, (r)

C = [ Y, c0sO, [ r2drRy, (r)rRyy(r)

1
The eigenstates of the A submatrices are those of o, , that is 715(+ J . The eigenstates of

the central 3 x 3 matrix are
(C) ([ B )
L 0| L +VB% +C?
VB +C? B ’;72(32+CZ) - c

with the first one corresponding to the 4 = 0 eigenvalue.
11. For a one-dimensional operator (labeled by the x variable) we introduced the raising

and lowering operators A* and A. We were able to write the Hamiltonian in the
form

H, = ho(A"A +%)

We now do the same thing for the harmonic oscillator labeled by the y variable. The
raising and lowering operators will be denoted by B* and B, with

. 1
H,=ho(B'B +§)
The eigenstates of H, + H, are

_ (A+)n (B+)m
n! m!

| m,n) |0,0)

where the ground state has the property that A|0,0>=B|0.0>=0

The perturbation may be written in the form



H, = 2Axy = z—’; (A+A)B + B*)

(a) The first order shift of the ground state is

(0,0|H,10,0)=0
since every single of the operators A,...B" has zero expectation value in the ground state.
(b) Consider the two degenerate states |1,0> and |0,1>. The matrix elements of interest to
o <1,0/(A+A")(B + B")|1,0> = <0,1|(A+A")(B +B")[0,1>=0
<1,0/(A+A")(B + B")|0,1> = <0,1|(A+A")(B + B")[1,0> = <1,0|(A+A")(B +B")[1,0>=1

Thus in degenerate perturbation theory we must diagonalize the matrix
v o
h 0

Ah . .
where h = Pt The eigenvalues are =h , and the degenerate levels are split to

(c) The second order expression is

Mh\zz|<o,0|(A+A+)(B+ Bk P _

\mo/ & “ha(k + n)
_ An Z|<11|k,n> R
mo®*s (k+n)  2mo’

The exact solution to this problem may be found by working with the potential at a
classical level. The potential energy is

%ma)z(x2 +Y°) + Axy

Let us carry out a rotation in the x — y plane. The kinetic energy does not change since p
is unchanged under rotations. If we let

X =X'cosé+ y'sing
y =—X'sin@ + y'cosé



then the potential energy, after a little rearrangement, takes the form
1 2 H 2 1 2 H 12 N
(E Mao” — Asin26)x +(5 Mo* + Asin260)y" +24c0s26x'y

If we choose cos26= 0, so that sin28= 1, this reduces to two decoupled harmonic
oscillators. The energy is the sum of the two energies. Since

1 1
—mo?==mo’-1
2 2

Ema)j:%ma)zwl

the total energy for an arbitrary excited state is
1 1
Eyn =l (k+ E) +ha, (n+ E)

where

WA A
Mmoo 2m2o°
. nA
mo  2m®

ho, = ho(l-211mo®)'? = ho
heo, =hol+24 Ima’ ) = heo +

12. Thespectral line corresponds to the transition (n = 4,1 = 3) = (n = 3,1 = 2). We must
therefore examine what happens to these energy levels under the perturbation

e
leﬁLOB

. : N .. eB
We define the z axis by the direction of B , so that the perturbation is ;—m L,.

In the absence of the perturbation the initial state is (2l + 1) = 7-fold degenerate, with the
L, level unchanged, and the others moved up and down in intervals of eB/2m.

The final state is 5-fold degenerate, and the same splitting occurs,

with the same intervals. If transitions with zero or +1 change in L,/ 7,

the lines are as shown in the figure on the right.



What will be the effect of a constant electric field parallel to B?
The additional perturbation is therefore

H,=—eE,er=—eE,
and we are only interested in what this does to the energy level
structure. The perturbation acts as in the Stark effect. The effect
of Hj is to mix up levels that are degenerate, corresponding
to a given m; value with different values of |. For example,
the | =3, m; = 2 and the | = 2, m; = 2 degeneracy (for n = 4)will
be split. There will be a further breakdown of degeneracy.

13. The eigenstates of the unperturbed Hamiltonian are eigenstates of o,. They are

1 0
( j corresponding to E = E; and ( ] corresponding to E = - E,.

0 1

The first order shifts are given by

o ol 32

© 1)/1(a u)@ y)
u* g\ P
for the two energy levels.

The second order shift for the upper state involves summing over intermediate states that
differ from the initial state. Thus, for the upper state, the intermediate state is just the
lower one, and the energy denominator is Eq — (- Eo) = 2E,. Thus the second order shift is

2 of o 4o of s o)-Swt

For the lower state we get

Z20 it o ol G-t

The exact eigenvalues can be obtained from

E,+ta-¢ u 0
u* ~E,+B—-¢

det

This leads to



5:2a+’6iJ(EO—Z%B)Z+f|u|Z

2
_ 1 2 2
P CAY S Y ¥ 1
2 2 T2 R

(b) Consider now
E u
=2
v -E,
where we have dropped the « and g terms. The eigenvalues are easy to determine, and

they are
g= | EZ + Auv

a
] and they satisfy

The eigenstates are written as [b

R NI CEEEN
=+
(v g M) TN AW,
For the upper state we find that the un-normalized eigenstate is

verea-e)
EZ+Auv -E,

For the lower state it is

Er )
EZ+Auv +E,
The scalar product
~Z |uF +[(ES + Xuv) - E{]= Au(u*—~v) =0

which shows that the eigenstates are not orthogonal unless v = u*.



CHAPTER 12.

1. With a potential of the form
V(r)= % mae’r’

the perturbation reduces to

1 1dv() & ., .,
H, = Sel-—2=——(P-L?-S
1T om% Yt ar 4mc2( )
(hw)? ..
:—4mC2(j(j+1)—|(|+1)—S(S+1))

where | is the orbital angular momentum, s is the spin of the particle in the well (e.g. 1/2
for an electron or a nucleon) and j is the total angular momentum. The possible values of
jare I1+s, 1+s-11+s-2, ...|l-5|.

The unperturbed energy spectrum is given by E, |, = 7e(2n, + | +i23). Each of the

levels characterized by | is (2l + 1)-fold degenerate, but there is an additional degeneracy,
not unlike that appearing in hydrogen. For example n,=2, 1 =0.n,=1,1=2,n,=0,1=4
all have the same energy.

A picture of the levels and their spin-orbit splitting is given below.

2. The effects that enter into the energy levels corresponding to n = 2, are (1) the basic
Coulomb interaction, (ii) relativistic and spin-orbit effects, and (iii) the hyperfine
structure which we are instructed to ignore. Thus, in the absence of a magnetic field,
the levels under the influence of the Coulomb potential consist of 2n? = 8 degenerate
levels. Two of the levels are associated with | = 0 (spin up and spin down) and six



levels with | = 0, corresponding to m; = 1,0,-1, spin up and spin down. The latter can
be rearranged into states characterized by J, L? and J,. There are two levels
characterized by j =1 -1/2 = 1/2 and four levels with j = | + 1/2 = 3/2. These energies
are split by relativistic effects and spin-orbit coupling, as given in Eq. (12-16). We
ignore reduced mass effects (other than in the original Coulomb energies). We
therefore have

—5 M (o j=1/2
12 1Y)
Zmeca 52/ j=3/2

(b) The Zeeman splittings for a given j are

enB _(2) .
AEB—ZmemJ\s) j—1/2

enB (4 .
2me mjk3) j—3/2

. 1 - . enB _
Numerically ——m.c’a* ~1.132x10°eV , while for B=2.5T =14.47x107eV,

128 2m,
so under these circumstances the magnetic effects are a factor of 13 larger than the
relativistic effects. Under these circumstances one could neglect these and use Eq. (12-
26).

3. The unperturbed Hamiltonian is given by Eq. (12-34) and the magnetic field interacts
both with the spin of the electron and the spin of the proton. This leads to

Sel .S L
2 A TP

H=A

Here

M) R
efiB
a=2 om,
enB
b=-0,

2M



Let us now introduce the total spin F =S + 1. It follows that

Sel 1(, 3.2 3.,
i =g\ R(F D= =)
1
=2 for F=1
:——3 for F=0
4

We next need to calculate the matrix elements of aS, +bl, for eigenstates of F> and F, .
These will be exactly like the spin triplet and spin singlet eigenstates. These are

Q[aS, +bl, [LD =(.&. a8, +bl, | 2.6) =3 (@+b)

1 2
1,0/ as, +bl, |10) =(75) (L& + 1188, 4B, | 1.8 + £,6)=0
(-11aS, +bl, [1-D)=(7 & |aS, +bI, | 7 &)=~ (a+b)

And for the singlet state (F = 0)

1)’ 1
<1'0|asz +b|z |O10> :(ﬁj <l+§— + Z_§+ | aSz +b|z |Z+§__ Z+§—> :E(a_b)

1 2
<O!0| a'Sz +b|z |O!0> :[ﬁj <Z+§, _ng+ |aSZ +b|z |Z+§, - Z+§7>: 0

Thus the magnetic field introduces mixing between the |1,0> state and the |0.0> state.
We must therefore diagonalize the submatrix

( Al4 (a—b)/2) [—A/4 Oj ( Al2 (a—b)lzj
(a=b)/2 -3a/4)7\U 0 -A/4) \(a=b)/2  -A/2

The second submatrix commutes with the first one. Its eigenvalues are easily determined
to be +y AZ/4 + (a—b)? /4 so that the overall eigenvalues are

~Al4+yA? 14+ (a-b)? 14

Thus the spectrum consists of the following states:



F=1F,=1 E=A/4+(@+h)/2

F=1,F,=-1 E=Al4-(a+b)/2

F=10:F,=0 E=—A/4=(A’/4+(a-b)/4

We can now put in numbers.
For B=10"T, the values, in units of 10° eV are 1.451, 1.439, 0(10™°), -2.89
For B = 1T, the values in units of 10° eV are 57.21,-54.32, 54.29 and 7 x 10°®.

4. According to Eq. (12-17) the energies of hydrogen-like states, including relativistic +
spin-orbit contributions is given by

1 mc’@Ze)? 1 1, 41( 1 3]
=T em, M) e 2™ o) B\ 7172 " m

The wavelength in a transition between two states is given by

where AE is the change in energy in the transition. We now consider the transitions
n=3,j=3/2 >n=1,j=1/2 andn=3,j=1/2> n=1,j=1/2.. The corresponding
energy differences (neglecting the reduced mass effect) is

L czarach s dmezar oL

(3,312>1,1/2) AE =2 me(Za)y (1-g) +5m.c’(Za) 7 (L-—
Lo czaraed imczaita 3

(3,1/2>1,1/2) 5 m.C (Za)*(1 9)+2mec (Za) 4(1 57

We can write these in the form

(3,3/12>1,1/2) AE, (1 +%(Za)2)
(3,1/2>1,1/2) AE, (1 +1—18 (Za)?)
where

1 8
AE, =5 M 2(Zoz)z—9

The corresponding wavelengths are



(3,312>1,1/2) /10(1—%(205)2): 588.995x10°m

(3,1/2>1,1/2) /10(1—1—18(205)2) =589.592 x10°m

We may use the two equations to calculate Ao and Z. Dividing one equation by the other
we get, after a little arithmetic Z = 11.5, which fits with the Z = 11 for Sodium.

(Note that if we take for A, the average of the two wavelengths, then , using

Ay = 27C | AE, =971 1 2mc(Zax)?, we get a seemingly unreasonably small value of Z =
0.41 This is not surprising. The ionization potential for sodium is 5.1 eV instead of
Z%(13.6 eV), for reasons that will be discussed in Chapter 14)

2
o : o _ 1 ?
4. The relativistic correction to the kinetic energy term is _2mcz(%j . The energy

shift in the ground state is therefore

2
1 p_zj 1 1 550
AE——ZmCZ<0|(2m |0)= 5= (0|(H -5 mw’r’)’|0)

To calculate <0 | r*| 0> and < 0| r*| 0 > we need the ground state wave function. We
know that for the one-dimensional oscillator it is

1/4
UO (X) — (%\ e—maXZ/Zh

so that for the three dimensional oscillator it is

( ma)\\ 3 e—m{ur2/2h

Uy (1) = U (XU (Y)U(2) = | —~)
It follows that

0]r*]0y = jw4m2dr(w\ 3lzrze"““”z’h =
~Jo \ 1) B

@ 3/2 h 5/2 w . _y2
AT (Gs) Lo

3n

- 2mo



We can also calculate

/
(M)3 ’ r_4e—ma;r2/h _
7h

@ 3/2 A 712 " 6y
-l (o) [ o

_15( Y
4 Kma))

©|r*|0y= [ " 4zr’dr

We made use of I: dzz"e*=T(n+1)=nI(n) and F(%) =r

Thus

1 (3. Y (3, ), 30\ 1 , (15 #)\")
AE == e (27~ me D ™ T he

_ 15 oy
- 32 mc?

6. (a) WithJ=1and S =1, the possible values of the orbital angular momentum, such
that j=L+S,L+S-1...|L—-S|] canonly be L =0,1,2. Thus the possible states are
’s,°P,°D; . The parity of the deuteron is (-1)" assuming that the intrinsic parities of
the proton and neutron are taken to be +1. Thus the S and D states have positive
parity and the P state has opposite parity. Given parity conservation, the only possible
admixture can be the °D; state.

(b)The interaction with a magnetic field consists of three contributions: the
interaction of the spins of the proton and neutron with the magnetic field, and the L.B
term, if L is not zero. We write

H=-M jeB-M eB-M B

e S
M, =225 (5.5792)— (—P—j
2M 2M\ 7
_8 o _ & (S,
where M, _ZMS”_( 3'8206)2|\/|\ Py
M, =——L
2M

red

We take the neutron and proton masses equal (= M) and the reduced mass of the two-
particle system for equal masses is M/2. For the °S; stgate, the last term does not
contribute.



If we choose B to define the z axis, then the energy shift is

eBn S, S
_m<3sl | gp[—;l] +0, (7) |381>

We write
S (S)g+gS+S g.-9.S.,-S
_pz ~nz | _ ¥p n “~pz nz p n “pz nz
gp( hj+g” n)~ T 2 n 2 7

It is easy to check that the last term has zero matrix elements in the triplet states, so

I S, : :
that we are left with E(gp + gn)% , Where S; is the z-component of the total spin..
Hence

3Bh 9, + 0,
———m

<381| H1|351>=_2M 2 s

where mg is the magnetic quantum number (ms = 1,0,-1) for the total spin. We may
therefore write the magnetic moment of the deuteron as

__ &% *0h e
fog = e 5= ~(0.8799 7S

The experimental measurements correspond to g4 = 0.8574 which suggests a small
admixture of the °D; to the deuteron wave function.



CHAPTER 13

__m _ —4
1. (a) electron-proton system m, = Trm, M =(1-5.45x107")m,
m -4
| - =—-t—=-(1-2722x1
(b) electron-deuteron system m, Tem. /M, ( x107)m,

. . m
(c) For two identical particles of mass m, we have m, = >

2. One way to see that Py, is hermitian, is to note that the eigenvalues £1 are both real.
Another way is to consider

Z J- XmdXZWi*j(le X,) Plz‘//ij (X %) =
ij

Z J‘dxldle//;}(xr Xz)l//ji(XZ'Xl) =
ij

Z j dyldyzl//?i(yZ’yl)l//ij(ylvyz) = ZI dy,dy, (Plzl//ij(yllyz)) Wy (V1,Y2)
ji ji

3. If the two electrons are in the same spin state, then the spatial wave function must be
antisymmetric. One of the electrons can be in the ground state, corresponding to n =
1, but the other must be in the next lowest energy state, corresponding to n = 2. The
wave function will be

Vi (%) = 75 (6000~ 1,00)(x)

2 2

2ma’
Only two electrons can go into a particular level, so that with N electrons, the lowest
N/2 levels must be filled. The energy thus is

2

4. The energy for the n-th level is E, = n’=en

N2 1(NY  eN’
Eo =D 260" =26= —) =
ot Z;‘ 3(2) T2

If N is odd, then the above is uncertain by a factor of éN? which differs from the
above by (12/N )e, a small number if N is very large.

5. The problem is one of two electrons interacting with each other. The form of the
interaction is a square well potential. The reduction of the two-body problem to a
one-particle system is straightforward. With the notation



X=X — Xy X = Xl; X2p- p, + p,, the wave function has the form
w(X, X,) =€ *u(x), where u(x) is a solution of
7 d*u(x)
A +V (X)u(x)= Eu(x)

Note that we have taken into account the fact that the reduced mass is m/2. The spatial
interchange of the two electrons corresponds to the exchange x = -x .Let us denote the
lowest bound state wave function by ug(x) and the next lowest one by u;(x). We know
that the lowest state has even parity, that means, it is even under the above interchange,
while the next lowest state is odd under the interchange. Hence, for the two electrons in a
spin singlet state, the spatial symmetry must be even, and therefor the state is up(x), while
for the spin triplet states, the spatial wave function is odd, that is, u;(x).

6. With P=p, + p,; p=%(pl—p2); X=%(x1+x2); X = X, — X,, the Hamiltonian

becomes

P> 1 2y 2 p2 1 5,
H=—+=-Mo X" +—+=
o T M@ X g e

with M = 2m the total mass of the system, and yu = m/2 the reduced mass. The energy

spectrum is the sum of the energies of the oscillator describing the motion of the center of
mass, and that describing the relative motion. Both are characterized by the same angular

frequency @ so that the energy is
1 1
E =7%wo(N +§) +ho(n +§)= ho(N +n+1)=ho(v+1)

The degeneracy is given by the number of ways the integer vcan be written as the sum of
two non-negative integers. Thus, for a given v we can have

(N,n) = (v,0),(v-12),(v-22),...(Lv-1).(O,v)
so that the degeneracy is v+ 1.

Note that if we treat the system as two independent harmonic oscillators characterized by
the same frequency, then the energy takes the form

E=rho(n, +%) +hao(n, +%)= ho(n, +n,+1) = ho(v+1)

which is the same result, as expected.



7. When the electrons are in the same spin state, the spatial two-electron wave function
must be antisymmetric under the interchange of the electrons. Since the two electrons
do not interact, the wave function will be a product of the form

715<un<xl)uk (%)~ U, (XU (%))

2_2

2m7;2 (n® + k®). The lowest state corresponds to n = 1,

k = 2, with n® + k* = 5 . The first excited state would normally be the (2,2) state, but this
is not antisymmetric, so that we must choose (1,3) for the quantum numbers.

withenergy E=E, +E, =

8. The antisymmetric wave function is of the form

Ni(e—,uz(xl—a)ZIZe—,uz(x2+a)2/2_e—yz(x1+a)2/2e—,u2(xz—a)ZIZ)
2

Y7,

- N ize—ﬂzaze—ﬂz(xf+x§)/2@—y2(xZ—xl)a _ e—#z(xl—xz)a)
7

Let us introduce the center of mass variable X and the separation x by

M:X+§;@:X—§

The wave function then becomes

—,uza2 —,uzX2 —,uzx2/4

w =2N %e e e sinh z/*ax

To normalize, we require
[Tax|” x|y =1

Some algebra leads to the result that

1 _ e—2,uza2

The second factor is present because of the overlap. If we want this to be within 1 part in
a 1000 away from 1, then we require that e 2“)" ~1/500, i.e. pa = 1.76, or a = 0.353
4 ,d* [mc® mc?
Ri=—(Za)"= .
MR, =~ @ ZY2AE 1




9. Since
—(ﬂa)2

v=2 Ql g 2wy

the probability density for x is obtained by integrating the square of v over all X. This is
a simple Gaussian integral, and it leads to

e~ (% o= 4 ginh | 2ax

26_2(#3)2 J; 1 orn o2, 2
P(x)dx = o \2 ﬂe sinh” (x ax)dx
It is obvious that
=] dxxe™" =0

since the integrand os an odd function of X.

—y2/2

10. If we denote px by y, then the relevant quantities in the plot are e "*sinh*2y and

e 2sinh?(y /12).

11. Suppose that the particles are bosons. Spin is irrelevant, and the wave function for the
two particles is symmetric. The changes are minimal. The wave function is

w =2N %e“‘zf"ze‘”zxZe“‘zxz/4 cosh z/xa
with
,u_ 1 1
a TQ 14+e22
and

26—2/.1232 ~ ZXZ
P(x) =W%e #X2 cosh? (u*ax)

-y 12

The relevant form is now P(y) =e™” ? cosh® xy which peaks at y = 0 and has extrema at



—ycoshxgy + 2xsinhxy =0, that is, when

tanhxy =y /2«
which only happens if 2«* > 1. Presumably, when the two centers are close together, then
the peak occurs in between; if they are far apart, there is a slight rise in the middle, but

most of the time the particles are around their centers at + a.

12. The calculation is almost unchanged. The energy is given by

hnc
E =pc =T1/nf +n3+n]
so that in Eq. (13-58)

—ynZ+ni+n?=(E. /hcr)?L?

Thus
_ 7l Eg L)
N 7thC
and
1/3
Er —MC(B—)

13. The number of triplets of positive integers {n1,n,,ns} such that

2mE
n/+n;+ni=R*= o L2

is equal to the numbers of points that lie on an octant of a sphere of radius R, within a

thickness of An = 1. We therefore need %472‘R2dR. To translate this into E we use

2RdR = (2mL? / ©*z%)dE . Hence the degeneracy of states is

N(E)dE = 2x%47zR(RdR) Lsm“zm\/_dE

To get the electron density we had to multiply by 2 to take into account that there are two
electrons per state.

14. Since the photons are massless, and there are two photon states per energy state, this
problem is identical to problem 12. We thus get



E 2
n12+n22+n32:R2:(%) L2

or R=EL /Aanc. Hence

1 ., E°
N(E)dE = =4R*dE = *———dE
( ) 8 h3C37Z'2

15. The eigenfunctions for a particle in a box of sides L;,L,, L3 are of the form of a
product

8 . nax _..n . N7z
u(x,y,z) = sin2 sin 2 gjn

LLL Lo, L

and the energy for a massless partticle, for which E = pc is

2 2 2 2 2 2
n n n n +n n
E = icr —1+—2+—3=hcﬁ/ L2132
ERANERANTE 2 D

Note that a << L . thus the low-lying states will have n; = n; = 1, with n3 ranging from 1
upwards. At some point the two levels n; = 2, n=1 and n;=1 and n, = 2 will provide a
new “platform” upon which n3 = 1,2,3,... are stacked. With a =1 nm and L = 10° nm, for
Ny = n, = 1 the n3 values can go up to 10° before the new platform starts.

16. For nonrelativistic particles we have

2 2 2 2
_ h_[u N &]
2m\  &? L2

17. We have

Wl (3n)2/3

Be=om

where M is the nucleon mass, taken to be the same for protons and for neutrons, and

. . . . 4
where n is the number density. Since there are Z protons in a volume ?ﬂ r’ A, the number
densities for protons and neutrons are

3 3
Y

3 A-Z

"TAmd A

>[N

n n



Putting in numbers, we get

2/3 ( 2/3
Ep, = GSG) MeV; E, = 65K1—Z) MeV

For A =208, Z = 82 these numbers become E. =35MeV; E =47MeV.



CHAPTER 14

1. The spin-part of the wave function is the triplet

_ o, 2)
m, = 1 XX+

1
m=0 T 22+ 202

m=-1 7022

This implies that the spatial part of the wave function must be antisymetric under the
interchange of the coordinates of the two particles. For the lowest energy state, one of the
electrons will be in an n = 1, / = 0 state. The other willbe inan»n =2, /=1, or / = 0 state.
The possible states are

1

3(“100 (r)uy,, () =ty (H)uy,,, (rl)) m=10,-1
1

75 (”100 (1)t () = 149 (1) 1y (rl))

Thus the total number of states with energy £, + Ejis 3 x4 =12

2. For the triplet state, the first order perturbation energy shifts are given by

AL, _[_[ dnd’r, | 7= \/— (L‘loo(r Yy, (1) =ty (Fy)ity,, (T, ))|

4 go|r—r2|

AE,y = .[.[d rd h ’T(uloo(r Ytt00 (1) = 100 (1) gy (1 ))l 47, |r -, |

The / =1 energy shift uses tw-electron wave functions that have an orbital angular
momentum 1. There is no preferred direction in the problem, so that there cannot be any
dependence on the eigenvalue of L.. Thus all three m values have the same energy. The /
= 0 energy shift uses different wave functions, and thus the degeneracy will be split.
Instead of a 12-fold degeneracy we will have a splitting into 9 + 3 states.

The simplification of the energy shift integrals reduces to the simplification of the
integrals in the second part of Eq. (14-29). The working out of this is messy, and we only
work out the / =1 part.

The integrals ” d’rd’r, —> J:O rldr; J:O rzzerI dQl.[ dQ), and the angular parts only come

through the 1,10 wave function and through the 1/7;, term. We use Eqgs. (14-26) — (14-29)
to get, for the direct integral



Io ’ﬁzdITIO rdnR (1) Ry, ()’
0

IdQ IdQ LJ: cosHJ ZP (cosb,)— rL“

where @), is the angle between I; and r;. We make use of an addition theorem which
reads

P (cosb,)=P, (c0s6’ )P (cost9 )

22 P’" (cosé)P/"(cosb,)cos mp,— A

L+1

Since the sum is over m = 1,2,3,...the integration over ¢, eliminates the sum, and for all
practical purposes we have

L

L
Fe r
2 Pi(c0s ) =7 = D Py (cos )P, (cos0, )
L > L >

The integration over d€), yields 470, and in our integral we are left with
Jsz(cos 0,)’ = 47 /3. The net effect is to replace the sum by 1/7 to be inserted into

the radial integral.
(b) For the exchange integral has the following changes have to be made: In the radial
integral,

R10(’T)2R21(’3)2 = Ry ()R () Ry ()R, (1)

In the angular integral

3
4—4—(cos<9) - (an)

cosé, cosb,
In the azimuthal integration again the m # 0 terms disappear, and in the rest there is a
product of two integrals of the form

_[ QJ:COSHP (cosO) = J7 o,

r<

The net effect is that the sum is replaced by 32 inserted into the radial integral.
I

>

For the /= 0 case the same procedure will work, leading to



2
e » o 1
I ’ﬁzd’f Io rzzdrz? [Rlo(’T)Rzo(’"z )IRIO(Fl)RZO(FZ) - Rlo(rz)Rzo(’T)]
0 >

0

The radial integrals are actually quite simple, but there are many terms and the
calculation is tedious, without teaching us anything about physics.

To estimate which of the(/ = 0,/ = 0) or the (1= 0, | = 1) antisymmetric
combinations has a lower energy we approach the problem physically. In the two-
electron wave function, one of the electrons is in the n = 1, [ = 0 state. The other electron
is in an n = 2 state. Because of this, the wave function is pushed out somewhat. There is
nevertheless some probability that the electron can get close to the nucleus. This
probability is larger for the / = 0 state than for the / = 1 state. We thus expect that the state
in which both electrons have zero orbital angular momentum is the lower-lying state.

3. In the ground state of ortho-helium, both electroNs have zero orbital angular
momentum. Thus the only contributions to the magnetic moment come from the
electron spin. An electron interacts with the magnetic field according to

ge g€
——3 eB - S,eB=— SeB
om ° om 2" om

e e e

h
The value of g is 2, and thus coefficient of B takes on the values — 2e m, , where
m

e

m; = 1,0,-1.
4. We assume that y is properly normalized, and is of the form
lw)=lyo+elx)
The normalization condition implies that
Wly)=1=Cw, ly)+e*(x v+ v, | ) +e™(x [ 20)
so that
eyl + &y, [ ) +ee™ (x| x)=0
Now

(W Hy)=y,+ex|H|y,+&x)
=E,+e*E x|y +eEw, | )+ e (x 1H | 2

=E+|el (x|H-Ey| )



where use has been made of the normalization condition.Thus the expectation value of H
differs from the exact value by terms of order |&.

5. We need to calculate

9 o nw(d 2 d 1
j47z7fdre == +- +—mo’r’ e
0 2m \ dr r dr 2

o0
j 4ridre™
0

E(a)=

With a little algebra, and using J.: dyy"e™ = n!, we end up with

2 2 2
ra 3mw

E(a)= 5 2

2a

This takes its minimum value when dE(«)/ da =0. This is easily worked out, and leads
to o’ = \@ma) /. When this is substituted into E(«) we get

:\/gha)

3
The true ground state energy is bound to lie below this value. The true value is 5 ho so

that our result is pretty good.

4. The Schrodinger equation for a bound state in an attractive potential, with /=0 reads

W(d 2d
—Zm(; +-7)W(r) IV If( )w(r)——EBw(r)

With the notation x = r/ry , uo(x) = x Yx), A=2m|V,|r, /1% o’ = 2mE, 1 /1 this

becomes
d’uy(x)
dx?

— Uy (x) + A (x)uy(x)= 0

Consider, now an arbitrary function w(x) which satisfies w(0)= 0 (like u((0)) , and define
I (( dw(x)\

de a’w (x)}
J, dxfow’ )

wl=



We are asked to prove that if 7=14+ o4 and w (x) = up(x) + du(x) , then as du(x) =2 0,

oA =2 0. We work to first order in du(x) only. Then the right hand side of the above
equation, written in abbreviated form becomes

j- (u0'2 +a u0)+ 2_[ (uo'ﬁu' +a u0§u)
jf(uo + 2u05u)

I(u0'2+a uo) j(%'ﬁu' +a uoﬁu)j(uo'z +a’ uo
[ fu: [ e [ fi

In the above, the first term is just (s [u], and it is easy to show that this is just 4. The
same form appears in the second term. For the first factor in the second term we use

Idx(uo'&t')z .[ dxdii(uo'ﬁu)—j dxu," ou

The first term on the right vanishes because the eigenfunction vanishes at infinity and
because ou(0) = 0. Thus the second term in the equation for 77[w] becomes

J-fuo Ié’u uo”+a U, — ﬂfuo]

Thus n—> A as ou = 0.
5. We want to minimize (y | H |y) = Za:H ;@ subject to the condition that

i,j

(W ly)= Zafai =1. The method of Lagrange multipliers instructs us to minimize
F(a;,a,)= ZaiHijaj - /IZ aa,
ij i

The condition is that OF /da, =0 . The condition implies that
ZH a;=Aq,
Similarly 0F /0a, =0 1mphes that

% *
ZaiHl.j = /"taj
i

Thus the minimization condition yields solutions of an eigenvalue equation for H.



6. Consider the expectation value of H evaluated with the normalized trial wave
function

y(x)= (7%) me—ﬁlexz

Then an evaluation of the expectation value of H yields, after some algebra,
2 2

F@= | der oL v ot

B~ n’ 2 42y -p%° B [~ -t
=7;j_mdx(ﬂ(ﬂ —BixHe”’ j +7;_[_wde(x)e d
hZﬂZ

2m

+ Vﬂ; _[: dxV(x)e” e

The question is: can we find a value of £ such that this is negative. If so, then the true
value of the ground state energy will necessarily be more negative. We are given the fact
that the potential is attractive, that is, V(x) is never positive. We write V(x) = - |V(x)| and
ask whether we can find a value of £ such that

hZﬂZ

2m

%Jm dx |V (x) \e7ﬁ2x2 >
Jp

For any given |V(x)| we can always find a square “barrier” that is contained in the positive
form of | V(x)|. If the height of that barrier is ¥} and it extends from —a to +a , for
example, then the left side of the above equation is always larger than

p=J v e

Our question becomes: Can we find a £ such that

It is clear that for small 8 such that £ a® << 1, the left hand side is approximated by

4mV,
2a7ﬂ— ’;:2 ¢ This is linear in A so that we can always find a 4 small enough so that the
V4

left hand side is larger than the right hand side.

7. The data indicates a resonance corresponding to a wavelength of 20.61 nm. This
corresponds to an energy of



< _ 2m(1.054x 107 J5)(3x10°m /)
A (20.61x107°m)(1.602x107°J /eV)

= 60.17eV

above the ground state. The ground state has energy — 78.98 eV, while the ground state of
He" has a binding energy of a hydrogenlike atom with Z = 2, that is, 54.42 eV. This
means that the ionization energy of He is (78.98-54.42)eV = 24.55 eV above the ground
state. Thus when the (2s)(2p) state decays into He" and an electron, the electron has an
energy of (60.17 —24.55)eV = 35.62 eV. This translates into
v=v2E/m=354x10"m/s.

The first excited state of the He " ion lies 54.42(1-1/4)=40.82 eV above the ground state of
He", and this is above the (2s)(2p) state.

8. To calculate the minimum of

Sy, ) H y(a,a,,...))
B ) = o) [ (@)

we set OF /0a; =0, i=1,2,3.... This implies that

2y v v %j
<aa,. |H|w>+<t//|H|aai> W'HW{(aa[ |W>+<l//|6ai>

v |y - ()

This is equivalent to

0 0
EEH )+ | H 1=
oa. oa.

1 1

0 0
E(al,az,.o[%—(‘j: )+ \a—Z>]

Let us now assume that H depends on some parameter A.. To calculate the minimum we
must choose our parameters ¢, to depend on 4;. We may rewrite the starting equation by
emphasizing the dependence of everything on A, as follows

EAXy (D) ()= (w(D) |H [y(1))

0 Ooa, 0
Let diffi tiate with tto A ting that — = ) —+—
et us now differentiate with respect to 4, noting that = 52 oa,

We get



dE ( ) aw(ﬂ)]

l

0
<V/(/1)IV/(/1)>+E(/1)Z ( V/Iw(ﬂ» +(y(4)]

o

ow(A
—<w(z>|—|w>> > e )]

i

( IHIV/(/1)>+<1//(1) |H |——
Since we have shown that
< |H|1,//>+<:,u|H|—>_
oV oy
E(al’az"')@aai ly)+y | 80(i>]

we obtain the result that

L ) ) = (w21 55wy

With normalized trial wave functions we end up with

dE(A
L a0 157 (..

A comment: The Pauli theorem in Supplement 8-A has the same form, but it deals with
exact eigenvalues and exact wave functions. Here we find that the same form applies to
approximate values of the eigenvalue and eigenfunctions, provided that these are chosen
to depend on parameters {a} which minimize the expectation value of the Hamiltonian
(which does not depend on these parameters).

9. With the trial wave function

v=(£) e

we can calculate



2 2
E(B)= %I_wdxe‘ﬁzxz/z [_Zh_m% + Zx“j e P

*® B2 hz 2 4 2 4
=7ﬂ;hdxeﬂx (E(ﬂ ~f'x )+/1XJ

_Bp L34
C 2m 48
o . . ., (6ma)" .
We minimize this by setting 0E /0 =0, which leads to g = s . When this is

inserted into the expression for E, we get

(hz 2/3 [61/3 31 [hz 2/3
N A vz 2~ |_ A 1/3
E, = 2m] "5 +462,3]—1.083 2m] )

This is quite close to the exact value, for which the coefficient is 1.060

10. With the Hamiltonian

2
P
2m

4

H= + Ax

we first choose (1/2m) as the parameter in the Feynman-Hellmann theorem. This leads to

0] p*10) = a‘ZE /% =0.890(%* mA)"

If we choose A as the parameter, then

2/3
4 _aEmin _ ( hz j
(0]x"[0) =—2 =0.353 —

11. We start from

.
ZaiHl.jaj

Ay T
T vlw) Daa

We now choose for the trial vector one in which all the entries are zero, except that at the
k-th position there is 1, so that a = ¢,,. This leads to
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E,<H,  (kisnot summed over)

We may choose k= 1,2,3,...Thus the lowest eigenvalue is always smaller than the the
smallest of the diagonal elements.

12. With the system’s center of mass at rest, the two-body problem reduces to a one-body
problem, whose Hamiltonian is

2

p 1 2.2
H=—+—
2lu+2,ua)r

where u is the reduced mass, whose value is m/2.

(a) The two particles are in an / = 0 state which means that the ground state wave
function only depends on r, which is symmetric under the interchange of the two particles
(Recall that »=|r, —r, |). Thus the electrons must be in a spin-singlet state, and the
ground state wave function is

l//(r) = uO (r)Xsinglet

where

@ 3/4
2
—pore/2h

(1) = (), (V) (2) = 5~

(We use uy(x) from Eq. (6-55)).

(b) To proceed with this we actually have to know something about the solutions of the
simple harmonic oscillator in three dimensions. The solution of this was required by
Problem 13 in Chapter 8. We recall that the solutions are very similar to the hydrogen
atom problem. There are two quantum numbers, 7, and /. Here / = 0, so that the first
excited singlet state must correspond to 7, = 1. In the spin triplet state, the spin-wave
function is symmetric, so that the spatial wave function must be antisymmetric. This
is not possible with /= 0!

To actually obtain the wave function for the first excited singlet state, we look at the
equation for H(p), with H(p) of the form a + bp”. Since

d°H 1
+2(=
dp’ (p

We get H (p)= 1-2p°/3 and the solution is

dH
—p)— +4H =0
p)dp+

2 2
w(r)=N(-3pe "
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where p= K,u?) r . The normalization constant is obtained from the requirement

that
N I ﬂa) 2)2 —,ua)r /h :1

so that

(c) The energy shift to lowest order is

o 2 _
AE = J’ f (’”)}N (1-2£2 ,U(U 2)26 uar’ ih — CN?
13. The energy is given by
Ly J(J +1)
E== R-R,) +———>
2 M, ) 2M, R*

If we treat the vibrational potential classically, then the lowest state of energy is
characterized by R = Ry. The vibrational motion changes the separation of the nuclei in
the molecule. The new equilibrium point is given by R; , which is determined by the
solution of

(OF) 2 J(J + )i
KaR)R] _O_Mreda) (RI_RO)_ MredR13

Let Ry =Ry + A. Then to first order in A,

_JUJ )R
- M?,0°R;

If we now insert the new value of R into the energy equation, we find that only the
rotational energy is changed (since the vibrational part is proportional to A%). The
rotational energy is now

JJ + DK
"~ 2M_RX1+2A/R,)
_JJ+Dn’ it

red red

11



12

The sign of the second term is negative. The sign is dictated by the fact that the rotation
stretches the molecule and effectively increases its moment of inertia.

14. In the transition J =1 = J= 0 we have

h’ 27he

Af =——— 2— =
2Mde2( 0==7

so that

, A1 md 1 (1 1)
R = = —_ 44— =
2me M, 27c M, \12 16/
= (1.127 x 107 m)’

The internuclear separation is therefore 0.113 nm, and the momentu of inertia is
M, R =145x10"kgm’

15. (a) The two nuclei are identical. Since the two-electron state is a spatially symmetric
spin 0 state, we can ignore the electrons in discussing the lowest energy states of the
molecule. In the ground state, the two protons will be in the symmetric L = 0 state, so
that they must be in a spin-antisymmetric S = 0 state.

For the spin-symmetric S = 1 state, the spatial wave function must be antisymmetric,
so that the lowest energy state will have L = 1.

(b) The lowest energy state that lies above the ground state of L = 0, and is also a
spin S = 0 state must have L = 2. Thus the change in energy in the transition is

2 2
2
_ Mth (2(2+1)_0): 64 7he
P

AE =
MR~ 4

N

We have used the fact that the reduced mass of the two-proton system is M,/2.
For the § = 1 system, the state above the lowest L = 1 state is the L = 3 state, and here

H 10n*  2rhe
= BBR+)-11+1))=
M R’

AE

MR~ 2

t

The singlet and triplet wavelengths are easily calculated once we know R. Note that
these are not exactly the same, but can be looked up.
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CHAPTER 15

1. With the perturbing potential given, we get

C(ls—2p) == °<¢210|z|¢mo>I dte ‘e

where @ = (Ez1 — E10). The integral yields 1/(y — iw) so that the absolute square of
C(1s>2p)is

|<¢210 |Z |¢100>|
(0 + 7*)

Pls—>2p)=e E

15

3 a. to complete the calculation.

We may use (@ | 2| doo) =
2. Here we need to calculate the absolute square of

1 iout o Z : i 2_7ZX a G
EJO dte smcotxa/ifo dxsin 2 (x— 2)sm 2

Let us first consider the time integral. We will assume that at t = O the system starts in the

ground state. The time integral then becomes

0 . 1 o0 . . a)
iyt o i(@y +o )t i( )iS
J.O dte'*2'sin at = 2.J-0 dife" = ™" —e*2 ™} = ———
[ 0" — w5,

We have used the fact that an finitely rapidly oscillating function is zero on the average.

In the special case that @ matches the transition frequency, one must deal with this
integral in a more delicate manner. We shall exclude this possibility.

The spatial integral involves
gIadxsinz—m(sinﬁ(x—%) =

.f \cos— - cos—m() (x- —)

:—j dx| — (asinz—ising’—ﬂx\(x—g) —(Esinﬂ—isins—ﬂx)
dx Kﬁ a 3r a) 2 T a 3r a
1la®> mx a’ 37 as

=—|—C0S———5C0S— | =—2— =
a a 9r a J, -9

The probability is therefore



(A\(16a)° &

P=3) 57 -y

(b) The transition from the n = 1 state to the n = 3 state is zero. The reason is that the
eigenfunctions for all the odd values of n are all symmetric about x = a/2, while the
potential (x — a/2) is antisymmetric about that axis, so that the integral vanishes. In fact,
quite generally all transition probabilities (even = even) and (odd = odd) vanish.

(c) The probability goes to zero as @ = 0.

3. The only change occurs in the absolute square of the time integral. The relevant one is
I dtel(u21t —t2/r2 J;ZewzrzM

which has to be squared.
When 7 =2 o this vanishes, showing that the transition rate vanishes for a very slowly
varying perturbation.

4. The transition amplitude is

:% m| (A+A*)|n>j dte'™ e~ cost

- —\ ia)(m—n)
= Mﬂ‘/ZMh (mn 1J_+5mn+l n+l (a Ia)(m_n))2+a)1

(a) Transitions are only allowed form=n £ 1.

n—m

(b) The absolute square of the amplitude is, taking into account that (m — n)* = 1,

i(n& +(+D)5 o+ o
2Mha) n-1 m,n+1) (az +a)12_ a)Z)Z + 4a2w2

m,

When an = ®, nothing special happens, except that the probability appears to exceed
unity when o gets to be small enough. This is not possible physically, and what this
suggests is that when the external frequency @, matches the oscillator frequency, we get
a resonance condition as « approaches zero. Under those circumstances first order
perturbation theory is not applicable.

When « - 0, then we get a frequency dependence similar to that in problem 2.

5. The two particles have equal and opposite momenta, so that



E, = \[( pc)’ + m’c’

The integral becomes

| 40, pripa(Me - E, (- E.(p)

and it is only the second integral that is of interest to us. Let us change variables to

u = Ei(p) + E2(p)

then

pc
Edp (E,+E,)T

EE

and the momentum integral is

EEdu

| p*dps(Mc?~ Ey(p)- Ex()= [ —L=2=5(Mc? - u)

(m, m)c
E.E

_ BB
_pMC4

To complete the expression we need to express p in terms of the masses.
We have

(m C2)2 + pZCZ — (MCZ _ (mCZ)Z + p2C2)2
2 1
= (Mc?)*~2Mc”E, (p) +(mc?) + p'c®

This yields
(Mc?)? + (mc?)? — (m,c®)
E,(p) = TV
and in the same way
( ): (MC2)2 + (mZCZ)2 — (m1C2)2
2 2Mc?

By squaring both sides of either of these we may find an expression for p.
The result of a short algebraic manipulation yields



2
2

_C
p_4M2

M-m-m)M-m+m,)(M+m,—-m,)(M+m,+m,)
6. The wave function of a system subject to the perturbing potential
AV(t) = V()

where f(0) = 0 and Limf (t)=1, with df(t)/dt << @ f(t), is given by

| )
I ()= D.C, (e """ 1)
and to lowest order in V, we have
1 t 1 ia)t' ]
Co()) = J, dte™ F (), IV | )

where o= (E,) — E;) /7 and at time t = 0 the system is in the ground state. The time
integral is

b it o b |ie t .i iot' 1 i Uit 1 1
J.dte f(t)—fodtf(t)dt - iC f(t))—iwjodte df (t) /dt

The second term is much smaller than the term we are trying to evaluate, so that we are
left with the first term. Using f(0) = 0 we are left with e'” /i, since for large times
f(t) = 1. When this is substituted into the expression for Cy(t) we get

iat

Col) =~ Er 5

o o [VId) m=z0
Insertion of this into the expression for |y(t)> yields

W)=l d)+e 'E“"’ZW Y 1dw s

0
m=0 E

On the other hand the ground state wave function, to first order in V is

|Wo>—|¢o>+z<Eo |¢0 | ,)

n=0

It follows that

(Eo—Ep)’

W, lp(t)=1+e "> 2

m=0



Thus to order V the right side is just one.
A fuller discussion may be found in D.J.Griffiths Introduction to Quantum Mechanics.i

7. The matrix element to be calculated is

—ip.r/h

Ejd%..-jd3rAd>?(r1,r2,..rA)Id3re\/\_/
z
zlr Wloo(r)q) (6, 1010)

i=1l |

M=

The summation is over | =1,2,3,..Z, that is, only over the proton coordinates. The
outgoing electron wave function is taken to be a plane wave, and the @ are the nuclear
wave functions. Now we take advantage of the fact that the nuclear dimensions are tiny
compared to the electronic ones. Since |r| | << |r |, we may write

1 _} rer
Ir—r| r

The 1/r term gives no contribution because (®, |®,)= 0. This is a short-hand way of

saying that the initial and final nuclear states are orthogonal to each other, because they
have different energies. Let us now define

Z
d= Zjd3rl‘[d3r2.._[d3rA®: (R0 )00, )
j=1
The matrix element then becomes

Mg =

e —ip.r/h d or
Ids \/\7 I3 Wioo(I)

The remaining task is to evaluate this integral.
First of all note that the free electron energy is given by

47z50

pz
%z AE+ | Eyy |

where AE is the change in the nuclear energy. Since nuclear energies are significantly
larger than atomic energy, we may take for p the value p=+2mAE .

To proceed with the integral we choose p to define the z axis, and write p/7=k. We
write the r coordinate in terms of the usual angles 8 and ¢ . We thus have



ipen dr
jd re *"" e 3 Vi (F)=

3/2
dQ| dre *?(d sin#cosg+ d, sin dsing +d Cosg_L_j 22
.[ Io ( X ¢ y ¢ z ) /_472_ aO

2
The solid angle integration involves fo d¢, so that the first two terms above disappear.
We are thus left with

3/2
E ! * —ikrcosd n—Zrla, _
] Zﬂdzj_ld(COSH)JO drcosée e =

1 [
Vrzla,
1 Z 3/2 a1

E(gj 272(dp)[ ", d(cose)

cosd
(Z/a, +ikcos o)

The integral, with the change of variables cosd= u becomes

[tz

27T riku

,[l du u(Z/ag—lkzu)2=
1 (Z13,)? + K2U

2

oM u
ik, du (Z 8,y + K2
—i K w? 2 a, ak. |

I dw— Al Bt @
M e T el )

ka, kn 2AE 1 / AE _
ote now that — meza - \zZPmeea? ~ Z \(@3.6ev) is not too large, then the

factor is quite large, because nuclear energies are in the thousands or millions of electron
volts. In that case the integral is simple: it is just

e et

&
We evaluate the rate using only the first factor in the square bracket. We need the
absolute square of the matrix element which is

(dp)
(ﬂo'””[ ] o

The transition rate per nucleus is



27 ¢ d°pV )
f| J.(27Z71"l)3 _AE) | Mfi |
2z dpv 1( ¢’ j ( T(d-p)z
I(27zh)35( )V Are, 167 a, p*

In carrying out the solid angle integration we get
Jacdepy =22 |dF p*
so that we are left with some numerical factors times J.dpcS(p /12m— AE) = ‘, OAE

Putting all this together we finally get

d? 2 mc?
Z 3—
( a) 2AE 7

We write this in a form that makes the dimension of the rate manifest.



CHAPTER 16.

1. The perturbation caused by the magnetic field changes the simple harmonic oscillator
Hamiltonian Hg to the new Hamiltonian H

q
HZHO+%BOL

If we choose B to define the direction of the z axis, then the additional term involves B L,.
When H acts on the eigenstates of the harmonic oscillator, labeled by |n;, I, m; >, we get

H | nr,l,m|>:(ha>(2nr +I+§+qz—§lml)|nr,l,m,>

Let us denote gB/2m by ws . Consider the three lowest energy states:
n.=0,1=0,the energy is 3w /2.

nr =0, I = 1 This three-fold degenerate level with unperturbed energy 5% /2, splits into
three nondegenerate energy levels with energies

(1)
E:%wM+h%Li

The next energy level has quantum numbers n, =2, 1=0o0rn, =0, | = 2. We thus have a
four-fold degeneracy with energy 77w /2. The magnetic field splits these into the levels
according to the m, value. The energies are

(2
| 1]
E = Tho 12+ hoy 00 1, =10
1
2

2, The system has only one degree of freedom, the angle of rotation 6. In the absence of
torque, the angular velocity = dédt is constant. The kinetic energy is
22 2
el LMVRY 1L
2 2 MR 2 1



where L = MVR is the angular momentum, and | the moment of inertia. Extending this to
a quantum system implies the replacement of L? by the corresponding operator. This
suggests that

(b) The operator L can also be written as p x R.
When the system is placed in a constant magnetic field, we make the replacement

g

1
P—>p-0A=p-q(-5rxB)=p+5rxB

The operator r represents the position of the particle relative to the axis of rotation, and
this is equal to R. We may therefore write

L=R><p—>R><(p+%RxB)=L+%(R(ROB)—RZB)

If we square this, and only keep terms linear in B, then it follows from (R.B) = 0, that

1,, ) > g L* ¢B
= (P-grLeB)—--T [ eg-—=_9°,
o L -aR°LeB)=Zr -7 nLeB = - L,

The last step is taken because we choose the direction of B to define the z axis.

The energy eigenvalues are therefore

R°l(1+1) qBh
SR TR TY R
where m, =1 -11-2,...— 1. Note that the lowest of the levels corresponds to m; = I.

3. Inthe absence of a magnetic field, the frequency for the transitionn=3ton=2 s
determined by

1o o1 1)
27th—2mCak4—9)

so that

~ mczazi
- 4zh 36




The lines with Am; = + 1 are shifted upward (and downward) relative to the Am; =0
(unperturbed ) line. The amount of the shift is given by

hAv=iB
2mc
so that
eB
Av=
Y 47mc

Numerically v=0.4572 x 10" Hz and with B =1 T, Av= 1.40 x 10'° Hz. Thus the
frequencies are vand W1+ Av/v). Thus the wavelengths are ¢ /vand

(c/v)(LF Av/v). This leads to the three values A = 655.713 nm, with the other lines
shifted down/up by 0.02 nm.

4. The Hamiltonian is
H === (p-GA) —qEer
2m

Let us choose E = (E, 0,0) and B = (0, 0, B), but now we choose the gauge such that
A = (0, Bx, 0). This leads to

H =2i (p? +(p, —aBX)’ + p! )~ gExX =
m
= ﬁ(pi + p; + p; —20Bp, x + *B*x* — 2mqEXx)
Let us now choose the eigenstate to be a simultaneous eigenstate of H, p, (with

eigenvalue zero) and p, (with eigenvalue 7k). Then the Hamiltonian takes the form

hk®

|_I:2m

i 2 i e 2_i )
o px+2m(qu ik —mE /B) 2m(hk+mE/B))

This is the Hamiltonian for a shifted harmonic oscillator with a constant energy added on.
We may write this in the form

2 22 2
L _ _JKE mE® 1 (qBj(X_hk—mE/Bj

B 2B 2 qB

Thus the energy is



E=- hEE mE h(q—B)(n+%)

withn=0,1,2,3,...

5. We first need to express everything in cylindrical coordinates. Since we are dealing
with an infinite cylinder which we choose to be aligned with the z axis,, nothing depends
on z, and we only deal with the pand ¢ coordinates. We only need to consider the
Schrodinger equation in the region a< p<bh.

)

We start withH = >

where

.z _ .. 0
HX:—|h5+eAﬂ Hy:—lhgﬂ—eA/

To write this in cylindrical coordinates we use Eq. (16-33) and the fact that for the
situation at hand

. ()
A =-sing A; A =cosp A; A(p—%

where @ is the magnetic flux in the interior region. When all of this is put together, the

equation
Hy(gp) =Ew(pp)

takes the form

2 2
o (ﬁ_w 1oy w?wj 2ite 2 L 20 L)

oy
2m a7 "o ap " P A 7 dp P\ ¥

To solve this, we use the separation of variables technique. Based on previous
experience, we write

v(p.e) = f(p)e™
The single-valuedness of the solution implies that m = 0,£1,+2,+3, ...

With the notation k* = 2m_E /#’ the equation for () becomes

iS22,



. ed .
If we now introduce z=kp and v=m +ﬂ the equation takes the form
TTl

d?f(z) 1df(z e
dzg)+E d(z)+[1_?]f(z):0

This is Bessel’s equation. The most general solution has the form
f(p) =AJ, (ko) + BN, (kp)
If we now impose the boundary conditions f(ka) = f (kb) =0 we end up with
AJ,(ka) +BN (ka)=0
and
AJ, (kb) + BN (kb)=0
The two equations can only be satisfied if
J,(ka)N, (kb)—J (kb)N  (ka) =0

This is the eigenvalue equation, and the solution k clearly depends on the order v of the
Bessel functions, that is, on the flux enclosed in the interior cylinder.



CHAPTER 17

1. We start with Eq. (17-19) . We define k as the z axis. This means that the
polarization vector, which is perpendicular to k has the general form

Y =icosg + jsing

This leads to
B=VxA=-i PRy, kk x (icosg+ jsing) = B,(jcose — ising)
We are now interested in
M = By % 10— 6)cosp— (07 — 0)sing X"
- =0 2 2 0 y y 4 X X Q5

The operators are of the form

_ [ 0 —icosﬂ (O sinqu (O —ie""j
%L0sp= o, SN = icosp 0 ) \sinp 0/ lig” o

It is simple to work out the “bra” part of the scalar product

1 —m=m_ =(m=m [0 —ie_i(’)] _( 0 —ie‘i‘”j
75(Z+ T N o ie” 0 )

p

with the help of

0 —ie‘”"j { 0 —ie‘""J L L
A =Q 0). =00 -ie™)=-ie"7
L(ie"” 0 ( e 0 ( ) -

and

0 —ie‘i“’J { 0 —ie‘i“’J | |
- . — 0 1 ] — IeI(p 0 — Ie|(p—
z—(ieltp 0 ( iellﬂ 0 ( ) Z+

This implies that the “bra” part is



1 0 —ie‘”"j (o —ie“"’}
_— (P _ =(p)(n) _ _ _ —
\@(m 77 - 77 {[ie"” o ) lier o )

— _ Zi(e*ilﬂ/?(_l));—((_n)+ei¢}ip)7{in))

= 2i(e X" +e'’X})

For the “ket” state we may choose X, = @X; + X, +7X; ", and then the matrix
element is

M ——iv2B, 22 ;g” g(ei"’a +e7%)

2. We are interested in finding out for what values of I, m, the matrix element
1
5(6, m|(ep)(k.r)+ (er)(pk)|0,0)

does not vanish. We use the technique used in Eq. (17-22) to rewrite this in the form

%% (M| [Hyer](kr)+ (r)[Hg k] [0.0) =
I;niz (&m|Hy(er)(kr) = (er)Hy(kr) + (er)Hq(kr) - (er)(kor)H, [0,0)=
'g‘h (E,, — Eo)(6:m | (er)(kr) [0,0)

Let us now choose k to define the z axis, so that k = ( 0,0,k). Since € is perpendicular to k
, we may choose it to be represented by € = (cose, sine, 0). Then, with the usual polar
coordinates, we have

(er)(kr)=k(cosasin@osg + sinasinésing) coséd =
= ksindcosdcos(¢p — )

This is a linear combination of Y,,(6,4) and Y, (6.¢). Thus the angular integral is of

the form JdQYﬁmYZVﬂYO’0 , and since Y, is just a number, the integral is proportional to

0y,
There is also a selection rule that requires m = £ 1. This comes about because of our
choice of axes.



3. Inthe transition under consideration, the radial part of the transition rate is
unchanged. The only change has to do with the part of the matrix element that deals
with the dependence on the polarization of the photon emitted in the transition
Eq. (17-44), for example shows that &, , is multiplied by g+ g/ = 1- g’ and this
factor carries some information about the direction of the photon momentum, even
though that does not appear explicitly in the matrix element. We proceed as follows:
The direction of the polarization of the initial atomic state defines the z axis. Let the
photon momentum direction be given by

~

d=isin@cos®d + ]sin@sinCD +Kcos®

We may define two unit vectors perpendicular to this. For the first one we take d x k,
which, after being divided by the sine of the angle between these two vectors, i.e. by
sin®, yields A A

§ =—isin® + jcosd

The other one is &, = dx & (two vectors perpendicular to each other), which leads to
Z, = 1C0s@CosD + jcosOsind — Ksin®

In the coordinate system in which d represents the z axis, the g, vectors represent the
x and y axes, and since the photon polarization must lie in that new x —y plane, we
see that the polarization vector has the form

£=COS & +sin ye,

Thus A
g =Keg=—sinysin®,
& = e g=C0s ysSin® +sin ycos®cosd,
g = ]og:—cos;(coscb +sin ycos®sin®
and

& +é& =1-¢g =1-sin’ ysin’®
Thus the final answer (using Eq. (17-44) is

a o 215(1

=2 ml)(l sin® sin’ @ )d(cos®)dd

The dependence on the polarization appears in the sin” y term.



4, First of all, we need to recognize what 2p - 1s means for the harmonic oscillator
in three dimensions. The numbers “2” and “1” usually refer to the principal quantum
number, e.g n=n,+/¢+1 for the hydrogen atom. Here the energy spectrum is
characterized by 2n, + ¢ +1, and it is this combination that we call the principal quantum
number. Thus we take the 2p = 1s transition to mean (n,=0,/=1) —»(n, =0,/ =0).

To solve this problem we recognized that nothing changes in the angular
integration that was done for the 2p = 1s transition in hydrogen. The only change in the
matrix element involves the radial functions. In hydrogen we calculated

| PPRu(MR(nr

using the radial functions for hydrogen. Here the same integral appears, except that the
radial functions are those of the three-dimensional harmonic oscillator. Here, the properly
normalized eigenfunctions are

Ru(1)= 2] e

and

21( ) (3 7[1/4 ( a)) re’m“’rZ/Zh

Note that these functions appear in the solution to problem 8-13. Given these, the integral
that yields the matrix element is straightforward. We have

(8" 2 (mo)* .
M=3) 7z ) J drr'e

4 (2" ma\( 1) L e
-a) (5 o) Bl

_i(g\JJZ(ma)\Z( h \5/21371_112
23 U \me) 2 4

The square of this is an_ha) . We check that this has the dimensions of a (length)® as

required. To get the decay rate, we just take the hydrogen result and make the substitution

: 2%, 3n.

M =—a’>|MF[
| 39 a’O | 2ma)

hydrogen



This then leads to the rate

4 @ , 2o ho)

R=ger M= et



CHAPTER 19

1. We have
l 3. —IAT
Mfi:vjd re V(r)

If V(r) = V(r), that is, if the p9otential is central, we may work out the angular
integration as follows:

1~ 2 27 T . —iAr cosd
M= [, PV (ndr[“dg] ] sinice
with the choice of the vector A as defining the z axis. The angular integration yields
.[Zﬂd¢.[”sin age e’ =2 jl d(cos B)e 4 _AZ Ginar
0 0 i TOAr

so that

M,

14rx ¢ .
, VTJ.O rdrV (r)sinAr

Note that this is an even function of A that is, it is a function of A’ = (p, —p,)’ / i’

2. For the gaussian potential

1 42V,
M=V

j: rdrsin Are™ "’
Note that the integrand is an even function of r. We may therefore rewrite it as
® . _r2/42 1~ . 242
_[ rdrsinAre™" " :—_[ rdrsinAre™" '
0 2 —0
The integral on the right may be rewritten as
lr rdrsinare " ’* —ir rdr@’rz’az+iAr —CC))
29 C4id—
Now
1 = ratviar L O [ —r?/a?+iA . 0 —a?A%/4 -Aas\/;—%m
—| rdre"""* " =Z—| dre" Y =—i—avre* " =i——e"°
41— I OA I—w OA \/; 2

Subtracting the complex conjugate and dividing by 4i gives



My = @ ) Ve * "

The comparable matrix element for the Yukawa potential is

M, - A

1 © —rlb _- 1 b3
: VTVYb.[odre SINAT = — 47V

Vv Y1+ b2A
We can easily check that the matrix elements and their derivatives with respect to 4* at
A= 0 will be equal if a=2band V, =2v7V,.

The differential cross section takes its simplest form if the scattering involves the same
particles in the final state as in the initial state. The differential cross section is

do ?

0~ ae VOF

where g is the reduced mass and U(4) = VM,,.
We are interested in the comparison

(da/dQ)gauss 972b2A2 22X
@0 1090,y @i 07R) 7 ATV

where we have introduced the notation X = b?x?. This ratio, as a function of X, starts out
at X =0 with the value of 1, and zero slope, but then it drops rapidly, reaching less than
1% of its initial value when X = 4, that is, at 4 = 2/b.

3. We use the hint to write

* [

E p2 dG /,[2
1+ b?A?|

dQ ~ 7% dA?  AxPh?

47V,

The total cross section may be obtained by integrating this over 4% with the range given
by 0< A <4p®/#, corresponding to the values of cosé@ between —1 and + 1.. The
integral can actually be done analytically. With the notation k* = p? /#* the integral is

rkz A2 — L _irk%z dx  4k®

0 (1+b%A%)2 " p2J0  (1+X)® 1+4k%D?

This would immediately lead to the cross section if the particles were not identical. For
identical particles, there are symmetry problems caused by the Pauli Exclusion Principle
and the fact that the protons have spin 1/2. The matrix elements are not affected by the



spin because there is no spin-orbit coupling or any other spin dependence in the potential.
However:

In the spin triplet state, the spatial wave function of the proton is antisymmetric, while for
the spin singlet state, the spatial wave function is symmetric. This means that in the
original Born approximation we have

J.d3rV (e g J- d3rV (r)e k+r

The first term has the familiar form

b b®
4V 1+b%A 4”V°1+ 2b2k? (1 cosé)

and the second term is obtained by changing cosé to - cosé.. Thus the cross section
involves

( 1 . 1 \?
d(cosé@
Jl ( )Kl 207k — 207K? cos@ | 1+ 2b°K + 2b7K? cos®
1 )
_)I K1+a az 1+a+az)
4 F 2 In(1+ 2a)

T 1+2a a(l+a)
where a = 2b%k?.
Thus the total cross section is

87wb v? A 4 \_ 1
TR 17 2k%02) T K21+ 2k%0?)

|n(1+4k2b2)}

The relation to the center of mass energy follows from E = p*/2u= h’k® /24, so that

2uE (1.67 x10"""kg)(100 x 1.6 x107°J)

k2=
1 (1.054 x 10 J.5)?

With b =1.2x 10%°m, we get (kb)?>=3.5, so that 6 =4.3x10% m?=4.3x 10 cm?=
3.4 barns.



4. To make the table, we first of all make a change of notation: we will represent the
proton spinors by yx, and the neutron spinors by 7,. To work out the action of

c,°0,=0,0,+2(c, 0, +t0,0,)

on the four initial combinations, we willuse .y, =0 y =0, .y =y, o y.= 1

and similarly for the neutron spinors. Thus

[szo-nz + 2(0p+0n— + Gp—0n+)]l+77+ = Z+77+
[apzo-nz + 2(O-p+o-n— + O-p—o-n+)];(+77— =Xt 2;(—77+
[0,00, +2(0,.0, +0, 0, ) n.=—xn+2x7

[o,0,+20,0, +to,0,)xn=xn

From this we get for the matrix A+ Bo, e o, , with rows and columns labeled by (++),
(+-),(-+). (--)the following

(A+B 0 0 0 )
0 A-B 2B 0
0 2B A-B 0
0 0 0 A+B

A+Bo,eo, =

The cross sections will form a similar matrix, with the amplitudes replaced by the
absolute squares, i.e. |JA+BJ?, [2B[%, and |A-B|%.

5. Consider n — p scattering again. If the initial proton spin is not specified, then we
must add the cross sections for all the possible initial proton states and divide byt 2,
since a priori there is no reason why in the initial state there should be more or less of
up-spin protons. We also need to sum over the final states. Note that we do not sum
amplitudes because the spin states of the proton are distinguishable.

Thus, for initial neutron spin up and final neutron spin up we have

o(+]|+)= % (o(+++4) + o(++—+) + o(—,++) + o(—+,—+))

where on the r.h.s. the first label on each side refers to the proton and the second to
the neutron. We thus get

a(+|+):%(|A+B|2+|A—B|2):|A|2+|B|2

Similarly



o(-|+) = %(0'(+—, ++)+ o(+—,—+) + o(—,++) + o(—,—+))

_liopp) ”
_2Q28|)_2|B|

Thus

_IAP+IBF-2|Bf _|A[-IBf
|AFP+|BF+2|BF  |AF+3[BF

6. For triplet - triplet scattering we have (with the notation (S,S,)
L,1)>@D) (rn lxn)=A+B

(1,-1)>@Q-1) (rm lyn)=A+B

xntxn xn+xn., 1
1,0)> (1,0 - - | L “V==(A-B+2B+2B+A-B)=A+B
(1,00 (1,0) ¢ g | WA ) 2( )

XN =X XN —xn, 1
0,0)>(0.0 - £ | L y-=(A-B-2B-2B+A-B)=A-3B
(0,0=>(0.0) ¢ \5 | \/E ) 2( + )

X —xn xn+txn., 1
0,0)>(1,0 - £ | A =y ==(A-B+2B-2B-A+B)=0
(0,00>(1,0) ¢ WA | W ) 2( )

We can check this by noting that (in units of 7,
A+Bo,ec, =A+4Bs es = A+2B(S*-s’ -s)
=A+ZB[S(S +1)—§3}
ForS=1thisisA+B, ForS=0, itisA-B,andsince (S=1|S*-3/2|S=0)=0 by
orthogonality of the triplet to singlet states, we get the same result as above.
7. We have, with x = kr and cosé = u,
100 = duge ™ =" du (U)~2 g
- g o g X dx

i el d ey (dg) i
—~ [ du=(ge )= [ ad e

The first term vanishes since g(x1)=0. We can proceed once more, and using the fact that
the derivatives of g(u) also vanishat u==1, we find



1(x) = G}zj du(d gj

and so on. We can always go beyond any pre-determined power of 1/x so that I(x) goes
to zero faster than any power of (1/x).

7. We proceed as in the photoelectric effect. There the rate, as given in Eq.(19-111) is

27rV mp, 2

Here m is the electron mass, and pe is the momentum of the outgoing.electron.The factor
arose out of the phase space integral

p2 p2 p2

2 — — — _— —_— —

Jaop 5(2m E7j Id(zmjm‘o 2m Eyj P

with pe determined by the photon energy, as shown in the delta function. In the deuteron

photodisintegration process, the energy conservation is manifest in é{pﬁ— E, + EB] :

The delta function differs in two respects: first, some of the photon energy goes into
dissociating the deuteron, which takes an energy Eg ; second, in the final state two
particles of equal mass move in in equal and opposite directions, both with momentum of
magnitude p, so that the reduced mass Mg = M/2 appears. Thus the factor mp, will be
replaced by Mp/2, where the momentum of the particle is determined by the delta
function.

Next, we consider the matrix element. The final state is the same as given in Eq.
(19-114) with pe replaced by p , and with the hydrogen-like wave function replaced by
the deuteron ground state wave function. We thus have

do 2z(Mp/2)V( e\’ &

i(k—p/h)er
Q- 7 @d)e ¢ \M 20V vv "’d(r)l

We need to determine the magnitude of the factor e"“". The integral is over the wave
function of the deuteron. If the ground state wave function behaves as e™, then the
probability distribution goes as e >, and we may roughly take 1/2¢ as the “size” of the
deuteron. Note that o = ME, / #*. As far as k is concerned, it is given by



Numerically we get, with Eg =2.2 MeV, and E, = 10 MeV, k/2« = 0.11, which means
that we can neglect the oscillating factor. Thus in the matrix element we just need

jd‘“‘re“‘"z//d(r). The wave function to be used is

N e—a(r )

wq(r)= 7_

N is determined by the normalization condition

r>r,

e —2a(r-ry)

_[ Axr®dr =1

So that

N’ =2
The matrix element involves

—a(r-ry)

\/Erk . rdrsmkr =

=NV T
k

_ NV47Z .[oo dx(sinkro Re(e—x(a—ik))+ coskr, Im(e @ "))

NVF_( a . k 3

. +kzsm kr, +mcoskr0}

I: dxsink(x +r,)e ™

The square of this is

4aN? [ o, . kr
k2 0 az 2 + erZSIn I(rO k2 2
0 0

2
coskrj

It follows that

dO' e2 j prb k 2
dQ 2(47[807;1(: MC()( 0) k2 ZSInkr k2 2COSkI’

We can easily check that this has the correct dimensions of an area.

2
For numerical work we note that or, = 0.52; kr,=0.264/E,,, and 7ow= EB+%.



9. The change in the calculation consists of replacing the hydrogen wave function

1 7 312
2(_) e—Zr/a0
; 47[ a-()

by
w(r) = N singr r<r
Var °
N e™
= r>r,
A7 r

where the binding energy characteristic of the ground state of the electron determines «
as follows

k?=2m, | Eg |/H* = (Mm.Calh)®
with « = 1/137. The eigenvalue condition relates g to x as follows:
gr, cotqr, = —xt,

where

2mV,
qzz( hezo_K_Z\

and V is the depth of the square well potential. The expression for the differential cross
section is obtained from Eq. (19-116) by dividing by 4(Z/ap)? and replacing the wave
function in the matrix element by the one written out above,

2
do 27 mp, 1( e hoploa.
__e_pe_(_j P o

2
29 _ 3, i(k—p,/h).r
40~ 7 @ay c\m.) 2z04x [ d're (r)

We are interested in the energy-dependence of the cross section, under the assumptions
that the photon energy is much larger than the electron binding energy and that the
potential has a very short range. The energy conservation law states that under these

assumptions 7= p, /2m,. The factor in front varies as [} / w o p, o {/E, , and thus

. 2
we need to analyze the energy dependence of U dre'tPe! h"rw(r)l . The integral has the
form

J.d3reiQ'rl//(r)=4_Q”J‘: rdrsinQry(r)



2
where Q =k —p, /% so that Q% = k? +%—2%(k.ﬁ).

2
2,2 7,2 22 24 2.2 pe/2m_ hao
Now 7°k“/p, =h'w" I p,c” =ho o7c? ~ 2m.c

e e

nonrelativistic regime, so that this ratio is much smaller than 1. We will therefore neglect
the k —dependence, and replace Q by p¢/ 7. The integral thus becomes

> . We are dealing with the

4—572—”“; drsinQrsinqr + j:drsinQre‘”}

The first integral is

%_[:J dr(cos(Q—a)r —cos(Q +q)r) =

lisin(Q —Q)r, _sin(Q+a)r,
2\ Q-q Q+q

1 .
j z—acosQrO sinqr,

where, in the last step we used Q >> . The second integral is

1o (< -iQ)
e _cosQr, o

k-iQ 7 Q

Imj dre™" " = Im
fo

The square of the matrix element is therefore

%é(cosQro(e"r0 - sinqro))2

The square of the cosine may be replaced by 1/2, since it is a rapidly oscillating factor,
and thus the dominant dependence is 1/Q* , i.e. 1/ Ef. Thus the total dependence on the

photon energy is 1/ E** or 1/p; , in contrast with the atomic 1/ p, dependence.

10. The differential rate for process I, a + A - b + B in the center of momentum frame
IS

dR, 1 1 2 dp,
40~ (2], + D@3, +1) @ay P aE

>

b spins

The sum is over all initial and final spin states. Since we have to average (rather than
sum) over the initial states, the first two factors are there to take that into account. The
phase factor is the usual one, written without specification of how E, depends on py.
The rate for the inverse process Il, b + B > a + A is, similarly



dR” _ 1 1 2 dpa
aQ ~ 2], + D23, +1) @y P dE >im,[

a spins

By the principle of detailed balance the sum over all spin states of the square of the
matrix elements for the two reactions are the same provided that these are at the same
center of momentum energies. Thus

YIM[ = Ylm

spins spins
Use of this leads to the result that

2j,+D@I, +DdR, (2], +D(2]g +1) dR,
pe(dp, /dE,) dQ ~  pi(dp,/dE,) dQ

Let us now apply this result to the calculation of the radiative capture cross section for the
process N + P - D + . We first need to convert from rate to cross section. This is
accomplished by multiplying the rate R by the volume factor V, and dividing by the
relative velocity of the particles in the initial state. For the process I, the photo-
disintegration y+ D - N + P, the relative velocity is c, the speed of light. For process I,
the value is pp/Myeq = 2pu/M . Thus

do, VdR do, MVdR,

dQ c dQ’ dQ 2p, dQ

Application of the result obtained above leads to

doy _ MV dR,

dQ 2p, dQ
_ MV pi(dp, /dE,) (2], +1)(23, +1) ¢ do,
- 2p, (2], +D(2, +1) pL(dp, /dE,) V dQ

We can calculate all the relevant factors. We will neglect the binding energy of the
deuteron in our calculation of the kinematics.
First

@, +D2J, +1) 2x3 3
Qi. +D@1, +1) 2x2 2

Next, in the center of momentum frame, the center of mass energy is

2 2
Pa _ Pa
oM, TP

W =p,.c+



so that (dE, /dp,) =c + 2p|€/| . In reaction II,

so that (dE, /dp,) =2p, /M . There is a relation between p, and py since the values of W
are the same in both cases. This can be simplified. For photon energies up to say 50 MeV
or so, the deuteron may be viewed as infinitely massive, so that there is no difference
between the center of momentum. This means that it is a good approximation to write

W =E, = p,c = p; /M. We are thus finally led to the result that

do(NP — Dy) _g( E, j do(yD — NP)
dQ ~ 2\ Mc? dQ
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