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CHAPTER 1 
 
1.  The energy contained in a volume dV is 
 

U(ν,T )dV = U (ν,T )r 2drsinθdθdϕ  
 
when the geometry is that shown in the figure.  The energy from this source that emerges 
through a hole of area dA is 
 

       dE(ν,T ) = U (ν,T )dV
dAcosθ

4πr 2  

 
The total energy emitted is 
 

.     

dE(ν,T ) = dr dθ dϕU (ν,T )sinθ cosθ
dA
4π0

2π

∫0

π /2

∫0

cΔ t

∫

=
dA
4π

2πcΔtU(ν,T ) dθ sinθ cosθ
0

π / 2

∫

=
1
4

cΔtdAU (ν,T )

 

 By definition of the emissivity, this is equal to EΔtdA . Hence 
 

   E(ν,T ) =
c
4

U (ν,T ) 

 
2. We have 
 

w(λ,T ) = U (ν,T ) | dν / dλ |= U (
c
λ

)
c
λ2 =

8πhc
λ5

1
ehc/λkT −1

 

 
This density will be maximal when dw(λ,T ) / dλ = 0. What we need is 
 

 
d

dλ
1

λ5
1

eA /λ −1
⎛ 
⎝ 

⎞ 
⎠ = (−5

1
λ6 −

1
λ5

eA /λ

eA /λ −1
(−

A
λ2 ))

1
eA /λ −1

= 0 

 
Where A = hc / kT . The above implies that with x = A / λ , we must have 
 
  5 − x = 5e−x  
 
A solution of this is x = 4.965 so that  
 



  λmaxT =
hc

4.965k
= 2.898 ×10−3 m  

 
In example 1.1 we were given an estimate of the sun’s surface temperature 
as 6000 K. From this we get 
 

  λmax
sun =

28.98 ×10−4 mK
6 ×103K

= 4.83 ×10−7 m = 483nm   

 
3.  The relationship is  
 
   hν = K + W  
 
where K is the electron kinetic energy and W is the work function.  Here 
   

hν =
hc
λ

=
(6.626 ×10−34 J .s)(3×108 m / s)

350 ×10−9 m
= 5.68 ×10−19J = 3.55eV  

 
With K = 1.60 eV, we get  W = 1.95 eV 
 
4. We use  

  
hc
λ1

−
hc
λ2

= K1 − K2  

 
since W cancels. From ;this we get 
 

h =
1
c

λ1λ2

λ2 − λ1

(K1 − K2) =

= (200 ×10−9 m)(258 ×10−9 m)
(3×108 m / s)(58 ×10−9 m)

× (2.3− 0.9)eV × (1.60 ×10−19)J / eV

= 6.64 ×10−34 J .s

 

5. The maximum energy loss for the photon occurs in a head-on collision, with the 
photon scattered backwards.  Let the incident photon energy be hν , and the backward-
scattered photon energy be hν' . Let the energy of the recoiling proton be E.  Then its 
recoil momentum is obtained from E = p2c 2 + m 2c 4  .  The energy conservation 
equation reads 
 
    hν + mc2 = hν '+E  
 
and the momentum conservation equation reads 
 

    
hν
c

= −
hν '
c

+ p  



that is 
    hν = −hν '+ pc  
 
We get E + pc − mc2 = 2hν  from which it follows that 
 
   p2c2 + m2c4 = (2hν − pc + mc2)2  
 
so that 
 

   pc =
4h2ν2 + 4hνmc2

4hν + 2mc2  

 
The energy loss for the photon is the kinetic energy of the proton  
K = E − mc2 .  Now hν  = 100 MeV and mc 2 = 938 MeV, so that 
 
   pc = 182MeV  
and 
  
  E − mc2 = K = 17.6MeV  
 
6. Let hν  be the incident photon energy, hν'  the final photon energy and p the outgoing 

electron momentum. Energy conservation reads 
 
   hν + mc2 = hν '+ p2c2 + m2c4  
 
We write the equation for momentum conservation, assuming that the initial photon 
moves in the x –direction and the final photon in the y-direction. When multiplied by c it 
read    
 
    i(hν) = j(hν ') + (ipxc + jpyc) 
 
Hence pxc = hν; pyc = −hν ' .  We use this to rewrite the energy conservation equation as 
follows:       

       
(hν + mc 2 − hν ')2 = m 2c 4 + c 2(px

2 + py
2) = m2c4 + (hν)2 + (hν ') 2  

 
From this we get 
  

  hν'= hν
mc2

hν + mc2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
We may use this to calculate the kinetic energy of the electron 
 



  
K = hν − hν '= hν 1−

mc2

hν + mc2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ = hν

hν
hν + mc2

=
(100keV )2

100keV + 510keV
=16.4keV

 

 
Also 
 
  pc = i(100keV ) + j(−83.6keV)  
   
which gives the direction of the recoiling electron. 

 
 

 
7. The photon energy is 
 

  
hν =

hc
λ

=
(6.63×10−34 J.s)(3 ×108 m / s)

3×106 ×10−9 m
= 6.63×10−17J

=
6.63×10−17 J

1.60 ×10−19 J / eV
= 4.14 ×10−4 MeV

 

 
The momentum conservation for collinear motion (the collision is head on for maximum 
energy loss), when squared, reads 
 

 
hν
c

⎛ 
⎝ 

⎞ 
⎠ 

2

+ p2 + 2
hν
c

⎛ 
⎝ 

⎞ 
⎠ pηi =

hν '
c

⎛ 
⎝ 

⎞ 
⎠ 

2

+ p'2 +2
hν '
c

⎛ 
⎝ 

⎞ 
⎠ p'η f   

 
Here ηi  = ±1, with the upper sign corresponding to the photon and the electron moving in 
the same/opposite direction, and similarly for η f . When this is multiplied by c2 we get 
 
  (hν)2 + (pc)2 + 2(hν) pcηi = (hν ')2 + ( p'c)2 + 2(hν ') p'cη f  
 
The square of the energy conservation equation,   with E expressed in terms of 
momentum and mass reads 
 
  (hν)2 + (pc)2 + m 2c 4 + 2Ehν = (hν ')2 + ( p'c)2 + m2c4 + 2E ' hν '  
 
After we cancel the mass terms and subtracting, we get 
 
  hν(E −η ipc) = hν '(E'−η f p'c) 
 
From this can calculate hν'   and rewrite the energy conservation law in the form 
 



                  E − E '= hν
E − ηi pc
E '−p'cη f

−1
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟  

 
The energy loss is largest if ηi = −1;η f = 1. Assuming that the final electron momentum is 

not very close to zero, we can write E + pc = 2E and E'− p'c =
(mc2 )2

2E'
 so that 

  E − E '= hν
2E × 2E'
(mc2 )2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

It follows that 
1
E'

=
1
E

+16hν  with everything expressed in MeV. This leads to 

 E’ =(100/1.64)=61 MeV  and the energy loss is 39MeV. 
 
 
8.We have λ’ = 0.035 x 10-10 m, to be inserted into  
 

λ'−λ =
h

mec
(1− cos600) =

h
2mec

=
6.63 ×10−34 J.s

2 × (0.9 ×10−30kg)(3×108 m / s)
= 1.23×10−12m  

 
Therefore λ = λ’ = (3.50-1.23) x 10-12 m = 2.3 x 10-12 m. 
 
The energy of the X-ray photon is therefore 
 

 hν =
hc
λ

=
(6.63×10−34 J .s)(3 ×108 m / s)

(2.3×10−12m)(1.6 ×10−19 J / eV )
= 5.4 ×105eV  

 
9. With the nucleus initially at rest, the recoil momentum of the nucleus must be equal 
and opposite to that of the emitted photon. We therefore have its magnitude given by 
p = hν / c , where hν = 6.2 MeV . The recoil energy is 

E =
p2

2M
= hν

hν
2Mc2 = (6.2MeV )

6.2MeV
2 ×14 × (940MeV )

= 1.5 ×10−3 MeV
 

10. The formula λ = 2asinθ / n  implies that λ / sinθ ≤ 2a / 3. Since λ = h/p this leads to 
      p ≥ 3h / 2asinθ , which implies that the kinetic energy obeys 
 

   K =
p2

2m
≥

9h2

8ma2 sin2 θ
 

 
Thus the minimum energy for electrons is 
 

 K =
9(6.63×10−34 J.s)2

8(0.9 ×10−30 kg)(0.32 ×10−9 m)2 (1.6 ×10−19 J / eV )
= 3.35eV  



 
For Helium atoms the mass is 4(1.67 ×10−27 kg) / (0.9 ×10−30kg) = 7.42 ×103  larger, so 
that  
 

   K =
33.5eV

7.42 ×103 = 4.5 ×10−3 eV   

 

11. We use K =
p2

2m
=

h2

2mλ2  with  λ = 15 x 10-9 m to get 

 

 K =
(6.63×10−34 J.s)2

2(0.9 ×10−30 kg)(15 ×10−9 m)2 (1.6 ×10−19 J / eV )
= 6.78 ×10−3 eV  

  
For λ = 0.5 nm, the wavelength is 30 times smaller, so that the energy is 900 times larger. 
Thus  K =6.10 eV. 
 
12. For a circular orbit of radius r, the circumference is 2πr. If n wavelengths λ are to fit 
into the orbit, we must have 2πr = nλ = nh/p. We therefore get the condition 
 
     pr = nh / 2π = nh  
 
which is just the condition that the angular momentum in a circular orbit is an integer in 
units of   h . 
 
13. We have a = nλ / 2sinθ . For n = 1, λ= 0.5 x 10-10 m and θ= 5o . we get 

a = 2.87 x 10-10 m. For n = 2, we require sinθ2 = 2 sinθ1. Since the angles are very 
small,  θ2 = 2θ1. So that the angle is 10o. 
 

14. The relation F = ma leads to  mv 2/r = mωr that is, v = ωr. The angular momentum 
quantization condition  is mvr = n  h , which leads to mωr2 = nh. The total energy is 
therefore 

 

  
E =

1
2

mv2 +
1
2

mω 2r2 = mω2r 2 = nhω  

 
The analog of the Rydberg formula is 
 

  
  
ν(n → n') =

En − En '

h
=

hω(n − n')
h

= (n − n')
ω
2π

 

 
The frequency of radiation in the classical limit is just the frequency of rotation 
νcl = ω / 2π  which agrees with the quantum frequency when  n – n’ = 1. When the 
selection rule Δn = 1 is satisfied, then the classical and quantum frequencies are the same 
for all n.  
 



15. With V(r) = V0 (r/a)k , the equation describing circular motion is 
 

m
v2

r
=|

dV
dr

|=
1
r

kV0
r
a

⎛ 
⎝ 

⎞ 
⎠ 

k

 

 
so that 
 

  v =
kV0

m
r
k

⎛ 
⎝ 

⎞ 
⎠ 

k / 2

 

 
The angular momentum quantization condition mvr = nh reads 
 

  
  

ma2kV0
r
a

⎛ 
⎝ 

⎞ 
⎠ 

k +2
2

= nh  

 
We may use the result of this and the previous equation to calculate 
 

  
E =

1
2

mv2 + V0
r
a

⎛ 
⎝ 

⎞ 
⎠ 

k

= (
1
2

k +1)V0
r
a

⎛ 
⎝ 

⎞ 
⎠ 

k

= (
1
2

k +1)V0
n2h2

ma2kV0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

k
k+2

 

In the limit of k >>1, we get 
 

 
  
E →

1
2

(kV0 )
2

k +2 h2

ma2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

k
k+ 2

(n2 )
k

k +2 →
h2

2ma2 n2  

 
Note that V0 drops out of the result. This makes sense if one looks at a  
picture of the potential in the limit of large k. For r< a the potential is  
effectively zero. For r > a it is effectively infinite, simulating a box with 
infinite walls. The presence of V0 is there to provide something with the 
dimensions of an energy. In the limit of the infinite box with the quantum 
 condition there is no physical meaning to V0 and the energy scale is  
provided by   h2 / 2ma 2 . 
 
16. The condition L = nh implies that  
 

  
E =

n2h2

2I
 

 
In a transition from n1 to n2 the Bohr rule implies that the frequency of the  
radiation is given 
    

  
  
ν12 =

E1 − E2

h
=

h2

2Ih
(n1

2 − n2
2 ) =

h

4πI
(n1

2 − n2
2 ) 



 
Let n1 = n2 + Δn. Then in the limit of large n we have (n1

2 − n2
2 ) → 2n2Δn , so  

that 
 

  
  
ν12 →

1
2π

hn2

I
Δn =

1
2π

L
I

Δn  

 
Classically the radiation frequency is the frequency of rotation which is 
ω = L/I , i.e.  

  νcl =
ω
2π

L
I

 

 
We see that this is equal to ν12  when Δn = 1. 
17. The energy gap between low-lying levels of rotational spectra is of the order of 
  h

2 / I = (1 / 2π )hh / MR2 , where M is the reduced mass of the two nuclei, and R is their 
separation. (Equivalently we can take 2 x m(R/2)2 = MR2). Thus 
 

  
  
hν =

hc
λ

=
1

2π
h

h

MR2  

 
This implies that  
 

 
  
R =

hλ
2πMc

=
hλ

πmc
=

(1.05 ×10−34 J.s)(10−3 m)
π (1.67 ×10−27kg)(3×108 m / s)

= 26nm  

   
 
 
 
  
 
 
 

 
 
 

 
  
 
  
 
  
 
 



CHAPTER 2 
 
1. We have 
 

ψ (x) = dkA(k)eikx

−∞

∞

∫ = dk
N

k2 + α 2 eikx

−∞

∞

∫ = dk
N

k2 + α 2 coskx
−∞

∞

∫  

 
because only the even part of eikx = coskx + i sinkx contributes to the integral. The integral 
can be looked up. It yields 
 

   ψ (x) = N
π
α

e−α |x |  

 
so that  

   |ψ (x) |2 =
N 2π 2

α 2 e−2α |x|  

 
If we look at |A(k)2 we see that this function drops to 1/4 of its peak value at k =± α.. We 
may therefore estimate the width to be Δk = 2α. The square of the wave function drops to 
about 1/3 of its value when 
x =±1/2α. This choice then gives us Δk Δx = 1. Somewhat different choices will give 
slightly different numbers, but in all cases the product of the widths is independent of α. 
 
2. the definition of the group velocity is 
 

vg =
dω
dk

=
2πdν

2πd(1/ λ )
=

dν
d(1/ λ )

= −λ2 dν
dλ

 

 
The relation between wavelength and frequency may be rewritten in the form 
 

   ν2 −ν0
2 =

c 2

λ2  

so that 
 

   −λ2 dν
dλ

=
c 2

νλ
= c 1− (ν0 /ν)2  

 
3. We may use the formula for vg derived above for   
 

ν =
2πT

ρ
λ−3/2  

 
to calculate 
 



   vg = −λ2 dν
dλ

=
3
2

2πT
ρλ

 

 
4. For deep gravity waves,  
 

ν = g / 2πλ−1/2  

from which we get, in exactly the same way  vg =
1
2

λg
2π

. 

 
5. With ω = hk2/2m, β = h/m and with the original width of the packet w(0) = √2α, we 

have  
 

  

w(t)
w(0)

= 1+
β 2t2

2α 2 = 1 +
h2t2

2m 2α 2 = 1 +
2h2t2

m 2w4 (0)
 

 
(a) With t = 1 s, m = 0.9 x 10-30 kg and w(0) = 10-6 m, the calculation yields w(1) = 1.7 x 

102 m 
With w(0) = 10-10 m, the calculation yields w(1) = 1.7 x 106 m. 
These are very large numbers. We can understand them by noting that the characteristic 
velocity associated with a particle spread over a range Δx is v = h/mΔx and here m is very 
small. 
(b) For an object with mass 10-3 kg and w(0)= 10-2 m, we get 
 

  

2h2t2

m2w4 (0)
=

2(1.05 ×10−34 J.s)2 t2

(10−3 kg)2 × (10−2m)4 = 2.2 ×10−54  

 
for t = 1. This is a totally negligible quantity so that w(t) = w(0). 
 
6. For the 13.6 eV electron v /c = 1/137, so we may use the nonrelativistic expression 

for the kinetic energy. We may therefore use the same formula as in problem 5, that is 
 

  

w(t)
w(0)

= 1+
β 2t2

2α 2 = 1 +
h2t2

2m 2α 2 = 1 +
2h2t2

m 2w4 (0)
 

 
We caclulate t for a distance of 104 km = 107 m, with speed (3 x 108m/137) to be 4.6 s. 
We are given that w(0) = 10-3 m. In that case 
 

 w(t) = (10−3 m) 1 +
2(1.05 ×10−34 J.s)2 (4.6s)2

(0.9 ×10−30kg)2(10−3 m)4 = 7.5 ×10−2 m  

 
For a 100 MeV electron E = pc to a very good approximation. This means that β = 0 and 
therefore the packet does not spread. 
 



7. For any massless particle E = pc so that β= 0 and there is no spreading. 
 
8. We have 
 

  

φ( p) =
1
2πh

dxAe−μ |x|e−ipx/ h

−∞

∞

∫ =
A
2πh

dxe(μ −ik )x

−∞

0

∫ + dxe−(μ +ik )x

0

∞

∫{ }
=

A
2πh

1
μ − ik

+
1

μ + ik
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

=
A
2πh

2μ
μ 2 + k2

 

 
where k = p/h. 
 

9. We want  

 dxA2

−∞

∞

∫ e−2μ|x | = A2 dxe2μx + dxe−2μx

0

∞

∫−∞

0

∫{ }= A2 1
μ

=1 

so that 
   A = μ  
 
10.   Done in text.  
 
11. Consider the Schrodinger equation with V(x) complex. We now have 
 

 
  

∂ψ (x,t)
∂t

=
ih
2m

∂ 2ψ (x,t)
∂x 2 −

i
h

V (x)ψ (x, t)  

and 
 

 
  

∂ψ *(x,t)
∂t

= −
ih
2m

∂ 2ψ *(x,t)
∂x 2 +

i
h

V *(x)ψ (x, t)  

 
Now 
 

  

∂
∂t

(ψ *ψ ) =
∂ψ *

∂t
ψ +ψ *

∂ψ
∂t

= (−
ih

2m
∂ 2ψ *
∂x 2 +

i
h

V * (x)ψ*)ψ +ψ * (
ih
2m

∂ 2ψ (x,t)
∂x2 −

i
h

V (x)ψ (x,t))

= −
ih
2m

(
∂ 2ψ *
∂x 2 ψ −ψ *

∂ 2ψ (x, t)
∂x 2 ) +

i
h

(V *−V )ψ *ψ

= −
ih
2m

∂
∂x

∂ψ *
∂x

ψ −ψ *
∂ψ
∂x

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

+
2ImV (x)

h
ψ *ψ

 

 
Consequently 
 



  

∂
∂t

dx |ψ (x,t) |2
−∞

∞

∫ =
2
h

dx(ImV (x)) |ψ (x, t) |2
−∞

∞

∫  

 
We require that the left hand side of this equation is negative. This does not tell us much 
about ImV(x) 
except that it cannot be positive everywhere. If it has a fixed sign, it must be negative. 
 
12. The problem just involves simple arithmetic. The class average  
 

  〈g〉 = gng
g
∑ = 38.5  

 

  (Δg)2 = 〈g2〉 − 〈g〉 2 = g2ng
g
∑ − (38.5)2 =  1570.8-1482.3= 88.6 

 
The table below is a result of the numerical calculations for this system 
 
 
g           ng              (g - <g>)2/(Δg)2 = λ                e-λ                       Ce-λ 
60 1               5.22  0.0054  0.097 
55 2  3.07  0.0463  0.833 
50 7  1.49  0.2247  4.04 
45 9  0.48  0.621  11.16 
40 16  0.025  0.975  17.53 
35 13  0.138  0.871  15.66 
30 3  0.816  0.442  7.96 
25 6  2.058  0.128  2.30 
20 2  3.864  0.021  0.38 
15 0  6.235  0.002  0.036 
10 1  9.70  0.0001  0.002 
5 0  12.97  “0”  “0” 
__________________________________________________________  

 
 

(c) We want 
 

1 = 4N 2 dx
sin2 kx

x2−∞

∞

∫ = 4N 2k dt
sin2 t

t2−∞

∞

∫ = 4πN 2k  

 

so that  N =
1

4πk
 

 
(d) We have 
 



〈xn 〉 =
α
π

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

dxx n

−∞

∞

∫ e−αx 2

 

 
Note that this integral vanishes for n  an odd integer, because the rest of the integrand is 
even. 
 
For n = 2m, an even integer, we have 
 

 〈x2m 〉 =
α
π

⎛ 
⎝ 

⎞ 
⎠ 

1/2

=
α
π

⎛ 
⎝ 

⎞ 
⎠ 

1/2

−
d

dα
⎛ 
⎝ 

⎞ 
⎠ 

m

dx
−∞

∞

∫ e−αx 2

=
α
π

⎛ 
⎝ 

⎞ 
⎠ 

1/2

−
d

dα
⎛ 
⎝ 

⎞ 
⎠ 

m π
α

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

 

 

For n = 1 as well as n = 17 this is zero, while for n = 2, that is, m = 1, this is 
1

2α
. 

 

(e)  
  
φ( p) =

1
2πh

dxe− ipx/ h

−∞

∞

∫ α
π

⎛ 
⎝ 

⎞ 
⎠ 

1/4

e−αx 2 /2  

 
The integral is easily evaluated by rewriting the exponent in the form 
 

  
−

α
2

x 2 − ix
p
h

= −
α
2

x +
ip
hα

⎛ 
⎝ 

⎞ 
⎠ 

2

−
p2

2h2α
 

 
A shift in the variable x allows us to state the value of the integral as and we end up with 
 

 
  
φ( p) =

1
πh

π
α

⎛ 
⎝ 

⎞ 
⎠ 

1/4

e− p2 / 2αh 2

 

 
We have, for n even, i.e. n = 2m, 
 

 

  

〈p2m〉 =
1
πh

π
α

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

dpp2me− p2 /αh 2

−∞

∞

∫ =

=
1

πh

π
α

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

−
d

dβ
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

m
π
β

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1/2  

 

where at the end we set  
  
β =

1
αh2 . For odd powers the integral vanishes. 

Specifically for m = 1 we have  We have 

 

  

(Δx)2 = 〈x2 〉 = 1
2α

(Δp)2 = 〈p2〉 =
αh2

2

 

 



so that  
  
ΔpΔx =

h

2
. This is, in fact, the smallest value possible for the product of the 

dispersions. 
 
 
24.  We have 

  

  

dxψ *(x)xψ (x) =
1

2πh−∞

∞

∫ dxψ * (x)x dpφ( p)eipx/ h

−∞

∞

∫−∞

∞

∫

= 1
2πh

dxψ * (x) dpφ(p) h

i−∞

∞

∫−∞

∞

∫ ∂
∂p

eipx/h = dpφ * (p)ih ∂φ(p)
∂p−∞

∞

∫
 

 
In working this out we have shamelessly interchanged orders of integration. The 
justification of this is that the wave functions are expected to go to zero at infinity faster 
than any power of x , and this is also true of the momentum space wave functions, in their 
dependence on p. 
 

 



 
CHAPTER 3. 
 
1. The linear operators are (a), (b), (f) 
 
2.We have 
 

dx ' x 'ψ (x ') = λψ (x)
−∞

x

∫  
 

To solve this, we differentiate both sides with respect to x, and thus get 
 

  λ
dψ (x)

dx
= xψ (x) 

 
A solution of this is obtained by writing dψ /ψ = (1/ λ )xdx   from  which we can 
immediately state that 
 
   ψ (x) = Ceλx 2 / 2  
 
The existence of  the integral that defines O6ψ(x) requires that λ < 0. 
 
3, (a) 

  

O2O6ψ (x) − O6O2ψ (x)

= x
d
dx

dx ' x 'ψ (x ') −
−∞

x

∫ dx ' x '2
dψ (x ')

dx '−∞

x

∫

= x2ψ(x) − dx '
d

dx '−∞

x

∫ x '2 ψ(x ')( )+ 2 dx ' x 'ψ (x')
−∞

x

∫
= 2O6ψ (x)

 

 
Since this is true for every ψ(x) that vanishes rapidly enough at infinity, we conclude that 
 
   [O2 , O6] = 2O6 
 
(b)    
 

  

O1O2ψ(x) − O2O1ψ (x)

= O1 x
dψ
dx

⎛ 
⎝ 

⎞ 
⎠ − O2 x 3ψ( )= x 4 dψ

dx
− x

d
dx

x3ψ( )
= −3x3ψ(x) = −3O1ψ (x)

 

so that 
 
  [O1, O2] = -3O1 

 



4.   We need  to  calculate 

 

〈x2 〉 =
2
a

dxx 2 sin2 nπx
a0

a

∫  

With  πx/a = u  we have 
 

 〈x2 〉 =
2
a

a3

π 3 duu2 sin2 nu =
a2

π 30

π

∫ duu2

0

π

∫ (1− cos2nu)  

 
The first integral is simple. For the second integral we use the fact that 
 

 
duu2 cosαu = −

d
dα

⎛ 
⎝ 

⎞ 
⎠ 0

π

∫
2

ducosαu = −
0

π

∫ d
dα

⎛ 
⎝ 

⎞ 
⎠ 

2 sinαπ
α  

At the end we set α = nπ. A little algebra leads to 
 

  〈x2 〉 =
a2

3
−

a2

2π 2n2  

 

For large n we therefore get Δx =
a
3

.  Since 
 
〈p2〉 =

h2n2π 2

a2 , it follows that 

  
Δp =

hπn
a

, so that 

 

   
  
ΔpΔx ≈

nπh

3
 

 
The product of the uncertainties thus grows as n increases. 
 

5. With 
  
En =

h2π 2

2ma 2 n2  we can calculate 

 

E2 − E1 = 3
(1.05 ×10−34 J .s)2

2(0.9 ×10−30kg)(10−9 m)2
1

(1.6 ×10−19J / eV )
= 0.115eV  

 

We have ΔE =
hc
λ

 so that 
  
λ =

2πhc
ΔE

=
2π (2.6 ×10−7 ev.m)

0.115eV
=1.42 ×10−5m  

 
where we have converted   hc  from J.m units to eV.m units. 
 



6. (a) Here we write  
 

  
n2 =

2ma 2E
h2π 2 =

2(0.9 ×10−30kg)(2 ×10−2 m)2 (1.5eV )(1.6 ×10−19J / eV )
(1.05 ×10−34 J .s)2π 2 = 1.59 ×1015

 
so that n = 4 x 107 . 
 
(b) We have  
 

  

  

ΔE = h2π 2

2ma2 2nΔn = (1.05 ×10−34 J.s)2π 2

2(0.9 ×10−30kg)(2 ×10−2 m)2 2(4 ×107) =1.2 ×10−26J

= 7.6 ×10−8eV
 

 
7. The longest wavelength corresponds to the lowest frequency. Since ΔE is 

proportional to (n + 1)2 – n2 = 2n + 1, the lowest value corresponds to n = 1 (a state 
with n = 0 does not exist). We therefore have 

 

  
h

c
λ

= 3
h2π 2

2ma2  

If we assume that we are dealing with electrons of mass m = 0.9 x 10-30 kg, then 
 

  
  
a2 =

3hπλ
4mc

=
3π (1.05 ×10−34 J.s)(4.5 ×10−7 m)

4(0.9 ×10−30kg)(3×108 m / s)
= 4.1×10−19 m2  

so that a = 6.4 x 10-10 m. 
 

8. The solutions for a box of width a have energy eigenvalues 
 
En =

h2π 2n2

2ma 2  with  

n = 1,2,3,…The odd integer solutions correspond to solutions even under x → −x , while 
the even integer solutions correspond to solutions that are odd under reflection. These 
solutions vanish at x = 0, and it is these solutions that will satisfy the boundary conditions 
for the “half-well” under consideration. Thus the energy eigenvalues are given by En 
above with n even. 
 
9. The general solution is  
 

  
ψ (x, t) = Cn un (x)e− iE nt /h

n =1

∞

∑  

 
with the Cn defined by  
 
   Cn = dxun

* (x)ψ (x,0)
− a/ 2

a /2

∫  
 



(a) It is clear that the wave function does not remain localized on the l.h.s. of the box at 
later times, since the special phase relationship that allows for a total interference for 
x > 0 no longer persists for t ≠ 0. 

 

(b) With our wave function we have  Cn =
2
a

dxun (x)
−q /2

0

∫ .We may work this out by 

using the solution of the box extending from x = 0 to x = a, since the shift has no 
physical consequences. We therefore have 

 

Cn =
2
a

dx
2
a0

a/ 2

∫ sin
nπx
a

=
2
a

−
a

nπ
cos

nπx
a

⎡ 
⎣ 

⎤ 
⎦ 0

a /2

=
2

nπ
1− cos

nπ
2

⎡ 
⎣ 

⎤ 
⎦ 
 

 

Therefore P1 =| C1 |2 =
4

π 2  and P2 =| C2 |2 =
1

π 2 | (1− (−1)) |2 =
4
π 2  

 
10. (a) We use the solution of the above problem to get 
 

Pn =| Cn |2 =
4

n2π 2 fn  

 
where fn   = 1 for n = odd integer; fn = 0 for n = 4,8,12,…and fn = 4  for n = 2,6,10,… 
 
(b)  We have 
 

Pn
n=1

∞

∑ =
4
π 2

1
n2

odd
∑ +

4
π 2

4
n2

n= 2,6,10,,,
∑ =

8
π 2

1
n2 = 1

odd
∑  

 
Note. There is a typo in the statement of the problem. The sum should be restricted to 
odd integers. 
 
11. We work this out by making use of an identity. The hint tells us that 
 

(sin x)5 =
1
2i

⎛ 
⎝ 

⎞ 
⎠ 

5

(eix − e−ix)5 =
1

16
1
2i

(e5ix − 5e3ix +10eix −10e− ix + 5e−3ix − e−5ix )

=
1
16

(sin5x − 5sin 3x +10sin x)
 

Thus 
 

  ψ (x,0) = A
a
2

1
16

u5 (x) − 5u3(x) +10u1(x)( ) 

 
(a) It follows that 

 



  
ψ (x, t) = A

a
2

1
16

u5 (x)e− iE 5t /h − 5u3 (x)e−iE 3t /h +10u1(x)e−iE1t / h( ) 

 
(b) We can calculate A by noting that dx |ψ (x,0) |2 =1

0

a

∫ . This however is equivalent 
to the statement that the sum of the probabilities of finding any energy eigenvalue 
adds up to 1. Now we have 

 

P5 =
a
2

A2 1
256

;P3 =
a
2

A2 25
256

;P1 =
a
2

A2 100
256

 

 
so that  
 

   A2 =
256
63a

 

 
The probability of finding the state with energy E3  is 25/126. 
 

12. The initial wave function vanishes for x ≤ -a and for x ≥ a. In the region in between it 

is proportional to cos
πx
2a

, since this is the first nodeless trigonometric function that 

vanishes at x = ± a. The normalization constant is obtained by requiring that 
 

1 = N 2 dx cos2

− a

a

∫
πx
2a

= N 2 2a
π

⎛ 
⎝ 

⎞ 
⎠ ducos2 u = N 2a

−π / 2

π /2

∫  

 

so that N =
1
a

. We next expand this in eigenstates of the infinite box potential with 

boundaries at x = ± b. We write 
 

  
1
a

cos
πx
2a

= Cn
n =1

∞

∑ un (x;b) 

 
so that  
 

   Cn = dxun (x;b)ψ (x) = dx
− a

a

∫− b

b

∫ un (x;b)
1
a

cos
πx
2a

 

 
In particular, after a little algebra, using cosu cosv=(1/2)[cos(u-v)+cos(u+v)], we get 
  
 



  
C1 =

1
ab

dx cos
πx
2b−a

a

∫ cos
πx
2a

=
1

ab
dx

1
2−a

a

∫ cos
πx(b − a)

2ab
+ cos

πx(b + a)
2ab

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

=
4b ab

π(b2 − a2 )
cos

πa
2b

 

 
so that  

  P1 =| C1 |2 =
16ab3

π 2 (b2 − a2)2 cos2 πa
2b

 

 
The calculation of C2 is trivial. The reason is that while ψ(x) is an even function of x,  
u2(x) is an odd function of x, and the integral over an interval symmetric about x = 0 is 
zero. Hence P2 will 
 be zero. 
 
13. We first calculate 
 

  

φ( p) = dx
2
a

sin
nπx

a0

a

∫ eipx/ h

2πh
=

1
i

1
4πha

dxeix (nπ /a + p /h )

0

a

∫ − (n ↔ −n)⎛ 
⎝ 

⎞ 
⎠ 

=
1

4πha
eiap /h (−1)n −1
p / h − nπ / a

−
eiap / h (−1)n −1
p / h + nπ / a

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

=
1

4πha
2nπ / a

(nπ / a)2 − (p /h)2 (−1)n cos pa / h −1+ i(−1)n sin pa / h{ }

 

 
From this we get 
 

 
  

P( p) =| φ(p) |2=
2n2π
a3h

1− (−1)n cos pa / h

(nπ / a)2 − (p / h)2[ ]2  

 
The function P(p) does not go to infinity at  p = nπh / a , but if definitely peaks there. If 
we write   p / h = nπ / a +ε , then the numerator becomes 1− cosaε ≈ a2ε 2 / 2 and the 

denominator becomes (2nπε / a)2 , so that at the peak
 
P

nπh

a
⎛ 
⎝ 

⎞ 
⎠ = a / 4πh .  The fact that the 

peaking occurs at  
 

   
  

p2

2m
=

h2π 2n2

2ma2  

 
suggests agreement with the correspondence principle, since the kinetic energy of the 
particle is, as the r.h.s. of this equation shows, just the energy of a particle in the infinite 
box of width a. To confirm this, we need to show that the distribution is strongly peaked 
for large n. We do this by looking at the numerator, which  vanishes when aε = π / 2, that 
is, when   p / h = nπ / a +π / 2a = (n +1 / 2)π / a . This implies that the width of the 



distribution is   Δp = πh / 2a . Since the x-space wave function is localized to 0 ≤ x ≤ a we 
only know that Δx = a. The result  ΔpΔx ≈ (π / 2)h  is consistent with the uncertainty 
principle. 
 
14. We calculate 
 

  

  

φ( p) = dx
α
π

⎛ 
⎝ 

⎞ 
⎠ −∞

∞

∫
1/4

e−αx 2 / 2 1
2πh

e− ipx/ h

=
α
π

⎛ 
⎝ 

⎞ 
⎠ 

1/ 4 1
2πh

⎛ 
⎝ 

⎞ 
⎠ 

1/2

dxe−α (x − ip/αh )2

−∞

∞

∫ e− p 2 /2αh 2

=
1

παh2

⎛ 
⎝ 

⎞ 
⎠ 

1/ 4

e− p2 / 2αh 2

 

 
From this we find that the probability the momentum is in the range (p, p + dp) is 
 

 
  
| φ( p) |2 dp =

1
παh2

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

e− p2 /αh 2

 

 
To get the expectation value of the energy we need to calculate 
 

 

  

〈
p2

2m
〉 =

1
2m

1
παh2

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

dpp2e− p2 /αh 2

−∞

∞

∫

=
1

2m
1

παh2

⎛ 
⎝ 

⎞ 
⎠ 

1/2 π
2

(αh2 )3/ 2 =
αh2

2m

 

 
An estimate on the basis of the uncertainty principle would use the fact that the “width”  
of the packet is1 / α . From this we estimate  Δp ≈ h / Δx = h α , so that  
 

  
  
E ≈

(Δp)2

2m
=

αh2

2m
 

 
The exact agreement is fortuitous, since both the definition of the width and  
the numerical statement of the uncertainty relation are somewhat elastic. 
 
 
 
 
 
 
 
 
 



 
 
 
 
15. We have 
 
 

  

j(x) =
h

2im
ψ * (x)

dψ (x)
dx

−
dψ *(x)

dx
ψ (x)

⎛ 
⎝ 

⎞ 
⎠ 

=
h

2im
(A * e−ikx + B *eikx )(ikAeikx − ikBe−ikx ) − c.c)[ ]

=
h

2im
[ik | A |2 −ik | B |2 +ikAB *e2ikx − ikA* Be −2ikx

− (−ik ) | A |2 −(ik) | B |2 −(−ik)A * Be −2ikx − ikAB *e2ikx ]

=
hk
m

[| A |2 − | B |2 ]

  

 
This is a sum of a flux to the right associated with A eikx  and a flux to the left associated 
with Be-ikx.. 
 
16. Here  
 

 

  

j(x) =
h

2im
u(x)e− ikx(iku(x)eikx +

du(x)
dx

eikx) − c.c⎡ 
⎣ 

⎤ 
⎦ 

=
h

2im
[(iku2 (x) + u(x)

du(x)
dx

) − c.c] =
hk
m

u2 (x)
 

 

(c) Under the reflection x  -x  both x and p = 
 
−ih

∂
∂x

 change sign, and since the 

function consists of an odd power of x and/or p, it is an odd function of x. Now the 
eigenfunctions for a box symmetric about the x axis have a definite parity. So that 

un (−x) = ±un (x). This implies that the integrand is antisymmetric under x  - x. 
Since the integral is over an interval symmetric under this exchange, it is zero. 

 
(d) We need to prove that 
 

dx(Pψ (x))*ψ(x) =
−∞

∞

∫ dxψ (x)* Pψ (x)
−∞

∞

∫  
 

The left hand side is equal to  
 



 dxψ *(−x)ψ (x) =
−∞

∞

∫ dyψ * (y)ψ(−y)
−∞

∞

∫  
 
with a change of variables x -y , and this is equal to the right hand side. 
 
The eigenfunctions of P with eigenvalue +1 are functions for which u(x) = u(-x), while  
 
those with eigenvalue –1 satisfy v(x) = -v(-x). Now the scalar product is  
 
 dxu *(x)v(x) = dyu *(−x)v(−x) = − dxu *(x)v(x)

−∞

∞

∫−∞

∞

∫−∞

∞

∫  
 
so that 
  dxu *(x)v(x) = 0

−∞

∞

∫  
 
(e) A simple sketch of  ψ(x) shows that it is a function symmetric about x = a/2. 
 This means that the integral dxψ (x)un (x)

0

a

∫  will vanish for the un(x) which are odd 
under the reflection about this axis. This means that the integral vanishes for n = 2,4,6,…  
    
 
 
  
 

 
 
 
 
  

    
  
   

 
 
 
 

 
 

 
 

 
  

    
  



   



CHAPTER 4. 
 
 
1. The solution to the left side of the potential region is ψ (x) = Aeikx + Be−ikx .  
As shown in  Problem 3-15, this corresponds to a flux 
 

  
  
j(x) =

hk
m

| A |2 − | B |2( ) 

 
The solution on the right side of the potential is ψ (x) = Ceikx + De−ikxx , and 
as above, the flux is 
 

  
  
j(x) =

hk
m

| C |2 − | D |2( ) 

Both fluxes are independent of x. Flux conservation implies that the two  
are equal, and this leads to the relationship 
 
  | A |2 + | D |2=| B |2 + | C |2  
 
If we now insert  
 

  
C = S11A + S12D
B = S21A + S22D

 

 
into the above relationship we get 
 
| A |2 + | D |2= (S21A + S22D)(S21

* A * +S22
* D*) + (S11A + S12D)(S11

* A * +S12
* D*)  

 
Identifying the coefficients of |A|2 and |D|2, and setting the coefficient of 
AD* equal to zero yields 
 

  

| S21 |2 + | S11 |2= 1

| S22 |2 + | S12 |2= 1
S12S22

* + S11S12
* = 0

 

 
Consider now the matrix  
 

  Str =
S11 S21

S12 S22

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
The unitarity of this matrix implies that  
 



 
S11 S21

S12 S22

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ S11

* S12
*

S21
* S22

*

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ =

1 0
0 1

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
that is, 

 
| S11 |2 + | S21 |2=| S12 |2 + | S22 |2 =1

S11S12
* + S21S22

* = 0
 

 
These are just the conditions obtained above. They imply that the matrix Str 
is unitary, and therefore the matrix S is unitary. 
 
2. We have solve the problem of finding R and T  for this potential well in 

the text.We take V0 < 0. We dealt with wave function of the form   
 

eikx + Re−ikx x < −a

Teikx x > a
 

In the notation of Problem 4-1, we have found that if A = 1 and D = 0, then 
C = S11 = T  and B = S21 = R.. To find the other elements of the S matrix we 
need to consider the same problem with A = 0 and D = 1. This can be 
solved explicitly by matching wave functions at the boundaries of the 
potential hole, but it is possible to take the solution that we have and reflect 
the “experiment” by the interchange x  - x. We then find that S12 = R and 
S22 = T. We can easily check that 
 

 
| S11 |2 + | S21 |2=| S12 |2 + | S22 |2 =| R |2 + | T |2= 1

 

Also 
S11S12

* + S21S22
* = TR* +RT* = 2Re(TR*) 

 
If we now look at the solutions for T and R in the text we see that the 
product of T and R* is of the form (-i) x (real number), so that its real part 
is zero. This confirms that the S matrix here is unitary. 
 
3. Consider the wave functions on the left and on the right to have the 

forms 
ψ L(x) = Ae ikx + Be− ikx

ψ R (x) = Ceikx + De−ikx  

 
Now, let us make the change  k  - k and  complex conjugate everything. 
Now the two wave functions read 
 



   
ψ L(x)'= A *eikx + B *e− ikx

ψ R (x)'= C * eikx + D* e−ikx  

 
Now complex conjugation and the transformation k  - k  changes the 
original relations to  
 

  
C* = S11

* (−k)A * +S12
* (−k)D*

B* = S21
* (−k)A * +S22

* (−k)D*
 

 
On the other hand, we are now relating outgoing amplitudes C*, B* to 
ingoing amplitude A*, D*, so that the relations of problem 1 read 
 

  
C* = S11(k)A * +S12(k)D*
B* = S21(k)A * +S22(k)D*

 

 
This shows that S11(k) = S11

* (−k); S22(k) = S22
* (−k); S12(k) = S21

* (−k) . These 

result may be written in the matrix form  S(k) = S+ (−k) . 
 
4. (a) With the given flux, the wave coming in  from  x = −∞ , has the 

form    eikx , with unit amplitude. We now write the solutions in the 
various regions 

 

  

x < b eikx + Re− ikx k 2 = 2mE / h2

−b < x < −a Aeκx + Be−κx κ 2 = 2m(V0 − E) /h2

−a < x < c Ceikx + De− ikx

c < x < d Meiqx + Ne−iqx q2 = 2m(E + V1) / h2

d < x Teikx

 

(b) We now have  
 

  

x < 0 u(x) = 0

0 < x < a Asinkx k 2 = 2mE / h2

a < x < b Beκx + Ce−κx κ 2 = 2m(V0 − E ) / h2

b < x e−ikx + Reikx

 

The fact that there is total reflection at x = 0 implies that |R|2 = 1 
 



5.  The denominator in (4-    ) has the form 
 
 D = 2kq cos2qa − i(q2 + k2 )sin2qa  
 
With k = iκ  this becomes 
 
 D = i 2κqcos2qa − (q2 −κ 2 )sin2qa( ) 
 
The denominator vanishes when 
 

 tan2qa =
2tanqa

1− tan2 qa
=

2qκ
q2 −κ 2  

 
This implies that 
 

 tanqa = −
q2 −κ 2

2κq
± 1 +

q2 −κ 2

2κq
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

= −
q2 −κ 2

2κq
±

q2 +κ 2

2κq
 

 
This condition is identical with  (4-   ). 
 
The argument why this is so, is the following: When k = iκ  the 
wave functio on the left has the form e−κx + R(iκ )eκx . The function 
e-κx blows up as x → −∞  and the wave function only make sense if 
this term is overpowered by the other term, that is when R(iκ ) = ∞ . 
We leave it to the student to check that the numerators are the same 
at k = iκ. 
 
6.  The solution is    u(x) = Aeikx + Be-ikx        x < b 
       = Ceikx  + De-ikx      x > b  
 
The continuity condition at x = b leads to  
 
      Aeikb  + Be-ikb  = Ceikb + De-ikb 
 
And the derivative condition is 

  
                       (ikAeikb –ikBe-ikb) - (ikCeikb –ikDe-ikb)= (λ/a)( Aeikb  + Be-ikb) 
 
 With the notation 
 
  Aeikb = α ; Be-ikb = β; Ceikb = γ; De-ikb = δ 
 
 These equations read 
 



                         α + β = γ + δ 
 
   ik(α - β + γ - δ) = (λ/a)(α + β) 
 
 We can use these equations to write (γ,β) in terms of (α,δ) as follows 
 

   
γ =

2ika
2ika − λ

α +
λ

2ika − λ
δ

β =
λ

2ika − λ
α +

2ika
2ika − λ

δ
 

 
We can now rewrite these in terms of A,B,C,D and we get for the S matrix 
 

  S =

2ika
2ika− λ

λ
2ika − λ

e−2ikb

λ
2ika − λ

e2ikb 2ika
2ika− λ

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
 

 
Unitarity is easily established: 
 

 
| S11 |2 + | S12 |2= 4k 2a2

4k2a2 + λ2 + λ2

4k2a2 + λ2 = 1

S11S12
* + S12S22

* =
2ika

2ika − λ
⎛ 
⎝ 

⎞ 
⎠ 

λ
−2ika− λ

e−2ikb⎛ 
⎝ 

⎞ 
⎠ +

λ
2ika − λ

e−2ikb⎛ 
⎝ 

⎞ 
⎠ 

−2ika
−2ika − λ

⎛ 
⎝ 

⎞ 
⎠ = 0

 

 
The matrix elements become infinite when 2ika =λ. In terms of κ= -ik, this condition 
becomes κ = -λ/2a = |λ|/2a. 
 
7. The exponent in T = e-S  is 
 

  

S =
2
h

dx 2m(V (x) − E)
A

B

∫

=
2
h

dx (2m(
mω 2

2
(x 2 −

x 3

a
)) −

hω
2A

B

∫
 

 
where A and B are turning points, that is, the points at which the quantity 
under the square root sign vanishes.  
We first simplify the expression by changing to dimensionless variables: 
 
   

  
x = h / mω y; η = a / h / mω << 1 

 
The integral becomes 
 



  2 dy y2 −ηy 3 −1
y1

y2∫                  with  η <<1 

 
where now y1 and y2 are the turning points. A sketch of the potential shows 
that y2 is very large. In that region, the –1 under the square root can be 
neglected, and to a good approximation y2 = 1/η. The other turning point 
occurs for y not particularly large, so that we can neglect the middle term 
under the square root, and the value of y1 is 1. Thus we need to estimate 
 
   dy y2 −ηy 3 −1

1

1/η

∫  
 
The integrand has a maximum at 2y – 3ηy2= 0, that is at y = 2η/3. We 
estimate the contribution from that point on by neglecting the –1 term in 
the integrand. We thus get 
 

  dyy 1−ηy
2/ 3η

1/η

∫ =
2
η2

(1− ηy)5/ 2

5
−

(1− ηy)3/ 2

3
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
2/3η

1/η

=
8 3
135

1
η2  

 
To estimate the integral in the region 1 < y < 2/3η is more difficult. In any 
case, we get a lower limit on S by just keeping the above, so that 
 
    S > 0.21/η2 
 
The factor eS  must be multiplied by a characteristic time for the particle to 
move back and forth inside the potential with energy  hω / 2 which is 
necessarily of order 1/ω.  Thus the estimated time is longer 

than
const.

ω
e0.2/η 2

. 

8. The barrier factor is eS  where 
 

  
S =

2
h

dx
h2l(l +1)

x 2 − 2mE
R0

b

∫  

 
where b is given by the value of x at which the integrand vanishes, that is, 
with 2mE/  h2 =k2, b = l(l +1) / k .We have, after some algebra 
 

   

S = 2 l(l +1)
du
uR0 / b

1

∫ 1− u2

= 2 l(l +1) ln
1+ 1− (R0 / b)2

R0 / b
− 1− (R0 / b)2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

 

 
We now introduce the variable f = (R0/b) ≈ kR0 / l  for large l. Then 
 



   eS eS =
1+ 1− f 2

f

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2l

e−2l 1− f 2

≈
e
2

⎛ 
⎝ 

⎞ 
⎠ 

−2l

f −2l  

    
for f << 1. This is to be multiplied by the time of traversal inside the box. 
The important factor is f-2l.  It tells us that the lifetime is proportional to 
(kR0)-2l  so that it grows as a power of l  for small k. Equivalently we can 
say that the probability of decay falls as (kR0)2l. 
 
9. The argument fails because the electron is not localized inside the 

potential. In fact, for weak binding, the electron wave function extends 
over a region R = 1/α =   h 2mEB , which, for weak binding is much 
larger than a. 

 
10. For a bound state, the solution for x > a must be of the 

form u(x) = Ae −αx ,    where   α = 2mEB / h . Matching 
1
u

du
dx

at x = a  

 
yields  −α = f (EB ).  If f(E) is a constant, then we immediately know α.. Even if f(E) 
varies only slightly over the energy range that overlaps small positive E, we can 
determine the binding energy in terms of the reflection coefficient. For positive energies 
the wave function u(x)  for x > a has the form e-ikx  + R(k)eikx, and matching yields 
 

     
f (E ) ≈ −α = −ik

e− ika − Re ika

e−ika + Re ika = −ik
1− Re2ika

1 + Re2ika  

so that 
 

R = e−2ika k + iα
k − iα

 

 
We see that |R|2 = 1. 
 
11. Since the well is symmetric about x = 0, we need only match wave functions at x = b 
and a. We look at E < 0, so that we introduce and α2 = 2m|E|/  h

2  and  
       q2 = 2m(V0-|E|)/  h2 . We now write down 
Even solutions: 
      u(x)  =  coshαx  0 < x < b 
    = A sinqx + B cosqx      b < x < a  
                = C e-αx     a < x 
 
 

Matching 
1

u(x)
du(x)

dx
 at x = b and at x = a leads to the equations 

 



α tanhαb = q
Acosqb − Bsinqb
Asinqb + B cosqb

−α = q Acosqa − Bsnqa
Asinqa + B cosqa

 

 
From the first equation we get 
 

   
B
A

=
qcosqb −α tanhαbsinqb
qsinqb +α tanhαbcosqb

 

 
and from the second 
 

   
B
A

=
qcosqa +α sinqa
qsinqa −α cosqa

 

 
Equating these, cross-multiplying, we get after a little algebra 
 
q2 sinq(a − b) − αcosq(a − b) = α tanhαb[αsinq(a − b) + qcosq(a − b)] 
 
from which it immediately follows that 
 

   
sinq(a − b)
cosq(a − b)

=
αq(tanhαb +1)
q2 − α 2 tanhαb

 

Odd Solution 
 
Here the only difference is that the form for u(x) for 0  <  x < b   is sinhαx. 
The result of this is that we get the same expresion as above, with tanhαb  
replaced by cothαb. 
 
11. (a) The condition that there are at most two bound states is equivalent 

to stating that there is at most one odd bound state. The relevant figure 
is Fig. 4-8, and we ask for the condition that there be no intersection 
point with the tangent curve that starts up at 3π/2. This means that  

 
λ − y2

y
= 0 

for y ≤ 3π/2. This translates into λ  =  y2 with y < 3π/2, i.e. λ  < 9π2/4. 
(b) The condition that there be at most three bound states implies that there 
be at most two even bound states, and the relevant figure is 4-7. Here the 
conditon is that y < 2π so that λ < 4π2. 
 



(c) We have y = π so that the second even bound state have zero binding 
energy. This means that λ = π2. What does this tell us about the first bound 
state? All we know is that y is a solution of Eq. (4-54) with λ = π2.   
Eq.(4-54) can be rewritten as follows: 
 

 tan2 y =
1− cos2 y

cos2 y
=

λ − y2

y2 =
1− (y2 / λ )

(y 2 / λ)
 

 
so that the even condition is cos y = y / λ , and in the same way, the odd 
conditin is sin y = y / λ .  Setting λ = π  still leaves us with a 
transcendental equation. All we can say is that the binding energy f the 
even state will be larger than that of the odd one. 
 
13.(a)  As b  0, tanq(a-b)  tanqa and the r.h.s. reduces to α/q. Thus we 
get, for the even solution 
 

tanqa = α/q  
and, for the odd solution, 
     tanqa  = - q/α. 
 
These are just the single well conditions. 
(b) This part is more complicated. We introduce notation c = (a-b), which 
will be held fixed. We will also use the notation z = αb. We will also use 
the subscript “1” for the even solutions, and “2” for the odd solutions. For b 
large, 
 

   
tanhz =

ez − e− z

ez + e−z =
1− e−2z

1 + e−2z ≈1− 2e−2z

cothz ≈1 = 2e−2z

 

 
The eigenvalue condition for the even solution now reads  
 
  

 tanq1c =
q1α1(1+1− 2e−2z1 )
q1

2 −α1
2(1− 2e−2z1 )

≈
2q1α1

q1
2 − α1

2 (1−
q1

2 + α1
2

q1
2 − α1

2 e−2z1 )  

 
The condition for the odd solution is obtained by just changing the sign of 
the e-2z  term, so that 
 

 tanq2c =
q2α2 (1+1 + 2e−2z2 )

q2
2α2

2(1 + 2e−2z2 )
≈

2q2α 2

q2
2 −α 2

2 (1+
q2

2 +α 2
2

q2
2 −α2

2 e−2z2 )  

 



In both cases q2 + α2 = 2mV0/  h2  is fixed.  The two eigenvalue conditions 
only differ in the e-2z terms, and the difference in the eigenvalues is 
therefore proportional to e-2z , where z here is some mean value between 
α1 b and α2b.  
This can be worked out in more detail, but this becomes an exercise in 
Taylor expansions with no new physical insights. 
 
 
14. We write 
 

〈x
dV (x)

dx
〉 = dxψ(x)x

dV (x)
dx−∞

∞

∫ ψ (x)

= dx
d

dx
ψ 2xV( )− 2ψ

dψ
dx

xV −ψ 2V⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ −∞

∞

∫
 

 
The first term vanishes because ψ  goes to zero rapidly. We next rewrite 
 

  

−2 dx
dψ
dx−∞

∞

∫ xVψ = −2 dx
dψ
dx−∞

∞

∫ x(E +
h2

2m
d2

dx2 )ψ

= −E dxx
dψ 2

dx
−

h2

2m−∞

∞

∫ dxx
d

dx
dψ
dx

⎛ 
⎝ 

⎞ 
⎠ 

2

−∞

∞

∫
 

 
Now 
 

   dxx
dψ 2

dx−∞

∞

∫ = dx
d
dx−∞

∞

∫ xψ 2( )− dxψ 2

−∞

∞

∫  

 
The first term vanishes, and the second term is unity.  We do the same with 
the second term, in which only the second integral 
 

     dx
dψ
dx

⎛ 
⎝ 

⎞ 
⎠ 

2

−∞

∞

∫  

 
remains. Putting all this together we get 
 

 
  
〈x

dV
dx

〉 + 〈V 〉 =
h2

2m
dx

dψ
dx

⎛ 
⎝ 

⎞ 
⎠ 

2

+ E dxψ 2

−∞

∞

∫−∞

∞

∫ = 〈
p2

2m
〉 + E  

 
so that 

       
1
2

〈x
dV
dx

〉 = 〈
p2

2m
〉   

 
 



 
 
 

 
   

 



CHAPTER  5. 
 
 
1. We are given 
 

dx(AΨ(x)) *Ψ(x) =
−∞

∞

∫ dxΨ(x) * AΨ(x)
−∞

∞

∫  
 

Now let  Ψ(x) = φ(x) + λψ (x) , where λ is an arbitrary complex number. Substitution 
into the above equation yields, on the l.h.s. 
 

dx(Aφ(x) + λAψ (x)) *(φ(x) + λψ(x))
−∞

∞

∫
= dx (Aφ) *φ + λ (Aφ)*ψ + λ * (Aψ )*φ + | λ |2 (Aψ )*ψ[ ]

−∞

∞

∫
 

 
On the r.h.s. we get 
 

dx(φ(x) + λψ (x)) *(Aφ(x) + λAψ(x))
−∞

∞

∫
= dx φ * Aφ + λ *ψ * Aφ + λφ * Aψ + | λ |2 ψ * Aψ[ ]

−∞

∞

∫
 

 
 
Because of the hermiticity of A, the first and fourth terms on each side are equal. For the 
rest, sine λ is an arbitrary complex number, the coefficients of λ and λ* are independent , 
and we may therefore identify these on the two sides of the equation. If we consider λ, 
for example, we get 
 
  dx(Aφ(x)) *ψ (x) =

−∞

∞

∫ dxφ(x) * Aψ (x)
−∞

∞

∫  
 
the desired result. 
 
2. We have  A+ = A and B+ = B , therefore (A + B)+ = (A + B). Let us call (A + B) = X. 

We have shown that X is hermitian. Consider now 
 
(X +)n  = X+ X+ X+ …X+ = X X X …X = (X)n    
 

which was to be proved. 
 
3. We have 
 

〈A2〉 = dxψ * (x)A2

−∞

∞

∫ ψ (x) 
 

Now define  Aψ(x) = φ(x). Then the above relation can be rewritten as 



 
〈A2〉 = dxψ (x)Aφ(x) = dx

−∞

∞

∫−∞

∞

∫ (Aψ (x))*φ(x)

= dx
−∞

∞

∫ (Aψ (x))* Aψ (x) ≥ 0
 

 

4. Let U = eiH  = 
inH n

n!n= 0

∞

∑ . Then  U + =
(−i)n (H n )+

n!n= 0

∞

∑ =
(−i)n (H n )

n!n =0

∞

∑ = e− iH , and thus  

 
the hermitian conjugate of  eiH  is  e-iH  provided H = H+.. 
 
5. We need to show that  
 

eiHe−iH =
in

n!n =0

∞

∑ H n (−i)m

m!m = o

∞

∑ H m  = 1 

 
Let us pick a particular coefficient in the series, say k = m + n and calculate its 
coefficient. We get, with m= k – n, the coefficient of Hk  is 
 

  

in

n!n= 0

k

∑ (−i) k−n

(k − n)!
=

1
k!

k!
n!(k − n)!n =0

k

∑ in (−i) k−n

=
1
k!

(i − i)k = 0
 

 
Thus in the product only the m = n = 0 term remains, and this is equal to unity. 
 
6. We write  I(λ,λ*) = dx φ(x) + λψ (x)( )

−∞

∞

∫ * (φ(x) + λψ (x)) ≥ 0. The left hand side, in 
abbreviated notation can be written as 

 
I(λ,λ*) = |φ |2∫ + λ * ψ *φ + λ φ *ψ + λλ * |ψ |2∫∫∫  

 
Since λ and λ* are independent, he minimum value of this occurs when 
 

 

∂I
∂λ *

= ψ *φ + λ |ψ |2∫∫ = 0

∂I
∂λ

= φ *ψ + λ * |ψ |2∫∫ = 0
 

 
When these values of λ and λ* are inserted in the expression for I(λ,λ*) we get 
 

I(λ min,λ min
* ) = |φ |2∫ −

φ *ψ ψ *φ∫∫
|ψ |2∫

≥ 0  



 
from which we get the Schwartz inequality. 
 

7. We have UU+ =   1  and VV+ = 1. Now (UV)+  = V+U+ so that  
 

(UV)(UV)+ = UVV+U+ = UU+  = 1 
 

8. Let Uψ(x) = λψ(x), so that λ is an eigenvalue of U. Since U is unitary, U+U = 1. Now 
 

dx
−∞

∞

∫ (Uψ (x))*Uψ (x) = dxψ *(x)U +Uψ (x) =
−∞

∞

∫
= dxψ * (x)ψ (x) =1

−∞

∞

∫
 

 
On the other hand, using the eigenvalue equation, the integral may be written in the form 
 
  dx

−∞

∞

∫ (Uψ (x))*Uψ (x) = λ *λ dxψ *(x)ψ (x) =| λ |2
−∞

∞

∫  
 
It follows that |λ|2 = 1, or equivalently λ = eia , with a real. 
 
9. We write   
 

dxφ(x) *φ(x) =
−∞

∞

∫ dx
−∞

∞

∫ (Uψ (x))*Uψ (x) = dxψ *(x)U +Uψ (x) =
−∞

∞

∫
= dxψ * (x)ψ (x) =1

−∞

∞

∫
 

 
10. We write, in abbreviated notation 
 

va
*∫ vb = (Uua∫ )*Uub = ua

*∫ U +Uub = ua
*∫ ub = δ ab  

 
11. (a)  We are given A+ = A and B+ = B. We now calculate 
 
(i [A,B])+ = (iAB – iBA)+ = -i (AB)+ - (-i)(BA)+ = -i (B+A+) + i(A+B+) 
 
                = -iBA + iAB = i[A,B] 
 
(b) [AB,C] = ABC-CAB = ABC – ACB + ACB – CAB = A(BC – CB) – (AC – CA)B 
 

      = A [B,C] – [A,C]B 
 

(c) The Jacobi identity written out in detail is 
 
[A,[B,C]] + [B,[C,A]] + [C,[A,B]] =  
 



A(BC – CB) – (BC – CB)A + B(CA – AC) – (CA - AC)B + C(AB – BA) – (AB – BA)C 
 
= ABC – ACB – BCA + CBA + BCA – BAC – CAB + ACB + CAB – CBA – ABC + BAC 
 
It is easy to see that the sum is zero. 
 
12. We have  
 
eA B e-A  = (1 + A + A2/2! + A3/3! + A4/4! +…)B (1 - A + A2/2! - A3/3! + A4/4! -…) 
 
Let us now take the term independent of A: it is B. 
The terms of first order in A are AB – BA = [A,B]. 
The terms of second order in A are  
 
A2B/2! – ABA + BA2/2! = (1/2!)(A2B – 2ABA + BA2) 
 
    = (1/2!)(A(AB – BA) – (AB – BA)A) = (1/2!){A[A,B]-[A,B]A} 
 
               = (1/2!)[A,[A,B]] 
 
The terms of third order in A are A3B/3! – A2BA/2! + ABA2/2! – BA3.  One can again 
rearrange these and show that this term is  (1/3!)[A,[A,[A,B]]]. 
 
There is actually a neater way to do this. Consider  
 
   F(λ) = eλABe−λA  
 
Then 
 

  
dF(λ)

dλ
= eλA ABe−λA − eλA BAe−λA = eλA[A,B]e−λA   

 
Differentiating again we get  
 

  
d2F(λ)

dλ2 = eλA[A,[A,B]]e−λA  

 
and so on. We now use the Taylor expansion to calculate F(1) = eA B e-A. 
 

F(1) = F (0) + F'(0) +
1
2!

F ' '(0) +
1
3!

F ' ' '(0) + ..,

= B+ [A,B] + 1
2!

[A,[A,B]] + 1
3!

[A,[A,[A,B]]] + ...
  

 
13. Consider the eigenvalue equation  Hu = λu. Applying H to this equation we get 
  



H2 u = λ 2u ;  H3 u = λ3u  and H4u = λ4u . We are given that H4 = 1, which means 
that H4 applied to any function yields 1. In particular this means that λ4 = 1. The 
solutions of this are λ = 1, -1, i, and –i. However, H is hermitian, so that the 
eigenvalues are real. Thus only λ = ± 1 are possible eigenvalues. If H is not 
hermitian, then all four eigenvalues are acceptable. 
 
 

14. We have the equations 
 

Bua
(1) = b11ua

(1) + b12ua
(2)

Bua
(2) = b21ua

(1) + b22ua
(2) 

 
Let us now introduce functions (va

(1),va
(2))  that satisfy the equations 

Bva
(1) = b1va

(1);Bva
(2) = b2va

(2). We write, with simplified notation, 
 
    v1 = α u1 + β u2 
    v2 = γ u1 + δ u2 
 
 The b1 - eigenvalue equation reads 
 
      b1v1 = B ( α u1 + β u2) = α (b11 u1 + b12u2) + β (b21u1 + b22u2) 
 
We write the l.h.s. as b1(α u1 + β u2). We can now take the coefficients  
of u1 and u2  separately, and get the following equations 
 
   α (b1 – b11) = βb21 

   β (b1 – b22)  = αb12 
 
The product of the two equations yields a quadratic equation for b1, whose solution is 
 

  b1 =
b11 + b22

2
±

(b11 − b22)2

4
+ b12b21  

 
We may choose the + sign for the b1 eigenvalue. An examination of the equation 
involving v2 leads to an identical equation, and we associate the – sign with the b2 
eigenvalue. Once we know the eigenvalues, we can find the ratios α/β and γ/δ. These 
suffice, since the normalization condition implies that 
 
    α2 + β2 = 1  and γ2 + δ2 = 1 
 
15. The equations of motion for the expectation values are 
 



  

d
dt

〈x〉 =
i
h

〈[H ,x]〉 =
i
h

〈[
p2

2m
, x]〉 =

i
mh

〈 p[ p, x]〉 = 〈
p
m

〉

d
dt

〈p〉 =
i
h

〈[H, p]〉 = −
i
h

〈[p,
1
2

mω1
2x 2 +ω2x]〉 = −mω1

2 〈x〉 −ω2

 

 
16. We may combine the above equations to get 
 

d2

dt2 〈x〉 = −ω1
2〈x〉 −

ω2

m
 

 
The solution of this equation is obtained by introducing the variable 
 

  X = 〈x〉 +
ω2

mω1
2  

 
The equation for X reads  d2X/dt2 = - ω1

2 X, whose solution is  
 
  X = Acosω1   t + Bsinω1  t 
 
This gives us  
 

  〈x〉t = −
ω2

mω1
2 + Acosω1t + B sinω1t  

 
At t = 0   

 
〈x〉0 = −

ω2

mω1
2 + A

〈p〉0 = m d
dt

〈x〉t = 0 = mBω1

 

 
We can therefore write A and B in terms  of the initial values of < x > and 
< p >,  
 

 〈x〉t = −
ω2

mω1
2 + 〈x〉0 +

ω2

mω1
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ cosω1t +

〈p〉 0

mω1
sinω1t  

 
17. We calculate as above, but we can equally well use Eq. (5-53) and (5-57),  
to get 
 

  

d
dt

〈x〉 =
1
m

〈 p〉

d
dt

〈p〉 = −〈
∂V (x, t)

∂x
〉 = eE 0cosωt

 

Finally 



 

  
d
dt

〈H 〉 = 〈
∂H
∂t

〉 = eE0ω sinωt〈x〉  

 
18. We can solve the second of the above equations to get 
 

〈p〉 t =
eE 0

ω
sinωt + 〈p〉 t =0  

 
This may be inserted into the first equation, and the result is 
 

  〈x〉t = −
eE0

mω 2 (cosωt −1) +
〈 p〉t = 0 t

m
+ 〈x〉t = 0  

 
   

 
 
 
 
 
 
 
  
 
 

 
 

   
 
      
 
 
 
 

 

  



CHAPTER 6 
 
19. (a) We have 

A|a> = a|a> 
 

It follows that  
   <a|A|a> = a<a|a> = a 
 
if the eigenstate of A corresponding to the eigenvalue a is normalized to unity.  
The complex conjugate of this equation is 
 
  <a|A|a>* = <a|A+|a> = a* 
 
If A+ = A, then it follows that a = a*, so that a is real. 
 
13. We have  
 

〈ψ | (AB)+ |ψ 〉 = 〈(AB)ψ |ψ 〉 = 〈Bψ | A+ |ψ 〉 = 〈ψ | B+A+ |ψ 〉  
 

This is true for every ψ, so that  (AB)+ = B+A+ 
 
2.                

TrAB = 〈n | AB | n〉 = 〈n | A1B | n〉
n
∑

n
∑

= 〈n | A | m〉〈m | B | n〉 =
m
∑

n
∑ 〈m | B | n〉〈n | A | m〉

m
∑

n
∑

= 〈m | B1A | m〉 =
m
∑ 〈m | BA | m〉 =

m
∑ TrBA

 

 
3. We start with the definition of  |n>  as 
 

| n〉 =
1
n!

(A+)n | 0〉  

 
We now take Eq. (6-47) from the text to see that 
 

A | n〉 =
1
n!

A(A+)n | 0〉 =
n
n!

(A+ )n−1 | 0〉 =
n

(n −1)!
(A+ )n −1 | 0〉 = n | n −1〉  

 

4. Let  f (A+) = Cn
n=1

N

∑ (A+)n . We then use Eq. (6-47) to obtain 

 



Af (A+) | 0〉 = A Cn
n=1

N

∑ (A+)n | 0〉 = nCn (A+)n−1

n=1

N

∑ | 0〉

=
d

dA+ Cn
n =1

N

∑ (A+)n | 0〉 =
df (A+)

dA+ | 0〉
 

 
5. We use the fact that Eq. (6-36) leads to  
 

  

x =
h

2mω
(A + A+ )

p = i mωh

2
(A+ − A)

 

 
We can now calculate 
 

  

〈k | x | n〉 =
h

2mω
〈k | A + A+ | n〉 =

h

2mω
n〈k | n −1〉 + k 〈k −1 | n〉( )

= h

2mω
nδk ,n−1 + n +1δ k ,n+1( )

 

 
which shows that k = n ± 1. 
 
6. In exactly the same way we show that  
 

     
  
〈k | p | n〉 = i

mωh

2
〈k | A+ − A | n〉 = i

mωh

2
( n +1δk ,n+1 − nδ k,n −1)  

 
7. Let us now calculate  
 

〈k | px | n〉 = 〈k | p1x | n〉 = 〈k | p | q〉〈q | x | n〉
q
∑  

We may now use the results of problems 5 and 6. We get for the above 
 

  

ih
2

( k
q
∑ δ k −1,q − k +1δk +1,q )( nδq ,n−1 + n +1δ q ,n+1)

=
ih
2

( knδkn − (k +1)nδ k+1,n−1 + k(n +1)δ k −1,n +1 − (k +1)(n +1)δ k+1,n+1)

=
ih
2

(−δ kn − (k +1)(k + 2)δ k +2,n + n(n + 2)δ k,n +2 )

 

 
To calculate 〈k | xp | n〉  we may proceed in exactly the same way. It is also possible to 
abbreviate the calculation by noting that since x and p are hermitian operators, it 
follows that  



  〈k | xp | n〉 = 〈n | px | k〉* 
 
so that the desired quantity is obtained from what we obtained before by 
interchanging  k and n and complex-conjugating. The latter only changes the overall 
sign, so that we get 
 

  
〈k | xp | n〉 = −

ih
2

(−δ kn − (n +1)(n + 2)δ k ,n+ 2 + (k +1)(k + 2)δ k +2,n)  

 
8.The results of problem 7 immediately lead to 
 
    〈k | xp − px | n〉 = ihδkn  
 
9.  This follows immediately from problems 5 and 6.  
 
10. We again use 
 

  

x =
h

2mω
(A + A+ )

p = i mωh

2
(A+ − A)

 

 
to obtain the operator expression for 
 

  
x 2 =

h

2mω
(A + A+)(A + A+) =

h

2mω
(A2 + 2A+ A + (A+)2 +1)

p2 = −
mωh

2
(A+ − A)(A+ − A) = −

mωh

2
(A2 − 2A+A + (A+)2 −1)

 

 
where we have used [A,A+] = 1. 
 
The quadratic terms change the values of the eigenvalue integer by 2, so that they do not 
appear in the desired expressions. We get, very simply 
 

  

  

〈n | x 2 | n〉 =
h

2mω
(2n +1)

〈n | p2 | n〉 =
mωh

2
(2n +1)

 

 
14. Given the results of problem 9, and of 10, we have 

 



  

(Δx)2 =
h

2mω
(2n +1)

(Δp)2 =
hmω

2
(2n +1)

 

 
and therefore  
    

   
  
ΔxΔp = h(n +

1
2

)  

 
15. The eigenstate in  A|α> = α|α> may be written in the form 
 

| α〉 = f (A+) | 0〉  
 

It follows from the result of problem 4 that the eigenvalue equation reads 
 

  Af (A+) | 0〉 =
df (A+ )

dA+ | 0〉 = αf (A+) | 0〉  

 
The solution of   df (x) = α f(x)  is  f(x) = C eαx   so that  
 
   | α〉 = CeαA +

| 0〉  
 
The constant C is determined by the normalization condition <α|α> = 1 
This means that 
 

  

1
C2 = 〈0 | eα *AeαA +

| 0〉 =
(α*)n

n!n =0

∞

∑ 〈0 |
d

dA+

⎛ 
⎝ 

⎞ 
⎠ 

n

eαA +

| 0〉

=
| α |2n

n!n =0

∞

∑ 〈0 | eαA +

| 0〉 =
|α |2n

n!n= 0

∞

∑ = e |α |2
 

 
Consequently 
 
   C = e−|α |2 /2  
 
We may now expand the state as follows 
 

  
| α〉 = | n〉〈n |α〉 = | n〉〈0 |

An

n!n
∑

n
∑ CeαA+

| 0〉

= C | n〉
1
n!n

∑ 〈0 |
d

dA+
⎛ 
⎝ 

⎞ 
⎠ 

n

eαA +

| 0〉 = C
α n

n!
| n〉

 

 
The probability that the state |α> contains n quanta is 



 

  Pn =| 〈n | α〉 |2= C2 | α |2n

n!
=

(|α |2 )n

n!
e−|α | 2

 

 
This is known as the Poisson distribution. 
 
Finally 
 
 〈α | N |α〉 = 〈α | A+A | α〉 = α *α =|α |2  
 
13. The equations of motion read 

      

  

dx( t)
dt

=
i
h

[H, x(t)]=
i
h

[
p2(t)
2m

,x(t)] =
p(t)
m

dp( t)
dt

=
i
h

[mgx(t), p(t)] = −mg
 

 
This leads to the equation 
 

  
d2x(t)

dt2 = −g  

 
The general solution is 
 

  x(t) =
1
2

gt2 +
p(0)
m

t + x(0) 

 
14. We have, as always 
 

dx
dt

=
p
m

 

 
Also 
 

  

  

dp
dt

=
i
h

[
1
2

mω2 x2 + eξx, p]

=
i
h

1
2

mω 2x[x, p] +
1
2

mω 2[x, p]x + eξ[x, p]⎛ 
⎝ 

⎞ 
⎠ 

= −mω 2x − eξ

 

 
Differentiating the first equation with respect to t and rearranging leads to 
 

 
d2x
dt2 = −ω 2x −

eξ
m

= −ω2 (x +
eξ

mω 2 )  

 



The solution of this equation is 
 

 

x +
eξ

mω2 = Acosωt + B sinωt

= x(0) +
eξ

mω 2
⎛ 
⎝ 

⎞ 
⎠ cosωt +

p(0)
mω

sinωt
 

 
We can now calculate the commutator  [x(t1),x(t2)], which should vanish  
when t1 = t2. In this calculation it is only the commutator [p(0), x(0)] that  
plays a role. We have 
 

  

[x( t1),x(t2)] = [x(0)cosωt1 +
p(0)
mω

sinωt1,x(0)cosωt2 +
p(0)
mω

sinωt2 ]

= ih
1

mω
(cosωt1 sinωt2 − sinωt1 cosωt2

⎛ 
⎝ 

⎞ 
⎠ =

ih
mω

sinω(t2 − t1)
 

 
 
16. We simplify the algebra by writing  
 

  

mω
2h

= a;
h

2mω
=

1
2a

 

 
Then 
 

  
  

n!
hπ
mω

⎛ 
⎝ 

⎞ 
⎠ 

1/ 4

un (x) = vn(x) = ax −
1

2a
d
dx

⎛ 
⎝ 

⎞ 
⎠ 

n

e− a2x 2

 

 
Now with the notation y = ax we get 
 

  

v1(y) = (y −
1
2

d
dy

)e−y 2
= (y + y)e− y 2

= 2ye− y 2

v2(y) = (y −
1
2

d
dy

)(2ye −y 2

) = (2y 2 −1 + 2y2 )e−y 2

= (4 y2 −1)e−y 2

 

 
Next 
 



 

v3(y) = (y −
1
2

d
dy

) (4 y2 −1)e−y 2[ ]
= 4y 3 − y − 4y + y(4 y2 −1)( )e− y 2

= (8y 3 − 6y)e− y 2

 

 

The rest is substitution  
  
y =

mω
2h

x  

 
17. We learned in problem 4 that  
 

Af (A+) | 0〉 =
df (A+ )

dA+ | 0〉  

 
Iteration of this leads to  
 

  An f (A+ ) | 0〉 =
dn f (A+)

dA+ n | 0〉  

 
We use this to get 

eλA f (A+) | 0〉 =
λn

n!n= 0

∞

∑ An f (A+) | 0〉 =
λn

n!n= 0

∞

∑ d
dA+

⎛ 
⎝ 

⎞ 
⎠ 

n

f (A+) | 0〉 = f (A+ + λ ) | 0〉  

 
18. We use the result of problem 16 to write 
 

eλA f (A+)e−λA g(A+) | 0〉 = eλA f (A+)g(A+ − λ) | 0〉 = f (A+ + λ)g(A+) | 0〉  
 
Since this is true for any state of the form g(A+)|0> we have 
 
   eλA f (A+)e−λA = f (A+ + λ ) 
 
In the above we used the first formula in the solution to 16, which depended on the 
fact that  [A,A+] = 1. More generally we have the Baker-Hausdorff form, which we 
derive as follows: 
 Define 
   F(λ) = eλA A+e−λA  
 
Differentiation w.r.t. λ  yields 
 

 
dF(λ)

dλ
= eλA AA+e−λA − eλA A+ Ae−λA = eλA [A,A+ ]e−λA ≡ eλAC1e

−λA  

 
Iteration leads to  



 

  

d2F(λ)
dλ2 = eλA[A,[A,A+ ]]e−λA ≡ eλAC2e

−λA

.......
dnF(λ )

dλn = eλA [A,[A,[A,[A, ....]]..]e−λA ≡ eλACne
−λA

 

 
with A appearing n times in Cn. We may now use a Taylor expansion for 
 

F(λ +σ ) =
σ n

n!n =0

∞

∑ dn F(λ )
dλn =

σ n

n!n =0

∞

∑ eλACne
−λA  

 
If we now set λ = 0 we get 
 

    F(σ ) =
σ n

n!n =0

∞

∑ Cn  

 
which translates into 
 

eσA A+e−σA = A+ + σ[A, A+] +
σ 2

2!
[A,[A, A+]] +

σ 3

3!
[A,[A,[A, A+ ]]] + ... 

 
Note that if [A,A+] = 1 only the first two terms appear, so that 
 
  eσA f (A+)e−σA = f (A+ + σ[A,A+]) = f (A+ + σ ) 
 

19. We follow the procedure outlined in the hint. We define F(λ) by 
 

eλ(aA + bA + ) = eλaA F(λ)  
 
Differentiation w.r.t λ  yields 
 

(aA + bA+ )eλaA F(λ) = aAeλAF (λ ) + eλaA dF(λ )
dλ

 

 
The first terms on each side cancel, and multiplication by e−λaA  on the left yields 
 

  
dF(λ)

dλ
= e−λaA bA+eλaA F(λ ) = bA+ − λab[A,A+ ]F(λ ) 

 
When [A,A+] commutes with A. We can now integrate w.r.t. λ  and after integration  
Set λ = 1. We then get 
 
  F(1) = ebA + − ab[A ,A + ] /2 = ebA +

e−ab / 2 



 
so that 
 
  eaA + bA +

= eaAebA +

e−ab / 2  
 
20. We can use the procedure of problem 17, but a simpler way is to take the hermitian  

conjugate of the result. For a real function f  and λ real, this reads 
 
   e−λA+

f (A)eλA +

= f (A + λ ) 
 

 
Changing λ to -λ yields  
 
   eλA +

f (A)e−λA +

= f (A − λ)  
 
The remaining steps  that lead to 
 
  eaA + bA +

= ebA +

eaA eab /2  
are identical to the ones used in problem 18. 
 

20. For the harmonic oscillator problem we have 
 

  
x =

h

2mω
(A + A+)  

 
This means that eikx  is of the form given in problem 19 with  a = b = ik h / 2mω  
 
This leads to  
 
    eikx = eik h/ 2m ω A +

eik h /2mω Ae− hk 2 / 4mω  
 
Since A|0> = 0 and <0|A+ = 0, we get 
 
     〈0 | eikx | 0〉 = e− hk 2 / 4mω  
 
21. An alternative calculation, given that  u0 (x) = (mω / πh)1/ 4 e−mωx 2 /2h , is 
 

 
  

mω
πh

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

dxeikx

−∞

∞

∫ e−mωx 2h =
mω
πh

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2

dxe
−

m ω
h

(x −
ikh

2mω
)2

−∞

∞

∫ e
−

hk 2

4 mω  

 

The integral is a simple gaussian integral and 
 

dy
−∞

∞

∫ e−m ωy 2 / h =
hπ
mω

 which just 

cancels the factor in front. Thus the two results agree. 
 



 
 
 

 
    
 
    
 
 

 
   
 
  
 
   
 
 
  
 
 

 
    

 
 
 
 

 
 

 
 
 
 

 
 

 
 

 
 
 
 



CHAPTER 7 
 
1. (a) The system under consideration has rotational degrees of freedom, allowing it to 

rotate about two orthogonal axes perpendicular to the rigid rod connecting the two 
masses. If we define the z axis as represented by the rod, then the Hamiltonian has the 
form 

 

H =
Lx

2 + Ly
2

2I
=

L2 − Lz
2

2I
 

 
where I is the moment of inertia of the dumbbell. 
 
(b) Since there are no rotations about the z axis, the eigenvalue of Lz is zero, so that the 
eigenvalues of the Hamiltonian are 
 

   
  
E =

h2l(l +1)
2I

 

 
with   l = 0,1,2,3,… 
 
(c) To get the energy spectrum we need an expression for the moment of inertia. We use 
the fact that  
 
    I = Mred a2  
 
where the reduced mass is given by 
 

  Mred =
MC MN

MC + MN
=

12 ×14
26

Mnucleon = 6.46Mnucleon  

 
 
If we express the separation a in Angstroms, we get 
 
 I = 6.46 × (1.67 ×10−27kg)(10−10m / A)2aA

2 =1.08 ×10−46aA
2  

 
The energy difference between the ground state and the first excited state is   2h2 / 2I  
which leads to the numerical result 
 

 ΔE =
(1.05 ×10−34 J.s)2

1.08 ×10−46aA
2kg.m 2 ×

1
(1.6 ×10−19 J / eV )

=
6.4 ×10−4

aA
2 eV   

 

2. We use the connection  
x
r

= sinθ cosφ;
y
r

= sinθ sinφ;
z
r

= cosθ   to write 



Y1,1 = −
3

8π
eiφ sinθ = −

3
8π

(
x + iy

r
)

Y1,0 =
3

4π
cosθ =

3
4π

(
z
r
)

Y1,−1 = (−1)Y1,1
* =

3
8π

e−iφ sinθ =
3

8π
(
x − iy

r
)

 

 
Next we have 
 

Y2,2 =
15

32π
e2iφ sin2 θ =

15
32π

(cos2φ + i sin2φ)sin2 θ

=
15

32π
(cos2 φ − sin2 φ + 2isinφ cosφ)sin2 θ

=
15

32π
x2 − y2 + 2ixy

r2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

 

 

Y2,1 = −
15
8π

eiφ sinθ cosθ = −
15
8π

(x + iy)z
r2  

and 
 

Y2,0 =
5

16π
(3cos2 θ −1) =

5
16π

2z2 − x2 − y2

r2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 
We may use Eq. (7-46) to obtain the form for Y2,−1 and Y2,−2. 

3. We use L± = Lx ± iLy to calculate Lx =
1
2

(L+ + L− ); Ly =
i
2

(L− − L+) . We may now 

proceed 
 

〈l,m1 | Lx | l,m2 〉 =
1
2

〈l,m1 | L+ | l,m2 〉 +
1
2

〈l,m1 | L− | l,m2〉

〈l,m1 | Ly | l,m2 〉 =
i
2

〈l,m1 | L− | l,m2 〉 −
i
2

〈l,m1 | L+ | l,m2 〉
 

 
and on the r.h.s. we insert 
 

  

〈l,m1 | L+ | l,m2〉 = h (l − m2)( l + m2 +1)δm1 ,m2 +1

〈l,m1 | L− | l,m2〉 = h (l + m2 )(l − m2 +1)δm1 ,m2 −1

 

 

4. Again we use Lx =
1
2

(L+ + L−); Ly =
i
2

(L− − L+)  to work out 



 

  

  

Lx
2 =

1
4

(L+ + L−)(L+ + L−) =

=
1
4

(L+
2 + L−

2 + L2 − Lz
2 + hLz + L2 − Lz

2 − hLz )

=
1
4

L+
2 +

1
4

L−
2 +

1
2

L2 −
1
2

Lz
2

 

We calculate 

 

  

〈l,m1 | L+
2 | l,m2〉 = h (l − m2)(l + m2 +1)〈l,m1 | L+ | l,m2 +1〉

= h2 (l − m2 )(l + m2 +1)(l − m2 −1)(l + m2 + 2( )1/2δm1,m 2 +2
 

 

and 

 

〈l,m1 | L−
2 | l,m2〉 = 〈l,m2 | L+

2 | l,m1〉 * 

 

which is easily obtained from the preceding result by interchanging m1 and m2. 

 

The remaining two terms yield 

 

  
  

1
2

〈l,m1 | (L2 − Lz
2) | l,m2〉 =

h2

2
(l(l +1) − m2

2 )δm1,m 2
 

 

The remaining calculation is simple, since 

 

〈l,m1 | Ly
2 | l,m2 〉 = 〈l,m1 | L2 − Lz

2 − Lx
2 | l,m2 〉  

 

5. The Hamiltonian may be written as 

 



    
H =

L2 − Lz
2

2I1
+

Lz
2

2I3  

whose eigenvalues are 

 

   

  

h2 l(l +1)
2I1

+ m2 1
2I3

−
1
2I1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥  

where –l ≤ m ≤ l. 

(b) The plot is given on the right. 

(c) The spectrum in the limit that I1 >> I3  is just
 
E =

h2

2I3
m 2 ,  

with m = 0,1,2,…l. The m = 0 eigenvalue is nondegenerate,  while the other ones are 

doubly degenerate (corresponding to the negative values of m). 

 

6. We will use the lowering operator  
 
L− = he−iφ (−

∂
∂θ

+ icotθ
∂
∂φ

) acting on Y44. Since 

we are not interested in the normalization, we will not carry the  h  factor.  

Y43 ∝ e−iφ (−
∂
∂θ

+ i cotθ
∂

∂φ
) e4iφ sin4 θ[ ]

= e3iφ −4 sin3 θ cosθ − 4 cotθ sin4 θ{ }= −8e3iφ sin3 θ cosθ
 

Y42 ∝ e−iφ (−
∂

∂θ
+ i cotθ

∂
∂φ

) e3iφ sin3 θ cosθ[ ]
= e2iφ −3sin2 θ cos2 θ + sin4 θ − 3sin2 θ cos2 θ{ }=

= e2iφ −6sin2 θ + 7sin4 θ{ }

 

  

Y41 ∝ e−iφ (−
∂

∂θ
+ icotθ

∂
∂φ

) e2iφ (−6sin2 θ + 7sin4 θ[ ]
= eiφ 12sinθ cosθ − 28sin3 θ cosθ − 2 −6sinθ cosθ + 7sin3 θ cosθ( ){ }
= eiφ 24sinθ cosθ − 42sin3 cosθ{ }

 

 



Y40 ∝ e−iφ (−
∂

∂θ
+ i cotθ

∂
∂φ

) eiφ (4sinθ − 7sin3 θ)cosθ[ ]
= (−4cosθ + 21sin2 θ cosθ)cosθ + (4 sin2 θ − 7sin4 θ) − (4 cos2 θ − 7sin2 θ cos2 θ{ }

= −8 + 40sin2 θ − 35sin4 θ{ }

  

 

7. Consider the H given. The angular momentum eigenstates  | l,m〉  are eigenstates of the 

Hamiltonian, and the eigenvalues are 

   

   
  
E =

h2l(l +1)
2I

+αhm  

 

with    −l ≤ m ≤ l . Thus for every value of  l  there will be (2  l +1) states, no longer 

degenerate. 

8. We calculate  

  

[x,Lx ] = [x, ypz − zpy] = 0
[y,Lx ] = [y, ypz − zpy] = z[py, y] = −ihz

[z,Lx] = [z, ypz − zpy] = −y[ pz,z] = ihy
[x,Ly ] = [x,zpx − xpz ] = −z[px ,x] = ihz

[y,Ly ] = [y,zpx − xpz ] = 0
[z,Ly] = [z,zpx − xpz ] = x[ pz,z] = −ihx

 

 

The pattern is cyclical  (x ,y)  i  hz  and so on, so that we expect (and can check) that 

   

  

[x,Lz ] = −ihy
[y,Lz ] = ihx
[z,Lz ] = 0

   

9. We again expect a cyclical pattern. Let us start with 

  [px,Ly ] = [px,zpx − xpz ] = −[px, x]pz = ihpz  

and the rest follows automatically. 

 

10. (a)  The eigenvalues of Lz are known to be 2,1,0,-1,-2 in units of  h . 

(b) We may write 



(3 / 5)Lx − (4 / 5)Ly = n•L  

where n is a unit vector, since nx
2 + ny

2 = (3 / 5)2 + (−4 / 5)2 = 1. However, we may well 

have chosen the n direction as our selected z direction, and the eigenvalues for this are 

again 2,1,0,-1,-2. 

(c) We may write 

   
2Lx − 6Ly + 3Lz = 22 + 62 + 32 2

7
Lx −

6
7

Ly + 3Lz
⎛ 
⎝ 

⎞ 
⎠ 

= 7n•L
 

Where n is yet another unit vector. By the same argument we can immediately state that 

the eigenvalues are 7m i.e. 14,7,0,-7,-14. 

 

11. For our purposes, the only part that is relevant is 
 

 

xy + yz + zx
r 2 = sin2 θ sinφ cosφ + (sinφ + cosφ)sinθ cosθ

=
1
2

sin2 θ
e2iφ − e−2iφ

2i
+ sinθ cosθ

eiφ − e− iφ

2i
+

eiφ + e− iφ

2
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

 

 
Comparison with the table of Spherical Harmonics shows that all of these involve 
combinations of   l = 2 functions. We can therefore immediately conclude that the 
probability of finding   l = 0 is zero, and the probability of finding  6h2  iz one, since this 
value corresponds to   l = 2.A look at the table shows that 
 

e2iφ sin2 θ =
32π
15

Y2,2; e−2iφ sin2 θ =
32π
15

Y2,−2

eiφ sinθ cosθ = − 8π
15

Y2,1; e− iφ sinθ cosθ = 8π
15

Y2,−1

 

 
Thus 
 
xy + yz + zx

r 2 =
1
2

sin2 θ
e2iφ − e−2iφ

2i
+ sinθ cosθ

eiφ − e−iφ

2i
+

eiφ + e− iφ

2
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

=
1
4i

32π
15

Y2,2 −
1
4 i

32π
15

Y2,−2 −
−i +1

2
8π
15

Y2,1 +
i +1
2

8π
15

Y2,−1

 

 
This is not normalized. The sum of the squares of the coefficients is 



2π
15

+
2π
15

+
4π
15

+
4π
15

=
12π
15

=
4π
5

, so that for normalization purposes we must multiply 

by 
5

4π
. Thus the probability of finding m = 2 is the same as getting m = -2, and it is  

 

   P±2 =
5

4π
2π
15

=
1
6

 

 
Similarly P1 = P-1 , and since all the probabilities have add up to 1, 
 

    P±1 =
1
3

 

 
12.Since the particles are identical, the wave function eimφ  must be unchanged under the 
rotation φ  φ + 2π/N. This means that m(2π/N ) = 2nπ, so that m = nN, with n = 
0,±1,±2,±3,… 
The energy is 

   
  
E =

h2m2

2MR2 =
h2N 2

2MR2 n2  

 
The gap between the ground state (n = 0) and the first excited state (n =1) is 
 

   
  
ΔE =

h2N 2

2MR2 → ∞ as N → ∞  

 
If the cylinder is nicked, then there is no such symmetry and m = 0,±1,±23,…and 
 

    
  
ΔE =

h2

2MR2  

 
  
 
 
 
 
 

   

 

 

 

 

 



 
 
 

 
 
   
 
 
 

 
 



CHAPTER  8 
 
1. The solutions are of the form ψ n1n2n3

(x, y,z) = un1
(x)un2

(y)un3
(z)  

where un (x) =
2
a

sin
nπx

a
,and so on. The eigenvalues are 

 

  
  
E = En1

+ En2
+ En3

=
h2π 2

2ma2 (n1
2 + n2

2 + n3
2)  

 
2. (a) The lowest energy state corresponds to the lowest values of the integers  
      {n1,n2,n3}, that is, {1,1,1)Thus  
   

   
  
Eground =

h2π 2

2ma2 × 3 

 

In units of  
  

h2π 2

2ma 2  the energies are  

{1,1,1}  3   nondegenerate) 
{1,1,2},(1,2,1},(2,1,1}  6   (triple degeneracy) 
{1,2,2},{2,1,2}.{2,2,1}  9   (triple degeneracy) 
{3,1,1},{1,3,1},{1,1,3}  11  (triple degeneracy) 
{2,2,2}  12   (nondegenrate) 
{1,2,3},{1,3,2},{2,1,3},{2,3,1},{3,1,2},{3,2,1}  14 (6-fold degenerate) 
{2,2,3},{2,3,2},{3,2,2} 17   (triple degenerate) 
{1,1,4},{1,4,1},{4,1,1} 18   (triple degenerate) 
{1,3,3},{3,1,3},{3,3,1}  19  (triple degenerate) 
{1,2,4},{1,4,2},{2,1,4},{2,4,1},{4,1,2},{4,2,1} 21 (6-fold degenerate) 
 
3. The problem breaks up into three separate, here identical systems. We know that the 

energy for a one-dimensional oscillator takes the values  hω(n +1/ 2) , so that here the  
energy eigenvalues are 

 
  E = hω(n1 + n2 + n3 + 3 / 2)  
 

The ground state energy correspons to the n values all zero. It is 
 

3
2

hω . 

4. The energy eigenvalues in terms of  hω with the corresponding integers are 
 

(0,0,0)                  3/2           degeneracy 1 
(0,0,1) etc    5/2   3 
(0,1,1) (0,0,2) etc   7/2   6 
(1,1,1),(0,0,3),(0,1,2) etc  9/2   10 
(1,1,2),(0,0,4),(0,2,2),(0,1,3)        11/2   15 
(0,0,5),(0,1,4),(0,2,3)(1,2,2) 
(1,1,3)    13/2   21 



(0,0,6),(0,1,5),(0,2,4),(0,3,3) 
(1,1,4),(1,2,3),(2,2,2),  15/2   28 
(0,0,7),(0,1,6),(0,2,5),(0,3,4) 
(1,1,5),(1,2,4),(1,3,3),(2,2,3) 17/2   36 
(0,0,8),(0,1,7),(0,2,6),(0,3,5) 
(0,4,4),(1,1,6),(1,2,5),(1,3,4) 
(2,2,4),(2,3,3)   19/2   45 
(0,0,9),(0,1,8),(0,2,7),(0,3,6) 
(0,4,5)(1,1,7),(1,2,6),(1,3,5) 
(1,4,4),(2,2,5) (2,3,4),(3,3,3)         21/2   55 
 

5. It follows from the relations x = ρcosφ,y = ρsinφ  that 
 

dx = dρcosφ − ρsinφdφ; dy = dρsinφ +ρcosφdφ  
 

Solving this we get 
 
  dρ = cosφdx + sinφdy;ρdφ = − sinφdx + cosφdy  
so that 
 

 
∂
∂x

=
∂ρ
∂x

∂
∂ρ

+
∂φ
∂x

∂
∂φ

= cosφ
∂

∂ρ
−

sinφ
ρ

∂
∂φ

 

 
and 
 

 
∂
∂y

=
∂ρ
∂y

∂
∂ρ

+
∂φ
∂y

∂
∂φ

= sinφ
∂
∂ρ

+
cosφ

ρ
∂
∂φ

 

 
We now need to work out 
 
∂2

∂x2 +
∂ 2

∂y 2 =

(cosφ
∂
∂ρ

−
sinφ

ρ
∂

∂φ
)(cosφ

∂
∂ρ

−
sinφ

ρ
∂

∂φ
) + (sinφ

∂
∂ρ

+
cosφ

ρ
∂

∂φ
)(sinφ

∂
∂ρ

+
cosφ

ρ
∂
∂φ

)
 

 
A little algebra leads to the r.h.s. equal to 
 

   
∂ 2

∂ρ2 +
1
ρ2

∂2

∂φ2  

 
The time-independent Schrodinger equation now reads 
 

 
  
−

h2

2m
∂2Ψ(ρ,φ)

∂ρ2 +
1

ρ2
∂2Ψ(ρ,φ)

∂φ2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ +V (ρ)Ψ(ρ,φ) = EΨ(ρ,φ) 



The substitution of Ψ(ρ,φ) = R(ρ)Φ(φ) leads to two separate ordinary differential 
equations. The equation for Φ(φ), when supplemented by the condition that the solution 
is unchanged when φ  φ + 2π leads to  
 

    Φ(φ) =
1
2π

eimφ m = 0,±1,±2,... 

and the radial equation is then 
 

  

d2R(ρ)
dρ2 −

m 2

ρ2 R(ρ) +
2mE
h2 R(ρ) =

2mV (ρ)
h2 R(ρ) 

 
6. The relation between energy difference and wavelength is 
 

 
  
2πh

c
λ

=
1
2

mredc
2α 2 1−

1
4

⎛ 
⎝ 

⎞ 
⎠  

 
so that 
 

 
  
λ =

16π
3

h

mecα 2 1 +
me

M
⎛ 
⎝ 

⎞ 
⎠  

 
where M is the mass of the second particle, bound to the electron. We need to evaluate 
this for the three cases: M = mP;  M =2mp and M = me. The numbers are 
 

 λ(in m) =1215.0226 ×10−10(1 +
me

M
) 

 
  = 1215.68       for hydrogen 
 
  =1215.35        for deuterium 
 
  = 2430.45        for positronium 
 
7.  The ground state wave function of the electron in tritium (Z = 1) is 
 

ψ100(r) =
2
4π

1
a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

3/ 2

e−r /a0  

 
This is to be expanded in a complete set of eigenstates of the Z = 2 hydrogenlike atom, 
and the probability that an energy measurement will yield the ground state energy of the 
Z = 2 atom is the square of the scalar product 
 



 
d3∫ r

2
4π

1
a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

3/2

e−r /a0
2
4π

2
2
a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

3/ 2

e−2r /a0

=
8 2
a0

3 r2

0

∞

∫ dre−3r /a0 =
8 2
a0

3

a0

3
⎛ 
⎝ 

⎞ 
⎠ 

3

2!=
16 2

27

 

 

Thus the probability is  P = 
512
729

 

 
8. The equation reads 
 

  
−∇2ψ + (−

E 2 − m2c4

h2c2 −
2ZαE

hc
1
r

−
(Zα)2

r 2 )ψ (r) = 0 

Compare this with the hydrogenlike atom case 
 

 
  
−∇2ψ (r) +

2mEB

h2 −
2mZe 2

4πε0h
2

1
r

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ψ (r) = 0 

 
and recall that  
 

  
  
−∇2 = −

d2

dr2 −
2
r

d
dr

+
l(l +1)

r2  

 
We may thus make a translation 
 

  

  

E 2 − m 2c 4 → −2mc2EB

−
2ZαE

hc
→ −

2mZe 2

4πε0h
2

l(l +1) − Z 2α 2 → l(l +1)

 

 
Thus in the expression for the hydrogenlike atom energy eigenvalue  
 

  
  
2mEB = −

m2Z 2e2

4πε0h
2

1
(nr + l +1)2  

 
we replace   l  by   l *, where   l * (l * +1) = l(l +1) − (Zα )2 , that is, 
 

  
  
l* = −

1
2

+ l +
1
2

⎛ 
⎝ 

⎞ 
⎠ 

2

− (Zα)2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/ 2

 

 

We also replace 
  

mZe2

4πε0h
 by 

ZαE
c

 and 2mEB  by −
E 2 − m 2c 4

c2  



We thus get 
 

  
  
E 2 = m 2c 4 1 +

Z 2α 2

(nr + l * +1)2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−1

 

 
For (Zα) << 1 this leads to 
 

 
  
E − mc2 = −

1
2

mc2 (Zα)2 1
(nr + l * +1)2  

 
This differs from the nonrelativisric result only through the replacement of   lby  l *. 
 

9. We use the fact that 

〈T 〉nl −
Ze2

4πε0
〈
1
r
〉nl = Enl = −

mc2 (Zα)2

2n2  

 
Since 

  
  

Ze2

4πε0
〈
1
r
〉nl =

Ze2

4πε0

Z
a0n

2 =
Ze2

4πε0

2mcα
hn2 =

mc 2Z 2α 2

n2  

 
we get 
 

  〈T 〉nl =
mc2Z 2α 2

2n2 =
1
2

〈V (r)〉nl  

 
10.  The expectation value of the energy is 

 
Similarly 

 
  
 
Finally 
 

 

〈E〉 =
4
6

⎛ 
⎝ 

⎞ 
⎠ 

2

E1 +
3
6

⎛ 
⎝ 

⎞ 
⎠ 

2

E2 + −
1
6

⎛ 
⎝ 

⎞ 
⎠ 

2

E2 +
10
6

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2

E2

= −
mc2α 2

2
16
36

+
20
36

1
22

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = −

mc2α 2

2
21
36

  
〈L2〉 = h2 16

36
× 0 +

20
36

× 2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ =

40
36

h2

  

〈Lz 〉 = h
16
36

× 0 +
9
36

×1+
1
36

× 0 +
10
36

× (−1)⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

= −
1
36

h



11. We change notation from α to β  to avoid confusion with the fine-structure constant 
that appears in the hydrogen atom wave function.  The probability is the square of the 
integral 

 

d3r
β
π

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ∫

3/2

e−β 2r2 / 2 2
4π

Z
a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

3/ 2

e− Zr/a0

=
4

π 1/ 4
Zβ
a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

3/2

r 2dr
0

∞

∫ e−β 2r2 / 2e− Zr/ a0

=
4

π 1/ 4
Zβ
a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

3/2

−2
d

dβ 2
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ dr

0

∞

∫ e−β 2r2 / 2e− Zr/ a0

 

 
The integral cannot be done in closed form, but it can be discussed for large and small 
a0β . 
 

12. It follows from 〈
d
dt

(p• r)〉 = 0  that 〈[H,p• r]〉 = 0 

 
Now 
 

 
  
[

1
2m

pi pi + V (r),x j p j ] =
1
m

(−ih)p2 + ihx j
∂V
∂x j

= −ih
p2

m
− r • ∇V(r)

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 
As a consequence 
 

   〈
p2

m
〉 = 〈r •∇V(r)〉  

 
If 

    V(r) = −
Ze2

4πε0r
 

then 
 

    〈r • ∇V (r)〉 = 〈
Ze2

4πε0r
〉  

 
so that 

    〈T 〉 =
1
2

〈
Ze2

4πε0r
〉 = −

1
2

V (r)〉  

 
13. The radial equation is 
 



 
  

d2

dr2 +
2
r

d
dr

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ R(r) +

2m
h2 E −

1
2

mω2r 2 −
l( l +1)h2

2mr 2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ R(r) = 0 

 

With a change of variables to 
  
ρ =

mω
h

r  and with  E = λhω / 2 this becomes 

 

 
d2

dρ2 +
2
ρ

d
dρ

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ R(ρ) + λ − ρ2 −

l(l +1)
ρ2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ R(ρ) = 0  

 
We can easily check that the large ρ behavior is e−ρ 2 / 2  and the small ρ behavior is ρl. 
The function H(ρ) defined by 
 
   R(ρ) = ρle−ρ 2 / 2H (ρ) 
 
obeys the equation 
 

 
d2H(ρ)

dρ2 + 2
l +1

ρ
− ρ

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ dH (ρ)

dρ
+ (λ − 3− 2l)H (ρ) = 0 

 
Another change of variables to y = ρ2 yields 
 

 
d2H(y)

dy2 +
l + 3 / 2

y
−1

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
dH (y)

dy
+

λ − 2l − 3
4y

H (y) = 0  

 
This is the same as Eq. (8-27), if we make the replacement 
 

  
2l → 2l + 3 / 2

λ −1→
λ − 2l − 3

4
 

 
This leads to the result that 
 
  λ = 4nr + 2l + 3 
 
or, equivalently 
 
  E =   hω(2nr + l + 3 / 2) 
 
While the solution is  La

(b)(y)  with a = nr and b = (2l + 3)/4 
 
 
 

 



 
 
 

 
 
  

 
 
 
 

 
 

 
 
 
 
 
 



 
 
CHAPTER 9 
 

1.  With           A+ =    

0 0 0 0 0
1 0 0 0 0

0 2 0 0 0
0 0 3 0 0
0 0 0 4 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 

 
we have 
 

(A+ )2 =

0 0 0 0 0
1 0 0 0 0

0 2 0 0 0
0 0 3 0 0
0 0 0 4 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

0 0 0 0 0
1 0 0 0 0

0 2 0 0 0
0 0 3 0 0
0 0 0 4 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

=

0 0 0 0 0
0 0 0 0 0
2 0 0 0 0

0 6 0 0 0
0 0 12 0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 

 
 It follows that 
 

(A+ )3 =

0 0 0 0 0
1 0 0 0 0

0 2 0 0 0
0 0 3 0 0
0 0 0 4 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

0 0 0 0 0
0 0 0 0 0
2 0 0 0 0

0 6 0 0 0
0 0 12 0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

=

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3.2.1 0 0 0 0
0 4.3.2 0 0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 

 
The next step is obvious: In the 5 x 5 format, there is only one entry in the bottom left-
most corner, and it is 4.3.2.1. 
 
2. [The reference should be to Eq. (6-36)  instead of Eq. (6-4) 
 
 

x =
h

2mω
(A + A+) =

h

2mω

0 1 0 0 0
1 0 2 0 0

0 2 0 3 0
0 0 3 0 4
0 0 0 4 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

 

 
from which it follows that 



  

x 2 =
h

2mω
⎛ 
⎝ 

⎞ 
⎠ 

1 0 2.1 0 0
0 3 0 3.2 0
2.1 0 5 0 4.3
0 3,2 0 7 0
0 0 4.3 0 9

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

 

 
 
 
3. The procedure here is exactly the same.  
 
We have 
 

  

p = i
mhω

2
(A+ − A) = i

mhω
2

0 − 1 0 0 0
1 0 − 2 0 0

0 2 0 − 3 0
0 0 3 0 − 4
0 0 0 4 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

 

 
from which it follows that 
 

  

p2 =
mhω

2

1 0 − 2.1 0 0
0 3 0 − 3.2 0

− 2.1 0 5 0 − 4.3
0 − 3.2 0 7 0
0 0 − 4.3 0 9

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

 

 
 
4. We have 
  

 u1 = A+ u0  = 

0 0 0 0 0
1 0 0 0 0

0 2 0 0 0
0 0 3 0 0
0 0 0 4 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

1
0
0
0
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

  = 

0
1
0
0
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 

 
 
 
 

 
 



                  
5. We write 

u2 =
1
2!

(A+)2 u0 =

0 0 0 0 0
0 0 0 0 0
2 0 0 0 0

0 6 0 0 0
0 0 12 0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

1
0
0
0
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

=

0
0
1
0
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 

 
Similarly 
 
 

u3 =
1
3!

(A+)3 u0 =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3.2.1 0 0 0 0
0 4.3.2 0 0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

1
0
0
0
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

=

0
0
0
1
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 

 
and 
 

u4 =
1
4!

(A+)4 u0 =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

4.3.2.1 0 0 0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

1
0
0
0
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

=

0
0
0
0
1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 

 
The pattern is clear. un is represented by a column vector with all zeros, except a 1 in the 
(n+1)-th place. 
 
6. (a)   
 

 

  

〈H 〉 =
1
6

(1 2 1 0)hω

1 / 2 0 0 0
0 3 / 2 0 0
0 0 5 / 2 0
0 0 0 7 / 2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

1
6

1
2
1
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=
3
2

hω  

 

(b) 

  

〈x2 〉 =
1
6

(1 2 1 0)
h

2mω

1 0 2 0
0 3 0 6
2 0 5 0

0 0 0 7

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

1
6

1
2
1
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=
h

2mω
(3 +

2
3

)  



  

〈x〉 =
1
6

(1 2 1 0)
h

2mω

0 1 0 0
1 0 2 0

0 2 0 3
0 0 3 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

1
6

1
2
1
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=
h

2mω
2
3

(1+ 2)

〈p2〉 =
1
6

(1 2 1 0)
mhω

2

1 0 − 2 0
0 3 0 − 6

− 2 0 5 0
0 − 6 0 7

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

1
6

1
2
1
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=
mhω

2
(3 −

2
3

)  

 
 
 
 

  

〈p〉 =
1
6

(1 2 1 0)i
mhω

2

0 − 1 0 0
1 0 − 2 0

0 2 0 − 3
0 0 3 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

1
6

1
2
1
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

= 0  

 
(c) We get 
 

  

(Δx)2 =
h

2mω
5
3

(1−
2

3
);(Δp)2 =

h

2mω
(3 −

2
3

)

(Δx)(Δp) = 2.23h

 

 
 

7. Consider  
 

−3 19 / 4eiπ / 3

19 / 4e− iπ /3 6
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
u1

u2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = λ

u1

u2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 
Suppose we choose u1=1. The equations then lead to  
 

   
(λ + 3) + 19 / 4eiπ / 3u2 = 0

19 / 4e−iπ /3 + (6 − λ)u2 = 0
 

 
(a) Dividing one equation by the other leads to  
 
   (λ + 3)(λ -  6) = -  19/4 
 



The roots of this equation are λ =- 7/2  and  λ  =  13/2. The values of u 2 corresponding to 
the two eigenvalues are 
 

   u2 (−7 / 2) =
1
19

e−iπ /3 ;u2(13 / 2) = − 19e−iπ /3  

 
(b) The normalized eigenvectors are 
 
 

  
1
20

19
−e−iπ / 3

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ ;
1
20

eiπ /3

19
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟  

 
It is easy to see that these are orthogonal. 
 
(c) The matrix that diagonalizes the original matrix is, according to Eq. (9-55) 
 
 

U =
1
20

1 − 19eiπ /3

19e− iπ / 3 1
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟  

 
It is easy to check that 
 

   U + AU =
13 / 2 0

0 −7 / 2
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 
8. We have, as a result of problem 7,  
 

A = UAdiagU
+  

 
From this we get  
 

                 eA = UeAdiagU + = U
e13/ 2 0
0 e−7/2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ U
+  

 
The rest is rather trivial matrix multiplication. 
 
 
 
 
   
 
   
 



 
 
 
  
9,  The solution of  
 

   

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

a
b
c
d

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

= λ

a
b
c
d

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 

 
is equivalent to solving 
 
  a + b + c + d = λa = λb = λc = λd 
 

One solution is clearly  a = b = c = d   with  λ  = 4. The eigenvector is  
1
2

1
1
1
1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 

 
We next observe that if any two (or more) of a , b , c , d are not equal, then λ = 0. These 
are the only possibilities, so that we have three eigenvalues all equal to zero. The 
Eigenvectors must satisfy  a + b + c + d = 0, and they all must be mutually orthogonal. 
The following choices will work 
 

 
1
2

1
−1
0
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
;

1
2

0
0
1
−1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
;

1
2

1
1

−1
−1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 

 
10.An hermitian matrix A can always be diagonalized by a particular unitary matrix U, 
such that 
 

UAU + = Adiag  
 

Let us now take traces on both sides:  TrUAU + = TrU +UA = TrA while TrAdiag = an
n
∑  

Where the an  are the eigenvalues of A. 
 



11. The product  of two N x N matrices of the form M =  

1 1 1 1 ...
1 1 1 1 ...
1 1 1 1 ...
1 1 1 1 ...
. . . . ...

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 is 

N N N N ...
N N N N ...
N N N N ...
N N N N ...
. . . . ...

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

.  Thus M2 = N M . This means that the eigenvalues can only be 

N or zero. Now the sum of the eigenvalues is the trqice of M  which is N (see problem 
10). Thus there is one eigenvalue N and (N –1) eigenvalues 0. 

 

12. We found that the matrix  U =
1
2

1 0 1
i 0 −i
0 2 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ ⎟  has the property that 

  M 3 = U(Lz / h)U + . We may now calculate 
 
         
 
 

 
and 

 
We can easily check that 
 

  

M2 ≡ U(Ly / h)U + =

=
1
2

1
2

1 0 1
i 0 −i
0 2 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

0 −i 0
i 0 −i
0 i 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

1 −i 0
0 0 2
1 i 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ =

0 0 0
0 0 1
0 1 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

  

M1 ≡ U (Lx /h)U + =

=
1
2

1
2

1 0 1
i 0 −i
0 2 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

0 1 0
1 0 1
0 1 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

1 −i 0
0 0 2
1 i 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ =

0 0 1
0 0 0
1 0 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 



[M1, M2 ] =
0 0 1
0 0 0
1 0 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

0 0 0
0 0 1
0 1 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ −

0 0 0
0 0 1
0 1 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

0 0 1
0 0 0
1 0 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ =

=
0 1 0
−1 0 0
0 0 0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ = iM3

 

 
This was to be expected. The set M1, M2 and M3  give us another representation of 
angular momentum matrices. 
 
13. We have  AB = BA. Now let U be a unitary matrix that diagonalizes A. In our case we 

have the additional condition that in 
 

UAU + = Adiag =

a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 

 
all the diagonal elements are different. (We wrote this out for a 4 x 4 matrix) 
Consider now  
 

 
U[A,B]U + = UAU +UBU + −UBU +UAU + = 0

 

This reads as follows (for a 4 x 4 matrix) 
 

a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 

 
If we look at the (12) matrix elements of the two products, we get, for example 
 
   a1b12 = a2b12 
 
and since we require that the eigenvalues are all different, we find that b12 = 0. This  
argument extends to all off-diagonal elements in the products, so that the only matrix 
elements in UBU= are the diagonal elements bii. 
 
14. If M and M+ commute, so do the hermitian matrices (M + M+) and i(M – M+).  

Suppose we find the matrix U that diagonalizes (M + M+). Then that same matrix 
will diagonalize  i( M – M+), provided that the eigenvalues of M + M+ are all 



different. This then shows that the same matrix U diagonalizes both M and M+ 
separately. 
(The problem is not really solved, till we learn how to deal with the situation when 
the eigenvalues of  A in problem 13  are not all different). 

 
 



CHAPTER 10 
 

1. We need to solve   
  

h

2
0 −i
i 0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

u
v

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = ±

h

2
u
v

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 

For the + eigenvalue we have u = -iv , s that the normalized eigenstate is  χ+ =
1
2

1
i

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

The – eigenstate can be obtained by noting that it must be orthogonal to the +  state, and 

this leads to  χ− =
1
2

1
−i

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ . 

 
2, We note that the matrix has the form 
 

  
σz cosα +σ x sinα cosβ + σ y sinα sinβ ≡ σ • n
n = (sinαcosβ,sinα sinβ,cosα )

   

 
This implies that the eigenvalues must be ± 1. We can now solve 
 

   
cosα sinαe− iβ

sinαeiβ −cosα
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
u
v

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = ±

u
v

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 
For the + eigenvalue we have u cosα + v sinα e-Iβ   =  u. We may rewrite this in the form  
 

   2v sin
α
2

cos
α
2

e−iβ = 2usin2 α
2

 

 
From this we get 
 

   χ+ =
cos

α
2

eiβ sin
α
2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

 

 
The – eigenstate can be obtained in a similar way, or we may use the requirement of 
orthogonality, which directly leads to  
 

     χ− =
e−iβ sin

α
2

−cos
α
2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

 

 
 
 



 The matrix  U =
cos

α
2

e−iβ sin
α
2

eiβ sin
α
2

−cos
α
2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

 

 
has the property that 
 

   U + cosα sinαe− iβ

sinαeiβ −cosα
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ U =
1 0
0 −1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 
as is easily checked. 
 
 The construction is quite simple.  
  
 

  

Sz = h

3 / 2 0 0 0
0 1/ 2 0 0
0 0 −1/ 2 0
0 0 0 −3 / 2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 

 
To construct S+ we use   (S+ )mn = hδm ,n+1 (l − m +1)(l + m)  and get 
 
 

   

  

S+ = h

0 3 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 

 
We can easily construct S- = (S+)+. We can use these to construct 
 
 

Sx =
1
2

(S+ + S−) =
h

2

0 3 0 0
3 0 2 0

0 2 0 3
0 0 3 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 

 
 
and 
 



  

Sy =
i
2

(S− − S+) =
h

2

0 −i 3 0 0
i 3 0 −2i 0
0 2i 0 −i 3
0 0 i 3 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 

 
The eigenstates in the above representation are very simple: 
 
 

χ3/ 2 =

1
0
0
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

;χ1/ 2 =

0
1
0
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

;χ−1/2 =

0
0
1
0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

; χ−3/2 =

0
0
0
1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 

 
 
 
5.  We first need the eigenstates of  (3Sx + 4Sy)/5. The eigenvalues will be ±   h / 2since the 
operator is of the form S• n, where n is a unit vector (3/5,4/5,0).The equation to be 
solved is 
 

  

h

2
(
3
5

σ x +
4
5

σ y )χ± = ±
h

2
χ±  

 
In paricular we want the eigenstate for the –ve eigenvalue, that is, we want to solve 
 

  
0

3− 4i
5

3 + 4 i
5

0

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

u
v

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ = −

u
v

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

 

This is equivalent to (3-4i) v = -5u  A normalized state is  
1
50

3 − 4 i
−5

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ . 

The required probability is the square of  
 

  
1
5

2 1( ) 1
50

3 − 4 i
−5

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ =

1
250

(6 − 8i − 5) =
1
250

(1− 8i)  

 
This number is 65/250 = 13/50. 
 
6. The normalized eigenspinor of Sy corresponding to the negative eigenvalue was found  

in problem 1. It is
1
2

1
−i

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ . The answer is thus the square of 

 



   
1
65

4 7( ) 1
2

1
−i

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ =

1
130

(4 − 7i) 

 
which is 65/130 = 1/2. 
 
7. We make use of  σxσ y = iσ z = -σyσ x and so on, as well as σx

2 = 1and so on, to work 
out 

 
(σ x Ax +σ y Ay +σ z Az )(σ xBx +σ yBy +σ z Bz )

= AxBx + AyBy + AzBz + iσ z (AxBy − AyBx ) + iσ y (AzBx − AxBz ) + iσ x (AyBz − AzBy )
= A •B + iσ • A × B

 

 
 

8. We may use the material in Eq. (10-26,27)., so that at time T, we start with 
 

ψ (T ) =
1
2

e− iωT

eiωT

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
with ω = egB / 4me . This now serves as an initial state for a spin 1/2 particle placed in a 
magnetic field pointing in the y direction. The equation for ψ is according to Eq. (10-23) 
 

   i
dψ (t)

dt
= ω

0 −i
i 0

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ψ(t)  

 

Thus with ψ (t) =
a(t)
b(t)

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟   we get  

da
dt

= −ωb;
db
dt

= ωa . The solutions are in general 

 

   
a(t) = a(T )cosω(t − T ) − b(T )sinω(t − T )
b(t) = b(T )cosω(t − T ) + a(T )sinω(t − T )

 

 

We know that a(T ) =
e− iωT

2
;b(T ) =

eiωT

2
 

 
So that     
 

   ψ (2T ) =
1
2

e−iωT cosωT − eiωT sinωT
eiωT cosωT + e− iωT sinωT

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
The amplitude that a measurement of Sx   yields  h / 2 is 
 



   
1
2

1 1( ) 1
2

e−iωT cosωT − eiωT sinωT
eiωT cosωT + e− iωT sinωT

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ =

= cos2 ωT − isin2 ωT( )
 

 

Thus the probability is  P = cos4 ωT + sin4 ωT =
1
2

(1 + cos2 2ωT )  

 

9. If we set an arbitrary matrix 
α β
γ δ

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  equal to A + σ • B =

A + Bz Bx − iBy

Bx + iBy A − Bz

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
we see that allowing A, Bx … to be complex we can match all of the α,β,…. 
 
(b) If the matrix M = A + σ • B is to be unitary, then we require that 
 

 
(A +σ • B)(A * +σ • B*) =

| A |2 +Aσ • B* +A *σ • B + B• B* +iσ • B × B* = 1
 

 
which can be satisfied if  
 

  

| A |2 + | Bx |2 + | By |2 + | Bz |2= 1

ABx * +A * Bx + i(ByBz *−By * Bz ) = 0
.........

 

 
If the matrix M is to be hermitian, we must require that A and all the components of B 
be real. 
 
10. Here we make use of the fact that (σ • a)(σ • a) = a •a ≡ a2  in the expansion 
 

eiσ•a =1 + i(σ • a) +
i2

2!
(σ • a)2 +

i3

3!
(σ • a)3 +

i4

4!
(σ • a)4 + ...

=1−
1
2!

a2 +
1
4!

(a2)2 + ...+ iσ • ˆ a (a −
a3

3!
+ ...)

= cosa + iσ • ˆ a sina = cosa + iσ •a
sina

a

 

 
11. We begin with the relation 
 

  
S2 =

h

2
σ1 +

h

2
σ 2

⎛ 
⎝ 

⎞ 
⎠ 

2

=
h2

4
σ1

2 +σ 2
2 + 2σ1 • σ 2( ) 

 



from which we obtain σ1 • σ 2 = 2S(S +1) − 3. This = -3 for a singlet and +1 for a 
triplet state.  
We now choose ˆ e  to point in the z direction, so that the first term in S12 is equal to  
3σ1zσ 2z .  
(a) for a singlet state the two spins are always in opposite directions so that the 

first term is –6 and the second is +3. Thus 
 

S12Xsinglet = 0 
   

(b) For a triplet the first term is +1 when Sz = 1 and Sz = -1 and –1 when Sz =0. 
This means that S12 acting on a triplet state in the first case is 3-1= 2, and in 
the second case it is –3-1= - 4. Thus 

 
(S12 − 2)(S12 + 4)Xtriplet = 0   

 
 
12. The potential may be written in the form  
 
  V(r) = V1(r) + V2(r)S12 + V3(r)[2S(S +1) − 3] 
 
For a singlet state S12

  has expectation value zero, so that 
 
   V(r) = V1(r) – 3V3(r) 
 
For the triplet state S12 has a value that depends on the z component of the total spin. 
What may be relevant 
for a potential energy is an average, assuming that the two particles have equal 
probability of being in any one of the three Sz states. In that case the average value of Sz is 
(2+2-4)/3= 0 
 

13.  (a) It is clear that for the singlet state, ψ singlet =
1
2

(χ +
(1)χ −

(2) − χ −
(1)χ +

(2)) , if one of the 

electrons is in the “up” state, the other must be in the “down” state. 
 
(b). Suppose that we denote the eigenstates of Sy by ξ± . These are, as worked out in 
problem 1,  
 

   ξ+
(1) =

1
2

1
i

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ;ξ−

(1) =
1
2

1
−i

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
The spinors for particle (1) may be expanded in terms of the ξ±  thus: 
 



 

χ+ =
1
0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

1
2

1
2

1
i

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ +

1
2

1
−i

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ =
1
2

ξ+ + ξ−( )

χ− =
0
1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

i
2

1
2

1
i

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ −

1
2

1
−i

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ =
i
2

(ξ+ − ξ−)

  

 
Similarly, for particle (2), we want to expand the spinors in terms of the η± , the 
eigenstates of Sx 
 

          η+
(2) =

1
2

1
1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ; η−

(2) =
1
2

1
−1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 
thus 
 

  

χ+ =
1
0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

1
2

1
2

1
1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ +

1
2

1
−1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ =
1
2

η+ +η−( )

χ− =
0
1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

1
2

1
2

1
1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ −

1
2

1
−1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ =
1
2

η+ −η−( )
 

 
We now pick out, in the expansion of the singlet wave function the coefficient of ξ+

(1)η+
(2)  

and take its absolute square.Some simple algebra shows that it is  
 

    |
1
2

1
2

1− i
2

|2 =
1
4

 

 
9. The state is (cosα1χ+

(1) + sinα1e
iβ1 χ−

(1))(cosα2 χ+
(2) + sinα2e

iβ 2 χ−
(2)) . We need to calculate 

the scalar product of this with the three triplet wave functions of the two-electgron 
system. It is easier to calculate the probability that the state is found in a singlet state, 
and then subtract that from unity. 

 The calculation is simple 
 

 
〈

1
2

(χ+
(1)χ−

(2) − χ −
(1)χ +

(2)) | (cosα1χ+
(1) + sinα1e

iβ1 χ−
(1))(cosα2 χ+

(2) + sinα2e
iβ2 χ−

(2))〉

=
1
2

(cosα1 sinα2e
iβ2 − sinα1e

iβ1 cosα2 )
 

 
The absolute square of this is the singlet probability. It is  

 Ps =
1
2

(cos2 α1 sin2 α 2 + cos2 α2 sin2 α1 + 2sinα1 cosα1 sinα1 cosα 2 cos(β1 − cosβ2 )) 

and   
     Pt  = 1 - Ps 
  
 



 
 
14. We use J = L +S so that J2 = L2 + S2 + 2L.S, from which we get 
 

L • S =
1
2

J (J +1) − L(L +1) − 2[ ] 
 

since S = 1. Note that we have taken the division by  h
2  into account. For J = L + 1 this  

takes on the value L; for J = L, it takes on the value –1, and for J = L – 1 it is –L – 1. 
We therefore find 
 

  

J = L +1: V = V1 + LV2 + L2V3

J = L V = V1 − V2 +V3

J = L −1 V = V1 − (L +1)V2 + (L +1)2V3

 

  
  
 
 



CHAPTER 11 
 
1. The first order contribution is 
 

  
En

(1) = λ〈n | x2 | n〉 = λ
h

2mω
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2

〈n | (A + A+ )(A + A+ ) | n〉  

 
To calculate the matrix element 〈n | A2 + AA + + A+A + (A+)2 | n〉  we note that  
 
A+ | n〉 = n +1 | n +1〉 ; 〈n | A = n +1〈n +1 |  so that (1) the first and last terms give 

zero, and the second and third terms yield  (n + 1) + (n – 1)=2n. Thus the first order shift 
is  
 

   
  
En

(1) = λ
h

mω
n⎛ 

⎝ 
⎞ 
⎠  

 
The second order calculation is quite complicated. What is involved is the calculation of 
 

 
  
En

(2) = λ2 h

2mω
⎛ 
⎝ 

⎞ 
⎠ 

2 〈n | (A + A+)2 | m〉〈m | (A + A+ )2 | n〉
hω(n − m)m ≠n

∑  

 
This is manageable but quite messy.  The suggestion is to write 
 

  H =
p2

2m
+

1
2

mω2 x2 + λx2  

 
This is just a simple harmonic oscillator with frequency   
 

ω* = ω 2 + 2λ / m = ω +
λ

ωm
−

1
2

λ2

ω 3m2 + ...  

 
Whose spectrum is   
 

  
En = hω * (n +

1
2

) = hω(n +
1
2

) +
λh

ωm
(n +

1
2

) −
λ2h

2ω3m 2 (n +
1
2

) + ...  

 
The extra factor of 1/2 that goes with each n is the zero-point energy. We are only 

interested in the change in energy of a given state |n> and thus subtract the zero-point 
energy to each order of λ. Note that the first order λ calculation is correct. 

 
2. The eigenfunction of the rotator are the spherical harmonics. The first order energy 

shift for l = 1 states is given by 
 



ΔE = 〈1,m | E cosθ |1,m〉 = E dφ sinθdθ cosθ | Y1.m |2
0

π

∫0

2π

∫  
 

 
For m = ±1,  this becomes  
 

  2πE sinθdθ cosθ
3

8π
⎛ 
⎝ 

⎞ 
⎠ 0

π

∫ sin2 θ =
3E
4

duu(1− u2) = 0
−1

1

∫  

 
The integral for m = 0 is also zero. This result should have been anticipated. The 
eigenstates of L2 are also eigenstates of parity.  The perturbation cosθ  is odd under the 
reflection r  - r  and therefore the expectation value of an odd  operator will always be 
zero. Since the perturbation represents the interaction with an electric field, our result 
states that a symmetric rotator does not have a permanent electric dipole moment. 
 
The second order shift is more complicated. What needs to be evaluated is  
 

 ΔE(2) = E 2 | 〈1,m | cosθ | L,M〉 |2

E1 − ELL ,M (L ≠1)
∑  

 

with 
  
EL =

h2

2I
L(L +1) . The calculation is simplified by the fact that only L = 0 and L = 2 

terms contribute. This can easily be seen from the table of spherical harmonics. For L =1 
we saw that the matrix element vanishes. For the higher values we see that   
cosθY1,±1 ∝Y2,±1  and cosθY1,0 ∝ aY2,0 + bY0,0 . The orthogonality of the spherical harmonics 
for different values of L takes care of the matter. Note that because of the φ integration, 
for m = ±1 only the L = 2 ,M = ± 1 term contributes, while for the m = 0 term, there will 
be contributions from L = 0 and L = 2, M = 0. Some simple integrations lead to 
 

  
  
ΔEm =±1

(2) = −
2IE 2

h2
1

15
; ΔEm = 0

(2) = −
2IE 2

h2
1
60

  

 
3. To lowest order in V0  the shift is given by 
 

ΔE =
2
L

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2
V0

L
dxxsin2

0

L

∫
nπx
L

=
2V0

L2
L
π

⎛ 
⎝ 

⎞ 
⎠ 

2

duusin2 nu =
V0

π 20

π

∫ duu(1− cos2nu) =
1
20

π

∫ V0

 

 
The result that the energy shift is just the value of the perturbation at the mid-
point is perhaps not surprising, given that the square of the eigenfunctions do not, 
on the average, favor one side of the potential over the other. 
 



4. The matrix  

E λ 0 0
λ E 0 0
0 0 2E σ
0 0 σ 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

  consists of two boxes which can be diagonalized 

separately. The upper left hand box involves solving  
E λ
λ E

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

u
v

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = η

u
v

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

The result is that the eigenvalues are η = E ± λ.  The corresponding eigenstates are easily 

worked out and are 
1
2

1
±1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  for the two cases. 

For the lower left hand box we have to solve  
2E σ
σ 0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

a
b

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = ξ

a
b

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ . Here we find that the 

eigenvalues are ξ = E ± E 2 + σ 2 . The corresponding eigenstates are  
 

 N
σ

−E ± E 2 + σ 2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  respectively, with 

1
N 2 = σ 2 + (−E ± E 2 + σ 2 )2 . 

 
5. The change in potential energy is given by 
 

V1 = −
3e2

8πε0R
3 R2 −

1
3

r2⎛ 
⎝ 

⎞ 
⎠ +

e2

4πε0r
r ≤ R

= 0 elsewhere
 

 
Thus 
 
 ΔE = d3rψ nl

* (r)V1ψ nl (r) = r 2dr
0

R

∫∫ V1Rnl
2 (r) 

 
We may now calculate this for various states. 
 

n = 1   ΔE10 = 4
Z
a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

3

r2dr
0

R

∫ e−2Zr /a0 −
3e2

8πε0R
3 R2 −

1
3

r 2⎛ 
⎝ 

⎞ 
⎠ +

e2

4πε0r
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 
With a change of variables to x = r/Za0  and with ρ = ZR/a0  this becomes 
 

 ΔE10 = 4
Ze2

4πε0a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ x 2dx −

3
2ρ

+
x2

2ρ3 +
1
x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 0

ρ

∫ e−2x  

 
Since  x << 1 we may approximate  e−2x ≈1− 2x , which simplifies the integrals. What 
results is 
 



   ΔE10 =
Ze2

4πε0a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

4
10

ρ2 + ...⎛ 
⎝ 

⎞ 
⎠  

 
A similar calculation yields 
 

ΔE20 =
1
2

Ze2

4πε0a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ x 2dx(1− x)2 −

3
2ρ

+
x2

2ρ3 +
1
x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 0

ρ

∫ e− x ≈
Ze2

4πε0a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1
20

ρ2 + ...⎛ 
⎝ 

⎞ 
⎠   

and 
 

  ΔE21 =
1

24
Ze2

4πε0a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ x 2dxx 2 −

3
2ρ

+
x 2

2ρ3 +
1
x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 0

ρ

∫ e−x ≈
Ze2

4πε0a0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1
1120

ρ4 + ...⎛ 
⎝ 

⎞ 
⎠  

 
6. We need to calculate  λ〈0 | x4 | 0〉 . One way of proceeding is to use the expression 
 

  
x =

h

2mω
(A + A+)  

 
Then 
 

 

  

λ〈0 | x4 | 0〉 = λ
h

2mω
⎛ 
⎝ 

⎞ 
⎠ 

2

〈0 | (A + A+)(A + A+)(A + A+)(A + A+) | 0〉
 

The matrix element is 
 

〈0 | (A + A+ )(A + A+ )(A + A+)(A + A+) | 0〉 =

〈0 | A+ (A + A+)(A + A+)A+ | 0〉 =

〈1| (A + A+)(A + A+) |1〉 =

〈0 | + 2〈2 |[ ]| 0〉 + 2 | 2〉[ ]= 3

 

 

Thus the energy shift is 
  
ΔE = 3λ

h

2mω
⎛ 
⎝ 

⎞ 
⎠ 

2

 

 
It is easy to see that the same result is obtained from 
 

   
  

dx(λx 4 )
mω
hπ

⎛ 
⎝ 

⎞ 
⎠ 

1/4

e− mωx 2 /2h
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ −∞

∞

∫
2

 

 
 
 

 
  



7. The first order perturbation  shift is 
 

ΔEn =
2ε
b

dx
0

b

∫ sin
πx
b

sin
nπx

b
⎛ 
⎝ 

⎞ 
⎠ 

2

=
2ε
π

dusinu(sin nu)2

0

π

∫

=
2ε
π

1 +
1

4n2 −1
⎛ 
⎝ 

⎞ 
⎠ 

 

 
8. It follows from    [p, x] = −ih  that 
 

  

−ih = 〈a | px − xp | a〉 =

= {〈a | p | n〉〈n | x | a〉 − 〈a | x | n〉〈n | p | a〉}
n

∑  

 
Now 
 

  
〈a | p | n〉 = m〈a |

dx
dt

| n〉 =
im
h

〈a | Hx − xH | n〉 =
im
h

(Ea − En )〈a | x | n〉  

 
Consequently 
 

  
〈n | p | a〉 = 〈a | p | n〉* = −

im
h

(Ea − En )〈n | x | a〉  

 
Thus 
 

  
−ih =

2im
hn

∑ (Ea − En )〈a | x | n〉〈n | x | a〉  

 
from which it follows that 
 

  
  

(En − Ea )
n
∑ | 〈a | x | n〉 |2=

h2

2m
 

 
9. For the harmonic oscillator, with |a> = |0>, we have 
 

  
〈n | x | 0〉 =

h

2mω
〈n | A+ | 0〉 =

h

2mω
δn ,1  

 
 
This means that in the sum rule, the left hand side is 
 



    
  
hω

h

2mω
⎛ 
⎝ 

⎞ 
⎠ =

h2

2m
 

 
as expected. 
 
10. For the n = 3 Stark effect, we need to consider the following states: 
 
 

l = 2 :  ml = 2,1,0,-1,-2 
l = 1 :  ml = 1,0,-1 
l = 0 :  ml  =  0 
 
In calculating matrix element of z  we have selection rules Δ l = 1 (parity forbids 
Δ l = 0) and, since we are dealing with z, also Δ ml  = 0. Thus the possible matrix 
elements that enter are  

   
〈2,1| z |1,1〉 = 〈2,−1| z |1,−1〉 ≡ A
〈2,0 | z |1,0〉 ≡ B
〈1,0 | z | 0,0〉 ≡ C

 

 
The matrix to be diagonalized is  
 

  

0 A 0 0 0 0 0
A 0 0 0 0 0 0
0 0 0 B 0 0 0
0 0 B 0 C 0 0
0 0 0 C 0 0 0
0 0 0 0 0 0 A
0 0 0 0 0 A 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

 

 
The columns and rows are labeled by (2,1),(1,1) (2,0) (1,0),(0,0),(2,-1), (1,-1). 
 
The problem therefore separates into three different matrices. The eigenvalues of 
the submatrices that couple the (2,1) and (1,1) states, as well as those that couple 
the (2,-1) and (1,-1) states are  
 
   λ = ± A 
 
where   
 
 A = dΩY21

*∫ cosθY11 r 2drR32(r)rR31(r)
0

∞

∫  
 



The mixing among the ml = 0 states involves the matrix  
0 B 0
B 0 C
0 C 0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

 

Whose eigenvalues are λ = 0, ± B2 + C2 .. Here 

 
B = dΩY20

* cosθY10∫ r2dr
0

∞

∫ R32(r)rR31(r)

C = dΩY10
* cosθY00∫ r 2dr

0

∞

∫ R31(r)rR30(r)
 

 
 

The eigenstates of the A submatrices are those of σx , that is 
1
2

1
±1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ . The eigenstates of 

the central 3 x 3 matrix are 
 

1
B2 + C2

C
0

−B

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

;
1

2(B2 + C2)

B
± B2 + C2

C

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

 

 
with the first one corresponding to the  λ  = 0 eigenvalue. 
 
11. For a one-dimensional operator (labeled by the x variable) we introduced the raising 

and lowering operators A+  and A.  We were able to write the Hamiltonian in the 
form 

  
Hx = hω(A+ A +

1
2

) 

 
We now do the same thing for the harmonic oscillator labeled by the y variable. The 
raising and lowering operators will be denoted by B+ and B, with 
 

    
  
Hy = hω(B+ B +

1
2

) 

 
The eigenstates of  Hx + Hy  are 
 

   | m,n〉 =
(A+) n

n!
(B+)m

m!
| 0,0〉  

 
where the ground state has the property that  A |0,0> = B |0.0> = 0 
 
The perturbation  may be written in the form 
 



  
  
H1 = 2λxy =

hλ
mω

(A + A+)(B + B+ ) 

 
(a) The first order shift of the ground state is  
 
    〈0,0 | H1 | 0,0〉 = 0 
 
since every single of the operators A,…B+ has zero expectation value in the ground state. 
 
(b) Consider the two degenerate states  |1,0> and |0,1>. The matrix elements of interest to 
us are 
 <1,0|(A+A+)(B  + B+)|1,0> = <0,1|(A+A+)(B  + B+)|0,1> = 0 
 
<1,0|(A+A+)(B  + B+)|0,1> = <0,1|(A+A+)(B  + B+)|1,0> = <1,0|(A+A+)(B  + B+)|1,0> = 1 
 
Thus in degenerate perturbation theory  we must diagonalize the matrix 
 

    
0 h
h 0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 

where 
  
h =

λh

mω
.  The eigenvalues are ±h , and the degenerate levels are split to 

 

    E = hω(1±
λ

mω 2 )  

 
(c) The second order expression is 
 

  

λh

mω
⎛ 
⎝ 

⎞ 
⎠ 

2 | 〈0,0 | (A + A+)(B + B+) | k,n〉 |2

−hω(k + n)k ,n
∑ =

−
λ2h

mω 3

| 〈1,1| k,n〉 |2

(k + n)k ,n
∑ = −

λ2h

2mω3

 

 
The exact solution to this problem may be found by working with the potential at a 
classical level. The potential energy is 
 

   
1
2

mω 2(x 2 + y2) + λxy  

 
Let us carry out a rotation in the x – y plane. The kinetic energy does not change since p2 
is unchanged under rotations. If we let 
 

   
x = x 'cosθ + y 'sinθ
y = −x 'sinθ + y 'cosθ

 



 
then the potential energy, after a little rearrangement,  takes the form 
 

 (
1
2

mω 2 − λ sin2θ)x '2 +(
1
2

mω 2 + λ sin2θ)y '2 +2λcos2θx ' y'  

 
If we choose cos2θ = 0, so that sin2θ = 1, this reduces to two decoupled harmonic 
oscillators. The energy is the sum of the two energies.  Since 
 

    

1
2

mωx
2 =

1
2

mω 2 − λ

1
2

mωy
2 =

1
2

mω 2 + λ
 

 
the total energy for an arbitrary excited state is 
 

   Ek,n = hωx(k +
1
2

) + hωy (n +
1
2

) 

 
where 
 

 

  

hωx = hω(1− 2λ / mω 2)1/ 2 = hω −
hλ
mω

−
hλ2

2m 2ω3 + ...

hωy = hω(1 + 2λ / mω2 )1/2 = hω +
hλ
mω

−
hλ2

2m 2ω3 + ...
 

 
12. Thespectral line corresponds to the transition (n = 4,l = 3)  (n = 3,l = 2). We must 
therefore examine what happens to these energy levels under the perturbation 
 

    H1 =
e

2m
L •B  

 

We define the z axis by the direction of B , so that the perturbation is 
eB
2m

Lz . 

In the absence of the perturbation the initial state is (2l + 1) = 7-fold degenerate, with the 
Lz level unchanged, and the others moved up and down in intervals of eB/2m. 
The final state is 5-fold degenerate, and the same splitting occurs,  
with the same intervals. If transitions with zero or ±1 change in Lz/  h , 
the lines are as shown in the figure on the right. 
 
 
 
 
 
 



What will be the effect of a constant electric field parallel to B?  
The additional perturbation is therefore 
 
   H2 = −eE0 • r = −eE0z  
 
and we are only interested in what this does to the energy level  
structure. The perturbation acts as in the Stark effect. The effect 
of H1 is to mix up levels that are degenerate, corresponding 
to a given ml  value with different values of l. For example, 
the l = 3, ml = 2 and the l = 2, ml = 2 degeneracy (for n = 4)will 
be split. There will be a further breakdown of degeneracy. 
 
13. The eigenstates of the unperturbed Hamiltonian are eigenstates of σz . They are 
 

1
0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟   corresponding to E = E0  and  

0
1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟   corresponding to E = - E0.  

 
The first order shifts are given by 
 

  
1 0( )λ α u

u * β
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1
0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = λα

0 1( )λ α u
u * β

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

0
1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = λβ

 

 
for the two energy levels.  
The second order shift for the upper state involves summing over intermediate states that 
differ from the initial state. Thus, for the upper state, the intermediate state is just the 
lower one, and the energy denominator is E0 – (- E0) = 2E0. Thus the second order shift is 
 

 
λ2

2E0
1 0( ) α u

u * β
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 0

1
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 0 1( ) α u

u* β
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 1

0
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ =

λ2 | u |2

2E0
 

 
For the lower state we get  
 

 
λ2

−2E0
0 1( ) α u

u* β
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 1

0
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 1 0( ) α u

u * β
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 0

1
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ = −

λ2 | u |2

2E0
 

 
The exact eigenvalues can be obtained from 
 

  det
E0 +α −ε u

u * −E0 + β −ε
= 0 

 
This leads to  



 

  
ε = λ

α + β
2

± (E0 − λ
α − β

2
)2 + λ2 | u |2

= λ
α + β

2
± (E0 − λ

α − β
2

)(1+
1
2

λ2 | u |2

E0
2 + ...

 

 
 
(b) Consider now 
 

   H =
E0 u
v −E0

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

    
where we have dropped the α  and β  terms. The eigenvalues are easy to determine, and 
they are  
 
   ε = ± E0

2 + λ2uv  
 

The eigenstates are written as 
a
b

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  and they satisfy 

 

  
E0 u
v −E0

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ a

b
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ = ± E0

2 + λ2uv
a
b

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
For the upper state we find that the un-normalized eigenstate is 
 

   
λu

E0
2 + λ2uv − E0

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
For the lower state it is 
 

   
−λu

E0
2 + λ2uv + E0

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
The scalar product 
 
   −λ2 | u |2 + (E0

2 + λ2uv) − E0
2[ ]= λ2u(u* −v) ≠ 0  

 
which shows that the eigenstates are not orthogonal unless v = u*. 
 
 
 
 



CHAPTER 12. 
 
1. With a potential of the form 
 

V(r) =
1
2

mω2r 2  

 
the perturbation reduces to  
 

  

  

H1 =
1

2m 2c 2 S• L
1
r

dV (r)
dr

=
ω2

4mc2 (J2 − L2 − S2)

=
(hω)2

4mc2 j( j +1) − l(l +1) − s(s +1)( )
 

 
where l is the orbital angular momentum, s is the spin of the particle in the well (e.g. 1/2 
for an electron or a nucleon) and j is the total angular momentum. The possible values of 
j are  l + s, l + s – 1, l + s –2, …|l – s|. 

 The unperturbed energy spectrum is given by  
 
Enr l = hω(2nr + l +

3
2

). Each of the 

levels characterized by l is (2l + 1)-fold degenerate, but there is an additional degeneracy, 
not unlike that appearing in hydrogen. For example nr =2, l = 0. nr =1, l = 2 , nr = 0, l = 4 
all have the same energy.   
A picture of the levels and their spin-orbit splitting is given below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. The effects that enter into the energy levels corresponding to n = 2, are (I) the basic 

Coulomb interaction, (ii) relativistic and spin-orbit effects, and (iii) the hyperfine 
structure which we are instructed to ignore. Thus, in the absence of a magnetic field, 
the levels under the influence of the Coulomb potential consist of 2n2 = 8 degenerate 
levels. Two of the levels are associated with l = 0 (spin up and spin down) and six 



levels with l = 0, corresponding to ml  = 1,0,-1, spin up and spin down. The latter can 
be rearranged into states characterized by J2, L2 and Jz. There are two levels 
characterized by j = l –1/2 = 1/2 and four levels with j = l + 1/2 = 3/2. These energies 
are split by relativistic effects and spin-orbit coupling, as given in Eq. (12-16). We 
ignore reduced mass effects (other than in the original Coulomb energies).  We 
therefore have 

 

ΔE = −
1
2

mec
2α 4 1

n3

1
j +1/ 2

−
3

4n
⎛ 
⎝ 
⎜ ⎞ 

⎠ 

= −
1
2

mec
2α 4 5

64
⎛ 
⎝ 

⎞ 
⎠ j =1 / 2

= −
1
2

mec
2α 4 1

64
⎛ 
⎝ 

⎞ 
⎠ j = 3 / 2

 

 
(b) The Zeeman splittings for a given j  are 
 

  

ΔEB =
ehB
2me

m j
2
3

⎛ 
⎝ 

⎞ 
⎠ j =1 / 2

=
ehB
2me

m j
4
3

⎛ 
⎝ 

⎞ 
⎠ j = 3 / 2

 

 

Numerically   
1

128
mec

2α 4 ≈1.132 ×10−5eV , while for B = 2.5T 
 

ehB
2me

= 14.47 ×10−5 eV , 

so under these circumstances the magnetic effects are a factor of 13 larger than the 
relativistic effects. Under these circumstances one could neglect these and use Eq. (12-
26). 
 
3. The unperturbed Hamiltonian is given by Eq. (12-34) and the magnetic field interacts 

both with the spin of the electron and the spin of the proton. This leads to  
 

  
H = A

S• I
h2 + a

Sz

h
+ b

Iz

h
 

 
Here  
 

 

  

A =
4
3

α 4 mec
2gP

me

MP

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

I• S
h2

a = 2
ehB
2me

b = −gP
ehB
2M p

 

 



Let us now introduce the total spin F = S +  I. It follows that  
 

  

  

S• I
h2 =

1
2h2 h2F(F +1) −

3
4

h2 −
3
4

h2⎛ 
⎝ 

⎞ 
⎠ 

=
1
4

for F =1

= −
3
4

for F = 0

 

 
We next need to calculate the matrix elements of  aSz + bIz  for eigenstates of F2  and Fz . 
These will be exactly like the spin triplet and spin singlet eigenstates. These are 
  
 

〈1,1| aSz + bIz |1,1〉 = 〈χ +ξ+ | aSz + bIz | χ+ξ+〉 = 1
2

(a + b)

〈1,0 | aSz + bIz |1,0〉 =
1
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

〈χ +ξ− + χ−ξ+ | aSz + bIz | χ +ξ− + χ+ξ− 〉 = 0

〈1,−1 | aSz + bIz |1,−1〉 = 〈χ −ξ− | aSz + bIz | χ−ξ−〉 = −
1
2

(a + b)

 

 
And for the singlet state (F = 0) 
 

〈1,0 | aSz + bIz | 0,0〉 =
1
2

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 
2

〈χ +ξ− + χ−ξ+ | aSz + bIz | χ +ξ− − χ +ξ−〉 =
1
2

(a − b)

〈0,0 | aSz + bIz | 0,0〉 =
1
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

〈χ +ξ− − χ −ξ+ | aSz + bIz | χ+ξ− − χ+ξ− 〉 = 0  

Thus the magnetic field introduces mixing between the |1,0> state and the |0.0> state. 
We must therefore diagonalize the submatrix 
 

A / 4 (a − b) / 2
(a − b) / 2 −3A / 4

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

−A / 4 0
0 −A / 4

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ +

A / 2 (a − b) / 2
(a − b) / 2 −A / 2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 
The second submatrix commutes with the first one. Its eigenvalues are easily determined 
to be ± A2 / 4 + (a − b)2 / 4 so that the overall eigenvalues are 
 
   −A / 4 ± A2 / 4 + (a − b)2 / 4  
 
Thus the spectrum consists of the following states: 
 



F = 1, Fz = 1  E = A / 4 + (a + b) / 2  
 
F =1, Fz = -1  E = A / 4 − (a + b) / 2 
 
F = 1,0; Fz = 0  E = −A / 4 ± (A2 / 4 + (a − b)2 / 4  
 
We can now put in numbers.  
For B = 10-4 T,  the values, in units of 10-6 eV are 1.451, 1.439, 0(10-10), -2.89 
For B = 1 T, the values in units of 10-6 eV are 57.21,-54.32, 54.29 and 7 x 10-6. 
 
4. According to Eq. (12-17) the energies of hydrogen-like states, including relativistic + 
spin-orbit contributions is given by  
 

  En, j = −
1
2

mec
2 (Zα)2

(1+ me / Mp )
1
n2 −

1
2

mec
2(Zα )4 1

n3
1

j +1/ 2
−

3
4n

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 
The wavelength in a transition between two states is given by 
 

   
  
λ =

2πhc
ΔE

 

 
where ΔE is the change in energy in the transition. We now consider the transitions 
n =3, j = 3/2   n = 1, j = 1/2  and n = 3 , j = 1/2  n = 1, j = 1/2.. The corresponding 
energy differences (neglecting the reduced mass effect) is 
 

(3,3/2 1,1/2)  ΔE =
1
2

mec
2(Zα )2 (1−

1
9
) +

1
2

mec
2 (Zα)4 1

4
(1−

1
27

)  

 

(3,1/2 1,1/2)  
1
2

mec
2 (Zα)2(1−

1
9

) +
1
2

mec
2(Zα)4 1

4
(1−

3
27

)  

 
We can write these in the form 
 

(3,3/2 1,1/2)  ΔE0(1 +
13
48

(Zα )2 ) 

 

(3,1/2 1,1/2)  ΔE0(1 +
1
18

(Zα)2)  

 
where 
 

   ΔE0 =
1
2

mec
2(Zα )2 8

9
 

 
The corresponding wavelengths are 



 

(3,3/2 1,1/2)  λ0 (1−
13
48

(Zα )2 ) = 588.995 ×10−9 m  

 

(3,1/2 1,1/2)  λ0 (1−
1
18

(Zα)2) = 589.592 ×10−9 m  

 
We may  use the two equations to calculate λ0 and Z. Dividing one equation by the other 
we get, after a little arithmetic Z = 11.5, which fits with the Z = 11 for Sodium. 
(Note that if we take for λ0 the average of the two wavelengths, then , using 
  λ0 = 2πhc / ΔE0 = 9πh / 2mc(Zα )2 , we get a seemingly unreasonably small value of Z = 
0.4! This is not surprising. The ionization potential for sodium is 5.1 eV instead of 
Z2(13.6 eV), for reasons that will be discussed in Chapter 14) 
 
 

4. The relativistic correction to the kinetic energy term is  −
1

2mc 2
p2

2m
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

. The energy 

shift in the ground state is therefore 
 

ΔE = −
1

2mc2 〈0 |
p2

2m
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

| 0〉 = −
1

2mc2 〈0 | (H −
1
2

mω2r 2)2 | 0〉  

 
To calculate < 0 | r2 | 0 >  and < 0 | r4 | 0 > we need the ground state wave function. We 
know that for the one-dimensional oscillator it is  
 

   
  
u0 (x) =

mω
πh

⎛ 
⎝ 

⎞ 
⎠ 

1/4

e− mωx 2 / 2h  

 
so that for the three dimensional oscillator it is 
 

  
  
u0 (r) = u0(x)u0 (y)u0(z) =

mω
πh

⎛ 
⎝ 

⎞ 
⎠ 

3/ 4

e−mωr2 / 2h  

 
It follows that 
 

 

  

〈0 | r2 | 0〉 = 4πr2

0

∞

∫ dr
mω
πh

⎛ 
⎝ 

⎞ 
⎠ 

3/2

r 2e− mωr2 / h =

= 4π
mω
πh

⎛ 
⎝ 

⎞ 
⎠ 

3/ 2
h

mω
⎛ 
⎝ 

⎞ 
⎠ 

5/2

dyy 4e−y 2

0

∞

∫

=
3h

2mω

  

 



We can also calculate 
 
 

 

  

〈0 | r4 | 0〉 = 4πr 2

0

∞

∫ dr
mω
πh

⎛ 
⎝ 

⎞ 
⎠ 

3/ 2

r4e− mωr2 / h =

= 4π
mω
πh

⎛ 
⎝ 

⎞ 
⎠ 

3/ 2
h

mω
⎛ 
⎝ 

⎞ 
⎠ 

7/2

dyy 6e− y 2

0

∞

∫

=
15
4

h

mω
⎛ 
⎝ 

⎞ 
⎠ 

2

 

 

We made use of  dzzn

0

∞

∫ e− z = Γ(n +1) = nΓ(n) and Γ(
1
2

) = π  

Thus 

 

  

ΔE = −
1

2mc2

3
2

hω⎛ 
⎝ 

⎞ 
⎠ 

2

−
3
2

hω⎛ 
⎝ 

⎞ 
⎠ mω 2 3h

2mω
⎛ 
⎝ 

⎞ 
⎠ +

1
4

m2ω 4 15
4

⎛ 
⎝ 

⎞ 
⎠ 

h

mω
⎛ 
⎝ 

⎞ 
⎠ 

2⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

= −
15
32

(hω)2

mc2

 

 
6. (a)  With J = 1 and S = 1, the possible values of the orbital angular momentum, such 

that  j = L + S, L + S –1…|L – S|  can only be L = 0,1,2. Thus the possible states are 
3S1,

3P1,
3D1 . The parity of the deuteron is (-1)L  assuming that the intrinsic parities of 

the proton and neutron are taken to be +1. Thus the S and D states have positive 
parity and the P state has opposite parity. Given parity conservation, the only possible 
admixture can be the 3D1  state. 
 
(b)The interaction with a magnetic field consists of three contributions: the 
interaction of the spins of the proton and neutron with the magnetic field, and the L.B 
term, if L is not zero. We write 
 
    H = −M p • B − Mn •B − ML • B  
 

where  

  

M p =
eg p

2M
S p = (5.5792)

eh
2M

S p

h

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

Mn =
egn

2M
Sn = (−3.8206)

eh
2M

Sn

h
⎛ 
⎝ 

⎞ 
⎠ 

ML =
e

2Mred

L

 

 
We take the neutron and proton masses equal (= M ) and the reduced mass of the two-
particle system for equal masses is M/2. For the 3S1  stgate, the last term does not 
contribute.  



 If we choose B  to define the z axis, then the energy shift is 
 

  
  
−

eBh

2M
〈3S1 | gp

Spz

h

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ + gn

Snz

h

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ |3S1〉  

 
We write 
 

 
  
gp

Spz

h

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ + gn

Snz

h

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

gp + gn

2
Spz + Snz

h
+

gp − gn

2
Spz − Snz

h
 

 
It is easy to check that the last term has zero matrix elements in the triplet states, so 

that we are left with  
  

1
2

(gp + gn )
Sz

h
, where Sz is the z-component of the total spin.. 

Hence 
 

   
  
〈3S1 | H1|

3 S1〉 = −
3Bh

2M
gp + gn

2
ms  

 
where ms  is the magnetic quantum number (ms = 1,0,-1) for the total spin. We may 
therefore write the magnetic moment of the deuteron as 

      μeff = −
e

2M
gp + gn

2
S = −(0.8793)

e
2M

S  

 
The experimental measurements correspond to gd = 0.8574  which suggests a small 
admixture of the 3D1  to the deuteron wave function. 
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CHAPTER 13 
 

1. (a) electron-proton system  mr =
me

1 + me / M p
= (1− 5.45 ×10−4 )me  

(b) electron-deuteron system  mr =
me

1 + me / Md
= (1− 2.722 ×10−4)me  

(c) For two identical particles of mass m, we have mr =
m
2

 

 
2. One way to see that P12 is hermitian, is to note that the eigenvalues ±1 are both real. 

Another way is to consider  
 

  

i, j
∑ dx1∫ dx2ψ ij

* (x1, x2)P12ψ ij (x1, x2 ) =

i, j
∑ dx1dx2∫ ψ ij

* (x1, x2)ψ ji(x2, x1) =

j,i
∑ dy1∫ dy2ψ ji

* (y2,y1)ψ ij(y1,y2) = dy1∫ dy2 (P12ψ ij(y1,y2)) *ψ ij (y1,y2 )
j,i
∑

 

 
3. If the two electrons are in the same spin state, then the spatial wave function must be 

antisymmetric. One of the electrons can be in the ground state, corresponding to n = 
1, but the other must be in the next lowest energy state, corresponding to n = 2. The 
wave function will be  

ψ ground (x1, x2) =
1
2

u1(x1)u2(x2) − u2(x1)u1(x2)( ) 

 

4. The energy for the n-th level is 
 
En =

h2π 2

2ma 2 n2 ≡ εn2  

Only two electrons can go into a particular level, so that with N electrons, the lowest 
N/2 levels must be filled. The energy thus is 
 

   Etot = 2εn2

n =1

N /2

∑ ≈ 2ε
1
3

N
2

⎛ 
⎝ 

⎞ 
⎠ 

3

=
εN 3

12
 

 
If N is odd, then the above is uncertain by a factor of εN 2  which differs from the 
above by  (12/N )ε, a small number if N  is very large. 
 

5. The problem is one of two electrons interacting with each other. The form of the 
interaction is a square well potential. The reduction of the two-body problem to a 
one-particle system is straightforward. With the notation  



 2

x = x1 − x2;X =
x1 + x2

2
;P = p1 + p2 , the wave function has the form  

ψ (x1, x2) = eiPX u(x), where u(x) is a solution of  
 

  
−

h2

m
d2u(x)

dx 2 + V (x)u(x) = Eu(x) 

 
Note that we have taken into account the fact that the reduced mass is m/2. The spatial 
interchange of the two electrons corresponds to the exchange x  -x .Let us denote the 
lowest bound state wave function by u0(x) and the next lowest one by u1(x). We know 
that the lowest state has even parity, that means, it is even under the above interchange, 
while the next lowest state is odd under the interchange. Hence, for the two electrons in a 
spin singlet state, the spatial symmetry must be even, and therefor the state is u0(x), while 
for the spin triplet states, the spatial wave function is odd, that is, u1(x). 
 

6. With  P = p1 + p2; p =
1
2

( p1 − p2); X =
1
2

(x1 + x2); x = x1 − x2 , the Hamiltonian 

becomes 
 

  H =
P 2

2M
+

1
2

Mω2 X 2 +
p2

2μ
+

1
2

μω2 x2  

 
with M = 2m the total mass of the system, and µ = m/2 the reduced mass. The energy 
spectrum is the sum of the energies of the oscillator describing the motion of the center of 
mass, and that describing the relative motion. Both are characterized by the same angular 
frequency ω  so that the energy is 
 

  E = hω(N +
1
2

) + hω(n +
1
2

) = hω(N + n +1) ≡ hω(ν +1)  

 
The degeneracy is given by the number of ways the integer ν can be written as the sum of 
two non-negative integers. Thus, for a given ν   we can have 

 
 (N,n) = (ν,0),(ν −1,1),(ν − 2,2),...(1,ν −1).(0,ν) 
 

so that the degeneracy is ν + 1. 
 
Note that if we treat the system as two independent harmonic oscillators characterized by 
the same frequency, then the energy takes the form 
 

  
  
E = hω(n1 +

1
2

) + hω(n2 +
1
2

) = hω(n1 + n2 +1) ≡ hω(ν +1)  

 
which is the same result, as expected. 



 3

7. When the electrons are in the same spin state, the spatial two-electron wave function 
must be antisymmetric under the interchange of the electrons. Since the two electrons 
do not interact, the wave function will be a product of the form  

 
1
2

(un (x1)uk (x2) − uk(x1)un (x2))  

 

with energy  
  
E = En + Ek =

h2π 2

2ma2 (n2 + k2) .  The lowest state corresponds to n = 1,  

k = 2, with n2 + k2 = 5 . The first excited state would normally be the (2,2) state, but this 
is not antisymmetric, so that we must choose (1,3) for the quantum numbers. 
 
8. The antisymmetric wave function is of the form 
 

N
π
μ 2 e− μ 2(x1 − a)2 /2e−μ 2 (x2 + a)2 / 2 − e− μ 2(x1 + a)2 /2e−μ 2 (x2 − a)2 / 2( )

= N
π
μ 2 e−μ 2a 2

e− μ 2(x1
2 + x2

2 )/ 2 e− μ 2(x2 − x1 )a − e− μ 2(x1 − x2 )a( )
 

 
Let us introduce the center of mass variable X and the separation x  by 
 

   x1 = X +
x
2

; x2 = X −
x
2

 

 
The wave function then becomes 
 

   ψ = 2N
π
μ 2 e− μ 2a2

e−μ 2X 2

e−μ 2x 2 / 4 sinhμ 2ax  

To normalize, we require 
 
 dX dx |ψ |2

−∞

∞

∫−∞

∞

∫ =1 
 
Some algebra leads to the result that 
 

   N
π
μ 2 =

1
2

1

1− e−2μ 2a2
 

 
The second factor is present because of the overlap. If we want this to be within 1 part in 
a 1000 away from 1, then we require that e−2(μa )2

≈1/ 500 , i.e. µa = 1.76, or a = 0.353 

nm
  
Rfi =

4
π

(Zα)3 d2

a0
2

mc2

2ΔE
mc 2

h
. 

.  
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9. Since 
 

ψ = 2
e−(μa)2

1− e−2(μa )2
e−(μX )2

e−(μx )2 / 4 sinhμ 2ax  

 
the probability density for x is obtained by integrating the square of  ψ over all X. This is 
a simple Gaussian integral, and it leads to 
 

  P(x)dx =
2e−2(μa )2

1− e−2(μa)2

π
2

1
μ

e−(μx )2 /2 sinh2 (μ 2ax)dx  

 
It is obvious that 
 
   〈X〉 = dXXe−2(μX )2

= 0
−∞

∞

∫   
 
since the integrand os an odd function of X. 
 
10. If we denote µx by y, then the relevant quantities in the plot are e−y 2 / 2 sinh2 2y  and  

e−y 2 / 2 sinh2(y / 2). 
 

11. Suppose that the particles are bosons. Spin is irrelevant, and the wave function for the 
two particles is symmetric. The changes are minimal. The wave function is 

 

ψ = 2N
π
μ 2 e− μ 2a2

e−μ 2X 2

e−μ 2x 2 / 4 coshμ 2xa  

 
with 
 

   N
μ 2

π
=

1
2

1

1+ e−2μ 2a 2
 

 
and 
 

  P(x) =
2e−2μ 2a2

1 + e−2μ 2a2

π
μ 2

e− μ 2x 2 /2 cosh2(μ 2ax)  

 
The relevant form is now P(y) = e− y 2 /2 cosh2 κy  which peaks at y = 0 and has extrema at 
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−y coshκy + 2κ sinhκy = 0 , that is, when 
 
    tanhκy = y / 2κ  
 
which only happens if 2κ 2 > 1. Presumably, when the two centers are close together, then 
the peak occurs in between; if they are far apart, there is a slight rise in the middle, but 
most of the time the particles are around their centers at ± a. 
 
12. The calculation is almost unchanged. The energy is given by 
 

  
E = pc =

hπc
L

n1
2 + n2

2 + n3
2   

 
so that in Eq. (13-58) 
 
    R

2 = n1
2 + n2

2 + n3
2 = (EF /hcπ )2 L2  

 
Thus 
 

   
  
N =

π
3

EFL
πhc

⎛ 
⎝ 

⎞ 
⎠ 

3

 

 
and 
 

   
  
EF = πhc

3n
π

⎛ 
⎝ 

⎞ 
⎠ 

1/3

 

 
13. The number of triplets of positive integers {n1,n2,n3} such that 
 

  
n1

2 + n2
2 + n3

2 = R2 =
2mE
h2π 2 L2  

 
is equal to the numbers of points that lie on an octant of a sphere of radius R, within a 

thickness of Δn = 1. We therefore need 
1
8

4πR2dR .  To translate this into E we use  

  2RdR = (2mL2 / h2π 2)dE . Hence the degeneracy of states is 
 

 
  
N(E)dE = 2 ×

1
8

4πR(RdR) = L3 m 2m
h3π 2 E dE  

 
To get the electron density we had to multiply by 2 to take into account that there are two 
electrons per state. 
 
14. Since the photons are massless, and there are two photon states per energy state, this 

problem is identical to problem 12. We thus get  
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n1

2 + n2
2 + n3

2 = R2 =
E

hπc
⎛ 
⎝ 

⎞ 
⎠ 

2

L2  

 
or   R = EL /hπc . Hence 
 

  
  
N(E)dE =

1
8

4πR2dE = L3 E 2

h3c 3π 2 dE  

 
15. The eigenfunctions for a particle in a box of sides L1,L2, L3 are of the form of a 

product  
 

u(x,y,z) =
8

L1L2L3
sin

n1πx
L1

sin
n2πy

L2
sin

n3πz
L3

 

 
and the energy for a massless partticle, for which E = pc is 
 

  
  
E = hcπ

n1
2

L1
2 +

n2
2

L2
2 +

n3
2

L3
2 = hcπ

n1
2 + n2

2

a2 +
n3

2

L2  

 
Note that a << L . thus the low-lying states will have n1 = n2 = 1, with n3 ranging from 1 
upwards. At some point the two levels n1 = 2, n2=1 and n1=1 and n2 = 2 will provide a 
new “platform” upon which n3 = 1,2,3,… are stacked. With a = 1 nm and L = 103 nm, for 
n1 = n2 = 1 the n3 values can go up to 103 before the new platform starts. 
 
16. For nonrelativistic particles we have 
 

  
E =

h2

2m
n1

2 + n2
2

a2 +
n3

2

L2

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  

 
17. We have 
 

  
EF =

h2π 2

2M
3n
π

⎛ 
⎝ 

⎞ 
⎠ 

2/ 3

 

 
where M is the nucleon mass, taken to be the same for protons and for neutrons, and 

where n is the number density. Since there are Z protons in a volume 
4π
3

r0
3 A , the number 

densities for protons and neutrons are 
 

  np =
3

4πr0
3

Z
A

; nn =
3

4πr0
3

A − Z
A
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Putting in numbers, we get 
 

   EFp = 65
Z
A

⎛ 
⎝ 

⎞ 
⎠ 

2/ 3

MeV ; EFn = 65 1−
Z
A

⎛ 
⎝ 

⎞ 
⎠ 

2/3

MeV  

 
For A = 208, Z = 82 these numbers become  EFp = 35MeV; EFn = 47MeV .  
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CHAPTER 14 
 
1. The spin-part of the wave function is the triplet 
 

ms = 1 χ +
(1)χ +

(2)

ms = 0
1
2

(χ +
(1)χ −

(2) + χ −
(1)χ +

(2))

ms = −1 χ−
(1)χ−

(2)

 

 
This implies that the spatial part of the wave function must be antisymetric under the 
interchange of the coordinates of the two particles. For the lowest energy state, one of the 
electrons will be in an n = 1, l = 0 state. The other will be in an n = 2, l = 1, or l = 0 state. 
The possible states are 
 

   

1
2

u100 (r1)u21m(r2 ) − u100 (r2)u21m (r1)( ) m = 1,0,−1

1
2

u100 (r1)u200 (r2 ) − u100 (r2)u200 (r1)( )
 

 
Thus the total number of states with energy E2 + E1 is 3 x 4 = 12 
 
2. For the triplet state, the first order perturbation energy shifts are given by 
 

ΔE21m = d3r1∫∫ d3r2 |
1
2

u100 (r1)u21m(r2 ) − u100 (r2)u21m (r1)( )|2
e2

4πε0 | r1 − r2 |

ΔE200 = d3r1∫∫ d3r2 |
1
2

u100(r1)u200 (r2) − u100 (r2)u200 (r1)( )|2
e2

4πε0 | r1 − r2 |

 

The l = 1 energy shift uses tw-electron wave functions that have an orbital angular 
momentum 1. There is no preferred direction in the problem, so that there cannot be any 
dependence on the eigenvalue of Lz. Thus all three m values have the same energy. The l 
= 0 energy shift uses different wave functions, and thus the degeneracy will be split. 
Instead of a 12-fold degeneracy we will have a splitting into 9 + 3 states.  
 The simplification of the energy shift integrals reduces to the simplification of the 
integrals in the second part of Eq. (14-29). The working out of this is messy, and we only 
work out the l = 1 part. 
The integrals   d3r1∫∫ d3r2 → r1

2dr10

∞

∫ r2
2dr20

∞

∫ dΩ1 dΩ2∫∫  and the angular parts only come 
through the u210  wave function and through the 1/r12 term. We use Eqs. (14-26) – (14-29) 
to get, for the direct integral 
 



 2

e2

4πε0

r1
2dr10

∞

∫ r2
2dr20

∞

∫ R10(r1)
2 R21(r2)

2

dΩ1∫ dΩ2∫ 1
4π

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2 3
4π

cosθ2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2

PL(cosθ12)
r<

L

r>
L +1

L
∑

 

 
where θ12 is the angle between r1 and r2. We make use of an addition theorem which 
reads 
 

PL(cosθ12) = PL (cosθ1)PL (cosθ2)

+ 2
(L − m)!
(L + m)!m =1

∑ PL
m (cosθ1)PL

m(cosθ2)cos mφ2
r<

L

r>
L +1

 

 
Since the sum is over m = 1,2,3,…the integration over φ2 eliminates the sum, and for all 
practical purposes we have 
 

PL
L
∑ (cosθ12)

r<
L

r>
L +1 = PL

L
∑ (cosθ1)PL(cosθ2 )

r<
L

r>
L +1  

 
The integration over dΩ1 yields 4πδL0  and in our integral we are left with 

dΩ2∫ (cosθ2)
2 = 4π / 3.  The net effect is to replace the sum by  1 / r> to be inserted into 

the radial integral. 
(b) For the exchange integral has the following changes have to be made: In the radial 
integral,  
 
 R10(r1)

2 R21(r2)
2 → R10(r1)R21(r1)R10(r2 )R21(r2 ) 

 
In the angular integral 
 

  
1
4π

3
4π

(cosθ2)
2 →

3
(4π )2 cosθ1 cosθ2  

 
In the azimuthal integration again the m ≠ 0 terms disappear, and in the rest there is a 
product of  two integrals of the form 
 

  dΩ
3

4π∫ cosθPL (cosθ) =
4π
3

δL1  

 

The net effect is that the sum is replaced by  
1
3

r<

r>
2  inserted into the radial integral. 

For the l = 0 case the same procedure will work, leading to  
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e2

4πε0
r1

2dr10

∞

∫ r2
2dr20

∞

∫ 1
r>

R10(r1)R20(r2 )[ ]R10(r1)R20(r2) − R10(r2)R20(r1)[ ] 

 
The radial integrals are actually quite simple, but there are many terms and the 

calculation is tedious, without teaching us anything about physics.  
To estimate which of the(l = 0,l = 0) or the (l = 0, l = 1) antisymmetric 

combinations has a lower energy we approach the problem physically. In the two-
electron wave function, one of the electrons is in the n = 1, l = 0 state. The other electron 
is in an n = 2 state. Because of this, the wave function is pushed out somewhat. There is 
nevertheless some probability that the electron can get close to the nucleus. This 
probability is larger for the l = 0 state than for the l = 1 state. We thus expect that the state 
in which both electrons have zero orbital angular momentum is the lower-lying state.  

 
3. In the ground state of ortho-helium, both electroNs have zero orbital angular 

momentum. Thus the only contributions to the magnetic moment come from the 
electron spin. An electron interacts with the magnetic field according to  

 

H = −
ge

2me
s1 •B −

ge
2me

s2 • B = −
ge

2me
S• B  

 

The value of g is 2, and thus coefficient of B takes on the values 
 
−

eh

2me
m1 , where  

m1 = 1,0,-1.  
 
4. We assume that ψ   is properly normalized, and is of the form 
 
    |ψ 〉 =|ψ 0 〉 + ε | χ〉  
 
The normalization condition implies that 
 
 〈ψ |ψ 〉 =1 = 〈ψ 0 |ψ 0 〉 + ε * 〈χ |ψ 0〉 + ε〈ψ 0 | χ〉 +εε *〈χ | χ〉  
 
so that 
 
  ε * 〈χ |ψ 0 〉 + ε〈ψ 0 | χ〉 +εε *〈χ | χ〉 = 0 
 
Now 
 

 

〈ψ | H |ψ 〉 = 〈ψ 0 + εχ | H |ψ 0 +εχ〉

= E0 + ε * E0〈χ |ψ 0〉 +εE0〈ψ 0 | χ〉+ |ε |2 〈χ | H | χ〉

= E0 + | ε |2 〈χ | H − E0 | χ〉
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where use has been made of the normalization condition.Thus the expectation value of H 
differs from the exact value by terms of order |ε|2. 
 
5. We need to calculate  
 

 

  

E(α) =

4πr2dre−αr −
h2

2m
d2

dr 2 +
2
r

d
dr

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ +

1
2

mω 2r2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
e−αr

0

∞

∫
4πr 2dre−2αr

0

∞

∫
 

 
With a little algebra, and using dyy n

0

∞

∫ e−y = n!, we end up with 
 

  
  
E(α) =

h2α 2

2m
+

3mω 2

2α 2  

 
This takes its minimum value when dE(α ) / dα = 0 . This is easily worked out, and leads 
to   α

2 = 3mω / h . When this is substituted into E(α) we get 
 
      Emin = 3hω  
 

The true ground state energy is bound to lie below this value. The true value is 
  

3
2

hω  so 

that our result is pretty good. 
 
4. The Schrodinger equation for a bound state in an attractive potential,  with l = 0 reads 
 

  
−

h2

2m
d2

dr 2 +
2
r

d
dr

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ψ (r)− |V0 | f (

r
r0

)ψ (r) = −EBψ (r)  

 
With the notation  x = r/r0 , u0(x) = x ψ(x), 

 
λ = 2m | V0 | r0

2 /h2; α 2 = 2mEB r0
2 / h2  this 

becomes  

  
d2u0 (x)

dx 2 −α 2u0 (x) + λf (x)u0(x) = 0 

 
Consider, now an arbitrary function w(x) which satisfies w(0)= 0 (like u0(0)) , and define 
 

  η[w] =

dx
dw(x)

dx
⎛ 
⎝ 

⎞ 
⎠ 

2

+ α 2w2(x)
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 0

∞

∫
dxf (x)w2 (x)

0

∞

∫
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We are asked to prove that if  η = λ + δλ  and w (x) = u0(x) + δ u(x) , then as δ u(x)  0, 
δλ  0.  We work to first order in δu(x) only. Then the right hand side of the above 
equation, written in abbreviated form becomes 
 

u0'
2 +α 2u0

2( )+ 2 u0 'δu' +α 2u0δu( )∫∫
f u0

2 + 2u0δu( )∫
=

=
u0 '2 +α 2u0

2( )∫
fu0

2∫
− 2

u0 'δu' +α 2u0δu( )∫
fu0

2∫
u0'

2 +α 2u0
2( )∫

fu0
2∫

 

 
In the above, the first term is just η[u0], and it is easy to show that this is just λ. The 
same form appears in the second term. For the first factor in the second term we use 
 

   dx u0 'δu'( )∫ = dx
d
dx∫ u0'δu( )− dxu0' 'δu∫  

 
The first term on the right vanishes because the eigenfunction vanishes at infinity and 
because δu(0) = 0. Thus the second term in the equation for η[w] becomes 
 

   
2
fu0

2∫
δu −u0' ' +α 2u0 − λfu0[ ]∫   

 
Thus η → λ  as δu  0. 
 
5. We want to minimize 〈ψ | H |ψ 〉 = ai

*

i, j
∑ H ijaj   subject to the condition that  

〈ψ |ψ 〉 = ai
*

i
∑ ai =1.  The method of Lagrange multipliers instructs us to minimize 

 
  F(ai

*,ai) = ai
*

ij
∑ H ijaj − λ ai

*

i
∑ ai  

 
The condition is that ∂F / ∂ai

* = 0 . The condition implies that 
 
    H ij

j
∑ a j = λai  

Similarly ∂F / ∂ai = 0  implies that 
 
    ai

*

i
∑ H ij = λaj

*  

 
Thus the minimization condition yields solutions of an eigenvalue equation for H. 
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6. Consider the expectation value of H evaluated with the normalized trial wave 

function  
 

ψ (x) =
β
π

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1/ 2

e− β 2x 2 / 2  

 
Then an evaluation of the expectation value of H yields, after some algebra, 
 

 

  

E(β ) = dxψ *
−∞

∞

∫ (x) −
h2

2m
d2

dx 2 +V (x)
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ψ (x)

=
β
π

dx
h2

2m
(β 2 − β 4 x 2)e− β 2x 2⎛ 

⎝ ⎜ 
⎞ 
⎠ ⎟ 

−∞

∞

∫ +
β
π

dxV (x)e− β 2x 2

−∞

∞

∫

=
h2β 2

2m
+

β
π

dxV (x)e−β 2x 2

−∞

∞

∫

  

 
The question is: can we find a value of β  such that this is negative. If so, then the true 
value of the ground state energy will necessarily be more negative. We are given the fact 
that the potential is attractive, that is, V(x) is never positive. We write V(x) = - |V(x)| and 
ask whether we can find a value of β such that 
 

  

β
π

dx | V (x) | e−β 2x 2

−∞

∞

∫ >
h2β 2

2m
 

 
For any given |V(x)| we can always find a square “barrier” that is contained in the positive 
form of |V(x)|. If the height of that barrier is V0 and it extends from –a to +a , for 
example, then the left side of the above equation is always larger than 
 

    L(β ) =
β
π

V0 dxe−β 2x 2

−a

a

∫  

 
Our question becomes: Can we find a β such that 
 

    
  

4m
h2 L(β) > β 2  

 
It is clear that for small β  such that β2a2 << 1, the left hand side is approximated by  

  
2a

β
π

4mV0

h2 . This is linear in β so that we can always find a β small enough so that the 

left hand side is larger than the right hand side. 
 
7. The data indicates a resonance corresponding to a wavelength of 20.61 nm. This 

corresponds to an energy of  
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h
c
λ

=
2π (1.054 ×10−34 J.s)(3 ×108 m / s)

(20.61×10−9 m)(1.602 ×10−19J / eV )
= 60.17eV  

 
above the ground state. The ground state has energy – 78.98 eV, while the ground state of 
He+ has a binding energy of a hydrogenlike atom with Z = 2, that is, 54.42 eV. This 
means that the ionization energy of He is (78.98-54.42)eV = 24.55 eV above the ground 
state. Thus when the (2s)(2p) state decays into He+ and an electron, the electron has an 
energy of  (60.17 – 24.55)eV = 35.62 eV. This translates into 
v = 2E / m = 3.54 ×106 m / s . 
The first excited state of the He+ ion lies 54.42(1-1/4)=40.82 eV above the ground state of 
He+ , and this is above the (2s)(2p) state.  
 
 
8. To calculate the minimum of  
 

E(α1,α2, ...) =
〈ψ (α1,α2, ...) | H |ψ (α1,α 2,...)〉

〈ψ (α1,α 2,...) |ψ (α1,α2, ...)〉
 

 
we set ∂E / ∂αi = 0, i =1,2,3.... This implies that 

 

〈
∂ψ
∂αi

| H |ψ 〉 + 〈ψ | H |
∂ψ
∂αi

〉

〈ψ |ψ 〉
−

〈ψ | H |ψ 〉 〈
∂ψ
∂αi

|ψ 〉 + 〈ψ |
∂ψ
∂α i

〉
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

〈ψ |ψ 〉2 = 0  

 
This is equivalent to 
 

〈
∂ψ
∂αi

| H |ψ 〉 + 〈ψ | H |
∂ψ
∂αi

〉 =

E(α1,α2, ..) 〈
∂ψ
∂αi

|ψ 〉 + 〈ψ |
∂ψ
∂αi

〉
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

 

 
Let us now assume that H depends on some parameter λ.. To calculate the minimum we 
must choose our parameters αi  to depend on λi.  We may rewrite the starting equation by 
emphasizing the dependence of everything on λ, as follows 
 
   E(λ )〈ψ (λ) |ψ(λ )〉 = 〈ψ (λ) | H |ψ(λ )〉  
 

Let us now differentiate with respect to λ , noting that  
∂

∂λ
=

∂αi

∂λi
∑ ∂

∂α i
 

We get 
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dE(λ)
dλ

〈ψ (λ ) |ψ (λ)〉 + E(λ )
∂αi

∂λi
∑ 〈

∂ψ
∂αi

|ψ (λ )〉 + 〈ψ (λ ) |
∂ψ (λ)

∂αi

〉
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

= 〈ψ (λ ) |
∂H
∂λ

|ψ (λ)〉 +
∂αi

∂λi
∑ 〈

∂ψ
∂α i

| H |ψ (λ )〉 + 〈ψ (λ) | H |
∂ψ (λ)

∂αi

〉
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

 

 
Since we have shown that 
 

   

〈
∂ψ
∂αi

| H |ψ 〉 + 〈ψ | H |
∂ψ
∂αi

〉 =

E(α1,α2, ..) 〈
∂ψ
∂αi

|ψ 〉 + 〈ψ |
∂ψ
∂αi

〉
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

 

 
we obtain the result that  
 

   
dE(λ)

dλ
〈ψ (λ ) |ψ (λ)〉 = 〈ψ (λ ) |

∂H
∂λ

ψ (λ)〉  

 
With normalized trial wave functions we end up with 
 

  
dE(λ)

dλ
= 〈ψ (α1,α2,..) |

∂H
∂λ

|ψ (α1,α2,..)〉  

 
A comment: The Pauli theorem in Supplement 8-A has the same form, but it deals with 
exact eigenvalues and exact wave functions. Here we find that the same form applies to 
approximate values of the eigenvalue and eigenfunctions,  provided that these are chosen 
to depend on parameters {α} which minimize the expectation value of the Hamiltonian 
(which does not depend on these parameters). 
 
 
 
9. With the trial wave function  
 

ψ (x) =
β
π

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1/ 2

e− β 2x 2 / 2  

 
we can calculate  
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E(β ) =
β
π

dxe −β 2x 2 /2

−∞

∞

∫ −
h2

2m
d2

dx 2 + λx 4⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ e−β 2x 2 /2

=
β
π

dxe−β 2x 2

−∞

∞

∫
h2

2m
(β 2 − β 4 x2 ) + λx4⎛ 

⎝ ⎜ 
⎞ 
⎠ ⎟ 

=
h2β 2

2m
+

3λ
4β 4

 

 

We minimize this by setting ∂E / ∂β = 0 , which leads to  
 
β 2 =

6mλ
h2

⎛ 
⎝ 

⎞ 
⎠ 

1/3

. When this is 

inserted into the expression for E, we get 
 

  
  
Emin =

h2

2m
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2/3

(4λ)1/ 3 61/ 3

4
+

3
4

1
62/ 3

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ = 1.083

h2

2m
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2/ 3

λ1/ 3  

 
This is quite close to the exact value, for which the coefficient is 1.060 
 
10. With the Hamiltonian  
 

H =
p2

2m
+ λx 4  

 
we first choose (1/2m) as the parameter in the Feynman-Hellmann theorem. This leads to  
 

  
  
〈0 | p2 | 0〉 =

∂Emin

∂(1 / m)
= 0.890(h4 mλ )1/3  

 
If we choose λ  as the parameter, then 
 

  
  
〈0 | x 4 | 0〉 =

∂Emin

∂λ
= 0.353

h2

2mλ
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2/3

 

 
 
11. We start from 
 

E0 ≤
〈ψ | H |ψ 〉

〈ψ |ψ 〉
=

ai
*Hija j

ij
∑

ai
*ai

i
∑

 

 
We now choose for the trial vector one in which all the entries are zero, except that at the 
k-th position there is 1, so that ai = δ ik . This leads to 
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    E0 ≤ H kk      (k is not summed over) 
 
We may choose k = 1,2,3,…Thus the lowest eigenvalue is always smaller than the the 
smallest of the diagonal elements. 
 
12. With the system’s center of mass at rest, the two-body problem reduces to a one-body 

problem, whose Hamiltonian is 
 

H =
p2

2μ
+

1
2

μω 2r2  

 
where  µ is the reduced mass, whose value is m/2.  
(a) The two particles are in an l = 0 state which means that the ground state wave 
function only depends on r, which is symmetric under the interchange of the two particles 
(Recall that r =| r1 − r2 |). Thus the electrons must be in a spin-singlet state, and the 
ground state wave function is  
 
   ψ (r) = u0 (r)Xsinglet  
 
where  

   
  
u0 (r) = u0(x)u0 (y)u0(z) =

μω
hπ

⎛ 
⎝ 

⎞ 
⎠ 

3/4

e− μωr2 / 2h  

 
(We use u0(x) from Eq. (6-55)). 
(b) To proceed with this we actually have to know something about the solutions of the 

simple harmonic oscillator in three dimensions. The solution of this was required by 
Problem 13 in Chapter 8. We recall that the solutions are very similar to the hydrogen 
atom problem. There are two quantum numbers, nr and l. Here l = 0, so that the first 
excited singlet state must correspond to nr = 1. In the spin triplet state, the spin-wave 
function is symmetric, so that the spatial wave function must be antisymmetric. This 
is not possible with l = 0! 
To actually obtain the wave function for the first excited singlet state, we look at the 
equation for H(ρ), with H(ρ) of the form a + bρ2. Since 
 

  
d2H
dρ2 + 2(

1
ρ

− ρ)
dH
dρ

+ 4H = 0  

 
We get H (ρ)= 1-2ρ2/3 and the solution is  
 

   u1(r) = N (1−
2
3

ρ2 )e− ρ 2 /2  
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where 
  
ρ =

μω
h

⎛ 
⎝ 

⎞ 
⎠ 

1/2

r . The normalization constant is obtained from the requirement 

that 
 

   
  
N 2 r2

0

∞

∫ dr(1−
2μω
3h

r2 )2 e−μωr2 / h = 1 

 
so that 
 

   
  
N 2 =

6
π

μω
h

⎛ 
⎝ 

⎞ 
⎠ 

3/2

 

 
(c) The energy shift to lowest order is 
 

  
ΔE = r 2dr C

δ(r)
r 2

⎡ 
⎣ 

⎤ 
⎦ 0

∞

∫ N 2 (1−
2μω
3h

r 2)2e−μ ωr 2 /h = CN 2  

 
13. The energy is given by 
 

  
E =

1
2

Mredω
2 (R − R0 )2 +

h2J (J +1)
2Mred R2  

 
If we treat the vibrational potential classically, then the lowest state of energy is 
characterized by R = R0.  The vibrational motion changes the separation of the nuclei in 
the molecule. The new equilibrium point is given by R1 , which is determined by the 
solution of 
 

  
  

∂E
∂R

⎛ 
⎝ 

⎞ 
⎠ 

R1

= 0 = Mredω
2 (R1 − R0) −

J(J +1)h2

MredR1
3  

 
Let  R1 = R0 + Δ. Then to first order in Δ,  
 

    
  
Δ =

J(J +1)h2

Mred
2 ω 2R0

3  

 
If we now insert the new value of R1 into the energy equation, we find that only the 
rotational energy is changed (since the vibrational part is proportional to Δ2). The 
rotational energy is now 
 

  

  

Erot =
J(J +1)h2

2Mred R0
2(1 + 2Δ / R0)

=
J(J +1)h2

2Mred R0
2 − (J(J +1))2 h4

Mred
3 ω2R0

6
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The sign of the second term is negative. The sign is dictated by the fact that the rotation 
stretches the molecule and effectively increases its moment of inertia. 
 
14. In the transition J = 1  J = 0 we have 
 

  
ΔE =

h2

2Mred R2 (2 − 0) =
2πhc

λ
 

so that 

  

  

R2 =
hλ
2πc

1
Mred

=
hλ
2πc

1
Mnucleon

1
12

+
1
16

⎛ 
⎝ 

⎞ 
⎠ =

= (1.127 ×10−10 m)2
 

The internuclear separation is therefore 0.113 nm, and the momentu of inertia is 
 
   MredR

2 = 1.45 ×10−46 kg.m 2  
 
15. (a) The two nuclei are identical. Since the two-electron state is a spatially symmetric 

spin 0 state, we can ignore the electrons in discussing the lowest energy states of the 
molecule. In the ground state, the two protons will be in the symmetric L = 0 state, so 
that they must be in a spin-antisymmetric  S = 0 state.  
For the spin-symmetric S = 1 state, the spatial wave function must be antisymmetric, 
so that the lowest energy state will have L = 1. 
 
(b) The lowest energy state that lies above the ground state of L = 0, and is also a 
spin S = 0 state must have L = 2. Thus the change in energy in the transition is 
 

   
  
ΔE =

h2

M pR
2 2(2 +1) − 0( ) =

6h2

M pR
2 =

2πhc
λs

 

 
We have used the fact that the reduced mass of the two-proton system is Mp/2. 
For the S = 1 system, the state above the lowest L = 1 state is the L = 3 state, and here 
 

   
  
ΔE =

h2

M pR
2 3(3 +1) −1(1+1)( ) =

10h2

M pR
2 =

2πhc
λt

 

 
The singlet and triplet wavelengths are easily calculated once we know R. Note that 
these are not exactly the same, but can be looked up. 
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CHAPTER 15 
 
1. With the perturbing potential given, we get 
 

  
C(1s → 2 p) =

eE0

ih
〈φ210 | z |φ100〉 dte iωt

0

∞

∫ e−γt  

 
where ω = (E21 – E10). The integral yields 1 / (γ − iω)  so that the absolute square of 
C(1s 2p) is 
 

 
  
P(1s → 2 p) = e2E0

2 | 〈φ210 | z |φ100 〉 |2

h2(ω2 + γ 2 )
 

 

We may use  | 〈φ210 | z | φ100 〉 |2 =
215

310 a0
2   to complete the calculation. 

 
2. Here we need to calculate the absolute square of  
 

  

1
ih

dt
0

T

∫ eiω 21t sinωt ×
2
a

λ dx
0

a

∫ sin
2πx

a
(x −

a
2

)sin
πx
a

 

 
Let us first consider the time integral. We will assume that at t = 0 the system starts in the 
ground state. The time integral then becomes 
 

 
dteiω 21 t

0

∞

∫ sinωt =
1
2i

dt{ei(ω 21 +ω )t

0

∞

∫ − ei(ω 21 −ω )t} =
ω

ω 2 − ω21
2  

We have used the fact that an finitely rapidly oscillating function is zero on the average. 
In the special case that ω  matches the transition frequency, one must deal with this 
integral in a more delicate manner. We shall exclude this possibility. 
 
The spatial integral involves 
 

2
a

dx sin
2πx

a0

a

∫ sin
πx
a

(x −
a
2

) =

1
a

cos
πx
a

− cos
3πx

a
⎛ 
⎝ 

⎞ 
⎠ 0

a

∫ (x −
a
2

)

=
1
a

dx
d

dx
a
π

sin
πx
a

−
a

3π
sin

3πx
a

⎛ 
⎝ 

⎞ 
⎠ (x −

a
2

)
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

−
a
π

sin
πx
a

−
a

3π
sin

3πx
a

⎛ 
⎝ 

⎞ 
⎠ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

0

a

∫

=
1
a

a2

π 2 cos
πx
a

−
a2

9π 2 cos
3πx

a
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

0

a

= −2
a

π 2
8
9

 

 
The probability is therefore 



 2

 

 
  
P12 =

λ
h

⎛ 
⎝ 

⎞ 
⎠ 

2 16a
9π 2

⎛ 
⎝ 

⎞ 
⎠ 

2 ω2

(ω21
2 − ω2)2  

 
(b) The transition from the n = 1 state to the n = 3 state is zero. The reason is that the 
eigenfunctions for all the odd values of n are all symmetric about x = a/2, while the 
potential (x – a/2) is antisymmetric about that axis, so that the integral vanishes. In fact, 
quite generally all transition probabilities (even   even) and (odd  odd) vanish. 
 
(c) The probability goes to zero as ω  0. 
 
3. The only change occurs in the absolute square of the time integral. The relevant one is 
 

dteiω 21 t

−∞

∞

∫ e− t 2 /τ 2

= πe−ω 2τ 2 / 4  

 
which has to be squared. 
When τ  ∞  this vanishes, showing that the transition rate vanishes for a very slowly 
varying perturbation. 
 
4. The transition amplitude is 
 

  

Cn→ m =
λ
ih

〈m |
h

2Mω
(A + A+) | n〉 dte iω (m −n )t

0

∞

∫ e−αt cosω1t

= −iλ 1
2Mhω

δm,n −1 n +δm,n +1 n +1( ) α − iω(m − n)
(α − iω(m − n))2 +ω1

2

 

 
(a) Transitions are only allowed for m = n ± 1. 
 
(b) The absolute square of the amplitude is, taking into account that (m – n)2 = 1,  

 

  

λ2

2Mhω
(nδm,n −1 + (n +1)δm ,n+1)

α 2 + ω2

(α 2 +ω1
2 − ω2 )2 + 4α 2ω2  

 
When ω1  ω, nothing special happens, except that the probability  appears to exceed 
unity when  α2 gets to be small enough. This is not possible physically, and what this 
suggests is that when the external frequency ω 1  matches the oscillator frequency, we get 
a resonance condition as α approaches zero. Under those circumstances first order 
perturbation theory is not applicable.   
When α  0, then we get a frequency dependence similar to that in  problem 2. 

 
 

5. The two particles have equal and opposite momenta, so that 
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Ei = ( pc)2 + mi
2c4  

 
The integral  becomes 
 

 
  

1
(2πh)6 dΩ p2dpδ Mc 2 − E1( p) − E2 (p)( )

0

∞

∫∫  

 
and it is only the second integral that is of interest to us. Let us change variables to  
 
    u = E1(p) + E2(p) 
 
then 
 

  du =
pc 2

E1
dp +

pc2

E2
dp = (E1 + E2 )

pdp
E1E2

 

 
and the momentum integral is 
 

p2dpδ Mc 2 − E1( p) − E2( p)( )
0

∞

∫ = p
E1E2du

uc 2(m1 + m2 )c 2

∞

∫ δ(Mc2 − u)

= p
E1E2

Mc 4

 

 
To complete the expression we need to express p in terms of the masses. 
 
We have  
 

 
(m2c

2 )2 + p2c2 = (Mc2 − (m1c
2)2 + p2c 2 )2

= (Mc 2)2 − 2Mc 2E1( p) + (m1c
2)2 + p2c 2  

 
This yields 
 

   E1(p) =
(Mc 2)2 + (m1c

2 )2 − (m2c
2 )2

2Mc2  

 
and in the same way 
 

   E2( p) =
(Mc2 )2 + (m2c

2 )2 − (m1c
2)2

2Mc 2  

 
By squaring both sides of either of these we may find an expression for p2. 
The result of a short algebraic manipulation yields 
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 p2 =
c2

4M 2 (M − m1 − m2 )(M − m1 + m2)(M + m1 − m2 )(M + m1 + m2 ) 

 
6. The wave function of a system subject to the perturbing potential 
 

λ V(t) = V f(t) 
 

where f(0) = 0 and Limf (t) = 1
t→ ∞

, with df(t)/dt << ω f(t), is given by 

 
   

  
|ψ (t)〉 = Cm (t)e−iE m

0 t /h |
m
∑ φm 〉  

 
and to lowest order in V, we have 
 

  
  
Cm(t) =

1
ih

dt'eiωt'

0

t

∫ f (t')〈φm | V | φ0 〉  

 
where   ω = (Em

0 − E0
0) /h  and at time t = 0 the system is in the ground state. The time 

integral is 
 

dt'eiωt '

0

t

∫ f (t') = dt '
0

t

∫ f (t')
d
dt'

eiωt'

iω
=

1
iω

dt '
d
dt'

(eiωt '

0

t

∫ f (t')) −
1
iω

dt'eiωt'

0

t

∫ df (t') / dt'  

 
The second term is much smaller than the term we are trying to evaluate, so that we are 
left with the first term. Using f(0) = 0 we are left with eiωt / iω,  since for large times 
 f(t) = 1. When this is substituted into the expression for Cm(t) we get 
 

  Cm(t) = −
eiωt

(Em
0 − E0

0)
〈φm | V | φ0〉 m ≠ 0 

 
Insertion of this into the expression for |ψ(t)> yields 
 

  
  
|ψ (t)〉 =| φ0 〉 + e− iE0

0t / h 〈φm | V | φ0〉
E0

0 − Em
0

m ≠ 0
∑ |φm〉  

 
On the other hand the ground state wave function, to first order in V  is 
 

   | w0〉 =|φ0〉 +
〈φn | V | φ0 〉

E0
0 − En

0
n≠ 0
∑ | φn 〉  

 
It follows that 

  〈w0 |ψ (t)〉 = 1+ e− iE0
0t /h 〈φ0 | V | φm 〉〈φm |V |φ0 〉

(E0
0 − Em

0 )2
m ≠0
∑  
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Thus to order V the right side is just one.  
A fuller discussion may be found in D.J.Griffiths Introduction to Quantum Mechanics.i 
 
7. The matrix element to be calculated is 
 

  

M fi = −
e2

4πε0

d3r1∫ d3r2... d3rAΦ f
* (r1∫∫ ,r2, ..rA ) d3r∫

e−ip.r / h

V
1

| r − ri |i =1

Z

∑ ψ100(r)Φ i(r1,r2,..rA )
 

 
 

The summation is over I = 1,2,3,..Z , that is, only over the proton coordinates. The 
outgoing electron wave function is taken to be a plane wave, and the Φ  are the nuclear 
wave functions. Now we take advantage of the fact that the nuclear dimensions are tiny 
compared to the electronic ones. Since |rI | << |r |, we may write 
 

   
1

| r − ri |
=

1
r

+
r •ri

r3 + ... 

 
The 1/r term gives no contribution because 〈Φ f | Φ i〉 = 0. This is a short-hand way of 
saying that the initial and final nuclear states are orthogonal to each other, because they 
have different energies. Let us now define 
 

  d = d3r1∫
j =1

Z

∑ d3r2∫ .. d3rA∫ Φ f
* (r1,r2, ..)r jΦ i(r1,r2, ..) 

 
The matrix element then becomes 
 

   
  
M fi = −

e2

4πε0
d3r

e−ip .r /h

V∫ d• r
r 3 ψ100(r) 

 
The remaining task is to evaluate this integral.  
First of all note that the free electron energy is given by 
 

   
p2

2m
= ΔE + | E100 | 

 
where ΔE is the change in the nuclear energy. Since nuclear energies are significantly 
larger than atomic energy, we may take for p the value p = 2mΔE . 
To proceed with the integral we choose p to define the z axis, and write   p / h = k . We 
write the r coordinate in terms of the usual angles θ  and φ . We thus have 
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d3re−ip.r / h∫
d.r
r 3 ψ100 (r) =

dΩ dre−ikr cosθ

0

∞

∫∫ (dx sinθ cosφ + dy sinθ sinφ + dz cosθ)
2
4π

Z
a0

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

3/ 2

e− Zr/ a0

 

 
The solid angle integration involves dφ

0

2π

∫ , so that the first two terms above disappear. 
We are thus left with 
 

 

1
π

Z
ao

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

3/2

2πdz d(cosθ) dr
0

∞

∫ cosθe− ikr cosθ

−1

1

∫ e−Zr /a0 =

1
π

Z
ao

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

3/2

2π (d.ˆ p ) d(cosθ)
cosθ

(Z / a0 + ikcosθ)−1

1

∫
 

 
The integral, with the change of variables cosθ = u becomes 
 

 

du
u

Z / a0 + iku−1

1

∫ =

du
u(Z / a0 − iku)
(Z / a0 )2 + k2u2 =

−1

1

∫

−ik du
u2

(Z / a0)
2 + k2u2−1

1

∫
−i
k2 dw

w2

(Z / a0 )2 + w2−k

k

∫ = −
2i
k2 k −

a0

Z
arctan(

a0k
Z

)⎡ 
⎣ 

⎤ 
⎦ 

 

 

Note now that  
  

ka0

Z
=

kh
mcZα

=
2ΔE

Z 2mc 2α 2 =
1
Z

ΔE
(13.6eV )

. If Z is not too large, then the 

factor is quite large, because nuclear energies are in the thousands or millions of electron 
volts. In that case the integral is simple: it is just  
 

  
  

1
π

Z
a0

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

3/2

(2π )
d• p
p2 (−2ih) 1−

πhZ
2a0 p

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  

 
We evaluate the rate using only the first factor in the square bracket. We need the 
absolute square of the matrix element which is 
 

  
  
(−

e2

4πε0 V
)216πh2 Z

a0

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

3
(d.p)2

p4  

The transition rate per nucleus is 
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Rfi =
2π
h

d3 pV
(2πh)3 δ(

p2

2m∫ − ΔE) | Mfi |2

=
2π
h

d3 pV
(2πh)3 δ(

p2

2m∫ − ΔE)
1
V

e2

4πε0

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2

16πh2 Z
a0

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

3
(d• p)2

p4

 

 
In carrying out the solid angle integration we get 
 

   dΩ(d• p)2∫ =
4π
3

| d |2 p2  

 

so that we are left with some numerical factors times dpδ(p2 / 2m − ΔE ) =
m

2ΔE∫  

Putting all this together we finally get 
 

   
  
Rfi =

16
3

(Zα)3 d2

a0
2

mc2

2ΔE
mc2

h
 

 
We write this in a form that makes the dimension of the rate manifest. 
 
 
 
 
  
 
  
 
 
 
 
  
 
 
 
 



 
 
CHAPTER 16. 
 
1. The perturbation caused by the magnetic field changes the simple harmonic oscillator 
Hamiltonian  H0 to the new  Hamiltonian H 
 

   H = H 0 +
q

2m
B• L  

 
If we choose B to define the direction of the z axis, then the additional term involves B Lz.  
When H acts on the eigenstates of the harmonic oscillator, labeled by |nr, l, ml >, we get 
 

  
  
H | nr,l,ml 〉 = hω(2nr + l +

3
2

+
qBh

2m
ml

⎛ 
⎝ 

⎞ 
⎠ | nr,l,ml〉  

 
Let us denote qB/2m by ωB . Consider the three lowest energy states: 
 
nr = 0, l = 0, the energy is   3hω / 2. 

 
nr = 0, l = 1 This three-fold degenerate level with unperturbed energy  5hω / 2, splits into 
three nondegenerate energy levels with energies 

 

  

  

E = 5hω / 2 + hωB

1
0

−1

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ ⎟  

 
The next energy level has quantum numbers nr  = 2, l = 0 or nr = 0, l = 2. We thus have a 
four-fold degeneracy with energy  7hω / 2. The magnetic field splits these into the levels 
according to the ml value. The energies are 

 

  

  

E = 7hω / 2 + hωB

2
1

0,0
−1
−2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

nr =1,0 

 
2, The system has only one degree of freedom, the angle of rotation θ. In the absence of 
torque, the angular velocity ω = dθ/dt  is constant. The kinetic energy is  

E =
1
2

Mv2 =
1
2

(M 2v 2R2)
MR2 =

1
2

L2

I
 

 



where L = MvR is the angular momentum, and I the moment of inertia. Extending this to 
a quantum system implies the replacement of L2 by the corresponding operator. This 
suggests  that  
 

    H =
L2

2I
 

 
(b) The operator L can also be written as p x R.  
When the system is placed in a constant magnetic field, we make the replacement 
 

 p → p− qA = p− q(−
1
2

r × B) = p +
q
2

r × B  

 
The operator r represents the position of the particle relative to the axis of rotation, and 
this is equal to R. We may therefore write 
 

 L = R × p → R × (p +
q
2

R × B) = L +
q
2

R(R•B) − R2B( ) 

 
If we square this, and only keep terms linear in B , then it follows from (R.B) = 0, that 
 

 H =
1
2I

L2 − qR2L• B( )=
L2

2I
−

q
2M

L • B =
L2

2I
−

qB
2M

Lz  

 
The last step is taken because we choose the direction of B to define the z axis. 
 
The energy eigenvalues are therefore 
 

   
  
E =

h2l(l +1)
2I

−
qBh

2M
ml  

 
where ml = l, l − 1, l − 2,...− l . Note that the lowest of the levels corresponds to ml = l. 
 
3. In the absence of  a magnetic field, the frequency for the transition n = 3 to n = 2 is 

determined by 
 

2πhν =
1
2

mc2α 2 1
4

−
1
9

⎛ 
⎝ 

⎞ 
⎠  

 
so that 
 

           
  
ν =

mc2α 2

4πh

5
36

 

 
 



The lines with Δml = ± 1 are shifted upward (and downward)  relative to the Δml = 0 
(unperturbed ) line. The amount of the shift is given by 
 

    
  
hΔν =

ehB
2mc

 

 
so that 
 

        Δν =
eB

4πmc
 

 
Numerically ν = 0.4572 x 1015 Hz and with B = 1 T, Δν = 1.40 x 1010 Hz. Thus the 
frequencies are ν and ν(1 ± Δν / ν). Thus the wavelengths are c /ν and  
  (c / ν)(1m Δν /ν) . This leads to the three values λ = 655.713 nm, with the other lines 
shifted down/up by 0.02 nm. 
 
 
 
4. The Hamiltonian is 
 

   H =
1

2m
p− qA( )2

− qE• r  

 
Let us choose E = (E, 0, 0 ) and B = ( 0, 0, B), but now we choose the gauge such  that 
A = (0, Bx, 0). This leads to  
 

  
H =

1
2m

px
2 + (py − qBx)2 + pz

2( )− qEx =

= 1
2m

( px
2 + py

2 + pz
2 − 2qBpy x + q2B2x 2 − 2mqEx)

 

 
Let us now choose the eigenstate to be a simultaneous eigenstate of H, pz  (with 
eigenvalue  zero) and py  (with eigenvalue   hk ). Then the Hamiltonian takes the form 
 

 
  
H =

h2k2

2m
+

1
2m

px
2 +

1
2m

qBx − hk − mE / B( )2
−

1
2m

hk + mE / B)2( ) 

 
This is the Hamiltonian for a shifted harmonic oscillator with a constant energy added on. 
We may write this in the form 
 

  
  
H = −

hkE
B

−
mE 2

2B2 +
1
2

m
q2B2

m2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ x −

hk − mE / B
qB

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

 

 
Thus the energy is 
 



  
  
E = −

hkE
B

−
mE 2

2B2 + h
qB
m

⎛ 
⎝ 

⎞ 
⎠ (n +

1
2

)  

 
with n = 0,1,2,3,… 
 
5. We first need to express everything in cylindrical coordinates.  Since we are dealing 
with an infinite cylinder which we choose to be aligned with the z axis,, nothing depends 
on z, and we only deal with the ρ and φ  coordinates. We only need to consider the 
Schrodinger  equation in the region  a ≤ ρ ≤ b.  
 

 We start with H =
1

2me
Πx

2 + Πy
2( ) 

where 
 

  Πx = −ih
∂
∂x

+ eAx; Πy = −ih
∂
∂y

+ eAy  

 
To write this in cylindrical coordinates we use Eq. (16-33) and the fact that for the 
situation at hand 
 

  Ax = −sinϕ Aϕ ; Ay = cosϕ Aϕ; Aϕ =
Φ

2πρ
 

 
where Φ is the magnetic flux in the interior region. When all of this is put together, the 
equation 
   Hψ (ρ,ϕ) = Eψ (ρ,ϕ) 
 
takes the form 
 

 
  
Eψ = −

h2

2me

∂ 2ψ
∂ρ2 +

1
ρ

∂ψ
∂ρ

+
1
ρ2

∂ 2ψ
∂ϕ 2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ − 2ihe

Φ
2π

1
ρ2

∂ψ
∂ϕ

+
e2

ρ2
Φ
2π

⎛ 
⎝ 

⎞ 
⎠ 

2

ψ  

 
To solve this, we use the separation of variables technique. Based on previous 
experience, we write 
 
    ψ (ρ,ϕ) = f (ρ)eimϕ  
 
The single-valuedness  of the solution implies that m = 0,±1,±2,±3,… 
 
With the notation    k

2 = 2meE / h2  the equation for f(ρ) becomes 
 

  
  
−k 2 f (ρ) =

d2 f
dρ2 +

1
ρ

df
dρ

− m +
eΦ
2πh

⎛ 
⎝ 

⎞ 
⎠ 

2

f  

 



If we now introduce z = kρ  and  
 
ν = m +

eΦ
2πh

 the equation takes the form 

 

  
d2 f (z)

dz2 +
1
z

df (z)
dz

+ 1−
ν 2

z2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ f (z) = 0  

 
This is Bessel’s equation. The most general solution has the form 
 
  f (ρ) = AJν (kρ) + BNν (kρ)  
 
If we now impose the boundary conditions  f (ka) = f (kb) = 0  we end up with  
 
   AJν (ka) + BNν (ka) = 0 
 
and 
 
   AJν (kb) + BNν (kb) = 0 
 
The two equations can only be satisfied if 
 
  Jν (ka)Nν (kb) − Jν (kb)Nν (ka) = 0  
 
This is the eigenvalue equation,  and the solution k clearly depends on the order ν of the 
Bessel functions, that is, on the flux enclosed in the interior cylinder. 
 
 
 
 
 
 
 
    
 
    

  
  
 



 
 
CHAPTER 17 
 
1. We start with Eq. (17-19) . We define k  as the z axis. This means that the 

polarization vector, which is perpendicular to k  has the general form 
 

ε (λ ) = ˆ i cosϕ + ˆ j sinϕ  
 
This leads to  
 

    
  
B = ∇ × A = −i

h

2ε0ωV
kˆ k × (ˆ i cosϕ + ˆ j sinϕ) = B0(ˆ j cosϕ − ˆ i sinϕ) 

 
 
We are now interested in  
 

 
  
M = B0

gp − gn

2
h

2
X 0{(σ y

( p ) −σ y
(n ))cosϕ − (σ x

( p) − σ x
(n))sinϕ}X1

m  

 
The operators are of the form 
 

 σycosϕ −σ xsinϕ =
0 −icosϕ

icosϕ 0
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ −

0 sinϕ
sinϕ 0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

0 −ie− iϕ

ieiϕ 0
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟  

 
It is simple to work out the “bra” part of the scalar product 
 
 

 
1
2

χ +
( p)χ −

(n) − χ −
( p)χ +

(n)( ) 0 −ie −iϕ

ie iϕ 0
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
p

−
0 −ie−iϕ

ie iϕ 0
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
n

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 
with the help of  
 

         χ +
0 −ie− iϕ

ieiϕ 0
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ = 1 0( ) 0 −ie−iϕ

ie iϕ 0
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ = 0 −ie−iϕ( )= −ie− iϕ χ −  

 
and 
 

 χ −
0 −ie− iϕ

ieiϕ 0
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ = 0 1( ) 0 −ie−iϕ

ie iϕ 0
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ = ieiϕ 0( )= ieiϕ χ +  

 
This implies that the “bra” part is 
 



1
2

χ +
( p)χ −

(n) − χ −
( p)χ +

(n)( ) 0 −ie −iϕ

ie iϕ 0
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
p

−
0 −ie−iϕ

ie iϕ 0
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
n

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=

= − 2i(e−iϕ χ −
( p)χ −

(n) + eiϕ χ +
( p )χ +

(n ))

= − 2i e−iϕ X 1
−1 + eiϕ X 1

1( )
 

 
For the “ket” state we may choose  Xtriplet = αX1

1 + βX1
0 +γX1

−1, and then the matrix 
element is 

 

  
M = −i 2B0

gp − gn

2
h

2
(eiϕα + e− iϕγ ) 

 
 

2. We are interested in finding out for what values of l, m, the matrix element 
 

  

1
2

〈l,m | (ε.p)(k.r) + (ε.r)(p.k) | 0,0〉  

 
does not vanish. We use the technique used in Eq. (17-22) to rewrite this in the form 
 

 

  

1
2

ime

h
〈l,m | [H 0,ε.r]( k.r) + (ε.r)[H0,k.r] | 0.0〉 =

ime

2h
〈l,m | H0 (ε.r)(k.r) − (ε.r)H 0(k.r) + (ε.r)H 0(k.r) − (ε.r)(k.r)H 0 | 0,0〉 =

ime

2h
(El,m − E0,0)〈l,m | (ε.r)(k.r) | 0,0〉

 

 
Let us now choose k to define the z axis, so that k = ( 0,0,k). Since ε is perpendicular to k 
, we may choose it to be represented by ε = (cosα, sinα, 0). Then, with the usual polar 
coordinates, we have 
 

(ε.r)(k.r) = k(cosαsinθcosφ + sinαsinθsinφ)cosθ =
= ksinθcosθ cos(φ −α )  

 
This is a linear combination of Y21(θ,φ) and Y2,−1(θ,φ) . Thus the angular integral is of 

the form  dΩYl ,m
* Y2,±1∫ Y0,0  , and since Y0,0 is just a number, the integral is proportional to 

  δl ,2 . 
There is also a selection rule that requires m = ± 1. This comes about because of our 
choice of axes. 
 
 
 



3. In the transition under consideration, the radial part of the transition rate is 
unchanged. The only change has to do with the part of the matrix element that deals 
with the dependence on the polarization of the photon emitted in the transition. 
Eq. (17-44), for example shows that δm ,1 is multiplied by εx

2 + εy
2  = 1− εz

2 and this 
factor carries some information about the direction of the photon momentum, even 
though that does not appear explicitly in the matrix element.  We proceed as follows: 
The direction of the polarization of the initial atomic state defines the z axis. Let the 
photon momentum direction be given by 
 
   ˆ d = ˆ i sinΘcosΦ + ˆ j sinΘsinΦ + ˆ k cosΘ  
 
We may define two unit vectors perpendicular to this. For the first one we take ˆ d × ˆ k , 
which, after being divided by the sine of the angle between these two vectors, i.e. by 
sinΘ , yields  

  ˆ ε 1 = − ˆ i sinΦ + ˆ j cosΦ  
 
The other one is ˆ ε 2 = ˆ d × ˆ ε 1 (two vectors perpendicular to each other), which leads to  
 
   ˆ ε 2 = ˆ i cosΘcosΦ + ˆ j cosΘsinΦ − ˆ k sinΘ  
 
In the coordinate system in which ˆ d  represents the z axis, the ει  vectors represent the 
x and y axes,  and since the photon polarization must lie in that new x – y plane, we 
see that the polarization vector has the form 
 
    ε = cosχ ˆ ε 1 + sin χ ˆ ε 2  
 
Thus  

εz = ˆ k •ε = − sin χ sinΘ , 
εx = ˆ i • ε = cos χ sinΦ + sin χcosΘcosΦ,

εy = ˆ j • ε = −cos χ cosΦ + sin χcosΘsinΦ  

and 
  εx

2 + εy
2 = 1−εz

2 =1− sin2 χ sin2 Θ  
 
Thus the final answer (using Eq. (17-44) is 
 

 dΓ =
α
2π

ω3

c2
215

310
1
2

δm,1
⎛ 
⎝ 

⎞ 
⎠ 1− sin2 χ sin2 Θ( )d(cosΘ)dΦ  

 
The dependence on the polarization appears in the sin2 χ  term. 
 
 
 



   
 
 
 
4. First of all, we need to recognize what  2p  1s means for the harmonic oscillator 
in three dimensions. The numbers “2” and “1” usually refer to the principal quantum 
number, e.g     n = nr + l +1 for the hydrogen atom. Here the energy spectrum is 
characterized by   2nr + l +1, and it is this combination that we call the principal quantum 
number. Thus we take the 2p  1s transition to mean   (nr = 0,l =1) → (nr = 0,l = 0) . 
 To solve this problem we recognized that nothing changes in the angular 
integration that was done for the 2p  1s transition in hydrogen. The only change in the 
matrix element involves the radial functions. In hydrogen we calculated 
 
   r 3

0

∞

∫ R21(r)R10(r)dr  
 
using the radial functions for hydrogen. Here the same integral appears, except that the 
radial functions are those of the three-dimensional harmonic oscillator. Here, the properly 
normalized eigenfunctions are 
 

  
  
R10(r) =

2
π 1/ 4

mω
h

⎛ 
⎝ 

⎞ 
⎠ 

3/ 2

e− mωr2 / 2h  

 
and  
 

  
  
R21(r) =

8
3

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2 1
π1/4

mω
h

⎛ 
⎝ 

⎞ 
⎠ 

5/4

re− mωr2 / 2h  

 
Note that these functions appear in the solution to problem 8-13. Given these, the integral 
that yields the matrix element is straightforward. We have 
 

  

M =
8
3

⎛ 
⎝ 

⎞ 
⎠ 

1/2 2
π 1/ 2

mω
h

⎛ 
⎝ 

⎞ 
⎠ 

2

drr 4

0

∞

∫ e−mωr2 / h =

=
4

π1/2
2
3

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2 mω
h

⎛ 
⎝ 

⎞ 
⎠ 

2
h

mω
⎛ 
⎝ 

⎞ 
⎠ 

5/2 1
2

dxx 3/2

0

∞

∫ e−x

=
4

π1/2

2
3

⎛ 
⎝ 

⎞ 
⎠ 

1/ 2 mω
h

⎛ 
⎝ 

⎞ 
⎠ 

2 h

mω
⎛ 
⎝ 

⎞ 
⎠ 

5/2 1
2

3π 1/ 2

4

 

 

The square of this is 
  

3h

2mω
. We check that this has the dimensions of a (length)2 as 

required. To get the decay rate, we just take the hydrogen result and make the substitution 
 

  
  
| Mhydrogen |2=

215

39 a0
2 →| M |2=

3h

2mω
 



 
This then leads to the rate 
 

  
  
R =

4
9

α
ω3

c 2 | M |2=
2α
3

hω
mc2

⎛ 
⎝ 

⎞ 
⎠ ω   

 
  
 
 



CHAPTER 19 
 
1. We have 
 

M fi =
1
V

d3re−iΔ.r∫ V (r)  

 
 If V(r) = V(r), that is, if the p9otential is central, we may work out the angular 
integration as follows:  
 

 M fi =
1
V

r2V (r)
0

∞

∫ dr dφ sinθdθe−iΔr cosθ

0

π

∫0

2π

∫  

 
with the choice of the vector Δ as defining the z axis. The angular integration yields 
 

 dφ sinθdθe− iΔr cosθ = 2π d(cosθ)e−iΔr cosθ

−1

1

∫ =
4π
Δr0

π

∫0

2π

∫ sinΔr  

 
so that 
 

   M fi =
1
V

4π
Δ

rdrV (r)sinΔr
0

∞

∫  

 
Note that this is an even function of Δ that is, it is a function of  Δ

2 = (p f − pi)
2 / h2  

 
2. For the gaussian potential 
 

M fi =
1
V

4πV0

Δ
rdr sin Δr

0

∞

∫ e−r 2 /a 2

 

 
Note that the integrand is an even function of r. We may therefore rewrite it as 
 

   rdr sinΔr
0

∞

∫ e− r2 / a2

=
1
2

rdr sinΔr
−∞

∞

∫ e− r2 / a2

 

 
The integral on the right may be rewritten as 
 

 
1
2

rdr sinΔr
−∞

∞

∫ e− r2 / a2

=
1
4i

rdr e−r 2 /a 2 +iΔr − c.c)( )−∞

∞

∫  

 
Now 
 

 
1
4i

rdr
−∞

∞

∫ e− r2 / a2 + iΔr =
1
i

∂
∂Δ

dr
−∞

∞

∫ e− r2 / a2 + iΔr = −i
∂

∂Δ
a πe−a 2Δ2 /4 = i

Δa3 π
2

e− a2Δ2 / 4  

 
Subtracting the complex conjugate and dividing by 4i gives  



 

    M fi =
1
V

a π( )3
V0e

−a 2Δ2 /4  

 
The comparable matrix element for the Yukawa potential is  
 

  M fi =
1
V

4π
Δ

VYb dr
0

∞

∫ e− r/ b sinΔr =
1
V

4πVY
b3

1+ b2Δ2  

 
We can easily check that the matrix elements and their derivatives with respect to Δ2 at 
Δ = 0 will be equal if  a = 2b and VY = 2 πV0 . 
 
The differential cross section takes its simplest form if the scattering involves the same 
particles in the final state as in the initial state.  The differential cross section is  
 

    
  

dσ
dΩ

=
μ 2

4π 2h4 | U (Δ) |2  

 
where μ  is the reduced mass and U(Δ) = VMfi . 
 We are interested in the comparison 
 

(dσ / dΩ)gauss

(dσ / dΩ)Yukawa
=

e−2b2Δ2

(1+ b2Δ2 )−2 = (1+ X )2 e−2X  

 
where we have introduced the notation  X = b2x2. This ratio, as a function of X, starts out 
at X  = 0 with the value of 1, and zero slope, but then it drops rapidly, reaching less than 
1% of its initial value when X = 4, that is, at Δ = 2/b.  
 
3. We use the hint to write 
 

  

dσ
dΩ

=
p2

πh2
dσ
dΔ2 =

μ 2

4π 2h4 4πV0
b3

1 + b2Δ2

2

 

 
The total cross section may be obtained by integrating this over Δ2 with the range given 
by    0 ≤ Δ2 ≤ 4 p2 / h2 , corresponding to the values of  cosθ  between –1 and + 1.. The 
integral can actually be done analytically. With the notation  k

2 = p2 /h2 the integral is 
 

 dΔ2

0

4k 2

∫ 1
(1 + b2Δ2)2 =

1
b2

dx
(1+ x)20

4 k 2b2

∫ =
4k 2

1 + 4k 2b2  

 
This would immediately lead to the cross section if the particles were not identical. For 
identical particles, there are symmetry problems caused by the Pauli Exclusion Principle 
and the fact that the protons have spin 1/2. The matrix elements are not affected by the 



spin because there is no spin-orbit coupling or any other spin dependence in the potential. 
However: 
In the spin triplet state, the spatial wave function of the proton is antisymmetric, while for 
the spin singlet state, the spatial wave function is symmetric. This means that in the 
original Born approximation we have  
 
 

  

d3∫ r
e−ik '.r m eik '.r

2
V (r)

eik .r m e−ik .r

2
=

d3rV (r)e−i(k '−k ).r∫ m d3rV (r)e− i(k +k' ). r∫
 

 
 

The first term has the familiar form 
 

 4πV0
b3

1+ b2Δ2 = 4πV0
b3

1 + 2b2k2 (1− cosθ)
 

 
and the second term is obtained by changing cosθ  to  - cosθ.. Thus the cross section 
involves  
 

 

  

d(cosθ)
1

1+ 2b2k2 − 2b2k2 cosθ
m

1
1+ 2b2k2 + 2b2k2 cosθ

⎛ 
⎝ 

⎞ 
⎠ 

2

→ dz
1

1 + a − az
m

1
1 + a + az

⎛ 
⎝ 

⎞ 
⎠ 

2

−1

1

∫
−1

1

∫

=
4

1+ 2a
m

2
a(1 + a)

ln(1+ 2a)

 

 
where a = 2b2k2. 
 
Thus the total cross section is 
 

 
  
σ =

8πμ 2b6

h4 V0
2 4

1+ 4k2b2
⎛ 
⎝ 

⎞ 
⎠ m

1
k 2b2(1 + 2k 2b2)

ln(1 + 4k 2b2)
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

 
The relation to the center of mass energy follows from   E = p2 / 2μ = h2k2 / 2μ , so that 
 

  
k2 =

2μE
h2 =

(1.67 ×10−27 kg)(100 ×1.6 ×10−13J )
(1.054 ×10−34 J.s)2  

 
With b = 1.2 x 10-1`5 m, we get  (kb)2 = 3.5, so that  σ = 4.3 x 10-28 m2 = 4.3 x 10-24 cm2 = 
3.4 barns. 
 



4. To make the table, we first of all make a change of notation: we will represent the 
proton spinors by χ±  and the neutron spinors by  η± .  To work out the action of   

 
σ p • σ n = σ pzσ nz + 2(σ p+σ n− +σ p−σ n+)  

 
on the four initial combinations, we will use σ+χ + = σ − χ − = 0; σ +χ− = χ +; σ −χ + = χ−  

and similarly for the neutron spinors. Thus 
 

 

[σ pzσ nz + 2(σ p +σ n − + σ p−σn +)]χ +η+ = χ+η+

[σ pzσ nz + 2(σ p +σ n − + σ p−σn +)]χ +η− = −χ+η− + 2χ −η+

[σ pzσ nz + 2(σ p +σ n − + σ p−σn +)]χ −η+ = −χ−η+ + 2χ +η−

[σ pzσ nz + 2(σ p +σ n − + σ p−σn +)]χ −η− = χ−η−

 

 
From this we get  for the matrix A + Bσ p •σ n , with rows and columns labeled by (++), 
(+-),(-+). (--)the following 
 

 A + Bσ p • σ n =

A + B 0 0 0
0 A − B 2B 0
0 2B A − B 0
0 0 0 A + B

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 

 
The cross sections will form a similar matrix, with the amplitudes replaced by the 
absolute squares, i.e. |A+B|2, |2B|2, and |A-B|2. 
 
 
5. Consider n – p scattering again. If the initial proton spin is not specified, then we 

must add the cross sections for all the possible initial proton states and divide byt 2, 
since a priori there is no reason why in the initial state there should be more or less of 
up-spin protons. We also need to sum over the final states. Note that we do not sum 
amplitudes because the spin states of the proton are distinguishable. 

Thus, for initial neutron spin up and final neutron spin up we have 
 

σ(+ | +) =
1
2

σ (++,++) +σ (++,−+) + σ(−+,++) + σ (−+,−+)( ) 

 
where on the r.h.s. the first label on each side refers to the proton and the second to 
the neutron.  We thus get 
 

 σ(+ | +) =
1
2

| A + B |2 + | A − B |2( )=| A |2 + | B |2  

 
Similarly 
 



 
σ(− | +) =

1
2

σ (+−,++) + σ (+−,−+) +σ (−−,++) +σ (−−,−+)( )

= 1
2

| 2B |2( )= 2 | B |2
 

 
Thus 
 

  P =
| A |2 + | B |2 −2 | B |2

| A |2 + | B |2 +2 | B |2
=

| A |2 − | B |2

| A |2 +3 | B |2
 

 
6. For triplet  triplet scattering we have (with the notation  (S,Sz) 
 
(1,1) (1,1)   〈χ+η+ | χ+η+ 〉 = A + B  
 
(1,-1) (1,-1)  〈χ−η− | χ−η− 〉 = A + B  
 

(1,0)  (1,0)    〈
χ+η− + χ−η+

2
|
χ+η− + χ−η+

2
〉 =

1
2

A − B + 2B + 2B + A − B( ) = A + B  

 

(0,0) (0.0) 〈
χ+η− − χ −η+

2
|
χ +η− − χ−η+

2
〉 =

1
2

A − B − 2B − 2B + A − B( ) = A − 3B  

 

(0,0) (1,0) 〈
χ+η− − χ −η+

2
|
χ +η− + χ −η+

2
〉 =

1
2

A − B + 2B − 2B − A + B( ) = 0  

 
We can check this by noting that (in units of  h , 
 

 
A + Bσ p • σ n = A + 4Bs p • sn = A + 2B(S2 − s p

2 − sn
2 )

= A + 2B S(S +1) −
3
2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

 

 
For S = 1 this is A + B,  For S = 0,  it is A – B , and since 〈S = 1| S2 − 3 / 2 | S = 0〉 = 0 by 
orthogonality of the triplet to singlet states, we get the same result as above. 
 
7. We have, with x = kr and cosθ = u, 
 

I(x) = dug(u)e− iux

−1

1

∫ = dug(u)
i
x−1

1

∫
d

dx
e−iux

=
i
x

du
d
du−1

1

∫ g(u)e− iux( )−
i
x

du
dg
du

⎛ 
⎝ 

⎞ 
⎠ −1

1

∫ e− iux
 

 
The first term vanishes since g(±1)=0. We can proceed once more, and using the fact that 
the derivatives of g(u)  also vanish at  u = ± 1, we find  



 

  I(x) =
−i
x

⎛ 
⎝ 

⎞ 
⎠ 

2

du
d2g
du2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

−1

1

∫ e− ixu  

 
and so on. We can always go beyond any pre-determined power of 1/x  so that I(x) goes 
to zero faster than any power of (1/x). 
 
7. We proceed as in the photoelectric effect.  There the rate, as given in Eq.(19-111) is 
 

  
R =

2πV
h

dΩ∫ mpe

(2πh)3 | M fi |2  

 
Here m is the electron mass, and pe is the momentum of the outgoing.electron.The factor 
arose out of the phase space integral 
 

 dpp2∫ δ
p2

2m
− Eγ

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = d

p2

2m
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ∫ mpδ

p2

2m
− Eγ

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = mpe  

 
with pe determined by the photon energy, as shown in the delta function. In the deuteron 

photodisintegration process, the energy conservation is manifest in δ
p2

M
− Eγ + EB

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ . 

The delta function differs in two respects: first, some of the photon energy goes into 
dissociating the deuteron, which takes an energy EB ; second,  in the final state two 
particles of equal mass move in in equal and opposite directions, both with momentum of 
magnitude p, so that the reduced mass Mred  = M/2  appears.  Thus the factor mpe will be 
replaced by  Mp/2, where the momentum of the particle is determined by the delta 
function. 
 Next, we consider the matrix element. The final state is the same as given in Eq. 
(19-114) with pe replaced by p , and with the hydrogen-like wave function replaced by 
the deuteron ground state wave function.  We thus have 
 

 
  

dσ
dΩ

=
2π
h

(VMp / 2)
(2πh)3

V
c

e
M

⎛ 
⎝ 

⎞ 
⎠ 

2
h

2ε0ωV
1
V

(ε • p)2 d3rei(k − p /h )•rψ d (r)∫
2
 

 
 
We need to determine the magnitude of  the factor eik•r .  The integral is over the wave 
function of the deuteron. If the ground state wave function behaves as e−αr , then the 
probability distribution goes as e−2αr , and we may roughly take 1/2α  as the “size” of the 
deuteron. Note that    α

2 = MEB / h2 . As far as k is concerned, it is given by 
 

    
  
k =

pγ

h
=

Eγ

hc
 

 



Numerically we get, with EB =2.2 MeV, and Eγ  = 10 MeV,  k/2α = 0.11, which means 
that we can neglect the oscillating factor. Thus in the matrix element we just need 

d3reik•r∫ ψ d (r).  The wave function to be used is 
 

   ψ d (r) =
N
4π

e−α (r− r0 )

r
r > r0   

N is determined by the normalization condition 
 

   
N 2

4π
4πr2

r0

∞

∫ dr
e−2α (r− r0 )

r2 = 1 

 
So that 
 
    N 2 = 2α  
The matrix element involves 
 
   

 

N
4π

4π
k

rdr
r0

∞

∫ sinkr
e−α (r− r0 )

r
=

= N 4π
k

dx
0

∞

∫ sink(x + r0)e
−αx

=
N 4π

k
dx sinkr0 Re(e−x (α − ik)( )

0

∞

∫ + coskr0 Im(e−x (α −ik )))

=
N 4π

k
α

α 2 + k 2 sin kr0 +
k

α 2 + k2 coskr0
⎛ 
⎝ 

⎞ 
⎠ 

 

 
The square of this is 
 
4πN 2

k2 r0
2 αr0

α 2r0
2 + k2r0

2 sin kr0 +
kr0

α 2r0
2 + k 2r0

2 coskr0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

 

 
It follows that 
 

dσ
dΩ

= 2
e2

4πε0hc
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

pr0

Mω
(αr0)

αr0

α 2r0
2 + k 2r0

2 sinkr0 +
kr0

α 2r0
2 + k2r0

2 coskr0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2

 

 
We can easily check that this has the correct dimensions of an area. 
 

For numerical work we note that  αr0 = 0.52; kr0 = 0.26 EMeV  and 
 
hω = EB +

p2

M
. 

 



9. The change in the calculation consists of replacing the hydrogen wave function 
 

1
4π

2
Z
a0

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

3/2

e−Zr /a0  

 
by 
 

   

ψ (r) = N
4π

sinqr
r

r < r0

=
N
4π

e−κr

r
r > r0

 

 
where the binding energy characteristic of the ground state of the electron determines κ 
as follows 
 
   κ 2 = 2me | EB | /h2 = (mecα /h)2  
 
with α = 1/137. The eigenvalue condition relates q to κ  as follows: 
 
   qr0 cotqr0 = −κr0  
 
where  
 

 `  
  
q2 =

2meV0

h2 −κ 2⎛ 
⎝ 

⎞ 
⎠  

 
and V0 is the depth of the square well potential. The expression for the differential cross 
section is obtained from Eq. (19-116) by dividing by  4(Z/a0)2 and replacing the wave 
function in the matrix element by the one written out above, 
 

  
  

dσ
dΩ

=
2π
h

me pe

(2πh)3
1
c

e
me

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2
h

2ε0ω
pe

2

4π
( ˆ ε .ˆ p )2 d3rei(k − p e /h ).rψ(r)∫

2
 

 
We are interested in the energy-dependence of the cross section, under the assumptions 
that the photon energy is much larger than the electron binding energy and that the 
potential has a very short range. The energy conservation law states that under these 
assumptions    hω = pe

2 / 2me . The factor in front varies as pe
3 / ω ∝ pe ∝ Eγ  , and thus 

we need to analyze the energy dependence of 
 

d3rei(k −p e / h). rψ (r)∫
2
. The integral has the 

form 
 

  d3reiQ.r∫ ψ (r) =
4π
Q

rdr sinQrψ (r)
0

∞

∫  



 

where   Q = k − pe /h  so that 
  
Q2 = k 2 +

pe
2

h2 − 2
kpe

h
( ˆ k .ˆ p ) .   

Now 
  
h2k 2 / pe

2 = h2ω 2 / pe
2c 2 = hω

pe
2 / 2m
pe

2c 2 =
hω

2mec
2 . We are dealing with the 

nonrelativistic regime, so that this ratio is much smaller than 1. We will therefore neglect 
the k –dependence, and replace Q by pe/  h.  The integral thus becomes 
 

 
4π
Q

N
4π

drsinQr sinqr + drsinQre−κr

r0

∞

∫0

r0∫⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

 
The first integral is 
 
1
2

dr
0

r0

∫ cos(Q− q)r − cos(Q + q)r( )=

1
2

sin(Q − q)r0

Q− q
−

sin(Q + q)r0

Q + q
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ≈ −

1
Q

cosQr0 sinqr0

 

 
where, in the last step we used Q >> q. The second integral is 
 

Im dr
r0

∞

∫ e−r(κ − iQ ) = Im
e−r0 (κ −iQ )

κ − iQ
≈

cosQr0

Q
e−κr0  

 
The square of the matrix element is therefore 
 

 
4πN 2

Q2
1

Q2 cosQr0(e
−κr0 − sinqr0 )( )2

 

 
The square of the cosine may be replaced by 1/2, since it is a rapidly oscillating factor, 
and thus the dominant dependence is 1/Q4 , i.e. 1 / Eγ

2. Thus the total dependence on the 
photon energy is 1 / Eγ

3/2  or 1 / pe
3 , in contrast with the atomic 1 / pe

7 dependence. 
 
10. The differential rate for process I,  a + A  b + B in the center of momentum frame 

is 
 

  

dRI

dΩ
=

1
(2 ja +1)(2JA +1)

1
(2πh)3 pb

2 dpb

dEb
MI

spins
∑ 2

 

 
The sum is over all initial and final spin states. Since we have to average (rather than 
sum) over the initial states, the first two factors are there to take that into account. The 
phase factor is the usual one, written without specification of how Eb   depends on pb.  
The rate for the inverse process II, b + B  a + A is, similarly 
 



  
  

dRII

dΩ
=

1
(2 jb +1)(2JB +1)

1
(2πh)3 pa

2 dpa

dEa
MII

spins
∑ 2

 

 
By the principle of detailed balance the sum over all spin states of the square of the 
matrix elements for the two reactions are the same provided that these are at the same 
center of momentum energies. Thus 
 
   MI

spins
∑ 2

= MII
spins
∑ 2

 

 
Use of this leads to the result that 
 

   
(2 ja +1)(2JA +1)

pb
2(dpb / dEb )

dRI

dΩ
=

(2 jb +1)(2JB +1)
pa

2 (dpa / dEa )
dRII

dΩ
 

 
Let us now apply this result to the calculation of the radiative capture cross section for the 
process N + P  D + γ.  We first need to convert from rate to cross section. This is 
accomplished by multiplying the rate R by the volume factor V, and dividing by the 
relative velocity of the particles in the initial state. For the process I, the photo-
disintegration γ + D  N + P , the relative velocity is c, the speed of light. For process II, 
the value is pb/mred = 2pb/M . Thus 
 

   
dσ I

dΩ
=

V
c

dRI

dΩ
;

dσ II

dΩ
=

MV
2pb

dRII

dΩ
 

 
Application of the result obtained above leads to  
 

 

dσ II

dΩ
= MV

2 pb

dRII

dΩ

=
MV
2pb

pa
2 (dpa / dEa )

(2 jb +1)(2JB +1)
×

(2 ja +1)(2JA +1)
pb

2 (dpb / dEb )
c
V

dσ I

dΩ

 

 
We can calculate all the relevant factors. We will neglect the binding energy of the 
deuteron in our calculation of the kinematics. 
First 
 

  
(2 jγ +1)(2JD +1)
(2 jP +1)(2JN +1)

=
2 × 3
2 × 2

=
3
2

 

 
Next, in the center of momentum frame, the center of mass energy is 
 

   W = pac +
pa

2

2MD
≈ pac +

pa
2

4 M
 

 



so that (dEa / dpa ) = c +
pa

2M
. In reaction II,  

 

   W = 2 ×
pb

2

2M
=

pb
2

M
 

 
so that (dEb / dpb ) = 2 pb / M . There is a relation between pa and pb since the values of W 
are the same in both cases. This can be simplified. For photon energies up to say 50 MeV 
or so, the deuteron may be viewed as infinitely massive, so that there is no difference 
between the center of momentum. This means that it is a good approximation to write 
W = Eγ = pac = pb

2 / M .  We are thus finally led to the result that 
 

   
dσ(NP → Dγ )

dΩ
=

3
2

Eγ

Mc 2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

dσ (γD → NP)
dΩ
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