PowerMILL 2015

User Guide

Macro Programming Guide

Release issue 2

Copyright © 1996 - 2014 Delcam Ltd. All rights reserved.

Delcam Ltd has no control over the use made of the software
described in this manual and cannot accept responsibility for any
loss or damage howsoever caused as a result of using the software.
Users are advised that all the results from the software should be
checked by a competent person, in accordance with good quality
control procedures.

The functionality and user interface in this manual is subject to
change without notice in future revisions of the software.

The software described in this manual is furnished under licence
agreement and may be used or copied solely in accordance with the
terms of such licence.

Delcam Ltd grants permission for licensed users to print copies of
this manual or portions of this manual for personal use only.
Schools, colleges and universities that are licensed to use the
software may make copies of this manual or portions of this manual
for students currently registered for classes where the software is
used.

Acknowledgements

This documentation references a number of registered trademarks
and these are the property of their respective owners. For example,
Microsoft and Windows are either registered trademarks or
trademarks of Microsoft Corporation in the United States.

Patents

The Raceline smoothing functionality is subject to patent
applications.

Patent granted: GB 2374562 Improvements Relating to Machine
Tools

Patent granted: US 6,832,876 Machine Tools

Some of the functionality of the ViewMill and Simulation modules of
PowerMILL is subject to patent applications.

Patent granted: GB 2 423 592 Surface Finish Prediction

The Vortex machining functionality is subject to patent applications.
Patent application: 1121277.6 Adaptive Clearance

The MachineDNA functionality is subject to patent applications.
Patent application: 1204908.6 Machine Testing

Licenses

Intelligent cursor licensed under U.S. patent humbers 5,123,087
and 5,371,845 (Ashlar Inc.)

PowerMILL 2015. Published on 29 July 2014

Contents

Macros 1
(@< Y= 11T N 0 0 = (o o 1SS 1
Recording macros in POWEIMILL ... 2

[T T o g = T 0 1 3
EdItiNg MACIOS. ... e 4
Running macros from within macroscccooviiiieiiiieiiiee e, 5
WIIEING YOUT OWN MACTOS ...t 5
PowerMILL commands fOr MaCIOS..........uuuuuuruimiiiiiiiiiiiiiiiiiiiiieiinennanneananees 6
Adding COMMENES 10 MACIOSuuuuiiiiiiiiiiiiiiiiiiiiiiebeeb bbb 8
MACTO USEI GUIEuuiiiiiiiiiiiiiiiiiiiii i sasssssennnnnes 9
VariableS IN MACIOSuuiii e e e eaeees 27
UsSING eXPreSSIiONS iN MACTOS.....uuuuiieeeeeeeeeeiiiiee e e e e e e eeeeeaas e e e e e e eeeeananaes 48
OPperator PreCEUBINCEccovviiiiiiiiiiiiieeeeeeeeeeee ettt 49
Executing a macro string variable as a command using DOCOMMAND .51
1Y/ U] £ o T U od 1 o PSR 52
[F STAEMENT ... e e e s 56
[F - ELSE StatemMeNtuieiieie e 57
IF - ELSEIF - ELSE Statement..........coooiiiiiiii e 58
SWITCH SEAt@MENT ...t e 59
BREAK statement in a SWITCH statement...........ccccccviiiiiiiiiiiiiiiniiiinnnnn. 61
Repeating commands iN MACIOSuuuuuuumuiiiiiiiiiiiiiiiiiiieiieneeeeeeeeeneaes 62
RETURN SEAt@MENT..... oo e 67
Printing the value of an exXpresSSion ..o 68
CONSTANTS ...ttt e ettt e e e e e et e et e e e e e e e e e e enna e eeee 68
BUIIE-IN FUNCHIONS e 69
Entity based funNCtionSuiiiiii i 100
Model RIEIarChYcooo i 103
Model Component FUNCLIONS........cooiiiiiiiiiiiie e 103
Model HIEIarChi€scoooeiiiiiiiiie e 103
NN 00 =S 103
Walking the NIErarChyuuuueiiiiiiiiiiiiiiii e 104
Getting a Node by its Path..........c.cooooiiiiiiiii e, 105
Getting the Hierarchy as a LiStcooooieeiiiiie 105
Feature ParameterS... ...ttt 106
Working with files and direCtories ..., 107
File reading and Writing iN MACIOSccoiiiiiiieiiii e 108
Frequently asked QUESTIONScooieiii e 110
OrganiSiNg YOUF MACKIOSuuueeiiiiieeeeeeiteeeeeeteeeeeea e e e eaa e e s ear e eeerr e aeesnans 112
Recording the pmMUSEr MACKO.........ccooiiiiieieeeeeeeee e 113
Turning off error and warning messages and locking graphic updates........... 115
Recording a macro to set up NC preferences........cccooeveveeieee 116

PowerMILL 2015 User Guide Contents ¢ i

Tips fOr Programming MACKOSuuiieeeeiiieiiiiiiaee e e e e e eeeeeiiiar e e e e e e eeeerraa e e e e 117

Index 119

ii » Contents PowerMILL 2015 User Guide

Macros

A macro is a file which contains a sequence of commands to
automate recurrent operations. You can create macros by recording
operations as they occur in PowerMILL, or by entering the
commands directly into a text editor. Recorded macros have a .mac
extension, and can be run from the Macro node in the Explorer.

You can record single or multiple macros to suit your needs. You
can call a macro from within another macro.

There are two types of macros:

= The initialisation macro, pmuser.mac, is run when PowerMILL
starts. By default, a blank copy of this macro exists in
C:\Program Files\Delcam\PowerMILL xxx\lib\macro folder. By
overwriting or adding PowerMILL commmands to it, you can set up
your own default parameters and settings. You can also place the
pmuser macro in the pmill folder, directly below your Home area.
Doing this enables personalised macro settings for individual
login accounts.

= User-defined macros are macros you define to automate various
operations.

) In addition to tailoring PowerMILL by the creation of an
initialisation macro, you can create macros for undrawing,
drawing and resetting leads and links, setting NC preferences,
defining regularly used machining sequences, and so on.

Creating macros

You can create macros by:

= Recording (see page 2) a sequence of commands within
PowerMILL.

= Writing your own macro (see page 5) using a text editor.

PowerMILL 2015 User Guide Macros * 1

Recording macros in PowerMILL

An easy way to create a macro is to record PowerMILL commands
as you work. Only the values that you change in the dialogs are
recorded in the macro. Therefore, to record a value that's already
set, you must re-enter it in a field, or re-select an option. For
example, if the finishing tolerance is currently set to 0.1 mm, and
you want the macro to store the same value, you must re-enter 0.1
in the Tolerance field during recording.

To record a macro:

1 From the Macros context menu, select Record.

| @

- By Active

& Machine Tools
+ @] MC Programs
+ \Q} Toolpaths
=4 Tools
¥ O Boundaries

% Patterns

|j) Feature Sets

o workplanes
¥ Q Levels and Sets
+ - Models

‘ Stock Models

_ ¥ Groups
SHC Jracros |

+- &

Macros

Run...

v Stop

Fix Macros
Step Through Macros

This displays the Select Record Macro File dialog which is a
standard Windows Save dialog.

2 Move to the appropriate directory, enter an appropriate File name
and click Save.

The macro icon =& Mres changes to red to show recording is in
progress.

e All dialog options that you want to include in your macro
must be selected during its recording. If an option already
has the desired value, re-enter it.

3 Work through the set of commands you want to record.
4 From the Macros context menu, select Stop to finish recording.

For more information, see Recording the pmuser macro (see page
113) and Recording the NC preference macro (see page 116).

2 « Macros PowerMILL 2015 User Guide

Running macros

When you run a macro, the commands recorded in the macro file
are executed.

1 Expand Macros, and select the macro you want to run.
2 From the individual macro menu, select Run.

=2 Macros
=,
== pril
=3 h400_prefs
- finiblock.
3 pmu: E:fPowerMILL_Projfpmillfiniblock.mac

Edit...

—(_/ - You can also run a macro by double-clicking its name in the
Explorer.

Running the macro you have just recorded

The location of the macro you have just recorded becomes the local
folder. So, the macro you have just recorded is available in the local
macro search path =& .. However, the list of macros isn't updated
dynamically. To force an update:

1 Click = next to Macros to collapse the contents.

3 Marros
=,
= pmill2
& Macros
& examples

2 Click = next to Macros to expand and regenerate the contents.

3 Click m next to == . to see the macros in this directory, which
includes the one you have just created.

=28 Macros
=& .
&= myrmacro
=4 ryrnacro?
=4 ryrnacro3
= pmill2
Macros
examples

[

=
=

PowerMILL 2015 User Guide Macros ¢ 3

Editing macros
You can edit recorded macros to troubleshoot and correct any

errors.
1 Expand Macros and select the macro you want to edit.

2 From the individual macro menu, select Edit.

=58 Macros
7
) 400 prefs
-5 ex Jh400_prefs.mac
Run
Debug
Edit...

Windows WordPad document opens.

= =N X

Home View (7]
D Courier Mew -1 || A AT =T] | ||| A%

Paragraph | Insert Editing

| & = = | h400_prefs.mac - WordPad

Paste Bfuéexzxzﬁvév

Clipboard Font
'g'l'l'l'z'l'B'l'al'l'5"'5"'?'I'S'I'9"'1CI"'11"'12
FORM NCPREFERENCES
EDIT NCPROGRAM PREFERENCES TAPECPTICNS FILECPEN

"E:\Heid400.opt"
EDIT NCPROGEAM PREFERENCES TOOLCHARNGE ALWAYS

NCPREFERENCES ACCEFPT

a4 (L

CAP 100% (=) {l @

b

—e;/' - The text editor opened by default is the application
associated with macro (.mac) files.

Use the Choose default program option available in Windows
Explorer to make changes to default file type associations.

3 Edit the macro commands, and then save the file.

4 « Macros PowerMILL 2015 User Guide

Running macros from within macros

You can create small macros that perform a single operation, and
then call them from within a larger macro. This example shows how

to add the h400 prefs macro and the iniblock macro to the pmuser
macro.

1 From the pmuser macro context menu, select Edit.

2 Scroll to the bottom of the file, and add the following lines:
macro h400_prefs
macro iniblock

B pmuser.mac - WordPad
File Edit WView Insert Format Help

DEE S& # §B2@Eo B

|T|rnesNew Roman vl |1D vl |Westem “ B 7 U0 @ |§|§ = =
E'l'1'l'2'l'3'l'4'l'5"'E'l'T'I'B'|'5"l"ID'l'11"'12"'13"'14'b‘
HCPREFERENCES ARCCEPT e

FORM TOOLZHEIGHTS

EDIT TOOLPATH SAFEARERA SIZE "10.0"

EDIT TOOLPATH SAFERRER PLUNGE SIZE "5.0"
EDIT RMOVES PLUNGE

EDIT RMOVES SEIM

EDIT ISAFZ ™&.0"

EDIT ISTAZ ™3.0"

TOOLZHEIGHIS ACCEPT

1T

For Help, press F1 NUM

& If you precede a line with two forward slash characters (I,
it is treated as a comment, and is not executed.

3 Save and close pmuser.mac.

4 Exit and restart PowerMILL to check that the settings from the
pmuser macro have been activated.

Writing your own macros

A more powerful way of creating macros is to write your own. The
principles are described in the Macro User Guide (see page 9).

Macros enable you to:
= Construct expressions (see page 48).
= Use expressions to control macro flow (see page 23).

PowerMILL 2015 User Guide Macros * 5

= Use a range of relational (see page 43) operators and logical
(see page 44) operators.

= Evaluate both expressions (see page 48).

= Assign values to variables and parameters by using assignments
(see page 28).

The Menu bar option Help >Parameters >Reference > Functions lists all
the standard functions you can use in macros.

PowerMILL commands for macros

When you use PowerMILL interactively, every menu click and entry
in a dialog sends a command to the program. These are the
commands that you must enter in your macro file if you want to
drive PowerMILL from a macro.

This example shows you how to:

= Find the PowerMILL commands to include in your macros.
= Place them in a text editor such as WordPad.

= Display the macro in the Explorer.

To create a macro:

1 From the Menu bar, select View > Toolbar > Command to open the
command window.

2 Select Tools > Echo Commands from the Menu bar to echo the
issued commands in the command window.

x Model\die ~
SkockModel,
Group),
Macro),
PowerMILL = Batch processing koolpath SteepandShallow
Select kemplate to use =Import Template
Template read correctly, it was created in PowerMILL Version 4.6.07.32, 10441 on 24 APR 2003 10.00.53
PowerMILL = Batch processing toolpath CornerFinishing_Auto
PowerMILL = 0 toolpaths in session require batch processing
PowerMILL = 0 toolpaths in session require batch processing
Crvervrite the File 70 toolpaths in session require batch processing
PowerMILL = 0 toolpaths in session require batch processing
0 toolpaths in session require batch processing
PowerMILL = o

3 To see the commands needed to calculate a block:

a Click the Block (= button on the Main toolbar.

b When the Block dialog opens, click Calculate, and then click
Accept.

6 » Macros PowerMILL 2015 User Guide

The command window shows the commands issued:

PowerMILL =
Process Command @ [FORM BLOCK]

PotwerMILL =
Process Command : [EDIT BLOCK RESET!]

PowerMILL =
Process Command : [BLOCK ACCEPTIr]

PowerMILL =

The commands are shown in square brackets; \r should be
ignored. The commands you need are: FORM BLOCK, EDIT
BLOCK RESET, and BLOCK ACCEPT.

4 Open WordPad, and enter the commands into it.

& The commands aren't case-sensitive so FORM BLOCK is
the same as Form Block which is the same as foRm bLock.

5 Save the file as say, iniblock.mac. The macro is added to the
macro tree.

B iniblock.mac - WordPad
File Edit Wiew Insert Format Help

DEzE & #

|'I"|mes New Roman vl |'ID vl

Westem v B 7 U S |

TG0 1T 120 1 130 1 A

-l
=]

§-|-1-|-2-|-3-|-4-|-5-|-E-l-

FOEMBLOCK
EDIT BLOCK RESET

BLOCK ACCEPT

IFor Help, press F1 MM

& For more information see Running macros (see page 3).

PowerMILL 2015 User Guide Macros ¢ 7

Adding comments to macros

8 « Macros

It is good practice to put comments into a macro file to explain what
it does. A comment is a line of text which has no effect on the
running of the macro file but will help anyone examining the file to
understand it. Comment lines start with //. For example,

// This macro imports my standard model, creates a block,
// and a ball nosed tool.

It is also good practice to have comments explaining what each
section of the macro file does. This may be obvious when you write
the macro but later it may be difficult to understand. It is good
practice to put the comments which describe commands before the
actual commands.

// Clean all the Roughing boundaries
MACRO Clean 'boundary\Roughing'

Another use of comments is to temporarily remove a command
from a macro. When debugging or writing a macro, it is a good idea
to write one step at a time and re-run the macro after each change.
If your macro contains a lengthy calculation, or the recreation of
toolpaths, you may want to temporarily comment out the earlier
parts of the macro whilst checking the later parts. For example:

// Import the model
// IMPORT TEMPLATE ENTITY TOOLPATH "Finishing/Raster-
Flat-Finishing.ptf"

PowerMILL 2015 User Guide

Macro User Guide

This example shows you how to use the PowerMILL macro

programming language to create a macro which prints the words of

the counting song "Ten Green Bottles".
10 green bottles sitting on the wall
10 green bottles sitting on the wall
And if 1 green bottle should accidentally fall
There will be 9 green bottles sitting on the wall

9 green bottles sitting on the wall

9 green bottles sitting on the wall

And if 1 green bottle should accidentally fall
There will be 8 green bottles sitting on the wall

and so on until the last verse

1 green bottle sitting on the wall

1 green bottle sitting on the wall

And if 1 green bottle should accidentally fall
There will be 0 green bottles sitting on the wall.

The main steps are:

Creating the basic macro (see page 10).
Adding macro variables (see page 10).

Adding macro loops (see page 11).

Running macros with arguments (see page 12).
Decision making in macros (see page 15).
Using functions in macros (see page 17).

Using a SWITCH statement (see page 18).
Returning values from macros (see page 19).

© 00 N oo o B~ W DN P

Using a FOREACH loop in a macro (see page 23).
10 Using arrays in a FOREACH loop (see page 26).

PowerMILL 2015 User Guide

Macros * 9

Basic macro

This shows you how to create and run a basic macro using
PowerMILL's programming language.

1 In a text editor such as WordPad enter:

PRINT "10 green bottles sitting on the wall"

PRINT "10 green bottles sitting on the wall"

PRINT "And if 1 green bottle should accidentally fall"
PRINT "There will be 9 green bottles sitting on the
wall"

2 Save the file as example.mac.
In PowerMILL, from the Tools menu select Toolbar > Command.

4 From the Macro context menu, select Run. This displays the
Select Macro to Run dialog.

5 Move to the appropriate directory, select example.mac, and click
Open. The macro runs and the command windows displays the
text enclosed in quotations marks (") in the macro.

X PowerMILL =
PowerMILL =
Select File =10 green bottles sitking on the wall
10 green bottles sitking on the wall
If 1 green bottle should accidentalky Fall
There will be 9 areen bottles sitking on the wall
PowerMILL =

Adding macro variables

10 * Macros

The first two lines of example.mac are the same. To minimise
repetition (and for ease of maintenance) it is good practice to write
the line once and then recall it whenever it is needed. To do this
you must create a local variable to hold the line of text.

You can create different types of variables (see page 27) in
PowerMILL. To store a line of text you must use a STRING variable.

1 Open example.mac in your text editor and change it to:

// Create a variable to hold the first line

STRING bottles = "10 green bottles sitting on the wall"
PRINT S$bottles

PRINT S$bottles

PRINT "And if 1 green bottle should accidentally fall"
PRINT "There will be 9 green bottles sitting on the
wall"

& The first line is a comment which explains the second line.
2 Save the file as example.mac.

PowerMILL 2015 User Guide

3 In PowerMILL, Run the Macro. The command windows displays

the same as before:

* [powerMILL =
PowerMILL =

Select File =10 green bottles sitking on the wall

10 green bottles sitting on the wall
If 1 green hottle should accidentally Fall

There will be 9 green bottles sitting on the wall

PotwerMILL =

You should be aware of several issues with variables:

= You must define all local variables before they are used, in this
case STRING bottles = "10 green bottles sitting on the
wall" defines the local variable bottles.

= The variable bottles is a local variable, so is only valid within the
macro where it is defined. It isn't a PowerMILL variable. Typing it
into the command window gives an error.

% PowerMILL =
PowerMILL = PRIMNT $hottles
#ERROR: Invalid name
PotwerMILL =
PowerMILL =
PotwerMILL =
PowerMILL = |

= When you have defined a local variable you can use it as many
times as you want in a macro.

= You can define as many local variables as you want in a macro.

Adding macro loops

There are two lines of the macro which are the same: PRINT
Sbottles. This is acceptable in this case since the line only appears

twice, but if you wanted to repeat it 5 or 20 times it would be better
to use a loop. PowerMILL has three looping statements:

= WHILE (see page 64)

= DO - WHILE (see page 65)

= FOREACH (see page 63)

This example uses the WHILE statement to repeat the command 5

times.

1 Open example.mac in your text editor and change it to:

// Create a variable
STRING bottles = "10

// Create a variable
// you want to print
// In this case, 5
INT Count = 5

PowerMILL 2015 User Guide

to hold the first line
green bottles sitting on the wall"

to hold the number of times
the first line.

Macros « 11

// Repeat while the condition Count is greater than 0
WHILE Count > 0 {

// Print the line

PRINT S$bottles

// Reduce the count by 1

SCount = Count - 1
}

// Print the last two lines

PRINT "And if 1 green bottle should accidentally fall"
PRINT "There will be 9 green bottles sitting on the
wall"

—{Z SCount = Count - 1S an assignment statement which is
why the variable (scount) to the left of = must be prefixed
with s.

& The empty lines aren't necessary, but make it easier to
read the macro.

Save the file as example.mac.
3 In PowerMILL, Run the Macro. The command windows displays:

% PowerMILL =
Select File =10 green bottles sitking on the wall
10 green bottles sitting on the wall
10 green bottles sitking on the wall
10 green bottles sitting on the wall
10 green bottles sitking on the wall
If 1 green bottle should accidentalky Fall
There will be 9 green bottles sitting on the wall
PotwerMILL =

& Changing INT Count = 5to INT Count = 10 prints 10 green
bottles sitting on the wall ten times, rather than five.

Running macros with arguments

The loop you added to example.mac works well if you always want to
print 10 green bottles sitting on the wall the same number of times.
However, if you want to change the number of repetitions at run
time, rather than editing the macro each time, it is much better to
write the macro so it is given the number of repetitions. To do this
you need to create a Main FUNCTION (see page 52).

1 Open example.mac in your text editor and change it to:

// Create a Main FUNCTION to hold the number of times
// you want to print the first line.
FUNCTION Main (INT Count) {

// Create a variable to hold the first line

12 « Macros PowerMILL 2015 User Guide

STRING bottles = "10 green bottles sitting on the
wall"

// Repeat while the condition Count is greater than
0
WHILE Count > 0 {
// Print the line
PRINT S$bottles
// Reduce the count by 1
SCount = Count - 1
}

// Print the last two lines

PRINT "If 1 green bottle should accidentally fall"
PRINT "There will be 9 green bottles sitting on the
wall"

}
2 Save the file as example.mac.

3 To run the macro you can't select Run from the Macro context
menu, as you need to give a value for Count. Therefore, in the
command window type:

MACRO example.mac 5

Where 5 is the value for Count. The command windows displays:
PowerMILL = MACROD example.mac 5

10 green bottles sitking on the wall

10 green bottles sitting on the wall

10 green bottles sitking on the wall

10 green bottles sitting on the wall

10 green bottles sitking on the wall

If 1 green bottle should accidentalky Fall

There will be 9 areen bottles sitking on the wall

PowerMILL =

= If you get a warning that the macro can't be found, check
you have created the necessary macro path (see page
112).
Adding your own functions

As well as a Main function you can create your own functions. This is
useful as a way of separating out a block of code. You can use
functions:

= to build up a library of useful operations
* to make a macro more understandable.

& You can call a function any number of times within a macro.

This example separates out the printing of the first line into its own
function so that the Main function is more understandable.

1 Open example.mac in your text editor and change it to:

PowerMILL 2015 User Guide Macros * 13

14 - Macros

FUNCTION PrintBottles (INT Count) {

// Create a variable to hold the first line
STRING bottles = "10 green bottles sitting on the
wall"

// Repeat while the condition Count is greater than
0
WHILE Count > 0 {

// Print the line

PRINT S$bottles

// Reduce the count by 1

$Count = Count - 1

FUNCTION Main (INT Count) {

// Print the first line Count number of times
CALL PrintBottles (Count)

// Print the last two lines

PRINT "If 1 green bottle should accidentally fall"
PRINT "There will be 9 green bottles sitting on the
wall"

}
Save the macro.

Run the macro by typing MACRO example.mac 5 in the command
window.

PowerMILL = MACROD example.mac 5

10 green bottles sitking on the wall

10 green bottles sitting on the wall

10 green bottles sitking on the wall

10 green bottles sitting on the wall

10 green bottles sitking on the wall

If 1 green bottle should accidentalky Fall

There will be 9 areen bottles sitking on the wall
PowerMILL =

This produces the same result as before.

L& The order of functions in a macro is irrelevant. For example, it

doesn't matter whether the Main function is before or after
the PrintBottles function.

2 Itis important that each function name is unique and that the

macro has a function called Main.

& You can have any number of functions in a macro.

PowerMILL 2015 User Guide

Decision making in macros

The macro example.mac runs provided that you enter a positive
argument. However, if you always want the 10 green bottles sitting
on the wall line printed at least once use:

= A DO -WHILE (see page 65) loop as it executes all the commands
before testing the conditional expression.

= An IF (see page 56) statement.

DO - WHILE loop

1 Edit the PrintBottles function in example.mac to
FUNCTION PrintBottles (INT Count) {

// Create a variable to hold the first line
STRING bottles = "10 green bottles sitting on the
wall"

// Repeat while the condition Count is greater than
0
DO {
// Print the line
PRINT S$bottles
// Reduce the count by 1
SCount = Count - 1
} WHILE Count > 0
}

The main function remains unchanged:
FUNCTION Main (INT Count) {

// Print the first line Count number of times
CALL PrintBottles (Count)

// Print the last two lines

PRINT "And if 1 green bottle should accidentally
fall"

PRINT "There will be 9 green bottles sitting on the
wall"

}
2 Type MACRO example.mac 0 in the command window.

* | PowerMILL = MACRD example.mac 0
10 green bottles sitting on the wall
If 1 green hottle should accidentally Fall
There will be 9 green bottles sitting on the wall
PotwerMILL =

The 10 green bottles sitting on the wall line is printed once.

PowerMILL 2015 User Guide Macros ¢ 15

IF statement

You can use an IF statement to ensure the 10 green bottles sitting on
the wall line is printed at least twice.

1 Edit the Main function in example.mac to:
FUNCTION Main (INT Count) {

// Make sure that Count 1s at least two
IF Count < 2 {

SCount = 2
}

// Print the first line Count number of times
CALL PrintBottles (Count)

// Print the last two lines

PRINT "And if 1 green bottle should accidentally
fall"

PRINT "There will be 9 green bottles sitting on the
wall"

}
The PrintBottles function remains unchanged:
FUNCTION PrintBottles (INT Count) {

// Create a variable to hold the first line
STRING bottles = "10 green bottles sitting on the
wall"

// Repeat while the condition Count is greater than
0
WHILE Count > 0 {

// Print the line

PRINT Sbottles

// Reduce the count by 1

SCount = Count - 1

}
2 Type MACRO example.mac 0 in the command window.

* | PoyerMILL > MACROD example.mac 0
10 green bottles sitking on the wall
10 green bottles sitting on the wall
If 1 green hottle should accidentally Fall
There will be 9 green bottles sitting on the wall
PotwerMILL =

The 10 green bottles sitting on the wall line is printed twice.

16 « Macros PowerMILL 2015 User Guide

More on functions in macros

So far you have only printed the first verse of the counting song
"Ten Green Bottles". To make your macro print out all the verses
you must change the PrintBottles function so it takes two
arguments:

= Count for the number of times "X green bottles" is printed.
= Number for the number of bottles.

1 Edit the PrintBottles function in example.mac to

FUNCTION PrintBottles (INT Count, INT Number) {
// Create a variable to hold the first line
STRING bottles = String (Number) + " green bottles
sitting on the wall"

// Repeat while the condition Count is greater than
0
WHILE Count > 0 {

// Print the line

PRINT S$bottles

// Reduce the count by 1

Count = Count - 1

}

This adds a second argument to the PrintBottles function. It then
uses a parameter function to convert the Number to a string
value, STRING (Number). It is then concatenated (+)with green
bottles sitting on the wall to make up the bottles string.

2 Edit the Main function in example.mac to:

FUNCTION Main (INT Count) {
// Make sure that Count is at least two
IF Count < 2 {
$Count = 2
}

// Start with ten bottles
INT Bottles = 10

WHILE Bottles > 0 {
// Print the first line 'Count' number of times
CALL PrintBottles (Count, Bottles)
// Count down Bottles
SBottles = S$Bottles - 1
// Build the number of 'bottles left' string

STRING bottles left = "There will be " +
string (Bottles) + " green bottles sitting on the
wall"

// Print the last two lines

PowerMILL 2015 User Guide Macros * 17

PRINT "If 1 green bottle should accidentally fall"
PRINT S$bottles left

3 Type MACRO example.mac 2 in the command window.

4,

4,

* | PowerMILL = macro example.mac 2

10 green bottles sitking on the wall

10 green battles sitting on the wall

If 1 green bottle should accidentalky Fall

There will be 9 green battles sitting on the wall
9 green bottles sitking on the wall

9 green bottles sitting on the wall

If 1 green bottle should accidentalky Fall

There will be & areen bottles sitking on the wall

If 1 green bottle should accidentalky Fall
There will be 0 areen bottles sitking on the wall
PowerMILL =

In Main when you CALL PrintBottles you give it two arguments
Count and Bottles whilst within the PrintBottles function the
Bottles argument is referred to as Number. The parameters
passed to a function don't have to have the same names as
they are called within the function.

The order you call the arguments is important.

Any changes made to the value of a parameter within a
function doesn't alter the value of parameter in the calling
function unless the parameter is defined as an OUTPUT (see
page 19) value.

Using the SWITCH statement

So far you have used numerals to print the quantity of bottles but it
would be better to use words. So, instead of printing 10 green bottles
... print Ten green bottles

18 * Macros

One way of doing this is to use a large IF - ELSEIF (see page 57)
chain to select the text representation of the number. Another way

is to use the SWITCH (see page 59) statement.

SWITCH Number {
CASE 10

SText
BREAK

"Ten"

CASE 9

SText = "Nine"
BREAK

CASE 8

SText = "Eight"
BREAK

CASE 7

SText = "Seven"

PowerMILL 2015 User Guide

BREAK

CASE ©
SText = "Six"
BREAK

CASE 5
SText = "Five"
BREAK

CASE 4
SText = "Four"
BREAK

CASE 3
SText = "Three"
BREAK

CASE 2
SText = "Two"
BREAK

CASE 1
SText = "One"
BREAK

DEFAULT
SText = "No"
BREAK

}

The switch statement matches the value of its argument (in this
case Number) with a corresponding case value and executes all the
subsequent lines until it encounters a BREAK statement. If no
matching value is found the DEFAULT is selected (in this case No).

& DEFAULT is an optional step.

Returning values from macros

This shows you how to create an OUTPUT variable from a SWITCH
statement.

1 Create a new function called NumberStr containing the SWITCH
statement in Using the SWITCH statement (see page 18) and a
first line of:

FUNCTION NumberStr (INT Number, OUTPUT STRING Text) {
and a last line of:
}
2 Edit the PrintBottles function in example.mac to
FUNCTION PrintBottles (INT Count INT Number) {
// Convert Number into a string

STRING TextNumber = ''
CALL NumberStr (Number, TextNumber)

PowerMILL 2015 User Guide Macros ¢ 19

// Create a variable to hold the first line
STRING bottles = TextNumber + " green bottles
sitting on the wall"

// Repeat while the condition Count is greater than
0
WHILE Count > 0 {

// Print the line

PRINT S$bottles

// Reduce the count by 1

$Count = Count - 1

}
This adds the OUTPUT variable to the PrintBottles function.

3 Edit the Main function in example.mac to:
FUNCTION Main (INT Count) {

// Make sure that Count 1s at least two
IF Count < 2 {

SCount = 2
}

// Start with ten bottles
INT Bottles = 10

WHILE Bottles > 0 {
// Print the first line Count number of times
CALL PrintBottles (Count, Bottles)
// Countdown Bottles
SBottles = S$Bottles - 1

// Convert Bottles to string
STRING BottlesNumber = "'
CALL NumberStr (Bottles, BottlesNumber)

// Build the number of bottles left string

STRING bottles left = "There will be " +
lcase (BottlesNumber) + " green bottles sitting on
the wall"

// Print the last two lines

PRINT "If one green bottle should accidentally
fall"

PRINT Sbottles left

}

The BottlesNumber variable is declared in the WHILE loop of the
MAIN function.

20 « Macros PowerMILL 2015 User Guide

& Each code block or function can define its own set of local
variables; the scope of the variable is from its declaration
to the end of the enclosing block or function.

4 Add the NumberStr function into example.mac.
FUNCTION PrintBottles (INT Count, INT Number) ({

// Convert Number into a string
STRING TextNumber = ''
CALL NumberStr (Number, TextNumber)

// Create a variable to hold the first line
STRING bottles = TextNumber + " green bottles sitting
on the wall"

// Repeat while the condition Count is greater than 0
WHILE Count > 0 {

// Print the line

PRINT S$bottles

// Reduce the count by 1

SCount = Count - 1

}
FUNCTION Main (INT Count) {

// Make sure that Count 1s at least two
IF Count < 2 {

SCount = 2

}

// Start with ten bottles
INT Bottles = 10

WHILE Bottles > 0 {
// Print the first line Count number of times
CALL PrintBottles (Count, Bottles)
// Countdown Bottles
SBottles = $Bottles - 1

// Convert Bottles to string
STRING BottlesNumber = ''
CALL NumberStr (Bottles, BottlesNumber)

// Build the number of bottles left string

STRING bottles left = "There will be " +
lcase (BottlesNumber) + " green bottles sitting on the
wall"

// Print the last two lines
PRINT "If one green bottle should accidentally fall"

PowerMILL 2015 User Guide Macros * 21

PRINT Sbottles left
}

FUNCTION NumberStr (INT Number, OUTPUT STRING Text) {
SWITCH Number {

CASE 10
SText = "Ten"
BREAK

CASE 9
SText = "Nine"
BREAK

CASE 8
SText = "Eight"
BREAK

CASE 7
SText = "Seven"
BREAK

CASE ©
SText = "Six"
BREAK

CASE 5
SText = "Five"
BREAK

CASE 4
SText = "Four"
BREAK

CASE 3
SText = "Three"
BREAK

CASE 2
SText = "Two"
BREAK

CASE 1
SText = "One"
BREAK

DEFAULT
SText = "No"
BREAK

To run the macro:

22 « Macros PowerMILL 2015 User Guide

Type MACRO example.mac 2 in the command window.

* [powerMILL > macra excample .mac 2

Ten green battes sitting an the wall

Ten green bottles sitting on the wall

If one green bottle should accidentally Fall

There will be nine green bottles sitking on the wall
Mine green bottles sitting on the wall

Mine green bottles sitting on the wall

If one green bottle should accidentally Fall

There will be eight green bottles sitting on the wall

If one green bottle should accidentally Fall
There will be no green bokttles sitking on the wall
PowerMILL =

Using a FOREACH loop in a macro

This example shows you how to use a FOREACH (see page 63) loop
to control the number of bottles rather than a WHILE loop.

1 Edit the Main function in example.mac to:
FUNCTION Main (INT Count) {

// Make sure that Count 1s at least two
IF Count < 2 {
SCount = 2

FOREACH Bottles IN {10,9,8,7,6,5,4,3,2,1} {
// Print the first line Count number of times
CALL PrintBottles (Count, Bottles)
// Countdown Bottles
SBottles = $Bottles - 1

// Convert Bottles to string
STRING BottlesNumber = ''
CALL NumberStr (Bottles, BottlesNumber)

// Build the number of bottles left string

STRING bottles left = "There will be " +
lcase (BottlesNumber) + " green bottles sitting on
the wall"

// Print the last two lines

PRINT "If one green bottle should accidentally
fall"

PRINT Sbottles left

}
The rest of example.mac remains unaltered.
FUNCTION PrintBottles (INT Count, INT Number) {

// Convert Number into a string
STRING TextNumber = "'

PowerMILL 2015 User Guide Macros * 23

CALL NumberStr (Number, TextNumber)

// Create a variable to hold the first line
STRING bottles = TextNumber + " green bottles sitting
on the wall"

// Repeat while the condition Count is greater than 0
WHILE Count > 0 {

// Print the line

PRINT S$bottles

// Reduce the count by 1

SCount = Count - 1

}
FUNCTION Main (INT Count) {

// Make sure that Count 1s at least two
IF Count < 2 {

SCount = 2

}

FOREACH Bottles IN {10,9,8,7,6,5,4,3,2,1} {
// Print the first line Count number of times
CALL PrintBottles (Count, Bottles)
// Countdown Bottles
SBottles = S$Bottles - 1

// Convert Bottles to string
STRING BottlesNumber = ''
CALL NumberStr (Bottles, BottlesNumber)

// Build the number of bottles left string

STRING bottles left = "There will be " +
lcase (BottlesNumber) + " green bottles sitting on the
wall"

// Print the last two lines
PRINT "If one green bottle should accidentally fall"
PRINT Sbottles left

FUNCTION NumberStr (INT Number, OUTPUT STRING Text) ({
SWITCH Number ({

CASE 10
SText = "Ten"
BREAK

CASE 9
SText = "Nine"
BREAK

CASE 8

24 « Macros PowerMILL 2015 User Guide

$Text = "Eight"
BREAK

CASE 7
SText = "Seven"
BREAK

CASE ©
SText = "Six"
BREAK

CASE 5
SText = "Five"
BREAK

CASE 4
SText = "Four"
BREAK

CASE 3
SText = "Three"
BREAK

CASE 2
SText = "Two"
BREAK

CASE 1
SText = "One"
BREAK

DEFAULT
SText = "No"
BREAK

—54’ You don't need to declare the type or initial value of the
Bottles variable as the FOREACH loop handles this.

To run the macro:
Type MACRO example.mac 2 in the command window.

* | PowerMILL > macra example .mac 2
Ten green battes sitting an the wall
Ten green bottles sitting on the wall
If one green bottle should accidentally Fall
There will be nine green bottles sitking on the wall
Mine green bottles sitting on the wall
Mine green bottles sitting on the wall
If one green bottle should accidentally Fall
There will be eight green bottles sitting on the wall

If one green bottle should accidentally Fall
There will be no green bokttles sitking on the wall
PowerMILL =

This gives exactly the same output as the Returning values from
macros (see page 19) example. It shows you an alternative way
of creating the same output.

PowerMILL 2015 User Guide Macros * 25

Using arrays in a FOREACH loop

This example shows you how to use an array (see page 34) in a
FOREACH loop, rather than using a list, to control the number of

bottles.

1 Edit the Main function in example.mac to:

FUNCTION Main (INT Count) {

// Make sure that Count 1s at least two

IF Count < 2 {
SCount = 2
}

// Define an array of bottle numbers
{10191817161514131211}

INT ARRAY BottleArray[1l0]

FOREACH Bottles IN BottleArray {

// Print the first line Count number of times

CALL PrintBottles (Count,

// Count down Bottles
SBottles = $Bottles -

// Convert Bottles to string

STRING BottlesNumber =

CALL NumberStr (Bottles,

Bottles)

BottlesNumber)

// Build the number of bottles left string

STRING bottles left = "There will be " +
lcase (BottlesNumber) + " green bottles sitting on
the wall"

// Print the last two lines

PRINT "If one green bottle should accidentally

fall"
PRINT Sbottles left

}

The rest of example.mac remains unaltered.

2 Type MACRO example.mac 2 in the command window.

* | PowerMILL = macro example. .mac 2

Ten green bottles sitting on the wall

Ten green battes sitting an the wall

If one green bottle should accidentally Fall

There will be nine areen bottles sitking on the wall
Mine green bottles sitting on the wall

Mine green bottles sitking on the wall

If one green bottle should accidentally Fall

There will be eight green battles sitting on the wall

IF e green boktle should accidentally Fall
There will be no green bokttles sitking on the wall
PowerMILL =

26 » Macros

PowerMILL 2015 User Guide

This gives exactly the same output as the Returning values from
macros (see page 19) example. It shows you an alternative way
of creating the same output.

Pausing a macro for user interaction

You can pause a running macro to allow user input, such as the
selection of surfaces or curves. The command to do this is:

MACRO PAUSE "User help instructions"

This displays a dialog containing the supplied text and a button to
allow the user to RESUME the macro.

When the macro is paused, users can perform any actions within
PowerMILL, with the exception of running another macro. The
current macro remains paused until the user clicks the RESUME
button. If the user closes the dialog, by clicking the dialog close icon
3w, this ends any currently running macros, including the paused
macro.

For example:

GET EXAMPLES 'cowling.dgk'

ROTATE TRANSFORM TOP

CREATE TOOL ; BALLNOSED

EDIT TOOL ; DIAMETER 10

EDIT BLOCK RESET

CREATE BOUNDARY ; SELECTED

STRING Msg = "Select surfaces for boundary, and
press"+crlf+"RESUME when ready to continue"
EDIT BLOCK RESET

MACRO PAUSE $Msg

EDIT BOUNDARY ; CALCULATE

If you don't enter a string after MACRO PAUSE the macro pauses but
doesn't display a REsUME dialog. To resume the macro either type
MACRO RUN or provide another mechanism to continue the macro.

Variables in macros

You can create variables in macros just as you can in a PowerMILL
project. When you create a variable in a macro, it has the same
properties as a PowerMILL parameter, and can store either a value
or an expression.

& There are some restrictions on the use of macro variables.

= Variable names must start with an alphabetic character (a-z, A-
Z) and may contain any number of subsequent alphanumeric
characters (a-z, A-Z, 1-9, _). For example, you can name a
variable Countl but not 1Count.

PowerMILL 2015 User Guide Macros « 27

= Variable names are case insensitive. For example, Count, count,
and CoUnT all refer to the same variable.

= All variables must have a type, which can be:
INT — Integer numbers. For example, 1, 21, 5008.
REAL — Real numbers. For example, 201, -70.5, 66.0.
STRING — A sequence of characters. For example, hello.
BOOL — Truth values, either 0 (false) or 1 (true).

ENTITY — A unique value that references an existing PowerMILL
entity.

Object — A collection of parameters that PowerMILL groups
together, such as Block, or Connections.

= You must declare the variable type, for example:

INT Count = 5
REAL Diameter = 2.5
STRING Tapefile = "MyFile.tap"

= You can access any of the PowerMILL parameters in variable
declarations, expressions, or assignments.

= Any variables you create in a macro are only accessible from
within the macro. When the macro has finished the variable is no
longer accessible and can't be used in expressions or other
macros.

= If you need to create a variable that can be used at any time in a
PowerMILL project then you should create a User Parameter.

Assigning parameters

28 » Macros

When you assign a value to a variable the expression is evaluated
and the result is assigned, the actual expression is not retained.
This is the same as using the EVAL modifier in the PowerMILL
parameter EDIT PAR command. These two statements are
equivalent:

EDIT PAR "Stepover" EVAL "Tool.Diamter * 0.6"
SStepover = Tool.Diameter * 0.6

& Variable and parameter names may optionally be prefixed
with a $ character. In most cases, you can omit the $ prefix,
but it MUST be used when you assign a value to either a
variable or parameter within a macro.

PowerMILL 2015 User Guide

Inputting values into macros

An input dialog enables you to enter specific values into a macro.

The basic structure is:
S<variable> = INPUT <string-prompt>

This displays an input dialog with a specified prompt as its title

which enables you to enter a value.

—é/ - If you add an input dialog you should consider adding an error
function to check the value entered is reasonable.

For example:

string prompt = "Enter a number"
$i = input Sprompt
Serr = ERROR i
}

produces this dialog:

\ﬁ", Enter a number

You can also use INPUT in the variable definition.
For example:

REAL X = INPUT "Enter a number"

For more information see User selection of entities in macros (see
page 31).

Asking a Yes/No guestion

A Yes/No query dialog is a very simple dialog.
Selecting Yes assigns 1 to the variable.

Selecting No assigns 0 to the variable.

The basic structure is:

S<variable> = QUERY <string-prompt>

For example:

string yesnoprompt = "You entered 5. Would you like to
have another go?"

bool carryon = 0

Scarryon = query Syesnoprompt

PowerMILL 2015 User Guide Macros * 29

produces this dialog:

&% PowerMILL Query

‘—?/- ‘fou entered 5.0, Waould vou like to have another go?

[Yes] l Mo l

Creating a message dialog

There are three types of message dialogs:
= Information dialogs

= Warning dialogs

= Error dialogs

The basic structure is:
MESSAGE INFO|WARN|ERROR <expression>

For example, an input dialog to enter a number into a macro:

real 1 = 3
string prompt = "Enter a number"
do {
bool err = 0
do {
$i = input Sprompt
Serr = ERROR i
if err {
Sprompt = "Please 'Enter a number'"
}

} while err

string yesnoprompt = "You entered " + string(i) + ".
Would you like to have another go?"
bool carryon = 0

Scarryon = query S$yesnoprompt
} while Scarryon
message info "Thank you!"

An example to find out if a named toolpath exists:

string name = ""

Sname = input "Enter the name of a toolpath"
if pathname ('toolpath',name) == "" {

message error "Sorry. Couldn't find toolpath " + name
} else {

message info "Yes! Toolpath " + name + " exists!"

}

30 « Macros PowerMILL 2015 User Guide

Carriage return in dialogs

You can specify a carriage return to control the formatting of the
text in a message dialog using crlf.

For example, looking at the input dialog to enter a number into a

macro.
real 1 = 3
string prompt = "Enter a number"
do {
bool err = 0
do {

$i = input Sprompt
Serr = ERROR i
if err {
Sprompt = "Please 'Enter a number'"

}

} while err

string yesnoprompt = "You entered " + string(i) + "." +
crlf + " Would you like to have another go?"

bool carryon = 0

Scarryon = query S$yesnoprompt

} while S$carryon
message info "Thank you!"

produces this query dialog:

"

dﬂ PowerMILL Query | e

I.-"'_"‘-. You entered 5.0,
' Would you like to have another go?

e I %

L 4

User selection of entities in macros

Use the INPUT command to prompt the user to select a specific
entity in PowerMILL, such as a toolpath or a tool. You can use this
to:

= Display a list of available entities
= Prompt the user to select one of them.

For example, to list all the available tools and then ask the user to

select one:
STRING ToolName = INPUT ENTITY TOOL "Please select a

Tool."

L& This command returns the name of the tool the user selected.

PowerMILL 2015 User Guide Macros * 31

This example creates two folders, creates two tool in each folder,
then asks the user to select one of the tools:

// Create some tools in folders

CREATE FOLDER 'Tool' 'Endmills'

CREATE IN 'Tool\Endmills' TOOL 'End 20' ENDMILL
EDIT TOOL ; DIAMETER 20

CREATE IN 'Tool\Endmills' TOOL 'End 10' ENDMILL
EDIT TOOL ; DIAMETER 10

CREATE FOLDER 'Tool' 'Balls'

CREATE IN 'Tool\Balls' TOOL 'Ball 12' BALLNOSED
EDIT TOOL ; DIAMETER 12

CREATE IN 'Tool\Balls' TOOL 'Ball 10' BALLNOSED
EDIT TOOL ; DIAMETER 10

// Prompt user to pick one

STRING ToolName = "'

SToolName = INPUT ENTITY TOOL "Please select a Tool."

You can also ask for the selection of a number of entities. The result
is the list of entities selected, which can be assigned to either a list
of strings, or list of entities.

ENTITY LIST $Selected_Toolpaths = INPUT ENTITY MULTIPLE
toolpath "which toolpaths do you want to check?"

STRING LIST ToolpathNames = INPUT ENTITY MULTIPLE
TOOLPATH "Select toolpaths to check"

You can then iterate over the user selection with a FOREACH loop:

FOREACH $tp in ToolpathNames {
ACTIVATE TOOLPATH Stp.Name
EDIT COLLISION APPLY

}

User selection from a list of options

32 » Macros

You can use the INPUT command to prompt the user to select from
a list of options that your macro supplies. The syntax for this is:

INT value = INPUT CHOICE <string-array> <prompt>

For example, suppose you have a machining macro where
everything is setup except that you want to give the user the choice
of cut direction to use. You can do this by using a CHOICE input as
follows:

// Create an array of strings from the CutDirection
parameter
STRING ARRAY Opts[] = values (CutDirection)
INT C = INPUT CHOICE $Opts "Choose the Cut Direction
you want"
SCutDirection = $C

PowerMILL 2015 User Guide

Or for another example, you can increase or decrease the number
of options the user can select. You can limit the options available to
only one, such as Gouge Check or Collision Check a toolpath, or you
can increase the options available so the user can choose between
the two options. To create this list, enter the following:

STRING ARRAY Opts[] = {"Gouge check only", "Collision
check only", "Gouge and Collision check"} INT C = INPUT
CHOICE $Opts "Pick an option"
SWITCH $C {
CASE O:
MACRO "Gouge Check.mac"
BREAK
CASE 2:
MACRO "Gouge Check.mac"
// Intended fall through to next command
CASE 1:

MACRO "Collision Check.mac"
BREAK

& The above example uses the 'fall through' behavior of cases
within a switch block (see page 59). If you are not used to
using the switch statement you can use an IFELSE statement
instead:

IF $SC==0 ({
MACRO "Gouge Check.mac"
} ELSEIF $C==1 {
MACRO "Collision Check.mac"
} ELSEIF $C==2 ({
MACRO "Gouge Check.mac"
MACRO "Collision Check.mac"
}

User selection of a file name

You can prompt your user for a filename with Use the FILESELECT
command to prompt the user for a file name. This command
displays an Open dialog which enables user to browse for a file.

For example:

STRING Filename = ''
SFilename = FILESELECT "Please select a pattern file"

PowerMILL 2015 User Guide Macros * 33

Arrays and lists

34 » Macros

Arrays

In addition to simple variables of type INT, REAL, or STRING you
can also have arrays of these types. When you declare an array you
must initialise all of its members using an initialisation list. When
you have specified an array you cannot change its size. The syntax
for an array is:

BASIC-TYPE ARRAY name[n] = {..}

For example, to declare an array of three strings:
STRING ARRAY MyArray[3] = {'First', 'Second', 'Third'}

All the items in the initialisation list must be the same BASIC-TYPE
as the array.

You can access the items of the array by subscripting. The first item
in the array is subscript 0. For example:

INT Index = 0

WHILE Index < size (MyArray) {
PRINT MyArray|[Index]
SIndex = Index + 1

}

Prints:
First
Second
Third

If you leave the size of the array empty, then PowerMILL
determines its size from the number of elements in the initialisation
list. For example:

STRING ARRAY MyArrayl[] =
{'"First', 'Second', 'Third', 'Fourth'}
PRINT = size (MyArray)

Prints:
4

Lists

PowerMILL also has a LIST type. The main difference between a list
and an array is that the list doesn't have a fixed size, so you can
add and remove items to it. You can create lists:

= that are empty to start with
= from an initialisation list
= from an array.

PowerMILL 2015 User Guide

// Create an empty list

STRING LIST MyStrings = {}

// Create a list from an array

STRING LIST MyList = MyArray

// Create a list using an initialisation 1list
STRING LIST MyListTwo = {'First', 'Second'}

You can use two inbuilt functions add first () and add last() to
add items to a list.

For example using the inbuilt function add last():

CREATE PATTERN Daffy

CREATE PATTERN Duck

// Create an empty list of strings
STRING LIST Patterns = {}

FOREACH pat IN folder ('Pattern') {
// Add the name of the pattern to the list
int s = add last(Patterns, pat.Name)

}
FOREACH name IN Patterns {
PRINT = S$name

}
Prints:
Daffy
Duck

You can also add items to the front of a list by using the inbuilt
function add first():

CREATE PATTERN Daffy
CREATE PATTERN Duck
// Create an empty list of strings
STRING LIST Patterns = {}
FOREACH pat IN folder ('Pattern') {
// Add the name of the pattern to the list
int s = add first (Patterns, pat.Name)
}
FOREACH name IN Patterns {
PRINT = S$Sname
}

Prints:
Duck
Daffy

PowerMILL 2015 User Guide Macros ¢ 35

Using lists
A list, like an array, contains multiple values. You can create a list
with initial values:
INT LIST MyList = {1,2,3,4}

—KZ Unlike an ARRAY, you do not use the [] syntax.

You can specify an empty list:

INT LIST MyEmptyList = {}

You can use lists anywhere you might use an array. For instance,
you can use a list in a FOREACH loop:

FOREACH i IN MyList {
PRINT = 1
}

or to initialise an array:
INT ARRAY MyArray[] = MyList

You can also use an array to initialise a list:
INT LIST MyList2 = MyArray

You can pass a list to macro functions that expect an array:

FUNCTION PrintArray (INT ARRAY MyArray) {
FOREACH i IN Myarray {
PRINT = 1
}
}

FUNCTION Main () {
INT LIST MyList = {10,20,30,40}
CALL PrintArray (MyList)

}

You will normally access the elements of a list with a FOREACH loop,
but you can also access the elements using the array subscripting
notation:

INT Val = MyList[2]

36 « Macros PowerMILL 2015 User Guide

Adding items to a list summary

The main differences between a list and an array is that a list can
have items added to it and removed from it.

To add an item to a list you can use either of the inbuilt functions
add first () Or add last().

For example, to collect the names of all the toolpaths in a folder:

// Create an empty list
STRING LIST TpNames = {}

FOREACH tp IN folder ('Toolpath\MyFolder') {
INT Size = add last (TpNames, tp.name)
}

For more information see Adding comments to macros (see page
86).

Removing items from a list summary

The main differences between a list and an array is that a list can
have items added to it and removed from it.

To remove an item from a list you can use either of the inbuilt
functions remove first() OF remove last().

For example, if you have a list of toolpath names some of which are
batched and you want to ask the user whether they want them
calculated now. You can use a function which removes calculated
toolpaths from the list and creates a query message for the rest.

FUNCTION CalculateNow (STRING LIST TpNames) {
// Cycle through the 1list
FOREACH Name IN TpNames {
IF entity('toolpath',Name).Calculated {
// Toolpath already calculated so
// remove name from list
BOOL success = remove (TpNames, Name)
}
}

// Do we have any names left
IF size (TpNames) > 0 {
// Build the prompt string
STRING Msg = "These toolpaths are uncalculated"
FOREACH name IN TpNames {
SMsg = Msg + CRLF + name
}
SMsg = Msg + CRLF + "Do you want to calculate them
now?"
// Ask the user if they want to proceeed
bool yes = 0

PowerMILL 2015 User Guide Macros * 37

Syes = QUERY S$Smsg
IF yes {
// Loop through the toolpaths and calculate them
WHILE size (TpNames) > 0 {
STRING Name = remove first (TpNames)
ACTIVATE TOOLPATH S$Name
EDIT TOOLPATH ; CALCULATE

}

You could use a FOREACH loop rather than a WHILE loop:

FOREACH Name IN TpNames {
ACTIVATE TOOLPATH S$Name
EDIT TOOLPATH ; CALCULATE

}

PowerMILL has an inbuilt function which allows you to remove
duplicate items from a list: remove duplicates. For example, to
determine how many different tool diameters there are in your
toolpaths you could add the tool diameters from each toolpath and
then remove the duplicates:

REAL LIST Diameters = {}
FOREACH tp IN folder('toolpath') {

INT s = add first (Diameters, tp.Tool.Diameter)
}

INT removed = remove duplicates (Diameters)

For more information, see Removing items from a list (see page 86)
or Removing duplicate items in a list (see page 85).

Building a list

38 « Macros

You can use the inbuilt member () function in a macro function to
build a list of tool names used by toolpaths or boundaries without
any duplicates:

FUNCTION ToolNames (STRING FolderName, OUTPUT STRING LIST
ToolNames) {

// loop over all the items in FolderName
FOREACH item IN folder (FolderName) {

// Define local working variables
STRING Name = "'
INT size = 0

// check that the item's tool exists
// it might not have been set yet
IF entity exists(item.Tool) {
// get the name and add it to our list

PowerMILL 2015 User Guide

SName = item.Tool.Name
IF NOT member (FolderName, Name) {
$dummy = add last (FolderName, Name)

}
}

// Check whether this item has a reference tool
// and that it has been set
IF active (item.ReferenceTool) AND
entity exists(item.ReferenceTool) {

// get the name and add it to our list

SName = item.ReferenceTool.Name

IF NOT member (FolderName, Name) {

$dummy = add last (FolderName, Name)

}

}

Since this function can work on any toolpath, or boundary folder,
you can collect all the tools used by the toolpaths in one list and all
of the tools used by boundaries in another list. You can do this by
calling the macro function twice:

STRING LIST ToolpathTools = {}
STRING LIST BoundaryTools = {}
CALL ToolNames ('Toolpath',ToolpathTools)
CALL ToolNames ('Boundary',BoundaryTools)

To return a list containing the items from both sets with any
duplicates removed:

STRING LIST UsedToolNames = set union(ToolpathTools,
BoundaryTools)

Subtract function

You can use the subtract () function to determine what happened
after carrying out a PowerMILL command. For example, suppose
you to find out if any new toolpaths are created during a toolpath
verification. If you get the list of toolpath names before the
operation, and the list of names after the operation, and then
subtract the ‘before’ names from the ‘after’ names you are left with
the names of any new toolpaths.

FUNCTION GetNames (STRING FolderName, OUTPUT STRING LIST
Names) {
FOREACH item IN folder (FolderName) {
INT n = add last (Names, item.Name)

}

FUNCTION Main () {

PowerMILL 2015 User Guide Macros * 39

STRING LIST Before = {}
CALL GetNames ('toolpath',Before)

EDIT COLLISION APPLY

STRING LIST After = {}
CALL GetNames ('toolpath',After)
STRING LIST NewNames = subtract (After, Before)

IF is empty (NewNames) {
PRINT "No new toolpaths were created."
} ELSE {
PRINT "The new toolpaths created are:"
FOREACH item IN NewNames {
PRINT = item

Entity variables

40 » Macros

PowerMILL has a special variable type ENTITY. You can use ENTITY
variables to refer to existing PowerMILL entities such as toolpaths,
tools, boundaries, patterns, workplanes, and so on. You cannot be
use this command to create new entities.

For example:
// create an entity variable that references boundary

entity 'Duck'
ENTITY Daffy = entity('boundary', 'Duck’')

The inbuilt functions, such as folder () return lists of entities so
you can store the result of the call in your own list and array
variables:

For example:
ENTITY List Toolpaths = folder('toolpath')

When looping over folder items in a FOREACH the loop variable that
is automatically created has the type ENTITY. Therefore the
following code is syntactically correct:

FOREACH tp IN folder('toolpath') {
ENTITY CurrentTP = tp
PRINT = CurrentTP.Name

}

You can also pass ENTITY variables to functions (and passed back
from function) by using an OUTPUT argument:

PowerMILL 2015 User Guide

For example:

FUNCTION Test (OUTPUT ENTITY Ent) {
SEnt = entity('toolpath','2")
}

FUNCTION Main () {
ENTITY TP = entity('toolpath','1l")
CALL Test (TP)
PRINT = TP.Name

}

Additionally, you can use an ENTITY variable anywhere in
PowerMILL that is expecting a entity name.

For example:

ENTITY tp = entity('toolpath','1l")
ACTIVATE TOOLPATH Stp

Object variables

PowerMILL has a variable type called OBJECT which can hold any
collection of variables that PowerMILL pre-defines, such as Block or
Connections.

For example:

// Get the current set of block parameters

OBJECT myObject = Block

// Activate a toolpath (this may change the block)
ACTIVATE TOOLPATH "Daffy"

// Reset the block to its old state

$SBlock = myObject

Whilst you cannot create an ARRAY of OBJECT you can create a
LIST of OBJECTs:

For example:

OBJECT LIST myObjects = {Block,Connections}
FOREACH ob IN myObjects {

PRINT PAR "ob"

}

As you can see from the above example, each object in a list may
be different. It is the responsibility of the macro writer to keep track
of the different types of OBJECT. PowerMILL has an inbuilt function
get typename () to help with this.

For example:

OBJECT LIST myObjects = {Block,Connections}
FOREACH ob IN myObjects {

PRINT = get typename (0ob)

}

PowerMILL 2015 User Guide Macros * 41

Which prints:
Block
ToolpathConnections

As with all lists, you can also access the elements by index:

PRINT =
PRINT =

get typename (myObjects[0])
get typename (myObjects[1])

Objects can also be passed to and from macro FUNCTIONS.

For example:
FUNCTION myBlkFunction (OBJECT blk) {
IF get typename (blk) != "Block" {
MESSAGE ERROR "Expecting a Block object"
MACRO ABORT
}
// Code that works on block objects
}
// Find block with maximum zrange
FUNCTION myZrangeBlockFunc (OUTPUT OBJECT Blk)
// The
REAL zrange = 0
FOREACH tp IN folder('toolpath') {
// find zlength of this block
REAL z =
IF z > zrange {
// Copy 1f longer than previously
$SBlk = Block
Szrange = z

}

{

tp.Block.Limits.ZMax - tp.Block.Limits.ZMin

Vectors and points

In PowerMILL vectors and points are represented by an array of

42 « Macros

three reals.

PowerMILL contains point and vector parameters, for example the
Workplane.Origin, Workplane.ZAxis, ToolAxis.Origin, and
ToolAxis.Direction. You can create your own vector and point

variables:

REAL ARRAY VecX[] = {1,0,0}
REAL ARRAY VecY[] = {0,1,0}
REAL ARRAY VecZz[] = {0,0,1}
REAL ARRAY MVecz[] = {0,0,-1}
REAL ARRAY Origl[] = {0,0,0}

For more information, see the inbuilt Vectors and points functions

(see page 70)

PowerMILL 2015 User Guide

Comparing variables

Comparing variables allows you to check information and defines
the course of action to take when using IF (see page 56) statements
and WHILE (see page 64) statements.

The result of a comparison is either true or false. When true the
result is 1, when false the result is 0.

A simple comparison may consist of two variables with a relational
operator between them:

Relational operator Description

Symbol Text

== EQ is equal to

= NE is not equal to

< LT is less than

<= LE is less than or equal
to

> GT is greater than

GE is greater than or

equal to

—rﬁ—-/ You can use either the symbol or the text in a comparison.
For example,

BOOL C = (A == B)

is the same as:

BOOL C = (A EQ B)

C is assigned 1 (true) if A equals B and . If A doesn't equal B, then
C is 0 (false).

—r.%/ The operators = and == are different.

The single equal operator, =, assigns the value on the right-
hand side to the left-hand side.

The double equals operator, ==, compares two values for
equality.

If you compare the values of two strings, you must use the correct
capitalisation.

For example, if you want to check that the tool is an end mill, then
you must use:

Tool.Type == 'end mill'

PowerMILL 2015 User Guide Macros * 43

and not:
Tool.Type == 'End Mill

If you are unsure about the case of a string then you can use one of
the inbuilt functions Icase() or ucase() to test against the lower case
(see page 80) or upper case (see page 79) version of the string:

lcase (Tool.Type) == 'end mill'
ucase (Tool.Type) == 'END MILL'

For example, comparing variables:

BOOL bigger = (Tool.Diameter+Thickness
>=ReferenceToolpath.Tool.Diameter+ReferenceToolpath.Thick
ness)

gives a result of 1 (true) when the Tool.Diameter + Thickness is
greater than or equal to the ReferenceToolpath.Tool.Diameter +
ReferenceToolpath.Thickness and a result of 0 (false) otherwise.

Logical operators

Logical operators let you to do more than one comparison at a time.
There are four logical operators:

= AND

= OR

= XOR

= NOT

_é/ Remember the result of a comparison is either true or false.
When true, the result is ; when false, the result is 0.

Using the logical operator AND

The result is true (1) if all operands are true, otherwise the result is

false (0).

Operand 1 Operand 2 Operand 1 AND
Operand 2

true (1) true (1) true (1)

true (1) false (0) false (0)

false (0) true (1) false (0)

false (0) false (0) false (0)

Using the logical operator OR

The result is true (1) if at least one operand is true. If all the
operands are false (0) the result is false.

44 « Macros PowerMILL 2015 User Guide

Operand 1 Operand 2 Operand 1 OR

Operand 2
true (1) true (1) true (1)
true (1) false (0) true (1)
false (0) true (1) true (1)
false (0) false (0) false (0)

Using the logical operator XOR

The result is true (1) if exactly one operand is true. If all the
operands are false the result is false (0). If more than one operand
is true the result is false (0).

Operand 1 Operand 2 Operand 1 XOR
Operand 2

true (1) true (1) false (0)

true (1) false (0) true (1)

false (0) true (1) true (1)

false (0) false (0) false (0)

Using the logical operator NOT
The result is the inverse of the input.

Operand 1 NOT Operand 1
true (1) false (0)
false (0) true (1)

Advance variable options

Scratchpad variables

It is possible to create and manipulate variables in the command
line window. These are called scratchpad variables as you can use
them to test the results of parameter evaluation without having to
write a macro.

For example, to test some code, in the command line window type:

STRING Test = Tool.Name
DEACTIVATE TOOL
ACTIVATE TOOL S$STest

X PowerMILL =
PowerMILL = STRING Test = Tool.Mame
PowerMILL = DEACTIVATE TOOL
PowerMILL = ACTIVATE TOOL $Test
PotwerMILL =

PowerMILL 2015 User Guide Macros * 45

To clear the scratchpad, in the command line window type:
RESET LOCALVARS

If you don't issue the RESET LOCALVARS command, the local
variable, Test, remains defined until you exit from PowerMILL.

Using variables and parameters in macro commands

You can substitute the value of a variable or parameter in a
command wherever the command expects a number or a string. To
do this, prefix the variable or parameter name with a $.

=& The EDIT PAR command only accepts Svariable input when
the svariable has a numeric value. You cannot use the
Svariable syntax for STRING parameters.

For example, to create a tool with a diameter that is half that of the
active tool.

// Calculate the new diameter and name of tool
REAL HalfDiam = Tool.Diameter/2

STRING NewName = string(Tool.Type) + " D-" +
string (HalfDiam)

// Create a new tool and make it the active one
COPY TOOL ;
ACTIVATE TOOL #

// Now rename the new tool and edit its diameter
RENAME TOOL ; S$NewName
EDIT TOOL S$NewName DIAMETER S$HalfDiam

This creates a tool with half the diameter.

Scope of variables

46 » Macros

A variable exists from the time it is declared until the end of the
block of code within which it is declared. Blocks of code are macros
and control structures (WHILE, DO - WHILE, SWITCH, IF-ELSEIF-
ELSE, and FOREACH).

A variable, with a specific name, can only be defined once within
any block of code.

For example,

// Define a local variable 'Count'

INT Count = 5

// Define a second local variable 'Count'
INT Count = 2

Gives an error since count is defined twice.

PowerMILL 2015 User Guide

However, within an inner block of code you can define another
variable with the same name as a variable (already defined) in an
outer block:

INT Count = 5
IF Count > 0 {
// Define a new local variable 'Count'
INT Count = 3
// Print 3
PRINT S$Count
// The local Count is no longer defined

}
// Print b5
PRINT S$SCount

A variable defined within an inner block of code hides any variable
declared in an outer block. This is also important if you use a hame
for a variable which matches one of PowerMILL’s parameters. For
example, if the toolpath stepover is 5 and in your macro you have:

// 'Hide' the global stepover by creating your own
variable

REAL Stepover = 2

// Print Stepover

PRINT S$Stepover

The value printed is 2 not 5, and the toolpath stepover value is
unchanged. To access the current toolpath's stepover parameter
you must use toolpath.Stepover.

// '"Hide' the global stepover by creating your own
variable

REAL Stepover = 2

// Print 2

PRINT S$Stepover

// Print the value of the toolpath's stepover - which is
5

PRINT S$toolpath.Stepover

=& As macro variables cease to exist at the end of a macro or
block of code, you should not use a variable defined in a
macro within a retained expression. You can use assignments,
as the value is computed immediately. Don't use a macro
variable in an EDIT PAR expression without EVAL as this
causes an expression error when PowerMILL tries to evaluate
it.

REAL Factor = 0.6

// The next two commands are OK as the expression is
evaluated immediately.

SStepover = Tool.Diameter * Factor

EDIT PAR "Stepover" EVAL "Tool.Diameter * Factor"

PowerMILL 2015 User Guide Macros « 47

// The next command isn't OK because the expression is
retained.
EDIT PAR "Stepover" "Tool.Diameter * Factor"

The Factor variable ceases to exist at the end of the macro, so
Stepover Will evaluate as an error.

Using expressions in macros

An arithmetic expression is a list of variables and values with
operators which define a value. Typical usage is in variable
declarations and assignments.

// Variable declarions
REAL factor = 0.6
REAL value = Tolerance * factor

// Assignments
SStepover = Tool.Diameter * factor
Sfactor = 0.75

& When using an assignment you MUST prefix the variable
name with a $. So PowerMILL can disambiguate an
assignment from other words in the macro command
language.

—é-/ In assignments, the expression is always evaluated and the
resulting value assigned to the variable on the left of the =
operand.

In addition to using expressions in calculations, you can use logical
expressions to make decisions in macros. The decision making
statements in PowerMILL are IF-ELSE_IF (see page 57), SWITCH
(see page 59), WHILE (see page 64), and DO-WHILE (see page 65).
These execute the commands within their code blocks if the result
of an expression is true (1). For example:

IF active (Tool.TipRadiused) {
// Things to do if a tip radiused tool.

}

IF active (Tool.TipRadiused) AND Tool.Diameter < 5 {
// Things to do if a tip radiused tool and the diameter
// is less than 5.

}

You can use any expression to decide whether or not a block of
code will be performed.

48 « Macros PowerMILL 2015 User Guide

Operators for integers and real numbers

The standard arithmetical operators are available for integers and
real numbers.

Operator
+

b3

%

Description
addition
subtraction
multiplication

division
modulus. This is the

remainder after two
integers are divided

to the power of

Examples
3+5 evaluates to 8
5-3 evaluates to 2

5*3 evaluates to
15

6/2 evaluates to 3

119%3 evaluates to
2

273 is the same as
2*2*2 and
evaluates to 8

For a complete list of operators, see the HTML page displayed when
you select Help > Parameters > Reference > Functions.

Operators for strings

The concatenation (+) operator is available for string.

For example "abc"+"xyz" evaluates to abcxyz.

You can use this to build strings from various parts, for example:

MESSAGE "The Stepover value is:

Operator precedence

The order in which various parts of an expression are evaluated
affects the result. The operator precedence unambiguously
determines the order in which sub-expressions are evaluated.

" + string(Stepover)

= Multiplication and division are performed before addition and
subtraction.

For example, 3 * 4 +2 is the same as 2 + 3 * 4 and gives the
answer 14.

= Exponents and roots are performed before multiplication and

addition.

For example, 3 + 5 » 2 is the same as 3 + 5% and gives the
answer 28.

-3 N 2 is the same as -3 and gives the answer -9.

= Use brackets (parentheses) to avoid confusion.

PowerMILL 2015 User Guide

Macros * 49

50 « Macros

For example, 2 + 3 * 4 is the same as 2 + (3 * 4) and gives the
answer 14.

Parentheses change the order of precedence as terms inside in
parentheses are performed first.

For example, (2 + 3) * 4 gives the answer 20.
or, (3 + 5) A2 is the same as (3 + 5)° and gives the answer 64.

You must surround the arguments of a function with
parentheses.

For example, y = sqrt(2), y = tan(x), y = sin(x + z).

Relational operators are performed after addition and
subtraction.

For example, a+b >= c+d is the same as (a+b) >= (c+d).

Logical operators are performed after relational operators,
though parentheses are often added for clarity.

For example:

5==2+30R 10 <= 3*3

is the same as:

(5 ==(2+3)) OR (10 <= (3*3))
but is normally written as

(5 ==2+3) OR (10 <= 3*3).

Precedence
Order Operation Description
1 O function call, operations
grouped in parentheses
2 [] operations grouped in square
brackets
3 + - unary prefix (unary operations
have only one operand, such
as, 'x, -y)
4 cm mm um ft unit conversion
in th
5 A exponents and roots
*/ % multiplication, division, modulo
7 + - addition and subtraction

PowerMILL 2015 User Guide

8 < <=>>=
(LT, LE, GT,

GE)

9 == I= (EQ,
NE)

10 AND

11 NOT

12 XOR

13 OR

14 ,

Examples of precedence:

Expression

a*-2

IX ==

$a=-b+c*¥d-e
$a=b+c%d-e
$x
$x=-t+qg*r/c
$x=a%b*c+d
$a=b<=c|d!l=e
$a='b|c&d
$a=bmm*cin+d

y==Z

relational comparisons: less
than, less than or equal,
greater than, greater than or
equal

relational comparisons: equals,
not equals

logical operator AND
logical operator NOT
logical operator XOR
logical operator OR
separation of elements in a list

Equivalent
a*(-2)
(Ix) ==

$a=((-b) + (c*d)) -e
$a=(b+(c%d))-e

$x = (y == 2)

$x = ((-t) + ((g *r) /<))

$x = (((@a % b) *c) + d)
$a=((b<=c)|(d!=¢e))

$a = (('b) | (c &d))

$a = (((b mm) * (cin)) + d)

Q

Executing a macro string variable as a command using

DOCOMMAND

The macro command, DOCOMMAND, executes a macro string
variable as a command. This allows you to construct a command
from string variables and then have that command run as a macro
statement. Suppose you have a function to create a copy of a
boundary and then fit arcs to the copy:

FUNCTION CopyAndArcfit (ENTITY Ent) {
STRING $NewName = new entity name ('boundary')

COPY BOUNDARY SENt

EDIT BOUNDARY S$NewName ARCFIT 0.01

}

PowerMILL 2015 User Guide

Macros * 51

If you then want to use the same function to copy a pattern and
then fit arcs to the copy. You can replace all instances of 'boundary’
with 'pattern' when you give the function a pattern entity.
Unfortunately you can't do this by using variables directly because
the PowerMILL command syntax doesn't allow variable substitution
in network KEYWORDS for example you can't use sType like this:

COPY S$Type SEnt

However, you can build the command as a string and then use
DOCOMMAND to execute the resulting string as a command:

FUNCTION CopyAndArcFit (Entity Ent) {
STRING $NewName = new entity name (Ent.RootType)

STRING Cmd = "COPY "+ Ent.RootType + " " + Ent.name
DOCOMMAND S$SCmd
SCmd = "EDIT " + Ent.RootType + " " + Newname + "

ARCFIT 0.01"
DOCOMMAND $Cmd

}

You can use this technique whenever you find that a variable value
cannot be used in a particular point in a command.

"4 Use this technique with caution as it can make your macros
harder to understand.

Macro functions

When you run a macro you can use arguments, such as the name of
a toolpath, tool, or a tolerance. You must structure the macro to
accept arguments by creating a FUNCTION called Main (see page

53) then specify the arguments and their type.

For example, a macro to polygonise a boundary to a specified
tolerance is:

FUNCTION Main (REAL tol) {
EDIT BOUNDARY ; SMASH S$tol
}

A macro to set the diameter of a named tool is:
FUNCTION Main (
STRING name
REAL diam
)
{
EDIT TOOL $name DIAMETER $dia
}

To run these macros with arguments add the arguments in the
correct order to the end of the MACRO command:

MACRO MyBoundary.mac 0.5

52 « Macros PowerMILL 2015 User Guide

MACRO MyTool.mac "ToolName" 6

If you use FUNCTION in your macro, then all commands must be
within a function body. This means that you must have a FUNCTION
Main, which is automatically called when the macro is run.

FUNCTION CleanBoundary (string name) {
REAL offset = 1 mm
REAL diam = entity('boundary';name) .Tool.Diameter
// Delete segments smaller than tool diameter
EDIT BOUNDARY S$name SELECT AREA LT $diam
DELETE BOUNDARY S$name SELECTED
//0Offset outwards and inwards to smooth boundary
EDIT BOUNDARY S$name OFFSET Soffset
EDIT BOUNDARY S$name OFFSET S${-offset}

}
FUNCTION Main (string bound) {

FOREACH bou IN folder (bound) {
CALL CleanBoundary (bou.Name)
}
}

Within a function, you can create and use variables that are local to
the function, just as you can within a WHILE loop. However, a
function can't access any variable that's defined elsewhere in the
macro, unless that variable has been passed to the function as an
argument.

=& In the CleanBoundary function, ${-offset} offset the
boundary by a negative offset. When you want to substitute
the value of an expression into a PowerMILL command rather
than the value of a parameter, use the syntax
S{expression}. The expression can contain any valid
PowerMILL parameter expression including: inbuilt function
calls; mathematical, logical, and comparison operators.

=& As this macro requires an argument (the boundary name) you
must run this from the command window. To run
Clean_Boundary.mac macro on the Cavity boundary you must
type macro Clean Boundary "Cavity" in the command line.

Main function
If a macro has any functions:
= It must have one, and only one, FUNCTION called Main.
= The Main function must be the first function called.

Function names aren't case sensitive: MAIN, main, and Maln all refer
to the same function.

PowerMILL 2015 User Guide Macros ¢ 53

Running a macro where the Main function is called with either the
wrong number of arguments or with types of arguments that don't
match, causes an error. For example:

MACRO MyTool.mac 6 "ToolName"

generates an error since the macro expects a string and then a
number, but is given a humber and then a string.

If you want to repeat a sequence of commands at different points
within a macro, you can use a FUNCTION.

For example, if you want to remove any small islands that are
smaller than the tool diameter and smooth out any minor kinks
after a boundary calculation. One solution is to repeat the same
commands after each boundary calculation:

EDIT BOUNDARY ; SELECT AREA LT Boundary.Tool.Diameter
DELETE BOUNDARY ; SELECTED

EDIT BOUNDARY ; OFFSET "1 mm"

EDIT BOUNDARY ; OFFSET "-1 mm"

This is fine if you have a macro that creates one boundary, but if it
creates a number of boundaries you end up with a macro with
excessive repetition. However by using a FUNCTION you can define
the sequence once:

FUNCTION CleanBoundary(string name) {
REAL offset = 1 mm
REAL diam = entity('boundary';name).Tool.Diameter
// Delete segments smaller than tool diameter
EDIT BOUNDARY $name SELECT AREA LT Sdiam
DELETE BOUNDARY S$name SELECTED
//0ffset outwards and inwards to smooth boundary
EDIT BOUNDARY S$name OFFSET Soffset
EDIT BOUNDARY S$name OFFSET S${-offset}

s
Then call it whenever it is needed:

FOREACH bou IN folder ('boundary') {
CALL CleanBoundary (bou.Name)

}
CREATE BOUNDARY Shallow30 SHALLOW

EDIT BOUNDARY Shallow30 CALCULATE
CALL CleanBoundary('Shallow30")

Returning values from functions
There are two types of arguments to FUNCTIONS:

= Input variables (¢ Input arguments). If a parameter is an input
then any changes to the parameter inside the function are lost
when the function returns. This is the default.

54 « Macros PowerMILL 2015 User Guide

= Qutput variables (¢ output arguments) retain their value after
the function returns.

When you call a function, PowerMILL creates temporary copies of all
the arguments to the function, these copies are removed when the
function returns. However, if the macro contains an OUTPUT to an
argument, then instead of creating a temporary copy of the
variable, it creates an alias for the existing variable. Any changes
that you make to the alias directly, change the actual variable.

In the example, the Test function has two arguments: alnput and
aOutput. Within the Test function:

= The argument alnput is a new temporary variable that only exists
within the function, any changes to its value only affect the
temporary, and are lost once the function ends.

= The aOutput variable is an alias for the variable that was passed
in the CALL command, any changes to its value are actually
changing the value of the variable that was given in the CALL
command.

FUNCTION Test (REAL aInput, OUTPUT REAL aOutput) {
PRINT S$Salnput
SaInput = 5
PRINT S$aOutput
SaOutput = 0
PRINT $aOutput
}

FUNCTION Main () {
REAL Parl = 2
REAL Par2 =1
CALL Test (Parl, Par?2)

// Prints 2 - value is unchanged
PRINT $Parl
// Prints 0 - wvalue has been changed

PRINT $Par2
}

When the CALL command is executed in the MAIN function:

1 PowerMILL creates a new REAL variable called alnput. It is
assigned the value of Parl, and passed into Test.

2 PowerMILL passes Par2 directly into Test where it is known as
aOutput.

PowerMILL 2015 User Guide Macros ¢ 55

Sharing functions between macros

You can share functions between macros by using the INCLUDE
statement. You can put all your common functions in a file which
you then INCLUDE within other macros. For example, if you put the
CleanBoundary function into a file called common.inc you could
rewrite the macro as:

INCLUDE common.inc
FUNCTION Main (input string bound) {
FOREACH bou IN folder (bound) {
CALL CleanBoundary (bou.Name)
}
}

To call this macro from PowerMILL:

// Clean all the boundaries

MACRO Clean 'boundary'

// Clean all the Roughing boundaries
MACRO Clean 'boundary\Roughing'

IF statement

56 « Macros

The IF statement executes a series of commands when a certain
condition is met.
The basic control structure is:

IF <expression> {
Commands A

}

Commands B

If expression is true then Commands A are executed, followed by
Commands B.

If expression is false, then only Commands B are executed.

IF statement

Statement is Statement is
true false

h 4

Commands A

¥ ¥

Commands B

PowerMILL 2015 User Guide

For example, if you want to calculate a toolpath, but don't want to
waste time re-calculating a toolpath that has already been
calculated:

// If the active toolpath hasn't been calculated do so
now
IF NOT Computed {
EDIT TOOLPATH S$TpName CALCULATE
}

You must enclose Commands A in braces, {}, and the braces must be
positioned correctly. For example, the following command is NOT
valid:

IF (radius == 3) PRINT "Invalid radius"

To make this command valid, add the braces:
IF (radius == 3) {

PRINT "Invalid radius"
}

E Q The first brace must be the last item on the line and on the
same line as the IF.

The closing brace must be on a line by itself.

IF - ELSE statement

The IF - ELSE statement executes a series of commands when a
certain condition is met and a different series of commands
otherwise.

The basic control structure is:

IF <expression> {
Commands A

} ELSE {
Commands B

}

Commands C

If expression is true, then Commands A are executed followed by
Commands C.

PowerMILL 2015 User Guide Macros * 57

If expression is false, then Commands B are executed followed by
Commands C.

IF statement

Staterment is Staterment is
true false

Commands A Commands B

Commands C

// Set tool axis lead/lean if tip radiused tool
// Otherwise use the vertical tool axis.
IF active (Tool.TipRadius) OR Tool.Type == "ball nosed" {
EDIT TOOLAXIS TYPE LEADLEAN
EDIT TOOLAXIS LEAD "5"
EDIT TOOLAXIS LEAN "5"
} ELSE {
EDIT TOOLAXIS TYPE VERTICAL

IF - ELSEIF - ELSE statement

58 « Macros

The IF - ELSEIF - ELSE statement executes a series of commands
when a certain condition is met, a different series of commands
when the first condition isn't met and the second condition is met
and a different series of commands when none of the conditions are
met.

The basic control structure is:

IF <expression 1> {
Commands A

} ELSEIF <expression 2> {
Commands B

} ELSE {
Commands C

}

Commands D

If expression_1 is true, then Commands A are executed followed by
Commands D.

If expression_1 is false and expression_2 is true, then Commands B are
executed followed by Commands D.

PowerMILL 2015 User Guide

If expression_1 is false and expression_2 is false, then Commands C
are executed followed by Commands D.

IF statement

Staterment is
true

h 4

Commands A

Statement is
falze

ELSEIF statement

Statement is
true

Statement is
falze

Commands B

Commands C

h 4

|

Commands D

) ELSEisan optional statement. There may be any number of
ELSEIF statements in a block but no more than one ELSE.

IF Tool.Type == "end mill" OR Tool.Type == "ball nosed" {
Sradius = Tool.Diameter/2

} ELSEIF active (Tool.TipRadius) {
Sradius = Tool.TipRadius

} ELSE {
Sradius = 0

PRINT "Invalid tool type"

}

This sets the variable radius to:

= Half the tool diameter if the tool is an end mill or ball nosed tool.

= The tip radius if the tool is a tip radiused tool.
= Displays Invalid tool type if the tool is anything else.

SWITCH statement

When you compare a variable with a number of possible values and
each value determines a different outcome, it is advisable to use the
SWITCH statement.

The SWITCH statement allows you to compare a variable against a

list of possible values. This comparison determines which

commands are executed.

The basic control structure is:

PowerMILL 2015 User Guide

Macros * 59

SWITCH variable {
CASE (constant A)
Commands A
CASE (constant B)
Commands B
DEFAULT
Commands C

}

Commands D
If condition_A is true then Commands A, B, C, and D are executed.
If condition_B is true then Commands B, C, and D are executed.

If condition_A and condition_B are false then Commands C, and D are
executed.

SWYWITCH statement

Condition A Condition B Condition A
is true is true and B are false

h 4

Commands A

¥

 Commands B

Y

| Commands C

'

Commands D

—@’ When a match is found all the commands in the remaining
CASE statements are executed. You can prevent this from
happening by using a BREAK (see page 61) statement.

& You can have any number of CASE statements, but at most
one DEFAULT statement.

This example makes changes to the point distribution based on the
tool axis type. There are three options:

1 3+2-axis toolpaths to have an output point distribution type of
Tolerance and keep arcs and a lead in and lead out distance of
200.

2 3-axis toolpaths to have an output point distribution type of
Tolerance and keep arcs.

3 5-axis toolpaths to have an output point distribution type of
Redistribute.

60 « Macros PowerMILL 2015 User Guide

& Because the CASE 'direction' block of code doesn't have a
BREAK statement the macro also executes the code in the
'vertical' block.

SWITCH ToolAxis.Type {

CASE 'direction'
EDIT TOOLPATH LEADS RETRACTDIST "200.0"
EDIT TOOLPATH LEADS APPROACHDIST "200"
// fall though to execute

CASE 'vertical'
// Redistribute points to tolerance and keep arcs
EDIT FILTER TYPE STRIP
BREAK

DEFAULT
// Redistribute points
EDIT FILTER TYPE REDISTRIBUTE
BREAK

BREAK statement in a SWITCH statement
The BREAK statement exits the SWITCH statement.

The basic control structure is:

SWITCH variable {

CASE (constant A)
Commands A
BREAK

CASE (constant B)
Commands B
BREAK

DEFAULT
Commands C

}

Commands D

If condition_A is true then Commands A are executed followed by
Commands D.

Y

& Remember, if there is no break statements then commands A,
B, C, and D are carried out.

If condition_B is true then Commands B are executed followed by
Commands D.

PowerMILL 2015 User Guide Macros * 61

If condition_A and condition_B are false then Commands C are
executed followed by Commands D.

SWWITCH statement

Condition &
is true

Condition B
is true

Condition &
and B are false

h 4

Commands A

¥

Commands B

Y

Commands C

h 4 h 4 ¢

Commands D

Repeating commands in macros

62 » Macros

If you want to repeat a set of commands a humber of times, for
example, creating a circle at the start of every line in the model,
you can use loops.

For example, if you have two feature sets, Top and Bottom, which
contain holes you want to drill from the top and bottom of the
model respectively, use the macro:

STRING Fset = 'Top'

INT Count = 0

WHILE Count < 2 {
ACTIVATE FEATURESET S$Fset
ACTIVATE WORKPLANE FROMENTITY FEATURESET $Fset
IMPORT TEMPLATE ENTITY TOOLPATH "Drilling\Drilling.ptf"
EDIT TOOLPATH $TpName CALCULATE
SFset = 'Bottom'
SCount = Count + 1

}

There are three loop structures:

= FOREACH (see page 63) loops repeatedly execute a block of
commands for each item in a list.

= WHILE (see page 64) loops repeatedly execute a block of
commands until its conditional test is false.

= DO - WHILE (see page 65) loops executes a block of commands
and then checks its conditional test.

PowerMILL 2015 User Guide

FOREACH loop

A FOREACH loop repeatedly executes a block of commands for each
item in a list or array.

The basic control structure is:

FOREACH item IN sequence(
Commands A

}

Commands B
where:

item is an automatically created variable that PowerMILL initialises
for each iteration of the loop;

sequence is either a list or an array.
Commands A are executed on the first item in the list.

Commands A are executed on the next item in the list. This step is
repeated until there are no more items in the list.

At the end of the list, Commands B are executed.

FOREACH statement

.

Commands A

l Yes

Check to see if there
iz another itern

Mo

h 4

Commands B

For example,

FOREACH item IN folder ("path") {
Commands A

}

Commands B

Where <path> is a folder in the Explorer such as, Toolpath, Tool,
Toolpath\Finishing.

Within FOREACH loops, you can:
= Cancel the loop using the BREAK (see page 66) statement.

= Jump directly to the next iteration using the CONTINUE (see page
66) statement.

PowerMILL 2015 User Guide Macros * 63

You can't create your own list variables, there are some built in
functions in PowerMILL that will return lists (see the parameter
documentation for component, and folder).

You can use one of the inbuilt functions to get a list of entities, or
you can use arrays to create a sequence of strings or numbers to
iterate over. For example, use the inbuilt folder function to get a list
of entities.

An example of using a FOREACH loop is to batch process tool holder
profiles:

FOREACH ent IN folder('Tool') {
ACTIVATE TOOL Sent.Name
EDIT TOOL ; UPDATE_TOOLPATHS_PROFILE
}

—é-/ The loop variable ent is created by the loop and destroyed
when the loop ends.

Another example is to renumber all the tools in a project:

INT nmb = 20

FOREACH t IN folder ('Tool') {
St.number.value = nmb
St.number.userdefined = 1
Snmb = nmb + 2

}

To get the most out of these macro features, you should familiarise
yourself with the inbuilt parameter functions detailed in Help >
Parameters > Reference.

WHILE loop

A WHILE loop repeatedly executes a block of commands until its
conditional test is false.

The basic control structure is:

WHILE condition {
Commands A

}

Commands B
If condition is true, then Commands A are executed.
While condition remains true, then Commands A are executed.

64 « Macros PowerMILL 2015 User Guide

When condition is false, Commands B are executed.

Check WHILE Statement true

¥
false u Commands A

¥
Commands B

Within WHILE loops, you can:
= Cancel the loop using the BREAK (see page 66) statement.

= Jump directly to the next iteration using the CONTINUE (see page
66) statement.

DO - WHILE loop

The DO - WHILE loop executes a block of commands and then
performs its conditional test, whereas the WHILE loop checks its
conditional test first to decide whether to execute its commands or
not.

The basic control structure is:

DO {

Commands A
} WHILE condition
Commands B

Commands A are executed.
While condition remains true, then Commands A are executed.
When condition is false, Commands B are executed.

Commands A e

true

¥
Check YWHILE Staterment

falze

¥
Commands B

Within DO - WHILE loops, you can:
= Cancel the loop using the BREAK (see page 66) statement.

= Jump directly to the next iteration using the CONTINUE (see page
66) statement.

PowerMILL 2015 User Guide Macros ¢ 65

CONTINUE statement

The CONTINUE statement causes a jump to the conditional test of
any one of the loop constructs WHILE, DO - WHILE, and FOR EACH in
which it is encountered, and starts the next iteration, if any.

This example, calculates and offsets, all unlocked boundaries,
outwards and inwards.

FOREACH bou IN folder ('Boundary') {
IF locked (bou) {
// This boundary is locked go get the next one
CONTINUE

}
REAL

EDIT
EDIT
EDIT

offset = 1 mm
BOUNDARY $bou
BOUNDARY Sbou
BOUNDARY Sbou

.Name CALCULATE
.Name OFFSET Soffset
.Name OFFSET S$S{-offset} }

The CONTINUE statement enables the selection of the next
boundary.

WHILE (condition) | #——

. CONTINUE |

BREAK statement in a WHILE loop
The BREAK statement exits the WHILE loop.

& Nested constructs can require multiple breaks.

WHILE (condition) {

BREAK .

}

Mext staternent —

66 *« Macros

PowerMILL 2015 User Guide

RETURN statement

If a macro contains functions, the RETURN statement immediately
exits the function. If the macro doesn't contain functions, the
RETURN statement immediately terminates the current macro. This
is useful if an error is detected and you don't want to continue with
the remaining commands in the macro.

The basic control structure is:

EDIT TOOLPATH S$tp.Name CALCULATE

IF NOT Computed {
// terminate if toolpath didn't calculate
RETURN

}
To immediately exit from a function:
FUNCTION Calculate (STRING TpName) {

IF NOT active(entity('toolpath', TpName) .Tool.TipRadius)
{

// Error 1if toolpath does not use a tipradius tool
PRINT "Toolpath does not have TipRadius tool"
RETURN

EDIT TOOLPATH ; CALCULATE
}

FUNCTION Main () {

FOREACH tp IN folder ('Toolpath') {
ACTIVATE TOOLPATH S$tp.Name)
}
}

Terminating macros

The command MACRO ABORT immediately terminates the current
macro.

The command MACRO ABORT ALL terminates the all the macros that
are currently running. If you call MACRO ABORT ALL from within a
macro that has been called by another macro, then both macros are
terminated.

PowerMILL 2015 User Guide Macros * 67

Printing the value of an expression

To print the value of a scalar expression or parameter use the
syntax:

PRINT = expression

For example, to print the answer to a simple arithmetic expression:
PRINT = 2*5

When you run the macro, the command window displays the result,
10.

X PowerMILL =
PorserMILL = 10,0
PowerMILL =

You can also apply an arithmetic expression to the value of a
parameter. For example:

EDIT TOOL ; DIAMETER 10
PRINT = Tool.Diameter * 0.6

When you run the macro, the command window displays the result,
6.

Constants

68 « Macros

PowerMILL has a small number of useful constant values that you
can use in expressions and macros these include:

REAL Pl = 3.141593
REAL E = 2.718282
BOOL TRUE =1

BOOL FALSE =0
STRING CRLF = newline

Use these values to make your macros more readable. For example,
use CRLF constant to build up multi-line messages and prompts:

STRING msg = "This is line one."+CRLF+"This is line two."
MESSAGE INFO $msg

Displays the message:
This is line one.
This is line two.

PowerMILL 2015 User Guide

Built-in functions

This section details all the built-in functions that you can use in your
macros.

= General mathematical functions (see page 69).
= Trigonometrical functions (see page 70).

= Vector and point functions (see page 70).

= Workplane functions (see page 72).

= String functions (see page 73).

= List creation functions (see page 81).

= Path functions (see page 91) (Folder (see page 92), Directory
(see page 92), Base (see page 93), and Project (see page 94)
names).

= Conditional functions (see page 95).

= Evaluation functions (see page 95).

= Type conversion functions (see page 97).
= Parameter functions (see page 97).

= Statistical functions (see page 100).

General mathematical functions

The basic structure of the general mathematical functions are:

Description of return value Function
Exponential real exp(real a)
Natural logarithm real 1In(real a)

Common (base 10) logarithm real log(real a)

Square root real sqrt(numeric a)
Absolute (positive value) real abs(numeric a)
Returns either -1, 0O or 1 real sign(numeric a)
depending on the sign of the

value

Returns either 1 or O real compare (numeric a,
depending on whether the numeric b, numeric tol)

difference between a and b is
less than or equal to tol

PowerMILL 2015 User Guide Macros * 69

Trigonometrical functions

The basic structure of the trigonometrical functions are:

Description of return value Function
Trigonometric sine real sin(angle @)
Trigonometric cosine real cos(angle @)
Trigonometric tangent real tan(angle @)
Trigonometric arcsine real asin(real a)
Trigonometric arccosine real acos(real a)
Trigonometric arctangent real atan(real a)
Trigonometric arctangent of real atanZ(real a, real
a/b, quadrant is determined b)

by the sign of the two

arguments

Vector and point functions

70 » Macros

In PowerMILL vectors and points are represented by an array of
three reals.

PowerMILL contains point and vector parameters, for example the
Workplane.Origin, Workplane.ZAxis, ToolAxis.Origin, and
ToolAxis.Direction. You can create your own vector and point
variables:

REAL ARRAY VecX[] = {1,0,0}
REAL ARRAY VecY[] = {0,1,0}
REAL ARRAY VecZ[] = {0,0,1}
REAL ARRAY MVecZz[] = {0,0,-1}
REAL ARRAY Orig[] = {0,0,0}
Length

The length () function returns the length of a vector.

For example:

REAL ARRAY V[] =
// Prints 5.0
PRINT = length (V)

{3,4,0}

The inbuilt function unit () returns a vector that points in the same
direction as the input vector, but has a length of 1:

PRINT PAR "unit (V)"

// [0] (REAL) 0.6
// [1] (REAL) 0.8

PowerMILL 2015 User Guide

// [2] (REAL) 0.0

// prints 1.0
PRINT = length (unit (V))

Parallel

The parallel () function returns TRUE if two vectors are either
parallel (pointing in the same direction) or anti-parallel (pointing in
the opposite direction) to each other.

For example:

// prints O
PRINT = parallel (VecX,Vecy)
// prints 1
PRINT = parallel (VecX, VecX)
Print = parallel (MVecZ,VecZ)

Normal

The normal () function returns a vector that is normal to the plane
containing its two input vectors. If either vector is zero it returns an
error. If the input vectors are either parallel or anti-parallel a vector
of zero length is returned.

For example:
REAL ARRAY norm = normal (VecX,VecY)

Angle

The angle () function returns the signed angle in degrees between
two vectors, providing that neither vectors have a zero length.

For example:

// Prints 90
PRINT = angle (VecX,VecY)
// Prints 90
PRINT = angle (VecY,VecX)

The apparent angle () function returns the apparent angle
between two vectors when looking along a reference vector. If a
vector is parallel or anti-parallel to the reference vector, or if any of
the vectors have a zero length it returns an error:

// prints 270
print = apparent angle (VecX,VecY,MVecZ)
// prints 90
print = apparent angle (VecY,VecX,MVecZ)

PowerMILL 2015 User Guide Macros * 71

Setting

The set vector () and set point () functions return the value 1 if
the vector or point is set.

For example:

REAL ARRAY Vecl[3] = {0,0,1}
REAL ARRAY Vec2[3] {0,1,0}

// set vecl to be the same as vec2
BOOL ok = set vector (vecl,vec2)

// make a X-axls vector

$ok = set vector(vec2,1,0,0)

REAL X = Block.Limits.XMax
REAL Y = Block.Limits.YMin
REAL Z = Block.Limits.ZMax
ok = set point(ToolAxis.Origin, X,Y,Z)

Unit vector

The unit () function returns the unit vector equivalent of the given
vector.

For example:

REAL ARRAY V[3] = {3,4,5}
PRINT PAR "unit (V)"

BOOL ok = set vector(Vv,0,0,6)
PRINT PAR "unit (V)"

Workplane functions

72 » Macros

You can use the inbuilt function set workplane () to define the
origin and axis of a workplane entity. You can call the function:

= with two workplanes, where the values from the second
workplane are copied into the first:

bool ok =
set workplane (Workplane,entity('workplane','3"))

which sets the active workplane to have the same values as
workplane 3.

= with a workplane, two vectors, and an origin:

REAL ARRAY YAxis[] = {0,1,0}

REAL ARRAY ZAxis][] {0,0,1}

REAL ARRAY Origin = {10,20,30}

bool ok =

set workplane (entity('workplane', 'reference'), YAXxis,
Zaxis,Origin)

PowerMILL 2015 User Guide

String functions

PowerMILL parameters and variables can contain strings of
characters. There are a number of inbuilt functions that you can use

to test and manipulate strings.

The basic structure of string functions are:

Description of return value

Returns the number of
characters in the string.

For more information see
Length function in a string
(see page 76).

Returns the position of the
string target from the start of
the string str, or -1 if the
target string isn't found.

If you use the optional
argument start then scanning
begins from that position in
the string.

For more information see
Position function in a string
(see page 77).

Replaces all occurrences of
the target string with a
replacement string. The
original string is unchanged.

For more information see
Replacing one string with
another string (see page 78).

Returns part of the string. You
can define where the
substring starts and its
length. The original string is
unchanged.

For more information see
Substrings (see page 79).

Returns an upper case string.
The original string is
unchanged.

For more information see
Upper case function in a string
(see page 79).

PowerMILL 2015 User Guide

Function

int length(string str)

int position(string str,

string target[, numeric
start])
string replace(string

str, string target,
string replacement)

string substring(string
str, int start, int
length)

string ucase(string str)

Macros * 73

Returns a lower case string. string lcase(string str)
The original string is

unchanged.

For more information see

Lower case function in a string

(see page 80).

Returns the string without any string ltrim(string str)
leading whitespace

Splits a string into a list of the list tokens(string str)
strings, separated by
whitespace

The first character of a string is always at index 0. You can append
(add) strings together use the + operator. For example:

STRING One = "One"

STRING Two = "Two"

STRING Three = "Three"

PRINT = One + ", " + Two + ", " + Three

When you run the macro, the command window displays the result,
One, Two, Three.
* | PowerMILL =

PowerMILL = One, Two, Three

PotwerMILL =
PowerMILL =

Another way of achieving the same result is:

STRING CountToThree = One + ", " + Two + ", " + Three
PRINT = CountToThree

When you run the macro, the command window displays the result,
One, Two, Three.

Date and time functions

74 « Macros

The following functions can be used to manipulate the date and
time:
Function Description

time () The current system time.

This is useful for coarse timing in
macros and getting the actual
time and date.

local time(int A DateTime object representing
time) the local time given a number of
seconds.

PowerMILL 2015 User Guide

utc_time (int A DateTime object representing
time) the time in Coordinated Universal
Time.

The DateTime object contains a number of string values, as follows:

String String value

String The year (1900-9999)

year

String The month of the year (01-12)

month

String The day of the month (01-31)

day

String The hour of the day (00-23)

hour

String The minute of the hour (00-59)

minute

String The second of the minute (00-59)

second

String The date and time — the two values in the
timestam sting are separated by a hyphen (YYYY-mm-
p dd-HH-MM-SS).

=& In previous versions of PowerMILL you could not create
variable of type objects, so you may need to call the
local time () or utc time () functions multiple times, like
this: string year = local time (tm).Year etc..

Example

The following example shows how to use the time () function to
measure how long an activity takes:

INT old time = time ()

EDIT TOOLPATH ; CALCULATE

INT cumulative time = time() - old time

STRING msg = "Toolpath calculation took " +
(cumulative time) + "secs"

MESSAGE INFO $msg

Example

Getting and formatting the current time:

INT tm=time ()

STRING ARRAY S$timestamp[] =

tokens (utc_time ($tm) .timestamp, "-") STRING clock =
Stimestamp[3] + ":" + Stimestamp[4] Sclock = S$clock + ":"
+ Stimestamp[5] PRINT Sclock

PowerMILL 2015 User Guide Macros ¢ 75

Converting a numeric value into a string

The string function converts a numeric value into a string value.

The basic structure is:
STRING string(numeric str)

This is useful when you want to append a number to a string. For

example to name tools so they contain the tool's type and diameter
use:

CREATE TOOL ; BALLNOSED

EDIT TOOL ; DIAMETER 5

STRING TName = string(Tool.Type) + " Diam: " +
string (Tool.Diameter)

RENAME TOOL ; S$TName

PRINT = Tool.Name

When you run the macro, PowerMILL creates a ball nosed tool with
a diameter of 5 and gives the tool the name, ball _nosed Diam: 5.0.
=R g To0's |

| | > ball_nosed piam: 5.0

L I

The command window displays the result,ball_nosed Diam: 5.0.

X PowerMILL =
PowerMILL = ball_nosed Diam: 5.0
PotwerMILL =

Length function in a string

76 » Macros

The length function returns the number of characters in the string.
The basic structure is:

int length(string str)

For example:

STRING One = "One"

PRINT = length (One)

The command window displays the result, 3.

X PowerMILL =
PorerMILL = 3
PowerMILL =

Another example:

STRING One = "One"

STRING Two = "Two"

STRING CountToTwo = One + ", " + Two
PRINT = length (CountToTwo)

The command window displays the result, 8.

X PowerMILL =
PorerMILL = &
PowerMILL =

Another way of producing the same result:

PowerMILL 2015 User Guide

PRINT = length(One + ", " + Two)
The command window displays the result, 8.

X PowerMILL =
PorerMILL = &
PowerMILL =

Position function in a string

The position string returns the position of the string target from
the start of the string str, or -1 if the target string isn't found.

If you use the optional argument start then scanning begins from
that position in the string.

The basic structure is:

int position(string str, string target [, numeric start]

)
For example:
PRINT = position ("Scooby doo", "oo")

The command window displays the result, 2. PowerMILL finds the
first instance of oo and works out what its position is (S is position
0, c position 1 and o position 2).

position ("Scooby doo", "oo", 4)

The command window displays the result, 8. PowerMILL finds the
first instance of oo after position 4 and works out what its position
is (b is position 4, y position 5, " "is position 7 and o position 8).

position ("Scooby doo", "aa")

The command window displays the result, -1 as PowerMILL can't
find any instances of aa.

You can use this function to check whether a substring exists within
another string. For example, if you have a part that contains a
cavity and you machined it using various strategies with a coarse
tolerance and each of these toolpaths has CAVITY in its name. You
have toolpaths with names such as, CAVITY AreaClear, CAVITY flats.
To recalculate those toolpath with a finer tolerance use the macro
commands:

// loop over all the toolpaths
FOREACH tp IN folder('Toolpath') {
// 1if toolpath has 'CAVITY' in its name
IF position(tp.Name, "CAVITY") >= 0 {
// Invalidate the toolpath
INVALIDATE TOOLPATH S$tp.Name
Stp.Tolerance = tp.Tolerance/10
}

}
BATCH PROCESS

PowerMILL 2015 User Guide Macros * 77

Replacing one string with another string

78 » Macros

The replace function replaces all occurrences of the target string
with a replacement string. The original string is unchanged.

The basic structure is:

string replace(string str, string target, string
replacement)

For example:
STRING NewName = replace("Scooby doo", "by", "ter")
PRINT = NewName

The command window displays the result, Scooter doo.

For example, whilst trying different values in the strategy dialogs
you add DRAFT to the name each toolpath.
= @Tuulpaths

V| ¢ £ DRAFT _ac

| ES Finish_DRAFT
v ; B3 = Draft_Constz

When you are satisfied with a particular toolpath you want to
change DRAFT to FINAL. To save yourself from manually editing the
toolpath name, you could use a macro to rename the active
toolpath:

FOREACH tp IN folder('Toolpath') {
ACTIVATE TOOLPATH S$tp.Name
STRING NewName = replace (Name, 'DRAFT', 'FINAL'")
RENAME TOOLPATH ; SNewName

}

This macro renames the toolpaths to:

= @ Toolpaths
V| ¢ £ FINAL ac
| B Finish_FIN&L
v ; B3 = Draft_Constz

“& Any instance of DRAFT in the toolpath name is changed to
FINAL. However, the macro is case sensitive, so instances of
Draft are not changed.

Alternatively, you could write a macro to rename a toolpath name
without activating the toolpath:

FOREACH tp IN folder ('Toolpath') {
STRING NewName = replace (tp.Name, 'DRAFT', 'FINAL')
RENAME TOOLPATH $tp.Name S$NewName

}

PowerMILL 2015 User Guide

Substrings

The substring function returns part of the string. You can define
where the substring starts and its length. The original string is
unchanged.

The basic structure is:

string substring(string str, int start, int length)

For example:
PRINT = substring("Scooby doo", 2, 4)

The command window displays the result, ooby.

Upper case function in a string

The upper case function converts the string to upper case. The
original string is unchanged.

The basic structure is:

string ucase(string str)

For example:
PRINT = ucase ("Scooby doo™")

The command window displays the result, SCOOBY DOO.

In the Replace one string with another (see page 78) example
instances of DRAFT are replaced with FINAL, but instances of Draft
aren't.
=] @Tnnlpaths

V| g £ DRAFT _ac

| § ES Finish_DRAFT
v s a = Draft_Const2

The ucase statement replaces instances of Draft, draft, dRAft with
DRAFT. The rest of the macro replaces DRAFT with FINAL.

FOREACH tp IN folder('Toolpath') {
// Get the upper case version of the name
STRING UName = ucase (tp.Name)
// check if the name contains 'DRAFT'
if position (UName, 'DRAFT') >= 0 {
// replace DRAFT with FINAL
STRING NewName = replace (UName, 'DRAFT', 'FINAL')
RENAME TOOLPATH $tp.Name S$NewName
}
}

This macro renames the toolpaths to:

= -@ Toolpaths
V) ¢ £ FINaL_AC
V| § B FINAL_FINAL
v/ 7 B3 = FINAL_CONSTZ

PowerMILL 2015 User Guide Macros ¢ 79

Previously Draft_ConstZ wasn't renamed, but it is this time. All the
toolpath names are now upper case.

Lower case function in a string

The lower case function converts the string to lower case. The
original string is unchanged.

The basic structure is:

string lcase(string str)

For example:
PRINT = lcase ("SCOOBY DOO")

The command window displays the result, scooby doo.

In the Replace one string with another (see page 78) example
instances of DRAFT are replaced with FINAL, but instances of Draft
aren't.

In the Upper case function in a string (see page 79) example
instances of Draft, draft, dRAft are replaced with DRAFT.

The 1case statement changes the upper case toolpath names to
lower case. It replaces instances of Draft, draft, dRAft are replaced
with draft.

FOREACH tp IN folder('Toolpath') {
// Get the upper case version of the name
STRING UName = ucase (tp.Name)
// check if the name contains 'DRAFT'
if position (UName, 'DRAFT') >= 0 {
// replace DRAFT with FINAL
STRING NewName = replace (UName, 'DRAFT', 'FINAL')
RENAME TOOLPATH $tp.Name SNewName
// Get the lower case version of the name
STRING LName = lcase (tp.Name)
RENAME TOOLPATH $tp.Name $LName
}
}

This macro renames the toolpaths to:

= -@ Toolpaths
v : g draft_ac
V| g B draft_Ffinal
v . a = draft_constz

All the toolpath names are now lower case

80 « Macros PowerMILL 2015 User Guide

Whitespace in a string

The 1trim () function removes any leading whitespace from a
string. Use this to clean up user input before further processing. The
original string is unchanged.

For example:

STRING Original = " What's up Doc!"
STRING Trimmed = ltrim(Original)
print = Original

print = Trimmed

Where:

print = Original displays " What's up Doc!" in the command
window.

print = Trimmed displays "What's up Doc!" in the command
window.

Splitting a string

The tokens() function will split a string into a list of strings that were
separated by the separator characters. By default the separator
characters are spaces and tabs.

For example:

STRING InputStr = "One Two Three"
STRING LIST Tokens = tokens (InputStr)
FOREACH Tok IN Tokens {

PRINT = Tok

}

You can also give the tokens() function an optional extra argument
that changes the separator character.

For example:

STRING InputStr = "10:20:30:40"
STRING LIST Tokens = tokens (InputStr,':"'")
FOREACH Tok IN Tokens {

PRINT = Tok

}

List functions

List functions control the content of a list or array.

The basic structure of list functions are:
Description Function

Returns the components (see list components(entity
page 82) of another object. entity)

PowerMILL 2015 User Guide Macros * 81

Returns a list of all the list folder(string
entities in the folder (see page folder)
83).

Determines if the list has any is_empty ()
content (see page 84).

Determines if the list contains member ()
a specific value (see page 84).

Adding (see page 85) a listor +
array to another list or array

Removes duplicate (see page remove duplicates()
85) items from a list.

Creates a list by compiling the set_union()
contents of two lists (can
contain duplicate naming)

Creates a list containing items intersection()
that are present in two lists
(see page 85).

Creates a list by subtracting subtract ()
(see page 86) from the first

list those items that are

present in the second list.

Returns a sorted list of list sort(list list)
numerics or stings (see page

90).

Returns a sorted list of objects 1list sort(list list,
or entities (see page 90) string field)

sorted on a field name.

Returns a list where the items list reverse(list list)
have been reversed (see page
90).

List components
The inbuilt components function returns the components of another
object.

—né’ Currently NC Program and Group entity parameters are
supported.

_B{ The components function returns a list of all items regardless

of type. You must check the type of the variable of each item,
in the list.

82 « Macros PowerMILL 2015 User Guide

The basic structure is:

list components(entity entity)

For example if you want to batch process tool holder profiles for the
tools in a group that contains toolpaths, boundaries, and tools:

FOREACH ent IN components (entity('Group', '1')) {
IF lcase(ent.RootType) == 'tool' {
EDIT TOOL S$ent.Name UPDATE TOOLPATHS PROFILE
}
}

An example, to ensure that all the area clearance toolpaths in an NC
program have flood coolant turned on and that mist is set for all the

others:
FOREACH item IN components (entity('ncprogram','')) {
// only check nctoolpath items
IF lcase(item.RootType) == 'nctoolpath' {
// If the area clearance parameter is active then use
flood

IF active(entity('toolpath',item.Name) .AreaClearance)

{

Sitem.Coolant.Value = "flood"
} else {
Sitem.Coolant.Value = "mist"

}

List folder

The folder function returns a list of all entities within a folder,
including those in subfolders.

The basic structure is:

list folder (string folder)
The names of the root folders are:
= MachineTool

= NCProgram

= Toolpath

= Tool

= Boundary

= Pattern

* Featureset

= Workplane

= Level

PowerMILL 2015 User Guide Macros * 83

= Model
= StockModel
= Group

L& The name of the folder is case sensitive, so you must use Tool
and not tool.

You can use a FOREACH loop to process all of the entities within a
folder. For example, to batch process tool holder profiles:

FOREACH tool IN folder ('Tool'){
EDIT TOOL $tool.Name UPDATE TOOLPATHS PROFILE
}

An example, to batch process all the boundaries in your project:

FOREACH bou IN folder ('Boundary') {
EDIT BOUNDARY S$Sbou.Name CALCULATE
}

Empty list

The is empty () function queries a list to determine whether it is
empty or not.

REAL LIST MyList = {}
IF i1s empty (MyList) {
PRINT "Empty List"
}

List member

84 » Macros

The member () function returns TRUE if the given value is one of the
items in the list. For example, to check that a toolpath doesn't occur
in more than one NC program, you can loop over all NCProgram and
check that each toolpath is only seen once. Do this by building a list
of toolpath names and checking that each time you add a name you
haven't already seen it.

// Create an empty list
STRING List names = {}
// Cycle through the NC programs
FOREACH ncp IN folder ('NCProgram') {
// loop over the components in the nc prog
FOREACH item IN components (ncp) {
// Check that it is a toolpath
IF item.RootType = 'nctoolpath' {
// Use MEMBER to check that we haven't seen this
name before
IF NOT member (names, item.Name) {
bool ok = add last (names, item.Name)
} else {
// We have already added this name

PowerMILL 2015 User Guide

STRING msg = "Toolpath: "+item.Name+crlf+" in
more than one NCProgram"

MESSAGE ERROR Smsg

MACRO ABORT

The is empty () function queries a list to determine whether it is
empty or not.

REAL LIST MyList = {}
IF is empty (MyList) {
PRINT "Empty List"
}

Adding lists

The + function adds a list or array to another list or array. For

example, you can add two lists together to get a list of all the tools
used by the toolpaths and boundaries:

STRING LIST UsedToolNames = ToolpathTools + BoundaryTools

Removing duplicate items in a list

The remove duplicates () function removes duplicate values. For
example, a tool may be used in both a toolpath and a boundary, so
the UsedToolNames list may contain duplicate values.

To remove the duplicate values:

INT n = remove duplicates (UsedToolNames)

The set union () function returns a list containing the items from
both sets, removing any duplicates. So you can create the
UsedToolNames list using:

STRING LIST UsedToolNames = set union(ToolpathTools,
BoundaryTools)

Intersecting items in lists

The inbuilt function intersection () returns a list containing the
items present in both lists or arrays. To obtain the names of the
tools that are used in both toolpaths and boundaries use:

STRING LIST TP Bound Names = intersection(ToolpathTools,
BoundaryTools)

PowerMILL 2015 User Guide Macros * 85

Items present in one list, but not the other

The inbuilt function subtract () returns the items that are in the
first list, but not in the second list.

STRING UnusedToolNames = subtract (AllToolNames,
UsedToolNames)

Adding items to alist

You can add items to the start or end of a list.

Adding items to the start of a list

The inbuilt function add first(list, item) adds an item to the

start of a list. It returns the number of items in the list after the
addition.

For example, to add the name of a pattern to the start of a list:
STRING LIST Patterns = {}
FOREACH pat IN folder ('Pattern') {

// Add the name of the pattern to the start of the list

int s = add first(Patterns, pat.Name)
}

Adding items to the end of a list

The inbuilt function add last (list, item) adds an item to the end
of a list. It returns the number of items in the list after the addition.

For example, to add the name of a pattern to the end of a list:
STRING LIST Patterns = {}
FOREACH pat IN folder ('Pattern') {

// Add the name of the pattern to the end of the list

int s = add last(Patterns, pat.Name)
}

Removing items from a list

You can remove items from the start or end of a list.

Removing items from the start of a list

The inbuilt function remove first(list) removes an item from the
start of a list. It returns the removed item.

For example, to print the names of patterns in a list:

// Print the names of the Patterns in reverse order
// Create a list of the pattern names
STRING LIST Patterns = {}
FOREACH pat IN folder('Pattern') {
// Add the name of the pattern to start of the list
int s = add first(Patterns, pat.Name)

86 * Macros PowerMILL 2015 User Guide

// Keep taking the first item from the list until
// there are no more
WHILE size (Patterns) > 0 {
STRING name = remove first (Patterns)
PRINT S$Name
}

If you have three patterns in the Explorer:

EI % Patterns
- 2{3 Pattern_1
- 2{3 Pattern_2
- 3 2{3 Pattern_3

The FOREACH loop adds each item to the start of the list. As the
add first command adds the next pattern to the start of the list.
So you end up with a list

{"Pattern 3","Pattern 2,"Pattern 1"}.

The WwHILE loop takes the first item in the list, removes it from the
list and pints it. This gives:

Pattern_3
Pattern_2
Pattern_1

Removing items from the end of a list

The inbuilt function remove last (1ist) removes an item to the end
of a list. It returns the removed item.

For example, to print the names of patterns in a list:

// Print the names of the Patterns in reverse order
// Create a list of the pattern names
STRING LIST Patterns = {}
FOREACH pat IN folder ('Pattern') {
// Add the name of the pattern to end of the list
int s = add first(Patterns, pat.Name)
}
// Keep taking the last item from the list until
// there are no more
WHILE size (Patterns) > 0 {
STRING name = remove last (Patterns)
PRINT S$Name
}

If you have the same three patterns in the Explorer:

-4 Patterns
¢ 54 Pattern 1
1 54 Pattern_2
{54 Pattern_3

PowerMILL 2015 User Guide Macros * 87

The FOREACH loop adds each item to the end of the list. As the
add last command adds the next pattern to the end of the list. So
you end up with a list {"Pattern 1","Pattern 2,"Pattern 3"}.

The WHILE loop takes the last item in the list, removes it from the
list and pints it. This gives:

Pattern_3
Pattern_2
Pattern_1

To end up with the patterns in the same order as they are in the
Explorer either:

= In the FOREACH loop use the add last command and in the
WHILE loop use the remove first command; or

= In the FOREACH loop use the add first command and in the
WHILE loop use the remove last command.

Finding values in a list

The inbuilt function remove (1ist, wvalue) returns true if the value
is in the list and false if it isn't. If the value is in the list, it also
removes the first instance of the value from the list.

For example, to print a list of tool diameters and the number of
toolpaths using each tool:

// Print a list the tool diameters and the
// number of Toolpaths using each unique diameter.

REAL LIST Diameters = {}
FOREACH tp IN folder ('Toolpath') {
INT s = add last (Diameters, tp.Tool.Diameter)
}
// Create a list with Jjust the unique diameters
REAL LIST UniqueD = Diameters
INT n = remove duplicates (UniqueD)
// Loop over the unique diameters
FOREACH diam = UniqueD {
// set a counter
INT Count = 0
DO {
$Count = Count + 1
} WHILE remove (Diameters, diam)
STRING Msg = "There are "+Count+" toolpaths using
"+diam+" tools"
PRINT S$msg

88 « Macros PowerMILL 2015 User Guide

Extracting data from lists

The inbuilt function extract (1ist, par name) will return a list
containing par name parameters extracted from the input list.

For example, to get the names of all the toolpaths in a project:
STRING LIST names = extract(folder('toolpath'), "'name')

The result could have been achieved with a FOREACH loop that builds
up the list of names item by item, however, the function allows for a
more succinct expression, and it also lets .NET programs to interact
with lists without having to use the PowerMILL-control-flow
statements.

—@’ In the above case, the list of toolpaths returned from the
inbuilt function folder () is directly used as the list argument

to extract.
Another example is finding the maximum block zheight of the
toolpaths:
REAL maxz =
max (extract (folder ('toolpath'), 'Block.Limits.ZMax"))

Filtering data from lists

The inbuilt function filer(list, expression) returns a sub-list of the
original list. The returned list only contains the items in the original
list that match the expression you have specified. For example,
suppose you want to obtain a list of raster toolpaths:

ENTITY LIST rasters = filter(folder ('toolpath'),
"strategy=='raster'")

Suppose that your toolpaths may contain the UserParameter '1aser’
and you want to change something on just the toolpaths that
contain the parameter. You can determine whether a toolpath has
the 'laser' parameter with the expression

'member (UserParameters. keys, 'laser')'. This works because
each OBJECT has a special parameter ' keys', which is a list of the
immediate sub-parts of the object. So to just get the toolpaths that
have the '1aser' parameter, we can use the following code:

// create a string for the

// expression to help readability

STRING expr = "member (UserParameters. keys, 'laser')"
ENTITY LIST laser tps = filter(folder('toolpath'), Sexpr)

The filter () function can also be combined with the extract ()
function to build complexpressions within your macros. For
example, to obtain the list of tools used by raster toolpaths:
ENTITY LIST tools =

extract (filter (folder ('toolpath'),"strategy=="'raster'"),'
tool')

PowerMILL 2015 User Guide Macros * 89

A special variable called 'this' has been added to help with the
filter () function. The 'this' variable can be used to refer to the
element that the filter () function is examining. For example
suppose you have a list of numbers and only want the numbers that
are greater than 10:

REAL LIST numbers = {1.0, 10.2, 3.5, 20.4, 11.0, 2.8}
REAL LIST numbs = filter (numbers, "this > 10.0")

The above returns the list {10.2, 20.4, 11.0%}.

Sorted list

The sort function sorts lists and arrays of scalars (numerics or
strings) or objects and entities. By default, the functions sort a list
in ascending order. If you want to sort the list in descending order,
you can apply the reverse function to the list.

If you are sorting a list of objects and entities, you must provide a
field name for the sort.

The following examples sort lists of scalar values (numerics and
strings):

STRING LIST 11 = {"The","Twelth","Night"}

$11 = sort(1l1l)

// returns the list {"Night", "The", "Twelth"}
REAL ARRAY al = {23, 12, 4, 52, 32}

Sal = sort(al)

// Returns the list {4, 12, 23, 32, 52}

When sorting non-scalar values, such as entities or objects, you
must provide a sort field that is a scalar value:
CREATE TOOL ; BALLNOSED

EDIT TOOL ; DIAMETER 2.0

CREATE TOOLPATH 'bbb' RASTER

CREATE TOOL ; BALLNOSED

EDIT TOOL ; DIAMETER 1.0

CREATE TOOLPATH 'ccc' RASTER

CREATE TOOL ; BALLNOSED

EDIT TOOL ; DIAMETER 1.5

CREATE TOOLPATH 'aaa' RASTER

For example:

ENTITY LIST ents = sort(folder ('toolpath'), 'name')
// Returns the list of toolpath {'aaa', 'bbb', 'ccc'}
ENTITY LIST ents_diam =

sort (folder ('toolpath'), 'Tool.Diameter')

// Returns the list of toolpath {'ccc', 'aaa', 'bbb'}

90 « Macros PowerMILL 2015 User Guide

You can reverse the order of a list by using the inbuilt function
reverse(). The example above sorts the toolpaths based on tool
diameter and returns the entries in ascending order, with the
smallest diameter listed first. To sort the list in descending order,

you can reverse the results.
ENTITY LIST ents diam =

reverse (sort (folder ('toolpath'), 'Tool.Diameter'))

// Returns the list of toolpaths {'bbb', 'aaa',

Path functions

'cce'}

The path functions returns part of the pathname of the entity,

The basic structure of the path functions are:

Description of return value

The Folder name (see page

92) function returns the full

folder name of the entity, or
an empty string if the entity
doesn't exist.

The Folder name (see page
92) function can also be used
to return the full folder name
of the entity.

The Directory name (see page
92) function returns the
directory prefix from the path.

The Base name (see page 93)
function returns the non-
directory suffix from the path.

The Project name (see page
94) functions returns the
pathname of the current
project on disk.

The Active folder (see page
94) functions returns folder
names of active entities.

The Folder list (see page 94)
functions returns the names
of folders in the PowerMILL
project.

PowerMILL 2015 User Guide

Function

string pathname(entity
ref)

string pathname (
type,

string
string name)

string dirname (string
path)
string basename (string

path)

project pathname (bool
basename)

String active folder ()

String
folder list (folder name)

Macros * 91

Folder name

The pathname function returns the full folder name of the entity,
or,if the entity doesn't exist, an empty string.

The basic structure is:

string pathname (entity ref)

Also,

string pathname(string type, string name)
Returns the full folder name of the entity.

For example, if you have a BN 16.0 diam tool in a Ballnosed tool
folder, then:

pathname ('tool', 'BN 16.0 diam')
returns the string Tool\Ballnosed tools\BN 16.0 diam.

=& If the entity doesn't exist it returns an empty string.

You can use this function in conjunction with the dirname() (see
page 92) function to process all the toolpaths in the same folder as
the active toolpath.

STRING path = pathname ('toolpath',Name)
// check that there is an active toolpath
IF path != '' {
FOREACH tp IN folder (dirname (path)) {
ACTIVATE TOOLPATH tp.Name
EDIT TOOLPATH ; CALCULATE

}
} ELSE {

MESSAGE "There is no active toolpath"
RETURN

}
Directory name

The directory name function returns the directory prefix from the
path.

The basic structure is:

string dirname(string path)

For example you can use this to obtain the argument for the inbuilt
folder() function.

STRING folder = dirname (pathname ('toolpath',Name))

92 « Macros PowerMILL 2015 User Guide

Base name

The base name function returns the non-directory suffix from the

path.
The basic structure is:

string basename(string path)

Usually basename (pathname ('tool', tp.Name)) is the same as
tp.Name, but you can use this in conjunction with dirname (see page

92) to split apart the folder names.

For example, suppose your toolpaths are split in folders:
Toolpath\Featurel\AreaClear
Toolpath\Featurel\Rest
Toolpath\Featurel\Finishing
Toolpath\Feature2\AreaClear
Toolpath\Feature2\Rest
Toolpath\Feature2\Finishing

You can rename all your toolpaths so that they contain the feature

name and the area clearance, rest, or finishing indicator.

FOREACH tp in folder ('Toolpath') {
// Get the pathname
STRING path = pathname (tp)
// Get the lowest folder name from the path
STRING type = basename (dirname (path))
// get the next lowest folder name
STRING feat = basename (dirname (dirname (path)))
// Get the toolpath name
STRING base = basename (path)
// Build the new toolpath name
STRING NewNamePrefix = feat + "-" + type

// Check that the toolpath hasn't already been renamed

IF position (base,NewNamePrefix) < 0 {

RENAME TOOLPATH S$base ${NewNamePrefix+" " + base}

}

PowerMILL 2015 User Guide

Macros * 93

Project name

The project pathname function returns the pathname of the current
project on disk.

The basic structure is:

project pathname (bool basename)

The argument dirname only gives a different result if it is true to if
it is false.

= If true, returns the name of the project.
= If false returns the full path of the project.

For example if you have opened a project
called:C:\PmillProjects\MyProject

project pathname (0) returns"C:\PmillProjects\MyProject.
project pathname (1) returns MyProject.

A PowerMILL macro example is:

EDIT BLOCKTYPE TRIANGLES

STRING $ARBLOCK = project_pathname(0) + "\' + 'block_test.dmt’
GET BLOCK $ARBLOCK

Active folder name

94 « Macros

Use to determine the folder names of currently active entities, for
example the name of the active toolpath or workplane folder.

The basic structure is:
STRING LIST list = folder list(folder name)
STRING folder = active folder ('type-name')

For example:

// get all the folders in the toolpath branch
STRING LIST list = folder list('toolpath')

// get list of subfolders in tool\endmills
STRING LIST list = folder list('tool\endmills')
STRING nc_folder = active folder ('ncprogram')

An empty list is returned if there are no folders, or if there are no
active folders.

To find out if the given folder path exists or not, use:
document folder exist ()

This returns true or false depending on whether the path exists or
not. For example, BOOL ok =
folder_exists('toolpath\areaclearance')

PowerMILL 2015 User Guide

& Use document folder exist () to interrogate PowerMILL
Explorer folders. To interrogate folders on disk, use the
dir exists ()functions.

Conditional functions

The basic structure of conditional functions are:
Description of return value Function

Returns the value of variant select (
expression 1 if the conditional conditional-expression;
expression is true, otherwise expressionl;expression2)
it returns the value of

expression 2.

_5 Both expressions must be of the same type.

This example obtains either the tool radius or its tip radius, if it has
one.

You can use an IF block of code:

REAL Radius = Tool.Diameter/2
IF active (Tool.TipRadius) {
SRadius = Tool.TipRadius

}
Or you can use the inbuilt select function:

REAL Radius = select (active(Tool.TipRadius),
Tool.TipRadius, Tool.Diameter/2)

_KZ If you are assigning an expression to a parameter then you
will always have to use the inbuilt select() function.

Within a macro you can use either method.

Evaluation functions

The evaluation function evaluate a string argument as an
expression.

For example:

print = evaluate ("5*5")

prints 25.

You can use evaluate to provide a different test at runtime.

PowerMILL 2015 User Guide Macros ¢ 95

96 « Macros

This example provides a bubble sort for numeric values. By
changing the comparison expression you can get it to sort in
ascending or descending order.

FUNCTION SortReals (STRING ComparisonExpr, OUTPUT REAL
LIST List) {
// Get number of items.
INT Todo = size(List)
// Set swapped flag before we start
Bool swapped = 1
// Repeat for number of items
WHILE Todo > 1 AND Swapped {
// start at the beginning
INT Idx = 0
// Signal that nothing has been done yes
SSwapped = 0
// loop over number of items still to do
WHILE Idx < ToDo-1 {
// swap 1f they are out of sequence
// Uses user supplied comparison function to
perform test
IF evaluate (ComparisonExpr) {
REAL swap = List[Idx]
SList[Idx] = List[Idx+1]
S{List[idx+1]} = swap
// signal that we've done something
SSwapped = 1
}
// look at next pair
$Idx = Idx + 1
}
// reduce number of items
SToDo = ToDo - 1

}

FUNCTION Main () {
/Set up some data
REAL ARRAY Data[] = {9,10,3,4,1,7,2,8,5,6}
// Sort in increasing value
CALL SortReals ("List[Idx] > List[Idx+1]", Data)
PRINT PAR "Data"
REAL ARRAY Datall[] = {9,10,3,4,1,7,2,8,5,6}
// Sort in decreasing order
CALL SortReals ("List[Idx] < List[Idx+1]", Datal)
PRINT PAR "Datal"

PowerMILL 2015 User Guide

Type conversion functions

The type conversion functions enable you to temporarily convert a
variable from one type to another within an expression.

The basic structure of the type conversion functions are:

Description of return value Function

Convert to integer value. int int(scalar a)
Convert to real value. real real(scalar a)
Convert to boolean value. bool bool(scalar a)
Convert to string value string string(scalar a)

Normally you would use inbuilt string() conversion function to
convert a number to a string when building up a message:

STRING $Bottles = string (Number) + " green bottles ..."

In other cases, you may want convert a real number to an integer,
or an integer to a real number:

INT a = 2
INT b = 3
REAL z = 0
Sz = a/b
PRINT $z

This prints 0.0.

If you want the ratio then you have to convert either a or b to real
within the assignment expression.

INT a = 2

INT b = 3

REAL z = 0

Sz = real(a)/b
PRINT Sz

This prints 0.666667.

Parameter functions introduction

All of the PowerMILL parameters have an active state which
determines whether the parameter is relevant for a particular type
of object or operation.

The basic structure of the parameter functions are:
Description of return value Function

Evaluates the active bool active(par)
expression of par.

PowerMILL 2015 User Guide Macros * 97

Returns whether the bool locked(par)
parameter can be changed or

not.

Returns the number of sub- int size(par)
parameters that par contains.

Returns a list of string - sString list
descriptions for a enumerator values (par)
type

Evaluate the active expression

For example, the Boundary.Tool parameter is not active for a block
or sketch type boundaries. You can test whether a parameter is
active or not with the inbuilt active() function. This can be useful in
calculations and decision making.

The basic control structure is:
IF active(...) {

}

Check if you change a parameter

You can test whether a particular parameter is locked or not with
the inbuilt locked() function. You can't normally edit a locked
parameter because its entity is being used as a reference by
another entity. If you try to edit a locked parameter with the EDIT
PAR command, PowerMILL raises a query dialog asking for
permission to make the change. You can suppress this message
using the EDIT PAR NOQUERY command. The locked() function
allows you to provide your own user messages and queries that are
tailored to your application.

For example:

IF locked(Tool.Diameter) {
BOOL copy = 0
Scopy = QUERY "The current tool has been used do you
want to make a copy of it?"
IF NOT copy {
// cannot proceed further so get out
RETURN
}
COPY TOOL ;
}

STool.Diameter = 5

98 « Macros PowerMILL 2015 User Guide

Check the number of sub-paramters

The inbuilt size() function returns the number of immediate items in
the parameter. You can use this to determine the number of
toolpaths in a folder:

PRINT = size (folder ('Toolpath\Cavity'))

Enumerator parameter

The values() function returns a list of display names for an
enumerator parameter, such as Tool.Type, CutDirection, or
Strategy. The names are translated into the current language that a
user is working in. This list can be used to gather input from the
user with the CHOICE dialog. For example, to ask the user which

cut direction they would like to use, you can use the following code:
// Get names for the choices the user can make for this
parameter

STRING ARRAY Opts[] = values (CutDirection)

// Get the user input
INT C = INPUT CHOICE $Opts "Choose the Cut Direction you
want"

// Use the returned value to set the direction
SCutDirection = S$SC

Automate a sequence of edits or actions

Use the following functions to automate a sequence of edits or
actions to a number of files and directories:

// return list of file and/or directory names
list file list(<type>, directory, filespec)

// <type> == "all" returns both the files and directories
// <type> == "files" just returns the files
// <type> == "dirs" just returns the directories

// a '"+' suffix to the type (eg "files+") will recurse
down the directories

// get the current directory
string pwd()

// check whether a file exists
bool file exists (path)

// check whether a directory exists
bool dir exists (path)

PowerMILL 2015 User Guide Macros * 99

Statistical functions

The statistical functions enable you to return the minimum and
maximum values of any number of numeric arguments.

The basic structure of the statistical functions are:
Description of return value Function

Returns the largest value ina real max(list numeric a
list of numbers.)

Returns the smallest value in real min(list numeric a
a list of numbers.)

This example finds the maximum and minimum block height of the
toolpaths in the active NC program.

REAL maxz = -100000
REAM minz = abs (maxz)
FOREACH item IN components (entity('ncprogram','')) {
IF item.RootType == 'nctoolpath' {
Smaxz = max (maxz,entity('toolpath', item.Name))
Sminz - min(minz,entity('toolpath', item.Name))
}
}
MESSAGE "Min = " + string(minz) + ", max = " +

string (maxz)

Entity based functions

100 « Macros

These functions work on specific entities.

Command Description

entity exists|() Returns true if the named entity
exists (see page 101).

geometry equal () Compares two tools, or two
workplanes for geometric
equivalence.

new_entity name () Returns the name (see page 102)
assigned to the next entity.
set_workplane () Sets the vectors and origin
of a workplane (see page
72).
segments () Returns the number of segments in

a toolpath, boundary or pattern.
limits () Returns the XYZ limits of an entity.

PowerMILL 2015 User Guide

Equivalence

You can use the inbuilt function geometry equal () to test whether
two tools, or two workplanes are geometrically equivalent. For a
tool the test is based on the cutting geometry of the tool.

Number of segments

The inbuilt function segments() returns the number of segments in
a pattern or boundary:

IF segments (Pattern) == 0 {
PRINT "The pattern is empty"

}
Limits
The inbuilt function 1imits () returns an array of six elements

containing the XYZ limits of the given entity. The supported entities
are: pattern, boundary, toolpath, feature set, or model.

REAL ARRAY Lims[] = limits('model', "MyModel')

The values in the array are :

REAL MinX = Lims[0]
REAL MaxX = Lims[1]
REAL MinY = Lims[2]
REAL MaxY = Lims[3]
REAL MinZ = Lims[4]
REAL MaxZ = Lims[5]

Does an entity exist?

The inbuilt function entity exists () returns true if the entity
exists. You can call this function with:

= an entity parameter such as entity exists (Boundary),
entity exists (ReferenceTool), OF
entity exists(entity('toolpath','")).

= two parameters that specify the entity type and name such as
entity exists('tool', '"MyTool').
For example:

IF entity exists (Workplane) {
PRINT "An active workplane exists"

} ELSE {
PRINT "No active workplane using world coordinate
system."

}

IF NOT entity exists(entity('toolpath','")) {

PRINT "Please activate a toolpath and try again."

PowerMILL 2015 User Guide Macros 101

New

102 + Macros

MACRO ABORT ALL

entity name

The inbuilt function new entity name () returns the next name that
PowerMILL gives to a new entity of the given type. You can supply
an optional basename argument to obtain the name that PowerMILL
uses when creating a copy or clone of an entity.

This example shows you how to determine the name of a new
entity.

CREATE WORKPLANE 1
CREATE WORKPLANE 2
CREATE WORKPLANE 3

// Prints 4
PRINT = new entity name ('workplane')

DELETE WORKPLANE 2

// Prints 2
PRINT = new entity name ('workplane')

CREATE WORKPLANE ;

// Prints 2 1
PRINT = new entity name ('workplane', '2")

PowerMILL 2015 User Guide

Model hierarchy

Model Component Functions

INT select components (DATA components)

INT deselect components (DATA components)

These functions select or deselect all of the components in the
passed-in data parameter. The data parameter must store a
ModelCompList or ModelCompSet. The return value is numeric, but
carries no information.

INT number selected (DATA components)

This function returns the number of the components in the passed-
in data parameter that are currently selected. The data parameter
must store a ModelCompList or ModelCompSet.

Model Hierarchies

Some CAD systems store models in a hierarchical structure. When
PowerMILL reads these CAD files it creates a parameterised
representation of this structure. This structure can be navigated as
a tree, and there are two helper functions, one to retrieve a node
from the hierarchy by its path, and the other to retrieve the
hierarchy (or a subsection of the hierarchy) as a list that can be
filtered or iterated over.

Nodes

The hierarchy of a model is made up of nodes. These are maps with
typename "ModelHierarchyElement". They have the following

properties:
Property | Type Description
Name STRING The name associated with the node

in the hierarchy. The root node’s
name will be the same as the
model’s name.

Path STRING The path to the node. It consists of
the names of the node’s ancestors,
starting with the root node,
separated by backslashes. It
includes the node’s name.

Parent MAP The parent of this node in the
hierarchy. The root node’s Parent is

PowerMILL 2015 User Guide Macros * 103

(typename: always an error. For all other
ModelHierarchyElemen | nodes, it will be a map of this type.
t)

Children ARRAY of MAPs A list of the children of the node in
(typename: the hierarChy. Each child node is a
ModelHierarchyElemen | map of this type.

t)

Compone | DATA A list of the model components

nts {ModelCompList} associated with the node.

Parameter | MAP Key-Value pairs associated with the

S (typename: node. Currently an empty map.
ModelMetadata)

Selectedin | BOOL This parameter is not currently

GUI used, and will always return false.

The root node of a model’s hierarchy is accessible through the
"Hierarchy" property on the model entity parameter.

Walking the hierarchy

If you want to select all components associated with nodes
containing "Hole" in their name, for instance, you could use a macro
like this:

FUNCTION Main () {
ENTITY mod = entity("model"™, "1™)
CALL SelectHoles (mod.Hierarchy)

}

FUNCTION SelectHoles (OBJECT node) {
// Select the components associated with this node if
// 1ts name contains "Hole"
IF (position(node.Name, "Hole") > -1) {
INT i = select components (node.Components)
}
// Recursively call this function with each child node
FOREACH child IN node.Children {
CALL SelectHoles (child)
}
}

This is a basic template for working with a hierarchy: a function that
takes a node as an argument, does something with it, and then
recursively calls the function with each of its child nodes.

104 « Macros PowerMILL 2015 User Guide

This template can be built on to give more complex functionality.
For example, the operation on the node could depend on extra
passed-in arguments, several operations could be performed on the
node, or a conditional check on each child node could be placed
within the FOREACH loop to skip certain branches of the tree.

Getting a Node by its Path

OBJECT model tree node (ENTITY model[, STRING path)
OBJECT model tree node (STRING model name[, STRING path])

The first argument should be a model entity or the name of a model
entity. The second argument is an optional path into that model's
hierarchy. The function will return the node with the given path or
the root node if the path is omitted.

The following example gets the node "groupl", which is a child of
the "part" node, which is a child of the root node "1". It then stores
how many of the components associated with the node are

currently selected:
OBJECT node = model tree node("1", "l\part\groupl") ({
INT count = number selected (node.Components)

Getting the Hierarchy as a List
OBJECT LIST model tree nodes (ENTITY model[, STRING path)

OBJECT LIST model tree nodes (STRING model name[, STRING
pathl])

This function takes the same arguments as model_tree_node(). It
returns a list containing the node that would be returned by
model_tree_node() if it were sent the same arguments, and all of
its descendants.

The example below performs the same operation as the macro in
the "Walking the Hierarchy" section above, selecting all geometry
associated with nodes that contain "Hole" in their name.

FOREACH node IN model tree nodes (entity("model™, "1")) {
IF position (node.Name, "Hole"™) > -1 {
BOOL b = select components (node.Components)

}
}

As well as being a more concise method, for operations that are to
be performed on every node in the hierarchy, this will generally
execute quicker than walking the hierarchy using the recursive
method.

PowerMILL 2015 User Guide Macros ¢ 105

Feature Parameters

You can use the inbuilt components() function to loop over the
features within a feature set. Each feature has the following
parameters:

Name — Name of Feature

ID — Id of Feature

RootType — 'feature' as a string

num_items — Number of sub-holes

Type — Type of feature (pocket, slot, hole, boss)
Top — Top of feature, z-value relative to Origin
Bottom — Bottom of feature, z-value relative to Origin
Depth — Depth of feature, from top to bottom
Diameter — Diameter of feature

Draft — Draft angle

Axis — Z axis of Feature

For example:

// Print out the diameter of each hole

FOREACH f in components (entity('featureset','l')) {
IF f.Type == "hole" {
PRINT = f.name + " has a diameter of " + f.Diameter

}
}

You can also use the components() function to iterate over the
elements of compound holes, as follows:

ENTITY fset = entity('FeatureSet',6'")
PRINT ="Feature Set '" + fset.Name + "' has " +
fset.num items + "
Features"
FOREACH feat IN components (fset) {
IF feat.num items > 0 {

PRINT ="Feature '" + feat.Name + "' is a compound
hole'™
FOREACH sub IN components (feat) {

PRINT ="Sub-hole '" + sub.Name + "' has diameter "

+ sub.Diameter

}
} ELSE {

PRINT ="Feature '" feat.Name + "' is a " + feat.Type
}

106 * Macros PowerMILL 2015 User Guide

“& You cannot edit feature parameters in the macro language.
You must use the normal PowerMILL commands to edit
features. However, the parameters will give you all the values
you need to make the appropriate edits.

Working with files and directories

PowerMILL contains a number of commands and functions for
creating and manipulating files on disc. The following commands
can be used to delete and copy files and directories:

DELETE FILE <filename>

DELETE DIRECTORY <directory>

COPY FILE <source-file> <destination file>

COPY DIRECTORY <source directory> <destination-directory>
The command cb changes the working directory:

// change working directory to "C:\temp"

CD "C:\temp"

// change working directory back to where PowerMILL
started from
CD

The command MKDIR will create a directory path:

MKDIR "C:\temp\output\pm project"

The command will create all directories in the path if they do not
exist already.

File and directory functions

PowerMILL contains a number of parameter functions that can be
used to examine the file structure of the disc:

* string pwd () — Returns the current working directory path.

" bool file exists(filepath) — Returns true if filepath is an
existing file.

" bool dir exists(dirpath) — Returns true if dirpath is an
existing directory.

= list list files(string flags,string directory[, string
filetype]) — Returns a list of files that match the flags and

optional filetype. The flags parameter can be either 'a11’,
'files', or 'dirs' with an additional '+' suffix. If the '+' suffix is
given then all subdirectories are listed.

PowerMILL 2015 User Guide Macros * 107

Example

// get a list of all the files in the working directory
STRING LIST files = list files("files",pwd())

// get all the stl files in the C:\temp directory
$files = list files("files","c:\temp",".stl")

// get all the directories and subdirectories in the
working directory
$files = list files("dirs+", pwd())

File reading and writing in macros

PowerMILL has a number of commands that can be used to read
information from a file, or to write information to a file.

Use the following commands:

* FILE OPEN — Open a file for reading or writing and associate it
with a file handle.

= FILE CLOSE — Close a file and free-up its file handle so you can
re-use it later.

* FILE WRITE — Write the contents of an existing variable to an
open file.

= FILE READ — Read values from one or more lines from an open
file into an existing variable.

—ﬂ - A file handle is the name used internally to refer to the file.

FILE OPEN command

Before you can use a file, it must be opened for either reading or
writing, and given an internal name (file handle) by which you will
later refer to it.

The synatx for opening a file is:

FILE OPEN <pathname-of-file> FOR <access-type> AS
<handle>

& The <access-type> can be READ, WRITE, or APPEND, and
<handle> is a short string used to refer to the file.

For example, to open the file fred.txt for writing, use the command:
FILE OPEN "d:\my-files\fred.txt" FOR WRITE AS output

To open a file for reading you might use the command:
FILE OPEN "d:\my-files\fred.txt" FOR READ AS input

108 « Macros PowerMILL 2015 User Guide

To open a file and append more information to the end of it, use the
command:

FILE OPEN "d:\my-files\fred.txt" FOR APPEND AS input

You cannot use the same <handle> for more than one file at a time.

FILE CLOSE command

When you have finished with a file it is good practice to close it so
that you can reuse the handle and release system resources.

For example:
FILE CLOSE output
FILE CLOSE input

=& To reuse a closed file you need to reopen it.

FILE WRITE command

Use the FI1LE WRITE command to write data from a variable to a file
that has been opened for writing or appending.

Variables are written line by line. If the variable to be written is a
scalar (INT, BOOL, REAL, or STRING) then a single line is written
(unless a string containing new lines is written).

If the variable to be written is an array or list then every element
from the source variable is written one line at a time to the file.
Individual elements can be written using sub-scripts.

The syntax for the command is:
FILE WRITE $<variable> TO <handle>

For example:

FILE OPEN "test.txt" FOR WRITE AS out
STRING LIST greeting = {"Hello, ", "World!"}
INT ARRAY errors[5] = {1,2,3,4,5}

FILE WRITE Sgreeting TO out*8
FILE WRITE Serrors TO out

FILE WRITE SPI TO out

FILE WRITE Sgreeting[l] TO out
FILe CLOSE out

// Append an error message to a log file
FILE OPEN "errorlog.txt" FOR APPEND AS log file
INT error = 2

STRING time = "14:57"
STRING date = "July 1st, 2012"
STRING log entry = "Error (" + error code + ") occurred

at " 4+ time + " on " + date
FILE WRITE $log entry TO log file
FILE CLOSE log file

PowerMILL 2015 User Guide Macros * 109

FILE READ command

The FILE READ command is used to read data from a file opened for
reading into an existing variable.

If the variable is a scalar then a single line is read and the string is
converted to the required variable type using standard conversion
rules.

If the variable is an array then one line is read for each element in
the array, with values being stored in the array (starting from index
0). If the end of the file is reached before the array is reached, the
data in the remaining elements remain unchanged.

If the variable to be read is a list then all remaining lines in the file
are read with existing list elements being over-written and the list
being extended as necessary. Again, if the number of lines
remaining to be read in the file are fewer than the number of
elements currently in the list, then data in the remaining elements
is unchanged.

For example:

FILE OPEN "values.txt" FOR READ AS input
STRING product name = ""

INT ARRAY vers[2] = {0, 0}

REAL tol = 0.0

STRING LIST rest of file = {}

FILE READ S$prod FROM input

FILE READ S$version FROM input

FILE READ $tol FROM input

FILE READ Srest of file FROM input

PRINT ="Tolerance from " + prod + " v" + vers[0] + "." +
vers[l] + ": " + tol
PRINT ="Comments:"
FOREACH line IN rest of file {
PRINT S$line
}

Frequently asked questions

How do I loop through all the toolpath entities?

The folder() function returns all the items that are in the Explorer
folders, for example Machine Tools, Toolpaths, Tools, Boundaries,
Patterns etc.. The easiest way to loop through all the items is to use
the FOREACH statement:

FOREACH tp IN folder (‘Toolpath’) {
PRINT = tp.name
}

110 « Macros PowerMILL 2015 User Guide

The folder function returns all the items in the specified folder and
in any subfolders. You can limit the number of items returned by

specifying a specific subfolder to loop through:
FOREACH tp IN folder (‘Toolpath\semi-finishing’) {
PRINT = tp.name

}

How do | only loop over the items in a parent folder (and exclude any
subfolders)?

As described above, the folder() function returns items from a
parent folder and any subfolders. If you only want to loop over the
items in the parent folder, you need to filter the results. For
example, if you have the folder 'Semi-finishing' and the subfolder
'Not used', which contains temporary or alternative toolpaths, then
to access the toolpaths only in the 'Semi-finishing' folder, you need
to use the pathname and dirname functions:
STRING fld = ‘Toolpath\semi-finishing’
FOREACH tp IN folder ($fld) {

IF dirname (pathname (tp)) == $fld {

PRINT = tp.name

}

}

You can also achieve the same result as above by using a complex
expression for the FOREACH loop. In some cases this may make
your code easier to understand and in other cases much harder. In
the following example, the results of the folder() function are
filtered so the IF statement can be removed.
STRING fld = ‘Toolpath\semi-finishing’
STRING filt = ‘dirname (pathname (this)) == f1d’
FOREACH tp IN filter (folder ($fld), $filt) {

PRINT = tp,name

}

=& Note the use of 'this’ in the $filt expression: when used in the
filter function, 'this’ is an alias for the current list item that is
being filtered. In cases where you need to explicitly use the
list item, such as the one above, you should refer to it as
'this” in the expression.

How do | loop over the items in the active folder?

The inbuilt function active_folder() returns the name of the folder
that is currently active in the Explorer.

& Check the correct folder in the Explorer is active.
STRING fld = active folder()

IF fld == "" {
// No active folder use the root instead
$fld = ‘Boundary’

PowerMILL 2015 User Guide Macros » 111

} ELSEIF position (fld,’Boundary\’) != 0 {
MESSAGE "Active folder isn’t a boundary folder"
RETURN

}

How can | tell if a toolpath has been calculated?

The Toolpath’s parameter 'Computed' is be true if it has been
calculated. Sometimes a toolpath may have been calculated but
contain no cutting segments. If this is an issue then you should
check the number of segments as well:
IF tp.Calculated AND segments(tp) > 0 {

PRINT "Toolpath is calculated and has segments"

}

Organising your macros

Recorded macros are listed in the Explorer under the Macros branch.
This example shows you how to manage the macro paths.

1 From the Macros menu select Macro Paths.

=@

- By Active

& Machine Tools
@] MC Programs
@ Toolpaths
‘f_*f Tools
C) Boundaries

4 Patterns

I:? Feature Sets

1 wiorkplanes
Q Levels and Sets
@ Models

.‘ Stock Models

_ ¥ Groups

] vscros |

Macros

Run...

Record...
v Stop

Fix Macros
Step Through Macros

Macro Paths...

& Alternatively, from the Tools menu, select Customise Paths
> Macro Paths.

112 « Macros PowerMILL 2015 User Guide

The PowerMILL Paths dialog is displayed showing you all the
default macro paths. PowerMILL automatically searches for
macros located within these folders, and displays them in the

Explorer.
4 PowerMILL Paths |2 |
-

~[prill4

) prmiill4

~ipmillz

~f pmill2

1 /Program Files/Delcam/PoveerMILL 12.0.05)filefexamples
C:Program Files/Delcam/PowerMILL 12,0.05)libjmacro

Cloze

0 The period (.) indicates the path to the local folder
(currently, the folder to which the project is saved).

The tilde (~) indicates your Home directory.

2 To create a macro path, click , and use the Select Path dialog

to select the desired location. The path is added to the top of the
list.

3 To chanthe path order, select the path you want to move, and
use the and buttons to promote or demote the path.
4 Click Close.

To load the new paths into PowerMILL, expand the Macros
branch in the Explorer.

=& Only the paths that contain at least one macro are shown.
For more information, see Displaying Macros in the Explorer.

Recording the pmuser macro

The pmuser.mac is automatically run whenever you start PowerMILL
providing you with your preferred settings.

1 From the Tools menu, select Reset Forms. This ensures that
PowerMILL uses the default parameters in the dialogs.

PowerMILL 2015 User Guide Macros * 113

114 - Macros

2 From the Macros context menu, select Record.

=@

=By Active

[Machine Tools
+ @ MC Progrars
+ @ Toolpaths
<-4 Tools
() Boundaries

4 Patterns

|j‘? Feature Sets

S wWarkplanes
+ Q Levels and Sets
+- i@ Models

& Stock Models

_# Groups
S Jrracros |

+ &

Macros

Run...

v Stop

Fix Macros
Skep Through Macros

Browse to pmill4 folder in your Home area. In the Select Record
Macro File dialog, enter pmuser in the File name field, and click
Save.

0 If you are asked whether you want to overwrite the existing
file, select Yes.

The macro icon =& mres chgnges to red to show recording is in
progress.

—sﬁ’ All dialog options that you want to include in your macro
must be selected during its recording. If an option already
has the desired value, re-enter it.

Set up your preferences. For example:
a From the NC Programs menu, select Preferences.

b In the NC Preferences dialog, select a Machine Option File (for
example, heid.opt).

¢ Click Open.

d Click Accept.

e Click :—ﬁ on the Main toolbar to open the Rapid Move Heights
dialog.

f Enter a Safe Z of 10 and Start Z of 5.

g Click Accept.

5 From the Macros context menu, select Stop to finish recording.

PowerMILL 2015 User Guide

6 Expand the Macros node. The pmuser.mac macro is added under
pmill4.

w- B Active

&, Machine Tools
@ NC Programs
-@ Toolpaths
L_*_:'f Tools
O Boundaries

4 Patterns

|_-? Feature Sets

. Workplanes
g’) Levels and Sets
B Models

‘ Skock Models

¥ Groups
= Macros

=,

=& pmill4

o | pruser

7 Close and then restart PowerMILL to check that the settings from
the pmuser macro are activated.

Turning off error and warning
messages and locking graphic updates

Error and warning messages

PowerMILL displays error and warning messages that you must
respond to. For example, PowerMILL displays an error message if
you attempt to activate a toolpath that does not exist.

Normally you should avoid writing a macro that generates error or
warning messages, but sometimes it is not possible. In such cases,
you can suppress the messages using the following:

DIALOGS MESSAGES OFF
DIALOGS ERROR OFF

To turn the error and warning messages back on, type:
DIALOGS MESSAGE ON
DIALOGS ERROR ON

Graphics

When you run a macro, PowerMILL updates the screen every time a
change is made. If PowerMILL updates the screen frequently, this
amount of screen activity can look unpleasant. Use the following to
instruct PowerMILL not to update the screen while the commands
are in progress, and instead to update the screen (just the once)

after the commands are complete.
GRAPHICS UNLOCK
GRAPHICS LOCK

PowerMILL 2015 User Guide Macros * 115

When a macro finishes, PowerMILL restores the message and
graphic settings to what they were before the macro started.
This ensures the messages and graphics aren't accidentally
turned off permanently.

Recording a macro to set up NC
preferences

This example records a macro that sets up NC preferences for
Heid400 machine controllers.

116 * Macros

1

4

From the Tools menu, select Reset Forms. This ensures that
PowerMILL uses the default parameters in the dialogs.

From the Macros context menu, select Record.

=@

@B Active
[Machine Tools
@ MC Programs
-@ Toolpaths
¥ Tools
() Boundaries
4 Patterns
|_*P Feature Sets
L Workplanes
Q Levels and Sets
B Models
& Stock Models
_# Groups
B Jvicros |

-

Macros

Run...

v Stop

Fix Macros
Skep Through Macros

Browse to pmill folder in your Home area in the Select Record
Macro File dialog, enter h400 prefsin the File Name field, and click
Save.

The macro icon =&t chgnges to red to show recording is in
progress.

2 Al dialog options that you want to include in your macro
must be selected during its recording. If an option already
has the desired value, re-enter it.

From the NC Programs context menu, select Preferences.

PowerMILL 2015 User Guide

In the NC Preferences dialog, select the Heid400.opt in the
Machine Option File field on the Output tab.

Click the Toolpath tab, and select Always in the Tool Change field.
Click Accept.

From the Macros context menu, select Stop to finish recording.

Tips for programming macros

This section gives tips to help you record macros.

Macros record any values you explicitly change in a dialog, but
don't record the current default values. For example, if the
default tolerance is 0.1 mm and you want a tolerance 0.1 mm,
you must re-enter 0.1 in the tolerance field during recording.
Otherwise PowerMILL will use whatever the current tolerance
value, which isn't necessarily the value you want.

From the Tools menu, select Reset Forms. This ensures that
PowerMILL uses the default parameters in the dialogs.

When debugging a macro it is important to have the macrofixer
turned off. Use the command:

UNSET MACROFIX

This ensures all syntax and macro errors are reported by
PowerMILL directly. You can use sET MACROFIX to turn it back
on.

If you get a syntax error in a loop (DO-WHILE, WHILE, FOREACH)
or a conditional statements (IF-ELSEIF-ELSE, SWITCH) check you
have a space before any opening braces ({). For a DO-WHILE
loop make sure the closing brace (}) has a space after it and
before the WHILE keyword.

Your code blocks must have matching braces. They must have
the same number of opening braces ({) as closing braces (}).

The ELSEIF keyword doesn't have a space between the IF and
the ELSE.

If you encounter expression errors check you have balanced
parentheses, and balanced quotes for strings.

Decimal points in numbers must use a full stop (.) and not a
comma (,).

The variable on the left of the = sign in assignments must have a
s prefix. So:

Smyvar = 5

PowerMILL 2015 User Guide Macros * 117

is correct, but:
myvar = 5
is wrong as it is missing the s prefix.

= Local variables override PowerMILL parameters. If your macro
contains:

REAL Stepover = 10

then during the execution of the macro any use of Stepover will
use the value 10 regardless of what the value specified in the
user interface. Also the command:

EDIT PAR "Stepover" "Tool.Diameter*0.6"

will change the value of this local Stepover variable NOT the
PowerMILL Stepover parameter.

118 « Macros PowerMILL 2015 User Guide

Index

A

Active folder name « 91
Adding items to a list « 34, 82
Adding lists « 82
Adding macro loops * 10
Adding macro variables * 9
Arguments in macros « 50
Function values « 52
Running macros with arguments « 11
Sharing functions « 53
Arrays « 32
Lists 32
Points « 40
Using arrays * 24
Vectors ¢ 40
Automate a sequence of edits or actions
* 96

B

Base name + 89

Basic macro « 9
Adding macro loops * 10
Adding macro variables * 9
Decision making in macros « 13
Returning values from macros « 18
Running macros with arguments « 11
Using a FOREACH loop « 21
Using arrays * 24
Using functions in macros * 15

BREAK statement « 58, 63

Building a list « 36

Built-in functions * 65

PowerMILL 2015 User Guide

C

Calling from other macros * 4
Carriage returns in dialogs * 29
Comparing variables « 40, 42
Components

List components « 79
Compound macros * 4
Conditrional functions « 91
Constants * 65

Euler's number « 65

Pi * 65
Converting numerics to strings « 72
Creating macros * 1

Basic macro + 9
Creating variables (macros) * 26

D

Date and time functions « 71
Decision making in macros * 13
Decisions in macros
BREAK statement * 58, 63
IF - ELSE statement « 54
IF - ELSEIF - ELSE statement « 55
IF command « 53
SWITCH statement « 56
Decrease options available to user « 30
Delete files or directories « See Working
with files and directories
Dialogs in macros « 27
Carriage returns in dialogs * 29
Directory name < 89
DO - WHILE loop * 62
Decision making in macros * 13

Index ¢ 119

DOCOMMAND - 49

E

Editing macros « 3
Editing * 3
Empty list « 81
Enter values into macros « 27
Entities in macros * 29
Entity based functions « 97
Entity variables « 38
Equivalence « 97
Limits » 97
New entity name « 98
Number of segments « 97
Workplane origin 69
Entity variables « 38
Equivalence « 97
Error and warning messages, turn off «
112
Euler's number « 65
Evaluation functions « 92
Example of programming language * 8
Existing file or directory « See Delete
files or directories
Exiting a function « 64
Exponential « 66
Expressions in macros ¢ 45
Order of operations * 47
Precedence « 47
Extracting data from lists « 85

F

Feature parameters « 102
File name in macros ¢ 31
Filtering data from a list » 86
Folder
List folder » 80
Folder name * 88
FOREACH loop * 60
Using a FOREACH loop « 21
Function values « 52
Functions in macros * 65
Arguments in macros ¢ 50
Conditrional functions * 91
Entity based functions « 97
Evaluation functions « 92
Exiting a function « 64

120 ¢ Index

Function values « 52
Introduction « 94
List components « 79
List folder « 80
List functons » 78
Main function « 51
Path functions « 88
Point functions « 67
Setting a point 67
Returning function values « 52
Sharing functions « 53
Statistical functions « 96
STRING function * 69
Type conversion functions « 93
Using functions in macros * 15
Using the SWITCH statement « 17
Vector functions « 67
Angle between vectors ¢ 67
Length of a vector « 67
Normal vectors * 67
Parallel vectors « 67
Point functions « 67
Setting a vector « 67
Unit vector « 67

IF - ELSE statement « 54

Decision making in macros « 13
IF - ELSEIF - ELSE statement * 55
IF command « 53
Increase options available to user « 30
Inputting values into macros « 27

Entities in macros ¢ 29

Options in macros * 30

File name in macros * 31
Intersecting items in lists « 82
Items in one list « 82

L

Length of a string * 73
Limits « 97
List components « 79
List folder « 80
List functons « 78
Adding items to a list « 34, 82
Adding lists « 82
Empty list « 81
Extracting data from lists « 85

PowerMILL 2015 User Guide

Finding values in a list » 83
Intersecting items in lists « 82
Items in one list « 82
List components « 79
List folder « 80
List member « 81
Removing duplicate items « 82
Removing items from a list « 35, 83
List member « 81
Lists » 32
Adding items to a list « 34, 82
Arrays « 32
Building a list « 36
Removing items from a list » 35, 83
Using lists « 33
Logarithm « 66
Loops
Adding macro loops * 10
Decision making in macros « 13
DO - WHILE loop * 62
FOREACH loop * 60
WHILE loop « 61

M

Macro comments 7
Macro statement « 6
Adding macro loops * 10
Arguments in macros ¢« 50
BREAK statement * 58, 63
DO - WHILE loop * 62
FOREACH loop « 60
IF - ELSE statement « 54
IF - ELSEIF - ELSE statement ¢ 55
IF command « 53
Macro statement « 6
RETURN statement « 64
SWITCH statement « 56
Using the SWITCH statement « 17
WHILE loop « 61
Macro statements
Adding macro loops * 10
Arguments in macros 50
BREAK statement ¢ 58, 63
DO - WHILE loop * 62
FOREACH loop * 60
IF - ELSE statement « 54
IF - ELSEIF - ELSE statement * 55
IF command ¢« 53
Macro statement « 6

PowerMILL 2015 User Guide

RETURN statement « 64
SWITCH statement 56
Using a FOREACH loop * 21

Using the SWITCH statement « 17

WHILE loop * 61
Macros

Calling from other macros « 4

Compound macros 4
Creating macros * 1

Editing macros « 3
Expressions in macros ¢ 45
Macro comments « 7
Macro statement « 6

NC preference macro » 112
pmuser macro « 4, 110

Recording macros * 2, 110, 112
Repeating commands in macros * 59

Running macros ¢ 3
Setting paths « 108
Variables in macros * 26
Writing macros « 5

Main function « 51

Mathematical functions « 66
Exponential « 66
Logarithm « 66
Mathematical functions « 66
Natural logarithm « 66
Square root * 66

N

Natural logarithm < 66

NC preference macro * 112
New entity name < 98
Normal vectors * 67
Number of segments « 97

O

Object variable « 39
Operators * 46
Logical operators « 42
Relational operator « 40
Order of operations * 47

P

Parameter functions

Index ¢ 121

Automate a sequence of edits or
actions « 96
Introduction « 94
Path functions « 88
Active folder name + 91
Base name * 89
Directory name « 89
Folder name « 88
Path name - 88
Project name « 90
Path name - 88
Pausing macros « 25
Pi« 65
pmuser macro * 4, 110
Point functions « 67
Setting a point * 67
Position of a string « 74
Precedence « 47
Print
Print the values of an expression * 64
Programming language example * 8
Project name « 90

R

Reading a file = 104
Recording macros * 2, 110, 112
Relational operator « 40
Removing duplicate items « 82
Removing items from a list « 35, 83
Repeating commands in macros « 59
BREAK statement * 58, 63
DO - WHILE loop * 62
FOREACH loop * 60
WHILE loop * 61
Replacing strings * 74
RETURN statement « 64
Returning function values * 52
Returning values from macros « 18
Running macros 3
Running macros with arguments « 11

S

Scratchpad variables * 43

Selecting a file name in macros « 31
Selecting entities in macros * 29

Setting paths » 108

Setting up your working directories * 108

122 « Index

Sharing functions « 53
Splitting a string « 78
Square root * 66
Statistical functions « 96
Stopping macros * 64
STRING function « 69
Converting numerics to strings « 72
Data and time « 71
Length of a string » 73
Position of a string « 74
Replacing strings « 74
Splitting a string « 78
String variables « 49
Substrings « 74, 75
Upper case function « 76
Whitespace in a string 77
String variables « 49
Substrings « 74, 75
SWITCH statement « 56
Using the SWITCH statement « 17

T

Tips for programming macros * 113

Trouble shooting macros « 113

Turning off error and warning messages
* 112

Type conversion functions « 93

U

Upper case function « 76

Using a FOREACH loop * 21
Using arrays « 24

Using functions in macros « 15
Using lists « 33

Using the SWITCH statement « 17
Using variables (macros) « 27

V

Variable scope (macros) ¢ 44
Variables in macros « 26
Adding macro variables « 9
Comparing variables « 40, 42
Creating variables (macros) « 26
DOCOMMAND - 49
Entity variables < 38
Logical operators « 42

PowerMILL 2015 User Guide

Object variables « 39

Operators * 46

Order of operations « 47

Precedence « 47

Relational operator « 40

Returning values from macros * 18

Scratchpad variables * 43

String variables « 49

Using variables (macros) « 27

Variable scope (macros) « 44
Vector functions « 67

Angle between vectors * 67

Length of a vector « 67

Normal vectors * 67

Parallel vectors « 67

Point functions « 67

Setting a vector * 67

Unit vector * 67

W

Warning and error messages, turn off e
112

WHILE loop « 61

Whitespace in a string « 77

Working with files and directories « 103

Workplane origin « 69

Writing information to files < 104

Writing macros * 5

PowerMILL 2015 User Guide Index ¢ 123

	Macros
	Creating macros
	Recording macros in PowerMILL
	Running macros
	Editing macros
	Running macros from within macros

	Writing your own macros
	PowerMILL commands for macros
	Adding comments to macros
	Macro User Guide
	Basic macro
	Adding macro variables
	Adding macro loops
	Running macros with arguments
	Decision making in macros
	More on functions in macros
	Using the SWITCH statement
	Returning values from macros
	Using a FOREACH loop in a macro
	Using arrays in a FOREACH loop
	Pausing a macro for user interaction

	Variables in macros
	Assigning parameters
	Inputting values into macros
	Carriage return in dialogs
	User selection of entities in macros
	User selection from a list of options
	User selection of a file name

	Arrays and lists
	Using lists
	Adding items to a list summary
	Removing items from a list summary
	Building a list

	Entity variables
	Object variables
	Vectors and points
	Comparing variables
	Logical operators

	Advance variable options
	Scratchpad variables
	Using variables and parameters in macro commands
	Scope of variables

	Using expressions in macros
	Operators for integers and real numbers
	Operators for strings

	Operator precedence
	Executing a macro string variable as a command using DOCOMMAND
	Macro functions
	Main function
	Returning values from functions
	Sharing functions between macros

	IF statement
	IF - ELSE statement
	IF - ELSEIF - ELSE statement
	SWITCH statement
	BREAK statement in a SWITCH statement
	Repeating commands in macros
	FOREACH loop
	WHILE loop
	DO - WHILE loop
	CONTINUE statement
	BREAK statement in a WHILE loop

	RETURN statement
	Printing the value of an expression
	Constants
	Built-in functions
	General mathematical functions
	Trigonometrical functions
	Vector and point functions
	Workplane functions
	String functions
	Date and time functions
	Converting a numeric value into a string
	Length function in a string
	Position function in a string
	Replacing one string with another string
	Substrings
	Upper case function in a string
	Lower case function in a string
	Whitespace in a string
	Splitting a string

	List functions
	List components
	List folder
	Empty list
	List member
	Adding lists
	Removing duplicate items in a list
	Intersecting items in lists
	Items present in one list, but not the other
	Adding items to a list
	Removing items from a list
	Extracting data from lists
	Filtering data from lists
	Sorted list

	Path functions
	Folder name
	Directory name
	Base name
	Project name
	Active folder name

	Conditional functions
	Evaluation functions
	Type conversion functions
	Parameter functions introduction
	Automate a sequence of edits or actions

	Statistical functions

	Entity based functions
	Does an entity exist?
	New entity name

	Model hierarchy
	Model Component Functions
	Model Hierarchies
	Nodes
	Walking the hierarchy
	Getting a Node by its Path
	Getting the Hierarchy as a List

	Feature Parameters
	Working with files and directories
	File reading and writing in macros
	Frequently asked questions
	Organising your macros
	Recording the pmuser macro
	Turning off error and warning messages and locking graphic updates
	Recording a macro to set up NC preferences
	Tips for programming macros

	Index

