

PowerMILL 2015

User Guide

Macro Programming Guide

Release issue 2

Copyright 1996 - 2014 Delcam Ltd. All rights reserved.

Delcam Ltd has no control over the use made of the software
described in this manual and cannot accept responsibility for any

loss or damage howsoever caused as a result of using the software.
Users are advised that all the results from the software should be

checked by a competent person, in accordance with good quality
control procedures.

The functionality and user interface in this manual is subject to
change without notice in future revisions of the software.

The software described in this manual is furnished under licence
agreement and may be used or copied solely in accordance with the

terms of such licence.

Delcam Ltd grants permission for licensed users to print copies of
this manual or portions of this manual for personal use only.

Schools, colleges and universities that are licensed to use the
software may make copies of this manual or portions of this manual

for students currently registered for classes where the software is
used.

Acknowledgements

This documentation references a number of registered trademarks
and these are the property of their respective owners. For example,

Microsoft and Windows are either registered trademarks or
trademarks of Microsoft Corporation in the United States.

Patents

The Raceline smoothing functionality is subject to patent
applications.

Patent granted: GB 2374562 Improvements Relating to Machine
Tools

Patent granted: US 6,832,876 Machine Tools

Some of the functionality of the ViewMill and Simulation modules of

PowerMILL is subject to patent applications.

Patent granted: GB 2 423 592 Surface Finish Prediction

The Vortex machining functionality is subject to patent applications.

Patent application: 1121277.6 Adaptive Clearance

The MachineDNA functionality is subject to patent applications.

Patent application: 1204908.6 Machine Testing

Licenses

Intelligent cursor licensed under U.S. patent numbers 5,123,087
and 5,371,845 (Ashlar Inc.)

 PowerMILL 2015. Published on 29 July 2014

PowerMILL 2015 User Guide Contents • i

Contents

Macros 1

Creating macros ... 1
Recording macros in PowerMILL .. 2

Running macros ... 3
Editing macros .. 4
Running macros from within macros .. 5

Writing your own macros .. 5
PowerMILL commands for macros ... 6
Adding comments to macros .. 8
Macro User Guide .. 9

Variables in macros .. 27

Using expressions in macros .. 48
Operator precedence ... 49
Executing a macro string variable as a command using DOCOMMAND . 51

Macro functions .. 52
IF statement ... 56

IF - ELSE statement ... 57
IF - ELSEIF - ELSE statement .. 58
SWITCH statement .. 59

BREAK statement in a SWITCH statement .. 61
Repeating commands in macros .. 62

RETURN statement .. 67
Printing the value of an expression .. 68

Constants ... 68
Built-in functions ... 69
Entity based functions .. 100

Model hierarchy .. 103

Model Component Functions .. 103
Model Hierarchies .. 103
Nodes ... 103
Walking the hierarchy ... 104
Getting a Node by its Path.. 105

Getting the Hierarchy as a List ... 105
Feature Parameters .. 106

Working with files and directories ... 107
File reading and writing in macros .. 108
Frequently asked questions .. 110
Organising your macros .. 112
Recording the pmuser macro .. 113
Turning off error and warning messages and locking graphic updates 115
Recording a macro to set up NC preferences ... 116

ii • Contents PowerMILL 2015 User Guide

Tips for programming macros ... 117

Index 119

PowerMILL 2015 User Guide Macros • 1

A macro is a file which contains a sequence of commands to

automate recurrent operations. You can create macros by recording
operations as they occur in PowerMILL, or by entering the
commands directly into a text editor. Recorded macros have a .mac

extension, and can be run from the Macro node in the Explorer.

You can record single or multiple macros to suit your needs. You

can call a macro from within another macro.

There are two types of macros:

 The initialisation macro, pmuser.mac, is run when PowerMILL

starts. By default, a blank copy of this macro exists in
C:\Program Files\Delcam\PowerMILL xxx\lib\macro folder. By

overwriting or adding PowerMILL commands to it, you can set up
your own default parameters and settings. You can also place the
pmuser macro in the pmill folder, directly below your Home area.

Doing this enables personalised macro settings for individual
login accounts.

 User-defined macros are macros you define to automate various
operations.

 In addition to tailoring PowerMILL by the creation of an
initialisation macro, you can create macros for undrawing,

drawing and resetting leads and links, setting NC preferences,
defining regularly used machining sequences, and so on.

Creating macros
You can create macros by:

 Recording (see page 2) a sequence of commands within
PowerMILL.

 Writing your own macro (see page 5) using a text editor.

Macros

2 • Macros PowerMILL 2015 User Guide

Recording macros in PowerMILL
An easy way to create a macro is to record PowerMILL commands
as you work. Only the values that you change in the dialogs are

recorded in the macro. Therefore, to record a value that's already
set, you must re-enter it in a field, or re-select an option. For
example, if the finishing tolerance is currently set to 0.1 mm, and
you want the macro to store the same value, you must re-enter 0.1

in the Tolerance field during recording.

To record a macro:

1 From the Macros context menu, select Record.

This displays the Select Record Macro File dialog which is a

standard Windows Save dialog.

2 Move to the appropriate directory, enter an appropriate File name
and click Save.

The macro icon changes to red to show recording is in

progress.

 All dialog options that you want to include in your macro

must be selected during its recording. If an option already
has the desired value, re-enter it.

3 Work through the set of commands you want to record.

4 From the Macros context menu, select Stop to finish recording.

For more information, see Recording the pmuser macro (see page

113) and Recording the NC preference macro (see page 116).

PowerMILL 2015 User Guide Macros • 3

Running macros

When you run a macro, the commands recorded in the macro file

are executed.

1 Expand Macros, and select the macro you want to run.

2 From the individual macro menu, select Run.

 You can also run a macro by double-clicking its name in the

Explorer.

Running the macro you have just recorded

The location of the macro you have just recorded becomes the local

folder. So, the macro you have just recorded is available in the local
macro search path . However, the list of macros isn't updated

dynamically. To force an update:

1 Click next to Macros to collapse the contents.

2 Click next to Macros to expand and regenerate the contents.

3 Click next to to see the macros in this directory, which
includes the one you have just created.

4 • Macros PowerMILL 2015 User Guide

Editing macros

You can edit recorded macros to troubleshoot and correct any

errors.

1 Expand Macros and select the macro you want to edit.

2 From the individual macro menu, select Edit.

A Windows WordPad document opens.

 The text editor opened by default is the application
associated with macro (.mac) files.

Use the Choose default program option available in Windows

Explorer to make changes to default file type associations.

3 Edit the macro commands, and then save the file.

PowerMILL 2015 User Guide Macros • 5

Running macros from within macros

You can create small macros that perform a single operation, and

then call them from within a larger macro. This example shows how
to add the h400_prefs macro and the iniblock macro to the pmuser

macro.

1 From the pmuser macro context menu, select Edit.

2 Scroll to the bottom of the file, and add the following lines:

macro h400_prefs

macro iniblock

 If you precede a line with two forward slash characters (//),

it is treated as a comment, and is not executed.

3 Save and close pmuser.mac.

4 Exit and restart PowerMILL to check that the settings from the
pmuser macro have been activated.

Writing your own macros
A more powerful way of creating macros is to write your own. The
principles are described in the Macro User Guide (see page 9).

Macros enable you to:

 Construct expressions (see page 48).

 Use expressions to control macro flow (see page 23).

6 • Macros PowerMILL 2015 User Guide

 Use a range of relational (see page 43) operators and logical

(see page 44) operators.

 Evaluate both expressions (see page 48).

 Assign values to variables and parameters by using assignments
(see page 28).

The Menu bar option Help >Parameters >Reference > Functions lists all

the standard functions you can use in macros.

PowerMILL commands for macros

When you use PowerMILL interactively, every menu click and entry

in a dialog sends a command to the program. These are the
commands that you must enter in your macro file if you want to

drive PowerMILL from a macro.

This example shows you how to:

 Find the PowerMILL commands to include in your macros.

 Place them in a text editor such as WordPad.

 Display the macro in the Explorer.

To create a macro:

1 From the Menu bar, select View > Toolbar > Command to open the

command window.

2 Select Tools > Echo Commands from the Menu bar to echo the

issued commands in the command window.

3 To see the commands needed to calculate a block:

a Click the Block button on the Main toolbar.

b When the Block dialog opens, click Calculate, and then click

Accept.

PowerMILL 2015 User Guide Macros • 7

The command window shows the commands issued:

The commands are shown in square brackets; \r should be

ignored. The commands you need are: FORM BLOCK, EDIT

BLOCK RESET, and BLOCK ACCEPT.

4 Open WordPad, and enter the commands into it.

 The commands aren't case-sensitive so FORM BLOCK is

the same as Form Block which is the same as foRm bLock.

5 Save the file as say, iniblock.mac. The macro is added to the

macro tree.

 For more information see Running macros (see page 3).

8 • Macros PowerMILL 2015 User Guide

Adding comments to macros

It is good practice to put comments into a macro file to explain what

it does. A comment is a line of text which has no effect on the

running of the macro file but will help anyone examining the file to

understand it. Comment lines start with //. For example,

// This macro imports my standard model, creates a block,
// and a ball nosed tool.

It is also good practice to have comments explaining what each

section of the macro file does. This may be obvious when you write
the macro but later it may be difficult to understand. It is good

practice to put the comments which describe commands before the
actual commands.

// Clean all the Roughing boundaries
MACRO Clean 'boundary\Roughing'

Another use of comments is to temporarily remove a command

from a macro. When debugging or writing a macro, it is a good idea

to write one step at a time and re-run the macro after each change.
If your macro contains a lengthy calculation, or the recreation of

toolpaths, you may want to temporarily comment out the earlier
parts of the macro whilst checking the later parts. For example:

// Import the model
// IMPORT TEMPLATE ENTITY TOOLPATH "Finishing/Raster-

Flat-Finishing.ptf"

PowerMILL 2015 User Guide Macros • 9

Macro User Guide

This example shows you how to use the PowerMILL macro

programming language to create a macro which prints the words of

the counting song "Ten Green Bottles".

10 green bottles sitting on the wall

10 green bottles sitting on the wall

And if 1 green bottle should accidentally fall

There will be 9 green bottles sitting on the wall

9 green bottles sitting on the wall

9 green bottles sitting on the wall

And if 1 green bottle should accidentally fall

There will be 8 green bottles sitting on the wall

and so on until the last verse

1 green bottle sitting on the wall

1 green bottle sitting on the wall

And if 1 green bottle should accidentally fall

There will be 0 green bottles sitting on the wall.

The main steps are:

1 Creating the basic macro (see page 10).

2 Adding macro variables (see page 10).

3 Adding macro loops (see page 11).

4 Running macros with arguments (see page 12).

5 Decision making in macros (see page 15).

6 Using functions in macros (see page 17).

7 Using a SWITCH statement (see page 18).

8 Returning values from macros (see page 19).

9 Using a FOREACH loop in a macro (see page 23).

10 Using arrays in a FOREACH loop (see page 26).

10 • Macros PowerMILL 2015 User Guide

Basic macro

This shows you how to create and run a basic macro using

PowerMILL's programming language.

1 In a text editor such as WordPad enter:

PRINT "10 green bottles sitting on the wall"

PRINT "10 green bottles sitting on the wall"

PRINT "And if 1 green bottle should accidentally fall"

PRINT "There will be 9 green bottles sitting on the

wall"

2 Save the file as example.mac.

3 In PowerMILL, from the Tools menu select Toolbar > Command.

4 From the Macro context menu, select Run. This displays the

Select Macro to Run dialog.

5 Move to the appropriate directory, select example.mac, and click

Open. The macro runs and the command windows displays the

text enclosed in quotations marks (") in the macro.

Adding macro variables

The first two lines of example.mac are the same. To minimise

repetition (and for ease of maintenance) it is good practice to write
the line once and then recall it whenever it is needed. To do this

you must create a local variable to hold the line of text.

You can create different types of variables (see page 27) in
PowerMILL. To store a line of text you must use a STRING variable.

1 Open example.mac in your text editor and change it to:

// Create a variable to hold the first line

STRING bottles = "10 green bottles sitting on the wall"

PRINT $bottles

PRINT $bottles

PRINT "And if 1 green bottle should accidentally fall"

PRINT "There will be 9 green bottles sitting on the

wall"

 The first line is a comment which explains the second line.

2 Save the file as example.mac.

PowerMILL 2015 User Guide Macros • 11

3 In PowerMILL, Run the Macro. The command windows displays

the same as before:

You should be aware of several issues with variables:

 You must define all local variables before they are used, in this

case STRING bottles = "10 green bottles sitting on the

wall" defines the local variable bottles.

 The variable bottles is a local variable, so is only valid within the

macro where it is defined. It isn't a PowerMILL variable. Typing it
into the command window gives an error.

 When you have defined a local variable you can use it as many
times as you want in a macro.

 You can define as many local variables as you want in a macro.

Adding macro loops

There are two lines of the macro which are the same: PRINT

$bottles. This is acceptable in this case since the line only appears

twice, but if you wanted to repeat it 5 or 20 times it would be better

to use a loop. PowerMILL has three looping statements:

 WHILE (see page 64)

 DO - WHILE (see page 65)

 FOREACH (see page 63)

This example uses the WHILE statement to repeat the command 5

times.

1 Open example.mac in your text editor and change it to:

// Create a variable to hold the first line

STRING bottles = "10 green bottles sitting on the wall"

// Create a variable to hold the number of times

// you want to print the first line.

// In this case, 5

INT Count = 5

12 • Macros PowerMILL 2015 User Guide

// Repeat while the condition Count is greater than 0

WHILE Count > 0 {

// Print the line

PRINT $bottles

// Reduce the count by 1

$Count = Count - 1

}

// Print the last two lines

PRINT "And if 1 green bottle should accidentally fall"

PRINT "There will be 9 green bottles sitting on the

wall"

 $Count = Count - 1 is an assignment statement which is

why the variable ($Count) to the left of = must be prefixed

with $.

 The empty lines aren't necessary, but make it easier to

read the macro.

2 Save the file as example.mac.

3 In PowerMILL, Run the Macro. The command windows displays:

 Changing INT Count = 5 to INT Count = 10 prints 10 green

bottles sitting on the wall ten times, rather than five.

Running macros with arguments

The loop you added to example.mac works well if you always want to

print 10 green bottles sitting on the wall the same number of times.

However, if you want to change the number of repetitions at run
time, rather than editing the macro each time, it is much better to

write the macro so it is given the number of repetitions. To do this
you need to create a Main FUNCTION (see page 52).

1 Open example.mac in your text editor and change it to:

// Create a Main FUNCTION to hold the number of times

// you want to print the first line.

FUNCTION Main (INT Count) {

// Create a variable to hold the first line

PowerMILL 2015 User Guide Macros • 13

STRING bottles = "10 green bottles sitting on the

wall"

// Repeat while the condition Count is greater than

0

WHILE Count > 0 {

// Print the line

PRINT $bottles

// Reduce the count by 1

$Count = Count - 1

}

// Print the last two lines

PRINT "If 1 green bottle should accidentally fall"

PRINT "There will be 9 green bottles sitting on the

wall"

}

2 Save the file as example.mac.

3 To run the macro you can't select Run from the Macro context
menu, as you need to give a value for Count. Therefore, in the

command window type:

MACRO example.mac 5

Where 5 is the value for Count. The command windows displays:

 If you get a warning that the macro can't be found, check
you have created the necessary macro path (see page

112).

Adding your own functions

As well as a Main function you can create your own functions. This is

useful as a way of separating out a block of code. You can use

functions:

 to build up a library of useful operations

 to make a macro more understandable.

 You can call a function any number of times within a macro.

This example separates out the printing of the first line into its own
function so that the Main function is more understandable.

1 Open example.mac in your text editor and change it to:

14 • Macros PowerMILL 2015 User Guide

FUNCTION PrintBottles(INT Count) {

// Create a variable to hold the first line

STRING bottles = "10 green bottles sitting on the

wall"

// Repeat while the condition Count is greater than

0

WHILE Count > 0 {

// Print the line

PRINT $bottles

// Reduce the count by 1

$Count = Count - 1

}

}

FUNCTION Main (INT Count) {

// Print the first line Count number of times

CALL PrintBottles(Count)

// Print the last two lines

PRINT "If 1 green bottle should accidentally fall"

PRINT "There will be 9 green bottles sitting on the

wall"

}

2 Save the macro.

3 Run the macro by typing MACRO example.mac 5 in the command

window.

This produces the same result as before.

 The order of functions in a macro is irrelevant. For example, it
doesn't matter whether the Main function is before or after

the PrintBottles function.

 It is important that each function name is unique and that the
macro has a function called Main.

 You can have any number of functions in a macro.

PowerMILL 2015 User Guide Macros • 15

Decision making in macros

The macro example.mac runs provided that you enter a positive

argument. However, if you always want the 10 green bottles sitting

on the wall line printed at least once use:

 A DO - WHILE (see page 65) loop as it executes all the commands

before testing the conditional expression.

 An IF (see page 56) statement.

DO - WHILE loop

1 Edit the PrintBottles function in example.mac to

FUNCTION PrintBottles(INT Count) {

// Create a variable to hold the first line

STRING bottles = "10 green bottles sitting on the

wall"

// Repeat while the condition Count is greater than

0

DO {

 // Print the line

 PRINT $bottles

 // Reduce the count by 1

 $Count = Count - 1

} WHILE Count > 0

}

The main function remains unchanged:

FUNCTION Main (INT Count) {

// Print the first line Count number of times

CALL PrintBottles(Count)

// Print the last two lines

PRINT "And if 1 green bottle should accidentally

fall"

PRINT "There will be 9 green bottles sitting on the

wall"

}

2 Type MACRO example.mac 0 in the command window.

The 10 green bottles sitting on the wall line is printed once.

16 • Macros PowerMILL 2015 User Guide

IF statement

You can use an IF statement to ensure the 10 green bottles sitting on

the wall line is printed at least twice.

1 Edit the Main function in example.mac to:

FUNCTION Main (INT Count) {

// Make sure that Count is at least two

IF Count < 2 {

$Count = 2

}

// Print the first line Count number of times

CALL PrintBottles(Count)

// Print the last two lines

PRINT "And if 1 green bottle should accidentally

fall"

PRINT "There will be 9 green bottles sitting on the

wall"

}

The PrintBottles function remains unchanged:

FUNCTION PrintBottles(INT Count) {

// Create a variable to hold the first line

STRING bottles = "10 green bottles sitting on the

wall"

// Repeat while the condition Count is greater than

0

WHILE Count > 0 {

 // Print the line

 PRINT $bottles

 // Reduce the count by 1

 $Count = Count - 1

}

}

2 Type MACRO example.mac 0 in the command window.

The 10 green bottles sitting on the wall line is printed twice.

PowerMILL 2015 User Guide Macros • 17

More on functions in macros

So far you have only printed the first verse of the counting song

"Ten Green Bottles". To make your macro print out all the verses
you must change the PrintBottles function so it takes two

arguments:

 Count for the number of times "X green bottles" is printed.

 Number for the number of bottles.

1 Edit the PrintBottles function in example.mac to

FUNCTION PrintBottles(INT Count, INT Number) {

// Create a variable to hold the first line

STRING bottles = String(Number) + " green bottles

sitting on the wall"

// Repeat while the condition Count is greater than

0

WHILE Count > 0 {

// Print the line

PRINT $bottles

// Reduce the count by 1

 Count = Count - 1

}

}

This adds a second argument to the PrintBottles function. It then

uses a parameter function to convert the Number to a string
value, STRING (Number). It is then concatenated (+)with green

bottles sitting on the wall to make up the bottles string.

2 Edit the Main function in example.mac to:

FUNCTION Main (INT Count) {

// Make sure that Count is at least two

IF Count < 2 {

$Count = 2

}

// Start with ten bottles

INT Bottles = 10

WHILE Bottles > 0 {

// Print the first line 'Count' number of times

CALL PrintBottles(Count, Bottles)

// Count down Bottles

$Bottles = $Bottles - 1

// Build the number of 'bottles_left' string

STRING bottles_left = "There will be " +

string(Bottles) + " green bottles sitting on the

wall"

// Print the last two lines

18 • Macros PowerMILL 2015 User Guide

PRINT "If 1 green bottle should accidentally fall"

PRINT $bottles_left

}

}

3 Type MACRO example.mac 2 in the command window.

 In Main when you CALL PrintBottles you give it two arguments

Count and Bottles whilst within the PrintBottles function the
Bottles argument is referred to as Number. The parameters

passed to a function don't have to have the same names as

they are called within the function.

 The order you call the arguments is important.

 Any changes made to the value of a parameter within a
function doesn't alter the value of parameter in the calling
function unless the parameter is defined as an OUTPUT (see

page 19) value.

Using the SWITCH statement

So far you have used numerals to print the quantity of bottles but it
would be better to use words. So, instead of printing 10 green bottles

… print Ten green bottles ….

One way of doing this is to use a large IF - ELSEIF (see page 57)

chain to select the text representation of the number. Another way
is to use the SWITCH (see page 59) statement.

SWITCH Number {

CASE 10

$Text = "Ten"

BREAK

CASE 9

$Text = "Nine"

BREAK

CASE 8

$Text = "Eight"

BREAK

CASE 7

$Text = "Seven"

PowerMILL 2015 User Guide Macros • 19

BREAK

CASE 6

$Text = "Six"

BREAK

CASE 5

$Text = "Five"

BREAK

CASE 4

$Text = "Four"

BREAK

CASE 3

$Text = "Three"

BREAK

CASE 2

$Text = "Two"

BREAK

CASE 1

$Text = "One"

BREAK

DEFAULT

$Text = "No"

BREAK

}

The switch statement matches the value of its argument (in this
case Number) with a corresponding case value and executes all the

subsequent lines until it encounters a BREAK statement. If no
matching value is found the DEFAULT is selected (in this case No).

 DEFAULT is an optional step.

Returning values from macros

This shows you how to create an OUTPUT variable from a SWITCH

statement.

1 Create a new function called NumberStr containing the SWITCH

statement in Using the SWITCH statement (see page 18) and a
first line of:

FUNCTION NumberStr(INT Number, OUTPUT STRING Text) {

and a last line of:

}

2 Edit the PrintBottles function in example.mac to

FUNCTION PrintBottles(INT Count INT Number) {

// Convert Number into a string

STRING TextNumber = ''

CALL NumberStr(Number,TextNumber)

20 • Macros PowerMILL 2015 User Guide

// Create a variable to hold the first line

STRING bottles = TextNumber + " green bottles

sitting on the wall"

// Repeat while the condition Count is greater than

0

WHILE Count > 0 {

// Print the line

PRINT $bottles

// Reduce the count by 1

$Count = Count - 1

}

}

This adds the OUTPUT variable to the PrintBottles function.

3 Edit the Main function in example.mac to:

FUNCTION Main (INT Count) {

// Make sure that Count is at least two

IF Count < 2 {

$Count = 2

}

// Start with ten bottles

INT Bottles = 10

WHILE Bottles > 0 {

// Print the first line Count number of times

CALL PrintBottles(Count, Bottles)

// Countdown Bottles

$Bottles = $Bottles - 1

// Convert Bottles to string

STRING BottlesNumber = ''

CALL NumberStr(Bottles, BottlesNumber)

// Build the number of bottles left string

STRING bottles_left = "There will be " +

lcase(BottlesNumber) + " green bottles sitting on

the wall"

// Print the last two lines

PRINT "If one green bottle should accidentally

fall"

PRINT $bottles_left

}

}

The BottlesNumber variable is declared in the WHILE loop of the
MAIN function.

PowerMILL 2015 User Guide Macros • 21

 Each code block or function can define its own set of local

variables; the scope of the variable is from its declaration
to the end of the enclosing block or function.

4 Add the NumberStr function into example.mac.

FUNCTION PrintBottles(INT Count, INT Number) {

// Convert Number into a string

STRING TextNumber = ''

CALL NumberStr(Number,TextNumber)

// Create a variable to hold the first line

STRING bottles = TextNumber + " green bottles sitting

on the wall"

// Repeat while the condition Count is greater than 0

WHILE Count > 0 {

// Print the line

PRINT $bottles

// Reduce the count by 1

$Count = Count - 1

}

}

FUNCTION Main (INT Count) {

// Make sure that Count is at least two

IF Count < 2 {

$Count = 2

}

// Start with ten bottles

INT Bottles = 10

WHILE Bottles > 0 {

// Print the first line Count number of times

CALL PrintBottles(Count, Bottles)

// Countdown Bottles

$Bottles = $Bottles - 1

// Convert Bottles to string

STRING BottlesNumber = ''

CALL NumberStr(Bottles, BottlesNumber)

// Build the number of bottles left string

STRING bottles_left = "There will be " +

lcase(BottlesNumber) + " green bottles sitting on the

wall"

// Print the last two lines

PRINT "If one green bottle should accidentally fall"

22 • Macros PowerMILL 2015 User Guide

PRINT $bottles_left

}

}

FUNCTION NumberStr(INT Number, OUTPUT STRING Text) {

SWITCH Number {

CASE 10

$Text = "Ten"

BREAK

CASE 9

$Text = "Nine"

BREAK

CASE 8

$Text = "Eight"

BREAK

CASE 7

$Text = "Seven"

BREAK

CASE 6

$Text = "Six"

BREAK

CASE 5

$Text = "Five"

BREAK

CASE 4

$Text = "Four"

BREAK

CASE 3

$Text = "Three"

BREAK

CASE 2

$Text = "Two"

BREAK

CASE 1

$Text = "One"

BREAK

DEFAULT

$Text = "No"

BREAK

}

}

To run the macro:

PowerMILL 2015 User Guide Macros • 23

Type MACRO example.mac 2 in the command window.

Using a FOREACH loop in a macro

This example shows you how to use a FOREACH (see page 63) loop

to control the number of bottles rather than a WHILE loop.

1 Edit the Main function in example.mac to:

FUNCTION Main (INT Count) {

// Make sure that Count is at least two

IF Count < 2 {

$Count = 2

}

FOREACH Bottles IN {10,9,8,7,6,5,4,3,2,1} {

// Print the first line Count number of times

CALL PrintBottles(Count, Bottles)

// Countdown Bottles

$Bottles = $Bottles - 1

// Convert Bottles to string

STRING BottlesNumber = ''

CALL NumberStr(Bottles, BottlesNumber)

// Build the number of bottles left string

STRING bottles_left = "There will be " +

lcase(BottlesNumber) + " green bottles sitting on

the wall"

// Print the last two lines

PRINT "If one green bottle should accidentally

fall"

PRINT $bottles_left

}

}

The rest of example.mac remains unaltered.

FUNCTION PrintBottles(INT Count, INT Number) {

// Convert Number into a string

STRING TextNumber = ''

24 • Macros PowerMILL 2015 User Guide

CALL NumberStr(Number,TextNumber)

// Create a variable to hold the first line

STRING bottles = TextNumber + " green bottles sitting

on the wall"

// Repeat while the condition Count is greater than 0

WHILE Count > 0 {

// Print the line

PRINT $bottles

// Reduce the count by 1

$Count = Count - 1

}

}

FUNCTION Main (INT Count) {

// Make sure that Count is at least two

IF Count < 2 {

$Count = 2

}

FOREACH Bottles IN {10,9,8,7,6,5,4,3,2,1} {

// Print the first line Count number of times

CALL PrintBottles(Count, Bottles)

// Countdown Bottles

$Bottles = $Bottles - 1

// Convert Bottles to string

STRING BottlesNumber = ''

CALL NumberStr(Bottles, BottlesNumber)

// Build the number of bottles left string

STRING bottles_left = "There will be " +

lcase(BottlesNumber) + " green bottles sitting on the

wall"

// Print the last two lines

PRINT "If one green bottle should accidentally fall"

PRINT $bottles_left

}

}

FUNCTION NumberStr(INT Number, OUTPUT STRING Text) {

SWITCH Number {

CASE 10

$Text = "Ten"

BREAK

CASE 9

$Text = "Nine"

BREAK

CASE 8

PowerMILL 2015 User Guide Macros • 25

$Text = "Eight"

BREAK

CASE 7

$Text = "Seven"

BREAK

CASE 6

$Text = "Six"

BREAK

CASE 5

$Text = "Five"

BREAK

CASE 4

$Text = "Four"

BREAK

CASE 3

$Text = "Three"

BREAK

CASE 2

$Text = "Two"

BREAK

CASE 1

$Text = "One"

BREAK

DEFAULT

$Text = "No"

BREAK

}

}

 You don't need to declare the type or initial value of the
Bottles variable as the FOREACH loop handles this.

To run the macro:

Type MACRO example.mac 2 in the command window.

This gives exactly the same output as the Returning values from

macros (see page 19) example. It shows you an alternative way
of creating the same output.

26 • Macros PowerMILL 2015 User Guide

Using arrays in a FOREACH loop

This example shows you how to use an array (see page 34) in a
FOREACH loop, rather than using a list, to control the number of

bottles.

1 Edit the Main function in example.mac to:

FUNCTION Main (INT Count) {

// Make sure that Count is at least two

IF Count < 2 {

$Count = 2

}

// Define an array of bottle numbers

INT ARRAY BottleArray[10] = {10,9,8,7,6,5,4,3,2,1}

FOREACH Bottles IN BottleArray {

// Print the first line Count number of times

CALL PrintBottles(Count, Bottles)

// Count down Bottles

$Bottles = $Bottles - 1

// Convert Bottles to string

STRING BottlesNumber = ''

CALL NumberStr(Bottles, BottlesNumber)

// Build the number of bottles left string

STRING bottles_left = "There will be " +

lcase(BottlesNumber) + " green bottles sitting on

the wall"

// Print the last two lines

PRINT "If one green bottle should accidentally

fall"

PRINT $bottles_left

}

}

The rest of example.mac remains unaltered.

2 Type MACRO example.mac 2 in the command window.

PowerMILL 2015 User Guide Macros • 27

This gives exactly the same output as the Returning values from

macros (see page 19) example. It shows you an alternative way
of creating the same output.

Pausing a macro for user interaction

You can pause a running macro to allow user input, such as the
selection of surfaces or curves. The command to do this is:

MACRO PAUSE "User help instructions"

This displays a dialog containing the supplied text and a button to

allow the user to RESUME the macro.

When the macro is paused, users can perform any actions within
PowerMILL, with the exception of running another macro. The

current macro remains paused until the user clicks the RESUME

button. If the user closes the dialog, by clicking the dialog close icon
, this ends any currently running macros, including the paused

macro.

For example:

GET EXAMPLES 'cowling.dgk'

ROTATE TRANSFORM TOP

CREATE TOOL ; BALLNOSED

EDIT TOOL ; DIAMETER 10

EDIT BLOCK RESET

CREATE BOUNDARY ; SELECTED

STRING Msg = "Select surfaces for boundary, and

press"+crlf+"RESUME when ready to continue"

EDIT BLOCK RESET

MACRO PAUSE $Msg

EDIT BOUNDARY ; CALCULATE

If you don't enter a string after MACRO PAUSE the macro pauses but

doesn't display a RESUME dialog. To resume the macro either type

MACRO RUN or provide another mechanism to continue the macro.

Variables in macros

You can create variables in macros just as you can in a PowerMILL
project. When you create a variable in a macro, it has the same

properties as a PowerMILL parameter, and can store either a value
or an expression.

 There are some restrictions on the use of macro variables.

 Variable names must start with an alphabetic character (a-z, A-

Z) and may contain any number of subsequent alphanumeric
characters (a-z, A-Z, 1-9, _). For example, you can name a

variable Count1 but not 1Count.

28 • Macros PowerMILL 2015 User Guide

 Variable names are case insensitive. For example, Count, count,

and CoUnT all refer to the same variable.

 All variables must have a type, which can be:

INT — Integer numbers. For example, 1, 21, 5008.

REAL — Real numbers. For example, 201, -70.5, 66.0.

STRING — A sequence of characters. For example, hello.

BOOL — Truth values, either 0 (false) or 1 (true).

ENTITY — A unique value that references an existing PowerMILL

entity.

Object — A collection of parameters that PowerMILL groups

together, such as Block, or Connections.

 You must declare the variable type, for example:

INT Count = 5

REAL Diameter = 2.5

STRING Tapefile = "MyFile.tap"

 You can access any of the PowerMILL parameters in variable
declarations, expressions, or assignments.

 Any variables you create in a macro are only accessible from
within the macro. When the macro has finished the variable is no

longer accessible and can't be used in expressions or other
macros.

 If you need to create a variable that can be used at any time in a
PowerMILL project then you should create a User Parameter.

Assigning parameters

When you assign a value to a variable the expression is evaluated

and the result is assigned, the actual expression is not retained.
This is the same as using the EVAL modifier in the PowerMILL

parameter EDIT PAR command. These two statements are

equivalent:

EDIT PAR "Stepover" EVAL "Tool.Diamter * 0.6"

$Stepover = Tool.Diameter * 0.6

 Variable and parameter names may optionally be prefixed
with a $ character. In most cases, you can omit the $ prefix,

but it MUST be used when you assign a value to either a

variable or parameter within a macro.

PowerMILL 2015 User Guide Macros • 29

Inputting values into macros

An input dialog enables you to enter specific values into a macro.

The basic structure is:

$<variable> = INPUT <string-prompt>

This displays an input dialog with a specified prompt as its title
which enables you to enter a value.

 If you add an input dialog you should consider adding an error
function to check the value entered is reasonable.

For example:
string prompt = "Enter a number"

$i = input $prompt

$err = ERROR i

}

produces this dialog:

You can also use INPUT in the variable definition.

For example:

REAL X = INPUT "Enter a number"

For more information see User selection of entities in macros (see
page 31).

Asking a Yes/No question

A Yes/No query dialog is a very simple dialog.

Selecting Yes assigns 1 to the variable.

Selecting No assigns 0 to the variable.

The basic structure is:

$<variable> = QUERY <string-prompt>

For example:

string yesnoprompt = "You entered 5. Would you like to

have another go?"

bool carryon = 0

$carryon = query $yesnoprompt

30 • Macros PowerMILL 2015 User Guide

produces this dialog:

Creating a message dialog

There are three types of message dialogs:

 Information dialogs

 Warning dialogs

 Error dialogs

The basic structure is:

MESSAGE INFO|WARN|ERROR <expression>

For example, an input dialog to enter a number into a macro:

real i = 3

string prompt = "Enter a number"

do {

bool err = 0

do {

$i = input $prompt

$err = ERROR i

if err {

$prompt = "Please 'Enter a number'"

}

} while err

string yesnoprompt = "You entered " + string(i) + ".

Would you like to have another go?"

bool carryon = 0

$carryon = query $yesnoprompt

} while $carryon

message info "Thank you!"

An example to find out if a named toolpath exists:

string name = ""

$name = input "Enter the name of a toolpath"

if pathname('toolpath',name) == "" {

message error "Sorry. Couldn't find toolpath " + name

} else {

message info "Yes! Toolpath " + name + " exists!"

}

PowerMILL 2015 User Guide Macros • 31

Carriage return in dialogs

You can specify a carriage return to control the formatting of the

text in a message dialog using crlf.

For example, looking at the input dialog to enter a number into a

macro:

real i = 3

string prompt = "Enter a number"

do {

bool err = 0

do {

$i = input $prompt

$err = ERROR i

if err {

$prompt = "Please 'Enter a number'"

}

} while err

string yesnoprompt = "You entered " + string(i) + "." +

crlf + " Would you like to have another go?"

bool carryon = 0

$carryon = query $yesnoprompt

} while $carryon

message info "Thank you!"

produces this query dialog:

User selection of entities in macros

Use the INPUT command to prompt the user to select a specific

entity in PowerMILL, such as a toolpath or a tool. You can use this

to:

 Display a list of available entities

 Prompt the user to select one of them.

For example, to list all the available tools and then ask the user to

select one:
STRING ToolName = INPUT ENTITY TOOL "Please select a

Tool."

 This command returns the name of the tool the user selected.

32 • Macros PowerMILL 2015 User Guide

This example creates two folders, creates two tool in each folder,

then asks the user to select one of the tools:

// Create some tools in folders

CREATE FOLDER 'Tool' 'Endmills'

CREATE IN 'Tool\Endmills' TOOL 'End 20' ENDMILL

EDIT TOOL ; DIAMETER 20

CREATE IN 'Tool\Endmills' TOOL 'End 10' ENDMILL

EDIT TOOL ; DIAMETER 10

CREATE FOLDER 'Tool' 'Balls'

CREATE IN 'Tool\Balls' TOOL 'Ball 12' BALLNOSED

EDIT TOOL ; DIAMETER 12

CREATE IN 'Tool\Balls' TOOL 'Ball 10' BALLNOSED

EDIT TOOL ; DIAMETER 10

// Prompt user to pick one

STRING ToolName = ''

$ToolName = INPUT ENTITY TOOL "Please select a Tool."

You can also ask for the selection of a number of entities. The result

is the list of entities selected, which can be assigned to either a list
of strings, or list of entities.

ENTITY LIST $Selected_Toolpaths = INPUT ENTITY MULTIPLE

toolpath "which toolpaths do you want to check?"

STRING LIST ToolpathNames = INPUT ENTITY MULTIPLE

TOOLPATH "Select toolpaths to check"

You can then iterate over the user selection with a FOREACH loop:

FOREACH $tp in ToolpathNames {

ACTIVATE TOOLPATH $tp.Name

EDIT COLLISION APPLY

}

User selection from a list of options

You can use the INPUT command to prompt the user to select from

a list of options that your macro supplies. The syntax for this is:

INT value = INPUT CHOICE <string-array> <prompt>

For example, suppose you have a machining macro where
everything is setup except that you want to give the user the choice

of cut direction to use. You can do this by using a CHOICE input as
follows:

// Create an array of strings from the CutDirection

parameter

STRING ARRAY Opts[] = values(CutDirection)

INT C = INPUT CHOICE $Opts "Choose the Cut Direction

you want"

$CutDirection = $C

}

PowerMILL 2015 User Guide Macros • 33

Or for another example, you can increase or decrease the number

of options the user can select. You can limit the options available to
only one, such as Gouge Check or Collision Check a toolpath, or you

can increase the options available so the user can choose between
the two options. To create this list, enter the following:

STRING ARRAY Opts[] = {"Gouge check only", "Collision

check only", "Gouge and Collision check"} INT C = INPUT

CHOICE $Opts "Pick an option"

SWITCH $C {

CASE 0:

MACRO "Gouge_Check.mac"

BREAK

CASE 2:

MACRO "Gouge_Check.mac"

// Intended fall through to next command

CASE 1:

MACRO "Collision_Check.mac"

BREAK

}

 The above example uses the 'fall through' behavior of cases
within a switch block (see page 59). If you are not used to
using the switch statement you can use an IFELSE statement

instead:

IF $C==0 {

 MACRO "Gouge_Check.mac"

} ELSEIF $C==1 {

 MACRO "Collision_Check.mac"

} ELSEIF $C==2 {

 MACRO "Gouge_Check.mac"

 MACRO "Collision_Check.mac"

}

User selection of a file name

You can prompt your user for a filename with Use the FILESELECT

command to prompt the user for a file name. This command
displays an Open dialog which enables user to browse for a file.

For example:

STRING Filename = ''

$Filename = FILESELECT "Please select a pattern file"

34 • Macros PowerMILL 2015 User Guide

Arrays and lists

Arrays

In addition to simple variables of type INT, REAL, or STRING you

can also have arrays of these types. When you declare an array you
must initialise all of its members using an initialisation list. When

you have specified an array you cannot change its size. The syntax
for an array is:

BASIC-TYPE ARRAY name[n] = {…}

For example, to declare an array of three strings:

STRING ARRAY MyArray[3] = {'First','Second','Third'}

All the items in the initialisation list must be the same BASIC-TYPE

as the array.

You can access the items of the array by subscripting. The first item

in the array is subscript 0. For example:

INT Index = 0

WHILE Index < size(MyArray) {

PRINT MyArray[Index]

$Index = Index + 1

}

Prints:

First

Second

Third

If you leave the size of the array empty, then PowerMILL

determines its size from the number of elements in the initialisation
list. For example:

STRING ARRAY MyArray[] =

{'First','Second','Third','Fourth'}

PRINT = size(MyArray)

Prints:

4

Lists

PowerMILL also has a LIST type. The main difference between a list

and an array is that the list doesn't have a fixed size, so you can
add and remove items to it. You can create lists:

 that are empty to start with

 from an initialisation list

 from an array.

PowerMILL 2015 User Guide Macros • 35

// Create an empty list

STRING LIST MyStrings = {}

// Create a list from an array

STRING LIST MyList = MyArray

// Create a list using an initialisation list

STRING LIST MyListTwo = {'First','Second'}

You can use two inbuilt functions add_first() and add_last() to

add items to a list.

For example using the inbuilt function add_last():

CREATE PATTERN Daffy

CREATE PATTERN Duck

// Create an empty list of strings

STRING LIST Patterns = {}

FOREACH pat IN folder('Pattern') {

// Add the name of the pattern to the list

int s = add_last(Patterns, pat.Name)

}

FOREACH name IN Patterns {

 PRINT = $name

}

Prints:

Daffy

Duck

You can also add items to the front of a list by using the inbuilt

function add_first():

CREATE PATTERN Daffy

CREATE PATTERN Duck

// Create an empty list of strings

STRING LIST Patterns = {}

FOREACH pat IN folder('Pattern') {

// Add the name of the pattern to the list

int s = add_first(Patterns, pat.Name)

}

FOREACH name IN Patterns {

PRINT = $name

}

Prints:

Duck

Daffy

36 • Macros PowerMILL 2015 User Guide

Using lists

A list, like an array, contains multiple values. You can create a list

with initial values:

INT LIST MyList = {1,2,3,4}

 Unlike an ARRAY, you do not use the [] syntax.

You can specify an empty list:

INT LIST MyEmptyList = {}

You can use lists anywhere you might use an array. For instance,

you can use a list in a FOREACH loop:

FOREACH i IN MyList {

PRINT = i

}

or to initialise an array:

INT ARRAY MyArray[] = MyList

You can also use an array to initialise a list:

INT LIST MyList2 = MyArray

You can pass a list to macro functions that expect an array:

FUNCTION PrintArray(INT ARRAY MyArray) {

FOREACH i IN Myarray {

PRINT = i

}

}

FUNCTION Main() {

INT LIST MyList = {10,20,30,40}

CALL PrintArray(MyList)

}

You will normally access the elements of a list with a FOREACH loop,
but you can also access the elements using the array subscripting

notation:

INT Val = MyList[2]

PowerMILL 2015 User Guide Macros • 37

Adding items to a list summary

The main differences between a list and an array is that a list can

have items added to it and removed from it.

To add an item to a list you can use either of the inbuilt functions

add_first() or add_last().

For example, to collect the names of all the toolpaths in a folder:

// Create an empty list

STRING LIST TpNames = {}

FOREACH tp IN folder('Toolpath\MyFolder') {

INT Size = add_last(TpNames, tp.name)

}

For more information see Adding comments to macros (see page
86).

Removing items from a list summary

The main differences between a list and an array is that a list can

have items added to it and removed from it.

To remove an item from a list you can use either of the inbuilt

functions remove_first() or remove_last().

For example, if you have a list of toolpath names some of which are
batched and you want to ask the user whether they want them

calculated now. You can use a function which removes calculated
toolpaths from the list and creates a query message for the rest.

FUNCTION CalculateNow(STRING LIST TpNames) {

// Cycle through the list

FOREACH Name IN TpNames {

IF entity('toolpath',Name).Calculated {

// Toolpath already calculated so

// remove name from list

BOOL success = remove(TpNames,Name)

}

}

// Do we have any names left

IF size(TpNames) > 0 {

// Build the prompt string

STRING Msg = "These toolpaths are uncalculated"

FOREACH name IN TpNames {

$Msg = Msg + CRLF + name

}

$Msg = Msg + CRLF + "Do you want to calculate them

now?"

// Ask the user if they want to proceeed

bool yes = 0

38 • Macros PowerMILL 2015 User Guide

$yes = QUERY $msg

IF yes {

// Loop through the toolpaths and calculate them

WHILE size(TpNames) > 0 {

 STRING Name = remove_first(TpNames)

 ACTIVATE TOOLPATH $Name

 EDIT TOOLPATH ; CALCULATE

}

}

}

}

You could use a FOREACH loop rather than a WHILE loop:

FOREACH Name IN TpNames {

ACTIVATE TOOLPATH $Name

EDIT TOOLPATH ; CALCULATE

}

PowerMILL has an inbuilt function which allows you to remove

duplicate items from a list: remove_duplicates. For example, to

determine how many different tool diameters there are in your
toolpaths you could add the tool diameters from each toolpath and

then remove the duplicates:

REAL LIST Diameters = {}

FOREACH tp IN folder('toolpath') {

INT s = add_first(Diameters, tp.Tool.Diameter)

}

INT removed = remove_duplicates(Diameters)

For more information, see Removing items from a list (see page 86)
or Removing duplicate items in a list (see page 85).

Building a list

You can use the inbuilt member() function in a macro function to

build a list of tool names used by toolpaths or boundaries without

any duplicates:

FUNCTION ToolNames(STRING FolderName, OUTPUT STRING LIST

ToolNames) {

// loop over all the items in FolderName

FOREACH item IN folder(FolderName) {

// Define local working variables

STRING Name = ''

INT size = 0

// check that the item's tool exists

// it might not have been set yet

IF entity_exists(item.Tool) {

// get the name and add it to our list

PowerMILL 2015 User Guide Macros • 39

$Name = item.Tool.Name

IF NOT member(FolderName, Name) {

 $dummy = add_last(FolderName, Name)

}

}

// Check whether this item has a reference tool

// and that it has been set

IF active(item.ReferenceTool) AND

entity_exists(item.ReferenceTool) {

// get the name and add it to our list

$Name = item.ReferenceTool.Name

IF NOT member(FolderName, Name) {

 $dummy = add_last(FolderName, Name)

}

}

}

}

Since this function can work on any toolpath, or boundary folder,

you can collect all the tools used by the toolpaths in one list and all
of the tools used by boundaries in another list. You can do this by

calling the macro function twice:

STRING LIST ToolpathTools = {}

STRING LIST BoundaryTools = {}

CALL ToolNames('Toolpath',ToolpathTools)

CALL ToolNames('Boundary',BoundaryTools)

To return a list containing the items from both sets with any

duplicates removed:

STRING LIST UsedToolNames = set_union(ToolpathTools,

BoundaryTools)

Subtract function

You can use the subtract() function to determine what happened

after carrying out a PowerMILL command. For example, suppose
you to find out if any new toolpaths are created during a toolpath

verification. If you get the list of toolpath names before the
operation, and the list of names after the operation, and then

subtract the ‘before’ names from the ‘after’ names you are left with
the names of any new toolpaths.

FUNCTION GetNames(STRING FolderName, OUTPUT STRING LIST

Names) {

FOREACH item IN folder(FolderName) {

INT n = add_last(Names, item.Name)

}

}

FUNCTION Main() {

40 • Macros PowerMILL 2015 User Guide

STRING LIST Before = {}

CALL GetNames('toolpath',Before)

EDIT COLLISION APPLY

STRING LIST After = {}

CALL GetNames('toolpath',After)

STRING LIST NewNames = subtract(After, Before)

IF is_empty(NewNames) {

PRINT "No new toolpaths were created."

} ELSE {

PRINT "The new toolpaths created are:"

FOREACH item IN NewNames {

PRINT = item

}

}

}

Entity variables

PowerMILL has a special variable type ENTITY. You can use ENTITY

variables to refer to existing PowerMILL entities such as toolpaths,

tools, boundaries, patterns, workplanes, and so on. You cannot be
use this command to create new entities.

For example:

// create an entity variable that references boundary

entity 'Duck'

ENTITY Daffy = entity('boundary','Duck')

The inbuilt functions, such as folder() return lists of entities so

you can store the result of the call in your own list and array
variables:

For example:

ENTITY List Toolpaths = folder('toolpath')

When looping over folder items in a FOREACH the loop variable that

is automatically created has the type ENTITY. Therefore the

following code is syntactically correct:

FOREACH tp IN folder('toolpath') {

ENTITY CurrentTP = tp

PRINT = CurrentTP.Name

}

You can also pass ENTITY variables to functions (and passed back
from function) by using an OUTPUT argument:

PowerMILL 2015 User Guide Macros • 41

For example:

FUNCTION Test(OUTPUT ENTITY Ent) {

$Ent = entity('toolpath','2')

}

FUNCTION Main() {

ENTITY TP = entity('toolpath','1')

CALL Test(TP)

PRINT = TP.Name

}

Additionally, you can use an ENTITY variable anywhere in

PowerMILL that is expecting a entity name.

For example:

ENTITY tp = entity('toolpath','1')

ACTIVATE TOOLPATH $tp

Object variables

PowerMILL has a variable type called OBJECT which can hold any

collection of variables that PowerMILL pre-defines, such as Block or
Connections.

For example:
// Get the current set of block parameters

OBJECT myObject = Block

// Activate a toolpath (this may change the block)

ACTIVATE TOOLPATH "Daffy"

// Reset the block to its old state

$Block = myObject

Whilst you cannot create an ARRAY of OBJECT you can create a

LIST of OBJECTs:

For example:
OBJECT LIST myObjects = {Block,Connections}

FOREACH ob IN myObjects {

PRINT PAR "ob"

}

As you can see from the above example, each object in a list may
be different. It is the responsibility of the macro writer to keep track

of the different types of OBJECT. PowerMILL has an inbuilt function

get_typename() to help with this.

For example:
OBJECT LIST myObjects = {Block,Connections}

FOREACH ob IN myObjects {

PRINT = get_typename(ob)

}

42 • Macros PowerMILL 2015 User Guide

Which prints:
Block

ToolpathConnections

As with all lists, you can also access the elements by index:
PRINT = get_typename(myObjects[0])

PRINT = get_typename(myObjects[1])

Objects can also be passed to and from macro FUNCTIONs.

For example:
FUNCTION myBlkFunction(OBJECT blk) {

IF get_typename(blk) != "Block" {

MESSAGE ERROR "Expecting a Block object"

MACRO ABORT

}

// Code that works on block objects

}

// Find block with maximum zrange

FUNCTION myZrangeBlockFunc(OUTPUT OBJECT Blk) {

// The

REAL zrange = 0

FOREACH tp IN folder('toolpath') {

// find zlength of this block

REAL z = tp.Block.Limits.ZMax - tp.Block.Limits.ZMin

IF z > zrange {

// Copy if longer than previously

$Blk = Block

$zrange = z

}

}

}

Vectors and points

In PowerMILL vectors and points are represented by an array of

three reals.

PowerMILL contains point and vector parameters, for example the
Workplane.Origin, Workplane.ZAxis, ToolAxis.Origin, and

ToolAxis.Direction. You can create your own vector and point

variables:

REAL ARRAY VecX[] = {1,0,0}

REAL ARRAY VecY[] = {0,1,0}

REAL ARRAY VecZ[] = {0,0,1}

REAL ARRAY MVecZ[] = {0,0,-1}

REAL ARRAY Orig[] = {0,0,0}

For more information, see the inbuilt Vectors and points functions
(see page 70)

PowerMILL 2015 User Guide Macros • 43

Comparing variables

Comparing variables allows you to check information and defines
the course of action to take when using IF (see page 56) statements

and WHILE (see page 64) statements.

The result of a comparison is either true or false. When true the
result is 1, when false the result is 0.

A simple comparison may consist of two variables with a relational
operator between them:

Relational operator Description

 Symbol Text

== EQ is equal to

!= NE is not equal to

< LT is less than

<= LE is less than or equal

to

> GT is greater than

>= GE is greater than or

equal to

 You can use either the symbol or the text in a comparison.

For example,

BOOL C = (A == B)

is the same as:

BOOL C = (A EQ B)

C is assigned 1 (true) if A equals B and . If A doesn't equal B, then

C is 0 (false).

 The operators = and == are different.

The single equal operator, =, assigns the value on the right-
hand side to the left-hand side.

The double equals operator, ==, compares two values for
equality.

If you compare the values of two strings, you must use the correct
capitalisation.

For example, if you want to check that the tool is an end mill, then
you must use:

Tool.Type == 'end_mill'

44 • Macros PowerMILL 2015 User Guide

and not:

Tool.Type == 'End_Mill

If you are unsure about the case of a string then you can use one of

the inbuilt functions lcase() or ucase() to test against the lower case

(see page 80) or upper case (see page 79) version of the string:

lcase(Tool.Type) == 'end_mill'

ucase(Tool.Type) == 'END_MILL'

For example, comparing variables:

BOOL bigger = (Tool.Diameter+Thickness

>=ReferenceToolpath.Tool.Diameter+ReferenceToolpath.Thick

ness)

gives a result of 1 (true) when the Tool.Diameter + Thickness is

greater than or equal to the ReferenceToolpath.Tool.Diameter +

ReferenceToolpath.Thickness and a result of 0 (false) otherwise.

Logical operators

Logical operators let you to do more than one comparison at a time.
There are four logical operators:

 AND

 OR

 XOR

 NOT

 Remember the result of a comparison is either true or false.
When true, the result is ; when false, the result is 0.

Using the logical operator AND

The result is true (1) if all operands are true, otherwise the result is

false (0).

Operand 1 Operand 2 Operand 1 AND
Operand 2

true (1) true (1) true (1)

true (1) false (0) false (0)

false (0) true (1) false (0)

false (0) false (0) false (0)

Using the logical operator OR

The result is true (1) if at least one operand is true. If all the

operands are false (0) the result is false.

PowerMILL 2015 User Guide Macros • 45

Operand 1 Operand 2 Operand 1 OR
Operand 2

true (1) true (1) true (1)

true (1) false (0) true (1)

false (0) true (1) true (1)

false (0) false (0) false (0)

Using the logical operator XOR

The result is true (1) if exactly one operand is true. If all the

operands are false the result is false (0). If more than one operand

is true the result is false (0).

Operand 1 Operand 2 Operand 1 XOR
Operand 2

true (1) true (1) false (0)

true (1) false (0) true (1)

false (0) true (1) true (1)

false (0) false (0) false (0)

Using the logical operator NOT

The result is the inverse of the input.

Operand 1 NOT Operand 1

true (1) false (0)

false (0) true (1)

Advance variable options

Scratchpad variables

It is possible to create and manipulate variables in the command

line window. These are called scratchpad variables as you can use

them to test the results of parameter evaluation without having to
write a macro.

For example, to test some code, in the command line window type:

STRING Test = Tool.Name

DEACTIVATE TOOL

ACTIVATE TOOL $Test

46 • Macros PowerMILL 2015 User Guide

To clear the scratchpad, in the command line window type:

RESET LOCALVARS

If you don't issue the RESET LOCALVARS command, the local

variable, Test, remains defined until you exit from PowerMILL.

Using variables and parameters in macro commands

You can substitute the value of a variable or parameter in a
command wherever the command expects a number or a string. To
do this, prefix the variable or parameter name with a $.

 The EDIT PAR command only accepts $variable input when

the $variable has a numeric value. You cannot use the

$variable syntax for STRING parameters.

For example, to create a tool with a diameter that is half that of the

active tool.

// Calculate the new diameter and name of tool

REAL HalfDiam = Tool.Diameter/2

STRING NewName = string(Tool.Type) + " D-" +

string(HalfDiam)

// Create a new tool and make it the active one

COPY TOOL ;

ACTIVATE TOOL #

// Now rename the new tool and edit its diameter

RENAME TOOL ; $NewName

EDIT TOOL $NewName DIAMETER $HalfDiam

This creates a tool with half the diameter.

Scope of variables

A variable exists from the time it is declared until the end of the

block of code within which it is declared. Blocks of code are macros
and control structures (WHILE, DO - WHILE, SWITCH, IF-ELSEIF-

ELSE, and FOREACH).

A variable, with a specific name, can only be defined once within
any block of code.

For example,

// Define a local variable 'Count'

INT Count = 5

// Define a second local variable 'Count'

INT Count = 2

Gives an error since Count is defined twice.

PowerMILL 2015 User Guide Macros • 47

However, within an inner block of code you can define another

variable with the same name as a variable (already defined) in an
outer block:

INT Count = 5

IF Count > 0 {

// Define a new local variable 'Count'

INT Count = 3

// Print 3

PRINT $Count

// The local Count is no longer defined

}

// Print 5

PRINT $Count

A variable defined within an inner block of code hides any variable

declared in an outer block. This is also important if you use a name
for a variable which matches one of PowerMILL’s parameters. For

example, if the toolpath stepover is 5 and in your macro you have:

// 'Hide' the global stepover by creating your own

variable

REAL Stepover = 2

// Print Stepover

PRINT $Stepover

The value printed is 2 not 5, and the toolpath stepover value is

unchanged. To access the current toolpath's stepover parameter
you must use toolpath.Stepover.

// 'Hide' the global stepover by creating your own

variable

REAL Stepover = 2

// Print 2

PRINT $Stepover

// Print the value of the toolpath's stepover - which is

5

PRINT $toolpath.Stepover

 As macro variables cease to exist at the end of a macro or

block of code, you should not use a variable defined in a
macro within a retained expression. You can use assignments,

as the value is computed immediately. Don't use a macro
variable in an EDIT PAR expression without EVAL as this

causes an expression error when PowerMILL tries to evaluate

it.

REAL Factor = 0.6

// The next two commands are OK as the expression is

evaluated immediately.

$Stepover = Tool.Diameter * Factor

EDIT PAR "Stepover" EVAL "Tool.Diameter * Factor"

48 • Macros PowerMILL 2015 User Guide

// The next command isn't OK because the expression is

retained.

EDIT PAR "Stepover" "Tool.Diameter * Factor"

The Factor variable ceases to exist at the end of the macro, so

Stepover will evaluate as an error.

Using expressions in macros

An arithmetic expression is a list of variables and values with

operators which define a value. Typical usage is in variable
declarations and assignments.

// Variable declarions

REAL factor = 0.6

REAL value = Tolerance * factor

// Assignments

$Stepover = Tool.Diameter * factor

$factor = 0.75

 When using an assignment you MUST prefix the variable

name with a $. So PowerMILL can disambiguate an

assignment from other words in the macro command
language.

 In assignments, the expression is always evaluated and the

resulting value assigned to the variable on the left of the =

operand.

In addition to using expressions in calculations, you can use logical
expressions to make decisions in macros. The decision making
statements in PowerMILL are IF-ELSE_IF (see page 57), SWITCH
(see page 59), WHILE (see page 64), and DO-WHILE (see page 65).

These execute the commands within their code blocks if the result
of an expression is true (1). For example:

IF active(Tool.TipRadiused) {

// Things to do if a tip radiused tool.

}

IF active(Tool.TipRadiused) AND Tool.Diameter < 5 {

// Things to do if a tip radiused tool and the diameter

// is less than 5.

}

You can use any expression to decide whether or not a block of

code will be performed.

PowerMILL 2015 User Guide Macros • 49

Operators for integers and real numbers

The standard arithmetical operators are available for integers and

real numbers.

Operator Description Examples

+ addition 3+5 evaluates to 8

- subtraction 5-3 evaluates to 2

* multiplication 5*3 evaluates to

15

/ division 6/2 evaluates to 3

% modulus. This is the
remainder after two

integers are divided

11%3 evaluates to
2

^ to the power of 2^3 is the same as

2*2*2 and
evaluates to 8

For a complete list of operators, see the HTML page displayed when
you select Help > Parameters > Reference > Functions.

Operators for strings

The concatenation (+) operator is available for string.

For example "abc"+"xyz" evaluates to abcxyz.

You can use this to build strings from various parts, for example:

MESSAGE "The Stepover value is: " + string(Stepover)

Operator precedence

The order in which various parts of an expression are evaluated

affects the result. The operator precedence unambiguously
determines the order in which sub-expressions are evaluated.

 Multiplication and division are performed before addition and
subtraction.

For example, 3 * 4 +2 is the same as 2 + 3 * 4 and gives the
answer 14.

 Exponents and roots are performed before multiplication and
addition.

For example, 3 + 5 ^ 2 is the same as 3 + 5 and gives the
answer 28.

-3 ^ 2 is the same as -3 and gives the answer -9.

 Use brackets (parentheses) to avoid confusion.

50 • Macros PowerMILL 2015 User Guide

For example, 2 + 3 * 4 is the same as 2 + (3 * 4) and gives the

answer 14.

 Parentheses change the order of precedence as terms inside in

parentheses are performed first.

For example, (2 + 3) * 4 gives the answer 20.

or, (3 + 5) ^2 is the same as (3 + 5) and gives the answer 64.

 You must surround the arguments of a function with

parentheses.

For example, y = sqrt(2), y = tan(x), y = sin(x + z).

 Relational operators are performed after addition and
subtraction.

For example, a+b >= c+d is the same as (a+b) >= (c+d).

 Logical operators are performed after relational operators,

though parentheses are often added for clarity.

For example:

5 == 2+3 OR 10 <= 3*3

is the same as:

(5 == (2+3)) OR (10 <= (3*3))

but is normally written as

(5 == 2+3) OR (10 <= 3*3).

Precedence

Order Operation Description

1 () function call, operations

grouped in parentheses

2 [] operations grouped in square

brackets

3 + - ! unary prefix (unary operations

have only one operand, such

as, !x, -y)

4 cm mm um ft

in th

unit conversion

5 ^ exponents and roots

6 * / % multiplication, division, modulo

7 + - addition and subtraction

PowerMILL 2015 User Guide Macros • 51

8 < <= > >=

(LT, LE, GT,
GE)

relational comparisons: less

than, less than or equal,
greater than, greater than or

equal

9 == != (EQ,

NE)

relational comparisons: equals,

not equals

10 AND logical operator AND

11 NOT logical operator NOT

12 XOR logical operator XOR

13 OR logical operator OR

14 , separation of elements in a list

Examples of precedence:

Expression Equivalent

a * - 2 a * (- 2)

!x == 0 (!x) == 0

$a = -b + c * d – e $a = ((-b) + (c * d)) – e

$a = b + c % d – e $a = (b + (c % d)) – e

$x = y == z $x = (y == z)

$x = -t + q * r / c $x = ((-t) + ((q * r) / c))

$x = a % b * c + d $x = (((a % b) * c) + d)

$a = b <= c | d != e $a = ((b <= c) | (d != e))

$a = !b | c & d $a = ((!b) | (c & d))

$a = b mm * c in + d $a = (((b mm) * (c in)) + d)

Executing a macro string variable as a command using
DOCOMMAND

The macro command, DOCOMMAND, executes a macro string

variable as a command. This allows you to construct a command

from string variables and then have that command run as a macro
statement. Suppose you have a function to create a copy of a

boundary and then fit arcs to the copy:

FUNCTION CopyAndArcfit(ENTITY Ent) {

STRING $NewName = new_entity_name('boundary')

COPY BOUNDARY $Ent

EDIT BOUNDARY $NewName ARCFIT 0.01

}

52 • Macros PowerMILL 2015 User Guide

If you then want to use the same function to copy a pattern and

then fit arcs to the copy. You can replace all instances of 'boundary'
with 'pattern' when you give the function a pattern entity.

Unfortunately you can't do this by using variables directly because
the PowerMILL command syntax doesn't allow variable substitution

in network KEYWORDS for example you can't use $Type like this:

COPY $Type $Ent

However, you can build the command as a string and then use
DOCOMMAND to execute the resulting string as a command:

FUNCTION CopyAndArcFit(Entity Ent) {

STRING $NewName = new_entity_name(Ent.RootType)

STRING Cmd = "COPY "+ Ent.RootType + " " + Ent.name

DOCOMMAND $Cmd

$Cmd = "EDIT " + Ent.RootType + " " + Newname + "

ARCFIT 0.01"

DOCOMMAND $Cmd

}

You can use this technique whenever you find that a variable value

cannot be used in a particular point in a command.

 Use this technique with caution as it can make your macros

harder to understand.

Macro functions

When you run a macro you can use arguments, such as the name of

a toolpath, tool, or a tolerance. You must structure the macro to
accept arguments by creating a FUNCTION called Main (see page

53) then specify the arguments and their type.

For example, a macro to polygonise a boundary to a specified
tolerance is:

FUNCTION Main(REAL tol) {

EDIT BOUNDARY ; SMASH $tol

}

A macro to set the diameter of a named tool is:
FUNCTION Main(

STRING name

REAL diam

)

{

EDIT TOOL $name DIAMETER $dia

}

To run these macros with arguments add the arguments in the
correct order to the end of the MACRO command:

MACRO MyBoundary.mac 0.5

PowerMILL 2015 User Guide Macros • 53

MACRO MyTool.mac "ToolName" 6

If you use FUNCTION in your macro, then all commands must be

within a function body. This means that you must have a FUNCTION

Main, which is automatically called when the macro is run.

FUNCTION CleanBoundary(string name) {

REAL offset = 1 mm

REAL diam = entity('boundary';name).Tool.Diameter

// Delete segments smaller than tool diameter

EDIT BOUNDARY $name SELECT AREA LT $diam

DELETE BOUNDARY $name SELECTED

//Offset outwards and inwards to smooth boundary

EDIT BOUNDARY $name OFFSET $offset

EDIT BOUNDARY $name OFFSET ${-offset}

}

FUNCTION Main(string bound) {

FOREACH bou IN folder(bound) {

CALL CleanBoundary(bou.Name)

}

}

Within a function, you can create and use variables that are local to
the function, just as you can within a WHILE loop. However, a

function can't access any variable that's defined elsewhere in the
macro, unless that variable has been passed to the function as an

argument.

 In the CleanBoundary function, ${-offset} offset the

boundary by a negative offset. When you want to substitute

the value of an expression into a PowerMILL command rather
than the value of a parameter, use the syntax

${expression}. The expression can contain any valid

PowerMILL parameter expression including: inbuilt function

calls; mathematical, logical, and comparison operators.

 As this macro requires an argument (the boundary name) you

must run this from the command window. To run
Clean_Boundary.mac macro on the Cavity boundary you must

type macro Clean_Boundary "Cavity" in the command line.

Main function

If a macro has any functions:

 It must have one, and only one, FUNCTION called Main.

 The Main function must be the first function called.

Function names aren't case sensitive: MAIN, main, and MaIn all refer

to the same function.

54 • Macros PowerMILL 2015 User Guide

Running a macro where the Main function is called with either the

wrong number of arguments or with types of arguments that don't
match, causes an error. For example:

MACRO MyTool.mac 6 "ToolName"

generates an error since the macro expects a string and then a

number, but is given a number and then a string.

If you want to repeat a sequence of commands at different points
within a macro, you can use a FUNCTION.

For example, if you want to remove any small islands that are

smaller than the tool diameter and smooth out any minor kinks
after a boundary calculation. One solution is to repeat the same

commands after each boundary calculation:

EDIT BOUNDARY ; SELECT AREA LT Boundary.Tool.Diameter

DELETE BOUNDARY ; SELECTED

EDIT BOUNDARY ; OFFSET "1 mm"

EDIT BOUNDARY ; OFFSET "-1 mm"

This is fine if you have a macro that creates one boundary, but if it
creates a number of boundaries you end up with a macro with
excessive repetition. However by using a FUNCTION you can define

the sequence once:

FUNCTION CleanBoundary(string name) {

REAL offset = 1 mm

REAL diam = entity('boundary';name).Tool.Diameter

// Delete segments smaller than tool diameter

EDIT BOUNDARY $name SELECT AREA LT $diam

DELETE BOUNDARY $name SELECTED

//Offset outwards and inwards to smooth boundary

EDIT BOUNDARY $name OFFSET $offset

EDIT BOUNDARY $name OFFSET ${-offset}

}

Then call it whenever it is needed:

FOREACH bou IN folder('boundary') {

CALL CleanBoundary(bou.Name)

}

CREATE BOUNDARY Shallow30 SHALLOW

EDIT BOUNDARY Shallow30 CALCULATE

CALL CleanBoundary('Shallow30')

Returning values from functions

There are two types of arguments to FUNCTIONS:

 Input variables ($ Input arguments). If a parameter is an input

then any changes to the parameter inside the function are lost

when the function returns. This is the default.

PowerMILL 2015 User Guide Macros • 55

 Output variables ($ Output arguments) retain their value after

the function returns.

When you call a function, PowerMILL creates temporary copies of all

the arguments to the function, these copies are removed when the
function returns. However, if the macro contains an OUTPUT to an

argument, then instead of creating a temporary copy of the
variable, it creates an alias for the existing variable. Any changes

that you make to the alias directly, change the actual variable.

In the example, the Test function has two arguments: aInput and

aOutput. Within the Test function:

 The argument aInput is a new temporary variable that only exists

within the function, any changes to its value only affect the
temporary, and are lost once the function ends.

 The aOutput variable is an alias for the variable that was passed
in the CALL command, any changes to its value are actually

changing the value of the variable that was given in the CALL

command.

FUNCTION Test(REAL aInput, OUTPUT REAL aOutput) {

PRINT $aInput

$aInput = 5

PRINT $aOutput

$aOutput = 0

PRINT $aOutput

}

FUNCTION Main() {

REAL Par1 = 2

REAL Par2 = 1

CALL Test(Par1, Par2)

// Prints 2 - value is unchanged

PRINT $Par1

// Prints 0 - value has been changed

PRINT $Par2

}

When the CALL command is executed in the MAIN function:

1 PowerMILL creates a new REAL variable called aInput. It is

assigned the value of Par1, and passed into Test.

2 PowerMILL passes Par2 directly into Test where it is known as

aOutput.

56 • Macros PowerMILL 2015 User Guide

Sharing functions between macros

You can share functions between macros by using the INCLUDE

statement. You can put all your common functions in a file which
you then INCLUDE within other macros. For example, if you put the
CleanBoundary function into a file called common.inc you could

rewrite the macro as:

INCLUDE common.inc

FUNCTION Main(input string bound) {

FOREACH bou IN folder(bound) {

CALL CleanBoundary(bou.Name)

}

}

To call this macro from PowerMILL:

// Clean all the boundaries

MACRO Clean 'boundary'

// Clean all the Roughing boundaries

MACRO Clean 'boundary\Roughing'

IF statement

The IF statement executes a series of commands when a certain

condition is met.

The basic control structure is:

IF <expression> {

Commands A

}

Commands B

If expression is true then Commands A are executed, followed by

Commands B.

If expression is false, then only Commands B are executed.

PowerMILL 2015 User Guide Macros • 57

For example, if you want to calculate a toolpath, but don't want to

waste time re-calculating a toolpath that has already been
calculated:

// If the active toolpath hasn't been calculated do so

now

IF NOT Computed {

EDIT TOOLPATH $TpName CALCULATE

}

You must enclose Commands A in braces, {}, and the braces must be

positioned correctly. For example, the following command is NOT
valid:

IF (radius == 3) PRINT "Invalid radius"

To make this command valid, add the braces:

IF (radius == 3) {

PRINT "Invalid radius"

}

 The first brace must be the last item on the line and on the
same line as the IF.

The closing brace must be on a line by itself.

IF - ELSE statement

The IF - ELSE statement executes a series of commands when a

certain condition is met and a different series of commands

otherwise.

The basic control structure is:

IF <expression> {

Commands A

} ELSE {

Commands B

}

Commands C

If expression is true, then Commands A are executed followed by

Commands C.

58 • Macros PowerMILL 2015 User Guide

If expression is false, then Commands B are executed followed by

Commands C.

// Set tool axis lead/lean if tip radiused tool

// Otherwise use the vertical tool axis.

IF active(Tool.TipRadius) OR Tool.Type == "ball_nosed" {

EDIT TOOLAXIS TYPE LEADLEAN

EDIT TOOLAXIS LEAD "5"

EDIT TOOLAXIS LEAN "5"

} ELSE {

EDIT TOOLAXIS TYPE VERTICAL

}

IF - ELSEIF - ELSE statement

The IF - ELSEIF - ELSE statement executes a series of commands

when a certain condition is met, a different series of commands

when the first condition isn't met and the second condition is met

and a different series of commands when none of the conditions are
met.

The basic control structure is:

IF <expression_1> {

Commands A

} ELSEIF <expression_2> {

Commands B

} ELSE {

Commands C

}

Commands D

If expression_1 is true, then Commands A are executed followed by

Commands D.

If expression_1 is false and expression_2 is true, then Commands B are

executed followed by Commands D.

PowerMILL 2015 User Guide Macros • 59

If expression_1 is false and expression_2 is false, then Commands C

are executed followed by Commands D.

 ELSE is an optional statement. There may be any number of

ELSEIF statements in a block but no more than one ELSE.

IF Tool.Type == "end_mill" OR Tool.Type == "ball_nosed" {

$radius = Tool.Diameter/2

} ELSEIF active(Tool.TipRadius) {

$radius = Tool.TipRadius

} ELSE {

$radius = 0

PRINT "Invalid tool type"

}

This sets the variable radius to:

 Half the tool diameter if the tool is an end mill or ball nosed tool.

 The tip radius if the tool is a tip radiused tool.

 Displays Invalid tool type if the tool is anything else.

SWITCH statement

When you compare a variable with a number of possible values and
each value determines a different outcome, it is advisable to use the
SWITCH statement.

The SWITCH statement allows you to compare a variable against a

list of possible values. This comparison determines which

commands are executed.

The basic control structure is:

60 • Macros PowerMILL 2015 User Guide

SWITCH variable {

CASE (constant_A)

Commands A

CASE (constant_B)

Commands B

DEFAULT

Commands C

}

Commands D

If condition_A is true then Commands A, B, C, and D are executed.

If condition_B is true then Commands B, C, and D are executed.

If condition_A and condition_B are false then Commands C, and D are

executed.

 When a match is found all the commands in the remaining
CASE statements are executed. You can prevent this from

happening by using a BREAK (see page 61) statement.

 You can have any number of CASE statements, but at most

one DEFAULT statement.

This example makes changes to the point distribution based on the

tool axis type. There are three options:

1 3+2-axis toolpaths to have an output point distribution type of
Tolerance and keep arcs and a lead in and lead out distance of

200.

2 3-axis toolpaths to have an output point distribution type of
Tolerance and keep arcs.

3 5-axis toolpaths to have an output point distribution type of
Redistribute.

PowerMILL 2015 User Guide Macros • 61

 Because the CASE 'direction' block of code doesn't have a

BREAK statement the macro also executes the code in the

'vertical' block.

SWITCH ToolAxis.Type {

CASE 'direction'

EDIT TOOLPATH LEADS RETRACTDIST "200.0"

EDIT TOOLPATH LEADS APPROACHDIST "200"

// fall though to execute

CASE 'vertical'

// Redistribute points to tolerance and keep arcs

EDIT FILTER TYPE STRIP

BREAK

DEFAULT

// Redistribute points

EDIT FILTER TYPE REDISTRIBUTE

BREAK

}

BREAK statement in a SWITCH statement

The BREAK statement exits the SWITCH statement.

The basic control structure is:

SWITCH variable {

CASE (constant_A)

Commands A

BREAK

CASE (constant_B)

Commands B

BREAK

DEFAULT

Commands C

}

Commands D

If condition_A is true then Commands A are executed followed by

Commands D.

 Remember, if there is no break statements then commands A,

B, C, and D are carried out.

If condition_B is true then Commands B are executed followed by

Commands D.

62 • Macros PowerMILL 2015 User Guide

If condition_A and condition_B are false then Commands C are

executed followed by Commands D.

Repeating commands in macros

If you want to repeat a set of commands a number of times, for

example, creating a circle at the start of every line in the model,
you can use loops.

For example, if you have two feature sets, Top and Bottom, which

contain holes you want to drill from the top and bottom of the
model respectively, use the macro:

STRING Fset = 'Top'

INT Count = 0

WHILE Count < 2 {

ACTIVATE FEATURESET $Fset

ACTIVATE WORKPLANE FROMENTITY FEATURESET $Fset

IMPORT TEMPLATE ENTITY TOOLPATH "Drilling\Drilling.ptf"

EDIT TOOLPATH $TpName CALCULATE

$Fset = 'Bottom'

$Count = Count + 1

}

There are three loop structures:

 FOREACH (see page 63) loops repeatedly execute a block of

commands for each item in a list.

 WHILE (see page 64) loops repeatedly execute a block of

commands until its conditional test is false.

 DO - WHILE (see page 65) loops executes a block of commands

and then checks its conditional test.

PowerMILL 2015 User Guide Macros • 63

FOREACH loop

A FOREACH loop repeatedly executes a block of commands for each

item in a list or array.

The basic control structure is:

FOREACH item IN sequence{

Commands A

}

Commands B

where:

item is an automatically created variable that PowerMILL initialises

for each iteration of the loop;

sequence is either a list or an array.

Commands A are executed on the first item in the list.

Commands A are executed on the next item in the list. This step is

repeated until there are no more items in the list.

At the end of the list, Commands B are executed.

For example,

FOREACH item IN folder("path") {

Commands A

}

Commands B

Where <path> is a folder in the Explorer such as, Toolpath, Tool,

Toolpath\Finishing.

Within FOREACH loops, you can:

 Cancel the loop using the BREAK (see page 66) statement.

 Jump directly to the next iteration using the CONTINUE (see page

66) statement.

64 • Macros PowerMILL 2015 User Guide

You can't create your own list variables, there are some built in

functions in PowerMILL that will return lists (see the parameter
documentation for component, and folder).

You can use one of the inbuilt functions to get a list of entities, or
you can use arrays to create a sequence of strings or numbers to

iterate over. For example, use the inbuilt folder function to get a list
of entities.

An example of using a FOREACH loop is to batch process tool holder

profiles:

FOREACH ent IN folder('Tool') {

ACTIVATE TOOL $ent.Name

EDIT TOOL ; UPDATE_TOOLPATHS_PROFILE

}

 The loop variable ent is created by the loop and destroyed

when the loop ends.

Another example is to renumber all the tools in a project:

INT nmb = 20

FOREACH t IN folder('Tool') {

$t.number.value = nmb

$t.number.userdefined = 1

$nmb = nmb + 2

}

To get the most out of these macro features, you should familiarise
yourself with the inbuilt parameter functions detailed in Help >

Parameters > Reference.

WHILE loop

A WHILE loop repeatedly executes a block of commands until its

conditional test is false.

The basic control structure is:

WHILE condition {

Commands A

}

Commands B

If condition is true, then Commands A are executed.

While condition remains true, then Commands A are executed.

PowerMILL 2015 User Guide Macros • 65

When condition is false, Commands B are executed.

Within WHILE loops, you can:

 Cancel the loop using the BREAK (see page 66) statement.

 Jump directly to the next iteration using the CONTINUE (see page

66) statement.

DO - WHILE loop

The DO - WHILE loop executes a block of commands and then

performs its conditional test, whereas the WHILE loop checks its

conditional test first to decide whether to execute its commands or
not.

The basic control structure is:

DO {

Commands A

} WHILE condition

Commands B

Commands A are executed.

While condition remains true, then Commands A are executed.

When condition is false, Commands B are executed.

Within DO - WHILE loops, you can:

 Cancel the loop using the BREAK (see page 66) statement.

 Jump directly to the next iteration using the CONTINUE (see page

66) statement.

66 • Macros PowerMILL 2015 User Guide

CONTINUE statement

The CONTINUE statement causes a jump to the conditional test of

any one of the loop constructs WHILE, DO - WHILE, and FOR EACH in

which it is encountered, and starts the next iteration, if any.

This example, calculates and offsets, all unlocked boundaries,

outwards and inwards.

FOREACH bou IN folder('Boundary') {

IF locked(bou) {

// This boundary is locked go get the next one

CONTINUE

}

REAL offset = 1 mm

EDIT BOUNDARY $bou.Name CALCULATE

EDIT BOUNDARY $bou.Name OFFSET $offset

EDIT BOUNDARY $bou.Name OFFSET ${-offset} }

The CONTINUE statement enables the selection of the next

boundary.

BREAK statement in a WHILE loop

The BREAK statement exits the WHILE loop.

 Nested constructs can require multiple breaks.

PowerMILL 2015 User Guide Macros • 67

RETURN statement

If a macro contains functions, the RETURN statement immediately

exits the function. If the macro doesn't contain functions, the
RETURN statement immediately terminates the current macro. This

is useful if an error is detected and you don't want to continue with

the remaining commands in the macro.

The basic control structure is:

EDIT TOOLPATH $tp.Name CALCULATE

IF NOT Computed {

// terminate if toolpath didn't calculate

RETURN

}

To immediately exit from a function:

FUNCTION Calculate(STRING TpName) {

IF NOT active(entity('toolpath',TpName).Tool.TipRadius)

{

// Error if toolpath does not use a tipradius tool

PRINT "Toolpath does not have TipRadius tool"

RETURN

}

EDIT TOOLPATH ; CALCULATE

}

FUNCTION Main() {

FOREACH tp IN folder('Toolpath') {

ACTIVATE TOOLPATH $tp.Name)

}

}

Terminating macros

The command MACRO ABORT immediately terminates the current

macro.

The command MACRO ABORT ALL terminates the all the macros that

are currently running. If you call MACRO ABORT ALL from within a

macro that has been called by another macro, then both macros are

terminated.

68 • Macros PowerMILL 2015 User Guide

Printing the value of an expression

To print the value of a scalar expression or parameter use the

syntax:

PRINT = expression

For example, to print the answer to a simple arithmetic expression:

PRINT = 2*5

When you run the macro, the command window displays the result,
10.

You can also apply an arithmetic expression to the value of a
parameter. For example:

EDIT TOOL ; DIAMETER 10

PRINT = Tool.Diameter * 0.6

When you run the macro, the command window displays the result,

6.

Constants

PowerMILL has a small number of useful constant values that you

can use in expressions and macros these include:

REAL PI = 3.141593

REAL E = 2.718282

BOOL TRUE = 1

BOOL FALSE = 0

STRING CRLF = newline

Use these values to make your macros more readable. For example,
use CRLF constant to build up multi-line messages and prompts:

STRING msg = "This is line one."+CRLF+"This is line two."

MESSAGE INFO $msg

Displays the message:

This is line one.

This is line two.

PowerMILL 2015 User Guide Macros • 69

Built-in functions

This section details all the built-in functions that you can use in your

macros.

 General mathematical functions (see page 69).

 Trigonometrical functions (see page 70).

 Vector and point functions (see page 70).

 Workplane functions (see page 72).

 String functions (see page 73).

 List creation functions (see page 81).

 Path functions (see page 91) (Folder (see page 92), Directory
(see page 92), Base (see page 93), and Project (see page 94)

names).

 Conditional functions (see page 95).

 Evaluation functions (see page 95).

 Type conversion functions (see page 97).

 Parameter functions (see page 97).

 Statistical functions (see page 100).

General mathematical functions

The basic structure of the general mathematical functions are:

Description of return value Function

Exponential real exp(real a)

Natural logarithm real ln(real a)

Common (base 10) logarithm real log(real a)

Square root real sqrt(numeric a)

Absolute (positive value) real abs(numeric a)

Returns either -1, 0 or 1
depending on the sign of the

value

real sign(numeric a)

Returns either 1 or 0

depending on whether the
difference between a and b is

less than or equal to tol

real compare(numeric a,

numeric b, numeric tol)

70 • Macros PowerMILL 2015 User Guide

Trigonometrical functions

The basic structure of the trigonometrical functions are:

Description of return value Function

Trigonometric sine real sin(angle)

Trigonometric cosine real cos(angle)

Trigonometric tangent real tan(angle)

Trigonometric arcsine real asin(real a)

Trigonometric arccosine real acos(real a)

Trigonometric arctangent real atan(real a)

Trigonometric arctangent of
a/b, quadrant is determined

by the sign of the two
arguments

real atan2(real a, real

b)

Vector and point functions

In PowerMILL vectors and points are represented by an array of

three reals.

PowerMILL contains point and vector parameters, for example the
Workplane.Origin, Workplane.ZAxis, ToolAxis.Origin, and

ToolAxis.Direction. You can create your own vector and point

variables:

REAL ARRAY VecX[] = {1,0,0}

REAL ARRAY VecY[] = {0,1,0}

REAL ARRAY VecZ[] = {0,0,1}

REAL ARRAY MVecZ[] = {0,0,-1}

REAL ARRAY Orig[] = {0,0,0}

Length

The length() function returns the length of a vector.

For example:

REAL ARRAY V[] = {3,4,0}

// Prints 5.0

PRINT = length(V)

The inbuilt function unit() returns a vector that points in the same

direction as the input vector, but has a length of 1:

PRINT PAR "unit(V)"

// [0] (REAL) 0.6

// [1] (REAL) 0.8

PowerMILL 2015 User Guide Macros • 71

// [2] (REAL) 0.0

// prints 1.0

PRINT = length(unit(V))

Parallel

The parallel() function returns TRUE if two vectors are either

parallel (pointing in the same direction) or anti-parallel (pointing in
the opposite direction) to each other.

For example:

// prints 0

PRINT = parallel(VecX,Vecy)

// prints 1

PRINT = parallel(VecX,VecX)

Print = parallel(MVecZ,VecZ)

Normal

The normal() function returns a vector that is normal to the plane

containing its two input vectors. If either vector is zero it returns an

error. If the input vectors are either parallel or anti-parallel a vector
of zero length is returned.

For example:

REAL ARRAY norm = normal(VecX,VecY)

Angle

The angle() function returns the signed angle in degrees between

two vectors, providing that neither vectors have a zero length.

For example:

// Prints 90

PRINT = angle(VecX,VecY)

// Prints 90

PRINT = angle(VecY,VecX)

The apparent_angle() function returns the apparent angle

between two vectors when looking along a reference vector. If a

vector is parallel or anti-parallel to the reference vector, or if any of
the vectors have a zero length it returns an error:

// prints 270

print = apparent_angle(VecX,VecY,MVecZ)

// prints 90

print = apparent_angle(VecY,VecX,MVecZ)

72 • Macros PowerMILL 2015 User Guide

Setting

The set_vector() and set_point() functions return the value 1 if

the vector or point is set.

For example:

REAL ARRAY Vec1[3] = {0,0,1}

REAL ARRAY Vec2[3] = {0,1,0}

// set vec1 to be the same as vec2

BOOL ok = set_vector(vec1,vec2)

// make a X-axis vector

$ok = set_vector(vec2,1,0,0)

REAL X = Block.Limits.XMax

REAL Y = Block.Limits.YMin

REAL Z = Block.Limits.ZMax

ok = set_point(ToolAxis.Origin, X,Y,Z)

Unit vector

The unit() function returns the unit vector equivalent of the given

vector.

For example:

REAL ARRAY V[3] = {3,4,5}

PRINT PAR "unit(V)"

BOOL ok = set_vector(V,0,0,6)

PRINT PAR "unit(V)"

Workplane functions

You can use the inbuilt function set_workplane() to define the

origin and axis of a workplane entity. You can call the function:

 with two workplanes, where the values from the second
workplane are copied into the first:

bool ok =

set_workplane(Workplane,entity('workplane','3'))

which sets the active workplane to have the same values as
workplane 3.

 with a workplane, two vectors, and an origin:

REAL ARRAY YAxis[] = {0,1,0}

REAL ARRAY ZAxis[] = {0,0,1}

REAL ARRAY Origin = {10,20,30}

bool ok =

set_workplane(entity('workplane','reference'), YAxis,

Zaxis,Origin)

PowerMILL 2015 User Guide Macros • 73

String functions

PowerMILL parameters and variables can contain strings of

characters. There are a number of inbuilt functions that you can use
to test and manipulate strings.

The basic structure of string functions are:

Description of return value Function

Returns the number of

characters in the string.

For more information see

Length function in a string
(see page 76).

int length(string str)

Returns the position of the
string target from the start of

the string str, or -1 if the

target string isn't found.

If you use the optional
argument start then scanning

begins from that position in
the string.

For more information see
Position function in a string

(see page 77).

int position(string str,

string target[, numeric

start])

Replaces all occurrences of
the target string with a

replacement string. The

original string is unchanged.

For more information see
Replacing one string with

another string (see page 78).

string replace(string

str, string target,

string replacement)

Returns part of the string. You

can define where the

substring starts and its
length. The original string is

unchanged.

For more information see

Substrings (see page 79).

string substring(string

str, int start, int

length)

Returns an upper case string.

The original string is
unchanged.

For more information see
Upper case function in a string

(see page 79).

string ucase(string str)

74 • Macros PowerMILL 2015 User Guide

Returns a lower case string.

The original string is
unchanged.

For more information see
Lower case function in a string

(see page 80).

string lcase(string str)

Returns the string without any

leading whitespace

string ltrim(string str)

Splits a string into a list of the

strings, separated by
whitespace

list tokens(string str)

The first character of a string is always at index 0. You can append

(add) strings together use the + operator. For example:

STRING One = "One"

STRING Two = "Two"

STRING Three = "Three"

PRINT = One + ", " + Two + ", " + Three

When you run the macro, the command window displays the result,
One, Two, Three.

Another way of achieving the same result is:

STRING CountToThree = One + ", " + Two + ", " + Three

PRINT = CountToThree

When you run the macro, the command window displays the result,
One, Two, Three.

Date and time functions

The following functions can be used to manipulate the date and

time:

Function Description

time() The current system time.

This is useful for coarse timing in

macros and getting the actual
time and date.

local_time(int

time)
A DateTime object representing
the local time given a number of

seconds.

PowerMILL 2015 User Guide Macros • 75

utc_time(int

time)
A DateTime object representing

the time in Coordinated Universal
Time.

The DateTime object contains a number of string values, as follows:

String String value

String

year
The year (1900-9999)

String

month
The month of the year (01-12)

String

day
The day of the month (01-31)

String

hour
The hour of the day (00-23)

String

minute
The minute of the hour (00-59)

String

second
The second of the minute (00-59)

String

timestam

p

The date and time — the two values in the

sting are separated by a hyphen (YYYY-mm-
dd-HH-MM-SS).

 In previous versions of PowerMILL you could not create
variable of type objects, so you may need to call the

local_time() or utc_time() functions multiple times, like

this: string year = local_time(tm).Year etc..

Example

The following example shows how to use the time() function to

measure how long an activity takes:
INT old_time = time()

EDIT TOOLPATH ; CALCULATE

INT cumulative_time = time() - old_time

STRING msg = "Toolpath calculation took " +

(cumulative_time) + "secs"

MESSAGE INFO $msg

Example

Getting and formatting the current time:
INT tm=time()

STRING ARRAY $timestamp[] =

tokens(utc_time($tm).timestamp, "-") STRING clock =

$timestamp[3] + ":" + $timestamp[4] $clock = $clock + ":"

+ $timestamp[5] PRINT $clock

76 • Macros PowerMILL 2015 User Guide

Converting a numeric value into a string

The string function converts a numeric value into a string value.

The basic structure is:

STRING string(numeric str)

This is useful when you want to append a number to a string. For
example to name tools so they contain the tool's type and diameter

use:

CREATE TOOL ; BALLNOSED

EDIT TOOL ; DIAMETER 5

STRING TName = string(Tool.Type) + " Diam: " +

string(Tool.Diameter)

RENAME TOOL ; $TName

PRINT = Tool.Name

When you run the macro, PowerMILL creates a ball nosed tool with
a diameter of 5 and gives the tool the name, ball_nosed Diam: 5.0.

The command window displays the result,ball_nosed Diam: 5.0.

Length function in a string

The length function returns the number of characters in the string.

The basic structure is:

int length(string str)

For example:

STRING One = "One"

PRINT = length(One)

The command window displays the result, 3.

Another example:

STRING One = "One"

STRING Two = "Two"

STRING CountToTwo = One + ", " + Two

PRINT = length(CountToTwo)

The command window displays the result, 8.

Another way of producing the same result:

PowerMILL 2015 User Guide Macros • 77

PRINT = length(One + ", " + Two)

The command window displays the result, 8.

Position function in a string

The position string returns the position of the string target from

the start of the string str, or -1 if the target string isn't found.

If you use the optional argument start then scanning begins from

that position in the string.

The basic structure is:

int position(string str, string target [, numeric start]

)

For example:

PRINT = position("Scooby doo", "oo")

The command window displays the result, 2. PowerMILL finds the

first instance of oo and works out what its position is (S is position

0, c position 1 and o position 2).

position("Scooby doo", "oo", 4)

The command window displays the result, 8. PowerMILL finds the
first instance of oo after position 4 and works out what its position

is (b is position 4, y position 5, " "is position 7 and o position 8).

position("Scooby doo", "aa")

The command window displays the result, -1 as PowerMILL can't

find any instances of aa.

You can use this function to check whether a substring exists within
another string. For example, if you have a part that contains a

cavity and you machined it using various strategies with a coarse
tolerance and each of these toolpaths has CAVITY in its name. You

have toolpaths with names such as, CAVITY AreaClear, CAVITY flats.

To recalculate those toolpath with a finer tolerance use the macro
commands:

// loop over all the toolpaths

FOREACH tp IN folder('Toolpath') {

// if toolpath has 'CAVITY' in its name

IF position(tp.Name, "CAVITY") >= 0 {

// Invalidate the toolpath

INVALIDATE TOOLPATH $tp.Name

$tp.Tolerance = tp.Tolerance/10

}

}

BATCH PROCESS

78 • Macros PowerMILL 2015 User Guide

Replacing one string with another string

The replace function replaces all occurrences of the target string

with a replacement string. The original string is unchanged.

The basic structure is:

string replace(string str, string target, string

replacement)

For example:

STRING NewName = replace("Scooby doo", "by", "ter")

PRINT = NewName

The command window displays the result, Scooter doo.

For example, whilst trying different values in the strategy dialogs
you add DRAFT to the name each toolpath.

When you are satisfied with a particular toolpath you want to
change DRAFT to FINAL. To save yourself from manually editing the

toolpath name, you could use a macro to rename the active
toolpath:

FOREACH tp IN folder('Toolpath') {

ACTIVATE TOOLPATH $tp.Name

STRING NewName = replace(Name, 'DRAFT', 'FINAL')

RENAME TOOLPATH ; $NewName

}

This macro renames the toolpaths to:

 Any instance of DRAFT in the toolpath name is changed to
FINAL. However, the macro is case sensitive, so instances of

Draft are not changed.

Alternatively, you could write a macro to rename a toolpath name
without activating the toolpath:

FOREACH tp IN folder('Toolpath') {

STRING NewName = replace(tp.Name, 'DRAFT', 'FINAL')

RENAME TOOLPATH $tp.Name $NewName

}

PowerMILL 2015 User Guide Macros • 79

Substrings

The substring function returns part of the string. You can define

where the substring starts and its length. The original string is
unchanged.

The basic structure is:

string substring(string str, int start, int length)

For example:

PRINT = substring("Scooby doo", 2, 4)

The command window displays the result, ooby.

Upper case function in a string

The upper case function converts the string to upper case. The

original string is unchanged.

The basic structure is:

string ucase(string str)

For example:

PRINT = ucase("Scooby doo")

The command window displays the result, SCOOBY DOO.

In the Replace one string with another (see page 78) example
instances of DRAFT are replaced with FINAL, but instances of Draft

aren't.

The ucase statement replaces instances of Draft, draft, dRAft with

DRAFT. The rest of the macro replaces DRAFT with FINAL.

FOREACH tp IN folder('Toolpath') {

// Get the upper case version of the name

STRING UName = ucase(tp.Name)

// check if the name contains 'DRAFT'

if position(UName, 'DRAFT') >= 0 {

// replace DRAFT with FINAL

STRING NewName = replace(UName, 'DRAFT', 'FINAL')

RENAME TOOLPATH $tp.Name $NewName

}

}

This macro renames the toolpaths to:

80 • Macros PowerMILL 2015 User Guide

Previously Draft_ConstZ wasn't renamed, but it is this time. All the

toolpath names are now upper case.

Lower case function in a string

The lower case function converts the string to lower case. The

original string is unchanged.

The basic structure is:

string lcase(string str)

For example:

PRINT = lcase("SCOOBY DOO")

The command window displays the result, scooby doo.

In the Replace one string with another (see page 78) example
instances of DRAFT are replaced with FINAL, but instances of Draft

aren't.

In the Upper case function in a string (see page 79) example
instances of Draft, draft, dRAft are replaced with DRAFT.

The lcase statement changes the upper case toolpath names to

lower case. It replaces instances of Draft, draft, dRAft are replaced

with draft.

FOREACH tp IN folder('Toolpath') {

// Get the upper case version of the name

STRING UName = ucase(tp.Name)

// check if the name contains 'DRAFT'

if position(UName, 'DRAFT') >= 0 {

// replace DRAFT with FINAL

STRING NewName = replace(UName, 'DRAFT', 'FINAL')

RENAME TOOLPATH $tp.Name $NewName

// Get the lower case version of the name

STRING LName = lcase(tp.Name)

RENAME TOOLPATH $tp.Name $LName

}

}

This macro renames the toolpaths to:

All the toolpath names are now lower case

PowerMILL 2015 User Guide Macros • 81

Whitespace in a string

The ltrim() function removes any leading whitespace from a

string. Use this to clean up user input before further processing. The
original string is unchanged.

For example:

STRING Original = " What's up Doc!"

STRING Trimmed = ltrim(Original)

print = Original

print = Trimmed

Where:

print = Original displays " What's up Doc!" in the command

window.

print = Trimmed displays "What's up Doc!" in the command

window.

Splitting a string

The tokens() function will split a string into a list of strings that were

separated by the separator characters. By default the separator
characters are spaces and tabs.

For example:

STRING InputStr = "One Two Three"

STRING LIST Tokens = tokens(InputStr)

FOREACH Tok IN Tokens {

PRINT = Tok

}

You can also give the tokens() function an optional extra argument

that changes the separator character.

For example:

STRING InputStr = "10:20:30:40"

STRING LIST Tokens = tokens(InputStr,':')

FOREACH Tok IN Tokens {

PRINT = Tok

}

List functions

List functions control the content of a list or array.

The basic structure of list functions are:

Description Function

Returns the components (see

page 82) of another object.

list components(entity

entity)

82 • Macros PowerMILL 2015 User Guide

Returns a list of all the

entities in the folder (see page
83).

list folder(string

folder)

Determines if the list has any
content (see page 84).

is_empty()

Determines if the list contains
a specific value (see page 84).

member()

Adding (see page 85) a list or
array to another list or array

+

Removes duplicate (see page
85) items from a list.

remove_duplicates()

Creates a list by compiling the
contents of two lists (can

contain duplicate naming)

set_union()

Creates a list containing items

that are present in two lists

(see page 85).

intersection()

Creates a list by subtracting

(see page 86) from the first
list those items that are

present in the second list.

subtract()

Returns a sorted list of

numerics or stings (see page
90).

list sort(list list)

Returns a sorted list of objects
or entities (see page 90)

sorted on a field name.

list sort(list list,

string field)

Returns a list where the items

have been reversed (see page
90).

list reverse(list list)

List components

The inbuilt components function returns the components of another

object.

 Currently NC Program and Group entity parameters are

supported.

 The components function returns a list of all items regardless
of type. You must check the type of the variable of each item,

in the list.

PowerMILL 2015 User Guide Macros • 83

The basic structure is:

list components(entity entity)

For example if you want to batch process tool holder profiles for the
tools in a group that contains toolpaths, boundaries, and tools:

FOREACH ent IN components(entity('Group', '1')) {

IF lcase(ent.RootType) == 'tool' {

EDIT TOOL $ent.Name UPDATE_TOOLPATHS_PROFILE

}

}

An example, to ensure that all the area clearance toolpaths in an NC

program have flood coolant turned on and that mist is set for all the
others:

FOREACH item IN components(entity('ncprogram','')) {

// only check nctoolpath items

IF lcase(item.RootType) == 'nctoolpath' {

// If the area clearance parameter is active then use

flood

IF active(entity('toolpath',item.Name).AreaClearance)

{

$item.Coolant.Value = "flood"

} else {

$item.Coolant.Value = "mist"

}

}

}

List folder

The folder function returns a list of all entities within a folder,

including those in subfolders.

The basic structure is:

list folder(string folder)

The names of the root folders are:

 MachineTool

 NCProgram

 Toolpath

 Tool

 Boundary

 Pattern

 Featureset

 Workplane

 Level

84 • Macros PowerMILL 2015 User Guide

 Model

 StockModel

 Group

 The name of the folder is case sensitive, so you must use Tool
and not tool.

You can use a FOREACH loop to process all of the entities within a

folder. For example, to batch process tool holder profiles:

FOREACH tool IN folder ('Tool'){

EDIT TOOL $tool.Name UPDATE_TOOLPATHS_PROFILE

}

An example, to batch process all the boundaries in your project:

FOREACH bou IN folder('Boundary') {

EDIT BOUNDARY $bou.Name CALCULATE

}

Empty list

The is_empty() function queries a list to determine whether it is

empty or not.

REAL LIST MyList = {}

IF is_empty(MyList) {

PRINT "Empty List"

}

List member

The member() function returns TRUE if the given value is one of the

items in the list. For example, to check that a toolpath doesn't occur
in more than one NC program, you can loop over all NCProgram and

check that each toolpath is only seen once. Do this by building a list

of toolpath names and checking that each time you add a name you
haven't already seen it.

// Create an empty list

STRING List names = {}

// Cycle through the NC programs

FOREACH ncp IN folder('NCProgram') {

// loop over the components in the nc prog

FOREACH item IN components(ncp) {

// Check that it is a toolpath

IF item.RootType = 'nctoolpath' {

// Use MEMBER to check that we haven't seen this

name before

IF NOT member(names, item.Name) {

 bool ok = add_last(names, item.Name)

} else {

 // We have already added this name

PowerMILL 2015 User Guide Macros • 85

 STRING msg = "Toolpath: "+item.Name+crlf+" in

more than one NCProgram"

 MESSAGE ERROR $msg

 MACRO ABORT

}

}

}

}

The is_empty() function queries a list to determine whether it is

empty or not.

REAL LIST MyList = {}

IF is_empty(MyList) {

PRINT "Empty List"

}

Adding lists

The + function adds a list or array to another list or array. For

example, you can add two lists together to get a list of all the tools

used by the toolpaths and boundaries:

STRING LIST UsedToolNames = ToolpathTools + BoundaryTools

Removing duplicate items in a list

The remove_duplicates() function removes duplicate values. For

example, a tool may be used in both a toolpath and a boundary, so

the UsedToolNames list may contain duplicate values.

To remove the duplicate values:

INT n = remove_duplicates(UsedToolNames)

The set_union() function returns a list containing the items from

both sets, removing any duplicates. So you can create the

UsedToolNames list using:

STRING LIST UsedToolNames = set_union(ToolpathTools,

BoundaryTools)

Intersecting items in lists

The inbuilt function intersection() returns a list containing the

items present in both lists or arrays. To obtain the names of the

tools that are used in both toolpaths and boundaries use:

STRING LIST TP_Bound_Names = intersection(ToolpathTools,

BoundaryTools)

86 • Macros PowerMILL 2015 User Guide

Items present in one list, but not the other

The inbuilt function subtract() returns the items that are in the

first list, but not in the second list.

STRING UnusedToolNames = subtract(AllToolNames,

UsedToolNames)

Adding items to a list

You can add items to the start or end of a list.

Adding items to the start of a list

The inbuilt function add_first(list, item) adds an item to the

start of a list. It returns the number of items in the list after the
addition.

For example, to add the name of a pattern to the start of a list:

STRING LIST Patterns = {}

FOREACH pat IN folder('Pattern') {

// Add the name of the pattern to the start of the list

int s = add_first(Patterns, pat.Name)

}

Adding items to the end of a list

The inbuilt function add_last(list, item) adds an item to the end

of a list. It returns the number of items in the list after the addition.

For example, to add the name of a pattern to the end of a list:

STRING LIST Patterns = {}

FOREACH pat IN folder('Pattern') {

// Add the name of the pattern to the end of the list

int s = add_last(Patterns, pat.Name)

}

Removing items from a list

You can remove items from the start or end of a list.

Removing items from the start of a list

The inbuilt function remove_first(list) removes an item from the

start of a list. It returns the removed item.

For example, to print the names of patterns in a list:

// Print the names of the Patterns in reverse order

// Create a list of the pattern names

STRING LIST Patterns = {}

FOREACH pat IN folder('Pattern') {

// Add the name of the pattern to start of the list

int s = add_first(Patterns, pat.Name)

}

PowerMILL 2015 User Guide Macros • 87

// Keep taking the first item from the list until

// there are no more

WHILE size(Patterns) > 0 {

STRING name = remove_first(Patterns)

PRINT $Name

}

If you have three patterns in the Explorer:

The FOREACH loop adds each item to the start of the list. As the

add_first command adds the next pattern to the start of the list.

So you end up with a list

{"Pattern_3","Pattern_2,"Pattern_1"}.

The WHILE loop takes the first item in the list, removes it from the

list and pints it. This gives:

Pattern_3

Pattern_2

Pattern_1

Removing items from the end of a list

The inbuilt function remove_last(list) removes an item to the end

of a list. It returns the removed item.

For example, to print the names of patterns in a list:

// Print the names of the Patterns in reverse order

// Create a list of the pattern names

STRING LIST Patterns = {}

FOREACH pat IN folder('Pattern') {

// Add the name of the pattern to end of the list

int s = add_first(Patterns, pat.Name)

}

// Keep taking the last item from the list until

// there are no more

WHILE size(Patterns) > 0 {

STRING name = remove_last(Patterns)

PRINT $Name

}

If you have the same three patterns in the Explorer:

88 • Macros PowerMILL 2015 User Guide

The FOREACH loop adds each item to the end of the list. As the

add_last command adds the next pattern to the end of the list. So

you end up with a list {"Pattern_1","Pattern_2,"Pattern_3"}.

The WHILE loop takes the last item in the list, removes it from the

list and pints it. This gives:

Pattern_3

Pattern_2

Pattern_1

To end up with the patterns in the same order as they are in the
Explorer either:

 In the FOREACH loop use the add_last command and in the

WHILE loop use the remove_first command; or

 In the FOREACH loop use the add_first command and in the

WHILE loop use the remove_last command.

Finding values in a list

The inbuilt function remove(list, value) returns true if the value

is in the list and false if it isn't. If the value is in the list, it also
removes the first instance of the value from the list.

For example, to print a list of tool diameters and the number of
toolpaths using each tool:

// Print a list the tool diameters and the

// number of Toolpaths using each unique diameter.

REAL LIST Diameters = {}

FOREACH tp IN folder('Toolpath') {

INT s = add_last(Diameters, tp.Tool.Diameter)

}

// Create a list with just the unique diameters

REAL LIST UniqueD = Diameters

INT n = remove_duplicates(UniqueD)

// Loop over the unique diameters

FOREACH diam = UniqueD {

// set a counter

INT Count = 0

DO {

$Count = Count + 1

} WHILE remove(Diameters, diam)

STRING Msg = "There are "+Count+" toolpaths using

"+diam+" tools"

PRINT $msg

}

PowerMILL 2015 User Guide Macros • 89

Extracting data from lists

The inbuilt function extract(list, par_name) will return a list

containing par_name parameters extracted from the input list.

For example, to get the names of all the toolpaths in a project:
STRING LIST names = extract(folder('toolpath'),'name')

The result could have been achieved with a FOREACH loop that builds

up the list of names item by item, however, the function allows for a
more succinct expression, and it also lets .NET programs to interact

with lists without having to use the PowerMILL-control-flow
statements.

 In the above case, the list of toolpaths returned from the

inbuilt function folder() is directly used as the list argument

to extract.

Another example is finding the maximum block zheight of the
toolpaths:
REAL maxz =

max(extract(folder('toolpath'),'Block.Limits.ZMax'))

Filtering data from lists

The inbuilt function filer(list, expression) returns a sub-list of the
original list. The returned list only contains the items in the original

list that match the expression you have specified. For example,

suppose you want to obtain a list of raster toolpaths:

ENTITY LIST rasters = filter(folder('toolpath'),

"strategy=='raster'")

Suppose that your toolpaths may contain the UserParameter 'laser'

and you want to change something on just the toolpaths that

contain the parameter. You can determine whether a toolpath has

the 'laser' parameter with the expression

'member(UserParameters._keys,'laser')'. This works because

each OBJECT has a special parameter '_keys', which is a list of the

immediate sub-parts of the object. So to just get the toolpaths that

have the 'laser' parameter, we can use the following code:
// create a string for the

// expression to help readability

STRING expr = "member(UserParameters._keys,'laser')"

ENTITY LIST laser_tps = filter(folder('toolpath'),$expr)

The filter() function can also be combined with the extract()

function to build complexpressions within your macros. For
example, to obtain the list of tools used by raster toolpaths:
ENTITY LIST tools =

extract(filter(folder('toolpath'),"strategy=='raster'"),'

tool')

90 • Macros PowerMILL 2015 User Guide

A special variable called 'this' has been added to help with the

filter() function. The 'this' variable can be used to refer to the

element that the filter() function is examining. For example

suppose you have a list of numbers and only want the numbers that
are greater than 10:
REAL LIST numbers = {1.0, 10.2, 3.5, 20.4, 11.0, 2.8}

REAL LIST numbs = filter(numbers, "this > 10.0")

The above returns the list {10.2, 20.4, 11.0}.

Sorted list

The sort function sorts lists and arrays of scalars (numerics or
strings) or objects and entities. By default, the functions sort a list

in ascending order. If you want to sort the list in descending order,
you can apply the reverse function to the list.

If you are sorting a list of objects and entities, you must provide a
field name for the sort.

The following examples sort lists of scalar values (numerics and
strings):

STRING LIST l1 = {"The","Twelth","Night"}

$l1 = sort(l1)

// returns the list {"Night", "The", "Twelth"}

REAL ARRAY a1 = {23, 12, 4, 52, 32}

$a1 = sort(a1)

// Returns the list {4, 12, 23, 32, 52}

When sorting non-scalar values, such as entities or objects, you
must provide a sort field that is a scalar value:
CREATE TOOL ; BALLNOSED

EDIT TOOL ; DIAMETER 2.0

CREATE TOOLPATH 'bbb' RASTER

CREATE TOOL ; BALLNOSED

EDIT TOOL ; DIAMETER 1.0

CREATE TOOLPATH 'ccc' RASTER

CREATE TOOL ; BALLNOSED

EDIT TOOL ; DIAMETER 1.5

CREATE TOOLPATH 'aaa' RASTER

For example:
ENTITY LIST ents = sort(folder('toolpath'),'name')

// Returns the list of toolpath {'aaa','bbb','ccc'}

ENTITY LIST ents_diam =

sort(folder('toolpath'),'Tool.Diameter')

// Returns the list of toolpath {'ccc','aaa','bbb'}

PowerMILL 2015 User Guide Macros • 91

You can reverse the order of a list by using the inbuilt function

reverse(). The example above sorts the toolpaths based on tool
diameter and returns the entries in ascending order, with the

smallest diameter listed first. To sort the list in descending order,
you can reverse the results.
ENTITY LIST ents_diam =

reverse(sort(folder('toolpath'),'Tool.Diameter'))

// Returns the list of toolpaths {'bbb','aaa','ccc'}

Path functions

The path functions returns part of the pathname of the entity,

The basic structure of the path functions are:

Description of return value Function

The Folder name (see page

92) function returns the full
folder name of the entity, or

an empty string if the entity
doesn't exist.

string pathname(entity

ref)

The Folder name (see page
92) function can also be used

to return the full folder name
of the entity.

string pathname(string

type, string name)

The Directory name (see page
92) function returns the

directory prefix from the path.

string dirname(string

path)

The Base name (see page 93)

function returns the non-

directory suffix from the path.

string basename(string

path)

The Project name (see page

94) functions returns the
pathname of the current

project on disk.

project_pathname(bool

basename)

The Active folder (see page

94) functions returns folder
names of active entities.

String active_folder()

The Folder list (see page 94)
functions returns the names

of folders in the PowerMILL
project.

String

folder_list(folder_name)

92 • Macros PowerMILL 2015 User Guide

Folder name

The pathname function returns the full folder name of the entity,

or,if the entity doesn't exist, an empty string.

The basic structure is:

string pathname(entity ref)

Also,

string pathname(string type, string name)

Returns the full folder name of the entity.

For example, if you have a BN 16.0 diam tool in a Ballnosed tool

folder, then:

pathname('tool', 'BN 16.0 diam')

returns the string Tool\Ballnosed tools\BN 16.0 diam.

 If the entity doesn't exist it returns an empty string.

You can use this function in conjunction with the dirname() (see

page 92) function to process all the toolpaths in the same folder as

the active toolpath.

STRING path = pathname('toolpath',Name)

// check that there is an active toolpath

IF path != '' {

FOREACH tp IN folder(dirname(path)) {

ACTIVATE TOOLPATH tp.Name

EDIT TOOLPATH ; CALCULATE

}

} ELSE {

MESSAGE "There is no active toolpath"

RETURN

}

Directory name

The directory name function returns the directory prefix from the
path.

The basic structure is:

string dirname(string path)

For example you can use this to obtain the argument for the inbuilt
folder() function.

STRING folder = dirname(pathname('toolpath',Name))

PowerMILL 2015 User Guide Macros • 93

Base name

The base name function returns the non-directory suffix from the

path.

The basic structure is:

string basename(string path)

Usually basename(pathname('tool',tp.Name)) is the same as

tp.Name, but you can use this in conjunction with dirname (see page

92) to split apart the folder names.

For example, suppose your toolpaths are split in folders:

Toolpath\Feature1\AreaClear

Toolpath\Feature1\Rest

Toolpath\Feature1\Finishing

Toolpath\Feature2\AreaClear

Toolpath\Feature2\Rest

Toolpath\Feature2\Finishing

You can rename all your toolpaths so that they contain the feature

name and the area clearance, rest, or finishing indicator.

FOREACH tp in folder('Toolpath') {

// Get the pathname

STRING path = pathname(tp)

// Get the lowest folder name from the path

STRING type = basename(dirname(path))

// get the next lowest folder name

STRING feat = basename(dirname(dirname(path)))

// Get the toolpath name

STRING base = basename(path)

// Build the new toolpath name

STRING NewNamePrefix = feat + "-" + type

// Check that the toolpath hasn't already been renamed

IF position(base,NewNamePrefix) < 0 {

RENAME TOOLPATH $base ${NewNamePrefix+" " + base}

}

}

94 • Macros PowerMILL 2015 User Guide

Project name

The project pathname function returns the pathname of the current

project on disk.

The basic structure is:

project_pathname(bool basename)

The argument dirname_only gives a different result if it is true to if

it is false.

 If true, returns the name of the project.

 If false returns the full path of the project.

For example if you have opened a project

called:C:\PmillProjects\MyProject

project_pathname(0) returns"C:\PmillProjects\MyProject.

project_pathname(1) returns MyProject.

A PowerMILL macro example is:

EDIT BLOCKTYPE TRIANGLES

STRING $ARBLOCK = project_pathname(0) + '\' + 'block_test.dmt'

GET BLOCK $ARBLOCK

Active folder name

Use to determine the folder names of currently active entities, for
example the name of the active toolpath or workplane folder.

The basic structure is:

STRING LIST list = folder_list(folder_name)

STRING folder = active_folder('type-name')

For example:
// get all the folders in the toolpath branch

STRING LIST list = folder_list('toolpath')

// get list of subfolders in tool\endmills

STRING LIST list = folder_list('tool\endmills')

STRING nc_folder = active_folder('ncprogram')

An empty list is returned if there are no folders, or if there are no
active folders.

To find out if the given folder path exists or not, use:
document folder_exist()

This returns true or false depending on whether the path exists or

not. For example, BOOL ok =
folder_exists('toolpath\areaclearance')

PowerMILL 2015 User Guide Macros • 95

 Use document folder_exist() to interrogate PowerMILL

Explorer folders. To interrogate folders on disk, use the

dir_exists()functions.

Conditional functions

The basic structure of conditional functions are:

Description of return value Function

Returns the value of
expression 1 if the conditional

expression is true, otherwise
it returns the value of

expression 2.

variant select(

conditional-expression;

expression1;expression2)

 Both expressions must be of the same type.

This example obtains either the tool radius or its tip radius, if it has
one.

You can use an IF block of code:

REAL Radius = Tool.Diameter/2

IF active(Tool.TipRadius) {

$Radius = Tool.TipRadius

}

Or you can use the inbuilt select function:

REAL Radius = select(active(Tool.TipRadius),

Tool.TipRadius, Tool.Diameter/2)

 If you are assigning an expression to a parameter then you
will always have to use the inbuilt select() function.

Within a macro you can use either method.

Evaluation functions

The evaluation function evaluate a string argument as an

expression.

For example:

print = evaluate("5*5")

prints 25.

You can use evaluate to provide a different test at runtime.

96 • Macros PowerMILL 2015 User Guide

This example provides a bubble sort for numeric values. By

changing the comparison expression you can get it to sort in
ascending or descending order.

FUNCTION SortReals(STRING ComparisonExpr, OUTPUT REAL

LIST List) {

// Get number of items.

INT Todo = size(List)

// Set swapped flag before we start

Bool swapped = 1

// Repeat for number of items

WHILE Todo > 1 AND Swapped {

// start at the beginning

INT Idx = 0

// Signal that nothing has been done yes

$Swapped = 0

// loop over number of items still to do

WHILE Idx < ToDo-1 {

// swap if they are out of sequence

// Uses user supplied comparison function to

perform test

IF evaluate(ComparisonExpr) {

 REAL swap = List[Idx]

 $List[Idx] = List[Idx+1]

 ${List[idx+1]} = swap

 // signal that we've done something

 $Swapped = 1

}

// look at next pair

$Idx = Idx + 1

}

// reduce number of items

$ToDo = ToDo - 1

}

}

FUNCTION Main() {

/Set up some data

REAL ARRAY Data[] = {9,10,3,4,1,7,2,8,5,6}

// Sort in increasing value

CALL SortReals("List[Idx] > List[Idx+1]", Data)

PRINT PAR "Data"

REAL ARRAY Data1[] = {9,10,3,4,1,7,2,8,5,6}

// Sort in decreasing order

CALL SortReals("List[Idx] < List[Idx+1]", Data1)

PRINT PAR "Data1"

}

PowerMILL 2015 User Guide Macros • 97

Type conversion functions

The type conversion functions enable you to temporarily convert a

variable from one type to another within an expression.

The basic structure of the type conversion functions are:

Description of return value Function

Convert to integer value. int int(scalar a)

Convert to real value. real real(scalar a)

Convert to boolean value. bool bool(scalar a)

Convert to string value string string(scalar a)

Normally you would use inbuilt string() conversion function to

convert a number to a string when building up a message:

STRING $Bottles = string(Number) + " green bottles ..."

In other cases, you may want convert a real number to an integer,
or an integer to a real number:

INT a = 2

INT b = 3

REAL z = 0

$z = a/b

PRINT $z

This prints 0.0.

If you want the ratio then you have to convert either a or b to real

within the assignment expression.

INT a = 2

INT b = 3

REAL z = 0

$z = real(a)/b

PRINT $z

This prints 0.666667.

Parameter functions introduction

All of the PowerMILL parameters have an active state which

determines whether the parameter is relevant for a particular type
of object or operation.

The basic structure of the parameter functions are:

Description of return value Function

Evaluates the active
expression of par.

bool active(par)

98 • Macros PowerMILL 2015 User Guide

Returns whether the

parameter can be changed or
not.

bool locked(par)

Returns the number of sub-
parameters that par contains.

int size(par)

Returns a list of string
descriptions for a enumerator

type

- string list

values(par)

Evaluate the active expression

For example, the Boundary.Tool parameter is not active for a block

or sketch type boundaries. You can test whether a parameter is
active or not with the inbuilt active() function. This can be useful in

calculations and decision making.

The basic control structure is:

IF active(….) {

…

}

Check if you change a parameter

You can test whether a particular parameter is locked or not with
the inbuilt locked() function. You can't normally edit a locked

parameter because its entity is being used as a reference by
another entity. If you try to edit a locked parameter with the EDIT

PAR command, PowerMILL raises a query dialog asking for

permission to make the change. You can suppress this message
using the EDIT PAR NOQUERY command. The locked() function

allows you to provide your own user messages and queries that are
tailored to your application.

For example:

IF locked(Tool.Diameter) {

BOOL copy = 0

$copy = QUERY "The current tool has been used do you

want to make a copy of it?"

IF NOT copy {

// cannot proceed further so get out

RETURN

}

COPY TOOL ;

}

$Tool.Diameter = 5

PowerMILL 2015 User Guide Macros • 99

Check the number of sub-paramters

The inbuilt size() function returns the number of immediate items in

the parameter. You can use this to determine the number of
toolpaths in a folder:

PRINT = size(folder('Toolpath\Cavity'))

Enumerator parameter

The values() function returns a list of display names for an

enumerator parameter, such as Tool.Type, CutDirection, or
Strategy. The names are translated into the current language that a

user is working in. This list can be used to gather input from the
user with the CHOICE dialog. For example, to ask the user which

cut direction they would like to use, you can use the following code:
// Get names for the choices the user can make for this

parameter

STRING ARRAY Opts[] = values(CutDirection)

// Get the user input

INT C = INPUT CHOICE $Opts "Choose the Cut Direction you

want"

// Use the returned value to set the direction

$CutDirection = $C

Automate a sequence of edits or actions

Use the following functions to automate a sequence of edits or

actions to a number of files and directories:

// return list of file and/or directory names

list file_list(<type>, directory, filespec)

// <type> == "all" returns both the files and directories

// <type> == "files" just returns the files

// <type> == "dirs" just returns the directories

// a '+' suffix to the type (eg "files+") will recurse

down the directories

// get the current directory

string pwd()

// check whether a file exists

bool file_exists(path)

// check whether a directory exists

bool dir_exists(path)

100 • Macros PowerMILL 2015 User Guide

Statistical functions

The statistical functions enable you to return the minimum and

maximum values of any number of numeric arguments.

The basic structure of the statistical functions are:

Description of return value Function

Returns the largest value in a

list of numbers.

real max(list numeric a

)

Returns the smallest value in
a list of numbers.

real min(list numeric a

)

This example finds the maximum and minimum block height of the

toolpaths in the active NC program.

REAL maxz = -100000

REAM minz = abs(maxz)

FOREACH item IN components(entity('ncprogram','')) {

IF item.RootType == 'nctoolpath' {

$maxz = max(maxz,entity('toolpath',item.Name))

$minz - min(minz,entity('toolpath',item.Name))

}

}

MESSAGE "Min = " + string(minz) + ", max = " +

string(maxz)

Entity based functions

These functions work on specific entities.

Command Description

entity_exists() Returns true if the named entity

exists (see page 101).

geometry_equal() Compares two tools, or two

workplanes for geometric
equivalence.

new_entity_name() Returns the name (see page 102)
assigned to the next entity.

set_workplane() Sets the vectors and origin
of a workplane (see page

72).

segments() Returns the number of segments in
a toolpath, boundary or pattern.

limits() Returns the XYZ limits of an entity.

PowerMILL 2015 User Guide Macros • 101

Equivalence

You can use the inbuilt function geometry_equal() to test whether

two tools, or two workplanes are geometrically equivalent. For a
tool the test is based on the cutting geometry of the tool.

Number of segments

The inbuilt function segments() returns the number of segments in
a pattern or boundary:

IF segments(Pattern) == 0 {

PRINT "The pattern is empty"

}

Limits

The inbuilt function limits() returns an array of six elements

containing the XYZ limits of the given entity. The supported entities

are: pattern, boundary, toolpath, feature set, or model.

REAL ARRAY Lims[] = limits('model','MyModel')

The values in the array are :

REAL MinX = Lims[0]

REAL MaxX = Lims[1]

REAL MinY = Lims[2]

REAL MaxY = Lims[3]

REAL MinZ = Lims[4]

REAL MaxZ = Lims[5]

Does an entity exist?

The inbuilt function entity_exists() returns true if the entity

exists. You can call this function with:

 an entity parameter such as entity_exists(Boundary),

entity_exists(ReferenceTool), or

entity_exists(entity('toolpath','')).

 two parameters that specify the entity type and name such as

entity_exists('tool','MyTool').

For example:

IF entity_exists(Workplane) {

PRINT "An active workplane exists"

} ELSE {

PRINT "No active workplane using world coordinate

system."

}

IF NOT entity_exists(entity('toolpath','')) {

PRINT "Please activate a toolpath and try again."

102 • Macros PowerMILL 2015 User Guide

MACRO ABORT ALL

}

New entity name

The inbuilt function new_entity_name() returns the next name that

PowerMILL gives to a new entity of the given type. You can supply

an optional basename argument to obtain the name that PowerMILL
uses when creating a copy or clone of an entity.

This example shows you how to determine the name of a new
entity.

CREATE WORKPLANE 1

CREATE WORKPLANE 2

CREATE WORKPLANE 3

// Prints 4

PRINT = new_entity_name('workplane')

DELETE WORKPLANE 2

// Prints 2

PRINT = new_entity_name('workplane')

CREATE WORKPLANE ;

// Prints 2_1

PRINT = new_entity_name('workplane', '2')

PowerMILL 2015 User Guide Macros • 103

Model hierarchy

Model Component Functions
INT select_components(DATA components)

INT deselect_components(DATA components)

These functions select or deselect all of the components in the
passed-in data parameter. The data parameter must store a

ModelCompList or ModelCompSet. The return value is numeric, but
carries no information.

INT number_selected(DATA components)

This function returns the number of the components in the passed-

in data parameter that are currently selected. The data parameter
must store a ModelCompList or ModelCompSet.

Model Hierarchies

Some CAD systems store models in a hierarchical structure. When
PowerMILL reads these CAD files it creates a parameterised

representation of this structure. This structure can be navigated as
a tree, and there are two helper functions, one to retrieve a node

from the hierarchy by its path, and the other to retrieve the
hierarchy (or a subsection of the hierarchy) as a list that can be

filtered or iterated over.

Nodes

The hierarchy of a model is made up of nodes. These are maps with

typename "ModelHierarchyElement". They have the following

properties:

Property Type Description

Name STRING The name associated with the node
in the hierarchy. The root node’s

name will be the same as the

model’s name.

Path STRING The path to the node. It consists of

the names of the node’s ancestors,
starting with the root node,

separated by backslashes. It
includes the node’s name.

Parent MAP The parent of this node in the

hierarchy. The root node’s Parent is

104 • Macros PowerMILL 2015 User Guide

(typename:

ModelHierarchyElemen
t)

always an error. For all other

nodes, it will be a map of this type.

Children ARRAY of MAPs

(typename:

ModelHierarchyElemen
t)

A list of the children of the node in
the hierarchy. Each child node is a

map of this type.

Compone
nts

DATA

{ModelCompList}

A list of the model components

associated with the node.

Parameter
s

MAP

(typename:

ModelMetadata)

Key-Value pairs associated with the
node. Currently an empty map.

SelectedIn
GUI

BOOL This parameter is not currently

used, and will always return false.

The root node of a model’s hierarchy is accessible through the

"Hierarchy" property on the model entity parameter.

Walking the hierarchy

If you want to select all components associated with nodes

containing "Hole" in their name, for instance, you could use a macro
like this:

FUNCTION Main() {

ENTITY mod = entity("model", "1")

CALL SelectHoles(mod.Hierarchy)

}

FUNCTION SelectHoles(OBJECT node) {

// Select the components associated with this node if

// its name contains "Hole"

IF (position(node.Name, "Hole") > -1) {

INT i = select_components(node.Components)

}

// Recursively call this function with each child node

FOREACH child IN node.Children {

CALL SelectHoles(child)

}

}

This is a basic template for working with a hierarchy: a function that

takes a node as an argument, does something with it, and then

recursively calls the function with each of its child nodes.

PowerMILL 2015 User Guide Macros • 105

This template can be built on to give more complex functionality.

For example, the operation on the node could depend on extra
passed-in arguments, several operations could be performed on the

node, or a conditional check on each child node could be placed
within the FOREACH loop to skip certain branches of the tree.

Getting a Node by its Path
OBJECT model_tree_node(ENTITY model[, STRING path)

OBJECT model_tree_node(STRING model_name[, STRING path])

The first argument should be a model entity or the name of a model
entity. The second argument is an optional path into that model's

hierarchy. The function will return the node with the given path or
the root node if the path is omitted.

The following example gets the node "group1", which is a child of
the "part" node, which is a child of the root node "1". It then stores

how many of the components associated with the node are

currently selected:
OBJECT node = model_tree_node("1", "1\part\group1") {

INT count = number_selected (node.Components)

Getting the Hierarchy as a List
OBJECT LIST model_tree_nodes(ENTITY model[, STRING path)

OBJECT LIST model_tree_nodes(STRING model_name[, STRING

path])

This function takes the same arguments as model_tree_node(). It
returns a list containing the node that would be returned by

model_tree_node() if it were sent the same arguments, and all of
its descendants.

The example below performs the same operation as the macro in
the "Walking the Hierarchy" section above, selecting all geometry

associated with nodes that contain "Hole" in their name.
FOREACH node IN model_tree_nodes(entity("model", "1")) {

IF position(node.Name, "Hole") > -1 {

BOOL b = select_components(node.Components)

}

}

As well as being a more concise method, for operations that are to
be performed on every node in the hierarchy, this will generally

execute quicker than walking the hierarchy using the recursive
method.

106 • Macros PowerMILL 2015 User Guide

Feature Parameters
You can use the inbuilt components() function to loop over the
features within a feature set. Each feature has the following

parameters:

Name — Name of Feature

ID — Id of Feature

RootType — 'feature' as a string

num_items — Number of sub-holes

Type — Type of feature (pocket, slot, hole, boss)

Top — Top of feature, z-value relative to Origin

Bottom — Bottom of feature, z-value relative to Origin

Depth — Depth of feature, from top to bottom

Diameter — Diameter of feature

Draft — Draft angle

Axis — Z axis of Feature

For example:

// Print out the diameter of each hole

FOREACH f in components(entity('featureset','1')) {

IF f.Type == "hole" {

PRINT = f.name + " has a diameter of " + f.Diameter

}

}

You can also use the components() function to iterate over the

elements of compound holes, as follows:

ENTITY fset = entity('FeatureSet','')

PRINT ="Feature Set '" + fset.Name + "' has " +

fset.num_items + "

Features"

FOREACH feat IN components(fset) {

IF feat.num_items > 0 {

PRINT ="Feature '" + feat.Name + "' is a compound

hole'"

FOREACH sub IN components(feat) {

PRINT ="Sub-hole '" + sub.Name + "' has diameter "

+ sub.Diameter

}

} ELSE {

PRINT ="Feature '" feat.Name + "' is a " + feat.Type

}

}

PowerMILL 2015 User Guide Macros • 107

 You cannot edit feature parameters in the macro language.

You must use the normal PowerMILL commands to edit
features. However, the parameters will give you all the values

you need to make the appropriate edits.

Working with files and directories
PowerMILL contains a number of commands and functions for

creating and manipulating files on disc. The following commands
can be used to delete and copy files and directories:

DELETE FILE <filename>

DELETE DIRECTORY <directory>

COPY FILE <source-file> <destination file>

COPY DIRECTORY <source directory> <destination-directory>

The command CD changes the working directory:

// change working directory to "C:\temp"

CD "C:\temp"

// change working directory back to where PowerMILL

started from

CD

The command MKDIR will create a directory path:

MKDIR "C:\temp\output\pm_project"

The command will create all directories in the path if they do not

exist already.

File and directory functions

PowerMILL contains a number of parameter functions that can be

used to examine the file structure of the disc:

 string pwd() — Returns the current working directory path.

 bool file_exists(filepath) — Returns true if filepath is an

existing file.

 bool dir_exists(dirpath) — Returns true if dirpath is an

existing directory.

 list list_files(string flags,string directory[, string

filetype]) — Returns a list of files that match the flags and

optional filetype. The flags parameter can be either 'all',

'files', or 'dirs' with an additional '+' suffix. If the '+' suffix is

given then all subdirectories are listed.

108 • Macros PowerMILL 2015 User Guide

Example

// get a list of all the files in the working directory

STRING LIST files = list_files("files",pwd())

// get all the stl files in the C:\temp directory

$files = list_files("files","c:\temp",".stl")

// get all the directories and subdirectories in the

working directory

$files = list_files("dirs+", pwd())

File reading and writing in macros
PowerMILL has a number of commands that can be used to read
information from a file, or to write information to a file.

Use the following commands:

 FILE OPEN — Open a file for reading or writing and associate it

with a file handle.

 FILE CLOSE — Close a file and free-up its file handle so you can

re-use it later.

 FILE WRITE — Write the contents of an existing variable to an

open file.

 FILE READ — Read values from one or more lines from an open

file into an existing variable.

 A file handle is the name used internally to refer to the file.

FILE OPEN command

Before you can use a file, it must be opened for either reading or

writing, and given an internal name (file handle) by which you will
later refer to it.

The synatx for opening a file is:

FILE OPEN <pathname-of-file> FOR <access-type> AS

<handle>

 The <access-type> can be READ, WRITE, or APPEND, and

<handle> is a short string used to refer to the file.

For example, to open the file fred.txt for writing, use the command:

FILE OPEN "d:\my-files\fred.txt" FOR WRITE AS output

To open a file for reading you might use the command:

FILE OPEN "d:\my-files\fred.txt" FOR READ AS input

PowerMILL 2015 User Guide Macros • 109

To open a file and append more information to the end of it, use the

command:

FILE OPEN "d:\my-files\fred.txt" FOR APPEND AS input

You cannot use the same <handle> for more than one file at a time.

FILE CLOSE command

When you have finished with a file it is good practice to close it so
that you can reuse the handle and release system resources.

For example:
FILE CLOSE output

FILE CLOSE input

 To reuse a closed file you need to reopen it.

FILE WRITE command

Use the FILE WRITE command to write data from a variable to a file

that has been opened for writing or appending.

Variables are written line by line. If the variable to be written is a
scalar (INT, BOOL, REAL, or STRING) then a single line is written

(unless a string containing new lines is written).

If the variable to be written is an array or list then every element

from the source variable is written one line at a time to the file.
Individual elements can be written using sub-scripts.

The syntax for the command is:
FILE WRITE $<variable> TO <handle>

For example:
FILE OPEN "test.txt" FOR WRITE AS out

STRING LIST greeting = {"Hello, ", "World!"}

INT ARRAY errors[5] = {1,2,3,4,5}

FILE WRITE $greeting TO out*8

FILE WRITE $errors TO out

FILE WRITE $PI TO out

FILE WRITE $greeting[1] TO out

FILe CLOSE out

// Append an error message to a log file

FILE OPEN "errorlog.txt" FOR APPEND AS log_file

INT error = 2

STRING time = "14:57"

STRING date = "July 1st, 2012"

STRING log_entry = "Error (" + error_code + ") occurred

at " + time + " on " + date

FILE WRITE $log_entry TO log_file

FILE CLOSE log_file

110 • Macros PowerMILL 2015 User Guide

FILE READ command

The FILE READ command is used to read data from a file opened for

reading into an existing variable.

If the variable is a scalar then a single line is read and the string is

converted to the required variable type using standard conversion
rules.

If the variable is an array then one line is read for each element in
the array, with values being stored in the array (starting from index

0). If the end of the file is reached before the array is reached, the
data in the remaining elements remain unchanged.

If the variable to be read is a list then all remaining lines in the file
are read with existing list elements being over-written and the list

being extended as necessary. Again, if the number of lines
remaining to be read in the file are fewer than the number of

elements currently in the list, then data in the remaining elements
is unchanged.

For example:
FILE OPEN "values.txt" FOR READ AS input

STRING product_name = ""

INT ARRAY vers[2] = {0, 0}

REAL tol = 0.0

STRING LIST rest_of_file = {}

FILE READ $prod FROM input

FILE READ $version FROM input

FILE READ $tol FROM input

FILE READ $rest_of_file FROM input

PRINT ="Tolerance from " + prod + " v" + vers[0] + "." +

vers[1] + ": " + tol

PRINT ="Comments:"

FOREACH line IN rest_of_file {

PRINT $line

}

Frequently asked questions

How do I loop through all the toolpath entities?

The folder() function returns all the items that are in the Explorer
folders, for example Machine Tools, Toolpaths, Tools, Boundaries,

Patterns etc.. The easiest way to loop through all the items is to use

the FOREACH statement:

FOREACH tp IN folder(‘Toolpath’) {

PRINT = tp.name

}

PowerMILL 2015 User Guide Macros • 111

The folder function returns all the items in the specified folder and

in any subfolders. You can limit the number of items returned by
specifying a specific subfolder to loop through:
FOREACH tp IN folder(‘Toolpath\semi-finishing’) {

PRINT = tp.name

}

How do I only loop over the items in a parent folder (and exclude any
subfolders)?

As described above, the folder() function returns items from a

parent folder and any subfolders. If you only want to loop over the
items in the parent folder, you need to filter the results. For

example, if you have the folder 'Semi-finishing' and the subfolder

'Not used', which contains temporary or alternative toolpaths, then
to access the toolpaths only in the 'Semi-finishing' folder, you need

to use the pathname and dirname functions:
STRING fld = ‘Toolpath\semi-finishing’

FOREACH tp IN folder($fld) {

IF dirname(pathname(tp)) == $fld {

PRINT = tp.name

}

}

You can also achieve the same result as above by using a complex
expression for the FOREACH loop. In some cases this may make

your code easier to understand and in other cases much harder. In
the following example, the results of the folder() function are

filtered so the IF statement can be removed.
STRING fld = ‘Toolpath\semi-finishing’

STRING filt = ‘dirname(pathname(this)) == fld’

FOREACH tp IN filter(folder($fld), $filt) {

PRINT = tp,name

}

 Note the use of ‘this’ in the $filt expression: when used in the

filter function, ‘this’ is an alias for the current list item that is
being filtered. In cases where you need to explicitly use the

list item, such as the one above, you should refer to it as
‘this’ in the expression.

How do I loop over the items in the active folder?

The inbuilt function active_folder() returns the name of the folder
that is currently active in the Explorer.

 Check the correct folder in the Explorer is active.
STRING fld = active_folder()

IF fld == "" {

// No active folder use the root instead

$fld = ‘Boundary’

112 • Macros PowerMILL 2015 User Guide

} ELSEIF position(fld,’Boundary\’) != 0 {

MESSAGE "Active folder isn’t a boundary folder"

RETURN

}

How can I tell if a toolpath has been calculated?

The Toolpath’s parameter 'Computed' is be true if it has been

calculated. Sometimes a toolpath may have been calculated but
contain no cutting segments. If this is an issue then you should

check the number of segments as well:
IF tp.Calculated AND segments(tp) > 0 {

PRINT "Toolpath is calculated and has segments"

}

Organising your macros
Recorded macros are listed in the Explorer under the Macros branch.

This example shows you how to manage the macro paths.

1 From the Macros menu select Macro Paths.

 Alternatively, from the Tools menu, select Customise Paths

> Macro Paths.

PowerMILL 2015 User Guide Macros • 113

The PowerMILL Paths dialog is displayed showing you all the

default macro paths. PowerMILL automatically searches for
macros located within these folders, and displays them in the

Explorer.

 The period (.) indicates the path to the local folder

(currently, the folder to which the project is saved).

The tilde () indicates your Home directory.

2 To create a macro path, click , and use the Select Path dialog

to select the desired location. The path is added to the top of the
list.

3 To change the path order, select the path you want to move, and

use the and buttons to promote or demote the path.

4 Click Close.

5 To load the new paths into PowerMILL, expand the Macros

branch in the Explorer.

 Only the paths that contain at least one macro are shown.

For more information, see Displaying Macros in the Explorer.

Recording the pmuser macro
The pmuser.mac is automatically run whenever you start PowerMILL

providing you with your preferred settings.

1 From the Tools menu, select Reset Forms. This ensures that

PowerMILL uses the default parameters in the dialogs.

114 • Macros PowerMILL 2015 User Guide

2 From the Macros context menu, select Record.

3 Browse to pmill4 folder in your Home area. In the Select Record

Macro File dialog, enter pmuser in the File name field, and click

Save.

 If you are asked whether you want to overwrite the existing
file, select Yes.

The macro icon changes to red to show recording is in

progress.

 All dialog options that you want to include in your macro

must be selected during its recording. If an option already
has the desired value, re-enter it.

4 Set up your preferences. For example:

a From the NC Programs menu, select Preferences.

b In the NC Preferences dialog, select a Machine Option File (for

example, heid.opt).

c Click Open.

d Click Accept.

e Click on the Main toolbar to open the Rapid Move Heights

dialog.

f Enter a Safe Z of 10 and Start Z of 5.

g Click Accept.

5 From the Macros context menu, select Stop to finish recording.

PowerMILL 2015 User Guide Macros • 115

6 Expand the Macros node. The pmuser.mac macro is added under

pmill4.

7 Close and then restart PowerMILL to check that the settings from
the pmuser macro are activated.

Turning off error and warning
messages and locking graphic updates

Error and warning messages

PowerMILL displays error and warning messages that you must
respond to. For example, PowerMILL displays an error message if

you attempt to activate a toolpath that does not exist.

Normally you should avoid writing a macro that generates error or

warning messages, but sometimes it is not possible. In such cases,

you can suppress the messages using the following:

DIALOGS MESSAGES OFF

DIALOGS ERROR OFF

To turn the error and warning messages back on, type:
DIALOGS MESSAGE ON

DIALOGS ERROR ON

Graphics

When you run a macro, PowerMILL updates the screen every time a
change is made. If PowerMILL updates the screen frequently, this

amount of screen activity can look unpleasant. Use the following to
instruct PowerMILL not to update the screen while the commands

are in progress, and instead to update the screen (just the once)
after the commands are complete.
GRAPHICS UNLOCK

GRAPHICS LOCK

116 • Macros PowerMILL 2015 User Guide

 When a macro finishes, PowerMILL restores the message and

graphic settings to what they were before the macro started.
This ensures the messages and graphics aren't accidentally

turned off permanently.

Recording a macro to set up NC
preferences

This example records a macro that sets up NC preferences for

Heid400 machine controllers.

1 From the Tools menu, select Reset Forms. This ensures that

PowerMILL uses the default parameters in the dialogs.

2 From the Macros context menu, select Record.

3 Browse to pmill folder in your Home area in the Select Record

Macro File dialog, enter h400_prefs in the File Name field, and click

Save.

The macro icon changes to red to show recording is in

progress.

 All dialog options that you want to include in your macro
must be selected during its recording. If an option already

has the desired value, re-enter it.

4 From the NC Programs context menu, select Preferences.

PowerMILL 2015 User Guide Macros • 117

5 In the NC Preferences dialog, select the Heid400.opt in the

Machine Option File field on the Output tab.

6 Click the Toolpath tab, and select Always in the Tool Change field.

7 Click Accept.

8 From the Macros context menu, select Stop to finish recording.

Tips for programming macros
This section gives tips to help you record macros.

 Macros record any values you explicitly change in a dialog, but

don't record the current default values. For example, if the
default tolerance is 0.1 mm and you want a tolerance 0.1 mm,

you must re-enter 0.1 in the tolerance field during recording.

Otherwise PowerMILL will use whatever the current tolerance
value, which isn't necessarily the value you want.

 From the Tools menu, select Reset Forms. This ensures that

PowerMILL uses the default parameters in the dialogs.

 When debugging a macro it is important to have the macrofixer
turned off. Use the command:

UNSET MACROFIX

This ensures all syntax and macro errors are reported by

PowerMILL directly. You can use SET MACROFIX to turn it back

on.

 If you get a syntax error in a loop (DO-WHILE, WHILE, FOREACH)

or a conditional statements (IF-ELSEIF-ELSE, SWITCH) check you

have a space before any opening braces ({). For a DO-WHILE

loop make sure the closing brace (}) has a space after it and

before the WHILE keyword.

 Your code blocks must have matching braces. They must have

the same number of opening braces ({) as closing braces (}).

 The ELSEIF keyword doesn't have a space between the IF and

the ELSE.

 If you encounter expression errors check you have balanced
parentheses, and balanced quotes for strings.

 Decimal points in numbers must use a full stop (.) and not a

comma (,).

 The variable on the left of the = sign in assignments must have a

$ prefix. So:

$myvar = 5

118 • Macros PowerMILL 2015 User Guide

is correct, but:

myvar = 5

is wrong as it is missing the $ prefix.

 Local variables override PowerMILL parameters. If your macro

contains:

REAL Stepover = 10

then during the execution of the macro any use of Stepover will
use the value 10 regardless of what the value specified in the

user interface. Also the command:

EDIT PAR "Stepover" "Tool.Diameter*0.6"

will change the value of this local Stepover variable NOT the

PowerMILL Stepover parameter.

PowerMILL 2015 User Guide Index • 119

A
Active folder name • 91
Adding items to a list • 34, 82
Adding lists • 82
Adding macro loops • 10
Adding macro variables • 9
Arguments in macros • 50

Function values • 52
Running macros with arguments • 11
Sharing functions • 53

Arrays • 32
Lists • 32
Points • 40
Using arrays • 24
Vectors • 40

Automate a sequence of edits or actions
• 96

B
Base name • 89
Basic macro • 9

Adding macro loops • 10
Adding macro variables • 9
Decision making in macros • 13
Returning values from macros • 18
Running macros with arguments • 11
Using a FOREACH loop • 21
Using arrays • 24
Using functions in macros • 15

BREAK statement • 58, 63
Building a list • 36
Built-in functions • 65

C
Calling from other macros • 4
Carriage returns in dialogs • 29
Comparing variables • 40, 42
Components

List components • 79
Compound macros • 4
Conditrional functions • 91
Constants • 65

Euler's number • 65
Pi • 65

Converting numerics to strings • 72
Creating macros • 1

Basic macro • 9
Creating variables (macros) • 26

D
Date and time functions • 71
Decision making in macros • 13
Decisions in macros

BREAK statement • 58, 63
IF - ELSE statement • 54
IF - ELSEIF - ELSE statement • 55
IF command • 53
SWITCH statement • 56

Decrease options available to user • 30
Delete files or directories • See Working

with files and directories
Dialogs in macros • 27

Carriage returns in dialogs • 29
Directory name • 89
DO - WHILE loop • 62

Decision making in macros • 13

Index

120 • Index PowerMILL 2015 User Guide

DOCOMMAND • 49

E
Editing macros • 3

Editing • 3
Empty list • 81
Enter values into macros • 27
Entities in macros • 29
Entity based functions • 97

Entity variables • 38
Equivalence • 97
Limits • 97
New entity name • 98
Number of segments • 97
Workplane origin • 69

Entity variables • 38
Equivalence • 97
Error and warning messages, turn off •

112
Euler's number • 65
Evaluation functions • 92
Example of programming language • 8
Existing file or directory • See Delete

files or directories
Exiting a function • 64
Exponential • 66
Expressions in macros • 45

Order of operations • 47
Precedence • 47

Extracting data from lists • 85

F
Feature parameters • 102
File name in macros • 31
Filtering data from a list • 86
Folder

List folder • 80
Folder name • 88
FOREACH loop • 60

Using a FOREACH loop • 21
Function values • 52
Functions in macros • 65

Arguments in macros • 50
Conditrional functions • 91
Entity based functions • 97
Evaluation functions • 92
Exiting a function • 64

Function values • 52
Introduction • 94
List components • 79
List folder • 80
List functons • 78
Main function • 51
Path functions • 88
Point functions • 67

Setting a point • 67

Returning function values • 52
Sharing functions • 53
Statistical functions • 96
STRING function • 69
Type conversion functions • 93
Using functions in macros • 15
Using the SWITCH statement • 17
Vector functions • 67

Angle between vectors • 67
Length of a vector • 67
Normal vectors • 67
Parallel vectors • 67
Point functions • 67
Setting a vector • 67
Unit vector • 67

I
IF - ELSE statement • 54

Decision making in macros • 13
IF - ELSEIF - ELSE statement • 55
IF command • 53
Increase options available to user • 30
Inputting values into macros • 27

Entities in macros • 29
Options in macros • 30

File name in macros • 31
Intersecting items in lists • 82
Items in one list • 82

L
Length of a string • 73
Limits • 97
List components • 79
List folder • 80
List functons • 78

Adding items to a list • 34, 82
Adding lists • 82
Empty list • 81
Extracting data from lists • 85

PowerMILL 2015 User Guide Index • 121

Finding values in a list • 83
Intersecting items in lists • 82
Items in one list • 82
List components • 79
List folder • 80
List member • 81
Removing duplicate items • 82
Removing items from a list • 35, 83

List member • 81
Lists • 32

Adding items to a list • 34, 82
Arrays • 32
Building a list • 36
Removing items from a list • 35, 83
Using lists • 33

Logarithm • 66
Loops

Adding macro loops • 10
Decision making in macros • 13
DO - WHILE loop • 62
FOREACH loop • 60
WHILE loop • 61

M
Macro comments • 7
Macro statement • 6

Adding macro loops • 10
Arguments in macros • 50
BREAK statement • 58, 63
DO - WHILE loop • 62
FOREACH loop • 60
IF - ELSE statement • 54
IF - ELSEIF - ELSE statement • 55
IF command • 53
Macro statement • 6
RETURN statement • 64
SWITCH statement • 56
Using the SWITCH statement • 17
WHILE loop • 61

Macro statements
Adding macro loops • 10
Arguments in macros • 50
BREAK statement • 58, 63
DO - WHILE loop • 62
FOREACH loop • 60
IF - ELSE statement • 54
IF - ELSEIF - ELSE statement • 55
IF command • 53
Macro statement • 6

RETURN statement • 64
SWITCH statement • 56
Using a FOREACH loop • 21
Using the SWITCH statement • 17
WHILE loop • 61

Macros
Calling from other macros • 4
Compound macros • 4
Creating macros • 1
Editing macros • 3
Expressions in macros • 45
Macro comments • 7
Macro statement • 6
NC preference macro • 112
pmuser macro • 4, 110
Recording macros • 2, 110, 112
Repeating commands in macros • 59
Running macros • 3
Setting paths • 108
Variables in macros • 26
Writing macros • 5

Main function • 51
Mathematical functions • 66

Exponential • 66
Logarithm • 66
Mathematical functions • 66
Natural logarithm • 66
Square root • 66

N
Natural logarithm • 66
NC preference macro • 112
New entity name • 98
Normal vectors • 67
Number of segments • 97

O
Object variable • 39
Operators • 46

Logical operators • 42
Relational operator • 40

Order of operations • 47

P
Parameter functions

122 • Index PowerMILL 2015 User Guide

Automate a sequence of edits or
actions • 96
Introduction • 94

Path functions • 88
Active folder name • 91
Base name • 89
Directory name • 89
Folder name • 88
Path name • 88
Project name • 90

Path name • 88
Pausing macros • 25
Pi • 65
pmuser macro • 4, 110
Point functions • 67

Setting a point • 67
Position of a string • 74
Precedence • 47
Print

Print the values of an expression • 64
Programming language example • 8
Project name • 90

R
Reading a file • 104
Recording macros • 2, 110, 112
Relational operator • 40
Removing duplicate items • 82
Removing items from a list • 35, 83
Repeating commands in macros • 59

BREAK statement • 58, 63
DO - WHILE loop • 62
FOREACH loop • 60
WHILE loop • 61

Replacing strings • 74
RETURN statement • 64
Returning function values • 52
Returning values from macros • 18
Running macros • 3
Running macros with arguments • 11

S
Scratchpad variables • 43
Selecting a file name in macros • 31
Selecting entities in macros • 29
Setting paths • 108
Setting up your working directories • 108

Sharing functions • 53
Splitting a string • 78
Square root • 66
Statistical functions • 96
Stopping macros • 64
STRING function • 69

Converting numerics to strings • 72
Data and time • 71
Length of a string • 73
Position of a string • 74
Replacing strings • 74
Splitting a string • 78
String variables • 49
Substrings • 74, 75
Upper case function • 76
Whitespace in a string • 77

String variables • 49
Substrings • 74, 75
SWITCH statement • 56

Using the SWITCH statement • 17

T
Tips for programming macros • 113
Trouble shooting macros • 113
Turning off error and warning messages

• 112
Type conversion functions • 93

U
Upper case function • 76
Using a FOREACH loop • 21
Using arrays • 24
Using functions in macros • 15
Using lists • 33
Using the SWITCH statement • 17
Using variables (macros) • 27

V
Variable scope (macros) • 44
Variables in macros • 26

Adding macro variables • 9
Comparing variables • 40, 42
Creating variables (macros) • 26
DOCOMMAND • 49
Entity variables • 38
Logical operators • 42

PowerMILL 2015 User Guide Index • 123

Object variables • 39
Operators • 46
Order of operations • 47
Precedence • 47
Relational operator • 40
Returning values from macros • 18
Scratchpad variables • 43
String variables • 49
Using variables (macros) • 27
Variable scope (macros) • 44

Vector functions • 67
Angle between vectors • 67
Length of a vector • 67
Normal vectors • 67
Parallel vectors • 67
Point functions • 67
Setting a vector • 67
Unit vector • 67

W
Warning and error messages, turn off •

112
WHILE loop • 61
Whitespace in a string • 77
Working with files and directories • 103
Workplane origin • 69
Writing information to files • 104
Writing macros • 5

	Macros
	Creating macros
	Recording macros in PowerMILL
	Running macros
	Editing macros
	Running macros from within macros

	Writing your own macros
	PowerMILL commands for macros
	Adding comments to macros
	Macro User Guide
	Basic macro
	Adding macro variables
	Adding macro loops
	Running macros with arguments
	Decision making in macros
	More on functions in macros
	Using the SWITCH statement
	Returning values from macros
	Using a FOREACH loop in a macro
	Using arrays in a FOREACH loop
	Pausing a macro for user interaction

	Variables in macros
	Assigning parameters
	Inputting values into macros
	Carriage return in dialogs
	User selection of entities in macros
	User selection from a list of options
	User selection of a file name

	Arrays and lists
	Using lists
	Adding items to a list summary
	Removing items from a list summary
	Building a list

	Entity variables
	Object variables
	Vectors and points
	Comparing variables
	Logical operators

	Advance variable options
	Scratchpad variables
	Using variables and parameters in macro commands
	Scope of variables

	Using expressions in macros
	Operators for integers and real numbers
	Operators for strings

	Operator precedence
	Executing a macro string variable as a command using DOCOMMAND
	Macro functions
	Main function
	Returning values from functions
	Sharing functions between macros

	IF statement
	IF - ELSE statement
	IF - ELSEIF - ELSE statement
	SWITCH statement
	BREAK statement in a SWITCH statement
	Repeating commands in macros
	FOREACH loop
	WHILE loop
	DO - WHILE loop
	CONTINUE statement
	BREAK statement in a WHILE loop

	RETURN statement
	Printing the value of an expression
	Constants
	Built-in functions
	General mathematical functions
	Trigonometrical functions
	Vector and point functions
	Workplane functions
	String functions
	Date and time functions
	Converting a numeric value into a string
	Length function in a string
	Position function in a string
	Replacing one string with another string
	Substrings
	Upper case function in a string
	Lower case function in a string
	Whitespace in a string
	Splitting a string

	List functions
	List components
	List folder
	Empty list
	List member
	Adding lists
	Removing duplicate items in a list
	Intersecting items in lists
	Items present in one list, but not the other
	Adding items to a list
	Removing items from a list
	Extracting data from lists
	Filtering data from lists
	Sorted list

	Path functions
	Folder name
	Directory name
	Base name
	Project name
	Active folder name

	Conditional functions
	Evaluation functions
	Type conversion functions
	Parameter functions introduction
	Automate a sequence of edits or actions

	Statistical functions

	Entity based functions
	Does an entity exist?
	New entity name

	Model hierarchy
	Model Component Functions
	Model Hierarchies
	Nodes
	Walking the hierarchy
	Getting a Node by its Path
	Getting the Hierarchy as a List

	Feature Parameters
	Working with files and directories
	File reading and writing in macros
	Frequently asked questions
	Organising your macros
	Recording the pmuser macro
	Turning off error and warning messages and locking graphic updates
	Recording a macro to set up NC preferences
	Tips for programming macros

	Index

