

Transformers for Switching Power Supplies

Pin terminal type (For multiple outputs)

ECO series

ECO20 (Vertical/Horizontal types)

ECO22 (Vertical/Horizontal types)

ECO24 (Vertical/Horizontal types)

Technical Support Tools

TDK Transformer Design (Instruction Video)

TDK Transformer Design

An attention matter on use

Please read this specifications before using this product by all means.

An attention matter on security

I undertake use with this product, and it is paid attention enough, and please design an attention matter safely.

⚠ Attention on a design When you designs a base of an electric circuit. Please use size of the hole or pad which we recommend. Magnetic flux to leak out occurs. Please confirm it about influence of magnetic flux beforehand. There is fear to cause false movement of machinery. In a design of a base of an electric circuit, Please consider the next contents. In an applied safe standard. The trans and distance with other parts The product is not quakeproof structure. Accordingly please do not add vibration and a shock to it. There is fear to lose a function. ⚠ Attention on the handling Please do not use it when you let a product drop.

Please do not use it when you let a product drop.
The product produces possibility to lose a function
Please pay attention to the pin which had it pointed keenly.
There is danger to injure.
Please avoid the next place. The place that receives a drop of water, trash, the dust, foggy influence. The place where direct rays of the sun hits. There is
fear to cause false movement of machinery.
Please prohibit safekeeping and use at the next place. Environment to be accompanied with gas corrosion, salt, acid, alkali. There is fear to lose a
function.
When you carry the product on a base of an electric circuit.
Please do not use a metal tool. Because impossible power is added to a product.
There is fear to lead a function

⚠ Attention

- I considered the next matter, and we designed a product.
 - Safe standard and power supply voltage and circuit drive condition, drive frequency and Duty ON-TIME.

By those conditions, we decided structure and the turns number.

Please avoid use in designed condition outside.

There are destruction of a circuit part and fear of ignition.

This product considered a characteristic of a component and a self temperature rise, and it was made.

We select range of humidity as use temperature already.

Please avoid use by range more than this.

There are the damage and fear of ignition.

- Please avoid use in the environment next.
 - The environment that trash and the dust stick to a product. There is fear to cause a fire.
- The products listed on this specification sheet are intended for use in general electronic equipment (AV equipment, telecommunications equipment, home appliances, amusement equipment, computer equipment, personal equipment, office equipment, measurement equipment, industrial robots) under a normal operation and use condition.
- The products are not designed or warranted to meet the requirements of the applications listed below, whose performance and/or quality require a more stringent level of safety or reliability, or whose failure, malfunction or trouble could cause serious damage to society, person or property.
- If you intend to use the products in the applications listed below or if you have special requirements exceeding the range or conditions set forth in this catalog, please contact us.
 - (1) Aerospace/Aviation equipment
 - (2)Transportation equipment (cars, electric trains, ships, etc.)
 - (3) Medical equipment
 - (4) Power-generation control equipment
 - (5) Atomic energy-related equipment
 - (6) Seabed equipmentapplications
 - (7) Transportation control equipment

- (8) Public information-processing equipment
- (9) Military equipment
- (10) Electric heating apparatus, burning equipment
- (11) Disaster prevention/crime prevention equipment
- (12) Safety equipment
- (13) Other applications that are not considered general-purpose applications

When designing your equipment even for general-purpose applications, you are kindly requested to take into consideration securing protection circuit/device or providing backup circuits in your equipment.

Transformers for Switching Power Supplies ECO series

Contents			Page
Development C	oncept		4
Overview			5
Product Lineup			7
ECO20 series	For multiple outputs	(Vertical/Horizontal types)	9
ECO22 series	For multiple outputs	(Vertical/Horizontal types)	12
ECO24 series	For multiple outputs	(Vertical/Horizontal types)	17
List of Plans for	Standard Windings a	and Connections	26
Design Referen	nce for Switching Powe	er Transformers	30

Transformers for Switching Power Supplies Pin terminal type (For multiple outputs)

Product compatible with RoHS directive Compatible with lead-free solders

Development Concept of the ECO Series

The ECO series is compliant with worldwide safety standards*. It is a pin-compatible, newly developed transformer that can be downsized and thinned.

* Applicable as of April 2007: UL/IEC/J 60065 Ver.7 (TV, DVD, STB), UL/IEC/60950 Ver.3 (printer), UL/IEC 60335-1 Ver.4 (home appliance)

MATERIAL

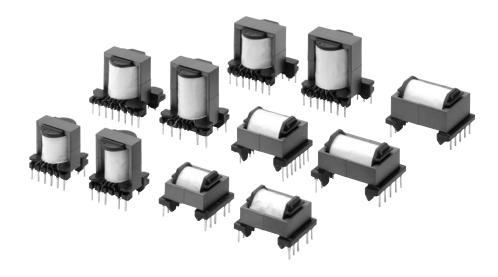
Optimum materials and core shape have been developed. No insulation-supporting material is used, and this secures the insulating distance.

While optimizing materials, TDK has further improved its proprietary core shape to develop a new-type ECO core. TDK has downsized the product considerably in order to securing the necessary creepage distance.

MANUFACTURING METHOD

Since the ECO Series supports automatic winding, the product is of a high quality and can be manufactured stably.

It is designed to support automatic winding, which enables a remarkable reduction in the loss generated to achieve a proficient in manual winding until stable production.


OPTIMIZATION DESIGN

Using design tools developed with TDK's comprehensive know-how, high-precision design has been achieved in a short period of time.

- 1) For optimization design and high-quality stable production, customers can use a specification request form.
- 2) If you provide the necessary information in the form, you will receive the optimization design in a short time.
- 3) We have prepared an individual specifications request document for the home appliance market.
- 4) TDK recommends design with a standard core gap (AL-value) for optimization and shorter trial and mass production lead time. Plans for standard winding connection (patterns of recommended pin arrangement and winding structure) are available. These help to speed up the design process, support automatic winding, and prevent deterioration in quality.

ENVIRONMENT

The ECO series is RoHS directive-compliant.

Transformers for Switching Power Supplies Pin terminal type (For multiple outputs)

Product compatible with RoHS directive Compatible with lead-free solders

Overview of the ECO Series

FEATURES

- O Downsized yet compliant with worldwide safety standards.
- O Supports automatic winding.
- Oconsiderably reduced characteristic variations.
- O Product compatible with RoHS directive.

APPLICATION

- O Set-top boxes, air-conditioners, DVD players/recorders
- O Blu-ray disc players/recorders, printers, LCD monitors
- Multiple-output power supplies

■ PART NUMBER CONSTRUCTION

■ OPERATING TEMPERATURE RANGE, PACKAGE QUANTITY, PRODUCT WEIGHT

	Temperat	ure range	Humidit	y range	Standard te	st conditions
Туре	Operating temperature*	Storage temperature	Operating humidity range**	Storage humidity range**	Ambient temperature	Relative humidity range***
	(°C)	(°C)	(%RH)	(%RH)	(°C)	(%RH)
ECO2017	-30 to +120	-40 to +80	10 to 95	10 to 95	25 ± 10	25 to 75
ECO2020	-30 to +120	-40 to +80	10 to 95	10 to 95	25 ± 10	25 to 75
ECO2023	-30 to +120	-40 to +80	10 to 95	10 to 95	25 ± 10	25 to 75
ECO2219	-30 to +120	-40 to +80	10 to 95	10 to 95	25 ± 10	25 to 75
ECO2225	-30 to +120	-40 to +80	10 to 95	10 to 95	25 ± 10	25 to 75
ECO2230	-30 to +120	-40 to +80	10 to 95	10 to 95	25 ± 10	25 to 75
ECO2420	-30 to +120	-40 to +80	10 to 95	10 to 95	25 ± 10	25 to 75
ECO2425	-30 to +120	-40 to +80	10 to 95	10 to 95	25 ± 10	25 to 75
ECO2430	-30 to +120	-40 to +80	10 to 95	10 to 95	25 ± 10	25 to 75

^{*} With self-heating

^{**} Maximum wet-bulb temperature 38°C, without dewing

^{***}Without dewing

OROHS Directive Compliant Product: See the following for more details.https://product.tdk.com/info/en/environment/rohs/index.html

Overview of the ECO Series

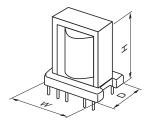
■ GENERAL CHARACTERISTICS

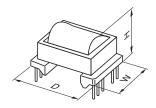
Item	Standards	Test methods
Inductance	Individual specification	Use LCR meter (f=10kHz), 4263B or equivalent.
	(tolerance±10%)	
DC resistance	Less than 0.1Ω: ±30%	Use Ohm-meter AX114N or equivalent.
	0.1Ω to 1.0Ω : ±20%	
	1.0 Ω or more: ±15%	
Turn ratio and polarity	Specified value ±1 to 20%, individual	Use turn ratio tester TRM-201 (f=1 to 100kHz) or equivalent.
	specification	
Withstand voltage	No abnormality between the primary and	Apply separately specified AC voltage (50Hz) for 1min.
	secondary windings, between the primary	
	winding and the core, and so on.	
Insulation resistance	100M Ω min.	Measure by applying DC.500V.
		Use insulation resistance meter SM-5E or equivalent.
Temperature rise	Standard design value	Measure the core surface by thermocouple method, and the windings by resistance
	45°C max. (thermocouple method)	method or thermocouple method.
	55°C max. (resistance method)	

■ RELIABILITY TESTS

Item	Standards	Test methods					
Vibration resistance		Sweep 1.5mm amplitude and 10-to-55-to-10Hz in 1min in X, Y, and Z directions for					
		Sweep 1.5mm amplitude and 10-to-55-to-10Hz in 1min in X, Y, and Z directions for 2h respectively. Measure in normal temperature after leaving in 100±2°C for 96h. Measure in normal temperature after leaving in -40±2°C for 96h. Measure in normal temperature after leaving in 60±2°C and 90 to 95(%)RH for 90 One cycle is -25°C for 30min, normal temperature for 30min, and 85°C for 30min measure after 10 cycles of the test have been performed. Apply 9.8N load in the direction of terminal axis for 30±5s. Any terminal must not be pulled out or chatter.					
Heat resistance	Standard of inductance, insulation	Measure in normal temperature after leaving in 100±2°C for 96h.					
Cold resistance	resistance, withstand voltage must be	Measure in normal temperature after leaving in -40±2°C for 96h.					
Humidity resistance	satisfied.	Measure in normal temperature after leaving in 60±2°C and 90 to 95(%)RH for 96h.					
Temperature cycle		One cycle is -25°C for 30min, normal temperature for 30min, and 85°C for 30min; measure after 10 cycles of the test have been performed.					
Terminal strength	9.8N min.	11 7					
Solderability	Solder covers more than 90%.	Dip in solder with the temperature of 245±2°C for 3±0.5s.					

[●]The above listed items are representative examples.


The details can be found by referring to the appended individual delivery specifications.

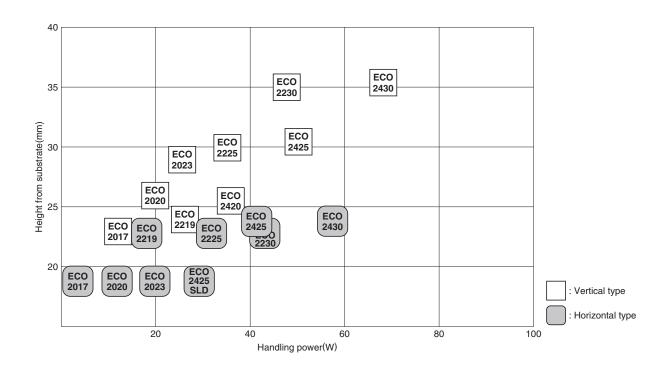

Product Lineup

We have made a new lineup of replacement parts for products with different shapes that meet our customers' needs for smaller products. We can also provide different transformer shapes not shown in the catalog, so feel free to contact us.

Horizontal type

■ Product Lineup

	Core param	neter		Bobbin p	parameter		— Dimensions		
	General-					Terminal			Dimensions
New	purpose	Cross-sectional		Switching	Bobbin	Pin pitch	Lead	Number	Depth Width Height
shaped*1	shaped	center leg area	• •		Type*3		space	of pins	$D \times W \times H$
	cores	Ae (mm²)	(W)	fsw(kHz)	1,700	P	F		(mm)max.
Mantia al terra						(mm)	(mm)		(11111)1110211
Vertical type			10						10 5 00 5 04 0
ECO2017	- El22	22.2	12		VI		45.0	40	19.5 22.5 24.0
ECO2020	EE25/19	36.3	20	_ 50	VI	3.75	15.0	12	19.5 22.5 27.0
ECO2023			26		VI				19.5 22.5 30.0
					VI	5.0	17.5	12	23.0 28.5 25.0
ECO2219		46.4	25	50	VⅡ	4.0	17.5	12	23.0 24.0 25.0
	=				VⅢ	3.75	17.5	14	23.0 30.0 25.0
	EED2820				VI	5.0	17.5	12	23.0 28.5 31.0
ECO2225	EER28	46.4	36	50	VΠ	4.0	17.5	12	23.0 28.5 31.0
					VII	3.75	17.5	14	23.0 30.0 31.0
F000000	=	40.4	40	50	VI	5.0	17.5	12	23.0 28.5 36.0
ECO2230		46.4	48	50	VΠ	4.0	17.5	12	23.0 24.0 36.0
=======================================	-				VI	5.0	17.5	12	25.0 28.5 26.5
ECO2420		63.8	35	50	VΙ	4.0	20.0	14	25.0 31.5 26.5
-	-				VI VI	5.0	17.5	12	25.0 28.5 31.5
ECO2425	EER28L	63.8	50	50	VI	4.0	20.0	16	25.0 35.5 31.5
	-	-			VI VI	5.0	17.5	12	25.0 28.5 36.5
ECO2430		63.8	68	50	VI	4.0	20.0	16	25.0 35.5 36.5
Horizontal type					• • •				=0.0 00.0
ECO2017			5		ΗI	3.75	20.0	12	24.5 23.5 20.0
ECO2020	EE25/19	36.3	14	50	ΗI	3.75	22.5	12	27.0 23.5 20.0
ECO2023	_		20	_	ΗI	3.75	25.0	12	29.5 23.5 20.0
					ΗI	5.0	20.0	12	25.0 29.0 24.0
ECO2219		46.4	18	50	HΙ	4.0	20.0	12	25.0 26.0 24.0
	EER2820	-			ΗI	5.0	25.0	12	30.5 29.0 24.0
ECO2225		46.4	30	50	HΙ	4.0	25.0	12	30.5 26.0 24.0
					ΗI	5.0	30.0	12	35.5 29.0 24.0
ECO2230		46.4	42	50	ΗI	4.0	30.0	12	35.5 26.0 24.0
	EER28				HI	5.0	25.0	12	30.5 30.0 25.0
ECO2425		63.8	41	50	ΗI	4.0	25.0	12	30.5 27.0 25.0
-					ΗI	5.0	30.0	12	36.0 30.0 25.0
ECO2430	EER28L	63.8	59	50	HI	4.0	30.0	12	36.0 27.0 25.0
Horizontal type (S	ID type)				ΠП	7.0	50.0	14	55.5 27.5 25.0
ECO2425SLD	LD typo)	46.7	29	50	ΗI	4.0	25.0	12	30.0 26.0 20.0
LUUZ4ZJULD		+0.1	L J	50	пт	+ .∪	20.0	14	50.0 20.0 20.0


^{*1} Ferrite cores are not sold separately.

^{*2} The reference output was obtained under conditions where the frequency was 50kHz and creepage distance was 4mm. (See the relevant page for details of each shape.) The reference output differs depending on the switching device, switching frequency, transformer temperature, conditions, etc. Use this output for reference

 $^{^{*3}}$ The bobbin is made from phenol with a flame resistance grade of 94V-2 or higher.

Lineup of ECO Series

ECO20 series For Multiple Outputs (Vertical/Horizontal types)

ELECTRICAL CHARACTERISTICS

: Recommended range

Type ECO2017 ECO2020 ECO2023		Transforme	er handling pov	ver(W) [Vertica					
Туре	Frequency	Creepage distance							
		0.0mm	2.0mm	2.5mm	3.2mm	4.0mm	5.0mm	6.4mm	8.0mm
	50kHz	33	21/18	19/14	15/10	12/ 5	7/-	_	-
ECO2017	75kHz	49	31/26	28/21	23/15	17/ 8	10/-	1/-	_
	100kHz	54	34/29	31/24	25/16	19/ 8	11/–	1/-	_
	50kHz	37	28/25	26/22	23/18	20/14	16/8	10/-	3/-
ECO2020	75kHz	56	41/38	39/33	35/28	30/21	24/13	15/ 1	5/-
	100kHz	59	46/40	41/35	37/29	31/22	25/14	16/ 1	5/-
	50kHz	42	33/31	31/28	29/25	26/20	22/15	17/8	11/–
ECO2023	75kHz	62	50/46	47/42	43/37	39/31	33/23	25/13	16/-
	100kHz	64	51/47	48/43	44/37	39/31	34/24	26/13	16/–

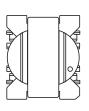
^{*} The Vertical type places its described creepage distance and its half distance on the terminal side and guard side, respectively. The Horizontal type places its described creepage distance on both sides.

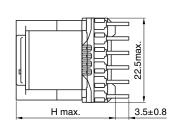
Transformer-handling power may differ depending on switching devices, switching frequency, transformer temperature, conditions during usage, etc. Therefore, use the handling power for reference only.

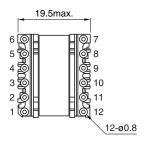
	Core para	meter		Bobbin p	arameter			Dime	nsions		Applic	cations		
Туре	General- purpose	cores material	center leg area Ae	Spool Bobbin width Type (mm)	Spool height Number (mm) of pins	Depth D ×	Width W ×			Air STB condi- DVD BD Others				
	cores	material	(mm ²)	Турс	min.	min.	or pino	(mm)	max.		OID	tioner		Others
ECO2017				VI	10.4	3.6	12	19.5	22.5	24.0		\sim		
E002017				HI	9.8	3.7	12	24.5	23.5	20.0	-	0		
ECO2020	EE25/19	PC47	36.3	VI	13.4	3.6	12	19.5	22.5	27.0				
ECO2020	(El22)	family	36.3	HI	12.8	3.7	12	27.0	23.5	20.0		0	O	
ECO2023	-			VI	16.4	3.6	12	19.5	22.5	30.0	$\overline{}$	$\overline{}$	0	
ECO2023				ΗI	15.8	3.7	12	29.5	23.5	20.0	0	0	O	

STANDARD CORE AL-value

Tuno	AL-valu	e: R20 seri	es(nH/N2)									
Туре	100	112	125	140	160	180	200	224	250	280	315	400
For multiple outpu	ıts											
ECO2017	0	0	0	0	0	0	0	0	0	0		
ECO2020	0	0	0	0	0	0	0	0	0	0		
ECO2023	0	0	0	0	0	0	0	0	0	0		

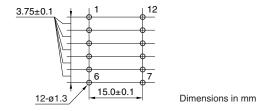

In order to respond to our customers' requested delivery dates and costs, TDK can provide standard GAP products (indicated by " \bigcirc " in the below chart) for each shape.

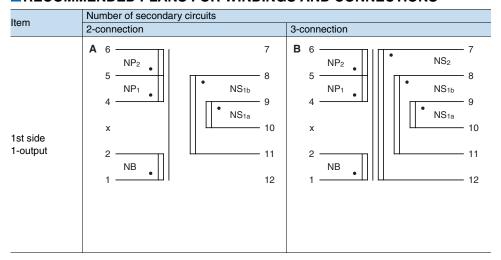

Please contact us about other GAP products separately.



■SHAPE & DIMENSIONS

Bobbin type: VI

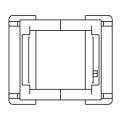


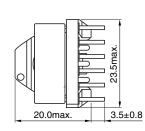

Dimensions in mm

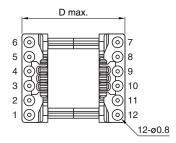
Туре	Bobbin type	H max.
ECO2017	VI	24.0
ECO2020	VI	27.0
ECO2023	VI	30.0

■ RECOMMENDED BASE MATERIAL OPENING SIZE

■ RECOMMENDED PLANS FOR WINDINGS AND CONNECTIONS

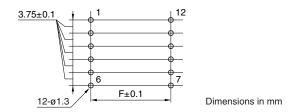


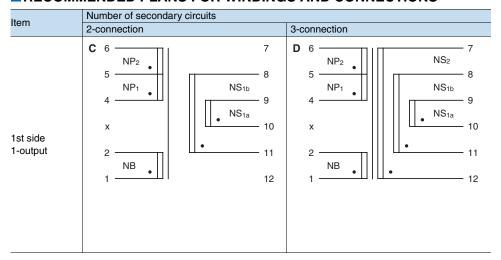

Please refer to P.26 for more details about the list of plans for standard windings and connections.


ECO20 series For Multiple Outputs (Horizontal type)

■SHAPE & DIMENSIONS

Bobbin type: HI




Dimensions in mm

Туре	Bobbin type	D max.	F
ECO2017	ΗI	24.5	20.0
ECO2020	ΗI	27.0	22.5
ECO2023	ΗI	29.5	25.0

■ RECOMMENDED BASE MATERIAL OPENING SIZE

■ RECOMMENDED PLANS FOR WINDINGS AND CONNECTIONS

Please refer to P.26 for more details about the list of plans for standard windings and connections.

ECO22 series For multiple Outputs (Vertical/Horizontal types)

ELECTRICAL CHARACTERISTICS

: Recommended range

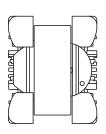
		Transforme	er handling pov	ver(W) [Vertica	I/Horizontal typ	oe]*			
Туре	Frequency	Creepage distance							
		0.0mm	2.0mm	2.5mm	3.2mm	4.0mm	5.0mm	6.4mm	8.0mm
	50kHz	47	36/32	33/28	30/24	25/18	20/11	13/ 1	4/–
ECO2219	75kHz	69	52/47	48/42	43/34	37/26	29/16	18/ 2	6/–
	100kHz	67	51/46	48/41	42/34	36/26	29/16	18/ 2	6/–
	50kHz	57	46/43	44/40	40/35	36/30	32/23	25/14	17/3
ECO2225	75kHz	78	64/59	61/54	56/48	50/41	43/32	34/19	23/4
	100kHz	77	63/58	60/53	55/47	49/40	43/31	33/18	22/4
	50kHz	67	57/54	55/51	52/47	48/42	44/36	37/27	30/18
ECO2230	75kHz	87	75/71	72/67	68/61	63/55	57/47	49/36	39/23
	100kHz	86	73/70	71/65	67/60	62/54	56/46	48/35	39/23

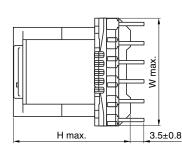
^{*} The Vertical type places its described creepage distance and its half distance on the terminal side and guard side, respectively. The Horizontal type places its described creepage distance on both sides.

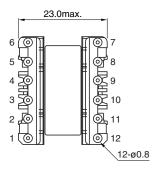
Transformer-handling power may differ depending on switching devices, switching frequency, transformer temperature, conditions during usage, etc. Therefore, use the handling power for reference only.

	Core para	meter		Bobbin p	arameter			Dime	nsions		Annli	cations			
_	General-		center leg		Spool	Spool		Depth	Depth Width Height		ДРРІК	bations			
Туре	purpose	cores	area	Bobbin	width	height	Number	D×	W ×	Н		Air			
	cores	material	Ae (mm²)	Type	• • • • • • • • • • • • • • • • • • • •	(mm) min.	of pins	(mm)	max.		STB	condi- tioner	DVD	BD	Others
-				VI	11.9	4.1	12	23.0	28.5	25.0					
				VΠ	11.9	4.1	12	23.0	24.0	25.0					
ECO2219				VⅢ	11.9	4.1	14	23.0	30.0	25.0	\bigcirc	\bigcirc			
				ΗI	11.6	4.3	12	25.0	29.0	24.0					
	_			HΙ	11.6	4.3	12	25.0	26.0	24.0					
				VI	17.2	4.1	12	23.0	28.5	31.0					
	EER28	PC47	46.4	VⅡ	17.2	4.1	12	23.0	24.0	31.0					
ECO2225	EED2820	family	40.4	VⅢ	17.2	4.1	14	23.0	30.0	31.0	\bigcirc	\circ	\bigcirc	\bigcirc	\circ
				ΗI	16.9	4.3	12	30.5	29.0	24.0					
	_			ΗII	16.9	4.3	12	30.5	26.0	24.0					
				VI	22.2	4.1	12	23.0	28.5	36.0					
ECO2230				VⅡ	22.2	4.1	12	23.0	24.0	36.0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2002230				ΗI	21.9	4.3	12	35.5	29.0	24.0	\cup	\circ	\cup	\cup	\circ
				HΙ	21.9	4.3	12	35.5	26.0	24.0					

■ STANDARD CORE AL-value

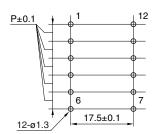

AL-value: R20 series(nH/N²)												
Type 100	100	112	125	140	160	180	200	224	250	280	315	400
For multiple outputs	3											
ECO2219	0	0	0	0	0	0	0	0	0	0	0	
ECO2225	0	0	0	0	0	0	0	0	0	0	0	
ECO2230	0	0	0	0	0	0	0	0	0	0	0	


In order to respond to our customers' requested delivery dates and costs, TDK can provide standard GAP products (indicated by "" in the below chart) for each shape.


Please contact us about other GAP products separately.

SHAPE & DIMENSIONS

Bobbin type: VI 、VII



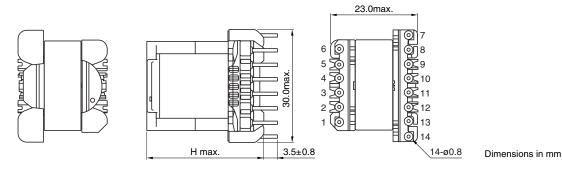
Dimensions in mm

Туре	Bobbin type	W max.	H max.	Р	
ECO2219	VI	28.5	25.0	5.0	
ECO2219	VII	24.0	25.0	4.0	
ECO2225	VI	28.5	31.0	5.0	
ECO2225	VII	24.0	31.0	4.0	
ECO2230	VI	28.5	36.0	5.0	
ECO2230	VII	24.0	36.0	4.0	

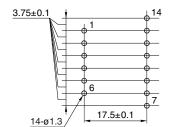
■ RECOMMENDED BASE MATERIAL OPENING SIZE

Dimensions in mm

■ RECOMMENDED PLANS FOR WINDINGS AND CONNECTIONS

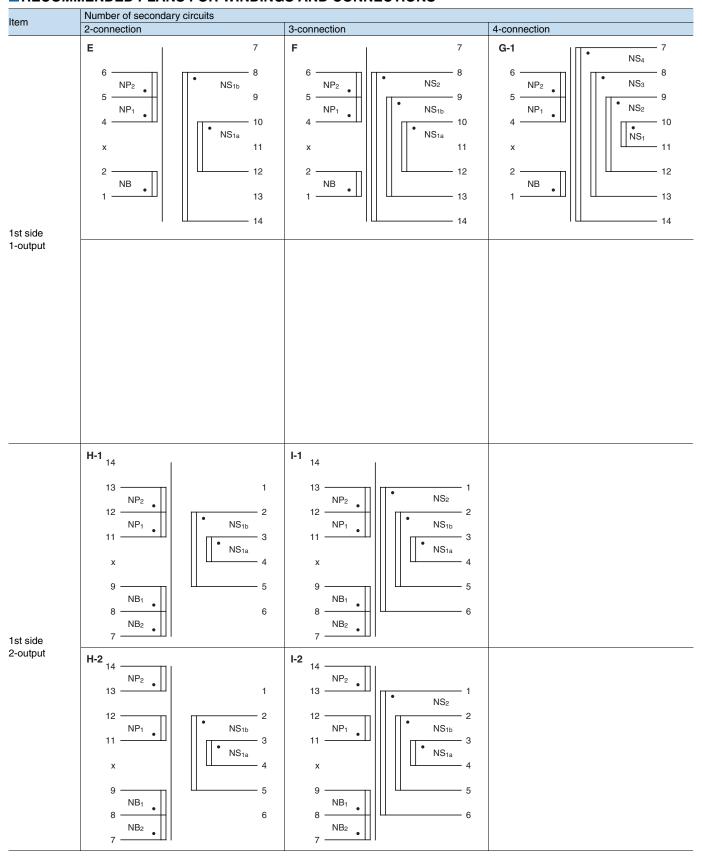

Item	Number of secondary circuits		
item	2-connection		3-connection
1st side 1-output	A 6 NP2	7 - 8 - 9 - 10 - 11 12	B 6 NP ₂ NS ₂ 8 NS _{1b} 9 NS _{1a} 10 11

Please refer to P.26 for more details about the list of plans for standard windings and connections.


SHAPE & DIMENSIONS

Bobbin type: VⅢ

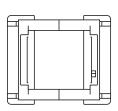
Type	Bobbin type	H max.
ECO2219	VⅢ	25.0
ECO2225	VⅢ	31.0

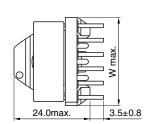

■ RECOMMENDED BASE MATERIAL OPENING SIZE

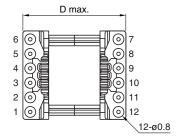
Dimensions in mm

Mease be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.

■ RECOMMENDED PLANS FOR WINDINGS AND CONNECTIONS

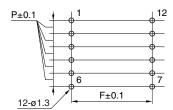

Please refer to P.26 for more details about the list of plans for standard windings and connections.


Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.


ECO22 series For Multiple Outputs (Horizontal type)

SHAPE & DIMENSIONS

Bobbin type: HI、HII



Dimensions in mm

Туре	Bobbin type	D max.	W max.	Р	F
ECO2219	ΗI	25.0	29.0	5.0	20.0
EC02219	HΙ	25.0	26.0	4.0	20.0
ECO2225	ΗI	30.5	29.0	5.0	25.0
E002223	HΙ	30.5	26.0	4.0	25.0
ECO2230	ΗI	35.5	29.0	5.0	30.0
EC02230	HΙ	35.5	26.0	4.0	30.0

■ RECOMMENDED BASE MATERIAL OPENING SIZE

Dimensions in mm

■ RECOMMENDED PLANS FOR WINDINGS AND CONNECTIONS

Item	Number of secondary circuits	
Itom	2-connection	3-connection
1st side 1-output	C 6 NP2 NP1 NS1b NS1b NS1a NS1a NS1a	— 9 4

Please refer to P.26 for more details about the list of plans for standard windings and connections.

ECO24 series For multiple outputs (Vertical/Horizontal types)

ELECTRICAL CHARACTERISTICS

: Recommended range

		Transforme	er handling pov	ver(W) [Vertica	l/Horizontal typ	pe]*			
Туре	Frequency	Creepage	distance						
		0.0mm	2.0mm	2.5mm	3.2mm	4.0mm	5.0mm	6.4mm	8.0mm
	50kHz	66	50/-	46/-	41/–	35/–	28/-	18/–	6/-
ECO2420	75kHz	85	65/–	60/–	53/-	46/-	36/-	23/–	8/–
	100kHz	83	63/–	59/–	52/-	45/-	35/-	22/-	7/-
	50kHz	79	64/59	61/54	56/48	50/41	43/32	34/19	23/4
ECO2425	75kHz	96	78/72	74/66	68/59	61/50	53/39	41/23	28/5
	100kHz	94	77/71	73/65	67/57	60/49	52/38	40/22	27/5
	50kHz	95	81/76	78/72	73/66	68/59	62/51	53/39	43/25
ECO2430	75kHz	107	92/87	88/82	83/75	77/67	70/58	60/44	48/29
	100kHz	105	90/85	86/80	81/73	76/66	69/56	59/43	47/28
	50kHz	57	-/44	-/40	-/35	-/29	-/22	- /12	_
ECO2425SLD	75kHz	80	-/60	-/ 55	-/48	-/40	-/31	- /17	_
	100kHz	78	-/59	-/54	-/47	-/39	-/30	- /16	_

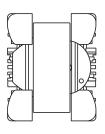
^{*} The Vertical type places its described creepage distance and its half distance on the terminal side and guard side, respectively. The Horizontal type places its described creepage distance on both sides.

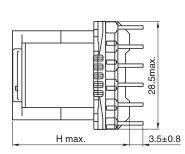
Transformer-handling power may differ depending on switching devices, switching frequency, transformer temperature, conditions during usage, etc. Therefore, use the handling power for reference only.

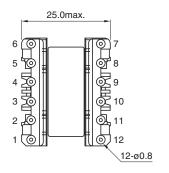
	Core para	meter		Bobbin p	arameter			Dime	nsions		Applic	cations			
_	General-		center leg		Spool	Spool		Depth	Depth Width Height		, ippiii	Janonio			
Туре	purpose	cores	area	Bobbin	width	height	Number	D×	W ×	Н		Air			
	cores	material	Ae (mm²)	Type	(mm) min.	(mm) min.) of pins	(mm)	max.		STB	condi- tioner	DVD	BD	Others
ECO2420				VI	12.1	4.6	12	25.0	28.5	26.5		0			
ECO2420				VΙΙ	12.1	4.6	14	25.0	31.5	26.5	0	\circ			
	=			VI	17.1	4.6	12	25.0	28.5	31.5					
ECO2425				VII	17.1	4.6	16	25.0	35.5	31.5			\circ	\circ	
E002425	EER28	PC47	63.8	ΗI	16.8	4.8	12	30.5	30.0	25.0	0	\circ	\circ	0	0
	EER28L	family	63.6	ΗII	16.8	4.8	12	30.5	27.0	25.0					
_	=			VI	22.1	4.6	12	25.0	28.5	36.5					
ECO2430				VΠ	22.1	4.6	16	25.0	35.5	36.5			\circ	\circ	
ECO2430				HI	21.8	4.8	12	36.0	30.0	25.0			0	0	0
				ΗII	21.8	4.8	12	36.0	27.0	25.0					
ECO2425SLD		PC47 family	46.7	ΗI	16.3	4.2	12	30.0	26.0	20.0	0	0	0	0	0

■ STANDARD CORE AL-value

Time	AL-valu	AL-value: R20 series(nH/N ²)													
Туре	100	112	125	140	160	180	200	224	250	280	315	400			
For multiple output	S														
ECO2420	0	0	0	0	0	0	0	0	0	0	0				
ECO2425	0	0	0	0	0	0	0	0	0	0	0				
ECO2430	0	0	0	0	0	0	0	0	0	0	0				
ECO2425SLD	0	0	0	0	0	0	0	0	0						

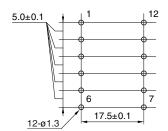

In order to respond to our customers' requested delivery dates and costs, TDK can provide standard GAP products (indicated by " \bigcirc " in the below chart) for each shape.


Please contact us about other GAP products separately.



SHAPE & DIMENSIONS

Bobbin type: VI



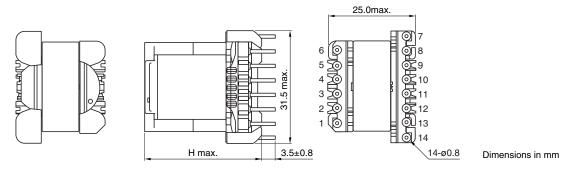
Dimensions in mm

Туре	Bobbin type	H max.
ECO2420	VI	26.5
ECO2425	VI	31.5
ECO2430	VI	36.5

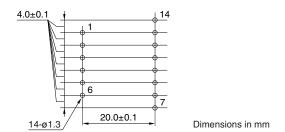
■ RECOMMENDED BASE MATERIAL OPENING SIZE

Dimensions in mm

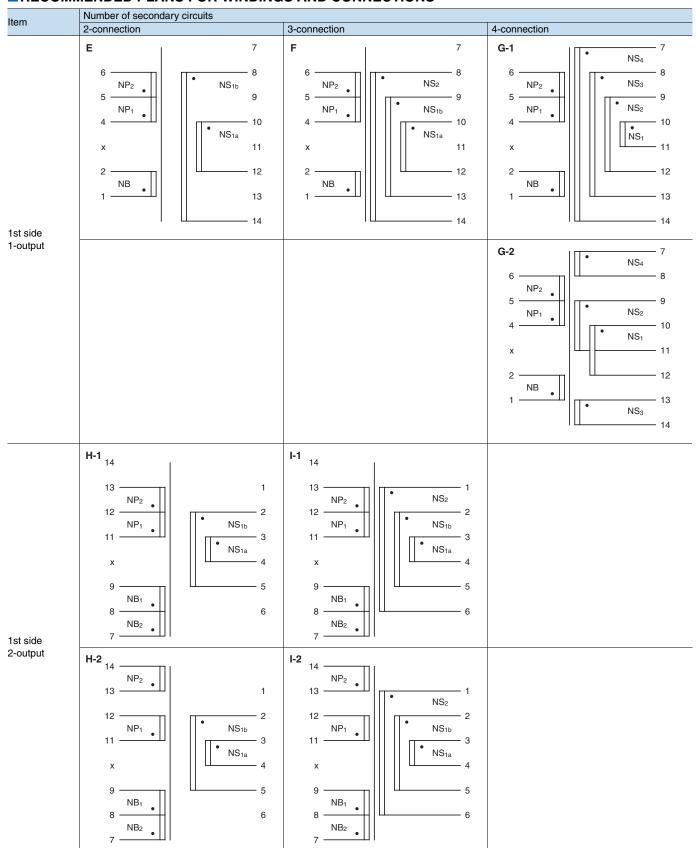
■ RECOMMENDED PLANS FOR WINDINGS AND CONNECTIONS


Item	Number of secondary circuits		
nem	2-connection		3-connection
1st side 1-output	A 6 NP2 NP1 NS1b X 2 NB 1	7 - 8 - 9 - 10 - 11 12	B 6 NP2 NS2 8 NS1b 9 NS1a 10 11 12

● Please refer to P.26 for more details about the list of plans for standard windings and connections.


SHAPE & DIMENSIONS

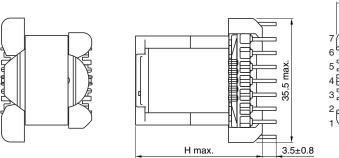
Bobbin type: VII

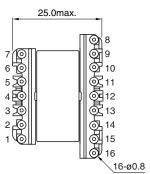


Type	Bobbin type	H max.
ECO2420	VⅡ	26.5

■ RECOMMENDED BASE MATERIAL OPENING SIZE

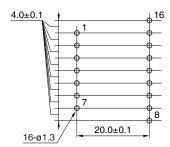
■ RECOMMENDED PLANS FOR WINDINGS AND CONNECTIONS


Please refer to P.26 for more details about the list of plans for standard windings and connections.


Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.

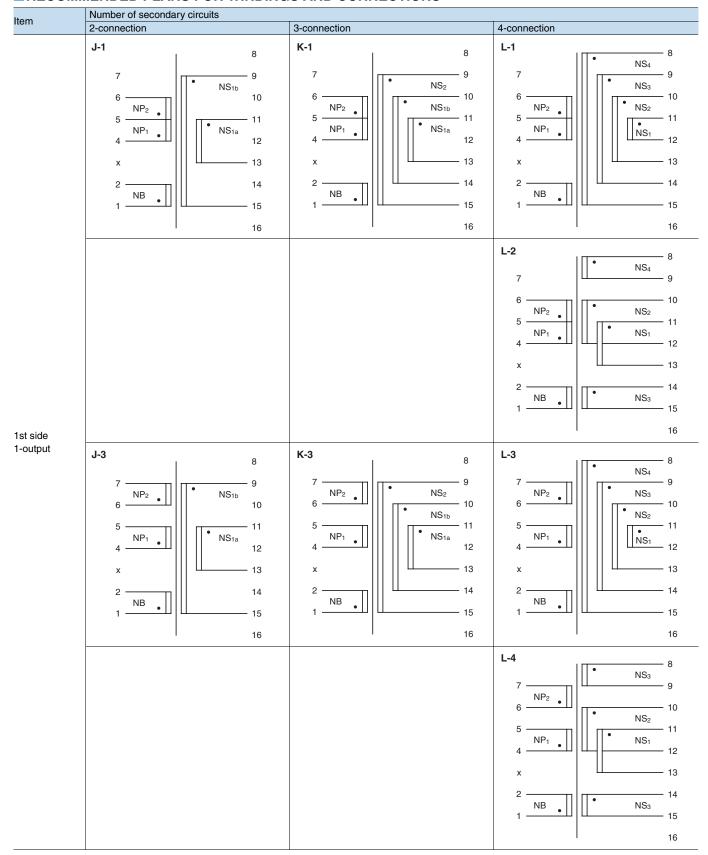
SHAPE & DIMENSIONS

Bobbin type: VII

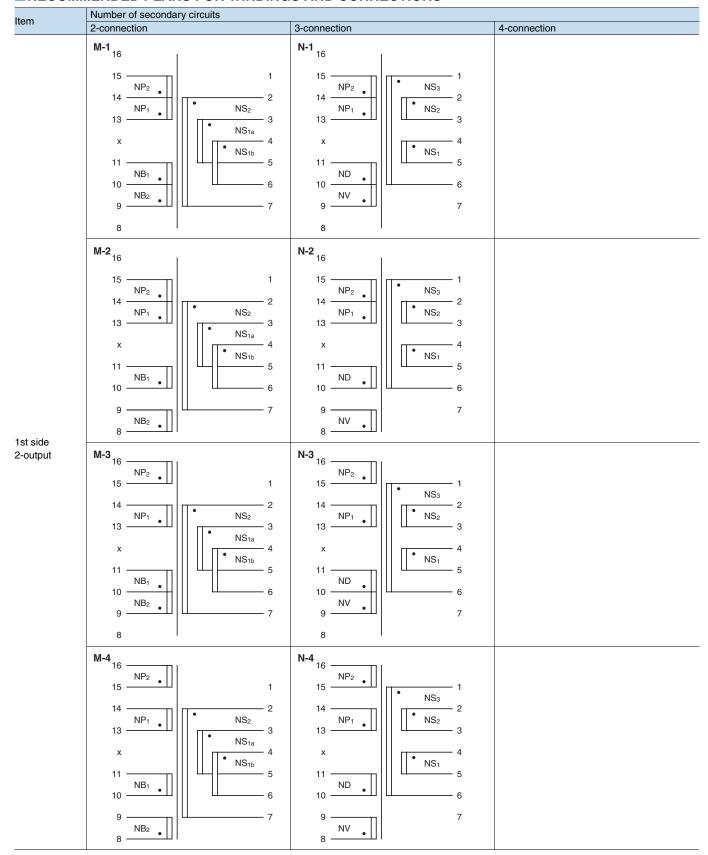


Dimensions in mm

Туре	Bobbin type	H max.	
ECO2425	VΠ	31.5	
ECO2430	VΙ	36.5	


■ RECOMMENDED BASE MATERIAL OPENING SIZE

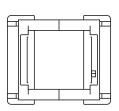
Dimensions in mm

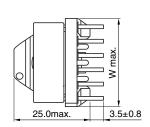

■ RECOMMENDED PLANS FOR WINDINGS AND CONNECTIONS

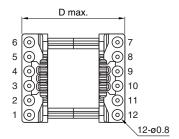
Please refer to P.26 for more details about the list of plans for standard windings and connections.

Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.

■ RECOMMENDED PLANS FOR WINDINGS AND CONNECTIONS

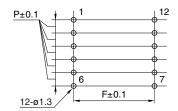

Please refer to P.26 for more details about the list of plans for standard windings and connections.


Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.


ECO24 series For Multiple Outputs (Horizontal type)

SHAPE & DIMENSIONS

Bobbin type: HI、HII



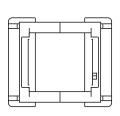
Dimensions in mm

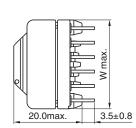
Туре	Bobbin type	D max.	W max.	Р	F
ECO2425	ΗI	30.5	30.0	5.0	25.0
E002425	HI	30.5	27.0	4.0	25.0
ECO2430	ΗI	36.0	30.0	5.0	30.0
ECO2430	HΙ	36.0	27.0	4.0	30.0

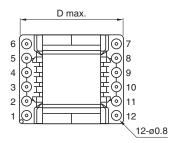
■ RECOMMENDED BASE MATERIAL OPENING SIZE

Dimensions in mm

■ RECOMMENDED PLANS FOR WINDINGS AND CONNECTIONS

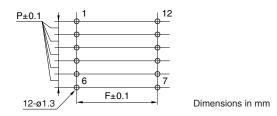

Item	Number of secondary circuits		
item	2-connection		3-connection
1st side 1-output	C 6 NP2 NP1 NS1b x 2 NB NB	7 - 8 - 9 - 10 - 11 12	NP ₂ NP ₂ NS ₂ 8 NS _{1b} 9 NS _{1a} 10 NS ₁ 11

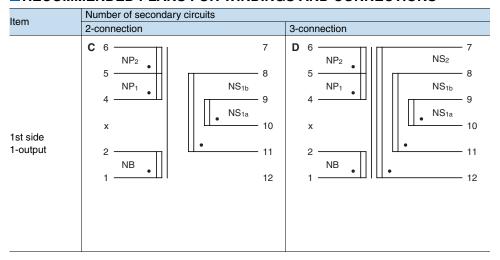

Please refer to P.26 for more details about the list of plans for standard windings and connections.


ECO24 series For Multiple Outputs (Horizontal type) SLD Type

■SHAPE & DIMENSIONS

Bobbin type: HI




Dimensions in mm

Туре	Bobbin type	D max.	W max.	Р	F
ECO2425SLD	ΗI	30.0	26.0	4.0	25.0

■ RECOMMENDED BASE MATERIAL OPENING SIZE

■ RECOMMENDED PLANS FOR WINDINGS AND CONNECTIONS

● Please refer to P.26 for more details about the list of plans for standard windings and connections.

ECO series List of Plans for Standard Windings and Connections

Item	Number of secondary circuits		
item	2-connection	3-connection	4-connection
	A 6 NP2 . 5 NP1 . 8 NS1b 9 NS1a 10 11 12	B 6 NP2 NS2 NS2 NS1b S NS1b S NS1a NS1a NS1a 10 11	G-1 6 NP2 5 NP1 4 NS3 9 NS2 10 NS1 11 12 13
1st side 1-output	C 6	D 6 NP2 NS2 8 NS1b 9 NS1a 10 11	G-2 6 NP2 5 NP1 4 NS2 10 NS1 11 12 NS3 13
	6 NP2 NS1b 9 NS1b 9 NS1a 11 12 12 13	F 7 6 NP2 NS2 9 NP1 NS1b 10 NS1a 11 2 NB 11 13	

Mease be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.

Item	Number of secondary circuits		
nem	2-connection	3-connection	4-connection
	7 6 NP2 NP1 4 NS1b 10 NS1b 10 NS1a 12 x 2 NB 1 14 15 16	K-1 7 6 NP2 NS1b 10 NS1b 11 NS1a 12 X 2 NB 15 16	7 6 NP2 NP1 4 NS3 10 NS2 11 NS1 12 X 2 NB 1 15 16
1st side			7
1-output	J-3 7 NP2 6 NP1 10 5 NS1b 10 NS1a 11 NS1a 12 X 13 14 15 16	K-3 7 NP2 6 NS2 10 NS1b 11 NS1a 12 X 2 NB 1 14 15 16	The second state of the se
			7 NP2 NP2 10 NS3 9 NS2 11 12 NB 12 NB 15 NS3 15 16

A Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.

Item	Number of secondary circuits	T-	
	2-connection	3-connection	4-connection
	H-1 13 NP2 12 NP1 11 NS1b NS1b NS1a 4 9 NS1a 4 9 NB1 NB2 7	11	
	H-2 14 NP2 13 1 12 NP1 11 NS1b NS1b NS1a 4 9 NS1a 4 9 NB1 NB2 7	I-2 14 NP2 13 NP2 NS2 12 NS1b NS1b NS1a 4 9 NS1a 4 9 NB1 NB2 7	
1st side 2-output	M-1 16 15 NP2 14 NP1 13 X NS2 NS2 3 NS1a 4 NS1b 5 NS1b 5 6 9 7	N-1 16 15 14 NP2 13 NP1 13 X 11 ND 10 NV 9 NS3 2 NS3 2 NS2 3 NS1 5 6 7	
	M-2 ₁₆ 15 NP ₂ 14 NP ₁ 1 NS ₂ 3 NS _{1a} 4 NS _{1b} 5 NS _{1b} 5 NS _{1b} 6 9 8 NB ₂ 8	N-2 16 15 14 NP2 13 NP1 13 X 11 ND 10 9 NV 8 NS3 2 NS3 2 NS2 3 4 NS1 5 6 7	

A Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.

Item	Number of secondary circuits		
item	2-connection	3-connection	4-connection
	M-3 16 15 NP2 1 1 14 NP1 13 NP1 10 NB1 NB1 NB1 NB2 NS1a NS1a NS1b 5 6 6 7	N-3 16 15 NP2 14 NP1 13 NP1 10 ND 10 NV 9 NS1 5 6 7	
1st side 2-output	M-4 16 15 NP2 1 14 NP1 13 X NS1a X NS1a 4 NS1b 5 NS1b 6 9 NB2 7	N-4 16 15 NP2 14 NP1 13 X 11 ND 10 9 NV NS3 2 NS2 3 4 NS1 5 6 7	

Design Reference for Switching Power Transformers

· Maximum allowable temperature

The maximum ambient temperature of the transformer is E Class (120°C).

However, there is no E Class for transformers shipped for North America; therefore, the maximum ambient temperature is Class 105 (105°C). [Class 130 (130°C) is possible when UL1446 insulating system is applied.]

• Temperature rise in Transformers

In normal design condition, 55°C or less (using the resistance method) is the target of temperature rise of windings. Therefore, the maximum ambient temperature at this time is 65°C (50°C max. for North America).

In case of measuring the temperature of the windings by thermocouple, 10 to 15°C more would be allowable.

· Dealing with safety regulations

Designs are made in consideration of materials, structures an so on that the designed transformers are comply with designated safety regulations.

(1)Regarding the core

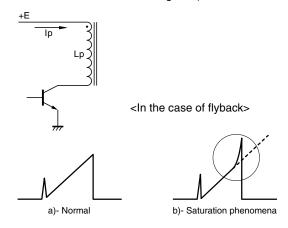
To be handled in the same manner as Basic Insulation.

(2)Distance between transformer and other parts

Please keep the distance between the transformer and other
parts in according with applicable safety standards.

. Concerning of the influence of leakage flux

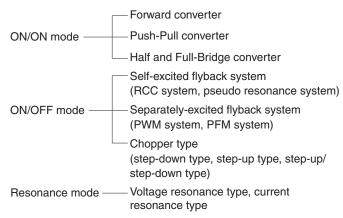
Due to the fact that there is always some degree of leakage flux from transformer, designs should be made to keep them apart as much as possible from parts that are easily affected by this.


· Magnetic saturation of the core

- (1)Magnetic operating condition of the core in the transformer are determined by maximum operation temperature (including temperature rise) and driving condition in circuits. If product is used in condition that exceed these conditions, there is a possibility of occurring magnetic saturation of the core. The following items could be possible cause of core saturation.
 - The product is used in conditions that exceed the maximum operating temperature.
 - Operating frequencies are lower than the ones initially designed. (longer ON time)
 - The input voltage is abnormally higher than the specified values.

(2)To check on the saturation of the core it is possible to judge from current waveforms of primary winding. Current flowing in the inductor changes in a straight line in relation to time as in the figure a) in accordance with

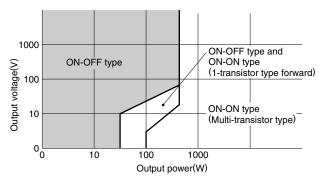
$$I = \frac{E}{I} \times 1$$


However, in the event that a saturation phenomena has occurred in the core, inductance is reduced causing a rapid and drastic increase of current as shown figure b).

(3)In this case, there is possibility that a breakdown may occur due to surpassing the rated current of the switch it is necessary to have over current protection circuit or modify transformer design.

· Circuit topologies of switching power supply

The term "topology" refers to the arrangement of the power components within the switching power supply design. There are several different kind of circuit topologies as following;

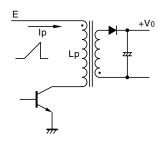

TRANSFORMERS

公TDK

· Which topology of switching power supply to use?

Each topology has its relative merit in terms of cost and performance. One topology may have a low parts cost but only be able to provide a limited amount of power; another may have ample power capability but cost more, and so on.

The following relationship between output voltage and power give us one suggestion when we need to chose topology in given conditions:


ON-OFF type: For high voltage/small current ON-ON type: For low voltage/large current

The deference of power conversion between Forward and Flyback modes.

Since the forward mode converter is a system that performs power transmission to the output side during ON period of switching transistor, it is possible to work with the large output current. Consequently, forward converter method is suitable to large current output with relatively lower output voltage.

To the contrary, Flyback mode converter is a system that input power is stored within the Inductor or primary coil in the transformer as a magnetic energy during ON period of switching transistor and the stored energy transmit to output side during OFF period of switching transistor. Accordingly, Flyback mode converter is suitable to high voltage and low current output, and does not suite to large current output.

• The stored energy within the inductor.

Energy stored in the inductor Lp is $W = \frac{1}{2} \times LP \times IP^2 \times [J]$

when Ip is a triangular wave, and electric power (energy per unit time) is

$$P = \frac{[J]}{[S]} = \frac{1}{2} \times L_P \times I_{P^2} \times f[W]$$

Where.

Lp: Inductance of primary winding

Ip: Peak value of primary current

f: Switching frequency

How to decide primary inductance (Lp)?

(1) When the self-excited flyback system is selected:

Using the formula
$$P = \frac{1}{2} \times L_P \times I_P^2 \times f[W]$$
,

it is possible to calculate the inductance value needed for the desired output P under the fixed Ip value.

By deriving $E \times Ton = LP \times i$ from the formula

$$E = LP \times \frac{di}{dt}$$
,

the current which flows through the inductor becomes $i=\frac{E\times Ton}{LP}$.

By substituting this with P=, the formula of

$$P = \frac{1}{2} \times LP \times \left(\frac{E \times Ton}{LP}\right)^{2} \times f = \frac{1}{2} \times \frac{E^{2} \times Ton^{2}}{LP} \times f \text{ results.}$$

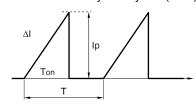
From this, the formula
$$L_P = \frac{E^2 \times Ton^2}{2 \times P} \times f$$
 results.

Where,

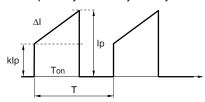
E: Input voltage

Ton: On time

F: Switching frequency


In actual designs this value is to be slightly lowered in consideration of the transformer's efficiency.

(2) When the separately-excited flyback system is selected: The coefficient k is added because a direct current is superimposed on the primary current waveform.


$$LP = \frac{E^2 \times Ton^2}{2 \times P} \times f \times \frac{(1+k)}{(1-k)}$$

The primary current waveforms

The self-excited flyback system(RCC)

The separately-excited flyback system

· How to decide number of turns of primary winding?

$$NP = \frac{E \text{ min.} \times \text{Ton max.}}{\Delta B \times A \times (1-k)}$$

Where,

E min.: Lower limit value of input voltage (Vdc)

A: Core cross section area (m2)

D: Duty ratio

Ton max.: The maximum ON time for switching transistor (sec.)

Δ: Operating flux density (T)

(1) When the self-excited flyback system is selected:

$$NP = \frac{E \text{ min.} \times Ton \text{ max.}}{\Delta B \times A} (Ton \text{ max.} = \frac{D}{f})$$

(2) When the separately-excited flyback system is selected:

$$NP = \frac{E \text{ min.} \times \text{Ton max.}}{\Delta B \times A \times (1-k)}$$

Precautions must be taken as the upper limit value of ΔB changes according to core materials, operating temperatures, frequencies, etc.

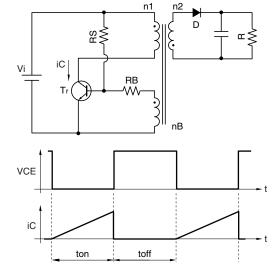
· Determining of secondary winding

ON-OFF mode

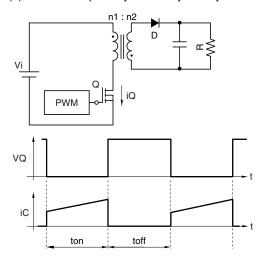
As it is necessary to consider the voltage drop of the rectifier diode on the secondary side,

$$Ns = NP \times \frac{V_0 + V_F}{E \text{ min.}} \times \frac{1 - D}{D}$$

Where,


Vf: Voltage drop of the rectifier diode

Vo: Output voltage


$$\frac{\text{Ton max.}}{1/\text{f}} = D : \text{Duty ratio}$$

Example of drive waveforms

(1) When the self-excited flyback system is selected (RCC)

(2) When the separately-excited flyback system is selected

In order for designing the transformer, the following conditions are necessary.

It is greatly appreciated customer give us those conditions by filling out required information with the appended "Transformer specifications / inquiry form".

(1)Circuit topology

Flyback system, forward system, etc.

(2) Used IC

Design with a high degree of perfection is possible when IC manufacturer and model number information are provided.

(3)Input voltage range

The lower limit of rectified voltage is important, in particular.

(4) Operating frequency (fixed/variable)

It is especially necessary to determine the lower limit frequency for the maximum load condition in Flyback converter.

(5) Maximum duty ratio

It is necessary to specify maximum ON time when input voltage is lower limit, approximately 45% should be the maximum for external excitation system.

(6)Operating temperature range,maximum temperature rise

This is the allowable temperature rise in the transformer, should be
equal to the value that ambient temperature has been taken from
the temperature index of the materials which is 120°C(105°C in UL
system).

(7)Required safety regulations

Structures and materials are chosen to comply with required safety regulations.

(8)Output voltage/current

Required for determination of the winding ratios and wire gage.

(9) Transformer outside dimension

It is necessary for determining the shape.

(10)Instructions concerning circuit designs and pin configuration of transformer

Type of the secondary rectifier diode is important in particular because of voltage drop between First recovery and Schottky barrier type is different, it will affect to design of number of turns of transformer.

e used (diode voltage dons Example n Motor d) 50V (±5V) 0 condition 0.8 1A,10sec. 2A, 3sec. ry Secondary No FRD 0.1 decovery Diode, S.B.D: Second Yes No	(V) (v) drop) Output1 chottky Barrier D (When checking	Op Op Output2	Derating range: Output3 Output	(V) ~	(V) (V) Output6 Output7	v VCC
ard method Others (V) ~ (V) ~ e used (diode voltage dons Example n Motor donor) (±5V) 0 condition 0.8 1A,10sec. 2A, 3sec. ry Secondary No FRD 0.1 decovery Diode, S.B.D: Second Yes No	(V) (v) drop) Output1 chottky Barrier D (When checking	Op Op Output2	perating range:	(v) ~	(v)	VCC
ard method Others (V) ~	(V) (v) trop) Output1 chottky Barrier D (When checking	Op Op Output2	perating range:	(v) ~	(v)	vcc
ard method Others (V) ~ (V) ~ e used (diode voltage of the property of the	(V) (v) irop) Output1 chottky Barrier D (When checking	Op Op Output2	perating range:	(v) ~	(v)	VCC
ard method Others (V) ~ (V) ~ e used (diode voltage dons Example no Motor (±5V) 0 condition 0.8 1A,10sec. 2A, 3sec. ry Secondary No FRD 0.1 decovery Diode, S.B.D: Sond Yes No	(V) (v) irop) Output1 chottky Barrier D (When checking	Op Op Output2	perating range:	(v) ~	(v)	VCC
e used (diode voltage dons Example n Motor d) 50V (±5V) 0 condition 0.8 1A,10sec. 2A, 3sec. ry Secondary No FRD 0.1 decovery Diode, S.B.D: Second Yes No	(V) (v) irop) Output1 chottky Barrier D (When checking	Op Op Output2	perating range:	(v) ~	(v)	VCC
e used (diode voltage dons Example n Motor d) 50V (±5V) 0 condition 0.8 1A,10sec. 2A, 3sec. ry Secondary No FRD 0.1 decovery Diode, S.B.D: Second Yes No	(V) (v) irop) Output1 chottky Barrier D (When checking	Op Op Output2	perating range:	(v) ~	(v)	VCC
e used (diode voltage dons Example n Motor d) 50V (±5V) 0 condition 0.8 1A,10sec. 2A, 3sec. ry Secondary No FRD 0.1 decovery Diode, S.B.D: Second Yes No	(V) (v) irop) Output1 chottky Barrier D (When checking	Op Op Output2	perating range:	(v) ~	(v)	VCC
e used (diode voltage dons Example Motor 50V (±5V) 0 condition 0.8 1A,10sec. 2A, 3sec. ry Secondary No FRD 0.1 decovery Diode, S.B.D: Second Yes No / Fixed) fsw	(V) irop) Output1 chottky Barrier D (When checking	Output2 Output2	perating range:	(v) ~	(v)	VCC
e used (diode voltage dons Example	Output1 Output1 chottky Barrier D (When checking	Output2 Output2	perating range:	(1)	7.1	VCC
e used (diode voltage dons Example	Output1	Output2		t4 Output5	7.1	VCC
Example	Output1	iode)	Output3 Output	14 Output5	Output6 Output7	VCC
n Motor 7) (±5V) 0 0.8 11A,10sec. 2A, 3sec. ry Secondary No FRD 0.1 tecovery Diode, S.B.D: Sond 7 Fixed) fsw	chottky Barrier D	iode)	Outputs Output	- Outputs	Outpute Output/	VCC
1)	(When checking					
(±5V) 0 condition 0.8 1A,10sec. 2A, 3sec. ry Secondary No FRD 0.1 decovery Diode, S.B.D: Schod Yes No	(When checking					
200 200	(When checking					
1A,10sec. 2A, 3sec. ry Secondary	(When checking					
2A, 3sec. ry Secondary	(When checking					
No FRD 0.1 Decovery Diode, S.B.D: Sond Fixed) Fixed) Secondary No FRD 0.1 From No	(When checking					
No FRD 0.1 decovery Diode, S.B.D: S Yes No / Fixed) fsw	(When checking					
FRD 0.1 lecovery Diode, S.B.D: Sond Yes No	(When checking					
0.1 decovery Diode, S.B.D: Sond Yes No / Fixed) fsw	(When checking					
decovery Diode, S.B.D: Sond Yes No	(When checking					
nod Yes No / Fixed) fsw	(When checking					
		res , piease aii	ach a drawing separatel	y.) Pin assign	nments changes Poss	ible Impossible
	~	(kHz)				
D max.						
	(%)	, T max	(s)			
CIN	(μF					
med using a value of ()μF	x4, which is times g	eater than the outpu	t power for 100V and worldw	ide transformers, and an	output power of ()µF for 200V	transformers.)
max. temperature rise,	and ambient tem	perature	to (°C) ΔT	(°C Typ.	Max.) Ambient tempera	ature°C
r dimensions of transf	ormer					
Outer dim	nensions of the ti	ansformer L	x W	хН	mm max.	
☐ Electrical /	Appliances and	Material Safety	Act, Appendix 8]CSA	Others	
□UL	□IE	С				_
Yes*	Set purchase		ar in mind that the applic	ation fee may be borr	ne by the customer.)	
Basic insula		ced insulation		Other ()		
1 2			will be performed with a	,		
the distance prescribed			wiii be periorified with e	t polition degree of 2)	
·		rimary - primary:		mm or greater	Primary - core:	mm or g
_	-				Filliary - core.	
mm or	•	econdary - core:		mm or greater		
nter the voltage prescribe		• •	Driman, same	AC (2.2)	(main)	(m 1)
			•			(mA)
			Secondary - core:	AC(V)	(min)	(mA)
	(min)	(mA)				
			v the device manufacti	urer, please attach ti	hese separately.	
ces to be Used. nmended transformer s	specifications a	tc., presented h	,	, p attaon t	oopalatory.	
mmended transformer s	•		Droduot No.			
mmended transformer s	•		Product No.:			
mmended transformer s	•					
nmended transformer s			Mass production re	quested price/currency	у:	
mmended transformer s	tion (FOB CHN,	CIF LA. , DDP Pa	Mass production re-			
yping information	tion (FOB CHN,		Mass production re-	Mass pro	oduction location	
yping information	tion (FOB CHN,	CIF LA. , DDP Pa	Mass production re-	Mass pro (PP2)	oduction location	MP1)
	(V)(V)	(V) (min) (min) (win)	(V) (min) (mA) (V) (min) (mA) to be Used.	(V) (min) (mA) Secondary - core: (V) (min) (mA) to be Used. Inded transformer specifications, etc., presented by the device manufactor.	(V) (min) (mA) Secondary - core: AC (V) (V) (v) (min) (mA) to be Used. Indeed transformer specifications, etc., presented by the device manufacturer, please attach to	(V) (min) (mA) Secondary - core: AC (V) (min) (min) (v) (min) (mA) to be Used. Inded transformer specifications, etc., presented by the device manufacturer, please attach these separately.