i.MX RT1170 introduction i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 5 — Twelve universal asynchronous receiver/transmitter (UARTs) modules
i.MX RT1170 introduction i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 2, 11/2021 NXP Semiconductors 5 — Twelve universal asynchronous receiver/transmitter (UARTs) modules
NXP Semiconductors Data Sheet: Technical Data Document Number: IMXRT1170CEC Rev. 1, 05/2021 i.MX RT1170 Crossover Processors Data Sheet for Consumer Products MIMXRT1176DVMAA MIMXRT1172DVMAA MIMXRT117HDVMAA MIMXRT1175DVMAA MIMXRT1171DVMAA MIMXRT117FDVMAA Package Information Plastic Package 289-pin MAPBGA, 14 x 14 mm, 0.8 mm pitch Ordering Information 1 i.MX RT1170 introduction See Table 1 on page 6 The i.MX RT1170 is a new high-end processor of i.MX RT family, which features NXP's advanced implementation of a high performance Arm Cortex®-M7 core operating at speeds up to 1 GHz and a power efficient Cortex®-M4 core up to 400 MHz. The i.MX RT1170 processor has 2 MB on-chip RAM in total, including a 768 KB RAM which can be flexibly configured as TCM (512 KB RAM shared with M7 TCM and 256 KB RAM shared with M4 TCM) or general-purpose on-chip RAM. The i.MX RT1170 integrates advanced power management module with DCDC and LDO regulators that reduce complexity of external power supply and simplifies power sequencing. The i.MX RT1170 also provides various memory interfaces, including SDRAM, RAW NAND FLASH, NOR FLASH, SD/eMMC, Quad/Octal SPI, Hyper RAM/Flash, and a wide range of other interfaces for connecting peripherals, such as WLAN, BluetoothTM, GPS, displays, and camera sensors. The i.MX RT1170 also has rich audio and video features, including MIPI CSI/DSI, LCD display, graphic accelerator, camera interface, SPDIF, and I2S audio interface. 1. i.MX RT1170 introduction . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. Ordering information . . . . . . . . . . . . . . . . . . . . . . . 6 1.3. Package marking information . . . . . . . . . . . . . . . . 9 2. Architectural overview . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3. Modules list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1. Special signal considerations . . . . . . . . . . . . . . . 20 3.2. Recommended connections for unused analog interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1. Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . 24 4.2. System power and clocks . . . . . . . . . . . . . . . . . . 36 4.3. I/O parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.4. System modules . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.5. External memory interface . . . . . . . . . . . . . . . . . . 58 4.6. Display and graphics . . . . . . . . . . . . . . . . . . . . . . 68 4.7. Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.8. Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.9. Communication interfaces . . . . . . . . . . . . . . . . . . 85 4.10. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5. Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . 103 5.1. Boot mode configuration pins . . . . . . . . . . . . . . 103 5.2. Boot device interface allocation . . . . . . . . . . . . . 103 6. Package information and contact assignments . . . . . . 109 6.1. 14 x 14 mm package information . . . . . . . . . . . . 109 7. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products. © 2020-2021 NXP B.V. i.MX RT1170 introduction The i.MX RT1170 is specifically useful for applications such as: · Industrial Human Machine Interfaces (HMI) · Motor Control · Home Appliance · High-end Audio Appliance · Low-end Instrument Cluster · Point-of-Sale (PoS) 1.1 Features The i.MX RT1170 processors are based on Arm Cortex®-M7 CoreTM Platform, which has the following features: · The Arm Cortex-M7 Core Platform: -- 32 KB L1 Instruction Cache and 32 KB L1 Data Cache -- Floating Point Unit (FPU) with single-precision and double-precision support of Armv7-M Architecture FPv5 -- Support the Arm®v7-M Thumb instruction set, defined in the Armv7-M architecture -- Integrated Memory Protection Unit (MPU), up to 16 individual protection regions -- Up to 512 KB I-TCM and D-TCM in total -- Frequency of 1 GHz with Forward Body Biasing (FBB) -- Frequency of the core, as per Table 11, "Operating ranges," on page 27. · The Arm Cortex®-M4 Core platform: -- Cortex-M4 processor with single-precision FPU defined by Armv7-M architecture FPv4-SP -- Integrated MPU with 8 individual protection regions -- 16 KB Instruction Cache, 16 KB Data Cache, and 256 KB TCM -- Frequency of 400 MHz without body biasing The SoC-level memory system consists of the following additional components: -- Boot ROM (256 KB) -- On-chip RAM (2 MB in total) Configurable 512 KB RAM shared with M7 TCM 256 KB RAM shared with M4 TCM Dedicated 1.25 MB OCRAM -- Secure always-on RAM (4 KB) · External memory interfaces: -- 8/16/32-bit SDRAM, up to SDRAM-133/SDRAM-166/SDRAM-200 -- 8/16-bit SLC NAND FLASH -- SD/eMMC -- SPI NOR/NAND FLASH i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 2 NXP Semiconductors i.MX RT1170 introduction -- Parallel NOR FLASH with XIP support -- Single/Dual channel Quad SPI FLASH with XIP support -- Hyper RAM/FLASH -- OCT FLASH -- Synchronization mode for all devices · Timers and PWMs: -- Six General Programmable Timer (GPT) modules 4-channel generic 32-bit resolution timer for each Each supports standard capture and compare operation -- Two Periodical Interrupt Timer (PIT) modules Four timers for each module Generic 32-bit resolution timer Periodical interrupt generation -- Four Quad Timer (QTimer) modules 4-channel generic 16-bit resolution timer for each Each supports standard capture and compare operation Quadrature decoder integrated -- Four FlexPWMs Up to 8 individual PWM channels for each 16-bit resolution PWM suitable for Motor Control applications -- Four Quadrature Decoders -- Four Watch Dog (WDOG) modules Each i.MX RT1170 processor enables the following interfaces to external devices (some of them are muxed and not available simultaneously): · Display Interface: -- Parallel RGB LCD interface (eLCDIF) Support 8/16/24-bit interface Support up to WXGA resolution @60fps Support Index color with 256 entry x 24-bit color LUT -- Parallel RGB LCD Interface Version 2 (LCDIFv2) Enhanced based on LCDIF version Support up to 8 layers of alpha blending -- MIPI Display Serial Interface (MIPI DSI) PHY integrated 2 data lanes interface with up to 1.5 GHz bit rate clock -- Smart LCD Display with 8080 interface through SEMC · Audio: i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 3 i.MX RT1170 introduction -- SPDIF input and output -- Four Synchronous Audio Interface (SAI) modules supporting I2S, AC97, TDM, and codec/DSP interfaces -- Medium Quality Sound (MQS) interface via GPIO pads -- PDM microphone interface with 4 pairs of inputs -- Asynchronous Sample Rate Converter (ASRC) · Graphics engine: -- Generic 2D (PXP) BitBlit Flexible image composition options--alpha, chroma key Porter-duff blending Image rotation (90, 180, 270) Image resize Color space conversion Multiple pixel format support (RGB, YUV444, YUV422, YUV420, YUV400) Standard 2D-DMA operation -- Vector Graphics Processing Real-time hardware curve tessellation of lines, quadratic, and cubic Bezier curves 16x Line Anti-aliasing OpenVG 1.1 support Vector Drawing · Camera Interface: -- Parallel Camera Sensor Interface (CSI) Support 24-bit, 16-bit, and 8-bit input Barcode binarization and histogram statistics -- MIPI Camera Serial Interface (MIPI CSI) PHY integrated 2 data lanes interface with up to 1.5 GHz bit rate clock · Connectivity: -- Two USB 2.0 OTG controllers with integrated PHY interfaces -- Two Ultra Secure Digital Host Controller (uSDHC) interfaces eMMC 5.0 compliance with HS400 support up to 400 MB/sec SD/SDIO 3.0 compliance with 200 MHz SDR signaling to support up to 100 MB/sec Support for SDXC (extended capacity) -- One 10M/100M Ethernet controller with support for IEEE1588 -- One Gigabit Ethernet controller with support for AVB -- One Gigabit Ethernet controller with Time Sensitive Networking (TSN) Capability i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 4 NXP Semiconductors i.MX RT1170 introduction -- Twelve universal asynchronous receiver/transmitter (UARTs) modules -- Six I2C modules -- Six SPI modules -- Three FlexCAN (with Flexible Data-rate supported) modules -- Two EMV SIM modules · Analog: -- Two Analog-Digital-Converters (ADC), which supports both differential and single-end inputs -- One Digital-Analog-Converter (DAC) -- Four Analog Comparators (ACMP) · GPIO and Pin Multiplexing: -- General-purpose input/output (GPIO) modules with interrupt capability -- Input/output multiplexing controller (IOMUXC) to provide centralized pad control -- Two FlexIO modules -- 8 x 8 keypad The i.MX RT1170 processors integrate advanced power management unit and controllers: · Full PMIC integration, including on-chip DCDC and LDOs · Temperature sensor with programmable trim points · Hardware power management controller (GPC) The i.MX RT1170 processors support the following system debug: · Arm CoreSight debug and trace architecture · Trace Port Interface Unit (TPIU) to support off-chip real-time trace · Cross Triggering Interface (CTI) · Support for 5-pin (JTAG) and SWD debug interfaces Security functions are enabled and accelerated by the following hardware: · High Assurance Boot (HAB) · Cryptographic Acceleration and Assurance (CAAM) module: -- Public Key Cryptography Engine (PKHA) -- Symmetric Engines -- Cryptographic Hash Engine -- Random Number Generation (RNG4) -- Four Job Rings for use by processors -- Secure Hardware-Only Cryptographic Key Management -- Encrypted Boot -- Revision control check based on fuse values -- DEK includes IV -- Side channel attack countermeasures -- 64 KB secure RAM i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 5 i.MX RT1170 introduction · Inline Encryption Engine (IEE): -- External memory encryption/decryption -- I/O direct encrypted storage and retrieval (Stream Support) -- FlexSPI decryption only · On-the-Fly AES Decryption (OTFAD): -- AES-128 Counter Mode On-the-Fly Decryption -- Hardware support for unwrapping "key blobs" -- Functionally acts as a slave sub-module to the FlexSPI · Secure Non-Volatile Storage (SNVS): -- Secure real-time clock (SRTC) -- Zero Master Key (ZMK) · Secure always-on RAM (4 KB) · Secure key management and protection -- Physical Unclonable Function (PUF) -- UnDocumented Function (UDF) -- Built-in Manufacturing Protection Hardware · Secure and trusted access control NOTE The actual feature set depends on the part numbers as described in Table 1. Functions such as display and camera interfaces, connectivity interfaces, and security features are not offered on all derivatives. 1.2 Ordering information Table 1 provides examples of orderable part numbers covered by this Data Sheet. Table 1. Order information Qualification tier M7 core M4 core SRAM Parallel LCD and CSI MIPI DSI and CSI GPU2D PXP CAN-FD MIMXRT1176 MIMXRT1175 MIMXRT1172 MIMXRT1171 MIMXRT117H MIMXRT117F DVMAA DVMAA DVMAA DVMAA DVMAA DVMAA Consumer 1 GHz 400 MHz 2 MB Yes Yes Yes Yes x3 Consumer 1 GHz 400 MHz 2 MB -- -- -- -- x3 Consumer 1 GHz -- 2 MB Yes Yes Yes Yes x3 Consumer 1 GHz -- 2 MB -- -- -- -- x3 Consumer 1 GHz 400 MHz 2 MB Yes Yes Yes Yes x3 Consumer 1 GHz -- 2 MB Yes Yes Yes Yes x3 i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 6 NXP Semiconductors i.MX RT1170 introduction Table 1. Order information (continued) MIMXRT1176 MIMXRT1175 MIMXRT1172 MIMXRT1171 MIMXRT117H MIMXRT117F DVMAA DVMAA DVMAA DVMAA DVMAA DVMAA ADC x2 x2 x2 x2 x2 x2 12-bit DAC x1 x1 x1 x1 x1 x1 ACMP x4 x4 x4 x4 x4 x4 1 Gb ENET with AVB x1 x1 x1 x1 x1 x1 1 Gb ENET with TSN x1 -- -- -- x1 -- 10/100 Mb ENET with x1 x1 x1 x1 x1 x1 1588 USB 2.0 OTG x2 x2 x2 x2 x2 x2 eMMC 5.0 / SD 3.0 x2 x2 x2 x2 x2 x2 EMV SIM x2 x2 x2 x2 x2 x2 SAI x4 x4 x4 x4 x4 x4 DMIC x8 x8 x8 x8 x8 x8 FlexSPI x2 x2 x2 x2 x2 x2 UART x12 x12 x12 x12 x12 x12 I2C x6 x6 x6 x6 x6 x6 SPI x6 x6 x6 x6 x6 x6 GPT x6 x6 x6 x6 x6 x6 PIT x2 x2 x2 x2 x2 x2 QTimer x4 x4 x4 x4 x4 x4 FlexPWM x4 x4 x4 x4 x4 x4 Temp Monitor x1 x1 x1 x1 x1 x1 Security Yes Yes Yes Yes Yes Yes Package 289 MAPBGA, 14 mm x14 mm, 0.8 mm pitch 289 MAPBGA, 14 mm x14 mm, 0.8 mm pitch 289 MAPBGA, 14 mm x14 mm, 0.8 mm pitch 289 MAPBGA, 14 mm x14 mm, 0.8 mm pitch 289 MAPBGA, 14 mm x14 mm, 0.8 mm pitch 289 MAPBGA, 14 mm x14 mm, 0.8 mm pitch Junction temperature Tj (C) 0 to 95 0 to 95 0 to 95 0 to 95 0 to 95 0 to 95 Figure 1 describes the part number nomenclature so that characteristics of a specific part number can be identified (for example, cores, frequency, temperature grade, fuse options, and silicon revision). The primary characteristic which describes which data sheet applies to a specific part is the temperature grade (junction) field. · The i.MX RT1170 Crossover Processors for Consumer Products Data Sheet (IMXRT1170CEC) covers parts listed with a "D (Consumer temp)" i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 7 i.MX RT1170 introduction Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field and matching it to the proper data sheet. If there are any questions, visit the web page nxp.com/IMXRT or contact an NXP representative for details. M IMX X X @ ## % + VV $ A Qualification Level M Prototype Samples P Mass Production M Special S Part # series XX i.MX RT RT Family @ First Generation RT family 1 Reserved 2-8 Sub-Family ## RT116x 16 RT117x 17 RT118x 18 Tie % Single Core Standard Feature 1 Single Core Enhanced Feature 2 Dual Core Enhanced Security 3 Dual Core Standard Feature 5 Dual Core Enhanced Feature 6 Dual Core Premium Feature 7 Dual Core Full Feature 9 Facial Recognition F Hybrid Solution with Vision & Voice H Local Voice Control (text input models) S Silicon Rev A A0 A Main Core Frequency $ 2xx MHz 2 500 MHz 5 600 MHz 6 800 MHz 8 1 GHz A Package Type VV 289MAPBGA, 14 x 14 mm, 0.8 mm pitch VM 196MAPBGA, 12 x 12 mm, 0.8 mm pitch VJ 144MAPBGA, 10 x 10 mm, 0.8 mm pitch VP Temperature (Tj) + Consumer: 0 to + 95 °C D Industrial: -40 to +105 °C C Extended Industrial: -40 to + 125 eC X Automotive: -40 to + 125 eC A Figure 1. Part number nomenclature--i.MX RT11XX family i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 8 NXP Semiconductors i.MX RT1170 introduction 1.3 Package marking information Figure 2 describes the package marking format about the i.MX RT1170 Crossover Processors. Figure 2. MAPBGA289 14 x 14 mm package marking format The 14 x 14 mm of i.MX RT1170 MAPBGA289 package has the following top-side marking: · First line: aaaaaaaaaaaaaaa · Second line: mmmmm · Third line: xxxyywwx Table 2 lists the identifier decoder. Table 2. Identifier decoder Identifier a m y w x Description Part number code, refer to Section 1.2, Ordering information Mask set Year Work week NXP internal use i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 9 Architectural overview 2 Architectural overview The following subsections provide an architectural overview of the i.MX RT1170 processor system. 2.1 Block diagram Figure 3 shows the functional modules in the i.MX RT1170 processor system1. . Figure 3. i.MX RT1170 system block diagram 1. Some modules shown in this block diagram are not offered on all derivatives. See Table 1 for details. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 10 NXP Semiconductors Modules list 3 Modules list The i.MX RT1170 processors contain a variety of digital and analog modules. Table 3 describes these modules in alphabetical order. Table 3. i.MX RT1170 modules list Block Mnemonic Block Name Subsystem Brief Description ACMP1 ACMP2 ACMP3 ACMP4 ADC_ETC ADC1 ADC2 AOI Arm ASRC CAAM CANFD1 CANFD2 CANFD3 CCM GPC PGMC PMU SRC Analog Comparator Analog The comparator (CMP) provides a circuit for comparing two analog input voltages. The comparator circuit is designed to operate across the full range of the supply voltage (rail-to-rail operation). ADC External Trigger Control Analog ADC_ETC enables multiple users shares a ADC module in a Time-Division-Multiplexing (TDM). Analog to Digital Converter Analog The ADC is a 12-bit general purpose analog to digital converter. And-Or-Inverter Cross Trigger The AOI provides a universal boolean function generator using a four-term sum of products expression with each product term containing true or complement values of the four selected inputs (A, B, C, D). Arm Platform Arm The Arm Core Platform includes one Cortex-M7 core. It includes associated sub-blocks, such as Nested Vectored Interrupt Controller (NVIC), Floating-Point Unit (FPU), Memory Protection Unit (MPU), and CoreSight debug modules. The Cortex-M4 platform has following features: · Cortex-M4 processor with FPU · Local memory 16 KB instruction cache and 16 KB data cache 256 KB TCM Asynchronous Sample Rate Converter Multimedia Peripherals The ASRC can process groups of audio channels with an independent time-based simultaneously. Cryptographic Accelerator and Assurance Module Security CAAM supports a set of standard hardware accelerators, boot time acceleration of the hashing function, crypto key protection, HDCP 2.x authentication and protected video path support, manufacturing protection and public key cryptographic acceleration, and inter-operate with TrustZone, Resource Domain, and system virtualization access controls. Flexible Controller Area Network Connectivity Peripherals The CAN with Flexible Data rate (CAN FD) module is a communication controller implementing the CAN protocol according to the ISO11898-1 and CAN 2.0B protocol specification. Clock Control Module, General Power Controller, Power Manage Unit, Power Gating and Memory Controller, System Reset Controller Clocks, Resets, and Power Control These modules are responsible for clock and reset distribution in the system, and also for the system power management. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 11 Modules list Table 3. i.MX RT1170 modules list (continued) Block Mnemonic CSI Block Name Parallel CSI CWT DAC DAP Code Watchdog Timer Digital-Analog-Converter Debug Access Port DCDC DCDC Converter eDMA eDMA_LPSR enhanced Direct Memory Access eLCDIF LCD interface EMV SIM1 EMV SIM2 Europay, Master and Visa Subscriber Identification Module Subsystem Brief Description Multimedia Peripherals The CSI IP provides parallel CSI standard camera interface port. The CSI parallel data ports are up to 24 bits. It is designed to support 24-bit RGB888/YUV444, CCIR656 video interface, 8-bit YCbCr, YUV or RGB, and 8-bit/10-bit/16-bit/24-bit Bayer data input. Timer peripherals The CWT provides mechanisms for detecting side-channel attacks and the execution of unexpected instruction sequences. Analog The DAC is a 12-bit general purpose digital to analog converter. System Control Peripherals The DAP provides real-time access for the debugger without halting the core to: · System memory and peripheral registers · All debug configuration registers The DAP also provides debugger access to JTAG scan chains. The DAP module is internal to the Cortex-M7 Core Platform. Analog The DCDC module is used for generating power supply for core logic. Main features are: · Adjustable high efficiency regulator · Two outputs: 1.0 V and 1.8 V · Over current and over voltage detection System Control Peripherals There are two enhanced DMAs (eDMA). · The eDMA is a 32-channel DMA engine, which is capable of performing complex data transfers with minimal intervention from a host processor. · The DMA_MUX is capable of multiplexing up to 128 DMA request sources to the 32 DMA channels of eDMA. Multimedia Peripherals The enhanced LCD controller provides flexible display options and to drive a wide range of display devices varying in size and capability. Major features are: · Up to WXGA 60 Hz · 8/16/18/24 bit LCD data bus support available depending on I/O mux options. · Programmable timing and parameters for LCD interfaces to support a wide variety of displays. · Index color with 256 entry x 24-bit color LUT Connectivity Peripherals EMV SIM is designed to facilitate communication to Smart Cards compatible to the EMV version 4.3 standard (Book 1) and Smart Cards compatible with ISO/IEC 7816-3 standard. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 12 NXP Semiconductors Modules list Table 3. i.MX RT1170 modules list (continued) Block Mnemonic ENET Block Name Ethernet Controller ENET 1G Ethernet Controller ENET_QOS Ethernet Quality-of-Service EWM External Watchdog Monitor FlexIO1 FlexIO2 Flexible Input/output FlexPWM1 FlexPWM2 FlexPWM3 FlexPWM4 Pulse Width Modulation FlexRAM RAM Subsystem Brief Description Connectivity Peripherals The Ethernet Media Access Controller (MAC) is designed to support 10/100 Mbit/s Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The module has dedicated hardware to support the IEEE 1588 standard. See the ENET chapter of the reference manual for details. Connectivity Peripherals One 1G Ethernet is also integrated, which has following features: · RGMII/RMII/MII operation · Support IEEE1588 · Support AVB Connectivity Peripherals The ENET_QOS is compliant with the IEEE 802.32015 specification and can be used in applications, such as AV bridges, AV nodes, switches, data center bridges and nodes, and network interface cards. It enables a host to transmit and receive data over Ethernet in compliance with the IEEE802.1AS and IEEE802.1-Qav for audio/video traffic. Timer Peripherals The EWM modules is designed to monitor external circuits, as well as the software flow. This provides a back-up mechanism to the internal WDOG that can reset the system. The EWM differs from the internal WDOG in that it does not reset the system. The EWM, if allowed to time-out, provides an independent trigger pin that when asserted resets or places an external circuit into a safe mode. Connectivity and Communications The FlexIO is capable of supporting a wide range of protocols including, but not limited to: UART, I2C, SPI, I2S, camera interface, display interface, PWM waveform generation, etc. The module can remain functional when the chip is in a low power mode provided the clock it is using remain active. Timer Peripherals The pulse-width modulator (PWM) contains four PWM sub-modules, each of which is set up to control a single half-bridge power stage. Fault channel support is provided. The PWM module can generate various switching patterns, including highly sophisticated waveforms. Memories The i.MX RT1170 has 512 KB of on-chip RAM which could be flexible allocated to I-TCM, D-TCM, and on-chip RAM (OCRAM) in a 32 KB granularity. The FlexRAM is the manager of the 512 KB on-chip RAM array. Major functions of this blocks are: interfacing to I-TCM and D-TCM of CM7 and OCRAM controller; dynamic RAM arrays allocation for I-TCM, D-TCM, and OCRAM. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 13 Modules list Table 3. i.MX RT1170 modules list (continued) Block Mnemonic Block Name Subsystem Brief Description FlexSPI1 FlexSPI2 GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 GPIO6 GPIO7 GPIO8 GPIO9 GPIO10 GPIO11 GPIO12 GPIO13 GPT1 GPT2 GPT3 GPT4 GPT5 GPT6 GPU2D IOMUXC Flexible Serial Peripheral Interface General Purpose I/O Modules Connectivity and Communications System Control Peripherals FlexSPI acts as an interface to one or two external serial memory devices, FlexSPI2 has 8 bi-directional data lines. Used for general purpose input/output to external ICs. Each GPIO module supports up to 32 bits of I/O. Note: GPIO13 register access takes a long time (about 50s due to clocked by 32 KHz clock source). During the period of registers access, the LPSR domain bus would be on hold. General Purpose Timer Graphics Processing IOMUX Control Timer Peripherals Each GPT is a 32-bit "free-running" or "set and forget" mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in "set and forget" mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock. Multimedia Peripherals The vector graphics processing supports following features: · Real-time hardware curve tessellation of lines, quadratic, and cubic Bezier curves · 16x line anti-aliasing · OpenVG 1.1 support · Vector drawing Mux control This module enables flexible I/O multiplexing. Each IO pad has a default as well as several alternate functions. The alternate functions are software configurable. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 14 NXP Semiconductors Modules list Table 3. i.MX RT1170 modules list (continued) Block Mnemonic JTAGC Block Name JTAG Controller KPP Keypad Port LCDIFv2 Parallel RGB LCD interface version 2 LPI2C1 LPI2C2 LPI2C3 LPI2C4 LPI2C5 LPI2C6 LPSPI1 LPSPI2 LPSPI3 LPSPI4 LPSPI5 LPSPI6 Low Power Inter-integrated Circuit Low Power Serial Peripheral Interface Subsystem Brief Description System Control Peripherals Human Machine Interfaces Multimedia Peripherals Connectivity and Communications Connectivity and Communications The JTAG interface complies with JTAG TAP standards to internal logic. The i.MX RT1170 processors use JTAG port for production, testing, and system debugging. In addition, the JTAG provides BSR (Boundary Scan Register) standard support, which complies with IEEE 1149.1 and IEEE 1149.6 standards. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The i.MX RT1170 JTAG incorporates two security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration. The KPP is a 16-bit peripheral that can be used as a keypad matrix interface or as general purpose input/output (I/O). It supports 8 x 8 external key pad matrix. Main features are: · Multiple-key detection · Long key-press detection · Standby key-press detection · Supports a 2-point and 3-point contact key matrix The LCDIFv2 is an enhanced version of LCDIF. Main features are: · Eight layers of alpha blending · CRC check for configurable region on the final display output after alpha blending · Write-back channel to save the final output into memory The LPI2C is a low power Inter-Integrated Circuit (I2C) module that supports an efficient interface to an I2C bus as a master. The I2C provides a method of communication between a number of external devices. More detailed information, see Section 4.9.2, LPI2C module timing parameters. The LPSPI is a low power Serial Peripheral Interface (SPI) module that support an efficient interface to an SPI bus as a master and/or a slave. · It can continue operating while the chip is in stop modes, if an appropriate clock is available · Designed for low CPU overhead, with DMA off loading of FIFO register access i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 15 Modules list Table 3. i.MX RT1170 modules list (continued) Block Mnemonic Block Name Subsystem Brief Description LPUART1 LPUART2 LPUART3 LPUART4 LPUART5 LPUART6 LPUART7 LPUART8 LPUART9 LPUART10 LPUART11 LPUART12 MECC64 MIPI-CSI MIPI-DSI MQS MU UART Interface Connectivity Peripherals Each of the UART modules support the following serial data transmit/receive protocols and configurations: · 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd or none) · Programmable baud rates up to 20 Mbps. Error Correcting Code MIPI CSI Interface MIPI DSI Interface Medium Quality Sound Messaging Unit Memories and MECC64 module supports Single Error Correction and Memory Controllers Double Error Detection (SECDED) ECC function to provide reliability for 4 banks On-Chip RAM (OCRAM) access. When ECC function is disabled, ECC OCRAM can be also used to store data. Multimedia Peripherals Key features of MIPI CSI controller are listed as following: · Implements all three MIPI CSI-2 layers · Supports CSI-2 Unidirectional Master operation · Virtual Channel support · Flexible pixel-based user interface Multimedia Peripherals Key features of MIPI DSI controller are listed as following: · Implements all three DSI layers · Supports Command and Video Modes · Virtual Channel support · Flexible packet based user interface Multimedia Peripherals MQS is used to generate 2-channel medium quality PWM-like audio via two standard digital GPIO pins. System Control The Messaging Unit module enables two processors within the SoC to communicate and coordinate by passing messages (e.g. data, status, and control) through the MU interface. The MU also provides the ability for one processor to signal the other processor using interrupts. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 16 NXP Semiconductors Modules list Table 3. i.MX RT1170 modules list (continued) Block Mnemonic Block Name Subsystem Brief Description OCOTP_CTRL OTP Controller Security The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals requiring permanent non volatility. OCRAM On-Chip Memory controller Memories and The On-Chip Memory controller (OCRAM) module is Memory Controllers designed as an interface between the system's AXI bus and the internal (on-chip) SRAM memory module. OSC Oscillator Clock Sources and Control Two crystal oscillators: · 48 MHz crystal oscillator: it is used as primary clock source for all the PLLs to generate the clock for CPU, BUS, and high-speed interfaces. · 32 kHz crystal oscillator: it is the primary clock source for RTC as well as low speed clock source for CCM/SRC/GPC. PDM Pulse Density Modulation Multimedia Peripherals The PDM supports up to 8-channels (4 lanes) digital MIC inputs. PIT1 PIT2 Periodical Interrupt Timer Timer Peripherals The PIT features 32-bit counter timer, programmable count modules, clock division features, interrupt generation, and a slave mode to synchronize count enable for multiple PITs. PXP Pixel Processing Pipeline Multimedia Peripherals A high-performance pixel processor capable of 1 pixel/clock performance for combined operations, such as color-space conversion, alpha blending, and rotation. The PXP is enhanced with features specifically for gray scale applications. In addition, the PXP supports traditional pixel/frame processing paths for still-image and video processing applications. Quadrature DEC1 Quadrature DEC2 Quadrature DEC3 Quadrature DEC4 Quadrature Decoder Timer Peripherals The enhanced quadrature decoder module provides interfacing capability to position/speed sensors. There are five input signals: PHASEA, PHASEB, INDEX, TRIGGER, and HOME. This module is used to decode shaft position, revolution count, and speed. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 17 Modules list Table 3. i.MX RT1170 modules list (continued) Block Mnemonic Block Name Subsystem Brief Description QuadTimer1 QuadTimer2 QuadTimer3 QuadTimer4 RDC ROMCP RTC OSC SAI1 SAI2 SAI3 SAI4 SEMA4 SEMC SNVS SPDIF QuadTimer Timer Peripherals The quad-timer provides four time channels with a variety of controls affecting both individual and multi-channel features.Specific features include up/down count, cascading of counters, programmable module, count once/repeated, counter preload, compare registers with preload, shared use of input signals, prescaler controls, independent capture/compare, fault input control, programmable input filters, and multi-channel synchronization. Resource Domain Controller Security The RDC provides robust support for the isolation of processing domain to prevent one core from accessing another's peripherals, to control access rights to common memory and provide hardware enforcement of semaphore based locking of shared peripherals. For single system use case, RDC can be disabled and AIPS-TZ/DEXSC can be bypassed. For dual system case, RDC can be configured and locked each core starts their own image. ROM Controller with Patch Memories and The ROMCP acts as an interface between the Arm Memory Controllers advanced high-performance bus and the ROM. The on-chip ROM is only used by the Cortex-M7 core during boot up. Size of the ROM is 256 KB. Real Time Clock Oscillator Clock Sources and Control The RTC OSC provides the clock source for the Real-Time Clock module. The RTC OSC module, in conjunction with an external crystal, generates a 32.768 kHz reference clock for the RTC. Synchronous Audio Interface Multimedia Peripherals The SAI module provides a synchronous audio interface (SAI) that supports full duplex serial interfaces with frame synchronization, such as I2S, AC97, TDM, and codec/DSP interfaces. Semaphores System Control The SEMA4 module implements hardware-enforced semaphores as an IPS-mapped slave peripheral device and provides 16 hardware-enforced gates in a dual-processor configuration. Smart External Memory Controller Memory and Memory Controller The SEMC is a multi-standard memory controller optimized for both high-performance and low pin-count. It can support multiple external memories in the same application with shared address and data pins. The interface supported includes SDRAM, NOR Flash, SRAM, and NAND Flash, as well as 8080 display interface. Secure Non-Volatile Storage Security Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, and Master Key Control. Sony Philips Digital Interconnect Format Multimedia Peripherals A standard audio file transfer format, developed jointly by the Sony and Phillips corporations. Has Transmitter and Receiver functionality. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 18 NXP Semiconductors Modules list Table 3. i.MX RT1170 modules list (continued) Block Mnemonic Block Name Subsystem Brief Description SSARC TEMP SENSE USB1 USB2 uSDHC1 uSDHC2 VIDMUX State Save and Restore Memories and The SSARC saves the registers of functional modules in Controller Memory Controllers memory before power down, and restores registers from memory after the module is powered up. Temperature Sensor Analog The temperature sensor implements a temperature sensor/conversion function based on a temperature-dependent voltage to time conversion. Universal Serial Bus 2.0 Connectivity Peripherals USB 2.0 OTG modules (USB OTG1 and USB OTG2) contains: · Two high-speed OTG 2.0 modules with integrated HS USB PHYs · Support eight Transmit (TX) and eight Receive (Rx) endpoints, including endpoint 0 SD/MMC and SDXC Enhanced Multi-Media Card / Secure Digital Host Controller Connectivity Peripherals i.MX RT1170 specific SoC characteristics: All four MMC/SD/SDIO controllers are identical and are based on the uSDHC. They are: · Fully compliant with MMC command/response sets and Physical Layer as defined in the Multimedia Card System Specification. · Fully compliant with SD command/response sets and Physical Layer as defined in the SD Memory Card Specifications, v3.0 including high-capacity SDXC cards up to 2 TB. · Fully compliant with SDIO command/response sets and interrupt/read-wait mode as defined in the SDIO Card Specification, Part E1, v3.0 Two ports support: · 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR104 mode (104 MB/s max) · 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) · 4-bit or 8-bit transfer mode specifications for eMMC chips up to 200 MHz in HS200 mode (200 MB/s max) Video mux Mux control Video mux are mux control for Parallel CSI (IO PADs), MIPI CSI-2, MIPI DSI, Parallel LCDIF (IO PADs) and CSI, LCDIF-V2, eLCDIF control. It also includes the DCIC of MIPI DSI and Parallel DSI. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 19 Modules list Table 3. i.MX RT1170 modules list (continued) Block Mnemonic Block Name Subsystem Brief Description WDOG1 WDOG2 WDOG3 WDOG4 XBARA XBARB XECC XRDC Watch Dog Timer Peripherals WDOG1 and WDOG2 Timer support two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the Arm core, and a second point evokes an external event on the WDOG line. WDOG3 and WDOG4 modules are high reliability independent timers that are available for system to use. They provide a safety feature to ensure software is executing as planned and the CPU is not stuck in an infinite loop or executing unintended code. If the WDOG module is not serviced (refreshed) within a certain period, it resets the MCU. Windowed refresh mode is supported as well. Cross BAR Cross Trigger Each crossbar switch is an array of muxes with shared inputs. Each mux output provides one output of the crossbar. The number of inputs and the number of muxes/outputs are user configurable and registers are provided to select which of the shared inputs are routed to each output. External ECC Controller Memories and XECC can be used as a gasket module on AXI bus to Memory Controllers support ECC function for external memory. Extended Resource Domain Controller Security The XRDC provides an integrated, scalable architectural framework for access control, system memory protection, and peripheral isolation. It allows software to assign chip resources including processor cores, non-core bus masters, memory regions, and slave peripherals to processing domains to support enforcement of robust operational environments. 3.1 Special signal considerations Table 4 lists special signal considerations for the i.MX RT1170 processors. The signal names are listed in alphabetical order. The package contact assignments can be found in Section 6, Package information and contact assignments." Signal descriptions are provided in the i.MX RT1170 Reference Manual (IMXRT1170RM). Table 4. Special signal considerations Signal Name CLK1_P/ CLK1_N DCDC_PSWITCH Remarks This differential output is reserved for NXP internal use. For users, this output must be a no connect. PAD is in DCDC_IN domain and connected to ground to bypass DCDC. To enable DCDC function, assert DCDC_PSWITCH with at least 1 ms delay after the DCDC_IN rising edge. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 20 NXP Semiconductors Modules list Table 4. Special signal considerations (continued) Signal Name Remarks RTC_XTALI/RTC_XTALO To hit the exact oscillation frequency, the board capacitors must be reduced to account for the board and chip parasitics. The integrated oscillation amplifier is self-biasing, but relatively weak. Care must be taken to limit the parasitic leakage from RTC_XTALI and RTC_XTALO to either the power or the ground (> 100 M). This de-biases the amplifier and reduces the start-up margin. If you want to feed an external low-frequency clock into RTC_XTALI, the RTC_XTALO pin must remain unconnected or driven by a complementary signal. The logic level of this forcing clock must not exceed the VDD_SNVS_DIG level and the frequency shall be < 100 kHz under the typical conditions. It is recommended to tie RTC_XTALI to GND if external crystal is not used. When a high-accuracy real-time clock is not required, the system may use the on-chip 32 kHz oscillator. The tolerance is ±10%. The ring oscillator starts faster than the external crystal and is used until the external crystal reaches a stable oscillation. The ring oscillator also starts automatically if no clock is detected at RTC_XTALI. XTALI/XTALO The SDK software requires 24 MHz on XTALI/XTALO. The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this case, refer to section of Bypass Configuration (24 MHz) from the reference manual. There are three configurations that can be utilized, but configuration 2 is recommended. The logic level of this forcing clock must not exceed the VDD_LPSR_ANA level. If this clock is used as a reference for USB, then there are strict frequency tolerance and jitter requirements. See Section 4.2.6, On-chip oscillators and relevant interface specifications chapters for details. JTAG_nnnn External resistors can be used with all JTAG signals except for JTAG_TDO, but they are not required. See Table 5 for a summary of the JTAG interface. JTAG_TDO is configured with an on-chip keeper circuit, such that the floating condition is actively eliminated if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental. See Table 5 for a summary of the JTAG interface. When JTAG_MOD is low, the JTAG interface is configured for a common software debug, adding all the system TAPs to the chain. When JTAG_MOD is high, the JTAG interface is configured to a mode compliant with the IEEE 1149.1 standard. NC These signals are No Connect (NC) and should not be connected by the user. POR_B See the System Boot chapter in the reference manual for the correct boot configuration. Note that an incorrect setting may result from an improper boot sequence. POR_B signal has internal 100 k pull up to SNVS domain, should pull up to VDD_SNVS_ANA if need to add external pull up resistor, otherwise it will cause additional leakage during SNVS mode. It is recommended to add the external reset IC to the circuit to guarantee POR_B is properly processed during power up/down, please refer to the EVK design for details. Note: · As the Low DCDC_IN detection threshold is 2.6 V, the reset IC's reset threshold must be higher than 2.6 V, then the whole chip is reset before the internal DCDC module reset to guarantee the chip safety during power down. · For power on reset, on any conditions ones need to make sure the voltage on DCDC_PSWITCH pin is below 0.5 V before power up. ONOFF A brief connection to GND in the OFF mode causes the internal power management state machine to change the state to ON. In the ON mode, a brief connection to GND generates an interrupt (intended to be a software-controllable power-down). Approximately five seconds (or more) to GND causes a forced OFF. Both boot mode inputs can be disconnected. TEST_MODE This input is reserved for NXP manufacturing use. The user must tie this pin directly to GND. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 21 Modules list Signal Name WAKEUP Table 4. Special signal considerations (continued) Remarks A GPIO powered by SNVS domain power supply which can be configured as wakeup source in SNVS mode. JTAG JTAG_TCK JTAG_TMS JTAG_TDI JTAG_TDO JTAG_TRSTB JTAG_MOD Table 5. JTAG controller interface summary I/O Type Input Input Input 3-state output Input Input On-chip Termination 2050 kpull-down 2050 kpull-up 2050 kpull-up High-impedance 2050 kpull-up 2050 kpull-down 3.2 Recommended connections for unused analog interfaces Table 6 shows the recommended connections for unused analog interfaces. hi Table 6. Recommended connections for unused analog interfaces Module 32 kHz RTC_XTALI, RTC_XTALO OSC Pad Name ADC CCM DAC MIPI DCDC ADC_VREFH VDDA_ADC_1P8 VDDA_ADC_3P3 CLK1_N, CLK1_P DAC_OUT VDD_MIPI_1P0 VDD_MIPI_1P8 MIPI_DSI_CKN, MIPI_DSI_CKP, MIPI_DSI_DN0, MIPI_DSI_DP0, MIPI_DSI_DN1, MIPI_DSI_DP1 MIPI_CSI_CKN, MIPI_CSI_CKP, MIPI_CSI_DN0, MIPI_CSI_DP0, MIPI_CSI_DN1, MIPI_CSI_DP1 DCDC_IN, DCDC_IN_Q, DCDC_DIG, DCDC_ANA DCDC_DIG_SENSE, DCDC_ANA_SENSE, DCDC_LP, DCDC_LN DCDC_PSWITCH, DCDC_MODE Recommendations if Unused Not connected It is recommended that RTC_XTALI ties to GND if external crystal is not connected. 10 K resistor to ground 10 K resistor to ground 10 K resistor to ground Not connected Not connected 10 K resistor to ground 10 K resistor to ground Not connected Not connected Not connected Not connected To ground i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 22 NXP Semiconductors Modules list Table 6. Recommended connections for unused analog interfaces (continued) Module Pad Name USB USB1_DN, USB1_DP, USB1_VBUS, USB2_DN, USB2_DP, USB2_VBUS VDD_USB_1P8 VDD_USB_3P3 SYS OSC XTALI, XTALO Recommendations if Unused Not connected Powered with 1.8 V Powered with 3.3 V Not connected i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 23 Electrical characteristics 4 Electrical characteristics This section provides the device and module-level electrical characteristics for the i.MX RT1170 processors. 4.1 Chip-level conditions This section provides the device-level electrical characteristics for the IC. See Table 7 for a quick reference to the individual tables and sections. Table 7. i.MX RT1170 chip-Level conditions For these characteristics Absolute maximum ratings Thermal characteristics Operating ranges Maximum supply currents Typical power mode supply currents System power and clocks Topic appears on page 24 on page 26 on page 26 on page 29 on page 30 on page 36 4.1.1 Absolute maximum ratings CAUTION Stress beyond those listed under Table 8 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Table 8 shows the absolute maximum operating ratings. Table 8. Absolute maximum ratings Parameter Description Core supplies input voltage Power for LPSR domain Power for DCDC Power for PLL, OSC, and LDOs Supply input voltage to Secure Non-Volatile Storage and Real Time Clock USB VBUS supply Symbol VDD_SOC_IN VDD_LPSR_IN DCDC_IN VDDA_1P8_IN VDD_SNVS_IN USB1_VBUS USB2_VBUS Min Max Unit -0.3 1.2 V -0.3 3.96 V -0.3 3.96 V -0.3 1.98 V -0.3 3.96 V -0.3 5.6 V i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 24 NXP Semiconductors Table 8. Absolute maximum ratings (continued) Power for USB OTG PHYs VDD_USB_1P8 -0.3 VDD_USB_3P3 -0.3 Power for ADC, DAC, and ACMP VDDA_ADC_1P8 -0.3 VDDA_ADC_3P3 -0.3 Power for MIPI CSI/DSI PHY VDD_MIPI_1P8 -0.3 VDD_MIPI_1P0 -0.3 IO supply for GPIO in SDIO1 bank (3.3 V mode) NVCC_SD1 -0.3 IO supply for GPIO in SDIO1 bank (1.8 V mode) -0.3 IO supply for GPIO in SDIO2 bank (3.3 V mode) NVCC_SD2 -0.3 IO supply for GPIO in SDIO2 bank (1.8 V mode) -0.3 IO supply for GPIO in EMC bank1 (3.3 V mode) NVCC_EMC1 -0.3 IO supply for GPIO in EMC bank1 (1.8 V mode) -0.3 IO supply for GPIO in EMC bank2 (3.3 V mode) NVCC_EMC2 -0.3 IO supply for GPIO in EMC bank2 (1.8 V mode) -0.3 IO power for GPIO in GPIO AD bank (3.3 V mode) NVCC_GPIO -0.3 IO power for GPIO in GPIO AD bank (1.8 V mode) -0.3 IO supply for GPIO in DISP1 bank (3.3 V mode) NVCC_DISP1 -0.3 IO supply for GPIO in DISP1 bank1 (1.8 V mode) -0.3 IO supply for GPIO in DISP2 bank (3.3 V mode) NVCC_DISP2 -0.3 IO supply for GPIO in DISP2 bank1 (1.8 V mode) -0.3 IO power for GPIO in LPSR bank (3.3 V mode) NVCC_LPSR -0.3 IO power for GPIO in LPSR bank (1.8 V mode) -0.3 IO power for GPIO in SNVS bank (1.8 V mode) NVCC_SNVS -0.3 Input/Output Voltage range Storage Temperature range 1 NVCC is the I/O supply voltage. Vin/Vout -0.5 TSTORAGE -40 Electrical characteristics 1.98 V 3.96 V 1.98 V 3.96 V 1.98 V 1.2 V 3.96 V 1.98 V 3.96 V 1.98 V 3.96 V 1.98 V 3.96 V 1.98 V 3.96 V 1.98 V 3.96 V 1.98 V 3.96 V 1.98 V 3.96 V 1.98 V 1.98 V NVCC + 0.31 V 150 o C Table 9. Electrostatic discharge and latch-up characteristics Symbol Description Min Max Unit VHBM VESD ILAT Electrostatic discharge voltage, human body model -2000 +2000 V Electrostatic discharge voltage, charged-device model All pins except the corner pins -500 +500 V Immunity level: · Class II @95 oC ambient temperature -100 +100 mA i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors Notes 1 2 3 25 Electrical characteristics 1 Determined according to JEDEC Standard JS001, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2 Determined according to JEDEC Standard JS002, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3 Determined according to JEDEC Standard JESD78, IC Latch-up Test. 4.1.2 Thermal characteristics Table 10 displays the 14 x 14 mm package thermal characteristics. Table 10. 14 x 14 mm thermal characteristics Rating Board Type1 Symbol Value Unit Junction to Ambient Thermal Resistance2 Junction to Top of Package Thermal Characterization Parameter2 JESD51-9, 2s2p JESD51-9, 2s2p RJA3 JT4 31.6 1.4 oC/W oC/W Junction to Case Thermal Resistance5 JESD51-9, 1s RJC6 10 oC/W 1 Thermal test board meets JEDEC specification for this package (JESD51-9). 2 Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not meant to predict the performance of a package in an application-specific environment. 3 RJA = (Tj - Ta)/P [unit: oC/W], where Tj = junction temperature, Ta = ambient temperature, P = device power. 4 JT = (Tj - Tt)/P [unit: oC/W], where Tj = junction temperature, Tt = temperature at top of package, P = device power. 5 Junction-to-Case thermal resistance determined using an isothermal cold plate. Case temperature is taken at the package top side centre surface temperature. 6 RJC = (Tj - Tc)/P [unit: oC/W], where Tj = junction temperature, Tc = case temperature, P = device power. 4.1.3 Operating ranges Table 11 provides the operating ranges of the i.MX RT1170 processors. For details on the chip's power structure, see the "Power Management Unit (PMU)" chapter of the i.MX RT1170 Reference Manual (IMXRT1170RM). i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 26 NXP Semiconductors Electrical characteristics Parameter Description Run Mode STANDBY Mode Power for DCDC Power for PLL, OSC, and LDOs Power for LPSR domain Power for SNVS and RTC Power for USB OTG PHYs Power for ADC, DAC, and ACMP Power for MIPI CSI/DSI PHY Table 11. Operating ranges Symbol Operating Conditions VDD_SOC_IN Overdrive M7 core at 1 GHz M7 core at 700 MHz M7 core at 240 MHz VDD_LPSR_DIG M4 core at 400 MHz M4 core at 240 MHz M4 core at 120 MHz VDD_SOC_IN M7 core VDD_LPSR_DIG M4 core DCDC_IN -- VDDA_1P8_IN -- Min 1.1 1.0 0.9 1.1 1.0 0.9 0.8 0.8 3.0 1.71 Max1 Unit Comment 1.15 V The FBB_DISABLE fuse bit must be checked on each device to determine if FBB must be enabled along with overdrive to operate the M7 core at frequencies above 700 MHz. If FBB_DISABLE = 0, then FBB must be enabled when the SOC domain is in overdrive mode. If FBB_DISABLE = 1, then FBB should not be enabled when the SOC domain is in overdrive mode. 1.15 V ---- 1.15 V -- 1.15 V -- 1.15 V -- 1.15 V -- 1.15 V -- 1.15 V -- 3.6 V -- 1.89 V -- VDD_LPSR_IN -- 3.0 3.6 V -- VDD_SNVS_IN -- 2.4 3.6 V -- VDD_USB_1P8 -- VDD_USB_3P3 -- VDDA_ADC_1P8 -- VDDA_ADC_3P3 -- ADC_VREFH -- VDD_MIPI_1P8 -- VDD_MIPI_1P0 -- 1.65 1.95 3.0 3.6 1.65 1.95 3.0 3.6 1.0 1.89 1.65 1.95 0.9 1.1 V-- V-- V-- V-- V-- V-- V-- i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 27 Electrical characteristics Table 11. Operating ranges (continued) GPIO supplies NVCC_SD1 -- 3.0 3.6 V IO power for GPIO in SDIO1 bank (3.3 V mode) -- 1.65 1.95 V IO power for GPIO in SDIO1 bank (1.8 V mode) NVCC_SD2 -- 3.0 3.6 V IO power for GPIO in SDIO2 bank (3.3 V mode) -- 1.65 1.95 V IO power for GPIO in SDIO2 bank (1.8 V mode) NVCC_EMC1 -- 3.0 3.6 V IO power for GPIO in EMC bank1 (3.3 V mode) -- 1.65 1.95 V IO power for GPIO in EMC bank1 (1.8 V mode) NVCC_EMC2 -- 3.0 3.6 V IO power for GPIO in EMC bank2 (3.3 V mode) -- 1.65 1.95 V IO power for GPIO in EMC bank2 (1.8 V mode) NVCC_GPIO -- 3.0 3.6 V IO power for GPIO in GPIO AD bank (3.3 V mode) -- 1.65 1.95 V IO power for GPIO in GPIO AD bank (1.8 V mode) NVCC_DISP1 -- 3.0 3.6 V IO power for GPIO in DISP1 bank (3.3 V mode) -- 1.65 1.95 V IO power for GPIO in DISP1 bank (1.8 V mode) NVCC_DISP2 -- 3.0 3.6 V IO power for GPIO in DISP2 bank (3.3 V mode) -- 1.65 1.95 V IO power for GPIO in DISP2 bank (1.8 V mode) NVCC_LPSR -- 3.0 3.6 V IO power for GPIO in LPSR bank (3.3 V mode) -- 1.65 1.95 V IO power for GPIO in LPSR bank (1.8 V mode) NVCC_SNVS -- 1.65 1.95 V IO power for GPIO in SNVS bank (1.8 V mode) Temperature Operating Ranges Junction temperature Tj Standard Commercial 0 95 oC See the application note, i.MX RT1170 Product Lifetime Usage Estimates for information on product lifetime (power-on years) for this processor. 1 Applying the maximum voltage results in maximum power consumption and heat generation. NXP recommends a voltage set point = (Vmin + the supply tolerance). This results in an optimized power/speed ratio. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 28 NXP Semiconductors Electrical characteristics 4.1.4 Maximum supply currents The data shown in Table 12 represent a use case designed specifically to show the maximum current consumption possible. All cores are running at the defined maximum frequency and are limited to L1 cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited practical use case, if at all, and be limited to an extremely low duty cycle unless the intention were to specifically show the worst case power consumption. Table 12. Maximum supply currents Power Rail DCDC_IN VDDA_1P8_IN VDD_SOC_IN VDD_LPSR_IN VDD_SNVS_IN VDD_USB_1P8 VDD_USB_3P3 VDDA_ADC_1P8 VDDA_ADC_3P3 ADC_VREFH VDD_MIPI_1P8 VDD_MIPI_1P0 NVCC_SD1 NVCC_SD2 NVCC_EMC1 NVCC_EMC2 NVCC_GPIO NVCC_DISP1 NVCC_DISP2 NVCC_LPSR NVCC_SNVS Comments Max Current Unit Max power for chip at 125 oC 500 mA 1.8 V power supply for PLL, OSC, and 100 mA LDOs Power supply for digital logic 850 mA 3.3 V power supply for LPSR domain 75 mA Power supply for SNVS domain 1 mA 1.8 V power supply for USB OTG PHYs 50 mA 3.3 V power supply for USB OTG PHYs 60 mA 1.8 V power supply for ADC, DAC, and 10 mA ACMP 3.3 V power supply for ADC, DAC, and 2 mA ACMP 1.8 V power supply for MIPI CSI/DSI PHY 100 mA 1.0 V power supply for MIPI CSI/DSI PHY 30 mA Imax = N x C x V x (0.5 x F) Where: N--Number of IO pins supplied by the power line C--Equivalent external capacitive load V--IO voltage (0.5 x F)--Data change rate. Up to 0.5 of the clock rate (F) In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 29 Electrical characteristics 4.1.5 Typical power mode supply currents Table 13 and Table 14 show the current and power consumption (not including I/O) of i.MX RT1170 processors in selected power modes. Table 13. Typical power modes current and power consumption (Dual core) Modes Test conditions Set Point #1 Active Set Point #0 Active Set Point #5 Active · CM7 runs at 1 GHz, overdrive voltage to 1.1 V with FBB mode; CM4 runs at 400 MHz, overdrive voltage to 1.1 V · CM7 domain bus frequency at 240 MHz; CM4 domain bus frequency at 160 MHz · LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed · 16 MHz, 400 MHz, external 24 MHz crystal, and external 32 kHz crystal are enabled · All PLLs are enabled · All peripherals are enabled and run at their maximum clock root frequency under overdrive mode · CM7 runs at 700 MHz, drive voltage to 1.0 V; CM4 runs at 240 MHz, drive voltage to 1.0 V · CM7 domain bus frequency at 200 MHz; CM4 domain bus frequency at 120 MHz · LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed · 16 MHz, 400 MHz, external 24 MHz crystal, and external 32 kHz crystal are enabled · All PLLs are enabled · All peripherals are enabled and run at their maximum clock root frequency under normal drive mode · CM7 runs at 240 MHz, lower voltage to 0.9 V; CM4 runs at 120 MHz, lower voltage to 0.9 V · CM7 domain bus frequency at 100 MHz; CM4 domain bus frequency at 60 MHz · LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed · 16 MHz, 400 MHz, external 24 MHz crystal, and external 32 kHz crystal are enabled · All PLLs are enabled · All peripherals are enabled and run at their maximum clock root frequency under underdrive mode Power supplies at 3.3 V (Typical)1 25 oC Tj 95 oC Tj DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total 132.4 28.1 3.8 437.025 186.2 31.5 9 614.594 Units mA A A mW DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total 79.3 95.1 mA 28.5 31 A 3.7 8.2 A 261.796 313.959 mW DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total 42.2 60.9 mA 28.1 30.9 A 3.7 8 A 139.365 201.098 mW i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 30 NXP Semiconductors Electrical characteristics Table 13. Typical power modes current and power consumption (Dual core) (continued) Set Point #7 Active · CM7 runs at 200 MHz, lower voltage to 0.9 V; CM4 is clock gated, lower voltage to 0.9 V · CM7 domain bus frequency at 100 MHz · LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed · 16 MHz, 400 MHz, and external 32 kHz crystal are enabled · All PLLs are power gated · All peripherals controlled by CM4 core are clock gated, but remain powered Set Point #9 Active · CM7 is clock gated, lower voltage to 0.9 V; CM4 runs at 100 MHz, lower voltage to 0.9 V · CM4 domain bus frequency at 50 MHz · LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed · 16 MHz, 400 MHz, and external 32 kHz crystal are enabled · All PLLs are power gated · All peripherals controlled by CM7 core are clock gated, but remain powered Set Point #11 Active · CM7 is power off; CM4 runs at 200 MHz, drive voltage to 1.0 V · CM4 domain bus frequency at 100 MHz · DCDC is off, LDO_LPSR_ANA and LDO_LPSR_DIG are active · 16 MHz, 400 MHz, and external 32 kHz crystal are enabled · All PLLs are power gated · The WAKEUPMIX domain, MEGAMIX domain, and DISPLAYMIX domain are power gated · All peripherals in LPSRMIX domain are clocked Set Point #12 Active · CM7 is power off; CM4 runs at 100 MHz, lower voltage to 0.9 V · CM4 domain bus frequency at 50 MHz · DCDC is off, LDO_LPSR_ANA and LDO_LPSR_DIG are active · 16 MHz, 400 MHz, and external 32 kHz crystal are enabled · All PLLs are power gated · The WAKEUPMIX domain, MEGAMIX domain, and DISPLAYMIX domain are power gated · All peripherals in LPSRMIX domain are clocked Set Point #1 Standby Suspend · System is on STANDBY mode · Both CM7 and CM4 are on SUSPEND mode · TCM is on retention · LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed · All clock sources are turned off except for 32 kHz RTC · All PLLs are power gated · All peripherals are clock gated, but remain powered DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total 19.7 28.1 3.7 65.115 36.3 mA 30.7 A 7.8 A 119.917 mW 11.8 27.2 mA 28.3 30.7 A 3.7 7.7 A 39.046 89.887 mW 24.2 33.4 A 28.2 31.4 mA 3.7 7.8 A 93.152 103.756 mW 24.3 33.1 A 12.3 13.6 mA 3.7 7.6 A 40.682 45.014 mW 2.4 22.3 3.7 8.006 9 mA 38.7 A 7.6 A 29.853 mW i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 31 Electrical characteristics Table 13. Typical power modes current and power consumption (Dual core) (continued) Set Point #0 Standby Suspend · System is on STANDBY mode · Both CM7 and CM4 are on SUSPEND mode · TCM is on retention · LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed · All clock sources are turned off except for 32 kHz RTC · All PLLs are power gated · All peripherals clock gated, but remain powered Set Point #5 Standby Suspend · System is on STANDBY mode · Both CM7 and CM4 are on SUSPEND mode · TCM is on retention · LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed · All clock sources are turned off except for 32 kHz RTC · All PLLs are power gated · All peripherals are clock gated, but remain powered Set Point #7 Standby Suspend · System is on STANDBY mode · Both CM7 and CM4 are on SUSPEND mode · TCM is on retention · LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed · All clock sources are turned off except for 32 kHz RTC · All PLLs are power gated · All peripherals are clock gated, but remain powered Set Point #10 Standby Suspend · Lower voltage to 0.8 V with RBB mode for both SOC and LPSR domains · System is on STANDBY mode · Both CM7 and CM4 are on SUSPEND mode · TCM is on retention · LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed · All clock sources are turned off except for 32 kHz RTC · All PLLs are power gated · All peripherals are clock gated, but remain powered Set Point #11 Standby Suspend · System is on STANDBY mode · CM7 is power off, CM4 is on SUSPEND mode · CM4 TCM is on retention · DCDC is off, LDO_LPSR_ANA and LDO_LPSR_DIG are active · All clock sources are turned off except for 32 kHz RTC · All PLLs are power gated · The WAKEUPMIX domain, MEGAMIX domain, and DISPLAYMIX domain are power gated · All peripherals in LPSRMIX domain are clock gated, but remain powered DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total 1.8 22.2 3.7 6.025 7 mA 38.6 A 7.6 A 23.252 mW 1.4 22.2 3.7 4.705 5.5 mA 38.6 A 7.6 A 18.302 mW 1.4 22.1 3.7 4.705 5.5 mA 38.6 A 7.6 A 18.302 mW 1.2 22.3 3.7 4.046 4.4 mA 38.7 A 7.6 A 14.673 mW 24.2 0.364 3.7 1.293 32.7 A 2.2 mA 7.5 A 7.393 mW i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 32 NXP Semiconductors Electrical characteristics Table 13. Typical power modes current and power consumption (Dual core) (continued) Set Point #15 Standby Suspend · Lower voltage to 0.8 V with RBB mode for LPSR domain · System is on STANDBY mode · CM7 is power off, CM4 is on SUSPEND mode · CM4 TCM is on retention · DCDC is off, LDO_LPSR_ANA and LDO_LPSR_DIG are active · All clock sources are turned off except for 32 kHz RTC · All PLLs are power gated · The WAKEUPMIX domain, MEGAMIX domain, and DISPLAYMIX domain are power gated · All peripherals in LPSRMIX domain are clock gated, but remain powered DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total SNVS · Only SNVS domain is powered · 32 kHz RTC is alive · DCDC_IN and VDD_LPSR_IN are power gated DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total 1 Code runs in the ITCM; typical values are the average values on typical process wafers. 24.5 0.234 3.7 0.865 0 0 3.7 12.21 33 A 1.5 mA 7.5 A 5.084 mW 0 A 0 A 7.6 A 25.08 W Table 14. Typical power modes current and power consumption (Single core) Modes Test conditions Power supplies at 3.3 V (Typical)1 25 oC Tj 95 oC Tj Set Point #1 Active Set Point #0 Active · CM7 runs at 1 GHz, overdrive voltage to 1.1 V with FBB mode · CM7 domain bus frequency at 240 MHz · LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed · 16 MHz, 400 MHz, external 24 MHz crystal, and external 32 kHz crystal are enabled · All PLLs are enabled · All peripherals are enabled and run at their maximum clock root frequency under overdrive mode · CM7 runs at 700 MHz, drive voltage to 1.0 V · CM7 domain bus frequency at 200 MHz · LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed · 16 MHz, 400 MHz, external 24 MHz crystal, and external 32 kHz crystal are enabled · All PLLs are enabled · All peripherals are enabled and run at their maximum clock root frequency under normal drive mode DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total 110.9 28.1 3.8 366.075 149.3 30.6 7.5 492.816 69.4 28.5 3.8 229.127 81.4 30.5 7.3 268.745 Units mA A A mW mA A A mW i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 33 Electrical characteristics Table 14. Typical power modes current and power consumption (Single core) (continued) Set Point #5 Active Set Point #7 Active Set Point #1 Standby Suspend Set Point #0 Standby Suspend Set Point #5 Standby Suspend · CM7 runs at 240 MHz, lower voltage to 0.9 V · CM7 domain bus frequency at 100 MHz · LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed · 16 MHz, 400 MHz, external 24 MHz crystal, and external 32 kHz crystal are enabled · All PLLs are enabled · All peripherals are enabled and run at their maximum clock root frequency under underdrive mode · CM7 runs at 200 MHz, lower voltage to 0.9 V · CM7 domain bus frequency at 100 MHz · LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed · 16 MHz, 400 MHz, and external 32 kHz crystal are enabled · All PLLs are power gated · All peripherals are clocked · System is on STANDBY mode · CM7 is on SUSPEND mode · TCM is on retention · LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed · All clock sources are turned off except for 32 kHz RTC · All PLLs are power gated · All peripherals are clock gated, but remain powered · System is on STANDBY mode · CM7 is on SUSPEND mode · TCM is on retention · LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed · All clock sources are turned off except for 32 kHz RTC · All PLLs are power gated · All peripherals are clock gated, but remain powered · System is on STANDBY mode · CM7 is on SUSPEND mode · TCM is on retention · LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed · All clock sources are turned off except for 32 kHz RTC · All PLLs are power gated · All peripherals are clock gated, but remain powered DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total 38.6 54.3 mA 28.2 30.6 A 3.7 7.3 A 127.485 179.315 mW 19.4 34.1 mA 28.1 30.4 A 3.7 7.2 A 64.125 112.654 mW 2.4 22.6 3.7 8.007 9 mA 38.2 A 7.2 A 29.850 mW 1.8 22.5 3.7 6.026 7 mA 38.3 A 7.3 A 23.250 mW 1.4 22.3 3.7 4.706 5.5 mA 38.2 A 7.3 A 18.300 mW i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 34 NXP Semiconductors Electrical characteristics Table 14. Typical power modes current and power consumption (Single core) (continued) Set Point #10 Standby Suspend · Lower voltage to 0.8 V with RBB mode for both SOC and LPSR domains · System is on STANDBY mode · CM7 is on SUSPEND mode · TCM is on retention · LDO_LPSR_ANA and LDO_LPSR_DIG are bypassed · All clock sources are turned off except for 32 kHz RTC · All PLLs are power gated · All peripherals are clock gated, but remain powered DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total Set Point #15 Standby Suspend · Lower voltage to 0.8 V with RBB mode for LPSR domain · System is on STANDBY mode · CM7 is power off · LMEM is on retention · DCDC is off, LDO_LPSR_ANA and LDO_LPSR_DIG are active · All clock sources are turned off except for 32 kHz RTC · All PLLs are power gated · The WAKEUPMIX domain, MEGAMIX domain, and DISPLAYMIX domain are power gated · All peripherals in LPSRMIX domain are clock gated, but remain powered DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total SNVS · Only SNVS domain is powered · 32 kHz RTC is alive · DCDC_IN and VDD_LPSR_IN are power gated DCDC_IN VDD_LPSR_IN VDD_SNVS_IN Total 1 Code runs in the ITCM; typical values are the average values on typical process wafers. 1.2 22.3 3.7 4.046 24.5 0.234 3.7 0.865 0 0 3.7 12.21 4.4 mA 38.3 A 7.3 A 14.670 mW 33 A 1.5 mA 7.2 A 5.083 mW 0 A 0 A 7.3 A 24.09 W Table 15 shows the typical wakeup time. Table 15. Typical wakeup time1 Description Typical wakeup time Unit From Set Point #1 Standby Suspend to Set Point #1 Overdrive RUN 4.76 ms From Set Point #0 Standby Suspend to Set Point #1 Overdrive RUN 6.4 ms From Set Point #5 Standby Suspend to Set Point #1 Overdrive RUN 6.96 ms From Set Point #10 Standby Suspend to Set Point #1 Overdrive RUN 6.74 ms From Set Point #15 Standby Stop to Set Point #1 Overdrive RUN 8.07 ms From SNVS mode to ROM exit 8.54 ms 1 Please refer to Table 13 and Table 14 for Set Point modes definition, and the only difference between Set Point #15 Standby Suspend mode and Set Point #15 Standby Stop mode is the Suspend mode versus Stop mode on CM4 core. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 35 Electrical characteristics 4.2 System power and clocks This section provides the information about the system power and clocks. 4.2.1 Power supplies requirements and restrictions The system design must comply with power-up sequence, power-down sequence, and steady state guidelines as described in this section to guarantee the reliable operation of the device. Any deviation from these sequences may result in the following situations: · Excessive current during power-up phase · Prevention of the device from booting · Irreversible damage to the processor (worst-case scenario) Figure 4 shows the power sequence. VDD_SNVS_IN VDD_SNVS_ANA VDD_SNVS_DIG VDD_LPSR_IN VDD_LPSR_ANA VDD_LPSR_DIG DCDC_IN 1ms DCDC_PSWITCH VDDA_1P8 VDD_SOC_IN ONOFF POR_B Figure 4. Power sequence 4.2.1.1 Power-up sequence The below restrictions must be followed: · VDD_SNVS_IN supply must be turned on before any other power supply or be connected (shorted) with VDD_LPSR_IN and DCDC_IN supply. · If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other supply is switched on. · When internal DCDC is enabled, external delay circuit is required to delay the "DCDC_PSWITCH" signal at least 1 ms after DCDC_IN is stable. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 36 NXP Semiconductors Electrical characteristics · Need to ensure DCDC_IN ramps to 3.0 V within 0.2 x RC, RC is from external delay circuit used for DCDC_PSWITCH and must be longer than 1 ms. · POR_B (if used) must be held low during the entire power up sequence. NOTE The POR_B input (if used) must be immediately asserted at power-up and remain asserted until after the last power rail reaches its working voltage. In the absence of an external reset feeding the POR_B input, the internal POR module takes control. See the i.MX RT1170 Reference Manual (IMXRT1170RM) for further details and to ensure that all necessary requirements are being met. NOTE The voltage on DCDC_PSWITCH pin should be below 0.5 V before ramping up the voltage on DCDC_PSWITCH. NOTE The power rail VDD_SNVS_DIG is controlled by software. NOTE Need to ensure that there is no back voltage (leakage) from any supply on the board towards the 3.3 V supply (for example, from the external components that use both the 1.8 V and 3.3 V supplies). NOTE USB1_VBUS, USB2_VBUS, and VDDA_ADC_3P3 are not part of the power supply sequence and may be powered at any time. 4.2.1.2 Power-down sequence The following restrictions must be followed: · VDD_SNVS_IN supply must be turned off after any other power supply or be connected (shorted) with VDD_LPSR_IN and DCDC_IN supply. · If a coin cell is used to power VDD_SNVS_IN, then ensure that it is removed after any other supply is switched off. 4.2.1.3 Power supplies usage I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_XXXX) is OFF. This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O power supply of each pin, see "Power Rail" columns in pin list tables of Section 6, Package information and contact assignments." i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 37 Electrical characteristics 4.2.2 Internal POR and power detect Internal detector monitors VDD_SOC_IN and VDD_LPSR_DIG. Internal POR will be asserted whenever VDD_SOC_IN or VDD_LPSR_DIG are lower than the valid voltage values shown in the Table 16. Table 16. Internal POR and power detect Symbol Vdetlpsr1p0_H Vdetsoc1p0_H Hystdet1p0 Description Value Unit 1.0 V supply valid 0.75 V 1.0 V supply valid 0.75 V The detector hysteresis 100 mV 4.2.3 Integrated LDO voltage regulator parameters Various internal supplies can be powered ON from internal LDO voltage regulators. The on-chip LDOs are intended for internal use only and should not be used to power any external circuitry. See the i.MX RT1170 Reference Manual (IMXRT1170RM) for details on the power tree scheme. 4.2.3.1 LDO_SNVS_ANA Table 17 shows the parameters of LDO_SNVS_ANA. Table 17. LDO_SNVS_ANA specification Specification VDD_SNVS_IN VDD_SNVS_ANA I_out External decoupling capacitor Min Typ Max Unit 2.4 3 3.6 V 1.65 1.75 1.95 V -- -- 1 mA -- 2.2 -- F 4.2.3.2 LDO_SNVS_DIG Table 18 shows the parameters of LDO_SNVS_DIG. Table 18. LDO_SNVS_DIG specification Specification VDD_SNVS_ANA VDD_SNVS_DIG I_out External decoupling capacitor Min Typ Max Unit 1.65 1.75 1.95 V 0.65 0.85 0.95 V -- -- 1 mA -- 0.22 -- F i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 38 NXP Semiconductors 4.2.3.3 LDO_PLL Table 19 shows the parameters of LDO_PLL. Table 19. LDO_PLL specification Specification VDDA_1P8_IN VDDA_1P0 I_out External decoupling capacitor Min Typ 1.71 1.8 0.9 1 -- -- -- 2.2 Electrical characteristics Max Unit 1.89 V 1.2 V 70 mA -- F 4.2.3.4 LPSR_LDO_DIG LPSR_LDO_DIG provides 1.0 V power source (VDD_LPSR_DIG) from 1.8V power domain (VDD_LPSR_ANA). The trim voltage range of LDO output is from 0.7 V to 1.15 V. There are two work modes: Low Power mode and High Power mode. In typical PVT case, the static current consumption is less than 3 A in Low Power mode. The maximum drive strength of this LDO regulator is 50 mA in High Power mode. Table 20. LPSR_LDO_DIG specification Specification VDD_LPSR_ANA VDD_LPSR_DIG I_out External decoupling capacitor Min Typ Max Unit 1.71 1.8 1.89 V 0.7 1 1.15 V -- -- 50 mA -- 2.2 -- F 4.2.3.5 LPSR_LDO_ANA LPSR_LDO_ANA provides 1.8 V power source (VDD_LPSR_ANA) from 3.3 V power domain (VDD_LPSR_IN). Its default output value is 1.8 V. Two work modes are supported by this LDO: Low Power mode and High Power mode. In Low Power mode, the LDO provides 2 mA (maximum value) by consuming only 4 A current. In High Power mode, the LDO provides 75 mA current capacity with 40 A static power dissipation. Table 21. LPSR_LDO_ANA specification Specification VDD_LPSR_IN VDD_LPSR_ANA I_out External decoupling capacitor Min Typ Max Unit 3 3.3 3.6 V -- 1.8 -- V -- -- 75 mA -- 4.7 -- F i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 39 Electrical characteristics 4.2.4 DCDC DCDC can be configured to operate on power-save mode when the load current is less than 50 mA. During the power-save mode, the converter operates with reduced switching frequency in PFM mode and with a minimum quiescent current to maintain high efficiency. DCDC can detect the peak current in the P-channel switch. When the peak current exceeds the threshold, DCDC will give an alert signal, and the threshold can be configured. By this way, DCDC can roughly detect the current loading. DCDC also includes the following protection functions: · Over current protection. In run mode, DCDC shuts down when detecting abnormal large current in the P-type power switch. · Over voltage protection. DCDC shuts down when detecting the output voltage is too high. · Low voltage detection. DCDC shuts down when detecting the input voltage is too low. Table 22 shows DCDC characteristics. Table 22. DCDC characteristics Description Input voltage Output voltage · 1.0 V output · 1.8 V output Loading · 1.0 V output · 1.8 V output Efficiency · DCDC run mode · DCDC low power mode Output voltage accuracy · DCDC Run mode · DCDC Low power mode Over current detection Over voltage detection · Output 1.8 V · Output 1.0 V Min 3 Typ 3.3 Max 3.6 Unit V Comments -- 0.6 1 1.375 V 25 mV per step 1.5 1.8 2.275 V 25 mV per step -- 150 850 mA -- -- 80 150 mA ---- -- 80% -- -- 150 mA@vdd1p0 80 mA@vdd1p8 -- 80% -- -- 300 A@vdd1p0 300 A@vdd1p8 -2.5% -- -6% -- -- 1.5 2.5% -- 6% -- -- A Maximum 50 mV Vp-p@vdd1p0 -- The typical value can be configured as 1.5 A and 2 A by register. -- 2.5 2.75 V -- -- 1.5 1.65 V -- i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 40 NXP Semiconductors Electrical characteristics Table 22. DCDC characteristics Description · Low DCDC_IN detection Leakage current Quiescent current · DCDC Run mode · DCDC Low power mode Capacitor value Inductor value · Saturation current Min -- -- Typ 2.6 3 Max 2.8 -- Unit V A Comments -- DCDC off -- 150 -- A -- -- 5 -- A -- -- 33 -- F High frequency (DCDC_ANA) capacitor are also 66 required. (DCDC_DIG) -- 4.7 -- H -- -- 1 -- A -- For additional information, see the i.MX RT1170 Reference Manual (IMXRT1170RM). 4.2.5 PLL's electrical characteristics This section provides PLL electrical characteristics. 4.2.5.1 Audio/Video PLL's electrical parameters Parameter Clock output range Reference clock Lock time Period jitter (p2p) Duty cycle Table 23. Audio/Video PLL's electrical parameters Min Typ Max 650 -- 1300 -- 24 -- -- -- 11250 -- 50 -- 48.5 -- 51.5 4.2.5.2 528 MHz PLL Parameter Clock output range Reference clock Table 24. 528 MHz PLL's electrical parameters Min Typ Max -- -- 528 -- 24 -- Unit MHz MHz reference cycles ps % Unit MHz MHz i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 41 Electrical characteristics Table 24. 528 MHz PLL's electrical parameters (continued) Parameter Min Lock time -- Period jitter (p2p) -- PFD period jitter (p2p) -- Duty cycle 45 Typ Max -- 11250 50 -- 100 -- -- 55 4.2.5.3 Ethernet PLL Parameter Clock output range Reference clock Lock time Period jitter (p2p) Duty cycle Table 25. Ethernet PLL's electrical parameters Min Typ Max -- -- 1000 -- 24 -- -- -- 11250 -- 50 -- 47.5 -- 52.5 4.2.5.4 480 MHz PLL Parameter Clock output range Reference clock Lock time Period jitter (p2p) PFD period jitter (p2p) Duty cycle 4.2.5.5 Arm PLL Table 26. 480 MHz PLL's electrical parameters Min Typ Max -- -- 480 -- 24 -- -- -- 383 -- 40 -- -- 125 -- 45 -- 55 Parameter Clock output range Reference clock Lock time Table 27. Arm PLL's electrical parameters Min Typ Max 624 -- 1248 -- 24 -- -- -- 2250 Unit reference cycles ps ps % Unit MHz MHz reference cycles ps % Unit MHz MHz reference cycles ps ps % Unit MHz MHz reference cycles i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 42 NXP Semiconductors Parameter Period jitter (p2p) Duty cycle Table 27. Arm PLL's electrical parameters (continued) Min Typ Max -- 15 -- 45 -- 55 Electrical characteristics Unit ps % 4.2.6 On-chip oscillators The system oscillator (SYS OSC) is a crystal oscillator. The SYS OSC, in conjunction with an external crystal or resonator, generates a reference clock for this chip. It also provides the option for an external input clock to XTALI signal directly. Table 28. System oscillator frequency specifications Symbol Parameter Conditions Min Typ Max Unit IVDDA (Low power mode) Analog supply current IVDDA (High gain mode) Analog supply current RF Feedback resistor RS CXCY Cpara Series resistor1 XTALI/XTALO load capacitance Parasitically capacitance of XTALI and XTALO 24 MHz -- 0.5 -- mA 24 MHz -- 1.3 -- mA Low-power mode No need High-gain mode -- 1 -- M -- -- 0 -- k See crystal or resonator manufacture's recommendation -- -- 1.5 2.0 pF Clock output FOSC Oscillator crystal or resonator -- -- 24 -- MHz frequency tdcy Duty-cycle of the output clock -- Dynamic parameters 40 50 60 % VPP Peak-peak amplitude of Low-power mode -- 0.8 -- V oscillation High gain mode 0.75x 0.8 x -- V VDDA_ VDDA_ 1P8_IN 1P8_IN tstart Start-up time 24 MHz low-power -- 250 -- s mode 1 Depends on the drive level of external crystal device 24 MHz high-gain -- 250 -- s mode Each i.MX RT1170 processor has two external input system clocks: a low frequency (RTC_XTALI) and a high frequency (XTALI). The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit, power-down real time clock operation, and slow system and watch-dog counters. The clock input can be i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 43 Electrical characteristics connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is an internal ring oscillator, which can be used instead of the RTC_XTALI if accuracy is not important. The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other peripherals. The system clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier. Table 29. 32 kHz oscillator DC electrical specifications Symbol Description Min Typ Max Unit Note Cpara Parasitically capacitance of RTC_XTALI -- and RTC_XTALO 1.5 2.0 pF -- Vpp Peak-to-peak amplitude of oscillator -- 0.6 -- V 1 fosc_lo Oscillator crystal -- tstart Crystal startup time -- Vec_extal32 Externally provided input clock amplitude 0.7 32.768 -- kHz -- 500 -- ms 1 -- VDD_SNVS V 2,3 _ANA 1 Proper PCB layout procedures must be followed to achieve specifications. 2 This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected. 3 The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied clock must be within the range of VSS to VDD_SNVS_ANA. The RTC OSC module provides the clock source for the Real-Time Clock module. The RTC OSC module, in conjunction with an external crystal, generates a 32.768 kHz reference clock for the RTC. Table 30. RC oscillator with 16 MHz internal reference frequency Symbol Parameter Clock output Fclkout_16M Clock frequency Dynamic parameters Tstart_16M Start-up time Power-down mode IVDDA Supply current in power-down Condition Min Typ Max -- 15.1 16 16.9 -- -- 50 -- -- 1 2 95 Unit MHz s nA Symbol General IVDDA Clock output Fclkout Table 31. RC oscillator with 48 MHz internal reference frequency Parameter Condition Min Typ Max Analog supply current -- -- 350 500 Clock frequency -- -- 48 -- Unit A MHz i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 44 NXP Semiconductors Electrical characteristics Table 31. RC oscillator with 48 MHz internal reference frequency (continued) Symbol Parameter Dynamic parameters Tstart Accuracy Start-up time Ttarget Trimmed Condition Min Typ Max Unit -- -- 2.5 -- s -- -2 -- 2 % Table 32. RC oscillator with 400 MHz internal reference frequency Symbol Parameter General IVDD_1P8V_ON IVDD_ON Clock output Analog supply current Digital supply current F_tuned Tuned clock frequency F/F Frequency error after tuning Dynamic parameters JPP-CC tstart ttune Peak-peak, period jitter Start-up time Tuning time Condition Min Typ Max -- -- 60 -- -- -- 80 -- -- -- 400 -- -- -- 0.1 -- -- -- 50 -- -- -- 1 -- -- 1 -- 256 Unit A A MHz % ns s s Symbol firc32k firc32k Table 33. RC oscillator with 32 kHz internal reference frequency Description Internal reference frequency Deviation of IRC32K frequency Min Typ Max Unit -- 32 -- kHz -25% -- 25% %firc32k Note -- -- 4.3 I/O parameters This section provides parameters on I/O interfaces. 4.3.1 I/O DC parameters This section includes the DC parameters of the following I/O types: · XTALI and RTC_XTALI (Clock Inputs) DC Parameters · General Purpose I/O (GPIO) i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 45 Electrical characteristics NOTE The term `NVCC_XXXX' in this section refers to the associated supply rail of an input or output. NOTE When enable the open drain for I/O pad, the external pull-up voltage cannot exceed the associated supply rail. Figure 5. Circuit for parameters Voh and Vol for I/O cells 4.3.1.1 XTALI and RTC_XTALI (clock inputs) DC parameters Table 34 shows the DC parameters for the clock inputs. Table 34. XTALI and RTC_XTALI DC parameters1 Parameter Symbol Test Conditions Min Max Unit XTALI high-level DC input voltage Vih -- XTALI low-level DC input voltage Vil -- RTC_XTALI high-level DC input voltage Vih -- RTC_XTALI low-level DC input voltage Vil -- 1 The DC parameters are for external clock input only. VDDA_1P8_IN - 0.5 VDDA_1P8_IN V 0 0.5 V VDD_SNVS_ANA - 0.5 VDD_SNVS_ANA V 0 0.5 V 4.3.1.2 General purpose I/O (GPIO) DC parameters Following section introduces the GPIO DC parameters, respectively, for GPIO pads. These parameters are guaranteed per the operating ranges in Table 11 unless otherwise noted. Table 35. DC specification for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1 bank Parameter Symbol Min Value Typ Unit Condition Max Receiver 3.3 V High level input voltage VIH 0.625 x NVCC -- NVCC + 0.3 V -- i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 46 NXP Semiconductors Electrical characteristics Table 35. DC specification for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1 bank (continued) Value Parameter Symbol Min Typ Max Low level input voltage High level input voltage Low level input voltage Output high current Output low current Output low/high current total for each IO bank Pull-up / pull-down resistance VIL -0.3 -- 0.25 x NVCC Receiver 1.8 V VIH 0.65 x NVCC -- NVCC + 0.3 VIL -0.3 -- 0.35 x NVCC Driver 3.3 V and driver 1.8 V for PDRV = L and PDRV = H IOH -6 IOL 6 IOCT -- -- -- -- -- -- 100 RHigh Weak pull-up and pull-down 10 -- 100 Pull-up / pull-down resistance RLow 20 -- 50 Unit Condition V -- V -- V -- mA VOH = 0.8 x NVCC mA VOL = 0.2 x NVCC mA -- k High voltage range (2.7 V - 3.6 V) k Low voltage range (1.65 V - 1.95 V) Table 36. DC specification for GPIO_SNVS bank Parameter Symbol Min Typ Max Unit Condition High level input voltage VIH 0.7 x -- NVCC_SNVS + V -- NVCC_SNVS 0.1 Low level input voltage VIL -0.3 -- 0.3 x V -- NVCC_SNVS Output high current IOH 170 -- -- A VOH = NVCC_SNVS - 0.3 Output low current IOL 270 -- -- A VOL = 0.3 Output low/high current total for IOCT -- each IO bank -- 100 mA -- Weak pull-up and pull-down Pull-up resistance RHigh -- 1000 3500 -- Pull-down resistance RLow -- 850 3500 -- i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 47 Electrical characteristics Table 37. DC specification for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank NO. Characteristics 1 Input high voltage (VIH) 2 Input low voltage (VIL) 3 Input Hysteresis (VHYSN) 4 Output high voltage (VOH) DSE = 1 5 Output high voltage (VOH) DSE = 0 Test Conditions Normal voltage range Derated voltage range Derated2 voltage range Low voltage range High voltage range Normal voltage range Derated voltage range Derated2 voltage range Low voltage range High voltage range All voltage range Normal voltage range IOH = -10 mA Derated voltage range IOH = -6 mA Derated2 voltage range IOH = -5 mA Low voltage range IOH = -10 mA High voltage range IOH = -10 mA Normal voltage range IOH = -5 mA Derated voltage range IOH = -3 mA Derated2 voltage range IOH = -2.5 mA Low voltage range IOH = -5 mA High voltage range IOH = -5 mA Min 0.7 x NVCC 0.75 x NVCC 0.75 x NVCC 0.7 x NVCC 0.7 x NVCC - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 0.06 x NVCC NVCC - 0.5 NVCC - 0.5 NVCC - 0.5 NVCC - 0.5 NVCC - 0.5 NVCC - 0.5 NVCC - 0.5 NVCC - 0.5 NVCC - 0.5 NVCC - 0.5 Max NVCC + 0.1 NVCC + 0.1 NVCC + 0.1 NVCC + 0.1 NVCC + 0.1 0.3 x NVCC 0.25 x NVCC 0.25 x NVCC 0.3 x NVCC 0.3 x NVCC -- -- -- -- -- -- -- -- -- -- -- Units V V V V V V V V V V V V V V V V V V V V V i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 48 NXP Semiconductors Electrical characteristics Table 37. DC specification for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued) NO. Characteristics Test Conditions Min 6 Output low voltage (VOL) Normal voltage range -- DSE = 1 IOL = 10 mA Derated voltage range -- IOL = 6 mA Derated2 voltage range -- IOL = 5 mA Low voltage range -- IOL = 10 mA High voltage range -- IOL = 10 mA 7 Output low voltage (VOL) Normal voltage range -- DSE = 0 IOL = 5 mA Derated voltage range -- IOL = 3 mA Derated2 voltage range -- IOL = 2.5 mA Low voltage range -- IOL = 5 mA High voltage range -- IOL = 5 mA 8 NVCC Normal voltage range 2.7 Derated voltage range 1.98 Derated2 voltage range 1.71 Low voltage range 1.71 High voltage range 3 11 Pull-up resistor range (RPU) All voltage range 25 Measure @VDD 12 Pull-down resistor range All voltage range 25 (RPD) Measure @VSS 13 Input leakage current All voltage range -- 14 Output capacitance (CL) All voltage range -- 15 Input capacitance (Cin) All voltage range -- 16 Output low/high current All voltage range -- total for each IO bank (IOCT) Max Units 0.5 V 0.5 V 0.5 V 0.5 V 0.5 V 0.5 V 0.5 V 0.5 V 0.5 V 0.5 V 3.6 V 2.7 V 1.98 V 1.98 V 3.6 V 50 k 50 k 400 nA 15 pF 5 pF 100 mA i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 49 Electrical characteristics 4.3.2 I/O AC parameters The GPIO and DDR I/O load circuit and output transition time waveform are shown in Figure 6 and Figure 7. FUronmdeOr uTtepsutt Test Point CL CL includes package, probe and fixture capacitance Figure 6. Load circuit for output Output (at pad) 80% 20% tr tf Figure 7. Output transition time waveform OVDD 80% 20%0 V 4.3.2.1 General purpose I/O (GPIO) AC parameters The I/O AC parameters for GPIO are presented in the Table 38 and Table 39, respectively. Table 38. AC specification for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1 bank Symbol Parameter fmax Maximum frequency tr Rise time tf Fall time fmax Maximum frequency tr Rise time tf Fall time Test Condition Min Typ Max Driver 1.8 V application Load = 21 pF (PDRV = L, high drive, 208 33 -- -- Load = 15 pF (PDRV = H, low drive, 50 Measured between VOL and VOH 0.4 -- 1.32 Measured between VOH and VOL 0.4 -- 1.32 Driver 3.3 V application Load = 20 pF -- -- 200 Measured between VOL and VOH -- -- 3 Measured between VOH and VOL -- -- 3 Unit MHz ns ns MHz ns ns i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 50 NXP Semiconductors Electrical characteristics Table 39. Dynamic input characteristics for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1 bank Symbol Parameter Test Condition1, 2 Min Max Dynamic Input Characteristics for 3.3 V Application fop Input frequency of operation -- -- 200 INPSL Slope of input signal at I/O Measured between 10% to 90% of the I/O swing -- 3.5 Dynamic Input Characteristics for 1.8 V Application fop Input frequency of operation -- -- 208 INPSL Slope of input signal at I/O Measured between 10% to 90% of the I/O swing -- 1.5 1 For all supply ranges of operation. 2 The dynamic input characteristic specifications are applicable for the digital bidirectional cells. Unit MHz ns MHz ns Table 40. AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank NO. Characteristic 1 Pad rise/fall time (DSE = 0, SRE = 0) 2 Pad rise/fall time (DSE = 0, SRE = 1) Condition Normal voltage range (Cload = 15 pF) Derated voltage range (Cload = 15 pF) Derated2 voltage range (Cload = 15 pF) Low voltage range (Cload = 15 pF) High voltage range (Cload = 15 pF) Normal voltage range (Cload = 15 pF) Derated voltage range (Cload = 15 pF) Derated2 voltage range (Cload = 15 pF) Low voltage range (Cload = 15 pF) High voltage range (Cload = 15 pF) Max Unit -- 3 ns -- 5 ns -- 6 ns -- 3 ns -- 3 ns -- 6 ns -- 10 ns -- 12 ns -- 6 ns -- 6 ns i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 51 Electrical characteristics Table 40. AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued) NO. Characteristic 3 Pad rise/fall time (DSE = 1, SRE = 0) 4 Pad rise/fall time (DSE = 1, SRE = 1) 5 IPP_DO to pad propagation delay: (DSE = 0, SRE = 0) 6 IPP_DO to pad propagation delay: (DSE = 0, SRE = 1) Condition Normal voltage range (Cload = 15 pF) Derated voltage range (Cload = 15 pF) Derated2 voltage range (Cload = 15 pF) Low voltage range (Cload = 15 pF) High voltage range (Cload = 15 pF) Normal voltage range (Cload = 15 pF) Derated voltage range (Cload = 15 pF) Derated2 voltage range (Cload = 15 pF) Low voltage range (Cload = 15 pF) High voltage range (Cload = 15 pF) Normal voltage range (Cload = 15 pF) Derated voltage range (Cload = 15 pF) Derated2 voltage range (Cload = 15 pF) Low voltage range (Cload = 15 pF) High voltage range (Cload = 15 pF) Normal voltage range (Cload = 15 pF) Derated voltage range (Cload = 15 pF) Derated2 voltage range (Cload = 15 pF) Low voltage range (Cload = 15 pF) High voltage range (Cload = 15 pF) Max Unit -- 2.5 ns -- 4.5 ns -- 5 ns -- 2.5 ns -- 2.5 ns -- 5 ns -- 9 ns -- 10 ns -- 5 ns -- 5 ns -- 2.5 ns -- 4.5 ns -- 5 ns -- 2.5 ns -- 4 ns -- 7 ns -- 12 ns -- 14 ns -- 7 ns -- 8.5 ns i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 52 NXP Semiconductors Electrical characteristics Table 40. AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued) NO. Characteristic 7 IPP_DO to pad propagation delay: (DSE = 1, SRE = 0) 8 IPP_DO to pad propagation delay: (DSE = 1, SRE = 1) 9 Pad to IPP_IND propagation delay 10 IPP_IND rise/fall time Condition Normal voltage range (Cload = 15 pF) Derated voltage range (Cload = 15 pF) Derated2 voltage range (Cload = 15 pF) Low voltage range (Cload = 15 pF) High voltage range (Cload = 15 pF) Normal voltage range (Cload = 15 pF) Derated voltage range (Cload = 15 pF) Derated2 voltage range (Cload = 15 pF) Low voltage range (Cload = 15 pF) High voltage range (Cload = 15 pF) Normal voltage range (100 F load on IPP_IND) Derated voltage range (100 F load on IPP_IND) Derated2 voltage range (100 F load on IPP_IND) Low voltage range (100 F load on IPP_IND) High voltage range (100 F load on IPP_IND) Normal voltage range (100 F load on IPP_IND) Derated voltage range (100 F load on IPP_IND) Derated2 voltage range (100 F load on IPP_IND) Low voltage range (100 F load on IPP_IND) High voltage range (100 F load on IPP_IND) Max Unit -- 2 ns -- 3.6 ns -- 4 ns -- 2 ns -- 4 ns -- 6 ns -- 11 ns -- 12 ns -- 6 ns -- 7.5 ns -- 2 ns -- 3.5 ns -- 4 ns -- 4 ns -- 2 ns -- 0.3 ns -- 0.4 ns -- 0.5 ns -- 0.3 ns -- 0.3 ns i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 53 Electrical characteristics Figure 8 is the GPIO block diagram. IPP_OBE OUTPUT DRIVER IPP_DSE IPP_DO Pad IPP_SRE IPP_PUE IPP_PUS IOMUX/IOMUXC PU/PD logic PU/PD device IPP_IND IPP_IBE IPP_HYS INPUT RECEIVER Figure 8. GPIO block diagram 4.4 System modules This section contains the timing and electrical parameters for the modules in the i.MX RT1170 processor. 4.4.1 Reset timing parameters Figure 9 shows the POR reset timing and Table 41 lists the timing parameters. POR_B (Input) CC1 Figure 9. POR reset timing diagram i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 54 NXP Semiconductors Electrical characteristics Table 41. POR reset timing parameters ID Parameter CC1 Duration of POR_B to be qualified as valid. Min Max 1-- Unit RTC_XTALI cycle 4.4.2 WDOG reset timing parameters Figure 10 shows the WDOG reset timing and Table 42 lists the timing parameters. WDOGn_B (Output) CC3 Figure 10. WDOGn_B timing diagram Table 42. WDOGn_B timing parameters ID Parameter Min Max Unit CC3 Duration of WDOGn_B Assertion 1 -- RTC_XTALI cycle NOTE RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or approximately 30 s. NOTE WDOGn_B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUX manual for detailed information. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 55 Electrical characteristics 4.4.3 JTAG Controller timing parameters Figure 11 depicts the JTAG controller timing. Figure 12 depicts the JTAG TRST_B timing. TCK (input) J1 J2 J2 J3 J4 TDI / TMS (input) J5 TDO (output) J6 TDO (output) Figure 11. JTAG controller timing TCK (input) TRST_B (input) TRST_B (input) J7 J8 J8 Figure 12. JTAG_TRST_B timing i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 56 NXP Semiconductors Electrical characteristics Table 43. JTAG timing parameters ID Parameter J0 TCK frequency J1 TCK cycle time J2 TCK pulse width J3 Input data setup time J4 Input data hold time J5 Output data valid time J6 Output high impedance time J7 TRST_B assert time J8 TRST_B setup time to TCK edge Value Min Max -- 25 40 -- 20 -- 5 -- 5 -- -- 15.2 -- 15.2 100 -- 18 -- Unit MHz ns ns ns ns ns ns ns ns 4.4.4 SWD timing parameters Figure 13 depicts the SWD timing. SWD_CLK (input) SWD_DIO SWD_DIO SWD_DIO S1 S2 S2 S3 S4 S5 S6 Figure 13. SWD timing i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 57 Electrical characteristics Table 44. SWD timing parameters Symbol Description Min S0 SWD_CLK frequency -- S1 SWD_CLK cycle time 20 S2 SWD_CLK pulse width 10 S3 Input data setup time 5 S4 Input data hold time 1 S5 Output data valid time -- S6 Output high impedance time -- 4.4.5 Trace timing parameters Figure 14 depicts the trace timing. T1 T2 T2 TRACE_CLK (output) T3 T4 T3 T4 TRACE0-3 (output) Max Unit 50 MHz -- ns -- ns -- ns -- ns 14.4 ns 14.4 ns Figure 14. Trace timing Table 45. Trace timing parameters Symbol T0 T1 T2 T3 T4 Description TRACE_CLK frequency TRACE_CLK cycle time TRACE_CLK pulse width TRACE data setup time TRACE data hold time Min -- 1/T0 6 2 0.7 4.5 External memory interface The following sections provide information about external memory interfaces. Max Unit 70 MHz -- ns -- ns -- ns -- ns i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 58 NXP Semiconductors 4.5.1 SEMC specifications The following sections provide information on SEMC interface. Measurements are with a load of 15 pf and an input slew rate of 1 V/ns. Electrical characteristics 4.5.1.1 SEMC output timing There are ASYNC and SYNC modes for SEMC output timing. 4.5.1.1.1 SEMC output timing in ASYNC mode Table 46 shows SEMC output timing in ASYNC mode. Table 46. SEMC output timing in ASYNC mode Symbol Parameter Min. Max. Unit Comment Frequency of operation -- 200 MHz TCK Internal clock period 5 -- ns TAVO Address output valid time -- 2 ns These timing parameters TAHO Address output hold time (TCK - 2) 1 -- ns apply to Address and ADV# for NOR/PSRAM in ASYNC TADVL Active low time (TCK - 1) 2 mode. TDVO TDHO TWEL Data output valid time Data output hold time WE# low time -- 2 ns These timing parameters (TCK - 2) 3 -- ns apply to Data/CLE/ALE and WE# for NAND, apply to (TCK - 1) 4 ns Data/DM/CRE for NOR/PSRAM, apply to Data/DCX and WRX for DBI interface. 1 Address output hold time is configurable by SEMC_*CR0.AH. AH field setting value is 0x0 in above table. When AH is set with value N, TAHO min time should be ((N + 1) x TCK). See the i.MX RT1170 Reference Manual (IMXRT1170RM) for more detail about SEMC_*CR0.AH register field. 2 ADV# low time is configurable by SEMC_*CR0.AS. AS field setting value is 0x0 in above table. When AS is set with value N, TADL min time should be ((N + 1) x TCK - 1). See the i.MX RT1170 Reference Manual (IMXRT1170RM) for more detail about SEMC_*CR0.AS register field. 3 Data output hold time is configurable by SEMC_*CR0.WEH. WEH field setting value is 0x0 in above table. When WEH is set with value N, TDHO min time should be ((N + 1) x TCK). See the i.MX RT1170 Reference Manual (IMXRT1170RM) for more detail about SEMC_*CR0.WEH register field. 4 WE# low time is configurable by SEMC_*CR0.WEL. WEL field setting value is 0x0 in above table. When WEL is set with value N, TWEL min time should be ((N + 1) x TCK - 1). See the i.MX RT1170 Reference Manual (IMXRT1170RM) for more detail about SEMC_*CR0.WEL register field. Figure 15 shows the output timing in ASYNC mode. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 59 Electrical characteristics )NTERNALCLOCK !$$2 !$6 $!4! 7% 4#+ 4!6/ 4$6/ ! 4!(/ $ 4$(/ Figure 15. SEMC output timing in ASYNC mode 4.5.1.1.2 SEMC output timing in SYNC mode Table 47 shows SEMC output timing in SYNC mode. Table 47. SEMC output timing in SYNC mode Symbol TCK TDVO TDHO Parameter Frequency of operation Internal clock period Data output valid time Data output hold time Min. -- 5 -- -0.7 Max. 200 -- 0.6 -- Unit MHz ns ns ns Comment -- -- These timing parameters apply to Address/Data/DM/CKE/control signals with SEMC_CLK for SDRAM. Figure 16 shows the output timing in SYNC mode. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 60 NXP Semiconductors Electrical characteristics 3%-#?#,+ $!4! 4$6/ 4$(/ $ Figure 16. SEMC output timing in SYNC mode 4.5.1.2 SEMC input timing There are ASYNC and SYNC modes for SEMC input timing. 4.5.1.2.1 SEMC input timing in ASYNC mode Table 48 shows SEMC input timing in ASYNC mode. Table 48. SEMC input timing in ASYNC mode Symbol TIS TIH Parameter Data input setup Data input hold Min. Max. Unit Comment 7.1 -- ns For NAND/NOR/PSRAM/DBI, 0 -- ns these timing parameters apply to RE# and Read Data. Figure 17 shows the input timing in ASYNC mode. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 61 Electrical characteristics .!.$NON %$/MODEAND./2032!-TIMING /% $!4! /% $ $ 4)3 4)( .!.$%$/MODETIMING $!4! $ $ 4)3 4)( Figure 17. SEMC input timing in ASYNC mode 4.5.1.2.2 SEMC input timing in SYNC mode Table 49 and Table 50 show SEMC input timing in SYNC mode. Table 49. SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x0) Symbol TIS TIH Parameter Data input setup Data input hold Min. Max. Unit Comment 8.67 -- ns -- 0 -- ns Table 50. SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x1) Symbol Parameter Min. TIS Data input setup 2 TIH Data input hold 1 Figure 18 shows the input timing in SYNC mode. Max. -- -- Unit ns -- ns Comment i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 62 NXP Semiconductors Electrical characteristics 3%-#?#,+ $!4! 3%-#?$13 $ 4)3 4)( Figure 18. SEMC input timing in SYNC mode 4.5.2 FlexSPI parameters Measurements are with a load 15 pf and input slew rate of 1 V/ns. 4.5.2.1 FlexSPI input/read timing There are three sources for the internal sample clock for FlexSPI read data: · Dummy read strobe generated by FlexSPI controller and looped back internally (FlexSPIn_MCR0[RXCLKSRC] = 0x0) · Dummy read strobe generated by FlexSPI controller and looped back through the DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x1) · Read strobe provided by memory device and input from DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x3) The following sections describe input signal timing for each of these three internal sample clock sources. 4.5.2.1.1 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1 Table 51. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0 Symbol TIS TIH Parameter Frequency of operation Setup time for incoming data Hold time for incoming data Min Max Unit -- 60 MHz 8.67 -- ns 0 -- ns Table 52. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X1 Symbol TIS TIH Parameter Frequency of operation Setup time for incoming data Hold time for incoming data Min Max Unit -- 133 MHz 2 -- ns 1 -- ns i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 63 Electrical characteristics SCK SIO[0:7] TIS TIH TIS TIH Internal Sample Clock Figure 19. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0, 0X1 NOTE Timing shown is based on the memory generating read data on the SCK falling edge, and FlexSPI controller sampling read data on the falling edge. 4.5.2.1.2 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3 There are two cases when the memory provides both read data and the read strobe in SDR mode: · A1--Memory generates both read data and read strobe on SCK rising edge (or falling edge) · A2--Memory generates read data on SCK falling edge and generates read strobe on SCK rising edge Table 53. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A1) Symbol TSCKD - TSCKDQS Parameter Frequency of operation Time delta between TSCKD and TSCKDQS Value Min Max -- 166 -2 2 Unit MHz ns SCK SIO[0:7] DQS TSCKD TSCKDQS TSCKD TSCKDQS Figure 20. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (case A1) i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 64 NXP Semiconductors Electrical characteristics NOTE Timing shown is based on the memory generating read data and read strobe on the SCK rising edge. The FlexSPI controller samples read data on the DQS falling edge. Table 54. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A2) Symbol TSCKD - TSCKDQS Parameter Frequency of operation Time delta between TSCKD and TSCKDQS Value Min -- -2 Max 166 2 Unit MHz ns SCK SIO[0:7] DQS TSCKD TSCKDQS TSCKD TSCKDQS TSCKD TSCKDQS Internal Sample Clock Figure 21. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (case A2) NOTE Timing shown is based on the memory generating read data on the SCK falling edge and read strobe on the SCK rising edge. The FlexSPI controller samples read data on a half cycle delayed DQS falling edge. 4.5.2.1.3 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1 Table 55. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0 Symbol TIS TIH Parameter Frequency of operation Setup time for incoming data Hold time for incoming data Min Max -- 30 8.67 -- 0 -- Unit MHz ns ns i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 65 Electrical characteristics Table 56. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1 Symbol TIS TIH Parameter Frequency of operation Setup time for incoming data Hold time for incoming data Min Max -- 66 2 -- 1 -- Unit MHz ns ns SCLK SIO[0:7] Internal Sample Clock TIS TIH TIS TIH Figure 22. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1 4.5.2.1.4 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3 There are two cases when the memory provides both read data and the read strobe in DDR mode: · B1--Memory generates both read data and read strobe on SCK edges · B2--Memory generates read data on SCK edges and generates read strobe on SCK2 edges Table 57. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B1) Symbol TSCKD - TSCKDQS Parameter Frequency of operation Time delta between TSCKD and TSCKDQS Min -- -1 Max 166 1 Unit MHz ns SCK SIO[0:7] DQS TSCKD TSCKDQS Figure 23. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B1) i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 66 NXP Semiconductors Electrical characteristics Table 58. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B2) Symbol TSCKD - TSCKDQS Parameter Frequency of operation Time delta between TSCKD and TSCKDQS Min -- -1 Max 166 1 Unit MHz ns SCK SIO[0:7] TSCKD SCK2 DQS TSCK2DQS Figure 24. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B2) 4.5.2.2 FlexSPI output/write timing The following sections describe output signal timing for the FlexSPI controller including control signals and data outputs. 4.5.2.2.1 SDR mode Table 59. FlexSPI output timing in SDR mode Symbol Parameter Min Max Unit Frequency of operation -- 1661 MHz Tck SCK clock period 6.0 -- ns TDVO Output data valid time -- 1 ns TDHO Output data hold time 1 -- ns TCSS Chip select output setup time 3 x TCK - 1 -- ns TCSH Chip select output hold time 3 x TCK + 2 -- ns 1 The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing specifications. NOTE TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1 register, the default values are shown above. Please refer to the i.MXRT1170 Reference Manual (IMXRT1170RM) for more details. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 67 Electrical characteristics SCK T CSS T CK TCSH CS TDVO TDVO SIO[0:7] TDHO TDHO Figure 25. FlexSPI output timing in SDR mode 4.5.2.2.2 DDR mode Table 60. FlexSPI output timing in DDR mode Symbol Parameter Min Max Unit Frequency of operation1 -- 166 MHz Tck SCK clock period (FlexSPIn_MCR0[RXCLKSRC] = 0x0) 6.0 -- ns TDVO Output data valid time -- 2.2 ns TDHO Output data hold time 0.8 -- ns TCSS Chip select output setup time 3 x TCK / 2 - 0.7 -- ns TCSH Chip select output hold time 3 x TCK / 2 + 0.8 -- ns 1 The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing specifications. NOTE TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1 register, the default values are shown above. Please refer to the i.MXRT1170 Reference Manual (IMXRT1170RM) for more details. SCK T CSS CS TDVO T CK TDVO TCSH SIO[0:7] TDHO TDHO Figure 26. FlexSPI output timing in DDR mode 4.6 Display and graphics The following sections provide information about display and graphic interfaces. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 68 NXP Semiconductors Electrical characteristics 4.6.1 MIPI D-PHY electrical characteristics The i.MX RT1170 conforms to the MIPI CSI-2 and D-PHY standards for protocol and electrical specifications. Compliant with standards: · MIPI Alliance Specification for Display Serial Interface Version 1.1 (MIPI DSI controller) · MIPI Standard 1.1 for D-PHY (MIPI DSI D-PHY) · Compatible with MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2) Version 1.1 4.6.1.1 MIPI HS-TX specifications Table 61. MIPI high-speed transmitter DC specifications Symbol Parameter Min Typ Max Unit VCMTX1 High Speed Transmit Static Common Mode Voltage 150 200 250 mV |VCMTX|(1,0) |VOD|1 VCMTX mismatch when Output is Differential-1 or Differential-0 High Speed Transmit Differential Voltage -- -- 5 mV 140 200 270 mV |VOD| VOHHS1 VOD mismatch when Output is Differential-1 or Differential-0 High Speed Output High Voltage -- -- 14 mV -- -- 360 mV ZOS Single Ended Output Impedance 40 50 62.5 ZOS Single Ended Output Impedance Mismatch -- -- 10 % 1 Value when driving into load impedance anywhere in the ZID (Differential input impedance) range. Table 62. MIPI high-speed transmitter AC specifications Symbol Parameter VCMTX(HF) Common-level variations above 450 MHz VCMTX(LF) Common-level variation between 50-450 MHz tR and tF1 Rise Time and Fall Time (20% to 80%) 1 UI is the long-term average unit interval. Min Typ Max Unit -- -- 15 mVRMS -- -- 25 mVPEAK 150 -- 0.3 x UI ps 4.6.1.2 MIPI LP-TX specifications Table 63. MIPI low-power transmitter DC specifications Symbol Parameter Min Typ Max Unit VOH1 Thevenin Output High Level 1.1 1.2 1.3 V VOL Thevenin Output Low Level -50 -- 50 mV ZOLP2 Output Impedance of Low Power Transmitter 110 -- -- 1 This specification can only be met when limiting the core supply variation from 1.1 V to 1.3 V. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 69 Electrical characteristics 2 Though there is no specified maximum for ZOLP, the LP transmitter output impedance ensures the TRLP/TFLP specification is met. Table 64. MIPI low-power transmitter AC specifications Symbol Parameter Min Typ Max Unit TRLP /TFLP1 15% to 85% Rise Time and Fall Time -- -- 25 ns TREOT1,2,3 30% to 85% Rise Time and Fall Time -- -- 35 ns TLP-PULSE-TX4 Pulse width of the LP exclusive-OR clock: First LP exclusive-OR 40 -- -- ns clock pulse after Stop state or last pulse before Stop state Pulse width of the LP exclusive-OR clock: All other pulses 20 -- -- ns TLP-PER-TX V/tSR1,5,6,7 Period of the LP exclusive-OR clock Slew Rate @ CLOAD = 0 pF 90 -- -- ns 30 -- 500 mV/ns Slew Rate @ CLOAD = 5 pF 30 -- 200 mV/ns Slew Rate @ CLOAD = 20 pF 30 -- 150 mV/ns Slew Rate @ CLOAD = 70 pF 30 -- 100 mV/ns CLOAD1 Load Capacitance 0 -- 70 pF 1 CLOAD includes the low equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be < 10 pF. The distributed line capacitance can be up to 50 pF for a transmission line with 2 ns delay. 2 The rise-time of TREOT starts from the HS common-level at the moment of the differential amplitude drops below 70 mV, due to stopping of the differential drive. 3 With an additional load capacitance CCM between 0 to 60 pF on the termination center tap at RX side of the lane. 4 This parameter value can be lower than TLPX (MIPI D-PHY low power states), due to differences in rise vs. fall signal slopes, trip levels, and mismatches between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11) is glitch behavior as described in Low-Power Receiver section. 5 When the output voltage is between 15% and 85% of the fully settled LP signal levels. 6 Measured as average across any 50 mV segment of the output signal transition. 7 This value represents a corner point in a piecewise linear curve. 4.6.1.3 MIPI LP-RX specifications Table 65. MIPI low power receiver DC specifications Symbol Parameter Min VIH Logic 1 input voltage 880 VIL Logic 0 input voltage, not in ULP state -- VIL-ULPS Logic 0 input voltage, ULP state -- VHYST Input hysteresis 25 Table 66. MIPI low power receiver AC specifications Symbol Parameter Min eSPIKE1,2 Input pulse rejection -- Typ Max Unit -- 1300 mV -- 550 mV -- 300 mV -- -- mV Typ Max Unit -- 300 V.ps i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 70 NXP Semiconductors Electrical characteristics Table 66. MIPI low power receiver AC specifications (continued) TMIN-RX3 Minimum pulse width response 20 -- -- VINT Peak Interference amplitude -- -- 200 fINT Interference frequency 450 -- -- 1 Time-voltage integration of a spike above VIL when being in LP-0 state or below VIH when being in LP-1 state. 2 An impulse below this value will not change the receiver state. 3 An input pulse greater than this value will toggle the output. ns mV MHz 4.6.1.4 MIPI LP-CD specifications Table 67. MIPI contention detector DC specifications Symbol Parameter Min Typ Max Unit VIHCD VILCD Logic 1 contention threshold Logic 0 contention threshold 450 -- -- mV -- -- 200 mV 4.6.1.5 MIPI DC specifications Table 68. MIPI input characteristics DC specifications Symbol Parameter Min Typ Max Unit VPIN ILEAK1 Pad signal voltage range Pin leakage current -50 -- 1350 mV -10 -- 10 A VGNDSH Ground shift -50 -- 50 mV VPIN(absmax)2 Maximum pin voltage level -0.15 -- 1.45 V TVPIN(absmax)3 Maximum transient time above VPIN(max) or below VPIN(min) -- -- 20 ns 1 When the pad voltage is within the signal voltage range between VGNDSH(min) to VOH + VGNDSH(max) and the Lane Module is in LP receive mode. 2 This value includes ground shift. 3 The voltage overshoot and undershoot beyond the VPIN is only allowed during a single 20 ns window after any LP-0 to LP-1 transition or vice versa. For all other situations it must stay within the VPIN range. 4.6.2 CMOS Sensor Interface (CSI) timing parameters The following sections describe the CSI timing in gated and ungated clock modes. 4.6.2.1 Gated clock mode timing Figure 27 and Figure 28 shows the gated clock mode timings for CSI, and Table 69 describes the timing parameters (P1P7) shown in the figures. A frame starts with a rising/falling edge on CSI_VSYNC i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 71 Electrical characteristics (VSYNC), then CSI_HSYNC (HSYNC) is asserted and holds for the entire line. The pixel clock, CSI_PIXCLK (PIXCLK), is valid as long as HSYNC is asserted. CSI_VSYNC CSI_HSYNC CSI_PIXCLK P1 P2 P3 P4 P7 P5 P6 CSI_DATA[23:00] Figure 27. CSI Gated clock mode--sensor data at falling edge, latch data at rising edge CSI_VSYNC CSI_HSYNC CSI_PIXCLK P1 P2 P7 P6 P5 P3 P4 CSI_DATA[23:00] Figure 28. CSI Gated clock mode--sensor data at rising edge, latch data at falling edge Table 69. CSI gated clock mode timing parameters ID Parameter P1 CSI_VSYNC to CSI_HSYNC time P2 CSI_HSYNC setup time P3 CSI DATA setup time Symbol tV2H tHsu tDsu Min. 33.5 2.6 2.6 Max. -- -- -- Units ns ns ns i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 72 NXP Semiconductors Electrical characteristics Table 69. CSI gated clock mode timing parameters (continued) ID Parameter P4 CSI DATA hold time P5 CSI pixel clock high time P6 CSI pixel clock low time P7 CSI pixel clock frequency Symbol tDh tCLKh tCLKl fCLK Min. 0 3.75 3.75 -- Max. -- -- -- 80 Units ns ns ns MHz 4.6.2.2 Ungated clock mode timing Figure 29 shows the ungated clock mode timings of CSI, and Table 70 describes the timing parameters (P1P6) that are shown in the figure. In ungated mode the CSI_VSYNC and CSI_PIXCLK signals are used, and the CSI_HSYNC signal is ignored. CSI_VSYNC P1 CSI_PIXCLK P2 P3 P6 P4 P5 CSI_DATA[23:00] Figure 29. CSI ungated clock mode--sensor data at falling edge, latch data at rising edge Table 70. CSI ungated clock mode timing parameters ID Parameter P1 CSI_VSYNC to pixel clock time P2 CSI DATA setup time P3 CSI DATA hold time P4 CSI pixel clock high time P5 CSI pixel clock low time P6 CSI pixel clock frequency Symbol tVSYNC tDsu tDh tCLKh tCLKl fCLK Min. 33.5 2.6 0 3.75 3.75 -- Max. -- -- -- -- -- 80 Units ns ns ns ns ns MHz The CSI enables the chip to connect directly to external CMOS image sensors, which are classified as dumb or smart as follows: · Dumb sensors only support traditional sensor timing (vertical sync (VSYNC) and horizontal sync (HSYNC)) and output-only Bayer and statistics data. · Smart sensors support CCIR656 video decoder formats and perform additional processing of the image (for example, image compression, image pre-filtering, and various data output formats). i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 73 Electrical characteristics 4.6.3 LCD Controller timing parameters Figure 30 shows the LCD timing and Table 71 lists the timing parameters. LCDn_CLK (falling edge capture) L1 L2 L3 LCDn_CLK (rising edge capture) LCDn_DATA[23:00] LCDn Control Signals L4 L5 L6 L7 Figure 30. LCD timing Table 71. LCD timing parameters ID Parameter Symbol Min Max Unit L1 LCD pixel clock frequency tCLK(LCD) -- 75/1501 MHz L2 LCD pixel clock high (falling edge capture) tCLKH(LCD) 3 -- ns L3 LCD pixel clock low (rising edge capture) tCLKL(LCD) 3 -- ns L4 LCD pixel clock high to data valid (falling edge capture) td(CLKH-DV) -1 1 ns L5 LCD pixel clock low to data valid (rising edge capture) td(CLKL-DV) -1 1 ns L6 LCD pixel clock high to control signal valid (falling edge capture) td(CLKH-CTRLV) -1 1 ns L7 LCD pixel clock low to control signal valid (rising edge capture) td(CLKL-CTRLV) -1 1 ns 1 For eLCDIF or LCDIFv2, the maximum pixel clock frequency of parallel IO interface is 75 MHz, while it is 150 MHz for MIPI DSI interface. 4.7 Audio This section provides information about SAI/I2S. 4.7.1 SAI/I2S switching specifications This section provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes. All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP] = 0) and non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 74 NXP Semiconductors Num S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Table 72. Master mode SAI timing Characteristic SAI_MCLK cycle time SAI_MCLK pulse width high/low SAI_BCLK cycle time SAI_BCLK pulse width high/low SAI_BCLK to SAI_FS output valid SAI_BCLK to SAI_FS output invalid SAI_BCLK to SAI_TXD valid SAI_BCLK to SAI_TXD invalid SAI_RXD/SAI_FS input setup before SAI_BCLK SAI_RXD/SAI_FS input hold after SAI_BCLK Min 15 40% 40 40% -- 0 -- 1 14 0 Electrical characteristics Max -- 60% -- 60% 8.4 -- 10 -- -- -- Unit ns MCLK period ns BCLK period ns ns ns ns ns ns Num S11 S12 S13 S14 S15 S16 Figure 31. SAI timing--Master modes Table 73. Slave mode SAI timing Characteristic SAI_BCLK cycle time (input) SAI_BCLK pulse width high/low (input) SAI_FS input setup before SAI_BCLK SAI_FA input hold after SAI_BCLK SAI_BCLK to SAI_TXD/SAI_FS output valid SAI_BCLK to SAI_TXD/SAI_FS output invalid Min 40 40% 6 2 -- -1.5 Max -- 60% -- -- 20 -- Unit ns BCLK period ns ns ns ns i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 75 Electrical characteristics Table 73. Slave mode SAI timing Num S17 S18 Characteristic SAI_RXD setup before SAI_BCLK SAI_RXD hold after SAI_BCLK Min 6 2 Max -- -- Unit ns ns Figure 32. SAI timing--Slave mode 4.8 Analog The following sections provide information about analog interfaces. 4.8.1 12-bit ADC electrical specifications All ADC channels meet the 12-bit single-ended accuracy specifications. Table 74. ADC electrical specifications (VREFH = VDD_ANA_181 and VADINmax VREFH) Symbol Description Min Typ Max Unit Notes VADIN Input voltage VREFL -- VREFH V -- VREFH ADC high reference supply 1.0 1.8 1.89 V -- input CADIN RADIN RAS fADCK Csample Ccompare Cconversion Input capacitance Input resistance Analog source resistance ADC conversion clock frequency Sample cycles Fixed compare cycles Conversion cycles -- 4.5 -- -- 500 -- -- -- 5 8 -- 88 3.5 -- 131.5 -- 17.5 -- Cconversion = Csample + Ccompare pF -- -- K 2 MHz -- Cycles 3 Cycles -- Cycles -- i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 76 NXP Semiconductors Electrical characteristics Table 74. ADC electrical specifications (VREFH = VDD_ANA_181 and VADINmax VREFH) (continued) Symbol Description Min Typ Max Unit Notes TUE DNL INL ENOB Total unadjusted Error -- Differential nonlinearity -- Integral nonlinearity -- Effective number of bits -14 to -2 -- ±1.2 -- ±1.2 -- LSB 4 LSB 4,5 LSB 4,5 6 Single-ended mode Avg = 1 -- 10.3 -- -- Avg = 2 -- 10.6 -- -- Avg = 16 -- 11.3 -- -- Differential mode Avg = 1 -- 11.2 -- -- Avg = 2 -- -- -- -- Avg = 16 -- -- -- -- SINAD EFS EZS Signal to noise plus distortion SINAD = 6.02 x ENOB + 1.76 Full-scale error -- -4 -- Zero-scale error -- 0.05 -- dB -- LSB 4 LSB 4 lin_ext_leak External channel leakage -- 30 500 nA -- current EIL Input leakage error RAS * lin_ext_leak mV -- tADCSETUP Setup time -- 5 -- s -- 1 The range is from 1.71 V to 1.89 V. 2 This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 15 analog source resistance. The RAS and CAS time constant should be kept to < 1 ns. 3 See Figure 33, "Sample time VS. RAS". 4 1 LSB = (VREFH - VREFL) / 2^N, N = 12 5 ADC conversion clock at max frequency and using linear histogram. 6 Input data used for test is 1 kHz sine wave. Table 75. ADC electrical specifications (VREFFH = 1.68 V and VADINmax NVCC_GPIOmax) Symbol Description Min Typ1 Max Unit Notes VADIN Input voltage VREFL -- NVCC_GPIOmax V -- VREFH ADC high reference supply 1.0 1.8 1.89 V -- input CADIN RADIN RAS Input capacitance -- Input resistance -- Analog source resistance -- 4.5 -- 1 -- -- 5 pF -- K -- K 2 i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 77 Electrical characteristics Table 75. ADC electrical specifications (VREFFH = 1.68 V and VADINmax NVCC_GPIOmax) (continued) Symbol Description Min Typ1 Max Unit Notes fADCK Csample Ccompare Cconversion TUE DNL INL ENOB ADC conversion clock frequency Sample cycles Fixed compare cycles Conversion cycles Total unadjusted Error Differential nonlinearity Integral nonlinearity Effective number of bits 8 -- 88 3.5 -- 131.5 -- 17.5 -- Cconversion = Csample + Ccompare -- -14 to -2 -- -- ±1.2 -- -- ±1.2 -- MHz -- Cycles 3 Cycles -- Cycles -- LSB 4 LSB 4,5 LSB 4,5 6 Single-ended mode Avg = 1 -- 10.3 -- -- Avg = 2 -- 10.6 -- -- Avg = 16 -- 11.3 -- -- Differential mode Avg = 1 -- 11.2 -- -- Avg = 2 -- -- -- -- Avg = 16 -- -- -- -- SINAD EFS EZS Signal to noise plus distortion SINAD = 6.02 x ENOB + 1.76 Full-scale error -- -4 -- Zero-scale error -- 0.05 -- dB -- LSB 4 LSB 4 lin_ext_leak External channel leakage -- 30 500 current nA -- EIL Input leakage error RAS * lin_ext_leak mV -- tADCSETUP Setup time -- 5 -- s -- 1 Typical values assume Temp = 25 °C and fACLK = Max, unless otherwise stated. Typical values are for reference only, and are not tested in production. 2 This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 15 analog source resistance. The RAS and CAS time constant should be kept to < 1 ns. 3 See Figure 33, "Sample time VS. RAS". 4 1 LSB = (VREFH - VREFL) / 2^N, N = 12 5 ADC conversion clock at max frequency and using linear histogram. 6 Input data used for test is 1 kHz sine wave. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 78 NXP Semiconductors Electrical characteristics Table 76. ADC electrical specifications (1 V VREFFH < VDD_ANA_18min1 and VADINmax VREFH)2 Symbol Description Min Typ3 Max Unit Notes VADIN Input voltage VREFL -- VREFH V -- VREFH ADC high reference supply 1.0 1.8 1.89 V -- input CADIN RADIN RAS fADCK Csample Ccompare Cconversion TUE DNL INL ENOB Input capacitance Input resistance Analog source resistance ADC conversion clock frequency Sample cycles Fixed compare cycles Conversion cycles Total unadjusted Error Differential nonlinearity Integral nonlinearity Effective number of bits -- 4.5 -- -- 500 -- -- -- 5 8 -- 88 3.5 -- 131.5 -- 17.5 -- Cconversion = Csample + Ccompare -- -14 to -2 -- -- ±1.2 -- -- ±1.2 -- pF -- -- K 4 MHz -- Cycles 5 Cycles -- Cycles -- LSB 6 LSB 6,7 LSB 6,7 8 Single-ended mode Avg = 1 -- 10.3 -- -- Avg = 2 -- 10.6 -- -- Avg = 16 -- 11.3 -- -- Differential mode Avg = 1 -- 11.2 -- -- Avg = 2 -- -- -- -- Avg = 16 -- -- -- -- SINAD EFS EZS Signal to noise plus distortion SINAD = 6.02 x ENOB + 1.76 Full-scale error -- -4 -- Zero-scale error -- 0.05 -- dB -- LSB 6 LSB 6 lin_ext_leak External channel leakage -- 30 500 nA -- current EIL Input leakage error RAS * lin_ext_leak mV -- tADCSETUP Setup time -- 5 -- s -- 1 VDD_ANA_18min = 1.71 V 2 Values in this table are based on design simulations. 3 Typical values assume Temp = 25 °C and fACLK = Max, unless otherwise stated. Typical values are for reference only, and are not tested in production. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 79 Electrical characteristics 4 This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 15 analog source resistance. The RAS and CAS time constant should be kept to < 1 ns. 5 See Figure 33, "Sample time VS. RAS". 6 1 LSB = (VREFH - VREFL) / 2^N, N = 12 7 ADC conversion clock at max frequency and using linear histogram. 8 Input data used for test is 1 kHz sine wave. The following figure shows a plot of the ADC sample time versus RAS. Figure 33. Sample time VS. RAS 4.8.1.1 12-bit ADC input impedance equivalent circuit diagram The following figure shows 12-bit ADC input impedance equivalent circuit diagram. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 80 NXP Semiconductors Electrical characteristics VAS RAS ZAS CAS SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT Pad leakage VADIN ZADIN SIMPLIFIED CHANNEL SELECT CIRCUIT RADIN ADC SAR ENGINE INPUT PIN INPUT PIN INPUT PIN RADIN RADIN RADIN CADIN Figure 34. ADC input impedance equivalent circuit diagram 4.8.2 12-bit DAC electrical characteristics 4.8.2.1 12-bit DAC operating requirements Table 77. 12-bit DAC operating conditions Symbol Description Min Typ Max Unit Notes CL Output load capacitance -- 50 100 pF 1 IL Output load current -- -- 1 mA 2 1 The DAC output can drive R and C loading. The user should consider both DC and dynamic application requirements. 50 pF CL provides the best dynamic performance, while 100 pF provides the best DC performance. 2 Sink or source current ability. Table 78. DAC characteristics Symbol Description VDACOUTL DAC low level output voltage VDACOUTH DAC high level output voltage DNL Differential nonlinearity error Test Conditions Min Typ ADC_VREFH selected, VSS -- Rload = 18 k, Cload = 50 pF VDDA_AD -- C_1P8 - 0.15 Code 100h -- F00h best fit -- ±0.5 curve Max 0.15 Unit V Notes 1 VDDA_AD V C_1P8 ±1 LSB -- i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 81 Electrical characteristics Table 78. DAC characteristics (continued) Symbol INL EO Description Test Conditions Min Integral nonlinearity error Code 100h -- F00h best fit -- curve -- Offset error Code 100h -- Typ ±1 ±2 ±0.6 TEO EG TEG Offset error temperature Code 100h coefficient Gain error Code F00h Gain error temperature Code F00h coefficient -- ±30 -- ±0.4 -- ±10 Max -- -- -- -- -- -- Unit Notes LSB 2 LSB 3 %FSR -- (Full-sc ale range) V/oC -- %FSR -- ppm of -- FSR/oC i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 82 NXP Semiconductors Symbol TFS_LS TFS_MS TFS_HS TCC_LS TCC_MS TCC_HS Table 78. DAC characteristics (continued) Description Test Conditions Full scale setting time in Code 100h -- F00h or Low Speed mode F00h -- 100h @ZTC current Code 100h -- F00h or F00h --100h @PTAT current Full scale setting time in Code 100h -- F00h or Middle Speed mode F00h -- 100h @ZTC current Code 100h -- F00h or F00h -- 100h @PTAT current Full scale setting time in Code 100h -- F00h or High Speed mode F00h -- 100h @ZTC current Code 100h -- F00h or F00h -- 100h @PTAT current Code to code setting Code 7F7h -- 807h or time in Low Speed mode 807h -- 7F7h @ZTC current Code 7F7h -- 807h or 807h -- 7F7h @PTAT current Code to code setting time in Middle Speed mode Code 7F7h -- 807h or 807h -- 7F7h @ZTC current Code 7F7h -- 807h or 807h -- 7F7h @PTAT current Code to code setting time in Middle Speed mode Code 7F7h -- 807h or 807h -- 7F7h @ZTC current Code 7F7h -- 807h or 807h -- 7F7h @PTAT current Min -- Typ 5 -- 5 -- 1 -- 1 -- 0.5 -- 0.5 -- 1 -- 1 -- 0.5 -- 0.5 -- 0.3 -- 0.3 Electrical characteristics Max -- Unit s Notes 4 -- -- -- -- -- -- -- -- -- -- -- i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 83 Electrical characteristics Table 78. DAC characteristics (continued) Symbol Description Test Conditions Min Typ Max Unit Notes SR_LS Slew rate in Low Speed Code 100h -- F00h or -- mode F00h -- 100h @ZTC current 0.24 -- V/s 5 Code 100h -- F00h or -- F00h --100h @PTAT current 0.24 -- SR_MS Slew rate in Middle Speed mode Code 100h -- F00h or -- F00h -- 100h @ZTC current 1.2 -- Code 100h -- F00h or -- F00h --100h @PTAT current 1.2 -- SR_HS Slew rate in High Speed Code 100h -- F00h or -- mode F00h -- 100h @ZTC current 2.4 -- PSRR Power supply rejection ratio Code 100h -- F00h or -- F00h --100h @PTAT current Code 800h, -- VDD_ANA18 = 100 mV, VREFH_ANA12 selected 2.4 -- 70 -- dB 6 Glitch Glitch energy Code 100h -- F00h -- -- 30 -- 100h nV-s -- Code 7FFh -- 800h -- -- 30 -- 7FFh CT Channel to channel -- crosstalk -- -- -80 dB 7 ROP Output resistance Code 100h -- F00h and -- Rload = 18 k 200 -- 8 1 It is recommended to operate the DAC in the output voltage range between 0.15 V and (VDDA_ADC_1P8 - 0.15 V) for best accuracy. Linearity of the output voltage outside this range will be affected as current load increases. 2 When ADC_VREFH is selected as the reference (DAC_CR[DACRFS] = 0b). 3 When the internal 1.2 V source is selected as the reference (DAC_CR[DACRFS] = 1b). 4 The DAC output remains within ±0.5 LSB of the final measured value for digital input code change. Noise on the power supply can cause this performance to degrade to ±1 LSB. This parameter represents both rising edge and falling edge settling time. 5 Time for the DAC output to transition from 10% to 90% signal amplitude (rising edge or falling edge). 6 PSRR = 20 x log{VDD_ANA18 /VDAC_OUT} 7 If two DACs are used and sharing the same VREFH. 8 Based on design simulation. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 84 NXP Semiconductors 4.8.3 ACMP electrical specifications Table 79. ACMP operating conditions Symbol Description Min VREFH_EXT External reference voltage 1 VREFH_INT1 Internal reference voltage -- 1 This is an internal reference voltage generated by PMC0. Typ -- 1.3 Electrical characteristics Max 1.98 -- Unit V V Table 80. ACMP characteristics Symbol Description Condition Min Typ Max Unit VAIN Analog input voltage -- 0 -- NVCC_GPIO1 V VAIO Analog input offset -- voltage -- -- 20 mV VH Analog comparator Hystrl[1:0] = 00 -- 5 -- mV hysteresis Hystrl[1:0] = 01 -- 10 -- mV Hystrl[1:0] = 10 -- 20 -- mV Hystrl[1:0] = 11 -- 30 -- mV TDHS Propagation delay, Normal supply -- -- 50 ns high-speed mode TDHS Propagation delay, -- low-speed mode -- -- 5 s -- Analog comparator -- initialization delay -- -- 20 s INL 8-bit DAC integral -- non-linearity -1 -- 1 LSB DNL 8-bit DAC differential -- non-linearity -1 -- 1 LSB 1 The maximum input voltage for CMP analog inputs associated with GPIO_AD bank is NVCC_GPIO. 4.8.4 Temperature sensor Table 81 lists the parameters of temperature sensor. Table 81. Temperature sensor parameters Parameter Min Max Unit Temperature range1 -40 125 C 1 Accuracy of measurement: ± 5C for 25C and above, while ± 10C for below 25C. 4.9 Communication interfaces The following sections provide the information about communication interfaces. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 85 Electrical characteristics 4.9.1 LPSPI timing parameters The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic LPSPI timing modes. All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all LPSPI pins. Table 82. LPSPI Master mode timing Number Symbol Description Min. Max. Units Note 1 fSCK Frequency of operation 2 tSCK SCK period -- fperiph / 2 MHz 1 2 x tperiph -- ns 2 3 tLead Enable lead time 1 -- tperiph -- 4 tLag Enable lag time 1 -- tperiph -- 5 tWSCK Clock (SCK) high or low time tSCK / 2 - 3 -- ns -- 6 tSU Data setup time (inputs) 10 -- ns -- 7 tHI Data hold time (inputs) 2 -- ns -- 8 tV Data valid (after SCK edge) -- 8 ns -- 9 tHO Data hold time (outputs) 0 -- ns -- 1 Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must guaranteed this limit is not exceeded. 2 tperiph = 1000 / fperiph 1 PCS (OUTPUT) 3 2 4 SCK (CPOL=0) (OUTPUT) 5 5 SCK (CPOL=1) (OUTPUT) SIN (INPUT) 6 7 2 MSB IN BIT 6 . . . 1 LSB IN SOUT (OUTPUT) 2 MSB OUT 8 BIT 6 . . . 1 9 LSB OUT 1. If configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 35. LPSPI Master mode timing (CPHA = 0) i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 86 NXP Semiconductors Electrical characteristics 1 PCS (OUTPUT) 3 2 4 SCK (CPOL=0) (OUTPUT) SCK (CPOL=1) (OUTPUT) SIN (INPUT) 5 5 6 7 MSB IN2 8 SOUT (OUTPUT) PORT DATA MASTER MSB OUT BIT 6 . . . 1 9 BIT 6 . . . 1 LSB IN MASTER LSB OUT PORT DATA 1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 36. LPSPI Master mode timing (CPHA = 1) s Table 83. LPSPI Slave mode timing Number Symbol Description Min. Max. Units Note 1 fSCK Frequency of operation 2 tSCK SCK period 0 fperiph / 2 MHz 1 2 x tperiph -- ns 2 3 tLead Enable lead time 1 -- tperiph -- 4 tLag Enable lag time 1 -- tperiph -- 5 tWSCK Clock (SCK) high or low time tSCK / 2 - 5 -- ns -- 6 tSU Data setup time (inputs) 2.7 -- ns -- 7 tHI Data hold time (inputs) 8 ta Slave access time 9 tdis Slave MISO disable time 3.8 -- ns -- -- tperiph ns 3 -- tperiph ns 4 10 tV Data valid (after SCK edge) -- 14.5 ns -- 11 tHO Data hold time (outputs) 0 -- ns -- 1 Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must be guaranteed this limit is not exceeded. 2 tperiph = 1000 / fperiph 3 Time to data active from high-impedance state 4 Hold time to high-impedance state i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 87 Electrical characteristics PCS (INPUT) SCK (CPOL=0) (INPUT) SCK (CPOL=1) (INPUT) 8 SIN (OUTPUT) SOUT (INPUT) 2 4 3 5 5 see note 6 SLAVE MSB 7 10 BIT 6 . . . 1 9 11 11 SLAVE LSB OUT SEE NOTE MSB IN BIT 6 . . . 1 LSB IN NOTE: Not defined Figure 37. LPSPI Slave mode timing (CPHA = 0) PCS (INPUT) SCK (CPOL=0) (INPUT) SCK (CPOL=1) (INPUT) SIN (OUTPUT) 2 3 5 5 10 see note SLAVE MSB OUT 11 BIT 6 . . . 1 4 9 SLAVE LSB OUT 8 SOUT (INPUT) NOTE: Not defined 6 7 MSB IN BIT 6 . . . 1 LSB IN Figure 38. LPSPI Slave mode timing (CPHA = 1) i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 88 NXP Semiconductors 4.9.2 LPI2C module timing parameters This section describes the timing parameters of the LPI2C module. Table 84. LPI2C module timing parameters Symbol Description Min fSCL SCL clock frequency Standard mode (Sm) 0 Fast mode (Fm) 0 Fast mode Plus (Fm+) 0 High speed mode (Hs-mode) 0 Ultra Fast mode (UFm) 0 1 Hs-mode and Ultra Fast mode are supported in slave mode. Max 100 400 1000 3400 5000 Electrical characteristics Unit kHz Notes 1 4.9.3 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC timing This section describes the electrical information of the uSDHC, which includes SD3.0 (Single Data Rate) timing and eMMC5.0 (up to 200 MHz) timing. 4.9.3.1 SD3.0/eMMC4.3 (Single Data Rate) specifications Figure 39 depicts the timing of SD3.0/eMMC4.3, and Table 85 lists the SD/eMMC4.3 timing characteristics. SD4 SD2 SD1 SD5 SDx_CLK SD3 SD6 Output from uSDHC to card SDx_DATA[7:0] SD7 SD8 Input from card to uSDHC SDx_DATA[7:0] Figure 39. SD/eMMC4.3 timing i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 89 Electrical characteristics Table 85. SD/eMMC4.3 interface timing specification ID Parameter Symbols Min Max Unit SD1 SD2 SD3 SD4 SD5 Card Input Clock Clock Frequency (Low Speed) Clock Frequency (SD/SDIO Full Speed/High Speed) Clock Frequency (MMC Full Speed/High Speed) Clock Frequency (Identification Mode) Clock Low Time Clock High Time Clock Rise Time Clock Fall Time fPP1 0 fPP2 0 fPP3 0 fOD 100 tWL 7 tWH 7 tTLH -- tTHL -- uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK) 400 25/50 20/52 400 -- -- 3 3 kHz MHz MHz kHz ns ns ns ns SD6 uSDHC Output Delay tOD -6.6 3.6 ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK) SD7 uSDHC Input Setup Time tISU 2.5 -- ns SD8 uSDHC Input Hold Time4 tIH 1.5 -- ns 1 In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V. 2 In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 025 MHz. In high-speed mode, clock frequency can be any value between 050 MHz. 3 In normal (full) speed mode for MMC card, clock frequency can be any value between 020 MHz. In high-speed mode, clock frequency can be any value between 052 MHz. 4 To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns. 4.9.3.2 eMMC4.4/4.41/SD3.0 (Dual Data Rate) AC timing) Figure 40 depicts the timing of eMMC4.4/4.41/SD3.0. Table 86 lists the eMMC4.4/4.41/SD3.0 timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD). i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 90 NXP Semiconductors Electrical characteristics SD1 SDx_CLK SD2 SD2 Output from eSDHCv3 to card SDx_DATA[7:0] ...... SD3 SD4 Input from card to eSDHCv3 SDx_DATA[7:0] ...... Figure 40. eMMC4.4/4.41/SD3.0 timing Table 86. eMMC4.4/4.41/SD3.0 interface timing specification ID Parameter Symbols Min Max Card Input Clock SD1 Clock Frequency (eMMC4.4/4.41 DDR) SD1 Clock Frequency (SD3.0 DDR) fPP 0 52 fPP 0 50 uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK) SD2 uSDHC Output Delay tOD 2.8 6.8 uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK) SD3 uSDHC Input Setup Time SD4 uSDHC Input Hold Time tISU 2.4 -- tIH 1.2 -- Unit MHz MHz ns ns ns 4.9.3.3 SDR50/SDR104 AC timing Figure 41 depicts the timing of SDR50/SDR104, and Table 87 lists the SDR50/SDR104 timing characteristics. SD1 SD2 SD3 SCK SD4/SD5 4-bit output from uSDHC to card 4-bit input from card to uSDHC SD6 SD7 SD8 Figure 41. SDR50/SDR104 timing i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 91 Electrical characteristics Table 87. SDR50/SDR104 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency Period SD2 Clock Low Time SD3 Clock High Time tCLK 5.0 -- ns tCL 0.46 x tCLK 0.54 x tCLK ns tCH 0.46 x tCLK 0.54 x tCLK ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK) SD4 uSDHC Output Delay tOD 3 1 ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK) SD5 uSDHC Output Delay tOD 1.6 1 ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK) SD6 uSDHC Input Setup Time tISU 2.5 -- ns SD7 uSDHC Input Hold Time tIH 1.5 -- ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1 SD8 Card Output Data Window 1Data window in SDR104 mode is variable. tODW 0.5 x tCLK -- ns 4.9.3.4 HS200 mode timing Figure 42 depicts the timing of HS200 mode, and Table 88 lists the HS200 timing characteristics. SCK 8-bit output from uSDHC to eMMC 8-bit input from eMMC to uSDHC SD1 SD2 SD3 SD5 SD8 Figure 42. HS200 mode timing i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 92 NXP Semiconductors Electrical characteristics Table 88. HS200 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency Period SD2 Clock Low Time SD3 Clock High Time tCLK 5.0 -- ns tCL 0.46 x tCLK 0.54 x tCLK ns tCH 0.46 x tCLK 0.54 x tCLK ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK) SD5 uSDHC Output Delay tOD 1.6 0.74 ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1 SD8 Card Output Data Window 1HS200 is for 8 bits while SDR104 is for 4 bits. tODW 0.5 x tCLK -- ns 4.9.3.5 HS400 specifications - eMMC 5.0 only Be aware that only data are sampled on both edges of the clock (not applicable to CMD). The CMD input/output timing for HS400 mode is the same as CMD input/output timing for HS200 mode. Check SD5 and SD8 parameters in the HS200 interface timing specifications table for CMD input/output timing of HS400 mode. Table 88 lists the HS400 timing characteristics. Table 89. HS400 interface timing specification Symbol SD1 SD2 SD3 SD4 SD5 Operating voltage Description Min Max 1.71 1.95 Card input clock Clock frequency Clock period Clock Low time Clock High time 0 5.0 0.46 x SD1 0.46 x SD1 200 -- 0.54 x SD1 0.54 x SD1 SDHC output / card Inputs SDHC_CMD, SDHC_Dn (reference to SDHC_CLK) Output skew from data to edge of SCK 0.45 -- Output skew from edge of SCK to data 0.45 -- Unit V MHz ns ns ns ns ns SDHC input / card outputs (reference to strobe) SD6 SDHC input skew -- 0.45 ns SD7 SDHC hold skew -- 0.45 ns i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 93 Electrical characteristics Figure 42 depicts the timing of HS400. SCK DAT0 Output from D.A..T1 uSDHC to eMMC DAT7 Strobe DAT0 Input from eMMC to uSDHC D.A..T1 DAT7 SD1 SD2 SD3 SD4 SD5 SD4 SD5 SD6 SD7 Figure 43. HS400 timing 4.9.3.6 Bus operation condition for 3.3 V and 1.8 V signaling Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50/HS200/HS400 mode is 1.8 V. 4.9.4 Ethernet controller (ENET) AC electrical specifications 4.9.4.1 ENET MII mode timing This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal timings. 4.9.4.1.1 MII receive signal timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER, and ENET_RX_CLK) The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_RX_CLK frequency. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 94 NXP Semiconductors Electrical characteristics Figure 44 shows MII receive signal timings. Table 90 describes the timing parameters (M1M4) shown in the figure. M3 ENET_RX_CLK (input) M4 ENET_RX_DATA3,2,1,0 (inputs) ENET_RX_EN ENET_RX_ER M1 M2 Figure 44. MII receive signal timing diagram ID M1 M2 M3 M4 Table 90. MII receive signal timing Characteristic1 Min. ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to ENET_RX_CLK setup ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER hold ENET_RX_CLK pulse width high ENET_RX_CLK pulse width low 5 5 35% 35% Max. Unit -- ns -- ns 65% 65% ENET_RX_CLK period ENET_RX_CLK period 1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode. 4.9.4.1.2 MII transmit signal timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER, and ENET_TX_CLK) The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_TX_CLK frequency. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 95 Electrical characteristics Figure 45 shows MII transmit signal timings. Table 91 describes the timing parameters (M5M8) shown in the figure. M7 ENET_TX_CLK (input) ENET_TX_DATA3,2,1,0 (outputs) ENET_TX_EN ENET_TX_ER M5 M8 M6 Figure 45. MII transmit signal timing diagram ID M5 M6 M7 M8 Table 91. MII transmit signal timing Characteristic1 Min. ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER invalid ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER valid ENET_TX_CLK pulse width high ENET_TX_CLK pulse width low 5 -- 35% 35% Max. -- 20 65% 65% Unit ns ns ENET_TX_CLK period ENET_TX_CLK period 1 ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode. 4.9.4.1.3 MII asynchronous inputs signal timing (ENET_CRS and ENET_COL) Figure 46 shows MII asynchronous input timings. Table 92 describes the timing parameter (M9) shown in the figure. ENET_CRS, ENET_COL M9 Figure 46. MII asynchronous inputs timing diagram Table 92. MII asynchronous inputs signal timing ID M91 Characteristic ENET_CRS to ENET_COL minimum pulse width Min. 1.5 Max. -- 1 ENET_COL has the same timing in 10-Mbit 7-wire interface mode. Unit ENET_TX_CLK period i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 96 NXP Semiconductors Electrical characteristics 4.9.4.1.4 MII serial management channel timing (ENET_MDIO and ENET_MDC) The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification. However the ENET can function correctly with a maximum MDC frequency of 15 MHz. Figure 47 shows MII asynchronous input timings. Table 93 describes the timing parameters (M10M15) shown in the figure. ENET_MDC (output) M14 M15 M10 ENET_MDIO (output) M11 ENET_MDIO (input) ID M10 M11 M12 M13 M14 M15 M12 M13 Figure 47. MII serial management channel timing diagram Table 93. MII serial management channel timing Characteristic ENET_MDC falling edge to ENET_MDIO output invalid (min. propagation delay) ENET_MDC falling edge to ENET_MDIO output valid (max. propagation delay) ENET_MDIO (input) to ENET_MDC rising edge setup ENET_MDIO (input) to ENET_MDC rising edge hold ENET_MDC pulse width high ENET_MDC pulse width low Min. 0 -- 18 0 40% 40% Max. -- 5 -- -- 60% 60% Unit ns ns ns ns ENET_MDC period ENET_MDC period 4.9.4.2 RMII mode timing In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference clock. Figure 48 shows RMII mode timings. Table 94 describes the timing parameters (M16M21) shown in the figure. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 97 Electrical characteristics ENET_CLK (input) M16 M17 M18 ENET_TX_DATA (output) ENET_TX_EN ENET_RX_EN (input) ENET_RX_DATA[1:0] ENET_RX_ER M19 M20 M21 Figure 48. RMII mode signal timing diagram Table 94. RMII signal timing ID M16 M17 M18 M19 M20 M21 Characteristic ENET_CLK pulse width high ENET_CLK pulse width low ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to ENET_CLK setup ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold Min. 35% 35% 4 -- 2 2 Max. 65% 65% -- 13 -- Unit ENET_CLK period ENET_CLK period ns ns ns -- ns 4.9.4.3 RGMII signal switching specifications The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices. Table 95. RGMII signal switching specifications1 Symbol Tcyc2 TskewT3 Description Clock cycle duration Data to clock output skew at transmitter Min. 7.2 -500 Max. Unit 8.8 ns 500 ps i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 98 NXP Semiconductors Electrical characteristics Table 95. RGMII signal switching specifications1 (continued) Symbol Description Min. Max. Unit TskewR3 Duty_G4 Duty_T4 Data to clock input skew at receiver Duty cycle for Gigabit Duty cycle for 10/100T 1 2.6 ns 45 85 % 40 90 % Tr/Tf Rise/fall time (2080%) -- 0.98 ns 1 The timings assume the following configuration: DDR_SEL = (11)b DSE (drive-strength) = (111)b 2 For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively. 3 For all versions of RGMII prior to 2.0; this implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value is unspecified. 4 Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between. 2'-))?48#ATTRANSMITTER 2'-))?48$NNTO 4SKEW4 2'-))?48?#4, 48%. 48%22 4SKEW2 2'-))?48#ATRECEIVER Figure 49. RGMII transmit signal timing diagram 2'-))?28#ATTRANSMITTER 2'-))?28$NNTO 4SKEW4 2'-))?28?#4, 28$6 28%22 4SKEW2 2'-))?28#ATRECEIVER Figure 50. RGMII receive signal timing diagram i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 99 Electrical characteristics 2'-))?28#SOURCEOFDATA )NTERNALDELAY 2'-))?28$NNTO 4SETUP4 4HOLD4 2'-))?28?#4, 2'-))?28#ATRECEIVER 28$6 28%22 4SETUP2 4HOLD2 Figure 51. RGMII receive signal timing diagram with internal delay 4.9.4.4 Ethernet Quality-of-Service (QOS) electrical specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. It also supports the following Time Sensitive Networking (TSN) features: · 802.1Qbv Enhancements to Scheduling Traffic · 802.1Qbu Frame preemption · Time based Scheduling Please refer to RGMII, RMII, and MII specifications in Section 4.9.4, Ethernet controller (ENET) AC electrical specifications 4.9.5 Controller Area Network (CAN) AC electrical specifications The Controller Area Network (CAN) module is a communication controller implementing the CAN protocol according to the CAN with Flexible Data rate (CAN FD) protocol and the CAN 2.0B protocol specification. The processor has three CAN modules available. Tx and Rx ports are multiplexed with other I/O pins. See the IOMUXC chapter of the device reference manual to see which pins expose Tx and Rx pins; these ports are named CAN_TX and CAN_RX, respectively. Please refer to Section 4.3.2.1, General purpose I/O (GPIO) AC parameters. 4.9.6 LPUART electrical specifications Please refer to Section 4.3.2.1, General purpose I/O (GPIO) AC parameters. 4.9.7 USB PHY parameters This section describes the USB-OTG PHY parameters. The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG with the following amendments. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 100 NXP Semiconductors Electrical characteristics · USB ENGINEERING CHANGE NOTICE -- Title: 5V Short Circuit Withstand Requirement Change -- Applies to: Universal Serial Bus Specification, Revision 2.0 · Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000 · USB ENGINEERING CHANGE NOTICE -- Title: Pull-up/Pull-down resistors -- Applies to: Universal Serial Bus Specification, Revision 2.0 · USB ENGINEERING CHANGE NOTICE -- Title: Suspend Current Limit Changes -- Applies to: Universal Serial Bus Specification, Revision 2.0 · USB ENGINEERING CHANGE NOTICE -- Title: USB 2.0 Phase Locked SOFs -- Applies to: Universal Serial Bus Specification, Revision 2.0 · On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification -- Revision 2.0 plus errata and ecn June 4, 2010 · Battery Charging Specification (available from USB-IF) -- Revision 1.2, December 7, 2010 -- Portable device only 4.10 Timers This section provides information on timers. 4.10.1 Pulse Width Modulator (PWM) characteristics This section describes the electrical information of the PWM. Table 96. PWM timing parameters Parameter PWM Clock Frequency Output skew Symbol Typ -- -- -- -- Max Unit 240 MHz 2 ns 4.10.2 Quad timer timing Table 97 lists the quad timer parameters. i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 101 Electrical characteristics Table 97. Quad timer timing Characteristic Symbo Min1 Max Unit Timer input period TIN 2T + 6 -- ns Timer input high/low period TINHL 1T + 3 -- ns Timer output period TOUT 33 -- ns Timer output high/low period TOUTHL 16.7 -- ns 1 T = clock cycle. For 60 MHz operation, T = 16.7 ns. 4IMER)NPUTS 4 ). 4).(, 4).(, See Figure 4IMER/UTPUTS 4 /54 4 /54(, Figure 52. Quad timer timing 4 /54(, i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 102 NXP Semiconductors Boot mode configuration 5 Boot mode configuration This section provides information on boot mode configuration pins allocation and boot devices interfaces allocation. 5.1 Boot mode configuration pins Table 98 provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse. The boot option pins are in effect when BT_FUSE_SEL fuse is `0' (cleared, which is the case for an unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX RT1170 Fuse Map and the System Boot chapter in i.MX RT1170 Reference Manual (IMXRT1170RM). Table 98. Fuses and associated pins used for boot Pad GPIO_LPSR_02 GPIO_LPSR_03 GPIO_DISP_B1_06 GPIO_DISP_B1_07 GPIO_DISP_B1_08 GPIO_DISP_B1_09 GPIO_DISP_B1_10 GPIO_DISP_B1_11 GPIO_DISP_B2_00 GPIO_DISP_B2_01 GPIO_DISP_B2_02 GPIO_DISP_B2_03 GPIO_DISP_B2_04 GPIO_DISP_B2_05 Default setting on reset 35 K pull-down 35 K pull-down HighZ HighZ HighZ HighZ HighZ HighZ HighZ HighZ HighZ HighZ HighZ HighZ eFuse name BOOT_MODE[0] BOOT_MODE[1] BT_CFG[0] BT_CFG[1] BT_CFG[2] BT_CFG[3] BT_CFG[4] BT_CFG[5] BT_CFG[6] BT_CFG[7] BT_CFG[8] BT_CFG[9] BT_CFG[10] BT_CFG[11] Details Boot Options, Pin value overrides fuse settings for BT_FUSE_SEL = `0'. Signal Configuration as Fuse Override Input at Power Up. These are special I/O lines that control the boot up configuration during product development. In production, the boot configuration can be controlled by fuses. 5.2 Boot device interface allocation The following tables list the interfaces that can be used by the boot process in accordance with the specific boot mode configuration. The tables also describe the interface's specific modes and IOMUXC allocation, which are configured during boot when appropriate. Table 99. Boot through NAND PAD Name GPIO_EMC_B1_00 GPIO_EMC_B1_01 GPIO_EMC_B2_02 IO Function semc.DATA[0] semc.DATA[1] semc.DATA[2] ALT ALT 0 ALT 0 ALT 0 Comments -- -- -- i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 103 Boot mode configuration GPIO_EMC_B1_03 GPIO_EMC_B1_04 GPIO_EMC_B1_05 GPIO_EMC_B1_06 GPIO_EMC_B1_07 GPIO_EMC_B1_30 GPIO_EMC_B1_31 GPIO_EMC_B1_32 GPIO_EMC_B1_33 GPIO_EMC_B1_34 GPIO_EMC_B1_35 GPIO_EMC_B1_36 GPIO_EMC_B1_37 GPIO_EMC_B1_18 GPIO_EMC_B1_19 GPIO_EMC_B1_20 GPIO_EMC_B1_22 GPIO_EMC_B1_41 PAD Name GPIO_SD_B2_00 GPIO_SD_B2_01 GPIO_SD_B2_02 GPIO_SD_B2_03 GPIO_SD_B2_04 GPIO_SD_B1_05 GPIO_SD_B1_04 GPIO_SD_B1_03 GPIO_SD_B2_05 GPIO_EMC_B2_18 GPIO_SD_B2_06 GPIO_SD_B1_02 Table 99. Boot through NAND semc.DATA[3] semc.DATA[4] semc.DATA[5] semc.DATA[6] semc.DATA[7] semc.DATA[8] semc.DATA[9] semc.DATA[10] semc.DATA[11] semc.DATA[12] semc.DATA[13] semc.DATA[14] semc.DATA[15] semc.ADDR[9] semc.ADDR[11] semc.ADDR[12] semc.BA1 semc.CSX[0] ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 Table 100. Boot through FlexSPI1 IO Function flexspi1.B_DATA[3] flexspi1.B_DATA[2] flexspi1.B_DATA[1] flexspi1.B_DATA[0] flexspi1.B_SCLK flexspi1.B_DQS flexspi1.B_SS0_B flexspi1.B_SS1_B flexspi1.A_DQS flexspi1.A_DQS Mux Mode ALT 1 ALT 1 ALT 1 ALT 1 ALT 1 ALT 8 ALT 8 ALT 9 ALT 1 ALT 6 flexspi1.A_SS0_B flexspi1.A_SS1_B ALT 1 ALT 9 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Comments -- -- -- -- -- -- -- -- -- Secondary option for DQS -- -- i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 104 NXP Semiconductors PAD Name GPIO_SD_B2_07 GPIO_SD_B2_08 GPIO_SD_B2_09 GPIO_SD_B2_10 GPIO_SD_B2_11 Boot mode configuration Table 100. Boot through FlexSPI1 (continued) IO Function flexspi1.A_SCLK flexspi1.A_DATA[0] flexspi1.A_DATA[1] flexspi1.A_DATA[2] flexspi1.A_DATA[3] Mux Mode ALT 1 ALT 1 ALT 1 ALT 1 ALT 1 Comments -- -- -- -- -- Table 101. Boot through FlexSPI2 (QSPI/HyperFLASH) PAD Name GPIO_EMC_B1_41 GPIO_EMC_B2_00 GPIO_EMC_B2_01 GPIO_EMC_B2_02 GPIO_EMC_B2_03 GPIO_EMC_B2_04 GPIO_EMC_B2_05 GPIO_EMC_B2_06 GPIO_EMC_B2_07 GPIO_EMC_B2_08 GPIO_EMC_B2_09 GPIO_EMC_B2_10 GPIO_EMC_B2_11 GPIO_EMC_B2_12 GPIO_EMC_B2_13 GPIO_EMC_B2_14 GPIO_EMC_B2_15 GPIO_EMC_B2_16 GPIO_EMC_B2_17 GPIO_EMC_B2_18 GPIO_EMC_B2_19 GPIO_EMC_B2_20 IO Function flexspi2.B_DATA[7] flexspi2.B_DATA[6] flexspi2.B_DATA[5] flexspi2.B_DATA[4] flexspi2.B_DATA[3] flexspi2.B_DATA[2] flexspi2.B_DATA[1] flexspi2.B_DATA[0] flexspi2.B_DQS flexspi2.B_SS0_B flexspi2.B_SCLK flexspi2.A_SCLK flexspi2.A_SS0_B flexspi2.A_DQS flexspi2.A_DATA[0] flexspi2.A_DATA[1] flexspi2.A_DATA[2] flexspi2.A_DATA[3] flexspi2.A_DATA[4] flexspi2.A_DATA[5] flexspi2.A_DATA[6] flexspi2.A_DATA[7] ALT ALT 4 ALT 4 ALT 4 ALT 4 ALT 4 ALT 4 ALT 4 ALT 4 ALT 4 ALT 4 ALT 4 ALT 4 ALT 4 ALT 4 ALT 4 ALT 4 ALT 4 ALT 4 ALT 4 ALT 4 ALT 4 ALT 4 Comments -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 105 Boot mode configuration PAD Name GPIO_SD_B1_00 GPIO_EMC_B1_40 PAD Name GPIO_AD_17 GPIO_AD_18 GPIO_AD_19 GPIO_AD_20 GPIO_AD_21 GPIO_AD_22 GPIO_AD_23 PAD Name GPIO_AD_32 GPIO_AD_33 GPIO_AD_34 GPIO_AD_35 GPIO_SD_B1_00 GPIO_SD_B1_01 GPIO_SD_B1_02 GPIO_SD_B1_03 GPIO_SD_B1_04 GPIO_SD_B1_05 PAD Name GPIO_AD_26 GPIO_AD_27 GPIO_AD_28 GPIO_SD_B2_00 GPIO_SD_B2_01 Table 102. FlexSPI reset IO Function gpio_mux4.IO[3] gpio_mux2.IO[8] Mux Mode ALT 5 ALT 5 Table 103. Boot through SAI1 IO Function sai1.MCLK sai1.RX_SYNC sai1.RX_BCLK sai1.RX_DATA[0] sai1.TX_DATA[0] sai1.TX_BCLK sai1.TX_SYNC Table 104. Boot through SD1 IO Function usdhc1.CD_B usdhc1.WP usdhc1.VSELECT usdhc1.RESET_B usdhc1.CMD usdhc1.CLK usdhc1.DATA0 usdhc1.DATA1 usdhc1.DATA2 usdhc1.DATA3 Table 105. Boot through SD2 IO Function usdhc2.CD_B usdhc2.WP usdhc2.VSELECT usdhc2.DATA3 usdhc2.DATA2 Mux Mode ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 Mux Mode ALT 4 ALT 4 ALT 4 ALT 4 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 Mux Mode ALT 11 ALT 11 ALT 11 ALT 0 ALT 0 Comments -- Secondary option Comments -- -- -- -- -- -- -- Comments -- -- -- -- -- -- -- -- -- -- Comments -- -- -- -- -- i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 106 NXP Semiconductors PAD Name GPIO_SD_B2_02 GPIO_SD_B2_03 GPIO_SD_B2_04 GPIO_SD_B2_05 GPIO_SD_B2_06 GPIO_SD_B2_08 GPIO_SD_B2_09 GPIO_SD_B2_10 GPIO_SD_B2_11 PAD Name GPIO_AD_28 GPIO_AD_29 GPIO_AD_30 GPIO_AD_31 PAD Name GPIO_SD_B2_07 GPIO_SD_B2_08 GPIO_SD_B2_09 GPIO_SD_B2_10 PAD Name GPIO_DISP_B1_04 GPIO_DISP_B1_07 GPIO_DISP_B1_06 GPIO_DISP_B1_05 Boot mode configuration Table 105. Boot through SD2 (continued) IO Function usdhc2.DATA1 usdhc2.DATA0 usdhc2.CLK usdhc2.CMD usdhc2.RESET_B usdhc2.DATA4 usdhc2.DATA5 usdhc2.DATA6 usdhc2.DATA7 Mux Mode ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 ALT 0 Comments -- -- -- -- -- -- -- -- -- Table 106. Boot through SPI1 IO Function lpspi1.SCK lpspi1.PCS0 lpspi1.SDO lpspi1.SDI Mux Mode ALT 0 ALT 0 ALT 0 ALT 0 Comments -- -- -- -- Table 107. Boot through SPI2 IO Function lpspi2.SCK lpspi2.PCS0 lpspi2.SDO lpspi2.SDI Mux Mode ALT 6 ALT 6 ALT 6 ALT 6 Comments -- -- -- -- Table 108. Boot through SPI3 IO Function lpspi3.SCK lpspi3.PCS0 lpspi3.SDO lpspi3.SDI Mux Mode ALT 9 ALT 9 ALT 9 ALT 9 Comments -- -- -- -- i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 107 Boot mode configuration PAD Name GPIO_DISP_B2_12 GPIO_DISP_B2_15 GPIO_DISP_B2_14 GPIO_DISP_B2_13 PAD Name GPIO_AD_24 GPIO_AD_25 GPIO_AD_26 GPIO_AD_27 PAD Name GPIO_LPSR_04 GPIO_LPSR_05 GPIO_LPSR_06 GPIO_LPSR_07 Table 109. Boot through SPI4 IO Function lpspi4.SCK lpspi4.PCS0 lpspi4.SDO lpspi4.SDI Mux Mode ALT 9 ALT 9 ALT 9 ALT 9 Table 110. Boot through UART1 IO Function lpuart1.TX lpuart1.RX lpuart1.CTS_B lpuart1.RTS_B Mux Mode ALT 0 ALT 0 ALT 0 ALT 0 Table 111. Boot through UART12 IO Function lpuart12.RTS_B lpuart12.CTS_B lpuart12.TX lpuart12.RX Mux Mode ALT 3 ALT 3 ALT 3 ALT 3 Comments -- -- -- -- Comments -- -- -- -- Comments -- -- -- -- i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 108 NXP Semiconductors Package information and contact assignments 6 Package information and contact assignments This section includes the contact assignment information and mechanical package drawing. 6.1 14 x 14 mm package information 6.1.1 14 x 14 mm, 0.8 mm pitch, ball matrix Figure 53 shows the top, bottom, and side views of the 14 x 14 mm MAPBGA package. Figure 53. 14 x 14 mm BGA, case x package top, bottom, and side Views i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 109 Package information and contact assignments 6.1.2 14 x 14 mm supplies contact assignments and functional contact assignments Table 112 shows the device connection list for ground, sense, and reference contact signals. Table 112. 14 x 14 mm supplies contact assignment Supply Rail Name ADC_VREFH DAC_OUT DCDC_ANA DCDC_ANA_SENSE DCDC_DIG DCDC_DIG_SENSE DCDC_GND DCDC_IN DCDC_IN_Q DCDC_LN DCDC_LP DCDC_MODE DCDC_PSWITCH NVCC_DISP1 NVCC_DISP2 NVCC_EMC1 NVCC_EMC2 NVCC_GPIO NVCC_LPSR NVCC_SNVS NVCC_SD1 NVCC_SD2 VDD_LPSR_ANA VDD_LPSR_DIG VDD_LPSR_IN VDD_MIPI_1P0 VDD_MIPI_1P8 VDD_USB_1P8 VDD_USB_3P3 Ball(s) Position(s) G16 H16 M7, M8 M6 K8, K9, L8 L7 K6, K7, L6 M5, N5 L5 T4, U4 T3, U3 N4 P3 D12 E7 F6, F7, G6 H6, J6 M12 P7 U11 D14 G13 P12 P11 R12 F10 F9 H12 G12 Remark -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 110 NXP Semiconductors Package information and contact assignments Table 112. 14 x 14 mm supplies contact assignment (continued) Supply Rail Name VDD_SOC_IN VDD_SNVS_ANA VDD_SNVS_DIG VDD_SNVS_IN VDDA_1P0 VDDA_1P8_IN VDDA_ADC_1P8 VDDA_ADC_3P3 VSS Ball(s) Position(s) H8, H9, H10, J8, J9, J10, K10 U14 T14 U12 N11 M11 K15 J13 A1, A17, B7, C8, C10, C12, C14, D4, F11, F12, F13, G3, G7, G8, G9, G10, G11, G15, H7, H11, J7, J11, K11, L3, L10, L11, L15, P4, P14, R4, R7, T12, U1, U17 Remark -- -- -- -- -- -- -- Table 113 shows an alpha-sorted list of functional contact assignments of the 14 x 14 mm package. Table 113. 14 x 14 mm functional contact assignment Ball name CLK1_N CLK1_P GPIO_AD_00 GPIO_AD_01 GPIO_AD_02 GPIO_AD_03 GPIO_AD_04 GPIO_AD_05 GPIO_AD_06 GPIO_AD_07 GPIO_AD_08 14 x 14 ball Power group T15 -- U15 -- N12 NVCC_GPIO R14 NVCC_GPIO R13 NVCC_GPIO P15 NVCC_GPIO M13 NVCC_GPIO P13 NVCC_GPIO N13 NVCC_GPIO T17 NVCC_GPIO R15 NVCC_GPIO Ball Types Default modes Default setting Default function Input/ output Value -- -- Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO -- -- ALT 5 GPIO_MUX2_IO31 ALT 5 GPIO_MUX3_IO0 ALT 5 GPIO_MUX3_IO1 ALT 5 GPIO_MUX3_IO2 ALT 5 GPIO_MUX3_IO3 ALT 5 GPIO_MUX3_IO4 ALT 5 GPIO_MUX3_IO5 ALT 5 GPIO_MUX3_IO6 ALT 5 GPIO_MUX3_IO7 -- -- Input Input Input Input Input Input Input Input Input -- -- 35K PU1 35K PU 35K PD2 35K PD 35K PD 35K PD 35K PD 35K PD 35K PD i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 111 Package information and contact assignments Table 113. 14 x 14 mm functional contact assignment (continued) Ball name GPIO_AD_09 GPIO_AD_10 GPIO_AD_11 GPIO_AD_12 GPIO_AD_13 GPIO_AD_14 GPIO_AD_15 GPIO_AD_16 GPIO_AD_17 GPIO_AD_18 GPIO_AD_19 GPIO_AD_20 GPIO_AD_21 GPIO_AD_22 GPIO_AD_23 GPIO_AD_24 GPIO_AD_25 GPIO_AD_26 GPIO_AD_27 14 x 14 ball Power group R16 NVCC_GPIO R17 NVCC_GPIO P16 NVCC_GPIO P17 NVCC_GPIO L12 NVCC_GPIO N14 NVCC_GPIO M14 NVCC_GPIO N17 NVCC_GPIO N15 NVCC_GPIO M16 NVCC_GPIO L16 NVCC_GPIO K13 NVCC_GPIO K14 NVCC_GPIO K12 NVCC_GPIO J12 NVCC_GPIO L13 NVCC_GPIO M15 NVCC_GPIO L14 NVCC_GPIO N16 NVCC_GPIO Ball Types Default modes Default setting Default function Input/ output Value Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO ALT 5 GPIO_MUX3_IO8 ALT 5 GPIO_MUX3_IO9 ALT 5 GPIO_MUX3_IO10 ALT 5 GPIO_MUX3_IO11 ALT 5 GPIO_MUX3_IO12 ALT 5 GPIO_MUX3_IO13 ALT 5 GPIO_MUX3_IO14 ALT 5 GPIO_MUX3_IO15 ALT 5 GPIO_MUX3_IO16 ALT 5 GPIO_MUX3_IO17 ALT 5 GPIO_MUX3_IO18 ALT 5 GPIO_MUX3_IO19 ALT 5 GPIO_MUX3_IO20 ALT 5 GPIO_MUX3_IO21 ALT 5 GPIO_MUX3_IO22 ALT 5 GPIO_MUX3_IO23 ALT 5 GPIO_MUX3_IO24 ALT 5 GPIO_MUX3_IO25 ALT 5 GPIO_MUX3_IO26 Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input 35K PD 35K PD 35K PD 35K PD 35K PD 35K PD 35K PD 35K PD 35K PD 35K PU 35K PD 35K PD 35K PD 35K PD 35K PD 35K PD 35K PD 35K PU 35K PU i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 112 NXP Semiconductors Package information and contact assignments Table 113. 14 x 14 mm functional contact assignment (continued) Ball name GPIO_AD_28 GPIO_AD_29 GPIO_AD_30 GPIO_AD_31 GPIO_AD_32 GPIO_AD_33 GPIO_AD_34 GPIO_AD_35 GPIO_DISP_B1_00 GPIO_DISP_B1_01 GPIO_DISP_B1_02 GPIO_DISP_B1_03 GPIO_DISP_B1_04 GPIO_DISP_B1_05 GPIO_DISP_B1_06 GPIO_DISP_B1_07 GPIO_DISP_B1_08 GPIO_DISP_B1_09 GPIO_DISP_B1_10 14 x 14 ball Power group L17 NVCC_GPIO M17 NVCC_GPIO K17 NVCC_GPIO J17 NVCC_GPIO K16 NVCC_GPIO H17 NVCC_GPIO J16 NVCC_GPIO G17 NVCC_GPIO E13 NVCC_DISP1 D13 NVCC_DISP1 D11 NVCC_DISP1 E11 NVCC_DISP1 E10 NVCC_DISP1 C11 NVCC_DISP1 D10 NVCC_DISP1 E12 NVCC_DISP1 A15 NVCC_DISP1 C13 NVCC_DISP1 B14 NVCC_DISP1 Ball Types Default modes Default setting Default function Input/ output Value Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO ALT 5 GPIO_MUX3_IO27 ALT 5 GPIO_MUX3_IO28 ALT 5 GPIO_MUX3_IO29 ALT 5 GPIO_MUX3_IO30 ALT 5 GPIO_MUX3_IO31 ALT 5 GPIO_MUX4_IO0 ALT 5 GPIO_MUX4_IO1 ALT 5 GPIO_MUX4_IO2 ALT 5 GPIO_MUX4_IO21 ALT 5 GPIO_MUX4_IO22 ALT 5 GPIO_MUX4_IO23 ALT 5 GPIO_MUX4_IO24 ALT 5 GPIO_MUX4_IO25 ALT 5 GPIO_MUX4_IO26 ALT 5 GPIO_MUX4_IO27 ALT 5 GPIO_MUX4_IO28 ALT 5 GPIO_MUX4_IO29 ALT 5 GPIO_MUX4_IO30 ALT 5 GPIO_MUX4_IO31 Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input 35K PD 35K PD 35K PD 35K PD 35K PD 35K PD 35K PD 35K PU 50/35K PD3 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD Highz Highz Highz Highz Highz i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 113 Package information and contact assignments Table 113. 14 x 14 mm functional contact assignment (continued) Ball name GPIO_DISP_B1_11 GPIO_DISP_B2_00 GPIO_DISP_B2_01 GPIO_DISP_B2_02 GPIO_DISP_B2_03 GPIO_DISP_B2_04 GPIO_DISP_B2_05 GPIO_DISP_B2_06 GPIO_DISP_B2_07 GPIO_DISP_B2_08 GPIO_DISP_B2_09 GPIO_DISP_B2_10 GPIO_DISP_B2_11 GPIO_DISP_B2_12 GPIO_DISP_B2_13 GPIO_DISP_B2_14 GPIO_DISP_B2_15 GPIO_EMC_B1_00 GPIO_EMC_B1_01 14 x 14 ball Power group A14 NVCC_DISP1 E8 NVCC_DISP2 F8 NVCC_DISP2 E9 NVCC_DISP2 D7 NVCC_DISP2 C7 NVCC_DISP2 C9 NVCC_DISP2 C6 NVCC_DISP2 D6 NVCC_DISP2 B5 NVCC_DISP2 D8 NVCC_DISP2 D9 NVCC_DISP2 A6 NVCC_DISP2 B6 NVCC_DISP2 A5 NVCC_DISP2 A7 NVCC_DISP2 A4 NVCC_DISP2 F3 NVCC_EMC1 F2 NVCC_EMC1 Ball Types Default modes Default setting Default function Input/ output Value Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO ALT 5 GPIO_MUX5_IO0 ALT 5 GPIO_MUX5_IO1 ALT 5 GPIO_MUX5_IO2 ALT 5 GPIO_MUX5_IO3 ALT 5 GPIO_MUX5_IO4 ALT 5 GPIO_MUX5_IO5 ALT 5 GPIO_MUX5_IO6 ALT 5 GPIO_MUX5_IO7 ALT 5 GPIO_MUX5_IO8 ALT 5 GPIO_MUX5_IO9 ALT 5 GPIO_MUX5_IO10 ALT 5 GPIO_MUX5_IO11 ALT 5 GPIO_MUX5_IO12 ALT 5 GPIO_MUX5_IO13 ALT 5 GPIO_MUX5_IO14 ALT 5 GPIO_MUX5_IO15 ALT 5 GPIO_MUX5_IO16 ALT 5 GPIO_MUX1_IO0 ALT 5 GPIO_MUX1_IO1 Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Highz Highz Highz Highz Highz Highz Highz 35K PD 35K PD 35K PD 35K PD 35K PD 35K PD 35K PD 35K PD 35K PD 35K PU 50/35K PD 50/35K PD i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 114 NXP Semiconductors Package information and contact assignments Table 113. 14 x 14 mm functional contact assignment (continued) Ball name GPIO_EMC_B1_02 GPIO_EMC_B1_03 GPIO_EMC_B1_04 GPIO_EMC_B1_05 GPIO_EMC_B1_06 GPIO_EMC_B1_07 GPIO_EMC_B1_08 GPIO_EMC_B1_09 GPIO_EMC_B1_10 GPIO_EMC_B1_11 GPIO_EMC_B1_12 GPIO_EMC_B1_13 GPIO_EMC_B1_14 GPIO_EMC_B1_15 GPIO_EMC_B1_16 GPIO_EMC_B1_17 GPIO_EMC_B1_18 GPIO_EMC_B1_19 GPIO_EMC_B1_20 14 x 14 ball Power group G4 NVCC_EMC1 E4 NVCC_EMC1 H5 NVCC_EMC1 F4 NVCC_EMC1 H4 NVCC_EMC1 H3 NVCC_EMC1 F5 NVCC_EMC1 A3 NVCC_EMC1 A2 NVCC_EMC1 C2 NVCC_EMC1 C5 NVCC_EMC1 D5 NVCC_EMC1 B1 NVCC_EMC1 C1 NVCC_EMC1 D3 NVCC_EMC1 B3 NVCC_EMC1 B4 NVCC_EMC1 C4 NVCC_EMC1 C3 NVCC_EMC1 Ball Types Default modes Default setting Default function Input/ output Value Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO ALT 5 GPIO_MUX1_IO2 ALT 5 GPIO_MUX1_IO3 ALT 5 GPIO_MUX1_IO4 ALT 5 GPIO_MUX1_IO5 ALT 5 GPIO_MUX1_IO6 ALT 5 GPIO_MUX1_IO7 ALT 5 GPIO_MUX1_IO8 ALT 5 GPIO_MUX1_IO9 ALT 5 GPIO_MUX1_IO10 ALT 5 GPIO_MUX1_IO11 ALT 5 GPIO_MUX1_IO12 ALT 5 GPIO_MUX1_IO13 ALT 5 GPIO_MUX1_IO14 ALT 5 GPIO_MUX1_IO15 ALT 5 GPIO_MUX1_IO16 ALT 5 GPIO_MUX1_IO17 ALT 5 GPIO_MUX1_IO18 ALT 5 GPIO_MUX1_IO19 ALT 5 GPIO_MUX1_IO20 Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 115 Package information and contact assignments Table 113. 14 x 14 mm functional contact assignment (continued) Ball name GPIO_EMC_B1_21 GPIO_EMC_B1_22 GPIO_EMC_B1_23 GPIO_EMC_B1_24 GPIO_EMC_B1_25 GPIO_EMC_B1_26 GPIO_EMC_B1_27 GPIO_EMC_B1_28 GPIO_EMC_B1_29 GPIO_EMC_B1_30 GPIO_EMC_B1_31 GPIO_EMC_B1_32 GPIO_EMC_B1_33 GPIO_EMC_B1_34 GPIO_EMC_B1_35 GPIO_EMC_B1_36 GPIO_EMC_B1_37 GPIO_EMC_B1_38 GPIO_EMC_B1_39 14 x 14 ball Power group G2 NVCC_EMC1 H2 NVCC_EMC1 B2 NVCC_EMC1 J5 NVCC_EMC1 J4 NVCC_EMC1 J3 NVCC_EMC1 G5 NVCC_EMC1 E5 NVCC_EMC1 E6 NVCC_EMC1 E3 NVCC_EMC1 D2 NVCC_EMC1 D1 NVCC_EMC1 E2 NVCC_EMC1 E1 NVCC_EMC1 F1 NVCC_EMC1 G1 NVCC_EMC1 H1 NVCC_EMC1 J1 NVCC_EMC1 J2 NVCC_EMC1 Ball Types Default modes Default setting Default function Input/ output Value Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO ALT 5 GPIO_MUX1_IO21 ALT 5 GPIO_MUX1_IO22 ALT 5 GPIO_MUX1_IO23 ALT 5 GPIO_MUX1_IO24 ALT 5 GPIO_MUX1_IO25 ALT 5 GPIO_MUX1_IO26 ALT 5 GPIO_MUX1_IO27 ALT 5 GPIO_MUX1_IO28 ALT 5 GPIO_MUX1_IO29 ALT 5 GPIO_MUX1_IO30 ALT 5 GPIO_MUX1_IO31 ALT 5 GPIO_MUX2_IO0 ALT 5 GPIO_MUX2_IO1 ALT 5 GPIO_MUX2_IO2 ALT 5 GPIO_MUX2_IO3 ALT 5 GPIO_MUX2_IO4 ALT 5 GPIO_MUX2_IO5 ALT 5 GPIO_MUX2_IO6 ALT 5 GPIO_MUX2_IO7 Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 116 NXP Semiconductors Package information and contact assignments Table 113. 14 x 14 mm functional contact assignment (continued) Ball name GPIO_EMC_B1_40 GPIO_EMC_B1_41 GPIO_EMC_B2_00 GPIO_EMC_B2_01 GPIO_EMC_B2_02 GPIO_EMC_B2_03 GPIO_EMC_B2_04 GPIO_EMC_B2_05 GPIO_EMC_B2_06 GPIO_EMC_B2_07 GPIO_EMC_B2_08 GPIO_EMC_B2_09 GPIO_EMC_B2_10 GPIO_EMC_B2_11 GPIO_EMC_B2_12 GPIO_EMC_B2_13 GPIO_EMC_B2_14 GPIO_EMC_B2_15 GPIO_EMC_B2_16 14 x 14 ball Power group K1 NVCC_EMC1 L1 NVCC_EMC1 K2 NVCC_EMC2 K4 NVCC_EMC2 K3 NVCC_EMC2 R1 NVCC_EMC2 M1 NVCC_EMC2 N1 NVCC_EMC2 T1 NVCC_EMC2 M3 NVCC_EMC2 P1 NVCC_EMC2 N2 NVCC_EMC2 R2 NVCC_EMC2 L4 NVCC_EMC2 M2 NVCC_EMC2 K5 NVCC_EMC2 M4 NVCC_EMC2 L2 NVCC_EMC2 P2 NVCC_EMC2 Ball Types Default modes Default setting Default function Input/ output Value Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO ALT 5 GPIO_MUX2_IO8 ALT 5 GPIO_MUX2_IO9 ALT 5 GPIO_MUX2_IO10 ALT 5 GPIO_MUX2_IO11 ALT 5 GPIO_MUX2_IO12 ALT 5 GPIO_MUX2_IO13 ALT 5 GPIO_MUX2_IO14 ALT 5 GPIO_MUX2_IO15 ALT 5 GPIO_MUX2_IO16 ALT 5 GPIO_MUX2_IO17 ALT 5 GPIO_MUX2_IO18 ALT 5 GPIO_MUX2_IO19 ALT 5 GPIO_MUX2_IO20 ALT 5 GPIO_MUX2_IO21 ALT 5 GPIO_MUX2_IO22 ALT 5 GPIO_MUX2_IO23 ALT 5 GPIO_MUX2_IO24 ALT 5 GPIO_MUX2_IO25 ALT 5 GPIO_MUX2_IO26 Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PU 50/35K PD 50/35K PD 50/35K PU 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 117 Package information and contact assignments Table 113. 14 x 14 mm functional contact assignment (continued) Ball name GPIO_EMC_B2_17 GPIO_EMC_B2_18 GPIO_EMC_B2_19 GPIO_EMC_B2_20 GPIO_LPSR_00 GPIO_LPSR_01 GPIO_LPSR_02 GPIO_LPSR_03 GPIO_LPSR_04 GPIO_LPSR_05 GPIO_LPSR_06 GPIO_LPSR_07 GPIO_LPSR_08 GPIO_LPSR_09 GPIO_LPSR_10 GPIO_LPSR_11 GPIO_LPSR_12 GPIO_LPSR_13 GPIO_LPSR_14 14 x 14 ball Power group T2 NVCC_EMC2 N3 NVCC_EMC2 U2 NVCC_EMC2 R3 NVCC_EMC2 N6 NVCC_LPSR R6 NVCC_LPSR P6 NVCC_LPSR T7 NVCC_LPSR N7 NVCC_LPSR N8 NVCC_LPSR P8 NVCC_LPSR R8 NVCC_LPSR U8 NVCC_LPSR P5 NVCC_LPSR R5 NVCC_LPSR T5 NVCC_LPSR U5 NVCC_LPSR U6 NVCC_LPSR T6 NVCC_LPSR Ball Types Default modes Default setting Default function Input/ output Value Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO ALT 5 GPIO_MUX2_IO27 Input ALT 5 GPIO_MUX2_IO28 Input ALT 5 GPIO_MUX2_IO29 Input ALT 5 GPIO_MUX2_IO30 Input ALT 10 GPIO12_IO0 Input ALT 10 GPIO12_IO1 Input ALT 0 BOOT_MODE0 Input ALT 0 BOOT_MODE1 Input ALT 10 GPIO12_IO4 Input ALT 10 GPIO12_IO5 Input ALT 10 GPIO12_IO6 Input ALT 10 GPIO12_IO7 Input ALT 10 GPIO12_IO8 Input ALT 10 GPIO12_IO9 Input ALT 0 JTAG_MUX_TRSTB Input ALT 0 JTAG_MUX_TDO Input ALT 0 JTAG_MUX_TDI Input ALT 0 JTAG_MUX_MOD Input ALT 0 JTAG_MUX_TCK Input 50/35K PD 50/35K PD 50/35K PD 50/35K PD 35K PD 35K PD 35K PD 35K PD 35K PD 35K PD 35K PD 35K PD 35K PD 35K PD 35K PU Highz 35K PU 35K PD 35K PD i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 118 NXP Semiconductors Ball name GPIO_LPSR_15 GPIO_SD_B1_00 GPIO_SD_B1_01 GPIO_SD_B1_02 GPIO_SD_B1_03 GPIO_SD_B1_04 GPIO_SD_B1_05 GPIO_SD_B2_00 GPIO_SD_B2_01 GPIO_SD_B2_02 GPIO_SD_B2_03 GPIO_SD_B2_04 GPIO_SD_B2_05 GPIO_SD_B2_06 GPIO_SD_B2_07 GPIO_SD_B2_08 GPIO_SD_B2_09 GPIO_SD_B2_10 GPIO_SD_B2_11 Package information and contact assignments Table 113. 14 x 14 mm functional contact assignment (continued) 14 x 14 ball Power group U7 NVCC_LPSR B16 NVCC_SD1 D15 NVCC_SD1 C15 NVCC_SD1 B17 NVCC_SD1 B15 NVCC_SD1 A16 NVCC_SD1 J15 NVCC_SD2 J14 NVCC_SD2 H13 NVCC_SD2 E15 NVCC_SD2 F14 NVCC_SD2 E14 NVCC_SD2 F17 NVCC_SD2 G14 NVCC_SD2 F15 NVCC_SD2 H15 NVCC_SD2 H14 NVCC_SD2 F16 NVCC_SD2 Ball Types Default modes Default setting Default function Input/ output Value Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO Digital GPIO ALT 0 JTAG_MUX_TMS ALT 5 GPIO_MUX4_IO3 ALT 5 GPIO_MUX4_IO4 ALT 5 GPIO_MUX4_IO5 ALT 5 GPIO_MUX4_IO6 ALT 5 GPIO_MUX4_IO7 ALT 5 GPIO_MUX4_IO8 ALT 5 GPIO_MUX4_IO9 ALT 5 GPIO_MUX4_IO10 ALT 5 GPIO_MUX4_IO11 ALT 5 GPIO_MUX4_IO12 ALT 5 GPIO_MUX4_IO13 ALT 5 GPIO_MUX4_IO14 ALT 5 GPIO_MUX4_IO15 ALT 5 GPIO_MUX4_IO16 ALT 5 GPIO_MUX4_IO17 ALT 5 GPIO_MUX4_IO18 ALT 5 GPIO_MUX4_IO19 ALT 5 GPIO_MUX4_IO20 Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input 35K PU 50/35K PU 50/35K PD 50/35K PU 50/35K PU 50/35K PU 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PU 50/35K PU 50/35K PU 50/35K PD 50/35K PD 50/35K PD 50/35K PD 50/35K PD i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 119 Package information and contact assignments Table 113. 14 x 14 mm functional contact assignment (continued) Ball name GPIO_SNVS_00 GPIO_SNVS_01 GPIO_SNVS_02 GPIO_SNVS_03 GPIO_SNVS_04 GPIO_SNVS_05 GPIO_SNVS_06 GPIO_SNVS_07 GPIO_SNVS_08 GPIO_SNVS_09 MIPI_CSI_CKP MIPI_CSI_CKN MIPI_CSI_DN0 MIPI_CSI_DN1 MIPI_CSI_DP0 MIPI_CSI_DP1 MIPI_DSI_CKP MIPI_DSI_CKN MIPI_DSI_DN0 MIPI_DSI_DN1 MIPI_DSI_DP0 MIPI_DSI_DP1 ONOFF PMIC_ON_REQ 14 x 14 ball Power group Ball Types Default modes Default setting Default function Input/ output Value R10 NVCC_SNVS ANALOG ALT 5 GPIO13_IO3 GPIO Input P10 NVCC_SNVS ANALOG ALT 5 GPIO13_IO4 GPIO Input L9 NVCC_SNVS ANALOG ALT 5 GPIO13_IO5 GPIO Input M10 NVCC_SNVS ANALOG ALT 5 GPIO13_IO6 GPIO Input N10 NVCC_SNVS ANALOG ALT 5 GPIO13_IO7 GPIO Input P9 NVCC_SNVS ANALOG ALT 5 GPIO13_IO8 GPIO Input M9 NVCC_SNVS ANALOG ALT 5 GPIO13_IO9 GPIO Input R9 NVCC_SNVS ANALOG ALT 5 GPIO13_IO10 GPIO Input N9 NVCC_SNVS ANALOG ALT 5 GPIO13_IO11 GPIO Input R11 NVCC_SNVS ANALOG ALT 5 GPIO13_IO12 GPIO Input B12 VDD_MIPI_1P8 CSI -- -- -- A12 VDD_MIPI_1P8 CSI -- -- -- A11 VDD_MIPI_1P8 CSI -- -- -- A13 VDD_MIPI_1P8 CSI -- -- -- B11 VDD_MIPI_1P8 CSI -- -- -- B13 VDD_MIPI_1P8 CSI -- -- -- B9 VDD_MIPI_1P8 DSI -- -- -- A9 VDD_MIPI_1P8 DSI -- -- -- A8 VDD_MIPI_1P8 DSI -- -- -- A10 VDD_MIPI_1P8 DSI -- -- -- B8 VDD_MIPI_1P8 DSI -- -- -- B10 VDD_MIPI_1P8 DSI -- -- -- U10 NVCC_SNVS ANALOG ALT 0 RESET_B GPIO Input U9 NVCC_SNVS ANALOG ALT 0 SNVS_LP_PMIC_ON Output GPIO _REQ PD PD PD PD PD PD PD PD PD PD -- -- -- -- -- -- -- -- -- -- -- -- PU Output high i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 120 NXP Semiconductors Package information and contact assignments Table 113. 14 x 14 mm functional contact assignment (continued) Ball name 14 x 14 ball Power group Ball Types Default modes Default setting Default function Input/ output Value PMIC_STBY_REQ T9 NVCC_SNVS ANALOG ALT 0 CCM_PMIC_VSTBY_ Output Output GPIO REQ low POR_B T10 NVCC_SNVS ANALOG ALT 0 POR_B GPIO -- PU RTC_XTALI T13 -- -- -- -- -- -- RTC_XTALO U13 -- -- -- -- -- -- TEST_MODE T11 NVCC_SNVS ANALOG ALT 0 TEST_MODE GPIO Input PD USB1_DN E16 -- -- -- -- -- -- USB1_DP E17 -- -- -- -- -- -- USB2_DN C16 -- -- -- -- -- -- USB2_DP C17 -- -- -- -- -- -- USB1_VBUS D17 -- -- -- -- -- -- USB2_VBUS D16 -- -- -- -- -- -- XTALI U16 -- -- -- -- -- -- XTALO T16 -- -- -- -- -- -- WAKEUP T8 NVCC_SNVS ANALOG ALT 5 GPIO13_IO0 GPIO Input PU 1 Pull-up 2 Pull-down 3 Typical resistance value is 50 k for 3.3 V and 35 k for 1.8 V. The range is from 10 k to 100 k (3.3 V) and 20 k to 50 k (1.8 V). i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 121 Package information and contact assignments 6.1.3 14 x 14 mm, 0.8 mm pitch, ball map Table 114 shows the 14 x 14 mm, 0.8 mm pitch ball map for the i.MX RT1170. Table 114. 14 x 14 mm, 0.8 mm pitch, ball map 1 VSS A GPIO_ B EMC_ B1_14 GPIO_ C EMC_ B1_15 GPIO_ D EMC_ B1_32 GPIO_ E EMC_ B1_34 GPIO_ F EMC_ B1_35 GPIO_ G EMC_ B1_36 GPIO_ H EMC_ B1_37 GPIO_ J EMC_ B1_38 2 GPIO_ EMC_ B1_10 GPIO_ EMC_ B1_23 GPIO_ EMC_ B1_11 GPIO_ EMC_ B1_31 GPIO_ EMC_ B1_33 GPIO_ EMC_ B1_01 GPIO_ EMC_ B1_21 GPIO_ EMC_ B1_22 GPIO_ EMC_ B1_39 3 GPIO_ EMC_ B1_09 GPIO_ EMC_ B1_17 GPIO_ EMC_ B1_20 GPIO_ EMC_ B1_16 GPIO_ EMC_ B1_30 GPIO_ EMC_ B1_00 VSS GPIO_ EMC_ B1_07 GPIO_ EMC_ B1_26 4 GPIO_ DISP_ B2_15 GPIO_ EMC_ B1_18 GPIO_ EMC_ B1_19 VSS GPIO_ EMC_ B1_03 GPIO_ EMC_ B1_05 GPIO_ EMC_ B1_02 GPIO_ EMC_ B1_06 GPIO_ EMC_ B1_25 5 6 7 8 GPIO_ DISP_ B2_13 GPIO_ DISP_ B2_08 GPIO_ EMC_ B1_12 GPIO_ EMC_ B1_13 GPIO_ EMC_ B1_28 GPIO_ EMC_ B1_08 GPIO_ EMC_ B1_27 GPIO_ EMC_ B1_04 GPIO_ EMC_ B1_24 GPIO_ DISP_ B2_11 GPIO_ DISP_ B2_12 GPIO_ DISP_ B2_06 GPIO_ DISP_ B2_07 GPIO_ EMC_ B1_29 NVCC_ EMC1 NVCC_ EMC1 NVCC_ EMC2 NVCC_ EMC2 GPIO_ DISP_ B2_14 VSS GPIO_ DISP_ B2_04 GPIO_ DISP_ B2_03 NVCC_ DISP2 NVCC_ EMC1 VSS VSS VSS MIPI_ DSI_ DN0 MIPI_ DSI_ DP0 VSS GPIO_ DISP_ B2_09 GPIO_ DISP_ B2_00 GPIO_ DISP_ B2_01 VSS VDD_ SOC_ IN VDD_ SOC_ IN 9 10 MIPI_ DSI_ CKN MIPI_ DSI_ CKP GPIO_ DISP_ B2_05 GPIO_ DISP_ B2_10 GPIO_ DISP_ B2_02 VDD_ MIPI_ 1P8 VSS MIPI_ DSI_ DN1 MIPI_ DSI_ DP1 VSS GPIO_ DISP_ B1_06 GPIO_ DISP_ B1_04 VDD_M IPI_ 1P0 VSS VDD_ SOC_ IN VDD_ SOC_ IN VDD_ SOC_ IN VDD_ SOC_ IN 11 12 13 14 15 16 17 MIPI_ CSI_ DN0 MIPI_ CSI_ DP0 GPIO_ DISP_ B1_05 GPIO_ DISP_ B1_02 GPIO_ DISP_ B1_03 VSS VSS VSS VSS MIPI_ CSI_ CKN MIPI_ CSI_ CKP VSS NVCC_ DISP1 GPIO_ DISP_ B1_07 VSS VDD_ USB_ 3P3 VDD_ USB_ 1P8 GPIO_ AD_23 MIPI_ CSI_ DN1 GPIO_ DISP_ B1_11 MIPI_ CSI_ DP1 GPIO_ DISP_ B1_10 GPIO_ DISP_ B1_09 VSS GPIO_ DISP_ B1_01 NVCC_ SD1 GPIO_ DISP_ B1_00 GPIO_ SD_ B2_05 VSS GPIO_ SD_ B2_04 NVCC_ SD2 GPIO_ SD_ B2_07 GPIO_ SD_ B2_02 GPIO_ SD_ B2_10 VDDA_ ADC_ 3P3 GPIO_ SD_ B2_01 GPIO_ DISP_ B1_08 GPIO_ SD_ B1_04 GPIO_ SD_ B1_02 GPIO_ SD_ B1_01 GPIO_ SD_ B2_03 GPIO_ SD_ B2_08 VSS GPIO_ SD_ B2_09 GPIO_ SD_ B2_00 GPIO_ SD_ B1_05 GPIO_ SD_ B1_00 USB2_ DN USB2_ VBUS USB1_ DN GPIO_ SD_ B2_11 ADC_ VREFH DAC_ OUT GPIO_ AD_34 VSS GPIO_ SD_ B1_03 USB2_ DP USB1_ VBUS USB1_ DP GPIO_ SD_ B2_06 GPIO_ AD_35 GPIO_ AD_33 GPIO_ AD_31 i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 122 NXP Semiconductors Package information and contact assignments Table 114. 14 x 14 mm, 0.8 mm pitch, ball map (continued) GPIO_ K EMC_ B1_40 GPIO_ L EMC_ B1_41 GPIO_ M EMC_ B2_04 GPIO_ N EMC_ B2_05 GPIO_ P EMC_ B2_08 GPIO_ R EMC_ B2_03 GPIO_ T EMC_ B2_06 VSS U GPIO_ EMC_ B2_00 GPIO_ EMC_ B2_15 GPIO_ EMC_ B2_12 GPIO_ EMC_ B2_09 GPIO_ EMC_ B2_16 GPIO_ EMC_ B2_10 GPIO_ EMC_ B2_17 GPIO_ EMC_ B2_19 GPIO_ EMC_ B2_02 VSS GPIO_ EMC_ B2_07 GPIO_ EMC_ B2_18 DCDC _PSWI TCH GPIO_ EMC_ B2_20 DCDC _LP DCDC _LP GPIO_ EMC_ B2_01 GPIO_ EMC_ B2_11 GPIO_ EMC_ B2_14 DCDC_ MODE VSS VSS DCDC_ LN DCDC_ LN GPIO_ EMC_ B2_13 DCDC _IN_Q DCDC _IN DCDC _IN GPIO_ LPSR_ 09 GPIO_ LPSR_ 10 GPIO_ LPSR_ 11 GPIO_ LPSR_ 12 DCDC _GND DCDC _GND DCDC _ANA_ SENSE GPIO_ LPSR_ 00 GPIO_ LPSR_ 02 GPIO_ LPSR_ 01 GPIO_ LPSR_ 14 GPIO_ LPSR_ 13 DCDC _GND DCDC _DIG_ SENSE DCDC _ANA GPIO_ LPSR_ 04 NVCC_ LPSR VSS GPIO_ LPSR_ 03 GPIO_ LPSR_ 15 DCDC _DIG DCDC _DIG DCDC _ANA GPIO_ LPSR_ 05 GPIO_ LPSR_ 06 GPIO_ LPSR_ 07 WAKE UP GPIO_ LPSR_ 08 DCDC _DIG GPIO_ SNVS_ 02 GPIO_ SNVS_ 06 GPIO_ SNVS_ 08 GPIO_ SNVS_ 05 GPIO_ SNVS_ 07 PMIC_ STBY_ REQ PMIC_ ON_ REQ VDD_ SOC_ IN VSS GPIO_ SNVS_ 03 GPIO_ SNVS_ 04 GPIO_ SNVS_ 01 GPIO_ SNVS_ 00 POR_B ONOFF VSS VSS VDDA_ 1P8_IN VDDA_ 1P0 VDD_ LPSR_ DIG GPIO_ SNVS_ 09 TEST_ MODE NVCC_ SNVS GPIO_ AD_22 GPIO_ AD_13 NVCC_ GPIO GPIO_ AD_00 VDD_ LPSR_ ANA VDD_ LPSR_ IN VSS VDD_ SNVS_ IN GPIO_ AD_20 GPIO_ AD_24 GPIO_ AD_04 GPIO_ AD_06 GPIO_ AD_05 GPIO_ AD_02 RTC_ XTALI RTC_ XTALO GPIO_ AD_21 GPIO_ AD_26 GPIO_ AD_15 GPIO_ AD_14 VSS GPIO_ AD_01 VDD_ SNVS_ DIG VDD_ SNVS_ ANA VDDA_ ADC_ 1P8 VSS GPIO_ AD_25 GPIO_ AD_17 GPIO_ AD_03 GPIO_ AD_08 CLK1_ N CLK1_ P GPIO_ AD_32 GPIO_ AD_19 GPIO_ AD_18 GPIO_ AD_27 GPIO_ AD_11 GPIO_ AD_09 XTALO XTALI GPIO_ AD_30 GPIO_ AD_28 GPIO_ AD_29 GPIO_ AD_16 GPIO_ AD_12 GPIO_ AD_10 GPIO_ AD_07 VSS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 NXP Semiconductors 123 Revision history 7 Revision history Table 115 provides a revision history for this data sheet. Table 115. i.MX RT1170 Data Sheet document revision history (continued) Rev. Number Rev. 1 Rev. 0 Date 05/2021 12/2020 Substantive Change(s) · Added 64 KB RAM for CAAM and built-in Manufacturing Protection Hardware in the Section 1.1, Features; removed ECC, tamper protection, and DryICE from the Section 1.1, Features · Updated the SD revision and two new part numbers in the Table 1. Order information · Updated the Figure 1, "Part number nomenclature--i.MX RT11XX family" · Updated the descriptions of Arm, OCRAM, RTC OSC, LPUART, uSHDC, and SNVS in the Table 3. i.MX RT1170 modules list · Updated the CLK1_P/CLK1_N, DCDC_PSWITCH, RTC_XTALI/RTC_XTALO, NC, and POR_B descriptions in the Table 4. Special signal considerations · Updated the Table 9. Electrostatic discharge and latch-up characteristics · Added a comment for VDD_SOC_IN in the Table 11. Operating ranges · Updated the test conditions of Set Point #7 in the Table 14. Typical power modes current and power consumption (Single core) · Updated the Table 15. Typical wakeup time · Updated the DCDC_PSWITCH note in the Section 4.2.1.1, Power-up sequence · Updated the descriptions in the Section 4.2.2, Internal POR and power detect · Updated the comments of output voltage and maximum value of 1.0 V loading output in the Table 22. DCDC characteristics · Updated the clock output range in the Table 27. Arm PLL's electrical parameters · Updated a typo for 32K frequency in the Section 4.2.6, On-chip oscillators · Added weak pull-up and pull-down parameters in the Table 36. DC specification for GPIO_SNVS bank · Removed the leakage from pad VDD to VSS value and updated the maximum value of input leakage current from Table 37. DC specification for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank · Updated the compliant standards in the Section 4.6.1, MIPI D-PHY electrical characteristics · Added tADCSETUP in the Table 75. ADC electrical specifications (VREFFH = 1.68 V and VADINmax NVCC_GPIOmax) and Table 76. ADC electrical specifications (1 V VREFFH < VDD_ANA_18min and VADINmax VREFH) · Updated the note in the Table 81. Temperature sensor parameters · Removed the Section, SNVS · Initial version i.MX RT1170 Crossover Processors Data Sheet for Consumer Products, Rev. 1, 05/2021 124 NXP Semiconductors How To Reach Us Home Page: nxp.com Web Support: nxp.com/support Limited warranty and liability -- Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Security -- Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products. Suitability for use in automotive applications -- This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. Non-automotive qualified products -- Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications. Suitability for use Automotive Product (Functional Safety) Suitability for use in automotive applications --This NXP product has been qualified for use in automotive applications. It has been developed in accordance with ISO 26262, and has been ASIL-classified accordingly. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Table continues on the next page... Applications"), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application. Non-automotive products for restricted use in automotive onlySuitability for use in automotive applications -- The use of this NXP Semiconductors product is restricted to automotive applications only. It has not been fully qualified for use in automotive applications. The customer of this NXP Semiconductors product therefore understands and accepts that: · The Customer shall only use this NXP Semiconductors product for automotive applications. · This product was not originally designed for automotive use. It will therefore, not be possible to achieve the levels of quality and failure analysis that are normally associated with products explicitly designed for automotive use. · With respect to test-coverage, this product is not fully compliant to AEC-Q100. · All product manufacturing locations are certified according to ISO/TS16949. · Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. Applications -- Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect. Limiting values -- Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commerical sale -- NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. Table continues on the next page... No offer to sell or license -- Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Hazardous voltage -- Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V may appear when operating this product, depending on settings and application. Customers incorporating or otherwise using these products in applications where such high voltages may appear during operation, assembly, test etc. of such application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60 950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages. Bare die -- All die are tested on compliance with their related technical specifications as stated in this data sheet up to the point of wafer sawing and are handled in accordance with the NXP Semiconductors storage and transportation conditions. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post-packing tests performed on individual die or wafers. NXP Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, NXP Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used. All die sales are conditioned upon and subject to the customer entering into a written die sale agreement with NXP Semiconductors through its legal department. Quick reference data -- The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Export control -- This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Evaluation products --This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer. In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages. Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose. Translations -- A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Table continues on the next page... Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision Technologies Ltd. in the United States, the EU and/or other jurisdictions. © NXP B.V. 2021. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 28 May 2021 Document identifier: IMXRT1170ECAcrobat Distiller 20.0 (Windows)