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1 Introduction

In its most simple form, compatibility testing checks
if software component A can use or serve another
software component B via published interfaces.1

The most common form of compatibility (testing)
is backward compatibility (testing), e.g. can Microsoft
Excel 2010 be used open and manipulate worksheets
created using Microsoft Excel 2007? As software gets
more modular and extensible, it is necessary to ensure
that the set of components constituting a software
program are mutually compatible. To this end, most
software take proactive measures to allow only the
use of compatible components.

A good example scenario is where users upgrade
their favourite web browser. Upon upgrading their
browsers from version V1 to V2, users are notified of
any installed browser plug-ins that need to be dis-
abled due to incompatibilities with version V2 of the
browser or that need to be upgraded to newer ver-
sions. These incompatibilities can stem from syntac-
tic or semantic changes to the published interfaces of
the browser.

Of these changes, incompatible syntactic changes
to a published interface (e.g. change in function sig-
natures) can be easily detected by compiling plug-ins
against version V2 of the browser.

As for semantic changes to a published interface,
very few of them (e.g. change in values of an enu-
meration type) can be easily detected by compiling
plug-ins against version V2 of the browser. Most se-
mantic changes will require plug-ins to be executed
with version V2 of the browser and the change to be
exercised during the execution.

For example, suppose version V2 of the browser
removed the value Monday from an enumeration type
for weekdays. If none of the decisions in plug-in A
depend on the value Monday, then the behavior of
plug-in A will be unaffected with version V2 of the
browser. On the other hand, if a decision in plug-in
B depends on Monday, then the behavior of plug-
in B with version V2 of the browser will most likely
be altered; possibly, leading to malfunction of both
plug-in B and the browser.

1The notion of published interfaces was introduced by Mar-
tin Fowler [13].

Beyond such semantic changes, programs can de-
pend on any behaviors observable at published inter-
faces of other programs.

As an example, consider a C language library L
that exposes two functions f and g that consume a
pointer to a structure with a field q as their first ar-
gument and require field q to contain value v upon
invocation. In version V1 of L, suppose the effect of f
on field q is unspecified and q is unmodified upon re-
turning from f. This observation can be exploited to
optimize clients of version V1 of L — when invoking
f and g in sequence, assign v to q and then invoke f
and g without any intervening assignment of v to q.
However, in a subsequent version V2 of L, if the im-
plementation of f modifies q, then clients optimized
against version V1 of L will fail when operating with
version V2 of L.

We encountered a real-world instance of this sce-
nario during the development of Windows 8. To sup-
port USB 3.0 protocol in Windows 8, USB team
built a new USB 3.0 driver stack from scratch.
Since USB 3.0 protocol is backward compatible with
USB 2.0 protocol, USB 3.0 driver stack needed
to support USB 2.0 devices along with their de-
vice drivers that were built against the existing
USB 2.0 driver stack. Hence, when servicing
USB 2.0 devices, USB 3.0 driver stack was re-
quired to mimic the observable behavior of the
USB 2.0 driver stack. In this context, an
incompatibility issue (deviation) could be the
USB 3.0 driver stack completes isochronous trans-
fer requests at PASSIVE LEVEL interrupt request level
while USB 2.0 driver stack always completes such
requests at DISPATCH LEVEL interrupt request level.
Further, such deviations may not affect the ob-
servable behaviors of USB 2.0 devices used to test
USB 3.0 driver stack. However, they could possi-
bly affect untested USB 2.0 devices which could be
numerous given the number of unique USB devices
in the world. So, we needed a way to test for and
uncover such subtle incompatibilities between these
USB driver stacks.

To discover such incompatibilities due to depen-
dences on observable behaviors (and ensure compat-
ibility), many software shops employ field testing by
providing customers with pre-release versions of their

1



software (e.g. Windows 8 by Microsoft, Firefox by
Mozilla). The success of field testing in uncovering
compatibility issues depends both on the number of
customers participating in such testing and the ex-
tent to which customers use and exercise various be-
haviors of the software. When pre-release versions
of software have low adoption and usage, compatibil-
ity issues can go undiscovered until the release of the
software. Hence, upon release and wider adoption of
the software, latent compatibility issues can surface
causing reliability issues to users and maintenance
costs to software vendors.

Proposed Approach

Inspired by the above problem, we devised a simple
data-driven differential approach to test for compat-
ibility. Given two programs with identical published
interfaces, the approach relies on clients interacting
identically with these programs via their published
interfaces, i.e. the clients submit same requests in the
same order. These interactions (observable behav-
iors) are traced and the resulting traces are compared
to detect possible compatibility issues resulting from
both the presence of new unobserved behaviors and
the absence of previously observed behaviors. Conse-
quently, our approach can uncover issues that do not
affect the observed (current) executions but could af-
fect yet unobserved (future) executions.

For purpose of comparison, traces are abstracted
as sets of structural and temporal patterns (based on
existing notions of patterns that can be mined using
existing algorithms) and these sets of patterns are
compared using simple set operations, i.e. set union,
intersection, and difference. This is the key charac-
teristic of our approach.

In terms of guarantees, our approach is unsound —
every detected deviation/difference (compatibility is-
sue) need not be a bug; hence, it entails manual effort
to examine detected deviations and classify them as
either benign deviations or bugs. On the other hand,
our approach is complete — all deviations that can
be represented by a pre-defined class of patterns used
to abstract traces will be detected.

As evaluation, during the development of Win-
dows 8, we used our approach to test compatibil-

ity between USB 2.0 and USB 3.0 bus drivers in
Windows 8. When used within an appropriate work
flow, the approach uncovered 25 compatibility bugs
in USB 3.0 bus driver by analyzing a pair of traces
from only 14 USB 2.0 devices that were functioning
without errors with both USB bus drivers.

From this effort, we make the following key contri-
butions in this manuscript.

1. We propose a differential approach to compat-
ibility testing based on patterns-based compar-
ing of execution traces. This approach can un-
cover compatibility issues stemming from both
the presence of unobserved behaviors and the ab-
sence of observed behaviors.

2. We demonstrate the effectiveness of the pro-
posed approach in an industrial setting by us-
ing it to test compatibility between USB 2.0 and
USB 3.0 bus drivers during Windows 8 develop-
ment cycle. We also demonstrate that the ap-
proach can detect compatibility issues from suc-
ceeding executions.

3. We illustrate that sets of structural and temporal
patterns observed in traces can serve as effective
trace abstractions to enable software engineering
and maintenance tasks, e.g. compatibility test-
ing.

The rest of this manuscript is organized as
follows. Sections 2 and 3 describe compatibil-
ity testing and patterns-based trace comparison.
Section 4 provides a detailed exposition about
our experience using patterns-based trace compar-
ison to test compatibility between USB 2.0 and
USB 3.0 bus drivers in Windows 8. Section 5 dis-
cusses related efforts. Section 6 presents future pos-
sibilities.

2 Compatibility Testing

As in all forms of testing, compatibility testing is
used to check if a program Pt consumes a given input
x and produces the expected output y, i.e. Pt(x) = y.
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The distinction of compatibility testing is that the ex-
pected output is the output produced by another pro-
gram Pr upon consuming x, i.e. Pt(x) = y = Pr(x).

The above simple view of compatibility testing suf-
fices when we are testing if the observed output is
identical to the expected output, e.g. for argument
-2, does function abs1 return the same value as func-
tion abs2? In many cases, we are interested in testing
if the observed value is similar (identical modulo cer-
tain differences) to the expected output, e.g. upon
consuming input x, do programs P1 and P2 output
log files that contain the same messages but not nec-
essarily in the same order? To admit such notions of
similarity into compatibility testing, we define com-
patibility testing as follows.

Definition 1 Given an input x and two programs
Pr and Pt, Pt and Pr are (α,ψ)-compatible (denoted
as Pt ∼α,ψ Pr) if ψ(α(Pt(x)), α(Pr(x))) holds where
α is a transformation function over program outputs
and ψ is a binary test predicate over transformation
values.2

With this definition, different forms of compatibil-
ity testing can be described using appropriate com-
binations of transformation functions and test predi-
cates. For example, the simplest form of compatibil-
ity testing based on equality of output (i.e. Pt(x) =
Pr(x)) can be described by ∼id,= with identity func-
tion as α and equality predicate as ψ.

In this vein, we can describe compatibility testing
of programs that output traces (sequences).3 Con-
sider programs that consume an input x and produce
a trace π as output. By the above definition, given
two programs Pt and Pr that output traces πt and πr
upon consuming test input x, Pt is (α,ψ)-compatible
to Pr if ψ(α(πt), α(πr)) holds (as Pt(x) = πt and
Pr(x) = πr). Hence, the problem of compatibility
testing based on traces reduces to the problem of
trace comparison under α and ψ.

In many situations, we want to test programs
that consume input sequences and produce output

2Regression testing can be viewed as a form of compatibility
testing where Pr and Pt are two consecutive versions Pi and
Pi+1 of the same program P . Further, this definition can be
generalized to other forms of testing.

3We will use the terms trace and sequence interchangeably.

traces. The above definition of compatibility test-
ing can be applied in such situations by conditioning
the output traces produced by programs as follows:
when a program P consumes an input sequence X =
x1, x2, . . . xn produces an output trace π, X should be
a subsequence of π and, for every input xk ∈ X, if the
corresponding output yk of P exists in π, then yk fol-
lows xk in π, i.e. π[j] = yk =⇒ (∃i.π[i] = xk∧i < j).

The notion of trace similarity determined by α and
ψ can range from simple equality to subsequence
equivalence (similar to stuttering equivalence [16]).
Further, the notion of similarity determines the kind
of issues that can be uncovered via compatibility test-
ing.

In summary, under a notion of similarity deter-
mined by α and ψ, the problem of testing compati-
bility between programs based on their output traces
reduces to the problem of trace comparison.

3 Patterns-based Trace Com-
parison

In this section, we describe two notions of trace simi-
larity. Both these notions of similarity use set equal-
ity as the test predicate ψ. The transformation func-
tion α in these notions are based on event abstrac-
tions and binary linear temporal patterns proposed
by Lo et al. in [17].4

From here on, an event e = {a1 = c1, a2 = c2, a3 =
c3, . . . , an = cn} is a map from attributes to values
and a trace t = (e1, e2, . . . , en) is a sequence of events.

3.1 Structural Patterns-based Simi-
larity

The most common notion of trace similarity is based
on the presence/absence of events in traces (while
ignoring the order of events), i.e. consider traces as
sets of events and compare these sets. We refer to
this notion as event based trace similarity.

While this notion is simple, it can be ineffective
when different attributes of an event have different

4For more details about these patterns and the correspond-
ing pattern mining algorithms, please refer to [17].
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relevance in different scenarios. For example, when
comparing two execution traces in terms of invoked
functions, it might suffice to consider views of events
limited to the attribute capturing function names,
e.g. consider {fun=“fopen”} view of the invocation
event {fun=“fopen”, arg1=“passwd.txt”, arg2=“r”,
return=0x21}.

From this observation, we propose a notion of trace
similarity based on the presence/absence of (event)
abstractions of events in traces where any non-empty
subset of an event e is an abstraction (view) of e. We
refer to this notion as event abstraction based trace
similarity.5

In many situations, it is useful to consider data con-
straints spanning multiple attributes. For this pur-
pose, we propose using the notion of event abstrac-
tion with quantification — given an event abstrac-
tion e = {a1 = c1, a2 = c2, a3 = c3, . . . , an = cn},
e′ = {a1 = vi, a2 = c2, a2 = vi, . . . an = cn} is a
quantified abstraction of e if there exists a substitu-
tion θ (a non-empty map from variables to values)
such that ∀ai.e[ai] = e′[ai] ∨ e[ai] = θ(e′[ai]) where
vis are free variables. Consequently, an attribute is
quantified if it is associated with a free variable (as
opposed to a value).

These event abstractions are patterns of event
structures observed in a trace; hence, we refer to these
abstractions as structural patterns. Further, struc-
tural patterns with and without quantification are
referred to as quantified structural patterns and un-
quantified structural patterns, respectively. Finally,
we define the notion of structural patterns-based trace
similarity as comparing the sets of structural pat-
terns observed in traces via set equality.

In other words, compatibility testing based on
traces can be realized with a transformation func-
tion that transforms a trace into a set of observed
structural patterns and a test predicate that checks
for set equality.

5In the presence of full domain knowledge, this notion is
not required as the exact data fragments can be extracted from
events; however, full domain knowledge is seldom available in
real-world settings.

3.2 Temporal Patterns-based Similar-
ity

Structural patterns-based trace similarity will be in-
effective in situations where traces are identical in
terms of the structural patterns but differ in the
order of structural patterns. For example, traces
t1 = (a, b, c) and t2 = (a, c, b) are identical un-
der structural patterns-based trace similarity as both
traces result in the same set of structural patterns
{a, b, c}.

To address this drawback, we propose transforming
a trace into a set of temporal patterns composed of
structural patterns. Of the numerous forms of tem-
poral patterns, we consider the following four binary
linear temporal patterns defined in [17].

Given structural patterns A and B are observed in
events of a trace,

1. A
∗
� B (B

∗
� A) is observed in the trace when

an event ei matching A is followed (preceded) by
an event ej matching B.6 These are eventually
patterns.

2. A
a
� B (B

a
� A) is observed in the trace when

event ei matching A is followed (preceded) by an
event ej matchingB and no event between ei and
ej matches A. These are alternation patterns.

In the above patterns, either both A and
B are quantified or none are quantified. Fur-
ther, when A and B are quantified, the as-
sociated substitutions resulting from match-
ing events are identical, i.e. θA = θB . For
example, the pair of event abstractions
{fun=“fopen”, return=0x21} and {fun=“fclose”,
arg1=0x21} match the temporal pattern

{fun=“fopen”, return=v1}
∗
�

{fun=“fclose”, arg1=v1} under the substitution
θ = {v1 7→ 0x21}. However, the event abstractions
{fun=“fopen”, return=0x21} and {fun=“fclose”,
arg1=0x23} do not match the same temporal pattern
as the event abstractions do not share a common
substitution.

6Given an structural pattern C, an event e matches C if C
is an abstraction of e.
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We shall refer to temporal patterns with and with-
out quantification as quantified temporal patterns and
unquantified temporal patterns, respectively. Finally,
we define the notion of temporal patterns-based trace
similarity as comparing the sets of all temporal pat-
terns observed in traces.

In other words, compatibility testing based on
traces can also be realized with a transformation
function that transforms a trace into a set of observed
temporal patterns and a test predicate that checks for
set equality.

3.3 Discussion

Statistical Similarity The above notions of trace
similarity is insufficient when the traces being com-
pared exhibit the same set of patterns but differ in
terms of the statistical properties of the observed pat-
terns. In such cases, we need to consider patterns
along with their statistical properties and employ no-
tions of similarity sensitive to statistical properties.
For example, each pattern in a trace can be associ-
ated with its frequency in the trace. So, while com-
paring two traces, a pattern common to both traces
is deemed as a difference if its frequency is below a
preset significance threshold in one trace and above
the same threshold in the other trace.

Similarly, statistics about the distance between
events matching temporal patterns can be used to
enable patterns-based performance debugging.

We refer to this notion of similarity based on sta-
tistical properties of patterns as statistical similar-
ity. While we have explored performance debugging
based on this notion of similarity, we will not describe
it in this manuscript.

Textual Comparison Given two traces, we can
calculate the longest common subsequence (LCS) of
these traces and identify events from traces that are
absent from the subsequence as the difference be-
tween the traces. This would be similar to serializing
traces into text files (e.g. with one line per event)
and using your favourite textual differencing tool.
While this technique can detect deviations captured
by missing events, it will be inaccurate in identify-
ing deviations stemming from temporal orderings of

events that are not part of the longest common sub-
sequence. Further, it is unclear if and how can event
abstractions be effectively and efficiently considered
in LCS-based comparison.

Graphical Comparison Given a trace, we can
generate a succession graph in which nodes represent
unique events in the trace and directed edges cap-
ture the immediate successor relation between events.
Hence, given two traces, we can generate and com-
pare their succession graphs to detect missing nodes
and edges as the difference between these graphs.
(This would be identical to diffing sets of all bigrams
in given traces.) While this technique can detect is-
sues captured by missing nodes (events) and edges
(bigrams), it will fail to detect issues that can be
only captured by event subsequences, e.g. the tech-
nique will detect presence of (a, b) and (b, c) in trace
(a, b, c) but will fail to detect the presence of sub-
sequence (a, c). However, this can be remedied by
considering graph reachability information. Even so,
as with textual comparison, it is unclear how to per-
form graph diffing with event abstractions.

4 USB Driver Compatibility
Testing in Windows 8: An
Experiment

In this section, we describe our experience using
patterns-based trace comparison to devise an ap-
proach to test compatibility between USB 3.0 driver
stack and USB 2.0 driver stack in Windows 8. This
was a joint effort with USB team in Windows orga-
nization within Microsoft.

We describe this experience in detail to present the
nuances involved in using patterns-based trace com-
parison for compatibility testing. With these details,
other researchers and practitioners should be able to
easily reproduce our experience in other contexts.

4.1 Windows Driver Subsystem

Most of the kernel-mode device drivers on Windows
Vista and Windows 7 conform to Windows Driver
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Function Driver
(Mouse Driver)

Filter Driver

USB 3.0 Controller

USB 3.0 Bus Driver

USB Device
(Mouse)
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Figure 1: An illustration of how various types of
WDM drivers are stacked when a USB device is
plugged into a USB 3.0 port on Windows 8 PC.

Model (WDM). This model supports the following
kinds of drivers.7 (Please refer to Figure 1 for an
illustration of how various kinds of WDM drivers are
connected.)

• A bus driver services devices that can have
child devices, e.g. bus controllers, adapters, and
bridges. As these are necessary drivers, Mi-
crosoft generally provides these drivers for each
type of bus, e.g. USB and PCI. All communica-
tion to devices on a specific bus goes through the
corresponding bus driver.

• A filter driver extends the functionality of a de-
vice or intercepts and possibly modifies I/O re-
quests and responses from drivers.

• A function driver exposes the operational inter-
face of a device to the system, e.g. the device
driver provided with Microsoft Comfort Curve
3000 keyboard.

In WDM, most communications with and between
drivers is packet-based. Typically, an I/O request
is dispatched to a driver by invoking IoCallDriver

7We use the terms driver(s) and device driver(s) inter-
changeably.

routine with an I/O Request Packet (IRP) (a struc-
ture in C language) embodying the request. The IRP
is delivered to the I/O manager which then forwards
the request to the appropriate driver. Upon complet-
ing a request, the servicing driver modifies the cor-
responding IRP (e.g. updates status fields or copies
data into buffers in the IRP) and signals the comple-
tion of the request to the I/O manager by invoking
IoCompleteRequest. I/O manager then signals the
requesting driver about the completion by invoking
the IoCompletion routine registered for the IRP. The
fields of the IRP both define the type of requests and
the data (both input and output) pertaining to re-
quests.

4.2 Problem

As mentioned in Building Windows 8 blog [2], Win-
dows 8 supports USB 3.0 protocol with a new
USB 3.0 driver stack that provides a bus driver ded-
icated to USB 3.0 controller. Since USB 3.0 driver
stack is a clean room implementation, it does not
borrow any code and, hence, any behavior from ex-
isting USB 2.0 driver stack in Windows 8. Fur-
ther, USB 3.0 driver stack exclusively supports de-
vices controlled by USB 3.0 controller (connected to
USB 3.0 port) while USB 2.0 driver stack exclusively
supports devices controlled by USB 2.0 controller
(connected to USB 2.0 port).

In the rest of this exposition, we focus on the
USB bus drivers provided by the USB driver stacks
as they control the underlying USB controller. Also,
we shall refer to USB bus driver as USB driver.

Consider the situation where a user plugs in a
USB 2.0 device into a USB 3.0 port on a com-
puter running Windows 8. Since USB 3.0 proto-
col is backward compatible with USB 2.0 protocol,
the user expects the device to behave as if the de-
vice was plugged into a USB 2.0 port and serviced by
USB 2.0 driver. In other words, the observable behav-
ior of a device plugged into a USB 3.0 port should be
identical to the observable behavior of the same device
plugged into a USB 2.0 port.

To enable the above scenario, USB 3.0 driver needs
to support USB 2.0 protocol to guarantee behavioral
equivalence with USB 2.0 driver. However, it is possi-
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ble that existing function drivers could depend on un-
published yet observable behaviors of USB 2.0 driver,
e.g. USB 2.0 driver zeroes out the PortStatus

bits in the IRP upon failing to service I/O con-
trol code IOCTL INTERNAL USB GET PORT STATUS.8

Hence, for compatibility, USB 3.0 driver should
support any unpublished yet observable behaviors
of USB 2.0 drivers, and we need to test these
USB drivers for equivalence of such behaviors.

A naive approach to test for such equivalence is
to exercise USB 3.0 driver with every device and its
function driver. However, this approach is prohibitive
as there are over 10 billion USB devices in the world
today.

To identify an alternative, we observed that every
function driver exposes the functionality of a device
to the system by interacting with the device via the
bus driver. So, it is likely that any deviation in inter-
actions between a function driver and the bus driver
could lead to deviations in the observable behavior
of the device. Hence, we tested compatibility be-
tween USB drivers by testing for equivalence of inter-
actions between function drivers and the USB drivers
(at point 3 in Figure 1), i.e. for every request from a
function driver, is the response from USB 3.0 driver
similar to the response from USB 2.0 driver? 9

8Such behaviors can stem from decisions while implement-
ing weakly specified parts of USB 2.0 protocol.

9Here are two alternative approaches to test compatibility
of USB drivers.

Approach 1 Check equivalence of on-the-wire interactions
between the USB controller and the USB device (at point 1 in
Figure 1). While this form of checking can be highly accurate,
it can be brittle due to controller specific nuances stemming
from weakly specified parts of USB protocol. Also, since the
USB driver does not have direct control over these interactions,
it is unclear if this approach will help uncover compatibility is-
sues directly stemming from the implementation of USB driver.

Approach 2 Check for equivalence of command-level inter-
actions between the USB driver and the USB controller (at
point 2 in Figure 1). This form of checking can be brittle due
to nuances stemming from the combination of the flexibility of
USB command language and the implementation of both the
USB controller and the USB driver.

Independent of these details, similar interactions between
the bus driver, the controller, and the device do not guarantee
similar interactions between the function driver and the bus
driver. Hence, we chose to test the interactions between the
function driver and the bus driver, at the highest level in the
stack.

For purpose of simplicity, we limited our focus to
test compatibility between USB drivers during enu-
meration and rundown phases during the lifetime of
a device on Windows, i.e. recognition of a device by
Windows and cleanup following the ejection of a de-
vice, respectively.

4.3 Solution

Our solution to this problem uses patterns-based
trace comparison (described in Section 3) with the
workflow outlined in Figure 2. In the following sec-
tions, we describe various steps in this workflow.

4.3.1 Trace interactions between drivers

Given a USB 2.0 device, we enabled tracing, plugged
in the device to a USB 2.0 port, waited for the de-
vice to be recognized by Windows, ejected the device,
waited for the device to be unavailable in Windows,
and disabled tracing. We then repeated these steps
with the same device plugged into a USB 3.0 port.

For tracing, we used a customized filter driver (de-
veloped by USB team) to capture the interactions
between functions drivers and USB drivers and log
these interactions into ETW traces via Event Trac-
ing for Windows (ETW) [1].

4.3.2 Mine patterns from traces

The traces collected in the previous step contained
13 simple types of events. Of these simple event
types, few captured the invocations of driver routines
(e.g. IoCallDriver) that enable inter-driver commu-
nication, few captured the completions of driver rou-
tines, and others captured the arguments to these
routines. Hence, we combined these 13 simple event
types into 6 compound event types that represent
the invocation of driver routines along with their ar-
guments and the completion of driver routines with
their return values. Consequently, we preprocessed
the traces to coalesce simple events into compound
events. During preprocessing, to ease further pro-
cessing, we synthesized certain information (e.g. I/O
control codes (IOCTL)) and captured them in few
(< 5) synthesized event attributes. Since the events
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in ETW are structured, we also flattened access paths
to fields. After preprocessing and flattening of ac-
cess paths, a total of 361 attributes existed (including
few synthesized attributes) across 6 compound event
types.

To curb the explosion of structural patterns during
mining, we employed domain knowledge by consult-
ing a developer from the USB team. Specifically, out
of 361 attributes, we identified 108 attributes that
could be ignored. Of the remaining 253 attributes, we
identified 29 attributes as necessary (i.e. they should
occur in all structural patterns of an event) and 224
attributes as optional (i.e. not necessary). Also, we
identified 75 attributes that should not be quantified;
of these, 23 attributes were identified to be abstracted
as either NULL or non-NULL.

In terms of quantification, we identified 150 at-
tributes that should always be quantified. For ex-
ample, since we were interested in checking if similar
IRPs are processed similarly by both driver stacks,
we need not have to mine patterns involving event
spanning different IRPs; hence, irpId attribute that
uniquely identifies the source IRP of an event was al-
ways quantified. Further, when quantification of at-
tributes is used to capture data flow between events
participating in a temporal pattern, non-existent
data flow can be captured due to representational
equivalence as opposed to semantic equivalence. To
curb this noise, based on domain knowledge, by way
of configuration, we considered only data flows be-
tween 17 attribute pairs involving 26 different at-
tributes in addition to data flow between same at-
tributes occurring in different events.

With the above setup, we mined every structural
and temporal patterns (of the forms described in Sec-
tion 3) occurring in the collected traces. In unquanti-
fied form, we considered only patterns involving nec-
essary attributes. In quantified form, we considered
only patterns involving all necessary attributes and
up to three optional attributes.

For mining, we used Tark, a toolkit to mine the
patterns described in Section 3 [3]. Since Tark im-
plements pattern mining algorithms described in [17],
please refer to [17] for details about these mining al-
gorithms.

Note While using domain knowledge does incur ad-
ditional cost, this is a one time cost incurred when
the approach is tailored and deployed for a specific
context. Further, the benefits of using domain knowl-
edge can be huge, e.g. knowledge about the fields that
can be ignored reduced the ceiling on the number of
structural patterns from 2361 to 2253.

4.3.3 Calculate unique patterns (deviations)

For each USB 3.0 trace, we calculated two sets
of unique patterns (or deviations) based on all
USB 2.0 traces in our corpus.10

The first set was composed of unique USB 2.0 pat-
terns observed in every USB 2.0 trace but not ob-
served in the given USB 3.0 trace — the differ-
ence between the intersection of pattern sets of ev-
ery USB 2.0 trace and the pattern set of the given
USB 3.0 trace. These patterns identify (always) ob-
servable behaviors of USB 2.0 driver that were not
exhibited by USB 3.0 driver.

The second set was composed of unique
USB 3.0 patterns observed in given USB 3.0 trace
but in none of the USB 2.0 traces — the difference
between the pattern set of given USB 3.0 trace and
the union of pattern sets of every USB 2.0 trace.
These patterns identify extraneous observable
behaviors exhibited only by USB 3.0 driver.

When executed with USB 3.0 driver, a function
driver can fail due to both these patterns — a driver
dependent on unique USB 2.0 patterns could fail due
the absence of a pattern while a driver not capable of
handling unique USB 3.0 patterns could fail due the
presence of a pattern.

4.3.4 Shrink unique pattern sets

Given the number of patterns mined from each trace
was huge (as shown in Table 2), we employed the
following techniques to shrink the sets of patterns by
eliminating redundant patterns.

Partitioning When a trace contains a unique
structural pattern, the trace will also contain numer-
ous unique temporal patterns that involve this unique

10We did this to reduce the number of false positives.
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structural pattern. From the perspective of detect-
ing unique deviations, such temporal patterns do not
identify deviations that are different from the devi-
ations detected by the contained unique structural
pattern. Hence, we removed such temporal patterns
from the pattern sets.

Simplification By definition of the temporal pat-
terns in Section 3, the presence of an alternation pat-

tern (e.g. A
a
� B) in a trace implies the presence

of corresponding eventually pattern (e.g. A
∗
� B) in

the trace. Hence, we removed eventually temporal
patterns from a pattern set if their alternation coun-
terparts were present in the pattern set.

In a similar vein, by way of construction, the exis-

tence of a complex pattern (e.g. A ∧ B
∗
� C) im-

plies the existence of simpler constituent patterns

(e.g. A
∗
� C and B

∗
� C). Hence, either complex or

simple patterns can be presented without any loss of
information. Favoring simplicity, we removed com-
plex patterns from a pattern set if all of their simpler
constituent patterns were present in the pattern set.

Compaction If temporal patterns of the form

A
a
� B and A

a
� B were present a pattern set, we

replaced them with a single temporal pattern of the
form A

a←→ B with the meaning “an event matching
A will be followed by an event matching B with no
intervening events that match A or B.”

4.3.5 Report deviations to the developer

As the final step, for each device, a developer from
USB team examined the resulting unique patterns
and classified them as either benign deviations or
bugs. All bugs were entered into the Windows bug
repository for triaging purposes.

Reducing False Positives To curtail false
positives (due to recurring benign deviations),
we applied user-defined filters (e.g. ignore pat-
terns in which IOCTLType field is equal to
URB FUNCTION SELECT CONFIGURATION). These fil-
ters were often based on patterns observed while ex-

amining previous test results. The user-defined fil-
ters were saved and reused while examining results
from subsequent tests. In addition, we suppressed
patterns that were observed in previous tests as they
were classified as either benign deviations or bugs.
This is depicted by the dashed line in Figure 2. We
refer to these patterns as known patterns.

Aiding Diagnosis For all unique patterns, we
identified events that matched unique patterns along
with events that did not match unique temporal pat-
terns. The developer then started diagnosing the is-
sue starting at these events.

4.4 Evaluation

For this evaluation, we collected a pair of traces
— one with USB 2.0 driver and another with
USB 3.0 driver — from 14 different USB 2.0 devices
and compared these traces as described in the previ-
ous section as a test of compatibility.

Based on this data set, we evaluated the effec-
tiveness, precision, and cost of our approach. Ta-
ble 1 provides the breakdown of deviations and bugs
uncovered in this evaluation. Table 2 provides the
breakdown of mined patterns and costs of testing as
observed in this evaluation.

4.4.1 Effectiveness

In this data set, a developer from
USB team identified 25 deviations as
representing compatibility bugs between
USB 2.0 driver and USB 3.0 driver. Of these
25 bugs, 14 bugs were based on unique structural
patterns and 11 bugs were based on unique tem-
poral patterns (involving only common structural
patterns). Following is a description of few of the
detected bugs.

• When USB 2.0 driver fails to service
IOCTL INTERNAL USB GET PORT STATUS request,
the
driver zeroes out bits of
PortStatus field. However,
USB 3.0 driver does not zero out these
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bits. This bug was based on a unique structural
pattern.

• Upon completing an
isochronous transfer request,
USB 3.0 driver set the status field of the
isochronous packet to OxFFFFFFFF. However,
this was not the case with USB 2.0 driver. As
in the previous case, this bug was based on a
unique structural pattern.

• USB 2.0 driver completed isochronous
transfer requests at DISPATCH LEVEL

interrupt request level. However,
USB 3.0 driver completed similar requests at
PASSIVE LEVEL interrupt request level. This
bug was based on a unique structural pattern.

• A USB device can have multiple operational con-
figurations along with corresponding interfaces,
and one of the configurations is selected while
enumerating the device. When an I/O request
to select a configuration for a device was submit-
ted, USB 3.0 driver failed to communicate the
corresponding interface in its response. This de-
viation was based on a unique temporal pattern
with interfaceHandle field (attribute) remain-
ing unchanged across the two events supporting
the pattern.

• When a USB device is not is use, its function
driver can notify the USB driver that the device
is idle and the device can be suspended or put
in low power state. Upon completing such an
I/O request corresponding to such a notification,
USB 3.0 driver did not change PendingReturned
field in the IRP. This deviation was based on a
unique temporal pattern.

USB 2.0 
Trace

Mine 
Patterns

3.0 
Patterns

USB 3.0 
Trace

Mine 
Patterns

2.0 
Patterns

Domain 
Knowledge

Filter
Diff

Known 
Patterns

Filtered 
Diff Patterns

Bug 
Patterns

Benign 
Patterns

Developer

Capture 
Trace

Capture 
Trace

User Def 
Filters

Shrink
Diff

Generate 
Diff

Figure 2: Work flow to perform compatibility testing
using patterns-based trace comparison.
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4.4.2 Precision

Our solution started out with a high number of false
positives — out of 478 deviations reported for device
1, 465 deviations were false positives (see False +ve
and Reported columns in Table 1). So, as we tested
more devices, we collected and saved false positives
to filter them out from subsequent test results (as de-
scribed in Section 4.3.5). Consequently, the number
of false positives dropped to less than 100 in tests cor-
responding to devices 2 thru 14 and to less than 10 in
8 out of 13 tests. Hence, we conjecture that the false
positives reported by our approach will decrease as
the number of devices used for compatibility testing
increases.

In addition, we collected a total of 7(=2+3+2)
user-defined filters while testing with devices 2, 5,
and 14. In retrospective, few of these filters could
have been injected as domain knowledge during pat-
tern mining.

In terms of curtailing the number of deviations pre-
sented to the developer, simplification helped reduce
the number of detected deviations by at least a fac-
tor of 10. Similarly, compaction helped reduce the
number of simplified deviations by a factor of 2. (See
columns Simplified and Compaction in Table 1.)

Revisiting the issue of number of false positives,
let us consider the cost of compatibility testing. Ob-
serve that the bugs were detected from traces of de-
vices that functioned without errors with both bus
drivers. Instead, if we wanted to detect the same
bugs by observing devices failing due to these bugs,
then we would need to test both USB bus drivers
with every USB device in the world. This would
amount to testing with a fraction of more than 10
billion USB devices!! In contrast, with our approach,
the developer spent less than 2 hours in many cases
to examine a non-empty set of deviations resulting
from a test (device); in very few cases, the developer
spent up to a day to examine a set of deviations.
So, comparing the cost of testing with every unique
USB device to the cost of developer spending 2 hours
to sift through less than 100 false positives per test,
the number of false positives is insignificant.

4.4.3 Cost

While the cost of capturing a pair of traces for a
device was in the order of few minutes, the time to
mine quantified patterns from these traces (ranging
from 200K to 500K patterns per trace) varied from
10 minutes to 100 minutes depending on the length
of the trace and the average number of attributes per
event (see Time and Patterns columns in Table 2).
Considering only the time taken to difference pattern
sets and to simplify the difference, the cost for auto-
matically detecting deviations from a pair of traces
was 2-3 minutes for unquantified patterns (see Diff
Time columns in Table 2). However, the cost of de-
tecting deviations based on quantified patterns was
5-12 minutes for most traces with few exceptions of
15, 20, and 45 minutes.

Given that our approach is automated and there
are no alternative approaches/techniques to detect
deviations that do not affect the device under test,
we believe the cost of approach is reasonable.
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4.4.4 Limitations

As demonstrated, the approach can only detect devi-
ations that can be represented as structural patterns
or binary linear temporal patterns both in unquan-
tified and quantified forms. However, this limitation
can be addressed by mining and using richer patterns,
e.g. longer temporal patterns.

4.5 Threats To Validity

While the above results are promising, they are based
on a single experiment. Further, we neither consid-
ered nor controlled the effects of various latent fac-
tors on the experiment. Few latent factors are the
size of the interface (e.g. number of functions), data
flow properties at the interface, value domains of the
data consumed/produced by the interface, and (non-
)existence of a well-defined protocol governing the
observable behavior at the interface. Also, from the
available data, it is hard to discern if and to what ex-
tent did the effectiveness of the approach depend on
the domain knowledge. More experimentation will
help (in)validate these threats.

5 Related Work

The number of efforts in the space of software testing
is huge — even to fairly cite a few efforts here — to
the extent that there are venues dedicated to software
testing, e.g. ICST [4], ISSTA [5], TAP [6]. Most of
these efforts rely on software tests that embody well-
defined expected outcomes to automatically provide
conclusive test verdicts. In comparison, our approach
relies on execution traces of both the system under
test and the reference implementation to automati-
cally detect a class of behavioral (and possibly per-
formance) deviations. In other words, our approach
automatically hoists observable behaviors in the ref-
erence implementation as well-defined expected out-
comes.

In terms of using event sequence patterns as a core
idea to enable software testing, Dallmeier et al. [10]
used method call sequences as trace features to pre-
dict and localize defects by comparing traces from

passing and failing executions of test cases. How-
ever, they employed method call sequences based on
n-grams [18] while we used patterns spanning across
events. In terms of fault localization, Dallmeier et
al. use differing method call sequences to identify and
rank likely defective classes while we present events
that match deviating patterns as likely symptoms.

Recently, Beschastnikh et al. [9] used unquantified
temporal invariants/patterns satisfied by logs to au-
tomatically construct a graph model of a system. In
comparison, we have considered both unquantified
and quantified variants of temporal patterns to model
behaviors captured in traces.

Beyond software testing, there have been numer-
ous efforts [14, 15, 20, 21, 22, 23, 25] to mine various
features from system logs and then monitor live sys-
tems for absence of these features. Similar to soft-
ware testing efforts, few of these efforts have used
n-grams and state machines as trace features while
other efforts have employed features based on sta-
tistical properties of traces such as relative frequency
and correlation of events. Ignoring the specific classes
of patterns and the corresponding mining techniques,
our effort is similar to these efforts in terms of using
patterns and pattern mining techniques as features
and feature extraction techniques, respectively.

In a similar vein, Barringer et al. used human
specified quantified (parameterized) temporal pat-
terns with logs to enable postmortem runtime ver-
ification of flight software for NASA’s recent Mars
rover mission [8]. In comparison, we use automat-
ically mined quantified temporal patterns to detect
both the presence of new behaviors and the absence
of previously existing behaviors when testing (com-
patibility of) programs.

In terms of trace comparison, data mining com-
munity has proposed and used various edit dis-
tances (e.g. Hamming, Levenshtein) and sequence-
based patterns to compare sequences [11]. Miranskyy
et al. [19] identified differences between traces by it-
eratively differencing various inter-event abstractions
of traces (e.g. set of function calls, caller-callee rela-
tion, sequence of function calls). In comparison, our
approach is similar to these efforts with the difference
being the choice of class of structural and temporal
patterns [17] used to abstract and compare traces.
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While we were pursuing this effort, Yang and Evans
[24] also explored the use of temporal patterns (prop-
erties) observed in program logs to identify behav-
ioral differences between programs. Besides the oper-
ational differences in terms of the underlying mining
algorithms and related cost-precision trade-offs, they
mined nine types of unquantified patterns to char-
acterize the traces in their evaluation while we used
only four types of quantified patterns. In addition,
we also devised a simple yet efficient feedback based
work flow to effectively deal with false positives.

6 Future Work

Traditional regression testing relies on passing/failing
of existing tests. It does not detect behavioral devi-
ations that do not affect the outcome of tests. How-
ever, with execution traces of regression tests, our
technique can be applied to detect such behavioral
deviations. Also, in case of failing executions, our
approach can be used to detect deviations between
passing and failing executions to aid fault localiza-
tion and debugging of failures.

Given the effectiveness of the proposed approach to
test compatibility between USB bus drivers, we con-
jecture that the approach can be used in the context
of other kinds of software, e.g. desktop and web ap-
plications, libraries (similar to [10]). Consequently, it
will be interesting to explore the generality of the ap-
proach. Also, it will interesting to identify the char-
acteristics of the software under test that make the
approach effective, e.g. will the approach be effective
only when the interface level interaction with the soft-
ware under test can be described by a protocol?

For USB compatibility testing, we used a notion of
trace similarity based on all temporal patterns satis-
fied by traces (while considering limited sorts of event
abstractions). While this notion sufficed for short
USB traces (most often less than 10,000 events), it
might not suffice for longer traces, e.g. traces with
more than 100,000 events. Depending on the appli-
cation scenario, the cost of mining patterns required
by this notion of trace similarity can be prohibitively
high. In such cases, the cost can be reduced by adopt-
ing various constraints (e.g. limiting number of event

abstractions) to identify a small number of patterns
(e.g. only frequent patterns) as opposed to all pat-
terns. Consequently, we will need new notions of
trace similarity that are sensitive to these constraints
and are helpful in reasoning about traces.

In this effort, equality constraint was used to relate
attributes and values while defining events and event
abstractions. However, many scenarios may benefit
from a richer set of constraints (e.g. <,≤) in terms
of characterizing the traces both succinctly and accu-
rately using patterns. Such scenarios can be enabled
by extending the definition of event abstractions de-
scribed in Section 3 and [17] with richer constraints.
One of the key challenges with such extensions will
be to deal with the explosion of event abstractions.

The proposed approach relies on sets of binary lin-
ear temporal patterns. However, it could be trivially
modified to use sets of longer linear temporal pat-
terns or sets of small finite state machines that col-
lectively describe the event patterns in traces.11 In
such a setting, it would be interesting to explore state
machine mining techniques (similar to [7]) that can
admit event abstractions as described in Section 3.

As more and more systems embrace service-
oriented architecture and operations engineers rely
on log analysis as a primary tool to reason about
runtime behavior of such systems, the need for online
techniques for anomaly detection will increase. While
we have explored an approach to off-line anomaly de-
tection by comparing sets of patterns mined from
traces, it would be interesting to extend the pro-
posed approach and explore new approaches for on-
line anomaly detection.

Moving beyond anomaly detection, the set of struc-
tural patterns and linear temporal patterns satisfied
by traces can be used detect similarity between traces
and answer clustering and classification questions —
Can a set of traces be partitioned into subsets of sim-
ilar traces? Can a trace be classified as belonging to a
specific set of a partition of traces? These questions
can be trivially answered by using patterns observed
in traces as features and employing existing clustering

11N-ary linear temporal patterns can be easily constructed
by combining m-ary linear temporal patterns under certain
rules of combination and then checked against traces to calcu-
late their statistical properties.
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algorithms such as hierarchical clustering or k-means
clustering [11, 12]. At this time, we are exploring this
direction to enrich recommendation systems by using
logs and to improve test prioritization/selection; thus
far, the initial results have been promising.

7 Summary & Conclusion

We have proposed an approach to test compatibility
between two programs with identical published inter-
faces in terms of their observable behaviors at these
interfaces — test for both the absence of previously
observed behaviors and the presence of previously un-
observed behaviors. The approach abstracts traces of
observable behaviors as sets of patterns and these sets
are compared for differences. Existing pattern min-
ing techniques are used to abstract traces into sets of
structural patterns and linear temporal patterns. We
have demonstrated the effectiveness of the approach
by using it to test compatibility between USB 3.0 and
USB 2.0 bus drivers in Windows 8 and identifying 25
compatibility bugs.

Based on this experience, we believe that struc-
tural and temporal patterns based trace abstraction
is an invaluable tool to tackle common yet relevant
software development and maintenance problems in-
volving trace/log data.
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A Patterns and Log Analysis

While log analysis has been and is a common tool
used by system administrators and operation engi-
neers, it is lately becoming a common tool for sup-
port engineers and even developers to diagnose errors
in remote applications, e.g. server running at a cus-
tomer site.

Errors in server applications can be transient
(e.g. they may be dependent on the workload) and
the exact point in time at which the error occurred is
hard to track. Further, the cause of the error may be
temporally distant from the error; hence, the execu-
tion history of the application is required to diagnose
such errors. Under these circumstances, traditional
debugging would amount to running a good chunk
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of the application under the supervision of and in-
terruption from a debugger. This can considerably
hamper the performance of live systems (and possi-
bly suppress the error).

As an alternative, support engineers work with cus-
tomers to collect various logs from a failing system.
Then, engineers analyze these logs to identify log
entries corresponding to both symptoms and possi-
ble root causes of failures. Logs collected from live
systems are often huge, and the task of analyzing
such logs turns into “a search for the needle in the
haystack”.12

All of the above observations, reasons, and ap-
proaches are equally applicable to diagnosing errors
in cloud applications.

This situation can be addressed by leveraging ma-
chine learning techniques such as clustering and clas-
sification [12]. Specifically, given a partition of logs
based on similar errors (causes), classification can be
used to detect likely errors (causes) in a new log by
classifying the log as belonging to a set of the par-
tition. In the presence of set of unpartitioned logs,
clustering can be used to identify a partition of logs
based to similar errors (causes). As with compatibil-
ity testing, trace comparison can be used to detect
anomalies by comparing logs from successful execu-
tions to logs from failing executions.

To enabled the above solutions, features need to
be extracted from logs. Most often, events along with
their statistical properties both in isolation (e.g. pres-
ence/absence, frequency) and in combination with
other events (e.g. relative frequency, correlation) can
be used as features. In the same vein, structural
patterns along with their statistical properties as de-
scribed in Section 3.1 can be used as features of logs.

While features independent of the ordering of
events are cheaper to extract and easy to understand,
they most often have relatively lower discriminatory
power than features involving the ordering of events.
As the accuracy of machine learning techniques de-
pends on the discriminatory power of features, in the
context of log analysis, it would be better to consider
features that are based on ordering of events and are

12Of course, we are assuming that the engineer knows the
needle he/she is looking for. In many cases, this is not true.

easy to comprehend. In this vein, linear temporal
patterns along with their statistical properties as de-
scribed in Section 3.2 can be used as features of logs.

By representing logs as a set of patterns, distance
measures such as Jaccard distance [12] can be used
to measure distances between logs (and sets of logs)
for the purpose of clustering and classifying logs.

In short, both structural patterns and linear tem-
poral patterns used in this exposition can be used
to enable automated log analysis via traditional ma-
chine learning techniques such as classification and
clustering.
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