
iPOS4808 MY-CAN

Intelligent Servo Drive for Step, DC, Brushless DC and AC Motors

Intelligent Servo Drives

Technical Reference

Table of contents

T	able	of con	tents	2
R	ead	This Fi	rst	3
			Manual	
			Conventions	
			cumentation	
			Assistance	
	пуо	u Neeu	Assistance	
1	Sa	fety in	formation	6
	1.1	Warni	ngs	6
	1.2	Cautio	ons	7
	1.3	Qualit	y system, conformance and certifications	7
^	ъ.			
2			Overview	
	2.1		uction	
	2.2	Produ	ct Features	9
	2.3	ldentif	fication Labels	10
	2.4		orted Motor-Sensor Configurations	
			ngle loop configurations	
			ual loop configurations	
	2.5	IPOS4	I808 MY I/O Evaluation board	12
3	На	ırdware	e Installation	13
	3.1	iPOS4	808 MY-CAN Board Dimensions	13
	3.2	Mecha	anical Mounting	13
	3.2		OS4808 MY-CAN PCB Footprint	
	3.3	Mothe	erboard PCB Design	14
	3.4	Conne	ectors and Pinouts	15
			nouts for iPOS4808 MY-CAN	
	3.4		ating Connectors for CAN	
	3.5		ection diagrams	
			OS4808 MY-CAN connection diagramV Digital I/O Connection	
		3.5.2.1	PNP inputs	
	_	3.5.2.2	NPN inputs	
		3.5.2.3	NPN outputs	
			/ Digital I/O Connection	
		.4An 3 <i>.5.4.1</i>	nalog Inputs Connection	
		3.5.4.1 3.5.4.2	+/- 10V to 0-5V Input Range Adapter	
		3.5.4.3	Recommendation for wiring	
			otor connections	
		3.5.5.1 3.5.5.2	Brushless Motor connection2-phase Step Motor connection	
			_ po otop motor vonilodilon	

3.5.5.	,	
3.5.5.4		
3.5.5.	U	
	Feedback connections	
3.5.6.		
3.5.6.		
3.5.6.		
3.5.6.	J	
3.5.6.6 3.5.6.0		
3.5.6.°		
3.5.6.	<u> </u>	
3.5.6.	•	
3.5.6.		
3.5.7	Power Supply Connection	
3.5.7.		
3.5.7.		
3.5.7.		
	Serial RS-232 connection	
3.5.8.		
3.5.8.		
	CAN-bus connection (for CAN drives only)	
3.5.9.	•	
3.5.9.		
	Removal from Autorun Mode	
	N Operation Mode and Axis ID Selection for CAN drives(J1 pin setting	_
	N Operation Mode and Axis ID Selection for CAN drives(J1 pin settinetrical Specifications	_
3.7 Ele		33
3.7 Ele 3.7.1	ctrical Specifications	
3.7 Ele 3.7.1 3.7.2	Ctrical Specifications Operating Conditions Storage Conditions	33 33
3.7 Ele 3.7.1 3.7.2 3.7.3	Ctrical Specifications Operating Conditions Storage Conditions Mechanical Mounting	
3.7 Ele 3.7.1 3.7.2 3.7.3 3.7.4	Ctrical Specifications Operating Conditions Storage Conditions Mechanical Mounting Environmental Characteristics	33 33 33 33
3.7 Ele 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5	Ctrical Specifications Operating Conditions Storage Conditions Mechanical Mounting Environmental Characteristics Logic Supply Input (+VLOG)	33 33 33 33
3.7 Ele 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6	Ctrical Specifications Operating Conditions Storage Conditions Mechanical Mounting Environmental Characteristics Logic Supply Input (+V _{LOG}) Motor Supply Input (+V _{MOT})	33 33 33 33 34
3.7 Ele 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.7	Ctrical Specifications Operating Conditions Storage Conditions Mechanical Mounting Environmental Characteristics Logic Supply Input (+V _{LOG}) Motor Supply Input (+V _{MOT}) Motor Outputs (A/A+, B/A-, C/B+, BR/B-)	33 33 33 34 34
3.7 Ele 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.8	Ctrical Specifications Operating Conditions Storage Conditions Mechanical Mounting Environmental Characteristics Logic Supply Input (+V _{LOG}) Motor Supply Input (+V _{MOT}) Motor Outputs (A/A+, B/A-, C/B+, BR/B-) Digital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN4, IN5/Enable)	33333333343434
3.7 Ele 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.7 3.7.9	Ctrical Specifications Operating Conditions Storage Conditions Mechanical Mounting Environmental Characteristics Logic Supply Input (+V _{LOG}) Motor Supply Input (+V _{MOT}) Motor Outputs (A/A+, B/A-, C/B+, BR/B-) Digital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN4, IN5/Enable) Digital Outputs (OUT0, OUT1, OUT2/Error, OUT3/ Ready, OUT4)	33333334343435
3.7 Ele 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.8 3.7.9 3.7.10	Operating Conditions Storage Conditions Mechanical Mounting Environmental Characteristics Logic Supply Input (+V _{LOG}) Motor Supply Input (+V _{MOT}) Motor Outputs (A/A+, B/A-, C/B+, BR/B-) Digital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN4, IN5/Enable) Digital Outputs (OUT0, OUT1, OUT2/Error, OUT3/ Ready, OUT4) Digital Hall Inputs (Hall1, Hall2, Hall3)	
3.7 Ele 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.8 3.7.9 3.7.10 3.7.11	Operating Conditions Storage Conditions Mechanical Mounting Environmental Characteristics Logic Supply Input (+V _{LOG}) Motor Supply Input (+V _{MOT}) Motor Outputs (A/A+, B/A-, C/B+, BR/B-) Digital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN4, IN5/Enable) Digital Outputs (OUT0, OUT1, OUT2/Error, OUT3/ Ready, OUT4) Digital Hall Inputs (Hall1, Hall2, Hall3) Encoder #1 Inputs (A1+, A1-, B1+, B1-, Z1+, Z1-,)	333333333434353535
3.7 Ele 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.8 3.7.9 3.7.10 3.7.11	Operating Conditions Storage Conditions Mechanical Mounting Environmental Characteristics Logic Supply Input (+V _{LOG}) Motor Supply Input (+V _{MOT}) Motor Outputs (A/A+, B/A-, C/B+, BR/B-) Digital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN4, IN5/Enable) Digital Outputs (OUT0, OUT1, OUT2/Error, OUT3/ Ready, OUT4) Digital Hall Inputs (Hall1, Hall2, Hall3)	333333333434353535
3.7 Ele 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.8 3.7.9 3.7.10 3.7.11	Operating Conditions Storage Conditions Mechanical Mounting Environmental Characteristics Logic Supply Input (+V _{LOG}) Motor Supply Input (+V _{MOT}) Motor Outputs (A/A+, B/A-, C/B+, BR/B-) Digital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN4, IN5/Enable) Digital Outputs (OUT0, OUT1, OUT2/Error, OUT3/ Ready, OUT4) Digital Hall Inputs (Hall1, Hall2, Hall3) Encoder #1 Inputs (A1+, A1-, B1+, B1-, Z1+, Z1-,)	
3.7 Ele 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.8 3.7.9 3.7.10 3.7.11 3.7.12 3.7.13	Operating Conditions Storage Conditions Mechanical Mounting Environmental Characteristics Logic Supply Input (+V _{LOG}) Motor Supply Input (+V _{MOT}) Motor Outputs (A/A+, B/A-, C/B+, BR/B-) Digital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN4, IN5/Enable) Digital Outputs (OUT0, OUT1, OUT2/Error, OUT3/ Ready, OUT4) Digital Hall Inputs (Hall1, Hall2, Hall3) Encoder #1 Inputs (A2+, A1-, B1+, B1-, Z1+, Z1-,) Encoder #2 Inputs (A2+, A2-, B2+, B2-, Z2+, Z2-)	
3.7 Ele 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.7 3.7.8 3.7.10 3.7.11 3.7.12 3.7.13 3.7.14	Operating Conditions Storage Conditions Mechanical Mounting Environmental Characteristics Logic Supply Input (+V _{LOG}) Motor Supply Input (+V _{MOT}) Motor Outputs (A/A+, B/A-, C/B+, BR/B-) Digital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN4, IN5/Enable) Digital Outputs (OUT0, OUT1, OUT2/Error, OUT3/ Ready, OUT4) Digital Hall Inputs (Hall1, Hall2, Hall3) Encoder #1 Inputs (A1+, A1-, B1+, B1-, Z1+, Z1-,) Encoder #2 Inputs (A2+, A2-, B2+, B2-, Z2+, Z2-) Linear Hall Inputs (LH1, LH2, LH3)	
3.7 Ele 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.8 3.7.9 3.7.10 3.7.11 3.7.12 3.7.13 3.7.15	Operating Conditions Storage Conditions Mechanical Mounting Environmental Characteristics Logic Supply Input (+V _{LOG}) Motor Supply Input (+V _{MOT}) Motor Outputs (A/A+, B/A-, C/B+, BR/B-) Digital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN4, IN5/Enable) Digital Outputs (OUT0, OUT1, OUT2/Error, OUT3/ Ready, OUT4) Digital Hall Inputs (Hall1, Hall2, Hall3) Encoder #1 Inputs (A1+, A1-, B1+, B1-, Z1+, Z1-,) Encoder #2 Inputs (A2+, A2-, B2+, B2-, Z2+, Z2-) Linear Hall Inputs (LH1, LH2, LH3) Sin-Cos Encoder Inputs (Sin+, Sin-, Cos+, Cos-)	
3.7 Ele 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.8 3.7.9 3.7.10 3.7.11 3.7.12 3.7.12 3.7.13 3.7.14 3.7.15 3.7.16	Operating Conditions Storage Conditions Mechanical Mounting Environmental Characteristics Logic Supply Input (+V _{LOG}) Motor Supply Input (+V _{MOT}) Motor Outputs (A/A+, B/A-, C/B+, BR/B-) Digital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN4, IN5/Enable) Digital Outputs (OUT0, OUT1, OUT2/Error, OUT3/ Ready, OUT4) Digital Hall Inputs (Hall1, Hall2, Hall3) Encoder #1 Inputs (A1+, A1-, B1+, B1-, Z1+, Z1-,) Encoder #2 Inputs (A2+, A2-, B2+, B2-, Z2+, Z2-) Linear Hall Inputs (LH1, LH2, LH3) Sin-Cos Encoder Inputs (Sin+, Sin-, Cos+, Cos-) SSI encoder Interface BiSS Encoder Interface	33 33 33 33 34 34 34 35 35 35 36 36 36 37
3.7 Ele 3.7.1 3.7.2 3.7.3 3.7.5 3.7.6 3.7.8 3.7.9 3.7.10 3.7.12 3.7.12 3.7.13 3.7.15 3.7.15 3.7.15	Operating Conditions Storage Conditions Mechanical Mounting Environmental Characteristics Logic Supply Input (+V _{LOG}) Motor Supply Input (+V _{MOT}). Motor Outputs (A/A+, B/A-, C/B+, BR/B-). Digital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN4, IN5/Enable). Digital Outputs (OUT0, OUT1, OUT2/Error, OUT3/ Ready, OUT4) Digital Hall Inputs (Hall1, Hall2, Hall3). Encoder #1 Inputs (A1+, A1-, B1+, B1-, Z1+, Z1-,). Encoder #2 Inputs (A2+, A2-, B2+, B2-, Z2+, Z2-). Linear Hall Inputs (LH1, LH2, LH3). Sin-Cos Encoder Inputs (Sin+, Sin-, Cos+, Cos-). SSI encoder interface. BiSS Encoder Interface. Analog 05V Inputs (REF, FDBK).	33 33 33 33 34 34 34 35 35 35 36 36 36 37 37
3.7 Ele 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.8 3.7.10 3.7.11 3.7.12 3.7.13 3.7.14 3.7.15 3.7.15 3.7.16	Operating Conditions Storage Conditions Mechanical Mounting Environmental Characteristics Logic Supply Input (+V _{LOG}) Motor Supply Input (+V _{MOT}) Motor Outputs (A/A+, B/A-, C/B+, BR/B-) Digital Inputs (INO, IN1, IN2/LSP, IN3/LSN, IN4, IN5/Enable) Digital Outputs (OUT0, OUT1, OUT2/Error, OUT3/ Ready, OUT4) Digital Hall Inputs (Hall1, Hall2, Hall3) Encoder #1 Inputs (A1+, A1-, B1+, B1-, Z1+, Z1-,) Encoder #2 Inputs (A2+, A2-, B2+, B2-, Z2+, Z2-) Linear Hall Inputs (LH1, LH2, LH3) Sin-Cos Encoder Inputs (Sin+, Sin-, Cos+, Cos-) SSI encoder Interface BiSS Encoder Interface Analog 05V Inputs (REF, FDBK). RS-232	33 33 33 33 34 34 34 35 35 35 36 36 36 37 37
3.7 Ele 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.8 3.7.10 3.7.11 3.7.12 3.7.13 3.7.14 3.7.15 3.7.15 3.7.16	Operating Conditions Storage Conditions Mechanical Mounting Environmental Characteristics Logic Supply Input (+V _{LOG}) Motor Supply Input (+V _{MOT}). Motor Outputs (A/A+, B/A-, C/B+, BR/B-). Digital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN4, IN5/Enable). Digital Outputs (OUT0, OUT1, OUT2/Error, OUT3/ Ready, OUT4) Digital Hall Inputs (Hall1, Hall2, Hall3). Encoder #1 Inputs (A1+, A1-, B1+, B1-, Z1+, Z1-,). Encoder #2 Inputs (A2+, A2-, B2+, B2-, Z2+, Z2-). Linear Hall Inputs (LH1, LH2, LH3). Sin-Cos Encoder Inputs (Sin+, Sin-, Cos+, Cos-). SSI encoder interface. BiSS Encoder Interface. Analog 05V Inputs (REF, FDBK).	33 33 33 33 34 34 34 35 35 35 36 36 36 37 37

Read This First

Whilst Technosoft believes that the information and guidance given in this manual is correct, all parties must rely upon their own skill and judgment when making use of it. Technosoft does not assume any liability to anyone for any loss or damage caused by any error or omission in the work, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

All rights reserved. No part or parts of this document may be reproduced or transmitted in any form or by any means, electrical or mechanical including photocopying, recording or by any information-retrieval system without permission in writing from Technosoft S.A.

The information in this document is subject to change without notice.

About This Manual

This book is a technical reference manual for:

Product Name	Part Number	Description	
iPOS4808 MY-CAN	P027.414.E101	Standard version, CAN	
IPOS4606 WIT-CAN	P027.424.E101	Extended temperature range version, CAN	

In order to operate the iPOS4808 drives, you need to pass through 3 steps:

	Ste	p 1 Hardware installation
	Ste	p 2 Drive setup using Technosoft EasySetUp software for drive commissioning
	Ste	p 3 Motion programming using one of the options:
		A CANopen master ¹
		The drives built-in motion controller executing a Technosoft Motion Language (TML) program
		developed using Technosoft EasyMotion Studio software
☐ A TML LIB motion library for PCs (Windows or Linux) ²	A TML_LIB motion library for PCs (Windows or Linux) ²	
		A TML_LIB motion library for PLCs ³
		A distributed control approach which combines the above options, like for example a host calling motion
		functions programmed on the drives in TML

This manual covers **Step 1** in detail. It describes the **iPOS4808** hardware including the technical data, the connectors and the wiring diagrams needed for installation.

For Step 2 and 3, please consult the document iPOS Dual Loop drives Software reference

(091.027.DL.Software.xxxx). It also includes the scaling factors between the real SI units and the drive internal units. For detailed information regarding the next steps, refer to the related documentation.

Notational Conventions

This document uses the following conventions:

- iPOS4808– all products described in this manual
- IU units Internal units of the drive
- SI units International standard units (meter for length, seconds for time, etc.)
- STO Safe Torque Off
- TML Technosoft Motion Language
- CANopen Standard communication protocol that uses 11-bit message identifiers over CAN-bus
- TMLCAN Technosoft communication protocol for exchanging TML commands via CAN-bus, using 29bit message identifiers

¹ when the iPOS4808 MY-CAN is set in CANopen mode

² available only for CAN versions

iPOS4808 MY-CAN Datasheet (P027.414.E101.DSH)

 describes the hardware connections of the iPOS4808 MY CAN family of intelligent servo drives including the technical data and connectors.

iPOS Dual Loop drives Software reference (091.027.DL.Software.xxxx)

- describes the compatible software installation, drive software setup commissioning, introduction to TML motion programming, includes the scaling factors between the real SI units and the drive internal units.
- Help of the EasySetUp software describes how to use EasySetUp to quickly setup any Technosoft drive for your application using only 2 dialogues. The output of EasySetUp is a set of setup data that can be downloaded into the drive EEPROM or saved on a PC file. At power-on, the drive is initialized with the setup data read from its EEPROM. With EasySetUp it is also possible to retrieve the complete setup information from a drive previously programmed. EasySetUp can be downloaded free of charge from Technosoft web page
- iPOS CANopen Programming (part no. P091.063.iPOS.UM.xxxx) explains how to program the iPOS family of intelligent drives using CANopen protocol and describes the associated object dictionary for CiA 301 v.4.2 application layer and communication profile, CiA WD 305 v.2.2.13 layer settings services and protocols and CiA DSP 402 v3.0 device profile for drives and motion control now included in IEC 61800-7-1 Annex A, IEC 61800-7-201 and IEC 61800-7-301 standards
- Motion Programming using EasyMotion Studio (part no. P091.034.ESM.UM.xxxx) describes how to use the EasyMotion Studio to create motion programs using in Technosoft Motion Language (TML). EasyMotion Studio platform includes EasySetUp for the drive/motor setup, and a Motion Wizard for the motion programming. The Motion Wizard provides a simple, graphical way of creating motion programs and automatically generates all the TML instructions. With EasyMotion Studio you can fully benefit from a key advantage of Technosoft drives their capability to execute complex motions without requiring an external motion controller, thanks to their built-in motion controller. A demo version of EasyMotion Studio (with EasySetUp part fully functional) can be downloaded free of charge from the Technosoft web page
- TML_LIB v2.0 (part no. P091.040.v20.UM.xxxx) explains how to program in C, C++,C#, Visual Basic or Delphi Pascal a motion application for the Technosoft intelligent drives using TML_LIB v2.0 motion control library for PCs. The TML_lib includes ready-to-run examples that can be executed on Windows or Linux (x86 and x64).
- TML_LIB_LabVIEW v2.0 (part no. P091.040.LABVIEW.v20.UM.xxxx) explains how to program in LabVIEW a motion application for the Technosoft intelligent drives using TML_LIB_Labview v2.0 motion control library for PCs. The TML Lib LabVIEW includes over 40 ready-to-run examples.
- TML_LIB_S7 (part no. P091.040.S7.UM.xxxx) explains how to program in a PLC Siemens series S7-300 or S7-400 a motion application for the Technosoft intelligent drives using TML_LIB_S7 motion control library. The TML_LIB_S7 library is IEC61131-3 compatible.
- TML_LIB_CJ1 (part no. P091.040.CJ1.UM.xxxx) explains how to program in a PLC Omron series CJ1 a motion application for the Technosoft intelligent drives using TML_LIB_CJ1 motion control library for PLCs. The TML_LIB_CJ1 library is IEC61131-3 compatible.
- TML_LIB_X20 (part no. P091.040.X20.UM.xxxx) explains how to program in a PLC B&R series X20 a motion application for the Technosoft intelligent drives using TML_LIB_X20 motion control library for PLCs. The TML_LIB_X20 library is IEC61131-3 compatible.
- **TechnoCAN** (part no. P091.063.TechnoCAN.UM.xxxx) presents TechnoCAN protocol an extension of the CANopen communication profile used for TML commands
- IO-iPOS4808MY (part no. P091.084.IO-iPOS4808MY.UM.xxxx) describes the IO iPOS4808MY I/O extension board included in the iPOS4808 Starter Kits.

If you want to	Contact Technosoft at
Visit Technosoft online	World Wide Web: http://www.technosoftmotion.com/
Receive general information or assistance (see Note)	World Wide Web: http://www.technosoftmotion.com/ Email: contact@technosoftmotion.com/
Ask questions about product operation or report suspected problems (see Note)	Fax: (41) 32 732 55 04 Email: hotline@technosoftmotion.com
Make suggestions about, or report errors in documentation.	Mail: Technosoft SA
•	Avenue des Alpes 20
	CH-2000 Neuchatel, NE
	Switzerland

1 Safety information

Read carefully the information presented in this chapter before carrying out the drive installation and setup! It is imperative to implement the safety instructions listed hereunder.

This information is intended to protect you, the drive and the accompanying equipment during the product operation. Incorrect handling of the drive can lead to personal injury or material damage.

The following safety symbols are used in this manual:

WARNING! SIGNALS A DANGER TO THE OPERATOR WHICH MIGHT CAUSE BODILY INJURY. MAY INCLUDE INSTRUCTIONS TO PREVENT THIS SITUATION

SIGNALS A DANGER FOR THE DRIVE WHICH MIGHT DAMAGE THE PRODUCT CAUTION! OR OTHER EQUIPMENT. MAY INCLUDE INSTRUCTIONS TO AVOID THIS SITUATION

CAUTION! Indicates areas SENSITIVE TO electrostatic discharges (ESD) WHICH REQUIRE HANDLING IN AN ESD PROTECTED ENVIRONMENT

1.1 Warnings

WARNING! THE VOLTAGE USED IN THE DRIVE MIGHT CAUSE ELECTRICAL SHOCKS. DO NOT TOUCH LIVE PARTS WHILE THE POWER SUPPLIES ARE ON

WARNING! TO AVOID ELECTRIC ARCING AND HAZARDS, NEVER CONNECT /
DISCONNECT WIRES FROM THE DRIVE WHILE THE POWER SUPPLIES ARE ON

WARNING! THE DRIVE MAY HAVE HOT SURFACES DURING OPERATION.

WARNING! DURING DRIVE OPERATION, THE CONTROLLED MOTOR WILL MOVE. KEEP AWAY FROM ALL MOVING PARTS TO AVOID INJURY

1.2 Cautions

CAUTION! THE POWER SUPPLIES CONNECTED TO THE DRIVE MUST COMPLY WITH THE PARAMETERS SPECIFIED IN THIS DOCUMENT

CAUTION! TROUBLESHOOTING AND SERVICING ARE PERMITTED ONLY FOR PERSONNEL AUTHORISED BY TECHNOSOFT

THE DRIVE CONTAINS ELECTROSTATICALLY SENSITIVE COMPONENTS
WHICH MAY BE DAMAGED BY INCORRECT HANDLING. THEREFORE THE DRIVE
SHALL BE REMOVED FROM ITS ORIGINAL PACKAGE ONLY IN AN ESD
PROTECTED ENVIRONMENT

To prevent electrostatic damage, avoid contact with insulating materials, such as synthetic fabrics or plastic surfaces. In order to discharge static electricity build-up, place the drive on a grounded conductive surface and also ground yourself.

1.3 Quality system, conformance and certifications

qualityaustria Succeed with Quality	IQNet and Quality Austria certification about the implementation and maintenance of the Quality Management System which fulfills the requirements of Standard ISO 9001:2015. Quality Austria Certificate about the application and further development of an effective
- INet -	Quality Management System complying with the requirements of Standard ISO 9001:2015
REACH	REACH Compliance - TECHNOSOFT hereby confirms that this product comply with the legal obligations regarding Article 33 of the European REACH Regulation 1907/2006 (Registration, Evaluation, Authorization and Restriction of Chemicals), which came into force on 01.06.2007.
ROHS	RoHS Compliance - Technosoft SA here with declares that this product is manufactured in compliance with the RoHS directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)
CE	Technosoft SA hereby declares that this product conforms to the following European applicable directives: 2014/30/EU
COMPLET	Conflict minerals statement - Technosoft declares that the company does not purchase 3T&G (tin, tantalum, tungsten & gold) directly from mines or smelters We have no indication that Technosoft products contain minerals from conflict mines or smelters in and around the DRC.

For other certifications visit: http://technosoftmotion.com/en/quality-system

2 Product Overview

2.1 Introduction

The **iPOS4808** is a family of fully digital intelligent servo drives, based on the latest DSP technology and they offer unprecedented drive performance combined with an embedded motion controller.

Suitable for control of brushless DC, brushless AC (vector control), DC brushed motors and step motors, the iPOS4808 drives accept as position feedback incremental encoders (quadrature or sine/cosine), absolute encoders (SSI and BiSSC) and linear Hall signals.

All drives perform position, speed or torque control and work in single, multi-axis or stand-alone configurations. Thanks to the embedded motion controller, the iPOS4808 drives combine controller, drive and PLC functionality in a single compact unit and are capable to execute complex motions without requiring intervention of an external motion controller. Using the high-level Technosoft Motion Language (TML) the following operations can be executed directly at drive level:

Setting various motion modes (profiles, PVT, PT, electronic gearing or camming, etc.)				
Changing the motion modes and/or the motion parameters				
Executing homing sequences				
Controlling the program flow through:				
 Conditional jumps and calls of TML functions 				
 TML interrupts generated on pre-defined or programmable conditions (protections triggered transitions on limit switch or capture inputs, etc.) 				
Waits for programmed events to occur				
Handling of digital I/O and analogue input signals				
Executing arithmetic and logic operations				
Performing data transfers between axes				
Controlling motion of an axis from another one via motion commands sent between axes				
Sending commands to a group of axes (multicast). This includes the possibility to start simultaneously				
motion sequences on all the axes from the group ²				
Synchronizing all the axes from a network				

By implementing motion sequences directly at drive level you can really distribute the intelligence between the master and the drives in complex multi-axis applications, reducing both the development time and the overall communication requirements. For example, instead of trying to command each movement of an axis, you can program the drives using TML to execute complex motion tasks and inform the master when these tasks are done. Thus, for each axis control the master job may be reduced at: calling TML functions stored in the drive EEPROM and waiting for a message, which confirms the TML functions execution completion.

All iPOS4808 CAN drives are equipped with a serial RS232 and a CAN 2.0B interface that can be set by hardware pins to operate in 2 communication protocol modes:

CANoper
TMI CAN

When **CANopen** mode is selected, the iPOS4808 conforms to **CiA 301 v4.2** application layer communication profile, the **CiA WD 305 v2.2.13** and **CiA DSP 402 v3.0** device profile for drives and motion control, now included in IEC 61800-7-1 Annex A, IEC 61800-7-201 and IEC 61800-7-301 standards. In this mode, the iPOS4808 may be controlled via a CANopen master. The iPOS drive offers the possibility for a CANopen master to call motion sequences/ functions, written in TML and stored in the drive EEPROM, using manufacturer specific objects. Also, the drives can communicate separately between each other by using non reserved 11 bit identifiers.

When **TMLCAN** mode is selected, the iPOS4808 behaves as standard Technosoft intelligent drive and conforms to Technosoft protocol for exchanging TML commands via CAN-bus. When TMLCAN protocol is used, it is not mandatory to have a master. Any iPOS4808 can be set to operate standalone, and may play the role of a master to coordinate both the network communication/synchronization and the motion application via TML commands sent directly to the other drives.

When higher level coordination is needed, apart from a CANopen master, the iPOS4808 drives can also be controlled via a PC or a PLC using one of the **TML LIB** motion libraries.

For iPOS4808 commissioning EasySetUp or EasyMotion Studio PC applications may be used.

¹ Available if the master axis sends its position via a communication channel, or by using the secondary encoder input

EasySetUp is a subset of EasyMotion Studio, including only the drive setup part. The output of EasySetUp is a set of setup data that can be downloaded into the drive EEPROM or saved on a PC file. At power-on, the drive is initialized with the setup data read from its EEPROM. With EasySetUp it is also possible to retrieve the complete setup information from a drive previously programmed. EasySetUp shall be used for drive setup in all cases where the motion commands are sent exclusively from a master. Hence neither the iPOS4808 TML programming capability nor the drive camming mode are used. **EasySetUp can be downloaded free of charge from Technosoft web page.**

EasyMotion Studio platform includes EasySetUp for the drive setup, and a Motion Wizard for the motion programming. The Motion Wizard provides a simple, graphical way of creating motion programs and automatically generates all the TML instructions. With EasyMotion Studio you can execute complex motions, thanks to their built-in motion controllers. EasyMotion Studio, may be used to program motion sequences in TML. This is the iPOS4808 typical CAN operation mode when TMLCAN protocol is selected. EasyMotion Studio can also be used with the CANopen protocol, if the user wants to call TML functions stored in the drive EEPROM or to use the camming mode. With camming mode, EasyMotion Studio offers the possibility to quickly download and test a cam profile and also to create a .sw file with the cam data. The .sw file can be afterwards stored in a master and downloaded to the drive, wherever needed. A demo version of EasyMotion Studio (with EasySetUp part fully functional) can be downloaded free of charge from Technosoft web page.

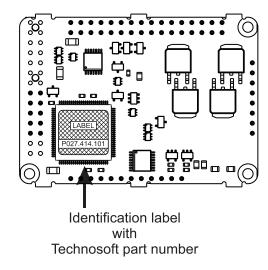
2.2 Product Features

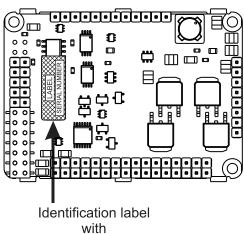
- Fully digital servo drive suitable for the control of rotary or linear brushless, DC brush, and step motors
- Very compact design
- Sinusoidal (FOC) or trapezoidal (Hall-based) control of brushless motors
- Open or closed-loop control of 2 and 3-phase steppers
- Various modes of operation, including: torque, speed or position control; position or speed profiles, Cyclic Synchronous Position (CSP) for CANopen mode, external reference mode (analogue or encoder feedback) or sent via a communication bus
- Technosoft Motion Language (TML) instruction set for the definition and execution of motion seguences
- Standalone operation with stored motion sequences
- · Communication:
 - RS-232 serial up to 115kbits/s
 - CAN-bus 2.0B up to 1Mbit/s (for CAN drives)
- Digital and analog I/Os:
 - 6 digital inputs: 12-36 V, programmable polarity: sourcing/NPN or sinking/PNP: 2 Limit switches and 4 general-purpose
 - 5 digital outputs: 5-36 V, with 0.5 A, sinking/NPN open-collector (Ready, Error and 3 general-purpose)
 - NTC/PTC analogue Motor Temperature sensor input
- Electro-Mechanical brake support: software configurable digital output to control motor brake
- Feedback devices (dual-loop support)

1st feedback devices supported:

- Incremental encoder interface (single ended or differential)
- Analog sin/cos encoder interface (differential 1V_{PP})
- Linear Hall sensors interface
- Pulse & direction interface (single ended) for external (master) digital reference

2nd feedback devices supported:


- Incremental encoder interface (differential only)
- Pulse & direction interface (differential only) for external (master) digital reference
- BiSS-C / SSI encoder interface


Separate feedback devices supported:

- Digital Hall sensor interface (single-ended and open collector)
- 2 analogue inputs: 12 bit, 0-5V: Reference and Feedback (for Tacho) or general purpose
- · Various motion programming modes:
 - Position profiles with trapezoidal or S-curve speed shape
 - Position, Velocity, Time (PVT) 3rd order interpolation
 - Position, Time (PT) 1st order interpolation
 - Cyclic Synchronous Position (CSP) for CANopen mode
 - Electronic gearing and camming
 - 35 Homing modes
- 128 h/w selectable addresses

- Two CAN operation modes selectable by HW pin (only for CAN drives):
 - CANopen conforming with CiA 301 v4.2, CiA WD 305 v2.2.13 and CiA DSP 402 v3.0
 - TMLCAN intelligent drive conforming with Technosoft protocol for exchanging TML commands via CAN-bus
- 16K × 16 internal SRAM memory for data acquisition
- 16K × 16 E²ROM to store TML motion programs, cam tables and other user data
- PWM switching frequency up to 100kHz
- Motor supply: 12-50V
- Logic supply: 9-36V.
- Output current: 81 continuous; 20A peak
- Operating ambient temperature: 0-40°C (over 40°C with derating)
- Protections:
 - Short-circuit between motor phases
 - Short-circuit from motor phases to ground
 - Over-voltage
 - Under-voltage
 - Over-current
 - Over-temperature
 - Communication error
 - Control error

Identification Labels 2.3

Technosoft serial number

Figure 2.3.1. iPOS4808 MY-CAN identification labels

The iPOS4808 MY can have the following part numbers and names on the identification label:

- p.n. P027.414.E101 name iPOS 4808 MY-CAN standard CAN execution
- p.n. P027.424.E101 name iPOS 4808 MY-CAN extended temperature range CAN execution

¹ 20A cont. with DC, step and BLDC motors (trapezoidal), 20A amplitude (14.2A_{RMS}) for PMSM (sinusoidal)

2.4 Supported Motor-Sensor Configurations

2.4.1 Single loop configurations

The position and/or speed are controlled using one feedback sensor. The other available feedback sensor input can be used for External reference Position or Velocity, Pulse and Direction, Electronic Gearing or Camming.

			Brushless PMSM	Brushless BLDC	DC Brush		Stepper 3 phase
Sensor type	Sensor location						
Incr. encoder	FDBK #1 (single end	ded or diff.)			.,	.,	
	FDBK #2 (diff.)		Yes	-	Yes	Yes	-
Incr. encoder + Digital Hall	FDBK #1 (single ended or diff.)	Digital halls	Yes	Yes	_	_	-
	FDBK #2 (diff.)	interface					
Digital halls only	Digital halls interface	9	Yes	-	-	-	-
Linear halls (analogue)	Linear halls interface		Yes	-	-	-	-
SSI	FDBK #2 (diff.)	FDBK #2 (diff.)		-	Yes	Yes	-
BiSS-C	FDBK #2 (diff.)		Yes	-	Yes	Yes	-
Analogue Sin/Cos encoder	FDBK #1 (diff.)		Yes	-	Yes	Yes	-
Tacho	Analogue input: Feedback		-	-	Yes	-	-
Open-loop (no sensor)	-		-	-	-	Yes	Yes
Open-loop (with step loss detection	FDBK #1 (single ended or diff.)		-	-	-	Yes	Yes
using Incr. Encoder/SinCos/SSI/BiSS)	FDBK #2 (diff.)						

2.4.2 Dual loop configurations

The motor speed control loop is closed on one feedback connected on the motor while the motor position control loop is closed on the other available feedback which is placed on the load. There is usually a transmission between the load and the motor.

Motor type	Feedback #1	Feedback #2
PMSM	 Incremental encoder (single-ended or differential) Analogue Sin/Cos encoder Linear Halls (only on motor) 	Incremental encoder (differential)SSI/BiSS C encoder
BLDC	 Incremental encoder (single-ended or differential) + Digital halls 	 Incremental encoder (differential) + Digital Halls SSI/BiSS C encoder (only on load)
Stepper 2ph	 Incremental encoder (single-ended or differential) Analogue Sin/Cos encoder 	Incremental encoder (differential)SSI/BiSS C encoder
DC Brush	 Incremental encoder (single-ended or differential) Analogue Sin/Cos encoder Analogue Tacho (only on motor) 	Incremental encoder (differential)SSI/BiSS C encoder

Each defined motor type can have any combination of the supported feedbacks either on motor or on load. Example:

-DC brush motor with SSI encoder (from feedback #2) on motor and Sin/Cos encoder (from feedback #1) on load.

⁻PMSM motor with Incremental encoder (from feedback #1) on motor and Incremental encoder (from feedback#2) on load

A circuit board is available for evaluating the following types of drives:

Compatible Product Name	Part Number	Description
iPOS4808 MY-CAN	P027.414.E101 or P027.424.E101	Drive with CAN, without STO inputs
iPOS4808 MY-CAN-STO	P027.314.E111 or P027.324.E111	Drive with CAN and STO inputs
iPOS4808 MY-CAT-STO	P027.314.E121 or P027.324.E121	Drive with EtherCAT® and STO inputs

It comes with multiple types of connectors for easy access to the iPOS4808 features.

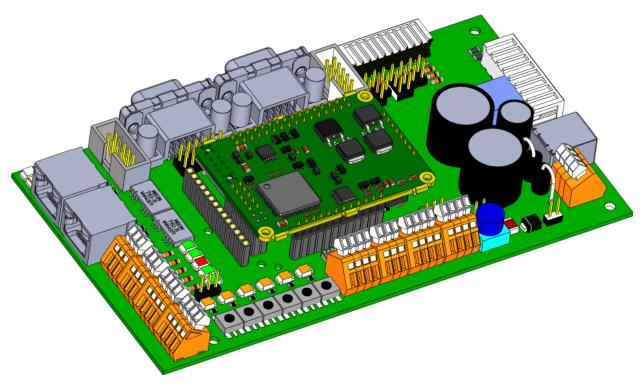


Figure 2.5.1. iPOS4808 MY-CAN mounted on the I/O-iPOS4808MY extension board

Ordering information

Part number	Description
P091.084.IO-iPOS4808MY.UM.xxxx	Evaluation board User Manual (available for download on our website)
P027.414.E881	I/O iPOS4808 MY extension board only
P027.314.E803	iPOS4808 MY-CAN-STO Starter kit without motor
P027.314.E804	iPOS4808 MY-CAN-STO Starter kit with brushless motor and encoder
P027.314.E805	iPOS4808 MY-CAN-STO Starter kit with step motor and encoder
P027.314.E813	iPOS4808 MY-CAT-STO Starter kit without motor
P027.314.E814	iPOS4808 MY-CAT-STO Starter kit with brushless motor and encoder
P027.314.E815	iPOS4808 MY-CAT-STO Starter kit with step motor and encoder

3.1 iPOS4808 MY-CAN Board Dimensions

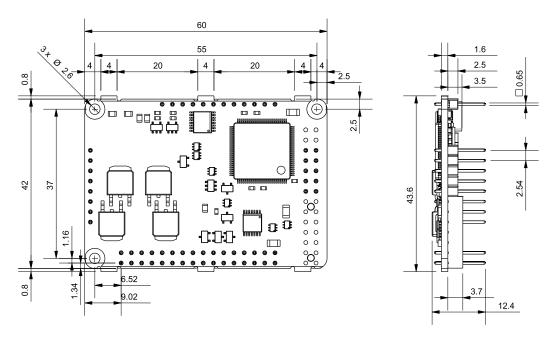


Figure 3.1.1. iPOS4808 MY-CAN drive dimensions

All dimensions are in mm. The drawings are not to scale.

3.2 Mechanical Mounting

The iPOS4808 drive is intended to be mounted horizontally on a motherboard equipped with the recommended mating connectors, as specified in chapter **3.4.2 Mating Connectors**. Several drives can be hosted by a single motherboard. For thermal calculations:

- the iPOS4808 MY-CAN drive can be assumed to generate 2.2 Watt (= 8 BTU/hour) at idle, and up to 5.7 Watt (= 20 BTU/hour) worst case while driving a motor.

3.2.1 iPOS4808 MY-CAN PCB Footprint

For iPOS4808 MY-CAN motherboard PCB design, use the dimensional drawing from Figure 3.2 below.

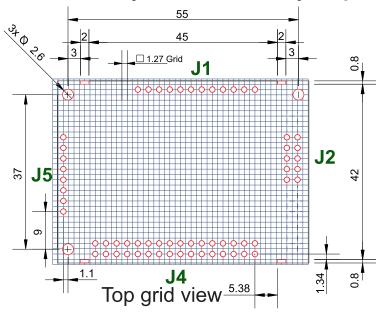


Figure 3.2 iPOS4808 MY-CAN PCB Footprint

All dimensions are in mm. Holes are marked with RED.

3.3 Motherboard PCB Design

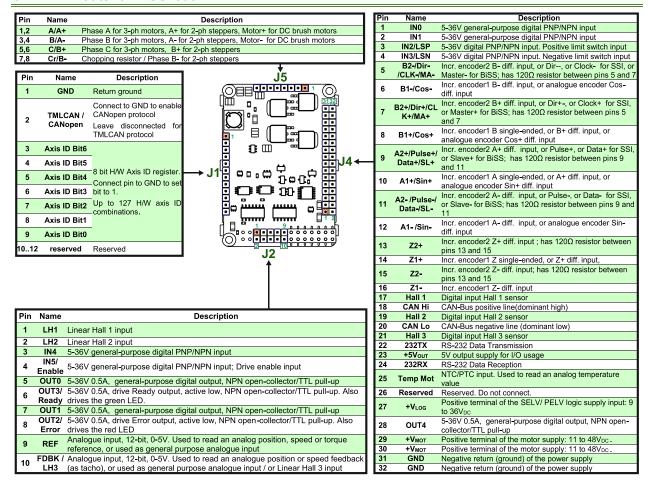
It is recommended to use a multi-layer PCB for the motherboard, in order to have enough room for routing all the pins of the iPOS4808. Using a 2-layer PCB is possible when some of the iPOS4808 pins remain un-connected.

Below is a list of recommendations for the PCB design of the motherboard:

- Motor supply and motor outputs: use islands / areas of copper to escape connector area; this will maximize
 current capability. When using simple tracks, use at least 100mil cross section (75mil track width for 1oz/ft²
 copper thickness) for iPOS4808.
- Motor supply and ground return tracks between iPOS4808 and the nearby V_{MOT} decoupling capacitor are to be considered as EMI sources, and kept to a minimum length.
- Place the decoupling capacitors on V_{MOT} and V_{LOG} (see also 0 Power Supply Connection) as close as physically
 possible to the iPOS4808, to minimize EM radiated emissions. For un-shielded applications (no metallic box)
 and typical EMC regulations, the spacing between iPOS4808 and capacitors must be less than 3 centimeters.
- In multi-axis applications (multiple iPOS4808 drives on the same motherboard), it is preferable to have a separate decoupling capacitor for each drive's V_{MOT}. For V_{LOG} it is acceptable to share one decoupling capacitor for two drives.
- For stringent EMI requirements, it may be necessary to add common-mode filtering on the motor and/or logic supply inputs. Be sure to use 3-phase EMC filters, not 2-phase filters, in order to fulfill the basic requirement of zero common-mode current through the filter. This is necessary because the ground negative return is shared between V_{MOT} and V_{LOG}.
- Motor outputs shall be routed with parallel traces, and minimizing the loop area between these tracks. Avoid
 placing components above or below the motor output tracks, as these components may become effective
 antennas radiating EMI. If possible, route all 4 motor outputs in strip-line configuration (above or below a ground
 plane).
- For stringent EMI requirements, it may be necessary to add common-mode inductors on the motor outputs.
 Place these filters near the iPOS4808, not near the external connector, to reduce radiation from the PCB tracks.
- Motor outputs must be separated from any nearby track (on the same layer) by a guard ring / track / area connected to ground. It is recommended to use the same guarding precaution also for tracks on nearby layers, i.e. use intermediate guard layer(s) connected to ground. The motor outputs must be treated as first source of noise on the motherboard. Second source of noise is the current flow between each iPOS4808 and it's decoupling V_{MOT} capacitor.
- For best EMC performance, it is strongly recommended to provide an un-interrupted ground plane on one of the inner layers.
- All GND pins of the iPOS4808 are galvanically connected together on-board the iPOS4808. If the motherboard provides an uninterrupted ground plane, it is recommended to connect all GND pins to the ground plane, and use the ground plane to distribute GND wherever needed. If the motherboard does not provide an uninterrupted ground plane, it is best to use each GND pin for its intended purpose, as described in par. 3.4. This will create local "star point" ground connection on-board each iPOS4808. For a multi-axis motherboard with one common power supply for all motors, each motor power supply return track shall be routed separately for each iPOS4808, and star-point connected at the power supply terminal.
- The following signal pairs must be routed differentially, i.e. using parallel tracks with minimal loop area: A1+/Sin+, A1-/Sin-; B1+/Cos+, B1-/Cos-; Z1+, Z1-; A2+, A2-; B2+, B2-; Z2+, Z2-, CAN-Hi, CAN-Lo.
- CAN-Bus tracks must be routed with a bus topology, without branches / bifurcations, in a daisy-chain fashion.
 The bus ends must be at the termination resistor(s) and/or external connectors.
- When using +5V_{OUT} as supply for external devices (like encoders, Hall sensors, etc.) provide extra filtering and
 protection: use series resettable (PTC) fuses to add short-circuit protection; use transient absorbers to protect
 against ESD and over-voltage; add high-frequency filtering to protect against external noise injected on +5V_{OUT}.
- The outer box / case / cabinet must be connected to the motherboard ground either galvanically (directly) or through high-frequency decoupling capacitors, rated at an appropriate voltage.

CAUTION!

WHEN THE IPOS4808 IS SET IN TMLCAN MODE, IT STARTS TO EXECUTE AUTOMATICALLY AT POWER ON THE TML APPLICATION FROM ITS EEPROM. ADD ON THE MOTHERBOARD THE POSSIBILITY TO DISABLE THIS FEATURE AS SHOWN PAR. 3.5.10. THIS MIGHT BE NEEDED DURING DEVELOPMENT PHASE IN CASE THE EEPROM CONTENT IS ACCIDENTALLY CORRUPTED.



CAUTION!

THE IPOS4808 IS AN ELECTROSTATICALLY SENSITIVE DEVICE, WHICH WILL BE DAMAGED BY INCORRECT HANDLING. THEREFORE THE DRIVE SHALL BE REMOVED FROM ITS ORIGINAL PACKAGE ONLY IN AN ESD PROTECTED ENVIRONMENT!

3.4 Connectors and Pinouts

3.4.1 Pinouts for iPOS4808 MY-CAN

3.4.2 Mating Connectors for CAN

Connector	Description	Manufacturer	Part Number	Image
	High-current socket 2.54mm-pitch accepting 0.635mm square pin; 1x12 pin	Samtec	SSQ-112-01-G-S	Lalalalalass
	2x5 contacts, socket, 2.54mm-pitch accepting	FCI	87606-305LF	
12	0.635mm square pin	TE Connectivity	534206-5	2 Adhalal
	High-current socket 2.54mm-pitch accepting 0.635mm square pin; 2x16 pin	Samtec	SSQ-116-01-G-D	a al-dada kalada da
	High-current socket 2.54mm-pitch accepting 0.635mm square pin; 1x8 pin	Samtec	SSQ-108-01-G-S	ALABABA.

3.5.1 iPOS4808 MY-CAN connection diagram

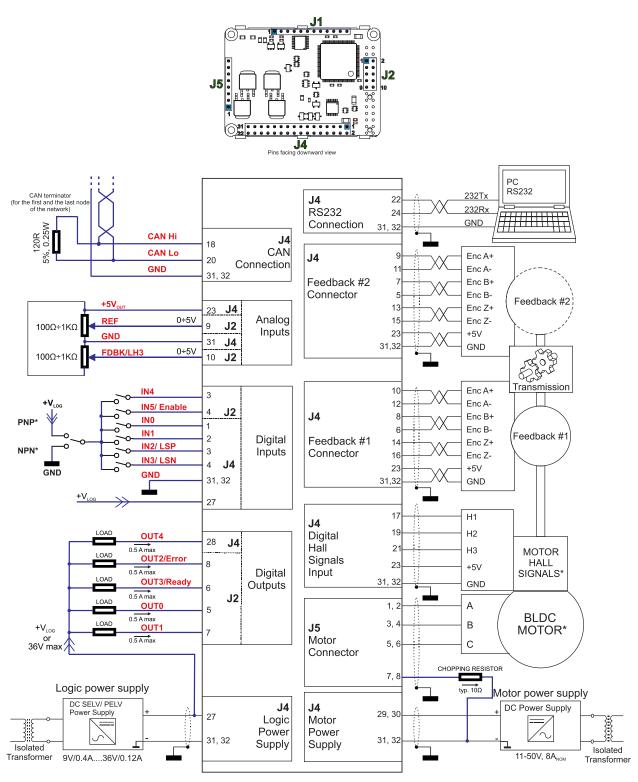


Figure 3.3. iPOS4808 MY-CAN Connection diagram

^{*} For other available feedback / motor options, check the detailed connection diagrams below

3.5.2.1 **PNP** inputs

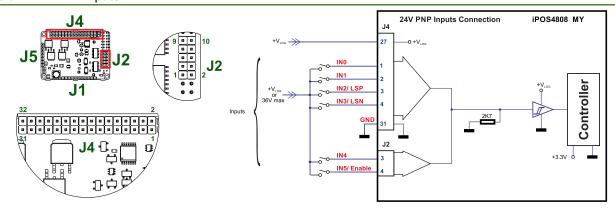


Figure 3.4. 24V Digital PNP Inputs connection

Remarks:

- 1. The inputs are selectable as PNP/ NPN by software.
- The inputs are compatible with PNP type outputs (input must receive a positive voltage value (5-36V) to change its default state)
- 3. The length of the cables must be up to 30m, reducing the exposure to voltage surge in industrial environment.

3.5.2.2 **NPN** inputs

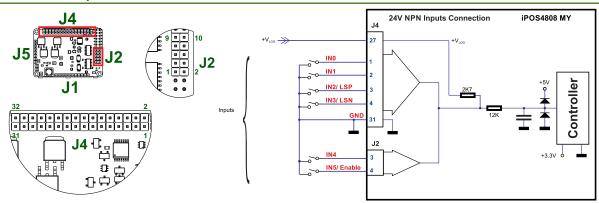


Figure 3.5. 24V Digital NPN Inputs connection

Remarks:

- 1. The inputs are selectable as PNP/ NPN by software.
- 2. The inputs are compatible with NPN type outputs (input must be pulled to GND to change its default state)
- 3. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

Figure 3.6. 24V Digital NPN Outputs connection

Remarks:

1. The outputs are compatible with NPN type inputs (load is tied to common +V_{LOG}, output pulls to GND when active and is floating when inactive)

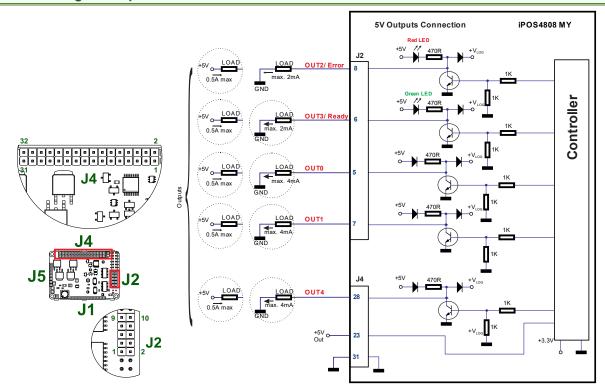


Figure 3.7. 5V Digital I/O connection

Remarks:

- 1. The outputs are compatible with TTL (5V) and CMOS (5V) inputs
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment. The output loads can be individually and independently connected to +5V or to GND.

3.5.4.1 0-5V Input Range

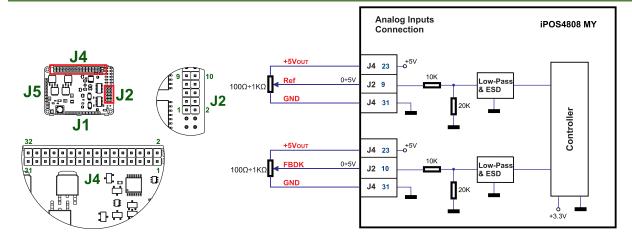


Figure 3.8. 0-5V Analog inputs connection

Remarks:

- 1. Default input range for analog inputs is 0÷5 V for REF and FBDK. For a +/-10 V range, see Figure 3.9.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

3.5.4.2 +/- 10V to 0-5V Input Range Adapter

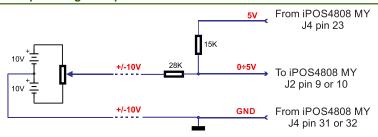


Figure 3.9. +/-10V to 0-5V adapter

Remark: The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

3.5.4.3 Recommendation for wiring

- a) If the analogue signal source is single-ended, use a 2-wire twisted shielded cable as follows: 1st wire connects the live signal to the drive input; 2nd wire connects the source ground to the drive ground; shield will be connected to the drive ground terminal.
- b) If the analogue signal source is differential and the signal source ground is isolated from the drive GND, use a 2-wire twisted shielded cable as follows: 1st wire connects the source plus (positive, in-phase) to the drive analogue input; 2nd wire connects the source minus (negative, out-of-phase) to the drive ground (GND). Shield is connected only at the drive side, to the drive GND, and is left unconnected at the source side.
- If the analogue signal source is differential and the signal source ground is common with the drive GND, use a 2-wire shielded cable as follows: 1st wire connects the source plus (positive, in-phase) to the drive analogue input; 2nd wire connects the source ground to the drive ground (GND); shield is connected only at the drive side, to the drive GND, and is left unconnected at the source side. The source minus (negative, out-of-phase) output remains unconnected.

3.5.5.1 Brushless Motor connection

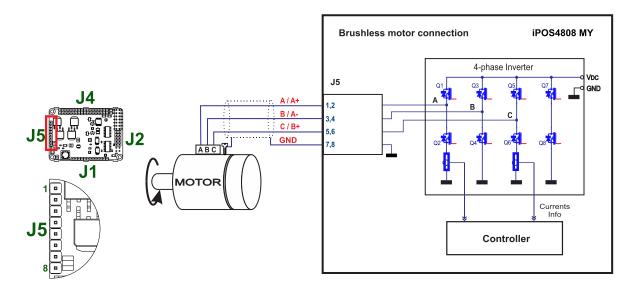


Figure 3.10. Brushless motor connection

3.5.5.2 2-phase Step Motor connection

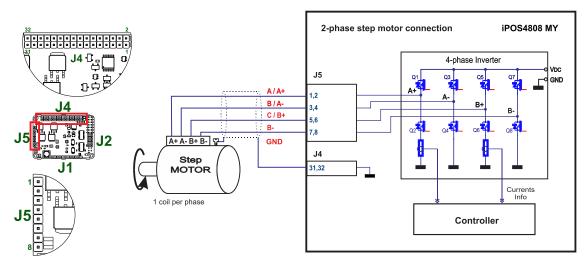


Figure 3.11. 2-phase step motor connection, one coil per phase

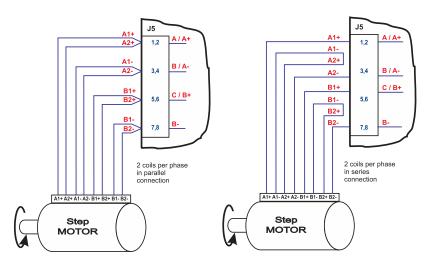


Figure 3.12. 2-phase step motor connection, two coils per phase

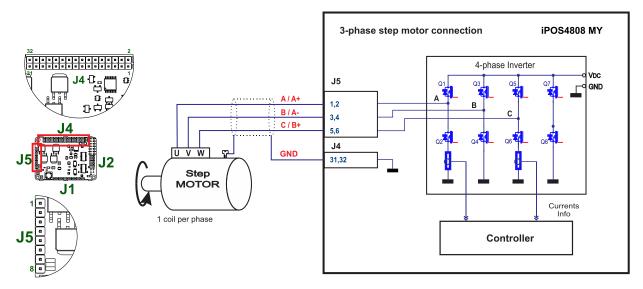


Figure 3.13. 3-phase step motor connection

3.5.5.4 DC Motor connection

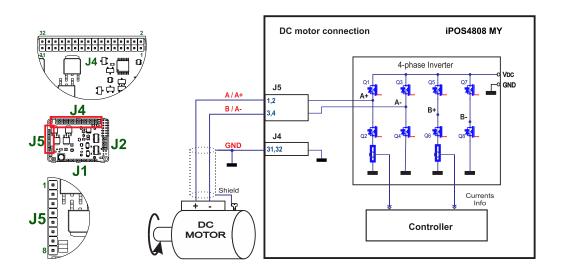


Figure 3.14. DC Motor connection

3.5.5.5 Recommendations for motor wiring

- a) Avoid running the motor wires in parallel with other wires for a distance longer than 2 meters. If this situation cannot be avoided, use a shielded cable for the motor wires. Connect the cable shield to the iPOS4808 GND pin. Leave the other end disconnected.
- b) The parasitic capacitance between the motor wires must not bypass 10nF. If very long cables (tens of meters) are used, this condition may not be met. In this case, add series inductors between the iPOS4808 outputs and the cable. The inductors must be magnetically shielded (toroidal, for example), and must be rated for the motor surge current. Typically the necessary values are around 100 μH.

A good shielding can be obtained if the motor wires are running inside a metallic cable guide.

3.5.6.1 Single-ended Incremental Encoder #1 Connection

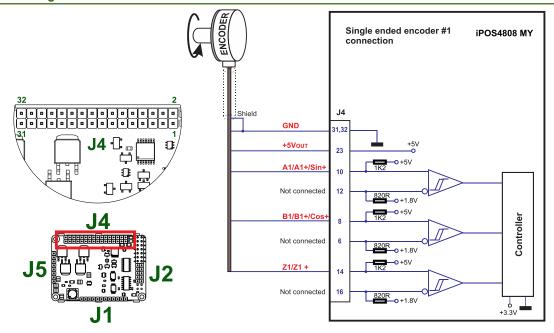


Figure 3.15. Single-ended incremental encoder connection

CAUTION!

DO NOT CONNECT UNTERMINATED WIRES. THEY MIGHT PICK UP UNWANTED NOISE AND GIVE FALSE ENCODER READINGS.

3.5.6.2 Differential Incremental Encoder #1 Connection

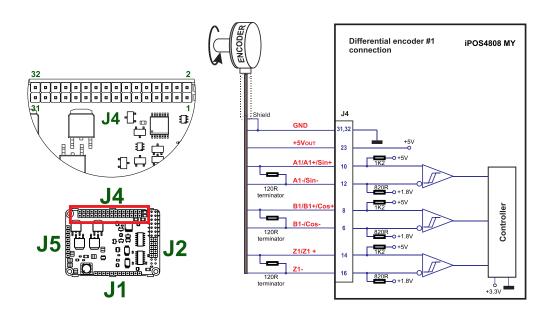


Figure 3.16. Differential incremental encoder #1 connection

Remarks:

- 1. For encoder#1 differential connection, external 120Ω (0.25W) terminators are required for long encoder cables, or noisy environments.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

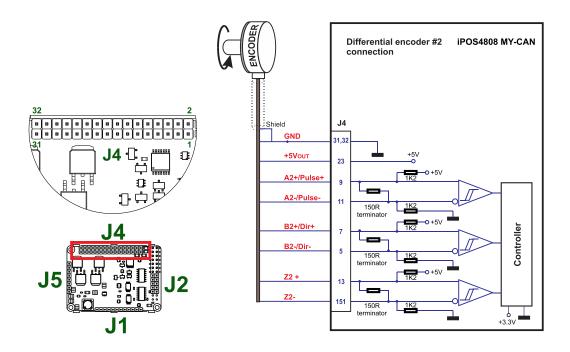


Figure 3.17. Differential incremental encoder #2 connection

Remarks:

- 1. The encoder #2 input has internal terminators, equivalent to 120Ω (0.25W) , present in the drive.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

3.5.6.4 Sine-Cosine Analog Encoder Connection

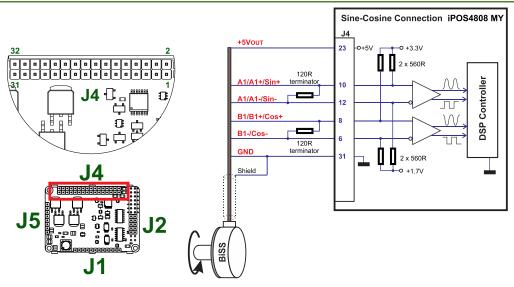


Figure 3.18. Sine-Cosine analogue encoder connection

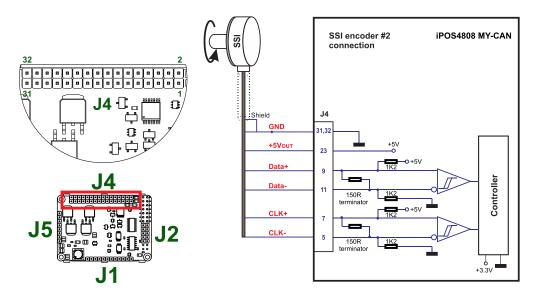


Figure 3.19. SSI encoder #2 connection

3.5.6.6 BiSS Encoder #2 Connection

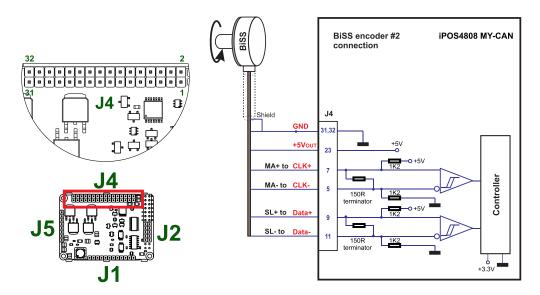


Figure 3.20. BiSS-C encoder #2 connection

Remarks:

- 1. The encoder #2 input has internal terminators, equivalent to 120Ω (0.25W), present in the drive.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

Figure 3.21. Digital Hall connection

Remarks:

- This connection is required when using Hall start method BLDC or PMSM and also for the Trapezoidal commutation method. The digital halls are not used in this case as a feedback measurement device. The actual motor control is done with an incremental encoder.
- The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

3.5.6.8 Digital Hall Connection for direct motor control without an encoder

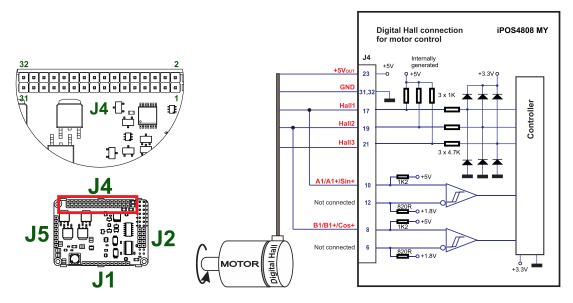


Figure 3.22. Digital Hall connection

Remarks:

- This connection is required when using only Digital hall signals as the main feedback device for motor control. In this case, no incremental encoder is needed.
- 2. The length of the cables must be up to 30m, reducing the exposure to voltage surges in industrial environment.

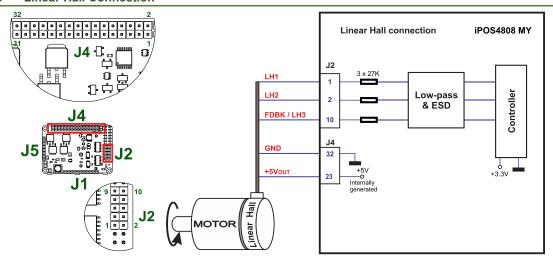


Figure 3.23. Linear Hall connection

3.5.6.10 Recommendations for wiring

- a) Always connect both positive and negative signals when the position sensor is differential and provides them. Use one twisted pair for each differential group of signals as follows: A+/Sin+ with A-/Sin-, B+/Cos+ with B-/Cos-, Z+ with Z-. Use another twisted pair for the 5V supply and GND.
- b) Always use shielded cables to avoid capacitive-coupled noise when using single-ended encoders or Hall sensors with cable lengths over 1 meter. Connect the cable shield to the GND, at only one end. This point could be either the iPOS4808 (using the GND pin) or the encoder / motor. Do not connect the shield at both ends.
- c) If the iPOS4808 5V supply output is used by another device (like for example an encoder) and the connection cable is longer than 5 meters, add a decoupling capacitor near the supplied device, between the +5V and GND lines. The capacitor value can be 1...10 μF, rated at 6.3V.

3.5.7.1 Supply Connection

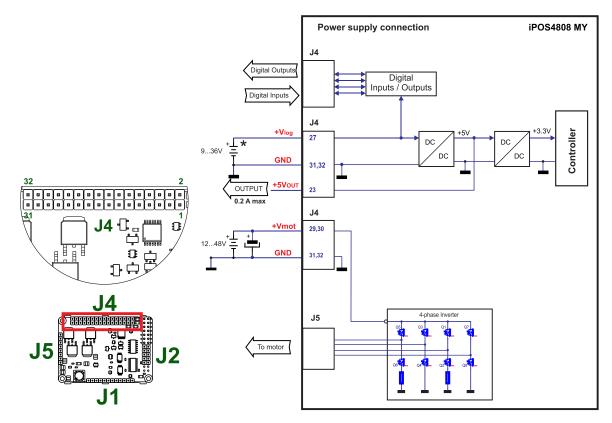


Figure 3.24. Supply connection

3.5.7.2 Recommendations for Supply Wiring

Always provide a nearby capacitor on the motor supply lines. The capacitor should be located within 10cm of the iPOS4808 connector, max. 20cm. The minimum recommended capacitance is $330\mu F$ for iPOS4808, always rated at the appropriate voltage.

Use short, thick wires between the iPOS4808 and the motor power supply. Connect power supply wires to all the indicated pins. If the wires are longer than 2 meters, use twisted wires for the supply and ground return. For wires longer than 20 meters, add a capacitor of at least $2,200\mu F$ (rated at an appropriate voltage) right on the terminals of the iPOS4808.

3.5.7.3 Recommendations to limit over-voltage during braking

During abrupt motion brakes or reversals the regenerative energy is injected into the motor power supply. This may cause an increase of the motor supply voltage (depending on the power supply characteristics). If the voltage bypasses 53V, the drive over-voltage protection is triggered and the drive power stage is disabled. In order to avoid this situation you have 2 options:

Option 1. Add a capacitor on the motor supply big enough to absorb the overall energy flowing back to the supply. The capacitor must be rated to a voltage equal or bigger than the maximum expected over-voltage and can be sized with the formula:

$$C \ge \frac{2 \times E_M}{U_{MAX}^2 - U_{NOM}^2}$$

where:

 U_{MAX} = 53V is the over-voltage protection limit

U_{NOM} is the nominal motor supply voltage

 E_{M} = the overall energy flowing back to the supply in Joules. In case of a rotary motor and load, E_{M} can be computed with the formula:

$$E_{M} = \frac{1}{2} (J_{M} + J_{L}) \overline{\omega}_{M}^{2} + (m_{M} + m_{L}) g(h_{initial} - h_{final}) - 3 I_{M}^{2} R_{Ph} t_{d} - \frac{t_{d} \overline{\omega}_{M}}{2} T_{F}$$
Kinetic Potential Copper Friction

where:

J_M – total rotor inertia [kgm²]

J_L – total load inertia as seen at motor shaft after transmission [kgm²]

σ_M – motor angular speed before deceleration [rad/s]

m_M - motor mass [kg] - when motor is moving in a non-horizontal plane

 m_L - load mass [kg] - when load is moving in a non-horizontal plane

g - gravitational acceleration i.e. 9.8 [m/s²]

hinitial - initial system altitude [m]

h_{final} - final system altitude [m]

I_M – motor current during deceleration [A_{RMS}/phase]

 R_{Ph} – motor phase resistance $[\Omega]$

t_d - time to decelerate [s]

T_F – total friction torque as seen at motor shaft [Nm] – includes load and transmission

In case of a linear motor and load, the motor inertia J_M and the load inertia J_L will be replaced by the motor mass and the load mass measured in [kg], the angular speed ϖ_M will become linear speed measured in [m/s] and the friction torque T_F will become friction force measured in [N].

Option 2. Connect a chopping resistor R_{CR} between phase CR / B- and ground, and activate the software option of dynamic braking (see below).

This option is not available when the drive is used with a step motor.

The chopping resistor option can be found in the Drive Setup dialogue within EasyMotion / EasySetup:

The chopping will occur when DC bus voltage increases over U_{CHOP} . This parameter (U_{CHOP}) should be adjusted depending on the nominal motor supply. Optimally (from a braking point of view), U_{CHOP} should be a few volts above the maximum nominal supply voltage. This setting will activate the chopping resistor earlier, before reaching dangerous voltages – when the over-voltage protection will stop the drive. Of course, U_{CHOP} must always be less than U_{MAX} – the over-voltage protection threshold.

Remark: This option can be combined with an external capacitor whose value is not enough to absorb the entire regenerative energy E_M but can help reducing the chopping resistor size.

Chopping resistor selection

The chopping resistor value must be chosen to respect the following conditions:

1. to limit the maximum current below the drive peak current I_{PEAK} = 20A

$$R_{CR} > \frac{U_{MAX}}{I_{PEAK}}$$

2. to sustain the required braking power:

$$P_{CR} = \frac{E_M - \frac{1}{2}C(U_{MAX}^2 - U_{CHOP}^2)}{t_d}$$

where C is the capacitance on the motor supply (external), i.e:

$$R_{CR} < \frac{U_{CHOP}^2}{2 \times P_{CR}}$$

3. to limit the average current below the drive nominal current I_{NOM}=8A

$$R_{CR} > \frac{P_{CR} \times t_d}{t_{CYCLE} \times I_{NOM}^2}$$

where tcycle is the time interval between 2 voltage increase cycles in case of repetitive moves.

4. to be rated for an average power $P_{AV} = \frac{P_{CR} \times t_d}{t_{CNCM}}$ and a peak power $P_{PEAK} = \frac{U_{MAX}^2}{R_{CR}}$

Remarks:

- 1. If $\frac{U_{MAX}}{I_{PEAK}} > \frac{U_{CHOP}^2}{2 \times P_{CR}}$ the braking power P_{CR} must be reduced by increasing either t_d the time to decelerate or C the external capacitor on the motor supply
- 2. If $\frac{P_{CR} \times t_d}{t_{CYCLE} \times I_{NOM}^2} > \frac{U_{CHOP}^2}{2 \times P_{CR}}$ either the braking power must be reduced (see Remark 1) or tcycle the time

interval between chopping cycles must be increased

WARNING!

THE CHOPPING RESISTOR MAY HAVE HOT SURFACES DURING OPERATION.

3.5.8 Serial RS-232 connection

3.5.8.1 Serial RS-232 connection

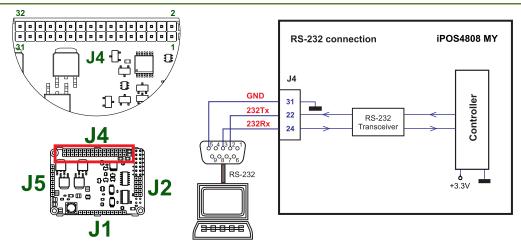


Figure 3.25. Serial RS-232 connection

3.5.8.2 Recommendation for wiring

- a) If you build the serial cable, you can use a 3-wire shielded cable with shield connected to BOTH ends. Do not use the shield as GND. The ground wire (pin 31 of J4) must be included inside the shield, like the 232Rx and 232Tx signals
- Always power-off all the iPOS4808 supplies before inserting/removing the RS-232 serial connector
- Do not rely on an earthed PC to provide the iPOS4808 GND connection! The drive must be earthed through a separate circuit. Most communication problems are caused by the lack of such connection

3.5.9.1 CAN connection

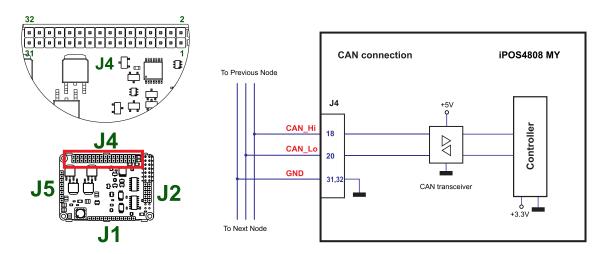


Figure 3.26. CAN connection

Remarks:

- The CAN network requires a 120-Ohm terminator. This is not included on the board. Figure 3.27 shows how to connect it on your network
- 2. CAN signals are not insulated from other iPOS4808 circuits.

3.5.9.2 Recommendation for wiring

- a) Build CAN network using cables with twisted wires (2 wires/pair), with CAN-Hi twisted together with CAN-Lo. It is recommended but not mandatory to use a shielded cable. If so, connect the shield to GND. The cable impedance must be 105 ... 135 ohms (120 ohms typical) and a capacitance below 30pF/meter.
- b) When using a printed circuit board (PCB) motherboard based on FR-4 material, build the CAN network using a pair of 12mil (0.012") tracks, spaced 8 to 10mils (0.008"...0.010") apart, placed over a local ground plane (microstrip) which extends at least 1mm left and right to the tracks.
- c) Whenever possible, use daisy-chain links between the CAN nodes. Avoid using stubs. A stub is a "T" connection, where a derivation is taken from the main bus. When stubs can't be avoided keep them as short as possible. For 1 Mbit/s (worst case), the maximum stub length must be below 0.3 meters.
- d) The 120Ω termination resistors must be rated at 0.2W minimum. Do not use winded resistors, which are inductive.

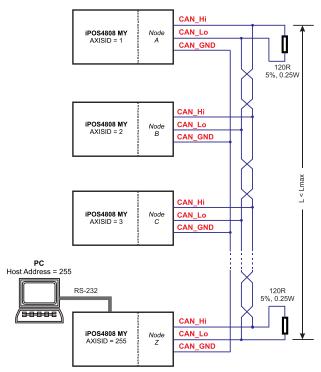


Figure 3.27. Multiple-Axis CAN network

When the iPOS4808 is set in TMLCAN operation mode, it enters by default after power on in *Autorun* mode, if the drive has in its local EEPROM a valid TML application (motion program), this is automatically executed as soon as the motor supply V_{MOT} is turned on.

In order to remove the drive from Autorun, you have 2 ways:

- Software by writing value 0x0001 in first EEPROM location, from address 0x4000;
- b) Hardware by temporary connecting all digital Hall inputs to GND, during the power on for about 1s (until the green led is turned on), as shown in *Figure 3.28*. This option is particularly useful when it is not possible to communicate with the drive.

After the drive is set in *non-Autorun/slave* mode using 2nd method, the 1st method may be used to invalidate the TML application from the EEPROM. On next power on, in absence of a valid TML application, the drive enters in the *non-Autorun/slave* mode independently of the digital Hall inputs status.

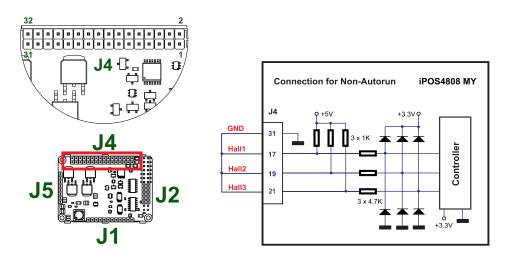


Figure 3.28. Temporary connection during power-on to remove the drive from Autorun mode

3.6 CAN Operation Mode and Axis ID Selection for CAN drives(J1 pin settings)

The communication protocol as well as the Hardware Axis ID can be set by connecting J1 pins to GND.

ON = connect pin to GND (pin 1)

OFF = leave pin unconnected

An 8 pole DIN switch can be connected to these pins on a user motherboard.

The CAN Operation mode is selected by pin2 of J1:

ON= CANopen mode / OFF= TMLCAN mode

The drive AxisID value is set after power on by:

- Software, setting via EasySetUp a specific AxisID value in the range 1-255.
- Hardware, by setting h/w in Easy setup under Axis ID value and selecting a value between 1-127 or 255 from the pins 3-9

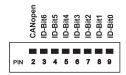


Figure 3.29. J1 - Axis ID pins

- Pin 2: On = CANopen mode; Off = TMLCAN mode
- Pins 3 ... 9: ID-Bitx.
 - The drive axis/address number is set when H/W is selected in Drive Setup under AxisID field or when the Setup is invalid.

- The axis ID is an 8 bit unsigned number. Its first 7 bits are controlled by the ID-bit0 to ID-bit6. Bit7 of this variable is always 0. In total, 127 axis ID HW values can result from the DIP switch combinations.
- When pins 3..9 remain unconnected, the drive Axis ID will be 255.

Remarks:

1. All pins are sampled at power-up, and the drive is configured accordingly

If CANopen mode is selected and the AxisID is set to 255, the drive remains "non-configured" waiting for a CANopen master to configure it, using CiA-305 protocol. <u>A "non-configured" drive answers only to CiA-305 commands. All other CANopen commands are ignored and transmission of all other messages (including boot-up) is disabled. The Ready (green) LED will flash at 1 second time intervals while in this mode</u>

3.7 Electrical Specifications

All parameters measured under the following conditions (unless otherwise specified):

 T_{amb} = 0...40°C, V_{LOG} = 24 V_{DC} ; V_{MOT} = 48 V_{DC} ; Supplies start-up / shutdown sequence: -<u>any-</u>Load current (sinusoidal amplitude / continuous BLDC,DC,stepper) = 8A iPOS4808

3.7.1 Operating Conditions

		Min.	Тур.	Max.	Units
Ambient temperature ¹		0		+40	°C
Ambient humidity	Non-condensing	0		90	%Rh
Altitude / procure?	Altitude (referenced to sea level)	-0.1	0 ÷ 2.5	2	Km
Altitude / pressure ²	Ambient Pressure	0 ²	0.75 ÷ 1	10.0	atm

3.7.2 Storage Conditions

		Min.	Тур.	Max.	Units
Ambient temperature		-40		100	°C
Ambient humidity	Non-condensing	0		100	%Rh
Ambient Pressure		0		10.0	atm
ECD conshility (Human bady model)	Not powered; applies to any accessible part			±0.5	kV
ESD capability (Human body model)	Original packaging			±15	kV

3.7.3 Mechanical Mounting

		Min.	Тур.	Max.	Units	
Airflow		natur	natural convection ³ , closed box			
	Between adjacent drives	4			mm	
Charles required for beginning	Between drives and nearby walls				mm	
Spacing required for horizontal mounting.	Space needed for drive removal	10			mm	
	Between drives and roof-top	20			mm	
Insertion force	Using recommended mating connectors		TBD	TBD	N	
Extraction force			TBD		N	

3.7.4 Environmental Characteristics

			Min.	Тур.	Max.	Units
Size (Length x Width x Height)	Global size	iPOS4808 MY-CAN	60 x 43.6 x 12.4		mm	
	Global Size	IPO34606 WIT-CAN	~2.3	~2.36 x 1.72 x 0.49		inch
Weight		iPOS4808 MY-CAN		22		g
Cleaning agents	Dry cleaning is recommended	Dry cleaning is recommended		Only Water- or Alco		sed
Protection degree	According to IEC60529, UL508			IP20		-

© Technosoft 2021

¹ Operating temperature at higher temperatures is possible with reduced current and power ratings

² iPOS4808 can be operated in vacuum (no altitude restriction), but at altitudes over 2,500m, current and power rating are reduced due to thermal dissipation efficiency.

³ In case of forced cooling (conduction or ventilation) the spacing requirements may drop down to mechanical tolerances as long as the ambient temperature is kept below the maximum operating limit

3.7.5 Logic Supply Input (+V_{LOG})

		Min.	Тур.	Max.	Units
	Nominal values	9		36	V_{DC}
	Absolute maximum values, drive operating but outside guaranteed parameters	8		40	V _{DC}
	Absolute maximum values, continuous	-0.6		42	V_{DC}
Supply voltage	Absolute maximum values, surge (duration ≤ 10ms) [†]	-1		+45	V
	+V _{LOG} = 12V		130		
	+V _{LOG} = 24V		90	280	mA
	+V _{LOG} = 40V		85		

3.7.6 Motor Supply Input (+V_{MOT})

		Min.	Тур.	Max.	Units
	Nominal values	11		50	V_{DC}
	Absolute maximum values, drive operating but outside guaranteed parameters	9		52	V _{DC}
Supply voltage	Absolute maximum values, continuous	-0.6		54	V_{DC}
	Absolute maximum values, surge (duration ≤ 10ms) [†]	-1		57	٧
	Idle		1	5	mA
Supply current	Operating iPOS4808	-20	±8	+20	А
,	Absolute maximum value, short-circuit condition iPOS4808 (duration ≤ 10ms) [†]			26	А

3.7.7 Motor Outputs (A/A+, B/A-, C/B+, BR/B-)

			Min.	Тур.	Max.	Units
	for DC brushed, steppers and BLDC mot trapezoidal control	for DC brushed, steppers and BLDC motors with Hall-based trapezoidal control			8	
Nominal output current, continuous	for PMSM motors with FOC sinusoidal amplitude value)	for PMSM motors with FOC sinusoidal control (sinusoidal amplitude value)			8	Α
	for PMSM motors with FOC sinusoidal effective value)	control (sinusoidal			5.67	
Motor output current, peak	maximum 2.5s		-20		+20	Α
Short-circuit protection threshold			±22	±26	±30	Α
Short-circuit protection delay			5	10		μS
On-state voltage drop	Nominal output current; including typical contact resistance	mating connector		±0.3	±0.5	V
Off-state leakage current				±0.5	±1	mA
		$F_{PWM} = 20 \text{ kHz}$	330			
		F _{PWM} = 40 kHz	150			
	Recommended value, for ripple ±5% of FPWM = 60 kHz measurement range; +V _{MOT} = 48 V		120			μН
	measurement range, +VMOI - 40 V	$F_{PWM} = 80 \text{ kHz}$	80			
Motor industance (phase to phase)		$F_{PWM} = 100 \text{ kHz}$	60			
Motor inductance (phase-to-phase)		$F_{PWM} = 20 \text{ kHz}$	120			
	Ab1-4i-iiiiii	$F_{PWM} = 40 \text{ kHz}$	40			
	Absolute minimum value, limited by short- circuit protection; +V _{MOT} = 48 V	$F_{PWM} = 60 \text{ kHz}$	30			μΗ
	circuit protection, +VMO1 = 46 V	$F_{PWM} = 80 \text{ kHz}$	15			
		$F_{PWM} = 100 \text{ kHz}$	8			
		$F_{PWM} = 20 \text{ kHz}$	250			
	December of the 150/ comment	$F_{PWM} = 40 \text{ kHz}$	125			
Motor electrical time-constant (L/R)	Recommended value, for ±5% current measurement error due to ripple	$F_{PWM} = 60 \text{ kHz}$	100			μs
	measurement entri due to rippie	F _{PWM} = 80 kHz	63			
		$F_{PWM} = 100 \text{ kHz}$	50			
Current measurement accuracy	FS = Full Scale			±4	±8	%FS

3.7.8 Digital Inputs (IN0, IN1, IN2/LSP, IN3/LSN, IN4, IN5/Enable)¹

		Min.	Тур.	Max.	Units
Mode compliance		PNP			
Default state	Input floating (wiring disconnected)		Logic LOW		
	Logic "LOW"	-10	0	2.2	
	Logic "HIGH"	6.3		36	
Input voltage	Floating voltage (not connected)		0		V
	Absolute maximum, continuous	-10		+39	
	Absolute maximum, surge (duration ≤ 1s) [†]	-20		+40	
Input current	Logic "LOW"; Pulled to GND		0		mA
Input current	Logic "HIGH"		1.3	2	IIIA
		Min.	Тур.	Max.	Units
Mode compliance			N	PN	
Default state	Input floating (wiring disconnected)		Logic	HIGH	
	Logic "LOW"	-10		2.2	
	Logic "HIGH"	6.3		36	
Input voltage	Floating voltage (not connected)		Vlog		V
	Absolute maximum, continuous	-10		+36	
	Absolute maximum, surge (duration ≤ 1s) [†]	-20		+40	
	Logic "LOW"; Pulled to GND	-1.6	0.6	1	
Input current	Logic "HIGH"; Pulled to +24V	0	0	0.3	mA
Input frequency		1 0		150	kHz
Minimum pulse width		3.3		100	μs
wiii iii ii ii puise wiutii		5.5			μο

3.7.9 Digital Outputs (OUT0, OUT1, OUT2/Error, OUT3/ Ready, OUT4)

Human body model

				Min.	Тур.	Max.	Units	
Mode compliance	All outputs (OUT0, O	All outputs (OUT0, OUT1, OUT2/Error, OUT3/Ready)			NF	N 24V		
	Not supplied (+V _{LOG}	floating or to GND)	High-Z (floating)				
	Immediately after	OUT0, OUT1,O	UT4	Logic "HIGH"				
Default state	power-up	, <u> </u>			Logic	c "LOW"		
	Normal operation	OUT0, OUT1, C	UT2/Error, OUT4		Logic	: "HIGH"		
	Normal operation	OUT3/Ready			Logic	c "LOW"		
	Logic "LOW"; output	at nominal curren				0.8		
Output voltage	Logic "HIGH";	OUT2/Error, OU	T3/ Ready	2.9	3	3.3	٧	
	output current = 0, no load	OUT0, OUT1, OUT4		4	4.5	5		
	Logic "HIGH", extern	Logic "HIGH", external load to +V _{LOG}			V_{LOG}			
	Absolute maximum,	Absolute maximum, continuous		-0.5		V _{LOG} +0.5		
	Absolute maximum,	Absolute maximum, surge (duration ≤ 1s) [†]		-1		V _{LOG} +1		
	Logic "LOW", sink cu OUT3, OUT4	Logic "LOW", sink current, continuous OUT0, OUT1, OUT2,				0.5	Α	
	Logic "LOW", sink cu OUT2, OUT3, OUT4	Logic "LOW", sink current, pulse ≤ 5 sec. OUT0, OUT1,				1	Α	
Output current	Logic "HIGH", source		OUT2/Error, OUT3/ Ready			2	mA	
	external load to GND); V _{OUT} >= 2.0V	OUT0, OUT1			4	mA	
	Logic "HIGH", leakag V _{LOG} max = 40V	Logic "HIGH", leakage current; external load to +V _{LOS} ; V _{OUT} = V _{LOS} max = 40V			0.1	0.2	mA	
Minimum pulse width		•		2			μs	
ESD protection	Human body model			±15			kV	

3.7.10 Digital Hall Inputs (Hall1, Hall2, Hall3)

		Min.	Тур.	Max.	Units
Mode compliance		TTL	./CMOS/	Open-colle	ector
Default state	Input floating (wiring disconnected)		Logic	HIGH	
	Logic "LOW"		0	8.0	
lanut valtage	Logic "HIGH"	2	5		V
Input voltage	Floating voltage (not connected)		4.4		V
	Absolute maximum, surge (duration ≤ 1s) [†]	-10		+15	
lanut aumant	Logic "LOW"; Pull to GND			1.2	A
Input current	Logic "HIGH"; Internal 1KΩ pull-up to +5	0	0	0	mA
Minimum pulse width		2			μs
ESD protection	Human body model	±5			kV

¹ The digital inputs are software selectable as PNP or NPN

ESD protection

3.7.11 Encoder #1 Inputs (A1+, A1-, B1+, B1-, Z1+, Z1-,)1

		Min.	Тур.	Max.	Units	
Single-ended mode compliance	Leave negative inputs disconnected	TTL	/ CMOS /	Open-colle	ctor	
	Logic "LOW"			1.6		
Input voltage, single-ended mode A/A+, B/B+	Logic "HIGH"	1.8			V	
D/D+	Floating voltage (not connected)		3.3			
	Logic "LOW"			1.2		
Input voltage, single-ended mode Z/Z+	Logic "HIGH"	1.4			V	
	Floating voltage (not connected)		4.7			
Input current, single-ended mode A/A+,	Logic "LOW"; Pull to GND		5.5	6	^	
B/B+, Z/Z+	Logic "HIGH"; Internal 2.2KΩ pull-up to +5	0	0	0	mA	
Differential mode compliance	For full RS422 compliance, see ²		TIA/EI/	\-422-A		
	Hysteresis	±0.06	±0.1	±0.2		
	Differential mode	-14		+14]	
Input voltage, differential mode	Common-mode range (A+ to GND, etc.)	-11		+14	\ \	
	A1+, A2+, B1+, B2+, Z1+, Z2+		2.2		1.0	
land the second	A1-, A2-, B1-, B2-, Z1-, Z2-		1.6		kΩ	
Input impedance, differential	Differential mode	0		10	MHz	
	Differential mode	50			ns	
ESD protection	Human body model	±1			kV	

3.7.12 Encoder #2 Inputs (A2+, A2-, B2+, B2-, Z2+, Z2-)3

		Min.	Typ.	Max.	Units
Differential mode compliance			TIA/EIA-422-A		
Input voltage, differential mode	Hysteresis	±0.06	±0.1	±0.2	
	Differential mode	-14		+14	.,
	Common-mode range (A+ to GND, etc.)	-11		+14	
			120		Ω
Input impedance, differential	Differential mode	0		10	MHz
	Differential mode	50			ns
ESD protection	Human body model	±1			kV

3.7.13 Linear Hall Inputs (LH1, LH2, LH3)

		Min.	Тур.	Max.	Units
Input voltage	Operational range	0	0.5÷4.5	4.9	
	Absolute maximum values, continuous	-7		+7	V
	Absolute maximum, surge (duration ≤ 1s) [†]	-11		+14	
Input current	Input voltage 0+5V	-1	±0.9	+1	mA
Interpolation Resolution	Depending on software settings			11	bits
Frequency		0		1	kHz
ESD protection	Human body model	±1			kV

3.7.14 Sin-Cos Encoder Inputs (Sin+, Sin-, Cos+, Cos-)4

		Min.	Тур.	Max.	Units
Input voltage, differential	Sin+ to Sin-, Cos+ to Cos-		1	1.25	V_{PP}
	Operational range	-1	2.5	4	
Input voltage, any pin to GND	Absolute maximum values, continuous	-7		+7	V
	Absolute maximum, surge (duration ≤ 1s) [†]	-11		+14	
Innut immedance	Differential, Sin+ to Sin-, Cos+ to Cos-	4.2	4.7		kΩ
Input impedance	Common-mode, to GND		2.2		kΩ
Resolution with interpolation	Software selectable, for one sine/cosine period	2		10	bits
Fraguenay	Sin-Cos interpolation	0		450	kHz
Frequency	Quadrature, no interpolation	0		10	MHz
ESD protection	Human body model	±2			kV

¹ Encoder #1 differential input pins do not have internal 120Ω termination resistors connected across

 $^{^2}$ For full RS-422 compliance, 120 Ω termination resistors must be connected across the differential pairs, as close as possible to the drive input pins. See *Figure 3.18*. *Differential incremental encoder #1 connection*

 $^{^3}$ Encoder #2 differential input pins have internal 120Ω termination resistors connected across

 $^{^4}$ For many applications, a 120 Ω termination resistor should be connected across SIN+ to SIN-, and across COS+ to COS-. Please consult the feedback device datasheet for confirmation.

3.7.15 SSI encoder interface

		Min.	Тур.	Max.	Units
Differential mode compliance (CLOCK, DATA) ¹			TIA/EIA-422		
CLOCK Output voltage	Differential; 50Ω differential load	2.0	2.5	5.0	V
CLOCK Output voltage	Common-mode, referenced to GND	2.3	2.5	2.7	V
CLOCK frequency	Software selectable	Software selectable 1000, 2000, 3000			kHz
DATA Input hysteresis	Differential mode	±0.1	±0.2	±0.5	V
Data input impedance	Termination resistor on-board		120		Ω
	Referenced to GND	-7		+12	
DATA Input common mode range	Absolute maximum, surge (duration ≤ 1s) †	-25		+25	V
			Binary	/ / Gray	II.
DATA format	Software selectable			ı / Multi-turr	1
			Counting	direction	
DATA resolution	Total resolution (single turn or single turn + multi turn)			31	bit
DT+ ///// n / n-1 / n-2 / n-3 / n					
MSB	1-4 \\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
MSB	single-turn bits				
MSB n	LSB				
MSB n CK- and DT- signals have the Multi-turn frame	single-turn bits				
MSB n	single-turn bits e same form with CK+ and DT+, but with opposite polarity.	m+n-3 m+n-:	2 m+n-1 m-	en	
MSB n CK- and DT- signals have the Multi-turn frame T/2 T 1 2 3 4 CK+ DT+ M**N/m+n-1/m+n-2/m+n-3/m** MSB	single-turn bits e same form with CK+ and DT+, but with opposite polarity.	<u> </u>	2 m+n-1 m+		

3.7.16 BiSS Encoder Interface

		Min.	Тур.	Max.	Units	
Differential mode compliance (CLOCK, DATA)		TIA/EIA-422				
CLOCK Output voltage	Differential; 50Ω differential load	2.0	2.5	5.0	V	
	Common-mode, referenced to GND	2.3	2.5	2.7	V	
CLOCK frequency	Software selectable	1000,	1000, 2000, 3000, 4000			
DATA Input hysteresis	Differential mode	±0.1	±0.2	±0.5	V	
Data input impedance	Termination resistor on-board		120		Ω	
	Referenced to GND	-7		+12	.,	
DATA Input common mode range	Absolute maximum, surge (duration ≤ 1s) [†]	-25		+25	V	
B/ti/tiliput common mode range	Software selectable	Single-turn / Multi-turn				
	Software selectable		Counting	g direction		
DATA resolution	Total resolution (single turn or single turn + multi turn)			31	bit	
Protocol		BiSS C mode (sensor mode)				

3.7.17 Analog 0...5V Inputs (REF, FDBK)

		Min.	Тур.	Max.	Units
Input voltage	Operational range	0		5	
	Absolute maximum values, continuous	-12		+18	٧
	Absolute maximum, surge (duration ≤ 1s) [†]			±36	
Input impedance	To GND		30		kΩ
Resolution			12		bits
Integral linearity				±2	bits
Offset error			±2	±10	bits

Gain error			±1%	±3%	% FS ¹
Bandwidth (-3dB)	Software selectable	0		1	kHz
ESD protection	Human body model	±2			kV

3.7.18 RS-232

		Min.	Тур.	Max.	Units
Standards compliance		TIA/EIA-232-C			
Bit rate	Depending on software settings	9600		115200	Baud
Short-circuit protection	232TX short to GND	Guaranteed			
ESD protection	Human body model	±2			kV

3.7.19 CAN-Bus (for CAN drives)

		N	lin.	Тур.	Max.	Units	
Compliance			ISO11898, CiA-301v4.2,				
Compilance			CiA	305 v2.2.1	3, 402v3	.0	
Bit rate	Software selectable	1	25		1000	125	
	1Mbps				25	m	
Bus length	500Kbps				100		
	≤ 250Kbps				250		
Resistor	Between CAN-Hi, CAN-Lo			none on-	board		
Node addressing	Hardware: by H/W pins	1 -	1 ÷ 127 & 255 (LSS non-config (CANopen);			,	
	Software	1 ÷	1-127 & 255 (TMLCAN) 1 ÷ 127 (CANopen); 1- 255 (TMLCA				
Voltage, CAN-Hi or CAN-Lo to GND		-	26		26	V	
ESD protection	Human body model	±	:15			kV	

3.7.20 Supply Output (+5V)

			Min.	Тур.	Max.	Units
+5V output voltage	Current sourced = 250mA		4.8	5	5.2	V
+5V output current		iPOS4808 MY-CAN	600	650		mA
Short-circuit protection				Yes		
Over-voltage protection			NOT protected			
ESD protection	Human body model	Human body model				kV

[†] Stresses beyond values listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

¹ "FS" stands for "Full Scale"

4 Memory Map

iPOS4808 MY has 2 types of memory available for user applications: $16K\times16$ SRAM and up to $16K\times16$ serial E²ROM. The SRAM memory is mapped in the address range: C000h to FFFFh. It can be used to download and run a TML program, to save real-time data acquisitions and to keep the cam tables during run-time.

The E²ROM is mapped in the address range: 4000h to 7FFFh. It is used to keep in a non-volatile memory the TML programs, the cam tables and the drive setup information.

Remark: EasyMotion Studio handles automatically the memory allocation for each motion application. The memory map can be accessed and modified from the main folder of each application

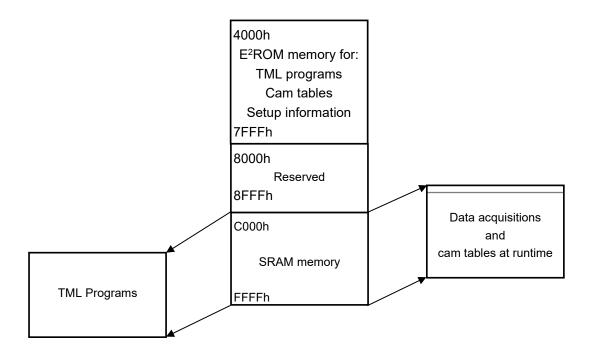


Figure 7.1. iPOS4808 MY Memory Map

