

Project Electronics For Everyone

WE CAN DO THAT!

ambif INTERNATIONAL 200 North Service Road, Brentwood, Essex CM14 4SG

Telephone (Consumer Sales/Enquiries) 0271-230909 - Telephone (Industrial Sales/Enquiries) 0271-231616 Telex 995194 AMBIT G. Data 24hrs (RS232/300baud) 0271-232628 - REWTEL.

- Prices exclude VAT except where otherwise shown. - Postage and Packing 60p per pre-paid order - Orders submitted using Ámbit Stock Codes will be processed first. Orders for in-stock items despatched same day (up to 4 pm receipt). - Hours - (consumer sales) 8am-7pm Mon-Sat: (Industrial) 8am-6pm (Mon-Fri)

PROJECTS

*STALL THIEF 20
Leaves your car burglar sitting in the road*AERIAL WITHOUT WINGS27
Converts a car window demister to long and medium wave.ڤHE AUTO TESTER28
An all-in meter for car electrics.
*BBC MICRO/HEBOT INTERFACE 62
Hobby's personal robot moves faster than ever
FEATURES
„CAREERS IN ELECTRONICS PART 1 12
The first in a major new series.
FAMOUS NAMES 24
Charles Proteus Steinmetz.
RADIO RULES 41
Concluding with the Radio Amateurs' Examination.
*ACES HIGH 47
Meet the new Jupiter Ace micro computer.
\star DIY HIFI 52
High quality build-it-yourself loudspeakers reviewed.
THE ELECTRONIC REVOLUTION 57
Electronics go micro.
SPECIALS
\star SPECIAL OFFER10
PCB-maker's kit at 1982 prices.
REGULARS
Monitor 6
What's On Next 18
HE Bookshelf 33
Buylines 34
Points of View 36
Clever Dick 39
HE Subscriptions 55
HE Backnumbers 68
HE PCB Service 71
HE PCB Printout 72
Classified Advertisements 73

Editor: Ron Keeley
Editorial Assistant: Helen Armstrong BA
Technical lllustrator: Jerry Fowler
Advertisement Manager: Jolyn Nice
Divisional Advertisement Manager: Gary Price
Managing Editor: Ron Harris BSc
Managing Director: T.J. Connell

DO IT YOURSELF - page 52

CAREERS IN ELECTRONICS - page 12 Picture courtesy of British Telecom.

BBC/HEBOT INTERFACE - page 62

clearromize AUTO-ELECTRONIC PRODUCTS

KIIS OR READY BUITT

ELECTRONIC IGNITION

is

YOUR CAR
AS GOOD AS IT COULD BE?

* Is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.
* Is it ECONOMICAL or does it "go off" between services as the ignition performance deteriorates? Total Energy Discharge gives much more output and maintains it from service to service.
t Has it PEAK. PERFORMANCE or is it flat at high and low revs. where the ignition output is marginal? Total Energy Discharge gives a more powerful spark from idle to the engines max. (even with 8 cylinders).
* Do the PLUGS and POINTS always need changing to bring the engine back to its best. Total Energy Discharge eliminates contact arcing and erosion by removing the heavy electrical load. The timing stays "spot on" and the contact condition doesn't affect the performance either. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
- Is the PERFORMANCE SMOOTH. The more powerful spark of Total Energy Discharge eliminates the 'near misfires'whilst an electronic filter smooths out the effects of contact bounce etc.

Most NEW CARS already have ELECTRONIC IGNITION. Update YOUR CAR with the most powerful system on the market - $31 / 2$ times more spark power than inductive systems $31 / 2$ times the spark energy of ordinary capacitive systems, 3 times the spark duration.

Total Energy Discharge also features:
EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH, LED STATIC TIMING LIGHT, LOW RADIO INTERFERENCE, CORRECT SPARK POLARITY and DESIGNED IN RELIABILITY.

* IN KIT FORM it provides a top performance system at less than half the price of competing ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality $2 \mu F$ discharge capacitor, case, easy to follow instructions, solder and everything needed to bdild and fit to your car. All you need is a soldering iron and a few basic tools.
FITS ALL NEGATIVE EARTH VEHICLES
6 or 12 volt, with or without ballast.
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS: (Older current impulse types need an adaptor).

STANDARD CAR KIT	£15.90	PLUS
Assembled and Tested	£26.70	P. \& P. £1 (U.K.)
TWIN OUTPUT KIT	£24-55	Prices
For Motor Cycles and Cars with twin ign	on systems	include
Assembled and Tested	£36.45	VAT

PLUS Prices include VAT

PROTECT YOUR CAR WITH AN ELECTRONIZE

 Don't Wait Until Its too Late ~ Fit one NOW!
 * 2000 COMBINATIONS provided by an electronic key - a minature jack plug containing components which must match

 each individual alarm system. (Not limited to a few hundeed keys or a four bit code).$\star 60$ SECOND ALARM PERIOD flashes headlights and sounds horn, then resets ready to operate again if needed.

* 10 SECOND ENTRY DELAY allows owner to dis-arm the system, by inserting the key plug into a dashboard mounted socket, before the alarm sounds. (No holes in external bodywork, fiddly code systems or hidden switches). Reclosing the door will not cancel the alarm, before or after it sounds, the key plug must be used.
- INSTANT ALARM OPERATION triggered by accessories or bonnet/boot opening.
* 30 SECOND DELAY when system is armed allows owner to lock doors etc.
t DISABLES IGNITION SYSTEM when alarm is armed.
* IN KIT FORM it provides a high level of protection at a really low cost. The kit includes everything needed, the case, fibreglass PCB, CMOS IC's, random selection resistors to set the combination, in fact everything down to the last nut and washer plus easy to follow instructions.

FITS ALL 12 VOLT NEGATIVE EARTH VEHICLES. SUPPLIED COMPLETE WITH ALL NECESSARY LEADS AND CONNECTORS PLUS TWO KEY PLUGS

CAR ALARM KIT
£ 24.95
PLUS
P \& P E1 (U.K.)

Prices
include
VAT
FRapid
MAIL ORDERS:
Unit 2, Hill Farm Industrial Estate,
ACCESS AND Boxted, Colchester, Essex CO4 5RD. TELEPHONE ORDERS:
Colchester (0206) 36412.

BARCLAYCARD WELCOME

MONITOR

Will The Last Person To Leave The House Kindly Put It On Standby . . .

The futurist's dream (one of them anyway): your house at your command. You describe the environment you want, and the computer does the rest. Eventually, not even a computer like the micros we're playing with now, but a little machine totally dedicated to controlling your habitat at the press of a button, nay, at a spoken word. We're not quite there yet, but the incidence of units either specifically designed for controlling household processes, or readily adaptable as such, is definitely increasing. Here are two:

First, from Electronic and Computer Workshop, a Universal Microprocessor Timer. Developed originally for industrial and lab use, it comes in kit form suitable for hobbvists. Applications specifically mentioned by ECW include control of house lighting, TV/audio gear, and automatic plant watering.

The timer is based on a preprogrammed TMS 1000 microprocessor, and has a 24 -hour clock with four independent relay-controlled outputs. There are 20 daily/weekly functions, entered via a keyboard, and the timer can be set to control any one of the four relay outputs.

Timer functions are set out clearly and simply in the manual, and completed steps are indicated by LEDs and a 12 mm seven-segment LED display.

The unit's power supply is stabilised on a separate PCB, and one output control relay is supplied. A total of four relays can be accommodated and relays can be easily obtained.

The kit comes complete with printed panel, to be installed as either a built-in or free standing unit. Price is $£ 58.06$ (complete with wooden housing) plus 15% VAT plus $£ 1.50$ p\&p. Orders and enquiries to Electronic and Computer Workshop Ltd., 171 Broomfield Rd., Chelmsford, Essex CM1 1RY. Tel: (0245)62149.

Secondly, Superswitch Electric Appliances ("Total control at your Fingertips") has come up with the Command Centre, a 'revolutionary' new remote control unit for-all kinds of electrical appliance.

By transmitting high frequency signals along AC mains wiring the Command Centre is capable of remotely operating up to sixteen different appliances. Remote control can be done either manually or programmed to take place automatically up to seven days ahead, with a maximum of 24 automatic programs at one time.

The signals sent by the Command console are received by plug-in modules, designed either for appliances or for portable lamps, which are plugged into the oridinary 13 amp household sockets. The two types of module are a safety feature, as one kind is rated for loads up to 13 amps and the lighting one for tungsten lighting up to 400 W .

A major feature of the Centre is its
ability to check and indicate whether an appliance in another room is on or off when asked. Other features include an 'energy save' key to bring on lamps at one of three brightness levers; manual dimming of lamps; ability to turn on all lamps simultaneously; simple programming on a keyboard that gives tone to tell you that entries have been correctly made; choice of 12 or 24 hour digital clock; simple reviewing and alteration of programs; 9 V battery to save programs in case of power failure; ability to turn off up to twelve moduels simultaneously; filter modules available in case of any interference to the Command Centre from some TV sets; manual override on all modules, and last but not least you can use it as an alarm clock.

The price for a 'starter pack' with the Command Centre, and one of each module, is $£ 139.95$ inc VAT, no p\&p. Contact Superswitch Electric Appliances Ltd., 7 Station Trading Estate, Blackwater, Camberley, Surrey GU17 9AH. Tel: (0276) 34556 . Superswitch, incidentally, do all kinds of domestic and light industrial timer controllers, dimmer

and time delay switches, remote control switches and units, fan controls and security switches.

Slick Scope Probes

More closely resembling a super executive non-slip-grip-fibretip pen than a conventional scope probe, Greenpar Connectors' new range of Posiscan inexpensive miniature oscilloscope probes have been designed for easy and accurate handling on crowded PCBs. The probes come supplied with seven accessories: a BNC adaptor for signal aquisition from a
co-ax socket, an IC test tip, a tip insulator, detachable earth lead, spring hook, trimmer tool and a spare probe tip in case of accidental damage to the hardwearing original. 1.5 metres of cable is supplied.

The probes are compatible with Hewlett-Packard, Philips and Tektronix accessories. Two types are available: No. 99025, with 10:1 fixed attentuation, and No. 99125 , with attenuation switchable from 10:1 to $1: 1$.

The specifications give, for the 10:1 probe (both models): bandwidth more than 250 MHz giving useful bandwidth from 100 to 140 MHz with typical 100 to 150 MHz scopes; risetime 1.5 ns max.; compensation range for scopes of 15 to 50 pF input resistance; input capacitance 15 pF nominal (17pF for the 99125); input resistance $10 \mathrm{MR} \pm 1 \%$ with scopes of 1 MR resistance; for the $1: 1$ probe (991 25 only), bandwidth 5 MHz ; risetime 70 ns ; input capacitance 100 pF ; input resistance equal to scope.

The probes come packed in a newstyle card carton with the specification printed on the back. Prices are around $£ 18.00$ and $£ 20.00$. For further information sontact Greenpar Connectors Ltd., Studlands Park Avenue, Newmarket, Suffolk CB8 7EA. Tel: (0638)668081.

Status Quo Fans Please Note

If you use any number of ICs and find that they come out of their packaging with their legs splayed out, so that they do not match standard IC plugs or rub-down PCB marks, Aries Electronics have a tool which will restore proper alignment.

The Dip-R-Sizer T-516 is designed to take ICs with both .003 or .006 centres. The IC is simply mounted on one side or another of a metal block between a pair of sprung jaws, and the legs squeezed back into specification.

It doesn't look as if the tool would be much help if your 'carpet crawler' has been trodden on or squashed right out of shape, other than giving the legs a final adjustment to the right pitch after a workout with the pliers.

Most useful if you're sharing a workshop or lab, at school for instance, or if you are cannibalising a lot of stuff from old boards. Price is $£ 10.50$ inc. VAT and p\&p.

Aries Electronics (Europe), Eastways, Witham, Essex CM8 3YO. Tel. (0376) 519318.

Spectrum Joystick

A self-centering joystick, called the Competition-Pro, is now available for the ZX Spectrum from Kemston Micro Electronics. The compact unit has eight direction commands and two large fire buttons for ease of play without wearing out your hands too quickly. Furthermore a number of software houses are developing games for use with a joystick, and others are on the way. It should also be possible to convert any BASIC program to work with the joystick and a short program is included to show you how to do this.

The joystick has a boxed interface which simply plugs into the expansion port of the Spectrum, with or without the printer.

Price is $£ 25.00$ plus $£ 1.00$ p\&p. Enquire Kempston (Micro) Electronics, 180a Bedford Road, Kempston, Bedford MK428BL.

Memories Of A Camel

More memory modules from Camel Products: for the ZX 81 , a new 64 K RAM expansion modules. This comes with a link option to disable RAM in the 0 to 16 K range of the $\mathrm{ZX81}$'s memory (for use by peripheral cards) and is therefore able to accept an EPROM as an alternative in that part of the map. A 28 pin IC socket can accomodate not only the popular $2716 / 2732$ EPROMs but also the newer 2764 and 27218 devices. These latter give the user 8 K and 16 K of non-volatile memory respectively.

The cost per byte of the 2764 is already nearly as low as the smaller EPROMs and they are seen as an important trend for ZX81 program storage. Another link option allows slow (450 ns) EPROMs to be used with a slightly higher power dissipation.

The unit, named DREAM 81, comes in an ABS case with LED -power indicator and costs $£ 69.95$ plus VAT.

Secondly, Camel have introduced a 4 K version alongside their 2 K MEMIC L CMOS RAM unit. The new MEMIC L 2 offers as much memory as the 2732 and 2532 Eproms (See HE March '83). These units use the latest True CMOS static RAMS which take only a fraction of a UA of current to retain data. An integral
lithium battery supplies the standby power for ten years or so and the current drain is so small that no battery on/off switch is needed.

The use of fast (200ns) RAMs extends system capability by providing a userdefinable ROM which can run without wait states in most systems and yet can be reprogrammed at will. This is useful as a soft character generator, for extending language interpreters and operating systems, etc.

The MEMIC unit comes in a moulded black AMS case with a flip-open window for a 24 pin cable connector, the far end of which plugs into the host system's $2716 / 32$ or $2516 / 32$ socket.

Price is $£ 35.95$ plus VAT. For information contact Cambridge Microelectronics Ltd., 1, Milton Road, Cambridge. Tel: (0223) 31814.

Never Mind The Voltage, Feel The Heat

Anyone who has access to a digital multimeter can now use it as a wide range temperature measuring instrument using standard type K thermocouples, by adding Graham Bell Instrumentations' DVM/TC Interface Unit.

At considerably lower cost than a dedicated unit, this device has a temperature range of -50° to $1100^{\circ} \mathrm{C}$ and incorporates automatic cold junction compensation. Thermocouples are attached via a miniature compensated socket. A basic thermocouple and mating plug are supplied as standard with the instrument.

The output of 1 mV per degree centigrade is via a 0.75 mm coiled lead fitted with 4 mm plugs. Long term stability is excellent and the low battery drain allows it to be used for continous monitoring if necessary. Since the accuracy is not affected by the output loading, it may also be used to interface low output impedance instruments such as chart recorders.

Price is $£ 36.00$ plus VAT. For more information and $\mathrm{p} \& \mathrm{p}$ charges contact Graham Bell Instrumentation, PO Box 230, 39 Derbyshire Lane, Sheffield S8 OTH. Tel: (0742) 582370.

A Bit More Scope

The Philips 15 MHz PM3 207 oscilloscope now incorporates a new CR tube which (like so many advances) is simpler in design yet more reliable than earlier tubes, and gives a sharper and brighter picture. Using their renowned colour TV experience, Philips have used simple internally-mounted permanent magnets to manipulate the electron beam, rather than the conventional electrostatic systems, and two permanentlymagnetised wire rings are fitted in the electron gun, giving greater, and better calibrated, deflection sensitivity, more accurate beam centring, stigmatic focussing and more accurate scanning; a higher acceleraton voltage is possible than usual in this class of scope, giving a brighter picture.

The choice of display modes includes $A+B$ vertical channel display with separate B channel inversion, and X deflection through the A vertical input channel, for maximum input sensitivity in the $X-Y$ display mode. Automatic triggering is standard; a separate peak-level control ensures a stable picture and the integral TV triggering facility provides automatic changeover from line to frame. Sensitivity is high (5 mV), and there is double insulation between line and scope to avoid ground loop problems. The display screen is $8 \times 10 \mathrm{~cm}$, weight is 5 kg and dimensions are $300 \times 130 \times 37 \mathrm{~mm}$ $(12 \times 51 / 4 \times 145 / 8 \mathrm{in})$. The PM3207 is advertised as meeting all the environmental requirements of a heavy-duty workshop oscilloscope, to standard VDE 0411 (a European standard).

Price is $£ 372.00$ from retail outlets, or contact Pye Unicam Ltd., York St., Cambridge CB1 2PX. Tel: (0223) 358866.

Shorts

Stotron are now supplying soldering equipment by Greenwood: this includes a high quality 24 V 50 W soldering station, a cordless Iso-Tip iron powered by long life NiCad batteries (a real boon to anyone who indulges in modifications to their car or bike electrics), which automatically recharges itself overnight in its own, plugin stand, and accessories including solder-suckers, de-soldering braid and iron-coated long-life soldering tips.

For information on both these ranges contact Inge Abraham, Stotron Ltd., 72 Blackheath Rd., Greenwich, London SE10 8DA. Tel: 016912031.

OK Machine and Tool are doing a range of PC board guides and brackets in moulded black plastic, to accommodate boards from 1.02 to 2.55 mm 10.040 to 0.100 in) thick with an overall length of $106 \mathrm{~mm}(4.12 \mathrm{in})$. Snap-in buttons ensure easy assembly to rack or brackets. The guides give a unique spring action which dampens shock and vibration. The support brackets feature a stabilizing post which permits secure mounting with only one screw. The guides can be bought as a kit (TRs-2) which includes two guides and two mounting brackets. Enquire OK Industries UK Ltd., Dutton Lane, Eastleigh, Hants SO5 4AA. Tel: (0703) 610944.

The Tangerine Users Group has moved to new premises near Bristol. This goes with an increase in staff, the formation of a new R \& D team to extend the Microtan system support, and the eventual settingup of a monthly mecting centre for members.

By the time you read this, TUG should be well settled in and the disruption caused by the move should be settling down, but if anyone has written and not received a reply, this is the cause.

The new centre is a few miles south of Bristol with easy access to the M4 and M5, and hopefully will make a better meeting place for members.

The new address is: Tangerine Users

Group, 1 Marlborough Drive, Worle, AvonBS22 ODO. Tel: (0934) 21315.

The radio wristwatch shown in our picture uses a Ferranti Electronics ZX 414 Z tuned frequency circuit. The watch is made by Advance Products UK Ltd., 8A Hornsey St., London N7. Tel: 01609 0061 . Well, it's a change from the personalised stereo suitcases seen and heard so oft upon our streets

The Super Electro analogue multimeter from Elemic of Italy is now being supplied by Black Star. Voltage can be measured to 1000 VAC and DC, and current to 3OADC and AC, as well as resistance and capacitance. The Super Electro also provides phase sequence detection for three phase systems and a mains and insulation tester. It is based on a high precision moving-coil ammeter, and has coloured scales, an antiparallax mirror and comes complete with a lined protective case, fused test leads and one year guarantee. Sensitivity is $20 \mathrm{kR} / \mathrm{VDC}$, accuracy is 1.5% fsd, and there is $50,000 \mathrm{~V}$ protection on all ranges.

The Super Electro costs $£ 39.95$ plus VAT from Black Star Ltd., 9A Crown

St., St. Ives, Huntingdon, Cambs PE17 4EB. Tel: (0480) 62440.
Sinclair Research is marketing its popular ZX Spectrum micro through a wider chain of retail outlets from midFebruary. Selected branches of Boots, Curry's, Greens and John Menzies will join the former sole distributor, W.H. Smith, and Sinclair's UK distributor, Prism Microproducts, will be distributing to John Lewis, House of Fraser, Rank Xerox and many smaller stores.

Sinclair expects to be selling twelve to fifteen thousand Spectrums a week in the UK by Easter, and claims sales of its established favourite, the ZX81, of 30,000 a week. Production of the Spectrum is now claimed to be over 50,000 a month and rising, which should cover demand and remove the likelihood of further distribution problems such as Sinclair suffered in 1982.

Enquiries about the Spectrum, ZX80 and ZX81 to your local dealer or to Sinclair Research Ltd., 25 Willis Rd., Cambridge CB1 2AQ. Tel: (0223) 353204.

All-round tool suppliers Toolmail have now issued their new catalogue with prices from February to December 1983. The 128 page catalogue costs $£ 1.00$, including postage, and is colour illustrated with over 2000 items, details and prices. Delivery is free and goods are normally despatched from stock within 48 hours. Toolmail prefer to buy British tools where possible, and offer a 'no quibble' guarantee on all their lines. The new catalogues each include three $£ 1.00$ vouchers redeemable against orders.
Contact Toolmail (1983) Ltd., P O Box 46, Maidstone, Kent ME15 8EQ. Tel: (0622) 682861.
Hardware and heatsink suppliers Dau (UK) Ltd. and specialist in passive components Church House Components Ltd., of Bognor Regis, have combined operations to become Dau Components Ltd., and the address to contact is 70-74 Barnham Rd., Barnham, W. Sussex, PO22 OES. Tel: Yapton (0243) 553031.

Look Sharp

Sharp Electronics have announced a series of new products which they will show at the 'Which Computer' show at the NEC, Birmingham in January 1983.

They are launching a pocket computer, the PC1252, at the show itself. Running a version of BASIC extended from the PC-1211, including two-
dimensional arrays and full string handling commands, it has a capacity of 24 kROM and 4.2 k RAM. The memory is protected by a battery backup when the machine is switched off, and the PC-1 251 works for up to 300 hours on one battery. It has a QWERTY keypad and 24 character LCD, and measures in at approximately $131 x$ $19 \times 9 \mathrm{~mm}$. ($51 / 4 \times 23 / 4 \times 3 / \mathrm{s}^{\prime \prime}$).

Also a vailable for this new computer is the CE-1 25 integrated printer microcassette recorder: the two machines stacked together are only as large as a one-inch thick A5 paperback.

For the future, Sharp will also be showing their hand-held micro, the PC-1500, for the first time with the new RS232 interface, which will allow the PC- 1500 to communicate with other computers either directly or across telephone lines with an acoustic coupler.

The PC- 1500 runs BASIC and incorporates 16 k bytes of ROM with 3.5 k RAM expandable to 11.5 k . Optional is an add-on four colour printer cassette interace which offers automatic program, data and calculation printing.

Another Sharp preview will be an innovative ink jet colour printer, capable of printing in seven colours to produce an image of 120 dots per inch, suitable for printouts from high-resolution colour monitors. Futher details from Sharp Electronics (UK) Ltd., Sharp House, Thorp Rd., Manchester M109BE. Tel: 061205 2333.

Read and Write

Cassandras among us predict a major and possibly terminal (ouch) conflict between the Printed Word and the Data Store as our main source of ready reference in the future. New software house Ramsoft, however, is backing both horses. It's producing software with full listings published as conventional books.

Ramsoft argue that "you need book length documentation in order to explain the intracacies . . ." (one thing is certain - editors won't go out of fashion while the printed word survives, if only in press releases) " . . . of the code and to provide sufficient discussion to enable the reader to take their own programming further. And if you are in the least bit lazy you'll welcome the fact that you can run the programs without laboriously typing in lines and lines of code."

You can't say fairer than that. So far, Ramsoft does tapes to go with the following books: 'The Art of Programming the 1 k ZX81' 'The Art of Programming the $16 k$ ZX8 1^{\prime} (both by Mike James and SM Gee and published by Babani) and 'The Spectrum Book of Games' (by Mike James, S M Gee and Kay Ewbank), published by Granada, with more titles for the Spectrum, Dragon and BBC Micros coming up from the same publishers in the future.

For more information, contact Ramsoft, P O Box 6, Richmond, N. Yorkshire DL 104 HL .

Dept 2D, High March, Daventry, Northants NN 11 4HO

Tel: 032725523 Telex: 311245 GRENEL G
Please add 50 p per order postage and packing (except where higher is indicated) plus 15\% VAT on total. No VAT on overseas orders, postage at cost. Cheques and postal orders made payable to Emos Limited. Send Large S.A.E. for comprehensive catalogue.

SPECIAL OFFER TO HOBBY ELECTRONICS READERS

To: HE PCB Kit Offer, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE.

Please send me:
PCB kits @ $£ 9.50$
Total
Price includes VAT and postage and packaging.
I enclose cheque/postal order, made payable. to Argus Specialist Publications Ltd, for
OR
I wish to pay by Barclay/Access. Please charge my account number

Signature
Name
(block capitals)
Address
(block capitals)
Please note that this offer is valid for the UK mainland only. Allow 28 days for delivery.

PCB Etch Kit for HE PCBS now available in 1983 at the 1982 price.
*Seno GS PCB Erching Kir *Etch Resist Pen
*Polyfix Cleaning Block
"Two 6 " $\times 4$ " single sided copper-clad boards ALL FOR €9.50!!!
No mess, no fuss.
The Seno GS printed circuit board etching system provides a high level of safery, convenience and efficiency for making one-off PCBs at home or at school. It is unique in allowing the etching process to be carried out in a sealed bag, eliminating the danger and mess associated with open tanks or baths.
The Seno GS kit consists of a sealable etching bag, granulated etch chemicals, leak-proof box and neutraliser. As a special bonus, this offer (available only through Hobby Electronics) includes an etch-resist pen that allows you to draw foil patterns directly onto the copper surface; a polyfix block for cleaning the copper both before and after etching; and, to get you started quickly and with minimum bother, two $6^{\prime \prime} \times 4^{\prime \prime}$ single-sided copper-clad boards.
Make the most of the projects in Hobby Electronics by making your own printed circuit boards!
*Price includes VAT and postage and packaging; please allow 28 days for delivery.

Charles Harvey

It takes study, but not a higher degree, to work in the high-flying industry of the eighties.

ALTHOUGH electronics is now taught as a subject in many schools, the real courses of electronic education do not properly begin until after leaving school. And then you will find there are a confusingly large number of courses available! Before deciding which one to choose, then, you should ask yourself two very important questions:
What qualifications am I likely to have after leaving school?

Do I want to be a full time student or would it be better to work, and study part time?
The importance of the first question is fairly obvious: the course you will be able to take will depend largely on the qualifications, if any, that you carry away from the school years. But even if you leave with very few formal grades, all is not lost.

Entry to one of the ITECs (Information Technology Centres), set up by the government to teach young people the essentials of electronics and microcomputing, requires no formal qualifications - just an interest and willingness to learn. The courses last up to a year and provide, at the least, a basic understanding of the subject what you do with it then is up to youl

If you want to find out about ITECs in your area, the information is available from your local Careers Office, who will have all the details at their fingertips if there is an ITEC nearby.
Young people who are leaving school before reaching the grand old age of 18 should also consider the government's Youth Training Scheme. This starts officially in September 1983, but some schemes are being set up as early as April. They will offer the equivalent of at least three months full-time training,
and up to nine months of relevant work experience; for example, a person might spend a quarter of his or her time at a local college or industrial training centre and the remainder working with an electronics firm in the neighbourhood. Once more, your future after completing the course is left in your own hands.

The Youth Training Scheme organisers hope that they have learned from the experience gained on the Youth Opportunities Programme, and that the new scheme will offer better quality training; however it is new, so we will just have to wait and see if it is successful.

Gilt Edged Certificates

Those who leave school with a reasonable range of CSEs (or who pass college selection, in Scotland) could normally aim for a course leading to a City and Guilds Certificate.
The City and Guilds of London Institute, to give it its full title, is an organisation over 100 years old that awards a qualification to crafts men and women in many different industries catering, building, engineering and needle trades, to mention a few. Their certificates in electronics can be taken full time at many colleges, though most people attend part time on day or block release from a job.
This is where the answer to the second question is needed: full time education is expensive (as every parent knows), but finding an employer who will offer you day or block release from the job will depend on the employment situation in your area. Given the national employment situation, this is likely to be difficult.

There is no quick and easy solution to the problem, either, unless full time study is a realistic option. Financial assistance is available for some courses, and a few of the options are briefly summarised in Table 1. Many people would prefer employment of any kind, even if not in the electronics industry, to no employment at all - but it's worth considering that any job in an electronics industry (even if its sweeping the floor!) could allow you to undertake a City and Guilds course, perhaps leading to a brighter future. Of course the educational qualifications must be met, and entry into the business in this way would be most unusual - but always worth a try if all else fails!

The City and Guilds qualification most relevant to electronics work is the '224 Certificate'. All those who take this course do a 'Part I', which takes about 300 college hours and covers the fundamental knowledge needed (safety, electronic units and systems, transmission, wave forms, electrical supplies and circuits, resistance, magnetism and electrostatics, capacitance and inductance, heat, sound and light, the use of tools and instruments, and a heaped helping of maths, including binary arithmetic). Part II usually takes about 600 hours and contains core subjects which are taken by all students, but then allows the option of specialisation in either Radio/TV or Industrial Electronics. It is also possible to carry on to the Advanced Level (Part III), a specialist option covering TV in greater depth, including video recording systems, information technology. $A M / F M$ radio and audio systems, microcomputer systems, electronic measurement and control systems.

Electronic work is also covered in two other City and Guilds Certificates; the '225'. Maintenance Craft Studies in Instrumentation and Control covers the installation, maintenance and repair of instruments used in industrial plants, while Electronic Craft Studies ('232') is for those working in industry and building services, and covers applications of heavy duty electrical engineering as well.

TEChnician Training

As with City and Guilds, part-time study on release from full-time employment is the most common way to gain TEC (Technical Education Council) or SCOTEC (Scottish Technical Education Council) qualifications. The minimum entry level for a TEC course is grade three CSEs in English, Maths and a science subject (or, in Scotland, being able to pass college selection), though some may demand higher entry qualifications. Relevant O-level/O-grade passes in, for example, Maths, Physics or English, usually permit exemptions from Level 1 courses, proceeding directly to Level 2 and finishing the course more quickly.

TEC/SCOTEC Diplomas are usually taken by full-time study and reach the same level, but in a wider range of subjects. Generally if you start at level 1. a TEC/SCOTEC Certificate takes three
years part-time, and a Diploma takes two years full time - but there are exceptions in both cases.

Older readers may remember the Ordinary National Certificate and Diploma courses (ONC and OND); these have now been superseded by the TEC/SCOTEC qualifications and, broadly but not exactly, they are the modern equivalents.

Just as TEC/SCOTEC Certificate and Diploma have replaced the old ONC/OND, so the old Higher National Certificate and Diploma courses (HNC/HND) have been replaced by the TEC/SCOTEC Higher Certificate and Diploma. The usual entry requirements for the higher courses are either a TEC/SCOTEC Certificate of Diploma pass, or an A-level pass together with an attempt at another relevant A-level subject such as Maths, Physics, Electronic Systems etc; two 'highers' or a SCOTEC Certificate or Diploma are usually required in Scotland.

Degrees Of Learning

Again, the usual way of completing a Higher Certificate is by part-time study, while the Higher Diploma is usually taken full-time.

One feature of these qualifications is that they are made up of self-contained units which are devised by the colleges themselves, though approved by the Technical Education Council. As a result, there are often differences between the courses run by different colleges. The TEC recommends that a course shouid contain some maths, physical science and industrial skills, plus electronic systems, digital techniques, general and communication studies; the range of specialist options usually cover radio, TV and telecommunications subjects. At the higher levels, there are further specialist units dealing in advanced radio/TV, radar, measurement techniques and fault diagnosis, etc. There is even more diversity at the upper levels because the TEC does not lay down such firm guidelines, and colleges are free to develop courses appropriate to the needs of local industry.

For those with two or three good A-levels (or three or four H -levels in Scotland), there are degree courses at Universities, Polytechnics and Scottish Central Institutions. In England and Wales, degree courses last three years normally (four years in Scotland) but 'sandwich' courses, with industrial experience included as part of the degree, will last four years.

For those who do well at degree level - and this means either a First or Second class degree - there is a chance for higher scholastic honours, usually a Master of Science (MSc) or Doctor of Philosophy (PhD) degree. However, competition for the limited number of grants supporting higher degree study is limited, so that even a good degree is not sufficient, alone, to guarantee grant approval.

Another question which every school leaver - indeed, every person in training - will want answered is: what

Careers in Electronics

Table 1

Course	Grants \& Finance
ITECs Youth Training Scheme	Government allowance, currently $£ 25.00$ pw and fares in exess of $\mathbf{£ 4 . 0 0} 0$
Full time City \& Guilds and TEC courses	Free tuition if under 18. Only a few authorities (eg Sheffield, ILEA) pay maintenance grants. Fees are payable for over 18s. You may be able to get a discretionary grant from your local authority but it depends where you live. Ask the advice of your local Careers Service, or your local authority's grants department.
Full time Higher TEC Certs/Dips Degree	You can usually get a mandatory grant from your local authority (Scottish Education Dept. in Scotland) regardless of where you live. This covers tuition and is supposed to cover living expenses, though most students find it hard to live on! It is "means tested" - how much you get depends on how much your parents earn; they are expected to make up the difference.

Table 2				
ENTRY	COURSE	AT	COMMENTS	POSSIBLE JOBS
No formal qualifications required	ITEC	ITEC.	Practical experience in micro computing and electronics.	Hi -fi servicing, electronic assembly.
No formal qualifications	New "Youth Training"	Further education	Starts Sept '83. Exact details still uncertain but probably includes at least 3 months full training plus relevant work experience.	Not known yet.
Sometimes no formal qualifications but generally CSEs	City \& Guilds Cert.	Further educaCollege	Full time course (usually takes two years) or part time, day or block release, usually lasting three years for those in employment; leads to craft certificates.	Hifi servicing, alarm systems installation, etc.
College Selection (Scotland) or grade three CSEs	TEC/SCOTEC Cert./Dip.	FE College	Full time course, usually two-three years, often taken part time by those in employment.	Radio/VTR technician.
TEC/SCOTEC Cert./Dip. At least one A-level pass or two Highers (Scotland)	TEC/SCOTEC Higher Cert./Dip.	FE College or Polytechnic	Full time course usually lasting two years. Often taken part time by those in employment.	Computer service engineer; control \& instrumentation engineer.
Two/three good A-levels three/four Highers	Degree	Polytechnic or University or Central Inst. or, occasionally. FE Colleges.	Three years for full time course, four years for sandwich course; four years in Scotland.	Design engineer.

sort of job will my training lead to?

Jobs For The Boys

An attempt to answer this question, in general terms, is made in Table 2, which summarises the various courses mentioned in this article and describes, very roughly, the type of employment which could result. Naturally, whether a job is actually available for you depends on the competition, both locally and nationally; generally electronics graduates and holders of Higher TEC/SCOTEC qualifications will do better in the hunt for jobs than those without. Below this level the number of jobs available is not so great, compared with the number of people seeking employment, so the competition is much tougher.

Don't Need No Education

You might, by now, have the impression from all this verbage that the only way into employment in electronics is through a more-or-less specialist course of training. However many employers look rather for a good allround education in relevant subjects. Some prefer to recruit young people with, say, four O-levels or O-grades, including Maths, Physics and English; or with Math and Physics at A-level or higher levels in Scotland. As mentioned earlier, it is now possible to study electronics at O- or A-level in many schools, in courses including electronic systems and microcomputers, and any study at school will naturally be advantageous when you later come to select a career in electronics.

THE HEN WHO INYENTED HE WEFE
CLEMEF EMIMEH TR MAKE ME THIMF
IN FRFTH YIT"E 1 Q TIMES FRSTER
FMD 4 TIMES MCFE CEMFRCT THFN
EFEIE 3 .

YET THEV RE DHPE EMGIJGM TO SELL
ME FDE $\because=9.95!\square$

Richard Altwasser and Steven Vickers are the men who invented the Jupiter Ace.

After years of designing microcomputers that use BASIC (both men played a major role in creating the ZX Spectrum), they abandoned it in favour of FORTH.

FORTH is just as easy to learn as BASIC. Yet it's a faster, more compact and more structured language that educationalists and professional programmers alike prefer.

So the Jupiter Ace is the only micro-
computer you can buy that is designed around FORTH.

Using it, there's little fear of accidentally crashing' programs halfway through and having to start all over again (a common fault with BASIC). The Jupiter Ace's comprehensive error checking sees to that.

The Jupiter Ace has a full-size keyboard, high resolution graphics, sound, floating point arithmetic, a fast, reliable cassette interface, 3K of RAM and a full 12 month warranty.

You get all that for $£ 89.95$. Plus a mains adaptor, all the leads needed to connect most cassette recorders and T.V.'s, a software catalogue (35 cassettes available, soon to be 50), the Jupiter Ace manual and a free demonstration cassette of 5 programs

The Jupiter Ace manual is a complete introduction to personal computing and a simple-to-follow course in FORTH, from first principles to confident programming.

Plug-on 16 K and 48 K memory expansions are also available, at very competitive prices. (There'll be a plug-on printer interface available soon, too.)

It'll take you no time at all to realise how clever Richard and Steven were to design the Jupiter Ace around FORTH. And even less time to realise what a silly price $£ 89.95$ is to charge for it.

Technical Information

Hardware
Z80A; 8K ROM; 3KRAM.

Keyboard

40 moving keys; auto repeat; Caps Lock.

Screen

Memory mapped 32 col x 24 line flicker- free display upper and lower case ascii characters.

Graphics

High resolution 256×192 pixel user defined characters.

Sound

Internal loudspeaker may be programmed for entire audio spectrum.

Cassette

Programs and data in compact dictionary format may be saved, verified, loaded and merged. All tape files are named. Running at 1500 baud.

Expansion Port

Contains D.C. power rails and full 280 Address, data and control signals. Can connect extra memory peripherals.

Editor

Allows complete editing and listing of compiled programs.

Please send cheque/postal order to Jupiter Cantab, 22 Foxhollow, Bar Hill, Cambridge CB3 8EP.

Jupiter ACE

Please send me_Jupiter Ace microcomputers @ $£ 89.95$ (+ $£ 3.95$ p. \& p.) Tick here if you require VAT receipt \square

Name
Address

Available for immediate delivery. Allow 14 days for p. \& p. U.K. price only (export price on request).

G3T 818

（Dile Modular Amplifiers the third generation

Due to continous improvements in components and design ILP now launch the largest and most advanced generation of modules ever．

WE＇RE INSTRUMENTAL IN MAKING A LOT OF POWER

In keeping with ILP＇s tradition of entirely self－contained modules featuring，integral heatsinks，no external components and only 5 connections required，the range has been optimized for efficiency， flexibility，reliability，easy usage，outstanding performance，value for money．
With over 10 years experience in audio amplifier technology ILP are recognised as world leaders．

Module Number	Output Power Werts rms	$\begin{gathered} \text { Losd } \\ \text { Impadanc: } \\ \Omega \end{gathered}$		$\begin{aligned} & \text { OIST } \\ & \text { T.H.D. } \\ & \text { TYp az } \\ & \text { T KHz } \end{aligned}$	$\begin{aligned} & \text { ORTION } \\ & \text { I.M.D. } \\ & \text { GOHzi } \\ & 7 \mathrm{KHz} 4: 1 \end{aligned}$	Supply Voltage TYp	$\begin{aligned} & \text { Size } \\ & \mathrm{mm} \end{aligned}$		WT oms				
（17Y．4）	15	4.8		0．015\％	＜0．006\％	± 18	$76 \times 58 \times$	$\times 40$	240				
HYeis	30	4.8		0．015\％	＜0．006\％	± 25	$76 \times 68 \times$	40	240				
Ify新	$30+30$	1.8		0．015\％	＜0．006\％	± 25	120×78	＋ 40	420				
HY124	60	4		0．01\％	＜0．006\％	± 26	120×78	$\times 40$	410				
HYI2H	60	8		0．01\％	＜0．006\％	± 35	120×78	$\times 40$	410				
HY244	120	4		0．01\％	＜0．006\％	± 35	120×78	$\times 50$	520				
＋чマ248	120	．		0．01\％	＜0．006\％	± 50	120×78	$\times 50$	520				
	180	4		0．01\％	＜0，006\％	± 45	120× 78	＋ 100	1030				
HY368	180	8		0．01\％	＜0．006\％	± 60	120×78	$\times 100$	1030				
Protection：Full load line．Stew Rate： $15 \mathrm{v} / \mu \mathrm{s}$ ．Risetime： 5 s s． S / N ratio： 100 db ． Frequency response（ -3 dB ） $15 \mathrm{~Hz}-50 \mathrm{KHz}$ ．Input sensitivity； 500 mV rms． input Impedance： $100 \mathrm{~K} \Omega$ ．Damping factor： $100 \mathrm{~Hz}>400$ ．													
PRE．AMP SYSTEMS													
$\begin{array}{\|l\|} \hline \text { Module } \\ \text { Number } \end{array}$	Mordete		Functions				Current Required	Pric＊ va					
Hy\％	Minto pre amp		Mic／Mag．Cartidge／Tuner／Tape／ Aux $+\mathrm{Vol/Bass} / \mathrm{T}$ reble				10 mA	¢7．					
HYait			20 mA	514.									
	Simeu preamb						Mic／Mag．Cartridge／Tuner／Tape／ Aux＋Vol／Bass／Treble／Balance						
HY73	Ciertan preation		Two Guitar（Bass Lead）and Mic＋ semparate Volume Bass Trebie + Mix				20 mA	E15．					
11×78	Sierergpre amp		As HY66 less tone controls				20 mA	¢14．					

Most pre－amp modules can be driven by the PSU driving the main power amp．
A separate PSU 30 is availabie purely for pre amp modules if required for
E5．47 line．VATI．Pre－amo and mixing modules in 18 different variations．
Pease send for details．
Mounting Boards
For ease of construction we recommend the B6 for modules $\mathrm{HY6}-\mathrm{HY} 13$ E1．05
POWER SUPPLY UAITS Uncorporating aur omn toridal ranstor

MOSFET MODULES

Module Number	Ouiput Power Watts rms	Loadmpedance Ω	distortion		Supply Voltage Tve	Sizemm	$\begin{aligned} & \hline \text { WT } \\ & \text { gms } \end{aligned}$	Price inc． vat
			T．H．D． Typat 7 KHz	$\begin{gathered} \text { I.M.D. } \\ 60 \mathrm{~Hz} / \\ 7 \mathrm{KHz} 4: 1 \end{gathered}$				
MOS 128	60	48	＜0．005	＜0．006	± 45	0×78×40	20	
MOS 248	120	4.8	＜0．005\％	＜0．006\％	± 55	$120 \times 78 \times 80$	850	¢39．86
MOS 364	180	4	＜0．005\％	＜0．006\％	± 55	$120 \times 78 \times 100$	1025	¢ 45.54

Protection：Able to cope with complex loads without the need for very special protection circuitry（fuses will sufficel．
20v／us．Rise time： $3 \mathrm{Hs} . \mathrm{S} / \mathrm{N}$ ratlo： 100 db
Slew rate：$\quad 20 \mathrm{~V} / \mu \mathrm{s}$ ．Rise time： $3 \mu \mathrm{ss}$ S／N rato： 100 db
Inpul impedance： $100 \mathrm{~K} \Omega$ Damping factor： $100 \mathrm{~Hz}>400 \mathrm{l}$
＇NEW to ILP＇In Car Entertainments
C15
Mono Power Booster Amplifter to increase the output of your existing car radio
or cassette plaver to enominal 15 watts rms．
Very easy to use．
Robust construction．
£9． 14 （inc．VAT）
Mounts anywhere in car．
Automatic switch on．
Outout power maximum $22 w$ peak into 4Ω
S／N ratio（OIN
Input Sensitivity and impedance（selectable） 300
Stze $95 \times 48 \times 50 \mathrm{~mm}$ ．Weight 256 gms ．
C1515
Stereo version of C15
£17．19（inc．VAT）
Size $95 \times 40 \times 80$ ．Weight 410 gms ．

Modef Number	For Use With	Prica inc． VAT
PSU 72X	$2 \times$ HY248	E22，54
PSU 73 x	1к HY 364	£22．54
PSU 74 x	ix HY368	124.20
PSU 75x	$2 \times$ MOS $248,1 \times$ MOS368	£24．20

[^0]
WITH ALOT OF MELP rinom

PROIFSSIONAL IIFFI THAT EUERY ENTHUSIAST

 CAN HANDIE...
Unicase

Over the years I LP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.

Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off-switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

PowerSlaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

UNICASES					
HIFI Separates					Price inc. VAT
UC?	Preamp				£29.95
LPix	$30+30 \mathrm{~W} / 4-8 \Omega$	Bipolar	Stereo	HiFi	£54.95
UP2X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	Hifi	£54.95
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiFi	£54.95
UP4X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiFi	£74.95
UP5X	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiFi	¢74.95
UP6X	60W/4-8	MOS	Mono	HiFi	£64.95
UP7X	$120 \mathrm{~W} / 4-8 \Omega$	MOS	Mono	HiFi	£84.95
Power Slaves					
USIX	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	£59.95
US2X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	¢ 79.95
US3X	60W/4-8	MOS	Power	Slave	£69.96
US4X	120W/4-8	MOS	Power	Slave	£89.95

[^1]
COMING SOON TO . . . E Mctinontos

HE OSCILLOSCOPE PROJECT

This low cost test equíipment project is a must for all electronics enthusiasts. It is a modular design, consisting of an $X-Y$ Oscilloscope plotter and a separate 'Scope Module, containing the Y-Amplifier, Time Base and Trigger circuits.
The projected cost of the two modules is under $£ 79$-a price just too good to miss!
Designed essentially for audio work and for low-frequency digital test applications, future add-on modules will include a transistor curve-tracer and a $10 \mathrm{mV} / \mathrm{cm}$ preamplifier of cunning design for the most sensitive audio operators.
Part 1 of the HE Oscilloscope commences in the June ' 83 issue of Hobby Electronics. A limited number of kits of components will be available through a leading electronics retailer, so be sure to order your copy in advance.

ZX COMPUTER SOUND BOARD

Add sound effects to your Spectrum or ZX81 games program with our ZX Sound Generator Board!

CB RAP LATCH

Keep your eyes on the road keep your hands up on the wheel! Put Safety First with the HE Rap Latch. This simple device means you do not have to hold down the microphone PTT button while talking at length. However, to ensure that the transmitter does not operate for ever, a simple timing circuit first warns that the latch is about to release, then switches the rig back to Receive after a preset time interval.

TRAFFIC LIGHT TOY

A family project that has proved a smash hit (if you'll pardon the expression) with very young drivers.

THE ELECTRONIC REVOLUTION

Our popular informative series concludes with a review of the history of household electrical gadgets.

June issue on sale at your newsagent from 13th May.
Place your order now!

Although these articles are being prepared for the next issue, circumstances may alter the final content.

EHPAK PAGANS

TRIACS - PLASTIC
1 AMP - *000 - TOENR - TAG 130 D

SLIDER POTENTIOMETERS
Plastic sIm Travel Mono ALL AT

Sue 250 Silicon Diodes -Switching bite Worth INT 148 DO -35. All good-uncoded. Wort
SK41 250 Silicon Olodes-General Pun pose. like 0:200/202 BAx 13/16. Encoded. 30.100 v 200 mA 00. 7

OPTO 7-Segment Display Brand Now list Quality LITRONIX DL 707R 14-pin
Red 0.3° Common Anode Display 0.9 with right hand decimal point fL compatible 5v DC Supply. Data supplied. IN 5 pieces E3 (160 p each) IN $\quad 10$ pieces 25 (50 p each)
 100 pieces C35 (35p each) 1,000 pieces $5300(330 \mathrm{pesch})$ THE LESS YOU PAY
"IRRESIBTABLE RESISTOR EAROAIME"
 $\$ 110 \quad 400$ Mired "All Type" Resistors \& 5111400 Preformed 14 walt Carbon Resistors 4 walt Carbon Resistors $\begin{array}{lll}\$ \times 12 & 200 & \text { walt Carbon Resistors } \\ \text { SN 13 }\end{array}$ $\begin{array}{lll}5 \times 13 & 200 & \text { watt Carbon Resistors } \\ 5 \times 14 & 150 & \text { H wall Resistors } 22 \text { ohm }\end{array}$ 2 m 2 Mixed
$5 \times 15 \quad 100 \quad 1$ and 2 watt Resistors 22
Pats $5 \times 12-15$ conan a range of Carbon film Resistors of assorted values from 22 ohms to 2.2 me i Save pounds on these resistor palls and have a full range to
cover your projects
Quantities approximate. count by weight.

GUARANTEED TO SAVE YOU
 Sx28a S0 Assortud Silver Mica Caps $\begin{array}{lll}\text { SX29A } & 5.6 \mathrm{pFF}-150 \mathrm{FF} \\ 50 & \text { Assented Silver Mica Caps }\end{array}$

 Sx31a 50 to 8 KV . Assorted useful values 50 vin
 AUTO SCREWDRIVERVORILL Automatic spiral ratchet. Complete with 2 screwdriver
blades. $5 \$ 65 \mathrm{mmm}, 1$ screwdriver cross blades, 5865 mm , 1 screwdriver cross point No. 1 \& three delis -2.2 .8 and 3.65 mm - A MUST FOR ALL
HOBBY-EULLDERS \& CONSTRUCTORS, Order No. ASD/9 E3.50 each

"CAPABLE

CAPACITOR PAR ${ }^{\prime \prime}$

BARGAINS

$5 \times 91^{-20 \times}$ Large $2^{2 \prime}$ RED LED
514220 small 125 Red IE O's
$5143 \quad 10$ Rectangular Green LED's 2 30 Assorted liner Diodes
$250 \mathrm{mw}-2$ watt mixed voltages. $250 \mathrm{mw}-2 \mathrm{waH}$
5447 Black Instrument
Mnobs-winged with pointer th. Klans-wing screw fit sore 29x 20 mm .
5x49 20 Assorted Slider Knobs
$50 p$
Blach/Chiome. etc.
sue 12 Noons and Filament Lamps Low voles and mass - wrious types and colours - some panel mounting

IC SOCKETS

 The lowest price ever.

VOLTAGE REGULATORS 10220 $\begin{array}{ll}\text { Positive }+ & \text { Negative }+ \\ 7805-50 p & 7905-55 p \\ 7812-50 p & 7912-55 p \\ 715-50 p & 7915-55 p \\ 7824-50 p & 7924-55 p\end{array}$

SILICON BRIDGE

 RECTIFIERSComprising 4×11 amp rectifiers mounted on PCB. VRM - 150 wits
IF - 1.5 Amps Size: 1 inch square 10 off $£ 1.00$
50 off $£ 4.50$
100 off $\mathbf{~} 7.50$

Order
Rect.

SINGLE SIDED FIBREGLASS
 -703

MPN like 2 N3055 - but not tull spec 100 watts 50 V min
10 tor $£ 1.50$ - Very Good Value
100s of uses - no duds Order No. SX90

PROGRAMMABLE UNIJUNCTION TRANSISTOR "PUT" case TO 105 plastic MEU22 Similar to
2N6027/6028 PNPN Silicon Price: $1-910-49 \quad 50-99 \quad 100$ Normal Retail $\begin{array}{llll}\text { Price: } 1-9 & 10-49 & 50-99 & 100 * \\ \text { Each: } 200 & 180 & 150 & 130\end{array} \quad \begin{aligned} & \text { Normal Retail } \\ & \text { Price } £ 0.35 \text { each }\end{aligned}$
SX33A 6 small (min (SUST/SPDT Toggle ${ }^{-1.00}$ SX35A 6 Witches 240 V Sam er Switches
SX32A 12 Assorted Jack \& Phon plugs,
£ $£ .00$
sockets and adaptors, 2.5 m .
SX71 50 BC 108 "Fallouts" Manufactourers out of spec on volts or
SX72 A mixed bundle of Copper clad Board Fibre glass and paper.
Single and double sided. A fantastic bargain

SX38 100 Silicon NPN Transistors-all perfect Coded mixed types with
data and eqvisheet. No rejects. Real value
Sx39 100 Silicon PNP Transistorsall perfect. Coded mixed types with data and eqvit. sheet. No rejects. Fantastic value.
rejects. Fantastic value. £3
2 123055 The best known Power Transistors in the World - 2 N305S NP 115 m . 10 off 50 of 100 off $\begin{array}{lll}10 & 50 \text { of } & 100 \text { off } \\ 630 & 15.00 & {[30.00}\end{array}$

30312 COMPLIMENTARY PAP POW
TRANSISTORS: TO 2N305S. equivalent MJ2955-80312-T03 SPECIAL PRICE 50.70 mech

REGULATED
VARIABLE
Stabilised
POWER SUPPL
Variable from 2.30 volts and 0.2 Amps Kit includes -
 $4 K 7$ ohm wirebound potentiometer. Wring Diageng
included Order Na VPS 30 KiT MINIATURE FM TRANSMITTER Freq: 95.106 MHz . Range: it mile
Size. $45 \times 20 \mathrm{~mm}$ Add: av batt: ONLY Not licenced in U.K
local for: 007-M15-FBI-CIA-KGB etc.

MORE BARGAINS!

5x5 60 metres PVC covered Hookup wire single and stranded. Mixed colours.
ix ss $\quad 25$ Assorted TTL Gates 7400 Series. 7401.7460
5x5 10 Assorted flip Flops and MSI
$\begin{array}{ll} \\ 5 \times 60 & \text { TL } \\ 20 \text { As }\end{array}$
$5 \mathbf{5 0 0} 20$ Assorted Slider
5×62 Potentiometers 40 Assorted Pie. Sets Hor/vert
\$x/9 10 Reed Switches - gloss type
3 Micro Switches - with lever

Use your credit card. Ring us on Ware 3182 NOW and get your order even faster. Goods normally sent Ind Class Mail.
Remember you must add VAT as 15% to your order
Total. Postage add 75 per total order.

Stall~Thief

> Our 'invisible', noiseless anti-theft device simulates an ignition fault, frustrating a thief in his attempt to make off with your motor.

THIS is a gadget which should discourage any thief in his right mind from stealing your car! Sure, you may say, but a thief can get around any disabling device in a few minutes. This one, however, doesn't appear to be an anti-theft device; instead, it makes the car seem to be at fault.
When the car engine is started (possibly not at the first try) it will run for a few seconds, and then cough and die. Further attempts at starting will be met with the same results.

This particular system has the added advantage that it is automatically reset when the ignition is switched off, and that the method of deactivating it is very unusual. Thus, you cannot forget to protect your car, and any prospective thief has little chance of bypassing the system.
Obviously, the device can simply be removed, so it needs to be installed where it won't easily be found there are some suggestions about this further on. The unit does its job by periodically shorting the contact breaker, and preventing a spark from being generated. Typically, it is shorted out for about two seconds in every ten seconds; this is adequate to stop a cold engine, though one could probably continue driving if the car was thoroughly warmed up and moving reasonably fast.
This brings us to a WARNING: though the circuit is designed not to bring the car to a halt on a fast road, it is preferable to avoid even the slightest risk of this. Therefore, the anti-theft unit - and, indeed, anything which could stop the ignition system from working - must be built and fitted with reliability in mind. (the
same applies to commercial devices like electronic ignitions).

The Circuit

IC1a and b form a bistable which always powers up with pin 4 high and pin 3 low; this occurs because Cl takes longer to charge than C2. Resistors R4 and R5, in series with pins 6 and 1 respectively, are to prevent the capacitor's discharge currents from damaging the CMOS input protection diodes (built into the chip) when the unit is switched off, ie when the ignition is switched off.

IC1c and d form an oscillator, which is enabled while pin 13 is held high. This oscillation has an uneven mark to space ratio, so that the
engine is allowed to function most of the time, but is periodically halted. The timing has been chosen so that someone trying to restart the engine immediately after it has stopped would meet with (temporary) success.

The oscillator works in the following manner: when the power is switched on both C3 and C4 are uncharged; therefore at the moment of switch-on, pin 12 will be at logic 0 . This causes pin 11 to be at logic 1 and hence pin 10 to be at logic 0 . This state persists while the lower end of C4 charges towards logic 1 via R9.

This same voltage will appear on pin 12 via R8, so that after it passes about half the power supply voltage, pin 11 falls towards logic 0 , causing pin 10 to rise to logic 1 .

Figure 1. The Stall-Thief circuit; Vcc connects to pin 14 of the $I C$ and $O V$ goes to pin 8.

How It Works

The Stall Thief is powered from a point in the car's electrical system which is switched on by the ignition switch. When power is applied, the bistable output is at logic 0 and 1 this enables the oscillator, which is set up to produce an asymmetric waveform. The waveform is "low' for most of the oscillator period, so that the relay driver is turned off and the car may be started - briefly!
However, when the oscillator
output is 'high' (for about two seconds in every ten), the relay is energised so that the contacts short out the ignition coil contact breaker, effectively simulating a fault in the ignition system.
The Stall Thief is disabled by touching the concealed switch contacts; this takes the bistable output to logic 0 , disabling the oscillator and preventing the relay from operating.

In this condition, transistors Q1 and Q2, which form a Darlington pair, are turned on, thus closing the relay and preventing the enging from functioning.

You will observe, now, that the voltage on the lower end of C4 is about half the supply voltage higher than the top end, which has just been raised virtually to the full supply voltage. The voltage on C4 is thus outside the limit of the supply rails and will therefore discharge, partly via R8 and the input protection diodes on IC1d pin 12, but mostly via R9 and R10/D1. This is why R8 is such a high value - so that this discharge current is small enough to be ignored, compared with the current through R9 and R10.
The voltage on C4 therefore discharges into IC1d pin 11, towards logic 0 , with a time constant given approximately (neglecting R8) by C4, and R9 in parallel with R10 (since D1 is conducting in this condition). This time constant is about 25% of the charging time constant set by C4, R9 because R9 in parallel with R10 is approximately 520 k .
When the voltage on pin 12 falls below half the supply voltage, the logic gates switch into the state they had when first switched on, thus taking the voltage on the lower end of C4 outside the supply rails in the other direction, until it charges back up to half supply via R9 (see Figure 2).
This cycle repeats until the owner of the vehicle touches both of the "touch plates"; this switches the flipflop (IC1 a and IC1b) into the other state, setting pin 4 at logic 0 . This disables the oscillator, causing pin 11 to go to logic 1 and pin 10 to logic 0. Thus the relay is permanently deenergised and the engine runs normally.

Spiking the Noise

The purpose of C3 may not be immediately obvious; it's there to
prevent stray noise pick-up onto the high impedance of pin 12, from causing spurious operation of the gate. The time constant of R8 and C3 is much shorter than that of R9, R10 and C4, so that C3 has no appreciable effect on the oscillator frequency.

Since car electrical systems may have substantial voltage spikes on them, the CMOS power supply is protected by R6, D2 and C5; were these components omitted from the design, the delicate CMOS would probably fail at an inconvenient moment!

Some constructors may wonder at the use of a Darlington pair of transistors to drive the relay - so a word of explanation. Even buffered CMOS cannot properly be asked to source much more than 1 mA (hence the value of R11), and a transistor in saturation cannot be assumed to have a gain greater than ten. Therefore if only one transistor were used, a current of only 10 mA would be available to drive the relay if the transistor were saturated. What would happen, in practice, would be that some unlucky constructors would find that the relay did not pull in, or that the transistor burned out because it was not properly switched on and thus was dissipating too much power.

Construction

The construction of the board is simply a matter of following the overlay. The CMOS IC should be installed last, after a visual inspection to check that the rest of the components have been installed correctly.
Veropins can be used for the connections to the board, though the 0.25 in push-on connector blades used on the prototype are to be preferred.
The relay is separate from the board for two reasons: the first is that, while a particular PCB mounting relay may not be hard to obtain, many people may have a 12 V relay in their junkboxes. The second reason is that

Figure 2. The circuit of a typical ignition system; the Stall-Thief relay contacts short out the distributor contact breaker intermittently, interrupting the ignition timing.

Figure 3. Waveforms produced at various points in the Stall-Thief circuit when the oscillator consisting of IC1d, c is enabled. (logic ' 1 ' on pin 13).

it may, under some circumstances, be preferable to mount the relay near to the distributor or coil, and mount the rest of the works elsewhere, for example behind the dashboard.

The choice of relay is, to some extent, important. The contacts need to be rated for the current (at least 5 A), and also need to open, when deenergised, to at least as wide as the contact breaker gap, to avoid breakdown. Some suitable types are described in Buylines.

Once the unit is built it should be tested before installation. Connect up the relay and then connect the board to a 12 V power supply. The relay should switch on for about two seconds out of each ten. If it does not do so, check the voltage across the relay coil; if this reaches at least 10 V for the two seconds and still the relay does not switch, then it is unsuitable.

If there is no voltage on the relay at all, check the logic levels (after switch-on, before operating the touch contacts!). A wrong or indeterminate logic level should point to the short circuit, wrong component etc.

Once the relay has been made to switch, slightly moisten your finger and place it briefly across the two blades wajting to be connected to the touch terminals: the relay should switch no more. Finally, it is a good idea to varnish the board to avoid condensation problems

Installation

Many of the details of installation may be left to the individual constructor, as the space available in different cars needs different methods.

The firşt decision to make is whether to mount the relay separately or not. If there is little concealment for the whole unit under the bonnet, it is preferable to mount the relay near the wiring channels, and connect it to the contact breaker in as unobtrusive a way as possible. In this case, a small

Figure 4. The component overlay; 1 mm PCB connector pins may be used instead of the push-on connectors, but are not as secure.
plastic box just large enough to take the PCB and push-on connectors is required. This may be mounted in a convenient place behind the dashboard and wires run to the relay. If the area under the bonnet is sufficiently untidy, so that an extra plastic box would not be noticed, then the whole thing can be mounted in one place, with twisted wires leading to the touch contacts. For this option, a larger plastic box would be required.

In any event, the PCB should be mounted to the lid by four 6BA or M2.5 bolts, and a slot cut in the box to allow cable entry. If the relay is mounted separately, it must be securely bolted down; if it is mounted in the plastic box it may be easier to use double-sided adhesive pads on two faces to mount the relay. (Note: for a reliable fixing, the surfaces must be thoroughly clean.)

Since the wires from the relay to the ignition system must be soldered at the relay end, special care should be taken; these connections should be sleeved, preferably with heatshrink sleeving (a 2 kW electric fan heater shrinks it a treat!). These wires should also be fixed in place using selfadhesive aluminium cable clamps, readily available from car accessory shops.

The wiring to the contact breaker should be kept short to reduce the amount of extra ignition interference radiated, and on grounds of reliability. Depending on circumstances, a "piggy back" connector to the coil or distributor, or a tap-in connector to
the wire between the two, should be used. Take care not to put tension on the wiring, to avoid the risk of it pulling off while you are driving!

Touch contacts

The suggested techique for making these is to use plastic washers, of the type used for transistor mounting, to put two bolts into the underside of the dashboard, but insulated from it. If these bolts are more than a few inches apart, it is most unlikely that any one would touch both at once by chance, so your secret Stall Thief would be safe.

When the unit is fixed in place and connected to its touch contacts, it should be wired up to the battery. Assuming a negative earth, the -ve terminal should be connected to chassis and the +ve terminal to any positive supply which is switched off by the ignition switch (eg the +ve terminal of the coil). For +ve earth cars, this procedure must, of course, be reversed.

Operation

Simple! Switch on the ignition, then touch both bolts without touching any other metalwork (if your hands are exceptionally dry you may need to lick your fingers but normally there should be no problems). The car can then be started and driven as usual.

Your local tea-leaf, on the other hand, will not know about this and will be stalled in his attempt to steal your motor.

GOING FOR A SONG!

GOING FOR A SONG - Are you a buyer for a fectory, school shop, club, etc? If so, please telephone or write for our sale list -
over 1,000 tons of stock is being sold off at much below cost, simp because we must clear our bigstore this year. You will be amazed at the very low prices. Here are two examples:
LOT 1 . is a parcel of approximately 1 million $1 / 4, y \& 1$ watt resisto All uniformly packaged and front labelled in boxes ideal for retail
display-or self service racking. Normal stock valuation $\mathrm{f6}, 000$ of at $£ 950$ the lot
LOT 2. 1000 minlature encesed relays - p.c.b. mounting $-2^{\text {ch change }}$ over contacts $9-15 \mathrm{~V}$ coil - very low current $(700$ ohm), norma
stock valuation based on a similar relay R.S. price $£ 2.56$ each is $£ 2,500$. Parcel offered for $£ 600$

8 POWERFUL MODEL MOTORS (all different)
for robots, meccanos, drills. remote control planes, boat
etc. $\sum 2.95$.

12 volt MOTOR BY SMITHS

 Made for use in cars, etc. Thesewound and they become more
powertul as load increases. Size powertil as load increases. Size
$3 / z^{\prime \prime}$ long by 3 " dia.: They have a good length
Price E .4 .45 .

Ditto, but double ended $£ 4.25$.
Ditro, but permanent magnet E 3.75 .
EXTRA POWERFUL 12v MOTOR
Made to work battery lawnmower, this probabty develops up to h.p.p. so it could be used to power a 90
compressor, etc. etc. $£ 7.95+£ 1.50$ post.

SET OF $12 v$ MOTORS!
Sel of four 12 volt motors to drive passenger locomotive - $£ 29.50$ With address where to buy other parts.

WATERPROOF HEATING WIRE
60 ohms per yard, this is a heating element wound on a fibre glass coil and then covered with p.v.c. Dozens of uses - around wate

THERMOSTAT ASSORTMENT

10 different thermostats. 7 bi-metal types and 3 . liquid types There are the current stats which will open the switch to protec devices against overload, short circuits, etc., or when fitted say in front of the element of a blow heater, the heat would trip he states, others adjustable over a range of temperatures which could inciude $0-100^{\circ} \mathrm{C}$. There is also a thermostatic pod which can be immersed, an oven stat, a calibrated boiler stat, finally an ice stat which, fitted to our waterproof heater element, up in the loft could protect your pipes from freezing. Separately, these thermostats could co

POPULAR PROVEN PROJECTS

 $£ 14.95$

Ditro - made up
Big Ear, listen through walls
Robot controller - receiver itransmitter
Ignition kit - helps starting, saves petrol, improves
performance
Silent sentinel Ultra Sonic Transmitter and receiver
Car Llght 'left on' alarm
Secret swirch - foois friends and enemies alike
3-30v Variable Power Supply
2 Short \& Medium Wave Crystal Radio
3v to 16v Mains Power Supply Kit
Light Chaser - three modes
Mullard Unilex Mi FI stereo amplifier with speaker
Radio ste thoscope . . lault finding aid
Mug Stop - emits piereing squark
Morse Trainer - complete with key
Drill control kit
Drill control kit made up
Interrupted beam Kit .
Radio Mike
FM receiver kit - for survelliance or normal FM
transmissions
Seat Belt Reminder
Car Starter Charger Kit
Soil heater for plants or seectis
Insulation Tester electronic megger
Battery Shaver or Fluorescent Irom 12 v
Mutchbox Radio - receives Medium Wave
Mixer Pre-amp - disco special with case
Aerial Rotator - mains operater
Aerial direction indicator
40 watt amp hi. $4 \mathrm{ji} \quad 20 \mathrm{hz} \quad 20 \mathrm{KHz}$
Microvolt multiplier - measure very low currents with
ordinary multitester
Pure Sine Wave Generator
Linear Power output meter
115 Watt Amplifier 5 hz - 25 KHz
Power Supply for one or two 115
Stereo Bass Booster, most items

INSTRUMENT BOX

Instrument box with key. Very strongly made (plywood sides with hard board top and bottom). With black grained effect, vin $122^{" 1}$ long, $4 \% \%^{11}$ wide, $6^{1 "}$ de ap. Ideal for carrying your mulh range meter and small toots and for keeping them in a safe place.
$£ 2.30$. Post paid $\mid f$ ordered with other goods, otherwise add $£ 1$.

LIGHTING \& POWER CABLES

SUB MINIATURE MOVING COH SPEAKER OR MICROPHONE

Beautifully made permanent magnet type, this is only $0.8^{\prime \prime}$ dia. and $0.4^{\text {" }}$ thick (approx). Impedance approximately 350 ohms voice coil sealed with dust
$£ 1.15$ each, or 10 for $£ 10$.

THIS MONTH'S SNIP

SUPER BARGAIN JUST ARRIVED:
The AMSTRAD Stereo Tuner.
This reacty assembled unit is the ideal runer for a music
centre or an amplifier, it can also be quickly made into a
personal stereo radio - easy to carry gbout and which will
give you superb reception.
Other uses are as a "get you to sleep radio", you could even
take it with you to use in the lounge when the rest of the
family want to view programmes in which you are not family want to view programmes in which you are
interested. You can listen to some music instead.
Some of the features are: long wave band $115-270 \mathrm{KHz}$
Sedium wave band $525-1650 \mathrm{KHz}$, FM band 87
108 MHz , mono, sterro swicth, AFC'switch, tuning meter
to give you spot on stereo tuning, optional LED wave band
indicator, fully assembied and fully aligned. Full wiring Indicator, fully assembied and tully aligned. Full wiring
up data showing you tow to connest to amplifier or heacup data showing you how to connect to amplifier or head
phones and details of suitable FM aerial (note ferrite rod phones and details or suitable Fn lerial note territe Ail
aerial is included for medium and long wave bands. Ail made up on very compast board. This comes packed in a special container, which you can use as a temporary case if vou want to make it quickly a a parsona stereo
Offered at a fraction of ites cost: only $\mathbf{£ 6 . 0 0}$

TANGENTIAL BLOW HEATER
2.5 Kw quier.
efficient instant
efficient instant
heating from
$230 / 240$ volt
mains. Kit consis ts
of blower as

illustrated, 2.5 KW
MINI-MULTI TESTER Deluxe pocket size precision mo Ing coll instrument, sewelled bearings - 2000 o.p.v. mirrored scile. $\begin{array}{ll}1 \text { instant range measures: } & D C \text { volts } 10,50,250,1000 . \\ A C \text { volts } 10,50,250,1000 .\end{array}$ $A C$ volts $10,50,250,1000$

Continuity and resistance 0.1 meg ohms
In iwo ranges in two ranges. Complete with test pro
and instruction book showing how to measure capacity and induclance as well. Unbelievable value at only $E 6.75 * 60$ p

FREE Amps range kit to enabie you to read DC current from 0 scale. It's free if you purchase quickly, but if you already own
Mini-Tester and would like one, Mini-- $e s t e r$
send $£ 2.50$.

J. BULL (Electrical) Lta.

 (Dept. HE), 34 , 36 AMERICA LANE; EntublishedAYWARDS HEATH, SUSSEX RH16 30 U, 30 YEARS
MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders uncher $£ 10$ add 60 s service charge. Monthly account orders accepted from schools and pullic companies. Access \& $8 /$ card orders sccepred day o night. Hay wards Heash (0444) 454563 . Bulk orders: write for cuote.
Delivery by return. Shop open $9.00-5.30$, mon to Fri, not Saturday

3 CHANNEL SOUND TO LIGHT

Now suppliad with fully prepared metal work and p.c.b

Complete kit of parts for a three channel sound to light unit controlling over 2000 watts of lighting. Use this at home if you wish but it is plenty rugged enough for disco work. The unit is
housed in an atractive two tone metal case and has controts for housed in an attractive two tone metal case and has controts for are by $14^{\prime \prime}$ sockets and three panel mounting fuse holders provide hyristor protection, A four pin plug and socker facim ore esse
connecting lamps. Special price is $\mathbf{£ 1 4 . 9 5}$ in kir form or $\mathbf{£} 5.00$ assembted and tested. Case \& metal Chassis No. Fully punched and prepared.

PANEL METERS \& INSTRUMENTS
singal meter, 200 VA
Volt meter 0.200 volts, 2% " round
Millt-3mp meter. $500 \mathrm{ma} 2 \%{ }^{\prime \prime}$ round
-amp meter, hot wire scaled, 0.9 amps
Ammeter, $2 \frac{1 / 2 " \prime \prime}{\prime \prime}$ round, centre zero, 500 ma
Panel meter, $15 / 8^{\prime \prime}$ square, scaled Vu

SUPER HI-FI SPEAKER CABINETS
Made for an expensive Ri-Fi ourlit
wee. Cut-outs for $61 /$." wosonance $21 / 2^{\prime \prime}$ Eweeters. The front material ts Dacron. The complered unit is most pleasing. Supplied in pairs, price than the original cost of one cabinet) carriage E3.00 the pair
GOODMANS SPEAKERS $6 y_{2}^{\prime \prime} 8$ ohm 25 watt $£ 4.50 .2 \%$ " 8 ohm
imeeter, $£ 2.50$. No extra for postage if ineeter. $£ 2.50$. No extra for postage
ordered with cabinets. Xover $£ 1.50$. DITTO but for $8^{\circ *}$ speaker and 4°

VENNER TIME SWITCH Mains operated with 20 amp switch, one
on and one off per 24 hrs, repeats daily automatically correcting for the lengthen ing or shortening day. An expensive time switeh but you can have it for only $£ 2.95$. These are without case but we can suppl a plastic base $\mathbf{£ 1 . 7 5}$ or metal case $\mathbb{£ 2 . 9 5}$. Also available is adaptor kit to conver
this into a normal 24 hr . time switch this into a normal 24 hr . time switch
but with the added advantage of up to 12 on/offs per 24 hrs . This makes an ideal controller for the immersion heater. Price of adaptor kit is $£ 2.30$.

50 THINGS YOU CAN MAKE

 Things you can make include Multi range meter, Low ohms tester, A.C. amps meter, Alarm clock, Soldering Iine tester. Continuity checker, etc. etc., and you will still have hundreds of parts tor future projects. Dur 10 Kg parcel contains not less than 1.000 items - panel meters, timers, thermal trips, relays, switches, motors, drils, taps,and dies, tools, thermostats, coils, condensers, resistors, neons, earphone/microphones, nicad charger, power unit. multi-turn pots and data on the 50 projects.
YOURS FOR ONLY £ 11.50 plus $£ 3.00$ post.
EXTRACTOR FANS Mains operated
Woods extractor
$5^{\circ \prime}$ - $£ 5.75$, Post $£ 1.25$ 5". Plannair extractor

ter. $4^{\text {" }} \times 4^{\text {". Muffin }} 115 \mathrm{v}$. . 4 . 50 . Post 75 p .

ROTARY WAFER SWITCHES

5 amp silver plated contacts. $/ \mathrm{H}^{\prime \prime}$ shatt. 1 " dia, wafer
Single wafer types, 29p each. as follows:
1 pole 12 way $\quad 2$ pole 6 way $\quad 3$ pole 4 way pole 3 way 6 pole 2 way Two wafer type, $59 p$ each, as follows $\begin{array}{ll}2 \text { pole } 12 \text { way } & 4 \text { pole } 5 \text { way } \\ 6 \text { pole } 2 \text { way } & 8 \text { pole } 3 \text { way } \\ 3 & \end{array}$ 3 waler types 99 peach .
9 pole 4 way

6 pole 3 way
4 pole 6 way

6 pole 5 way
$12 p 3$ way
6 pole 6 way
18 p 2 way

EXTRA PONERFUL $12 v$ MOTOR

Made to work bsttery lawnmower, this probably develops up to Yh.p., so it could be used to power a go
compressor, etc. etc. $£ 6.90+£ 1.50$ post.
(This
MINI MONO AMP approx. Fitted volume control and a hale for a tone control should y
it. The amplifier has three ransistors and we estimate the outpur to he 3 W rms.
Miore technical data will be More technical data will bee
included with thr: - "plitier Brand new, peife - co outtion, offered at the very low pice of
$£ 1.15$ each, or 10 for $£ 10.00$.

Charles Proteus Steinmetz

An experimentor and teacher who took the guesswork out of electrical design.

YOU CAN BE FORGIVEN if you've never heard of Charles Steinmetz, because neither his name nor his achievements are well known on this side of the Big Pond: Nevertheless, his contribution to electricity, and hence to electronics, has had a profound influence on us all, making possible advances that we now take for granted. Of all the Famous Names we have looked at so far, that of Steinmetz seems at first glance least connected with modern electronics, because most of his work was concerned with large electric motors, but, as often happens, a piece of research which expands useful knowledge often affects work which is carried out years later, and in an entirely different field.

Steinmetz was born in Breslau, Germany, in 1865 (the town is now called Wroclaw, and has been part of Poland since the occupation of Eastern Europe by the USSR after the Second World War). He was christened Karl August Rudolf, and was handicapped from birth by a severe spinal deformity, which may have had the effect of turning him to academic studies at times when his classmates were playing football. His education progressed to the Technical High School in Berlin - a type of institution which never became rooted in this country - and from there, in 1892, to University, where he started to make a name for himself as a brilliant researcher and equally as a committed Social Democrat. It was this second activity which drew him to the attentions of the ruling authorities, and it's ironic to think that if he were active in his home town right now, the Polish authorities would probably take the same line.

After several brushes with the Government, he emigrated, like so many others at the time, to the USA to find freedom of expression and action. Shortly after arriving, he anglicised his names to Charles Proteus - Proteus having been a college nickname.

His reputation as a researcher had preceded him, and he was employed almost at once by the firm of Eickemeyer and Osterheld, an electrical manufacturing company with interests in electric motors, transformers and power transmission. Once established, he founded a small research laboratory which soon became very well known in
the industry. It was at this laboratory that he discovered the effect of magnetic hysteresis.

Hysteresis Lesson

Now magnetic hysteresis isn't a subject you learn about nowadays unless you have specialised interests. It was once included as a topic in A Level physics courses, but was dropped several years ago because it didn't fit in with the new methods of teaching physics, and in particular with the modern system of units. This is a pity, because it deprives a lot of students of their first glimpse of real-life physics, as distinct from the neat and tidy

Figure 1. The graph for stretching a spring - providing you don't overstretch it!

Figure 2. The 'hysteresis' graph shape that results from overstretching.
world of theory. Let me explain the subject in outline.

When you stretch a spring, its length increases, and the amount of force that you need to keep the spring stretched depends on how far you have stretched it. Unless you stretch the spring too far, it will always return to its original length when you release it. This simple fact was discovered by Hooke in the seventeenth century, and is called Hooke's Law. A lot of laws in physics are like this one - one quantity is proportional to another, so that a graph of the extension of a spring for example, plotted against the stretching force, is a straight line (Figure 1). This type of relationship is called linear.

If you over-stretch the spring, however, its length is permanently changed, and the graph of extension plotted against force looks more complicated. The graph now has two lines, one for increasing force, the other for decreasing force (Figure 2). A shape of this type is called a 'hysteresis' curve, and it implies, in this example, that the spring does not return to its original length.

Until Steinmetz investigated the magnetization of iron, everyone assumed that when a coil of insulated wire was wrapped round a piece of iron, and an electric current passed through the wire, then the magnetism of the iron would depend on the amount of current through the wire, and the relationship would be linear, or almost so. They expected, in other words, that a graph of magnetic strength plotted against current would be a straight line. By the late 1880 s, it was becoming obvious that this assumption just could not be sustained. There was, for example, no way in which the performance of an electric motor could be predicted using these simple ideas about magnetism, and the magnetism of the iron in the motor was the only missing link in the theory. The only way that a manufacturer could get data on the likely performance of a new electric motor design was to build a prototype and test it! At a time when the uses of electricity, and in particular the uses of electric motors, were expanding rapidly, this was unsatisfactory, rapidly becoming intolerable because the use of AC in power transmission, strongly urged by many engineers, demanded the use of transformers - and there was no theory

Figure 3. The Steinmetz apparatus, simplified. The rod was magnetized by the current flowing in the large coil, and the amount of magnetism detected by the smaller coil in conjunction with a ballistic galvanometer.

Figure 4. The first part of the magnetizing curve for iron.

Figure 5. The hysteresis effect - as current is reduced from the saturation level, a different curve is traced, and with zero current, the iron remains magnetized.

Figure 6. The complete hysteresis loop - the first part, marked OS, is seen only when starting with completely demagnetized material and is never traced again in the course of a measurement of this kind.
governing the design of the most important part. of a transformer, its magnetic core.

Round the Bend

Steinmetz set to work investigating the magnetism of iron and its alloys, using the type of equipment illustrated in Figure 3. The details have been omitted, but the principle was that a measured current was passed through the coil surrounding the magnetic specimen, and the strength of the magnetism measured (by a system which Steinmetz had devised). The measurements enabled him to draw a graph of magnetic strength (what we would now call the flux density) against the current flowing in the coil (proportional to what we now call magnetizing force). He started with completely demagnetized iron, and found that as the current increased, the magnetic strength also increased, following a curved graph line shaped rather like an ' S ', to a maximum magnetic strength, which he termed 'magnetic saturation' (Figure 4). When the current was reduced, however, a different set of graph points was obtained, so that the graph for decreasing current followed a different path. This path (Figure 5) showed that when the current was reduced to zero, the iron remained magnetized (the amount is called the 'remanence'). Steinmetz found that the magnetism could be reduced to zero only by reversing the direction of the current in the coil and holding it at some definite value, called the 'coercive force'. By taking the value of the reversed current to the amount that caused the magnetism to saturate again he produced the nowfamiliar hysteresis curve for iron (Figure 6).

The consequences of this work were enormous. The area inside the loopshaped curve is proportional to the amount of energy that has to be used to magnetize and demagnetize the material, and this energy causes the iron to become hot. Previously, it had been thought that the heating of electric motors and transformers was due only to the current flowing through the wires (and to eddy currents), but Steinmetz's work clearly showed that the magnetic material was as much to blame. He went on to show that the shape and size (area) of the hysteresis curve could be greatly affected by the composition of an iron alloy, and, even more importantly, on its previous treatment, such as heating, previous magnetization, mechanical strain, and so on.

For the first time, electric motors could be designed and perform to specification, and transformers could be wound which would not overheat. The way was open for the invention of magnetic recording by Poulsen, and subsequent research which. led to the discovery of ferrite materials such as are now used for coil cores and for aerials in pocket radios. Even if Steinmetz had done nothing more on this work, he would have deserved to be remembered, and his classic paper of 1892 is well worth reading in reprint form.

It Doesn't Add Up . . .

He contributed much more, however. When he arrived in the USA, he was amazed and dismayed to find that engineers, brought up in the British tradition, were almost incapable of making elementary calculations on alternating current circuits, and he undertook, virtually singlehanded, to raise the level of mathematical education to the standard which by then was common on the European continent, Britain excepted. He invented a new method of expressing AC calculations (the j-vector method). which is still in use, and, finding that engineers didn't understand it or even appreciate its advantages, he set about writing, in 1897, a textbook of Engineering Mathematics which did more to improve the education of engineers than any other single step in the decade.

Steinmetz's reputation by that time was such that when General Electric purchased the firm of Eickemeyer and Osterheld, Steinmetz was regarded as the main asset, and the most valuable single part of the deal. His work for GE included a new theory of transients (voltage pulses) which resulted in greatly improved ways of protecting transmission lines against switching surges and lightning strikes. The same theory was later used by the early workers on radar to predict the action of pulses in their circuits. Always an experimenter as well as a brilliant theorist, Steinmetz designed a pulse generator, for testing lines, which would even nowadays be regarded as something special -100 kV at 10 kA for 1 ns ! This giant insulation-cracker was used to test lines for transient behaviour - and one nanosecond is as transient as you can get.

He continued working for GE, living in their bachelor accommodation surrounded by dozens of pet small animals of every kind, and a hothouse full of his special joy, orchids. He appears to have been idolised by his fellow-workers as that very rare type, a near-genius who was at the same time a very warm and friendly personality, and who would help anyone to the best of his ability. He died in 1923, having amassed no fortune, won few of the glittering prizes that most academics covet, and not even honoured by having his name used for a unit or a device. The admiration of his colleagues, and the increasing value of his contributions to electrical science were reward enough for Charles Steinmetz, and perhaps this article may serve to make his well-deserved US reputation rather better known over here.

HE PROJECT KITS

Make us your No. 1 SUPPLIER OF KITS and COMPONENTS for H.E. Profects. We supply carefully selected sets of parts to enable you to contruct H.E. projects. Kits include ALI the electronics and hardware needed. Printed circuit boards (tuily etched, driled end raller tinned) of Veroboard are, of course, included as specified in the original article, we even include nuts, screws and I.C. sockets. PRICES INCLUDE CASES unless Otherwise stated. BATTERIES ARE NOT INCLUDED. COMPONENT SHEET -INCLUDED. If you do not have the issue of H.E. which includes the project - you will need to order the instruction reprint et an extra 45p each.
Reprinte avallable separstely 46ρ each + p. $\&$ p. $40 p$.

STEREO VOICE OVER UNIT Aprll 83
E17.52
OPTIONAL MIC PRE AMP April 83 (no
case) $£ 4.26$
E6.05
PHASE FOUR Dec 82 c18.71
STEREO NOISE GATE DOC 82 C15.35 TAPE/SLIDE SYNCHRONIZER Dec 82 81.73

BIG EAR Dec 82 less pipe parts 88.21
MICROAMMETER ADAPTOR DOC 82 64.98

ODOMETER Nov. 82 c14.98
DIANA V.C.O. Nov 82 E4. 89
CB SQUELCCH UNIT Oct 82 29.19
'JUNIOR' SLOT CAR CONTROLLER Sept 82 E5.60 less case.
OX INTERFACE BOARD Sept 82 inc edge con E 11.33.
I. WAH July 8255.33

AUTO WAH June 82 E18.98 inc case or ITO less cas
AUTO GREENHOUSE SPRINKLER une 82 c15.38 less pump and power upply (12V 2A).
ELEPHONE TIMER June 82 E33.42 less ower supply (suitable type below). une 82 E9.9B
ECHO REVERB UNTT May 82. Less case 33.98. Economy case WB3 $£ 3.78$ extre. DIGITAL THERMOMETER May 82 ex-
cluding case + bezel $₹ 16.80$
AUDIO SIGNAL GENERATOR May 82 20.98.

CABLE TRACKER MBy 82 © 9.98
DIGITAL CAPACITANCE METER. ApI 2 © 21.37
SIGNAL TRACER Apr 82.23 .86
BIKE ALARM ApI $82 E 11.74$
DIGITAL DICE Mar $82[720$.
BICYCIE SIREN Mer 82
NOISELESS FUZZBOX Fieb 82 c10.45
MOISELESS FUZZZOX Feb $82 \subset 10.45$
DRUM SYNTHESIZEA Déc 81. Full kit 2×1.37
GUITAR HEAOPHONE AMPLIFIER Dec 8183.72
IN CAR CASSETTE POWER SUPPLY Doce 81 ca.7i
SCRATCH FILTER Now 81 Móno 55.82 Stereo 88.98
LED VU METER Nov. 81 leas case C 4.87 SIMPLE STYLUS ORGAN Nov 81 less case E4.98
METRONOME NOV 81 E12.71
TELEPHONE BELL REPEATER Oct 81 [13.87

Med linking wire extra 14p metre
COMBINATION LOCK Oct 81 less solenoid E18.65
BABY ALARM Oct 81 c8.70, Fig 8 linking wire $7 p$ metre
'DIANA' METAL LOCATOR Sept 87 REACT
REACTION TESTER GAME Sept 81
VARIABLE BENCH POWER SUPPLY Aug 81 E26.98
ULTRASOUND BURGLAR ALARM July 81 © 19.98
ELECTRONIC DOOR BUZZER July 81 EL.98
ELECTRONIC METRONOME July 81 , 64.99

CONTINUITY CHECKER June Bi E5. 71 ENVELOPE GENERATOR June 81 617.98

AUDIO MIXER June 81 E5. 33
PUBLIC ADORESS AMPLIFIER March 81 f19,48. Extras - horn speakers CB .83 Gu7t PAMIC E4. 40
FUZZ8OX March 81 f10.98 WNDSCAEEN WIPER CONTROLLER
Morch 81 E8.20 STEAM LOCO WhISTLE March 81 c12.99
PHOTOGRAPHIC TIMER March 81 E. 50

HEARTBEAT MONITOR F Eb 81 [24.99 TWO-TONE TRAIN HORN Feb 81 E5.60 less case
medium weve radi6 Fob 81 c8. 20
BENCH AMP Jon 81810.80
NICAD CHARGER Jan 8168.20
CHUFFER Jan 81, less case 77.63
BATTERY CHARGE MONITOR Dec 82 55.77

MEMORY BANK - MINI SYNTHESISER Nov 8 Dodc 80 E29.99
TRANSISTOR TESTER Nov 81 c8.54 inc test leads
GUITAR PRE-AMP Nov 80 E. 8.65 case (diecast) extra $\mathbf{Z 2} 29$
INTRUDER ALAAM Oct 80 E20.98 TOUCH SWITCH Sepl $80 \subset 275$ less ca
GUITAR PHASER Sept 80 £16.28 SOUND OPERATED FLASH TRIGGER July 80 no $5 k$ \& $E 5.33$
FOG HORN June 80 es. 4
SPEED CONTROLLEH HUM M/L ADNI BU 817.55 (less case)

UIUITAL FREQUENCY METER April 80 E39.98
GUTTAR TUNER NOV 79 £12.82
CAR ALARM FOb 79 C 12.91
MORE PROJECT KITS - SIMILAR STYLE TO H.E.
INSTRUCTIONS INCLUDED (SEPARATELY 45p EACH)
PLEASE QUOTE REF. NO. WHEN ORDERING
B1 PEST CONTROL Ultrasonic cat *carsr 77.65
G2 COMPONENT TESTER $£ 8.88$ 84 GUITAR NOTE EXPANDER E17.98 ES CAMERA OR FLASH GUN TRIGGER Infra red system E12.61 O6 SIMPLE INFRA RED REMOTE CONTROL E17.20
37 0-12V POWER SUPPLY E17.98 SO SOUND TO LGHT - single channe 88.42

B10 THREE CHANNEL SOUND TO

B11 IN SITU TRANSISTOR TESTER 312 WEIRD SOUND EFFECTS GENERATORE5 98
B13 AUDIBLE VISUAL METRONOME 65.98

B14 ELECTRONIC DICE C5.71
816 MINI EGG TIMER $\mathbf{f 4} 34$
B18 LED JEWELLERY - Cross brooch 27 Star brooch 89.91 Spiral brooch 798 Star brooch 29.91 Spiral brooc

MORE KITS AND COMPONENTS IN OUR LISTS FREE PRICE LIST Price list included with orders or send sae (9×4)
CONTAINS LOTS MORE CONTAINS LOTS MORE KITS, PCBs 8

1982 ELECTRONICS CATALOGUE
Hllustrations, product descriptions. circuits all included. Up-to-date price list enclosed. All products re stock lines for fast delivery.
Sends 80p in stamps or add 80p to order.
MORE H.E. PLUS E.E. and E.T.I. PROJECT KITS IN THE PRICE LIST

MAGENTA gives you FAST DELIVERY OF OUALITY COMPONENTS \& KITS. All products are stock lines-and are now \& full specification. We

MAGENTA ELECTRONICS LTD
 HX36, 135 HUNTER ST., BURTON-ON-TRENT, STAFFS.
 DE14 2ST. 0283 65435. MON-FRI 9-5. MAIL ORDER ONLY ADD 45p P\&P TO ALL ORDERS. PRICES INC VAT

ACCESS and BARCLAYCARD (VISA) ORDERS ACCEPTED BY PHONE OR POST
SAE ALI ENQUIRIES

Prices inc. VAT
 OFFICIAL ORDERS WELCOME

OVERSEAS. Payment muar bo in aterling. K PRICES EUROPE: UK PRICES plus 10%.

SOLDERING / TOOLS

ANTEX X5 SOLDERING IRON 25W
aESISTOR COL
 SPARE 8ITS. Small standard, large,
65p each. For X5 + X25
SOLDER. Handy size. SOLDER CARTON DESOLDER BRAID
HEAT SINK TWEEZERS
DESOLDER PUMP
HOW TO SOLDER LEAFLET LOW COST CUTTERS.

CALCULATOR
CONNECTING WIRE PACK IU. UMINATED
LUMINATED MAGNIFIERS
Small 2" dia. $15 \times$ mag. 1
$.99 p$
E1.84 CAST IRON VICE. ...
$.69 p$ SCREWDRIVER SET
29p POCKET TOOL SET

LOW COST LONG NOSE PLIERS
E1.69
JEWELLERSEYEGLASS

$\mathrm{E1.68}$
$E 2.69$
PRECISION PETITE
12V P.C.B. DRILL
811.67

ORILL STAND.......
GRINDING WHEEL.
SAW BLADE
BRASS WIRE BRUSH.
BURR..
VERO SPOT FACE CUTTER PIN INSERTION TOOL
611.67
-.87 .98 (1) MULTIMETER TYPE 1 (1.000 onv) MULTIMETER TYPE $2(20,000 \mathrm{opv})$ with transistor tester. Very good
CROCODILE CLIO TEST LEAD SET 10 leads with 20 clips .99p MULTIMETER TYPE 2 YN360 TR, £14.75

20,000 opv. Includes transistor tester.
$A C+D C$ volts. DC current. 4 very useful resistance ranges.
We've used it and we like it.

30 SOLDERLESS BREADBOARD PROJECTS

 Book by R. A. PonfoldClear verobloc layouts and circuit diagrams. Includes: fuzz box, radio, metronomes, timers, transistor checker, switches, etc. Introduction gives basic information on components including resistors, capacitors, IC's, transistors, photocell etc. Ideal for beginners as well as those with some experience. Complete kit including verobloc, book, and components.

or (Less verobloc)
500.25

BOOKS

SEMICONDUCTOA DATA BOOK Lectron
SECUPITY
SECUAITY
110 ELECT. ALARM PROJECTS MODEL RAILWAY PROJECTS BASIC ELECTRONICS. Theory \& BEGINNERS
PROJECTS

ADVENTURES WITH ELECTRONICS by Toun

An easy to follow book suitable for all ages. Ideal for beginners. No soldering, uses an S-Dec ioreadboard. Gives clear instructions No soldering, uses an S-Dec oreadboard. Gives clear instructions metronome, organ, intercom, timer, etc. Helps you learn about electronic components and how circuits work. Component pack includes an S-Dec breadboard and all the components for the projects.
Adventures with Electronics $£ 2.40$. Component pack $\mathbf{£ 1 8 . 9 8}$ less battery.

Andy Armstrong

A novel device that converts a rearwindow demister into an effective car radio aerial for medium or longwave reception.

ARE YOU fed up with car aerials that corrode and won't work properly, or which are broken off by vandals? Or perhaps you simply dislike the idea of drilling rust-trapping holes in your beautiful bodyworkI
If you listen to long or medium wave radio in your car, then your troubles may be over. This simple gadget will transform a rear window demister into a long and medium wave aerial; it will also work for FM reception, though not so well because of directional effects.

Circuit, What Circuit?

All you need to build the device is a couple of capacitors and a bifilar wound coil. The circuit, such as it is, is shown in Figure 1.

The demister, like any length of wire, straight or not, will act as an aerial, but normally the radio frequency voltages induced in the wire are shorted to earth, either directly or through the battery (which presents virtually zero impedance to high frequencies).
The effective part of the circuit is the bifilar-wound coil, L1, which presents a high impedance to radio frequency signals, allowing them to be tapped off to the car radio aerial input via C1. The 1 n capacitor, C2, is there to bypass to earth any transients (spikes) which are often present on a car's electrical system.

But what, you ask, is a "bifilar
coil'? Well, it is simply two coils (like a 'pair' of scissors, there must be two 'halves') wound on a common former for the same number of turns with the same gauge wire, and in the same direction. The dots at the ends of the coil, in the circuit, indicate either the start or the finish of each winding; it doesn't matter which, as long as both ends are the same (this is the socalled 'dot convention' which is the standard way of indicating the polarity of transformers etc.).

Saturation Tactics

Whenever a current flows in a coil (or in any wire, for that matter), a magnetic field is set up around the conductor. If the current is DC, however, and if the coil is wound on an iron or ferrite core, the magnetic flux rapidly reaches 'saturation', beyond which further increases in current have very little effect.
Therefore the high frequency AC will have no effect, either, and since inductance is largely dependent on variations in the magnetic flux density, DC flowing through an iron or ferrite-cored inductor has a drastic and undesirable effect on the inductance.
Bifilar-wound coils prevent this; since the coils, when connected as shown in Figure 1, are passing the same DC in opposite directions, the magnetic fields in each half are of opposite polarity and therefore cancel

Figure 1. The Circuit: dots signify the starting points of the two windings.
out. Thus only the flux due to the AC has any real presence, and the value of the inductance can be accurately predicted.

Construction and Installation

To make the coil, you simply need to wind two strands of thick wire (preferably $1.2 \mathrm{~mm}^{2}$ enamelled copper wire, but ordinary 13A household cable will do) on a toroid or pot former for between 13-20 turns, taking care to wind them together and in the same direction. Obviously the number of turns is not too critical within this range, so there is some room for experiment herel C 2 can be soldered across the ends of the coil but the other capacitor cannot be so conveniently mounted, so after soldering to the appropriate coil-end, it must be securely fixed to part of the car body using a plastic cable tie. Alternatively, it could be strapped across the body of the toroid or pot former with a longer plastic cable clip. which can also be used to secure the whole assembly to the car chassis.

As with all constructions to be used in a motor, the soldered connections must be very secure lest they vibrate themselves loose, and all bare wires should be covered with insulating sleeving, preferably of the heatshrinking variety.

The completed device should be installed as close as possible to the demister, to avoid interference pickup. and is connected to the radio aerial input via a long length of low capacitance car aerial cable, available from most good motor accessory shops. Do not be tempted to use ordinary co-ax, as the high inherent capacitance of this type of cable will prevent correct operation.

Next the car radio aerial trimmer must be adjusted for best reception; this can usually be done without dismantling the radio, and the location of the trimmer will be explained in the car radio installation instructions. And, finally, it may be necessary to improve the interference suppression, either by replacing the existing suppression components or adding extra ones (again, these should be available from an accessory shop). So here's wishing you happy motoring, and easy listening pleasure. Your car aerial is now off the wingl
Parts List

CAPACITORS

(polyester)
C1 $10 n$
C2 ... n

MISCELLANEOUS

L1
L1 see text Pot core or toroid (see Buylines); $1.2 \mathrm{~mm}^{2}$ wire; car aerial cable; motor car with rear window demister and car radio.

BUYLINES page 34

> This handy little test gadget will help you sort out all those little things that go wrong in automotive electrics. With this, you can check voltage drops, on and off charge battery voltages and resistances.

HE
 Auto Tester

Graeme Teesdale

BUDD̃ING MECHANICS are very often bamboozled by the electrics of a modern motor vehicle. An automotive or electronic type multimeter, with its combination scales all crammed together, simply adds to the confusion. This project was developed to make fault-finding a little easier by providing simple LED indication of 'set' points in voltage or resistance.
In a vehicle, voltage drop in cables of more than 0V5 can bring problems. The Auto Tester provides a clear indication of voltage drops less or greater than OV5. The battery system, to perform up to scratch, must deliver at least 12 V on load and the battery should have a terminal voltage of more than $13 \vee 5$ when charging.

Resistances encountered in vehicles tend to have fairly well defined limits. Many devices have resistances under 10 ohms, a few range up to 150 ohms. Thus the first resistance 'set' point is at about 150 ohms. Much higher resistances are encountered in HT suppressors, etc. Generally, these are around 10 k or 15 k . Trouble can occur if they go faulty and exhibit a high resistance, generally greater than 50k. Thus, two other 'set' points for resistance are at 10 k and 50 k .

The unit was housed in a small. conveniently-sized box; the PCB designed for the unit will just fit comfortably into several different types on the market. Four indicator LEDs are provided: a POLARITY indicator, followed by one for each of the three set points in voltage and resistance. Two pushbuttons select which 'mode' you wish to use VOLTS or OHMS.

Where battery polarity is unknown, or in instances where the Auto Tester may be incorrectly connected, the POLARITY LED will light when the red, or positive, input lead is connected to the battery negative.
Protection against input overvoltage damage has been incorporated, so that voltage inputs of greater than

HE Auto Tester showing the front panel and crocodile clips.

15 V are clamped to avoid damaging the IC.

The Auto Tester, unlike most multimeters, will not be damaged if a DC voltage is applied to the input when it is being used in the resistance mode.

The unit is powered from a PP3 9 V battery and the circuit is based around the commonly available, low cost LM324 or uA324 quad op-amp. The battery will likely last its shelf life (probably a year or more) as consumption is only ever momentary, when you take a reading!

Auto Testing

The clearest way of seeing how this circuit works is to break it down into simplified sections. The Auto Tester performs three main functions: voltage drop measurement, $12 / 13.8 \mathrm{~V}$ measurement and resistance measurement. In addition, an indication of reverse polarity connection is provided along with input overvoltage protection.

The whole circuit is built around an LM324 (or uA324) quad op-amp, IC1. Three op-amps from this are arranged as comparators and one as an amplifier. Let's look at the voltage drop measurement stage first. This portion of the circuit is shown in Figure 1 (only the relevant components are included).

When PB1 is pressed, power is supplied to IC1 via D3 (note that R1, LED1, R2 and ZD2 play no part here). RV1, R3 and R4 form a voltage divider across the input of IC1a, which is arranged as an amplifier, while IC1d is set up as a comparator.

If the input leads are then

Figure 1. The Auto Tester circuit.

Figure 2. Voltage drop measurement.

Figure 3.12V and 13V8 measurement.
connected across a cable having a voltage drop of less than half a volt, say OV2, the voltage appearing at the non-inverting input of IC1 a will be about OV1 (half the input volts) due to the divider action of RV1, R3 and R4. RV1 is set to provide this division ratio of about two, while IC1a provides a gain of 10 , and thus the output will be 1 V . This is lower than the 2 V 6 on the non-inverting input of IC1d and thus its output will be driven high, lighting LED4.

If the voltage drop on the cable you have connected the input leads across reaches a little over a half a volt, say OV55, the voltage on the noninverting input of IC1 a will be OV275. The voltage on the output of IC1a, and thus the inverting input of IC1d, will be 2V75 which exceeds the 2V6 on IC1d's non-inverting input. The output of IC1d will thus go low and LED4 will extinguish, warning you of excessive voltage drop in the cable.

Note that, when performing voltage
drop measurements, the positive lead must be connected at the end of the cable closest to the positive terminal of the vehicle battery!

When the input leads are open circuit and PB1 is pressed, D1 will be forward biased as it is connected to the 7V5 rail (from ZD1) via R8. Thus, something a little under 7V will appear at the 'top' of RV1, and about $3 \vee 5$ at pins 3,5 and 10 of IC1. This will drive the output of IC1d low, and LED4 will be unlit. It won't change the condition of either IC1c or IC1d, so LEDs 2 and 3 will also be unlit. Thus, nothing happens if you press PB1 ('VOLTS') when the leads are not connected to anything.

Let us look at the other voltage measurements now. This section of the circuitry is shown in Figure 2. where IC1b and IC1c are connected as comparators. Each has its inverting input connected to the voltage divider R9, 10, 11 and 12. This voltage divider is supplied from a regulated 7 V5, derived by ZD1 and R16, thus battery voltage variations will not affect circuit operation, provided the battery voltage doesn't fall to 8 V or less.

IC1b and IC1c have their noninverting inputs connected together and these are attached to the input voltage divider. When.P81 is pressed, power is supplied to IC1 via D3, as before. With no input voltage, the outputs of IC1b and c will both be low and LEDs 2 and 3 will be unlit. When the input leads are connected to a voltage a little over 12 V , the voltage on pin 10 of IC1c will be a little over 6 V . This will drive the output of IC1c high, lighting LED3. When the input voltage rises above about 13 V 5 , the voltage on the pin 5 of IC 1 b will be a little over 6V7, driving the output of IC1b high, now lighting LED2 also.

Resistance

Look at resistance measurement now for this explanation, refer to the complete circuit diagram, Figure 3). As before, R1, LED1, R2 and ZD2 play no part here.

When P82 is pressed, power is supplied to IC1 via D2; some current is also supplied to the resistive divider network, R9, 10, 11, 12, by R8. This establishes a different set of voltages on the three comparator inputs. Pin 6, IC1b will now have about 3 V8 on it, pin 9, IC1c about 3 V on it and pin 12. IC1d about 1 V 3 on it.

When the leads are connected to a resistance, current will be supplied to the resistance via D1 and R5. Say the resistance is 100 ohms; about 1 mA 8 will be driven through it because there is about 8 V 5 on the cathode of D1 and 8.5 divided by 4800 ohms gives about 1 mA 8 . Thus, there will be a voltage drop across the 100 ohms of resistance of about OV18. About OVO9 will appear on pin 3. IC1a, and the output of IC1 a will drive the inverting input of IC1d to about $0 \vee 9$ which is less than the 1 V 2 on IC1d's non-inverting input. Thus the
output of IC1d will be high, lighting LED4. If the resistance across the input is, say, 180 ohms, the voltage across the input leads will be about OV32. About OV16 appears on pin 3. IC1a and 1V6 on pin 13, IC1d. The output of IC1d will therefore go low, and LED4 will not light.

If the resistance across the input terminals is between 150 ohms and $10 k$, say 5000 ohms or so, then the voltage across it will be about 4 V . The voltage on pin 10, IC1c will be about 2 V , which is less than that on pin 9 and the output of IC1c will be low and LED3 will be unlit. If the resistance across the input leads is about 15 k , say (such as a spark plug suppressor resistor), then the voltage across the input will be about 6 V 4 and the voltage presented to pin 10, IC1c will be about 3 V 2 . This is above the 3 V on pin 9 and the output will thus go high, turning on LED3.

If the resistance across the input leads is about 50 k , then the voltage across the input will be about 7V8. The voltage on pin 5, IC1b will be about 3 V 9 and the output of IC1b will therefore be high, turning LED2 on. Note that LED3 will also be on as the voltage on pin 10, IC1c is above that on pin 9 and IC1's output will be high also. Thus, for all resistances above 50 k (including an open circuit) LED2 and LED3 will light.

Parts List

BUYLINES
page 34

Poles Apart

Followed that so far? Alright, let's look at the reverse polarity indication. The relevant portion of the circuit is shown in Figure 4.
If the input leads are transposed while trying to measure voltage, ZD2 will conduct as a diode in the forward direction (as shown by the arrow). passing current through LED1, which will turn on. It will also pass some current through R1, but that's immaterial. R1 is there so that current can pass to RV1 when the leads are correctly connected, otherwise no current would pass through LED1 as it would appear as a reverse-biased diode.

If you reverse the input leads while attempting to measure voltage drop, LED1 will only come on if the voltage drop is above about 1 V 3 or so. Thus, it is important to watch lead polarity when measuring voltage drop in cables.
Overvoltage protection is provided by ZD2. Why have it? Well, if a battery cable comes adrift and you're attempting to measure voltages while the motor is running, the generator/ alternator can quite easily deliver outputs of 20 V or so; this can possibly destroy the LM324. In addition, it is not unusual to get inductivelyproduced voltage 'spikes' on the supply lines in a vehicle, which can also destroy the IC. If a voltage of greater than 15 V appears on the input leads to the Auto Tester, 2D2 will ensure that the voltage delivered to the LM324 does not exceed 15V.
The various voltages and resistances given here can vary by \pm 10% or so without grossly affecting

Figure 4 (top). Reverse polarity indication.
Figure 5 (bottom). Overvoltage protection.
your interpretation of readings. What you are after, after all, is a 'ballpark' measurement which will indicate if all is well, or not.

Construction

The project PCB has been designed to fit into almost any of the small general purpose boxes available. These are generally all-plastic or plastic cases with a light gauge aluminium 'lid'. The design will suit those boxes measuring $52 \times 100 \mathrm{~mm}$ or a little larger.

Before assembling the components to the board, check that it has no

Figure 7. Operating the Auto Tester in Resistance and Voltage modes.

Figure 8. Test setup for calibrating the Auto Tester.
breaks or shorts between tracks, particularly between the IC pins. Also check that components like RV1, the Zener diodes and LEDs have the correct lead hole sizes drilled. The board can be mounted by soldering the two pushbutton switches directly to the board and letting the board hang from their leads - it's quite a robust arrangement. If you're going to do this, see that the holes for PB1 and PB2 are drilled the right size
Next, check that the board fits inside the box. Make sure you orient the board correctly when you do this. If the board doesn't fit in without jamming you may have to carefully trim a little off one or both sides with a file until it fits properly. If it doesn't fit at all, get a bigger box.
Mark out and drill the front panel, or lid, of the box. and fit the four LED mounts. Once the board is ready to go, commence assembly by soldering all the resistors in place, then the diodes D1, 2 and 3, followed by the
two Zener diodes (make sure you get all the diodes in the correct way round).
If you're mounting the board to PB1 and PB2, solder these in place now, making sure their mounting 'shoulders' are level. Insert the four LEDs next, but don't solder them in place; make sure you orient them correctly and don't trim off their leads. Temporarily mount the board to the front panel of the case, push the LEDs into position and then solder and trim their leads. De-mount the board from the panel and fit IC1, RV1, the battery clip lead and the two input leads. Now you're ready for testing. But first, check everything carefully. See that the IC, all diodes and LEDs are correctly orientated, according to the component overlay.

Testing the Unit

Fit a 9V, PP3 battery, short the input clips together and press the VOLTS
button: the OV5 LED should come on. If not, check component orientations, then resistor values. Fix any faults, and once you have that corrected, try again. When you get the OV5 LED to light, unclip the input leads and it should go out.

To calibrate the unit, you'll need to get hold of a multimeter, a well charged 12 V battery and a 20 k potentiometer. Hookup the circuit shown here and adjust the potentiometer to give a 12 V reading on the multimeter. Press the VOLTS button and adjust RV1 so that the ' 12 V ' LED just lights. Then, reset the potentiometer to get a OV5 reading, or a little more, on the multimeter. The 'OV5' LED should just light; if it doesn't, vary the potentiometer slightly until it lights. If the 'OV5' LED lights when the multimeter reads more than $\pm 0 \mathrm{~V} 1$ from OV5, then you may have to change the value of R12. Increase it if the voltage is low, decrease it if the voltage is high. Just take the next highest or next lowest resistor value; you're only after a rough indication, after all.

Set the potentiometer fully 'up' (fully clockwise); if the battery is well charged, then the multimeter should read $13 \vee 5$ or above and the ' $13 \vee 8$ ' LED should turn on, along with the '12V' LED. Now, reverse the Auto Tester input leads. The POLARITY LED should come on.

If you can't get the proper indications, check with the multimeter that you are getting 7 V 5 (within $\pm 0 \mathrm{~V} 3$) across ZD1 when you press the VOLTS button. Also check the voltages on pins 6,9. and 12 of IC1 when you press the VOLTS button and see they are close to those given in the circuit description.

If all is well, proceed with testing the OHMS mode. Disconnect the 12 V battery, then set the multimeter to read resistance (should be the X1 scale). Adjust the potentiometer until the multimeter reads about 100 ohms. Press the OHMS button and the ' 0 150^{\prime} LED should come on. Turn the potentiometer until that LED goes out and keep turning till the ' 10 k ' LED turns on; it should turn on when the multimeter reads somewhere in the vicinity of 10 k .

With the Auto Tester leads open circuit, both the ' 10 k ' and '50k' LEDs should turn on

You are now ready for use. Happy fault-finding!

FLOPPY DISC INTERFACE

inc. 1.2 O.S. £95 + £20 installation BBC FLOPPY DISC DRIVES Single drive $5 \%_{4}$ " $100 \mathrm{~K} £ 235$ + £6 carr. Dual drive $5 \% / 4800 \mathrm{~K} £ 799+£ 8$ carr.

BBC COMPATIBLE DRIVES

These are drives with TEAC FD50 mechanism
and are complete with power supply
SINGLE: 100K £190; 200K £260; 400K £340
DUAL: 200K £360; 400K £490; B00K £610
Drive Cables: Single $£ 8$ Dual $£ 12$

MICRO TIMER

The programmable clock/timer is a 6502 based dedicated micro computer with memory and 4 digit 7 segment displays to form an exiremely versatile timing device with following features:

- 24 hour 7 day timer

4 completely independent swich outputs
6 digit 7 segment display output to indicate
real time turn-off times and reset times
Individual outputs to day of week, switch and
status LEDs

- Data entry through a simple matrix pad
further details on request
Complete Kit
£56.00 • 1.00 p $8 \cdot p$
Compl
$7.00+70 p p \& p$

Tecinnonantic: Ltio
PLEASE ADD 40p p\&p \& 15\% VAT
(Export: no VAT, p\&par Cost)
MAIL. ORDERS TO: 17 BURNLEY ROAD, LONDON NWIO IED Orders from Government Depls. \& Colleges etc. welcome. SHOPS AT: 17 BURNLEY ROAD, LONDON NW 10
(Tel: $01-452$ 1500, 01-450 6597. Telex: 922800)
Detailed Price list on request.
stock liems are normally by return of post.
305 EDGWARE ROAD, I.ONION W'2
Vn.
fioch liems are normally by return of post.

THE HE BOOKSHELF is the easiest way to build up your library of electronics books. Order today to have these top titles delivered

To receive your books you have only to fill in the form below and send it, together with your payment, to the address stated. Please allow up to 21 days for delivery. This offer applies only within the U.K. Prices may be subject to change without notice.

SEND TO: HE BOOKSHELF, 513 London Road, Thornton Heath, Surrey CR4 6 AR.

I am enclosing my Cheque/Postal Order/ for: (delete as necessary)
f. (Made payable to A.S.P. Ltd)

Please use BLOCK CAPITALS and include post codes.
Name (Mr/Mrs/Miss)
\qquad
\qquad
Date

Price
Books Required

Add 75p p\&p	0.75
Total Payment	$£$

BBC/HEBOT Interface

A complete kit of parts and components for the project is being supplied for $£ 24.00$ by Kelan (Hobbyboard) Ltd., North Works, Hookstone Park, Harrogate, North Yorkshire. The PCB is available separately from our PCB Service-see page 71

Aerial Without Wings

A suitable toroid for this project is available from Neosid Small Orders 1982, PO Box 86, Welwyn Garden City, Herts AL7 1AS, for just $£ 1.10$, including P\&P.

Stall Thief

The $0.25^{\prime \prime}$ PCB-mounting push-on connector blades used on the prototype are not absolutely necessary, but they do give a firmer, more reliable connection. They are not stock items and will have to be ordered specially; identification is easy if you quote the RS Components stock number-533-229. Alternatively, $0.1^{\prime \prime}$ PCE pins may be used, but make sure your soldering is secure!

The relay is not critical, as long as it is a 12 V type, 200 R coil with contacts rated at 5A or better; the open-contact gap should be wider than 5 mm for reliable operation.

Component cost, excluding the PCB, relay and connector blades, should be around $£ 2.00$.

Check List

RESISTORS
(Alf $1 / 4$ watt 5% carbon) $4 \times 4 \mathrm{k} 7 ; 2 \times 1 \mathrm{MR} ; 1 \times 10 \mathrm{M} ; 1 \times 680 \mathrm{~K} ; 1 \times 2 \mathrm{M} 2 ; 1 \times 330 \mathrm{R}$; $1 \times 10 \mathrm{k}$

CAPACITORS

$1 \times 100 \mathrm{n}$; $1 \times 10 \mathrm{n}: 1 \times 1 \mathrm{n}: 1 \times 4 \mathrm{u} 7 \mathrm{i} 1 \times 10 \mathrm{u} 16 \mathrm{~V}$ electrolytic.
SEMICONDUCTORS
$1 \times$ CD $4011 \mathrm{~B} ; 2 \times 1 \mathrm{~N} 4148$; $2 \times \mathrm{BC} 108$ or similar. MISCELLANEOUS
$1 \times 12 \mathrm{~V} / 200$ R relay, contacts rated 5 A or better; PCB; 6 $\times 0.25^{\prime \prime}$ connector blades or $0.1^{\prime \prime}$ PCB pins; optional case; wire, solder, nuts and bolts etc.

Auto-Test

All the components and parts for this useful project are stock by most suppliers-Greenweld Electronics, for example. The cost ought to be under $£ 3.00$, excluding the case and PCB.

Check List RESISTORS

(All $1 / 4 \%$ carbon)
$1 \times 47 R ; 1 \times 180 \mathrm{R} ; 1 \times 82 \mathrm{k} ; 1 \times 100 \mathrm{k} ; 2 \times 4 \mathrm{k} ; 1 \times 1 \mathrm{k} ; 1 \times$ $10 \mathrm{k} ; 1 \times 12 \mathrm{k} ; 2 \times 820 \mathrm{R} ; 1 \times 3 \mathrm{k} 3 ; 3 \times 150 \mathrm{R} ; 1 \times 100 \mathrm{R}$.
POTENTIOMETERS
$1 \times 100 \mathrm{k}$ miniature trimpot.

SEMICONDUCTORS

$1 \times$ LM $324 ; 3 \times 0.2^{\prime \prime}(5 \mathrm{~mm})$ LEDs; 3×1 N4148 or similar; $1 \times$ BZY88C7V5; $1 \times$ BZY88C15V.

MISCELLANEOUS

$2 \times$ push-to-make switches; PCB; case; $52 \times 30 \times 100 \mathrm{~mm}$ approx; PP3 battery + clip; $2 \times$ alligator clips and leads; wire, solder, nuts and bolts etc.

Do you know anybody who can build a Digital Pulser for only £18.00?

The answer is yes - its YOU!

With GSC's new DPK-1 kit, you can build a sophisticated portable test instrument for stimulus/response testing. It automatically delivers just the right signal for whichever logic family you're using - and it's equally suited to single pulses or pulse trains at a frequency of 100 per second. The fully featured DPK-1 kit includes all components, leads, circuit board and case - and is supplied complete with detailed assembly instructions and an operating manual.
Get rid of your digital hang-ups; send off for a DPK-1 straight away.

GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) LIMITED DEPT. 14X

UNIT I, SHIRE HILL INDUSTRIAL ESTATE SAFFRON WALDEN, ESSEX CB11 3AQ Telephone: Saffron Walden (0799) 21682 Telex: 817477

GLOBAL SPECIALTIES CORPORATION (UK) LIMITED, DEPT, 14X

Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CBi1 3AO

DIGITAL-PULSER KIT DPK•1	(inc. P \& P \& $\& 15 \% \mathrm{VAT})$	Quantity Reqd.	For FREE catalogue tick box \square

Name
Address

[^2]Goods despatched within 48 hours.

Easy to follow Instruction Manual with every KIt

Feel like sounding off? Then write to the Editor stating your Point of View!

Audio Analyser

We have received several queries about this project, which regrettably has had more than its fair share of mistakes.

The entire file has been passed back to the designer with instructions to sort it out, quickly. Meanwhile, we ask all readers who've had a problem with this project to be patient - it will be unravelled. One problem with electronics is that components can vary quite widely from their paper specification, and because of this, individual prototypes can work perfectly, when 99% of other models built to the same design will fail to work properly (or at all); conversely, sometimes a model which has been built perfectly with all the proper components will be the 1% which will never work until half the components have been changed . . . the electron is still a mysterious animal, despite the confidence with which we shunt it around.

Apropos of that, let me add that the Telephone Timer (HE June/July '82), which has turned a few hairs grey, is under similar surveillance, but at present we are not sure where the author is. .. On a more minor note. we are looking again at Big Ear (HE December '82) to find out why a few people have had minor but persistent problems with it. We haven't abandoned you, and the answer will eventually appear. Now on with the show

Missing Designer

Is Mr. Peter Walton, who sent us a Selective Caller project a few months ago, out there? We would like a word with him, but don't have his address. Please write.

Alarm Alarm

Dear Sir.
I am building your Low Cost Alarm system, from HE December '82. I have all the parts for the alarm, but I do not have PBCs and the window foil and terminals. If you do not have these components / would like to know where / can get them.
Yours faithfully.
Stephen Herron,
Newtownabbey.
Co. Antrim,
N. Ireland.

Up until now there has not been a made-up PCB available for the Low Cost Alarm; but there is now. See the PCB Service page in this issue. We
don't of course stock components of any kind (not now, not ever, never we have enough trouble with ETI stealing our personal store) but the foils and switches for this project are, of course, available from the source mentioned in Buylines: in this case, Maplin Electronics.

Siren Call

Dear Sir.
Project: Low Cost Alarm system, HE December '82.

1) AWD. Greenweld 11982/3 catalogue) do not seem to supply the siren as described in the text, parts list and photo.

Could you please suggest an alterntive supplier, and full specification, if possible? (This AWD sounds very good, with a warbling tone, only OmA $75,95 \mathrm{~dB}$ at 1 m , and very compact, as per photo.l
2) $P C B$. Is this going to be available? Many thanks,
Dr. K.D.E. Whiting,
Hatfield,
Herts.
This AWD is on the RS components catalogue as 249-413 - ask your local dealer to order it for you. As for the PCB, it's now available, as from this month.

Projects From The Past

Dear Sir or Madam.
I have two problems I wish you could solve for me:

1) HE September '79 page 23 Starburst. / bought your ETI Print made PCB, fitted components, wired up, tested and got no result. The ICs are working, and so are the LEDs (tested before wiring boards together, ie LEDS). Somebody made a hash of component layout on page 26. they even managed to get the power supplies back to front. Did they make a mistake in values for R7 to R11?
2) HE October' 81 Pages 51 and 52 Touch Lamp. As is my practice, 1 am trying to fit this lot into a small box, could you tell me what relay you used, name and shop or agent? Yours faithfully.
V. Hogg.

Hayes,
Middx.
Yes, the $O V$ and +9 V notation should be swapped around on the PCB layout on page 26 - an easily-spotted error.

The values for R7 to R11 should produce reliable switching provided you are using the specified transistor. However, if you think this is the
source of the problem, reduce the values to around 18 k (don't go lower than 10 k).
A relay was not specified for the Touch Switch but any 6 to $12 \mathrm{~V}, 100 \mathrm{R}$ coil relay with single changeover contacts rated at 10A or so will suit; just be careful with the counting and wiring. Such relays are available from almost any mail order supplier advertising in HE.

This also seems a good time to remind all our readers that technical enquiries such as this one cannot be answered personally unless an SAE is enclosed, and although we try to be prompt, especially with enquiries about projects under construction, your Hobby Electronics has to come first - so you may have a long wait. But don't feel you are alone designers have all the problems constructors have, and then some ...

Shed A Little Light

Dear Sir,
I have been working on a light sensitive switch project based on one of your circuits but have a problem with operation during daylight.

I want the switch to operate on artificial light, eg car head-lights, but not daylight. Is there a light sensitive component suitable and if so where can it be obtained?
F S Roberton,
Kelso,
Scotland.
You could attack this problem in one of three ways: a) you could mount your light receptor in a recess or cowling so that it would get a minimum of normal daylight but would pick up a headlight beam pointed at it b) you could use a logic circuit of some kind which would pick up a simple pattern of flashes from the headlights c) you could opt for a commercial infra-red or ultra-sonic remote control and sensor combination - which would do the job, but is of course a completely different solution from using a light-sensitive switch.

We don't know of any light receptor which will distinguish between headlights and daylight without the kind of help described here. Does anybody else have any suggestions?

Not Beaten Yet

Dear Sir,
In HE December '81 you had a DIY Drum Synthesiser. Have you any of the aforementioned drum synth circuit boards left, and if so could you please quote me a price?

S Hallam
Horsley Woodhouse,
Derbyshire.

All our projects are DIY unless you can con a friend or relation in building them for you! Perhaps one day we'll design a robot that builds itself

Unfortunately we don't do a PCB for the drum synth, but you can try contacting Bewbush Audio, 26 Hastings Road, Pound Hill, Crawley, Sussex and asking for information.

Getting Into Phase

Dear Sir,
Could you please send me your latest price list and catalogue on the HE Phase One unit and any other musical effects. A Brandon,
Winsford,
Cheshire.
I think you mean Phase Four, the HE Phaser Unit. If not, you're in the wrong store! There is no kit for Phase Four, but the PCB is still available from our PCB Service. For other effects, consult the Cumulative Index in HE January ' 83 we can always supply back issues or copy articles of old projects, but we can only supply the PCBs as listed in the most recent issue, ie this one. Any help? Phase Four, for anyone else who wants to check it out, is in HE December ' 82 , and features a custom-designed case supplied by Newrad Instruments.

Time To Switch On

Dear Sir,
AS a regular reader of $H E$, I wonder if you could publish a timer project for switching mains appliances on and off. The application I have in mind is to switch my hi-fi on to record a certain radio programme while I'm out. When the programme is over, the timer should also switch the system off. A repeat function for recording the same programme each day (holidays, etc.) would also be useful, and a smart case and digital display would make the unit fit in well with hi-fi equipment, etc.

Great mag, keep up the good work. J. Jezard,

Tonbridge,
Kent:
There are a number of timers already on the market which will switch a mains socket on and off at preset times. However, these are relatively expensive and do not include the extra facilities you mention. So we have started work on a design for such a timer and hope to publish one in the future. In the meantime, you might like to take a look at your central heating switch - some have an external mains outlet socket which is switched on and off with the heating. Of course, you'd have to switch off the heating system first to avoid wasting energy by warming an empty house!

Raiders Of The Lost Hobby

Dear Sirs, Having been a keen reader of HE for some time I have noticed how back numbers of the magazine soon become objects of great demand among friends and colleagues, and this leads to permanent gaps in one's collection! I am in fact in need of issues from November and December 1980 and February
1981 or more specifically the excellent articles in the series on Digital
Electronics by lan Sinclair.
Could you please advise me how to obtain these if they are still available? J P Sheppard,
Cheltenham,
Gloucestershire.
Yes indeed. Shall I refer this reader once again to our Backnumbers page, "not in every Hobby, but in most of them"? We can't always supply the whole magazine, glossy cover and all, but we can always supply copies of the articles.

Another award-winning idea! Introduce your friends and colleagues to our Backnumbers page. And our Cumulative Index (HE. January '83). Then they can see not only what they've been missing, but how to get their hands on it without raiding your collection

Batteries In The Breeze

Dear Sir,
I have been an avid reader of your magazine for some months. In November I leave for Kimbali which is in the Pacific. For some time now I have been trying to find out how I can use a normal car alternator driven by a form of windmill to top up a 12 V storage battery during the day and possibly run limited lighting at night.

I would be grateful if you could help me on this subject in any way.
M J Maddison.
Cleethorps.
S. Humberside.

This is essentially a mechanical problem which we can't really advise on but the basic answer is something like this: bearing in mind that car alternators are negatively earthed, if you can take the negative line from the metalwork of the alternator, or whatever it is mounted on, and the positive from one of the larger tags on the back of the unit, you can connect up the battery.

You will then have to calculate how fast the alternator needs to turn to charge the battery. A tickover speed, in a normal car engine, the alternator will only just be charging the battery, if at all. You can calculate the tickover speed of the alternator by physically measuring the diameter of the pulley wheel on the alternator, and the one one the engine, divinding the engine pulley by the alternator pulley and multiplying the lot by the number of revs per minute at which the car engine ticks over. Then triple this figure and you will have the

RPM needed from the alternator to charge the battery at a reasonable rate.

The alternator can be driven by a simple pulley and belt drive straight from the wind vane, but the gear ratio between the pulleys will have to be such that the alternator is not turning too slowly to charge, or so fast that the act of charging slows down the windvane to the point of uselessness.

You would have to discover this by experimentation, as much depends on the speed and strength of the wind. It is best if you use the battery for the experimenting, with an ammeter on it to. show how fast (or not) it is charging.

Into Electronics - Minus!

Dear Sir,
I would be obliged if you could let me
know if you have a copy of 'Into
Electronics Plus' from 1979, and if so the price.
K Edwards,
Barrow-in-Furnace,
Cumbria.
Sorry! IEP really is out of print now. However, if you're eager, you could consult our wonderful Cumulative Index (HE January '83) and obtain copies of all the Into Electronics articles. See the Backnumbers page for further details.

Microtrainer Manual

Dear Sir,
Ref: Hobby Electronics Vol. 4, No. 6, June 1982: HE Microtrainer, page 62. In the above article you refer to RCA's
User Manual for the CDP1802
COSMAC Microprocessor'. Can you supply me with the address to write to for this publication, please? Your assistance would be much appreciated. Many thanks.
P V Haviland,
Lichfield,
Staffs.
The supplier of this manual at the time was none other than Technomatic Ltd., of 17 Burnley Rd., London NW 10 1ED, who supplied the HE Microtrainer. Try them.

Component Copies

Dear HE,
I would like to know how much it would cost to obtain photocopies of your series of articles 'Into Electronic
Components', which I think started in August '81. I would like to know the cost of the whole series except for parts 8 and 9.
C K Williams,
Bracknell,
Berks.
'Into Electronic Components' did indeed begin in HE August '81. As for copies, if you inspect page 68 of this issue, you'll find our Backnumbers service. If the back issue isn't available, we can supply a photocopy; they like the Backnumbers, cost $£ 1.25$ each.

As the month of May rolls around again Clever Dick, who is himself usually quite merry, is rolling around, still.

The CD I-Spy award of the month goes to an observant reader in Glasgow. And who said there are no more surprises in the world?

Dear CD.
First of all, this is a neatly written. amusing, original letter (November. page 53)

I have written to help you with your material problem (you mean you didn't know you have a material problem?!! I refer, of course, to the letter from D.C. Holmes (September page 31 AND November page 21) and the letter from R. Einstein (November page 53 AND December page 51). Is there any reason for this? Perhaps they are relatives of someone in the HE offices?
Although I considered writing to the editor about his Points of View, where one duplicate appeared, he seems to give out very few (none) of those famous blue and gold delights that are the dream of every HE reader.
I like HE very much, but how about more Veroboard projects? Keep up the good work.
Steve Morton.
Glasgow.
PS Any reader following this letter without the aid of the issues mentioned may wonder what l'm going on about.

At first I wondered what you were going on about, too ... but your report is entirely accurate. Those letters were duplicated, much to our editor's horror. When I mentioned it to him he put his head in his hands and sobbed loudly for two minutes (he does this at least once a day), then promised to look into it. In the meantime one of those fabled "blue and gold delights" is winging its way towards you courtesy of the editor and High Speed British Post
And who said the age of miracles was past?
Since we have been presenting more practical projects in. HE, we have adopted a policy of putting most projects on PCB, since this makes construction much more reliable and, in general,. PCB layouts are not as vulnerable to the dreaded 'gremlins' However, projects will continue to be developed on Veroboard where this medium is appropriate - that is, not too complicated and difficult to build up correctly.

Now here's a man with a problem or three

Dear Clever Dick. I have been taking your excellent magazine for a number of years and although electronics is a subject I find fascinating. I have never tried building one of your projects. However, necessity seems to be driving me to do so. Let me explain.
Since I have lived at my present address about twelve years, I have suspected that the television signal from the Mendip hills is somewhat weak, due to the position of a hill between it and me. However, I have been able to run three monochrome TV sets reasonably well off three separate aerials on the roof. The pictures have been a bit snowy, but not too bad.
Last week I thought I'd spoil myself and buy a colour portable set for the bedroom, but when I got it home it would not work on its own set-top aerial. When connected to one of the rooftop aerials it worked, but hardly satisfactorily. So, I removed one of my aerials from the roof and connected it by a short lead directly to the set, pointing the aerial out the window in the direction of the transmitter. This produced the best picture yet.
From the above experiments I conclude that the signal is very weak indeed and that the long lead is very noisy, so I have a poor signal-to-noise ratio, as it were. I propose to build the TV Masthead Amplifier (February ' 82 issue) and put up a higher mast also, but all this raises a few questions in my mind:
If I put up two aerials side by side, and connect them together, will this improve my signal-to-noise ratio?
Will the Masthead Amplifier drive four TV sets, or can the output from one amp be fed to the input of another?
Can I simply join the serials together by soldering the inner wires logether, and the outer braids together? If not, what is the best way to runs three sets from one lead?

The Masthead Amp is said to amplify the signal by 18 times and to run from any voltage between 10 V and 24 V ; does it give best amplification on the higher voltage?

Is it worth making a power supply? If not, what batteries would you suggest? What is the current consumption?
Can you suggest a book that would

explain about fitting aerials?
Since my colour set isn't yet working, do I need a colour license?
What's a binder?
G.H. Wakefield,
Weston-super-Mare.
PS The hill that weakens my signal is called Bleadon Hill. I think the name is quite fitting, don't you?

If you pronounce the words "Bleadon Hill" slightly differently, it also describes my reaction to this letter, which raises a few questions in my mind, too. Like, why does he need four TV sets, for example? Never mind, some questions are better not answered (ignorance is quite pleasant) and I suspect this is one of them.

Yes, you can connect two aerials side by side (better one on top of the other), provided they are accurately positioned and linked by what is called a 'phasing harness'. The precise positioning of the aerials and the matching harness are both to ensure that the signals are in phase so that they add, rather than subtract.

If you are determined to run four TV sets you can do so from a single aerial using a suitable distribution system. Rather than the methods you propose (you can't simply connect aerials together and hope for the best) you can use four separate Masthead Amplifiers connected to the one aerial by appropriate impedance matching transformers.

The amplification provided by the OM355 device, which is at the heart of the Masthead Amplifier, is dependent on the supply voltage and the gain will be higher (27 dB) at 24 V than at $12 \mathrm{~V}(23 \mathrm{~dB})$. Typically, the device will draw about 35 mA from the supply and if you really do want four of them (1) you may as well build a $2 \dot{4} \mathrm{VDC}$ power supply capable of supplying around half an amp or so.

A suitable book, which will answer all your questions in detail, is 'Long Distance Television Reception (TV-DX) For the Enthusiast" by Roger W. Bunney. It is published by Bernard Babani (Publishing) Ltd. and is available through the Hobby Electronics Bookshelf. The principles of long-distance reception are equally applicable to fringe area reception.

Finally, I cannot comment on your legal position but if you need information on this or further answers to your ten thousand questions, contact the Engineering Information Service, Broadcasting House, London W1A 1AA.

ELESTRDTIVKTT FX-COMPUTER

Teach-Yourself Computer and Electronics Construction Kit
A complete introduction to the "How, Why and What" of Computers and Electronics in the most practical way ever devised
THE KIT IS BATTERY-OPERATED AND COMPLETELY SELF-CONTAINED. NO
TELEVISION OR OTHER EQUIPMENT IS REQUIRED. VERY EXTENSIVE MANUALS ARE INCLUDED

Ministry of Science and Technology, Japan Prize Winning Product

The FX-COMPUTER is the ideal introduction to the study and understanding of computers and electronics The kit offers remarkable versatility because the components are interchangeable and circuits are constructed by simply plugging specified components into the board provided in accordance with the instruction manuals. You quickly understand the principles involved and new circuits can be easily devised, built and dismantled. No soldering or wiring is involved, no tools are required; the components themselves complete the circuits.
No previous knowledge is required - very extensive educational manuals have been provided by English experts in computers and electronics. Working through the manuals you will soon be able to write programmes and "run" them and understand how computers work. The following are just a few of the programmes in the Computer Manual (there are too many to list here) and also a few of the projects in the Electronics Manual:
How to instruct the Computer and Store Information into Memories. Use of different Instructions and Programming Techniques. Adding, subtracting, multiplying, dividing, averaging, counting up, counting down, etc. etc. - in Decimal and Hexadecimal. Converting Hexadecimal to Decimal, storing Random Numbers. Games: Tennis, Catch-the-Rat, Gun Fight, Slot Machine, etc. Using the Computer as SHOWN IN THE COMPUTER MANUAL PLUS EXPLANATIONS AND DEMONSTRATIONS OF ALL TECHNICAL. TERMINOLOGY.
Electronic Components and How they Work - batteries, conductors, resistors, capacitors, diodes, transistors, lamps, photo-electric devices /CdS cell is included in the kitt, oscillators, burglar alarms, control systems, organ, ie detector, etc.e. etc. TRONICS MANUAL.

All this is in ONE kit, costing

 about the same as the cheapest "Basic" ordinary ComputerThe price is only $£ 69.95$ plus $£ 3.00$ P\&P (overseas rates quoted on request)
TRADE \& EDUCATIONAL ENQUIRIES WELCOMED

Send cheque/PO/Access/Barclaycard to

 DEPT. HEFX. Electroni-Kit Ltd It's not JUST a computer! ELECTRONI-KIT LTD. 388 ST, JOHN STREET LONDON, EC1V 4NN (01-278 0109)
RADO RULES

Helen Armstrong

Just one more step before you launch into space-the Radio Amateur's Examination!

By the time you read this you should, thanks to Radio Rules, be well on your way to being your own radio expert, which means that you will be nearly ready to face the final hurdle in becoming a radio amateur - the Radio Amateur's Examination, better known as the RAE

Radio amateurs have a far wider choice of wavebands, and far more range and power to play around with, than CBers (who, until recently, weren't even legal) and the idea that members of the public should be allowed to transmit anything at all without a mass of officia! controls is a very recent one in the UK. CB radio has been around in some other countries, notably the USA, for a long time. But even in these places, the amateur has to pay for his greater freedom in what and where he transmits by proving that he or she is capable of running a station without interfering with other transmissions. So radio amateurs have to pass a fairly demanding exam.

The original justification for licensing amateurs to transmit was to encourage them to train themselves as radio technicians and operators in case they were needed in times of emergency or war, and the license states to this day that an amateur radio station is 'part of the self-training of the Licensee in communication by wireless telegraphy'. This is also a tribute to the develop-
ment work done on radio by amateurs in its early days, as you will doubtless remember from "The Birth of Broadcasting" (HE February '83).

Amateur radio is more a pastime for people who are interested in radio and its whys and wherefores, than for those who simply want to communicate with friends without finding a callbox. That said, the RAE, although it aims to establish that the would-be amateur is competent to operate a station, is a straightforward examination for anyone reasonably familiar with the subject. The change, three years ago, from straight essay-type examination to multiple-choice questions has, despite initial grumbles and teething troubles, produced much the same percentage of passes as before.

This has sometimes led to complaints from the old school that today's a mateurs can hardly hold a screwdriver, let alone construct their own transceivers - but amateur radio is more likely to encourage a lively interest in radio if people can enter it at a level where, once they understand the principles and can keep their hardware properly tuned, they can get out on the airwaves and learn the rest 'live'. Indeed, the arrival of CB, far from rendering the amateur obsolete as had been glumly forecast in some quarters, has given more people than ever a taste of radio; as CB is very limited, many of
these then go on to extend their knowledge and mastery of radio and become amateurs - the number of people sitting the RAE and joining the Radio Society of Great Britain (RSGB) is increasing dramatically year by year.

Terms and Conditions

But it's not enough to know about radio. The first part of the RAE deals with the conditions governing amateur radio licenses, and if you fail this, you fail completely. You have to know the rules before you'll be let loose. Although phrased in legalistic lingo which may be puzzling even to people used to reading paragraphs of equations, the radio rules are fairly straightforward and largely a matter of commonsense.

Cast your mind back to the first part of 'Radio Rules" back in HE April '82, and you will recall that Amateur License A is the full radio licence which allows you to use amateur bands below 144 MHz , as well as those above, and to transmit Morse Code (CW). Not many people opt for Morse now. A separate Post Office examination has to be taken for this. Most amateurs hold Licence B.

Your transmitter, receiver, test equipment and \log are in fact a radio station, which is licensed to be set up permanently at a named address, or in any other 'temporary location'; longerterm removals have to be notified as

Finding Out

For information about the RAE, you should contact the Home Office Amateur Radio Licencing Division, Waterloo Bridge House, Waterloo Rd., London SE1 8UA for a free copy of their booklet How to Become A Radio Amateur, which will tell you the up to date licence conditions along with a lot of other useful information. For full details of the exam, and sample questions, write to the City and Guilds of Lond on Institute (who actually run the exam) at 76 Portland Place, London WC1N 4AA.
To get hold of the Radio Amateurs Examination Manual, which contains all (or most of) the
technical background and information needed to take the extra (although it ought to be used as a basis for wider study if you are going to master the subject properly, and not just as the sole source), contact the Radio Society of Great Britain at Alma House, Cranbourne Rd., Potter's Bar, Herts EN6 3JW, tel. (0707) 59015. They will also take applications to sit the RAE. The exams are usually held twice a year, in May and December, but there have been so many applications that there may be three sittings in 1983. Membership of the RSGB currently stands at around 38,000 after
rising a lot in the last five years. They publish a monthly magazine, will help members with technical queries and publish a range of useful textbooks which are, of course, cheaper to members than non-members. You don't have to be a member to take the RAE, but it pays somebody starting out in the hobby to be in touch with the main meeting-point for a mateurs.

The RAE is like most other exams - to pass it, you learn the radio rules. 'Once you have passed and been certified safe to be let out on your own, the door is open to the real spirit of amateur radio.
'alternative premises'. The station can be operated by a pedestrian (colloquially known as portable operation) or from a private vehicle (colloquially and officially known as mobile operation although I have yet to see one being operated from a bicycle, and operators using a hand-held mike while driving have occasionally been stopped by the police for illegally driving with one hand!). Mobile operation is increasingly popular, and there are many transceivers and aerials designed specifically for use from a car.
You must not, however, use the station in a sea-going area (at sea or in an estuary, dock or harbour) or from an aircraft or public transport vehicle (although special aircraft and mobile licenses are obtainable where appropriate).

Section 1 of the license states that you are licensed to send in radio telegraphy (which covers both voice transmissions and Morse, although voice transmissions are also called telephony) personal messages in plain language about things in which you or your contact are personally involved, but you may not discuss business or exchange messages on anyone else's behalf. This is designed to prevent the amateur bands from being used for commerce or propaganda rather than stop you from sending greetings on behalf of a friend. The RAE Manual's section on operating procedures states "It should be a golden rule never to discuss religion, politics or any other matter which may offend the person to whom one is talking or anyone who may be listening" - but this is only a guideline, not, as some people think, a statement of law. You are definitely not allowed to transmit "grossly offensive, indecent or obscene" messages, however.
License the also permits the transmission of facsimile signals (radioencoded pictures), radio teleprinter signals, video (amateur television) and test and other signals relating directly to these and not in any secret code. This doesn't of course preclude the 'codes' and abbreviations once common in radio, especially in Morse, where they were used for the sake of brevity and extra clarity, and especially to get around any language barriers in international calls.

Emergency Services

Amateur operators may be (and often are) called out to help the police or other emergency services. In parts of the country groups exist which practice working as a team or network-this is known as a Raynet group-and they hold communications exercises as well as taking part in real emergency work.
Generally the only person permitted to use a station was the license-holder or another licensee under his supervision. Now a pre-war custom, the sending of greetings messages by nonlicensed people under occasional conditions, is being revived after long agitation by the RSGB, but this has not yet been incorporated in the licensing rules.

OSL cards are exchanged by amateurs as a record of contacts made. These two are from Yugoslavia and Mallorca, with their national code letters.

Transmission by anyone using a false license number is likely to be promptly spotted and reported by another station No kind of recording may be transmitted except for certain test messages and tones, and nothing that infringes copyright (which means, in effect, anything published, or otherwise copyrighted) or anything misleading - jokes on the air are alright, but not if they could remotely be mistaken for a distress call.

It's also a requirement of the license that you should be able to receive on the same wavebands on which you are transmitting, so that messages can be returned. On the other hand, listening in to the wrong thing is out: under Section 5 of the Wireless Telegraphy Act, it is an offence to deliberately receive unauthorised messages, and disclosing anything about them to 'unauthorised persons is an offense under the Official Secrets Act. This includes police transmissions, so don't tell me your hifi amplifier picks them up!

Some of the most important license conditions concern the prevention of interference and keeping broadcasts within the right frequency bands. Section 3 states that a satisfactory method of frequency stabilisation must be used, and that there must be equipment on hand capable of checking that the station is operating correctly. And Section 4 makes it clear that the maintenance of the radio and morse equipment in a state which doesn't interfere with other transmissions is an absolute requirement of the license, not just a social duty. The Notes to the license give examples of when aerials may give rise to interference, or (another kind of interference entirely) when they may be in danger of fouling aircraft, or power lines, and the limitations imposed.

Sections 10, 11 and the footnotes say that the station must be available for inspection at all reasonable times, and that it can be closed down at any time. This is normally only done in a case of
national emergency, but the license itself can be revoked (and the operator prosecuted) if the terms of the license are broken.
To further aid keeping track of transmissions, you must keep a detailed log of calls and contacts made. This comprises, basically, the date of the call. opening and closing of operation and the address of any temporary premises (or the geographical location, for mobile operation), the times, frequencies and call-signs of each contact made and classes of emission, including those used for CQ and test calls. The log must be signed by any other amateur using the station.

Signing On

The license is specific about the use of a callsign. It must be broadcast at the beginning and end of each period of sending, and every 15 minutes otherwise. Extra identification letters

Safety ir

Don't give a new meaning to the old expression 'over and out'! Consult the Radio Society of Great Britain's safety recommendations for amateur radio stations. A serious amateur radio station usually consists of several pieces of equipment, very often in various stages of construction, modification, testing or repair. Any piece of electrical equipment carries some danger from electric shock, but doubly so when it's being connected and re-connected. Following this comprehensive list of safety precautions will effectively remove the danger of serious shocks. Here is a summary of them:
Equipment should be turned on and off from one master switch; everything should be connected to a good, tested earth (not, as formerly, a water mains, as many now have plastic sections); wire and terminals should be thoroughly insulated (there is often a temptation to leave temporary terminals open and live); capacitors of more than 0.01 uF (100 n) should have a bleeder resistor across their terminals that will ensure rapid discharge; capacitors with low leakage should be stored with their terminals short-circuited, as they can otherwise build up a static charge (you can get a serious shock from a large capacitor) and better, capacitors in use should be discharged with a 'wandering earth lead', an insulated lead with some bare strands at the end, connected to a permanent earth; all equipment should have conspicuous indicator lamps to show that it is live (apart from the safety factor, it does equipment no good ot leave it switched on when not in use and unattended); double-poled switches should be used for
are prescribed for mobile, temporary or pedestrian use, and for the main geographical areas of the British Isles GW for Wales, GM for Scotland, and so on. At a temporary location, a brief address must be included.

Probably the most familiar aspect of non-broadcast radio to people who know nothing at all about it is the 'phonetic alphabet', where letters of the alphabet are replaced by distinctive words beginning with the same letter The alphabet published by the RSGB is recommended rather than prescribed, and there are common variants, but the examiners will want the versions published! The phonetic alphabet is used to make important messages clearer in bad reception conditions, and it's generally better if you can stick to well-known versions, otherwise the point is lost. In any case, it's stated that the words used must not be "objectional or facetious". The alphabet as given in the Radio Regulations, Geneva, 1976, is

ve Shack

switching mains on and off, and the correct fuses should be installed on the equipment side of the switches.

A mains circuit breaker, such as a micro-switch, should be used to switch off metal-cased equipment automatically when the lid or other service hatch is opened; test probes and lamps should be insulated; a rubber mat should be used on the floor if the floor is at all damp.

Equipment should be switched off before adjusting, and insulated tools used. If any adjustments must be made while the gear is live, one hand only should be used, and the other hand kept in a pocket; headphones should never be worn while adjusting live equipment, and metal-cased gear like microphones and morse keys need to be properly earthed; meters with metal adjustment screws are not safe to use on high-voltage equipment.

A check needs to be kept for unexpected live projections from equipment, especially where metal screws are used on control knobs; aerials should never be connected to the mains or any other high voltage source; where they are connected through a capacitor, an RF choke should be provided.

The full recommendations are given in detail in the RAE Manual.

BEASTBES

QSL cards from Poland and France.
printed in the footnotes to the license.
Sections 12, 13 and 14 and 15 summarise the terms under which the license is issued, the most important being that the licensee shall pay up every year, and that the terms of the license may be a varied by the Secretary of State in a general announcement in the press or via the BBC.

Section 16 c and the following notes contain information about how the rest of the rules should be interpreted and various other important information, such as the correspondence address at the Home Office. It also harks back to Section 2, which briefly draws our attention to the fact that radio rules are international, in effect, whatever the local variations. It refers to the International Telecommunications Convention of 1973 and various other sets of international regulations. The Government in its turn has to abide by radio rules when broadcasting at home or overseas.

Practical Procedure

Apart from the Home Office license conditions, the RSGB issues its own advice for operators as to proper operating procedure, to ensure clear and trouble-free communication.

Quite a large chunk of the advice is for Morse operators, including a detailed list of ' Q ' codes, and calling patterns for establishing a contact, making, and ending a transmission, and an RST code table, giving the standard notations for describing the quality of a transmission. The use of the Q and RST codes, as well as the phonetic alphabet, has spilled over into voice radio. The original purpose of codes was to increase both the brevity and the clarity of transmissions, but brevity is not generally important in voice radio and the use of abbreviations has become more a matter of jargon than necessity.

Amateur jargon can be quite incomprehensible to the non-initiated (although never as ciourful and obscure as CB jargon). The RSGB is
tending to discourage the use of jargon and CW codes, but it would be a pity if jargon disappeared altogether as the use of patter is one of the charms of radio.

Contacting other Stations

When trying to establish a contact with another station - known as 'calling' it is important to get your call out as quickly and as clearly as possible. Give the callsign of the station you are calling once or twice, depending on conditions, and then your own callsign at least twice, using the phonetic alphabef. If there is no response from the station you are calling, call again, putting the emphasis on your own callsign, but don't keep calling continuously. Leave it till later or (if you are mobile) until you are closer to the station.

Likewise, CO (general) calls can be repeated several times, giving your callsign clearly, but no information is needed other than 'calling and standing by', and you should listen for a few moments between each call. Don't keep on and on calling $C Q$ on the same channel if you get no response in a reasonable time - either listen around to see if another exchange is about to finish, or try another channel.
Once the contact is made, the stations should spell out their callsigns until they are sure that both have been received correctly. After that, callsigns only need to be given every fifteen minutes, so that in good operating conditions a normal telephone-style conversation can be held; if reception is down a bit the words 'break' or 'over' give an additional signal when one operator has finished talking. Give both callsigns again in phonetic alphabet when signing off; this also helps other stations listening in, who may wish to call.
Incidentally, if you have trouble remembering callsigns, write your contact's callsign down at the beginning of the exchange if you can; this saves a repeated 'What was your callsign again?' and 'G3 Yankee what was it?' every time callsigns are exchanged, which is all too common.
When transmitting to a group or 'net' give your callsign at the beginning of each transmission, to let the group and other listeners know who is talking. You can also pass the call on to the next person to speak, if you are taking turns.
It is not necessary to continually list the other callsigns in the group, but some groups have the practice of letting one member act as 'master of ceremonies', repeating the callsign when one member has finished and passing the call on to another member of the group.
It is helpful also to say briefly what you are about to do if you are changing channel, have just arrived on a channel or are signing off for the time being.
An important part of any exchange, especially long distance ones, where the signal strength of either operator is likely to be below maximum, is to give a signal strength report. In CW, a code known as the RST code (readability/ signal strength/tone) is used. There are

Into Radio

five levels of readability, from unreadable to perfectly readable, and nine levels each for signal strength and tone from one to nine. For operating proficiency certificates and awards given by the RSGB the minimum signal report needed is RST339, or RS33, which are the minimum practical signals
In other parts of the world, sections of the amateur bands are reserved for certain classes of operator using particular modes of transmission (eg CW or radio teleprinter (RTTY). There, it is illegal to fail to observe these restrictions; not so from the UK, but we should still adhere to them at all times as a courtesy - this is only common sense, as are most of the rules of procedure.
It is only common sense not to attempt to call a station which is clearly trying to establish a call elsewhere, for instance, no matter how badly you want to make a contact with a station in that particular location; not to call CQ continuously if you are getting no reply; not to interrupt an established exchange; not to hold conversations on channels such as $\mathrm{S} 2 \mathrm{O}(145.5 \mathrm{MHz})$ which are so normally used for calling.
If you contact somebody on a channel which he has been working, move off again once the exchange is finished; don't use long-distance bands (DX) for local calls while they are open for long-distance communication, and when conditions are unusually good for long-distance contacts, keep your calls short - there will be queues of other operators hoping to pick up some rare QSL cards, waiting to speak to the same stations you are speaking to.

Repeaters and Satellites

Over the last ten vears, a number of unmanned transceivers, mounted on masts at high geographical points, have

OSL cards from Finland and the USSR.
been set up. These receive VHF or UHF transmissions from portable or mobile stations on an input channel and retransmit them on a different output frequency within the same band, but with greater power. Thus the range of low-powered equipment can be doubled or better.
These relay stations are known as repeaters and have their own call signs (eg GB3PI near Peterborough, the 'Cambridge repeater', one of the first to be opened). They can more than double the range of low-powered equipment without the use of extra power or better aerials. To prevent continuous operation of the repeater by one caller, or when not in use, the repeater is usually designed to be switched on and off remotely: on by means of a 1750 Hz tone (toneburst) transmitted by the caller, or by the user's carrier on the
input channel at the beginning of each transmission, and off automatically after, say, one minute - a limit known as 'time out'

Repeaters only respond to an accurate FM signal and if the accessing signal becomes inadequate, the repeater will switch itself off. After each over, the repeater will wait for a minute or two, and then broadcast a signal in Morse to show that it is free for use.

There are also satellites for amateur use which play a similar role to repeaters, only at a greater power and over a longer distance. The first one was launched in 1961 and others have gone up periodically since. They are known as OSCARs (for Orbiting Satellite Carrying Amateur Radio), each with its own own code number. They are transponders, which accept single sideband, radio teleprinter or Morse signals (for preference, although any mode is acceptable) over certain wavebands, and retransmit them on another band. At the moment they can transpond from 432 to $144 \mathrm{MHz}, 144$ to 432 MHz and 144 to 28 MHz . Unlike repeaters, the satellites are continuously operational and require no special signal to access them.

To transmit to the satellites, a power level of 80 to 100 W ERP is needed, normally provided by a transmitter of 10 to 15 W output with antenna gain of 10 dB , and the antenna must be in line of sight with the transmitter and, for best results, capable of following it.

Alright on the Night

There are a number of ways to learn enough about radio to take the Radio Amateurs Examination successfully. The only essential rules are: know what is in the syllabus (it helps to be familiar with the Radio Amateur's Examination Manual), and make sure you both learn the theory and get as much practical

Below: a set of RAE-style papers. Samples can be obtained from the Home Office.

experience as you can. One without the other is likely to leave you high and dry. You might get through on theory alone if you are very good at memorizing things, but it will be a lot harder unless you actually have 'hands on' experience of radio equipment - inside and outside the chassis.

Obviously the candidate with an electrical or electronics background has an immediate advantage in that he is already schooled in an understanding of how electronic devices work; he will still need to be thoroughly familiar with the actual syllabus to pass. But how does the complete novice with perhaps only a little physics, or not even that much to start with, get the knowledge?

Probably the best way is a structured course in a class with other candidates. In this way you will get the benefit not only of the teacher's experience but those of other hopefuls with varying experiences and see more than one approach, perhaps even with more than one teacher.
To find a local radio course, first try radio journals and popular radio magazines - the RSGB's "Radio Communication" (RadCom) for instance. Also, check with your local public library or main district library. which should have lists of activity clubs and also local institutes which do courses of various kinds. Look for local radio or electronics clubs, or local RSGB groups. Quite apart from attending club talks and meeting other amateurs, if there are enough candidates locally then you can apply to the principle of any local college to have a course set up, though you may have to find your own teacher, or an instructor that the college is satisfied with. The college year starts in September, so you will have to find this out well in advance, in time for the RAE, which is usually held twice a year, at various locations around the country.

If you cannot find any kind of local

QSL cards from the UK and the Faroe Islands.
course, there are correspondence courses, and private students are also often successful. Try contacting other amateurs in the area - consult the RSGB's Amateur Radio Call Book; again, a local library might help - you are likely to find one or two who would gladly advise you and share their experience.
Three years ago, the RAE switched from question-and-answer to multiple choice, but do not assume that this will make the exam easy. You will still have to know your practical circuit diagrams and be able to do straightforward calculations. It is helpful and speeds things up if you have a calculator, although you can get by quite adequately on normal arithmetic as long as you have a grasp of equations (which a calculator won't help you with anyway). All the symbols used in the
exam are British Standard 3939, and are laid out in the RAE Manual - you are less likely to be mislead if you know these thoroughly.
The rules of thumb for the exam are also simple: assuming you know your stuff, and even if you don't, do two things; read all the instructions on the paper carefully, and give yourself time to tackle all the questions. Time taken to make sure you are doing the right thing is never wasted. If you can't do a question, leave it and go on to the next. You can always come back to it. With a multiple choice exam, don't leave any question unanswered - who knows, but you might pick the right answer by accident or inspired guesswork! This compensates for the factor in the oldstyle exam, where some marks were allocated for part-questions finished, even if the whole answer was not right. There is always a luck factor in exams this will never make the difference between a good and a bad candidate, but may make the difference between gaining and not gaining your licence first time around. And it costs money to take the exam, so never give up the paper while the exam is still in progress

The RAE is not a competitive exam you have only to reach a certain standard to pass, regardless of how many other people pass or fail.
Make sure you are familiar with everything on the syllabus. However ill prepared you may feel, make sure you have an overall acquaintance with the subject before you try swatting up on special subjects - not only are you more likely to get through the exam that way, but it will stand you in better stead afterwards.

HE

Courtesy of Ham Radio Today. Hobby Electronics, May 1983

When you need to update yourself with all that is available in the "Do-it-yourself" market, then you need the Hobby Herald.

Packed with product information essential to the electronics enthusiast, this new electronics catalogue lists over 60 exciting products ranging from All Purpose Cutters to Verobloc, the solderless breadboard. All products are available throughout the U.K. from over 200 stockists.

HOBBY HERALD

 Alternatively ordering products through the Herald is simplicity itself, and you can pay by either cheque. Barclaycard orAccess.
So make
sure you get your copy of Hobby Herald by ringing
(04215) 62829.

EICC-Vero Electronics LId.. industrial Estate
Chandlers Ford. Hampshire.

SO5 3ZR

Popular Computing

HE's micro-master reviews the first personal computer to use FORTH, a fast and efficient high-level language, as its 'mother tongue'.

IN INTRODUCING THE ACE, Steven Vickers and Richard Altwasser have broken away from the tradition of offering more hardware (RAM, sound, colour etc.). for your money. Instead, they have decided to innovate in terms of software by choosing FORTH for the ACE's 'natural' language rather than the various extended BASICs used by their competitors.
Because of this, any review of the ACE must begin by looking at FORTH itself, and considering its advantages and disadvantages as a programming language.

FORTH

FORTH is not a new language. It was originally developed over ten years ago.

Since then it has attracted a steadily growing band of enthusiastic supporters, most of whom use it for 'real' applications such as controlling machinery or - recently - for writing fast action moving games.
FORTH was originally developed as an alternative to machine code for use on small microcomputers with a limited amount of memory and where BASIClike languages were often too slow for the job. The result therefore lies between machine code and BASIC in terms of both speed and ease of use.
Unlike BASIC programs, which are essentially a numbered list of commands, FORTH programs are built up by defining new commands, starting with the elementary low level operations, then using these in more complex commands, and so on untily you
end up with a single command that defines the whole program.
In FORTH terminology, a 'command' is known as a 'word', and consists of a descriptive name followed by a definition of what the word is to do. The definition is usually in terms of other FORTH words, although you can use a machine language routine where speed is really critical. As each word definition is entered, it is added to a 'dictionary', and that word can then be used in the definition of new words. This probably sounds confusing to someone who hasn't encountered FORTH before, but the basic principle is quite simple. If you were to enter:

HI 125100 BEEP ;

then the colon at the start of the line tells the computer that you are defining a new word - called HI - and the semicolon at the end signals the end of the definition. The definition of this word is therefore:

125100 BEEP

BEEP is a pre-defined word, one of about 140 FORTH words held permanently in the ACE's ROM, and it makes a sound using the AEC's internal loudspeaker. The two numbers define the frequency and duration of the note. Having entered the new word definition, it will be placed in the ACE's dictionary. and now the ACE will understand the word Hl as an instruction to produce a short, sharp, tone. In fact, just typing in the word HI will now produce the tone, since if you enter any line that doesn't start with a colon, then FORTH assumes. that you want it acted upon immediately. This is an extremely important feature that lets you test out new words as you develop them.
We could now enter a second word definition:

LO 250100 BEEP
to produce a lower note, and then play the two notes one after the other by entering:

HI LO
Having added the two words to the dictionary, we can use them in a further definition:

TUNE HI HI LO LO HI

so that the new word TUNE will play a sequence of 5 notes.

In this way, a FORTH program is gradually built up by defining new words to perform ever more complex tasks, but by taking it one step at a time, you can construct your program in a logical and ordered manner.

Looping and Choosing

To tet you program for alternative courses of action, FORTH has an IF-THEN-ELSE construct similar to that found in advanced versions of BASIC. BEGIN-UNTIL and BEGIN-WHILEREPEAT allow you to repeat actions until (or while) a particular condition is met, in much the same manner as BBC BASIC's REPEAT-UNTIL. And if you want to repeat an action a defined

Ace comes with a power pack, cassette leads, programming manual and demonstration tape.
number of times, FORTH provides a DOLOOP construct which behaves like BASIC's FOR-NEXT. There is, however, no equivalent to the BASIC GOTO command. This seems at first like a serious omission to anyone used to programming in BASIC, but once you get used to FORTH you find you can always use IF-THEN-ELSE, BEGINUNTIL or BEGIN-WHILE-REPEAT to achieve the same result but in a much more elegant fashion.

Stack It

One area where FORTH differs considerably from most other computer languages is in its use of a 'stack' to hold the values being worked on. Most languages use named 'variables' to hold values, so that the BASIC statement:

$$
\text { LET } A=27+33
$$

tells the computer to add 27 to 33 , then store the result in an area of memory reserved for the variable named ' A '. You can also use named variables in FORTH, but the values actually being worked on at any time will usually be held in a special area of memory known as the 'Stack'. This is best thought of as a pile of values; a new value can be added to the top of the pile - making the pile higher - or a value can be taken off the top of the pile - making it shorter. All of FORTH's fundamental operations, like addition, multiplication etc., work on the values present on the top of the stack. The ' + ' operator, for example, takes the top two values off the stack, adds them together, then puts the result back onto the top of the stack.

When the computer sees a number in the line you have entered, it puts that value onto the top of the stack. For example, if you look back at our definition of the word HI, what it was really telling the computer to do was to first put the value 125 onto the stack, then put the value 100 on top of that, then execute the pre-defined word BEEP, which takes the top two numbers from the stack to give the frequency and length of the note to be produced.

Similarly, the line:

$$
2733+
$$

will place the values 27 and 33 onto the stack, then replace them by the single value 60 . This way of writing may seem backwards at first (and - indeed - it is
known as 'reverse Polish') but you soon get used to it.

There are two main reasons why FORTH was designed around the use of a stack. The first is that it saves memory space because values are kept in RAM only as long as they are needed, and more importantly - because the program doesn't need to contain the names of the variables (at least as long as the values are being kept on the stack). The second advantage is that your programs run more quickly because the computer doesn't have to search through a 'variables storage area' to find the one you want.

DIY FORTH

FORTH is really a 'Do It Yourself' language. Although it has about 140 pre-defined words compared to the 90 or so keywords in most versions of BASIC, they nearly all correspond to very elementary operations, and you have to add your own definitions to do anything that is even slightly complex.

Take arrays for example. In BASIC, a simple DIM statement will set up an array so that you can then refer to an element of it by just using a subscripted variable such as $\mathrm{A}(27)$. But FORTH has no equivalent to the DIM statement or the subscripted variable; you have to write special words that will let you handle data in array form, or - more precisely - you have to define a routine that can be used to set up arrays, and another to let you refer to an individual element of an array. At the end of the day you will be able to handle arrays of data at least as well as you could in BASIC, but you will have taken longer to get there.

Similarly, if you want to handle strings, you must first define some string handling words.

Fast FORTH

Where FORTH really scores is in doing fairly simple tasks very quickly. And, because it is much nearer to machine code than BASIC, you have much more control over what the computer is actually doing. Indeed, to program successfully in FORTH you need to be much more aware of how the computer works than you do with most other languages, and pay much more attention to the possible side effects of
what you are doing. For example, FORTH arithmetic is usually done using 16-bit words that can take integer values from -32768 to 32767 . But there is no check to see if a result has overflowed, so that it will quite happily add 30000 to 30000 and say that the result is -5536 ! FORTH enthusiasts will say, of course, that if you really want the + operator to check for overflow then you can easily define a new version of the word that does just that.

ACE FORTH

There is a standard for the FORTH language, known as FORTH-79, and the version provided on the ACE sticks very close to it. The main differences are the addition of words to handle floating point numbers, plotting, the sound generator, and I/O ports. There are also some differences in the way programs are entered and edited.

The Hardware

The ACE comes in a white vacuumformed plastic box about the same width as the Spectrum but deeper, held together with plastic rivets along the sides and back. A label on the underside of the box warns that there are no 'user serviceable' parts inside, and indeed the case is fixed together in such a way that you can't take it apart without splitting the plastic. This is a pity, because I am sure that many people who would be attracted to the ACE would be enthusiastic (and knowledgeable) enough to want to get at the hardware to make minor 'improvements'
On the model received for review, the quality of the case was poor. The edges where it had been cut from the mould were rough, there were a couple of noticeable dimples on the top surface, and the holes in the case for the TV. Ear, Mic and Power sockets did not line up properly. Worse, the bottom part of the case was bowed so that it flexed whenever you pressed on a key, and the keytops sometimes caught underneath the case top. Hopefully these were just teething problems with the first models.

Two PC board edge connectors are provided at the back for add-ons. One of these is to take memory extension and/or I/O ports. It is believed that the other is for a possible colour display add-on.
The keyboard has the same layout as on the Spectrum, even having the same awkwardly positioned Symbol Shift key, and also lacks a proper space bar. But, because FORTH doesn't use keywords in the same way that Spectrum BASIC does, there is a blessed simplicity about the key legends. Generally, each key is only used to give upper or lower case characters - governed by using the SHIFT key, or a special symbol such as ' $<$ ', which is obtained with the Symbol Shift key. The keys are black with easily read white markings.
As on the Spectrum, the keytops are all formed from a single rubber moulding which collapses as you press on a key, but the ACE's keys feel much

The view inside the ACE; the chip count totals around 30 ICs!
firmer and need to be pressed much more deliberately. You can't type quickly on the ACE - the keyboard just won't let you - so the auto-repeat feature is useful.

On Screen

The TV display is crisp and stable but is in black and white only. There are 24 lines of 32 characters each, and in typical fashion the bottom line is reserved for use as an input buffer. Characters are normally displayed in white on a black background, although you can make any character appear in black on white. Both upper and lower case letters are available, as well as 16 'chunky' graphics characters. The character codes used are basically ASCII with a few additions such as the copyright symbol and ' f ' as well as '\$' and " \#

As is common practice for most low cost computers, the characters are formed from an 8×8 array of pixels. The dot patterns for the whole character set are held in a special area of RAM (they are copied from ROM into the RAM when power is applied), which means that you can re-define any or all of them to make your own shapes in much the same way as you can on the Spectrum or the BBC computer. A PLOT command uses the chunky graphics characters to give a low resolution (64×46) plotting capability similar to that on the $\mathrm{ZX81}$. Because you can define your own characters, each as an 8×8 pixel array. you can theoretically draw shapes with an overall resolution of 256×192 pixels, but in practice you wouldn't use this facility for drawing shapes larger than the space of a few characters on the screen. There is no equivalent to the high resolution plotting modes available on the Spectrum, Dragon or BBC machines.

The ACE has an internal loudspeaker, and a BEEP command to drive it, but you are limited to one note at a time and can only vary the pitch and duration.

The cassette tape interface works at a respectable 1500 baud (about 6 seconds for 1 K bytes). You can save to tape either the dictionary of new word definotions that you have entered, which is effectively your program, or a defined area of memory. A VERIFY command lets you see if what is on tape is the same as what is in memory. On the model under test, a very high level was needed from the recorder when loading; reminiscent of the old $Z \times 81$, but otherwise the system worked reliably.

Internal Matters

Inside the case is a bit of a shock to anyone used to Sinclair's 'The fewer parts the better' philosophy; almost 30 ICs have been packed in. Obviously in starting up a new company from scratch Vickers and Altwasser could not afford the time or cost of developing a custom integrated circuit like the ULA used to replace handfuls of TTL chips in the Spectrum, just as they didn't invest in the tooling for an injection moulded case

The central processor is, of course, the one we can't seem to get away from: the Z80A. The Operating System software, FORTH, and the standard character set dot patterns have all been squeezed into an 8 K byte ROM. 3 K bytes of RAM have been fitted, which may seem a lot compared to the 1 K of the Z $\times 81$, but 1 K is used to hold the dot patterns when the machine is running, and almost the whole of another 1 K is used for the TV display file, and yet more for working space, stacks, and System Variables, so you are left with well under 1 K bytes to hold your program and data. Some form of memory expan-

ACE BOUNCER

This program was written as an exercise in using FORTH and to get some idea of how fast a FORTH program will run. It moves a star around the screen, bouncing it off the four edges.

Similar programs written in BASIC will make a complete circuit of the screen in about one or two seconds. This FORTH version runs at about the same speed, but only because it has been deliberately slowed down by the 1005 BEEP command in the word GO. Without this restraint, the star moves so fast that you can only see momentary glimpses of it as it flashes around the screen!

10 VARIABLE HPOS

10 VARIABLE VPOS
1 VARIABLE HVEL
-1 VARIABLE VVEL
NEWPOS HPOS@ DUP O= IF 1 HVEL I THEN DUP 31 =IF - 1 HVEL! THEN HVEL@+HPOS!VPOS DUP O=IF 1 VVEL I THEN DUP 22 = IF - 1 VVEL! THEN VVEL @+VPOS!

WIPE VPOS @ HPOS @ AT SPACE
PRINTNEWVPOS@ HPOS AT 42 EMIT
GO CLS BEGIN 1005 BEEP WIPE NEWPOS PRINTNEW O UNTIL:
sion is essential for any but the simplest application.

The 181 page manual provided with the ACE is excellent, both as an introduction to FORTH and as a guide to using the ACE. It was written by Steven Vickers, and is in the same light but very informative style as his previous Sinclair manuals. One interesting chapter, Extending the ACE, gives much mo:e information on how to add 1/O poris or memory than is usual in a computer manual, including the circuit for a simple I/O port and examples of software to drive it.

In Conclusion

The ACE represents a brave attempt to get away from the cliche of colour BASIC - games machine personal computers, but in the long term will probably suffer from the lack of investment in a professional looking case and the absence of colour or true high resolution graphics. Now that FORTH is becoming available as an optional language for other computers such as the Spectrum and ORIC, many people may prefer to spend the extra to get the more powerful and flexible machines. The ACE will probably appeal most to those who have a limited budget and are interested in programming simple control type applications. But even these potential buyers might prefer the combination of a ZX81 with a cheap 16 K RAM pack and FORTH on cassette, which adds up to about the same as an ACE.

ROBOTICS FANS!!! LOOK!!

ONLY $£ 4.95$

"BIG TRAK" MOTORIZED GEARBOX

These units are as used in the "Big Trak" computerized vehicle, and ofter the experimenter in rolled vehicles. The unit comprises:
a) $2 \times 3 V$ motors, tinked by a magnetic clutch, thus enabling furning of the venicle: b) A yearbox contained within the black ABS housing reducing the final drive speed to ap prox 50 rpm .
Data is supplied with the unit showing various options on driving the motors, as well as a direction

2N3055
scoopll
Made by Texas - full spec devices, 60p each; 10 for E4; 25 for $\mathrm{E9} ; 100$ for $\mathrm{E34} ; 250$ for E75; 1000

COMPUTER SOFTWARE

We now sell a range of tapes and books for
ORAGON 32, SPECTRUM. ZX81. BBC and IC20. Send s.a.e for list stating for which com puter reguired, or call mo our shop.

SIMON GAME

Simon is back again. Another supply of ready built PC8's for this llashing lighitpulsating tone com purerised game is now with US. Supplied tested

COMPUTER BATTLESHIPS

Probably one of the most popular etectronic gatmes on the market. Untortunately the design model, although it may well function perfectiy. instead we have tested the sound chip, and sell the
beard for its component valuc onit PPCB may be worrd for its component valuc onity (PC8 may be
chipped or cracked). SN76477 sound IC: chipeed or cracked). SN76477 sound IC;
TMS 1000 u-processor: batt clips. R's. C's etc. Size $160 \times 140 \mathrm{~mm}$. Only $\mathbf{1 1} .50$. Instruction book and circuit 30 p exra.

LIE DETECTOR

Not a tov, this precision instrument was orgginally measure a change in emotional balance, or as a lie datector Full derais of how to use in are given, and a circuir diayram. Supplied complete with probes. leads and conductive jelly. Needs 24 jV worth that for the case and meter alone?

AA NI-CADS 10 for $\mathrm{E9.95}$
 solder lags both ends. Special price, 61.40 ea; 10 for 9 C9.95; Box of 80 C65. or c9.95; Blox of 80 c65.
Nicad Charger: Charges up to $4 \mathrm{AA}, \mathrm{C}$ or D ceils

ELECTRO DIAL
Electrical combination lock-for maxinum security bick proof. One million combinationstl Dial is turndo the right to one number, left to a second
number, then right again to a thisd number, Onty when this has been completed in the correct se quence will the electrical contacts close. These an be used to operate a relay or solenoid

FERRIC CHLORIDE

New supplies just arrved -250 mg bags of cranules, easily dissolved in 1.15 . Also abrasive polishing block 95 p .

STABILIZED PSU PANEL

A 199 A versatite stabilsed power supply with both vollage $10-30 \mathrm{~V}$ and current (20mA-2A) fulty
variable. Many uses inc bench PSU, Nicad charger. gen, purpose testing. Panet ready bult, tested and calibrated $\mathrm{f7} .75$. Suitable transtorme

REED RELAYS

Manutachurers rejects - DLL and other PCB mounting types. SP, DP and $4 P$ - make, breal ually working or o/c etc, so very low price - pack of 10 assorted $\mathrm{C1} ; 25 \mathrm{E} .00 ; 100$ ह7.00.

TELESCOPIC AERIALS

As used in SinclatI
100.610 mm . Oniy 95 p .

> IN4148 - BEST PRICE EVER
Supplied in packs of 100, by Tosthita Q2 per pack: 3 packs $\mathrm{C5}$.50; 10 packs $\mathrm{E15}$; 25 packs $\mathrm{E32}$; 100 packs $E 115$.

COMING SOON

MORE COMPUTER GAMES PCB's - MICROVISIONS, ALPHIE, AVENGER, INTRUDER, AND Starbird

GREENWELD

443A MILLBROOK ROAD, SOUTHAMPTON SO1 OHX All prices include VAT - just add 50p post. Tel (0703) 772501

ELECTROSUPPLIES

WHOLESALE \& TRADE COUNTER
BOWNESS MILL, SHAWCLOUGH ROAD, WATERFOOT, ROSSENDALE, LANCS. TEL:

ROSSENDALE 215556
RETAIL SHOP
6A TODD STREET, MANCHESTER (next to VICTORIA STATION) TEL: 061-834 1185

Teletekst Panels

Main Board, and information, untested... £15 set
200 MHz frequency counter kits
Kit contains 2 PCB's one for main component and one for displays. 8 digit. All parts except case (using the ICM 7216B chip)..

Stereo Cassette Deck

COmplete with

AY. 38500
$\begin{array}{ll}\text { AY-3.8500 } & 200 \mathrm{p} . \\ \text { AY-5-3507 } & 200 \mathrm{p}\end{array}$
AY-5-3507
CA 758
HA 1156
CH 8510 KA
ICL 7103
IGL 710
$\begin{array}{ll}\text { CL } 7106 & 400 \mathrm{p} \\ \text { CL } 7109 & 7500 \mathrm{p}\end{array}$
CL 7109 750p
$\begin{array}{ll}\text { ICL } 80388 \mathrm{M} & 800 \mathrm{p} \\ \text { 300 }\end{array}$
ICL 8048 1000
CL 8049 1000p
ICM 7205IPG 90
$\begin{array}{ll}\text { ICM } 7211 & 400 \mathrm{p} \\ \text { ICM } 7212 & 300 \mathrm{p}\end{array}$
$\begin{array}{lr}\text { ICM } 7212 & 300 \mathrm{p} \\ \text { ICM } 72168 & 1800\end{array}$
ICM 72168
CM 7217C 1800p
ICM 7218 700p
$\begin{array}{ll}\text { ICM } 7218 & 7000 \\ \text { ICM } 7235 A & 400\end{array}$
ICM 7235A
IM 5600
IM 5600
LF 155T
LF 355T
LF 355 T
LF 356 H
LF 357 T
LF 3577

LM 319	200p
LM 324	35p
LM 339	60 p
LM 380	85p
LM 1458	50p
LM 2901	80p
LM 3401	80p
LM 3900	55p
MC 1310	150p
MC 1312	
MC 1327	
MC 1349	
MC 1350	80p
MC 1357	
MC 1456	80p
MC 1488	150p
MC 1489	200p
MC 1495	320p
MC 1496	80 p
MM 53100N	200p
MM 57105	200p
NE 536T	
NE 540L	
NE 543K	200p
NE 541	
NG 550	90p
NE 555	16p
NG 556	40p
NG 558	100p

$\mathbf{1 1 4 . 9 5}+\mathbf{1 1 . 5 0 P G P}$

NE 562	350p
NE 565	120p
NE 566	160p
NE 5018	700p
NG 5553	120p
NG 5554	12Jp
TBA 810P	80 p
TDA 1001A	
TDA 1003 A	220p
TDA 1004	300p
TDA 1008	300p
TDA 1050	250p
TDA 1071	
TDA 1170	200p
TDA 1190	200p

350 p $375 p$
$325 p$
225p 50p $450 p$
80 p 90p

Call in the shop for lists and a browse. We feel sure you will be pleasantly surprised at the stock we keep.

ALL PRICES INCLUDE VAT PLEASE ADD 50p P\&P

Bigger and Better

the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs includjag the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc:
Flatpack cabinet kits for Kef, Wharfedale and many others.

* Lowest prices - Largest stocks
* Expert staff - Sound advice *
* Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities)
* Ample parking *

Send $£ 1.50$ for catalogue
(cheque, M.O. or stamps - or phone with your credit card number)

- Access - Visa - American Express accepted * also HiFi Markets Budget Card.

35/39 Church Sțreet, Wilmslow, Cheshire SK9 1AS

Lightning service on telephoned credit card orders!

LITESOLD LC18H 240v high performance iron, made to professional standards in our own works, fitted with 3.2 mm bit. 2 alternative bits, 1.6 and 2.4 mm . Reel of 3 metres 18 swg flux-cored solder. Stainless steel tweezer. 3 soldering aids. Reel of 1.5 metres de-soldering braid. Packed in clear PVC presentation/storage wallet. Superb present - ideal for beginner or expert.
SK18H KIT SPECIAL PRICE $£ 14.55$. Inc. VAT \& P.P. (normal resale value $£ 18.45$ inc.) LC18H IRON only $£ 6.00$ (normally $£ 7.39$) Spares, accessories and after-sales service available from us. 16 -page colour catalogue -60 p. Send cheque/P.O. to LITESOLD or ring for Access/ vasclaycard
Bars sales.

LIGHT SOLDEAING DEVELOPMENTS LTD.
don CRO 2DN, Surrey. Tel: 01-689 0574

Send for my CATALOGUE ONLY 75p (plus 25p post/packing)

My all-inclusive prices quoted in the Catalogue are the lowest. All below normal trade price - some at only one tenth of manufacturers quantity trade. See my prices on the following:

CAPACITORS . . . ELECTROLYTIC; CAN, WIRE END, TANTALUM, MULTIPLE, COMPUTER GRADE, NON POLAR, PAPER BLOCK, CAN, POLY, MICA, CERAMIC. LOW AND HIGH VOLTAGE, RESISTORS. $1 / 8$ th WATT TO 100 WATT; 0.1% TO 10\% CARBON, METAL AND WIRE WOUND + NETWORKS. FANS, BATTERIES, SOLENOIDS, TAPE SPOOLS, VARIABLE CAPACITORS AND RESISTORS, TRIMMERS, PRESEES, POTS . . . SINGLE, DUAL, SWITCHED, CARBON, CERMET AND WIREWOUND, SINGLE OR MULTITURN, ROTORY AND SLIDE. diOdes, rectifiers, bridges, Chargers, stylil, sockets, plugs, RELAYS, TRANSISTORS, IC'S, CLIPS, CRYSTALS, ZENERS, TRIACS, THYRISTORS, BOXES, PANELS, DISPLAYS, LED'S, COUPLERS, ISOLATORS, NEONS, OPTO'S, LEADS, CONNECTDRS, VALVES, BOOKS, MAGAZINES, TERMINAIS, CHOKES, TRANSFORMERS, TIMERS, SWITCHES, COUNTERS, LAMPS, INDICATORS, BELLS, SIRENS, HOLDERS, POWER SUPPLIES, HAROWARE, MODULES, FUSES, CARRIERS, CIRCUIT BREAKERS, KNOBS, THERMISTORS, VDR'S, INSULATORS, CASSETTES, METERS, SOLDER, HANDLES, LOCKS, INDUCTORS, WIRE, UNITS, MOTORS, COILS, CORES, CARTRIDGES, SPEAKERS, EARPHONES, SUPPRESORS, MIKES, HEATSINKS, TAPE, BOAROS and others.

Prices you would not believe betore inflation!

BRIAN J. REED

TRADE COMPONENTS
ESTABLISHED 26 YEARS 161 St. Johns Hill, Battersea, London SW11 1TQ

THERE IS NOT much doubt that Englishmade loudspeakers are the finest in the world - without any disrespect to our American cousins or the latter-day Samurai. When it comes to "Zen and the Art of Loudspeaker Construction", the British speak little but work marvels. But not on the cheap. A really first class pair of 'speakers almost requires a mortgage, and even a decent pair won't leave much change from a month's pay. You will therefore understand my interest when I was offered the chance to review a pair of self-assembly 'speakers from Wilmslow Audio!
The range offered by Wilmslow is very large. Almost every major British manufacturer is represented, including top names such as Kef, Celestion, Chartwell, and Jordan Watts. In the High Street, prices for such speakers range from the barely affordable to "Oh my god", so the great attraction of selfassembly 'speakers has to be the opportunity to acquire a good set at an equally good price.

Hifi Hype

It's always easy to buy an argument, amongst hifi buffs, as to which components of a hifi system are the most critical; it depends really on who you talk to and on the degree of difficulty involved in engineering particular elements.
Amplifiers, for example, are no longer much of a challenge in the normal line of hifi equipment, so that any manufacturer worthy of the name ought to be able to produce an amp that is capable of around 50 watts per channel with 0.1% distortion and a frequency

At this stage the cabinet has been assembled (note the lines of bathroom sealant around the inside of the joints). The crossover board has been screwed to the rear panel and the leads taped out of the way.

response ruler flat from 20 Hz to 20 kHz . Of course, there are 'exotics' that offer class and facilities way above the norm, but in average hifi terms buying an amp comes down to "pounds per watt" - unless you are unduly impressed by an excessive number of knobs, indicators etc. and a front panel as glossy as the advertising brochure!

Similar arguments apply to hifi tuners, and as for cassette decks - if your budget stretches to a Nakamichi then well and good. Otherwise you'll have to be satisfied with less than best.

The argument starts to warm up when discussion turns to loudspeakers, turntables, tone-arms and cartridges. In recent years, computer-aided design and analysis has taken much of the 'magic' out of the engineering of these components; actually, it always was (is?) a case of juggling thousands of variables, partly by mathematics and partly by inspired guess-work. Computer techniques, with the capability for handling all these variables easily, have simply removed most of the guess-work!

However, appreciation of the virtues of different 'speaker or turntable designs remains mostly subjective;

The two sections of acoustic wadding are rolled up and placed inside the cabinet, then teased out to fill the entire space.

Barry Foster

> With self-assembly lou for your money wit

what you like depends on what you hear. On the other hand, what you like to hear will decide where you will spend most of your hifi budget.

Briefly, the quality of the turntable, arm etc. will determine the bottom limit of distortion and the upper limit of frequency response (assuming that the amplifier is up to the mark). The speakers may also contribute to distortion but, more importantly, set the bottom limit of the frequency response.

So if, like me, you are a person who puts more store by meaty, beefy bass than in crisp clean highs at the upper limit of hearing, the loudspeaker becomes the most important element in the hifi system. Thus a self-assembly kit provides the means to spread your budget to the best advantage, while at the same time allowing you to acquire a first class set of 'speakers at a moderate

eakers you get more t sacrificing quality.

for amplifiers in the range $15-75$ watts and is given a five star assembly rating, meaning that no woodworking or electronic skills are required. The dimensions of each cabinet are $540 \times$ $255 \times 230 \mathrm{~mm}$, and they are designed for stand mounting some 300 mm off the floor and, ideally, at least two feet away from walls. The units are described as medium sensitivity infinite baffle 'speakers, and contain three drivers and a pre-assembled three-way crossover board (which is the only component not manufactured in the UK).

The lower driver is a specially designed $61 / 2$ in 'lower bass' unit, which, together with the $61 / 2$ in mid/upper-bass driver, gives a surprisingly good response for a unit of its size; the transient response is sharp, without any trace of sogginess. The treble driver is a 1 in soft-domed tweeter, dilled with ferrofluid, which produces accurate highs all the way to the top.

They are perhaps a little too strong on mid-range 'presence' for my taste, but a little bass and treble equalisation easily compensates. When boosted slightly, the bass is always clear and distinct, even though the speakers are floormounted rather than set up on stands as

The central 'shelf' (visible through the tweeter opening) is installed next, then the front baffle-board is glued into place. The wires are led out through the openings, ready to connect up to the driver units.
recommended. Likewise, the highs are crisp and clean and the stereo image, though the room does not permit ideal placement, is well separated.
The next question, of particular interest to hifi nuts who may not also be DIY buffs is: how easy are they to assemble? The answer is once more agreeable; putting together the dB 12 W 'speakers occupied a leisurely Saturday afternoon, with plenty of time to watch "World of Sport" while the glue driedl
The cabinets are constructed from a material described as 'MDF', which looks like very high density chipboard to me; in any event, it certainly lives up to the makers claim that "It machines cleanly and accurately without the ragged edges associated with chipboard components". The side and top panels are prefinished solid African Walnut which, together with the simple but reliable construction method described later, give the finished units a solid appearance, not at all like a 'homemade' unit.

Doing It Yourself

The speakers arrived, in bits, in two weighty cardboard boxes, and when unpacked formed an impressive if confusing array of high-density chipboard panels, foam-shrouded driver units, printed circuit boards, black acoustic foam, white wadding, and glossy brown African walnut panels. The instructions were roughly copied and seemed not altogether comprehensive, though in the end they proved adequate (remember the Golden Rule - when in doubt read the instructions!).

Nearly complete, the driver units have been screwed into place. The bass and mid-upper units are physically very similar, and must be checked carefully to make sure they go in the right openings (bass at the bottom).

Tools required to assemble the kit are minimal: a pair of cross-head screwdrivers, a tube of woodworking glue, a roll of masking tape, a damp cloth to remove excess glue, a small power or hand drill with a $1 / 8$ in bit and a small hammer
My initial doubts about the instructions were soon resolved. These said, in effect, "apply glue to the relevant surfaces, slap the panels together and hold them in place with masking tape while theydry". What? No screws, clamps or wood presses? No, not one; the panels are so finely and accurately machined that the box can be assembled virtually free-standing, the precision joints providing sufficient rigidity to hold the whole thing in place. The masking tape gives a slightly tighter and more securely sealed joint, but mostly seems to be for insurance (and assurance for the doubting constructor).

The remainder of the construction is equally simple, as illustrated by the accompanying photographs; there are one or two points worth noting, though.
One of the secrets of obtaining good clean bass response is to ensure that the cabinets are completely airtight; the slightest leak and your prized 'speakers will wheeze like a bagpipe with a hole in it -and sound almost as appealing! The trick I used was to seal the inside of each joint with a liberal bead of ordinary bathroom waterproof sealant, of the type sold in most DIY shops. This ensures that the panels are completely airtight (watertight, too). The front
baffle-board cannot be sealed this way however, so I applied a thin line of glue to the outside of the joint, carefully wiping off the excess with the damp cloth. These steps are perhaps not necessary if you take due care to secure the joints, but the cost and effort is minimal for a guaranteed result

The pre-assembled crossover board can be mounted anywhere within the cabinet, as long as the leads will reach from the PCB to the drivers. I found it odd that these mounting holes were not pre-drilled, as this would have simplified the construction considerably, but apparently Wilmslow have found that people have different ideas about locating the crossover board within the cabinet. Personally, I don't see that it matters.
I had some slight difficulty with the construction at two stages only: the foam gasket in which the mid-range and bass drivers sit has to be cut up and rearranged around the flange to clear the bolt holes; then I found that the tweeter did not want to sit firmly in its milled rebate, apparently because the centrally mounted shelf was blocking it Fortunately, the glue had not yet dried so I was able to move the shelf backwards, secure the tweeter, then gently knock the shelf forward into position.

The only items with which I was just slightly unhappy were the banana sockets supplied for connecting up the 'speakers to the amplifier. While they have proved adequate, so far, I would
have preferred solid spring-clip connectors for that extra measure of security.

Finally, though, when the dB12W kit was completed and booming out "The Wall" at top volume (the neighbours had been warnedl), minor problems and quibbles were blasted into insignificance.
There is one other cautionary note which, however, applies to most makes of 'speakers, rather than the dB12W kit in particular. Like most modern loudspeakers, the dB12Ws are fronted by an acoustically transparent foam grille, which nicely complements the polished woodwork and looks at home in most decorative schemes. But the family cat seems to find the foam totally irresistable, preferring it to all other scratching posts|

The dB12W kit is priced at $\mathrm{f108}$ including VAT, with postage and insurance $£ 4.50$ extra. Other selfassembly kits in the range go from the dB4C, at $£ 35.95$, up to the Jordan System 4, which is priced at $£ 330$ and requires considerable woodworking skills for, as Wilmslow put it, "Built any good sideboards lately?". There are many types in between and it is worth checking the Wilmslow catalogue before coming to a decision.
Write to Wilmslow Audio Ltd. 35/39 Church Street, Wilmslow, Cheshire SK9 1 AS, or telephone Wilmslow (0625) 529599.

Hemmings Electronics Ltd

Electronic Components \& Microcomputers
16 BRAND STREET, HITCHIN, HERTS, SG5 1JE

 Sat 9am to 5.00
Wed Closed

TERMS OF BUSINESS - Professional quality electronic components brand new and fully guaranteed. Man order by return of posi. Cash. Cheque, Postal Order or Bankers Draft with order payable to HEMMINGS ELEC
TRONICS LTD. Access or Barclaycard availabie using our 24 hour answerphone service. Monthly Credtit Ac. TRONICS LTD. Access of Barclaycard availabte using our 24 hour answerphone service. Monthy Crest
counts availabie on request 10 government and educational authorities. Industrlaa customers wishing to open a credit account are required to furnish a bank reter ence and two trade references. Postage and packing add $45 p$
to all orders under $\mathrm{f10}$. All prices are exclusive of VAT. Please add 15% to total including p\&p. No VAT on exto all orders under $\mathrm{E1}$

2N3822

2N3822	120p	2N4922
2N3823	95p	2 N 4923
2N3824	$95 p$	2N5190
2N3866	90 p	2N5191
2N3903	15p	2N5192
2N3904	15p	2N5193
2N3905	15p	2N5194
+3906	15p	2N5195
2N4123	$25 p$	2N5400
2N4125	25 p	2N540
2N4391	70p	2N5415
2N4392	70p	2N5416
2N4400	200	2N5457
2N4401	$25 p$	2N5458
2N4402	250	2N5459
2N4403	$25 p$	2N5460
2N4410	45p	2N5551
2N4416	95 p	$2 \mathrm{SC495}$
2N4856	80	2 SCl
2 N 4857	80 p	2 SCl
2 N 4918	95p	2 SC 20
2 N 4919	${ }^{120 p}$	2 SC
2N4920	130 P	VN10
2N4921	105ip	40673

LIQUID CRYSTAL
DISPLAY MODULES
PCIM177 Frequency Counte
5 Digits 0.35^{-}
5 Digits, 0.35°
FM. SW, MWZ MH, KH
Annunciators
Sample and Hoid Capabil
Reset Capability
25 Selectable If Of
Prescaler Available
Prescaler Available
Incanciascent Back
incanciascent Backlight ing
Supply Voltage 5 y
Operating Current 4 mA
Operating Current 4mA
PCIM176 Oigital Meter Module
PCIM176 Oig
3 Digits, 0.5
+a0mv Full Secarmal Point
True Differential thput
Guaranteed "0" Reading
Singte 9v Operatio
Power Consumptio
Accuracy $0.15 \%,+1$
Temperature Drifin 80
Lemperature Drific 80
Low Battery Indicato

ALFAC ETCH RESIST TRANSFERS		
Make your own Printed Circuit Boards with our PCB ransfers		
- Oraw your artwork on 0.1 grid		
using carbon paper		
- Burnish the Alfac transters to		
alignment	carbon marks to assist in accurate	
- Using Alfac chemical eraser to		
Etch in Ferric Chloride		
EC900/1 0.1" Edge Connector EC902/1 0.156* Edge Connector		
EC940 0.016 ${ }^{-}$Lines		
EC941 0.031" Lines		
EC942 0.039** Lines		
EC943 0.049* Lines		
EC944 0.061"Lines		
EC946 0.100^{*} Lines		
EC950/1 0.031* 90° Bends		
$\begin{array}{llll}\text { EC952/11 } & 0.031^{-} & 30^{\circ} .45^{\circ}\end{array}$		
Bends		
EC952/2 $0.0611^{\prime \prime} 30^{\circ} .45^{\circ} .60$		
BendsEC908		
EC911 0.189* Pads		
EC960/1 TO-5 Transistor		
EC993/1 IC Pads		
EC997/1 IC		
5 identical sheets in sealed		
pack lndividual sheets 195p $45 p$		
Spatula AR4 for burnishling 45p		
Alfac knite 180p		
Spare Blades (pack of 10) 280p		
Alfac Eraser Precision Grids		
Polyester film, matt finish 0.14 mm thickness, 20 lines/in		
A3		
		100 p
Double Sided Fibregiass Board		
1/16* thickness, 102 Copper		
$5^{\prime \prime} \times 4^{\text {* }}$		
$5^{\prime \prime} \times 8^{\prime \prime}$		
GO FORTH AND		
MULTIPLY		
MUCH QUICKER		
in stock		

SAVE £4.25 by receiving a FREE magazine binder when you subscribe to

It's true, by subscribing to Hobby Electronics you will not only recelve your personal copy direct to your door for a whole year but also have a superb A S P magazine binder In which to keep your coples AND IT'S FREE!
All you have to do to recelve your FREE binder is book a new subscription or renew an exlsting subscription to Hobby Electronics before 30th AprII 1983. What could be simpler? Normally priced at $£ 4.25$, these attractive binders will hoid approximately 12 issues of Hobby Electronics.
Not for you any longer the chore of having to track down dogeared coples of your favourite magazine, Instead you will merely go to your bookshelf and they will be walting for you in pristine condition.
Don't miss out on this outstanding offer - subscribe today and recelve your FREE binder within 14 days of your order beling received.

SPECIAL OFFER

Cut out and SEND TO :

513. LONDON ROAD.

THORNTON HEATH, SURREY, CR4 6AR ENGLAND.
Please send my free binder and commence my personal subscription to with the

SUBSCRIPTION RATES
(tick \square as
appropriate)
£11.95 for 12 Issues UK E13.95 for 12 issues overseas surface \square £26.90 for 12 Issues Alr Mall

I am enclosing my (delete as necessary)
Cheque/Postal Order/International Money Order for £
(made payable to ASP Ltd)
OR
Debit my Access/Barclaycard ${ }^{\circ}$
("delete as necessary)
Insent card no. \qquad
Please use BLOCK CAPITALS and include post codes.
Name (Mr/Mrs/ Miss)
delete accordingly
Address

Signature

Date

THE ELECTRONIC REVOLUTION: THE ELECTRONIC AGE

For better or for worse, the Atomic Age began on 16th July, 1945. The Electronic Age dawned just two years later with less of a bang, though with equally significant after-effects.

John Biggins

IT IS VERY RARELY indeed that the birth of a new era can be located exactly on a particular day. The explosion of the first atomic bomb on 16 th July 1945 at Almagordo, New Mexico is the twentieth century's most obvious candidate for the title of a day which changed the world for ever. But there have been a few others, and the events of 23 rd December 1947 at the Bell Laboratories certainly give that date a strong claim to be one of history's great turning points. On that day the world's first transistor was made to work.

Some inventions creep up upon the world rather than burst upon it. Faraday's magnetic induction demonstration in August 1831 took a good half-century to turn into even the beginnings of an electric power industry while wireless dawned so gradually that we cannot even say with any certainty who transmitted the first signal. Some inventions like television were eagerly awaited for decades before anyone could produce a workable system, while other like radio-telephony lay around for years before anybody realised what could be done with them.

But the transistor fell into none of these categories. Its birth that day represented the pinnacle of nearly thirty years' concentrated research by some of the most talented physicists in the world, all labouring with the conscious aim of constructing a solid-state analogue of the
wireless valve. And over the previous three years, Bell Labs alone had invested several million dollars and some of its best researchers in the project. Nor were the implications of the event lost on those present. No one had much idea of the sort of world that the transistor would have produced thirty-five years later but all those who were there seem to have been conscious that something out of the ordinary had happened and that things would never be the same again. In the event it took a decade for the transistor to be perfected and built into electronic technology, but when this happened it pushed the science of electronics into an age of exponential growth which has done more to change the world in the last generation than steam did in the two centuries before that.

Like its near-contemporary the atom bomb, the transistor is a classic case of development not by technological push, but by demand-pull. The state wanted the bomb and the corporations wanted the transistor for their own purposes, and both were prepared, whether the project turned out to be feasible or not, to invest any amount of money and time and research talent towards achieving it.

The idea of a solid-state transducer was almost as old as wireless itself. In fact, wireless wave detection began with a primitive semi-conductor, the coherer,
and continued for many years afterwards with another form of the semi-conductor in the shape of the crystal detector. Looking back, you might almost see the halfcentury of thermionic valve development following Fleming's diode of 1904 as a blind alley in electronics history. Valves came in largely to make up for the deficiences of the crystal detector: its fragility, its need for constant delicate adjustment and above all its puny current output. Valve manufacture began by having access to all the resources and experience of the light-bulb industry out of which it had accidentally sprung, and the valve's versatility as oscillator, detector or amplifier led to its dominating radio from about 1919 onwards.

Closing the Valve

Valve design became remarkably sophisticated between the Wars in the hands of specialists like Philips of Eindhoven and the Second World War produced great advances in miniaturisation. But even in the 1930 s it was beginning to be apparent that the law of diminishing returns applied to valve development as to everything else. Research and development could reduce some of the valve's many drawbacks, but could never abolish them: its size, its fragility, the expense of its manufacture, its large power requirement, its need for cooling (40 gallons of water per minute for some of the giant transmitter valves of the mid-1920s) and its highly unpredictable life-span. For these reasons interest in semi-conductors never died away, despite the apparent death of the crystal receiver some time after 1930. For one thing, pure undirected speculative research went its own sweet way during the 1920 s and 1930s. Physicists like Pohl at Göttingen University carried on a long pre-1914 tradition of research into the electrical properties of crystals, though this was sometimes more by accident than by design: as in Pohl's case, where Germany's ruined economy in the years after 1918 prevented him from getting hold of liquid oxygen to study gas conductivity and obliged him to look at solids instead.

Most of this research was quite innocent of any immediate practical application but, at the back of it, the idea of a solid-state analogue to the valve was never far away. One Lilienfeld patented a crystal amplifier in Germany in 1925, though none was ever built and argument goes on to this day as to whether the thing would ever have worked if it had been. All experimenters had to grapple with terri-

Feature

fying problems in getting crystals pure enough to experiment with, but gradually some substances began to emerge as front-runners. Copper oxide was in common use as a rectifier during the early 1930 s, and in 1935 Oskar Heil attempted to build a field-effect amplifier by passing a current through a slab of the stuff forming one side of a capacitator: an idea which was to be taken up again by Bell after 1945, but which was eventually beaten by electron retention at the slab's surface. Embedding an electrode in a crystal to modulate the current passing through it was the obvious next step, and in 1938 Pohl and Hilsch in Germany announced that they were confident of soon being able to use this technique with a potassium bromide crystal to produce the long-sought successor to the triode valve.

Enter Germanium

The war which broke out the following year brought most German research to a halt. But in the end it was the war's demands which forced development of the transistor ahead once more, and in particular the development by the Allies, circa 1942 , of centimetric radar. Ordinary wireless valves had too high a capacitance to detect the returning signal, so the crystal detector was brought out of retirement: this time in the form of a silicon crystal touched by a tungsten cat's whisker. It worked, but not very well. So germanium was investigated as a substitute. The Massachusetts Institute of Technology and about forty other US research institutions got to work on the problem, and by late 1943 germanium detectors were available which could handle up to 150 volts.

When the war ended the research team at Bell Labs, Brattain, Barden and Shockley, were tinkering once more with the field-effect transistor, though this time as part of a vast programme aimed at producing reliable solid-state equivalents of the valve. The field-effect approach was eventually defeated by the surface retention which had beaten Heil a decade earlier. But point-contacts with a germanium crystal turned out to be far more promising. It was a semi-conductor of this type, soon to be christened the transistor, which was successfully tested at Bell Labs two days before Christmas 1947. The more familiar junction transistor followed soon afterwards and the first public demonstration was given at the end of June 1948.

Contrary to later legend, Bell was anxious from the very first to get the transistor as widely used as possible as soon as possible. To this end it was prepared to grant manufacturing rights at very favourable terms. For the first few years, though, there were few takers. Up until the spring of 1953 in fact the main optant was the hearing-aid manufacturer Raytheon which was not too concerned about sound quality so long as it could get miniature, low-power amplifiers. Wireless, television, the telephone manufacturers and (strangely enough) the military showed very little interest at first. True, apart from its size and its low power
requirement the transistor offered few immediate advantages over valves. The first generation were noisy, expensive (about eight times the price of an equivalent valve in 1950), limited in the voltages they could tolerate and limited in their frequency response. Manufacturing methods were often astonishingly haphazard by the standards of a generation later, not so much designing a batch of transistors to fit a desired range of characteristics but rather making the batch and then sifting out those transistors which measured up to the requirements. And there was always the problem of minute traces of impurity left in the crystals, known collectively as 'suddendeathnium', and the reason for the failure of many early semi-conductors. But above all these difficulties there was the attitude of the industry itself. Though interested in solid-state devices, the engineers of the great American and European electronics firms were men who had grown up with valves from their earliest youth. For this reason they tended to regard the transistor as a mere valvesubstitute until well into the 1950 s, by which time it was establishing itself as a technology in its own right and developing the sub-technology of small-scale integrated circuitry which was to lead to the micro-chip in the early 1970 s. This conservatism may have had a great deal to do with the electronics industry's great migration to the Far East from the late 1950 s onwards.

The thing that really made the transistor's fortunes, though, was the providential development, at about the same time, of the digital computer. But unlike the transistor the computer was not propelled into an eagerly waiting world by a massive research programme. Instead it crept up on the human race almost unawares.

Babbage's "Analytical Engine" was perhaps the earliest computer - a machine designed specifically for performing mathematical calculations.
(British Crown Copyright, Science Museum, London.)
The idea of calculating by machine was scarcely a new one in the late 1940 s when the electronic computer began to dawn upon the public consciousness. The abacus, Napier's bones, the slide rule (remember the slide rule?), Pascal's calculator and the Burroughs comptorneter were all attempts - more or less unsatisfactory - to rid calculation of some of that mind-numbing drudgery involved in
projects like the one, about 1840, which had an entire company of Prussian army engineers scribbling away for six months to calculate the curvature of a single lens. In 1833 the mathematician Charles Babbage had designed (but not built) his Analytical Engine: the world's first project for an analogue computer with input, output and some sort of memory. At the very end of the nineteenth century the increasing demands of each successive US census had produced a number of increasingly elaborate card-processing machines to deal with the returns. But true computers required an accuracy far beyond the reach of even early twentieth century precision engineering, and in the mid-1930s the valve began to be built into electronic analogue calculating machines at Harvard University and Bell Labs.

As with the transistor, the demands of the Second World War pushed development forward and began the transition from calculator to true computer. Not only the Manhattan atomic' bomb project but also ballistics trials required calculations of an unheard-of complexity, far beyond the capacity of human beings working unaided. And in this area the Harvard Mark 1 electronic calculator was able to score a notable triumph in 1942 when it predicted - correctly, as it turned out - that the German army would never get anywhere with the electrically powered long-range gun which it was trying to build. Meanwhile, across the Atlantic, the Enigma code-breaking operation required the building of a succession of increasingly powerful electronic ciphermachines at Bletchley Park. On a more mundane level, the vast complexity of modern armed forces led to the development of electronic personnel selectors in an effort to sort out the right man for the job from among the millions available. Evelyn Waugh's novel Sword of Honour mentions one of these latter contraptions installed in a War Department office in London circa 1943. And beyond the strictly technical considerations of electronic systems design, the war led to the first concentrated, systematic study of operational logic, information flow and decision-making: all areas essential to the creation of artificial intelligences after the war was over

And the Computer

The value of electronic calculation was so evident by the time the war ended that the US Government was keen to sponsor the building of the first true electronic analogue computer ENIAC at the University of Pennsylvania in 1946. The previous year John von Neumann had suggested the use of the binary system for electronic calculation, and after Cambridge University's EDSAC in 1947 all computers went over to digital operation. Meanwhile Pennsylvania University was building ENIAC's successor EDVAC with the first magnetic core memory, and computers were moving outside the field of strictly scientific calculation with the US Air Force's Whirlwind flight-simulator. Likewise the universities and government departments lost their monopoly of computer ownership in 1952 when GEC ac-

More than a hundred years after Babbage, the ESDAC I computer was built in Cambridge. It was no smaller, but a lot faster!
quired its Univac I, the first computer in the world to be owned by a private firm.

The trouble with these early computers was their sheer size and unreliability. Bell's Model V in 1944 contained over 9,000 valve relays and fifty pieces of teletype equipment. It weighed ten tons and took up over a thousand square feet of floor-space. Heat dispersal from these forests of valves was a major problem and power requirements were vast. ENIAC used 130 kW and is said to have dimmed lights over half of Philadelphia when it was switched on. Above all, down-time was huge, given the number of valves, their unreliability and the difficulty of getting at them to replace them. When it arrived on the scene at the end of the 1940s the transistor was the answer to the computer builder's prayers, with its miniscule size, cool operation, low power requirement and - post 1953 or thereabouts - long life. From about 1955 onwards the valve began to be ousted by the transistor in computer construction, and as the transistor took over the computer began to move out into the world.

At the end of the 1940s the experts had confidently predicted that a country like Britain would never need more than two or three computers to serve all its needs while the USA itself would only re-
quire a hundred at most. But as is the way with these things, the increase in supply created its own demand. As the computer became smaller and cheaper it was found that more and more previously manual administration jobs could be handed over to the machine: not just censuses and scientific calculation, but banking and payrolls and stock control and police records. From then on it began to affect the lives of every one of us. Computer and transistor were the twin foundations of the post1945 electronic age, and neither could really have existed without the other.

The miniaturization of electronics made possible by the semi-conductors, and the durability and low power consumption which they brought with them, caused another great leap forward (or upward) in the second half of the 1950s. After all, where would space exploration be if it relied upon valves? The nasty blow dealt to American prestige by the launching of the Sputnik in October 1957 led directly to the race to the Moon. But so far as this century is concerned its most important consequence may turn out to have been the birth of space communications. As early as 1928 the German rocket pioneer Hans Oberth had suggested space relay stations in geosynchronous orbit 22,300 miles above the

The ACE computer, built in 1950, still used valves, though less of them than its predecessor ESDAC.

Earth, though in this case he proposed beaming messages up and down by heliograph because of the limited power available from the transmitters of the day. And this idea was taken up again by Arthur C. Clarke in 1945. But it was not until the late 1950s that the idea came anywhere near realisation when the United States launched its first Echo communications relay satellites.

These were passive reflectors: mere balloons of metallised PVC which were supposed to act as mirrors for microwave signals. They were not particularly successful and it was not until July 1962 that the first active relay satellite, Telstar I, was put into orbit, powered by solar cells and capable of redirecting TV signals for that part of the day when it was above the horizon. Geosynchronous orbit followed with the Syncom series of satellites launched from February 1963 onwards. By 1980, upwards of fifty communications satellites were in orbit with a further fifty planned. The tariffs demanded by the international Intelsat corporation were too high at first for more than a minimal amount of direct TV broadcasting via satellite, but from the mid-1970s onwards US television networks and Third World governments alike began to see the advantages of a satellitebased TV system. And not only the advantages of satellite TV but also the benefits of secure telephone communications and computer data links of a hitherto unimaginable speed and purity. Again, once the transistor made it possible people began to think of needs they had never felt before.

Getting Taped

This kind of self-sustaining growth, with new developments creating demand and demand calling forth new developments, has been particularly noticeable in the world of home entertainment over the past eight-odd years. Wireless and television we all know about, of course. But what about recorded music? After all, one of radio's first and greatest conquests in the late 1920s was its absorption, for a time at any rate, of the gramophone: previously a scratchy, faint-sounding, clockwork instrument, but transformed by the valve, the wireless loudspeaker and electric drive into a robust, reliable means of entertainment. The great success story of the age, however, was the tape recorder. The idea of recording sound on magnetic steel wire had been suggested as far back as 1888 . But it was ten years before the Danish inventor Valdemar Poulsen took out a US patent on his Telegraphone. This operated by means of clockwork-driven spools passing wire through a magnetising/de-magnetising coil at a rate of 7 feet per second. It was hailed as a major new discovery when it appeared on the market and Poulsen set up the American Telegraphone Company to sell it, but in the end the idea came to nothing. The machine's frequency response was too poor for use as anything except an office dictaphone and the wire suffered from an incurable tendency to twist and stretch - as well as occasionally snapping and slashing around at high speed until the spools

Poulsen's "Telegraphone" was patented in the US in 1898 and used mainly as a dictaphone. 'Hifi"' had yet to be invented!
(British Crown Copyright, Science Museum, London.)
could be stopped. (Wire recording was eventually used for aircraft flight recorders, because of its robustness, but it was decidedly not bound for the entertainment industry.) All the same, interest never died away completely and post-1918 AEG, Bell, 3-M and the US Naval Research Laboratories were all looking into the idea.

In 1928 the German researcher Pflumer abandoned wire in favour of paper tape coated with iron oxide. Meanwhile the Magnetophon company, also in Germany, worked on plastic-based tape. The Blattner system - used by the BBC for studio recording from 1934 onwards - favoured steel tape which had the disadvantage of having to be cut with shears and spot-welded into splices which went through the heads with a deafening clatter. But during the early 1930 s magnetic tape recording was upstaged by the photo-optical system developed for the talking films.

Interest picked up once more during World War II, and the German Magnetophon system began to pull ahead of its nearest American rival Brush. It was strongly sponsored by the German Propaganda Ministry, who found its acoustic accuracy and the portability of the tapes very useful for broadcasting speeches by the Nazi leadership at times and places which would puzzle Allied intelligence. The result was that by 1945 Magneto-

The modern tape recorder was developed in Germany during World War II, when it was used to replay and broadcast speeches by the Nazi leaders.
(Photo. Science Museum. London.)
phon tape recorders were way ahead of anything that the Allies could produce, with a frequency response of up to 10 kHz . American scientists were highly impressed by German recorders captured at the end of the war, and after several years' work to perfect tape-coatings tape recorders began to appear on the US domestic entertainment market. Meanwhile, small battery-powered tape recorders came to replace wax-disc machines in radio outside broadcasting, doing away with the need for a technician to sit beside the machine while it was recording with a camel hair brush to get rid of the swarf thrown up by the needle. The only technological developments which stood between the tape recorder and a mass pre-recorded music market were the compact cassette to do away with the need for threading the tape (introduced by Philips in 1963), and CrO_{2} tape (launched by DuPont five years later). Once these were achieved, hifi came to be a feature of most households with any pretensions to civilisation.

The "Walkman" and similar cassette players probably represent the ultimate in personal hifi.

Once sourife recording on magnetic tape had become an established technology it was only natural that people should begin to think of some better means of recording TV programmes than merely pointing a cine-camera at the screen. It is odd to remember, though, that video recording is an idea as old as television itself. In 1930 the Baird Television Company had tried to market shellac video discs with its 'Televisor' receivers: no great problem in theory, since all the disc had to do was to vary the output of a neon lamp shining through a Nipkow disc onto the back of a ground glass screen. The Baird discs turned out to be even less of a success than the Televisor itself and sank without trace after a few months. It was not until 1951 that the Crosby Laboratories developed a video recorder which could register a TV signal magnetically: in this case along the length of a tape running past at over eight feet per second. This method gave tolerable picture quality but was so greedy of tape - something like three miles for a half-hour programme - that the idea never made it outside the laboratory. The first commercially usable video system came in 1956 when the American Ampex Corporation brought out a recorder which entered each picture
frame transversely on a two-inch-wide tape. A similar system was taken up by the BBC under the acronym VERA in the same year, and between them these two video systems dominated broadcast TV for the next twenty years, even though they were both about the dimensions of two wardrobes stuck together, and used tape spools the size of bicycle wheels. -They gave a very good picture, but they and the later, smaller, versions of the studio VTR were clearly out of the question for the home user.

Helical scanning was developed by Sony in the mid-1960s as a compromise between tape width, speed and picture quality. It opened the way to a consumer video market but for some reason perhaps because people were still absorbing hifi sound recording - it failed to catch on until the late 1970s when TV addicts in the USA began to appreciate the domestic VTR's time-shifting capabilities. Suddenly the market exploded as it became profitable for the Japanese electronics industry to tool up for mass production of domestic video recorders. The American film industry began its belated shift towards producing for TV and video first and the traditional movie theatre second. Meanwhile cable TV, satellite TV and the prospect of fibre-optic cable TV were starting to follow the way cut by the VTR in fragmenting TV audiences to the point where people now speak of 'narrowcasting' as the dominant home entertainment form of the 1980 s .

It is only just over a century and a half since Faraday made his historic demonstration of electro-magnetic induction and only just over a century since Britain got its first public electricity supply. During that time electricity has advanced from being a barely understood and not particularly useful scientific freak to a point where it is the lifeblood of our civilisation. A great many of its innovations have merely helped us to cope with difficulties which we would never have had in the first place without those same innovations - the pocket calculator and the photocopier are the two examples which come readiest to mind - but good thing or not, the technology was there, and so it happened. The only safe prediction now, in Anno Domini 1982, is that we are only seeing the beginning.

A PAM transistor radio dating from 1956. As today, the physical size was determined by the need for a relatively large loudspeaker.
(British Crown Copyright, Science Museum, London.)

Lightning ELECTRONIC COMPONENTS
THE CHOICE IS YOURS - CALL AT OUR NEW SHOWROOM OR USE OUR VERY FAST MAIL ORDER SERVICE.
EITHER WAY WE'LL KEEP YOU HAPPY *****
Furthermore we promise if any part ordered by mail fails to please just return within 7 days for a full refund.
For a vast selection of electronic components \& equipment of all kinds. Here is just a selection of our stocks. Many more items listed in our catalogue available now 70p post paid.

LIGHTNING ELECTRONIC COMPONENTS

Showroom \& Mail Order Distribution Centre at:18 Victoria Road, TAMWORTH, Staffs B79 7HR Telephone 0827-65767.

OPTO ELECTRONICS

LEDS

$3 \mathrm{~mm}, 5 \mathrm{~mm}$, Rectangular Diffuse Gravestone:
Red - 8 p
Orange - 8p (not Gravestone)
Yellow - 10p
Green - 10p
3mm Red Battery Status - 20p
5 mm Red Flasher - 40p
5 mm Bi Colour Red/Green - 50p
$3+5 \mathrm{~mm}$ Red Constant Current - 20p
3 or 5 mm Mounting Clips - 2.5p

INFRA RED EMITTERS

3mm TIL32 Type - 40p
5 mm TIL38 Type - 40p IRL60 Mini Radial - 30p IRL80 Side Looker - 40p INFRA RED SENSORS
3mm TIL78 Type - 40p 5mm BP103B (Trans) - 45p Pin Diode (Side Looker) - 85p NORP12 (Resistor) - 75p LPT100 (Transistor) -40p

DISPLAYS
DL304/307.75p
DL704-90p
DL500/507-85p
DL527/528-£1.50
DL0727 (Orange) - £2.00
DL0747 (Orange) - £1.00
DL6304/307 (Green) - 80p
RB61000-£1.60
4 Digit $0.5^{\prime \prime}$ Clock - $£ 2.00$
9 Digit Calculator - 50p
DL1414 Intellegent - £12.50

OPTICAL ISOLATORS

IL74 (6 pin) - 60p
ILD74 (8 pin) - 99p
ILO74 (16 pin) - £2.25
4N26 (6 pin) - 53p

STARTER KIT

5 each, 4 colours, $3,5 \mathrm{~mm}$, Rectangular Gravestone Leds 2 each, TIL38, 78, Photo Diode/2 each, ILD74 ISOL 2 each, DL307, 704, 500/1 $\times 9$ Digit Calculator Stick £10

For full details of our extensive Opto range a 52 page cata logue is available at $£ 1.25$ including P\&P \& VAT or free with order £10 or over in value.
 dicken house, ORCHARD LANE, HARROLD, BEDFORD TELEPHONE: (0234) 720575 TELEX: 825744

TERMS - All prices exclusive of VAT and are subject to availability plus 60p P\&P.

BBC Micro/ HEBOT Owen Bishop Interface Hobby Electronics' maestro of the

 micros describes a versatile interface which joins the HEBOT II to the BBC Microcomputer, Model A or Model B, or which can be used for any other imaginable purpose!UNTIL NOW, the only way to command our friendly robot has been by using a 2×81 computer. Now we add to the list of the controllers of HEBOT, by publishing another interface; this one lets you operate HEBOT from the keyboard of the BBC Microcomputer. The interface plugs into the 1 MHz socket, which is found on both Model A and Model B.

The interface has exactly the same facilities as that published in November 1982, for the ZX81. It has an eight-bit data output for controlling the motors, the pen, the lights and the horn, and it has a 4-bit-data input for reading the touch sensors. It also supplies the power needed for operating the circuitry of HEBOT, including its motors and solenoid. The ZX81 supplied 10 V (or thereabouts), this being the output from the ZX mains adaptor, while the BBC Microcomputer has a nominal 12 V output which can supply up to 1 A25, and this is more than enough for HEBOT. Readers who already have HEBOT need not worry that the power supply from this interface is 12 V , rather than the 10 V which little HEBOT has been used to receiving from the $\mathrm{Z} \times 81$. Powertran Ltd. who supply the HEBOT II kit, assure me that the motors and solenoid are in fact rated for 12 V operation, though they work just as well on 10V. You might find that HEBOT nips around the room a little faster when connected to the BBC Microcomputer! The other components in HEBOT are able to work just as well with a 12 V supply as with a 10 V supply, though his eyes may glow that bit brighter and his voice may become that bit stronger. So it looks as if an invigorated HEBOT will soon be evidentl

It is worth noting that this interface could also be used to control any other device instead, provided it works with an eight-bit TTL input and a fourbit TTL output.

HEBOT Meets The Micro

The interface provides an eight-bit data output and a four-bit data input, and consists of three parts: the Decoder, which decodes signals on the address and to the control lines; the Latches, in which data from the computer is temporarily stored in send on to HEBOT; and the input Data Buffers, which receive data from HEBOT and pass it on to the micro when asked.
The BBC micro, in common with most others, has 16 address lines; the upper 8 of these are decoded internally to produce an output which goes by the remarkable name of FRED. Normally the voltage level on FRED is 'high', but when any of the

256 addresses in the range $\& F C O 0$ to \&FCFF is written to or read from, FRED stops feeling 'high' and feels rather 'low' instead. This leaves only the lower 8 lines (AO to A7) to be decoded at the interface. The circuit diagram, Figure 1, shows how these are decoded by a number of simple logic gates. The address allotted to HEBOT is \&FCFO, which is "1111 110011110000^{\prime} in binary; FRED takes care of the ' 11111100 ' and the interface takes care of the '1111 0000°

Writing Home to HEBOT

The final gates in the chain take the state of the Read/Write (R / \bar{W}) line into account. When the micro wants

Figure 1. The full circuit of the BBC/ HEBOT Interface.

FROM HEBO

Figure 2. Block diagram of the system.

to write to HEBOT, this line is taken low, consequently the output at pin 8 of IC3 (which we have called 'WRITE') goes 'high'. It is not possible to detect this high pulse by using a voltmeter, for it lasts only a fraction of a microsecond, however it is long enough to trigger the latches of IC4. The output of each latch assumes the state which is present on its data input line at the instant that WRITE goes high, and this output level is fed to HEBOT through resistors R1 to R8. Once latched, the output remains unchanged, even though the data itself is no longer present on the data bus. Indeed, the micro may be writing different data to other parts of its memory but HEBOT's data remains held at the latches, giving HEBOT plenty of time to respond, and it remains unchanged until a new set of data is written to the latches.
When the micro wants to read data from HEBOT's sensors, it addresses HEBOT at \&FCFO, as before, but this time the R / \bar{W} line is taken 'high'. The result is that the output of IC3 at pin

6 goes low. We call this line $\overline{\text { READ }}$, and when READ goes low, it enables the data buffers of IC5. In their disabled'state these buffers have what is called a 'high impedance output'; in other words, there is a very high resistance (several hundred thousand ohms) between the buffer output terminal and the data line. In effect, then, the buffer is disconnected from the data line and cannot supply data to it.
When the buffers are enabled, they have normal TTL output characteristics: if a buffer is receiving a high input from one of the sensor circuits of HEBOT, the corresponding line of the data bus is made high; if the sensor circuit has a low output, that line is low. There are only four sensor outputs from HEBOT, so only the lower four lines of the data bus are connected to the buffer IC. A hex buffer (74LS367) was chosen in preference to a quadruple IC (74LS125) since it has only one enable input shared between the four buffers we are using, whereas the

74LS125 has a separate enable input for each buffer, making the wiring more complicated.

It is feasible to wire up the other two buffers to provide a six-bit data input to the micro, if you like. If you are thinking of giving HEBOT one or two additional sensors, take their outputs to pins 12 and 14 of IC5, connect the buffer outputs (pins 11 and 13) to D4 and D5 and join the other enable input (pin 15) to pin 1. You will also need to remove the track which at present connects pins 12,14 and 15 to the +5 V rail.

Construction

The interface is built on a doublesided PCB; most of the wiring is on the under side of the board, but the power rails and a few linking tracks are on the upper side.

If you are making your own board, take special care that the two designs are exactly registered with each other on opposite surfaces of the board. There are some 'tight squeezes' in certain parts of the board; also there are 28 points at which the tracks on the upper and lower surfaces must be connected and pads are provided in the design where these connections are to be made. Drill a hole through the board in the centre of one of the pads; if registration is correct, the drill should pass through the centre of the pad on the opposite surface. Pass a 1 mm terminal pin through the hole and solder it to the pads on both surfaces of the board. If you want to make a more professional job of the board, you can use the special
'through-PCB' pins which are obtainable from some suppliers, but you need three proper terminal pins at the points where the power supply cable is to be connected.

The ICS can be soldered directly to the board, thus saving cost, though it is advisable to use sockets since it is often useful to be able to remove an IC when tracing faults. Do not insert the ICs until all the wiring has been completed and the preliminary wiring checks described below have been undertaken.

Connections To The Board

The interface is joined to the micro by a 34-way ribbon cable. At the micro end, the cable is terminated in a 34 way Speedbloc connector, which must have a central key in order to mate with the socket on the micro.
Speedbloc connectors are of the insulation-displacement type and are very quick to attach to the cable, but a vice is essential for this. You also need an adaptor tool (which is inexpensive) but if you lack the equipment, it is far simpler to purchase the cable with the connector already attached to one end (see Buylines).

Note that the diagrams of the 1 MHz bus in the BBC Microcomputer System User's Guide are incorrect at least, those in my copy (issued late

PARTS LIST

RESISTORS

(All $1 / 4$ watt 5% carbon)

R1-R8

CAPACITORS

C1 \qquad 25 V axial electrolytic

SEMICONDUCTORS

IC1 74LS40 dual 4 -input NAND gate,
IC2 74LS27 triple 3 -input NOR gate
IC3 74LS00 quad 2 -input NAND gate
IC4 74LS373 octal D-type latch
IC5 74LS367
hex bus driver, three-state output

MISCELLANEOUS

PCB; 3×14-pin IC sockets, 1×16 pin IC socket; 1×20-pin IC socket; 3 $\times 1 \mathrm{~mm}$ terminal pins; $25 x$ through. PCB pins, or 1 mm terminal pins; ABS case, approx $150 \mathrm{~mm} \times$ $80 \mathrm{~mm} \times 5 \mathrm{~mm}$; 34-way Speedbloc cable-mounting socket; 34 -way ribbon cable, approx 60 cm ; 16 -way ribbon cable, at least 1 m ; wire, solder, nuts and bolts etc.

BUYLINES

A complete kit of components and parts for the BBC-HEBOT Interface is available from Kelan (Hobbyboard) Ltd., North Works, Hookstone Park, Harrogate, North Yorkshire for $£ 24.00$.

Figure 3. Schematic view of the connectors underneath the BBC Micro.
1982) are! The diagram of the various sockets on pg. 499 suggests that the 1 MHz bus has 26 pins, yet a simple count shows it to have 34. The diagram on pg. 503 shows 34 pins, provided that one ignores the rather odd OV and +5 V pins which do not exist on the 1 MHz socket itself. The next error is that the numbering of pins in the two drawings is inconsistent; in this article we adopt the numbering shown on pg. 503, beginning with pin 1 at the bottom (a OV line) and ending with pin 34 at the top (address line A7). Once again, we ignore the spurious 0 V and +5 V pins. On this reckoning the pin numbering on pg. 499 is wrong in orientation, as well as in magnitude, and should be as shown on the diagram we publish here. IWe have now learned that recent issues of the Guide have been corrected-Ed.) It is essential to understand the pin numbering system before you attach the Speedbloc plug and solder the cable to the interface board.
Table 1 shows that HEBOT uses only 18 of the 34 lines available at the 1 MHz bus port. Certain of the lines may be cut short at the interface end of the cable, as shown in Figure 4 but make sure that the cuts are clean, so that there are no thin filaments of wire protruding from the cut insulation to cause a short-circuit with an adjacent wire. The same consideration applies when you solder the wires to the board; make certain that all the strands of each wire go through the hole. Examine your work with a lens when you have finished, looking for single strands lying on the top surface of the board and pull off any that you see.

Power Supplied

The power supply for the interface and for HEBOT is provided from an outlet on the underside of the keyboard. This is marked 'Auxiliary Power Output' and has a special sixway socket normally used to provide power to the disk drive. The drawing shows which pins to connect, so make sure that you get the orientation

	Teble 1 CDNNECTIONS OF THE 1 MHz BUS		
Line no.	Name	Function	$\rho=\text { used }$ for HEBOT
,	OV		
$\frac{2}{3}$	R/W	Read/write strobe	-
4	1 MHzE	1 MHz clock	
6	OVM	Non-maskable interrupt	
7	OV	Non-maskabie interrupt	
8	180	Interrupt request	
10	FRED	Negative strobe FCOO.FCFF	-
11	OV		
12	JIM	Negative strobe FD00.FDFF	
14	ast	Systern reset	
15	OV ANALOG in		
16 17	$\begin{aligned} & \text { AN } \\ & \text { OV } \end{aligned}$	Analogue input	
18	D0	Daza bus. least sig. bit	
19 20	D7	Data bus	:
20 21	-	Data bus	,
22	04	Data bus	
23 24	- ${ }_{\text {D6 }}^{\text {D6 }}$	Data bus Data bus	:
-25	-7	Data bus, most sig, bit	-
26	ov		
27	${ }_{\text {A }}{ }^{\text {a }}$	Address bus, least slg. bit	-
29	${ }_{\text {A }}{ }^{2}$	Address bua	-
30	${ }^{\text {A }}$	Address bus	:
31 32	${ }^{\text {A }}$	Address bus	-
33	A5 A6	Addrets bus Address bus	:
34	A 7	Address bus, most aig. bit of lower byte	-

Table 1. Correct pin numbering and function for the 1 MHz bus.

Table 2					
BEC 1 MHz BUS					
LINE	FUNCTION	HEBOT CABLE		POWER LINES	
2	$\mathrm{R} \bar{W}$	BLACK	04	blue	ov
10	FRED	BROWN	D2	Red	+5V
18	Do	RED	D3	GREY	+12V
19	D1	ORANGE	D7		
20	D2	YELLOW	D6		
21	D3	GREEN	+12V		
22	D4	blue	+12V		
23	05	VIOLET	ov		
24	D6	GREY	OV		
25	D7	WHITE	D5		
27	A 0	Brown	D0*		
28	A1	RED	D2*		
29	A2	ORANGE	O1.		
30	${ }^{43}$	YELLOW	01		
31	A4	GREEN	Do		
32	A5				
33	A6				
34	A7				

Table 2. Summary of the input and output connections of the Interface.
correct. You need a three-way cable of about the same length as the ribbon cable; connect the other ends of the wires to the three terminal pins marked $0 \mathrm{~V},+5 \mathrm{~V}$ and +12 V on the interface board.

The board also provides connections for the 16 -way cable that goes to HEBOT, and this has the same order of pins as in the $\mathbf{Z X 8 1}$ version. If you already have a HEBOT tethered to the

Figure 4. The component overlay; the component-side tracks of the double-sided board are shown in red.

Figure 5. The PCB fits neatly into a standard case, but slots must be cut and filed for the ribbon cables.
other end of the cable, do not connect the it until the wiring has been tested as described in the next section. If you are beginning with a new cable, solder this to the interface board and strip its wires at the other end, but do not solder it to HEBOT until testing is complete.
There are many ways of enclosing the interface; the simplest method is to mount it in an ABS box of convenient size. Certain types of box
have notched strips which slide in grooves on the inner side of the walls, and this board is of the correct size to slip easily into one of these boxes. Before putting the board in the box, though, cut slots for the cables, as shown in the drawing, and bore a hole for the power cable.

Checking The Wiring

There are only five ICs but there are many connections between them, the micro and HEBOT, so it is well worth while making a systematic check for short-circuits and faulty joints before you attempt to plug the interface into the micro. Use a multimeter to check that there are no short circuits between adjacent wires of the micro cable, working your way along the row of pads where the cable is soldered to the board. Similarly, test for short-circuits where the HEBOT cable is joined to the board.
(Alternatively, a variety of PCBinterconnecting plug and socket systems are available which will result in a much neater and safer project. However, they have not been specified for the Interface for reasons of cost, so we'll leave this detail in the
hands of the dedicated constructor. Next, insert the ICs in their sockets then, using the multimeter as before, check all the connections from the input cable to the terminal pins of the ICs and all connections between the ICs themselves. You are a maestro of the soldering iron if you do not discover at least one dry joint which could ruin the operation of the interface. Similarly, check the power connections and, finally, check that there is no short-circuit between the 0 V and +5 V line (the interface takes only 45 mA at +5 V , so this is well within the capability of the micro's power output rating).

Testing On The Micro

Insert the Speedbloc plug into the 1 MHz socket on the underside of the micro and insert the power plug into the power output socket; have a multimeter handy, set to a voltage scale to read up to +5 V . Temporarily connect the negative probe of the meter to the OV line of the interface - the pin to which the OV supply line is soldered will do. Arrange the further end of the HEBOT cable on the table so that the bared ends are spread widely apart, with no chance of them touching each otherl If you have not yet soldered the HEBOT cable to the board, it will not be as easy to perform the tests, but you should be able to manage by making connections as required to the far ends of resistors R1 to R8, or to the pads for DO' to D3'.

When all is ready, switch on the TV set or monitor, then switch on the micro. If it fails to display its customary legend on the screen ("BBC Computer. . .") or the usual bleep from the loudspeaker is not heard, switch off immediately; you have probably still got a short to one of the address or data lines. Go back and retest the interface, but thoroughly this time!

As explained in the section on addressing, the interface is placed at address \&FCFO (64752 in decimal), and we treat the interface as a single byte in memory, writing data into it or reading data from it. To test output to the interface, first type:

$$
H=\& F C O
$$

then press "Return'. This sets variable H to the address of the interface (better to refer to it as the address of HEBOT, since eventually HEBOT will be attached to the interface). Next type:

$$
? \mathrm{H}=\& \mathrm{FF}
$$

then press 'Return'. This command uses the Indirection Operator, ' 7 ', as explained on pg. $4 u y$ of $i_{1, ~ e ~ u s e r ~ s ~}^{s}$ Manual, to write 'FF' into HEBOT's address. In binary, 'FF' is '1111 1111', so we shall expect that all 8 outputs of the latch IC will now be 'high'. Use the testmeter to measure the voltage at the HEBOT cable end for all of lines

Popular Computing

D0 to D7, but do not expect to read +5 V , even though we often equate 'high' with this voltage. In practice, anything over +2 V is 'high' to a TTL ICI Now key in:

$$
? H=\& 0
$$

then press 'Return'. There is no need to repeat ' $M=\&$ FCFO' $^{\prime}$ unless you have switched off the micro or inadvertently pressed 'Break'. After this, all the outputs DO to D7 should be low, (less than OV8). If any line fails to go 'high' on the first command and 'low' on the second, switch everything off and re-examine the board for faults, concentrating particularly on the faulty line.

For a final check on output, try writing other values to the HEBOT address. For example, if you key '?H $=\& A A^{\prime}$ you are sending the bit pattern ' 1010 1010', ie the even numbered data outputs are 'low' while the oddnumbered ones are 'high'. Now to test the input side. The command for this is:

PRINT ?H

then press 'Return'. It is handy to set up one of the user-defined function keys to do this. The command causes a decimal number representing the input state of all eight data lines to be printed on the screen. Thus the values printed normally range from 010000 0000, all lines 'low') to 255 (1111 1111, all lines 'high').

However the output from HEBOT is present on only the lower four data lines so when reading from HEBOT, there is nothing connected to the upper four data lines. A line with no input reads as 'high' so D7 to D4 always produce '1111'. Thus the range of values obtained by testing HEBOT lies between 240 (11110000) and 255. If all of the lines DO' to D3 are left unconnected, then all lines are effectively high, and '255' appears on the screen. Now connect line DO' to the OV rail and key the command again. You should see ' 254 ' this time, for the data input is ' 1111 1110'. Try various other input combinations, grounding one or more lines of DO^{\prime} D3'I If you convert the number on the screen to its binary form, the ' 0 's correspond with a grounded data input.

Interference

You may find that sometimes the value you get on the screen is lower than expected. In particular, it may be 16 less than expected. This is due to a 'low' appearing on data line D4. Now, this cannot be coming from the interface in the normal way, for the interface has no output to line D4 or any of the upper lines.

This 'low' is due to electromagnetic interference between adjacent wires in the cable, and becomes more evident the longer the cable; it would have improved matters if the 1 MHz bus had had grounded (OV) lines alternating with each data line and address line. The diagram on pg. 505 of the BBC Manual shows that there
are such grounded lines on part of the bus (between lines carrying control signals), but not on the part carrying data and addresses. Grounded lines would have shielded wires from this interference and though the lack of shielding does not matter normally (for most interfaces would be sending firm data along every line of the bus), with this interface the upper four lines are left 'floating' and prone to pick up any interference which is around.
Fortunately it is no problem to program the micro to ignore the upper four data lines completely, as in line 90 of Program 1. In transmission of data to the interface, interference does not occur, for none of the lines are 'floating'.
If, in the tests above, you find that any combination of the lower four data inputs does not produce the corresponding figure on the screen (ignoring odd effects of interference on the upper four lines), switch off and re-examine the interface board, especially the line which is giving trouble. Assuming that all now appears to be in working order, switch. off, and make the connections to HEBOT.

Two HEBOT programs in BBC BASIC.

Programming HEBOT

The tables on pg. 11 of the November 1982 issue of HE summarises the ways of commanding HEBOT and reading from the sensors, and exactly the same arrangement of data lines is used in this interface. The programs in that issue are in Sinclair BASIC; here we list equivalent programs in the BBC BASIC, which differs in a number of respects from Sinclair BASIC. The first program is the "walk and avoid routine, in which HEBOT moves forward, eyes flashing menacingly until it runs into an obstacle. Muttering. under its breath (or rather, tooting vociferously on its speaker) it backs away, turns left and then procedes in a forward direction again. Those of you who have seen the pond animal, Paramecium (or any of its relatives), alive under the microscope, will know just how HEBOT behaves with this program.
The second program allows you to type in a sequence of commands and then run the program so that HEBOT carries them out in order; the micro has plenty of memory to spare so a very large number of movements can be programmed if you wish. You can use a variant of this program to make HEBOT draw a pattern on a sheet of paper, or with a little ingenuity, you could program HEBOT to dance to music produced by the micro's sound generators. The routine can be repeated or not, as selected by your entry at the beginning of the second phase.
With the 16 K of the Model A or the 32 K of the Model B at your disposal, there is massive scope for programming HEBOT. It can learn how to run a maze. Or it can be allowed to wander around the room at random, bumping into objects and memorising their positions; this information, stored in the computer can be used to build up a map of the room, for display on the screen. Another project is to program HEBOT to write its own signature on a large sheet of paper. It can learn to write too; you type a message in at the keyboard and HEBOT writes it out on paper. These are only a few suggestions of things that HEBOT can be programmed to do.

On pg. 435 of the User's manual, Aunty Beeb takes on her most severely admonitory tone and threatens dire results if we 'insist' on addressing HEBOT directly, instead of using Aunty's OSBYTE calls. Sorry, Aunty, but this programmer insists (as you put it) on addressing HEBOT directly. As you point out in an afterthought, the required OSBYTE routine is not available before ROM release 1.0, so many of our readers have no other option but direct addressing! And those lucky few who eventually use the Tube would really not find it all that difficult to modify their program accordingly.
Apple owners take heart - we will shortly be publishing an interface for you!

TELEPH SYSTE	HIGH QUALITY TEMP. GAUGE 0^{3} $120^{\circ} \mathrm{C}$ Remote sensor on 38 " capillary, panel mounting dial 55 mm . dia.
addition of 10 resistors, diodes, 50 V power supply and a bugger)	16A 240V RANCO THERMOSTAT Wide control range (low room temp. to over boiling point) Sensor on 22" capilliary. £2.30, including control knob.
RECONDITIONED TELEPHONES	
Push Button Trimphones $£ 15+£ .80$ p\&p 2 for $£ 28+$ £2.50 Push Button 746 £13.50 + £1.80. 2 for $£ 25+£ 2.50$ Recent Style Dial Phones $£ 4.75+£ 1.80 .2$ for $£ 9+$ $£ 2.50 .5$ for $£ 20+£ 5$ Seconds (in good working order) Class A (not too bad) £3.50 + $£ 1.80 .5$ for $£ 15+£ 5$. Class B (grotty) $£ 2.50+$ $£ 1.80 .5$ for $£ 9+£ 5$.	OUT $100^{\circ} \mathrm{C}$ 15A 240 V . Sensing coil on 41 in. capilliary panel mounting with reset button $£ 1.20$
FREE on request - Leaflet "D.I.Y. Telephone Systems and Automatic Exchange Design'.	SOLENOID GAS VALVE. 240V A.C. 5 P.S.I. suitable for non-corrosive fluids. $£ 2.20$

ELECTROVALUE

Understandably Britain's most popular and relied-upon suppliers of SEMI-CONDUCTORS I.C.s COMPONENTS COMPUTING EQUIPMENT TOOLS, BOXES, CONNECTORS and much, much more THE LATEST PRICE LIST TELLS ALL Large S.A.E. brings your FREE copy by return GOOD PRICES - GOOD SERVICE -DISCOUNTS Send for yours now to:

ELECTROVALUE LTD.

 Also in Manchester for personsl shoppers st: Computing Shop-

Dept HE5 180a Bedford Road, Kempston, Bedford MK42 8BL

ENFIELD

ELECTRONICS $\begin{aligned} & 208 \text { BAKER ST,. ENFIELD } \\ & \text { MIDDX. Tel: } 01,3661873\end{aligned}$ n

SWITCHES SWITCHES SWITCHES

vast stocks of high quality approved switches normally only sold to industry now available to the hobbyist at bargain prices.

Example: Miniature Toggles:-
S.P. [ON-ON] @ £0.51 each .
S.P. [ON-OFF.ON] @ $£ 0.54$ each) For full product
D.P. [ON-ON] @ $£ 0.72$ each list, send s.a.e.
D.P. [ON-OFF-ON] @ $£ 0.78$ each)
SPECIAL OFFER 1 off each only $£ 3.00$ including p / p \& VAT. Send cheque or P.O. to:

SELECT COMPONENTS LTD
STAMFORD HOUSE, STAMFORD NEW ROAD ALTRINCHAM, CHESHIRE WA14 1BL

TALK TOTHE WHOLE WORLD

Study now for the
RADIO AMATEUR'S EXAMINATION
We have had 40 years successful experience in training men and women for the
 G.P.O. Transmitting licence.

- FREE R.A.E. brochure without obligation from:British National Radio \& Electronics School READING, BERKS. RG1 18R

Name
Address
HE/5/817 BLOCK ĊÁPS ṖLĖȦṠE

LEARN BASIC ELECTRONICS

with our PPG FUN KITS
Four LEARNING courses plus 50 KITS to prove your knowledge.
Send for catalogue to:
ELECTROMECH LTD
51a Meldreth Road, Shepreth, Royston, Herts SG8 6PS
TEL: 076361372

RECHARGEABLE BATIERIES AND CHARGERS

PRIVATE OR TRADE ENQUIRIES WELCOME FULL RANGE AVAILABLE SEND SAE FOR LISTS
£1.45 for booklet "Nickel Cadmium Power"

- NEW ALL BRITISH MULTI CHARGER?
- NEW SEALED LEAD RANGE AVAILABLE -

SANDWELL PLANT LTD

2 Union Drive, Boldmere, Sutton Coldfield, West Midlands 021-354 9764 After hours 0977616913

GOT YOUR

LATEST COPY

 YET???' Our 72 page fully illustrated catalogue includes special offer lists, order forms, and pre-paid envelopes and lots lots more. To obtain your copy of Marco Trading's latest catalogue send 35 p plus 26 p postage to:
Marco Trading, Dept HB2, The Maltings, High Street, Wem, Shropshire, SY4 5EN. Tel: 093932763

OUR GREAT NEW ILLUSTRATED CATALOGUE IS PACKED WITH INFORMATION ON SUPERB QUALITY, PROFESSIONAL BURGLAR ALARM EQUIPMENT

AT UNBEATABLE PRICES!

send s.a.e. or phone NOW FOR YOUR COPY THIEFCHECK BURGLAR
ALARM D.FY SYSTEM
A.D. ELECTRONICS DEPT. HE3 217 WARBRECK MOOR AINTREE LIVERPOOL L9 OHUVO51 5238440

ETESON ELECTRONICS

F.E.

We are only small, but our aim is to please, and our stock range is growing all the time. If any of the following interests you:-
TRANSISTORS - DIODES - CMOS - TTL - TTL LS - LINEAR ICs RESISTORS - POTENTIOMETERS - CAPACITORS - VEROBOARD. VEROBOXES • INSTRUMENT CASES - TRANSFORMERS • FUSES GSC BREADBOARDS - SOLDERING IRONS - ETC, ETC.

Please send a stamped addressed envelope or call in for a copy of oủr 16page price list.

MAKE YOUR OWN P.C.B's.

DIRECT ETCH KIT

COPY DIRECT FROM MAGAZINE or OWN DESIGN Simple system - Complete kit containing PCB, Pattern Transfer \& Etch Resist Sheets, Tray \& Etchant, Copper Cleaning Block, Gloves \& full instructions. $£ 15.60$
Price inclusive of VAT \& carriage. Please allow 21 days for delivery. Cheques, PO's or signed Access orders weicomed.

a division of KELAN ENGINEERINGLtd Hookstone Park Harrogate, N. Yorks
complete P.C.B. workshop

MASIMHR HTFCYMONTCS NOW! The PRACHTCAT way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous k nowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following:
Build a modern oscilloscope
Recognise and handle current electronic components
Read, draw and understand circuit diagrams

- Carry out 40 experiments on basic electronic circuits used in modern equipment
Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment.

NewJob?NewCareer?NewHobby?Getintowlectronics Now!

HE PCB SERVICE
PRINTED CIRCUIT BOARDS (PCBs) for HE projects have often represented an obstacle for our readers. Some of you, no doubt, make your own but our PCB Service saves you the trouble.
NOW you can buy your PCBs direct from HE. All (non-copyright) PCBs will be available automatically from the HE PCB Service. Each board is produced from the same master as that used for the published design and so each will be a true copy, finished to a high standard.
Apart from the PCBs for this month's projects, we are making available some of the popular designs from earlier issues. See below for details. Please note that only boards for projects listed below are available: if it isn't listed we can't supply it.

March 81 HE/8103/1	Steam Loco Whistle	f2.65
April 81		
HE/8104/1	Super Siren	f1.97
HE/8104/2	Russian Roulette Game	f1.60
May 81 HE/8105/1		
HE/8105/1	Voice Operated Switch	f1.67
HE/8105/2	Organ 1	E4.64
June 81		
HE/8106/1	Envelope Generator	f1.87
HE/8106/2	Organ 2	f2.53
July 81		
HE/8107/1	Organ 3	¢6.00
HE/8107/2	Organ 4	$\underline{6.00}$
HE/8107/3	Ultrasound Burglar Alarm	$\underline{\mathbf{1} 2.53}$
August 81 HE/8108/1		
$\begin{aligned} & \text { HE/8108/1 } \\ & \mathrm{HE} / 8108 / 2 \end{aligned}$	RPM Meter Thermometer	$\begin{aligned} & £ 1.77 \\ & £ 1.67 \end{aligned}$
HE/8109/1	Power Pack	£1.69
HE/8109/2	Game	£1.71
HE/8109/3	- Diana' Metal Detector	E3.31
October 81 HE/81 10/1	Combination Lock	£2.65
November 81 HE/8111/1\&2	Sound Torch (Set of Two)	E5.31
December 81 HE/8112/1	Pedalboard Organ	f5.64
January 82		
HE/8201/1	Intelligent NiCad Charger	E2.83

February 82 HE/8202/1	Relay Driver	E2.07
HE/8202/?	Mast-Head Amp	£1.08
$\begin{aligned} & \text { March } 82 \\ & \mathrm{HE} / 8203 / 1 \end{aligned}$	Digital Dice	¢1.40
April 82 HE/8204/1		
	Digital Capacitance Meter	£4.02
HE/8204/2	Dual Engine Driver	£3.27
HE/8204/3	Bike Alarm	£2.45
$\begin{aligned} & \text { May } 82 \\ & \mathrm{HE} / 8205 / 1 \& 2 \end{aligned}$		
	(Set of Two)	£ 4.62
HE/8205/3	Echo-Reverb	E5.63
HE/8205/4	Cable Tracker	f1.85
June 82 HE/8206/1		
	Power Supply	
	Design	£2.48
$\begin{aligned} & \mathrm{HE} / 8206 / 2 \\ & \mathrm{HE} / 8206 / 3 \end{aligned}$	Auto-Wah	£3.08
	Auto Greenhouse Sprinkler	¢3.45
HE/8206/4\&5	Telephone Timer (Set of Two)	£6.50
July 82		
HE/8207/1	Tanover	£2.13
HE/8207/2	TVI Filter	£1.78
HE/8207/3	Computer PSU	¢7.68
HE/8207/4	Solar Radio	£1.98
August 82 HE/8208/1\&2		
	Digital Millivaltmeter (Set of Two)	¢4.34
HE/8208/3\&4	Audio Analyser (Set of Two)	f11.55
$\begin{aligned} & \text { September } 82 \\ & \text { HE/8209/1\&2 } \end{aligned}$		
	Signal lights	
	Main Module	£1.96
	Junction Module	£1.70

$\begin{aligned} & \mathrm{HE} / 8209 / 3 \\ & \mathrm{HE} / 8209 / 4 \end{aligned}$	2X interface Slot Car Controller	$\begin{array}{r} \mathbf{f} 3.34 \\ \mathbf{~} 1.98 \end{array}$
October 82		
HE/8210/1	Flash Point Alarm	$£ 2.13$
HE/8210/2	Negative Voltage	
	Generator	£1.49
HE/8210/3	Squelch Unit	£2.52
November 82		
HE/8211/1	Pedometer/	£2.13
December 82		
HE/8212/1	Phase Four	$£ 2.83$
HE/8212/2	Microlog	$f 3.98$
HE/8212/3\&4	Tape/Slide	
	(Set of Two)	¢5.26
HE/8212/5	TV Amp	f5.70
HE/8212/6	Lofty	f2.61
HE/8212/7	Noise Gate	f3.60
HE/8212/8	Low Cost Alarm	£2.30
January 83		
HE/8301/1	Chip Probe	f1.82
HE/8301/2	Switched Mode	
	Regulator	£1.96
February 83		
HE/8302/1	Incremental Timer	67.13
HE/8302/2	DigiTester PSU	f6.70
March 83		
HE/8303/1	Loudspeaker	
	Protector	¢2.51
HE/8303/2	Overvolt Cutout	f2. 25
April 83		
HE/8304/1	6502 EPROMMER	£7.18
HE/8304/2\&3	Ducker	
	Main Board	$£ 3.56$
	Preamp Board	£2.31
HE/8304/4	Power Down	£2.10
May 83		
HE/8203/1	BBC Interface	¢4.82
HE/8305/3	Stall Thief	¢2.50
HE/8305/4	Auto-Test	¢2.50

PLACE an order for your PCBs using the form below (or a piece of plain paper if you prefer not to cut the magazine), then simply wait for your PCBs to drop through your letterbox, protected by a Jiffy bag.

HE PCB Service, Argus Specialist Publications Ltd, 1,45 Charing Cross Road, London WC2H OEE

I enclose a cheque/Postal Order made payable to ASP Lid.
for the amount shown below Price.
OR
I wish to pay by Barclaycard. Please charge my account number
OR ... VISA

I wish to pay by Access. Please charge to my account number

SIGNATURE

[^3](BLOCK CAPITALS

Boards Required	Price	
	Add 45pp\&p	
	Total Enclosed	ε

PCB FOIL PATTERNS

-

Top right; the HE Lofty' PCB, which was not published with the project Middle right; the Auto-Tester PCB.
Bottom right; the foil pattern for the Stall-Thief.
Above top; the component side tracks for the BBC/HEBOT Interface.
Above, the main foil pattern.

ADVERTISEMENT 1 A Semi-Display ($\min 2 \mathrm{cms}$)

$1-3$ insertions $£ 7.50$ per cm
$6-11$ insertions $£ 7.00$ per cm
$12+$ insertions $£ 6.50$ per cm
Lineage 26 p per word (min 15 words) Box Nos. £2.50
Closing date 2nd Friday of the month preceding publication date.
All advertisements in this section must be prepaid.
Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)
Send your requirements and cheque/P.O. to:
HOBBY ELECTRONICS CLASSIFIED
ADVERTISING, 145, CHARING CROSS RD, LONDON WC2H OEE

FOR SALE

SLIM COMBINATION Stainless steel pen, \& quartz L.C.D. watch, uses 'Parker' refill, instructions. Only £3.99. (spare battery 50p) Two for only $£ 5.99$! Taits Mail Order (Dept. HE) 31 Lime Grove, Addlestone, Surrey.

KIA return an AD No 6 100 Watt fibreglass poweramplifiers + to 3 heatsinking (£19.95p) - Ready to play + data...Post advert + £6.95p 8 Cunliffe Road, IIkley.

ACORN ATOM 12K + 12K PSU, VIA, LEADS, MANUAL software, including CHESS, INVADERS. Excellent condition. £180 - Crayford 528264

POWERFUL SW Medium FM portable radio, only £14.95 p + p £2.55. Sharland Enterprises, 7 Mountview, Mill Hill NW7 3HT.
L.C.D. PENWATCH 5 Funchon S/Steel takes Parker refills. Guaranteed only £2.99 $+35 p p+p$ spare battery. Add 50p Ashley Sales, 7 Beverley Gardens, St Albans, Herts AL4 9BJ.

COMPONENTS

BUMPER BOX OF BITS

WOWII We've got somany components in stock, we can't possibly list them all!! - So buy a box, in it you'll find resistors, capacitors, displays, switches, panels with transistors, diodes, IC's, etc., coils, pots ... and so on. All modern parts guaranteed at least 1000 items. Minimum weight 10 lbs . ONLY £8.50 inc.
ELECTRONICS WORLD F Dews Road Salisbury wits SP2 7 SN

COMPONENTS

ELECTRONICS components shop in MAID-STONE, KENT! Thyronics Control Sytems, 8 Sandling Road, Maidstone, Kent. Maidstone 675354.

ALL NEW COMPONENTS

C.MOS $4012 \cdot 8 p, 4017-25 p, 4019.14 p$ $4022-32 p, 4023-12 p, 4024-20 p, 4025$. $12 p, 4049-18 p, 4071-12 p_{1} \quad 4076-28 p_{1}$ $4081-10 p, 4518-28 p, 4520-26 p, 4528$ $34 p, 4557-140 p$, NE $567-38 p$, SPX6-20p.
$314 A 223-4 p$ ITL $7400-6 p$. $7404-8 \mathrm{p}$ 7412-8p, $7419-14 p, 7414-20 p, 7416 \mathrm{FJ}$ 12p, 7495-24p, 74L592-24p.

30 p P'P order under £6. No VAT Suansal, 14 Davigdor Road, Hove

DIGITAL WATCH REPLACEMENT parts. Batteries, displays, backlights etc. Also reports, publications, charts. S.A.E. for full list. Profords, Copnersdrive, Holmergreen, Bucks HP15 6SGE.

WAVIIRANDA

Auto Electronics, 103 Coventry Street, Kidderminster Tel: (0562) 2179
Brand new components by return post or ring with Access/Barclaycard number for same day despatch.

All manufacturers guaranteed new stock. All at most competitive prices. Catalogue available only 50p. All prices inclusive of VAT.

BOOKS \& PUBLICATIONS HOBBY ELECTRONICS MAGAZINE. Opportunity to purchase volumes one to four. Mint condition. Offers? Crayford 526380.

ELECTRONICS BOOKS.

International publishers. Lowest rates. Ask list. Business promotion. 376 Lajpatrai Market Delhi India.

SPECTRUM journal Microzine 9k cassette $£ 1$ payable S Brown 86 Bronson Roadtondon SW20 8DY

KITS

ELECTRONIC kits for sale Morse Practice £4.10, Dice £8.10. SAE for details. Bee Micro, 33 Bevendean Crescent Brighton, E Sussex.

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolac lightsensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.25. Developer 35p. Ferric chloride 55p. Clear acetate sheet for master 14 p . Copper-clad fibreglass boaid, approx. 1 mm thick $£ 1.75$ sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

HAVEN HARDWARE

ZX81 £49.90. Inverse Video £4.50. Repeating Keymodule £5.95. ZX Spectrum Solitare. $£ 4.95$ each. Mancala and Patience £5.95 each, Jupiter Ace $£ 89.90$. Inverse Video §4.95.

Access taken. SAE for details. HAVEN HARDWARE
4 Asby Road, Asby, Workington, Agency enquiries welcome
EQUIPMENT

EQUIPMENT

BURGLAR ALARM EQUIPMENT. Please visit our 2,000 sq. ft. showrooms or write or phone for your free catalogue. C.W.A.S. Ltd. 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274-308920.

BURGLAR ALARM EQUIPMENT: As used in the trade for DIY. JN Security Centre, 176 Sydenham Road, London SE26 5JZ. Tel 01-778 1111 Showroom open six days.

HIGH POWER MERCURY ION LASER, emits green/red light. Easily built by the amateur constructor. Ideal school project etc. comprehensive kit of plans, including source of all materials. $£ 5.25+25 p$ p\&p. Lastertech, 31 Mill Brow, Chadderton, Lancs.

TELEQUIPMENT. Type 55D scope dual beam separate XY amp etc. Slight screen burn otherwise perfect. Sensible offers 01-4286089
U.V. Light exposer unit for use in prep. of Photo-resist P.C.B's. Attractive wooden construction with exposer area of $250 \times 150 \mathrm{~mm}$. Case $350 \times 250 \mathrm{x}-$ 95 mm 240 V operation. Only £37.00 p\&p. Send cheque to V.E.P. Ltd., 5 Hewens Road, Uxbridge, UB10 OFR.

AERIAL AMPLIFIERS Improve weak television reception. Price £6.70. S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BLO 9AGH.

EQUIPMENT

Nascom Spares

Nascom I PCB \& Parts list and 3 AMP

 PSU.PCBE15 each " £1 p\&p. Nascom Imp Main Drive plus printing head, base panel and PCB £25 " $£ 2.50 \mathrm{psp}$. Toroidal trans. former 8 amp \& $15-0-15$ volt 2 amp $£ 25$ " $£ 3$ pap. Transformer $4-0-14$ maFS. Panel meter 7 cmx 7 cm 1 maF .S. D. (new but needs rescaling). 22.50 ins 280 P10 CPU UART Etc 6 \& \& 1 p\&p 20 way Rainbow Ribbon with 1 I.D.C. header $30^{\prime \prime}$ long 11 " $25 p$ osp. Dyonics 17. Hawkesworth Drive Kenilworth, Warwlckshire, CU8 2GP.Please add 15\% VAT to all orders SAE for further parts list.

[^4]Ultra-violet exposure units. Print your own photo-etch P.C.B's and enjoy the freedom of being able to change your circuits without ruining hours of artwork U.V. - 300 unit (240×150mm area/2×8 watt) £35.00 plus VAT. U.V. -800 unit $(240 \times 350 \mathrm{~mm}$ area $/ 4 \times 15$ watt) - $£ 85.00$ plus VAT. The U.V. 800 is controlled by an electronic precision timer. Prices include UK postage. Available direct from manufacturers. Electronics Assistance Ltd., Unit 1, Brynberth Industrial Estate, Rhayader, Powys LD6 5EN. 0597-810711.

ADD ONS

Teletext (Oracle/Ceefax) add-on adaptors for any television. Only 1149.95 inclusive. Also Prestel/Viewdata and Telesoftware. Cytel (HE), FREEPOST, Bristol BS10 6BR. (0272) 502008 anytime.

SOFTWARE GAMES

SPY CASSETTE. Amazing cassette will allow you to stop, list or copy any previously unstoppable tape. Includes two free utilities. State if for ZX81 or Spectrum. Send just £3. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

PLANS 'N DESIGN

AMAZING ELECTRONIC PLANS. Lasers, Superpowered Cutting Rifle, Pistol Light Show, Ultrasonic Force Fields, Pocket Defence Weaponry, Giant Tesla, Satellite TV Pyrotechnics, 150 more projects. Catalogue $£ 1$ (refundable) - from Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

WANTED

WANTED Part number for meter. Heathkit Multimeter MM-1U or supply meter. Construction. Books. Circult etc. Please Telephone Stevenage (0438) 52789.

PARAPHYSICS JOURNAL Russian translations). Psychotronics, Kirlianograph, heriphonic music, telekinetics. Computer software. SAE 4×9" - Paralab, Downton, Wilts.

SOFTWARE APPLICATIONS

SPY CASSETTE. Amazing cassette will allow you to stop, list or copy any previously unstoppable tape. Includes two free utilities. State if for ZX81 or Spectrum. Send just $£ 3$ Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

HOBBY ELECTRONICS

CLASSIFIED ADVERTISEMENT - ORDER FORM

If you have something to sell now's your chance! Don't turn the page - turn to us! Rates of charge: 26 p per word per issue (minimum of 15 words): Box Nos. $£ 2.50$ and post to HOBBY ELECTRONICS, CLASSIFIED DEPT., 145 CHARING CROSS ROAD, LONDON WC2 PLEASE INDICATE HEADING REQUIRED

					$£ 6.20$
					$£ 9.10$

Please place my advert in HOBBY ELECTRONICS for issues commencing as soon as possible.

I am enclosing my Cheque/Postal Order/International Money Order for: (delete as necessary) E. (Made payable to A.S.P. Ltd)

VISA	OR Debit my Access/Barclaycard (Delete as necessary)	
		motcone Accose

All classified advertisements must be paid for in advance.

Please use BLOCK CAPITALS and include post codes.
Name (Mr/Mrs/Miss/Ms)
(delete accoralingly)
Address...
\qquad

Signature... Pate
Daytime Tel. No.

100 FREE PROGRAMS FROM SILICA SHOP - WITH EVERY PURCHASE OF AN

ATARI PRICES REDUCED!
We at Silica Shop are pleased to announce some fantastic reductions in the prices of the Atari 400/800 personal computers. We believe that the Atari at its new price will become the U.K.'s most popular personal computer and have therefore set up the Silica Atari Users Club. This club already has a library of over 500 programs and with your purchase of a 400 or 800 computer we will give you the first 100 free of charge. There are also over 350 professionally writen games and utility programs, some are listed below. Complete the reply coupon and well send ou full details. Alter

ATARI 400 with 16K
 £159

$\underset{\text { with } 48 \mathrm{~K}}{\mathrm{~A}} 400 \mathrm{f} 228$
ATARI 800
with 48 K £349

400/800 SOFTWARE \& PERIPHERALS

Don't buy a T.V. game! Buy an Atari 400 personal computer and a game cartridge and that's all you'll need. Later on you can buy the Basic Programming cartridge ($£ 35$) and try your hand at programming using the easy to learn BASIC language. Or if you are interested in business applications, you can buy the Atari $800+$ Disk Drive + Printer together with a selection of business packages.
Silica Shop have put together a full catalogue and price list giving details of all the peripherals as well as the extensive range of software that is now available for the Atari 400/800. The Atari is now one of the best supported personal computers. Send NOW for Silica Shop's catalogue and price list as well as details on our users club.
THE FOLLOWING IS JUST A SMALL SELECTION FROM THE RANGE OF ITEMS AVAILABLE:

ACCESSORIES	Mountain Shoot	Business	DYNACOMP
Cables	Rearguard	Calcutator	Alpha Fighter
Cassetres	Star Flite	Database Managemt	Chompelo
Diskettes	Sundar Golf	Decision Maker	Crystals
Joysticks		Graph It	Forest Fire
Le Stick - Jovstick	AUTOMATED	Invoicing	Intruder Alert
Misc Supplies	SIMULATIONS	Liturarian	Monarch
Paddies	Crush Crumble Cmp	Mort \& Loan Anal	Moonprobe
	Datestones of Ryn	Nominal Ledger	Mowing Maze
ADVENTURE INT	Dragons Eve	Payroll	Nominoes Jigsaw
Scott Adams Adv	Invasion Orion	Personal Finl Mgmt	Rings of The Emp
No 1 Adventurelnd	Rescue at Rigel	Purchase Ledger	Space Tilt
No 2 Pirate Adv	Ricocher	Sales Ledger	Space Trap
No 3 Mission Imp	Star Warrior	Statistics 1	Stud Poker
No 4 Voodoo Cast	Temple of Apshai	Stock Control	Triple Blockade
No 5 The Count	Upper Reaches ADs	Teleplink	
No 6 Strange Odv		Visicalc	EDUCATION
No 7 Mystery Fun	800ks	Weekly Planner	from APX
No 8 Pyramid of D	Basic Ref Manual	Word Processor	Algicalc
No 9 Ghost Town	Compute Arari DOS		Allas of Canada
No 10 Sav Isiand 1	Compute Bk Atari	CRYSTALWARE	Cubbyholes
No 11 Sav Island 2	Compute Magazine	Beneath The Pyram	Elementary Biology
No 12 Golden Voy	De Re Atari	Fantasyland 204:	Frogmaster
Angle Worms	DOS Utilities List	Galactic Quest	Hickory Dickor
Deflections	DOS2 Manual	House Of Usher	Inst Comptg Dem
Galactic Empire	Misc Atari Books	Sands of Mars	Lemonade
Galactic Trader	Op System Listing	Waterloo	Letrerman
Lunar Lander	Wiley Manual	Worid War III	Manware

aths-Tac.Toe	Scram	Castle
Metric \& Prob Solvg	States \& Capitals	Centurion
Mugnump	Touch Typing	Checker King
inush Terms/Notatn		Chinese Puzzie
Musical Combuter	EMI SOFTWARE	Codecracker
My First Alphabet	British Heritage	Comedy Diskette
Number Blast	Cribbage/Dominoes	Dice Poker
Polvealc	Darts	Dog Daze
Presidents of U.S.	European Scene Jig	Domination
Quiz Master	Hickory Dlekory	Downill
Starware	Humper Dumpiy	Eastern Front
Stereo 30 Graph ics	Jumbo Jei Lander	Galahad \& Holy
Three R Math Sys	Snooker \& Bllliards	Graphics/
Video Math Flash	Submarine Commdr	Jax-0
Wordmaker	Super Cubes \& Tilt Tournament Pool	Jukebox Lookahead
EDUCATION		Memory Match
from ATAAI	ENTEATAINMENT	Midas Touch
Conv French	from APX	Minotaur
Conv German	Alien E99	Outlaw/Howitzer
Conv Italian	Arithill	Preschool Games
Conv Svanish	Attank	Pro Bowling
Energy Czar	Avalanche	Pushover
European C \& Caps	Babel	Rabbotz
Mangman	Blackjack Casino	Reversi Il
Invit To Prog 1/2/3	Block Buster	Salmon Run
Kingdom	Block 'Em	747 Landing Simul
Music Compaser	Bumper Pool	Seven Card Stud

Sleazy Adventure	Jawbreaker	PROGRAMMING
Solitaire	Mission Asteroud	AIDS from Atari
Space Chase	Mouskattack	Assembler Editar
Space Trek	Threshold	Dsembler (APXI
Sultans Palace	Ulysses/Goiden FI	Microsoft Basic
Tact Trek	Wizard \& Princess	Pascal (APX)
Terry		Pilot Consumer
Wizards Gold	PERIPMERALS	Pilot (Educator)
Wizards Revenge	Centranics Printers Disk Drive	Programming Kit
ENTERTAINMENT	Epsom Printers	SANTA CRUZ
fromatabi	Program Recorder	Basics of Animation
Astercids	RS232 Interface	Bobs Business
Basketball	Thermal Printer	Display Lists
Blackjack	16 K Memory RAM	Graphics Machine
Cenilpede	32 K Memory Ram	Kids 1 \& 2
Chess		Horizontal Scrolling
Entertainment Kit	PERSONAL INT	Master Memory Map
Missile Command	from APX	Mini Word Processor
Pac Man	Adv Music Svstem	Page Flipping
Space Invaders	Banner Generator	Player Missile Gr
Star Raiders	Blackiack Tutor	Player Piano
Super Breakout	Going To The Dogs	Sounds
Video Easel	Kevooard Organ Morse Code Tutur	Vertical Scrolling
ON LINE SYSTEMS	Personal Fitness Prg	SILICA Club
Crosstire	Player Piano	Over 500 program
Frogge P	Sketchoad	write for details

FREE LITERATURE

I am interested in purchasing an Atari 400/800 computer and would thee to receive coples of your brochure and test reports as well as Name.
Address.

[^0]: X for $110 \mathrm{~V}, " 1$＂in place of X for 220 V ．and＂$ク$＂in place of X for 24.

[^1]: Please note X in part number denotes mains voltage. Please insert ' O ' in place of X for 110 V, ' 1 ' in place of X for 220 V (Europe), and ' 2 ' in place of X for 240 V (U.K.) All units except UC1 incorporate our own toroidal transtormers.

[^2]: I enclose $\mathrm{PO} /$ Cheque for ε
 or debit my
 Barclaycard/Access/American Express. No. \qquad exp date \qquad

[^3]: NAME
 (BLOCK CAPITALS
 ADDRESS

[^4]: NEW 1983 EDMUND SCIENTIFIC CATALOGUE NOW AVAILABLE

 72 pages of:- Solar Energy, Health Holography, Lab. Equipment, Astronomy Fibre Optics, Photography. Motors, Wealher, Magnifers, Magnets, And More!
 Send for FREE copy to:- Dept HE 10, Rhelnbergs Sciences Lid., Soverelgn Way, Tonbridge, Kent TN9 IRN of
 phone 0732357779

