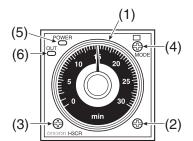

Technical Explanation for Timers and Time Switches

Introduction

What Is a Timer?

A Timer is a control device that outputs a signal at a preset time after an input signal is received.


Timer Mechanisms

Settings and Indications of Timers

Example for the H3CR-A

Settings

- (1) Time setting knob
- (2) Time unit selector
- (3) Time range selector
- (4) Operating mode selector

A variety of time ranges can be set with the H3CR-A using Note the time unit selector and time range selector.

Indications

The pointers on the Timer do not move along with time like the hands of a clock do. You cannot see the progression of time. Therefore, two operation indicators are provided on the upper left of the Timer to identify the timer status.

(5) Run/Power Indicator (Green)

Run indicator: Indicates whether the time is being

measured or the time has reached.

Power indicator: Indicates whether power is being

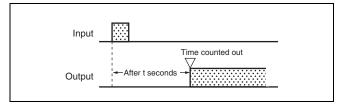
supplied to the Timer.

Fundamentally, the indicators will be lit when the power is being supplied. However, they will flash when the time is being measured.

(6) Output Indicator (Orange)

Used to see the status of the output. Lit when a signal is output.


Operating Modes of Timers


The operating mode selector is in the upper-right corner on the H3CR-A.

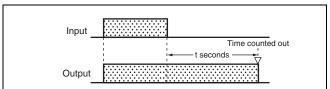
The operating mode determines the output method that is used when the set time has reached.

The following four basic operating modes are the most commonly used.

ON-delay Operation

With ON-delay operation, the Timer receives an input and then an output signal is output by switching the Timer contacts after a set time delay.

This name is used because there is a delay between when the input signal is received (i.e., turns ON) and when the output signal is output.


ON-delay operation is the operating mode most often used for automated machines.

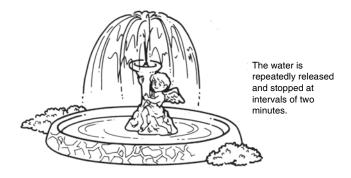
Application: Pushbutton Signals

When the pedestrian pushbutton is pressed for a traffic signal, the signal light changes from red to green after a delay.

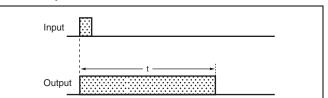
OFF-delay Operation

With OFF-delay operation, the output turns ON at the same time as the input and then the output turns OFF when the Timer contacts switch after the set time has expired. The set time is calculated from when the input turns OFF. This name is used because there is a delay between when the input turns OFF and when the output turns OFF.

Application: Car Ceiling Lights


When you get in your car, the ceiling light turns ON when the door is opened. The light remains lit for several seconds after you get into the car and close the door.

Flicker Operation



With flicker operation, an output repeatedly turns ON and OFF at the set time after an input is received.

Application: Automatic Control of Fountains

Interval Operation

With interval operation, the output turns ON at the same time as the input and the output turns OFF after a set time.

Application: Amusement Park Rides

The ride operates for five minutes when 100 yen is inserted.

Timer Starting Methods

There are two starting methods for the operating modes.

Example: ON-delay Operation

Signal ON-delay operation: Measuring time starts when the

input section receives an input while voltage is being applied to the Timer power supply

section.

Power ON-delay operation: Measuring time starts when

voltage is applied to the Timer

power supply section.

Signal ON-delay	Power ON-delay		
Power supply Input Output t	Power supply Output t		

Differences between Signal ON-delay Operation and Power ON-delay Operation

(1) Accuracy* Operation will not be stable unless a brief

period elapses after the power supply is turned ON to the timing section of the Timer.

Power supply start:Operation is unstable because

measuring time starts at the same time that the power supply turns ON.

Therefore, deviation will occur in the operation time immediately after

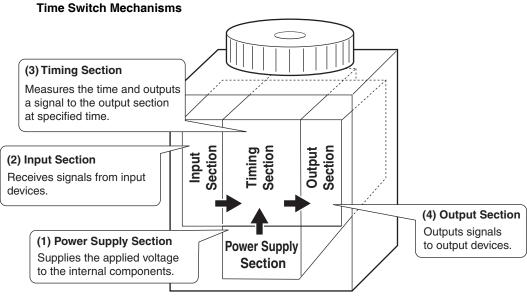
starting the Timer.

Signal start: Stable time accuracy is ensured

because a voltage is already applied to the Timer before starting the Timer.

The accuracy of the signal start is generally considered better. For some models, however, such as the H3CR, there is no change in accuracy.

*Accuracy is the correctness of the time.

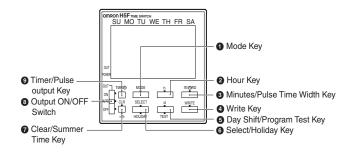

(2) Terminal Arrangement

Signal start (H3CR-A)	Power supply start (H3CR-A8)
Reset input (-)(-)(-) (-)(-)(-) (-)(-)(-) (-)(-)(-) (-)(-)(-) (-)(-)(-)(-) (-)(-)(-)(-) (-)(-)(-)(-)(-) (-)(-)(-)(-)(-) (-)(-)(-)(-)(-)(-) (-)(-)(-)(-)(-)(-)(-) (-)(-)(-)(-)(-)(-)(-)(-) (-)(-)(-)(-)(-)(-)(-)(-)(-)(-) (-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)((-) (+) (-) (Power supply)

- Models with a signal start require three external inputs, so they have many terminals.
- Models with a power supply start (H3CR-A8) are the H3CR Timers most often used for automated machinery.

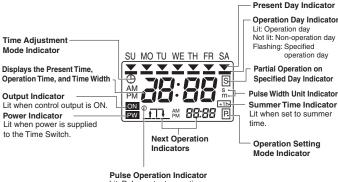
What Is a Time Switch?

A Time Switch is a control device that turns a load ON and OFF at the set times.


However, most models of Time Switches do not have an input section.

If there is an input section, it is not used to output signals to the timing section, rather, it is used to control some of the functions of the Time Switch, such as adjusting the time.

Settings and Indications of Time Switches


Example for the H5F

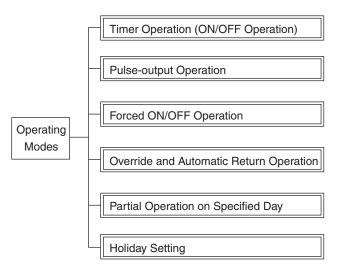
Settings

No.	Function			
0	Switches between time adjustment mode, the operation setting modes, and run mode.			
0	Sets hours or switches between 12-hour (am/pm) and 24-hour display.			
3	Sets minutes or a pulse time width.			
4	Writes the set data to memory or confirms settings with the program check function.			
6	Moves the cursor to specify a day or starts the program check function.			
6	Specifies or cancels a specified day or switches to holiday setting mode.			
0	Deletes the set data and initializes the day of operation or sets/clears summer time.			
8	ON: Turns on the output regardless of the setting. AUTO: Turns on/off the output according to the setting. OFF: Turns off the output regardless of the setting. Override and automatic return operation can be executed by using this key in combination with the Write Key.			
9	Selects timer operation or pulse-output operation.			

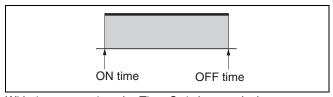
Display

Lit: Pulse-output operation Not lit: Timer operation

Run mode: Displays the direction (i.e., ON or OFF) and time of the next output operation.


Operation time setting mode: Displays the program number for the setting. Holiday setting mode: Displays #d#\$\mathbb{H}\$ (hday) when the Time Switch

is in holiday setting mode.


Program check: Displays ££5£ (test) during program check.

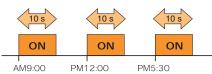
Operating Modes of Time Switches

The operating mode determines the ON/OFF output method that is used for the set times.

Timer Operation (ON/OFF Operation)

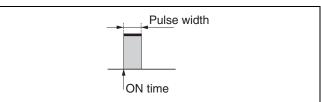
With timer operation, the Time Switch controls the output according to the set ON and OFF times.

Application 1: Warm-up Operation for Packing Machine



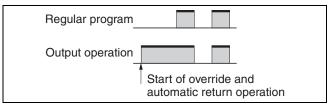
begin immediately.

Application 2: School Chimes



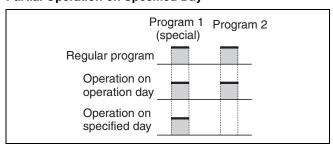
The chimes can be sounded at the start of classes, at the lunch break, and at the end of classes.

Pulse-output Operation

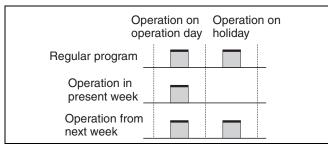

With pulse-output operation, the Time Switch outputs a pulse of a specified time width at the set ON time.

Comm

Forced ON/OFF Operation


Forced ON/OFF Operation is used to force the output ON or OFF by using the output ON/OFF switch regardless of the control output setting.

Override and Automatic Return Operation

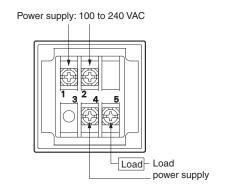

With override and automatic return operation, the output ON/ OFF switch and the Write Key are used to hold the control output ON until the next OFF time.

Partial Operation on Specified Day

You can select days on which to execute only part of the set operations.

Holiday Setting

It is possible to set an operation day in the present week as a holiday (i.e., a non-operation day: output will be OFF regardless of the settings). When that day has passed, operation will continue according to the regular program, and operation will be executed as normal on that day from the following week.


Time Switch Starting Methods

With a Time Switch, the progression of time starts when a voltage is applied to the power supply section.

* When the power supply section is OFF, time progresses and the settings are retained, but no operations are performed to turn the output ON or OFF.

Terminal Arrangement

Example for the H5F-A/B

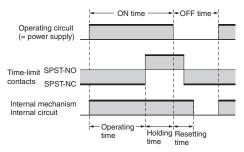
ON Time

The period of time during which the specified voltage is applied to the operating circuit.

OFF Time

The period of time between the moment that resetting begins and the moment that the operating voltage is applied to the operating circuit again. The OFF time is longer than the resetting time.

Operating Time


The period of time from the application of the specified voltage to the operation circuit until the completion of the time-limit contact operation.

Holding Time

The period of time from the completion of the time-limit operation to the start of the reset operation.

Resetting Time

The period of time from the interruption of the voltage supplied to the operating circuit during or after the time-limit operation until the return of the Timer to its initial state.

The resetting time of the Timer is the period of time during which all the internal components including the contacts, pointer, and the circuit components, such as the capacitor, of the Timer are reset.

If the Timer is operated with an insufficient OFF time (i.e., the OFF time is less than the rated resetting time), the normal operation of the Timer cannot be expected. In such cases, the Timer may operate with an insufficient operating time, operate instantaneously, or not operate at all. Be sure that the OFF time of the Timer is the same as or more than the rated resetting time.

Self-reset

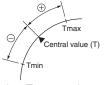
To Automatically reset the Timer by interrupting the voltage that is supplied to the operating circuit.

Electrical Reset

To reset the Timer by applying the required voltage to the reset circuit.

Accuracy of Operating Time

The difference in operating times measured when the Timer repeats operation under the same conditions with a specified set time.


Formula for calculation (with operating time measured more than 5 times):

Accuracy of operating time=
$$\pm \frac{1}{2} \times \frac{Tmax-Tmin}{TMs} \times 100 (\%)$$

where

T max.: Maximum value of operating times measured at the same set time T min.: Minimum value of operating times measured at the same set time TMs: Maximum scale time (TMs is a set value in the case of a Digital Timer.)

The difference in the operating times appears as a shift from the central value of operation, so the maximum or minimum values divided by 2 and expressed as plus (+) and minus (-) indication.

If the settings of an Analog Timer is changed while it is performing time-limit operation, the following operation will result.

$$T=T_1+T_2 \times \frac{T_3-T_1}{T_3}$$

T: Final time-up time

T1: Time elapsed

T2: New setting

T₃: Previous setting

Setting Error

The difference between the actual operating time and scale time.

Formula for calculation (measurement position can be any scale position as long as it is set to 1/3 min. of the maximum scale time):

TM: Average value of five or more measured operating times

Ts: Set time

TMs: Maximum scale time (TMs is a set value in the case of a Digital Timer.)

For a Time Switch, the setting error is applied for the pulseoutput operating time.

Total Error (Time Switch)

A single time rating that combines the setting error, accuracy of operating time, influence of temperature, and influence of voltage.

This rating applies to all measurement results for measurements made under the setting error, influence of temperature, and influence of voltage conditions.

Cyclic Error (Error per Month) (Time Switches)

The error time in the internal clock per month at an ambient temperature of 25°C.

Formula for calculation:

Variation due to voltage change

$$=\pm \frac{TMx_1-TM_1}{TMs} \times 100 (\%)$$

where,

TM1: Average value of operating times measured at rated power supply voltage

TMx1: Average value of operating times measured at the voltage that causes the largest deviation from TM1 within the allowable voltage range.
 TMs: Maximum scale time (TMs is a set value in the case of a Digital Timer.)

Influence of Temperature

The change in the operating time when the ambient temperature changes within the ambient operating temperature range.

Formula for calculation:

Variation due to temperature change

$$=\pm \frac{\mathsf{TMx}_2-\mathsf{TM}_2}{\mathsf{TMs}} \times 100 (\%)$$

where,

TM2: Average value of operating times measured at 20°C.

TMx2: Average value of operating times measured at the temperature that causes the largest deviation from TM2 within the ambient operating temperature range.

TMs: Maximum scale time (TMs is a set value in the case of a Digital Timer.)

OFF Time Characteristics

The change between the operating time for a given OFF time and the operating time when the OFF time is changed.

Formula for calculation:

OFF time characteristic

=
$$\pm \frac{TMx_3-TM_3}{TMs} \times 100 (\%)$$

TM3: Average value of operating times measured with a 1-second OFF time.
TMx3: Average value of operating times measured with an OFF time that causes the maximum deviation from TM3 within the specified OFF-time range of one hour from the specified resetting time.

TMs: Maximum scale time (TMs is a set value in the case of a Digital Timer.)

The OFF time characteristics are determined by the charging and discharging of a capacitor and resistor used in combination as an Electronic Timer. The characteristics vary from $\pm 1.5\%$ to $\pm 5\%$.

The accuracy of operating time, setting error, influence of voltage, influence of temperature, and OFF time characteristic are used to express the precision of the Timer. Any of these items may be ignored depending on the particular specifications of the model.

The Motor Timer and Electric Timer indicate these items by percentage values. The Count Timer indicates these items by differential time values because the differential range of the Timer's operating time is essentially constant due to operating principles of the Timer. Furthermore, the total error can be indicated to express all these items in the case of the Count Timer.

<u>Vibration Resistance (Malfunction)</u>

The range of vibration during operation in which contacts that are closed will not open by vibration for at least the specified time (1 ms).

<u>Vibration Resistance (Destruction)</u>

The range of vibration in which there is no damage to parts during transport or use, and the operating characteristics are still satisfied.

Shock Resistance (Malfunction)

The range of shock during operation in which contacts that are closed will not open by shock for at least the specified time (1 ms).

Shock Resistance (Destruction)

The range of shock in which there is no damage to parts during transport or use, and the operating characteristics are still satisfied.

Insulation Resistance

The resistance provided by an electrically insulating material between charged metal parts and uncharged metal parts, between control outputs and operating circuits, etc.

Dielectric Strength

The voltage level that will not cause insulation breakdown when applied for 1 minute to the same location as in the insulation resistance measurement.

Impulse Withstand Voltage (AC)

A voltage imposed between the operating power supply terminals or between a charged terminal and non-charged metal part to test the resistance to surge voltages. The impulse withstand voltage imposed between the operating power supply terminals is 3 kV and that imposed between a charged terminal and non-charged metal part is 4.5 kV with both using a $\pm 1.2 \times 50$ - μs standard waveform.

Noise Immunity

The malfunction and destruction resistance of the Timer against external noise.

The noise immunity of the Timer is checked with a noise simulator, an inductive load, an oscillating relay, and static electric noise.

Mechanical Life Expectancy

The life expectancy of a Timer when the control output of the Timer is operated under a no-load condition.

Electrical Life Expectancy

The life expectancy of a Timer when the control output of the Timer is operated to switch the specified voltage/current load connected to the control output.

The electrical or mechanical life of the Timer is generally indicated by the operating times of the control output. The electrical life is indicated by the operating times of the control output connected to a load and the mechanical life is indicated by the operating times of the control output with no load. The electrical life is shorter than the mechanical life. The lighter the load is, the longer the electrical life will be. Therefore, to prolong the electrical life of the Timer, use the Timer to switch heavy loads via relays instead of directly switching them with the control output.

Symbols Used in Internal Connection Diagram

	Syn	nbol			Symbol		
Name	Symbol used in catalogs	Symbol defined by JIS	Description	Name	Symbol used in catalogs	Symbol defined by JIS	Description
NO contacts	- 		Normally open contacts (A pair of contacts which are normally open when no relay input is applied.)	Time-limit operation , time- limit resetting contacts	(A) -0 ◆0- (B) •◆•	(a)	A: NO contacts B: NC contacts
NC contacts	• <u>•</u> or •	4	Normally closed contacts (A pair of contacts which are normally closed when no relay input is applied.)	Manually operated, automatic resetting contact	® • •	\\.\\.\\.\\\.\\\\\\\\\\\\\\\\\\\\\\\\\	Contacts that reset when the operator releases their hand. These contacts are used, for example, to operate a pushbutton switch. (Same for pushbutton, pull, and rotating switches.) A: NO contacts B: NC contacts
Transfer contacts	(A) (B)	<u>-</u>	Transfer contacts (NO and NC contacts that have a common contact terminal are collectively called "transfer contacts".) The contacts shown in A and B are all transfer contacts. The NC contact is either on the right side or on the upper side.	Synchron ous motor	—(SM)—	—(MS)—	A miniature motor which operates in synchronization with the power supply frequency.
Time-limit operating contacts	(A) - △ · · · · · · · · · · · · · · · · · ·	®	A: NO contacts B: NC contacts	Relay			An electromagnetic relay
Time-limit resetting contacts	⊕- ₀ √ ₀ -	@	A: NO contacts B: NC contacts	LED	→	À	Used to indicate the operating status of the Timer.

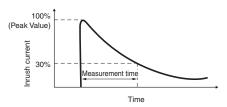
Inrush Currents for Timers and Time Switches

"---" indicates a constant current and therefore the corresponding values are omitted from the table. All the values are approximate values and should therefore only be used as a guide.

Timers (Major Models) Note: Including models whose production were discontinued.

Model or series		Voltage	Applied voltage	Inrush current (peak value)	Time *	
H3AM-NS/-NSR		100 to 240 VAC	264 VAC	2.74 A	1.7 ms	
H3CA-A se	eries	24 to 240 VAC or 12 to 240 VDC	264 VAC	1.6 A	0.6 ms	
		200/220/240 VAC	264 VAC	1.5 A	0.6 ms	
H3CA-8/-8	3-306	100/110/120 VAC	132 VAC	780 mA	5 ms	
		24 VDC				
		200/220/240 VAC	264 VAC	1.6 A	1.6 ms	
H3CA-8H/-8	H-306	100/110/120 VAC	132 VAC	1.5 A	5 ms	
		24 VDC	26.4 VDC	1.2 A	2 ms	
		100 to 240 VAC or	264 VAC	780 mA	1.8 ms	
H3CR-A/-A	0/ AD	100 to 125 VDC	137.5 VDC	310 mA	3.2 ms	
nsch-a/-a	6/-AP	24 to 48 VAC or	26.4 VAC	830 mA	2.4 ms	
		12 to 48 VDC	26.4 VDC	570 mA	6.3 ms	
		100 to 240 VAC or	264 VAC	1.76 A	0.1 ms	
1100D 40	_	100 to 125 VDC	137.5 VDC	550 mA	0.2 ms	
H3CR-A8	E		26.4 VAC	270 mA	35 ms	
		24 to 48 VAC/DC	26.4 VDC	270 mA	31 ms	
		24 to 48 VAC or	26.4 VAC	370 mA	2.2 ms	
H3CR-AS	/-A8S	12 to 48 VDC	26.4 VDC	250 mA	3.2 ms	
		100 to 240 VAC or	264 VAC	750 mA	1 ms	
		100 to 125 VDC	137.5 VDC	0.5 A	9.1 ms	
H3CR-F		24 to 48 VAC or	26.4 VAC	0.83 A	10 ms	
		12 to 48 VDC	26.4 VDC	0.57 A	9.4 ms	
	s	100/110/120 VAC	132 VAC	1.05 A	111 ms	
		200/220/240 VAC	264 VAC	1.07 A	119 ms	
			26.4 VAC	1.26 A	133 ms	
	series	24 VAC/DC	26.4 VDC	0.85 A	137 ms	
		48 VDC	52.8 VDC	0.73 A	112 ms	
		100 to 125 VDC	137.5 VDC	0.62 A	109 ms	
H3CR-H		100/110/120 VAC	132 VAC	1.02 A	364 ms	
	M series	200/220/240 VAC	264 VAC	1.03 A	323 ms	
			26.4 VAC	1.21 A	478 ms	
		1 2	24 VAC/DC	26.4 VDC	0.87 A	560 ms
		48 VDC	52.8 VDC	0.71 A	384 ms	
		100 to 125 VDC	137.5 VDC	0.62 A	380 ms	
			253 VAC	4.4 A	0.03 ms	
H3DE-MS	/F/G	24 to 230 VAC/DC	253 VDC	2.68 A	0.03 ms	
			26.4 VDC	203 mA	11 ms	
H3DE-H		200 to 230 VAC	200 VAC	Approx. 0.8 A	130 ms	
		100 to 120 VAC	100 VAC	Approx. 0.93 A	130 ms	
		48 VAC/DC	48 VAC	Approx. 0.95 A	130 ms	
			48 VDC	Approx. 0.68 A	70 ms	
		24 VAC/DC	24 VAC	Approx. 1.25 A	140 ms	
			24 VDC	Approx. 0.89 A	40 ms	

were discontinued.					
Model or series	Voltage	Applied voltage	current (peak value)	Time *	
H3DK-M/S/F/G		264 VAC	Approx. 4.69 A	46.27 ms	
	24 to 240 VAC/DC	24 VDC	Approx. 0.168 A	134 ms	
nobit iii/o/i / d		264 VDC	Approx. 3.64 A	46 ms	
	12 VDC	13.2 VDC	Approx. 2.62 A	418.67 ms	
	100 to 120 VAC	132A	Approx. 2.06 A	1320 μs	
	200 to 240 VAC	264 VAC	Approx. 2.38 A	677.33 μs	
H3DK-H		52.8 VAC	Approx. 1.81 A	1810 μs	
TIODICTI	24 to 48 VAC/DC	24 VAC	Approx. 1.68 A	19.8 ms	
	2110 10 1710/20	24 VDC	Approx. 1.16 A	35.2 ms	
		52.8 VDC	Approx. 2.44 A	8.84 ms	
H3DS	24 to 230 VAC or	253 VAC	3 A	1 ms	
11303	24 to 48 VDC	26.4 VDC	0.5 A	4 ms	
		264 VAC	7.04 A	500 μs	
H3DT-N/L/A/F/G	24 to 240 VAC/DC	24 VDC	336 mA	5.36 ms	
		264 VDC	4.92 A	704 μs	
	100 to 120 VAC	132 VAC	2.08 A	21.6 μs	
	200 to 240 VAC	264 VAC	4.08 A	23.2 μs	
H3DT-H	24 to 48 VAC/DC	52.8 VAC	1.09 A	19.2 μs	
		24 VDC	668 mA	63.2 ms	
		52.8 VDC	1.96 A	15.2 ms	
	24 VDC	26.4 VDC	1.8 A	0.01 ms	
	12 VDC	13.2 VDC	1.5 A	0.01 ms	
H3FA-A	6 VDC	6.6 VDC	1.1 A	0.05 ms	
	5 VDC	5.5 VDC	1.1 A	0.05 ms	
	24 VDC	26.2 VDC	1.8 A	0.01 ms	
	12 VDC	13.2 VDC	1.5 A	0.01 ms	
H3FA-SA	6 VDC	6.6 VDC	1.1 A	0.05 ms	
	5 VDC	5.5 VDC	1.1 A	0.05 ms	
	200/220/240 VAC	264 VAC	1.2 A	0.5 ms	
	100/110/120 VAC	132 VAC	620 mA	0.4 ms	
	110 VDC				
H3M series	100 VDC				
	48 VDC	52.8 VDC	5 A	1 ms	
	24 VDC	26.4 VDC	2.6 A	1 ms	
	12 VDC	13.2 VDC	1.3 A	1 ms	
H3RN series	All specifications except for 24 VAC				
	24 VAC	26.4 VAC	200 mA	3 ms	
H3Y series	All specifications except for 12 VDC				
	12 VDC	13.2 VDC	350 mA	0.4 ms	
H3YN series	All specifications except for 12 VDC				
TIOTIN GOILES	12 VDC	13.2 VDC	600 mA	1 ms	
	I		1		


Technical Explanation for Timers and Time Switches

Model or series	Voltage	Applied voltage	Inrush current (peak value)	Time *
	100 to 240 VAC	264 VAC	23 A	1 ms
H5AN series	100 VDC	110 VDC	8 A	2 ms
	12 to 24 V DC	26.4 VDC	15 A	6.5 ms
H5CN series	100 to 240 VAC	264 VAC	800 mA	1 ms
HIJON Selles	12 to 48 VDC	52.8 VDC	400 mA	1 ms
H5CX-A□-N series	100 to 240 VAC	264 VAC	4.8 A	0.5 ms
H5CX-A□D-N	24 VAC or 12 to 24 VDC	26.4 VAC	9.5 A	1 ms
series		26.4 VDC	6.6 A	1 ms
	100 to 240 VAC	264 VAC	5.3 A	0.4 ms
H5CX-L□-N series	24 VAC or 12 to 25 VDC	26.4 VAC	6.4 A	1.4 ms
		26.4 VDC	4.4 A	1.7 ms
H5CX-B□-N series	12 to 24 VDC	26.4 VDC	4.4 A	1.7 ms
	100 to 240 VAC	264 VAC	5.3 A	0.4 ms
H5CX-A/-L series (previous models)	24 VAC or 12 to 24 VDC	26.4 VAC	6.4 A	1.4 ms
(provious models)		26.4 VDC	4.4 A	1.7 ms
H5CX-B series (previous models)	12 to 24 V DC	26.4 VDC	6 A	1.2 ms
	100 to 240 VAC	264 VAC	4.6 A	0.4 ms
H5CZ series	24 VAC or 12 to 24 VDC	26.4 VAC	9.5 A	1 ms
		26.4 VDC	6.6 A	1 ms

Time Switches (Major Models)

Model or series	Voltage	Applied voltage	Inrush current (peak value)	Time *
H4KV-DSA-R	100 to 200 VAC	240 VAC	4.8 A	1.1 ms
H4KV-DSA (previous models)	100 to 200 VAC	240 VAC	0.7 A	0.5 ms
H5L-A	All specifications			
H5S-W series	100 to 240 VAC	264 VAC	3.1 A	0.2 ms
	24 VDC	26.4 VDC	1.3 A	2.7 ms
H5S-Y series	100 to 240 VAC	264 VAC	3.1 A	0.2 ms
1100-1 Selles	24 VDC	26.4 VDC	1.4 A	2.7 ms
H5S series (previous models)	100 to 240 VAC	264 VAC	2.5 A	0.3 ms
	24 VDC	26.4 VDC	1.1 A	3 ms
H5F series	100 to 240 VAC	264 VAC	2 A	0.3 ms

^{*} The time of the inrush current is measured in the range shown in the following waveform.

Technical Explanation for Timers and Time Switches

Troubleshooting

	Problem	Probable cause	Solution
	A sensor was used to turn the power supply to the Timer ON and OFF, but the sensor output was damaged.	The inrush current when the power supply voltage was applied may have damaged the sensor output.	Use an MY or other relay to turn the power supply to the Timer ON/OFF. (Use a suitable contact capacity.)
Timers	The top part of the display on a Timer with a memory backup is missing.	If the power supply is not connected and power is interrupted for 10 minutes or longer, the measured value or display will not be dependable and unnecessary outputs may appear.	Always connect a battery when you use a Timer with a memory backup. If the battery voltage is 3 V, you can use various type of batteries. The memory backup time will depend on the capacity of the battery.

12