Engineering
Simplicity

HealthBot User Guide

Published
2021-02-17

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. in
the United States and other countries. All other trademarks, service marks, registered marks, or registered service marks
are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

HealthBot User Guide
Copyright © 2021 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.
YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with)
Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License Agreement
(“EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such software, you
agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

About the Documentation | ix

Documentation and Release Notes | ix
Documentation Conventions | ix
Documentation Feedback | xii
Requesting Technical Support | xii

Self-Help Online Tools and Resources | xiii

Creating a Service Request with JTAC | xiii

1 Introduction to HealthBot
HealthBot Overview | 15

Benefits of HealthBot | 15

Closed-Loop Automation | 16

Main Components of HealthBot | 17
HealthBot Health Monitoring | 17
HealthBot Root Cause Analysis | 18
HealthBot Log File Analysis | 19

HealthBot Concepts | 20
HealthBot Data Collection Methods | 21
Data Collection - 'Push’ Model | 21
Data Collection - 'Pull’ Model | 22
HealthBot Topics | 22
HealthBot Rules - Basics | 23
HealthBot Rules - Deep Dive | 25
Rules | 25
Sensors | 28
Fields | 28
Vectors | 30
Variables | 30
Functions | 31

Triggers | 31

Tagging | 34
Rule Properties | 35
HealthBot Playbooks | 35

Healthbot Tagging | 36
Overview | 36
HealthBot Tagging Terminology | 37
How It Works | 41

Examples | 42

HealthBot Time Series Database (TSDB) | 48
Historical Context | 48

TSDB Improvements | 49

Database Sharding | 50

Database Replication | 51

Database Reads and Writes | 52

HealthBot CLI Configuration Options | 55

HealthBot Machine Learning (ML) | 56

HealthBot Machine Learning Overview | 56

Understanding HealthBot Anomaly Detection | 57

Field | 57
Algorithm | 58
Learning period | 58

Pattern periodicity | 59

Dataset | 60

Algorithm | 60

Sigma coefficient (k-fold-3sigma only) | 62
Sensitivity | 62

Learning period | 62

Understanding HealthBot Predict | 62

Field | 63

Algorithm | 63

Learning period | 63

Manage TSDB Options in the HealthBot GUI | 53

Understanding HealthBot Outlier Detection | 59

Pattern periodicity | 63

Prediction offset | 63

HealthBot Rule Examples | 64

HealthBot Anomaly Detection Example | 64

HealthBot Outlier Detection Example | 73

Frequency Profiles and Offset Time | 78
Frequency Profiles | 78
Configuration Using HealthBot GUI | 79
Configuration Using HealthBot CLI | 81
Apply a Frequency Profile Using the HealthBot GUI | 81
Apply a Frequency Profile Using the HealthBot CLI | 83
Offset Time Unit | 83
Offset Used in Formulas | 84
Offset Used in References | 85
Offset Used in Vectors | 86
Offset Used in Triggers | 88

Offset Used in Trigger Reference | 89

HealthBot Licensing | 91
HealthBot Licensing Overview | 91
Managing HealthBot Licenses | 94
Add a License to HealthBot | 94

View Licensing Status in HealthBot | 94

Management and Monitoring
Manage HealthBot Users and Groups | 98
User Management | 98

Group Management | 99
Limitations | 104

Manage Devices, Device Groups, and Network Groups | 104
Adding a Device | 106

Editing a Device | 109

Adding a Device Group | 109

Editing a Device Group | 113

Configuring a Retention Policy for the Time Series Database | 113
Adding a Network Group | 114
Editing a Network Group | 117

HealthBot Rules and Playbooks | 118

Add a Pre-Defined Rule | 119

Create a New Rule Using the HealthBot GUI | 119
Rule Filtering | 121

Sensors | 123

Fields | 125

Vectors | 128

Variables | 130

Functions | 131

Triggers | 133

Rule Properties | 136

Edita Rule | 136

Add a Pre-Defined Playbook | 137

Create a New Playbook Using the HealthBot GUI | 138
Edit a Playbook | 139

Manage Playbook Instances | 140

View Information About Playbook Instances | 141
Create a Playbook Instance | 143

Manually Pause or Play a Playbook Instance | 145

Create a Schedule to Automatically Play/Pause a Playbook Instance | 146

Monitor Device and Network Health | 148
Dashboard | 149

Health | 152

Network Health | 165

Graph Page | 165

Alarms and Notifications | 181

Generate Alarm Notifications | 181

Manage Alarms Using Alarm Manager | 190

vi

vii

Stream Sensor and Field Data from HealthBot | 195

Generate Reports | 200

Configure a Secure Data Connection for HealthBot Devices | 216

Configure Security Profiles for SSL and SSH Authentication | 217

Configure Security Authentication for a Specific Device or Device Group | 218

Configure Data Summarization | 219

Creating a Data Summarization Profile | 220

Applying Data Summarization Profiles to a Device Group | 221

Modify the UDA and UDF Engines | 222
Overview | 222
How it Works | 223
Usage Notes | 224
Configuration | 225
SIMULATE | 225
MODIFY | 226
ROLLBACK | 227

Logs for HealthBot Services | 227

Configure Service Log Levels for a Device Group or Network Group | 228

Download Logs for HealthBot Services | 229

Troubleshooting | 230

HealthBot Self Test | 230

Overview | 230

Other Uses for the Self Test Tool | 231
Usage Notes | 231

How to Use the Self Test Tool | 232
Device Reachability Test | 232

Overview | 232

Usage Notes | 233

How to Use the Device Reachability Tool | 233

viii

Ingest Connectivity Test | 234

Overview | 234

Usage Notes | 235

How to Use the Ingest Connectivity Tool | 235
Debug No-Data | 236

Overview | 236

Usage Notes | 237

How to Use the Debug No-Data Tool | 238

HealthBot Configuration - Backup and Restore | 240
Back Up the Configuration | 240
Restore the Configuration | 240

Backup or Restore the Time Series Database (TSDB) | 241

About the Documentation

IN THIS SECTION

Documentation and Release Notes | ix
Documentation Conventions | ix
Documentation Feedback | xii

Requesting Technical Support | xii

Use this guide to understand the features you can configure and the tasks you can perform from the
HealthBot web UI.

Documentation and Release Notes

To obtain the most current version of all Juniper Networks” technical documentation, see the product

documentation page on the Juniper Networks website at https://www.juniper.net/documentation/.

If the information in the latest release notes differs from the information in the documentation, follow the
product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts.
These books go beyond the technical documentation to explore the nuances of network architecture,
deployment, and administration. The current list can be viewed at https://www.juniper.net/books.

Documentation Conventions

Table 1 on page x defines notice icons used in this guide.

https://www.juniper.net/documentation/
https://www.juniper.net/books

Table 1: Notice Icons

Meaning

Informational note

Caution

Warning

Laser warning

Tip

Best practice

@OPpPpPPpo:

Description

Indicates important features or instructions.

Indicates a situation that might result in loss of data or hardware

damage.

Alerts you to the risk of personal injury or death.

Alerts you to the risk of personal injury from a laser.

Indicates helpful information.

Alerts you to a recommended use or implementation.

Table 2 on page x defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

Convention

Bold text like this

Fixed-width text like this

Italic text like this

Description

Represents text that you type.

Represents output that appears on
the terminal screen.

o Introduces or emphasizes important
new terms.

o Identifies guide names.

e ldentifies RFC and Internet draft
titles.

Examples

To enter configuration mode, type
the configure command:

user@host> configure

user@host> show chassis alarms

No alarms currently active

e A policy term is a named structure
that defines match conditions and
actions.

e Junos OS CLI User Guide

e RFC 1997, BGP Communities
Attribute

Table 2: Text and Syntax Conventions (continued)

Convention

Italic text like this

Text like this

< > (angle brackets)

| (pipe symbol)

(pound sign)

[1 (square brackets)

Indention and braces ({})

; (semicolon)

GUI Conventions

Description

Represents variables (options for
which you substitute a value) in
commands or configuration
statements.

Represents names of configuration
statements, commands, files, and
directories; configuration hierarchy
levels; or labels on routing platform
components.

Encloses optional keywords or
variables.

Indicates a choice between the
mutually exclusive keywords or
variables on either side of the symbol.
The set of choices is often enclosed
in parentheses for clarity.

Indicates a comment specified on the
same line as the configuration
statement to which it applies.

Encloses a variable for which you can
substitute one or more values.

Identifies a level in the configuration
hierarchy.

Identifies a leaf statement at a
configuration hierarchy level.

Examples

Configure the machine’s domain
name:

[edit]
root@# set system domain-name
domain-name

e To configure a stub area, include
the stub statement at the [edit
protocols ospf area area-id]
hierarchy level.

e The console port is labeled
CONSOLE.

stub <default-metric metric>;

broadcast | multicast

(string1 | string2 | string3)

rsvp { # Required for dynamic MPLS
only

community name members [
community-ids]

[edit]
routing-options {
static {
route default {
nexthop address;
retain;

Table 2: Text and Syntax Conventions (continued)

Convention

Bold text like this

> (bold right angle bracket)

Description

Represents graphical user interface
(GUI) items you click or select.

Separates levels in a hierarchy of
menu selections.

Documentation Feedback

Examples

e Inthe Logical Interfaces box, select
All Interfaces.

e To cancel the configuration, click
Cancel.

In the configuration editor hierarchy,
select Protocols>Ospf.

We encourage you to provide feedback so that we can improve our documentation. You can use either

of the following methods:

e Online feedback system—Click TechLibrary Feedback, on the lower right of any page on the Juniper
Networks TechLibrary site, and do one of the following:

| Feedback —

Is this page helpful?

o Click the thumbs-up icon if the information on the page was helpful to you.

o Click the thumbs-down icon if the information on the page was not helpful to you or if you have

suggestions for improvement, and use the pop-up form to provide feedback.

e E-mail—Send your comments to techpubs-comments@juniper.net. Include the document or topic name,

URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC).
If you are a customer with an active Juniper Care or Partner Support Services support contract, or are

https://www.juniper.net/documentation/index.html
https://www.juniper.net/documentation/index.html
mailto:techpubs-comments@juniper.net?subject=

covered under warranty, and need post-sales technical support, you can access our tools and resources
online or open a case with JTAC.

e JTAC policies—For a complete understanding of our JTAC procedures and policies, review the JTAC User
Guide located at https://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf.

e Product warranties—For product warranty information, visit https://www.juniper.net/support/warranty/.

e JTAC hours of operation—The JTAC centers have resources available 24 hours a day, 7 days a week,
365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called
the Customer Support Center (CSC) that provides you with the following features:

e Find CSC offerings: https://www.juniper.net/customers/support/

e Search for known bugs: https://prsearch.juniper.net/

e Find product documentation: https://www.juniper.net/documentation/

¢ Find solutions and answer questions using our Knowledge Base: https://kb.juniper.net/

e Download the latest versions of software and review release notes:
https://www.juniper.net/customers/csc/software/

e Search technical bulletins for relevant hardware and software notifications:
https://kb.juniper.net/InfoCenter/

e Join and participate in the Juniper Networks Community Forum:
https://www.juniper.net/company/communities/

e Create a service request online: https://myjuniper.juniper.net
To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool:

https://entitlementsearch.juniper.net/entitlementsearch/

Creating a Service Request with JTAC

You can create a service request with JTAC on the Web or by telephone.
e Visit https://myjuniper.juniper.net.
e Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see
https://support.juniper.net/support/requesting-support/.

https://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf
https://www.juniper.net/support/warranty/
https://www.juniper.net/customers/support/
https://prsearch.juniper.net/
https://www.juniper.net/documentation/
https://kb.juniper.net/
https://www.juniper.net/customers/csc/software/
https://kb.juniper.net/InfoCenter/
https://www.juniper.net/company/communities/
https://myjuniper.juniper.net
https://entitlementsearch.juniper.net/entitlementsearch/
https://myjuniper.juniper.net
https://support.juniper.net/support/requesting-support/

CHAPTER

Introduction to HealthBot

HealthBot Overview | 15

HealthBot Concepts | 20

Healthbot Tagging | 36

HealthBot Time Series Database (TSDB) | 48
HealthBot Machine Learning (ML) | 56
Frequency Profiles and Offset Time | 78

HealthBot Licensing | 91

HealthBot Overview

IN THIS SECTION

Benefits of HealthBot | 15
Closed-Loop Automation | 16
Main Components of HealthBot | 17

HealthBot is a highly automated and programmable device-level diagnostics and network analytics tool
that provides consistent and coherent operational intelligence across network deployments. Integrated
with multiple data collection methods (such as Junos Telemetry Interface, NETCONF, syslog, and SNMP),
HealthBot aggregates and correlates large volumes of time-sensitive telemetry data, providing a
multidimensional and predictive view of the network. Additionally, HealthBot translates troubleshooting,
maintenance, and real-time analytics into an intuitive user experience to give network operators actionable
insights into the health of an individual device and the overall network.

Benefits of HealthBot

o Customization—Provides a framework to define and customize health profiles, allowing truly actionable
insights for the specific device or network being monitored.

o Automation—Automates root cause analysis and log file analysis, streamlines diagnostic workflows, and
provides self-healing and remediation capabilities.

o Greater network visibility—Provides advanced multidimensional analytics across network elements,
giving you a clearer understanding of network behavior to establish operational benchmarks, improve
resource planning, and minimize service downtime.

o Intuitive graphical user interface—Offers an intuitive web-based GUI for policy management and easy
data consumption.

e Open integration —Lowers the barrier of entry for telemetry and analytics by providing open source
data pipelines, notification capabilities, and third-party device support.

o Multiple data collection methods—Includes support for Junos Telemetry Interface (JTI), NETCONF,
syslog, NetFlow, and SNMP.

Closed-Loop Automation

HealthBot offers closed-loop automation. The automation workflow can be divided into seven main steps
(see Figure 1 on page 17):

1. Define—HealthBot provides tools for the user to define the health parameters of key network elements
through customizable key performance indicators (KPIs), rules, and playbooks.

2. Collect—HealthBot collects rule-based telemetry data from multiple devices using various types of
data transfer methods.

3. Store—HealthBot stores time-sensitive telemetry data in a time-series database (TSDB). This allows
users to query, perform operations on, and write new data back to the database, days, or even
weeks after initial storage.

4. Analyze—HealthBot analyzes telemetry data based on customizable KPlIs, rules, and playbooks.

5. Visualize—HealthBot provides multiple ways for you to visualize the aggregated telemetry data through
the HealthBot web Ul to gain actionable and predictive insight into the health of your devices and
overall network.

6. Notify—HealthBot notifies you through the HealthBot web Ul and alarm notifications when problems
in the network are detected.

7. Act—HealthBot performs user-defined actions to help resolve and proactively prevent network problems.

Figure 1: HealthBot Closed-loop Automation Workflow

KPI Health Monitoring

Root Cause Analysis } >

Log File Analysis

GUI Access Playbook
Programmable
Access
— T t NETCONF
REST API
. 5 API Server
Python| =
N { i
User Defined Functions/Actions O
teioning /s o —T— =6 soe >
Provisioning / NMS D Notity) Notifications: Slack, Webhook, . . . —>
Rule Engine Time Series
Database
) Anaiyzs)

Telemetry I | | | | | | I
Infrastructure JTI Open fyerconel cLi Syslog | sNMP ! NetFlow

Config

T T T 2 Collect)
— i

9301020

I Main Components of HealthBot

HealthBot consists of three main components:

o Health Monitoring—View an abstracted, hierarchical representation of device and network-level health,
and define the health parameters of key network elements through customizable key performance
indicators (KPIs), rules, and playbooks.

¢ Root Cause Analysis—Find the root cause of a device or network-level issue when HealthBot detects a
problem with a network element.

¢ Log File Analysis—Analyze relevant system log messages by filtering out noise.

HealthBot Health Monitoring

The Challenge

With increasing data traffic generated by cloud-native applications and emerging technologies, service
providers and enterprises need a network analytics solution to analyze volumes of telemetry data, offer

17

insights into overall network health, and produce actionable intelligence. While telemetry-based techniques
have existed for years, the growing number of protocols, data formats, and key performance indicators
(KPIs) from diverse networking devices has made data analysis complex and costly. Traditional CLI-based
interfaces require specialized skills to extract business value from telemetry data, creating a barrier to
entry for network analytics

The HealthBot Health Monitoring Solution

By aggregating and correlating raw telemetry data from multiple sources, the HealthBot health monitoring
feature provides a multidimensional view of network health that reports current status, as well as projected
threats to the infrastructure and its workloads.

Health status determination is tightly integrated with the HealthBot root cause analysis (RCA) application,
which can make use of syslog log data received from the network and its devices. HealthBot health
monitoring provides status indicators that alert you when, for example, a network resource is currently
operating outside a user-defined performance policy, as well as risk analysis using historical trends to
predict whether a resource may be unhealthy in the future. HealthBot health monitoring not only offers
a fully customizable view of the current health of network elements, it also automatically initiates remedial
actions based on predefined service level agreements (SLASs).

Defining the health of a network element, such as broadband network gateway (BNG), provider edge (PE),
core, and leaf-spine, is highly contextual. Each element plays a different role in a network, with unique key
performance indicators (KPIs) to monitor. Given that there is no single definition for network health across
all use cases, HealthBot provides a highly customizable framework to allow you to define your own health
profiles.

HealthBot Root Cause Analysis

The Challenge

In some cases, it can be challenging for a network operator to figure out what causes a Junos OS networking
device to stop working properly. When this happens, the typical workflow to find the root cause of the
network problem involves contacting a specialist from Juniper Networks, who would then troubleshoot
and triage the unhealthy component based on knowledge built from years of experience. After completing
this time-intensive assessment, the problem would then be reassigned to the relevant engineering team.

The HealthBot RCA Solution

The purpose of the HealthBot root cause analysis (RCA) application is to simplify the process of finding
the root cause of a network issue. HealthBot RCA captures the troubleshooting knowledge of, for example,
the Juniper Networks specialists as part of a knowledge base in the form of HealthBot rules. These rules
are evaluated either on demand by a specific trigger or periodically in the background to ascertain the
health of a networking component, such as routing protocol, system, interface, or chassis, on the device.

To illustrate the benefits of HealthBot RCA, let us consider the problem of OSPF flapping.
Figure 2 on page 19 highlights the workflow sequence involved in debugging OSPF flapping. If a network

19

operator or Juniper Networks specialist were assigned this troubleshooting task, he or she would need to
perform manual debugging steps for each tile of the workflow sequence in order to find the root cause of
the OSPF flapping. The HealthBot RCA application, on the other hand, delivers this expert service to you
automatically as a bot. The RCA bot tracks all of the telemetry data collected by the HealthBot and translates
the information into graphical status indicators (displayed in the HealthBot web Ul) that correlate to
different parts of the workflow sequence shown in Figure 2 on page 19.

Figure 2: High-level workflow to debug OSPF-flapping

Control RPD — OSPF RPD — Infra Kernel — System Chassis Interfaces
Plane

Host RE - Host Path PPM — OSPF PFE — Uk PFE — Host Path

Path — Host Pa - - ern — Host Pal

Blaatr?e PFE - jnh XM - ASIC LU - ASIC PFE — System PFE — Interface

When configuring HealthBot, each tile of the workflow sequence shown in Figure 2 on page 19 can be
defined by one or more rules. For example, the RPD-OSPF tile could be defined as two rule conditions:
one to check if "hello-transmitted" counters are incrementing and the other to check if "hello-received"
counters are incrementing. Based on these user-defined rules, HealthBot provides status indicators, alarm
notifications, and an alarm management tool through the web Ul to inform and alert you of specific network
conditions that could, for example, lead to OSPF flapping. By isolating a problem area in the workflow,
HealthBot RCA proactively guides you in determining the appropriate corrective action to take to fix a
pending issue or avoid a potential one.

9300019

HealthBot Log File Analysis

The Challenge

Networking devices can generate a lot of log messages, some of these messages are arcane and others
create a lot of noise and clutter that drown out the more significant, meaningful messages. Network
operators need an easy way to sort through and organize all of these log messages, as well as make sense
of the information in order to take action, if necessary.

The HealthBot Log File Analysis Solution

Fully integrated with the HealthBot health monitoring and RCA features, HealthBot log file analysis can
be implemented with the use of log patterns and pattern sets within the syslog ingest settings. The pattern
sets can be applied to Rules to automatically filter out unnecessary log messages and help highlight only
the relevant, actionable messages. Healthbot log file analysis consists of two main components:

1. Aningest engine that lets HealthBot receive syslog messages from networks and devices.

2. Pre-defined and customizable search patterns and pattern sets that can be applied to rules.

See Syslog Ingest for more information about syslog ingest.

‘ HealthBot Getting Started Guide

HealthBot Concepts

IN THIS SECTION

HealthBot Data Collection Methods | 21
HealthBot Topics | 22

HealthBot Rules - Basics | 23

HealthBot Rules - Deep Dive | 25
HealthBot Playbooks | 35

HealthBot is a highly programmable telemetry-based analytics application. With it, you can diagnose and
root cause network issues, detect network anomalies, predict potential network issues, and create real-time
remedies for any issues that come up.

To accomplish this, network devices and HealthBot have to be configured to send and receive large amounts
of data, respectively. Device configuration is covered throughout this and other sections of the guide.

Configuring HealthBot, or any application, to read and react to incoming telemetry data requires a language
that describes several elements that are specific to the systems and data under analysis. This type of
language is called a Domain Specific Language (DSL), i.e., a language that is specific to one domain. Any
DSL is built to help answer questions. For HealthBot, these questions are:

e Q: What components make up the systems that are sending data?

A: Network devices are made up of memory, cpu, interfaces, protocols and so on. In HealthBot, these
are called “HealthBot Topics” on page 22.

e Q: How do we gather, filter, process, and analyze all of this incoming telemetry data?

A: HealthBot uses “HealthBot Rules - Basics” on page 23 that consist of information blocks called sensors,
fields, variables, triggers, and more.

o Q: How do we determine what to look for?

A: It depends on the problem you want to solve or the question you want to answer. Healthbot uses
“HealthBot Playbooks” on page 35 to create collections of specific rules and apply them to specific
groups of devices in order accomplish specific goals. For example, part of the system-kpis-playbook can
alert a user when system memory usage crosses a user-defined threshold.

This section covers these key concepts and more, which you need to understand before using HealthBot.

HealthBot Data Collection Methods

In order to provide visibility into the state of your network devices, HealthBot first needs to collect their
telemetry data and other status information. It does this using sensors.

HealthBot supports sensors that “push” data from the device to HealthBot and sensors that require
HealthBot to “pull” data from the device using periodic polling.

Data Collection - 'Push’ Model

As the number of objects in the network, and the metrics they generate, have grown, gathering operational
statistics for monitoring the health of a network has become an ever-increasing challenge. Traditional 'pull’
data-gathering models, like SNMP and the CLI, require additional processing to periodically poll the network
element, and can directly limit scaling.

The 'push’ model overcomes these limits by delivering data asynchronously, which eliminates polling. With
this model, the HealthBot server can make a single request to a network device to stream periodic updates.
As a result, the 'push’ model is highly scalable and can support the monitoring of thousands of objects in
a network. Junos devices support this model in the form of the Junos Telemetry Interface (JTI).

HealthBot currently supports four ‘push’ ingest types.

o Native GPB

o NetFlow

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-telemetry-interface/junos-telemetry-interface.html

e OpenConfig
e Syslog

These push-model data collection—or ingest—methods are explained in detail in the HealthBot Data Ingest
Guide.

Data Collection - 'Pull’ Model

While the 'push’ model is the preferred approach for its efficiency and scalability, there are still cases where
the 'pull’ data collection model is appropriate. With the 'pull’ model, HealthBot requests data from network
devices at periodic intervals.

HealthBot currently supports two ‘pull’ ingest types.

e iAgent (CLI/NETCONF)
e SNMP

These pull-model data collection—or ingest—methods are explained in detail in the HealthBot Data Ingest
Guide.

HealthBot Topics

Network devices are made up of a number of components and systems from CPUs and memory to interfaces
and protocol stacks and more. In HealthBot, a topic is the construct used to address those different device
components. The Topic block is used to create name spaces that define what needs to be modeled. Each
Topic block is made up of one or more Rule blocks which, in turn, consist of the Field blocks, Function
blocks, Trigger blocks, etc. See “HealthBot Rules - Deep Dive” on page 25 for details. Each rule created
in HealthBot must be part of a topic. Juniper has curated a number of these system components into a list
of Topics such as:

chassis

class-of-service

e external

firewall

interfaces

e kernel
e linecard
e logical-systems

e protocol

e routing-options

security

service

system

You can create sub-topics underneath any of the Juniper topic names by appending .<sub-topic> to the
topic name. For example, kernel.tcpip or system.cpu.

Any pre-defined rules provided by Juniper fit within one of the Juniper topics with the exception of external,
The external topic is reserved for user-created rules. In the HealtBot web GUI, when you create a new
rule, the Topics field is automatically populated with the external topic name.

HealthBot Rules - Basics

HealthBot’s primary function is collecting and reacting to telemetry data from network devices. Defining
how to collect the data, and how to react to it, is the role of a rule.

HealthBot ships with a set of default rules, which can be seen on the Configuration > Rules page of the
HealthBot GUI, as well as in GitHub in the healthbot-rules repository. You can also create your own rules.

The structure of a HealthBot rule looks like this:

IIIIHHHHI%IIIII
D —
Variables

00
Triggers aesndianen
Functions
Term
Vectors When-Then

Term
When-Then

300769

To keep rules organized, HealthBot organizes them into topics. Topics can be very general, like system, or
they can be more granular, like protocol.bgp. Each topic contains one or more rules.

As described above, a rule contains all the details and instructions to define how to collect and handle the
data. Each rule contains the following required elements:

23

https://github.com/Juniper/healthbot-rules

e The sensor defines the parameters for collecting the data. This typically includes which data collection
method to use (as discussed above in “HealthBot Data Collection Methods” on page 21), some guidance
on which data to ingest, and how often to push or pull the data. In any given rule, a sensor can be defined
directly within the rule or it can be referenced from another rule.

o Example: Using the SNMP sensor, poll the network device every 60 seconds to collect all the device
data in the Juniper SNMP MIB table jnxOperatingTable.

e The sensor typically ingests a large set of data, so fields provide a way to filter or manipulate that data,
allowing you to identify and isolate the specific pieces of information you care about. Fields can also act
as placeholder values, like a static threshold value, to help the system perform data analysis.

o Example: Extract, isolate, and store the jnxOperating15MinLoadAvg (CPU 15-minute average utilization)
value from the SNMP table specified above in the sensor.

e Triggers periodically bring together the fields with other elements to compare data and determine current
device status. A trigger includes one or more 'when-then’ statements, which include the parameters that
define how device status is visualized on the health pages.

o Example: Every 90 seconds, check the CPU 15min average utilization value, and if it goes above a
defined threshold, set the device’s status to red on the device health page and display a message
showing the current value.

The rule can also contain the following optional elements:

e Vectors allow you to leverage existing elements to avoid the need to repeatedly configure the same
elements across multiple rules.

o Examples: A rule with a configured sensor, plus a vector to a second sensor from another rule; a rule
with no sensors, and vectors to fields from other rules

e Variables can be used to provide additional supporting parameters needed by the required elements
above.

o Examples: The string “ge-0/0/0", used within a field collecting status for all interfaces, to filter the
data down to just the one interface; an integer, such as “80”, referenced in a field to use as a static
threshold value

e Functions allow you to provide instructions (in the form of a Python script) on how to further interact
with data, and how to react to certain events.

o Examples: A rule that monitors input and output packet counts, using a function to compare the count
values; a rule that monitors system storage, invoking a function to cleanup temp and log files if storage
utilization goes above a defined threshold

NOTE: Rules, on their own, don't actually do anything. To make use of rules you need to add
them to “HealthBot Playbooks” on page 35.

https://apps.juniper.net/mib-explorer/search.jsp#object=jnxOperatingTable&product=Junos%20OS&release=19.3R1

HealthBot Rules - Deep Dive

IN THIS SECTION

Rules | 25

Sensors | 28

Fields | 28

Vectors | 30
Variables | 30
Functions | 31
Triggers | 31
Tagging | 34

Rule Properties | 35

A rule is a package of components, or blocks, needed to extract specific information from the network or
from a Junos device. Rules conform to a specifically tailored domain specific language (DSL) for analytics
applications. The DSL is designed to allow rules to capture:

e The minimum set of input data that the rule needs to be able to operate

¢ The minimum set of telemetry sensors that need to be configured on the device(s)
e The fields of interest from the configured sensors

e The reporting or polling frequency

e The set of triggers that operate on the collected data

e The conditions or evaluations needed for triggers to kick in

e The actions or notifications that need to be performed when a trigger kicks in

The details around rules, topics and playbooks are presented in the following sections.

Rules

Rules are meant to be free of any hard coding. Think of threshold values; If a threshold is hard coded, there
is no easy way to customize it for a different customer or device that has different requirements. Therefore,
rules are defined using parameterization to set the default values. This allows the parameters to be left at
default or be customized by the operator at the time of deployment. Customization can be done at the
device group or individual device level while applying the HealthBot Playbooks on page 35 in which the
individual rules are contained.

Rules that are device-centric are called device rules. Device components such as chassis, system, linecards,
and interfaces are all addressed as HealthBot Topics on page 22 in the rule definition. Generally, device
rules make use of sensors on the devices.

Rules that span multiple devices are called network rules. Network rules:
e must have a rule-frequency configured

e must not contain sensors

e cannot be mixed with device rules in a playbook

To deploy either type of rule, include the rule in a playbook and then apply the playbook to a device group
or network group.

NOTE: HealthBot comes with a set of pre-defined rules.

Not all of the blocks that make up a rule are required for every rule. Whether or not a specific block is
required in a rule definition depends on what sort of information you are trying to get to. Additionally,
some rule components are not valid for network rules. Table 3 on page 26 lists the components of a rule
and provides a brief description of each one.

Table 3: Rule Components

Valid for
Required in Device Network
Block What it Does Rules? Rules?

“Sensors” on The Sensors block is like the access method for getting No-Rules can be created No

page 28 at the data. There are multiple types of sensors available = that only use a field
in HealthBot: OpenConfig, Native GPB, iAgent, SNMP, reference from another rule
and syslog. or a vector with references

from another rule. In these

It defines what sensors need to be active on the device
cases, rule-frequency must

in order to get to the data fields on which the triggers .. .
be explicitly defined.
eventually operate. Sensor names are referenced by the

Fields.

OpenConfig and iAgent sensors require that a frequency
be set for push interval or polling interval respectively.
SNMP sensors also require you to set a frequency.

Table 3: Rule Components (continued)

Block

Fields on
page 28

“Vectors” on
page 30

“Variables” on
page 30

“Functions” on
page 31

“Triggers” on
page 31

“Rule
Properties” on
page 35

What it Does

The source for the Fields block can be a pointer to a
sensor, a reference to a field defined in another rule, a
constant, or a formula. The field can be a string, integer
or floating point. The default field type is string.

The Vectors block allows handling of lists, creating sets,
and comparing elements amongst different sets. A vector
is used to hold multiple values from one or more fields.

The Variables block allows you to pass values into rules.
Invariant rule definitions are achieved through
mustache-style templating like {{<placeholder-variable>
1. The placeholder-variable value is set in the rule by
default or can be user-defined at deployment time.

The Functions block allows you to extend fields, triggers,
and actions by creating prototype methods in external
files written in languages like python. The functions block
includes details on the file path, method to be accessed,
and any arguments, including argument description and
whether it is mandatory.

The Triggers block operates on fields and are defined by
one or more Terms. When the conditions of a Term are
met, then the action defined in the Term is taken.

By default, triggers are evaluated every 10 seconds, unless
explicitly configured for a different frequency.

By default, all triggers defined in a rule are evaluated in
parallel.

The Rule Properties block allows you to specify metadata
for a HealthBot rule, such as hardware dependencies,
software dependencies, and version history.

Valid for
Required in Device Network
Rules? Rules?
Yes-Fields containthe data = Yes
on which the triggers
operate. Starting in
HealthBot release 3.1.0,
regular fields and key-fields
can be added to rules based
on conditional tagging
profiles. See the “Tagging”
on page 34 section below.
No Yes
No No
No No
Yes-Triggers enable rules | Yes
to take action.
No Yes

Sensors

When defining a sensor, you must specify information such as sensor name, sensor type and data collection
frequency. As mentioned in Table 3 on page 26, sensors can be one of the following:

e OpenConfig—For information on OpenConfig JTI sensors, see the Junos Telemetry Interface User Guide.

Native GPB—For information on Native GPB JTI sensors, see the Junos Telemetry Interface User Guide.

iAgent—The iAgent sensors use NETCONF and YAML-based PyEZ tables and views to fetch the necessary
data. Both structured (XML) and unstructured (VTY commands and CLI output) data are supported.
For information on Junos PyEZ, see the Junos PyEz Documentation.

SNMP—Simple Network Management Protocol.

syslog—system log

BYOI—Bring your own ingest - Allows you to define your own ingest types.

o Flow—NetFlow traffic flow analysis protocol

o sFlow—sFlow packet sampling protocol

When different rules have the same sensor defined, only one subscription is made per sensor. A key,
consisting of sensor-path for OpenConfig and Native GPB sensors, and the tuple of file and table for iAgent
sensors is used to identify the associated rule.

When multiple sensors with the same sensor-path key have different frequencies defined, the lowest
frequency is chosen for the sensor subscription.

Fields

There are four types of field sources, as listed in Table 3 on page 26. Table 4 on page 29 describes the
four field ingest types in more detail.

https://www.juniper.net/documentation/product/en_US/junos-pyez

Table 4: Field Ingest Type Details

Field Type

Sensor

Reference

Constant

Formula

Details

Subscribing to a sensor typically provides access to multiple columns of data. For instance,
subscribing to the OpenConfig interface sensor provides access to a bunch of information including
counter related information such as:

/interfaces/counters/tx-bytes,
/interfaces/counters/rx-bytes,
/interfaces/counters/tx-packets,
/interfaces/counters/rx-packets,
/interfaces/counters/oper-state, etc.

Given the rather long names of paths in OpenConfig sensors, the Sensor definition within Fields
allows for aliasing, and filtering. For single-sensor rules, the required set of Sensors for the Fields
table are programmatically auto-imported from the raw table based on the triggers defined in
the rule.

Triggers can only operate on Fields defined within that rule. In some cases, a Field might need
to reference another Field or Trigger output defined in another Rule. This is achieved by
referencing the other field or trigger and applying additional filters. The referenced field or trigger
is treated as a stream notification to the referencing field. References aren’t supported within
the same rule.

References can also take a time-range option which picks the value, if available, from the
time-range provided. Field references must always be unambiguous, so proper attention must
be given to filtering the result to get just one value. If a reference receives multiple data points,
or values, only the latest one is used. For example, if you are referencing a the values contained
in a field over the last 3 minutes, you might end up with 6 values in that field over that time-range.
HealthBot only uses the latest value in a situation like this.

A field defined as a constant is a fixed value which cannot be altered during the course of
execution. HealthBot Constant types can be strings, integers, and doubles.

Raw sensor fields are the starting point for defining triggers. However, Triggers often work on
derived fields defined through formulas by applying mathematical transformations.

Formulas can be pre-defined or user-defined (UDF). Pre-defined formulas include: Min, Max,
Mean, Sum, Count, Rate of Change, Elapsed Time, Standard Deviation, Microburst, Dynamic
Threshold, Anomaly Detection, Outlier Detection, and Predict.

Some pre-defined formulas can operate on time ranges in order to work with historical data. If
a time range is not specified, then the formula works on current data, specified as now.

Vectors

Vectors are useful in helping to gather multiple elements into a single rule. For example, using a vector
you could gather all of the interface error fields. The syntax for Vector is:

vector <vector-name>{
path [$field-1 $field-2 .. $Ffield-n];
filter <list of specific element(s) to filter out from vector>;
append <list of specific element(s) to be added to vector>;

$field-n can be field of type reference.

The fields used in defining vectors can be direct references to fields defined in other rules:

vector <vector-name>{
path [/device-group[device-group-name=<device-group>]\
/device[device-name=<device>]/topic[topic-name=<topic>]\
/rule[rule-name=<rule>]/field[<field-name>=<field-value>\
ANDJOR ...]/<field-name> ...];
filter <list of specific element(s) to filter out from vector>;
append <list of specific element(s) to be added to vector>;

This syntax allows for optional filtering through the <field-name>=<field-value> portion of the construct.
Vectors can also take a time-range option that picks the values from the time-range provided. When
multiple values are returned over the given time-range, they are all selected as an array.

The following pre-defined formulas are supported on vectors:

e unique @vectorl-Returns the unique set of elements from vectorl
o @vectorl and @vector2-Returns the intersection of unique elements in vector1 and vector2.
e @vectorl or @vector2-Returns the total set of unique elements in the two vectors.

o @vectorl unless @vector2-Returns the unique set of elements in vector-1, but not in vector-2

Variables

Variables are defined during rule creation on the Variables page. This part of variable definition creates
the default value that gets used if no specific value is set in the device group or on the device during

deployment. For example, the check-interface-status rule has one variable called interface_name. The
value set on the Variables page is a regular expression (regex), .*, that means all interfaces.

If applied as-is, the check-interface-status rule would provide interface status information about all the
interfaces on all of the devices in the device group. While applying a playbook that contains this rule, you
could override the default value at the device group or device level. This allows you flexibility when applying
rules. The order of precedence is device value overrides device group value and device group value overrides
the default value set in the rule.

BEST PRACTICE: It is highly recommended to supply default values for variables defined in
device rules. All Juniper-supplied rules follow this recommendation. Default values must not be
set for variables defined in network rules.

Functions

Functions are defined during rule creation on the Functions tab. Defining a function here allows it to be
used in Formulas associated with Fields and in the When and Then sections of Triggers. Functions used
in the when clause of a trigger are known as user-defined functions. These must return true or false.
Functions used in the then clause of a trigger are known as user-defined actions.

Triggers

Triggers play a pivotal role in HealthBot rule definitions. They are the part of the rule that determines if
and when any action is taken based on changes in available sensor data. Triggers are constructed in a
when-this, then-that manner. As mentioned earlier, trigger actions are based on Terms. A Term is built
with when clauses that watch for updates in field values and then clauses that initiate some action based
on what changed. Multiple Terms can be created within a single trigger.

Evaluation of the when clauses in the Terms starts at the top of the list of terms and proceeds to the
bottom. If a term is evaluated and no match is made, then the next term is evaluated. By default, evaluation
proceeds in this manner until either a match is made or the bottom of the list is reached without a match.

Pre-defined operators that can be used in the when clause include:

NOTE: For evaluated equations, the left-hand side and right-hand side of the equation are
shortened to LHS and RHS, respectively in this document.

e greater-than-Used for checking if one value is greater than another.

e Returns: True or False

o Syntax: greater-than <LHS> <RHS> [time-range <range>]
o Example: //Memory > 3000 MB in the last 5 minutes
when greater-than $memory 3000 time-range 5m;
e greater-than-or-equal-to-Same as greater-than but checks for greater than or equal to (>=)

less-than

e Returns: True or False
o Syntax: less-than <LHS> <RHS> [time-range <range>]
o Example: //Memory < 6000 MB in the last 5 minutes

when less-than $memory 6000 time-range 5m;

less-than-or-equal-to-Same as less-than but checks for less than or equal to (<=)

equal-to-Used for checking that one value is equal to another value.

e Returns: True or False
o Syntax: equal-to <LHS> <RHS> [time-range <range>]
o Example: //Queue’s buffer utilization % ==

when equal-to $buffer-utilization 0;

not-equal-to-Same as equal-to but checks for negative condition (!=)

exists-Used to check if some value exists without caring about the value itself. Meaning that some value
should have been sent from the device.

e Returns: True or False
o Syntax: exists <$var> [time-range <range>]
o Example: //Has the device configuration changed?

when exists $netconf-data-change

o matches-with (for strings & regex)-Used to check for matches on strings using Python regex operations.
See Python Regular Expressions for details.

NOTE: LHS, or left hand side, is the string in which we are searching; RHS, or right hand side,
is the match expression. Regular expressions can only be used in RHS.

e Returns: True or False
e Syntax: matches-with <LHS> <RHS> [time-range <range>]

o Example: //Checks that ospf-neighbor-state has been UP for the past 10 minutes

https://docs.python.org/3/library/re.html

when matches-with $ospf-neighbor-state “*UP$” time-range 10m;

o does-not-match-with (for strings & regex)-Same as matches-with but checks for negative condition

e range-Checks whether a value, X, falls within a given range such as minimum and maximum (min <= X
<= max)

o Returns: True or False
o Syntax: range <$var> min <minimum value> max <maximum value> [time-range <range>]

o Example: //Checks whether memory usage has been between 3000 MB and 6000 MB in the last 5
minutes

when range $mem min 3000 max 6000 time-range 5m;

e increasing-at-least-by-value-Used to check whether values are increasing by at least the minimum
acceptable rate compared to the previous value. An optional parameter that defines the minimum
acceptable rate of increase can be provided. The minimum acceptable rate of increase defaults to 1 if
not specified.

e Returns: True or False
e Syntax:

increasing-at-least-by-value <$var> [increment <minimum value of increase between successive
points>]

increasing-at-least-by-value <$var> [increment <minimum value of increase between successive
points>] time-range <range>

o Example: Checks that the ospf-tx-hello has been increasing steadily over the past 5 minutes.

when increasing-at-least-by-value $ospf-tx-hello increment 10 time-range 5m;

e increasing-at-most-by-value-Used to check whether values are increasing by no more than the maximum
acceptable rate compared to the previous value. An optional parameter that defines the maximum
acceptable rate of increase can be provided. The maximum acceptable rate of increase defaults to 1 if
not specified.

e Returns: True or False
e Syntax:

increasing-at-most-by-value <$var> [increment <maximum value of increase between successive
points>]

increasing-at-most-by-value <$var> [increment <maximum value of increase between successive
points>] time-range <range>

o Example: Checks that the error rate has not increased by more than 5 in the past 5 minutes.

when increasing-at-most-by-value $error-count increment 5 time-range 5m;

e increasing-at-least-by-rate-Used for checking that rate of increase between successive values is at least
given rate. Mandatory parameters include the value and time-unit, which together signify the minimum
acceptable rate of increase.

e Returns: True or False
o Syntax:

This syntax compares current value against previous value ensuring that it increases at least by value
rate.

increasing-at-least-by-rate <$var> value <minimum value of increase between successive points> per
<second|minute|hour|day|week|month|year> [time-range <range>]

This syntax compares current value against previous value ensuring that it increases at least by
percentage rate

increasing-at-least-by-rate <$var> percentage <percentage> per
<second|minute|hour|day|week|month|year> [time-range <range>]

o Example: Checks that the ospf-tx-hello has been increasing strictly over the past five minutes.

when increasing-at-least-by-rate $ospf-tx-hello value 1 per second time-range 5m;

e increasing-at-most-by-rate-Similar to increasing-at-least-by-rate, except that this checks for decreasing
rates.

Using these operators in the when clause, creates a function known as a user-defined condition. These
functions should always return true or false.

If evaluation of a term results in a match, then the action specified in the Then clause is taken. By default,
processing of terms stops at this point. You can alter this flow by enabling the Evaluate next term button
at the bottom of the Then clause. This causes HealthBot to continue term processing to create more
complex decision-making capabilities like when-this and this, then that.

The following is a list of pre-defined actions available for use in the Then section:

e next

e status

Tagging

Starting with Release 3.1.0, HealthBot supports tagging. Tagging allows you to insert fields, values, and
keys into a HealthBot rule when certain conditions are met. See “Healthbot Tagging” on page 36 for details.

Rule Properties

The Rule Properties block allows you to specify metadata for a HealthBot rule, such as hardware
dependencies, software dependencies, and version history. This data can be used for informational purposes
or to verify whether or not a device is compatible with a HealthBot rule.

HealthBot Playbooks

In order to fully understand any given problem or situation on a network, it is often necessary to look at
a number of different system components, topics, or key performance indicators (KPIs). HealthBot operates
on playbooks, which are collections of rules for addressing a specific use case. Playbooks are the HealthBot
element that gets applied, or run, on your device groups or network groups.

HealthBot comes with a set of pre-defined Playbooks. For example, the system-KPI playbook monitors
the health of system parameters such as system-cpu-load-average, storage, system-memory,
process-memory, etc. It then notifies the operator or takes corrective action in case any of the KPIs cross
pre-set thresholds. Following is a list of Juniper-supplied Playbooks.

e bgp-session-stats
e route-summary-playbook

lldp-playbook

interface-kpis-playbook

system-kpis-playbook

linecard-kpis-playbook

o chassis-kpis-playbook

You can create a playbook and include any rules want in it. You apply these playbooks to device groups.
By default, all rules contained in a Playbook are applied to all of the devices in the device group. There is
currently no way to change this behavior.

If your playbook definition includes network rules, then the playbook becomes a network playbook and
can only be applied to network groups.

Release History Table

Release Description

3.1.0 Starting in HealthBot release 3.1.0, regular fields and key-fields can be added to rules
based on conditional tagging profiles.

3.1.0 Starting with Release 3.1.0, HealthBot supports tagging.

RELATED DOCUMENTATION

‘ HealthBot Rules and Playbooks | 118

Healthbot Tagging

IN THIS SECTION

® Overview | 36

I Overview

Tagging allows you to insert fields, values, and keys into a HealthBot rule when certain conditions are met.

Tagging makes use of profiles to set the conditions, define the new fields and keys, and insert values into
those fields after creation. One example of what you can do with this is simple application identification
based on source-port, destination-port, and protocol of traffic seen in a NetFlow stream. The table below
shows a small example of what we are talking about.

source-port destination-port protocol derived-application
2541 Any 6 (TCP) NetChat

Any 2541 6 (TCP)

1755 Any 17 (UDP) MS-streaming

Any 830 6 (TCP) netconf-ssh

7802 Any 17 (UDP) vns-tp

In the table above, we use three existing fields in a NetFlow stream to guess the application traffic in the
stream. We then create a new field called derived-application and populate it based on the values seen in
the traffic.

Another example is to help fine tune machine learning (ML) algorithms in HealthBot. If we are monitoring
traffic flow for a sports streaming service, it would be helpful to tag traffic that occurs at specific times,

36

like the start and end of a high-profile football game. Even without ML, you could adjust traffic thresholds
based on the timing of special events, thereby enhancing the customer experience.

HealthBot applies tagging profiles as part of ingest settings. This allows the tags to be added to the incoming
data before HealthBot does a lot of processing, thereby allowing you to include your tags and values in
calculations that you perform on incoming data.

The rest of this document describes how tagging is implemented in HealthBot and provides a couple of
examples.

HealthBot Tagging Terminology

Since HealthBot configuration mimics the hierarchical method used by Junos OS, we can display HealthBot
configuration elements as pseudo-config as shown below. This view shows how the elements of a tagging
profile are named and how they are related to each other.

healthbot {
ingest-settings {
data-enrichment {
tagging-profile <taggi ng-profile-nane> {
policy <policy-nane> {
rules [List of Rules];
term <termnanmel> {
when {
<condi ti onl>
<condi ti on2>
}
then {
add-field <field-nanel> {
value <fiel d-val uel>;
type <field-type>;
}
add-field <fiel d-nane2> {
value <fi el d-val ue2>;
type <field-type>;
}
add-key <key-fi el d- name> {
value <key-fi el d-val ue>;

}

term <term nanel> {
then {
add-field <fiel d-name> {
value <fi el d-val ue>;

type <field-type>;

In the following sections we define the terms used within a tagging profile and provide some usage notes
for each term.
Policy

A policy is the top-level element in a tagging profile. There can be multiple policies list used to name the
policies in use within a tagging profile. Multiple policies can exist within a single profile, each with its own
rules and terms.

Usage Notes:

Defining multiple policies within a single profile allows you to define terms for each rule in one profile
rather than having to create one profile for each rule.
Rules

In terms of tagging profiles, a rule is any defined HealthBot rule. The rule element in a tagging profile is a
list element. The rule or rules included in the list ([rule1, rule2]) get the tagging profile, and more specifically,
the specific policy within the profile applied to them.

Usage Notes:

There are many ways to describe the topic-name/rule-name requirement for the rules element. They are
listed below:

e To name specific rules within a tagging profile, use the form: topic-name/rule-name where topic-name
and rule-name are defined seen in Configuration > Rules. For example:
protocol.bgp/check-bgp-advertised-routes.

¢ Use an asterisk (*) with no other value or brackets to match all rules.

e Use python-based fnmatch patterns to select all rules within a specific topic, like line-cards/*, or rules
within all topics, like */line-card. See fnmatch — Unix filename pattern matching.

https://docs.python.org/3/library/fnmatch.html

Terms

The term section of the tagging profile is where the match conditions are set and examined, and actions
based on those matches are set and carried out. We set the conditions for match in a when statement. We
set the actions to be taken upon completing a match in one or more then statements.

Usage Notes:

e Each term can contain a when statement but it is not required.
e Each term must contain at least one then statement.
e Multiple terms can be set within a single policy.

e Terms are processed sequentially from top to bottom until a match is found. If a match is found, processing
stops after completing the statements found in the then section; other terms, if present, are not processed
unless the next flag is enabled within the matched term. If the matched term has the next flag enabled,
then subsequent terms are processed in order.

When Statements

When statements define the match conditions that you specify. When statements ultimately resolve to
true or false. A term can be defined that has no when statements. This equates to a default term wherein
the match is assumed true and the subsequent then statement is carried out. Conversely, multiple conditions
can be checked within one when statement.

For example, you can check whether traffic is using the UDP protocol on port 53, with source address of
any, and a destination address of 8.8.8.8. Any traffic that matches all of these conditions can be tagged
by the actions in the then statement contained in the same term.

If one or more of the conditions set forth in a when statement are not met, the statement is false and the
term has failed to match; processing moves to the next term, if present.

Usage Notes:

When statements perform boolean operations on the received data to determine if it matches your criteria.
The supported operations are listed below:

o Numeric Operations:

equal-to

not-equal-to

greater-than

greater-than-or-equal-to

less-than

o less-than-or-equal-to

e String Operations:

e matches-with

o does-not-match-with

o Time Operations:

o matches-with-scheduler

NOTE: The matches-with-scheduler option requires that a discreet scheduler be configured
on the Settings > System > Scheduler page. The name of the scheduler can then be used in
the matches-with-scheduler when statement

e Go Language Expressions:
o eval <simple-go-expression>

For example: evala+ b <=c.

Then Statements

Then statements implement the tagging instructions you provide; but only after a complete match of the
conditions set forth in a when statement contained in the same term. Each term defined must have at least
one then statement. Each then statement must have one (or more) action(s) defined; the actions available
in then statements are:

add-field—Adds a normal field to the rule(s) listed in the rule section. Multiple fields can be added within
a then statement. The add-field action requires that you also define the kind of filed you are adding
with the field-type parameter:

e string
e integer

o float

NOTE: If you do not define a field type, the new field gets added with the default field-type
of string.

add-key—Adds a key field with the data type of string to the rule(s). Added key fields are indexed and
searchable just like any other key field.

Usage Notes:

As mentioned above, the next flag can be set within a then statement. When this flag is set, the next term
in the policy gets evaluated if all of the conditions of the current term match.

How It Works

As mentioned previously, tagging profiles are created (in the HealthBot GUI) at Settings > Ingest > Tagging
Profile. Since one or more rules are defined within each profile, you can probably guess that the profile is
applied when one of the named rules is added to a playbook and applied to a device-group. This applies
the profile to all devices in the group.

Tagging profiles can be applied at the device-group or device level. If tagging profiles are configured at
both device-group and device level on the same device, they are merged. Take the pseudo-configuration
shown below:

device r0 {
host rO0;
tagging-profile [profilel]

}

device rl {
host rl

}

device-group core {

devices [rO r1];
tagging-profile [profile2]
}

In the example above, we have:

e Device r0 has tagging profile, profile1, assigned at the device level and tagging profile profile2 assigned
by its membership in device-group core.

e Device r1 has only the tagging profile, profile2, assigned by its membership in device-group core.
Given this scenario, profile1 and profile2 are merged on device r0O, while device r1 only gets profile profile2.

If profilel and profile2 both define the same fields, but the fields contain different values, then the value
from profile1 takes precedence because it is assigned directly to the device.

Caveats

o Fields and keys added using tagging profiles cannot be used within periodic aggregation fields. This is
because periodic aggregation must take place before any UDFCode functions (reference, vector, UDF,
ML) are applied.

e Tagging-profiles can consist of only fields in add-key or add-field. Vectors cannot be added to a rule by
a tagging-profile.

e Vector comparison operations cannot be used within tagging-profile terms. Only field Boolean operations
are permitted.

o For tagging profile conditional operations within a when statement, the used field must be of type sensor,

constant, reference.

o If the field used within tagging profile Boolean operations is of type reference, then this reference field
must not depend on any user-defined-function or formula defined within same rule.

Examples

Static Tagging - No When Statement

healthbot {
ingest-settings {
data-enrichment {
tagging-profile profile {

policy policyl {
rules *;
term terml {

then {
add-key "‘tenant-id" {
value tenantl;

}

In the static tagging example above, the lack of a when statement means that any device that this profile
is applied to will have the field tenant-id assigned with the value tenant1. The fields and values defined in
this profile are assigned to all rules that are applied to a device or device-group because of the * in the

rules parameter.

The same profile, configured in the HealthBot GUI at Settings > Ingest on the Tagging Profile tab looks
like Figure 3 on page 43 below.

Figure 3: Add Static Tagging Profile

Add Tagging Profile

HName*
prefiled
Paolicies
policyl
Policy Nama*
policy1
Rule{s)*
= m-\:l
Terms
Teem: Term1 -~
Dulate Term1
Term Mame*
Term1
Whan

Thean*
Koys
Hame" Walue*
teriard-id teriant]

Flalds
B

SAVE & DEPLOY

Default Term Profile

healthbot {
ingest-settings {
data-enrichment {
tagging-profile default-terml {

policy policyl {

rules *;
term terml {
when {
matches-with "$fieldl"” FPC1;
}
then {
add-field "output-field" {
value vall;
¥
3
}
term term2 {
then {
add-field "output-field" {
value val2;
3
}
¥

In the default term profile shown above, term1 defines some criteria that must be met in order to add the
field output-field with value vall. However, if there is no match for term1, then term2 is processed and the
field, output-field, gets the value val2. This definition results in the value, val2, being the default value for
the field output-field.

The same profile, configured in the HealthBot GUI at Settings > Ingest on the Tagging Profile tab looks
like Figure 4 on page 45 below.

Figure 4: Default Tag

Bt et et

1L

g Ot

rrol W +

'

4

Application Identification

46

Remember the table from the beginning of this section? If not, here it is again:

source-port destination-port protocol derived-application
2541 Any 6 (TCP) NetChat

Any 2541 6 (TCP)

1755 Any 17 (UDP) MS-streaming

Any 830 6 (TCP) netconf-ssh

7802 Any 17 (UDP) vns-tp

To create the derived-application field from the received data, you would need a tagging profile definition
that looks like this:

healthbot {
ingest-settings {
data-enrichment {
tagging-profile profilel {
policy policyl {

rules *;

term terml {
when {
matches-with "$source-port

$netchat-source-port';

matches-with “$protocol™ "6 (TCP)";

3
then {
add-key "application™ {
value netchat;
3
}
3
term term2 {
when {
matches-with "$protocol™ "6 (TCP)";
matches-with "$destination-port"
"$netchat-dest-port";
3

then {

add-key "application™ {
value netchat;
}
}
}

term term3 {
when {
matches-with "$source-port™
""$ms-streaming-source-port™;
matches-with "$protocol' 17 (UDP)";

3
then {
add-key "application' {
value ms-streaming;
}
¥
3
term term4 {
when {

matches-with "$source-port"
“$netconf-ssh-source-port";
matches-with "$protocol™ "6 (TCP)";

3
then {
add-key "application' {
value netconf-ssh;
}
¥
3
term term5 {
when {
matches-with "$source-port" "$vns-tp-source-port";
matches-with "$protocol™ "17 (UDP)";
3
then {
add-key "application™ {
value vns-tp;
}
¥
3

The same profile, configured in the HealthBot GUI at Settings > Ingest on the Tagging Profile tab would
be a very large image, so we are not showing it.

HealthBot Time Series Database (TSDB)

IN THIS SECTION

Historical Context | 48

TSDB Improvements | 49

Database Sharding | 50

Database Replication | 51

Database Reads and Writes | 52

Manage TSDB Options in the HealthBot GUI | 53
HealthBot CLI Configuration Options | 55

HealthBot collects a lot of data through its various ingest methods. All of that data is time sensitive in
some context. This is why HealthBot uses a time-series database (TSDB) to store and manage all of the
information received from the various network devices. This topic is provides an overview of the TSDB

as well some guidance on managing it.

Historical Context

In HealthBot releases prior to 3.0.0, there was one TSDB instance regardless of whether you ran HealthBot
as a single node or as a multi-node (Docker-compose) installation. Figure 5 on page 49 shows a high-level

view of what this looked like.

Figure 5: Single TSDB Instance - Prior to HealthBot Release 3.0.0

Host 1
Device-Group 1 Device-Group n
(XX] (XX] (XX]

Host n
Device-Group n+1 Device-Group n+n
v A
(XX] (XX] (XX]

9300990

This arrangement left no room for scaling or redundancy of the TSDB. Without redundancy, there is no
high availability (HA); A failure left you with no way to continue operation or restore missing data. Adding
more Docker-compose nodes to this topology would only provide more HealthBot processing capability
at the expense of TSDB performance.

TSDB Improvements

To address these issues and provide TSDB high availability (HA), three new TSDB elements are introduced
in HealthBot Release 3.0.0, along with clusters of HealthBot nodes* for the other HealthBot microservices:

¢ “Database Sharding” on page 50- How many servers, or nodes, are available to store TSDB data and
scale HealthBot?

¢ “Database Replication” on page 51- How many copies of your data do you want to keep?

¢ “Database Reads and Writes” on page 52- How is data written and read back from the TSDB? What
happens when something goes wrong?

49

NOTE: *HealthBot uses Kubernetes for clustering its docker-based microservices across multiple
physical or virtual servers (nodes). Kubernetes clusters consist of a primary node and multiple
worker nodes. During the healthbot setup portion of HealthBot multinode installations, the
installer asks for the IP addresses (or hostnames) of the Kubernetes primary node and worker
nodes. You can add as many worker nodes to your setup as you need, based on the required
replication factor for the TSDB databases. The number of nodes you deploy should be at least
the same as the replication factor. (See the following sections for details).

For the purposes of this discussion, we refer to the Kubernetes worker nodes as HealthBot
nodes. The primary node is not considered in this discussion.

Database Sharding

Database sharding refers to selectively storing data on certain nodes. This method of writing data to
selected nodes distributes the data among available TSDB nodes and permits greater scaling since each
TSDB instance then handles only a portion of the time series data from the devices.

To achieve sharding, HealthBot creates one database per device group/device pair and writes the resulting
database to a specific (system determined) instance of TSDB hosted on one (or more) of the Healthbot
nodes.

For example, say we have two devices, D1 and D2 and two device groups, G1 and G2. If D1 resides in
groups G1 and G2, and D2 resides only in group G2, then we end up with 3 databases: G1:D1, G2:D1, and
G2:D2. Each database is stored on its own TSDB instance on a separate HealthBot node as shown in
Figure 6 on page 51 below. When a new device is on-boarded and placed within a device group, HealthBot
chooses a TSDB database instance on which to store that device/device-group data.

Figure 6: Distributed TSDB

Service 1...n

TSDB

Node 2 f// \\\ Node n
C K
.
' Queug :
: I Uepe < > TSDB
1

9300991

Figure 6 on page 51, above, shows 3 HealthBot nodes, each with a TSDB instance and other HealthBot
services running.

NOTE:
o A maximum of 1 TSDB instance is allowed on any given HealthBot node. Therefore, a HealthBot
node can have 0 or 1 TSDB instances at any time.

o A HealthBot node can be dedicated to running only TSDB functions. When this is done, no
other HealthBot functions run on that node. This prevents other HealthBot functions from
starving the TSDB instance of resources.

o We recommend that you dedicate nodes to TSDB to provide the best performance.

e HealthBot and TSDB nodes can be added to a running system using the HealthBot CLI.

I Database Replication

As with any other database system, replication refers to storing the data in multiple instances on multiple
nodes. In HealthBot, we establish a replication factor to determine how many copies of the database are
needed.

A replication factor of 1 only creates one copy of data, and therefore, provides no HA. When multiple
HealthBot nodes are available and replication factor is set to 1, then only sharding is achieved.

The replication factor determines the minimum number of HealthBot nodes needed. A replication factor
of 3 creates three copies of data, requires at least 3 HealthBot nodes, and provides HA. The higher the
replication factor, the stronger the HA and the higher the resource requirements in terms of HealthBot
nodes. If you want to scale your system further, you should add HealthBot nodes in exact multiples of the
replication factor, or 3, 6, 9, etc.

Consider an example where, based on device/device-group pairing mentioned earlier, HealthBot has
created 20 databases. The HealthBot system in question has a replication factor of 2 and has 4 nodes
running TSDB. Based on this, two TSDB replication groups are created; in our example they are TSDB
Group 1 and TSDB Group 2. In Figure 7 on page 52 below, the data from databases 1-10 is being written
to TSDB instances 1 and 2 in TSDB group 1. Data from databases 11-20 is written to TSDB instances 3
and 4 in TSDB group 2. The outline around the TSDB instances represents a TSDB replication group. The
size of the replication group is determined by the replication factor.

Figure 7: TSDB Databases

Database 1-10 Database 11-20

TSDB
Load
Balancer

TSDB Instance 1 TSDB Instance 2 TSDB Instance 3 TSDB Instance 4

TSDB Group 1: Serving Databases 1-10 TSDB Group 2: Serving Databases 11-20

9300992

I Database Reads and Writes

As shown in Figure 6 on page 51, HealthBot can make use of a distributed messaging queue. In cases of
performance problems or errors within a given TSDB instance, this allows for writes to the database to
be performed in a sequential manner ensuring that all data is written in proper time sequence.

All HealthBot microservices use standardized database query (read) and write functions that can be used
even if the underlying database system is changed at some point in the future. This allows for flexibility
in growth and future changes. Other read and write features of the database system include:

52

e In normal operation, database writes are sent to all TSDB instances within a TSDB group.

e Database writes can be buffered up to 1GB per TSDB instance so that failed writes can be retried until
successful.

o If problems persist and the buffer fills up, the oldest data is dropped in favor of new data.

e When buffering is active, database writes are performed sequentially so that new data cannot be written
until the previous write attempts are successful.

o Database queries (reads) are sent to the TSDB instance which has reported the fewest write errors in
the last 5 minutes. If all instances are performing equally, then the query is sent to a randomTSDB
instance in the required group.

I Manage TSDB Options in the HealthBot GUI

TSDB options can be managed from within the HealthBot GUI. To do this, navigate to the Settings >
System page from the left-nav bar, then select the TSDB tab from the left side of the page.

BEST PRACTICE: Adding, deleting, or dedicating TSDB nodes should be done during a
maintenance window since some services will be restarted and the HealthBot GUI will likely be
unresponsive while the TSDB work is performed.

In Figure 8 on page 53 below, you can see that the current TSDB nodes and replication factor are shown.

Figure 8: TSDB System Settings

= System (@ = B I e 6
ALARM Tsdb Settings @
NOTIFICATION
Tsdb Nodes *
RETENTION POLICY 10.102.70.82 10.102.70.200 -

DESTINATION Replication Factor*

2
SCHEDULER

) for
REPORT

B SsAvE B SAVE & DEPLOY
TSDB

53

Working with TSDB Nodes

e InFigure 8 on page 53 above, the field TSDB Nodes shows the currently defined TSDB instances in
our HealthBot installation.

e The pull-down list of nodes under TSDB Nodes displays all currently available HealthBot nodes.

e Any operation you perform affects all the TSDB instances shown in the field. In this case, hosts
10.102.70.82 and 10.102.70.200.

e You can delete a node from your HealthBot installation by clicking on the X next to the node IP or
hostname that you want to remove. When you click SAVE & DEPLOY, that TSDB node is removed
from HealthBot entirely.

NOTE: You cannot add HealthBot or TSDB nodes from the GUI in the current release of
HealthBot. Refer to Add a TSDB Node to HealthBot on page 55 to see the CLI procedure.

Change Replication Factor

e Increase or decrease the replication factor as needed.

e Click the SAVE & DEPLOY button to commit the change.

Dedicate a Node to TSDB

o Use the pull-down menu to select the node that you want to dedicate.

e Ensure that it is the only one in the TSDB Nodes list.

o Click the dedicate slider so that it activates (turns blue).

o Click the SAVE & DEPLOY button to commit the change.

Force Option
Normally, a failure in a TSDB instance can be overcome using the buffering methods described above.

In the event of a catastrophic failure of the server or storage hosting a TSDB instance, you can rebuild the
server or damaged component. However, if the replication factor is 1, then the TSDB data for that instance
is lost. In that case, ou need to remove the failed TSDB node from HealthBot.

e Select the X next to the damaged node from the TSDB Nodes field.
o Click SAVE & DEPLOY.

o If aproblem occurs and the removal is not successful, Click the force slider so that it activates (turns
blue).

This tells the system to ignore any errors encountered while adjusting the TSDB settings.

e Click the SAVE & DEPLOY button to commit the change.

HealthBot CLI Configuration Options

The HealthBot CLI provides a means to add and delete TSDB nodes from from the system and to change
the replication factor as a result.

Add a TSDB Node to HealthBot

set healthbot system time-series-database nodes <I P address or host name>
dedicate <true or fal se>

or

#set healthbot system time-series-database nodes [space-separated |ist of
| P addresses or hostnanes] dedicate <true or fal se>

Manage the Replication Factor

set healthbot system time-series-database replication-factor
<replication-factor>

Set the replication factor to a multiple of the number of TSDB nodes present in the system. If you have
two TSDB nodes, set the replication factor at 2, 4, 6, etc.

Usage Notes

e HealthBot performs a ping to determine if the new node(s) is reachable. A warning is shown if the ping
fails.

e The dedicate option specifies whether or not the TSDB nodes perform only TSDB functions.

‘ HealthBot Installation Guide

HealthBot Machine Learning (ML)

IN THIS SECTION

HealthBot Machine Learning Overview | 56
Understanding HealthBot Anomaly Detection | 57
Understanding HealthBot Outlier Detection | 59
Understanding HealthBot Predict | 62

HealthBot Rule Examples | 64

HealthBot Machine Learning Overview

HealthBot uses machine learning to detect anomalies and outliers, and predict future device or network-level
behavior. The machine learning-enabled HealthBot features include:

Anomaly Detection—Anomaly detection using the HealthBot Anomaly Detection algorithms involves
comparison of new data points with data points collected from the same device during a specific
learning period. HealthBot supports the following machine learning algorithms for anomaly detection:

e 3-sigma
e K-means

o Holt-Winters

Anomaly detection can be activated within HealthBot rules by setting a rule field's ingest type to
formula, and then selecting anomaly detection. (Configuration > Rules > Fields tab > Ingest Type >
Formula).

Outlier Detection—Outlier detection using the HealthBot Outlier Detection algorithms involves analysis
of data from a collection of devices across your network during a specific learning period. HealthBot
supports the following machine learning algorithms for outlier detection:

¢ Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

¢ K-fold cross-validation using 3-sigma (k-fold/3-sigma)

Prediction—Prediction of future device or network-level behavior involves using the HealthBot median
prediction machine learning algorithm or, the Holt-Winters prediction algorithm.

Starting with HealthBot Release 3.1.0, you can choose the Holt-Winters prediction algorithm from
Configuration > Rules > Fields > Ingest Type > Formula.

Understanding HealthBot Anomaly Detection

IN THIS SECTION

Field | 57

Algorithm | 58
Learning period | 58
Pattern periodicity | 59

This section describes the input parameters associated with HealthBot rules configured to detect anomalies
using Anomaly Detection algorithms. Once the machine learning models are built, they can be used in
production to classify new data points as normal or abnormal. The accuracy of the results increases with
larger amounts of data.

Field

To apply a machine learning algorithm, you must first define the numeric data field on which to apply the
algorithm. For information on how to create a user-defined data field for a HealthBot rule, see the Fields
section in the HealthBot User Guide.

Algorithm

The HealthBot Anomaly Detection algorithms include Holt-Winters, 3-sigma and k-means:

Holt-Winters—The Holt-Winters algorithm uses traffic entropy measurements and seasonal variations in
traffic to detect anomalous traffic flowing through an interface. The seasonality aspect provides a
means to de-emphasize normal increases and decreases in traffic that happen regularly over time
intervals. For example, network traffic in an enterprise network could be expected to have a weekly
seasonality since there would be significantly more traffic on the network during the work week than
on the weekend.

Since Holt-Winters can predict a traffic drop starting on Friday evening, an anomaly might be triggered
if traffic actually increased on Friday evening.

3-Sigma—The 3-sigma algorithm classifies a new data point as normal if it's within 3 standard deviations
from the mean (average across all the data points in the data set). A new data point is classified as
abnormal if it's outside this range.

K-means—The HealthBot k-means algorithm uses k-means clustering and other building blocks to create
a machine learning model for classifying new data points as normal or abnormal:

o K-means clustering splits n data points into k groups (called clusters), where k < n. For HealthBot, k
is set to 5 buckets.

e For forming the clusters, a 32-dimensional vector is considered for each point, thus taking into
account the trend (not just the current point, but its past 31 historical values).

e Each cluster has a center called the centroid. A cluster centroid is the mean of a cluster (average
across all the data points in the cluster).

o All new data points are added to a cluster, however, if a data point is considered too far away from
the centroid, it is classified as abnormal.

Learning period

The learning period specifies the time range to collect data from which the algorithm uses to build the
machine learning models. Supported units of time for learning period include: seconds, minutes, hours,
days, weeks, and years. You must enter the plural form of the time unit with no space between the number
and the unit. For example, a learning period of one hour must be entered as 1hours.

HealthBot builds machine learning models daily starting at midnight. For example, if the learning period is
5 days and triggered on 11th Feb 2019 00:00, then data collected from 6th Feb 2019 00:00 to 11th Feb
2019 00:00 is used by HealthBot to build the machine learning models. For the Holt-Winters prediction
algorithm, the learning period must be at least twice the pattern periodicity to ensure there is enough of
a pattern to learn.

Pattern periodicity

The pattern periodicity specifies the buckets for which data should be collected and used to build machine
learning models. Each bucket of data represents a user-defined time period and a specific pattern of data.
A minimum number of data points is required for a machine learning algorithm to build a model:

e 3-sigma requires at least 10 data points per bucket of data.

e K-means requires at least 32 data points per bucket of data.

Supported units of time for pattern periodicity include: minutes, hours, days, weeks, and months. You must
enter the plural form of the time unit with no space between the number and the unit.

For example:

o If the pattern periodicity is 1 day (entered as 1days), the data for each day of the week has a specific
pattern. HealthBot creates 7 buckets of data and 7 different models, one for each day of the week.

o If the pattern periodicity is 1 hour (entered as 1hours), regardless of the day, week, or month, the data
for every hour has a specific pattern. HealthBot creates 24 buckets of data and 24 different models, one
for each hour (00:00-00:59, 1:00-1:59, 2:00-2:59 ... 23:00-23:59) of the day.

o If the pattern periodicity is 1 day 1 hour (entered as 1days 1hours), the data for every hour of each day
of the week has a specific pattern. HealthBot creates 7 * 24 = 168 buckets of data and 168 different
models. 24 buckets for Monday (1 for every hour), 24 buckets for Tuesday (1 for every hour), and so
on. In this case, it doesn’t matter from which month data is collected.

Understanding HealthBot Outlier Detection

IN THIS SECTION

Dataset | 60

Algorithm | 60

Sigma coefficient (k-fold-3sigma only) | 62
Sensitivity | 62

Learning period | 62

This section describes the input parameters associated with HealthBot rules used for outlier detection
algorithms. Once the machine learning models are built, they can be used in production to identify time
series data sets as outliers. The accuracy of the results increases with larger amounts of data.

The results of the HealthBot outlier detection algorithm are stored in a table in the times series database.
Each row in the table contains outlier detection output and metadata that is associated with a particular
time series. You can use the information in the table to configure HealthBot rule triggers. Each column in
the table is identified by a unique name that starts with the user-defined outlier detection field name. For
example, you can use the field-name-is-outlier and field-name-device column names to configure a trigger
that detects outliers and produces a message that indicates which specific device was determined to be

the outlier. For more information, see the “Triggers” section of the “HealthBot Outlier Detection Example”
on page 73.

Dataset

For the outlier detection formula, input data is specified as a list of XPATHs from a variable. For information
on how to create a user-defined variable for a HealthBot rule, see the Variables section in the Contrail
HealthBot User Guide.

The following is an example of a list of XPATHs:

/device-group[device-group-name=DG0]/device[device-name=D0]/topic[topic-name=T0]/
rule[rule-name=R0]/field[re=RE[01] AND hostname=1.1.1.*]/re-memory,/
device-group[device-group-name=DG0]/device[device-name=D1]/topic[topic-name=T0]/
rule[rule-name=R0O]/field[re=RE[01] AND hostname=1.1.1.*]/re-memory

This path list specifies that on devices DO and D1 in device-group DGO, get re-memory from topic TO rule
RO, where the RE is either REO or RE1 and the hostname is in the 1.1.1.* block. This path allows for selecting
data at the field-key level, which is necessary because different field keys may have different purposes.

For example:

e On DO and D1, with the field named “memory usage on routing engine,” keys REO and RE1 represent
two routing engines per device.

e There's no guarantee that REO is a primary on all devices, therefore they might not be comparable when
checking for outliers.

e This mechanism allows for selecting only the primaries: DO-REO and D1-RE1.

Algorithm

The outlier detection algorithms include k-fold, 3-sigma, and dbscan:

K-Fold Cross-Validation Using 3-Sigma—K-fold cross-validation using the 3-sigma (k-fold 3-sigma) algorithm
is used to create a machine learning model for identifying outliers. K-fold cross-validation splits the

entire data set into k groups and uses the following general process to create the machine learning
models:

https://www.juniper.net/documentation/en_US/healthbot/topics/topic-map/healthbot-managing-rules-n-playbooks.html#jd0e639

e Each unique k group is used as a test data set.

e The k groups (that are not being used as a test data set) are used as the training data set to build a
machine learning model.

e Each test data set is evaluated using its associated machine learning model.

e The test data set with the most outliers relative to their associated machine learning model is classified
as an outlier.

For example, if k is the number of devices in a device group and the group has 4 devices, then k=4.
For cross-validation, four machine learning models are built and the test data sets are evaluated as
follows:

e Model 1: Trained with the data points collected from device 1, device 2, and device 3, then tested
with the data points collected from device 4.

e Model 2: Trained with the data points collected from device 1, device 2, and device 4, then tested
with the data points collected from device 3.

e Model 3: Trained with the data points collected from device 1, device 3, and device 4, then tested
with the data points collected from device 2.

e Model 4: Trained with the data points collected from device 2, device 3, and device 4, then tested
with the data points collected from device 1.

Using the k-fold 3-sigma algorithm is more applicable if it's known that outliers will skew in one direction
or another. If there are outliers on both sides of normal data points, or there are enough outlier data
points to make the algorithm believe that nothing is outlying, then the k-fold 3-sigma algorithm will
not provide significant results.

DBSCAN—Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is an unsupervised
machine learning algorithm used to create a machine learning model for identifying time series data
sets as outliers:

o Time series data sets are grouped in such a way that data points in the same cluster are more similar
to each other than those in other clusters.

o Clusters are dense regions of time series data sets, separated by regions of lower density.

o If a time series data set belongs to a cluster, it should be near many other time series data sets in
that cluster.

o Time series data sets in lower density regions are classified as outliers.

Using the DBSCAN algorithm is more applicable if outliers appear inside the 3-sigma threshold of the
other data points. DBSCAN can find outlying behavior that doesn’t appear as a significant deviation
from the normal behavior at any given time step.

Sigma coefficient (k-fold-3sigma only)

The sigma coefficient is a thresholding argument (default value is 3). The thresholding argument determines,
at each point in time for a series, how far away a value must be from the other values to be marked as an
outlier.

Sensitivity

Sensitivity is used to calculate the outliers, m, that the algorithm seeks to find in the data. Sensitivity
determines the number of time series test data sets to return as outliers (the top m are returned):

¢ Sensitivity “low”: 0.03% of the number of sensors
e Sensitivity “medium”: 5% of the number of sensors
e Sensitivity “high”: 36% of the number of sensors

¢ Absolute percentage x: x*number of sensors (float, 0.0-1.0)

Learning period

See the “Learning period” on page 58 description of the “Understanding HealthBot Anomaly Detection”
section.

Understanding HealthBot Predict

IN THIS SECTION

Field | 63

Algorithm | 63
Learning period | 63
Pattern periodicity | 63
Prediction offset | 63

This section describes the input parameters associated with HealthBot rules used for forecasting future
values with the HealthBot median prediction machine learning algorithm or the Holt-Winters prediction
machine learning algorithm. Once the machine learning models are built, they can be used in production

to predict trends and forecast future values. The accuracy of the results increases with larger amounts of
data.

Field

See the “Field” on page 57 description of the “Understanding HealthBot Anomaly Detection” section.

Algorithm

The HealthBot Predict feature uses either the median prediction algorithm, or the Holt-Winters prediction
algorithm.

The median value represents the midpoint for a range of values within a data sampling. For every pattern
periodicity bucket, a median is calculated from the data samples available in the bucket.

Learning period

See the “Learning period” on page 58 description of the “Understanding HealthBot Anomaly Detection”
section.

Pattern periodicity

See the “Pattern periodicity” on page 59 description of the “Understanding HealthBot Anomaly Detection”
section. For the median prediction algorithm, we recommend a minimum number of 10 data points for
building a machine learning model. For the Holt-Winters algorithm, the pattern periodicity should be half
or less of the learning period.

Prediction offset

The prediction offset value is a time in the future at which you want to predict a field value. For example,
if the present time is 6th Feb 2019 10:00 and the prediction offset is set to 5 hours, then HealthBot will
predict a field value for 6th Feb 2019 15:00.

Supported units of time for prediction offset include: seconds, minutes, hours, days, weeks, and years. You
must enter the plural form of the time unit with no space between the number and the unit. For example,
a prediction offset of one hour must be entered as 1hours.

HealthBot Rule Examples

IN THIS SECTION

HealthBot Anomaly Detection Example | 64
HealthBot Outlier Detection Example | 73

The machine learning HealthBot rules described in this section are available for upload from the HealthBot
Rules and Playbooks GitHub repository.

HealthBot Anomaly Detection Example

IN THIS SECTION

Sensors (check-icmp-statistics) | 64
Fields (check-icmp-statistics) | 65
Variables (check-icmp-statistics) | 67
Functions (check-icmp-statistics) | 68
Triggers (check-icmp-statistics) | 68

Rule Properties (check-icmp-statistics) | 73

This example describes how the check-icmp-statistics Healthbot device rule is configured to send ICMP
probes to user-defined destination hosts to detect anomalies when round trip average response time is
above static or dynamic thresholds.

The following sections show how to configure the applicable input parameters for each HealthBot rule
definition block (such as, Fields, Variables, and Triggers) using the HealthBot GUI. For more information
about how to configure HealthBot rules, see Creating a New Rule using the HealthBot GUI.

Sensors (check-icmp-statistics)

Figure 9 on page 65 shows the general properties and iAgent sensor configured for the check-icmp-statistics
rule. For information about the count-var and host-var variables, see “Variables (check-icmp-statistics)”
on page 67.

https://github.com/Juniper/healthbot-rules/
https://github.com/Juniper/healthbot-rules/
https://www.juniper.net/documentation/en_US/healthbot/topics/topic-map/healthbot-managing-rules-n-playbooks.html#id-create-a-new-rule-using-the-healthbot-gui

Figure 9: General properties (check-icmp-statistics) and Sensors definition (icmp)

Description: Sends ICMP probes fo destination host and nolify anomalies
Synopsis: ICMP response analyzer
Sensors Fields ~ Vectors Variables Functions Triggers Rule Properties
+ Add sensor
‘W Delete icmp

Sensor Name @
icmp

icmp

Sensor type

iAgent -
File™ Table™ Frequency

icmp_statistics.ymi - pingTable - 60s
Arg count Arg host

{{count-var}} {{host-var}}

s008204

Fields (check-icmp-statistics)

The following fields are configured for the check-icmp-statistics rule:

dt-response-time—(See Figure 10 on page 66) Configuration for anomaly detection using the k-means
algorithm. When an anomaly is detected, HealthBot returns a value of 1.

rtt-average-ms—(See Figure 11 on page 66) Round trip average response time.

rtt-threshold—(See Figure 12 on page 67) Static threshold for the round trip average response time. The
rtt-threshold variable populates this field.

Figure 10: Fields definition (dt-response-time)

Sensors Fields Vectors Variables Functions Triggers Rule Properties

<+ ADD FIELD

DELETE DT-RESPONSE-TIME
dt-response-

time

Field Name *(?)
host i
dt-response-time
packet-loss-
percent Description ()
rtt

Dynamic threshold for field rtt-average-ms

rtt-average-ms

rtt-threshold
Field Type

integer

Add to Rule Key (?)

Ingest type (Field source)

Formula
Formula Field Algorithm * Learning period *
Anomaly Detection v $rit-average-ms v k-means v 7d

Pattern periodicity *

s |

Figure 11: Fields definition (rtt-average-ms)

Sensors Fields Vectors Variables Functions Triggers Rule Properties

+ Add field

Field name* @
dt-response-time

rtt-average-ms
rit-average-ms

rit-threshold Description @

Round trip time:

Field type

float bt

Add to rule key

Ingest type (Field source)

Formula -
Formula Argument micros "
micro-milli - Srit-average X -

5008206

Figure 12: Fields definition (rtt-threshold)

Sensors Fields Vectors Variables Functions Triggers Rule Properties

Field name* @

di-response-time

rit-threshold
rt-average-ms
rit-threshold Description @

RTT response time static threshold

Field type

string

Add to rule key
Ingest type (Field source)
Constant
Constant value

{{rtt-threshold-var}}

s008207

Variables (check-icmp-statistics)

The following three variables are configured for the check-icmp-statistics rule:
count-var—(See Figure 13 on page 67) ICMP ping count. Count is set to 1 by default.

host-var—(See Figure 14 on page 68) Destination IP address or host name where ICMP probes are

periodically sent.

rtt-threshold-var—(See Figure 15 on page 68) Static threshold value for round trip average response time.
Threshold value is 1 ms by default. This variable populates the rtt-threshold field.

Figure 13: Variables definition (count-var)

Sensors Fields Vectors Variables Functions Triggers Rule Properties
Variable name* @ Default value @ Type™ @ m
count-var
count-var 1 Sensor Argument ad
host-var
rit-threshold-var Description @
Input ICMP probe count
©
<]
=1
©
g
@

68

Figure 14: Variables definition (host-var)

Sensors Fields Veclors Variables Functions Triggers Rule Properties
‘W Delete host-var
Variable name* @ Default value @ Type® ©
count-var
host-var Sensor Argument -
host-var
rii-threshold-var Description &

Input Destination host

@
8
3
=1
7
Figure 15: Variables definition (rtt-threshold-var)
Sensors Fields Vectors Variables Functions Triggers Rule Properties
o=
Variable name* @ Default value @ Type* @
count-var
rtt-threshold-var 1 Integer -
host-var
rit-threshold-var Description @
Input RTT response static threshold in milli seconds
=1
I
4 |8
2

Functions (check-icmp-statistics)

Figure 16 on page 68 shows the function configured for the check-icmp-statistics rule. This function
converts the unit of measure for the round trip average response time from microseconds to milliseconds.

Figure 16: Functions definition (micro-milli)

Sensors Fields Vectors Variables Functions Triggers Rule Properties

W Delete micro-milli

Function name* @

micro-mill
micro-milli
Path to function* @ Method name* @
micro_milli.py = rit_micro_milli
Description @

This function converts microseconds to milliseconds

Arguments

Name micros ‘ Mandatory @&

5008211

Triggers (check-icmp-statistics)

The following triggers and terms are configured for the check-icmp-statistics rule:

o packet-loss — (See Figure 17 on page 69)

The following terms are configured for the packet-loss trigger:

is-device-not-reachable—(See Figure 18 on page 70) When the ICMP packet loss is 100%, the HealthBot
health status severity level is set to major (red).

is-device-up—(See Figure 19 on page 70) When the packet loss is greater than O, the severity level is
set to minor (yellow).

no-packet-loss—(See Figure 20 on page 71) Otherwise, the severity level is set to normal (green).

e round-trip-time — (See Figure 21 on page 71)
The following terms are configured for the round-trip-time trigger:

is-rtt-fine—(See Figure 22 on page 72) When the host is not reachable or the round trip average response
time is above the static threshold, the HealthBot health status severity level is set to major (red).

is-rtt-medium—(See Figure 23 on page 72) When an anomaly is detected using the anomaly detection
formula, HealthBot returns a value of 1 for the dt-response-time field, and the severity level is set
to minor (yellow). In this case, the response time is above the anomaly detection.

rtt-normal—(See Figure 24 on page 73) Otherwise, the severity level is set to normal (green).

Figure 17: Triggers definition (packet-loss)

Sensors Fields Vectors Variables Functions Triggers Rule Properties

[ome= e

Trigger name @

packet-loss
round-trip-time

Frequency @

E '
008212

Figure 18: Terms definition (is-device-not-reachable)

¥ Term is-device-not-reachable
WHEN

Left operand Operator Right operand

$packet-loss - == - 100

4 Add Cond

THEN

Color

Message

Host $host not reachable

Evaluate next term

Time range

2m

Figure 19: Terms definition (is-device-up)

* Term is-device-up
WHEN

Left operand Operator Right operand

$packet-loss - > - 1]

THEN

Color

Message

Host $host reachable and $packet-loss % packet loss

Evaluate nexi term

+ Add Function

Time range

2m

5008213

s008214

70

Figure 20: Terms definition (no-packet-loss)

* Term no-packet-loss

WHEN

<+ Add Condition

THEN

Color

Message

Host $host reachable and $packet-loss % packet loss

Evaluate next term

<+ Add Function

Figure 21: Triggers definition (round-trip-time)

5008215

Sensors Fields

packet-loss

round-trip-time

Vectors Variables

Trigger name @

round-trip-time

Frequency @
60s
» Term is-rit-fine
3 Term is-rit-medium
|4 Term rit-normal

+ Add Term

Functions

Triggers

Rule Properties

s008216

71

Figure 22: Terms definition (is-rtt-fine)

v Term isrit-fine
WHEN

Left operand Operator

Srit-average-ms - >=

THEN

Color

Message

Right operand

Srit-threshold

Round trip time($rtt-average-ms ms) to $host is above static threshold

Evaluate next term

+ Add Function

Time range

Figure 23: Terms definition (is-rtt-medium)

w Term is-rit-medium
WHEN

Left operand Operator

$dt-response-time - == -

THEN

Color

Message

Right operand

1

Round trip time($rit-average-ms ms) to $host is above dynamic threshold

Evaluate next term

+ Add Function

Time range

s008217

5008218

72

Figure 24: Terms definition (rtt-normal)

WHEN
4+ Add Condition

THEN
Color

[] -
Message

Round trip time($rit-average-ms ms) to $host is normal

Evaluate next term

+ Add Function

¥ Term rit-normal x

Rule Properties (check-icmp-statistics)

Figure 25 on page 73 shows the rule properties configured for the check-icmp-statistics rule.

Figure 25: Rule Properties definition (check-icmp-statistics)

Sensors Fields Vectors Variables Functions Triggers Rule Properties
version @& Contributor & author-email €& Date © supported-healthbot-version &
1 juniper x - 200

Supported Device

Juniper Devices

~ Junos@®
* Product Name MX @
Release Name @ Release Support © Platform @
114 min-supported-releas - All

HealthBot Outlier Detection Example

IN THIS SECTION

Sensors (check-outlier) | 74
Fields (check-outlier) | 74
Variables (check-outlier) | 75

Triggers (check-outlier) | 75

Rule Properties (check-outlier) | 77

5008219

s008220

73

This example describes how the check-outlier Healthbot network rule is configured to detect outliers
across the devices in a device group using the round trip time average response time.

The following sections show how to configure the applicable input parameters for each HealthBot rule
definition block (such as, Fields, Variables, and Triggers) using the HealthBot GUI. For more information
about how to configure a HealthBot rule, see Creating a New Rule using the HealthBot GUI.

Sensors (check-outlier)

Figure 26 on page 74 shows the general properties configured for the check-outlier rule. Note that this
rule is a network rule.

Figure 26: General properties (check-outlier)

Description: Detects ICMP outlier response time and nolify anomalies

Synopsis ICMP outlier analyzer

Sensors Fields Vectors Variables Functions Triggers Rule Properties

@ q

]
o
5]
<]
]

Fields (check-outlier)

Figure 27 on page 75 shows the field configured for the check-outlier rule. This field defines the DBSCAN
algorithm and rtt-xpath variable for outlier detection. For information about the rtt-xpath variable, see
“Variables (check-outlier)” on page 75.

The results of the HealthBot outlier detection algorithm are stored in a table in the times series database.
Each row in the table contains outlier detection output and metadata that is associated with a particular
time series. You can use the information in the table to configure HealthBot rule triggers. Each column in
the table is identified by a unique name that starts with the user-defined outlier detection field name. For
example, you can use the field-name-is-outlier (rtt-ol-is-outlier) and field-name-device (rtt-ol-device) column
names to configure a trigger that detects outliers and produces a message that indicates which specific
device was determined to be the outlier (see “Triggers (check-outlier)” on page 75.).

https://www.juniper.net/documentation/en_US/healthbot/topics/topic-map/healthbot-managing-rules-n-playbooks.html#id-create-a-new-rule-using-the-healthbot-gui

Figure 27: Fields definition (rtt-ol)

Sensors Fields Vectors Variables Functions Triggers Rule Properties

Field name* @
rit-ol

ft-o

Description @

Outlier detection of devices in a group using xpath

Field type

string

Add to rule key

Ingest type (Field source)

Formula
Formula Dataset” Algorithm * Sensitivity ©
Outlier Detection - {{rtt-xpath}} - dbscan - low
Learning Period "

30m

5008222

Variables (check-outlier)

Figure 28 on page 75 shows the variable configured for the check-outlier rule. This variable defines the
devices in the network from which HealthBot collects round trip average response time data for the outlier
detection machine learning models.

Figure 28: Variables definition (rtt-xpath)

sensors Fields Vectors Variables Functions Triggers Rule Properties
W Delete rit-xpath
Variable name* @ Default value @ Type* @
rit-xpath
rit-xpath N String -

Description &

Input xpath of devices to be in outlier detection format e.g. /device-group[device-group-name=core}/device[device-id=R0}topic[topic-name=protocol. ikmp}rulefrule-
name=check-icmp-statistics)/rtt-average-ms, /device-group|device-group-name=core)/device[device-id=R1}/topic[topic-name=protocol.icmp)/rulefrule-name=check-icmp-
statistics)/rtt-average-ms, /device-group[device-group-name=core)/device[device-id=R2)topic{topic-name=protocol.icmp)/rulefrule-name=check-icmp-statistics)/rit-average-ms

5008223

Triggers (check-outlier)

Figure 29 on page 76 shows the trigger configured for the check-outlier rule. The following terms are
configured for the icmp-outlier-detection trigger:

is-outlier-detected—(see Figure 30 on page 76) When an outlier is detected, HealthBot returns a value of
1 for the rtt-ol-is-outlier field, and the HealthBot health status severity level is set to major (red). This
term also produces a message that indicates which specific device was determined to be the outlier.

no-outlier—(See Figure 31 on page 77) Otherwise, HealthBot returns a value of O, and the severity level

is set to normal (green).

Figure 29: Triggers definition (icmp-outlier-detection)

Sensors Fields Vectors Variables Functions Triggers Rule Properties

+ Add trigger

Trigger name @
icmp-outlier-
Cimn icmp-outlier-detection

Frequency @
60s
» Term is-outhier-detected
] Term no-outher

+ Add Term

o

Figure 30: Terms definition (is-outlier-detected)

¥ Term is-outlier-detected
WHEN

Left operand Operator Right operand

$rit-ol-is-outlier - == - 1

THEN

Color

Message

Outlier detected on $rit-ol-device

Evaluate next term

o Functions can be used as Trigger actions too, define them using the ‘Functions’ menu at the top

5008224

5008225

76

Figure 31: Terms definition (no-outlier)

w* Term no-outlier *
WHEN
Left operand Operator Right operand Time range
Srit-ol-is-outlier - == = 0 . o
THEN
Color
] =
Message
No outlier detected on $rit-ol-device
4
Evaluate next term
o Functions can be used as Trigger actions too, define them using the 'Functions’ menu at the top
Rule Properties (check-outlier)
Figure 32 on page 77 shows the rule properties configured for the check-outlier rule.
Figure 32: Rule Properties definition (check-outlier)
Sensors Fields ~ Vectors Variables Functions Triggers Rule Properties
version © Contributor & author-email € Date © supported-healthbot-version @
1 juniper x - 200
Supported Device
Juniper Devices
~ Junos@®
* Product Name MX @
Release Name @ Release Support @ Platform @
11.4 min-suppored-releas® - All
Release History Table
Release Description
3.1.0 Starting with HealthBot Release 3.1.0, you can choose the Holt-Winters prediction

algorithm

s008103

5008220

Frequency Profiles and Offset Time

IN THIS SECTION

Frequency Profiles | 78
Offset Time Unit | 83

Frequency Profiles

Frequency profiles are a central location in which sensor and rule time frequencies can be managed. To
understand frequency profiles, consider the following.

When defining rules in HealthBot you can:

o Define multiple rules that use the same sensor
o Define different sensor frequencies for each of the rules

o Apply all of these rules to the same device group/devices
This creates complexity in rule application and frequency adjustments within the individual rules:

e A key, consisting of sensor-path for OpenConfig and Native GPB sensors, or the tuple of file and table
for iAgent sensors is used to identify the specific rules.

e HealthBot takes the minimum defined frequency for that sensor from the applied rules and uses it to
subscribe to, or fetch, data from the devices.

e This make it hard to identify what the data rate should be for that sensor. To do that, you would have
to go through the all the applied rules.

e A change in the sensor frequency of an applied rule might not take effect as intended.
To address these complexities, HealthBot needed a common place from which to control these frequencies.

Starting in HealthBot 3.0.0, frequency profiles can be created that allow you to manage sensor and rule
frequencies from a single location and then apply the profiles in various locations in HealthBot. Application
of these profiles allows for persistent and repeatable behavior in regard to frequencies for rules, sensors,
triggers, formulas, references, learning periods, and hold times.

A sensor profile consists of a profile name and two optional sections: the sensors section and the
non-sensors section. In each section, an entry consists of a sensor or rule name and a frequency. Frequency
profiles are applied to device groups or network groups.

The steps for configuration are shown below.

Configuration Using HealthBot GUI

Frequency profiles are configured and managed in the HealthBot GUI or in the HealthBot CLI. In the GUI,
they are managed by navigating to the Settings > Ingest Settings page and selecting the Frequency Profile
tab from the left side of the page.

NOTE: While the sections of the frequency profile are both optional, at least one section must
be filled out per frequency profile if you want the applied profile to be able to do anything.

Add a Frequency Profile

1.

Click the + FREQUENCY PROFILE button

The Add Frequency Profile window appears.

Give the profile a name such as Profilel

(Optional) Click the + ADD SENSORS button.

In the Sensor Name field, enter the sensor name as per the following guidelines:

e OpenConfig Sensors: Enter the OpenConfig path for the desired sensor, such as /components or
/interfaces.

e iAgent Sensors: Enter the table name used in the sensor definition, such as ChassisAlarmTable or
REutilizationTable

e SNMP: Enter the sensor name such as npr_gmon_ext
e BYOI: Enter <topic-name/rule-name/sensor-name>, such as topic1l/rule1/sensorl

In the Frequency field, enter the appropriate frequency, such as 30seconds, 1minute, 2hours, and so
on.

(Optional) Click the + ADD NON-SENSORS button.

In the Rule Name field, enter the rule name such as check-chassis-alarms.

In the Frequency field, enter the appropriate frequency, such as 45seconds, 3minutes, 1hour, and so
on.

Repeat steps 3 through 5 or 6 through 8 as desired for the profile.

An example result of the previous steps might look like:

Figure 33: Edit a Frequency Profile

Edit Frequency Profile: Profile1

Name
SENSORS
Sensor Name Frequency *
/components 60seconds)
Sensor Name Frequency *
/interface 30seconds)

<+ ADD SENSORS

NON-SENSORS
Rule Name Frequency *

net-topic/net-rule 2minutes)

+ ADD NON-SENSORS

(o7:\\[0 = SAVE SAVE & DEPLOY

9. Click the SAVE & DEPLOY button to save and deploy the profile.

The new sensor profile is added to the list.

To edit an existing frequency profile:

1. Click the <Profile Name> from the list.
2. Make the needed changes as shown in the previous section.

3. Click the SAVE button to save the profile for later deployment or the SAVE & DEPLOY button to save
and deploy immediately.

To delete an existing frequency profile:

1. Click the Trash Can icon to the right of the profile name.

2. Click the DELETE button to delete the profile but not deploy the change or the DELETE & DEPLOY
button to delete and deploy immediately.

Usage Notes:

o Profile Entries-Multiple entries can be configured in each section as shown in Figure 33 on page 80.

e Override-Sensor or rule frequency defined within an applied frequency profile overrides those defined
within the individual rule or sensor.

e Order of Precedence-If a sensor or rule is defined in multiple frequency profiles, each with different
frequency settings, the minimum frequency value for the sensor or rule is used.

Configuration Using HealthBot CLI

In the HealthBot CLI, you can configure the same frequency profile described above. An example of the
CLI configuration needed to complete the example above looks like:

user@mgd-69ab987fbc6-pt9sh> show configuration healthbot ingest-settings
frequency-profile Profilel

sensor /components {
frequency 60seconds;

}

sensor /interface {
frequency 30seconds;

}

non-sensor net-topic/net-rule {
frequency 2minutes;

Apply a Frequency Profile Using the HealthBot GUI

Frequency profiles are applied to HealthBot device groups or network groups. When you create or edit a
device or network group, you apply frequency profiles by selecting them from the Ingest Frequency section
of the Device Group definition. Figure 34 on page 82 below shows an example of frequency profiles being
applied to a device group.

Figure 34: Apply Frequency Profiles

Edit "ix-lab-group"

Description

Describe the device group.

Devices*

spice @ v

Select devices to add to this group.

Timezone Retention Policy
v
Specify the Timezone in the format +/-hh:mm. Select the name of the retention policy to be applied.
Native Ports Flow Ports Syslog Ports
I rat |
Specify the native sensors receiver port(s). Specify the netflow sensor receiver port(s). Specify the syslog messages receiver UDP port(s).

Flow Deploy Nodes

Select flow ingest deploy nodes for this device group.

Reports

Select reports to generate for this device group.

Summarization v

Ingest Frequency ~

Ingest Frequency Profiles

Profile1) (Profile2 @ X a

All profiles...

NewProfile

Notifications v

Once you have applied the needed profiles, save and deploy the device group using the SAVE & DEPLOY
button.

BEST PRACTICE: It is strongly recommended that you only apply frequency profiles to rules
that make use of the “Offset Time Unit” on page 83 feature.

82

Apply a Frequency Profile Using the HealthBot CLI

An example of a device group CLI configuration which includes a frequency profile and could be deployed
in HealthBot is shown below.

user@mgd-69ab987fbc6-pt9sh> show configuration healthbot device-group lab-group

devices routerl;
ingest-frequency Profilel;

Offset Time Unit

The HealthBot offset time unit is used in conjunction with the “Frequency Profiles” on page 78 to
automatically manage time range calculations in various places within HealthBot rules. To understand the
HealthBot offset function, consider the following scenario:

In HealthBot, you can define a rule which

e Uses a sensor to gather data with a frequency of 10 seconds

e Has a field that calculates the mean every 60 seconds

If you later decide to increase the frequency of the sensor to 60 seconds, then calculating the mean every
60 seconds would not make any sense. The result is that you would have to manually update the field
calculation any time up want to change the sensor frequency.

Starting with HealthBot Release 3.0.0, you can set the time range for the mean calculation to a value of
60, or 60ffset, rather than 60s, or 60 seconds. Using an offset time value rather than a static time value
tells HealthBot to automatically multiply the sensor frequency by the numeric value of the offset. Thus,
any change to sensor frequency will automatically be included in the time range calculation for a formula.

An offset time unit can be used in place of standard time units in the following time range locations:

e Formulas

e References

e Vectors

e Trigger Frequency

e Trigger Term

Below we discuss GUI and CLI examples of how to configure the offset time unit in each of the locations
mentioned above.

Offset Used in Formulas

In this example, we are creating a rule, Rulel, with a sensor, Sensor1. The sensor frequency is set to 10

seconds.

In Figure 35 on page 84 below, you can see the Fields block definition for Rule1 with the Sensors block

definition framed in green. The formula, formula1, has a Time range value of 20

Figure 35: Offset in a Formula

Rule: external 1 ruler Rule Frequency:
Description: Demonstration Rule

Synopsis: This rule is used anly to demonstrate various rule features and concepts.

Field aggregation time-range:

Sensors Fields Vectors Variables Functions Triggers
formulal
Field Name * (%)
field1

formulal

Description (7)

Field Type

integer

Add to Rule Key (7)

Ingest type (Field source)

Formula
Formula Field *
Max - Stield1
Time range *
20

Rule Properties

Rule: external [Rule1 Rule Frequency:
Description: Demonstration Rule
Synopsis: This rule is used only to demonstrate varlous rule features and concepts.

Field aggregation time-range:

Sensors Fields Vectors Variables

+ ADD SENSOR

Sensorl

Functions Triggers

Sensor Name *(7)
Sensorl

Sensor Type
Open Config

Sensor Path *

finterfaces

o

Rule Properties

Frequency * -

- 10s

A CLI formatted configuration snippet for the same field looks like:

user@mgd-97bb5d555-sw87n$ show healthbot topic external rule rulel
synopsis "This rule is used only to demonstrate various rule features and concepts™;

description "Demonstration Rule';

sensor Sensorl {
open-config {

sensor-name /Zinterfaces;

frequency 10s;

}

}
field fieldl {

constant {
value 833;

84

}

type integer;

¥
field formulal {
formula {
max {
field-name "$fieldl™;
time-range 20;
¥
¥
type integer;
¥

Usage Notes for Offset Used in Formulas

e An offset value applied to the time range of a formula multiplies the rule, sensor, or trigger frequency
of that rule.

e Theresult of this example is that the time range for the Max formula is now 2 times the Sensor1 frequency
of 10 seconds, or 20 seconds (2 * 10s = 20s).

o If a frequency profile of 30 seconds is applied to the rule used in the example, then the resulting
time-range would be 60 seconds (2 * 30s = 60s).

o Offset time can be applied to the following formulas: latest, count, min, max, sum, mean, on-change, and
stdev.

Offset Used in References

In this example, there are two rules in play, but only one is shown. The unseen rule, Rulel, is in the topic
routing-engines and is named routing-engines (routing-engines/routing-engines). Rulel has a frequency
of 20 seconds. Rulel is referenced .

Rule2, shown in Figure 36 on page 86, is a network rule which has a reference field named ref1. The field,
refl, references back to Rulel through the Reference XPath Expression with a Time Range setting of
3offset.

Figure 36: Offset Time Used in Reference Field

— Network =
Rule: external / Rue2 Rule Frequency: 10s Rule B savesDerLOY B sae B DELETE rﬁ GLONE

Description: Demonstration Rule
Synopsis: This rule is used only to demonstrate various rule features and concepts.

Field aggregation time-range:

Sensors Fields Vectors Variables Functions Triggers Rule Properties

<+ ADDFIELD
W DELETE REF1
formulal

Field Name *(?)

refl
refl

Description (%)

Field Type

integer -

Add to Rule Key (?)

Ingest type (Field source)

Reference v
Reference XPATH expression Time Range Data if missing
"/device-group|device-group-name='Core4']/device[device-id='R1']/topic[topic-name="routing 30ffset\

Usage Notes for Offset Used in References

o Offset values used in references multiply the frequency of the referenced rule by the offset value. In
this case, the 20 second frequency of Rulel is multiplied by 3, resulting in a 60 second time-range (3 *
20s = 60s).

e If a frequency profile of 60 seconds (60s) was applied to Rulel, the time range for the reference would
increase to 180 seconds (3 * 60s = 180s).

Offset Used in Vectors

In this example, there are 3 rules at play. Rules Rule1 and Rule2 are not shown but are referenced by the
vector.

Rule1 is in topic line-cards and is named line-cards (line-cards/line-cards) and has a frequency of 20 seconds
(20s).

Rule2 is in topic routing-engines and is named routing-engines (routing-engines/routing-engines) and has
a frequency of 30 seconds (30s).

86

In Rule3 below, we have defined a vector, vectorl that consists of 2 path references and 1 field. The vector
has a Time Range defined as 3offset. Figure 37 on page 87 shows the vector block definition in the
HealthBot GUI.

Figure 37: Offset Time Used in Vector Block

Network =
Rule: external / Rues Rule Frequency: 10s Rule B save&DEPLOY B sae B DELETE r. GLONE

Description: Demonstration Rule
Synopsis: This rule is used only to demonstrate various rule features and concepts.

Field aggregation time-range:

Sensors Fields Vectors Variables Functions Triggers Rule Properties

+ ADDVECTOR
W DELETE VECTOR1
vectorl

Vector Name *(?)
vectorl
Ingest Type

path -

q . N . .\ N o imar . . Time-Range (%)
'/device-group[device-group-name='Core4'//device[device-id="R1')/topic[topic- -
name='"routing-engines'}/rule[rule-name="routing-engines'}/field[slot="0")/ref1" Soffset
offsef

"/device-group[device-group-name='Core4')/device[device-id="R1']//topic[topic-
name='line-cards'/rule[rule-name='line-cards'}/memory"

$formulat

Usage Notes for Offset Used in Vectors

o An offset value defined in the time range of a vector multiplies the sensor or rule frequency of the
referenced rule or sensor. If a field from the same rule is used as the reference, then the frequency of
the rule containing the vector is used.

o When multiple references or fields are defined for a vector and offset time is used, the offset value is
applied to each path independently. So, for this example in which our offset value is 3 (3offset):

o The path reference to Rulel: “/device-group[device-group-name='Core4']/device[device-id='R1']/
topic[topic-name='line-cards']/rule[rule-name="line-cards']/memory” which has a frequency of 20
seconds, would result in a time range of 60 seconds for the vector (3 * 20s = 60s).

e The path reference to Rule2: “/device-group[device-group-name='Core4']/device[device-id='R1']/
topic[topic-name='"routing-engines']/rule[rule-name="routing-engines']/field[slot='0"]/ref1” which
has a frequency of 30 seconds, would result in a time range of 90 seconds for the vector (3 * 30s =
90s).

NOTE: There are no spaces or line breaks in the path references. They are added to this
document only to enhance readability.

87

o The field reference to formulal: Since formulal is a normal field used within the vector block, the rule
frequency of the current rule is used as a basis. So, the time range for formulal is 30 seconds (3 * 10s
= 30s).

o If a frequency profile of 60 seconds is applied to Rule1 (line-cards/line-cards), then the time range for
that path in the vector would be 180 seconds (3 * 60s = 180s).

o If a frequency profile of 120 seconds is applied to Rule2 (routing-engines/routing-engines), then the
time range for that path in the vector would be 360 seconds (3 * 120s = 360s).

e The time range for the field reference, formulal, would remain the same as before at 30 seconds unless
a change is made to Rule3 or a frequency profile with a different time is applied to Rule3.

Offset Used in Triggers

In this example, we have one rule, Rulel. Figure 38 on page 88 below shows the trigger block definition
with the sensor block definition overlaid with a green border.

The rule, Rulel, has a sensor frequency of 10 seconds (10s) applied.
The trigger itself, Trigger1, has an offset frequency of 2 (20) applied.

The trigger term, term1, has its own time range offset of 2 (20) applied as well.

Figure 38: Offset Time Used in Trigger Block

Rule: external / Rule1 Rule Freq Network B savE 2 nEpI OV (= ® neEETE M cione
Network
o Rule: external [Ruke1 Rule Frequency: Rule
Description: Demonstration Rule
" D iption: i
Synopsis: This rule is used only to demonstrate various rule features and con escription: Demonstration Rule
N . 5 Synopsis: This rule is used only to demonstrate various rule features and concepts.
Field aggregation time-range:
Field aggregation time-range:
Sensors Fields Vectors Variables Functions
Sensors Fields Vectors Variables Functions Triggers Rule Properties
triggerl
Trigger Name * @ Sensorl
X Sensor Name * (?)
triggerl
Sensorl
Frequency (?)
Sensor Type
20
Open Config
Disable alarm deduplication
Sensor Path * Frequency *
v Term terml !
/interfaces v 105‘
WHEN
Left operand Operator All ~ in time range
$name - FPC1 v 20 (-]

-+ ADD CONDITION

88

89

Usage Notes for Offset Time Used in Triggers

e An offset value defined in trigger frequency multiplies the sensor or rule frequency. So, the offset value
of 2 in trigger1 causes the trigger frequency to be interpreted as 20 seconds (2 * 10s = 20s) because the
sensor frequency of the rule is used as the basis.

e An offset value defined in a trigger term multiplies the trigger frequency value. So, the offset value of
2 in term1 causes the term frequency to be interpreted as 40 seconds (2 * 20s = 40s).

Offset Used in Trigger Reference

In this example, we have 2 rules in the topic external, and one frequency profile, prof1.

The rules are:

e external/test: The test rule has a sensor named components which is an OpenConfig sensor with a sensor
path of /components and a sensor frequency of 10 seconds.

It also has a trigger, trigl with a frequency of 20 or 2offset. The trigger has a term named Term_1, which
is not used in the example.

Sensors Fields Vectars Variables Functions Triggers
Rule: external J' test
Synopsis:
trigl
Field aggregation time-range: Trigger Name * (7
Sensors Fields Vectors Waria trigl
Frequency (7
2o
components r : rm dedupli
Sensor Name *
2 Term Term_1
components
Sensor Type
Open Config
Sensor Path " Frequency "

Jcomponents - 10s

o external/ref: The ref rule is a non-sensor rule, which means that the rule uses a reference field,
trigger_reference, to reference the sensor defined in another rule; in this case external/test.

Network
Rule: external / ref Rule Frequency: 30s Rule a SAVE & DEPLOY

Description:
Synopsis:

Field aggregation time-range:

Sensors Fields Vectors Variables Functions Triggers Rule Properties

<+ ADDFIELD

trigger_reference
Field Name *(2)

trigger_reference
Description (7)
Field Type

Add to Rule Key (?)

Ingest type (Field source)

Reference
Reference XPATH expression * Time Range
/topic[topic-name='"external']/rule[rule-name="test']/trigger[trigger-name=trig1]/color 2offset

And the frequency profile is:

920

e profl: The prof1 profile sets the frequency for the /components sensor at 30 seconds.

Edit Frequency Profile: prof1

Name
SENSORS
Sensor Name Frequency *
/components ‘ 30seconds -}

-+ ADD SENSORS

NON-SENSORS

-+ ADD NON-SENSORS

CANCEL SAVE SAVE & DEPLOY

HealthBot Licensing

IN THIS SECTION

® HealthBot Licensing Overview | 91
® Managing HealthBot Licenses | 94

I HealthBot Licensing Overview

Juniper Networks introduced the Juniper Flex Software Subscription Licensing model to provide an efficient
way for customers and partners to manage licenses for hardware and software features. Contrail HealthBot
uses this licensing model.

To use a licensed feature, you need to purchase and activate a license that corresponds to that feature
and deploy that license so that it can be utilized by the software during normal operation. You can administer

921

and manage the licenses through the Juniper Agile Licensing Portal. The portal provides an intuitive,
task-based user interface that provides full lifecycle management of licenses.

HealthBot supports the standalone mode for deploying licenses. Standalone mode allows you to activate
a license on a software instance. Such a license can only be used by the instance on which it is activated.
Sharing a license with multiple instances is not permissible.

HealthBot has three service levels:

HealthBot Standard (Free)—This is the free model solution and is available for customers that have a valid
support contract. No license is required.

HealthBot Advanced—This is the first tier of the fee-based model solution and requires that you purchase
a HealthBot Advanced feature license. You may purchase additional device-based feature licenses
depending on your business needs.

HealthBot Premium—This is the second tier of the fee-based model solution and requires that you purchase
a HealthBot Premium feature license. You may purchase additional device-based feature licenses
depending on your business needs.

The following table shows a comparison between the HealthBot service models:

HealthBot Standard (Free)

Free with a valid Juniper
support contract.

No license required.

Limit of 5 custom playbooks
and 10 custom rules.

Number of devices allowed is
based on your contractual
agreement.

HealthBot Advanced (Fee-based)
Access to advanced features. You must
purchase a HealthBot Advanced feature

license. Additional device feature licenses
available.

Subscription licenses.

Unlimited custom playbooks and custom
rules.

Number of devices allowed is based on
the number of device feature licenses
purchased.

Full support for generating reports.

Full support for generating notifications.

HealthBot Premium (Fee-based)

Access to premium features. You must
purchase a HealthBot Premium feature
license. Additional device feature licenses
available.

The premium feature set currently
includes Time Series Database (TSDB)
High Availability (HA).

Subscription licenses.

Unlimited custom playbooks and custom
rules.

Number of devices allowed is based on

device feature licenses purchased.

Full support for generating reports.

Full support for generating notifications

https://license.juniper.net/licensemanage/

HealthBot Standard (Free)

HealthBot Advanced (Fee-based)

Limited support for Time Series Database
(TSDB) HA settings. You cannot configure
TSDB HA settings.

Support for default and custom rules with
machine learning features such as
dynamic thresholds, outlier detection,
median prediction, and microburst.

Support for default and custom rules with
user-defined functions.

Multivendor telemetry data collection.

HealthBot Premium (Fee-based)

Full support for changing TSDB HA and
other TSDB settings.

Support for default and custom rules with
machine learning features such as
dynamic thresholds, outlier detection,
median prediction, and microburst.

Support for default and custom rules with
user-defined functions.

Multivendor telemetry data collection.

*For information about HealthBot product options or to obtain a trial license, contact your local sales

representative.

The following table lists the available HealthBot device feature licenses:

Device Feature Name

HBOT-C1

HBOT-C2

HBOT-C3

HBOT-C4

Description

Extra small devices such as small remote CPEs, small branch SRX, and small

ACX.

Small switches such as fixed form factor EX, ACX, and QFX.

Small chassis-based switches, routers, and firewalls such as MX10003 and

PTX10K3

Large chassis-based systems like the MX10K, PTX, and large SRX.

NOTE: In HealthBot releases prior to 3.1.0, the feature licenses were called HBOT-BASE,
HBOT-G1, and HBOT-G2. License purchases made in previous versions will be honored in
HealthBot 3.1.0. New license purchases as of 3.1.0 can not be applied to previous versions of

HealthBot. See your local account manager for details.

For the HealthBot 3.1.0 release, enforcement of device license counts is based on the total number of all
C1-C4 licenses installed minus the total number of licenses actually used. This enforcement model may

change in future releases of HealthBot.

Managing HealthBot Licenses

IN THIS SECTION

Add a License to HealthBot | 94
View Licensing Status in HealthBot | 94

Once you have obtained a HealthBot license through the Juniper Agile Licensing Portal, you can:

Add a License to HealthBot

To add a HealthBot license:

1. Click on the Settings > License Management option in the left-nav bar.
2. Click the + License button.

3. Click the Choose File button in the pop-up window.

4. Navigate to the license file you want to add, and then click Open.

5. Click the Add button to add the license file.

The file should now appear in the Licenses Added table on the License Management page. For
information about the Licenses Added table, see “Licenses Added” on page 95.

View Licensing Status in HealthBot

IN THIS SECTION

Features Summary | 95

Licenses Added | 95

The License Management page consists of two tables; the Features Summary table and the Licenses added
table. Details of the table contents are shown below.

https://license.juniper.net/licensemanage/

Features Summary

The following table describes the HealthBot feature license attributes in the Features Summary table:
Attribute Description

Feature HealthBot license name.

HBOT-Premium—Limit and usage count for premium feature licenses for this
instance of HealthBot

HBOT-Advanced—Limit and usage count for advanced feature licenses for this
instance of HealthBot

HBOT-Devices—Maximum number of devices that can be managed by this
instance of HealthBot based on the device feature licenses added.

Description Brief description of the HealthBot feature license.

License Limit The number of valid HealthBot licenses successfully added and available for
use.

Usage Count The number of available licenses that are currently in use in this instance of
HealthBot.

Valid Until Date and time when the license expires.

Compliance Color definitions for dot indicator:

Green—Feature licenses are in compliance with Juniper's End User License
Agreement.

Yellow—Device feature licenses are >= 90% of the limit. You are getting close
to running out of licenses. This status is only applicable to device feature
licenses.

Red—Feature licenses are not in compliance with Juniper's End User License
Agreement. Click on the red dot to view details about the compliance issue.

Licenses Added

The following table describes the HealthBot license attributes in the Licenses Added table. Click the caret
next to the License ID to view the features that are provided by the license ID.

Attribute Description

License ID Identification number for the HealthBot license generated through the Juniper
Agile Licensing Portal.

Attribute Description

SKU Name Name of the HealthBot software licensing package.

Customer ID Identification name for the customer.

Order Type Types include: Commercial, demo, education, emergency, lab, and unknown.

Validity Type Types include: Date-based or permanent.

Start Date Start date of the HealthBot license.

End Date End date of the HealthBot license.

Feature ID Identification number for the feature license.

Feature Name HealthBot feature license name. For more information, see “Features Summary”
on page 95.

Feature Description Brief description of the HealthBot feature license.

License Count HBOT-Premium—Allow premium capabilities in HealthBot

HBOT-Advanced—Allow advanced capabilities in HealthBot

HBOT-C1—Number of C1 devices that can be managed by HealthBot..
HBOT-C2—Number of C2 devices that can be managed by HealthBot.
HBOT-C3—Number of C3 devices that can be managed by HealthBot.

HBOT-C4—Number of C4 devices that can be managed by HealthBot .

Release History Table

Release Description

3.1.0 For the HealthBot 3.1.0 release, enforcement of device license counts is based on the total
number of all C1-C4 licenses installed minus the total number of licenses actually used.

CHAPTER

Management and Monitoring

Manage HealthBot Users and Groups | 98

Manage Devices, Device Groups, and Network Groups | 104
HealthBot Rules and Playbooks | 118

Monitor Device and Network Health | 148

Alarms and Notifications | 181

Generate Reports | 200

Configure a Secure Data Connection for HealthBot Devices | 216
Configure Data Summarization | 219

Modify the UDA and UDF Engines | 222

Logs for HealthBot Services | 227

Troubleshooting | 230

HealthBot Configuration - Backup and Restore | 240

Manage HealthBot Users and Groups

IN THIS SECTION

User Management | 98
Group Management | 99
Limitations | 104

Starting with Release 3.0.0, HealthBot employs role-based access control (RBAC) to control access to the
user interface and HealthBot tools and objects. RBAC is applied to user groups that are made up of a list
of users.

The use of access controls within HealthBot allows you to grant one group of users, like operators, read-only
access to certain pages like Configuration > Device Configuration; while granting a different group of
users, like administrators, read-write access to that same page.

Default User and First Login

When HealthBot is first installed, the default username and password are set as admin and healthbot
respectively. The admin user has complete control over all of HealthBot's access controls. The credentials
above are used for the first login at the URL https://<HealthBot hostname or IP>:8080.

Upon successful first login and before the admin user is granted access to the GUI, they are required to
create a new password. The Temporary Password Reset window pops up and provides instructions
regarding password length, capitalization, special characters, and so on. Once you save this password, a
pop-up window notifies you that the password has been changed. From this time forward, the admin user
logs in with the new password.

Once the admin user is logged in, all user and group management is carried out on the Administration >
User Management page.

User Management

The User Management page is the first page shown when you navigate to Administration > User
Management from the left-nav bar. This page is used to:

¢ View a list of current HealthBot users

The list shows user details including first name, last name and status. User status can be active (green)
or inactive (red).

o Add new users
Click the + to bring up the Add User(s) window.
o Edit existing users

Select an existing user by clicking anywhere on that user’s line in the list. Then click the Edit User (Pencil)
icon to bring up the Edit <username> window. You can change any parameter except the username.

e Export the user list
With no user selected, click the Export (Page with arrow) icon to bring up the export dialog.
e Delete a user

Select an existing user by clicking anywhere on that user’s line in the list. Then click the Delete User
(Trash Can) icon. Confirm the action and the user is deleted.

NOTE:

e There is currently no self-service type of lost password mechanism. Password reset must be
done manually by an administrator with read-write access to the User Management page. The
administrator must edit the user, change the password, and then notify the user by appropriate
means.

o If you set a user’s status to inactive or delete that user, they are immediately prevented from
logging in to HealthBot through the login page.

Group Management

A user group is a collection of roles to which a HealthBot user can be assigned. The roles within a user
group define the access (read-only or read-write) that all members of the group have in common. In other
words, user groups are where RBAC controls are applied.

The User Groups page is accessed by navigating to Administration > User Management from the left-nav
and selecting User Groups on the left side of the User Management page.

o View a list of current HealthBot user groups
The list shows user group details including group name and description.

o Add new user groups

Click the + to bring up the Add Group window.

Starting in HealthBot Release 3.1.0, RBAC has been enhanced to include the roles selector helper. The
roles selector helper appears when you add or edit a user group. See Figure 39 on page 101.

101

Figure 39: Add User Group

Add Group

Group Name*
uGroup1

Unique Name for the group

Group Description

New user group for documentation purposes.

Description of the group

ROLES SELECTOR HELPER
Functionality
> Dashboard
> Monitor
> Configuration
> Settings
> Administration

Q Search X

Read Write

8 B
<]

o 0O
o 0O O

‘ Include Access Roles

Selected Roles

System Roles*

SELECT ALL CLEAR

@ configuration Q) @ configuration Q) @ data-store Q) @ data-store Q) @ data Q) @ debug Q) @ device-groups 0)

(o device 6) (0 devices 0) @ event 0) @ files 0) @ first-login °) @ health-tree 6) @ health 0) @ license Q) @ login Q)

@ logout 0) @ mgd 0) @ network-groups 0) @ playbook 0) @ playbooks 0) @ sensors Q) @ system-settings O) v

@ token Q) @ topic Q) @ topics 0) @ tsdb-counters @ @ user-profile 0) @ user-profile 0)

GUI Roles

(o ui-configuration-device 0) @ ui-configuration-devicegroups 0) (o ui-configuration-network 0) @ ui-configuration-playbooks 0)

@ ui-configuration-rules @ @ ui-dashboard-device-list @ @ ui-dashboard-device-status @ @ ui-dashboard-device-vendors @

Co ui-dashboard-devicegroup-list @ Co ui-dashboard-devicegroup-status @ Co ui-dashboard-network-status 0)

(o ui-dashboard-networkgroup-list 0) (o ui-dashboard-tsdb 0) (o ui-monitor-alarms 0) @ ui-monitor-device-health Q)

@ ui-monitor-devicegroup-health Q) @ ui-monitor-graph O) @ ui-monitor-network-health 0)

Associated Users

CANCEL SAVE SAVE & DEPLOY

102

o Edit existing user groups

Select an existing user group by clicking anywhere on that group’s line in the list. Then click the Edit
User (Pencil) icon to bring up the Edit <groupname> window.

NOTE: When you add or edit a user group, the window has sections called System Roles and
GUI Roles under the Selected Roles pull-down. These sections show the specific read-only
(R) or read-write (W) permissions that are assigned to the group as a result of the selections
made in the ROLES SELECTOR HELPER.

o Export the user group list
With no user group selected, click the Export (Page with arrow) icon to bring up the export dialog.
o Delete a user group

Select an existing user group by clicking anywhere on that group’s line in the list. Then click the Delete
User (Trash Can) icon. A confirmation window appears. Confirm the action (Save and Deploy) to complete
the deletion. The pre-defined user groups hbdefault and hbadmin cannot be deleted.

WARNING: Adding and editing user groups in HealthBot is an advanced feature that

A requires a deep understanding of the available roles and how they apply to RBAC. We
recommend that you use only the Role Selector check-boxes to add or remove
permissions. We do not recommend that you add or remove individual system or GUI
roles.

Pre-Defined User Groups

HealthBot is shipped with four pre-defined user groups:

e hboperator-Provides login capability and and the ability to manage your own profile. Each user belongs
to this group.

e hbmonitor-Provides read-only access to read and observe any configured entity in Healthbot.

e hbconfig: Provide all the capabilities of the hbmonitor group plus the ability to modify any configuration
in HealthBot.

e hbadmin-Provide all the capabilities of the hbconfig group plus the ability to manage users and groups.

None of the pre-defined user groups can be changed or removed. The default admin user is automatically
a member of the hbadmin group. The default admin user is the first member of this group and cannot be
removed from it. Additional administrator users can be added to this group by the admin user or another
member of the hbadmin group.

Limitations

In HealthBot Release 3.1.0, the RBAC implementation is limited in some ways:

e The available roles, such as R-Devices, W-Devices, R-Datastore, etc. are all pre-defined. There is no
way to add new roles or delete existing roles.

o All roles are endpoint driven, not specific to any resource. This means that if you have read permission
for devices, you can read all devices in the system. There is no means to restrict the read access to a
subset of devices.

¢ Roles are permissive in nature. You cannot create a role that blocks access to any given endpoint such
as rules. If a user is created but not given any group membership, they will not be able to access the
HealthBot GUI.

e RBAC is currently limited to API service. This means that if you have read-only access to a page such as
Configuration > Devices, you can see the entire page and interact with all of its controls. You could even
go through the motions of creating a device in the GUI. However, when you click SAVE or SAVE &
DEPLOY an APl is called and it will recognize that you do not have the required permission to create a
device. Errors are displayed at that time.

o If you migrate data from your existing 2.1.X installation to your 3.0.0 or later installation, user data is
not migrated. Any existing users must be recreated manually, by the admin user, after migration.

Release History Table

Release Description

3.1.0 Starting in HealthBot Release 3.1.0, RBAC has been enhanced to include the roles selector
helper

3.0.0 Starting with Release 3.0.0, HealthBot employs role-based access control (RBAC) to control

access to the user interface and HealthBot tools and objects.

Manage Devices, Device Groups, and Network Groups

IN THIS SECTION

Adding a Device | 106
Editing a Device | 109

Adding a Device Group | 109

Editing a Device Group | 113

Configuring a Retention Policy for the Time Series Database | 113
Adding a Network Group | 114

Editing a Network Group | 117

Use the appropriate Configuration pages from the left-nav to manage devices, device groups, and network
groups. HealthBot supports both Junos devices by default and third party vendor devices with the required
license installed. You must add a device to one or more device groups or create a network group before
you can apply HealthBot rules and playbooks to a device. Network groups allow you to correlate health

status data between multiple devices across the network. For example, you can create a network group
that monitors the ping times between two or more devices and notifies you if the ping times are too high.

Adding a Device

To add a device:

1. Click the Configuration > Device option in the left-nav bar.

2. Click the add device button (+).

3. Enter the necessary values in the text boxes and select the appropriate options for the device.

The following table describes the attributes in the Add a Device window:

Attributes

Name

Hostname / IP Address / Range

System ID to use for JTI

Flow Source IPs

OpenConfig Port Number

iAgent Port Number

Vendor

0s

SNMP Port Number

SNMP Community

Timezone

Syslog Source IPs

Description

Name of the device. Default is hostname. (Required)

Hostname or IP address of a single device. If you are providing a range of IP addresses,
enter the IP address for the device that marks the start and end of the address range.

(Required)

Unique system identifier required for JTI native sensors. Junos devices use the
following format: <host_name>:<jti_ip_address>

When a device has dual routing engines (REs), it might send different system IDs
depending on which RE is primary. You can use a regular expression to match both
system IDs.

Enter the IP address(es) that this device uses to send NetFlow data to HealthBot.
Port number required for JTI OpenConfig sensors. The default value is 32767.

Port number required for iAgent. The default value is 830.

Vendor or supplier of the device you are using.

NOTE: If you plan to use Cisco IOS XR devices, you must first configure the
telemetry. For more information, see HealthBot Installation Requirements

Device operating system.

Port number required for SNMP.

Community name required for SNMP. Default is public.

Timezone for this device, specified as + or -hh:mm. For example, +07:00

List of IP addresses for the device sending syslog messages to HealthBot. For example,
10.10.10.23, 192.168.10.100.

Attributes Description

Syslog Hostnames List of hostnames for the device sending syslog messages to HealthBot. For example,
routerl.example.com.

Authentication (Required either here or at Device Group level)

Password Username—Authentication username.

Password—Authentication password.

SSL Server Common Name—Server name protected by the SSL certificate.
CA Profile*—Choose the applicable CA profile(s) from the drop-down list.

Local Certificate*—Choose the applicable local certificate profile(s) from the
drop-down list.

SSH SSH Key Profile*—Choose the applicable SSH key profile(s) from the drop-down list.

Username—Authentication username.

4.

*To edit or view details about saved security profiles, go to the Security page under the Settings menu
in the left-nav bar.

Click Save to save the configuration or click Save and Deploy to save and deploy the configuration.
For information on how to use the Devices table, see “Monitor Device and Network Health” on page 148.

Editing a Device

To edit a device:

1.

Click the Configuration > Device option in the left-nav bar.

Click anywhere on the line that contains the device name in the table under DEVICES.

You can search and filter the device names in the table.

Click the Pencil (Edit Device) icon.

Modify the attributes, as needed.

See “Adding a Device” on page 106 for a description of each attribute.

. Click Save to save the configuration or click Save and Deploy to save and deploy the configuration.

For information on how to use the Devices table, see “Monitor Device and Network Health” on page 148.

(Optional) A device can be deleted by clicking the Trash Can (Delete Device) icon with the device
selected.

Adding a Device Group

To add a device group:

1. Click the Configuration > Device Group option in the left-nav bar.

2. Click the add group button (+).

3. Enter the necessary values in the text boxes and select the appropriate options for the device group.

The following table describes the attributes in the Add a Device Group window:

Attributes

Name

Description

Devices

Native Ports

Flow Ports

Syslog Ports

Retention Policy

Reports

Description

Name of the device group. (Required)

Description for the device group.

Add devices to the device group from the drop-down list. (Required)

(Native GPB sensors only) List the port numbers on which the Junos Telemetry Interface (JTI)
native protocol buffers connections are established.

(NetFlow sensors only) List the port numbers on which the NetFlow data is received by HealthBot.
The port numbers must be unique across the entire HealthBot installation.

Specify the UDP port(s) on which syslog messages are received by HealthBot.

Select a retention policy from the drop-down list for time series data used by root cause anaylsis
(RCA). By default, the retention policy is 7 days.

For information on how to configure a retention policy, see “Configuring a Retention Policy for
the Time Series Database” on page 113.

In the Reports field, select one or more health report profile names from the drop-down list to
generate reports fo the device group. Reports include alarm statistics, device health data, as well
as device-specific information (such as hardware and software specifications).

To edit or view details about saved health report profiles, go to the System page under the
Settings menu in the left-nav bar. The report profiles are listed under Report Settings.

For more information, see “Alarms and Notifications” on page 181.

Attributes

Summarization

Ingest Frequency

Description

To improve the performance and disk space utilization of the HealthBot time series database,
you can configure data summarization methods to summarize the raw data collected by HealthBot.
Use these fields to configure data summarization:

Time Span—The time span (in minutes) for which you want to group the data points for data
summarization.

Summarization Profiles—Choose the data summarization profiles from the drop-down list for
which you want to apply to the ingest data. To edit or view details about saved data
summarization profiles, go to the Data Summarization Profiles page under the Settings menu
in the left-nav bar.

For more information, see “Configure Data Summarization” on page 219.

Select existing Ingest Frequency Profiles to override rule or sensor frequency settings.

Authentication(Required here or at Device level)

Password

SSL

SSH

Notifications

Username—Authentication user name.

Password—Authentication password.

Server Common Name—Server name protected by the SSL certificate.
CA Profile*—Choose the applicable CA profile(s) from the drop-down list.

Local Certificate*—Choose the applicable local certificate profile(s) from the drop-down list.

SSH Key Profile*—Choose the applicable SSH key profile(s) from the drop-down list.

Username—Authentication username.

e You can use the Alarm Manager feature to organize, track, and manage KPI event alarm
notifications received from HealthBot devices.

e To receive HealthBot alarm notifications for KPI events that have occurred on your devices,
you must first configure the notification delivery method for each KPI event severity level
(Major, Minor, and Normal). Select the delivery method from the drop-down lists.

To edit or view details about saved delivery method profiles, go to the System page under the
Settings menu in the left-nav bar. The delivery method profiles are listed under Notification
Settings.

For more information, see “Alarms and Notifications” on page 181.

Attributes

Logging
Configuration

Publish

Description

You can collect different severity levels of logs for the running HealthBot services of a device
group. Use these fields to configure which log levels to collect:

Global Log Level—From the drop-down list, select the level of the log messages that you want
to collect for every running HealthBot service for the device group. The level is set to error
by default.

Log Level for specific services—Select the log level from the drop-down list for any specific
service that you want to configure differently from the Global Log Level setting. The log
level that you select for a specific service takes precedence over the Global Log Level setting.

For more information, see “Logs for HealthBot Services” on page 227.

You can configure HealthBot to publish HealthBot sensor and field data for a specific device
group:

Destinations—Select the publishing profiles that define the notification type requirements (such
as authentication parameters) for publishing the data.

To edit or view details about saved publishing profiles, go to the System page under the
Settings menu in the left-nav bar. The publishing profiles are listed under Notification
Settings.

Field—Select the HealthBot rule topic and rule name pairs that contain the field data you want
to publish.

Sensor—(Device group only) Select the sensor paths or YAML tables that contain the sensor data
you want to publish. No sensor data is published by default.

*To edit or view details about saved security profiles, go to the Security page under the Settings menu
in the left-nav bar.

4. Click Save to save the configuration or click Save and Deploy to save and deploy the configuration.

For information on how to use the device group cards, see “Monitor Device and Network Health” on
page 148.

Editing a Device Group

To edit a device group:

1. Click the Configuration > Device Group option in the left-nav bar.
2. Click on the device group name under DEVICE GROUPS.
3. Click on the Pencil (Edit Device Group) icon.

4. Modify the attributes, as needed.
See “Adding a Device Group” on page 109 for a description of each attribute.

5. Click Save to save the configuration or click Save and Deploy to save and deploy the configuration.
For information on how to use the device group cards, see “Monitor Device and Network Health” on

page 148.

6. (Optional) A device group can be deleted by clicking the Trash Can (Delete Device Group) icon with
the device group selected.

Configuring a Retention Policy for the Time Series Database

To configure a retention policy for the time series data used for root cause analysis (RCA):

1. Click the Settings > System option in the left-nav bar.

2. Select Retention Policy Settings.

3. Click the + Retention Policy button.

4. Enter the necessary values in the text boxes for the retention policy.

The following table describes the attributes in the Add a Retention Policy window:

Attributes Description
Name Name of the retention policy.
Duration Amount of time the root cause analysis (RCA) data is retained in the HealthBot RCA

database. By default, data is retained for 7 days.

The data must be entered in hours or days. For example, 1 day is entered as 1d or 24h.

5. Click Save to save the configuration or click Save and Deploy to save and deploy the configuration.

You can now apply the retention policy to a device group. For information on how to apply a retention
policy to a device group, see “Adding a Device Group” on page 109.

Adding a Network Group

To add a network group:

1. Click the Configuration > Network option in the left-nav bar.

2. Click the + (Add Network) button.

3. Enter the necessary values in the text boxes and select the appropriate options for the network group.

The following table describes the attributes in the Add a Network Group window:

Attributes

Name

Description

Reports

Notifications

Ingest
Frequency

Description

Name of the network group. (Required)

Description for the network group.

In the Reports field, select one or more health report profile names from the drop-down list to
generate reports fo the network group. Reports include alarm statistics, device health data, as well
as device-specific information (such as hardware and software specifications).

To edit or view details about saved health report profiles, go to the System page under the Settings
menu in the left-nav bar. The report profiles are listed under Report Settings.

For more information, see “Alarms and Notifications” on page 181.

e You can use the Alarm Manager feature to organize, track, and manage KPI alarm notifications
received from HealthBot devices.

o Toreceive HealthBot alarm notifications for KPI events that have occurred on your devices, you
must first configure the notification delivery method for each KPI event severity level (Major,
Minor, and Normal). Select the delivery method from the drop-down lists.

To edit or view details about saved delivery method profiles, go to the System page under the
Settings menu in the left-nav bar. The delivery method profiles are listed under Notification
Settings.

For more information, see “Alarms and Notifications” on page 181.

Select existing Ingest Frequency Profiles to override rule or sensor frequency settings.

Attributes

Logging
Configuration

Publish

Description

You can collect different severity levels of logs for the running HealthBot services of a network
group. Use these fields to configure which log levels to collect:

Global Log Level—From the drop-down list, select the level of the log messages that you want to
collect for every running HealthBot service for the network group. The level is set to error by
default.

Log Level for specific services—Select the log level from the drop-down list for any specific service
that you want to configure differently from the Global Log Level setting. The log level that
you select for a specific service takes precedence over the Global Log Level setting.

For more information, see “Logs for HealthBot Services” on page 227.

You can configure HealthBot to publish HealthBot sensor and field data for a specific network
group:

Destinations—Select the publishing profiles that define the notification type requirements (such
as authentication parameters) for publishing the data.

To edit or view details about saved publishing profiles, go to the System page under the
Settings menu in the left-nav bar. The publishing profiles are listed under Notification Settings.

Field—Select the HealthBot rule topic and rule name pairs that contain the field data you want to
publish.

4. Click Save to save the configuration or click Save and Deploy to save and deploy the configuration.
For information on how to use the network, see “Monitor Device and Network Health” on page 148.

Editing a Network Group

To edit a network group:

1. Click the Configuration > Network option in the left-nav bar.
2. Click anywhere on the line that contains the group name in the table under NETWORK LIST.
3. Click on the Edit Network (Pencil) icon.

4. Modify the attributes, as needed.

See “Adding a Network Group” on page 114 for a description of each attribute.

5. Click Save to save the configuration or click Save and Deploy to save and deploy the configuration.
For information on how to use the network group cards, see “Monitor Device and Network Health”
on page 148.

6. (Optional) A network can be deleted by clicking the Delete Network (Trash Can) icon.

HealthBot Rules and Playbooks | 118
Monitor Device and Network Health | 148

HealthBot Rules and Playbooks

IN THIS SECTION

Add a Pre-Defined Rule | 119

Create a New Rule Using the HealthBot GUI | 119

Edit a Rule | 136

Add a Pre-Defined Playbook | 137

Create a New Playbook Using the HealthBot GUI | 138
Edit a Playbook | 139

Manage Playbook Instances | 140

The device or network performance elements that are important to one company may not be important
to another. HealthBot uses Rules and Playbooks to define key performance indicators (KPIs) and organize
them into groups that are applied to network devices.

This document presents the tasks involved in creating, editing, and deleting HealthBot rules and playbooks.

Add a Pre-Defined Rule

Juniper has created a set of pre-defined rules that you can use to gather information from various Juniper
components and the networks they reside in. You can add these rules to HealthBot at any time. After
installation, many default pre-defined rules appear in the Rules and Playbooks pages. Pre-defined rules
cannot be changed or removed; however, you can clone any rule (pre-defined or user defined) simply by
clicking the CLONE button on the upper-right part of the rule definition. A cloned rule goes to the external
topic and can be re-configured at will.

To upload additional pre-defined rules to HealthBot:

1. Using a browser, go to https://github.com/Juniper/healthbot-rules and download the pre-defined rule
file to your system.

2. In the HealthBot GUI, click the Configuration > Rules icon in the left-nav bar.
3. Click the 1 Upload Rule Filesbutton.

4. Click the Choose Files button.

5. Navigate to the rule file and click Open.

6. Select one of the following options:

Upload Upload the file and save the rule within the defined topic area but do not deploy the
updated configuration. You can use this option when, for example, you are making
several changes and want to deploy all your updates at the same time.

Upload & Deploy Upload the file, save the rule within the defined topic area, and immediately deploy the
configuration.

Create a New Rule Using the HealthBot GUI

IN THIS SECTION

Rule Filtering | 121

https://github.com/Juniper/healthbot-rules

Sensors | 123

Fields | 125

Vectors | 128
Variables | 130
Functions | 131
Triggers | 133

Rule Properties | 136

To create a new rule using the HealthBot GUI, you'll first fill out general descriptive information about the

rule and then navigate through several
configuration for the HealthBot rule.

To start creating a new HealthBot rule:

1. Click the Configuration > Rules icon
topic is displayed along the left side

rule definition blocks in the Rules page to provide the specific

in the left-nav bar. A list of HealthBot rules organized by HealthBot
of the Rules page.

2. Click the add rule button (+ Add Rule).

3. Enter general descriptive information about the rule using the following input parameters:

Parameter

Rule

Rule frequency

Description

For a new rule, this parameter is pre-populated with external / user_rule_random
characters, for example, external / user_rule_2p0ghk. The fields separated by
the slash (/) represent HealthBot topic name and HealthBot rule name,
respectively.

external is the topic name used for user-defined topics. For the HealthBot rules
pre-defined by Juniper, Juniper has curated a set of pre-defined device
component-based topic names. For more information about HealthBot topics,
see HealthBot Topics.

Replace the user_rule_random characters rule name with a name that
appropriately represents the rule’s description such as packets-in, packets-out,
system_memory, etc.

(Network rule only) Specify how often data for the network rule is collected by
HealthBot. This setting is overridden if the rule is included in a frequency profile
that is applied to a network group.

https://www.juniper.net/documentation/en_US/healthbot/topics/topic-map/healthbot-rules-n-playbooks-map.html#id-healthbot-topics

Parameter Description
Description (Optional) Enter a detailed description for the rule.

Synopsis (Optional) Enter a brief description for the rule. The synopsis is displayed when
you hover over the rule name listed along the left side of the Rules page.

Field Aggregation Time Range This optional value defines how often HealthBot aggregates the data received
by the sensor. This helps reduce the number of data point entries in the time
series database.

4. (Network rule only) If the new rule is a network rule, toggle the Network rule switch to the right.

5. Configure the rule definition blocks as needed.

Located directly below the Synopsis input parameter, you'll find links to the following rule definition
blocks: Sensors, Fields, Vectors, Variables, Functions, Triggers, and Rule Properties. The following
sections describe the input parameters for each of these rule definition blocks.

6. Select one of the following options to save the new rule:

Save Save the rule within the defined topic area but do not deploy the updated configuration.
You can use this option when, for example, you are making several changes and want
to deploy all your updates at the same time.

Save & Deploy Immediately deploy the configuration and save the rule within the defined topic area.

The following sections describe the input parameters for each of the HealthBot rule definition blocks:

Rule Filtering

Starting in HealthBot Release 3.0.0, you can filter the Topics and Rules displayed on the left side of the
Rules page. This allows you to quickly find rules that you are looking for. The search function works for
topics, rules, sensor-types and other categories; working not only on titles, but also on the defined contents
of rules.

The following procedure explains this filtering feature.

1. Navigate to Configuration > Rules in the left-nav bar.

The Rules page is displayed. To the left of the rule definition area is a new section as shown in
Figure 40 on page 122 below.

122

Figure 40: Rule Filtering

Rules (@

+ ADD RULE # UPLOAD RULE FILES »_RULH

Rule A @

Rule
Topic
Qs

irms
Sensor-Type

HB-Version

Product-MName

2. From the pull-down menu, select the type of search you want to perform.

3. In the search field, begin entering your search text.

The topic list below shrinks to display only topics and rules that match your search criteria.

Sensors

Start configuring the new rule using the Sensor block. Figure 41 on page 123 shows the sensor definition
for the OpenConfig sensor pppoe-error-statistics.

Figure 41: A Sensor Definition

Rule: service protocols .If pppoe-error-statistics Rule Frequency: Network Rule
Description: Collects the PPPoE error periodically and notifies in case of anomalies
Synopsis: Monitors PPPoE error statistics
Sensors Fields Vectors Variables Functions Triggers Rule Properties
+ Add sensor

Sensor Name @
pppoe-error-
statistics o
pppoe-error-statistics

Sensor type

Open Config
Sensor path ™ Frequency ™
/junos/system/subscriber-management/client-protocols/ppr ~ 60s

1. Click the add sensor button (+ Add Sensor).

A new sensor definition appears and is named Sensor_random characters, like Sensor_2kgf04.

2. Change the sensor name to something that makes sense for the rule you are defining.

3. From the drop-down list, choose the sensor type. You can choose one of: OpenConfig, Native GPB,
iAgent, SNMP, Syslog, or NetFlow.

The required elements for defining the Sensor Type change depending on the selection you make. The
frequency is expressed in #s, #m, #h, #d, #w, #y, or #0 where # is a number and s, m, h, d, w, y specifies
seconds, minutes, hours, days, weeks, years, and offset respectively. The o expression is used for

defining an offset multiplier for use in formulas, references, triggers, learning periods, and hold-times.

The following list describes the elements that change based on your choice of Sensor Type. None of
the other rule elements change because of a Sensor Type selection.

e OpenConfig—Sensor path is defined from a drop-down list of available OpenConfig sensors. Frequency
refers to how often, in seconds, the sensor reports to HealthBot. The frequency can be overridden
if the sensor is included in a frequency profile.

o Native GPB—Sensor path refers to the path for a Native GPB sensor. Port refers to the GPB port
over which the sensor communicates with HealthBot.

¢ iAgent—File is the name of a YAML-formatted file that defines the NETCONF-accessible sensor.
Table is defined from a drop-down list of available PyEZ tables and views in the YAML file.
Frequency refers to how often the sensor is polled by HealthBot and can be overridden by
including the sensor in a frequency profile.

Based on the table you've selected, input fields for a target or dynamic arguments might also be
provided. For these additional fields, you can do one of the following:

o Leave the input field blank. No default value will be applied.
o Enter a fixed value that will remain constant.

o Enter a variable name enclosed in double curly/flower brackets (for example, {{test-variable}})
The variable name must belong to a variable that was previously defined in the HealthBot rule,
and the variable’s Type option must be set to Sensor Argument.

e SNMP—Table is defined from a drop-down list of available SNMP tables. Frequency refers to how
often, in seconds, HealthBot polls the device for data and can be overridden by including the
sensor in a frequency profile.

o Syslog—Pattern set is a user-configured element that includes one or more patterns (you configure
a pattern for each event you want to monitor). The Maximum hold period is used in advanced
cases and refers to the maximum time that the system will wait when correlating events using
multiple patterns within a pattern set.

NOTE: The syslog sensor requires some pre-configuration. See Syslog Ingest for more
details.

e Flow—Template Name is a Juniper-supplied built-in list of NetFlow v9 and IPFIX templates.

Fields

A sensor will generally carry information about multiple things. For example, a sensor that watches interfaces
has information about all of the interfaces on the device. In HealthBot, we call these things Fields. Now
that you've defined a sensor, you'll need to tell HealthBot which fields you're interested in.

126

1. Click the Fields link.

The screen updates and shows the defined field objects, if any, as shown in Figure 42 on page 126

Figure 42: The Fields Block

Sensors Fields Vectors Variables Functions Triggers Rule Properties

cpu-util-percent

Field name*

cpu-util-percent
daemon

Description
max-threshold

Daemon CPU utilization
min-threshold

process-name
Field type *
string
string
integer

float

Add to rule key

Ingest type (Field source)

Sensor
Sensor
Reference
Constant
Formula

Sensor Path*

SystemProcExtTable - wcpu

Where (filter using expression)

+ Add Expression

2. Click the add field button (+ Add Field).

. Replace the random field name with a name that make sense for the rule you are defining, such as
interface-name, configured-threshold, etc.

. (Optional) Add descriptive text for the new field.

. Set the appropriate Field type. The options for field type are: string, integer, and float. String is the
default field type.

. (Optional) Toggle the Add to rule key switch.

The add rule to key switch tells HealthBot that this field should be indexed and searchable. For example,
when you enable this switch, the field name will be listed on the Devices page under the Keys column.

. Select the appropriate ingest type (Field source) from the pull-down menu.
The following list shows the options available for the Ingest type (Field source) menu.

e Sensor-Use this or another sensor definition.

o Path-Follow this Open Config or Netconf path within the sensor definition to gather specific data
like the names of the interfaces. For iAgent sensors the Path refers to the path defined in the YAML

file.

o Where-Filter the available data to gather information about a specific element within, like a specific

interface. This field can reference the Variables defined elsewhere within the rule. When referencing

variables, use moustache notation, enclosed in slashes, such as: {{interface_name}}.

o Zero suppression-For some sensors associated with devices running Junos OS, such as Junos
Telemetry Interface Open Config and native GPB sensors, no field data is sent from the sensor

when the data’s value is zero. Enable the zero suppression switch to set the field data value to zero

whenever no field data is sent from the sensor.

o Data if missing-Specify a value as the default data value whenever no data is sent from the sensor.

The format of the specified value should match the defined field type (string, integer, or float). If

the zero suppression switch is also enabled, then the specified data-if-missing value is ignored, and

the default sensor data value is set to zero.

o Reference-A reference to a field or trigger value from another rule.

« Data if missing-Specify a value as the default data value whenever no reference data is fetched.
The format of the specified value should match the defined field type (string, integer, or float).

e Constant-Use a constant when referring to a Variable defined within the rule, whose value doesn'’t

change, such as 10_Drops_Threshold A constant can also be a string or numeric value that does not

change and is not a reference to a variable.

o Constant value-Use moustache notation to reference the variable like this: {{lO_Drops_Threshold}}.

e Formula-Select the desired mathematical formula from the Formula pull-down menu.

8. (Optional) Set the Field aggregation time-range. Located above the Fields tab with the general rule
parameters, this periodic aggregation setting helps to reduce the number of data points entered in the
database. For example, if the sensor settings specify that HealthBot ingests data every 10 seconds,
you could configure this setting to aggregate and record the relevant field data, say, every 60 seconds.
Note that when using this setting, any field-specific time ranges must use the same value.

NOTE: Starting in HealthBot Release 3.1.0, you can add fields and keys to rules based on whether
the incoming data meets user-defined conditions defined in tagging profiles. Tagging profiles

are defined in HealthBot under Settings > Ingest Settings on the left-nav. See“Healthbot Tagging”
on page 36 for details.

Vectors

(Optional) Now that you have a sensor and fields defined for your rule, you can define vectors.
A vector is used when a single field has multiple values or when you receive a value from another field.

1. Click on the Vectors link.Figure 43 on page 128 shows the Vectors block for a newly added vector.

Figure 43: Vectors Block

Sensors Fields Vectors Wariables Functions Triggers Rule Properties

+ Add vector

Vector name* @
vector_sd19e3
vector_sd19e3

Ingest Type
path

List of fields @ Time-range @
Select fields = 7d
subscriber-count-maximum
subscriber-count-minimum
total-subscriber-count

total-subscribers-pred

2. Click the add vector button (+ Add Vector)

3. Replace the random vector name with a name that makes sense for your rule.

4. Select an ingest type from the drop-down list. The additional input fields will vary depending on the

selection you make.

For path:

Parameter

List of fields

Time-range

For formula:

Parameter

Formula Type

Vector name

Left vector

Right vector

Description

Select a field from the drop-down list. The list of fields is derived from all of the
defined fields in this rule.

Specify a time range from which the data should be collected. The time range
is expressed in #s, #m, #h, #d, #w, #y where # is a number and s, m, h, d, w, y
specifies seconds, minutes, hours, days, weeks, and years respectively. For
example, enter 7 days as 7d.

Description

Select a formula type from the drop-down list:
unique—Creates a vector with unique elements from another vector.

and—Compares two vectors and returns a vector with elements common to
both vectors.

or—Compares two vectors and returns a vector with elements from both vectors.

unless—Compares two vectors and returns a vector with elements from the left
vector but not the right vector.

(Unique formula type only) Select a vector name from the drop-down list. The
list of vectors is derived from all of the defined vectors in this rule.

Select a vector name from the drop-down list. The list of vectors is derived from
all of the defined vectors in this rule.

Select a vector name from the drop-down list. The list of vectors is derived from
all of the defined vectors in this rule.

Variables

(Optional) The Variables block is where you define the parts of the sensor that you are interested in. For
example, a rule that monitors interface throughput needs to have a way to identify specific interfaces from
the list of available interfaces on a device. Figure 44 on page 130 shows the Variables block for the
chassis.power/check-pem-power-usage rule. The field details are discussed below.

Figure 44: The Variables Block

Sensors Fields Vectors Variables Functions Triggers Rule Properties
+ Add Variable
* * * W Delete r_usage_th
Variable name Default value Type L Ppem_power. threshold
pem_power_usa
ge_threshold pem_power_usage_threshold 888888880 Integer -
Description Integer
Enter PEM power usage threshold value Floating Point

String
Boolean
Device

Device Group

1. Click on the Variables tab.

2. Click the add variable button (+ Add Variable)

3. Replace the random Variable name with a variable name that makes sense for your rule, such as
pem-power-usage-threshold.

BEST PRACTICE: The accepted convention within Juniper for naming of elements within
HealthBot is to always start with a lower-case letter and use hyphens to separate words.
Make sure that your variable names are unique, clearly named, and follow a recognizable
pattern so that others can understand what the variable is for. Any abbreviations should be
used consistently throughout.

4. Set an appropriate default value in the Default value field.

Default values vary depending on field type. Integer field types use numeric default values, while string
field types use strings to set exact defaults and regular expressions that allow you to set the default
from a list. Any default values set during rule definition can be overridden at apply-time at either the
device or device group level.

5. Select the appropriate variable type from the Type pull-down menu.

Available field types are: Integer, Floating Point, String, Boolean, Device, and Device Group.

Functions

(Optional) Define any needed functions.

131

The Functions block allows users to create functions in a python file and reference the methods that are
available in that file. The python file must be created outside of HealthBot. You must know about the
method names and any arguments because you will need those when defining the function.

Figure 45 on page 131 shows the Functions block for the chassis.power/check=pem-power-usage rule.

The field details are discussed below.

Figure 45: The Functions Block

Sensors Fields

+ Add Function

used-percentage

Vectors Variables

Functions Triggers Rule Properties

Function name *

used-percentage

Path to function

used-percentage.py

Description

calculates % of power usage out of total available

Arguments

Name
total

Name
used

1. Click on the Functions link.

2. Click the add function button (+ Add Function).

Method name *

used_percentage

y

‘ Mandatory @
‘ Mandatory @

3. Replace the random function name with a function name that makes sense for the function you're

defining such as used-percentage.

4. In the Path to function field, enter the name of the python file that contains the functions. These files
must be stored in the ../healthbot/input/ directory. The pull-down list is populated with all of the
python (.py) files in that directory.

5. In the Method name field, enter the name of the method as defined in the python file, for example

getmplslabel.

6. (Optional) Enter a description for the function

7. (Optional) For each argument that the python function can take, click the add argument button (+ Add
Argument).

Each time you click the add argument button, you'll need to enter the name of the argument and set
the toggle switch as to whether the argument is mandatory or not. The default is that none of the
arguments are mandatory.

133

Triggers
A required element of rule definition that you'll need to set is the trigger element. Figure 46 on page 133

shows the Triggers block for the system.memory/check-system-memory rule. The field details are discussed
below.

Figure 46: The Triggers Block

Sensors Fields Vectors Variables Functions Triggers Rule Properties
+ Add Trigger
. W Delete re-memory-buffer-utilization
Trigger name
re-memory-
buffer-utilization re-memory-buffer-utilization
Frequency
v Term is-re-memory-buffer-utilization x
WHEN
Left operand Operator Right operand Time range
$re-memory-buffer - >= - $re-memory-buffer-high-threshold ~ 5m -]
+ Add Condition
THEN
Color
- -

Message

$routing-engine memory buffer utilization($re-memory-buffer) exceed high threshold($re-memory-buffer-high-threshold)

Evaluate next term

o Functions can be used as Trigger actions too, define them using the 'Functions' menu at the top.

» Term is-re-memory-buffer-utilization

Setting up triggers involves creating terms that are used to set policy. If the terms within a trigger are
matched, then some action is taken. Terms can evaluate the fields, functions, variables, etc that are defined
within the rule against each other or in search of specific values. Terms are evaluated in order from the
top of the term list to the bottom. If no match is found, then the next term (if any) is evaluated until a
match is found or until the bottom of the term stack is reached.

1. Click on the Triggers link.
2. Click on the add trigger button (+ Add Trigger).

3. Replace the random trigger name with one that makes sense for the trigger you are defining, such as
foo-link-operation-state. We recommend using a name that is very unique to the rule and trigger to
avoid having the same trigger name across two or more rules.

. (Optional) Enter a value in the Frequency field. This value tells HealthBot how often the field data and
triggers should be queried and evaluated. If no entry is made here, then the sensor frequency is applied
for this value. The frequency entered here can be entered as a multiple or, an offset, of the sensor
frequency such as 20. For example, if the sensor frequency is 10s and the trigger frequency is 20, then
the trigger frequency would be 20s (2*10s).

. Click the add term button (+ Add Term).

The Term area will expand and show an add condition button, (+ Add Condition) in the When section
and Color and Message fields in the Then section.

. To define a condition that the term will evaluate, click the + Add Condition button.

The When section expands to show Left operand, Operator, and Time range fields.

NOTE: Setting a condition is not required. If you want to guarantee that a Term takes a
specific action, don't set a condition. This could be useful, for example, at the bottom of a
term stack if you want some indication that none of the terms in your trigger matched.

. Select values from the pull-down menus for each of these fields.

Depending on which Operator is chosen, a new field, Right operand may appear in between the
Operator and Time range fields.

The left and right operand pull-down menus are populated with the fields and variables defined in the
rule. The operator field determines what kind of comparison is done. The time range field allows the
trigger to evaluate things such as if there were any dropped packets in the last minute.

. (Optional) Set values for the Color and Message fields of the Then section.

These fields are the action fields. If a match is made in the condition set within the same term, then
whatever action you define here is taken. A color value of green, yellow, or red can be set. A message
can also be set and is not dependent on whether any color is set.

If color or message are set, a toggle button labelled Evaluate next term appears at the bottom of the
Then section. The default value for this button is off (not active).

NOTE: If no match is made in the When section of a term, the Then section is ignored. If this
happens, the next term down, if any, is evaluated.

If a match is made in the When section, then the actions in the Then section, if any, are taken
and processing of terms stops unless the Evaluate next term button is set to on (active).

Setting the Evaluate next term button allows you to have HealthBot make more complex
evaluations like 'if one condition and another condition are both true, then take this action’.

Rule Properties

(Optional) Specify metadata for your HealthBot rule in the Rule Properties block. Available options include:

Attributes

Version

Contributor

Author

Date

Supported HealthBot Version

Supported Device > Juniper Devices

Supported Device > Other Vendor
Devices

Helper Files

Edit a Rule

Description

Enter the version of the HealthBot rule.

Choose an option from the drop-down list.

Specify a valid e-mail address.

Choose a date from the pop-up calendar.

Specify the earliest HealthBot release for which the rule is valid.

Choose either Junos or Junos Evolved. Device metadata includes Product
Name, Release Name, Release Support (drop-down list), and platform. You
can add metadata for multiple devices, multiple products per device, and

multiple releases per product.

Specify information about non-Juniper devices. You can add metadata for
multiple devices.

Specify files that are required by the HealthBot rule.

To edit a rule:

1. Click the Rules icon in the left-nav bar.
2. Click the name of the rule listed along the left side of the Rules page.
3. Modify the necessary fields.

4. Select one of the following options:

Save Save your edits but do not deploy the updated configuration. You can use this option
when, for example, you are making several changes and want to deploy all your updates
at the same time.

Save & Deploy Immediately deploy the configuration and save the rule.

5. (Optional) Delete a rule by clicking the Delete button located to the right of the rule name.

Add a Pre-Defined Playbook

Juniper curates a set of pre-defined playbooks designed to address common use cases. You can add these
playbooks to your HealthBot installation at any time. The default pre-defined playbooks cannot be changed
or removed.

To add a pre-defined playbook to HealthBot:

1. Using a browser, go to https://github.com/Juniper/healthbot-rules and download the pre-defined
playbook file to your computer.

2. In the HealthBot GUI, click the Configuration > Playbooks icon in the left-nav bar.
3. Click the upload playbook button (T Upload Playbook).

4. Click the Choose Files button.

5. Navigate to the playbook file and click Open.

6. Select one of the following options:

Upload Upload the file and add the playbook but do not deploy the updated configuration.
You can use this option when, for example, you are making several changes and want
to deploy all your updates at the same time.

Upload & Deploy Upload the file, add the playbook, and immediately deploy the configuration.

Create a New Playbook Using the HealthBot GUI

https://github.com/Juniper/healthbot-rules

HealthBot operates on playbooks, which are a collection of rules for solving a specific customer use case.

For example, the system-kpi-playbook monitors the health of system parameters such as

system-cpu-load-average, storage, system-memory, process-memory, etc. and notifies the operator or

takes corrective action in case any of the KPIs cross pre-set thresholds. Any single rule can be a part of O,

1, or more playbooks. The playbook is the rule element that gets deployed on devices. Rules that are not

included in any playbook will not be deployed to any device.

NOTE: Click the Name, Running, Paused, or Synopsiscolumn headers in the Playbooks table to
organize the data in ascending or descending order.

To create a new playbook using the HealthBot GUI:

1.

Click the Configuration > Playbooks icon in the left-nav bar.

Click the create playbook button (+ Create Playbook).

A new window appears with 4 fields: Name, Synopsis, Description, and Rules. We describe the use of
each field below.

Enter a name for the playbook in the Name field.

Enter a short description for the playbook in the Synopsis field.

This text appears in the Synopsis column of the table on the Playbooks page.

. (Optional) Enter a description of each of the rules that make up this playbook in the Description field.

This text can only be seen if you click on the playbook name on the Playbooks page.

From the rules drop-down list, select the rules that make up this playbook.

. Select one of the following options:

Save Save and add the playbook but do not deploy the updated configuration. You can use
this option when, for example, you are making several changes and want to deploy all
your updates at the same time.

Save & Deploy Immediately deploy the configuration and save and add the playbook.

Edit a Playbook

To edit a playbook:

1.

5.

Click the Configuration > Playbooks icon in the left-nav bar.

. Click the name of the playbook.

Modify the necessary text boxes.

. Select one of the following options:

Save Save your edits to the playbook but do not deploy the updated configuration. You can
use this option when, for example, you are making several changes and want to deploy
all your updates at the same time.

Save & Deploy Immediately deploy the configuration and save your edits to the playbook.

(Optional) Delete a playbook by clicking the trash can icon in the Delete column.

NOTE: You cannot edit or delete a system defined (Juniper provided) playbook.

Manage Playbook Instances

IN THIS SECTION

View Information About Playbook Instances | 141
Create a Playbook Instance | 143
Manually Pause or Play a Playbook Instance | 145

Create a Schedule to Automatically Play/Pause a Playbook Instance | 146

The term playbook instance refers to a specific snapshot of a playbook that is applied to a specific device

group or network group. You can manually play and pause playbook instances. Alternatively, you can apply

a customized schedule to a playbook instance that will automatically perform play and pause actions.

The following sections describe tasks that you can perform to manage playbook instances:

View Information About Playbook Instances

To view information about playbook instances:

1. Click the Configuration > Playbooks option in the left-nav bar.

The saved playbooks are listed in the table on the main Playbooks page.

= Playbooks @

+ CREATE PLAYBOOK T UPLOAD PLAYBOOK >_ PLAYBOOK BUILDER CLI Q

Playbook
Name

bgp-route-hijack-detection

bgp-session-stats-playbook @

chassis-kpis-playbook @

chip-agnostic-kpis

DHCP-server-statistics @
dotix-user-authentication-kpis

evpn-irb-icmp-probe

evpn-vxlan-kpis ©
forwarding-table-summary @
icmp-outlier @
icmp-probe Q

> interface-kpis-playbook
interface-optical-kpis

isis-stats-playbook

Instances

Running Paused Apply Live

0 0 4
0 0 4
0 0 4
0 0 4
0 0 4
0 0 4
0 0 4
0 0 4
0 0 4
0 0 4
0 0 4
0 0 4
1 0 4
0 0 4
0 0 4

Action

Delete

Page

Synopsis
Playbook detects route hijack
BGP neighbor sessions key performance indicators
Chassis key performance indicators
Chip agnostic kpis
DHCP Local Server and Relay Statistics KPls.
dot1x authentication KPI
EVPN-VXLAN rvi key performance indicators
EVPN-VXLAN key performance indicators
Forwarding table and protocol routes key performance indicators
Interface and routing instance collector
ICMP outlier detector
ICMP RTT response checker
Interface key performance indicators
Optical interface key performance indicators

SIS adjacency key performance indicators

1 of 3 15rows v Next

e Playbooks that have been applied to a device group or network group are identified in the table by
a right caret next to the playbook name.

e The Instances column in the table shows the number of playbook instances running and paused.

e Starting with HealthBot 3.1.0, some playbooks require the purchase and installation of advanced or

premium licenses. These playbooks are identified by the green circle with a white star in it. As shown

above, it tells you which license is required when you hover your mouse over the icon.

e The Live column (in the Action section of the table) shows a colored circle indicator that represents

the overall status of the playbook instances for each playbook. The following table provides the color

definitions:

141

Table 5: Color Definitions for the Live Column

Color Definition

Green All instances associated with this playbook are currently running.

Yellow One or more instances associated with this playbook are paused.

Gray/Black There are no instances associated with this playbook, or an instance is associated

with this playbook but the configuration has not been deployed yet.

2. Click on the caret next to the playbook name to expand or collapse the playbook instance details. If no
caret is present, then the playbook has not been applied to any device groups or network groups.

The following playbook instance details are displayed:

Column Name or Widget Description
Instance Name User-defined instance name.
Schedule Name of the schedule profile applied to the playbook instance. For

information on how to configure a schedule profile, see “Create a Schedule
to Automatically Play/Pause a Playbook Instance” on page 146

Click on the name to display the schedule details.

Device/Network Group Device group or network group to which the schedule is applied.

No. of devices Number of devices on which this playbook instance is deployed. This is
applicable for device group instances only, not for network group instances.

Status Current status of the playbook instance. Status can be either Running or
Paused. The Status column also indicates whether the action was performed
automatically or manually.

Note: If the status of a playbook instance is Running (automatic), you can
manually pause the schedule for this instance using the Pause Schedule
button. In this case, the status will change to Paused (manual). To resume
running the schedule for this instance, you must manually run the instance
using the Play Schedule button. In this case, the status will change back to
Running (automatic), and the play and pause actions associated with the
schedule will resume.

Started/Paused at Date and time when the playbook instance was last started or paused. The
date reflects local browser time zone.

Column Name or Widget Description

Next Action This column applies only to playbook instances associated with a schedule.
It indicates whether the playbook instance is scheduled to automatically
pause or play in the future. This column is blank if no schedule is associated
with the playbook instance or if the status of the instance is Paused (manual).

Play/Pause button Pauses or plays a playbook instance or the schedule for a playbook instance.

The Play/Pause button toggles between the two states. For more information,
see “Manually Pause or Play a Playbook Instance” on page 145.

Trash can icon Deletes the playbook instance.

Create a Playbook Instance

To create a playbook instance for a device group:

1. Click the Configuration > Playbooks option in the left-nav bar.

2. Click the Apply icon (in the Action section of the table) for the desired playbook.

A pane titled Run Playbook: <playbook-name> appears.

3. In the Name of Playbook Instance field, fill in an appropriate name for this instance of the playbook.
This is a required field.

4. (Optional) In the Run on schedule field, choose the name of the schedule that you want to apply to
this playbook instance. You can apply only one schedule per playbook instance. If you want a specific
playbook instance to run on multiple schedules, you must create multiple versions of the instance, each
with its own unique name and schedule.

For information on how to configure a schedule, see “Create a Schedule to Automatically Play/Pause
a Playbook Instance” on page 146.

To view information about an existing schedule:
a. Click the Settings option in the left-nav bar.

b. In the Scheduler Settings section, a summary of the properties for each saved schedule is shown
in the table. Click on a specific schedule name to view additional details.

5. Inthe Device Group section under Rules, apply this playbook instance to the appropriate device group
using the drop-down list.

The list of devices in the Devices section changes based on the device group selected.

NOTE: If your playbook contains network rules, the Device Group section does not appear.
Instead, it is replaced with a Network Groups section (not shown).

6. Click one of the devices listed in the Devices section.

Here is where you can customize the variable values that will be set for this device when the playbook

is run.

7. Inthe section titled Variable values for Device <Device Name>, the variables for each rule in the playbook
can be seen by clicking on the rule name. The default values for each variable are displayed as grey
text in each field. You can leave these values as-is or override them by entering a new value.

Repeat steps 6 and 7 for each device in the device group, as needed.

8. When you are satisfied that all of the variable values are appropriate for all the devices in the device
group, select one of the following options.

Save Instance Save your edits but do not deploy the updated configuration and do not run the instance.
You can use this option when, for example, you are making several changes and want

to deploy all your updates at the same time.

Run Instance Deploy the configuration, and, if no schedule profile was applied, immediately run the
instance. If a schedule profile was applied, the instance will run according to the
configuration of the profile.

Manually Pause or Play a Playbook Instance

When an instance is paused, HealthBot does not collect, analyze or raise an alarm on the device or network
group data associated with the playbook rules. Data collected prior to pausing the instance is retained in
the system, but no new data is collected or analyzed until the instance is played again.

The following table describes the state of the playbook instance when a particular button is displayed in
the Play/Pause column:

If the displayed Play/Pause
button is... Then the state of the playbook instance is...

Pause Instance e The instance is running.
e The instance is not associated with a schedule.

e Datais being collected.

Pause Schedule e The instance is associated with a schedule.
e The schedule is running.

e The schedule determines when the instance is running.

Play Instance e The instance is not running.
e The instance is not associated with a schedule.

e No datais being collected.

Play Schedule e The instance is associated with a schedule.
e The schedule and the instance is not running.

e No data is being collected.

To manually pause a playbook instance or schedule:

1. Click the Configuration > Playbooks option in the left-nav bar.

The list of existing playbooks is displayed.

2. Click the caret next to the name of the playbook that you want to pause.

3. Choose one of the following options:
¢ Click the Pause Instance button to pause a playbook instance (not associated with a schedule).
o Click the Pause Schedule button to pause the schedule that’s associated with a playbook instance.

4. The Play/Pause Playbook Instance dialog box appears. Select one of the following options:

Pause Flags this playbook instance to be paused the next time you deploy the configuration. Use this
option if you are making several changes and want to deploy all your edits at the same time.

5.

Pause & Immediately pause the playbook instance and deploy the configuration. It will take a few seconds
Deploy for the playbook table to update to show the instance is paused.

There is a slight delay in updating the table because the play and pause actions are asynchronous
and run in the background, allowing you to perform other actions. The status of this
asynchronous activity can be tracked through the deploy icon located in the upper right corner
of the window (as indicated in the success message of deploy action). Once this action is
complete, the status is reflected in the playbook table as well.

Once the playbook table is refreshed, the playbook name shows a yellow icon in the Live column as a
visual indicator that an instance is paused.

To resume a paused playbook instance, follow the same steps as above except choose one of the
following options for Step 3:

¢ Click the Play Instance button to resume running a playbook instance (not associated with a schedule).

¢ Click the Play Schedule button to resume running the schedule associated with a playbook instance.
The schedule determines when the instance resumes playing.

Create a Schedule to Automatically Play/Pause a Playbook Instance

To automatically play/pause a playbook instance, you must first create a schedule and then apply the
schedule to the playbook instance. You can apply only one schedule per playbook instance. If you want a
specific playbook instance to run on multiple schedules, you must create multiple versions of the instance,

each with its own unique name and schedule.

To create a schedule for a playbook instance:

1. Click the Settings > System option in the left-nav bar.

Click the Scheduler tab.

In Scheduler Settings, click the add scheduler button (+ Scheduler).

Enter the necessary values in the text boxes and select the appropriate options for the playbook instance
schedule.

The following table describes the attributes in the Add a scheduler and Edit a scheduler panes:

Attributes Description

Name Enter the name of the playbook instance schedule.

Attributes

Scheduler Type

Start On

Run for

End On

Repeat

Repeat Every

Description

Choose discrete.

You can configure a discrete length of time to play the playbook instance using the Run for field.
Once the run time has ended, HealthBot will automatically pause the instance. You can also
configure HealthBot to automatically resume playing the instance using the Repeat field.

Use the pop-up calendar to select the date and time to play the playbook instance for the first
time.

Configure a discrete length of time to play the playbook instance. First enter an integer value and
then choose the unit of measure (minute, hour, or day) from the drop-down list.

Once the run time has ended, HealthBot will automatically pause the instance. You can also
configure HealthBot to automatically resume playing the instance using the Repeat field.

(Optional) Use the pop-up calendar to select the date and time to pause the playbook instance
indefintiely. Leave blank if you want the playbook instance to play indefinitely.

Note: If a playbook instance is associated with a schedule and is running when the End On time
is reached, then the instance will continue to run until the configured Run for length of time is
reached. At this time, the instance will pause indefinitely.

Configure the Run for field before configuring the Repeat field. The Repeat interval must be larger
than the configured Run for length of time.

In the drop-down list, choose one of the following:

e The frequency (every day, week, month, or year) at which you want the playbook instance to
play.
e The Never option if you want the playbook to play only once.

e The Custom option to specify a custom frequency at which you want the playbook instance to
play. Use the Repeat Every field to configure the custom frequency.

(Optional) If you chose the Custom option for the Repeat field, enter the custom frequency at
which you want the playbook instance to play. First enter an integer value and then choose the
unit of measure (minute, hour, or day) from the drop-down list.

5. Click Save to save the configuration or click Save and Deploy to save and deploy the configuration.

6. Now you're ready to apply the schedule to a playbook instance. For more information, see “Create a

Playbook Instance” on page 143.

Release History Table

Release Description

3.1.0 Starting in HealthBot Release 3.1.0, you can add fields and keys to rules based on whether the
incoming data meets user-defined conditions defined in tagging profiles.

3.1.0 Starting with HealthBot 3.1.0, some playbooks require the purchase and installation of advanced
or premium licenses.

3.0.0 Starting in HealthBot Release 3.0.0, you can filter the Topics and Rules displayed on the left
side of the Rules page.

HealthBot Concepts | 20

Manage Devices, Device Groups, and Network Groups | 104

Monitor Device and Network Health

IN THIS SECTION

Dashboard | 149
Health | 152
Network Health | 165
Graph Page | 165

149

HealthBot offers several ways to detect and troubleshoot device-level and network-level health problems.
Use the information provided by the following HealthBot GUI pages to investigate and discover the root
cause of issues detected by HealthBot:

Dashboard

Use the Dashboard to create a custom view of what you're most interested in. HealthBot pre-populates
the dashboard with the Device List, Device Group List, and Netwok Group List dashlets and calls this view
My Dashboard. You can create your own dashboard view by clicking the + to the right of My Dashboard.
Custom views can be added, renamed, and deleted as you see fit.

The Dashboard also has a graphical list of pre-defined dashlets across the top that is initially hidden from
view. Click the cluster of 9 blue dots on the upper right part of the page to display or hide the available
dashlets. Each dashlet provides graphical information from a specific point of view. Many of the dashlets
can be clicked on to drill down deeper into the information presented.

o Device Group List—Consists of device group dashlets (see “Device Group List Dashlet” on page 151).
o Devices—Consists of a table that lists all of the HealthBot devices (see “Device List Dashlet” on page 150).

o Network Groups—Consists of network group dashlets (see “Network Group List Dashlet” on page 152).

A customized Dashboard view is shown in Figure 47 on page 149.

Figure 47: HealthBot Dashboard

= Dashboard @ B 5 e o
My Dashboard +
Device Group List @ Device List @ Network Group List @
arista cisco-ios-xr Q. Search icmp RTT
preaen preon [[L
1 2 Device Name Host Groups
DEVICE DEVICES Il aista 10.92.71.253 (D)
1 PLAYBOOK 1 PLAYBOOK — vpn100 vpn150
[l bsd-reca-moja-sys 10.204.35.171 V1 ﬁ ﬁ
B bsri-gixsk-1 10.105.5.19 (1
cisco-nexus core I b5r2-gisi-1 10.1055.18 (D)
Device group Device group vpn200
B o5r2-qfxsk-2 10.105.5.14 v ﬁ
1 7 B b5r3-qfxsk-1 10.105.5.47 (D)
DEVICE DEVICES Il bng-ex4300-32f-prd-devo2 10.204.98.99 v
1 PLAYBOOK 10 PLAYBOOKS
B cisco-iosxr 172.27.113471
Last Updated: Dec 29, 2020, 2:50:34 Ph1, UTC -07:00 MST p I cisco-ios-xrvm1 10.49.108.248 D) Last Updated: Dec 29, 2020, 2:50:3¢ PN, LTC -07.00 MST
I cisco-ios-xr-vm2 10.49.108.247 V1
J cisco-nexus 10.92.71.20 (D)
I de-tme-g5110-03 10.92.70.36 v
B do-tme-q5110-04 10.92.70.210 (1
I do-tme-qfx5200-02 10.92.71.94 D)

Last Updated: Dec 29, 2020, 2:50:34 P, UTG 07:00 ST

©2016- 2020 Juniper Networks, Inc. All rights reserved

The Dashboard uses two types of colored objects to provide health status: halos and bars. The following

table describes the meaning of the severity level colors displayed by the status halos and bars on the

Dashboard:

Color Definition

Green The overall health of the device, device group, or network group is normal. No
problems have been detected.

Yellow There might be a problem with the health of the device, device group, or network
group. A minor problem has been detected. Further investigation is required.

Red The health of the device, device group, or network group is severe. A major
problem has been detected.

Gray No data is available.

Device List Dashlet

The following table describes the main features of the Devices List dashlet on the Dashboard. For
information on how to add a new device, see “Manage Devices, Device Groups, and Network Groups” on

page 104.

Feature

Edit the device properties.

Filter the devices based on a device name or

hostname/IP address.

Refresh the data in the dashlet

Delete the dashlet

Device Group List Dashlet

Description

Click the device name. For information on device properties, see
“Manage Devices, Device Groups, and Network Groups” on page 104.

At the top of the table, enter the device name, hostname, or IP address
in the search field. The list updates as you type.

Click the circular arrow at the top of the dashlet.

Click the X at the top of the dashlet

The following table describes the main features of the device group list dashlet on the Dashboard. For

information on how to add a new device group, see “Manage Devices, Device Groups, and Network Groups”

on page 104.
Feature
Edit the device group properties.
Display the list of devices that belong to
a device group, as well as a health status

bar for each device

Display the list of playbooks to which
the device group is applied.

Delete the device group dashlet.

Status halo

Status bar

Network Group List Dashlet

Description

Click the device group name. For information on device group properties,
see “Manage Devices, Device Groups, and Network Groups” on page 104.

Click the integer number on the Device Group dashlet that represents the
number of devices included in the device group.

Click the line that shows playbook count on the dashlet.

Click the X button on the device group dashlet.

The coloring of the status halo represents the percentage of devices in the
device group that have the health status defined by the color. For example,
if the circle is all green, then the health of 100% of the devices in the device
group is normal.

The color of the status bar represents the overall health status of the device
in the device group. Clicking the bar takes you to the Monitor > Device
Group Health page, filtered for the specific device you clicked.

The following table describes the main features of the network group dashlet on the Dashboard. For
information on how to add a new network group, see “Manage Devices, Device Groups, and Network
Groups” on page 104.

Feature Description

Edit the network group properties. Click the network group name. For information on network group
properties, see “Manage Devices, Device Groups, and Network Groups”
on page 104.

Delete the network group dashlet. Click the X at the top of the dashlet.

Open the Network Health page for a specific = Click the status bar on a network group in the dashlet.

network group.

Status bar The color of the status bar represents the overall health status of the
network group.

Health

Use the Health page (Monitor > Health) to monitor and track the health of a single device, a device group,
or a network. You can also troubleshoot problems. Select a device group using the entity type selectors
(DEVICE, DEVICE GROUP, or NETWORK) located in the top left corner of the page. Once selected, you
can then select individual devices or all of the devices from the group by clicking the Select devices
pull-down menu. The page is divided into the following three main views that, when used together, can
help you investigate the root cause of problems detected on your devices:

e Timeline View on page 153

e Tile View on page 156

e Table View on page 159

e Time Inspector View on page 162

Timeline View

153

154

In timeline view, you can monitor real-time and past occurrences of KPI events flagged with a minor or
major severity level health status. The general characteristics and behaviors of the timeline include (see
Figure 48 on page 154):

e Clicking on the right caret next to the Timeline View heading expands or collapses the timeline.

e Each dot or line in the timeline represents the health status of a unique KPI event (also known as a
HealthBot rule trigger) for a pre-defined KPI key with which HealthBot has detected a minor or major
severity level issue. The name of each event is displayed (per device) directly to the left of its associated
health status dot or line.

e The health status dot or line for each unique KPI event in the timeline can consist of several different
KPI keys. Use tile view and table view to see the health status information for the individual KPI keys.

e Only minor or major severity level KPI events are displayed in the timeline. Yellow represents a minor
event, and red represents a major one.

e A KPI event that occurs once (at only one point in time) and does not recur continuously over time is
represented as a dot.

e A KPI event that occurs continuously over time is represented as a horizontal line.
e Timeline data is displayed for a 2-hour customizable time range.
e The red vertical line on the timeline represents the current time.

e The blue vertical line on the timeline represents the user-defined point of time for which to display data.

Figure 48: Timeline view

Device Health

aprir - On 6/5/2019, 3:00.02 PM + 10 secs
AUTO REFRESH

~ @ Timeline View

Zoom in | Zoom out

neigbor-state

ospf-hello-count

processes-memory-utilization

P <P spf-ic-statistics-information-packet-read
information-packet-read

- e 5T14:00:56.0002
information-hello-received
End £ 2019-

T15:27:56.0002

14:50 15:00 15:10 15:20 15:30 15:40 15:50 16:00 16:10
‘Wed 5 June

5008094

The following table describes the main features of the timeline:

Feature Description

Display information about a dot or Hover over the dot or horizontal line to display the associated KPI event name,
horizontal line in the timeline. device name, health status severity level, and event start and end times.

Additional health status information about the KPI event can be found in tile
view. For information about tile view, see the “Tile View” on page 156 section.

Feature
For the displayed data, change the

range of time (x-axis) that is visible
on the page.

Choose a different 2-hour time range
of data to display.

Freeze the timeline (disable
auto-refresh).

Unfreeze the timeline (enable
auto-refresh).

Tile View

Description

Options:

e Click and drag the x-axis of the timeline to the left or to the right.
o Click the Zoom In or Zoom Out buttons in the top right corner of the timeline.

Use the blue vertical line to customize the time range of data to display. Options
for enabling the blue vertical line:

e Clickinside the timeline grid at the particular point in time you want to display
data.

¢ In the date/time drop-down menu (located above the timeline), select the
particular point in time you want to display data ..

Data is generally displayed for 1 hour before and 1 hour after the blue line.
Hover over the blue line to display the exact point in time that it represents.
Drag the blue line left or right to adjust the time.

NOTE: Auto-refresh is disabled whenever you enable the blue line. Re-enabling
auto-refresh disables the blue line and resets the timeline to display the most
recent 2-hour time range of data.

Toggle the auto-refresh switch to the left.

Toggle the auto-refresh switch to the right.

156

The tile view uses colored tiles to allow you to monitor and troubleshoot the health of a device. The tiles
are organized first by device group, then by device component topic, and lastly by unique KPI key (see
Figure 49 on page 157). By default, the tile view data corresponds to the most recent data collected. To
customize the point in time for which data is displayed in tile view, select a particular point in time from
the date/time drop-down menu (located above the timeline) or enable the blue vertical line in timeline
view. For information about how to enable the blue vertical line, see the “Timeline View” on page 153
section. The Composite toggle switch (not shown) at the upper right of the TILE VIEW, allows you to select
data from more than one device component topic to be shown in the Table View and, thus, the Time
Inspector View. This can be useful when topics must be combined to find root cause for an issue. For
example, system memory usage could combine with output queue usage to create a performance issue in
an overloaded system.

Figure 49: Tile View

Interface protocol mpls mibcraburse protocolospl —_— Device
ol 1T 1] Com pone nt
EStiReEe Topics

protocol.infra
ENEN EEEEN

ENEEEEEEEEN
EEnmmaEmmEE
ﬂ""

interfsee protocelaspl System

Device Groups

/

ernd: chassisd
chick-prooeiisd-cpu;
Skiping-undefined-prooeises

e 8
- Hover overa key

s007026

The following table describes the meaning of the severity level colors displayed by the status tiles:

Color Definition
Green The overall health of the KPI key is normal. No problems have been detected.
Yellow There might be a problem with the health of a KPI key. A minor problem has been

detected. Further investigation is required.

Red The health of a KPI key is severe. A major problem has been detected.

157

Color Definition

Gray No data is available.

The following table describes the main features of the tile view:

Feature

Display information about a status
tile.

Display information in table view
about the status tiles associated with
a single device component topic.

Composite Toggle

Table View

Description

Options:

e Hover over a status tile to display the name of the key, KPIs associated with
the key, and the status messages associated with the KPlIs.

e Click on a status tile. Information about the status tile is displayed in table
view. For information about table view, see the “Table View” on page 159
section.

Note: If the number of KPI keys exceeds 220, the keys are automatically
aggregated and grouped.

Click on a device component topic name in tile view. For information about

table view, see the “Table View” on page 159 section.

When active, users can click on specific keys within the tile groups. This allows
you to pass multiple KPIs to the Time Inspector View.

159

The table view allows you to monitor and troubleshoot the health of a single device based on HealthBot
data provided in a customizable table. You can search, sort, and filter the table data to find specific KPI
information, which can be especially useful for large network deployments. To select which attributes are
displayed in the table, check the appropriate check box in the field selection bar above the table (see
Figure 50 on page 160). The checkbox on the left side of each row is used to help activate the Time Inspector
view. Multiple rows can be selected at one time.

Figure 50: Table View

11 TABLE VIEW
Time Device
O Topic Keys
system.stor,
(0 system.stor... Instance ID:...
[0 system.stor... Instance ID:...
[0 system.stor... Instance ID:...
[0 system.stor... Instance ID:...
[0 system.stor... Instance ID:...

Group |v| Topic

KPI

config-db-u...
file-system-..
file-system-...
file-system-..

file-system-...

Rule v Keys v KPI (v Status v Message «— " o'd Selection Bar

Status Message / Search Fields
ALL .

I cConfiguration DB size(1.5 %) normal
I defs storage used(100 %) is above (80)
I tmpfs storage used(D %) is normal (0)
I rocfs storage used(100 %) is above (80)

I /cevimd6.uzip storage used(100 %) is above (80)

The following table describes the HealthBot attributes supported in table view:

Attributes

Time

Device

Group

Topic

Keys

KPI

Status

Message

Description

Time and date the event occurred.

Device name.

Device group name.

Rule topic name.

Unique KPI key name.

Key Performance Indicator (KPI) name associated with an event.

Health status color. Each color represents a different severity level.

Health status message.

The following table describes the meaning of the severity level colors displayed by the Status column:

160

Color Definition

Green The overall health of the KPI key is normal. No problems have been detected.

Yellow There might be a problem with the health of a KPI key. A minor problem has been

detected. Further investigation is required.

Red The health of a KPI key is severe. A major problem has been detected.

Gray No data is available.

The following table describes the main features of the table view:

Feature

Sort the data by ascending or descending
order based on a specific data type.

Filter the data in the table based on a
keyword.

Navigate to a different page of the table.

If the data in a cell is truncated, view all of
the data in a cell.

Row selection checkbox

Time Inspector View

Description

Click on the name of the data type at the top of the column by which
you want to sort.

Enter the keyword in the text box under the name of a data type at
the top of the table (see Figure 50 on page 160).

Options:

e At the bottom of the table, click the Previous or Next buttons.

o At the bottom of the table, select the page number using the
up/down arrows (or by manually entering the number) and then press
Enter.

Options:

o Hover over the cell.

e Resize the column width of the cell by dragging the right side of the
title cell of the column to the right.

Make this row’s data available for Time Inspector view.

162

Starting with HealthBot Release 3.2.0, a new view called Time Inspector is available. Time Inspector is a
composite view that is available only when the entity type DEVICE GROUP is selected. It can be accessed
by clicking the TIME INSPECTOR button located below the Timeline View pull-down menu.

This view allows you to drill down into which specific triggers within a given rule caused a sensor to display
green, yellow, or red status.

When the Health page is first accessed, the TIME INSPECTOR button is disabled. To activate the button
and make the view available, you must:

o Select the Entity Type DEVICE GROUP in the top section of the Health page.
e Select at least one device from the Devices pull-down menu.

e Have valid data in at least one device component topic in TILE VIEW.

NOTE: Topics showing “no data” will not work for enabling the Time Inspector view.

e Have data appearing in the TABLE VIEW section. You can achive this by clicking the device component
topic header in TILE VIEW.

e Select the checkbox to the left of at least one of the rows in TABLE VIEW.

When clicked, the TIME INSPECTOR button opens a pop-up window above the Health page.
Figure 51 on page 163 below shows a time inspector window created from the system.storage usage topic
for a specific device.

Figure 51: Time Inspector Window

164

Time Inspector

ra
[

(© Timeline View

winonaffile-system-utilization Zoom in | Zoom out L

10 13:20 13:30 13:40 13:50 14:00 14:10 14:]
Thu 10 December

TOPIC: '1 CICI 1 O-O-O-O- 00000 @< O-O-O-O-O-O-0-0-0-0-0-0-0-O-0-0O-O0-0-0-0-O-0-0- 0
SySTEm.StCIIagE O-O-O-O-O-0-0-0-0r @< 14048 PM O-O-O-O-0-0-0-0-0-0-0-0-0-O-0-0O-O0-0-0-0-O- 000>
H RULE: 50 1 O-O-O-O- 0000084 Used-percentage : 1DD O-O-O-O-0-0-0-0-0-0-0-0-0-O-0-O-O0-0-0-0-O-0-0- 0>
o check-storage
TRIGGER: 04 . . . low-threshold : 50 . . .
file-systern-utllization 13:20 13:30 13:40 high-threshold : 80 14:00 14:10 14:20
~7 Select Charts ~
AVAILABLE TRIGGERS/FIELDS: CHARTS
<> u}
TOPIC: used-percentage TOPIC: used-percentage
system.storage system.storage
RULE: low-threshold RULE: low-threshold
check-storage high-threshold check-storage high-threshold
-threshol -threshol
TRIGGER: - TRIGGER: -
file-system-utilization file-system-utilization
2 >
TOPIC: used-percentage
system.storage
RULE: low-threshold
check-storage I ——
TRIGGER: (L
file-system-utilization

CLOSE

As you can see, the Time Inspector window has a mini timeline at the top, an incremented line chart below,
and a chart selector section at the bottom. This particular chart was created as a composite (indicated by
the merging blue arrow) of a file-system-utilization in the check-storage rule of the system.storage topic.

Note that there are 3 fields in the check-storage rule: used-percentage, low-threshold, and high-threshold.
Since the chart was created as a composite (fields charted together) there are three lines on the displayed
chart. If the “chart fields separately” button (diverging arrows) were clicked instead, you would see 3
single-line charts showing the same data.

The more rules you select with the TABLE VIEW checkboxes, the more charts you can create in the Time
Inspector view.

I Network Health

Use the Network Health page (Monitor > Network Health) to monitor and track the health of a Network
Group and troubleshoot problems. Select a Network Group using the drop-down list located in the top
left corner of the page. Comparable to the Device Group Health page (see the “Health” on page 152 section),
the Network Health page is divided into three main views: timeline, tile, and table. The Network Health
page provides similar features and functionality for a network group as the Device Group Health page

provides for a single device.

I Graph Page

You can use graphs to monitor the status and health of your network devices. Graphs allow you to visualize
data collected by HealthBot from a device, showing the results of rule processing. Access the page from

the left-nav panel Monitor > Graph

NOTE: Graphs are refreshed every 60 seconds.

Figure 52: Example of Multiple Graph Panels on a Single Canvas

= View Canvas @

nms5-mx240-b

+ ADD GRAPH

intf-in-octets-stats
B
2808 |
1968 | “\ [‘l '(\ ‘h‘ ‘ \ |

ur\r‘ Ml

[

ik
ocie i

08
15:00 16:00 17:00 18:00 19:00 2000

— nmx-series. b interf:

re-memory-buffer-util
16%

4%
L H i
10%

8%
20:00 2010 20:20 2030 20:40

= nmx-series : “system,

Graph Types

Lk S e ——
I ’\W\‘ HEW »\‘M ,m‘ ’\”b\r\ e VoV

2050

cpu-util
0%
I l

19:00

oo .
f\"Nw M w‘v I} \
% (\, ‘M“‘ h 1) ‘wu/“mw /\Vw‘l‘\‘(W\“‘V”‘u | ‘\ ¥ u“\\”
LT If H‘ \\ ‘M H\“H \WH“
0%
1500 1600 1700 1800
= nmx-series : b : system.cpu/check-
intf-out-octets
140 GiB
526
47 GiB H
PN SN WUV VSIS | NI WV NSYYY'V I W B '
15:00 16:00 17:00 18:00

= nmx-series

w h
\m

W ‘r“’ l M

‘\“\ 'H

‘w“

il

"“u“"w

165

Graph types include time series graphs, histograms, and heatmaps.

Time series graphs are the kind you are used to, showing the data in a '2D’ format where the x-axis indicates
time while the y-axis indicates the value. Time series graphs are useful for real-time monitoring, and also
to show historical patterns or trends. This graph type does not provide insight into whether a given value
is 'good’ or 'bad’, it simply reports 'the latest value’.

Histograms work quite differently. Rather than show a continuous stream of data based on when each
value occurred, histograms aggregate the data to show the distribution of the values over time. This results
in a graph that shows 'how many instances of each value'. Histograms also show data in a '2D’ format,
however in this case the x-axis indicates the value while the y-axis indicates the number of instances of
the given value.

Heatmaps bring together the elements above and provide a ‘3D’ view to help determine the deviations in
the data. Like a time series graph, the x-axis indicates time, while the y-axis indicates the value. Then the
'how many’ aspect of a histogram is added in. Finally, the third dimension—color—is added. It is common
to think of the colors as showing heath, i.e., red means 'bad, yellow means 'OK’, and green means 'good’.
However, this is not correct; the color adds context. For each column, the bars indicate the various values
that occurred. The color then indicates how often the values occurred relative to the neighboring values.
Within each vertical set of bars, the values that occurred more frequently show as 'hotter’ with orange
and red, while those values that occurred less frequently show as shades of green.

167

To help illustrate these graph types, consider the graphs shown below.

100% ‘ , ' | | | ||
. »‘W‘h\w 1.31;'#,"4).\%!.,"1J‘(kL'}A) y“‘Ner&‘JhLlehﬂ'} M}Mhmﬁ}ﬂ '“¥l|ﬂ'WJnvi/~fb Wk iy

vMX-HB--CPU-1min-avg—-Histogram

200

100
—n .
0 10 i 0 40 =20 60 70 80

0 3

50 100 110 120 130 140 150

= yMX-SNMP : vMX1-HE : external /check-snmp-system-cpu-memaory : cpu-Tmin-avg

¥ i o
vMX-HB--CPU-1min-avg—-Heatmap
200
150 —
—-—
—] - - —— e o —
100 — —— — — — — —— — — — —— — — —
P — — — S S S S S — -
I 1111 1 111 I S S N N S S N S S S S
] I’ _—
S0 e o — —— - . —— -—
[—— — — — — —-— —
o - —1 1 —1 ¢+ &+ "1 1 "1 1 e s 1
00:00 03:00 06:00 09:00 12:00 15:00 185:00 21:00
—— C r———
)] 10 24

All three graphs are showing the same data—the running 1-minute average of CPU utilization on a device
over the last 24 hours. However, the way they visualize the data varies:

e The time series graph provides the typical view; each minute it adds the latest data point to the end of
the line graph. Time moves forward along the x-axis from left to right, and the data values are indicated
on the y-axis. What this graph doesn’t show is how often each data point has occurred.

e The histogram groups together the values to show how many of each data point there are. Notice the
tallest bar is the one between 30 and 40, which means the most common 1-minute CPU average value
is in the 30-40% range. And how many times did this range of values occur? Based on the y-axis, there
have been over 350 instances of values in this range. The next most frequently occurring values are in

the 40-50% range (almost 300 occurrences), while the 0-10% range has almost no occurrences, suggesting
this CPU is rarely idle. What this graph doesn’t show is how many of each data point occurred within a
given time range.

e The heatmap makes use of elements from the other two graph types. Each small bar indicates that some
number of instances occurred within the value range shown in the y-axis, at the given time show in the
x-axis. The color indicates which value ranges, for each given time, occurred more than others. To illustrate
this, notice the vertical set of bars towards the right of the graph, at 18:00. In this example (at this zoom
level), each column of vertical bars represents 12 minutes, and each small bar represents a bucket of 15
values. So the first (lowest) bar indicates that within this time range there were some values in the 0-14
range. The bar above indicates that within this time range there were some values in the 15-29 range,
and so on. The color then indicates which bars have more values than others. In this example, the third
bar is red indicating that for those 12 minutes most of the values fell into the 30-44 range (in this example
the count is 21). By contrast, the first bar is the most green indicating that for those 12 minutes the least
number of values fell into the 0-14 range (in this example the count is 1). This 'heat’ information is also
supported by the histogram; the most frequently occurring values were those in the 30-40 range, which
indeed is the 'hotter’ range in the heatmap.

How to Create Graphs

The configuration model for graphs is to create graph panels and group them into one or more canvases.
To create a new graph panel on a canvas:

1. Click the Monitor > Graph option in the left-nav bar.

2. Choose one of the following two options:
e To create a graph in a new canvas, click the + New Canvas button.

e To create a graph within an existing canvas, select the desired canvas in the Saved Canvas and then
click the Add Graph +button.

3. In the General section, provide the general descriptive information for the canvas (new canvas only)

and graph:
Attribute Description
Canvas Name Name of the canvas
Description (Optional) Description for the canvas.
Graph Name Name of the graph panel.

Graph Type Options include Time Series, Histogram, and Heatmap.

Attribute Description

Time Range Choose the time range for the graph.

In real-time graphs, the time range sets the x-axis range. For example, selecting
12 hrs means the x-axis shows the last 12 hours of data.

4. Move down to the Query section. In the FROM section, define from where the data for the graph is

coming:
Attribute Description
Group Choose the device group or network group.
Device Choose a device from the group.
Topic / Rule Choose the HealthBot topic/rule name.

5. Inthe SELECT section, select the data field and apply aggregation and transformation types to the data:

Attribute Description

Field Choose a field name.

This list is derived based on the fields defined in the selected topic/rule.
Aggregation (Optional) In the drop-down list, choose a data aggregation type.

Transformation (Optional) In the drop-down list, choose a data transformation type.

6. In the WHERE section, filter data based on field and KPI key:

Attribute Description

Tag Key / Field (Optional) Choose a key or field. A key is an index field such as interface name.

This list is derived based on the keys and fields defined in the selected topic/rule.

7. In the GROUP BY section, specify how to group the data based on time interval, fill, and KPI keys:

Attribute Description
$_interval (Optional) Specify a time interval by which to group the data.
fill(null) (Optional) Choose how to show a time interval when no data arrives from the device:

null—(default) Report the timestamp and null as the output value.
none—Report no timestamp and no output value.

0—Report 0 as the output value.

previous—Report the value from the previous time interval as the output value.

linear—Report the results of linear interpolation as the output value.

Tag Key (the + icon) (Optional) Choose a tag by which to group the data. A key is an index field such as interface
name.

This list is derived based on the keys and fields defined in the selected topic/rule.

8. (Optional) Move down to the Visualization section, and define y-axis details.

9. Click Save to save the graph and display the data.

Managing Graphs
e To edit a graph, click the pencil icon located in the top right corner of the graph itself.

e To delete a graph, click the trash can icon located in the top right corner of the graph itself.

e To delete a canvas, click the trash can icon located in the top right corner of the canvas.

Graph Tips and Tricks
e To sort canvases on the Saved Canvas page, click on the column headings.

e To reorganize graphs on the screen, hover your mouse near the upper-left corner of a graph panel and
click-and-drag it to the desired position.

e To resize a graph, hover your mouse over the lower-right corner of the graph panel and click-and-drag
it to the desired size.

e To change the color of graph elements, click the color bar for the desired line item under the graph.

e To zoom in on a graph, click and drag across the desired section of the graph; to zoom out, double-click

on the graph.

e Toisolate an element on the graph, click its related line item under the graph; to view all elements again,

click the same line item.
Use Cases
How do | monitor interface flaps for a single interface?

Playbook used: interface-kpis-playbook

Graph configuration

Edit Graph

* General

Canvas Name* TEST-canvas3 Description
Graph Name* vMX1-ge-003-interface-flaps Time Series
~ Query

FROM vMX VX1

SELECT flaps mean()

WHERE interface-name = ge-0/0/3
GROUP BY $__ interval fillnul) -

» Visualization

3 Hour

interface.statistics/check-interface-flaps

ransformation

@ AND -

171

172

Graph panel
4 1 o
vMX1-ge-003-interface-flaps
20
R
15 o
1 1 1f I
10 || || | |
| I
5
06:30 07:00 07:30 08:00 08:30 09:00
= MY - wMX 1 - interface statistics/check-imerface-flaps - flaps : [{interface-name = ge-0/0/3}]
How do | monitor interface flaps for all ‘ge’ interfaces on a device in a single graph?
Playbook used: interface-kpis-playbook
Graph configuration
Edit Graph
~ General
Canvas Name* TEST-canvas3 Descri pliﬂﬂ
Graph Name® vMX-interface-flaps Time Series 3 Hour
~ Query
FROM VvMX vMX1 interface.statistics/check-interface-flaps
SELECT flaps mean() Transformation
WHERE interface-name =~ (matches with) ge m AND -
GROUP BY $_interval fillnull) interface-name @+
o
[

» Visualization

ceneel m

Graph panel

vMX—interface-flaps
20
15 A
10 ' .

—

(%3]

S ——
o
an

|
!
= |

D&:30 07:00 07:30 D800 08:30 0900

= WX : vMX1 : interface.statistics/check-interface-flaps : flaps : {interface-name : ge-0/0/0} : [{interface-name =~ ge}]
== yMX : vMX1 : interface.statistics/check-interface-flaps : flaps : {interface-name : ge-0/0/1} : [{interface-name =~ ge}]
== yMX : vMX1 : interface.statistics/check-interface-flaps : flaps : {interface-name : ge-0/0/2} : Hinterface-name =~ gell

How do I monitor system memory usage for all devices in a device group in a single graph?

Playbook used: system-kpis-playbook

173

Graph configuration

Edit Graph

~ General

Canvas Name*

Graph Name*

~ Query

FROM

SELECT

WHERE

‘GROUP BY

FROM

SELECT

WHERE

GROUP BY

FROM

SELECT

WHERE

‘GROUP BY

» Visualization

Canvasi

All-devices—system-memory

VX

re-memory-buffer

im

vIMX

re-memory-buffer

VX

re-memaory-buffer

$

interval

fill(nully

fill(rully

fillcnuin

vMX1

mean()

VX2

mean()}

MX240

mean()

Description

Time Series

6 Hour

system.memory/check-system-memory

Transformation

o

system.memory/check-system-me...

Transformation

system. memory/check-system-me..

Transformation

o m

175

Graph panel

All-devices—-system-memory
20
18
18
14
12
07.00 08:00 09:00 10:00 11:00
== vMX - vMX1 : system.memory/check-system-memaory : re-memory-buffer
VvMX : vMX2 - system.memory/check-system-memory : re-memary-buffer

vMY - MX240 - system.memory/check-system-memory : re-memory-buffer

How do I monitor RE CPU usage for multiple devices in a single graph?

Playbook used: system-kpis-playbook

12:00

176

Graph configuration

178

Graph panel

All-devices--CPU-utilization

100%

50%

|
1 [A
A -

CPU utilization

07:00 08:00 09:00 10:00 11:00 12:00

= yMX : vMX1 : system.cpu/check-system-cpu : re-cpu-utilization : {routing-engine : Routing Engine0}
vMX : vMX2 - system.cpu/check-system-cpu : re-cpu-utilization - {routing-engine : Routing Engine0}

vMX : MX240 : system.cpu/check-system-cpu : re-cpu-utilization

How do I monitor RE CPU usage for multiple devices side by side?

Playbook used: system-kpis-playbook

179
Graph configuration

Add Graph

~ General

Canvas Name® Description

Graph Name* viMX1-CPU-Utilization Time Series 5 Hour

~ Query

FROM VMX VX1 system.cpu/check-system-cpu
SELECT re-cpu-utilization mean() Transformation

WHERE +

GROUP BY $__interval fill(null) +

» Visualization

cere m

Edit Graph

~ General

Canvas Name*

Description
Graph Name* MX240-CPU-Utilization Time Series 6 Hour
~ Query
FROM VIMX MX240 system.cpu/check-system-cpu
SELECT re-cpu-utilization mean() Transformation
WHERE +
GROUP BY $_ interval fill(null) routing-engine @+

o
o

» Visualization

e ﬂ

Graph panel

’ i oom
vMX1-CPU-Utilization MX240-CPU-Utilization
2 w0
35
15 1l
30 W A |
Loldulily O AT ey
0 2 VTR VA AL | A L LT A
AL ey f VU LR
| 20 [T | e | (UL
°| 15 . U
o M L 08:00 03:00 1000 11:00 1200 1300
0500 = VX MX240 - system : pu re-cpu-unil gine - Routing Enginz0}
= VMX - YMX - system.cpu/check-system-cpu : re-cpu-utilization VMX 2 MX240 : system. k B pu-til gine : Routing Engine1}

Release History Table

Release Description

3.2.0 Starting with HealthBot Release 3.2.0, a new view called Time Inspector is available

RELATED DOCUMENTATION

180

Manage Devices, Device Groups, and Network Groups | 104

HealthBot Rules and Playbooks | 118

Alarms and Notifications

IN THIS SECTION

Generate Alarm Notifications | 181
Manage Alarms Using Alarm Manager | 190
Stream Sensor and Field Data from HealthBot | 195

Generate Alarm Notifications

HealthBot generates alarms that indicate when specific KPI events occur on your devices. To receive
HealthBot notifications for these KPI events, you must first configure a notification profile. Once configured,
you can enable alarm notifications for specific device groups and network groups.

HealthBot supports the following notification delivery methods:

e Web Hook

e Slack

¢ Kafka Publish

e Microsoft Teams (HealthBot 2.1.0 and later)
e Email (HealthBot 2.1.0 and later)

This section includes the following procedures:

e Configure a Notification Profile on page 182
e Enable Alarm Notifications for a Device Group or Network Group on page 190

Configure a Notification Profile

182

A notification profile defines the delivery method to use for sending notifications.

1.

5.

Click the Settings > System option in the left-nav bar.

. Click the Notification tab on the left of the window. click the add notification button (+ Notification).

Click the + Notification button

In the Add Notification window that appears, configure the notification profile:

Attributes Description
Name Enter a name.
Description (Optional) Enter a description.
Notification Type Select a notification type:
e Web Hook
e Slack

Kafka Publish

Microsoft Teams (HeathBot 2.1.0 and later)

EMails (HeathBot 2.1.0 and later)

Notification type attributes vary based on notification type selected. See below for
details.

Click Save and Deploy.

NOTIFICATION TYPE DETAILS

Web Hook

o URL—URL at which the Web Hook notification should be posted.

¢ Username—(Optional) Username for basic HTTP authentication.

e Password—(Optional) Password for basic HTTP authentication.

Slack

e URL—URL at which the Slack notification should be posted. Different from your Slack workspace URL.
Go to https://slack.com/services/new/incoming-webhook and sign in to your Slack workspace to
create a Slack API endpoint URL.

e Channel—Channel on which the notification should be posted.

Kafka Publish

e Bootstrap Servers—Add Kafka host:port pairs from the drop-down list to establish the initial connection
to the Kafka cluster.

¢ Topic—(Optional) Name of the Kafka topic to which data will be published. By default, the Kafka topic
naming convention for device group alarm notifications is device-group.device-id.topic.rule.trigger.

Depending on the authentication protocols being used, the required authentication parameters are as

follows:
Protocol Required Parameters
SASL/SSL Username, password and certificate
SASL/Plaintext Username and password
SSL Certificate
Plaintext None

Username—Username for SASL/SSL or SASL/plaintext authentication.

Password—Password for SASL/SSL or SASL/plaintext authentication.

Certificate—Kafka server’s CA certificate. Choose file from the drop-down list.

Upload Certificate—Location from where the Kafka server’s CA certificate will be uploaded. Click Choose
files and navigate to the file location. File should be in Privacy Enhanced Mail (PEM) format.

Microsoft Teams

As of HealthBot 2.1.0, you can send HealthBot notifications to Microsoft Teams. Teams can provide a
connector which you can add to HealthBot to enable the connection.

https://slack.com/services/new/incoming-webhook

Configuration workflow:

In Teams, create a new connector set as an incoming webhook.

Copy the URL provided by Teams.

In HealthBot, configure a notification profile that sends to Microsoft Teams.

Apply the notification profile to a device group.

To configure MS Teams notifications:

187

1. In Teams, select the desired channel and click the ellipsis (...).

2. In the menu that appears, click Connectors.

e m

Teams 7 || TestTeam > TestTeamChannel - Bk

Filps Wiki T

. St ng Tl . £l Chamngl nofsfications
= Hige
. DL 5T -Infra-Team .

fed Mlanage chanrel
. HearrBo ER Gat emad addrgn = |
Grereral s Gt limks Bo channed i :-';.;-:-E-I
HBb-METeams-integ & Lt this chamnel . N |
oo

& Connectory 1
TesiTear |

. B Delete ths channel
Cerrigra
Let’s get the conversation started
TestTeamChannel
el s [s il 1y (i M e, e e v Tl 1 b i R
Farrer Orehicte Webute Adaub
ST & N COTreeTIaon. Type B U0 METiisen SOETabing
iy Join o condle @ beam (] A @ 8 B B S o B

3. Use the Incoming Webhook option and click Configure.

Connectors for “Test Channel” channel in “Test™ team *
Keep your geaup current with content and updates from other services,
Search pel All Sort by: Popularity v

Connectons for your team

MANAGE , _

Confiqured f\j'} Incoming Webhook
O Send data from a service to your Office 365 group in real time

My Accounts

) foms
CATEGORY

Easily create surveys, quizzes, and polls

an All connectors

Analytics (o] Azure DevOps m
cam Collaborate on and manage software projects online

Customer Support y,_ Yammer e m
Developer Tools ™ Receive updates from your Yammer network

R l, Bing News m

4. On the next page, click Create.

188

Customize: the image to associate with the data from this Incoming Webhook.

&S

Default Image

[croate J ccal |

5. Once the web hook is successfully created, copy the provided URL.

Copy the LRL below to save it to the clipboard, then select Save. You'll need this URL when you go to the service that
you want to send data to your group.

hittpes: ffouthook.office. comywebhook/f234 r‘

6. In HealthBot, go to the Settings > System page select the Notification tab.

7. Click the + Notification button.

8. Configure the notification profile as follows:
e Name - Enter a profile name.
e Notification Type - select Microsoft Teams.
e Channel - Paste the URL provided by the Teams Ul above.

9. Click Save and Deploy.

10. Apply the notification profile to a device group or network group as shown in “Enable Alarm Notifications
for a Device Group or Network Group” on page 190

EMails

As of HealthBot 2.1.0, you can send HealthBot notifications by email. By default, email notifications cover
all running playbooks and rules for the device group or network group to which they are applied, however
you can narrow the focus by selecting specific rules.

NOTE: HealthBot includes its own mail transfer agent (MTA), so no other mail server is required.

Configuration workflow:

¢ In HealthBot, configure a notification profile that sends to email.

o Apply the notification profile to a device group.
To configure email notifications:

1. In HealthBot, go to the Settings > System page.

2. Select the Notification tab and click the the + Notification button.

3. Configure the notification profile as follows:
e Name - Enter a profile name.
e Notification Type - Select Emails.

e Email Addresses - Enter an email address and click Add <email-address>; repeat for more email
addresses.

e (Optional) Rule filters - To narrow the scope of what triggers an email, define rule filters. Enter a filter
and click Add <rule-filters>; repeat for more filters.

e Format is topic/rule; can use regular expressions

o Example: interface.statistics/check-interface-flaps sends notifications only for the rule
check-interface-flaps.

o Example: system.processes/.* , system.cpu/.” , and interface.statistics/.* sends notifications for
all rules under the topics system.processes, system.cpu, and interface.statistics.

4. Click Save and Deploy.

5. Apply the notification profile to a device group or network group as shown in “Enable Alarm Notifications
for a Device Group or Network Group” on page 190

Enable Alarm Notifications for a Device Group or Network Group

To enable alarm notifications for a device group or network group:

1. For Device Groups, select the Configuration > Device Group page from the left-nav bar.

For Network Groups, select the Configuration > Network page from the left-nav bar.
2. Click the name of the device group or network group for which you want to enable alarm notifications.
3. Click the Edit (Pencil) icon.
4. Scroll down to the Notification section in the pop-up window and click the caret to expand that section.

5. Select a destination for any alarm level (Major, Minor, or Normal) that you want. Notification can be
sent to zero or more defined destinations for each alarm level.

6. Click Save and Deploy.

Manage Alarms Using Alarm Manager

You can use the Alarm Manager feature to organize, track, and manage KPI event alarm notifications
received from HealthBot devices. The Alarm Manager does not track alarms by default; it is populated
based on which device groups or network groups are configured to send the notifications.

Viewing Alarms

191

To view the alarms report table, go to the Monitor > Alarms page in the left-nav bar. Note that Alarm
Manager consolidates duplicate alarms into one table entry and provides a count of the number of duplicate

alarms it has received.

The following table describes the alarms report table attributes.

Attributes

Severity

Status

Last Received

Dupl.

Topic

Resource

Event

Text

Description

Severity level of the alarm. Options include:

o Major
e Minor

e Normal

Management status of the alarm entry. Options are Open, Active, Shelved, Closed, and
Ack. The statuses available in the Status pull-down menu in the top row of the table only
include statuses of alarms visible in the table and those allowed by the status filter above
the table.

Time the alarm was last received.

Duplicate count. Number of times an alarm with the same event, resource, environment,
and severity has been triggered.

Device component topic name.

Device name.

Name of the rule, trigger or field, and event with which the alarm is associated.

Health status message.

The following table describes the main features of the alarms report table:

Feature

Description

Sort the data by ascending or descending | Click on the name of the data type at the top of the column by which you

order based on a specific attribute. want to sort.
Filter the data based on the device In the drop-down list at the top left corner of the page, select a device
group. group by which to filter.

Feature

Filter the data based on the alarm status.

Filter the data based on the severity,
topic, or resource

Filter the data based on a keyword.

Filter the data based on date or time
received.

Navigate to a different page of the table.

Change the number of rows displayed.

If the data in a cell is truncated, view all
of the data in a cell.

Manage Individual Alarms

Description

Two options:

1. Inthe drop-down list above the table at the top of the page, select one
or more status types on which to filter. Options are open, active,
shelved, closed, and ack. You can filter on multiple status types.

2. In the drop-down list at the top of the Status column, select a status
type by which to filter. Note that if there are status types shown in the
filter list at the top of the report, then the status column can only show

those status types.

In the associated drop-down list for each attribute at the top of the table,
select an option by which to filter.

In the associated text box under the Event or Text attribute name at the
top of the table, enter the keyword on which to filter.

In the Last Received field, enter a date and time in the format: <Day> <DD>
<Mon> <HH:MM>

Two options:

1. At the bottom of the table, click the Previous or Next buttons.
2. At the bottom of the table, select the page number using the up/down

arrows (or by manually entering the number) and then press Enter.

At the bottom of the table, choose the number of rows to display in the
drop-down list. The table displays 20 rows by default.

Resize the column width of the cell by dragging the right side of the title
cell of the column to the right.

You can view detailed information about each alarm in the alarms report table. You can also assign a
management status (such as open, ack, and close), and apply simple actions (such as shelve and delete) to
each alarm.

To manage individual alarms:

1. Go to the Monitor > Alarms page from the left-nav bar to open the alarms report table.

2. Click on a single alarm entry in the table. The Alarm Details pane displays detailed information about
the alarm.

The following table describes the set of buttons at the top of the Alarm Details pane:

Button Description
Open Changes the status of the alarm to Open.
Shelve Removes the alarm from the table for a set amount of time. Time options are 1, 2,4 and 8

hours. Click Unshelve to disable this feature.

Ack Changes the status of the alarm to Ack. The Ack status removes the alarm from the table,
but the alarm still remains active.

Close Changes the status of the alarm to Closed. The Closed status indicates that the severity
level of the alarm is now Normal.

Delete Deletes the alarm from the table.

Configure Alarm Blackouts

You can configure blackout periods to suppress or mute alarms during, for example, scheduled downtimes.

To configure blackouts:

> 0w b e

Click the Settings > System page from the left-nav bar.

Select the Alarm tab on the left side of the page.

In Alarm Blackout Settings, click the + Alarm Blackout button.

Enter the necessary values in the text boxes for the blackout configuration.

The following table describes the attributes in the Add an Alarm Blackout pane:

Attributes

Duration

Device Group

Attribute

Value

Description

Select a start and end date and time for the blackout.

Select a device group from the drop-down list to which to apply the blackout configuration.

(Optional) Specify an attribute from the drop-down list to which to apply the blackout
configuration.

(Optional) If a blackout attribute is specified, provide an associated value (as shown in the
alarms report table). Only the alarms that match this attribute value exactly will be suppressed
from the alarms report table.

NOTE: For the Resource-Event attribute, you must specify a resource from the drop-down
list, as well as specify an Event value. Only the alarms generated by the specified resource
that match this Event value exactly will be suppressed from the alarms report table.

5. Click Save to save the configuration.

6. (Optional) Click the Delete button to delete a blackout configuration.

Stream Sensor and Field Data from HealthBot

You can configure HealthBot to publish HealthBot sensor and field data for a specific device group or
network group. You must first configure the notification type for publishing and then specify the fields
and sensors that you want published.

Configure the Notification Type for Publishing

196

HealthBot supports Apache Kafka for publishing sensor and field data. You must first configure a Kafka
publishing profile before you can start publishing sensor and field data for a specific device group or
network group.

To configure a Kafka publishing profile:

1. Select the Settings > System page from the left-nav bar.

2. Click the Notification tab on the left part of the page.

3. In Notification Settings, click the + Notification button.

4. Enter the necessary values in the text boxes and select the appropriate options for the Kafka publishing
profile.

The following table describes the relevant attributes in the Add a Notification Setting and Edit
Notification Configuration panes:

Attributes = Description
Name Name of the notification.
Description | (Optional) Description of the notification.

Notification | Click the Kafka publish radio button.
Type

Attributes = Description

Kafka e Bootstrap Servers—Add Kafka host:port pairs from the drop-down list to establish the initial connection to the Kk
Publish cluster.

e Topic—(Optional) Name of the Kafka topic to which data will be published. By default, the Kafka topic naming
conventions are:

e For device group field data, device-group.device-id.topic.rule.fields
e For network group field data, network-group.topic.rule.fields

e o For device group sensor data, device-group.device-id.sensors

Depending on the authentication protocols being used, the required authentication parameters are as follows:

Protocol Required Parameters

SASL/SSL Username, password and certificate
SASL/Plaintext Username and password

SSL Certificate

Plaintext None

o Username—Username for SASL/SSL or SASL/plaintext authentication.
e Password—Password for SASL/SSL or SASL/plaintext authentication.
o Certificate—Kafka server’s CA certificate. Choose file from the drop-down list.

e Upload Certificate—Location from where the Kafka server’s CA certificate will be uploaded. Click Choose files a
navigate to the file location. File should be in Privacy Enhanced Mail (PEM) format.

5. Click Save to save the configuration or click Save and Deploy to save and deploy the configuration.

6. Apply the Kafka publishing profile to a device group or network group. For more details, see the “Publish
Data for a Device Group or Network Group” on page 199 section.

Publish Data for a Device Group or Network Group

To publish HealthBot sensor or field data for a device group or network group:

1. Select the Configuration > Device Group page from the left-nav bar.

2. Click the name of the device group to which you want to publish data.

3. Click the Edit Device Group (Pencil) icon.

4. Under Publish, select the appropriate Destinations, Field, or Sensor from the drop-down lists for the
data you want to publish. To publish field or sensor data, you must configure a destination.

Parameter Description

Destinations Select the publishing profiles that define the notification type requirements (such as
authentication parameters) for publishing the data.

To edit or view details about saved publishing profiles, go to the System page under the Settings
menu option in the left-nav bar. The publishing profiles are listed under Notification Settings.

NOTE: Only Kafka publishing is currently supported.

Field Select the HealthBot rule topic and rule name pairs that contain the field data you want to
publish.
Sensor (Device group only) Select the sensor paths or YAML tables that contain the sensor data you

want to publish. No sensor data is published by default.

5. Click Save to save the configuration or click Save and Deploy to save and deploy the configuration.

Release History Table

Release Description

2.1.0 As of HealthBot 2.1.0, you can send HealthBot notifications by email.

Monitor Device and Network Health | 148

Generate Reports

You can generate HealthBot reports for device groups and network groups. These reports include alarm
statistics, device or network health data, as well as device-specific information (such as hardware and
software specifications).

HealthBot’s reporting functionality allows you to:

e Send reports by email, save them on the HealthBot server, or download them to your local machine
e Schedule reports to run at regular intervals, or for a specific time

o Generate reports on demand (HealthBot 2.1.0 and later)

o Compare (diff) two reports (HealthBot 2.1.0 and later)

o Capture a snapshot of a specific set of fields at a given point in time (HealthBot 3.1.0 and later)
This section includes the following procedures:

e Generate On-Demand Reports on page 201
e Generate Scheduled Reports on page 204

e View Reports on page 208

e Create Field Snapshot on page 211

e Compare (Diff) Reports on page 213

Generate On-Demand Reports

201

202

You can generate and download a report on demand for a device group or network group. As with regular
report generation, formats supported include HTML or JSON, and you can download the report or receive
it by email.

Once generated, you can re-download on-demand reports from the Reports page. These reports have the
report name HB_MANUAL_REPORT.

To generate an on-demand report:

1. For adevice group, navigate to the Configuration > Device Group page from the left-nav bar and select
the device group name from the list.

For a network group, navigate to the Configuration > Network page from the left-nav bar and select
the network group name from the list.

2. Click the Report Snapshot (Page) icon in the upper right part of the page as shown in

Figure 53: Report Snapshot Button
A 5 @ O

a R4 T
Authentication

[3) NONE

&) NONE

3. On the page that appears, enter report generation details, including:
e Format - HTML or JSON
e Destination Type - save to your computer (disk) or send to email (which also saves to disk)

o If disk, specify the number of reports to save on the server before deleting older reports

e If email, add target email address(es)

e (Optional) Select graph canvases to include in the report.
e (Optional) Select the desired graph panels to include in the report.

4. Click Submit.

5. Adialog box appears allowing you to download the file. Additionally, if the destination is disk, HealthBot
stores a copy of the report on the server. If the destination is email, HealthBot sends the report to the
specified account.

Generate Scheduled Reports

204

The workflow to configure and generate scheduled reports is as follows:

Create a Report Associate

the

Create a Create a

Destination

Schedule Lol

destination and
schedule profiles

profile

profile

Report

8300748

Create a Destination Profile

1. Select the Settings > System page from the left-nav bar.

2. Click the Destination tab on the left of the page.

3. In the Destination Settings section, click the + Destinationbutton.

4. Specify the destination profile settings as appropriate.

The following table describes the attributes in the Add a destination and Edit a destination panes:

Attributes Description

Destination Name Enter a name. The name cannot be changed once saved.

Destination Type Options include Email or Disk.

Email > Email Id Enter an email address to which the report will be sent.

Disk > Maximum Reports Specify how many versions of this report will be stored on the server. Older

reports are deleted as newer reports are generated and saved.

NOTE: Using the email option also saves a copy of the report to disk.

5. Click Save and Deploy.

Create a Schedule Profile

1. Click the Scheduler tab on the left side of the page.

2. In the Scheduler Settings section, click the + Scheduler button.

3. Specify the schedule profile settings as appropriate.

The following table describes the attributes in the Add a scheduler and Edit a scheduler panes:

Attributes

Name

Scheduler Type

Start On

Run for

End On

Repeat

4. Click Save and Deploy.

Create a Report

Description

Enter a name.

Select continuous.

Select the date and time for the first report to be generated.

Not applicable.

(Optional) Select the date and time to stop generating reports.

Leave blank to generate the report indefinitely.

Select one of the following:

e The frequency (every day, week, month, or year) at which you want the report to
be generated.

e Never—generate the report only once.

e Custom—select and use the Repeat Every fields to configure a custom frequency.

1. Click the Report tab on the left side of the page.

2. In the Report Settings section, click + Reportbutton.

3. Specify the schedule profile settings as appropriate.

The following table describes the attributes in the Add a report setting and Edit a report setting panes:

Attributes

Name

Format

Schedule(s)

Destination(s)

Canvas(es)

Panel(s)

4. Click Save and Deploy.

Description

Enter a name.

Options include HTML and JSON.

Select the schedule profile you created above.

Select the destination profile you created above.

(Optional) Select graph canvases to include in the report. The list of graph panels in
the Panel(s) drop-down list changes based on the canvas selected.

For information on creating graphs, see Graph Page.

(Optional) Select the desired graph panels to include in the report.

NOTE: JSON reports include the raw time series data only, no graphs.

Associate the Report to a Device Group or Network Group

https://www.juniper.net/documentation/en_US/healthbot/topics/task/healthbot-monitoring-health.html#id-plots-page

1. For a device group, select the Configuration > Device Groups page from the left-nav bar.

For a network group, select the Configuration > Network page from the left-nav bar.

2. Click the name of the device group or network group for which you want to generate reports.

3. Click the Edit (Pencil) button.

4. In the Reports section, click the caret to expand the menu.

5. Click the name(s) of the reports that you want to associate with this group.

6. Click Save and Deploy.

View Reports

208

To view reports for a device group or network group:

1. If the report’s notification parameters are set to use email, check the email box of the specified account
for the report and open the attachment.

2. If the report’s notification parameters are set to save to the server’s disk (or even if set to email), select
the Monitor > Reports page from the left-nav bar. The reports are organized by the date and time at
which they were generated. The most recent report is listed at the top of the table.

3. Find the report you wish to download. To help find the desired report:
e Click the column headings to sort based on that column.
e Search within a column using the text box under the column heading.
e Use the bottom of the page to view more rows or change pages.

4. Click on the name of the report to download it to your system.

Sample Report

A report shows the following information:

Healthbot Report for Device group "vSRX"

Report Name: "TEST-sched-report-TEST-report-vSRX"
Generation Time: "2019-11-19T19:10"

+ Report 1: Dashboard

+ Report 2 Device State

« Report 3: Alert State

+ Report 4: Device Inventory

Dashboard

Device State view

Alert State View

Alerts of top 5 devices

Alerts of top 5 topics

Total : 1 Devices Total 27 VSRX : system.cpu/check-system-cpu-load-average -
Risk : 0 Devices Critical - 0 interface statistics/check-interface-status
Check Major - 26 R system.memory/check-system-memory
No Data: 0 Devic: Minor interface statistics/check-neighbor-state : 2
Good : 0 Devic Normal -0 interface statistics/check-out-traffic -
Critical 0% system.cpulcheck-system-cpu-load-average 33%
interface statistics/check-interface-status 17%
Minor 4% system.memory/check-system-memory 17%
INormal 0% tatistics/check-neighbor-state 17%
interface statistics/check-out-traffic 17%
Top of page

Device State

Total Devices Displayed: 1
[|]
1 .

Top of page

Alert State

Total Alerts Displayed: 20

= T
maior open 21N e 249 Production vSRX interface statistics RX Rule=interface stafistics/check-if-outraffic. Sensor=/interfaces!, event=no-data-received o data s being recelved on
meior open | 291%'E 249 ProductionvSRX interface statistics | VSRX | Rule=interface. tHraffic, Sen . event=no-data-receivad No data is being received on
19T12.55:28.8012 Sensor

major open ?3‘{‘1255 53672 124 Production vSRX system.cpu VSRX :i; ,Jf‘w cpulcheck-system-cpu-load-average, Sensor=CPUUtilzationTable, event=no-data- g:nﬂ:a[ra is being received on
maoropen AN e 249 Production:veRX interface.statistics VSRX Ruleinterface stalistics/check-interface-flaps, Sensor=/interfaces!, event=no-gala-received 4o data s being recelved on
maoropen AN 249 Production:veRX interface.statistics VSRX | Ruleinerface stalistics/checkinterface-sialus, Sensor=/interfaces, event=no-dala-received 4o data s being recelved on
major open 33% 5528 7512 249 Proguction:vSRX interface statistics VSRX Rule=interface statistics/check-neighbor-stat sor= ces/, event=no-data-received g:nd:otf is being received on
maporopen I et 249 Production vaRX interface.statistics VSRX Ruleinterface stalistics/check-in-irafiic, Sensor=finterfaces/, event=no-data-received 4o deta s being recetved on
major open 2NN s 124 Production vSRX system cpu VSRX Rule=system cpulcheck-system-cpu, Sensor=/components/, event=no-data-received Mo deta s being received on
maior open 21N s 249 Production vSRX interface statistics VSRX | Rulesinterface stafistics/check-ifln traffic, |, event=no-dala-received No data s being recaived on
maior open 21N esr 124 Production vSRX interface statistics VSRX | Rule=interface stafistics/check-in-errors, Sensor=finterfaces/, event=no-data-received o data s being recelved on
maior open 39ih i sin 249 ProductionvSRX interface statistics VSRX | Rule=interface statistics/check-out-errors, Sensor=nterfaces!, event=no-data-received 140 data < being recetved on
maior open Joih o cen 124 Production vSRX system memory VSRX Rule=system memory/check system-memory, Sensor=/components!, event=no-data-received 140 data < being recetved on
maior open 20TS Nl o ssr 2 Production:veRX interface.statistics VSRX Rule=interface statistics/check-in-errors, Trigger=in-errors, event=no-data-recsived No data present for last 180
maoropen WML) Production vERX system.cpu VSRX Rule=system.cpulcheckcsystem-cpu, Trigger=re-cou-ulilzation, event=no-dala-received o data present forast 300
major | open igﬁ;sa 58,0702 2 Production:vSRX system.memory VSRX :‘;‘:;15‘“ memory/check-system-memory, Trigger= y-buffer-utiization, event=no-dats r;enc::tas present for last 300
major | open %Sﬁ;% -) Production vSRX interface statistics VSRX Rule=interface statistics/check-interface-fiaps, Trigger=link-laps, event=no-data-received ?E“c::fs presentfor last 180
major open ?Sﬁ;% 570602 a3 Production vSRX interface statistics VSRX Rule=interface staistics/check-out-errors, Trigger=out-errors, event=no-data-received ’;;c::fs present for last 180
major open %gﬁ;se 550677 93 Production-vSRX system.cpu VSRX tem.cpu/check-system-cpu-load-average. Trigger=cpu-utiization-5min, event=no-data- Nencgitdas present for last 120
maior open 21 sz) Production vSRX interface statistics VSRX Rulesinterface statistics/check-fi-outtraffc, Trigger=out-raffic, event=no-data-received Mo data present forast 300
maior open 21 e) Production vSRX interface statistics VSRX Rulesinterface staistics/check-interface-status, Trigger=ink-state, event=no-data-received Mo data present forast 120
Top of page

Device Inventory

[Il Il I I Il]
1 oeview] hostame | enatWumber | poawc | Reeae | ______ Pltom _____|

[+] vsrx SRX-PNF 1D530FD88SBR 19.2R18 VSRX

Top of page

Plots

Create Field Snapshot

210

You can capture fields (and their values) from rules applied to deployed devices. In the HealthBot CLI, you
identify the fields to capture by specifying an xpath as shown below (without spaces):

{

capture-fields: [

WWMMMMWMW&WWIM

In the HealthBot GUI, you specify the fields during the creation of a report. HealthBot takes care of creating
the xpath from your configuration in the Settings > System > Reports > Add a Report Setting or the
Settings > System > Reports > Edit Report window as shown in Figure 54 on page 211 below:

Figure 54: Add/Edit Report Setting

212

Edit a Report Setting

Name*
Test-Report-1

Report Format*
HTML -

Schedule(s)*

-

Schedule(s) to run report

Destination(s)*

EmailAdmins € v

Canvas(es)

Panel(s)

Add Fields
v DevGrp1
v mx240-1
v system.cpu/check-system-cpu

EEEb

(re-cpu-utilization Q) Field(s) v

(in-errors-count Q) Field(s) v

Topic/Rule -

Device -

Device Group v

CANCEL SAVE SAVE & DEPLOY

Compare (Diff) Reports

You can compare the differences between two reports for a device group or network group. The diff
allows you to view added/removed/modified alerts, devices, health information, and graphs.

To generate a report diff:

1. On the Reports page, select two reports and click the Diff Reports button.

2. The diff opens as an HTML page in a new tab.

Sample Report Diff

214

A sample of a report diff for a device group is shown below.

DIFF

Header Diff

Fleld ol New

Name | strt-dut cnk | St-rz-aut ek
Report Bl 2
Time |2019-11-20T12:02[2019-1-20711:28

Alert Data Diff

[remoral o]
Cols o]

Statistics Changes
Field o New
SeverityCounts Grtcal: 0 Mejor: 18 Minor: 1 Normal: 4 Gitcal: 0 Major: 18 Minor: 0 Normal: 0
StatusCounts _| Ack: 0 Closed: 4 Open: 19 Shelved: 0 Expired: 0 Ack: 0 Closed: 0 Open: 18 Shelved: 0 Expired: O
TotalAlerts 23 18
TotalMinorOpen 1 o
TotaiNormaiGiosed 4 o
Added Alerts.
None
Removed Alerts
CreateTime Environment Service | Resource| Event Text
minor_| open [201-11-20T o Lonk| system.cpu o |» Engine0 isin
normal | closed|2018-11-207 o Production:dut_chk| _ system.cpu 0 |> Event| Routing Engine0 smin GPU utization(s3) is normal
normal | closed 2019-11-20T11:49:20.6927 o Production:dut_chk| _ system.cpu 0 > Event Routing Engine0 CPU utization() is normal
normal | closed 2019-11-20T11:49:21.6902 3 0 [> Event PpL_11_80000010 cpu utiization:(0), is normal
normel | closed | 2019-11-20T11:49:20.6882 o Production'dut_chk| _ system.cpu © > Event| Routing Engine 1min CPU utization(31) is normal

Wodted Alerts
JRR—
aupcateont |10 1 |

6178930d-b131-4618-5927-d69a800€3537

[e[o]

Device Group Health Diff

DeviceHealth Red
DeviceHealth.TotalDevices|

Device Group Added Devices
Name State
0 red
Device Group Removed Devices
None
Device Group Modified Devices
None

Device Facts Diff
Added Device Facts
None
Removed Device Facts
None
Modified Device Facts

A sample of a report diff for a network group is shown below.

DIFF

Header Diff

Field old New

Name | S1-ri-N1 | S1-ri-dut_chk

Group N1 dut_chk

Type | network-group | device-group

Alert Data Diff

[l + [o |

Statistics Changes
Fleld old New
SeverityCounis Griical: 0 Major: 1 Minor: 0 Normal: 0 Gritcal: 0 Major: 18 Minor: 1 Normat: 4
StalusCounts | Ack: 0 Closad: 0 Open: 1 Shelved: 0 Expired: 0| Ack: 0 Closed: 4 Open: 19 Shelued: 0 Expired: 0
TotalAlerts 1 2
TotalMajorOpen 1 18
TotalMinorOpen o 1
TotalNormalClosed 0 4
Added Alerts
Severlty Status CreateTime DuplicateCount | Environment Serice | Resource Event Text
major | open 2018-11-20T10:53:20.874Z 2 Productonidut_chk system.cpu © > Event No data is being received on Sensor
major | open 2019-11-20T06:51:54.555Z 101 Productondut_chk | systemmemory 11 |» Event No data is being received on Sensor
major | open | 2013-11-20T06:51:64.529Z 101 Production:dut_chk | system.cpu e Event No data is being received on Sensor
minor | open | 2018-11-20T11:53:20.6862 0 Productonidut_chk system.cpu 0 | Event Fouing Engine0 15min GPU ulization(7*) is in medium range
nomal | closed |2019-11-20T11:51:20.6622 o Production:dut_chk system.cpu 0 > Event Routing Engine0 5min CPU utlzation(53) s normal
normal | closed |2019-11-20T11:49:21.6902 0 Production:dut_chk systemprocesses | 10 |» Event pPL_11_80000010 cpu utiization:(0), is normal
normal | closed |2019-11-20T11:49:20.6822 0 Production:dut_chk system.cpu 0 Event Routing Engine0 CPU utiization(1)is normal
nommal | closed |2019-11-20T11:49:20.688Z o Production:dut_chk system.cpu 0 > Event Routing Engine0 1min GPU utlization(31) is normal
major | open | 2013-11-20T10:53:40.815Z 1 Production:dut_chk systemprocesses | 10 |» Event No data is being received on Sensor
major | open 2018-11-20T10:53:40.781Z 1 Productiondut_chk systemstorage | 10 » Event No data is being received on Sensor
major | open 2019-11-20T10:53:35.781Z 1 Productiondut_chk systemprocesses 10 |» Event No data is being received on Sensor
major | open | 2019-11-20T10:53:25.779Z 0 Productionidut_chk | systemstorage | 12 |» Event No data is being received on Sensor
major | open 2018-11-20T10:53:21.006Z 0 Productonidut_chk system.cpu 2 s Event No data is being received on Sensor
major | open 2019-11-20T10:53:20.843Z o Productiondut_chk systemprocesses 12 |» Event No data is being received on Sensor
major | open | 2013-11-20T10:53:20.909Z 0 Production:dut_chk | system.cpu e Event No data is being received on Sensor
major | open 2018-11-20T10:53:20.8752 0 Productiondut_chk systemstorage | 1w Event No data is being received on Sensor
major | open 2019-11-20T10:53:20.846Z o Productiondut_chk systemprocesses 11 |» Event No data is being received on Sensor
major | open | 2013-11-20T10:53:20812Z 0 Production:dut_chk systemprocesses | 12 |» Event No data is being received on Sensor
major | open | 2018-11-20T10:53:20.780Z 0 Productondut_chk systemprocesses 1 |» Event No data is being received on Sensor
major | open 2019-11-20T06:35:55.872Z 8 Production:dut_chk | system.cpu 0 | Event No data is being received on Sensor
major | open | 2013-11-20T06:35:55.912Z 8 Production:dut_chk | systemmemory | 10 |» Event No data is being received on Sensor
major | open | 2018-11-20T06:33:57.147Z 1 Production:dut_chk system.cpu 0 » Event Routing Enginet 5min GPU utiization(Scpu-5min) exceed high threshoid(80)
major | open 2019-11-20T06:33:57.143Z 1 Production:dut_chk system.cpu 10 » Event Routing Enginel 15min CPU utlization($cpu-15min) exceed high threshold (75)
Removed Alerls
| seventy [status | CreateTime [pupitcatecount | Environment [service [Resource [Event | Text |
| major | open |2010-1-20T06:33:10.6882 | 1 |Proauctionsnt | ospr | - | Event | Peer MTUS are not equal r0-mtu: §ro-mtu - rt-mtu: §e1-mtu |
Modified Alerts
None

Network Group Health Diff
Field Old | New
NetworkHealth.Name | N1

NetworkHealth State | red

Device Facts Diff
Added Device Facts
None
Removed Device Facts
MNone

Modified Device Facts

None

Graph Diff

None

Release History Table

Release Description

3.1.0 Capture a snapshot of a specific set of fields at a given point in time (HealthBot 3.1.0
and later)

2.1.0 Generate reports on demand (HealthBot 2.1.0 and later)

2.1.0 Compare (diff) two reports (HealthBot 2.1.0 and later)

Configure a Secure Data Connection for HealthBot
Devices

HealthBot supports the following authentication methods to provide a secure data connection for HealthBot

devices:
Authentication Required HealthBot Security
Method Sensor Type Description Parameters
Mutual SSL OpenConfig Client authenticates itself with e Local certificates (includes the
the server and the server client certificate and client key)
authenticates itself with the o CA certificate
client.
e Server common name
Server-side SSL OpenConfig Server authenticates itself with o CA certificate
the client. e Server common name
Public key SSH iAgent Authenticates users with o SSH key file
password-protected SSH key files. | Passphrase
e Username
Password All Authenticates users with a e Username

password. e Password

You can associate SSL or SSH certificates and keys with HealthBot devices through user-defined security
profiles:

e Configure Security Profiles for SSL and SSH Authentication on page 217

e Configure Security Authentication for a Specific Device or Device Group on page 218

Configure Security Profiles for SSL and SSH Authentication

To configure security profiles for SSL and SSH authentication:

1. Click the Settings > Security option in the left-nav bar.

2. Click the add profile button for one of the following profiles and enter the required information:

Security Profile

CA

Local Certificates

SSH Keys

Description of Parameters

Name—Enter profile name.

Upload Certificate—Choose the CA certificate file and then click Open. The supported
file extension is CRT.

Name—Enter profile name.

Upload Certificate—Choose the client certificate file and then click Open. The
supported file extension is CRT.

Upload Key—Choose the client key file and then click Open. The supported file
extension is KEY.

Name—Enter profile name.

Upload Key File—Choose the private key file generated by ssh-keygen and then click
Open.

Passphrase—Enter the authentication passphrase.

3. Click Save to save the configuration or click Save and Deploy to save and deploy the configuration.

4. Repeat Steps 4 and 5, as needed.

5. Apply the security profiles to a specific device or device group. For more details, see “Configure Security

Authentication for a Specific Device or Device Group” on page 218.

Configure Security Authentication for a Specific Device or Device Group

1. Click the Dashboard option in the left-nav bar.

2. Click the name of the device or device group for which you want to configure security authentication.
The device or device group profile pane appears, respectively.

3. Under Authentication, enter the required parameters for each applicable authentication method:
Password, SSL, or SSH. All methods can be configured together on a single device or device group

profile.

Authentication Method Description of Parameters

Password Username—Enter the authentication username.
Password—Enter the authentication password.

SSL Server Common Name—Enter the server name protected by the SSL certificate.
CA Profile*—Choose the applicable CA profile(s) from the drop-down list.
Local Certificate*—Choose the applicable local certificate profile(s) from the drop-down

list.
SSH SSH Key Profile*—Choose the applicable SSH key profile(s) from the drop-down list.

Username—Enter the authentication username.

*To edit or view details about saved security profiles, go to the Settings > Security page in the left-nav
bar.

The following guidelines apply to the Authentication configuration:

o HealthBot decides which authentication method to apply to a device or device group based on which
of the required security parameters are configured.

o When more than one method is valid, HealthBot prioritizes SSL and SSH authentication over
password-based authentication.

o HealthBot prioritizes device-level settings over device group-level settings.

4. Click Save to save the configuration or click Save and Deploy to save and deploy the configuration.

Configure Data Summarization

You can improve the performance and disk space utilization of the HealthBot time series database (TSDB)
by configuring data summarization methods to summarize the raw data collected by HealthBot. The data
can be summarized as a function of time or when a change occurs.

For time-based data summarization, the raw data points are grouped together into user-defined time spans,
and each group of data points is summarized into one data point using aggregate functions.

Table 6 on page 219 provides a list of the supported data summarization algorithms and a description of
their output:

Table 6: Descriptions of the Data Summarization Algorithms

Algorithm Description of output

Latest Value of the last data point collected within the time span.

Count Total number of data points collected within the time span.

Mean Average value of the data points collected within the time span.

Min Minimum value of the data points collected within the time span.

Max Maximum value of the data points within the time span.

On-change Value of the data point whenever the value is different from the previous data point

(occurs independently from the user-defined time span).
Stddev Standard deviation of the data points collected within the time span.

Sum Sum of the data points collected within the time span.

If no summarization algorithm is associated with the data, the following algorithms are used by default:

Data type Data summarization algorithm
Float, integer, unsigned Mean
Boolean, string On-change

You can use data summarization profiles to apply specific summarization algorithms to the raw data
collected by HealthBot for a specific device group:

e Creating a Data Summarization Profile on page 220

e Applying Data Summarization Profiles to a Device Group on page 221

Creating a Data Summarization Profile

To create a data summarization profile that can be applied to a device group:

1.

Click the Settings > Data Summarization Profiles link in the left-nav bar.

Click the + Summarization Profile button.

In the Name field, enter the name of the profile.

Under Type Aggregate, click the + Add Type Aggregate button.

Choose a data type name and associate it with a data summarization algorithm using the drop-down
lists. Data types include: string, integer, boolean, and float. Note: The algorithm configured for a specific
sensor path name overrides the algorithm configured for the corresponding data type.

Repeat Step 5 and Step 6 for other data types, as needed. You can associate more than one algorithm
with the same data type.

Under Path Aggregate, click the + Add Path Aggregate button.

Enter a sensor path name, and associate it with a data summarization algorithm using the drop-down
list. Note: The algorithm configured for a specific sensor path name overrides the algorithm configured
for the corresponding data type.

You can enter a path name for a sensor that is not supported by HealthBot. For sensors supported by
HealthBot, the path name must be entered in the following format:

Sensor Path Name Format Example
Open Config sensor-path /components/component/name
Native GPB sensor-name:sensor-path jnpr_gmon_extqueue_monitor_element,_info.percentage

iAgent yaml-table-name:sensor-path REutilizationTable:15_min_cpu_idle

9.

Sensor Path Name Format Example

SNMP snmp-table-name:sensor-path .1.3.6.1.2.1.2.2:jnxLED1Index

ospfNbrTable:ospfNbripAddr

Syslog pattern-set: sensor-path interface_link_down:operational-status

Flow (NetFlow) template-name:sensor-path hb-ipfix-ipv4-template:sourcelPv4Address

Repeat Step 8 and Step 9 for other sensor paths, as needed. You can associate more than one algorithm
with the same path name.

10. Click Save to save the configuration or click Save and Deploy to save and deploy the configuration.

11. Apply the data summarization profile to a specific device group. For more details, see “Applying Data

Summarization Profiles to a Device Group” on page 221.

Applying Data Summarization Profiles to a Device Group

After creating a data summarization profile, you can apply the profile to a specific device group to start
summarizing the raw sensor data:

1.

Click the Configuration > Device Group option in the left-nav bar.

Click the name of the device group for which you want to apply the data summarization profile.

Click the Edit Device Group (Pencil) icon.

The Edit <device-group-name> window appears.

Click the Summarization header to expand that section.,

Enter the Time Span in seconds (s), minutes (m), hours (h), days (d), weeks (w), or years (y)

Choose the data summarization profiles from the drop-down list for which you want to apply to the
ingest data. To edit or view details about saved data summarization profiles, go to the Data
Summarization page under the Settings menu option in the left-nav bar.

If you select two or more profiles, the following guidelines apply:

o If the same data type or sensor path name is configured in two or more profiles, the associated
algorithms will be combined.

e The table that stores the summarization output includes columns of summarized data for each
algorithm associated with each data field collected by HealthBot. The naming convention for each
column is as follows:

Number of algorithms associated
with a data field Column name for the summarized output

1 field-name
Example: 5_sec_cpu_idle
2 field-name_first-algorithm-name, field-name_ second-algorithm-name

Example: 5_sec_cpu_idle_MIN, 5_sec_cpu_idle_MAX

3 field-name_first-algorithm-name, field-name_ second-algorithm-name, field-name_
third-algorithm-name...

7. Click Save to save the configuration or click Save and Deploy to save and deploy the configuration.

Modify the UDA and UDF Engines

IN THIS SECTION

Overview | 222

How it Works | 223
Usage Notes | 224
Configuration | 225

Overview

When creating rules, HealthBot includes the ability to run user-defined actions (UDAs) as part of a trigger.
UDA:s are essentially Python scripts that can be configured to be triggered by a HealthBot rule. For example,

you might configure a rule with a trigger that reacts to some critical interface going down by sending an
SMS. You can write the logic to send the SMS in a UDA python script.

HealthBot also includes the ability to run user-defined functions (UDFs). Also created as Python scripts,
UDFs provide the ability to process incoming telemetry data from a device and store the processed value
in the time-series database for that device/device-group. For example, the device may be sending FPC
temperature in Celsius but you want to process it to be stored as Fahrenheit values in the database.

Both UDF and UDA scripts are processed by TAND, which spawns one python interpreter for each device
that has a rule with a field that contains a UDF or UDA. If a rule that has two UDF fields is applied to a
device group with 2 devices in it, then 4 interpreters are spawned to process the ingest traffic. Each
interpreter can only process one data point at a time. When it is finished, it can then process another data
point (sequential processing).

Starting with HealthBot Release 3.2.0, the processing of UDF/UDA fields has been moved to a UDF farm.
This approach allows for HealthBot to process multiple data points from multiple devices and fields at the
same time (parallel processing). The result is a 4 to 5 times increase in processing performance for UDA/UDF.

While UDAs and UDFs provide excellent additional capabilities to HealthBot, there can be cases where
the scripts may be importing Python modules that are not included in the default HealthBot installation.
Given this, you need to be able to add modules as needed to the engine that runs these scripts. HealthBot
2.1.0 and later solves this challenge by allowing you to modify the UDA and UDF engines, using a bash
script that contains the instructions to install any dependencies.

How it Works

You can modify the UDA or UDF engine using the HealthBot CLI, as shown below.

user@HB-server:~$ healthbot modify-uda-engine --help
usage: healthbot modify-uda-engine [-h] (-s SCRIPT | --rollback) [--simulate]

optional arguments:
-h, --help show this help message and exit
-s SCRIPT, --script SCRIPT
Run script in UDA engine
--rollback, -r Rollback UDA engine to original state
--simulate Run script in simulated UDA engine and show output

user@HB-server:~$ healthbot modify-udf-engine --help
usage: healthbot modify-udf-engine [-h] (-s SCRIPT | --rollback) [--simulate]
[--service SERVICE]

optional arguments:
-h, --help show this help message and exit
-s SCRIPT, --script SCRIPT
Run script in UDF engine

--rollback, -r Rollback UDF engine to original state
--simulate Run script in simulated UDF engine and show output
--service SERVICE Modify specific service UDF

The commands have three main options:

o Simulate—test a script (and view its output) in the simulated UDA/UDF engine environment without
affecting the running HealthBot system

¢ Modify—modify the actual UDA/UDF engine using a script

¢ Rollback—revert to the original version of the UDA/UDF engine

Usage Notes

e The bash script will run in a container running Ubuntu OS Release 16.04 or 18.04; write the script
accordingly.

e The script must be non-interactive; any questions must be pre-answered. For example, use the -y’ option
when installing a package using apt-get.

o If you prefer to copy the source packages of the dependency modules onto the HealthBot server so the
engine can manually install them instead of downloading them from the Internet, place the required
source packages in the /var/local/healthbot/input directory. Then within your bash script, point to the
/input directory. For example, to use a file placed in /var/local/healthbot/input/myfile.txt, set the bash
script to access it at /input/myfile.txt.

¢ Modifying the UDA/UDF engine more than once is not an incremental procedure; use a new bash script
that includes both the original and new instructions, and re-run the modify procedure using the new
script.

o UDA/UDF maodifications are persistent across upgrades.

225

I Configuration

As a best practice, we recommend that you use the following workflow:

SIMULATE MODIFY ROLLBACK

(optional)

300768

This best-practice approach ensures that you first validate your script in the simulated environment before
modifying the real engine.

NOTE: The examples below use the UDA engine; these procedures apply equally to the UDF
engine.

NOTE: The procedure below assumes your HealthBot server is installed, including running the
sudo healthbot setup command.

SIMULATE

Use the simulate feature to test your bash script in the simulated environment, without affecting the
running HealthBot system.

To simulate modifying the UDA engine:

1. Enter the command healthbot modify-uda-engine -s /<path>/<script-file> --simulate.

2. The script runs and the output shows on screen, just as if you entered the script commands yourself.

user@HB-server:~$ healthbot modify-uda-engine -s /var/tmp/test-script.sh --simulate
Running /var/tmp/test-script.sh in simulated alerta engine..
Get:1 http://security.ubuntu.com/ubuntu xenial-security InRelease [109 kB]

Fetched 4296 kB in 15s (278 kB/s)
Reading package lists...

Building dependency tree...

Reading state information..

MODIFY

When you are satisfied with the simulation results, go ahead with the actual modification procedure.
To modify the UDA engine:

1. Load the desired bash script onto the HealthBot server.

2. If your HealthBot server is fully up and running, issue the command healthbot stop to stop the running
services.

3. Run the command healthbot modify-uda-engine -s /<path>/<script-file>.

user@HB-server:~$% healthbot modify-uda-engine -s /var/tmp/test-script.sh
Running /var/tmp/test-script.sh in simulated alerta engine..

Success! See /tmp/.alerta _modification.log for logs

Please restart alerta by issuing "healthbot start --device-group healthbot -s
alerta”

4. (Optional) As noted in the output, you can check the log file to further verify the script was loaded
successfully.

5. Restart the alerta service using the command healthbot start -s alerta.

6. Once complete, verify that the alerta service is up and running using the command healthbot status.

7. To verify that the UDA engine has been updated, use the command healthbot version -s alerta and
check that the healthot_alerta container is using the <version>-custom tag.

user@HB-server:~$ healthbot version -s alerta
{"alerta®: "healthbot_alerta:2.1.0-custom”}

The UDA engine is now running with the installed dependencies as per the bash script.

ROLLBACK

If you have a need or desire to remove the changes to the engine, you can revert the engine to its original

state.
To rollback the UDA engine:

1. Enter the command healthbot modify-uda-engine --rollback.

user@HB-server:~$ healthbot modify-uda-engine --rollback

Rolling back alerta engine to original state..

Successfully rolled back alerta engine

Please restart alerta by issuing "healthbot start --device-group healthbot -s

alerta*

Note that it is not necessary to restart the alerta service at this point.
2. Once complete, verify that the alerta service is up and running using the command healthbot status.

3. To verify that the UDA engine has reverted back, use the command healthbot version -s alerta and
check that the healthot_alerta container is using the <version> tag.

user@HB-server:~$ healthbot version -s alerta
{"alerta": "healthbot alerta:2.1.0"}

The UDA engine is now running in its original state, with no additional installed dependencies.

Release History Table
Release Description

3.20 Starting with HealthBot Release 3.2.0, the processing of UDF/UDA fields has been

moved to a UDF farm.

Logs for HealthBot Services

HealthBot runs various services (such as iAgent, jtimon, and Telegraf) to monitor the health of the network
and individual devices. Each of these HealthBot services runs independently in a containerized environment
and produces its own set of log messages that are categorized by severity level. You can configure different

levels of logs to collect and download.

Table 7 on page 228 lists the severity levels of the HealthBot services logs. The severity levels are listed in
order from the highest severity (greatest effect on functionality) to the lowest. If you select a lower severity
level, the logs for each of the higher severity levels will also be collected. The log level for all services is
set to error by default.

Table 7: HealthBot Service Log Message Severity Levels

Severity Level Description

Error (Highest level) Conditions that require correction.
Warn Conditions that warrant monitoring.

Info Non-error conditions of interest.

Debug (Lowest level) Debug messages.

This topic includes:

e Configure Service Log Levels for a Device Group or Network Group on page 228

e Download Logs for HealthBot Services on page 229

Configure Service Log Levels for a Device Group or Network Group

You can collect different severity levels of logs for the running HealthBot services of a device group or
network group. To configure which log levels to collect:

1. Click the Configuration > Device Group option in the left-nav bar.

2. For a device group, click on the device group name from the list of DEVICE GROUPS.

For a network group, click on the network group name from the list of NETWORK GROUPS.

3. For a Device Group, click the Edit Device Group (Pencil) icon

For a Network Group, click the Edit Network Group (Pencil) icon

4. In the edit window that pops up, click the caret next to the Logging Configuration heading to display
the configuration fields.

5. From the drop-down list for Global Log Level, select the level of the log messages that you want to
collect for every running HealthBot service for the device or network group. See Table 7 on page 228
for a definition of the log severity levels. The level is set to error by default.

6. Inthe Log Level for specific services section, select the log level from the drop-down list for any specific
service that you want to configure differently from the Global log level setting. The log level that you
select for a specific service takes precedence over the Global log level setting.

7. Click Save to save the configuration or click Save and Deploy to save and deploy the configuration.

Download Logs for HealthBot Services

You can choose to download the collected logs for:

e Every running HealthBot service for a specific device group or network group.
¢ A specific running HealthBot service for a specific device group or network group.

e Common HealthBot services that are running by default for the HealthBot application.
To download the logs for HealthBot services:

1. Select the Administration > Log Collection option in the left-nav bar.

2. Select the Group Type, Group Name, and Service Name of the logs that you want to download:

Parameter Description

Group Type Options are:

device—Services running for a device group

network—Services running for a network group

common-services—Services running by default for the HealthBot application.
Group Name e For device Group Type, select a device group name.

e For network Group Type, select a network group name.
e For common-services Group Type, select HealthBot.
Service Name (Optional) Select the specific HealthBot service for which you want to download

the logs. If no service is selected, the logs for every service listed will be
downloaded.

3. Click Download to download the logs to a file on your server. The filename is healthbot_logs.gzip by
default.

Troubleshooting

IN THIS SECTION

HealthBot Self Test | 230
Device Reachability Test | 232
Ingest Connectivity Test | 234
Debug No-Data | 236

Starting with Release 2.1.0, HealthBot supports four verification and troubleshooting features:

e “HealthBot Self Test” on page 230: Verifies that HealthBot is working properly

e “Device Reachability Test” on page 232: Verifies that network devices are up and reachable via ping &
SSH

e “Ingest Connectivity Test” on page 234: Validates which ingest types are supported for a given device

e “Debug No-Data” on page 236: Provides debugging when a device shows “No-data” in HealthBot GUI

You can access these features by navigating to Administration > Debug from the left-nav panel.

HealthBot Self Test

Overview

When setting up basic functionality in HealthBot, it can be challenging to diagnose problems. From
installation, to device configuration, to adding devices and applying playbooks, when an issue occurs there
are many possible areas to investigate.

Starting with HealthBot 2.1.0, the self-test tool validates the core functionality of HealthBot. To perform
the self test, the tool performs a typical set of tasks:

e Adds a simulated device to HealthBot

e Creates a device group, and adds the device
e Creates arule

e Creates and deploys a playbook

e Streams data from the simulated device

e Displays ongoing status in the dashboard

The self-test instance essentially acts as a fully working setup, running entirely within the HealthBot system.
When testing is complete, the tool provides a report.

Other Uses for the Self Test Tool

In addition to validating the HealthBot installation, the self-test feature also provides:

e An easy way to do a quick demo - the self test instance provides a simulated device connected to
HealthBot, so you can demo HealthBot with no need to add a real device or apply playbooks.

¢ A good way for new users to get started - the self test auto-configures a simulated device connected
to HealthBot, thereby eliminating the complexity of adding devices, applying playbooks, and so on.

¢ A ‘running reference’ - if there is an issue with real devices, you can use a self-test instance to help
determine where the issue is; if the self-test instance is OK then the problem is not with the HealthBot
system.

Usage Notes

e Currently this feature supports simulating devices to stream data for OpenConfig telemetry and iAgent
(NETCONF).

e You can retain the self-test instance to act as a ‘running reference’, as noted above.
e The color coding for the test results is as follows:

o Green = pass

¢ Yellow = error (unable to test)

e Red = fail

o Any items with yellow or red status will include a message with more detail about the issue.

e Do not use the self-test tool when there are undeployed changes, as the self-test tool issues its own
deploy during execution.

e Do not use rules, playbooks, devices, device-groups or other elements created by the self-test tool with
real network devices.

232

How to Use the Self Test Tool

1. Navigate to the Administration > Debug page from the left-nav panel, and select the APPLICATION
tab.

2. Select the desired sensor type(s) from drop-down menu.

3. Click the Test button.

4. After a few moments, the test results appear.

= Debug @ 2B 5 @ e

APPLIGATION Application Self Test

REACHABILITY
Sensor Type(s) Retain Test Topology
INGEST TEST
open-config iAgent - No
NO DATA

hide last result

EA AR Last Test Result

Ingest Test Results

open-config @ Adding adevice i ©@ Adding a device group I @ Creatingrule [l @ Creating playbook ll @ Deploying playbook M © Receiving data
iAgent © Addingadevice I ® Adding adevice group J| @ Creatingrule | ® Creating playbook [l @ Deploying playbook [l @ Receiving data

No test topologies found

The example above shows that both sensors are working as expected.

I Device Reachability Test

Overview

In early versions of HealthBot, there was no way to easily determine whether the devices you added were
up and reachable; you would need to get through the entire setup procedure - add the device, setup a
device group, apply playbooks, monitor devices - at which point the health pages would indicate “no data”
indicating that the setup did not work correctly. Furthermore, “no data” does not indicate whether the
problem is a reachability issue or data streaming issue.

Starting with HealthBot 2.1.0, the device reachability tool can verify connectivity to a device. The tool
performs tests using ping and SSH. HealthBot uses the device’s IP address or host name, based on what
was configured when adding the device.

Usage Notes

o While this feature is generally intended to help troubleshoot device onboarding, you can use it any time
to check device reachability.

e The color coding for the test results is as follows:
o Green = pass
¢ Yellow = error (unable to test)
e Red = fail

o Any items with yellow or red status will include a message with more detail about the issue.

How to Use the Device Reachability Tool

1. To access the tool:

o Navigate to the Administration > Debug page from the left-nav panel, and select the REACHABILITY
tab.

Hostname | P address f Range® ©

I

System 10 1o wse for [T @

Open Confis Port Number & iAgent Port Mumber @&

e Or, on the Dashboard page click the desired device in the device list widget, and in the pop-up window
click the REACHABILITY TEST button.

NOTE: The REACHABILITY TEST button does not appear when first adding the device.

2. In the Device Reachability tool, select the desired device from drop-down menu.

3. Click the Test button.

4. After a few moments, the test results appear.

Device Reachability

Device Group Device *

All v ix-vmx-02

Last Test Result

Device Name Ping

ix-vmx-02 @ PASS

SSH
@ PASS

TEST

hide last result

The example above shows that the ping test was successful, but the SSH test failed.

I Ingest Connectivity Test

Overview

In early versions of HealthBot, there was no way to easily determine which ingest methods were supported

for a given device; you also had no way to know whether the configured ingest method successfully

established a connection with the network device.

Starting with HealthBot 2.1.0, the ingest connectivity tool can verify ingest methods where HealthBot
initiates the connection, such as OpenConfig, iAgent, and SNMP. HealthBot does not test UDP-based
ingest methods, such as syslog and Native GPB, as the UDP parameters are common to a device group

and not specific to a device.

HealthBot validates each supported ingest method in its own way:

¢ OpenConfig: Establishes a gRPC connection with the device using its IP/host name, gRPC port, and

credentials

e iAgent: Establishes a NETCONF session with the device using its IP/host name, NETCONF port, and

credentials

234

e SNMP: Executes a simple SNMP GET command; expects to get a reply from the device
This tool provides multiple benefits:

¢ It helps to identify when there might be missing configuration on the network device side.

¢ It helps you choose appropriate playbooks and rules that use sensors compatible with the supported
ingest methods.

o It helps to identify ingest connectivity issues early on, rather than troubleshoot the “no-data” issue
described in the previous section.

Usage Notes

o While this feature is generally intended to help troubleshoot device onboarding, you can use it any time
to check ingest connectivity.

e The color coding for the test results is as follows:
o Green = pass
¢ Yellow = error (unable to test)
e Red = fail

o Any items with yellow or red status will include a message with more detail about the issue.

How to Use the Ingest Connectivity Tool

1. To access the tool:
o Navigate to the Administration > Debug page from the left-nav panel, and click the INGEST tab.

e Or, on the Dashboard page click the desired device in the device list widget, and in the pop-up window
click the INGEST TEST button.

Edit test
Hostname /P address | Range* © e,
Sysem i 10 use for [T ©

Open Confis Port Number & iAgent Port Number &

NOTE: The Ingest Test button does not appear when first adding the device.

2. In the Ingest Connectivity tool, select the desired device from drop-down menu

236

3. Click the Test button.

4. After a few moments, the test results appear.
Ingest Connectivity

Sensor Type(s) *

open-config % iAgent % snmp % -

Device Group Device *

Last Test Result

Device Sensors

CLOSE

The example above shows that iAgent is supported, OpenConfig is not supported, and SNMP
encountered an error.

I Debug No-Data

Overview

One of the most common problems that a HealthBot users face is “How to debug no-data?”. Determining
the root cause is challenging as the issue can occur for a variety of reasons, including:

e Device not reachable

e Device not sending data

Firewall blocking connections

Ingest connectivity settings mismatch

Rule frequency/trigger interval is configured less than the router response time

HealthBot services not running

In early versions of HealthBot, you needed to manually look for the problem, checking add-device
parameters, reviewing logs, checking the device configuration, and so on.

Starting with HealthBot 2.1.0, the debug no-data tool helps to determine why a device or rule is showing
a status of “no-data”. The tool takes a sequential, step-by-step approach to determine at which stage
incoming data is getting dropped or blocked, as follows:

e HealthBot Services

» Verify that all common and device group-related services are up and running

Device Reachability

e Test connectivity to device using ping and SSH

Ingest Connectivity

o Verify that the configured ingest session is established

Raw Data Streaming

o Verify whether the ingest is receiving any raw data from the devices

o Likely to be OK if device connectivity is OK

Field Processing

o Within rules, verify that the fields working properly, and that the field information is populated in the
database

Trigger Processing

o Within rules, verify that the trigger settings working as intended, and status information is populated
in the database

o API Verification

o Check for API timeouts that might be affecting the GUI

Usage Notes

e The tool runs through the entire sequence of checks, regardless of any issues along the way.
e The test results provide root cause information and advise where to focus your troubleshooting efforts.

e While this feature is generally intended to debug a device when it is marked as no-data, you can use it
any time to verify that deployed rules are receiving data.

e This tool does not support rules using a syslog sensor, as the sensor data is event driven and not periodic.

e The color coding for the test results is as follows:

o Green = pass
e Yellow = error (unable to test)
o Red = fail

o Any items with yellow or red status will include a message with more detail about the issue.

How to Use the Debug No-Data Tool

1. To access the tool:

e On any device health page, click a “no data” tile.

EATRIT2 int

e Or, navigate to the Administration > Debug page from the left-nav panel, and select the NO DATA
tab.

2. In the Debug No-Data tool, select the desired device group, device, and one or more rules from the
drop-down menu

3. Click the Debug button.

4. After a few moments, the test results appear.

Debug No-Data

Device Group * Device *
ix-lab-group ¢ ix-vmx-02
Rule(s)

v

Topic

interface.statistics v

@ Only topics and rules of running playbook instances are displayed here

Thu 26 Mar, 22:07 Last Test Result
Device Group ix-lab-group Topic interface.statistics

» HealthBot Services

» Device Reachability

v

Ingest Connectivity

v

Data Streaming

v

Field Processing

v

Trigger Processing

v

API Verification

hide last result

OO0 00000

CLOSE

The example above shows that one common services is not working properly.

239

HealthBot Configuration - Backup and Restore

IN THIS SECTION

Back Up the Configuration | 240
Restore the Configuration | 240
Backup or Restore the Time Series Database (TSDB) | 241

Back Up the Configuration

To back up the current HealthBot configuration:

1. Select the Administration > Backup option from the left-nav bar.

2. Check the check box for the configuration that you want to backup.

If you also want to back up any configuration changes that have not yet been deployed, toggle the
Backup Undeployed Configuration switch to the right.

3. Click Backup.

Back Up Helper Files

Helper files are the python, yaml, or other externally created files whose tables are referenced in iAgent
sensor definitions within rule definitions.

1. Select the Administration > Backup option from the left-nav bar.

2. Click the BACKUP HELPER FILE button.

HealthBot creates a tar archive that you can save to your computer.

Restore the Configuration

To restore the HealthBot configuration to a previously backed up configuration:

1. Select the Administration > Restore option from the left-nav bar.
2. Click the Choose File button.

3. Navigate to the backup file from which you want to restore the configuration, and click Open.

Once opened, a list of backup configuration sections appears as buttons under Select the configuration
backup file heading. By default, all configuration elements in the selected backup file are selected to
restore.

4. (Optional) From the list of buttons, you can deselect (change the “-” to “+”) individual files from restoring
by clicking on the button.

5. Click RESTORE CONFIGURATION & DEPLOY to restore and deploy the configuration.

Restore Helper File
To restore previously backed up helper file archives:

1. Select the Administration > Restore option from the left-nav bar.
2. Click the Choose File button directly above the second line, “Select the helper backup file”.
3. Locate the backed up helper file in the file browser and click Open.

4. Clickthe RESTORE CONFIGURATION button to restore the helper files to HealthBot, or the RESTORE
CONFIGURATION & DEPLOY button to restore the helper files to their original location within
HealthBot.

Backup or Restore the Time Series Database (TSDB)

Starting with HealthBot Release 3.2.0, you can backup and restore the TSDB separately from other
configuration elements. The backup and restore operations for the TSDB are only available through the
HealthBot CLI. The backup and restore commands are invoked by using a predefined python script,
healthbot.py. You must have root access to the CLI interface of the HealthBot server in order to issue
these commands.

An environment variable must be set on the HealthBot server prior to any backup or restore operation.
The following shows how to set this variable.

export HB_EXTRA_MOUNT1=/root/.kube/config

NOTE: In the example above, HB_EXTRA_MOUNT1 is a variable. As such, it coulld be given any
name that you want.

The following shows the generic command and the optional arguments (in square brackets) available. Each
option is then described and an example is provided.

healthbot tsdb (backup|restore) [-h] [--database DATABASE] [--all] --path PATH

The required arguments for the healthbot tsdb command are:

o backup-perfom a backup operation
e restore-perform a restore operation

o --path PATH-create the backup file or restore the database(s) from the container at PATH where PATH
is HB_LEXTRA_MOUNT1.

Optional Arguments

-h, --help show this help message and exit

--database DATABASE Takes backup (or restore) of the given list of databases. Either
database or all flag must be configured

--all Takes backup (or restores) of all the databases. Either database or

all flag must be configured

Example - Backup the TSDB and Store it in HB_EXTRA_MOUNT3

healthbot tsdb backup --path HB_EXTRA_MOUNT3

Example - Restore the TSDB from HB_EXTRA_MOUNT2

healthbot tsdb restore --path HB_EXTRA_MOUNT2

Release History Table

Release Description

3.2.0 Starting with HealthBot Release 3.2.0, you can backup and restore the TSDB separately
from other configuration elements

	Table of Contents
	About the Documentation
	Documentation and Release Notes
	Documentation Conventions
	Documentation Feedback
	Requesting Technical Support
	Self-Help Online Tools and Resources
	Creating a Service Request with JTAC

	Introduction to HealthBot
	HealthBot Overview
	Benefits of HealthBot
	Closed-Loop Automation
	Main Components of HealthBot
	HealthBot Health Monitoring
	HealthBot Root Cause Analysis
	HealthBot Log File Analysis

	HealthBot Concepts
	HealthBot Data Collection Methods
	Data Collection - ’Push’ Model
	Data Collection - ’Pull’ Model

	HealthBot Topics
	HealthBot Rules - Basics
	HealthBot Rules - Deep Dive
	Rules
	Sensors
	Fields
	Vectors
	Variables
	Functions
	Triggers
	Tagging
	Rule Properties

	HealthBot Playbooks

	Healthbot Tagging
	Overview
	HealthBot Tagging Terminology
	Policy
	Rules
	Terms
	When Statements
	Then Statements

	How It Works
	Examples

	HealthBot Time Series Database (TSDB)
	Historical Context
	TSDB Improvements
	Database Sharding
	Database Replication
	Database Reads and Writes
	Manage TSDB Options in the HealthBot GUI
	HealthBot CLI Configuration Options

	HealthBot Machine Learning (ML)
	HealthBot Machine Learning Overview
	Understanding HealthBot Anomaly Detection
	Field
	Algorithm
	Learning period
	Pattern periodicity

	Understanding HealthBot Outlier Detection
	Dataset
	Algorithm
	Sigma coefficient (k-fold-3sigma only)
	Sensitivity
	Learning period

	Understanding HealthBot Predict
	Field
	Algorithm
	Learning period
	Pattern periodicity
	Prediction offset

	HealthBot Rule Examples
	HealthBot Anomaly Detection Example
	Sensors (check-icmp-statistics)
	Fields (check-icmp-statistics)
	Variables (check-icmp-statistics)
	Functions (check-icmp-statistics)
	Triggers (check-icmp-statistics)
	Rule Properties (check-icmp-statistics)

	HealthBot Outlier Detection Example
	Sensors (check-outlier)
	Fields (check-outlier)
	Variables (check-outlier)
	Triggers (check-outlier)
	Rule Properties (check-outlier)

	Frequency Profiles and Offset Time
	Frequency Profiles
	Configuration Using HealthBot GUI
	Configuration Using HealthBot CLI
	Apply a Frequency Profile Using the HealthBot GUI
	Apply a Frequency Profile Using the HealthBot CLI

	Offset Time Unit
	Offset Used in Formulas
	Offset Used in References
	Offset Used in Vectors
	Offset Used in Triggers
	Offset Used in Trigger Reference

	HealthBot Licensing
	HealthBot Licensing Overview
	Managing HealthBot Licenses
	Add a License to HealthBot
	View Licensing Status in HealthBot
	Features Summary
	Licenses Added

	Management and Monitoring
	Manage HealthBot Users and Groups
	User Management
	Group Management
	Limitations

	Manage Devices, Device Groups, and Network Groups
	Adding a Device
	Editing a Device
	Adding a Device Group
	Editing a Device Group
	Configuring a Retention Policy for the Time Series Database
	Adding a Network Group
	Editing a Network Group

	HealthBot Rules and Playbooks
	Add a Pre-Defined Rule
	Create a New Rule Using the HealthBot GUI
	Rule Filtering
	Sensors
	Fields
	Vectors
	Variables
	Functions
	Triggers
	Rule Properties

	Edit a Rule
	Add a Pre-Defined Playbook
	Create a New Playbook Using the HealthBot GUI
	Edit a Playbook
	Manage Playbook Instances
	View Information About Playbook Instances
	Create a Playbook Instance
	Manually Pause or Play a Playbook Instance
	Create a Schedule to Automatically Play/Pause a Playbook Instance

	Monitor Device and Network Health
	Dashboard
	Health
	Network Health
	Graph Page

	Alarms and Notifications
	Generate Alarm Notifications
	Manage Alarms Using Alarm Manager
	Stream Sensor and Field Data from HealthBot

	Generate Reports
	Configure a Secure Data Connection for HealthBot Devices
	Configure Security Profiles for SSL and SSH Authentication
	Configure Security Authentication for a Specific Device or Device Group

	Configure Data Summarization
	Creating a Data Summarization Profile
	Applying Data Summarization Profiles to a Device Group

	Modify the UDA and UDF Engines
	Overview
	How it Works
	Usage Notes
	Configuration
	SIMULATE
	MODIFY
	ROLLBACK

	Logs for HealthBot Services
	Configure Service Log Levels for a Device Group or Network Group
	Download Logs for HealthBot Services

	Troubleshooting
	HealthBot Self Test
	Overview
	Other Uses for the Self Test Tool
	Usage Notes
	How to Use the Self Test Tool

	Device Reachability Test
	Overview
	Usage Notes
	How to Use the Device Reachability Tool

	Ingest Connectivity Test
	Overview
	Usage Notes
	How to Use the Ingest Connectivity Tool

	Debug No-Data
	Overview
	Usage Notes
	How to Use the Debug No-Data Tool

	HealthBot Configuration – Backup and Restore
	Back Up the Configuration
	Restore the Configuration
	Backup or Restore the Time Series Database (TSDB)

