

Regulatory Recommendations for Nonclinical Studies of Anticancer Pharmaceuticals

Todd Palmby, PhD

Pharmacology/Toxicology Supervisor Office of Hematology and Oncology Products

Food and Drug Administration

10903 New Hampshire Avenue, Silver Spring, Maryland 20993 White Oak Campus, Building 22, Room 1315

September 22, 2016

What is the Issue?

- Cardiovascular toxicity of pharmaceuticals are not always predicted by in vitro and animal safety studies
 - If nonclinical studies do not inform appropriate monitoring in clinical trials, then mechanism, severity, incidence and long-term impact on the patient not characterized prior to regulatory approval
 - Mitigation or treatment strategies for cardiovascular toxicities often not explored during drug development
 - May not screen for potential of known cardiovascular toxicity in next generation products

Goals of this Session

- Discuss in vitro and in vivo nonclinical models to assess cardiovascular toxicity
 - Utility to identify the level of potential risk or elucidate mechanism
 - Cases when additional nonclinical cardiovascular safety studies may be warranted and timing of when they should be conducted (e.g., up front INDenabling or after toxicity is observed in patients)

Regulatory Guidances for Nonclinical Cardiovascular Safety Studies

- ICH M3(R2)
 - Nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals
- ICH S6(R1)
 - Pre-clinical safety evaluation of biotechnology-derived pharmaceuticals
- ICH S9
 - Nonclinical evaluation for anticancer pharmaceuticals
- ICH S7(A) and ICH S7(B)
 - Safety pharmacology studies for human pharmaceuticals

ICH S9: Nonclinical Evaluation of Anticancer Pharmaceuticals

- Pharmaceuticals that are intended to treat cancer in patients with serious and life threatening malignancies
- Provide recommendations on type and timing of nonclinical studies in relation to the development of anticancer pharmaceuticals
- Includes both small molecule and biotechnology-derived pharmaceuticals (although S6 is generally referenced)
- "This guidance aims to facilitate and accelerate the development of anticancer pharmaceuticals and to protect patients from unnecessary adverse effects..."

ICH S9: Nonclinical Data to Assess Potential for Cardiovascular Toxicity

- In general, 28-day repeat-dose toxicity studies in 2 species (rodent and non-rodent) with similar route and schedule can support Phase 1 and 2 clinical trials with continuous dosing
 - Clinical chemistry (e.g., creatine kinase, aspartate transaminase, lactate dehydrogenase, troponin)
 - Organ weights (heart)
 - Histopathology (heart)
 - ECG in non-rodent
- hERG assay (not always included)

ICH S7A: Safety Pharmacology Studies

- Definition:
 - studies that investigate the potential undesirable pharmacodynamic effects of a substance on physiological functions in relation to exposure in the therapeutic range and above
- Objectives:
 - to identify undesirable pharmacodynamic properties of a substance that may have relevance to its human safety
 - to evaluate adverse pharmacodynamic and/or pathophysiological effects of a substance observed in toxicology and/or clinical studies
 - to investigate the mechanism of the adverse pharmacodynamic effects observed and/or suspected

ICH S7A and ICH S7B

- Detection of pro-arrhythmic risks much better as a result of additional testing and monitoring
 - Nonclinical: hERG assay, Purkinje fiber assays, intact heart, animal CV safety pharmacology studies (ICH-S7A and ICH-S7B Guidances)
 - Clinical: Human ECGs and thorough QT/QTc studies (ICH-E14 Guidance)
- Failure to prevent or anticipate cardiovascular risk in humans continues to occur, particularly with pharmaceuticals that do not specifically interfere with cardiac ion channels

ICH S9: Safety Pharmacology

- Safety pharmacology includes an assessment of the effect on cardiovascular system
 - Could be included in general toxicology studies
 - Detailed clinical observations following dosing and appropriate electrocardiographic measurements in nonrodents are generally considered sufficient
 - Conducting stand-alone safety pharmacology studies not warranted
 - In cases where specific concerns have been identified that could put patients at significant additional risks in clinical trials, appropriate safety pharmacology studies described in ICH S7A and/or S7B should be considered.

SOME DIFFERENCES BETWEEN ICH S9 AND ICH M3(R2) ...

ICH S9 vs. ICH M3(R2): Studies and Timing

ICH S9		ICH M3(R2)	
Studies	Timing	Studies	Timing
Safety Pharmacology parameters can be incorporated into general toxicology studies	prior to Phase 1	Core battery of Safety Pharmacology studies (ICH S7A and S7B)	prior to Phase 1

ICH S9 vs. ICH M3(R2): Studies and Timing

General Toxicology – Clinical Development

ICH S9		ICH M3(R2)	
Studies	Timing	Studies	Timing
28 day repeat dose toxicity studies (rodent and non-rodent)	support single through continuous dosing (if patient benefits)	Repeat dose toxicity studies (rodent (r) and non-rodent (n)) similar to clinical trial duration (i.e., \leq 2 week trial = 2 week studies; 2 week – 6 month trial = same	prior to conducting clinical trials
* 6 month studies in non-rodents may be acceptable (e.g., treatment of cancer recurrence, short life expectancy, etc.)		duration for studies; > 6 month trial = 6 (r) and 9 (n)* month studies)	

ICH S9 vs. ICH M3(R2): Studies and Timing

General Toxicology – Marketing

ICH S9		ICH M3(R2)	
Studies	Timing	Studies	Timing
3 month repeat dose toxicity studies (rodent (r) and non-rodent (n))	prior to Phase 3; marketing	Repeat dose toxicity studies (r and n) similar to treatment duration (i.e., ≤ 2 week treatment = 1 month studies; 2 week - 1	supports marketing
* 6 month studies in non-rodents may be acceptable (e.g., treatment of cancer recurrence, short life expectancy, etc.)		month treatment = 3 month studies; $1 - 3$ month treatment = 6 month studies; > 3 month treatment = 6 (r) and 9 (n)* month studies)	

Why has Cardiovascular Toxicity Persisted in Oncology Drug Development?

- Risk-Benefit evaluation
 - Patients and healthcare providers are willing to accept a certain level of toxicity and risk
 - Need for better pharmaceuticals to treat patients with various cancers
- Cardiovascular toxicity may not always be separated from anti-tumor activity
 - Not always traditional "off-target" effects
 - Cardiovascular toxicities may be related to the primary mechanism of action

Oncology Treatment is Changing

- Multiple therapies approved for some indications
 - Need for treatments with better activity and better safety profile
- Patients with certain diseases have improved outcomes and longer life expectancies (e.g., CML)
 – Long-term impact on cardiovascular system
- Evaluation of therapies in first- or second-line setting, patients with newly diagnosed (and potentially curable) disease, etc.

Room for Improvement? Focused Nonclinical Studies to Assess Cardiovascular Safety of Oncology Drugs

- Development of better models may improve screening of candidate drugs for potential cardiotoxicity and mechanistic characterization
- Are additional studies warranted based on findings in nonclinical or clinical studies?
- Is there potential to impact clinical development or use?
 - Better predict potential level of risk for cardiovascular toxicity
 - Identify appropriate clinical monitoring
 - Identify patients with relevant risk factors
 - Mitigate cardiovascular toxicity in patients

