
Intel® Quartus® Prime Pro Edition
User Guide
Design Compilation

Updated for Intel® Quartus® Prime Design Suite: 19.1

Subscribe
Send Feedback

UG-20132 | 2019.07.02
Latest document on the web: PDF | HTML

https://www.intel.com/content/www/us/en/programmable/bin/rssdoc?name=zpr1513988353912
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-compiler.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html

Contents

1. Design Compilation... 4
1.1. Compilation Overview.. 5

1.1.1. Using the Compilation Dashboard.. 5
1.1.2. Compilation Flows..6
1.1.3. Design Synthesis... 7
1.1.4. Design Place and Route.. 8
1.1.5. Compilation Hierarchy.. 9

1.2. Running Synthesis... 10
1.2.1. Preserve Registers During Synthesis...11
1.2.2. Enabling Timing-Driven Synthesis.. 12
1.2.3. Fractal Synthesis Optimization... 12
1.2.4. Synthesis Reports.. 18
1.2.5. Concurrent Analysis During Synthesis or Fitting... 20

1.3. Running the Fitter..20
1.3.1. Fitter Stage Commands.. 21
1.3.2. Incremental Optimization Flow...22
1.3.3. Analyzing Fitter Snapshots.. 24
1.3.4. Enabling Physical Synthesis Optimization.. 30
1.3.5. Viewing Fitter Reports.. 31

1.4. Running Full Compilation.. 35
1.5. Running the Hyper-Aware Design Flow..36

1.5.1. Step 1: Run Register Retiming... 39
1.5.2. Step 2: Review Retiming Results..40
1.5.3. Step 3: Run Fast Forward Compile and Hyper-Retiming................................. 42
1.5.4. Step 4: Review Hyper-Retiming Results.. 44
1.5.5. Step 5: Implement Fast Forward Recommendations......................................47

1.6. Exporting Compilation Results... 50
1.6.1. Exporting a Version-Compatible Compilation Database 50
1.6.2. Importing a Version-Compatible Compilation Database51
1.6.3. Creating a Design Partition..52
1.6.4. Exporting a Design Partition.. 54
1.6.5. Reusing a Design Partition...56
1.6.6. Viewing Quartus Database File Information... 57
1.6.7. Clearing Compilation Results... 59

1.7. Reducing Compilation Time... 60
1.7.1. Running Rapid Recompile..60
1.7.2. Enabling Multi-Processor Compilation..61
1.7.3. Factors Affecting Compilation Results..62

1.8. Generating Programming Files... 62
1.9. Synthesis Language Support... 64

1.9.1. Verilog and SystemVerilog Synthesis Support...64
1.9.2. VHDL Synthesis Support... 68

1.10. Synthesis Settings Reference...70
1.10.1. Enable Intermediate Fitter Snapshots..70
1.10.2. Optimization Modes.. 70
1.10.3. Allow Register Retiming...71
1.10.4. Advanced Synthesis Settings... 71

Contents

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.11. Fitter Settings Reference...77
1.12. Design Compilation Revision History... 83

2. Reducing Compilation Time...87
2.1. Compilation Time Advisor..87
2.2. Strategies to Reduce the Overall Compilation Time... 87

2.2.1. Running Rapid Recompile..87
2.2.2. Enabling Multi-Processor Compilation..88
2.2.3. Using Block-Based Compilation.. 89
2.2.4. Disabling the Register Power-up Initialization...90

2.3. Reducing Synthesis Time and Synthesis Netlist Optimization Time.............................. 91
2.3.1. Settings to Reduce Synthesis Time and Synthesis Netlist Optimization Time.....91
2.3.2. Use Appropriate Coding Style to Reduce Synthesis Time................................92

2.4. Reducing Placement Time... 92
2.4.1. Placement Effort Multiplier Settings.. 92

2.5. Reducing Routing Time... 92
2.5.1. Identifying Routing Congestion with the Chip Planner....................................92

2.6. Reducing Static Timing Analysis Time... 93
2.7. Setting Process Priority...94
2.8. Reducing Compilation Time Revision History.. 94

3. Intel Quartus Prime Pro Edition User Guide Design Compilation Archives.....................96

A. Intel Quartus Prime Pro Edition User Guides.. 97

Contents

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Design Compilation
The Intel® Quartus® Prime Compiler synthesizes, places, and routes your design
before ultimately generating a device programming file. The Compiler supports a
variety of high-level, HDL, and schematic design entry methods. The modules of the
Compiler include IP Generation, Analysis & Synthesis, Fitter, Timing Analyzer, and
Assembler.

Figure 1. Compilation Dashboard

Full Compilation
Modules

Enables Optional
Module

Opens Settings

Runs Module(s)

Reports and Analysis

The Intel Quartus Prime Pro Edition Compiler supports these advanced features:

• Supports Intel Arria® 10, Intel Cyclone® 10 GX, and Intel Stratix® 10 devices.

• Hyper-Aware Design Flow—use Hyper-Retiming and Fast Forward compilation for
the highest performance in Intel Stratix 10 devices.

• Partial Reconfiguration—supports dynamic reconfiguration of a portion of the
FPGA, while the remaining FPGA continues to function.

• Block-Based Design Flows—enables preservation of design blocks within a project,
and reuse of those design blocks in other projects.

UG-20132 | 2019.07.02

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

1.1. Compilation Overview

The Compiler is modular, allowing you to run only the process that you need. Each
Compiler module performs a specific function in the full compilation process. When
you run any module, the Compiler runs any prerequisite modules automatically and
generates detailed reports at each stage. The Compiler can preserve a "snapshot" of
the compilation results after each stage.

Table 1. Compilation Modules

Compilation Process Description

IP Generation Identifies the status and version of IP components in the project. Reports outdated IP that
require upgrade.

Analysis & Synthesis Synthesizes, optimizes, minimizes, and maps design logic to device resources. The
"synthesized" snapshot preserves the results of this stage.
Analysis & Elaboration is a stage of Analysis & Synthesis. This stage checks for design file
and project errors.

Fitter (Place & Route) Assigns the placement and routing of the design to specific device resources, while
honoring timing and placement constraints. The Fitter includes the following stages:
• Plan—places all periphery elements (such as I/Os and PLLs) and determines a legal

clock plan, without core placement or routing. The "planned" snapshot preserves the
stage results.

• Early Place—places all core elements in an approximate location to facilitate design
planning. Finalizes clock planning for Intel Stratix 10 designs. The "early placed"
snapshot preserves the stage results.

• Place—places all core elements in a legal location. The "placed" snapshot preserves the
stage results.

• Route—creates all routing between the elements in the design. The "routed" snapshot
preserves the stage results.

• Retime—moves (retimes) existing registers into Hyper-Registers for fine-grained
performance improvement. The "retimed" snapshot preserves the stage results. (1)

• Fitter (Finalize)—for Intel Arria 10 and Intel Cyclone 10 GX devices, converts
unnecessary tiles to High-Speed or Low-Power. For Intel Stratix 10 devices, performs
post-Route fix-up. The "final" snapshot preserves the stage results.

Fast Forward Timing Closure
Recommendations

Generates detailed reports that estimate performance gains achievable by making specific
RTL modifications.

Timing Analysis Analyzes and validates the timing performance of all design logic with the Timing Analyzer.

Power Analysis Optional module that estimates device power consumption. Specify the electrical standard
on each I/O cell and the board trace model on each I/O standard in your design.

Assembler Converts the Fitter's placement and routing assignments into a programming image for
the FPGA device.

EDA Netlist Writer Generates output files for use in other EDA tools.

1.1.1. Using the Compilation Dashboard

The Compilation Dashboard provides immediate access to settings, controls, and
reporting for each stage of the compilation flow.

(1) Retiming and Fast Forward compilation available only for Intel Stratix 10 devices.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Compilation Dashboard appears by default when you open a project, or you can
click Compilation Dashboard in the Tasks window to re-open it.

• Click the pencil icon to edit settings for that stage of the compilation flow.

• Click Compile Design to run all modules of the Compiler in sequence, or click any
individual Compiler module to run compilation through that stage.

• Click the report icon to view reports for that compilation stage.

Figure 2. Compilation Dashboard

Full Compilation
Modules

Enables Optional
Module

Opens Settings

Runs Module(s)

Reports and Analysis

As the Compiler progresses through the flow, the dashboard updates the status of
each module, and enables icons that you can click for reports and analysis.

1.1.2. Compilation Flows

The Intel Quartus Prime Pro Edition Compiler supports a variety of flows to help you
maximize performance and minimize compilation processing time. The modular
Compiler is flexible and efficient, allowing you to run all modules in sequence with a
single command, or to run and optimize each stage of compilation separately.

As you develop and optimize your design, run only the Compiler stages that you need,
rather than waiting for full compilation. Run full compilation only when your design is
complete and you are ready to run all Compiler modules and generate a device
programming image.

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 2. Compilation Flows

Compiler Flow Function

Early Place Flow Places all core elements in an approximate location to facilitate design planning. Run Early
Place to review initial high-level placement of design elements in the Chip Planner or to
debug and fine-tune timing constraints. This information is useful to guide your floorplanning
decisions.

Fitter (Implement) Flow Runs the Plan, Early Place, Place, Route, and Retime stages. Run this flow when you are
ready to implement placement, routing, and retiming. If successful, you can now perform
the Finalize, Timing Analysis, and Assembler stages. (2)

Incremental Optimization
Flow

Incremental optimization allows you to stop processing after each Fitter stage, analyze the
results, and adjust settings or RTL before proceeding to the next compilation stage. This
iterative flow optimizes at each stage, without waiting for full compilation results.

Hyper-Aware Design Flow Combines automated register retiming (Hyper-Retiming), with implementation of targeted
timing closure recommendations (Fast Forward Compilation), to maximize use of Hyper-
Registers and drive the highest performance in Intel Stratix 10 devices.

Full Compilation Flow Launches all Compiler modules in sequence to synthesize, fit, analyze final timing, and
generate a device programming file. By default, the Compiler generates and preserves only
the synthesized and final snapshots during a full compilation. You can optionally Enable
Intermediate Fitter Snapshots to preserve the planned, placed, routed, and retimed
snapshots.

Partial Reconfiguration Reconfigures a portion of the FPGA dynamically, while the remaining FPGA design continues
to function.

Block-Based Design Flows Supports preservation and reuse of design blocks in one or more projects. You can reuse
synthesized or final design blocks in other projects. Reusable design blocks can include
device core or periphery resources.

Related Information

• Incremental Optimization Flow on page 22

• Intel Quartus Prime Pro Edition User Guide: Block-Based Design

• Running Full Compilation on page 35

• Running the Fitter on page 20

• Running the Hyper-Aware Design Flow on page 36

• Intel Quartus Prime Pro Edition User Guide: Partial Reconfiguration

1.1.3. Design Synthesis

Design synthesis is the process that translates design source files into an atom netlist
for mapping to device resources. The Intel Quartus Prime Compiler synthesizes
standards-compliant Verilog HDL (.v), VHDL (.vhd), and SystemVerilog (.sv). The
Compiler also synthesizes Block Design File (.bdf) schematic files, and the Verilog
Quartus Mapping (.vqm) files generated by other EDA tools.

Synthesis examines the logical completeness and consistency of the design, and
checks for boundary connectivity and syntax errors. Synthesis also minimizes and
optimizes design logic. For example, synthesis infers D flip flops, latches, and state
machines from "behavioral" languages, such as Verilog HDL, VHDL, and
SystemVerilog. Synthesis may replace operators, such as + or –, with modules from
the Intel Quartus Prime IP library, when advantageous. During synthesis, the Compiler

(2) Retiming and Hyper-Aware design flow only for Intel Stratix 10 devices.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

7

https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html#xdj1491668852667
https://www.intel.com/content/www/us/en/programmable/documentation/tnc1513987819990.html#jka1466533251124
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

may change or remove user logic and design nodes. Intel Quartus Prime synthesis
minimizes gate count, removes redundant logic, and ensures efficient use of device
resources.

Figure 3. Design Synthesis

VHDL
(.vhd)

Schematic
(.bdf)

Verilog HDL
(.v or .sv)

Third Party
(.vqm)

Logic Cells DFFsI/O RAM DSP Atom Connections

Synthesis

At the end of synthesis, the Compiler generates an atom netlist. Atom refers to the
most basic hardware resource in the FPGA device. Atoms include logic cells organized
into look-up tables, D flip flops, I/O pins, block memory resources, DSP blocks, and
the connections between the atoms. The atom netlist is a database of the atom
elements that design synthesis requires to implement the design in silicon.

The Analysis & Synthesis module of the Compiler synthesizes design files and creates
one or more project databases for each design partition. You can specify various
settings that affect synthesis processing.

The Compiler preserves the results of Analysis & Synthesis in the synthesis snapshot.

1.1.4. Design Place and Route

The Compiler's Fitter module (quartus_fit) performs design placement and routing.
During place and route, the Fitter determines the best placement and routing of logic
in the target FPGA device, while respecting any Fitter settings or constraints that you
specify.

By default, the Fitter selects appropriate resources, interconnection paths, and pin
locations. If you assign logic to specific device resources, the Fitter attempts to match
those requirements, and then fits and optimizes any remaining unconstrained design
logic. If the Fitter cannot fit the design in the current target device, the Fitter
terminates compilation and issues an error message.

The Intel Quartus Prime Pro Edition Fitter introduces a hybrid placement technique
that combines analytical and annealing placement techniques. Analytical placement
determines an initial mathematical starting placement. The annealing technique then
fine-tunes logic block placement in high resource utilization scenarios.

The Intel Quartus Prime Pro Edition Compiler allows control and optimization of each
individual Fitter stage, including the Plan, Early Place, Place, and Route stages. After
running a Fitter stage, view detailed report data and analyze the timing of that stage.
The Compiler preserves Fitter results of the final snapshot by default.

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Running the Fitter on page 20

• Viewing Fitter Reports on page 31

1.1.5. Compilation Hierarchy

The Intel Quartus Prime Pro Edition Compiler generates a hierarchical project structure
that isolates results of each compilation stage, for each design entity. For example,
the synthesized directory contains a snapshot of the Analysis & Synthesis stage. If
you use design partitions, such as in block-based design, the Compiler also isolates
the results for each design partition. The Compiler fully preserves routing and
placement within a partition. Changes to other portions of the design hierarchy do not
impact the partition. This hierarchical structure allows you to optimize specific design
elements without impacting placement and routing in other partitions. The hierarchical
project structure also supports distributed work groups and compilation processing
across multiple machines.

Figure 4. Hierarchical Project Structure (Intel Stratix 10 Design)

<My_Project>

_flat - flat design compilation database

<version> - software version

final

- synthesis stage compilation snapshot

planned

placed

synthesized

routed

qdb

_compiler

<revision_name>

- top-level project directory

- Intel Quartus project database

- compilation database

- compilation database for revision

- Plan stage compilation snapshot

- Place stage compilation snapshot

- Route stage compilation snapshot

- Final stage compilation snapshot

output_files - reports and other Compiler-generated files

- Retime stage compilation snapshotretimed

early placed - Early Place stage compilation snapshot

root_partition - Root partition compilation database

- (same subdirectories as _flat partition)

<user_partition> - User partition compilation database

- (same subdirectories as _flat partition)

Note: The Compiler only preserves the planned, placed, routed, and retimed snapshots by
default during full compilation if you turn on Enable Intermediate Fitter Snapshots
(Assignments ➤ Settings ➤ Compiler Settings)

Related Information

• Exporting Compilation Results on page 50

• Creating a Design Partition on page 52

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2. Running Synthesis

Run design synthesis as part of a full compilation, or as an independent process.
Before running synthesis, specify settings that control synthesis processing. The
Messages window dynamically displays processing information, warnings, or errors.
Following Analysis & Synthesis processing, the Synthesis report provides detailed
information about the synthesis of your project.

To run synthesis:

1. Create or open an Intel Quartus Prime project with valid design files for
compilation.

2. Before running synthesis, specify any of the following settings and constraints that
impact synthesis:

• To specify options for the synthesis of Verilog HDL input files, click
Assignments ➤ Settings ➤ Verilog HDL Input.

• To specify options for the synthesis of VHDL input files, click Assignments ➤
Settings ➤ VHDL Input.

• To specify options that affect compilation processing time, click Assignments
➤ Settings ➤ Compilation Process Settings.

• To specify the Compiler's high-level optimization strategy and other options,
click Assignments ➤ Settings ➤ Compiler Settings. Specify a Balanced
strategy, or optimize for Performance, Area, Routability, Power, or
Compile Time. The Compiler targets the optimization goal you specify.
Optimization Modes on page 70 describes these options in detail.

• On the Compiler Settings page enable or disable the Enable Intermediate
Fitter Snapshots option to to generate and preserve snapshots for the Plan,
Place, Route, and Retime stages any time you run full compilation. To save
compilation time, the Compiler does not generate or preserve these
intermediate snapshots by default. However, you must enable this option to
use Rapid Recompile.

• To specify advanced synthesis settings, click Assignments ➤ Settings ➤
Compiler Settings, and then click Advanced Settings (Synthesis).
Optionally, enable Timing-Driven Synthesis to account for timing constraints
during synthesis.

3. To enable optional fractal synthesis optimizations for arithmetic-intensive designs
that exhaust all DSP resources, follow these steps:

a. Review the guidelines in Fractal Synthesis Optimization on page 12.

Caution: Enabling fractal synthesis project-wide causes unnecessary bloat on
modules that are not suitable for fractal optimizations.

b. Click Assignments ➤ Assignment Editor.

c. Select Fractal Synthesis for Assignment Name, On for the Value, the
arithmetic-intensive entity name for Entity, and an instance name in the To
column. You can enter a wildcard (*) for To to assign all instances of the
entity.

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5. Fractal Synthesis Assignment in Assignment Editor

4. To run synthesis, click Synthesis on the Compilation Dashboard.

Related Information

• Synthesis Settings Reference on page 70

• Concurrent Analysis During Synthesis or Fitting on page 20

1.2.1. Preserve Registers During Synthesis

Intel Quartus Prime synthesis minimizes gate count, merges redundant logic, and
ensures efficient use of device resources. If you need to preserve specific registers
through synthesis processing, you can specify any of the following entity-level
assignments. Assign the Preserve Registers in Synthesis or Preserve Fan-Out
Free Register Node options to allow Fitter optimization of the preserved registers.
Preserve Registers restricts Fitter optimization of the preserved registers. Specify
synthesis preservation assignments by clicking Assignments ➤ Assignment Editor,
by modifying the .qsf file, or by specifying synthesis attributes in your RTL.

Table 3. Synthesis Preserve Options

Assignment Description Allows Fitter
Optimization?

Assignment Syntax

Preserve
Registers in
Synthesis

Prevents removal of registers during
synthesis. This settings does not
affect retiming or other
optimizations in the Fitter.

Yes • PRESERVE_REGISTER_SYN_ONLY ON|Off
-to <entity>.qsf

• preserve_syn_only or
syn_preservesyn_only (synthesis
attributes)

Preserve
Fan-Out Free
Register
Node

Prevents removal of assigned
registers without fan-out during
synthesis.
The
PRESERVE_FANOUT_FREE_NODE
assignment cannot preserve a
fanout-free register that has no
fanout inside the Verilog HDL or
VHDL module in which you define it.
To preserve these fanout-free
registers, implement the noprune
pragma in the source file:

(*noprune*)reg r;

If there are multiple instances of this
module, with only some instances
requiring preservation of the fanout-
free register, set a dummy pragma
on the register in the HDL and also

Yes • PRESERVE_REGISTER_FANOUT_FREE_NODE
ON|Off -to <entity>.qsf

• no_prune on (synthesis attribute)

continued...

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Assignment Description Allows Fitter
Optimization?

Assignment Syntax

set the
PRESERVE_FANOUT_FREE_NODE
assignment. This dummy pragma
allows the register synthesis to
implement the assignment. For
example, set the following dummy
pragma for a register r in Verilog
HDL:

(*dummy*)reg r;

Preserve
Registers

Prevents removal and sequential
optimization of assigned registers
during synthesis. Sequential netlist
optimizations can eliminate
redundant registers and registers
with constant drivers.

No • PRESERVE_REGISTER ON|Off -to
<entity>.qsf

• preserve, syn_preserve, or keep on
(synthesis attributes)

1.2.2. Enabling Timing-Driven Synthesis

Timing-driven synthesis directs the Compiler to account for your timing constraints
during synthesis. Timing-driven synthesis runs initial timing analysis to obtain netlist
timing information. Synthesis then focuses performance efforts on timing-critical
design elements, while optimizing non-timing-critical portions for area.

Timing-driven synthesis preserves timing constraints, and does not perform
optimizations that conflict with timing constraints. Timing-driven synthesis may
increase the number of required device resources. Specifically, the number of adaptive
look-up tables (ALUTs) and registers may increase. The overall area can increase or
decrease. Runtime and peak memory use increases slightly.

Intel Quartus Prime Pro Edition runs timing-driven synthesis by default. To enable or
disable this option manually, click Assignments ➤ Settings ➤ Compiler Settings ➤
Advanced Settings (Synthesis).

Related Information

• Running Synthesis on page 10

• Synthesis Language Support on page 64

1.2.3. Fractal Synthesis Optimization

You can enable optional fractal synthesis optimizations that are useful for deep-
learning accelerators and other high-throughput, arithmetic-intensive designs that
exceed all available DSP resources. For such designs, fractal synthesis optimization
can achieve 20-45% area reduction.

Caution: Enabling fractal synthesis project-wide causes unnecessary bloat on modules that are
not suitable for fractal optimizations.

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 4. Fractal Synthesis Area Improvement

Area (LABs)

Device Dot-product Fractal Synthesis ON Fractal Synthesis OFF

Intel Arria 10 Sum of 16 4x4sm 12 19

Sum of 16 5x5sm 19 32

Sum of 16 6x6sm 25 36

Sum of 16 7x7sm 34 44

Sum of 16 8x8sm 45 60

Intel Stratix 10 Sum of 16 4x4sm 15 22

Sum of 16 5x5sm 21 39

Sum of 16 6x6sm 29 47

Sum of 16 7x7sm 39 55

Sum of 16 8x8sm 55 71

Fractal synthesis is a set of synthesis optimizations that use FPGA resources in an
optimal way for arithmetic-intensive designs. These synthesis optimizations consist of
multiplier regularization and retiming, as well as continuous arithmetic packing. The
optimizations target designs with large numbers of low-precision arithmetic operations
(such as additions and multiplications).

To use Fractal Synthesis optimizations, identify the basic arithmetic building block that
the Fractal Synthesis engine will focus on and mark it using the FRACTAL_SYNTHESIS
attribute. You can specify the attribute in one of the following ways:

• In RTL, use altera_attribute as follows:

(* altera_attribute = "-name FRACTAL_SYNTHESIS ON" *)

• In the QSF file, add as an assignment as follows:

set_global_assignment -name FRACTAL_SYNTHESIS ON -entity <module name>

Note: Fractal synthesis optimization is not recommended for designs without deep-learning
accelerators or other high-throughput, arithmetic-intensive functions that exceed all
DSP resources. Consider the following factors before enabling fractal synthesis
optimization:

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Fractal Synthesis Considerations

• Intel Arria 10 and Intel Stratix 10 devices contain thousands of Hard DSP blocks
that are perfectly suited for arithmetic operations. If the total amount of
arithmetic functions in your design is small, then there is no need to enable
Fractal Synthesis. In such cases, all the arithmetic functions map directly into
DSPs by default. Enable Fractal Synthesis only if there are not enough DSP
blocks available to implement all arithmetic components. Enable Fractal
Synthesis only for modules that you do not want the Compiler to map into DSPs.

• In the current version of the Intel Quartus Prime Pro Edition software, fractal
synthesis optimizations target low-precision multiplication. Implement high-
precision multipliers (where width of every operand exceeds 11 bits) using DSP
blocks.

• If you enable Fractal Synthesis, the following information message number
20193 may generate during compilation:

Applied dense packing to "<entity>". Area: 2 LABs. Logic density: 0.775.

This information indicates the effort compiler is making to pack computational
logic into smaller number of LABs. If the design is already highly utilized, this
effort might be skipped.

— Verify that the Area the message reports does not exceed 100 LABs. If the
Area exceeds 100 LABs, divide fractal synthesis blocks to sub-blocks, and then
assign the fractal synthesis optimizations to the sub-blocks independently.

— Verify that the Logic density the message reports is greater than 0.75. If the
logic density is less than 0.75, disable Fractal Synthesis for this entity
because standard synthesis typically achieves better density.

Multiplier Regularization and Retiming

Multiplier regularization and retiming performs inference of highly optimized soft
multiplier implementations. The Compiler may apply backward retiming to two or
more pipeline stages if required. When you enable fractal synthesis, the Compiler
applies multiplier regularization and retiming to signed and unsigned multipliers.

Figure 6. Multiplier Retiming

D Q D Q

a

b

q

D Q D Q

a

b

q

Before Multiplier Retiming

After Multiplier Retiming

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: • Multiplier regularization uses only logic resources, and does not use DSP blocks.

• Multiplier regularization and retiming is applied to both signed and unsigned
multipliers in modules where the FRACTAL_SYNTHESIS QSF assignment is set.

Multiplier Regularization Example

Simple Unsigned Dot-Product Design

The following simple, unsigned dot-product design example contains multiplication
operators with 5-bit operands. These short multipliers are perfect candidates for
multiplier regularization.

(* altera_attribute = "-name FRACTAL_SYNTHESIS ON" *)
module dot_product(
 input clk,
 input [4:0] a, b, c, d, e, f, g, h,
 output reg [11:0] out
);
reg [9:0] ab, cd, ef, gh;
reg [10:0] ab_cd, ef_gh;

always @(posedge clk)
begin
 ab <= a * b;
 cd <= c * d;
 ef <= e * f;
 gh <= g * h;
 ab_cd <= ab + cd;
 ef_gh <= ef + gh;
 out <= ab_cd + ef_gh;
end
endmodule

module top(
 input clk,
 input [4:0] a1, b1, c1, d1, e1, f1, g1, h1,
 input [4:0] a2, b2, c2, d2, e2, f2, g2, h2,
 output [11:0] out1, out2
);
dot_product core1(.clk(clk), .a(a1), .b(b1), .c(c1), .d(d1),
 .e(e1), .f(f1), .g(g1), .h(h1), .out(out1));
dot_product core2(.clk(clk), .a(a2), .b(b2), .c(c2), .d(d2),
 .e(e2), .f(f2), .g(g2), .h(h2), .out(out2));
endmodule

Quartus Synthesis prints the following messages on the console:

Figure 7. Console Messages

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the Chip Planner, this design can be observed having two unsigned dot-product
cores independently optimized and placed, and LAB resources almost 100% optimized,
as illustrated in the following image:

Figure 8. Design Placement

Signed Dot-Product Design

Signed dot-products are common for deep-learning applications. The following
demonstrates an example of a signed dot-product:

(* altera_attribute = "-name FRACTAL_SYNTHESIS ON" *)
module dot_product(
 input signed clk,
 input signed [4:0] a, b, c, d, e, f, g, h,
 output reg signed [11:0] out
);
reg signed [9:0] ab, cd, ef, gh;
reg signed [10:0] ab_cd, ef_gh;

always @(posedge clk)
begin
 ab <= a * b;
 cd <= c * d;
 ef <= e * f;
 gh <= g * h;
 ab_cd <= ab + cd;
 ef_gh <= ef + gh;
 out <= ab_cd + ef_gh;
end
endmodule

module top(

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 input clk,
 input signed [4:0] a1, b1, c1, d1, e1, f1, g1, h1,
 input signed [4:0] a2, b2, c2, d2, e2, f2, g2, h2,
 output signed [11:0] out1, out2
);
dot_product core1(.clk(clk), .a(a1), .b(b1), .c(c1), .d(d1),
 .e(e1), .f(f1), .g(g1), .h(h1), .out(out1));
dot_product core2(.clk(clk), .a(a2), .b(b2), .c(c2), .d(d2),
 .e(e2), .f(f2), .g(g2), .h(h2), .out(out2));
endmodule

Quartus Synthesis prints the following messages on the console:

Figure 9. Console Messages

In the Chip Planner, this design can be observed having two signed dot-product cores
independently optimized and placed:

Figure 10. Design Placement

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Continuous Arithmetic Packing

Continuous arithmetic packing re-synthesizes arithmetic gates into logic blocks
optimally sized to fit into Intel FPGA LABs. This optimization allows up to 100%
utilization of LAB resources for the arithmetic blocks.

When you enable fractal synthesis, the Compiler applies this optimization to all carry
chains and two-input logic gates. This optimization can pack adder trees, multipliers,
and any other arithmetic-related logic.

Figure 11. Continuous Arithmetic Packing

Before Arithmetic Repacking After Arithmetic Repacking

Note that continuous arithmetic packing works independently of multiplier
regularization. So, if you are using a multiplier that is not regularized (such as writing
your own multiplier) then continuous arithmetic packing can still operate.

1.2.4. Synthesis Reports

The Compilation Report window opens automatically during compilation processing.
The Report window displays detailed synthesis results for each partition in the current
project revision.

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12. Synthesis Reports

Synthesis
Reports

Selected
Report

Table 5. Synthesis Reports (Design Dependent)

Generated Report Description

Summary Shows summary information about synthesis, such as the status, date, software
version, entity name, device family, timing model status, and various types of logic
utilization.

Synthesis Settings Lists the values of all synthesis settings during design processing.

Parallel Compilation Lists specifications for any use of parallel processing during synthesis.

Resource Utilization By Entity Lists the quantity of all types of logic usage for each entity in design synthesis.

Multiplexer Restructuring
Statistics

Provides statistics for the amount of multiplexer restructuring that synthesis performs.

IP Cores Summary Lists details about each IP core instance in design synthesis. Details include IP core
name, vendor, version, license type, entity instance, and IP include file.

Synthesis Source Files Read Lists details about all source files in design synthesis. Details include file path, file type,
and any library information.

Resource Usage Summary for
Partition

Lists the quantity of all types of logic usage for each design partition in design synthesis.

RAM Summary for Partition Lists RAM usage details for each design partition in design synthesis. Details include the
name, type, mode, and density.

Register Statistics Lists the number of registers using various types of global signals.

Synthesis Messages Lists all information, warning, and error messages that report conditions observed
during the Analysis & Synthesis process.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.5. Concurrent Analysis During Synthesis or Fitting

If you run Analysis & Synthesis, or the Fitter, you can access results while downstream
Fitter stages are still running. Once the Concurrent Analysis icons become active in
the dashboard, you can view the analysis without interrupting compilation.

During Analysis & Synthesis, you can click the Concurrent Analysis icons on the
Dashboard to view reports, the RTL Viewer, or the Technology Map Viewer. While the
Fitter is processing, you can analyze timing during the stages displaying the Timing
Analyzer icon, and view Technology Map Viewer snapshots during Fitter stages. You
should not modify timing constraints during concurrent analysis, because it affects the
results of the underlying compile. However, you can halt a compile at any time, modify
the .sdc constraints in your source file, and then click the Timing Analyzer icon to
restart analysis with the modified constraints.

Figure 13. Concurrent Analysis Options

Report Icon

RTL Viewer Icon

Timing Analysis Icon

Technology Map
Viewer Icons

1.3. Running the Fitter

The Compiler's Fitter module performs all stages of design place and route, including
the Plan, Early Place, Place, Route, and Retime stages. Run all stages of the Fitter as
part of a full design compilation, or run any Fitter stage independently after design
synthesis. Before running the Fitter, you specify settings that impact Fitter processing.

1. Specify initial Fitter constraints:

a. To assign device I/O pins, click Assignments ➤ Pin Planner.

b. To assign device periphery, clocks, and I/O interfaces, click Tools ➤
Interface Planner.

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

c. To constrain logic placement regions, click Tools ➤ Chip Planner.

d. To specify Fitter optimization goals, click Assignments ➤ Settings ➤
Compiler Settings. Optimization Modes on page 70 describes these options
in detail

e. To fine-tune place and route with advanced Fitter options, click Assignments
➤ Settings ➤ Compiler Settings ➤ Advanced Settings (Fitter)

2. To run one or more stages of the Fitter, click any of the following commands on
the Compilation Dashboard:

• To run all Fitter stages in sequence, click Fitter.

• To run only device periphery placement and routing, click Plan.

• To run only early placement, click Early Place.

• To run only logic placement, click Place.

• To run only logic routing, click Route.

• To run only retiming of ALM registers into Hyper-Registers, click Retime.(3)

• To run the Implement flow (runs Plan, Place, Route, and Retime stages), click
Fitter (Implement).

• To run the Finalize flow (runs Plan, Early Place, Place, Route, Retime, and
Finalize stages), click Fitter (Finalize).

Related Information

• Fitter Settings Reference on page 77

• Step 2: Review Retiming Results on page 40

1.3.1. Fitter Stage Commands

Launch Fitter processes from the Processing menu or Compilation Dashboard.

Table 6. Fitter Stage Commands

Command Description

Fitter (Implement) Runs the Plan, Early Place, Place, Route, and Retime stages.

Start Fitter (Plan) Loads synthesized periphery placement data and constraints, and assigns periphery
elements to device I/O resources. After this stage, you can run post-Plan timing
analysis to verify timing constraints, and validate cross-clock timing windows. View
the placement and properties of periphery (I/O) and perform clock planning for
Intel Arria 10 and Intel Cyclone 10 GX designs. This command creates the planned
snapshot.

Start Fitter (Early Place) Places all core elements in an approximate location to facilitate design planning.
After this stage, the Chip Planner displays initial high-level placement of design
elements. The Compilation reports identifies high fan-out signals that increase
placement complexity. Use this information to guide your floorplanning decisions.
For Intel Stratix 10 designs, you can also do early clock planning after this stage.
This command creates the early placed snapshot. Early Place does not run during
the full compilation flow by default, but you can enable by default or run directly
from the Compilation Dashboard.

Start Fitter (Place) Places all core elements in a legal location. This command creates the placed
snapshot.

continued...

(3) Retime available for Intel Stratix 10 devices only.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Command Description

Start Fitter (Route) Creates all routing between the elements in the design. After this stage, validate
delay chain settings and analyze routing resources. Perform detailed setup and hold
timing closure in the Timing Analyzer and view routing congestion via the Chip
Planner. This command creates the routed snapshot.

Start Fitter (Retime) Performs register retiming and moves existing registers into Hyper-Registers to
increase performance by removing retiming restrictions and eliminating critical
paths. The Compiler may report hold violations for short paths following the Retime
stage. The Fitter identifies and corrects the short paths with hold violations during
the Fitter (Finalize) stage by adding routing wire along the paths. This command
creates the retimed snapshot.

Start Fitter (Finalize) Performs post-routing optimization on the design. This stage converts unneeded
tiles from High Speed to Low Power. This command creates the final snapshot. For
Intel Stratix 10 designs, the Fitter also runs post-route fix-up to correct any short
path hold violations remaining from retiming.

Related Information

Concurrent Analysis During Synthesis or Fitting on page 20

1.3.2. Incremental Optimization Flow

Intel Quartus Prime Pro Edition supports incremental optimization at each stage of
design compilation. In incremental optimization, you run and optimize each
compilation stage independently before running the next compilation module in
sequence. The Compiler preserves the results of each stage as a snapshot for
analysis. When you make changes to your design or constraints, the Compiler only
runs stages impacted by the change. Following synthesis or any Fitter stage, view
results and perform timing analysis. Modify design RTL or Compiler settings, as
needed. Then, re-run synthesis or the Fitter and evaluate the results of these
changes. Repeat this process until the module performance meets requirements. This
flow maximizes the results at each stage, without waiting for full compilation results.

Figure 14. Incremental Optimization Flow

Plan Early
Place Place Route

optimizeoptimize optimize optimize optimize

Retime

Table 7. Incremental Optimization at Fitter Stages

Fitter Stage Incremental Optimization

Plan After this stage, you can run post-Plan timing analysis to verify timing constraints, and
validate cross-clock timing windows. View the placement and properties of periphery (I/O)
and perform clock planning for Intel Arria 10 and Intel Cyclone 10 GX designs.

Early Place After this stage, the Chip Planner can display initial high-level placement of design
elements. Use this information to guide your floorplanning decisions. For Intel Stratix 10
designs, you can also review and modify clock assignments after performing this stage.

continued...

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Fitter Stage Incremental Optimization

Place After this stage, validate resource and logic utilization in the Compilation Reports, and
review placement of design elements in the Chip Planner.

Route After this stage, perform detailed setup and hold timing closure in the Timing Analyzer, and
view routing congestion via the Chip Planner.

Retime After this stage, review the Retiming results in the Fitter report and correct any restrictions
limiting further retiming optimization.(4)

1.3.2.1. Early Place Flow

Early Place begins assigning core logic to device resources. Run Early Place to quickly
view the effect of iterative floorplanning changes, without waiting for full placement or
full compilation. The Compiler preserves a snapshot of the Early Place results.
Following Early Place, click the Timing Analyzer icon to validate your .sdc constraints.
Do not use the Early Place timing results to compare with Final timing results, as
timing between early snapshots and the final snapshot are not well correlated.

Early Place runs automatically during Fitter processing if you enable the Early Place
stage on the compilation dashboard, or by enabling Settings ➤ Compiler Settings ➤
Fitter Settings (Advanced) ➤ Run Early Place During Compilation.

1.3.2.2. Running late_place After Early Place

After running the Early Place stage, you can run late_place, rather than the full
Place stage, to reduce total compilation time. late_place skips the placements that
Early Place makes. The Place stage includes the Early Place and late_place stages.
The Intel Quartus Prime GUI does not support the late_place option. The
late_place option is only available at the command line, after running the Early
Place stage from the GUI or from the command line. Running late_place generates
the placed snapshot. Access command-line help to display details about the
late_place argument.

Note: Type quartus_fit –help=late_place for command-line help on this argument.

To run late_place after Early Place:

1. To run the Early Place stage and generate the Early Place snapshot, perform one
of the following:

• To run Early Place in the GUI, click Early Place on the Compilation
Dashboard. The Compiler runs any required prerequisite stages.

• To run Early Place (and prerequisite stages) at the command-line, run the
following commands. The "-" character equals double hyphens:

quartus_ipgenerate <design_name>
quartus_syn <design name>
quartus_fit -plan <design name>
quartus_fit -early_place <design name>

Note: You must generate the early placed snapshot before running late_place,
or the Fitter reports an error.

(4) Retiming available only for Intel Stratix 10 devices.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. View Early Place results in the Early Placed Fitter reports of the Compilation
Report, and in the Chip Planner (Tools ➤ Chip Planner).

3. When satisfied with the Early Place results, type one of the following commands to
continue to the late_place stage and beyond. View late_place results and
processing messages in the <design name>.fit.place.rpt file.

• quartus_fit –late_place <design name>
(runs late_place)

• quartus_fit –late_place –route <design name>
(runs late_place and route)

• quartus_fit –late_place –route –finalize <design name>
(runs late_place and finalize)

1.3.3. Analyzing Fitter Snapshots

Analyze the results of Fitter stages to evaluate your design before running the next
stage, or before running a full compilation. Use this technique to isolate potential
problems and reduce the overall time you spend running design compilation. The
following topics describe typical use cases for analyzing Fitter snapshots.

Note: The Compiler saves the planned, placed, routed, and retimed snapshots by default
during full compilation only if you turn on Enable Intermediate Fitter Snapshots
(Assignments ➤ Settings ➤ Compiler Settings). You can also run any intermediate
Fitter stage independently to generate the snapshot for that stage.

1.3.3.1. Validating SDC Constraints after the Plan Stage

The Fitter's Plan stage performs initial validation of your project's .sdc constraints.
The Compiler generates messages during the plan stage that warn you about any
possible invalid .sdc constraints. Stop compilation following the Plan stage to validate
and make any necessary changes to .sdc constraints, before moving on to the next
Fitter stage. To validate .sdc constraints after the Plan stage, follow these steps:

1. To run the Fitter's Plan stage, click Plan on the Compilation Dashboard. The
Compiler automatically runs prerequisite compilation stages, if necessary.

2. On the Compilation Dashboard, click the Timing Analyzer icon adjacent to the
Fitter stage. The Create Timing Netlist dialog box appears and loads the
corresponding stage snapshot.

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15. Plan Stage Timing Analyzer Icon in Compilation Dashboard

Access to Reports,
Analysis, and Debugging for Stage

3. In the Create Timing Netlist dialog box, click OK. The planned database loads in
the Timing Analyzer.

Figure 16. Planned Snapshot in Create Timing Netlist Dialog Box

Loads the Planned Snapshot
for Timing Analysis

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. On the Tasks pane, click Read SDC File. The Timing Analyzer reads and
processes any .sdc files. For multiple .sdc files, the report also includes
the .sdc processing sequence.

Figure 17. Read SDC File Command

Click to Load .sdc Files

5. To report the .sdc constraints that apply to the project, click Report SDC under
the Diagnostic folder, in the Tasks pane.

Figure 18. SDC File List Report

6. Conversely, to report the constraints in the .sdc files that the Timing Analyzer
ignores, click Report Ignored Constraints under the Diagnostic folder, in the
Tasks pane.

7. To report all paths in your design that have no constraints, click Report
Unconstrained Paths under the Diagnostic folder, in the Tasks pane.

Figure 19. Unconstrained Paths Summary

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Compilation Report displays the Timing Analysis that you run for each stage.

Figure 20. Plan and Retime Stage Timing Analysis Reports in Compilation Report

Compilation Report Lists
Timing Analyses Run
for Each Stage

1.3.3.2. Validating Periphery (I/O) after the Plan Stage

The Compiler begins periphery placement during the Plan stage, and reports data
about periphery elements, such as I/O pins and PLLs. After the Plan stage, view the
Compilation Report to evaluate the placement of periphery elements before
proceeding to the next compilation stage.

Figure 21. Plan Stage Periphery Placement Message

1. In the Compilation Dashboard, click the Plan stage.

2. In the Compilation Report, under the Plan Stage folder, click the Input Pins,
Output Pins, I/O Bank Usage, PLL Usage Summary, or other reports. Verify
attributes of the I/O pins, such as the physical pin location, I/O standards, and PLL
placement.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 22. Input Pins Report

3. For Intel Arria 10 and Intel Cyclone 10 GX designs, click Global & Other Fast
Signals Summary report to verify which clocks the Compiler promotes to global
clocks. Clock planning occurs after the Early Place stage for Intel Stratix 10
designs.

Figure 23. Global & Other Fast Signals Report Shows Clock Promotion (Intel Arria 10
and Intel Cyclone 10 GX FPGAs)

1.3.3.3. Clock Planning after Early Place (Intel Stratix 10 only)

Intel Stratix 10 devices support clock planning after the Early Place stage, rather than
after the Plan stage. After running Early Place, view the Global & Other Fast Signals
report to view details and plan the clocks in your project. To view clock details after
Early Place, follow these steps:

1. In the Compilation Dashboard, click the Early Place stage.

2. In the Compilation Report, under the Early Place Stage folder, click the Global &
Other Fast Signals Details or Global & Other Fast Signals Summary report.

Figure 24. Global & Other Fast Signal Details Report

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The report provides clock tree path length and depth. The shortest path length
from clock source to clock tree, and the smallest clock tree depth, results in the
best clock performance.

3. To visualize the clock path length and clock tree depth, click Tools ➤ Chip
Planner.

4. In the Chip Planner Tasks pane, click Report Clock Details under the Clock
Reports folder.

5. In the Report Clock Details dialog box, click OK. The Report pane lists all the
clocks in the design.

6. In the Report pane, select one or more clocks to highlight the clock elements in
Chip Planner.

Figure 25. Visualizing Clocks in Chip Planner

After running the Early Place stage, you can run late_place, rather than the full
Place stage, to reduce total compilation time.

Related Information

Use CLOCK_REGION to Optimize Clock Constraints, Design Recommendations User
Guide

1.3.3.4. Identifying High Fan-Out Signals after Early Place

High fan-out signals increase placement difficulty. After Early Place, identify and
consider moving high fan-out signals to global resources.

1. In the Compilation Dashboard, click the Early Place stage.

2. In the Compilation Report, under the Early Place Stage folder, click the Non-
Global High Fan-Out Signals report. The report lists the number of fan-outs for
each signal.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

29

https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html#ulp1503077986521
https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html#ulp1503077986521
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 26. Non-Global High Fan-Out Signals Report

3. To visualize the clock fan-out, right-click the signal name in the report, and then
click Locate Node ➤ Locate in Chip Planner.

Figure 27. Non-Global High Fan-Out Signal in Chip Planner

4. To place those high fan-out signals on global resources, click Assignments ➤
Assignment Editor, and then assign the high fan-out signal to a global signal
before re-starting compilation.

1.3.4. Enabling Physical Synthesis Optimization

Physical synthesis optimization improves circuit performance by performing
combinational and sequential optimization and register duplication.

To enable physical synthesis options:

1. Click Assignments ➤ Settings ➤ Compiler Settings.

2. To enable retiming, combinational optimization, and register duplication, click
Advanced Settings (Fitter). Next, enable Physical Synthesis.

3. View physical synthesis results in the Netlist Optimizations report.

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.5. Viewing Fitter Reports

The Fitter generates detailed reports and messages for each stage of place and route.
The Fitter Summary reports basic information about the Fitter run, such as date,
software version, device family, timing model, and logic utilization.

1.3.5.1. Plan Stage Reports

The Plan stage reports describe the I/O, interface, and control signals discovered
during the periphery planning stage of the Fitter.

Figure 28. Plan Stage Reports (Intel Arria 10 and Intel Cyclone 10 GX Designs)

For Intel Arria 10 and Intel Cyclone 10 GX designs, the Plan stage includes the Global
& Other Fast Signals Summary report that allows you to verify which clocks the
Compiler promotes to global clocks. Clock planning occurs after the Early Place stage
for Intel Stratix 10 designs.

1.3.5.2. Place Stage Reports

The Place stage reports describe all device resources the Fitter allocates during logic
placement, as well as use of Logic Lock regions and global and other fast signals.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 29. Place Stage Reports

Global Signal Visualization Report

In addition, for Intel Stratix 10 designs, you can access the Global Signal Visualization
report to view global signal routing and overall clock sector utilization in an interactive
heat-map. Use this data to quickly review how the Fitter constrains clock regions to
device sectors. View global clock tree implementation details and assess capacity to
add more global signals to the design. In cases of clock tree synthesis errors, the
report can also show targeted regions for failing signals, and competing signals that
are contributing to routing congestion.

Filter the display to Show Routing Utilization and Show Sector Utilization. You
can search for Signal Names, and then click the signal names to display its
properties. Right-click the Signal Names to Locate Node in Chip Planner and
various other tools.

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 30. Heat-Map in Global Signal Visualization Report

1.3.5.3. Route Stage Reports

The Route stage reports describe all device resources that the Fitter allocates during
routing. Details include the type, number, and overall percentage of each resource
type. The Route stage also reports delay chain summary information.

Figure 31. Route Stage Reports

1.3.5.4. Retime Stage Reports

The Fitter generates detailed reports showing the results of the Retime stage,
including the Retiming Limit Details report. This report lists the limiting reason, along
with the critical chain and recommendations for the critical chain for each clock
transfer.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 32. Retiming Limit Details

Retiming Limit Condition

Details of Critical ChainRight-click to locate in viewer

1.3.5.5. Finalize Stage Reports

The Finalize stage reports describe final placement and routing operations, including:

• HSLP Summary. For Intel Arria 10 designs, the Compiler converts unnecessary
tiles to High-Speed or Low-Power (HSLP) tiles.

• Post-route hold fix-up data. For Intel Stratix 10 designs, the Compiler reports hold
violations for short paths following the Retime stage. The Fitter identifies and
corrects the short paths with hold violations during the Fitter (Finalize) stage by
adding routing wire along the paths.

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 33. Finalize Stage Reports (Intel Stratix 10 Design)

Related Information

Step 2: Review Retiming Results on page 40
For information on Retiming and Fast Forward compilation reports

1.4. Running Full Compilation

Use these steps to run a full compilation of an Intel Quartus Prime project. A full
compilation includes IP Generation, Analysis & Synthesis, Fitter, Timing Analyzer, and
any optional Compiler modules you enable.

1. Before running a full compilation, specify any of the following project settings:

• To specify the target FPGA device or development kit, click Assignments ➤
Device.

• To specify device and pin options for the target FPGA device, click
Assignments ➤ Device ➤ Device and Pin Options.

• To specify options that affect compilation processing time and netlist
preservation, click Assignments ➤ Settings ➤ Compilation Process
Settings.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To specify the Compiler's high-level optimization strategy, click Assignments
➤ Settings ➤ Compiler Settings. Specify a Balanced strategy, or optimize
for Performance, Area, Routability, Power, or Compile Time. The
Compiler targets the optimization goal you specify. Optimization Modes on
page 70 describes these options in detail.

• To specify synthesis algorithm and other Advanced Settings for synthesis
and fitting, click Assignments ➤ Settings ➤ Compiler Settings. Turn on
Enable Intermediate Fitter Snapshots to preserve the planned, placed,
routed, and retimed snapshots by default during full compilation.

• To specify required timing conditions for proper operation of your design, click
Tools ➤ Timing Analyzer.

2. To run full compilation, click Processing ➤ Start Compilation.

Note: • To save processing time, the Compiler only preserves the planned,
placed, routed, and retimed snapshots by default during full compilation
if you turn on Enable Intermediate Fitter Snapshots (Assignments
➤ Settings ➤ Compiler Settings).

• Early Place does not run during full compilation by default. To enable
Early Place during full compilation, click Assignments ➤ Settings ➤
Compiler Settings ➤ Advanced Settings (Fitter) to modify the Run
Early Place during compilation option.

Related Information

• Intel Quartus Prime Pro Edition User Guide: Design Constraints

• Intel Quartus Prime Pro Edition User Guide: Timing Analyzer

1.5. Running the Hyper-Aware Design Flow

The Intel Quartus Prime Pro Edition Compiler helps you to take full advantage of the
Intel Stratix 10 Intel Hyperflex™ architecture. Use the Hyper-Aware design flow to
shorten design cycles and optimize performance.

The Hyper-Aware design flow combines automated register retiming (Hyper-Retiming),
with implementation of targeted timing closure recommendations (Fast Forward
compilation), to maximize use of Hyper-Registers and drive the highest performance
for Intel Stratix 10 designs.

Figure 34. Hyper-Aware Design Flow

Synthesis Plan Early
Place Place Route Retime*

Fast Forward*
(Hyper-Retiming)RTL *Intel Stratix 10

 Devices Only

optimizeoptimize optimize optimize optimize optimize

Finalize
 (Hold Fixup)

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

36

https://www.intel.com/content/www/us/en/programmable/documentation/iqe1513988936192.html#jbr1410905116321
https://www.intel.com/content/www/us/en/programmable/documentation/psq1513989797346.html#mwh1410383515225
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Hyper-Retiming

A key innovation of the Intel Stratix 10 architecture is the addition of multiple Hyper-
Registers in every routing segment and block input. Maximizing the use of Hyper-
Registers improves design performance. The prevalence of Hyper-Registers improves
balance of time delays between registers and mitigates critical path delays. Hyper-
Retiming moves registers out of ALMs and retimes them into Hyper-Registers,
wherever advantageous. Hyper-Retiming runs automatically during fitting, requires
minimal effort, and can result in significant performance improvement.

Figure 35. Hyper-Register Architecture

ALM ALM

ALM ALM

New Hyper-Registers throughout the core fabric
Potential routing path

clk Configuration
CRAM

Hyper-Register Detail

Fast Forward Compilation

If you require optimization beyond Hyper-Retiming, run Fast Forward compilation to
generate timing closure recommendations that break key performance bottlenecks.
Fast Forward compilation shows precisely where to make the most impact with RTL
changes, and reports the performance benefits you can expect from each change. The
Fitter does not automatically retime registers across RAM and DSP blocks. However,
Fast Forward analysis shows the potential performance benefit from this optimization.

Fast-Forward compilation identifies the best location to add pipeline stages (Hyper-
Pipelining), and the expected performance benefit in each case. After you modify the
RTL to place pipeline stages at the boundaries of each clock domain, the Hyper-
Retimer automatically places the registers within the clock domain at the optimal
locations to maximize performance. Implement the recommendations in RTL to
achieve similar results. After implementing any changes, re-run the Hyper-Retimer
until the results meet performance and timing requirements. Fast Forward compilation
does not run automatically as part of a full compilation. Enable or run Fast Forward
compilation in the Compilation Dashboard.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 8. HyperFlex Optimization Steps

Optimization Step Technique Description

Step 1 Hyper-Retiming Retimer moves existing registers into Hyper-Registers.

Step 2 Fast Forward Compile Compiler generates design-specific timing closure recommendations
and predicts performance improvement.

Step 3 Hyper-Pipelining Use Fast Forward compilation to identify where to add new registers
and pipeline stages in RTL.

Step 4 Hyper-Optimization Design optimization beyond Hyper-Retiming and Hyper-Pipelining,
such as restructuring loops, removing control logic limits, and
reducing the delay along long paths.

The Hyper-Aware design flow includes the following high-level steps this chapter
covers in detail:

1. Run the Retime stage during the Fitter to automatically retime ALM registers into
Hyper-Registers.

2. Review Retiming Results in the Compilation Report.

3. If you require further performance optimization, run Fast Forward compilation.

4. Review Fast Forward timing closure recommendations.

5. Implement appropriate Fast Forward recommendations in your RTL.

6. Recompile the design through the Retime stage.

Figure 36. Hyper-Aware Design Flow

No

Yes

Run Fitter with Retime Stage

Analyze
Timing

Fitter
Finalize

Review Retiming Results

Performance
 Met?

Run Fast Forward Compile

Performance
 Met?

Recompile the Design

Yes No

Register Retiming

Fast Forward Compile

Run Design Synthesis

Review Recommendations

Modify RTL

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.1. Step 1: Run Register Retiming

Register retiming improves design performance by moving registers out of ALMs and
retimes them into Hyper-Registers in the Intel Stratix 10 device interconnect.

The Fitter runs the Retime stage automatically following place and route when you
target an Intel Stratix 10 device. Alternatively, start or stop the individual Retime
stage in the Compilation Dashboard. After running register retiming, view the Fitter
reports to optimize remaining critical paths.

To run register retiming:

1. Create or open an Intel Quartus Prime project that is ready for design synthesis
and fitting.

2. To run register retiming, click Retime on the Compilation Dashboard. The
Compiler runs prerequisite stages automatically, as needed. The Compiler
generates detailed reports and timing analysis data for each stage. Click the
Report or Timing Analyzer icons to review results of each stage. Rerun any
stage to apply any setting or design changes.

3. If register retiming achieves all performance goals for your design, proceed to
Fitter (Finalize) and timing analysis stages of compilation. If your design requires
further optimization, run Fast Forward Timing Closure Recommendations.

Figure 37. Retiming Stage in Compilation Dashboard

Click to
Run Flow

Click to Open
Stage Reports

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.2. Step 2: Review Retiming Results

The Fitter generates detailed reports showing the results of the Retime stage. Follow
these steps to review the results and make additional performance improvements with
register retiming.

1. To open the Retiming Limit Details report, click the Report icon for the Retime
stage in the Compilation Dashboard. The Retiming Limit Details lists the
number of registers moved, their paths, and the limiting reason preventing further
retiming.

2. To further optimize, resolve any Limiting Reason in your design, and then rerun
the Retime stage, as necessary.

3. If register retiming achieves all performance goals for your design, proceed to
Fitter (Finalize) and Timing Analysis stages of compilation.

4. If your design requires further optimization, run Fast Forward Timing Closure
Recommendations.

Table 9. Retiming Limit Details Report Data

Report Data Description

Clock Transfer Lists each clock domain in your design. Click the domain to display data about each entry.

Limiting Reason Specifies any design condition that prevent further register retiming improvement, such as
any of the following conditions:
• Insufficient Registers—indicates insufficient quantity of registers at either end of the

chain for retiming. Adding more registers can improve performance.
• Short Path/Long Path—indicates that the critical chain has dependent paths with

conflicting characteristics. For example, one path improves performance with more
registers, and another path has no place for additional registers.

• Path Limit—indicates that there are no further Hyper-Register locations available on the
critical path, or the design reached a performance limit of the current place and route.

• Loops—indicates a feedback path in a circuit. When the critical chain includes a feedback
loop, retiming cannot change the number of registers in the loop without changing
functionality. The Compiler can retime around the loop without changing functionality.
However, the Compiler cannot place additional registers in the loop.

Critical Chain Details Lists register timing path associated with the retiming limitations. Right-click any path to
Locate Critical Chain in Technology Map Viewer.

Figure 38. Retiming Limit Details

Retiming Limit Condition

Details of Critical ChainRight-click to locate in viewer

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The Compiler reports any hold violations for short paths following the
Retime stage. The Fitter identifies and corrects the short paths with hold
violations during the Fitter (Finalize) stage by adding routing wire along the
paths.

1.5.2.1. Locate Critical Chains

The Retiming Limit Details reports the design paths that limit further register
retiming. Right-click any path to locate to the path in the Technology Map Viewer -
Post-fitting view. This viewer displays a schematic representation of the complete
design after place, route, and register retiming. To view the retimed netlist in the
Technology Map Viewer, follow these steps:

1. To open the Retiming Limit Details report, click the Report icon next to the
Retime stage in the Compilation Dashboard.

2. Right-click any path in the Retiming Limit Details report and click Locate
Critical Chain in Technology Map Viewer. The netlist displays as a schematic
in the Technology Map Viewer.

Figure 39. Technology Map Viewer

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 40. Post-Fit Viewer After Retiming

Hyper-RegisterBypassed ALM Registers

Used ALM Register

1.5.3. Step 3: Run Fast Forward Compile and Hyper-Retiming

When you run Fast Forward compilation, the Compiler predictively removes signals
from registers to allow mobility within the netlist for subsequent retiming. Fast
Forward compilation generates design-specific timing closure recommendations, and
predicts maximum performance with removal of all timing restrictions. After you
complete Fast Forward explorations, determine which recommendations you can
implement to provide the most benefit. Implement appropriate recommendations in
your RTL, and recompile the design to realize the performance levels that Fast Forward
reports.

To generate Fast Forward timing closure recommendations, follow these steps:

1. On the Compilation Dashboard, click Fast Forward Timing Closure
Recommendations. The Compiler runs prerequisite synthesis or Fitter stages
automatically, as needed, and generates timing closure recommendations in the
Compilation Report.

2. View timing closure recommendations in the Compilation Report to evaluate
design performance and implement key RTL performance improvements.

3. Optionally, specify any of the following any of the following options if you want to
automate or refine Fast Forward analysis:

• If you want to run Fast Forward compilation during each full compilation, click
Assignments ➤ Settings ➤ Compiler Settings ➤ HyperFlex and enable
Run Fast Forward Timing Closure Recommendations during
compilation.

• If you want to modify how Fast Forward compilation interprets specific I/O and
block types, click Assignments ➤ Settings ➤ Compiler Settings ➤
HyperFlex ➤ Advanced Settings.

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 41. Running Fast Forward Compilation

Fast Forward
Flow

Figure 42. HyperFlex Settings

Run Fast Forward
During Compilation

Fast Forward
Advanced Options

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.3.1. HyperFlex Settings

The HyperFlex settings page controls whether Fast Forward Compilation analyzes and
reports results for specific logical structures in the Intel Hyperflex architecture of the
Intel Stratix 10 FPGA. You access this page by clicking Assignments ➤ Settings ➤
HyperFlex. Turn on Run Fast Forward Timing Closure Recommendations
during compilation to enable Fast Forward analysis during the compilation flow by
default. To access the following additional settings, click Advanced Settings.

Table 10. Advanced HyperFlex Settings

Option Description

Fast Forward Compile
Asynchronous Clears

Specifies how Fast Forward analysis accounts for registers with asynchronous clear signals.
The options are:
• Auto—the Compiler identifies asynchronous clears as asynchronous until they limit

timing performance during Fast Forward Compilation, at which point the Compiler
identifies the asynchronous clears as removed.

• Preserve—the Compiler never assumes removal or conversion of asynchronous clears
for Fast Forward analysis.

Fast Forward Compile
Cut All Clock Transfers

Cuts all clock transfers in Fast Forward Compilation analysis.

Fast Forward Compile
Fully Registered DSP
Blocks

Specifies how Fast Forward analysis accounts for DSP blocks that limit performance. Enable
this option to generate results as if all DSP blocks are fully registered.

Fast Forward Compile
Fully Registered RAM
Blocks

Specifies how Fast Forward analysis accounts for RAM blocks that limit performance. Enable
this option to analyze the blocks as fully registered.

Fast Forward Compile
Maximum Additional
Pipeline Stages

Specifies the maximum number of pipeline stages that Fast Forward compilation explores.

Fast Forward Compile
User Preserve Directives

Specifies how Fast Forward compilation accounts for restrictions from user-preserve
directives.

1.5.4. Step 4: Review Hyper-Retiming Results

After running Fast Forward Compilation, review the reports in the Fast Forward Timing
Closure Recommendations folder of the Compilation Report to determine which
recommendations are appropriate and practical for your design functionality and
performance goals.

1.5.4.1. Clock Fmax Summary Report

The Clock Fmax Summary in the Fast Forward Timing Closure Recommendations
report folder reports the current fmax and potential performance achievable for each
clock domain after Hyper-Retiming, Hyper-Pipelining, and Hyper-Optimization steps.
Review the Clock Fmax Summary data to determine whether each potential
performance improvement warrants further investigation and potential optimization of
design RTL.

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 43. Current and Potential Performance in Clock Fmax Summary

Predicts Optimized Performance After
Hyper-Retiming, Hyper-Pipelining, and Hyper-Optimization

1.5.4.2. Fast Forward Details Report

The Fast Forward Details report recommends the design modifications necessary to
achieve Fast Forward compilation performance levels. Some recommendations may be
functionally impossible or impractical for your design. Consider which
recommendations you can implement in RTL to achieve similar performance
improvement. Click any optimization Step to view the implementation details and
performance calculations for that step.

Table 11. Fast Forward Details Report Data

Report Field Description

Step Displays the pre-optimized Base Performance fMAX, the recommended Fast
Forward optimization steps, and the Fast Forward Limit critical path that
prevents further optimization.

Fast Forward Optimizations Analyzed Summarizes the optimizations necessary to implement each optimization
step.

Estimated Fmax Specifies the potential fMAX performance if you implement all Fast Forward
optimization steps.

Optimizations Analyzed For Fast
Forward Step

Lists design recommendations hierarchically for the selected Step. Click the
text to expand the report and view the clock domain, the affected module,
and the bus and bits that require modification.

Optimizations Analyzed (Cumulative) Accumulated list of all design changes necessary to reach the selected Step.

Critical Chain at Fast Forward Limit Displays information about any path that continues to limit Hyper-Retiming
even after application of all Fast Forward steps. The critical chain is any path
that limits further Hyper-Retiming. Click the Fast Forward Limit step to
display this field.

Recommendations for Critical Chain Lists register timing path associated with the retiming limitations. Right-click
any path to Locate Critical Chain in Fast Forward Viewer.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 44. Fast-Forward Details Report

Right-click any path to locate to the critical chain in the Fast Forward Viewer. The Fast
Forward Viewer displays a predictive representation of the complete design, after
implementation of all Fast Forward recommendations.

Figure 45. Recommendations for Critical Chain

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 46. Locate Critical Chain in Fast Forward Viewer

Figure 47. Fast Forward Viewer Shows Predictive Results

1.5.5. Step 5: Implement Fast Forward Recommendations

Implement the Fast Forward timing closure recommendations in your design RTL and
rerun the Retime stage to realize the predictive performance gains. The amount and
type of changes that you implement depends on your performance goals. For
example, if you can achieve the target fMAX with simple asynchronous clear removal or
conversion, you can stop design optimization after making those changes. However, if
you require additional performance, implement more Fast Forward recommendations,
such as any of the following techniques:

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Remove limitations of control logic, such as long feedback loops and state
machines.

• Restructure logic to use functionally equivalent feed-forward or pre-compute
paths, rather than long combinatorial feedback path.

• Reduce the delay of ‘Long Paths’ in the chain. Use standard timing closure
techniques to reduce delay. Excessive combinational logic, sub-optimal placement,
and routing congestion cause delay on paths.

• Insert more pipeline stages in ‘Long Paths’ in the chain. Long paths have the most
delay between registers in the critical chain.

• Increase the delay (or add pipeline stages to ‘Short Paths’ in the chain).

• Explore performance and implement the RTL changes to your code until you reach
the desired performance target.

1.5.5.1. Retiming Restrictions and Workarounds

The Compiler identifies the register chains in your design that limit further
optimization through Hyper-Retiming. The Compiler refers to these related register-to-
register paths as a critical chain. The fMAX of the critical chain and its associated clock
domain is limited by the average delay of a register-to-register path, and quantization
delays of indivisible circuit elements like routing wires. There are a variety of
situations that cause retiming restrictions. Retiming restrictions exist because of
hardware characteristics, software behavior, or are inherent to the design. The
Retiming Limit Details report the limiting reasons preventing further retiming, and
the registers and combinational nodes that comprise the chain. The Fast Forward
recommendations list the steps you can take to remove critical chains and enable
additional register retiming.

In Figure 48 on page 48, the red line represents the same critical chain. Timing
restrictions prevent register A from retiming forward. Timing restrictions also prevent
register B from retiming backwards. A loop occurs when register A and register B are
the same register.

Figure 48. Sample Critical Chain

A B

Fast Forward recommendations for the critical chain include:

• Reduce the delay of ‘Long Paths’ in the chain. Use standard timing closure
techniques to reduce delay. Combinational logic, sub-optimal placement, and
routing congestion, are among the reasons for path delay.

• Insert more pipeline stages in ‘Long Paths’ in the chain. Long paths are the parts
of the critical chain that have the most delay between registers.

• Increase the delay (or add pipeline stages to ‘Short Paths’ in the chain).

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Particular registers in critical chains can limit performance for many other reasons.
The Compiler classifies the following types of reasons that limit further optimization by
retiming:

• Insufficient Registers

• Loop

• Short path/long path

• Path limit

After understanding why a particular critical chain limits your design’s performance,
you can then make RTL changes to eliminate that bottleneck and increase
performance.

Table 12. Hyper-Register Support for Various Design Conditions

Design Condition Hyper-Register Support

Initial conditions that cannot be preserved Hyper-Registers do have initial condition support. However, you cannot
perform some retiming operations while preserving the initial condition stage
of all registers (that is, the merging and duplicating of Hyper-Registers). If
this condition occurs in the design, the Fitter does not retime those registers.
This retiming limit ensures that the register retiming does not affect design
functionality.

Register has an asynchronous clear Hyper-Registers support only data and clock inputs. Hyper-Registers do not
have control signals such as asynchronous clears, presets, or enables. The
Fitter cannot retime any register that has an asynchronous clear. Use
asynchronous clears only when necessary, such as state machines or control
logic. Often, you can avoid or remove asynchronous clears from large parts
of a datapath.

Register drives an asynchronous signal This design condition is inherent to any design that uses asynchronous
resets. Focus on reducing the number of registers that are reset with an
asynchronous clear.

Register has don’t touch or preserve
attributes

The Compiler does not retime registers with these attributes. If you use the
preserve attribute to manage register duplication for high fan-out signals,
try removing the preserve attribute. The Compiler may be able to retime
the high fan-out register along each of the routing paths to its destinations.
Alternatively, use the dont_merge attribute. The Compiler retimes registers
in ALMs, DDIOs, single port RAMs, and DSP blocks.

Register is a clock source This design condition is uncommon, especially for performance-critical parts
of a design. If this retiming restriction prevents you from achieving the
required performance, consider whether a PLL can generate the clock, rather
than a register.

Register is a partition boundary This condition is inherent to any design that uses design partitions. If this
retiming restriction prevents you from achieving the required performance,
add additional registers inside the partition boundary for Hyper-Retiming.

Register is a block type modified by an
ECO operation

This restriction is uncommon. Avoid the restriction by making the functional
change in the design source and recompiling, rather than performing an
ECO.

Register location is an unknown block This restriction is uncommon. You can often work around this condition by
adding extra registers adjacent to the specified block type.

Register is described in the RTL as a latch Hyper-Registers cannot implement latches. The Compiler infers latches
because of RTL coding issues, such as incomplete assignments. If you do not
intend to implement a latch, change the RTL.

Register location is at an I/O boundary All designs contain I/O, but you can add additional pipeline stages next to
the I/O boundary for Hyper-Retiming.

continued...

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Design Condition Hyper-Register Support

Combinational node is fed by a special
source

This condition is uncommon, especially for performance-critical parts of a
design.

Register is driven by a locally routed clock Only the dedicated clock network clocks Hyper-Registers. Using the routing
fabric to distribute clock signals is uncommon, especially for performance-
critical parts of a design. Consider implementing a small clock region instead.

Register is a timing exception end-point The Compiler does not retime registers that are sources or destinations
of .sdc constraints.

Register with inverted input or output This condition is uncommon.

Register is part of a synchronizer chain The Fitter optimizes synchronizer chains to increase the mean time between
failure (MTBF), and the Compiler does not retime registers that are detected
or marked as part of a synchronizer chain. Add more pipeline stages at the
clock domain boundary adjacent to the synchronizer chain to provide
flexibility for the retiming.

Register with multiple period requirements
for paths that start or end at the register
(cross-clock boundary)

This situation occurs at any cross-clock boundary, where a register latches
data on a clock at one frequency, and fans out to registers running at
another frequency. The Compiler does not retime registers at cross-clock
boundaries. Consider adding additional pipeline stages at one side of the
clock domain boundary, or the other, to provide flexibility for retiming.

1.6. Exporting Compilation Results

When you run compilation, the Compiler preserves a database of results in a Quartus
Database File (.qdb). The .qdb contains the data to reproduce similar results in
another project, or in a later software version. You can export your project's
compilation results database for import to another project or migration to a later Intel
Quartus Prime software version.

You can export the .qdb for your entire project or for a design partition that you
define in your project. When migrating the database for an entire project, you can
export the compilation database in a version-compatible format to ensure
compatibility for import to a later software version. Although you cannot directly read
the contents of the .qdb file after export, you can view attributes of the database file
in the Quartus Database File Viewer.

Table 13. Exporting Compilation Results

To Export
Compilation Results

For

Method Description

Complete Design Click Project ➤ Export Design Saves compilation results for the entire project in a
version-compatible Quartus database file (.qdb) that you
can import to another project or migrate to a later version
of the Intel Quartus Prime software. You can export the
results for the synthesized or final compilation snapshot.

Design Partition Click Project ➤ Export Design
Partition

Saves compilation results for a design partition as a
Partition Database File (.qdb) that you can import to
another project using the same version of the Intel
Quartus Prime software. You can export the results for the
synthesized or final compilation snapshot.

1.6.1. Exporting a Version-Compatible Compilation Database

To export a project compilation database to a format that ensures version-
compatibility with a later version of the Intel Quartus Prime software:

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. In the Intel Quartus Prime software, open the project that you want to export.

2. Generate synthesis or final compilation results by running one of the following
commands:

• Click Processing ➤ Start ➤ Start Analysis & Synthesis to generate
synthesized compilation results.

• Click Processing ➤ Start Compilation to generate final compilation results.

3. Click Project ➤ Export Design. Select the synthesized or final Snapshot.

Figure 49. Export Design Dialog Box

4. Specify a name for the Quartus Database File to contain the exported results,
and click OK.

5. To include the exported design's settings and constraint files, copy the .qsf
and .sdc files to the import project directory.

1.6.2. Importing a Version-Compatible Compilation Database

Follow these steps to import a project compilation database into a newer version of
the Intel Quartus Prime software:

1. Export a version-compatible compilation database for a complete design, as
Exporting a Version-Compatible Compilation Database on page 50 describes.

2. In a newer version of the Intel Quartus Prime software, open the original project.
Click Yes if prompted to open a project created with a different software version.

3. Click Project ➤ Import Design and specify the Quartus Database File. To
remove previous results, turn on Overwrite existing project's databases

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 50. Import Design Dialog Box

4. Click OK.

5. When you compile the imported design, run only Compiler stages that occur after
the stage the .qdb preserves, rather than running a full compilation. For example,
if you import a version-compatible database that contains the synthesis snapshot,
start compilation with the Fitter (Processing ➤ Start ➤ Start Fitter). If you
import a version-compatible database the contains the final snapshot, start
compilation with Timing Analysis (Signoff) (Processing ➤ Start ➤ Start Timing
Analysis (Signoff)).

1.6.3. Creating a Design Partition

A design partition is a logical, named, hierarchical boundary that you can assign to an
instance in your design. Defining a design partition allows you to optimize and lock
down the compilation results for individual blocks. You can then optionally export the
compilation results of a design partition for reuse in another context, such as reuse in
another project.

Figure 51. Design Partitions in Design Hierarchy

A

B C

D E F

Root Partition

Partition B Partition F
Follow these steps to create and modify design partitions:

1. In the Intel Quartus Prime software, open the project that you want to partition.

2. Generate synthesis or final compilation results by running one of the following
commands:

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Click Processing ➤ Start ➤ Start Analysis & Synthesis to generate
synthesized compilation results.

• Click Processing ➤ Start Compilation to generate final compilation results.

3. In the Project Navigator, right-click an instance in the Hierarchy tab, click Design
Partition ➤ Set as Design Partition.

Figure 52. Creating a Design Partition from the Project Hierarchy

4. To view and edit all design partitions in the project, click Assignments ➤ Design
Partitions Window.

Figure 53. Design Partitions Window

blinking_led
root_partition

u_blinking_led Default

5. Specify the properties of the design partition in the Design Partitions Window. The
following settings are available:

Table 14. Design Partition Settings

Option Description

Partition Name Specifies the partition name. Each partition name must be unique and consist of only
alphanumeric characters. The Intel Quartus Prime software automatically creates a top-level
(|) "root_partition" for each project revision.

Hierarchy Path Specifies the hierarchy path of the entity instance that you assign to the partition. You specify
this value in the Create New Partition dialog box. The root partition hierarchy path is |.

Type Double-click to specify one of the following partition types that control how the Compiler
processes and implements the partition:

continued...

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

• Default—Identifies a standard partition. The Compiler processes the partition using the
associated design source files.

• Reconfigurable—Identifies a reconfigurable partition in a partial reconfiguration flow.
Specify the Reconfigurable type to preserve synthesis results, while allowing refit of the
partition in the PR flow.

• Reserved Core—Identifies a partition in a block-based design flow that is reserved for
core development by a Consumer reusing the device periphery.

Preservation Level Specifies one of the following preservation levels for the partition:
• Not Set—specifies no preservation level. The partition compiles from source files.
• synthesized—the partition compiles using the synthesized snapshot.
• final—the partition compiles using the final snapshot.

Empty Specifies an empty partition that the Compiler skips. This setting is incompatible with the
Reserved Core and Partition Database File settings for the same partition. The
Preservation Level must be Not Set. An empty partition cannot have any child partitions.

Partition Database File Specifies a Partition Database File (.qdb) that the Compiler uses during compilation of the
partition. You export the .qdb for the stage of compilation that you want to reuse
(synthesized or final). Assign the .qdb to a partition to reuse those results in another context.

Entity Re-binding • PR Flow—specifies the entity that replaces the default persona in each implementation
revision.

• Root Partition Reuse Flow —specifies the entity that replaces the reserved core logic in the
consumer project.

Color Specifies the color-coding of the partition in the Chip Planner and Design Partition Planner
displays.

Post Synthesis Export
File

Automatically exports post-synthesis compilation results for the partition to the .qdb that you
specify, each time Analysis & Synthesis runs. You can automatically export any design
partition that does not have a preserved parent partition, including the root_partition.

Post Final Export File Automatically exports post-final compilation results for the partition to the .qdb that you
specify, each time the final stage of the Fitter runs. You can automatically export any design
partition that does not have a preserved parent partition, including the root_partition.

1.6.4. Exporting a Design Partition

The following steps describe export of design partitions that you create in your
project.

When you compile a design containing design partitions, the Compiler can preserve a
synthesis or final snapshot of results for each partition. You can export the
synthesized or final compilation results for individual design partitions with the Export
Design Partition dialog box.

If the partition includes any entity-bound .sdc files, you can include those constraints
in the .qdb. In addition, you can automate export of one or more partitions in the
Design Partitions Window.

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Manual Design Partition Export

Follow these steps to manually export a design partition with the Export Design
Partition dialog box:

1. Open a project and create one or more design partitions. Creating a Design
Partition on page 52 describes this process.

2. Run synthesis (Processing ➤ Start ➤ Start Analysis & Synthesis) or full
compilation (Processing ➤ Start Compilation), depending on which compilation
results that you want to export.

3. Click Project ➤ Export Design Partition, and specify one or more options in the
Export Design Partition dialog box:

Figure 54. Export Design Partition Dialog Box

• Select the Partition name and the compilation Snapshot for export.

• To include any entity-bound .sdc files in the exported .qdb, turn on Include
entity-bound SDC files for the selected partition.

4. Click OK. The compilation results for the design partition exports to the file that
you specify.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Automated Design Partition Export

Follow these steps to automatically export one or more design partitions following
each compilation:

1. Open a project containing one or more design partitions. Creating a Design
Partition on page 52 describes this process.

2. To open the Design Partitions Window, click Assignments ➤ Design Partitions
Window.

3. To automatically export a partition with synthesis results after each time you run
synthesis, specify the a .qdb export path and file name for the Post Synthesis
Export File option for that partition. If you specify only a file name without path,
the file exports to the output_files directory after compilation.

4. To automatically export a partition with final snapshot results each time you run
the Fitter, specify a .qdb file name for the Post Final Export File option for that
partition. If you specify only a file name without path, the file exports to the
output_files directory after compilation.

Figure 55. Specifying Export File in Design Partitions Window

.qsf Equivalent Assignment:

set_instance_assignment -name EXPORT_PARTITION_SNAPSHOT_<FINAL|SYNTHESIZED> \
 <hpath> -to <file_name>.qdb

1.6.5. Reusing a Design Partition

You can reuse the compilation results of a design partition exported from another Intel
Quartus Prime project. Reuse of a design partition allows you to share a synthesized
or final design block with another designer.. Refer to Intel Quartus Prime Pro Edition
User Guide: Block-Based Design for more information about reuse of design partitions.

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To reuse an exported design partition in another project, you assign the exported
partition .qdb to an appropriately configured design partition in the target project via
the Design Partition Window:

1. Export a design partition with the appropriate snapshot, as Exporting a Design
Partition on page 54 describes.

2. Open the target Intel Quartus Prime project that you want to reuse the exported
partition.

3. Click Processing ➤ Start ➤ Start Analysis & Elaboration.

4. Click Assignments ➤ Design Partitions Window, and then create an
appropriately sized design partition to contain the logic and compilation results of
the exported .qdb.

5. Click the Partition Database File option for the new partition and select the
exported .qdb file.

Figure 56. Partition Database File Setting in Design Partitions Window

6. Specify any other properties of the design partition in the Design Partitions
Window. The Compiler uses the partition's assigned .qdb as the source.

1.6.6. Viewing Quartus Database File Information

Although you cannot directly read a .qdb file, you can view helpful attributes about
the file to quickly identify its contents and suitability for use.

The Intel Quartus Prime software automatically stores metadata about the project of
origin when you export a Quartus Database File (.qdb). The Intel Quartus Prime
software automatically stores metadata about the project of origin and resource
utilization when you export a Partition Database File (.qdb) from your project. You
can then use the Quartus Database File Viewer to display the attributes any of
these .qdb files.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 57. Quartus Database File Viewer

Follow these steps to view the attributes of a .qdb file:

1. In the Intel Quartus Prime software, click File ➤ Open, select Design Files for
Files of Type, and select a .qdb file.

2. Click Open. The Quartus Database File Viewer displays project and resource
utilization attributes of the .qdb.

Alternatively, run the following command-line equivalent:

quartus_cdb --extract_metadata --file <archive_name.qdb> \
 --type quartus --dir <extraction_directory> \
 [--overwrite]

1.6.6.1. QDB File Attribute Types

The Quartus Database Viewer can display the following attributes of a .qdb file:

Table 15. QDB File Attributes

QDB Attribute Types Attribute Example

Project Information Contents Partition

Date Thu Jan 23 10:56:23 2018

Device 10AX016C3U19E2LG

Entity (if Partition) Counter

Family Arria 10

Partition Name root_partition

continued...

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Revision Name Top

Revision Type PR_BASE

Snapshot synthesized

Version 18.1.0 Pro Edition

Version-Compatible Yes

Resource Utilization (exported
for partition QDB only)

For synthesized snapshot partition
lists data from the Synthesis
Resource Usage Summary
report.

Average fan-out.16

Dedicated logic registers:14

Estimate of Logic utilization:1

I/O pins:35

Maximum fan-out:2

Maximum fan-out node:counter[23]

Total DSP Blocks:0

Total fan-out:6

...

For the final snapshot partition,
lists data from the Fitter Partition
Statistics report.

Average fan-out:.16

Combinational ALUTs: 16

I/O Registers

M20Ks

...

1.6.7. Clearing Compilation Results

You can clean the project database if you want to remove prior compilation results for
all project revisions or for specific revisions. For example, you must clear previous
compilation results before importing a version-compatible database to an existing
project.

1. Click Project > Clean Project.

2. Select All revisions to clear the databases for all revisions of the current project,
or specify a Revision name to clear only the revision’s database you specify.

3. Click OK. A message indicates when the database is clean.

Figure 58. Clean Project Dialog Box Cleans the Project Database

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7. Reducing Compilation Time

The Intel Quartus Prime Pro Edition software supports various strategies to reduce
overall design compilation time. Running a full compilation including all Compiler
modules on a large design can be time consuming. Use any the following techniques
to reduce the overall compilation times of your design:

• Parallel compilation—the Compiler detects and uses multiple processors to reduce
compilation time (for systems with multiple processor cores).

• Incremental optimization—breaks compilation into separate stages, allowing
iterative analysis of results and optimization of settings at various compilation
stages, prior to running a full compilation.

• Rapid Recompile of changed blocks—the Compiler reuses previous compilation
results and does not reprocess unchanged design blocks. This flow is
recommended for making small design changes in HDL or for adding or changing
Signal Tap debug logic.

Related Information

• Running Rapid Recompile on page 60

• Reducing Compilation Time on page 87

1.7.1. Running Rapid Recompile

During Rapid Recompile the Compiler reuses previous synthesis and fitting results
whenever possible, and does not reprocess unchanged design blocks. Use Rapid
Recompile to reduce timing variations and the total recompilation time after making
small design changes.

Figure 59. Rapid Recompile

Regular Compile

A

B
C

D

E

J G
x y z

Unchanged

Changed

Rapid
Recompile

To run Rapid Recompile, follow these steps:

1. Prior to initial compilation, click Assignments ➤ Settings ➤ Compiler Settings
and turn on Enable Intermediate Fitter Snapshots. This option must be
enabled to subsequently use the Rapid Recompile feature.

2. To start Rapid Recompile following an initial compilation (or after running the
Route stage of the Fitter), click Processing ➤ Start ➤ Start Rapid Recompile.
Rapid Recompile implements the following types of design changes without full
recompilation:

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Changes to nodes tapped by the Signal Tap Logic Analyzer

• Changes to combinational logic functions

• Changes to state machine logic (for example, new states, state transition
changes)

• Changes to signal or bus latency or addition of pipeline registers

• Changes to coefficients of an adder or multiplier

• Changes to register packing behavior of DSP, RAM, or I/O

• Removal of unnecessary logic

• Changes to synthesis directives

3. Click the Rapid Recompile Preservation Summary report to view detailed
information about the percentage of preserved compilation results.

Figure 60. Rapid Recompile Preservation Summary

1.7.2. Enabling Multi-Processor Compilation

The Compiler can detect and use multiple processors to reduce total compilation time.
You specify the number of processors the Compiler uses. The Intel Quartus Prime
software can use up to 16 processors to run algorithms in parallel. The Compiler uses
parallel compilation by default. To reserve some processors for other tasks, specify a
maximum number of processors that the software uses.

This technique reduces the compilation time by up to 10% on systems with two
processing cores, and by up to 20% on systems with four cores. When running timing
analysis independently, two processors reduce the timing analysis time by an average
of 10%. This reduction reaches an average of 15% when using four processors.

The Intel Quartus Prime software does not necessarily use all the processors that you
specify during a given compilation. Additionally, the software never uses more than
the specified number of processors. This fact enables you to work on other tasks
without slowing down your computer. The use of multiple processors does not affect
the quality of the fit. For a given Fitter seed, and given Maximum processors
allowed setting on a specific design, the fit is exactly the same and deterministic.
This remains true, regardless of the target machine, and the number of available
processors. Different Maximum processors allowed specifications produce different
results of the same quality. The impact is similar to changing the Fitter seed setting.

To enable multiprocessor compilation, follow these steps:

1. Open or create an Intel Quartus Prime project.

2. Click Assignments ➤ Settings ➤ Compilation Process Settings.

3. Under Parallel compilation, specify options for the number of processors the
Compiler uses.

4. View detailed information about processor use in the Parallel Compilation report
following compilation.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To specify the number of processors for compilation at the command line, use the
following Tcl command in your script:

set_global_assignment -name NUM_PARALLEL_PROCESSORS <value>

In this case, <value> is an integer from 1 to 16.

If you want the Intel Quartus Prime software to detect the number of processors
and use all the processors for the compilation, include the following Tcl command
in your script:

set_global_assignment -name NUM_PARALLEL_PROCESSORS ALL

Note: The Compiler detects Intel Hyper-Threading® Technology (Intel® HT
Technology) as a single processor. If your system includes a single processor
with Intel HT Technology, set the number of processors to one. Do not use
the Intel HT Technology for Intel Quartus Prime compilations.

1.7.3. Factors Affecting Compilation Results

Almost any change to the following project settings, hardware, or software can impact
the results from one compilation to the next.

• Project Files—changes to project settings (.qsf, quartus2.ini), design files,
and timing constraints (.sdc) can change the results.

• Any setting that changes the number of processors during compilation can impact
compilation results.

• Hardware—CPU architecture, not including hard disk or memory size differences.
Windows XP x32 results are not identical to Windows XP x64 results. Linux x86
results is not identical to Linux x86_64.

• Intel Quartus Prime Software Version—including build number and installed
interim updates. Click Help > About to obtain this information.

• Operating System—Windows or Linux operating system, excluding version
updates. For example, Windows XP, Windows Vista, and Windows 7 results are
identical. Similarly, Linux RHEL, CentOS 4, and CentOS 5 results are identical.

1.8. Generating Programming Files

The Compiler's Assembler module generates files for device programming. Run the
Assembler automatically as part of a full compilation, or run the Assembler module
independently after design place and route. After running the Assembler, you can use
the Programmer to download configuration data to a device. The Assembler generates
one or more of the following files according to your specification in the Device & Pin
Options dialog box.

Table 16. Assembler Generated Programming Files

Programming File Description

SRAM Object Files (.sof) A binary file containing the data for configuring all SRAM-based Intel FPGA devices.

Programmer Object Files (.pof) A binary file containing the data for programming an EEPROM-based Intel
configuration device. For example, the EPCS16 and EPCS64 devices, which
configure SRAM-based Intel FPGA devices.

continued...

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Programming File Description

Hexadecimal (Intel-Format) Output
Files (.hexout)

Contains configuration data that you can program into a parallel data source, such
as an EPROM or a mass storage device, which configures an SRAM-based Intel
FPGA device.

Raw Binary Files (.rbf) Contains configuration data that an intelligent external controller uses to configure
an SRAM-based Intel FPGA device.

Tabular Text Files (.ttf) Contains configuration data that an intelligent external controller uses to configure
an SRAM-based Intel FPGA device.
Note: Generation of these files not available for Intel Stratix 10 designs.Serial Vector Format File (.svf)

1. Before running the Assembler, specify settings to customize programming file
generation. Click Assignments ➤ Device ➤ Device & Pin Options to enable or
disable generation of optional programming files.

2. To generate device programming files, click Processing ➤ Start ➤ Start
Assembler, or click Assembler on the Compilation Dashboard. The Compiler
confirms that prerequisite modules are complete, and launches the Assembler
module to generate the programming files that you specify. The Messages window
dynamically displays processing information, warnings, or errors. After Assembler
processing,

After running the Assembler, the Compilation report provides detailed information
about programming file generation, including programming file Summary and
Encrypted IP information.

Figure 61. Assembler Reports

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 62. Device & Pin Options

Related Information

Intel Quartus Prime Pro Edition User Guide: Programmer

1.9. Synthesis Language Support

The Intel Quartus Prime software synthesizes standard Verilog HDL, VHDL, and
SystemVerilog design files.

1.9.1. Verilog and SystemVerilog Synthesis Support

Intel Quartus Prime synthesis supports the following Verilog HDL language standards:

• Verilog-1995 (IEEE Standard 1364-1995)

• Verilog-2001 (IEEE Standard 1364-2001)

• SystemVerilog-2005 (IEEE Standard 1800-2005)

• SystemVerilog-2009 (IEEE Standard 1800-2009)

The following important guidelines apply to Intel Quartus Prime synthesis of Verilog
HDL and SystemVerilog:

• The Compiler uses the Verilog-2001 standard by default for files with an extension
of .v, and the SystemVerilog standard for files with the extension of .sv.

• If you use scripts to add design files, you can use the -HDL_VERSION command
to specify the HDL version for each design file.

• Compiler support for Verilog HDL is case sensitive in accordance with the Verilog
HDL standard.

• The Compiler supports the compiler directive `define, in accordance with the
Verilog HDL standard.

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

64

https://www.intel.com/content/www/us/en/programmable/documentation/ftt1513991830769.html#mwh1410385041468
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The Compiler supports the include compiler directive to include files with
absolute paths (with either “/” or “\” as the separator), or relative paths.

• When searching for a relative path, the Compiler initially searches relative to the
project directory. If the Compiler cannot find the file, the Compiler next searches
relative to all user libraries. Finally, the Compiler searches relative to the current
file's directory location.

• Intel Quartus Prime Pro Edition synthesis searches for all modules or entities
earlier in the synthesis process than other Quartus software tools. This earlier
search produces earlier syntax errors for undefined entities than other Quartus
software tools.

Related Information

• Intel Quartus Prime Pro Edition User Guide: Timing Analyzer

• Intel Quartus Prime Pro Edition User Guide: Design Recommendations

1.9.1.1. Verilog HDL Input Settings (Settings Dialog Box)

Click Assignments ➤ Settings ➤ Verilog HDL Input to specify options for the
synthesis of Verilog HDL input files.

Figure 63. Verilog HDL Input Settings Dialog Box

Table 17. Verilog HDL Input Settings

Setting Description

Verilog Version Directs synthesis to process Verilog HDL input design files using the specified standard.
You can select any of the supported language standards to match your Verilog HDL files
or SystemVerilog design files.

Library Mapping File Allows you to optionally specify a provided Library Mapping File (.lmf) for use in
synthesizing Verilog HDL files that contain non-Intel FPGA functions mapped to IP
cores. You can specify the full path name of the LMF in the File name box.

Verilog HDL Macro Verilog HDL macros are pre-compiler directives which can be added to Verilog HDL files
to define constants, flags, or other features by Name and Setting. Macros that you
add appear in the Existing Verilog HDL macro settings list.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

65

https://www.intel.com/content/www/us/en/programmable/documentation/psq1513989797346.html#mwh1410383638859
https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html#mwh1409959483992
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.9.1.2. Design Libraries

By default, the Compiler processes all design files into one or more libraries.

• When compiling a design instance, the Compiler initially searches for the entity in
the library associated with the instance (which is the work library if you do not
specify any library).

• If the Compiler cannot locate the entity definition, the Compiler searches for a
unique entity definition in all design libraries.

• If the Compiler finds more than one entity with the same name, the Compiler
generates an error. If your design uses multiple entities with the same name, you
must compile the entities into separate libraries.

1.9.1.3. Verilog HDL Configuration

Verilog HDL configuration is a set of rules that specify the source code for particular
instances. Verilog HDL configuration allows you to perform the following tasks:

• Specify a library search order for resolving cell instances (as does a library
mapping file).

• Specify overrides to the logical library search order for specified instances.

• Specify overrides to the logical library search order for all instances of specified
cells.

1.9.1.3.1. Hierarchical Design Configurations

A design can have more than one configuration. For example, you can define a
configuration that specifies the source code you use in particular instances in a sub-
hierarchy, and then define a configuration for a higher level of the design.

For example, suppose a subhierarchy of a design is an eight-bit adder, and the RTL
Verilog code describes the adder in a logical library named rtllib. The gate-level
code describes the adder in the gatelib logical library. If you want to use the gate-
level code for the 0 (zero) bit of the adder and the RTL level code for the other seven
bits, the configuration might appear as follows:

Example 1. Gate-level code for the 0 (zero) bit of the adder

config cfg1;
design aLib.eight_adder;
default liblist rtllib;
instance adder.fulladd0 liblist gatelib;
endconfig

If you are instantiating this eight-bit adder eight times to create a 64-bit adder, use
configuration cfg1 for the first instance of the eight-bit adder, but not in any other
instance. A configuration that performs this function is shown below:

Example 2. Use configuration cfg1 for first instance of eight-bit adder

config cfg2;
design bLib.64_adder;
default liblist bLib;
instance top.64add0 use work.cfg1:config;
endconfig

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The name of the unbound module may be different from the name of the cell that is
bounded to the instance.

1.9.1.4. Initial Constructs and Memory System Tasks

The Intel Quartus Prime software infers power-up conditions from the Verilog HDL
initial constructs. The Intel Quartus Prime software also creates power-up settings
for variables, including RAM blocks. If the Intel Quartus Prime software encounters
non-synthesizable constructs in an initial block, it generates an error.

To avoid such errors, enclose non-synthesizable constructs (such as those intended
only for simulation) in translate_off and translate_on synthesis directives.
Synthesis of initial constructs enables the power-up state of the synthesized design to
match the power-up state of the original HDL code in simulation.

Note: Initial blocks do not infer power-up conditions in some third-party EDA synthesis tools.
If you convert between synthesis tools, you must set your power-up conditions
correctly.

Intel Quartus Prime synthesis supports the $readmemb and $readmemh system tasks
to initialize memories.

Example 3. Verilog HDL Code: Initializing RAM with the readmemb Command

reg [7:0] ram[0:15];
initial
begin
$readmemb("ram.txt", ram);
end

When creating a text file to use for memory initialization, specify the address using
the format @<location> on a new line, and then specify the memory word such as
110101 or abcde on the next line.

The following example shows a portion of a Memory Initialization File (.mif) for the
RAM.

Example 4. Text File Format: Initializing RAM with the readmemb Command

@0
00000000
@1
00000001
@2
00000010
…
@e
00001110
@f
00001111

1.9.1.5. Verilog HDL Macros

The Intel Quartus Prime software fully supports Verilog HDL macros, which you can
define with the 'define compiler directive in your source code. You can also define
macros in the Intel Quartus Prime software or on the command line.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To set Verilog HDL macros at the command line for the Intel Quartus Prime Pro Edition
synthesis (quartus_syn) executable, use the following format:

quartus_syn <PROJECT_NAME> --set=VERILOG_MACRO=a=2

This command adds the following new line to the project .qsf file:

set_global_assignment -name VERILOG_MACRO "a=2"

To avoid adding this line to the project .qsf, add this option to the quartus_syn
command:

--write_settings_files=off

1.9.2. VHDL Synthesis Support

Intel Quartus Prime synthesis supports the following VHDL language standards.

• VHDL 1987 (IEEE Standard 1076-1987)

• VHDL 1993 (IEEE Standard 1076-1993)

• VHDL 2008 (IEEE Standard 1076-2008)

The Intel Quartus Prime Compiler uses the VHDL 1993 standard by default for files
that have the extension .vhdl or .vhd.

Note: The VHDL code samples follow the VHDL 1993 standard.

Related Information

Migrating to Quartus Prime Pro Edition

1.9.2.1. VHDL Input Settings (Settings Dialog Box)

Click Assignments ➤ Settings ➤ VHDL Input to specify options for the synthesis of
VHDL input files.

Table 18. VHDL Input Settings

Setting Description

VHDL Version Specifies the VHDL standard for use during synthesis of VHDL input design files. Select
the language standards that corresponds with the VHDL files.

Library Mapping File Specifies a Library Mapping File (.lmf) for use in synthesizing VHDL files that contain
IP cores. Specify the full path name of the LMF in the File name box.

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

68

https://www.intel.com/content/www/us/en/programmable/documentation/spj1513986956763.html#jbr1442806931610
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 64. VHDL Input Settings Dialog Box

1.9.2.2. VHDL Standard Libraries and Packages

The Intel Quartus Prime software includes the standard IEEE libraries and several
vendor-specific VHDL libraries. The IEEE library includes the standard VHDL packages
std_logic_1164, numeric_std, numeric_bit, and math_real.

The STD library is part of the VHDL language standard and includes the packages
standard (included in every project by default) and textio. For compatibility with
older designs, the Intel Quartus Prime software also supports the following vendor-
specific packages and libraries:

• Synopsys* packages such as std_logic_arith and std_logic_unsigned in
the IEEE library.

• Mentor Graphics* packages such as std_logic_arith in the ARITHMETIC
library.

• Primitive packages altera_primitives_components (for primitives such as
GLOBAL and DFFE) and maxplus2 in the ALTERA library.

• IP core packages altera_mf_components in the ALTERA_MF library for specific
IP cores including LCELL. In addition, lpm_components in the LPM library for
library of parameterized modules (LPM) functions.

Note: Import component declarations for primitives such as GLOBAL and DFFE from the
altera_primitives_components package and not the altera_mf_components
package.

1.9.2.3. VHDL wait Constructs

The Intel Quartus Prime software supports one VHDL wait until statement per
process block. However, the Intel Quartus Prime software does not support other
VHDL wait constructs, such as wait for and wait on statements, or processes with
multiple wait statements.

Example 5. VHDL wait until construct example

architecture dff_arch of ls_dff is
begin
output: process begin
wait until (CLK'event and CLK='1');
Q <= D;

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Qbar <= not D;
end process output;
end dff_arch;

1.10. Synthesis Settings Reference

This section provides a reference to all synthesis settings. Use these settings to
customize synthesis processing for your design goals.

1.10.1. Enable Intermediate Fitter Snapshots

To save compilation time, the Compiler does not save the planned, placed, routed, or
retimed snapshots by default during full compilation.

However, you can turn on Enable Intermediate Fitter Snapshots (Assignments ➤
Settings ➤ Compiler Settings) to generate and preserve snapshots for the Plan,
Place, Route, and Retime stages any time you run full compilation. You can also run
any intermediate Fitter stage independently to generate the snapshot for that stage.

Note: You must enable Enable Intermediate Fitter Snapshots to subsequently use the
Rapid Recompile feature.

1.10.2. Optimization Modes

The following options direct the focus of Compiler optimization efforts during
synthesis. Specify a Balanced strategy, or optimize for Performance, Area,
Routability, Power, or Compile Time. The Compiler targets the optimization goal
you specify. The settings affect synthesis and fitting.

Table 19. Optimization Modes (Compiler Settings Page)

Optimization Mode Description

Balanced (normal flow) The Compiler optimizes synthesis for balanced implementation that respects timing
constraints.

High Performance Effort The Compiler increases the timing optimization effort during placement and routing,
and enables timing-related Physical Synthesis optimizations (per register optimization
settings). Each additional optimization can increase compilation time.

High Performance with
Maximum Placement Effort

Enables the same Compiler optimizations as High Performance Effort, with
additional placement optimization effort.

Superior Performance Enables the same Compiler optimizations as High Performance Effort, and adds
more optimizations during Analysis & Synthesis to maximize design performance with
a potential increase to logic area. If design utilization is already very high, this option
may lead to difficulty in fitting, which can also negatively affect overall optimization
quality.

Superior Performance with
Maximum Placement Effort

Enables the same Compiler optimizations as Superior Performance, with additional
placement optimization effort.

Aggressive Area The Compiler makes aggressive effort to reduce the device area required to implement
the design at the potential expense of design performance.

High Placement Routability
Effort

The Compiler makes high effort to route the design at the potential expense of design
area, performance, and compilation time. The Compiler spends additional time
reducing routing utilization, which can improve routability and also saves dynamic
power.

continued...

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Optimization Mode Description

High Packing Routability
Effort

The Compiler makes high effort to route the design at the potential expense of design
area, performance, and compilation time. The Compiler spends additional time packing
registers, which can improve routability and also saves dynamic power.

Optimize Netlist for
Routability

The Compiler implements netlist modifications to increase routability at the possible
expense of performance.

High Power Effort The Compiler makes high effort to optimize synthesis for low power. High Power
Effort increases synthesis run time.

Aggressive Power Makes aggressive effort to optimize synthesis for low power. The Compiler further
reduces the routing usage of signals with the highest specified or estimated toggle
rates, saving additional dynamic power but potentially affecting performance.

Aggressive Compile Time Reduces the compile time required to implement the design with reduced effort and
fewer performance optimizations. This option also disables some detailed reporting
functions.
Note: Turning on Aggressive Compile Time enables Intel Quartus Prime Settings

File (.qsf) settings which cannot be overridden by other .qsf settings.

Note: If you enable extended optimization modes for Design Space Explorer II by use
of .qsf assignments, and then subsequently open the Compiler Settings tab for
that project revision, the Compiler Settings tab indicates that the extended
optimization mode reverts to one of the Compiler Settings tab Optimization
Modes.

1.10.3. Allow Register Retiming

The Allow Register Retiming option controls whether or not to globally disable
retiming. When turned on, the Compiler automatically performs register retiming
optimizations, moving registers through combinational logic. When turned off, the
Compiler prevents any retiming optimizations on a global scale. Optionally, assign
Allow Register Retiming to any design entity or instance for specific portions of the
design. Click Assignments ➤ Assignment Editor to specify entity- and instance-
level assignments, or use the following syntax to make the assignment in the .qsf
directly.

Example 6. Disable register retiming for entity abc

set_global_assignment –name ALLOW_REGISTER_RETIMING ON

set_instance_assignment –name ALLOW_REGISTER_RETIMING OFF –to “abc|”

set_instance_assignment –name ALLOW_REGISTER_RETIMING ON –to “abc|def|”

Example 7. Disable register retiming for the whole design, except for registers in entity
abc

set_global_assignment –name ALLOW_REGISTER_RETIMING OFF

set_instance_assignment –name ALLOW_REGISTER_RETIMING ON –to “abc|”

set_instance_assignment –name ALLOW_REGISTER_RETIMING OFF –to “abc|def|”

1.10.4. Advanced Synthesis Settings

The following section is a quick reference of all Advanced Synthesis Settings. Click
Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings
(Synthesis) to modify these settings.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 20. Advanced Synthesis Settings (1 of 13)

Option Description

Allow Any RAM Size for
Recognition

Allows the Compiler to infer RAMs of any size, even if the RAMs do not meet the current
minimum requirements.

Allow Any ROM Size for
Recognition

Allows the Compiler to infer ROMs of any size even if the ROMs do not meet the design's
current minimum size requirements.

Allow Any Shift Register
Size for Recognition

Allows the Compiler to infer shift registers of any size even if they do not meet the
design's current minimum size requirements.

Allow Register Duplication Controls whether the Compiler duplicates registers to improve design performance.
When enabled, the Compiler performs optimization that creates a second copy of a
register and move a portion of its fan-out to this new node. This technique improves
routability and reduces the total routing wire required to route a net with many fan-
outs. If you disable this option, retiming of registers is also disabled.
Note: Not available for Intel Stratix 10 devices.

Allow Register Merging Controls whether the Compiler removes (merges) identical registers. When enabled, in
cases where two registers generate the same logic, the Compiler may delete one
register and fan-out the remaining register to the deleted register's destinations. This
option is useful if you want to prevent the Compiler from removing duplicate registers
that you have used deliberately. When disabled, retiming optimizations are also
disabled.
Note: Not available for Intel Stratix 10 devices.

Allow Shift Register Merging
Across Hierarchies

Allows the Compiler to take shift registers from different hierarchies of the design and
put the registers in the same RAM.

Allow Synchronous Control
Signals

Allows the Compiler to utilize synchronous clear and synchronous load signals in normal
mode logic cells. Turning on this option helps to reduce the total number of logic cells
used in the design, but can negatively impact the fitting. This negative impact occurs
because all the logic cells in a LAB share synchronous control signals.

Table 21. Advanced Synthesis Settings (2 of 13)

Option Description

Analysis & Synthesis
Message Level

Specifies the type of Analysis & Synthesis messages the Compiler display. Low displays
only the most important Analysis & Synthesis messages. Medium displays most
messages, but hides the detailed messages. High displays all messages.

Auto Clock Enable
Replacement

Allows the Compiler to locate logic that feeds a register and move the logic to the
register's clock enable input port.

Auto DSP Block
Replacement

Allows the Compiler to find a multiply-accumulate function or a multiply-add function
that can be replaced with a DSP block.

Auto Gated Clock Conversion Automatically converts gated clocks to use clock enable pins. Clock gating logic can
contain AND, OR, MUX, and NOT gates. Turning on this option may increase memory use
and overall run time. You must use the Timing Analyzer for timing analysis, and you
must define all base clocks in Synopsys Design Constraints (.sdc) format.

Table 22. Advanced Synthesis Settings (3 of 13)

Option Description

Auto Open-Drain Pins Allows the Compiler to automatically convert a tri-state buffer with a strong low data
input into the equivalent open-drain buffer.

Auto RAM Replacement Allows the Compiler to identify sets of registers and logic that it can replace with the
altsyncram or the lpm_ram_dp IP core. Turning on this option may change the
functionality of the design.

Auto ROM Replacement Allows the Compiler to identify logic that it can replace with the altsyncram or the
lpm_rom IP core. Turning on this option may change the power-up state of the design.

continued...

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Auto Resource Sharing Allows the Compiler to share hardware resources among many similar, but mutually
exclusive, operations in your HDL source code. If you enable this option, the Compiler
merges compatible addition, subtraction, and multiplication operations. Merging
operations may reduce the area your design requires. Because resource sharing
introduces extra muxing and control logic on each shared resource, it may negatively
impact the final fMAX of your design.

Auto Shift Register
Placement

Allows the Compiler to find a group of shift registers of the same length that are
replaceable with the altshift_taps IP core. The shift registers must all use the same clock
and clock enable signals. The registers must not have any other secondary signals. The
registers must have equally spaced taps that are at least three registers apart.

Automatic Parallel Synthesis Option to enable/disable automatic parallel synthesis. Use this option to speed up
synthesis compile time by using multiple processors when available.

Table 23. Advanced Synthesis Settings (4 of 13)

Option Description

Block Design Naming Specifies the naming scheme for the block design. The Compiler ignores the option if
you assign the option to anything other than a design entity.

Clock MUX Protection Causes the multiplexers in the clock network to decompose to 2-to-1 multiplexer trees.
The Compiler protects these trees from merging with, or transferring to, other logic. This
option helps the Timing Analyzer to analyze clock behavior.

DSP Block Balancing Allows you to control the conversion of certain DSP block slices during DSP block
balancing.

Table 24. Advanced Synthesis Settings (5 of 13)

Option Description

Disable DSP Negate
Inferencing

Allows you to specify whether to use the negate port on an inferred DSP block.

Disable Register Merging
Across Hierarchies

Specifies whether the Compiler allows merging of registers that are in different
hierarchies if their inputs are the same.

Enable Formal Verification
Support

Enables the Compiler to write scripts for use with the OneSpin* formal verification tool.

Enable State Machines
Inference

Allows the Compiler to infer state machines from VHDL or Verilog HDL design files. The
Compiler optimizes state machines to reduce area and improve performance. If set to
Off, the Compiler extracts and optimizes state machines in VHDL or Verilog HDL design
files as regular logic.

Force Use of Synchronous
Clear Signals

Forces the Compiler to utilize synchronous clear signals in normal mode logic cells.
Enabling this option helps to reduce the total number of logic cells in the design, but can
negatively impact the fitting. All the logic cells in a LAB share synchronous control
signals.

Fractal Synthesis Turning this option On directs the Compiler to apply dense packing to arithmetic blocks,
minimizing the area of the design for arithmetic-intensive designs.

HDL Message Level Specifies the type of HDL messages you want to view, including messages that display
processing errors in the HDL source code. Level1 displays only the most important HDL
messages. Level2 displays most HDL messages, including warning and information
based messages. Level3 displays all HDL messages, including warning and information
based messages and alerts about potential design problems or lint errors.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 25. Advanced Synthesis Settings (6 of 13)

Option Description

Ignore GLOBAL Buffers Ignores GLOBAL buffers in the design. The Compiler ignores this option if you apply the
option to anything other than an individual GLOBAL buffer, or a design entity containing
GLOBAL buffers.

Ignore LCELL Buffers Ignores LCELL buffers in the design. The Compiler ignores this option if you apply the
option to anything other than an individual LCELL buffer, or a design entity containing
LCELL buffers.

Ignore Maximum Fan-Out
Assignments

Directs the Compiler to ignore the Maximum Fan-Out Assignments on a node, an entity,
or the whole design.

Ignore SOFT Buffers Ignores SOFT buffers in the design. The Compiler ignores this option if you apply the
option to anything other than an individual SOFT buffer or a design entity containing
SOFT buffers.

Table 26. Advanced Synthesis Settings (7 of 13)

Option Description

Ignore translate_off and
synthesis_off Directives

Ignores all translate_off/synthesis_off synthesis directives in Verilog HDL and
VHDL design files. Use this option to disable these synthesis directives and include
previously ignored code during elaboration.

Infer RAMs from Raw Logic Infers RAM from registers and multiplexers. The Compiler initially converts some HDL
patterns differing from RAM templates into logic. However, these structures function as
RAM. As a result, when you enable this option, the Compiler may substitute the
altsyncram IP core instance for them at a later stage. When you enable this assignment,
the Compiler may use more device RAM resources and fewer LABs.

Iteration Limit for Constant
Verilog Loops

Defines the iteration limit for Verilog loops with loop conditions that evaluate to compile-
time constants on each loop iteration. This limit exists primarily to identify potential
infinite loops before they exhaust memory or trap the software in an actual infinite loop.

Iteration Limit for non-
Constant Verilog Loops

Defines the iteration limit for Verilog HDL loops with loop conditions that do not evaluate
to compile-time constants on each loop iteration. This limit exists primarily to identify
potential infinite loops before they exhaust memory or trap the software in an actual
infinite loop.

Table 27. Advanced Synthesis Settings (8 of 13)

Option Description

Maximum DSP Block Usage Specifies the maximum number of DSP blocks that the DSP block balancer assumes
exist in the current device for each partition. This option overrides the usual method of
using the maximum number of DSP blocks the current device supports.

Maximum Number of LABs Specifies the maximum number of LABs that Analysis & Synthesis should try to utilize
for a device. This option overrides the usual method of using the maximum number of
LABs the current device supports, when the value is non-negative and is less than the
maximum number of LABs available on the current device.

Maximum Number of
M4K/M9K/M20K/M10K
Memory Blocks

Specifies the maximum number of M4K, M9K, M20K, or M10K memory blocks that the
Compiler may use for a device. This option overrides the usual method of using the
maximum number of M4K, M9K, M20K, or M10K memory blocks the current device
supports, when the value is non-negative and is less than the maximum number of M4K,
M9K, M20K, or M10K memory blocks available on the current device.

Table 28. Advanced Synthesis Settings (9 of 13)

Option Description

Maximum Number of
Registers Created from
Uninferred RAMs

Specifies the maximum number of registers that Analysis & Synthesis uses for
conversion of uninferred RAMs. Use this option as a project-wide option or on a specific
partition by setting the assignment on the instance name of the partition root. The

continued...

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

assignment on a partition overrides the global assignment (if any) for that particular
partition. This option prevents synthesis from causing long compilations and running out
of memory when many registers are used for uninferred RAMs. Instead of continuing the
compilation, the Intel Quartus Prime software issues an error and exits.

NOT Gate Push-Back Allows the Compiler to push an inversion (that is, a NOT gate) back through a register
and implement it on that register's data input if it is necessary to implement the design.
When this option is on, a register may power-up to an active-high state, and may need
explicit clear during initial operation of the device. The Compiler ignores this option if
you apply it to anything other than an individual register or a design entity containing
registers. When you apply this option to an output pin that is directly fed by a register,
the assignment automatically transfers to that register.

Number of Inverted
Registers Reported in
Synthesis Report

Specifies the maximum number of inverted registers that the Synthesis report displays.

Number of Protected
Registers Reported in
Synthesis Report

Specifies the maximum number of protected registers that the Synthesis Report
displays.

Number of Removed
Registers Reported in
Synthesis Migration Checks

Specifies the maximum number of rows that the Synthesis Migration Check report
displays.

Number of Swept Nodes
Reported in Synthesis
Report

Specifies the maximum number of swept nodes that the Synthesis Report displays. A
swept node is any node which was eliminated from your design because the Compiler
found the node to be unnecessary.

Number of Rows Reported in
Synthesis Report

Specifies the maximum number of rows that the Synthesis report displays.
Note: Not available for Intel Stratix 10 devices.

Optimization Technique Specifies an overall optimization goal for Analysis & Synthesis. Specify a Balanced
strategy, or optimize for Performance, Area, Routability, Power, or Compile Time.
The Compiler targets the optimization goal you specify.

Table 29. Advanced Synthesis Settings (10 of 13)

Option Description

Perform WYSIWYG Primitive
Resynthesis

Specifies whether to perform WYSIWYG primitive resynthesis during synthesis. This
option uses the setting specified in the Optimization Technique logic option.

Power-Up Don't Care Causes registers that do not have a Power-Up Level logic option setting to power-up
with a do not care logic level (X). When the Power-Up Don't Care option is on, the
Compiler determines when it is beneficial to change the power-up level of a register to
minimize the area of the design. The Compiler maintains a power-up state of zero,
unless there is an immediate area advantage.

Power Optimization During
Synthesis

Controls the power-driven compilation setting of Analysis & Synthesis. This option
determines how aggressively Analysis & Synthesis optimizes the design for power. When
this option is Off, the Compiler does not perform any power optimizations. Normal
compilation performs power optimizations provided that they are not expected to
reduce design performance. Extra effort performs additional power optimizations which
may reduce design performance.

Table 30. Advanced Synthesis Settings (11 of 13)

Option Description

Remove Duplicate Registers Removes a register if it is identical to another register. If two registers generate the
same logic, the Compiler deletes the duplicate. The first instance fans-out to the
duplicates destinations. Also, if the deleted register contains different logic option
assignments, the Compiler ignores the options. This option is useful if you want to

continued...

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

prevent the Compiler from removing intentionally duplicate registers. The Compiler
ignores this option if you apply it to anything other than an individual register or a
design entity containing registers.

Remove Redundant Logic
Cells

Removes redundant LCELL primitives or WYSIWYG primitives. Turning this option on
optimizes a circuit for area and speed. The Compiler ignores this option if you apply it to
anything other than a design entity.

Report Parameter Settings Specifies whether the Synthesis report includes the reports in the Parameter Settings
by Entity Instance folder.

Report PR Initial Values as
Errors

Allows you to flag explicitly defined initial values found in PR partitions as Errors instead
of Warnings.

Report Source Assignments Specifies whether the Synthesis report includes reports in the Source Assignments
folder.

Table 31. Advanced Synthesis Settings (12 of 13)

Option Description

Resource Aware Inference
for Block RAM

Specifies whether RAM, ROM, and shift-register inference should take the design and
device resources into account.

Restructure Multiplexers Reduces the number of logic elements synthesis requires to implement multiplexers in a
design. This option is useful if your design contains buses of fragmented multiplexers.
This option repacks multiplexers more efficiently for area, allowing the design to
implement multiplexers with a reduced number of logic elements:
• On—minimizes your design area, but may negatively affect design clock speed

(fMAX).
• Off—disables multiplexer restructuring; it does not decrease logic element usage and

does not affect design clock speed (fMAX).
• Auto—allows the Intel Quartus Prime software to determine whether multiplexer

restructuring should be enabled. The Auto setting decreases logic element usage,
but may negatively affect design clock speed (fMAX).

SDC Constraint Protection Verifies.sdc constraints in register merging. This option helps to maintain the validity
of .sdc constraints through compilation.

Safe State Machine The Safe State Machine option implements state machines that can recover from an
illegal state. The following settings are available:
• Auto—for Intel Stratix 10 designs, this default setting enables Safe State Machine

whenever the Compiler determines this setting is advantageous in state machines of
6 or less states. The setting helps to allow for unexpected initial power-up
conditions. For Intel Arria 10 and Intel Cyclone 10 GX, the Auto setting is the same
as Never.

• On—directs the Compiler to always use Safe State Machine.
• Never—never uses Safe State Machine.

Shift Register Replacement
– Allow Asynchronous Clear
Signal

Allows the Compiler to find a group of shift registers of the same length that can be
replaced with the altshift_taps IP core. The shift registers must all use the same aclr
signals, must not have any other secondary signals, and must have equally spaced taps
that are at least three registers apart. To use this option, you must turn on the Auto
Shift Register Replacement logic option.

Size of the Latch Report Allows you to specify the maximum number of latches that the Synthesis Report should
display.

Size of the PR Initial
Conditions Report

Allows you to specify the maximum number of registers that the PR Initial Conditions
Report should display.

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

76

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 32. Advanced Synthesis Settings (13 of 13)

Option Description

State Machine Processing Specifies the processing style the Compiler uses to process a state machine. You can use
your own User-Encoded style, or select One-Hot, Minimal Bits, Gray, Johnson,
Sequential, or Auto (Compiler-selected) encoding.

Strict RAM Replacement When this option is On, the Compiler replace RAM only if the hardware matches the
design exactly.

Synchronization Register
Chain Length

Specifies the maximum number of registers in a row that the Compiler considers as a
synchronization chain. Synchronization chains are sequences of registers with the same
clock and no fan-out in between, such that the first register is fed by a pin, or by logic in
another clock domain. The Compiler considers these registers for metastability analysis.
The Compiler prevents optimizations of these registers, such as retiming. When gate-
level retiming is enabled, the Compiler does not remove these registers. The default
length is set to two.

Synthesis Effort Controls the synthesis trade-off between compilation speed, performance, and area. The
default is Auto. You can select Fast for faster compilation speed at the cost of
performance and area.

Synthesis Migration Check
for Stratix 10

Enables synthesis checks on Intel Arria 10 to Intel Stratix 10 design migration.

Timing-Driven Synthesis For Intel Arria 10 and Intel Cyclone 10 GX designs, allows synthesis to use timing
information to better optimize the design. The Timing-Driven Synthesis logic option
impacts the following Optimization Technique options:
• Optimization Technique Speed—optimizes timing-critical portions of your design

for performance at the cost of increasing area (logic and register utilization)
• Optimization Technique Balanced—also optimizes the timing-critical portions of

your design for performance, but the option allows only limited area increase
• Optimization Technique Area—optimizes your design only for area

1.11. Fitter Settings Reference

Use Fitter settings to customize the place and route of your design. Click
Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings (Fitter) to
access Fitter settings.

Table 33. Advanced Fitter Settings (1 of 8)

Option Description

ALM Register Packing Effort Guides aggressiveness of the Fitter in packing ALMs during register placement. Use this
option to increase secondary register locations. Increasing ALM packing density may
lower the number of ALMs needed to fit the design, but it may also reduce routing
flexibility and timing performance.
• Low—the Fitter avoids ALM packing configurations that combine LUTs and registers

which have no direct connectivity. Avoiding these configurations may improve timing
performance but increases the number of ALMs to implement the design.

• Medium—the Fitter allows some configurations that combine unconnected LUTs and
registers to be implemented in ALM locations. The Fitter makes more use of
secondary register locations within the ALM.

• High—the Fitter enables all legal and desired ALM packing configurations. In dense
designs, the Fitter automatically increases the ALM register packing effort as required
to enable the design to fit.

Advanced Physical
Synthesis

Enables the Physical Synthesis engine that includes combinational and sequential
optimization during fitting to improve circuit performance.

Allow Delay Chains Allows the Fitter to choose the optimal delay chain to meet tSU and tCO timing
requirements for all I/O elements. Enabling this option may reduce the number of tSU
violations, while introducing a minimal number of tH violations. Enabling this option does
not override delay chain settings on individual nodes.

continued...

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Allow DSP Retiming Allow retiming through DSP blocks.

Allow Early Global Retiming
in the Fitter

Allows the Compiler to run global retiming early in the Fitter.

Allow Hyper-Aware Register
Chain Area Optimizations in
the Fitter

Reduces ALM usage by automatically forcing some back-to-back registers into Hyper
Registers. Turning on this area reduction technique may reduce performance and
increase compile time.

Allow RAM Retiming Allow retiming through RAM blocks.

Allow Register Duplication Allows the Compiler to duplicate registers to improve design performance. When you
enable this option, the Compiler copies registers and moves some fan-out to this new
node. This optimization improves routability and can reduce the total routing wire in nets
with many fan-outs. If you disable this option, this disables optimizations that retime
registers.
Note: Not available for Intel Stratix 10 devices.

Allow Register Merging Allows the Compiler to remove registers that are identical to other registers in the
design. When you enable this option, in cases where two registers generate the same
logic, the Compiler deletes one register, and the remaining registers fan-out to the
deleted register's destinations. This option is useful if you want to prevent the Compiler
from removing intentional use of duplicate registers.
If you disable register merging, the Compiler disables optimizations that retime registers.
Note: Not available for Intel Stratix 10 devices.

Auto Delay Chains for High
Fanout Input Pins

Allows the Fitter to choose how to optimize the delay chains for high fan-out input pins.
You must enable Auto Delay Chains to enable this option. Enabling this option may
reduce the number of tSU violations, but the compile time increases significantly, as the
Fitter tries to optimize the settings for all fan-outs.

Auto Fit Effort Desired Slack
Margin

Specifies the default worst-case slack margin the Fitter maintains for. If the design is
likely to have at least this much slack on every path, the Fitter reduces optimization
effort to reduce compilation time.
Note: Not available for Intel Stratix 10 devices.

Table 34. Advanced Fitter Settings (2 of 8)

Option Description

Auto Global Clock Allows the Compiler to choose the global clock signal. The Compiler chooses the signal
that feeds the most clock inputs to flip-flops. This signal is available throughout the
device on the global routing paths. To prevent the Compiler from automatically selecting
a particular signal as global clock, set the Global Signal option to Off on that signal.

Auto Global Register
Control Signals

Allows the Compiler to choose global register control signals. The Compiler chooses
signals that feed the most control signal inputs to flip-flops (excluding clock signals) as
the global signals. These global signals are available throughout the device on the global
routing paths. Depending on the target device family, these control signals can include
asynchronous clear and load, synchronous clear and load, clock enable, and preset
signals. If you want to prevent the Compiler from automatically selecting a particular
signal as a global register control signal, set the Global Signal option to Off on that
signal.

Auto Packed Registers Allows the Compiler to combine a register and a combinational function, or to implement
registers using I/O cells, RAM blocks, or DSP blocks instead of logic cells. This option
controls how aggressively the Fitter combines registers with other function blocks to
reduce the area of the design. Generally, the Auto or Sparse Auto settings are
appropriate.

continued...

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

The other settings limit the flexibility of the Fitter to combine registers with other
function blocks and can result in no fits.
• Auto—the Fitter attempts to achieve the best performance with good area. If

necessary, the Fitter combines additional logic to reduce the area of the design to
within the current device.

• Sparse Auto—the Fitter attempts to achieve the highest performance, but may
increase device usage without exceeding the device logic capacity.

• Off—the Fitter does not combine registers with other functions. The Off setting
severely increases the area of the design and may cause a no fit.

• Sparse—the Fitter combines functions in a way which improves performance for
many designs.

• Normal—the Fitter combines functions that are expected to maximize design
performance and reduce area.

• Minimize Area—the Fitter aggressively combines unrelated functions to reduce the
area required for placing the design, at the expense of performance.

• Minimize Area with Chains—the Fitter even more aggressively combines functions
that are part of register cascade chains or can be converted to register cascade
chains.

If this option is set to any value but Off, registers combine with I/O cells to improve I/O
timing. This remains true provided that the Optimize IOC Register Placement For
Timing option is enabled.

Auto RAM to MLAB
Conversion

Specifies whether the Fitter converts RAMs of Auto block type to use LAB locations. If
this option is set to Off, only MLAB cells or RAM cells with a block type setting of MLAB
use LAB locations to implement memory.

Auto Register Duplication Allows the Fitter to automatically duplicate registers within a LAB that contains empty
logic cells. This option does not alter the functionality of the design. The Compiler
ignores the Auto Register Duplication option if you select OFF as the setting for the
Logic Cell Insertion -- Logic Duplication logic option. Turning on this option allows
the Logic Cell Insertion -- Logic Duplication logic option to improve a design's
routability, but can make formal verification of a design more difficult.
Note: Not available for Intel Stratix 10 devices.

Table 35. Advanced Fitter Settings (3 of 8)

Option Description

Enable Auto-Pipelining Turns on the auto-pipelining and latency-insensitive false path feature. Use this setting in
conjunction with the Maximum Additional Pipelining and optional Additional
Pipelining Group assignments in the Assignment Editor to automatically add pipeline
registers at the locations you specify.
Note: Available only for Intel Stratix 10 devices.

Enable Bus-Hold Circuitry Enables bus-hold circuitry during device operation. When this option is On, a pin retains
its last logic level when it is not driven, and does not go to a high impedance logic level.
Do not use this option at the same time as the Weak Pull-Up Resistor designs, enables
location to the Critical Chain Viewer from the Fast option. The Compiler ignores this
option if you apply it to anything other than a pin.

Enable Critical Chain
Viewer

Enables critical chain visualization in the Fast Forward Timing Closure Recommendations
report for Intel Stratix 10 devices.

Equivalent RAM and MLAB
Paused Read Capabilities

Specifies whether RAMs implemented in MLAB cells must have equivalent paused read
capabilities as RAMs implemented in block RAM. Pausing a read is the ability to keep
around the last read value when reading is disabled. Allowing differences in paused read
capabilities provides the Fitter more flexibility in implementing RAMs using MLAB cells.
To allow the Fitter the most flexibility in deciding which RAMs are implemented using
MLAB cells, set this option to Don't Care. The following options are available:
• Don't Care—the Fitter can convert RAMs to MLAB cells, even if they do not have

equivalent paused read capabilities to a block RAM implementation. The Fitter
generates an information message about RAMs with different paused read capabilities.

• Care—the Fitter does not convert RAMs to MLAB cells unless they have the equivalent
paused read capabilities to a block RAM implementation.

continued...

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Equivalent RAM and MLAB
Power Up

Specifies whether RAMs implemented in MLAB cells must have equivalent power-up
conditions as RAMs implemented in block RAM. Power-up conditions occur when the
device powers-up or globally resets. Allowing non-equivalent power-up conditions
provides the Fitter more flexibility in implementing RAMs using MLAB cells.
To allow the Fitter the most flexibility in deciding which RAMs are implemented using
MLAB cells, set this option to Auto or Don't Care. The following options are available:
• Auto—the Fitter may convert RAMs to MLAB cells, even if the MLAB cells lack

equivalent power-up conditions to a block RAM implementation. The Fitter also
outputs a warning message about RAMs with non-equivalent power up conditions.

• Don't Care—the same behavior as Auto applies, but the message is an information
message.

• Care—the Fitter does not convert RAMs to MLAB cells unless they have equivalent
power up conditions to a block RAM implementation.

Final Placement
Optimizations

Specifies whether the Fitter performs final placement optimizations. Performing final
placement optimizations may improve timing and routability, but may also require longer
compilation time.

Fitter Aggressive
Routability Optimizations

Specifies whether the Fitter aggressively optimizes for routability. Performing aggressive
routability optimizations may decrease design speed, but may also reduce routing wire
usage and routing time. The Automatically setting allows the Fitter to decide whether
aggressive routability is beneficial.

Table 36. Advanced Fitter Settings (4 of 8)

Option Description

Fitter Effort Specifies the level of physical synthesis optimization during fitting:
• Auto—adjusts the Fitter optimization effort to minimize compilation time, while still

achieving the design timing requirements. Use the Auto Fit Effort Desired Slack
Margin option to apply sufficient optimization effort to achieve additional timing
margin.

• Standard—uses maximum effort regardless of the design's requirements, leading to
higher compilation time and more margin on easier designs. For difficult designs, Auto
and Standard both use maximum effort.

Note: Not available for Intel Stratix 10 devices.

Fitter Initial Placement
Seed

Specifies the seed for the current design. The value can be any non-negative integer
value. By default, the Fitter uses a seed of 1.
The Fitter uses the seed as the initial placement configuration when optimizing design
placement to meet timing requirements fMAX. Because each different seed value results in
a somewhat different fit, you can try several different seeds to attempt to obtain superior
fitting results.
The seeds that lead to the best fits for a design may change if the design changes. Also,
changing the seed may or may not result in a better fit. Therefore, specify a seed only if
the Fitter is not meeting timing requirements by a small amount.
Note: You can also use the Design Space Explorer II (DSEII) to sweep complex flow

parameters, including the seed, in the Intel Quartus Prime software to optimize
design performance.

Logic Cell Insertion Allows the Fitter to automatically insert buffer logic cells between two nodes without
altering the functionality of the design. The Compiler creates buffer logic cells from unused
logic cells in the device. This option also allows the Fitter to duplicate a logic cell within a
LAB when there are unused logic cells available in a LAB. Using this option can increase
compilation time. The default setting of Auto allows these operations to run when the
design requires them to fit the design.
Note: Not available for Intel Stratix 10 devices.

MLAB Add Timing
Constraints for Mixed-Port
Feed-Through Mode
Setting Don't Care

Specifies whether the Timing Analyzer evaluates timing constraints between the write and
the read operations of the MLAB memory block. Performing a write and read operation
simultaneously at the same address might result in metastability issues because no timing
constraints between those operations exist by default. Turning on this option introduces
timing constraints between the write and read operations on the MLAB memory block and

continued...

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

thereby avoids metastability issues. However, turning on this option degrades the
performance of the MLAB memory blocks. If your design does not perform write and read
operations simultaneously at the same address, you do not need to set this option.

Number of Example Nodes
Reported in Fitter
Messages

Allows you to specify the maximum number of example nodes Fitter messages should
display.

Table 37. Advanced Fitter Settings (5 of 8)

Option Description

Optimize Design for
Metastability

This setting improves the reliability of the design by increasing its Mean Time Between
Failures (MTBF). When you enable this setting, the Fitter increases the output setup slacks
of synchronizer registers in the design. This slack can exponentially increase the design
MTBF. This option only applies when using the Timing Analyzer for timing-driven
compilation. Use the Timing Analyzer report_metastability command to review the
synchronizers detected in your design and to produce MTBF estimates.

Optimize Hold Timing Directs the Fitter to optimize hold time within a device to meet timing requirements and
assignments. The following settings are available:
• I/O Paths and Minimum TPD Paths—directs the Fitter to meet the following timing

requirements and assignments:
— tH from I/O pins to registers.
— Minimum tCO from registers to I/O pins.
— Minimum tPD from I/O pins or registers to I/O pins or registers.

• All Paths—directs the Fitter to meet the following timing requirements and
assignments:
— tH from I/O pins to registers.
— Minimum tCO from registers to I/O pins.
— Minimum tPD from I/O pins or registers to I/O pins or registers.

When you disable the Optimize Timing logic option, the Optimize Hold Timing option is
not available.

Optimize IOC Register
Placement for Timing

Specifies whether the Fitter optimizes I/O pin timing by automatically packing registers into
I/Os to minimize delays.
• Normal—the Fitter opportunistically packs registers into I/Os that should improve I/O

timing.
• Pack All I/O Registers— the Fitter aggressively packs any registers connected to

input, output, or output enable pins into I/Os, unless prevented by your constraints or
other legality restrictions.

• Off—performs no periphery to core optimization.

Optimize Multi-Corner
Timing

Directs the Fitter to consider all timing corners during optimization to meet timing
requirements. These timing delay corners include both fast-corner timing and slow-corner
timing. By default, this option is On, and the Fitter optimizes designs considering multi-
corner delays in addition to slow-corner delays. When this option is Off, the Fitter
optimizes designs considering only slow-corner delays from the slow-corner timing model
(slowest manufactured device for a given speed grade, operating in low-voltage
conditions). Turning this option On typically creates a more robust design implementation
across process, temperature, and voltage variations.
When you turn Off the Optimize Timing option, the Optimize Multi-Corner Timing
option is not available.

Optimize Timing Specifies whether the Fitter optimizes to meet the maximum delay timing requirements
(for example, clock cycle time). By default, this option is set to Normal compilation.
Turning this option Off helps fit designs that with extremely high interconnect
requirements. Turning this option Off can also reduce compilation time at the expense of
timing performance (because the Fitter ignores the design's timing requirements). If this
option is Off, other Fitter timing optimization options have no effect (such as Optimize
Hold Timing).

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 38. Advanced Fitter Settings (6 of 8)

Option Description

Periphery to Core
Placement and Routing
Optimization

Specifies whether the Fitter should perform targeted placement and routing optimization on
direct connections between periphery logic and registers in the FPGA core. The following
options are available:
• Auto—the Fitter automatically identifies transfers with tight timing windows, places the

core registers, and routes all connections to or from the periphery. The Fitter performs
these placement and routing decisions before the rest of core placement and routing.
This sequence ensures that these timing-critical connections meet timing, and also
avoids routing congestion.

• On— the Fitter optimizes all transfers between the periphery and core registers,
regardless of timing requirements. Do not set this option to On globally. Instead, use
the Assignment Editor to assign optimization to a targeted set of nodes or entities.

• Off—the Fitter performs no periphery to core optimization.
Note: Not available for Intel Stratix 10 devices.

Physical Placement Effort Controls how much effort the Fitter spends during advanced physical placement
optimization. High and Maximum effort settings result in additional compile time to further
optimization the placement solution.

Placement Effort
Multiplier

Specifies the relative time the Fitter spends in placement. The default value is 1.0, and legal
values must be greater than 0. Specifying a floating-point number allows you to control the
placement effort. A higher value increases CPU time but may improve placement quality.
For example, a value of '4' increases fitting time by approximately 2 to 4 times but may
increase quality.

Power Optimization
During Fitting

Directs the Fitter to perform optimizations targeted at reducing the total power devices
consume. The available settings for power-optimized fitting are:
• Off—performs no power optimizations.
• Normal compilation—performs power optimizations that are unlikely to adversely

affect compilation time or design performance.
• Extra effort—performs additional power optimizations that might affect design

performance or result in longer compilation time.

Table 39. Advanced Fitter Settings (7 of 8)

Option Description

Programmable Power
Maximum High-Speed
Fraction of Used LAB
Tiles

Sets the upper limit on the fraction of the high-speed LAB tiles. Legal values must be
between 0.0 and 1.0. The default value is 1.0. A value of 1.0 means that there is no
restriction on the number of high-speed tiles, and the Fitter uses the minimum number
needed to meet the timing requirements of your design. Specifying a value lower than 1.0
might degrade timing quality, because some timing critical resources might be forced into
low-power mode.

Programmable Power
Technology Optimization

Controls how the Fitter configures tiles to operate in high-speed mode or low-power mode.
The following options are available:
• Automatic—specifies that the Fitter minimizes power without sacrificing timing

performance.
• Minimize Power Only—specifies that the Fitter sets the maximum number of tiles to

operate in low-power mode.
• Force All Used Tiles to High Speed—specifies that the Fitter sets all used tiles to

operate in high-speed mode.
• Force All Tiles with Failing Timing Paths to High Speed—sets all failing paths to

high-speed mode. For designs that meet timing, the behavior of this setting is similar to
the Automatic setting.

For designs that fail timing, all paths with negative slack are put in high-speed mode. This
mode likely does not increase the speed of the design, and it may increase static power
consumption. This mode may assist in determining which logic paths need to be re-designed
to close timing.

continued...

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Description

Note: Not available for Intel Stratix 10 devices.

Router Timing
Optimization Level

Controls how aggressively the router tries to meet timing requirements. Setting this option
to Maximum can increase design speed slightly, at the cost of increased compile time.
Setting this option to Minimum can reduce compile time, at the cost of slightly reduced
design speed. The default value is Normal.

Run Early Place during
compilation

Enables the Early Place Fitter stage during full compilation. Turning on this setting may
increase Fitter processing time.

Table 40. Advanced Fitter Settings (8 of 8)

Option Description

Synchronizer
Identification

Specifies how the Compiler identifies synchronization register chain registers for metastability
analysis. A synchronization register chain is a sequence of registers with the same clock with
no fan-out in between, which is driven by a pin or logic from another clock domain.
The following options are available:
• Off—the Timing Analyzer does not identify the specified registers, or the registers within

the specified entity, as synchronization registers.
• Auto—the Timing Analyzer identifies valid synchronization registers that are part of a

chain with more than one register that contains no combinational logic. Use the Auto
setting to generate a report of possible synchronization chains in your design.

• Forced if Asynchronous—the Timing Analyzer identifies synchronization register chains
if the software detects an asynchronous signal transfer, even if there is combinational logic
or only one register in the chain.

• Forced—the Timing Analyzer identifies the specified register, or all registers within the
specified entity, as synchronizers. Only apply the Forced option to the entire design.
Otherwise, all registers in the design identify as synchronizers.

The Fitter optimizes the registers that it identifies as synchronizers for improved Mean Time
Between Failure (MTBF), provided that you enable Optimize Design for Metastability.
If a synchronization register chain is identified with the Forced or Forced if Asynchronous
option, then the Timing Analyzer reports the metastability MTBF for the chain when it meets
the design timing requirements.

Treat Bidirectional Pin
as Output Pin

Specifies that the Fitter treats the bidirectional pin as an output pin, meaning that the input
path feeds back from the output path.

Use Checkered Pattern
as uninitialized RAM
Content

Loads a checkered pattern as initial RAM content into all RAM blocks without specified RAM
content that supports content initialization. Turning on this option does not affect simulation,
which may cause on-chip behavior to differ from simulation results.

Weak Pull-Up Resistor Enables the weak pull-up resistor when the device is operating in user mode. This option pulls
a high-impedance bus signal to VCC. Do not enable this option simultaneously with the
Enable Bus-Hold Circuitry option. The Fitter ignores this option if you apply to anything
other than a pin.

1.12. Design Compilation Revision History

This document has the following revision history.

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

2019.07.02 19.1 • Made minor changes in "Fractal Synthesis Optimization" topic.
• Added a note in step 3a of "Running Synthesis" about enabling fractal

synthesis project-wide.
• Added details about synthesis of PRESERVE_FANOUT_FREE_NODE to

"Partial Reconfiguration Design Guidelines."
• Corrected typo in "Step 3: Run Fast Forward Compile and Hyper-

Retiming."

2019.04.01 19.1 • In "Running Synthesis", removed a step about enabling fractal
synthesis project-wide.

• Updated the "Fractal Synthesis Optimization" topic to describe signed
multiplication feature that is now supported by multiplier regularization
and arithmetic packing algorithms.

2019.01.03 18.1.0 • Added snapshot description to "Compilation Overview"and linked to
content from "Exporting a Design Partition" and "Exporting a Version-
Compatible Compilation Database."

2018.10.19 18.1.0 • Described dependency of Rapid Recompile on Enable Intermediate
Fitter Snapshots option.

2018.09.24 18.1.0 • Described option to enable or disable intermediate Fitter snapshots and
updated descriptions of compilation flows and dashboard accordingly.

• Added "Exporting Compilation Results section and subtopics."
• Described migration of full chip database in "Exporting a Version-

Compatible Compilation Database" topic.
• Described automated .qdb partition export in "Exporting a Design

Partition" topic.
• Described viewing QDB file metadata in "Viewing Quartus Database File

Information."
• Added "Fractal Synthesis Optimization" topic and updated "Running

Synthesis" topic steps for new option.
• Described new Compiler Optimization Modes and described notice that

appears for extended optimization modes added via .qsf.
• Described new Global Signal Visualization Report.
• Added "Factors Affecting Compilation Results" topic.
• Added "Using the Compilation Dashboard" topic.
• Added description of Enable Auto-Pipelining setting.
• Added description of Enable Formal Verification Support to "Advanced

Synthesis Settings."
• Added description of Report PR Initial Values as Errors option to

"Advanced Synthesis Settings."
• Added description of Size of the Latch Report option to "Advanced

Synthesis Settings."
• Added description of Size of the PR Initial Conditions Report option to

"Advanced Synthesis Settings."
• Added description of Advanced Physical Synthesis option to "Fitter

Settings Reference."
• Added description of Allow DSP Retiming option to "Fitter Settings

Reference."
• Added description of Allow Early Global Retiming in the Fitter option to

"Fitter Settings Reference."
• Added description of Allow Hyper-Aware Register Chain Area

Optimizations in the Fitter option to "Fitter Settings Reference."
• Added description of Allow RAM Retiming option to "Fitter Settings

Reference."
• Added description of Number of Example Nodes Reported in Fitter

Messages option to "Fitter Settings Reference."
• Added description of Physical Placement Effort option to "Fitter Settings

Reference."

continued...

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

• Added description of Use Checkered Pattern as uninitialized RAM
Content option to "Fitter Settings Reference."

• Updated description of Safe State Machine option for Auto setting.
• Removed support for Ignore ROW GLOBAL Buffers option.
• Removed support for Ignore CARRY Buffers option.
• Removed support for Ignore CASCADE Buffers option.

2018.05.07 18.0.0 • Updated Optimization Modes topic to add Compile Time (Aggressive).
• Relocated concurrent analysis content from the Early Place Flow topic

to a new Concurrent Analysis During Synthesis or Fitting topic.
• Rapid Recompile now supports Intel Stratix 10 devices.
• Enhanced description of Retime Stage Reports.
• Enhanced description of Retime Stage to include classic register

retiming.

Table 41. Document Revision History

Date Version Changes

2017.11.06 17.1.0 • Added support for Intel Stratix 10 Hyper-Aware design flow, Hyper-
Retiming, Fast Forward compilation, and Fast Forward Viewer.

• Added Advanced HyperFlex Settings topic.
• Added Retiming Restrictions and Workarounds topic.
• Added statement about Fast Forward compilation support for

retiming across RAM and DSP blocks.
• Added Concurrent Analysis topic.
• Added Analyzing Fitter Snapshots topic.
• Added Compilation Dashboard Early Place stage control image.
• Added Running late_place After Early Place topic.
• Updated for latest Intel naming conventions.

2017.05.08 17.0.0 • Added reference to initial compilation support for Cyclone 10 GX
devices.

• Described concurrent analysis following Early Place.
• Updated Compilation Dashboard images for Timing Analyzer,

Report, Setting, and Concurrent Analysis controls.
• Updated description for Auto DSP Block Replacement in Advanced

Synthesis Settings.
• Updated Advanced Fitter Settings for Allow Register Retiming, and

for removal of obsolete SSN Optimization option.
• Added Prevent Register Retiming topic.
• Added Preserve Registers During Synthesis topic.
• Removed limitation for Safe State Machine logic option.
• Added references to Partial Reconfiguration and Block-Based Design

Flows.

2016.10.31 16.1.0 • Implemented Intel re-branding.
• Described Compiler snapshots and added Analyzing Snapshot

Timing topic.
• Updated project directory structure diagram.
• Described new Fitter stage menu commands and reports.
• Added description of Early Place Flow, Implement Flow, and Finalize

Flow.

continued...

1. Design Compilation

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

• Added description of Incremental Optimization in the Fitter.
• Reorganized order of topics in chapter.
• Removed deprecated Per-Stage Compilation (Beta) Compilation

Flow.

2016.05.03 16.0.0 • Added description of Fitter Plan, Place and Route stages, reporting,
and optimization.

• Added Per-Stage Compilation (Beta) Compilation Flow
• Added Compilation Dashboard information.
• Removed support for Safe State Machine logic option. Encode safe

states in RTL.
• Added Generating Dynamic Synthesis Reports topic.
• Updated Quartus project directory structure.

2015.11.02 15.1.0 • First version of document.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

1. Design Compilation

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

86

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Reducing Compilation Time
You can employ various techniques to reduce to time required for synthesis and fitting
in the Intel Quartus Prime Compiler.

2.1. Compilation Time Advisor

A Compilation Time Advisor is available in the Intel Quartus Prime GUI by clicking
Tools ➤ Advisors ➤ Compilation Time Advisor. This chapter describes all the
compilation time optimizing techniques available in the Compilation Time Advisor.

2.2. Strategies to Reduce the Overall Compilation Time

You can use the following strategies to reduce the overall time required to compile
your design:

• Parallel compilation (for systems with multiple processor cores)

• Rapid Recompile and Smart Compilation reuse results from a previous compilation
to reduce overall compilation time

2.2.1. Running Rapid Recompile

During Rapid Recompile the Compiler reuses previous synthesis and fitting results
whenever possible, and does not reprocess unchanged design blocks. Use Rapid
Recompile to reduce timing variations and the total recompilation time after making
small design changes.

Figure 65. Rapid Recompile

Regular Compile

A

B
C

D

E

J G
x y z

Unchanged

Changed

Rapid
Recompile

UG-20132 | 2019.07.02

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

To run Rapid Recompile, follow these steps:

1. Prior to initial compilation, click Assignments ➤ Settings ➤ Compiler Settings
and turn on Enable Intermediate Fitter Snapshots. This option must be
enabled to subsequently use the Rapid Recompile feature.

2. To start Rapid Recompile following an initial compilation (or after running the
Route stage of the Fitter), click Processing ➤ Start ➤ Start Rapid Recompile.
Rapid Recompile implements the following types of design changes without full
recompilation:

• Changes to nodes tapped by the Signal Tap Logic Analyzer

• Changes to combinational logic functions

• Changes to state machine logic (for example, new states, state transition
changes)

• Changes to signal or bus latency or addition of pipeline registers

• Changes to coefficients of an adder or multiplier

• Changes register packing behavior of DSP, RAM, or I/O

• Removal of unnecessary logic

• Changes to synthesis directives

3. Click the Rapid Recompile Preservation Summary report to view detailed
information about the percentage of preserved compilation results.

Figure 66. Rapid Recompile Preservation Summary

2.2.2. Enabling Multi-Processor Compilation

The Compiler can detect and use multiple processors to reduce total compilation time.
You specify the number of processors the Compiler uses. The Intel Quartus Prime
software can use up to 16 processors to run algorithms in parallel. The Compiler uses
parallel compilation by default. To reserve some processors for other tasks, specify a
maximum number of processors that the software uses.

This technique reduces the compilation time by up to 10% on systems with two
processing cores, and by up to 20% on systems with four cores. When running timing
analysis independently, two processors reduce the timing analysis time by an average
of 10%. This reduction reaches an average of 15% when using four processors.

The Intel Quartus Prime software does not necessarily use all the processors that you
specify during a given compilation. Additionally, the software never uses more than
the specified number of processors. This fact enables you to work on other tasks
without slowing down your computer. The use of multiple processors does not affect
the quality of the fit. For a given Fitter seed, and given Maximum processors
allowed setting on a specific design, the fit is exactly the same and deterministic.
This remains true, regardless of the target machine, and the number of available
processors. Different Maximum processors allowed specifications produce different
results of the same quality. The impact is similar to changing the Fitter seed setting.

2. Reducing Compilation Time

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To enable multiprocessor compilation, follow these steps:

1. Open or create an Intel Quartus Prime project.

2. Click Assignments ➤ Settings ➤ Compilation Process Settings.

3. Under Parallel compilation, specify options for the number of processors the
Compiler uses.

4. View detailed information about processor use in the Parallel Compilation report
following compilation.

To specify the number of processors for compilation at the command line, use the
following Tcl command in your script:

set_global_assignment -name NUM_PARALLEL_PROCESSORS <value>

In this case, <value> is an integer from 1 to 16.

If you want the Intel Quartus Prime software to detect the number of processors
and use all the processors for the compilation, include the following Tcl command
in your script:

set_global_assignment -name NUM_PARALLEL_PROCESSORS ALL

Note: The Compiler detects Intel Hyper-Threading® Technology (Intel® HT
Technology) as a single processor. If your system includes a single processor
with Intel HT Technology, set the number of processors to one. Do not use
the Intel HT Technology for Intel Quartus Prime compilations.

2.2.3. Using Block-Based Compilation

During the design process, you can isolate functional blocks that meet placement and
timing requirements from others still undergoing change and optimization. By isolating
functional blocks into partitions, you can apply optimization techniques to selected
areas only compile those areas.

To create partitions dividing functional blocks:

1. In the Design Partition Planner, identify blocks of a size suitable for partitioning.

In general, a partition represents roughly 15 to 20 percent of the total design size.
Use the information area below the bar at the top of each entity.

Figure 67. Entity representation in the Design Partition Planner

Percent of total design size

2. Extract and collapse entities as necessary to achieve stand-alone blocks

3. For each entity of the desired size containing related blocks of logic, right-click the
entity and click Create Design Partition to place that entity in its own partition.

The goal is to achieve partitions containing related blocks of logic.

2. Reducing Compilation Time

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

Intel Quartus Prime Pro Edition User Guide: Block-Based Design

2.2.4. Disabling the Register Power-up Initialization

By disabling the register power-up initialization, you can speed up the bitstream
initialization process, reduce the bitstream size (allowing you to select smaller
configuration device), and reduce the configuration time.

Important: • This is available only for Intel Stratix 10 devices.

• Optimizations that rely on power-up states are disabled.

• Bitstream assembler creates bitstreams without the register power-up
initialization.

To disable the initialization, enable the Disable Register Power-up Initialization
option through the Device and Pin Options dialog.

When you enable the Disable Register Power-up Initialization option, Synthesis
prints a warning for registers with power-up care, as shown in the following image:

2. Reducing Compilation Time

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

90

https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html#xdj1491668852667
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To view registers with defined power-up states that cannot be preserved, refer to the
Registers with Explicit Power-up Settings dialog, as shown in the following
image:

For more information about the reset strategy required when you no longer can rely
on registers' power-up states to reset the designs, refer to Partial Reconfiguration
Design Flow in Intel Quartus Prime Pro Edition User Guide: Partial Reconfiguration.

Related Information

• Intel Stratix 10 Configuration Bit Stream Sizes

• Intel Stratix 10 Reset Release IP

2.3. Reducing Synthesis Time and Synthesis Netlist Optimization
Time

You can reduce synthesis time without affecting the Fitter time by reducing your use
of netlist optimizations. For tips on reducing synthesis time when using third-party
EDA synthesis tools, refer to your synthesis software’s documentation.

2.3.1. Settings to Reduce Synthesis Time and Synthesis Netlist
Optimization Time

Synthesis netlist and physical synthesis optimization settings can significantly increase
the overall compilation time for large designs. Refer to Analysis and Synthesis
messages to determine the length of optimization time.

If your design already meets performance requirements without synthesis netlist or
physical synthesis optimizations, turn off these options to reduce compilation time. If
you require synthesis netlist optimizations to meet performance, optimize partitions of
your design hierarchy separately to reduce the overall time spent in Analysis and
Synthesis.

2. Reducing Compilation Time

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

91

https://www.intel.com/content/www/us/en/programmable/documentation/tnc1513987819990.html#jka1466632817917
https://www.intel.com/content/www/us/en/programmable/documentation/tnc1513987819990.html#jka1466632817917
https://www.intel.com/content/www/us/en/programmable/documentation/mcn1441092958198.html#mcn1447315877599
https://www.intel.com/content/www/us/en/programmable/documentation/sss1439972793861.html#yrh1549912878013
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.2. Use Appropriate Coding Style to Reduce Synthesis Time

Your HDL coding style can also affect the synthesis time. For example, if you want to
infer RAM blocks from your code, you must follow the guidelines for inferring RAMs. If
RAM blocks are not inferred properly, the software implements those blocks as
registers.

If you are trying to infer a large memory block, the software consumes more
resources in the FPGA. This can cause routing congestion and increasing compilation
time significantly. If you see high routing utilizations in certain blocks, it is a good idea
to review the code for such blocks.

2.4. Reducing Placement Time

The time required to place a design depends on two factors: the number of ways the
logic in your design can be placed in the device, and the settings that control the
amount of effort required to find a good placement.

You can reduce the placement time by changing the settings for the placement
algorithm.

Sometimes there is a trade-off between placement time and routing time. Routing
time can increase if the placer does not run long enough to find a good placement.
When you reduce placement time, ensure that it does not increase routing time and
negate the overall time reduction.

2.4.1. Placement Effort Multiplier Settings

You can control the amount of time the Fitter spends in placement by reducing with
the Placement Effort Multiplier option.

Click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced Settings
(Fitter) and specify a value for Placement Effort Multiplier. The default is 1.0. Legal
values must be greater than 0 and can be non-integer values. Numbers between 0
and 1 can reduce fitting time, but also can reduce placement quality and design
performance.

2.5. Reducing Routing Time

The routing time is usually not a significant amount of the compilation time. The time
required to route a design depends on three factors: the device architecture, the
placement of your design in the device, and the connectivity between different parts of
your design.

If your design requires a long time to route, perform one or more of the following
actions:

• Check for routing congestion.

• Turn off Fitter Aggressive Routability Optimization.

2.5.1. Identifying Routing Congestion with the Chip Planner

To identify areas of routing congestion in your design:

2. Reducing Compilation Time

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Click Tools ➤ Chip Planner.

2. To view the routing congestion in the Chip Planner, double-click the Report
Routing Utilization command in the Tasks list.

3. Click Preview in the Report Routing Utilization dialog box to preview the
default congestion display.

4. Change the Routing utilization type to display congestion for specific resources.
The default display uses dark blue for 0% congestion and red for 100%.

5. Adjust the slider for Threshold percentage to change the congestion threshold
level.

The Intel Quartus Prime compilation messages contain information about average and
peak interconnect usage. Peak interconnect usage over 75%, or average interconnect
usage over 60% indicate possible difficulties fitting your design. Similarly, peak
interconnect usage over 90%, or average interconnect usage over 75%, indicate a
high chance of not getting a valid fit.

2.5.1.1. Areas with Routing Congestion

Even if average congestion is not high, the design may have areas where congestion is
high in a specific type of routing. You can use the Chip Planner to identify areas of
high congestion for specific interconnect types.

• You can change the connections in your design to reduce routing congestion

• If the area with routing congestion is in a Logic Lock (Standard) region or between
Logic Lock (Standard) regions, change or remove the Logic Lock (Standard)
regions and recompile your design.

— If the routing time remains the same, the time is a characteristic of your
design and the placement

— If the routing time decreases, consider changing the size, location, or contents
of Logic Lock (Standard) regions to reduce congestion and decrease routing
time.

Related Information

Intel Quartus Prime Pro Edition User Guide: Design Optimization

2.5.1.2. Congestion due to HDL Coding style

Sometimes, routing congestion may be a result of the HDL coding style used in your
design. After identifying congested areas using the Chip Planner, review the HDL code
for the blocks placed in those areas to determine whether you can reduce interconnect
usage by code changes.

2.6. Reducing Static Timing Analysis Time

If you are performing timing-driven synthesis, the Intel Quartus Prime software runs
the Timing Analyzer during Analysis and Synthesis.

The Intel Quartus Prime Fitter also runs the Timing Analyzer during placement and
routing. If there are incorrect constraints in the Synopsys Design Constraints File
(.sdc), the Intel Quartus Prime software may spend unnecessary time processing
constraints several times.

2. Reducing Compilation Time

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

93

https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html#mwh1410471303170
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• If you do not specify false paths and multicycle paths in your design, the Timing
Analyzer may analyze paths that are not relevant to your design.

• If you redefine constraints in the .sdc files, the Timing Analyzer may spend
additional time processing them. To avoid this situation, look for indications that
Synopsis design constraints are being redefined in the compilation messages, and
update the .sdc file.

• Ensure that you provide the correct timing constraints to your design, because the
software cannot assume design intent, such as which paths to consider as false
paths or multicycle paths. When you specify these assignments correctly, the
Timing Analyzer skips analysis for those paths, and the Fitter does not spend
additional time optimizing those paths.

2.7. Setting Process Priority

It might be necessary to reduce the computing resources allocated to the compilation
at the expense of increased compilation time. It can be convenient to reduce the
resource allocation to the compilation with single processor machines if you must run
other tasks at the same time.

Related Information

Processing Page (Options Dialog Box)
In Intel Quartus Prime Help.

2.8. Reducing Compilation Time Revision History

Document Version Intel Quartus
Prime Version

Changes

2019.07.02 19.1 Added the Using the No-Register Initialization Flow topic.

2018.10.19 18.1.0 • Described dependency of Rapid Recompile on Enable Intermediate
Fitter Snapshots option.

2017.11.06 17.1.0 • Added topic: Using Block-Based Compilation.

Date Version Changes

2017.05.08 17.0.0 • Clarified impact of multiprocessor compilation on fit quality.
• Removed reference to deprecated Fitter Effort Logic Option.
• Removed section: Preserving Routing with Incremental Compilation.

2016.10.31 16.1.0 • Implemented Intel rebranding.

2016.05.02 16.0.0 • Corrected typo in Using Parallel Compilation with Multiple Processors.
• Removed information about deprecated physical synthesis options.

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

2014.12.15 14.1.0 • Updated location of Fitter Settings, Analysis & Synthesis Settings, and Physical
Synthesis Optimizations to Compiler Settings.

• Added information about Rapid Recompile feature.

2014.08.18 14.0a10.0 Added restriction about smart compilation in Arria 10 devices.

June 2014 14.0.0 Updated format.

May 2013 13.0.0 Removed the “Limit to One Fitting Attempt”, “Using Early Timing Estimation”, “Final
Placement Optimizations”, and “Using Rapid Recompile” sections.

continued...

2. Reducing Compilation Time

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

94

http://quartushelp.altera.com/current/index.htm#global/global/gl_tab_processing.htm
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

Updated “Placement Effort Multiplier Settings” section.
Updated “Identifying Routing Congestion in the Chip Planner” section.
General editorial changes throughout the chapter.

June 2012 12.0.0 Removed survey link.

November 2011 11.0.1 Template update.

May 2011 11.0.0 • Updated “Using Parallel Compilation with Multiple Processors”.
• Updated “Identifying Routing Congestion in the Chip Planner”.
• General editorial changes throughout the chapter.

December 2010 10.1.0 • Template update.
• Added details about peak and average interconnect usage.
• Added new section “Reducing Static Timing Analysis Time”.
• Minor changes throughout chapter.

July 2010 10.0.0 Initial release.

Related Information

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

2. Reducing Compilation Time

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

95

https://www.altera.com/search-archives
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel Quartus Prime Pro Edition User Guide Design
Compilation Archives

If the table does not list a software version, the user guide for the previous software version applies.

Intel Quartus Prime
Version

User Guide

19.1 Intel Quartus Prime Pro Edition User Guide Design Compilation

18.1 Intel Quartus Prime Pro Edition User Guide Design Compilation

18.0 Compiler User Guide Intel Quartus Prime Pro Edition

UG-20132 | 2019.07.02

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/archives/ug-qpp-compiler-19-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/archives/ug-qpp-compiler-18-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/archives/ug-qpp-compiler-18-0.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

A. Intel Quartus Prime Pro Edition User Guides
Refer to the following user guides for comprehensive information on all phases of the
Intel Quartus Prime Pro Edition FPGA design flow.

Related Information

• Intel Quartus Prime Pro Edition User Guide: Getting Started
Introduces the basic features, files, and design flow of the Intel Quartus Prime
Pro Edition software, including managing Intel Quartus Prime Pro Edition
projects and IP, initial design planning considerations, and project migration
from previous software versions.

• Intel Quartus Prime Pro Edition User Guide: Platform Designer
Describes creating and optimizing systems using Platform Designer, a system
integration tool that simplifies integrating customized IP cores in your project.
Platform Designer automatically generates interconnect logic to connect
intellectual property (IP) functions and subsystems.

• Intel Quartus Prime Pro Edition User Guide: Design Recommendations
Describes best design practices for designing FPGAs with the Intel Quartus
Prime Pro Edition software. HDL coding styles and synchronous design
practices can significantly impact design performance. Following recommended
HDL coding styles ensures that Intel Quartus Prime Pro Edition synthesis
optimally implements your design in hardware.

• Intel Quartus Prime Pro Edition User Guide: Design Compilation
Describes set up, running, and optimization for all stages of the Intel Quartus
Prime Pro Edition Compiler. The Compiler synthesizes, places, and routes your
design before generating a device programming file.

• Intel Quartus Prime Pro Edition User Guide: Design Optimization
Describes Intel Quartus Prime Pro Edition settings, tools, and techniques that
you can use to achieve the highest design performance in Intel FPGAs.
Techniques include optimizing the design netlist, addressing critical chains that
limit retiming and timing closure, optimizing device resource usage, device
floorplanning, and implementing engineering change orders (ECOs).

• Intel Quartus Prime Pro Edition User Guide: Programmer
Describes operation of the Intel Quartus Prime Pro Edition Programmer, which
allows you to configure Intel FPGA devices, and program CPLD and
configuration devices, via connection with an Intel FPGA download cable.

• Intel Quartus Prime Pro Edition User Guide: Block-Based Design
Describes block-based design flows, also known as modular or hierarchical
design flows. These advanced flows enable preservation of design blocks (or
logic that comprises a hierarchical design instance) within a project, and reuse
of design blocks in other projects.

UG-20132 | 2019.07.02

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/spj1513986956763.html
https://www.intel.com/content/www/us/en/programmable/documentation/zcn1513987282935.html
https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html
https://www.intel.com/content/www/us/en/programmable/documentation/ftt1513991830769.html
https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Intel Quartus Prime Pro Edition User Guide: Partial Reconfiguration
Describes Partial Reconfiguration, an advanced design flow that allows you to
reconfigure a portion of the FPGA dynamically, while the remaining FPGA
design continues to function. Define multiple personas for a particular design
region, without impacting operation in other areas.

• Intel Quartus Prime Pro Edition User Guide: Third-party Simulation
Describes RTL- and gate-level design simulation support for third-party
simulation tools by Aldec*, Cadence*, Mentor Graphics, and Synopsys that
allow you to verify design behavior before device programming. Includes
simulator support, simulation flows, and simulating Intel FPGA IP.

• Intel Quartus Prime Pro Edition User Guide: Third-party Synthesis
Describes support for optional synthesis of your design in third-party synthesis
tools by Mentor Graphics, and Synopsys. Includes design flow steps, generated
file descriptions, and synthesis guidelines.

• Intel Quartus Prime Pro Edition User Guide: Third-party Logic Equivalence
Checking Tools

Describes support for optional logic equivalence checking (LEC) of your design
in third-party LEC tools by OneSpin*. Describes how to verify the logic
equivalence between compilation netlists.

• Intel Quartus Prime Pro Edition User Guide: Debug Tools
Describes a portfolio of Intel Quartus Prime Pro Edition in-system design
debugging tools for real-time verification of your design. These tools provide
visibility by routing (or “tapping”) signals in your design to debugging logic.
These tools include System Console, Signal Tap logic analyzer, Transceiver
Toolkit, In-System Memory Content Editor, and In-System Sources and Probes
Editor.

• Intel Quartus Prime Pro Edition User Guide: Timing Analyzer
Explains basic static timing analysis principals and use of the Intel Quartus
Prime Pro Edition Timing Analyzer, a powerful ASIC-style timing analysis tool
that validates the timing performance of all logic in your design using an
industry-standard constraint, analysis, and reporting methodology.

• Intel Quartus Prime Pro Edition User Guide: Power Analysis and Optimization
Describes the Intel Quartus Prime Pro Edition Power Analysis tools that allow
accurate estimation of device power consumption. Estimate the power
consumption of a device to develop power budgets and design power supplies,
voltage regulators, heat sink, and cooling systems.

• Intel Quartus Prime Pro Edition User Guide: Design Constraints
Describes timing and logic constraints that influence how the Compiler
implements your design, such as pin assignments, device options, logic
options, and timing constraints. Use the Interface Planner to prototype
interface implementations, plan clocks, and quickly define a legal device
floorplan. Use the Pin Planner to visualize, modify, and validate all I/O
assignments in a graphical representation of the target device.

• Intel Quartus Prime Pro Edition User Guide: PCB Design Tools
Describes support for optional third-party PCB design tools by Mentor Graphics
and Cadence*. Also includes information about signal integrity analysis and
simulations with HSPICE and IBIS Models.

A. Intel Quartus Prime Pro Edition User Guides

UG-20132 | 2019.07.02

Intel Quartus Prime Pro Edition User Guide: Design Compilation Send Feedback

98

https://www.intel.com/content/www/us/en/programmable/documentation/tnc1513987819990.html
https://www.intel.com/content/www/us/en/programmable/documentation/gft1513990268888.html
https://www.intel.com/content/www/us/en/programmable/documentation/hjy1513988789394.html
https://www.intel.com/content/www/us/en/programmable/documentation/sth1529938337105.html
https://www.intel.com/content/www/us/en/programmable/documentation/sth1529938337105.html
https://www.intel.com/content/www/us/en/programmable/documentation/nfc1513989909783.html
https://www.intel.com/content/www/us/en/programmable/documentation/psq1513989797346.html
https://www.intel.com/content/www/us/en/programmable/documentation/osq1513989409475.html
https://www.intel.com/content/www/us/en/programmable/documentation/iqe1513988936192.html
https://www.intel.com/content/www/us/en/programmable/documentation/fnf1513989100686.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Intel Quartus Prime Pro Edition User Guide: Scripting
Describes use of Tcl and command line scripts to control the Intel Quartus
Prime Pro Edition software and to perform a wide range of functions, such as
managing projects, specifying constraints, running compilation or timing
analysis, or generating reports.

A. Intel Quartus Prime Pro Edition User Guides

UG-20132 | 2019.07.02

Send Feedback Intel Quartus Prime Pro Edition User Guide: Design Compilation

99

https://www.intel.com/content/www/us/en/programmable/documentation/sbv1513989262284.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Quartus%20Prime%20Pro%20Edition%20User%20Guide%20Design%20Compilation%20(UG-20132%202019.07.02)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Intel Quartus Prime Pro Edition User Guide: Design Compilation
	Contents
	1. Design Compilation
	1.1. Compilation Overview
	1.1.1. Using the Compilation Dashboard
	1.1.2. Compilation Flows
	1.1.3. Design Synthesis
	1.1.4. Design Place and Route
	1.1.5. Compilation Hierarchy

	1.2. Running Synthesis
	1.2.1. Preserve Registers During Synthesis
	1.2.2. Enabling Timing-Driven Synthesis
	1.2.3. Fractal Synthesis Optimization
	1.2.4. Synthesis Reports
	1.2.5. Concurrent Analysis During Synthesis or Fitting

	1.3. Running the Fitter
	1.3.1. Fitter Stage Commands
	1.3.2. Incremental Optimization Flow
	1.3.2.1. Early Place Flow
	1.3.2.2. Running late_place After Early Place

	1.3.3. Analyzing Fitter Snapshots
	1.3.3.1. Validating SDC Constraints after the Plan Stage
	1.3.3.2. Validating Periphery (I/O) after the Plan Stage
	1.3.3.3. Clock Planning after Early Place (Intel Stratix 10 only)
	1.3.3.4. Identifying High Fan-Out Signals after Early Place

	1.3.4. Enabling Physical Synthesis Optimization
	1.3.5. Viewing Fitter Reports
	1.3.5.1. Plan Stage Reports
	1.3.5.2. Place Stage Reports
	1.3.5.3. Route Stage Reports
	1.3.5.4. Retime Stage Reports
	1.3.5.5. Finalize Stage Reports

	1.4. Running Full Compilation
	1.5. Running the Hyper-Aware Design Flow
	1.5.1. Step 1: Run Register Retiming
	1.5.2. Step 2: Review Retiming Results
	1.5.2.1. Locate Critical Chains

	1.5.3. Step 3: Run Fast Forward Compile and Hyper-Retiming
	1.5.3.1. HyperFlex Settings

	1.5.4. Step 4: Review Hyper-Retiming Results
	1.5.4.1. Clock Fmax Summary Report
	1.5.4.2. Fast Forward Details Report

	1.5.5. Step 5: Implement Fast Forward Recommendations
	1.5.5.1. Retiming Restrictions and Workarounds

	1.6. Exporting Compilation Results
	1.6.1. Exporting a Version-Compatible Compilation Database
	1.6.2. Importing a Version-Compatible Compilation Database
	1.6.3. Creating a Design Partition
	1.6.4. Exporting a Design Partition
	1.6.5. Reusing a Design Partition
	1.6.6. Viewing Quartus Database File Information
	1.6.6.1. QDB File Attribute Types

	1.6.7. Clearing Compilation Results

	1.7. Reducing Compilation Time
	1.7.1. Running Rapid Recompile
	1.7.2. Enabling Multi-Processor Compilation
	1.7.3. Factors Affecting Compilation Results

	1.8. Generating Programming Files
	1.9. Synthesis Language Support
	1.9.1. Verilog and SystemVerilog Synthesis Support
	1.9.1.1. Verilog HDL Input Settings (Settings Dialog Box)
	1.9.1.2. Design Libraries
	1.9.1.3. Verilog HDL Configuration
	1.9.1.3.1. Hierarchical Design Configurations

	1.9.1.4. Initial Constructs and Memory System Tasks
	1.9.1.5. Verilog HDL Macros

	1.9.2. VHDL Synthesis Support
	1.9.2.1. VHDL Input Settings (Settings Dialog Box)
	1.9.2.2. VHDL Standard Libraries and Packages
	1.9.2.3. VHDL wait Constructs

	1.10. Synthesis Settings Reference
	1.10.1. Enable Intermediate Fitter Snapshots
	1.10.2. Optimization Modes
	1.10.3. Allow Register Retiming
	1.10.4. Advanced Synthesis Settings

	1.11. Fitter Settings Reference
	1.12. Design Compilation Revision History

	2. Reducing Compilation Time
	2.1. Compilation Time Advisor
	2.2. Strategies to Reduce the Overall Compilation Time
	2.2.1. Running Rapid Recompile
	2.2.2. Enabling Multi-Processor Compilation
	2.2.3. Using Block-Based Compilation
	2.2.4. Disabling the Register Power-up Initialization

	2.3. Reducing Synthesis Time and Synthesis Netlist Optimization Time
	2.3.1. Settings to Reduce Synthesis Time and Synthesis Netlist Optimization Time
	2.3.2. Use Appropriate Coding Style to Reduce Synthesis Time

	2.4. Reducing Placement Time
	2.4.1. Placement Effort Multiplier Settings

	2.5. Reducing Routing Time
	2.5.1. Identifying Routing Congestion with the Chip Planner
	2.5.1.1. Areas with Routing Congestion
	2.5.1.2. Congestion due to HDL Coding style

	2.6. Reducing Static Timing Analysis Time
	2.7. Setting Process Priority
	2.8. Reducing Compilation Time Revision History

	3. Intel Quartus Prime Pro Edition User Guide Design Compilation Archives
	A. Intel Quartus Prime Pro Edition User Guides

