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Reversible circuit compilation with space constraints
Alex Parent, Martin Roetteler, and Krysta M. Svore

Abstract

We develop a framework for resource efficient compilation of higher-level programs into lower-level reversible
circuits. Our main focus is on optimizing the memory footprint of the resulting reversible networks. This is motivated
by the limited availability of qubits for the foreseeable future. We apply three main techniques to keep the number
of required qubits small when computing classical, irreversible computations by means of reversible networks: first,
wherever possible we allow the compiler to make use of in-place functions to modify some of the variables. Second,
an intermediate representation is introduced that allows to trace data dependencies within the program, allowing
to clean up qubits early. This realizes an analog to “garbage collection” for reversible circuits. Third, we use the
concept of so-called pebble games to transform irreversible programs into reversible programs under space constraints,
allowing for data to be erased and recomputed if needed.

We introduce REVS, a compiler for reversible circuits that can translate a subset of the functional programming
language F# into Toffoli networks which can then be further interpreted for instance in LIQui|〉, a domain-specific
language for quantum computing and which is also embedded into F#. We discuss a number of test cases that
illustrate the advantages of our approach including reversible implementations of SHA-2 and other cryptographic
hash-functions, reversible integer arithmetic, as well as a test-bench of combinational circuits used in classical circuit
synthesis. Compared to Bennett’s method, REVS can reduce space complexity by a factor of 4 or more, while having
an only moderate increase in circuit size as well as in the time it takes to compile the reversible networks.

Index Terms

Reversible computation, Toffoli gates, quantum computation, quantum programming languages, data dependency
analysis, pebble games, hash functions.

I. INTRODUCTION

The observation that arbitrary computations can be carried out by a computational device in such a way that in
principle each time-step can be reversed—allowing to recover the input from the output of a computation that has
been orchestrated in such a fashion— goes back to Bennett’s landmark paper [1]. While the original motivation
for reversible computing was to demonstrate that the amount of heat generated by irreversible gates—as implied
by Landauer’s principle—can in principle be avoided by making computations that never erase any information,
it transpires that compared to the actual energy dissipation of modern integrated chips, this saving in energy is
quite small, see, e.g., the survey [2]. For modern chips, the amount of energy savings due to avoiding erasure of
information would be more than 10 orders of magnitude smaller than the amount of energy savings that arise from
other dissipative processes that heat up the chip. Aside from an adiabatic regime where chips would operate at
ultra-low power, yet ultra-slow, therefore arguably the main application of reversible computing is therefore in
quantum computing, namely as a vehicle that allows a quantum computer to carry out any function that a classical
computer might carry out.

It should be noted that the ability to compute classical functions is at the core of many interesting quantum
algorithms, including Shor’s algorithm for discrete log and factoring [3] where the reversible computations are
arithmetic operations in suitable algebraic data structures such as rings and fields. Another example is Grover’s
algorithm [4], where reversible computations feature as the operations required to implement the predicate that
implicitly defines the solution of the search problem at hand. Many variations of this general theme exist including
quantum walk algorithms that allow to traverse graphs faster than classical algorithms can, in some cases even
exponentially faster, as well as some algorithms for simulation of Hamiltonians, where reversible computations may
be needed for the efficient accessing of the matrix elements of the underlying Hamiltonian [5].
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While this may illustrate the need for techniques to turn classical computations into quantum circuits, it also
may serve as an illustration of the difficulties that such a translation will present to an compiler system that aims
at supporting this translation from a classical computation. Such a classical description could be, say, a program
expressed in a higher-level programming language such as C or Haskell. Among the difficulties are the following
issues: (i) qubits that are used as intermediate scratch space during the computation have to be cleaned up at the end
of the computation or else the interference effects, on which quantum computations typically rely heavily, would
disappear which would render the computation useless, (ii) the number of qubits that are needed for scratch space
grows linearly with the number of classical instructions if a simple method for turning the irreversible computation
into a reversible one is used such as the original Bennett method [1]. What is more, the simple methods for making
circuits reversible are extremely inefficient regarding the load-factor of the computation, namely they lead to circuit
that only manipulate a tiny subset of the qubits at a given time and leave the bulk of the qubits idle. This is
particularly troublesome as early quantum computers will contain relatively few qubits. In turn, they will neither be
able to afford ample scratch space nor scratch space that stays idle for large portions of the computation. Happily,
Bennett already pointed out a way out of this dilemma by studying time-space trade-offs for reversible computation,
and by introducing reversible pebble games which allow to systematically study ways to save on scratch space
at the expense of recomputing intermediate results. To determine the best pebbling strategy for the dependency
graph imposed by actual real-world programs, however, is a non-trivial matter. In this paper we follow a pragmatic
approach: we are interested in solutions that work in practice and allow to handle programs at scale. As a guiding
example we consider cryptographic hash-functions such as SHA-2, which can be thought of a Boolean function
f : {0,1}N →{0,1}n, where n� N that has a simple and straightforward classical program for its evaluation that
has no branchings and only uses simple Boolean functions such as XOR, AND, and bit rotations, however, which
has internal state between rounds. The fact that there is state prevents the Boolean function to be decomposed,
thereby making purely truth-table or BDD based synthesis methods useless for this problem. On the other hand,
scalable approaches such as combinator-based rewriting of the input program as a classical circuit, followed by
applying the Bennett method, also run into issues for SHA-2 as the number of rounds is high and because of the
large number of scratch qubits per each round, the overall required space by such methods is high.

Related work. There are several programming languages for quantum circuits, including LIQui|〉 [6], Quipper [7],
[8], and various other approaches [9], [10], [11], [12], [13], [14], [15]. Quipper offers a monad that supports “lifting”
of quantum circuits from classical functions. One of the key differences between the Quipper approach and our
approach is that we sacrifice the concept of linear logic which is a crucial concept underlying Quipper and Selinger
and Valiron’s earlier work on the quantum lambda calculus [11]. Actually, we take a step in the opposite direction:
the fundamental reason for our space saving potential is by allowing mutable variables and in-place updates of
variables. However, there are two prices to be paid for having this advantage: first, we do not have a linear type
system anymore. We believe that this is not a dramatic disadvantage in practice (and indeed we are not aware of any
quantum compilation system that would have implemented type checks for linearity of the type system anyways as
this leads to conflicts with the host language): the main advantage of linear types is that automatically consistency
with regards to non-cloning is ensured. As we focus on subroutines that are entirely classical/reversible this problem
does not present itself. Second, we now have to make sure that bits that there is a way to uncompute bits that have
been used deep inside a computation that might have involved mutable and immutable variables. If for each newly
computed result a fresh ancilla is used, this task is trivial: the ancilla still holds the computed value and in order to
uncompute another value based on the ancilla value, the result is still there. In our case, it might have happened that
the data in the ancilla itself might have been overwritten! In this case there must be a clean way to track back the
data in order to be able to recompute it. To this end, we introduce a data structure that we call MDD; this stands
for ”mutable data dependency graph” and allows to track precisely this information.

There are also prior approaches toward higher-level synthesis based on reversible programming languages such
as Janus and various extensions [16], [17], [18]. These are languages allows only such programs to be expressed
that are invertible in the sense that it is possible to recover the input back from the output. Also flow-chart like
languages can be defined as a refinement of these reversible languages [19], [20] which allow a more fine-grained
notion of reversibility. These languages constrain the programmer in a certain sense by forcing him or her to
express the program already in a reversible way. This makes for instance expressing a function that is believed
to be a one-way permutation π : {0,1}n → {0,1}n difficult, whereas in our approach ideally it should be easy
to express π , provided it has an efficient circuit. The compiler should then be able to find an efficient circuit
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implementing (x,y) 7→ (x,y⊕π(x)). Tasks like these are possible in Janus and flow-chart like languages, however,
they are somewhat unnatural.

Finally, we would like to point out that there is a well-established theory of reversible synthesis for Boolean
functions, i.e., the task of implementing an (irreversible) function that is given by its truth table by means of a
reversible circuit. This typically entails methods that are quite efficient for a bounded number of bits [21], [22],
[23], [24], [25], [26], techniques that achieve reversible synthesis by using the quantum domain [27], template
based rewriting techniques that enable peep-holing methods to be applied [28] and even a complete classification
of the optimal reversible circuits for small number of bits [29]. See also [30] for a survey. All these techniques
aim at an understanding of reversibility at the lower level. In the present paper we aim at approaching reversible
synthesis starting from high-level descriptions in a functional programming language. In this sense our approach is
in principle scalable, whereas truth-table based methods can only be applied to a small number of bits. However,
our approach leverages the techniques developed for truth table based synthesis as the atomic cases in which the
compiler, after suitable decompositions, falls back to a known method once the given program has been decomposed
into a collection of functions that act on a small number of bits.

Our Contributions. Our main innovation is an algorithm to compute a data structure that we call the mutable data
dependency graph (MDD) from a program. This data structure tracks the data flow during a classical, irreversible
computation and allows to identify parts of the data flow where information can be overwritten as well as other
parts where information can be uncomputed early as it is no longer needed. These two techniques of overwrite,
which are implemented using so-called in-place operations, and early cleanup, for which we use a strategy that
can be interpreted as a particular pebble game that is played on the nodes of the data flow graph, constitute
the main innovation of the present work. We study different embodiments of the cleanup strategy, depending on
how aggressively the cleanup is implemented. We implemented a compiler, which we call REVS, that can take
any program from a language that is a subset of all valid F# programs and that can turn such a program into a
corresponding reversible networks over the Toffoli gate set. The REVS compiler can be interfaced with the LIQui|〉
quantum programming language in a natural way as the output Toffoli network of the REVS compilation can be
directly imported as an internal representation into LIQui|〉 and be used as part of another quantum computation.
Furthermore, the simulation and rendering capabilities of LIQui|〉 can be used to further process the REVS output.
Also, we implemented a simple, light-weight simulator for Toffoli networks as a part of REVS that can be used for
testing purposes, e.g., on a set of random input/output pairs.

A further contribution of our work is to demonstrate that higher-level reversible synthesis can be done in a way
that is much more space efficient than using the Bennett method which essentially introduces additional ancillas per
each operation used in the irreversible implementation. In our example implementations of arithmetic operations
such as integer addition and multiplication, as well as hash functions, such as SHA-2 and MD5, we typically saw
space savings of our method over the Bennett method of a factor of 4 or more.

II. REVERSIBLE COMPUTING

It is known that the Toffoli gate [31] which maps (x,y,z) 7→ (x,y,z⊕ xy) is universal for reversible computation.
More precisely, it is easy to see that the group generated by all Toffoli, CNOT, and NOT gates on n≥ 1 bits is
isomrphic to the alternating group A2n of order (2n)!/2. Hence, as 1⊗π = (π,π) is even for any permutation π , at
the expense of at most 1 aditional bit any permuation can be implemented in terms of Toffoli gates.

The number of Toffoli gates used in the implementation of a permutation π is the basic measure of complexity
that we use in this paper. This is motivated by universal fault-tolerant quantum computing where the cost of Clifford
gates such as CNOT and NOT can usually be neglected, whereas the Toffoli gate has a substantial cost. In particular
we ignore the cost of CNOT and NOT gates. It should be noted that other cost metrics such as multiple-controlled
Toffoli gates have been studied in the literature which in turn can be related in terms of Toffoli cost, however, in
our opinion counting of Toffoli gates is well-motivated due to the connection to fault-tolerant computing, whereas
gate counts in terms of multiply controlled gates can hide a significant cost factor.

Bennett’s work on reversible Turing machines [1], [32] showed that it is possible to relate the cost of an irreversible
circuit implementation of a function with that of a reversible circuit implementation. More precisely, if x 7→ f (x)
denoting a Boolean function on n bits that can be implemented with K gates over {NOT,AND}, then the reversible
function (x,y) 7→ (x,y⊕ f (x)) can be implemented with at most 2K+n gates over the Toffoli gate set. The basic idea
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being to replace all AND gates with Toffoli gates, then perform the computation, copy out the result, and undo the
computation, thereby cleaning up all bits. In a nutshell, the present paper tries to improve on the space-complexity
of Bennett’s strategy which is large as it scales with the circuit size of the irreversible circuit.

To mitigate this, space-time trade-offs have been investigated via so-called reversible pebble games [32]. In
general, pebble games are useful for studying programming languages and compiler construction, in particular for
data dependency analysis. Data flow dependencies can be modeled by directed acyclic graphs [33]. A pebble game
played on this graph can then be used to model register allocation for the given data flow graph, and to explore
time-space tradeoffs. The thesis [34] provides a summary of pebble games and a comparison between various
notions of traditional pebble games that do not have to meet requirements of reversibility and Bennett’s reversible
pebble game.

An important special case of reversible pebble games are games played on a directed line as they correspond
to function with sequential dependency on intermediate results. We denote the time and space resources needed
for the irreversible function by T and S and those for the reversible function by Trev and Srev. Bennett’s original
paper [1] asserts that Trev = O(T ) and Srev = O(ST ) is possible, however, in terms of the required space this has
significant downside as in the worst case T might scale as T = O(2S). For Bennett’s reversible pebble game, i.e.,
the pebble played on line, it is known [35] that if the resources are constrained to k pebbles, then there are the
following upper bounds: Trev = O(S3k2O(T/2k)) and Srev = O(kS). As limiting special cases [35] we obtain for
k = O(1) that Trev = O(S2OT ) and Srev = O(S) which is the Lange-McKenzie-Tapp strategy [36] that has exponential
time cost but stays linear in the required space. Another special case is for k = logT for which we obtain Bennett’s
space/time tradeoff [32] which runs in Trev = O(S3log2 T ) = O(ST log2 3) and Srev = O(S logT ) = O(S2). One can
further improve the time dependency [32], [37] to Trev = O(T 1+ε/Sε) for any given ε > 0 and space dependency
Srev = O(S(1+ ln(T/S))). To the best of our knowledge, only little is known about the ultimate limit of these
space-time tradeoffs, see however [38] in which the authors provide an oracle separation between classical and
reversible simulations that run in Srev = O(S) space and Trev = O(T ) time. While for the directed line, the problem
of finding the optimal pebbling strategies for a given space can be solved in practice quite well using dynamical
programming [39]. For general graphs, finding the optimal strategy is PSPACE complete [34], i.e., it is unlikely to
be solvable efficiently.

A simple and easy to implement version of the 1D pebble games is the “incremental” pebble game. In this pebble
game we simply add pebbles until we run out. We then remove as many pebbles as we can starting at the point where
we ran out and use them to continue the computation. We leave behind a pebble each time we do this. It is easy to
see that for some amount of pebbles n we can pebble a distance that scales as n+(n−1)+(n−2)+ · · ·+1 = n(n+1)

2 .
And since we will pebble/unpebble a given node a maximum of 4 times (twice in the forward computation and
twice again during clean-up), the total amount of computations is worst case is 4N where N is the number of
irreversible operations. In other words, this means that we get a scaling of Trev = O(T ) and Srev = O(S

√
T ) for this

incremental pebble strategy.

(a) (b) (c)

Fig. 1: Visualization of three different pebble strategies that succeed in computing a pebble game on a linear
graph, but use different strategies. Time is displayed from left to right, qubits are displayed from bottom to top. The
strategy shown in (a) corresponds to Bennett’s compute-copy-uncompute method [1] where the time cost is linear
but the space cost is O(ST ), (b) is the incremental strategy mentioned in the text for which the time cost is linear
but the space cost is O(S

√
T ). The strategy shown in (c) corresponds to the Lange-McKenzie-Tapp method [36]

that takes exponential time but has only a space cost of O(S).

In Figure 1 different strategies to clean up a computation on a linear 1D graph are visualized. Time is displayed
from left to right, computational nodes are displayed from bottom to top—the output of the topmost gate being
the final output—, and pebbles are denoted by black pixels. The state of the game after i time steps is precisely
the vertical slice obtained at location i. Bennett’s original strategy corresponds to (a) in which case shown in the
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figure a sequence of 10 gates is pebbled using 10 pebbles and 19 time steps. An extremely space-efficient strategy
is shown in (c). Here in a fashion that resembles a fractal, a strategy is implemented that pebbles 32 gates using
only 6 pebbles but which needs 193 time steps. In (b), a possible middle ground is shown, namely an incremental
heuristic that first uses up as many pebbles as possible, then aggressively cleans up all bits except for the last bit,
and the repeats the process until it ultimately runs out of pebbles. Here 24 gates are pebbled using 5 pebbles.

Fig. 2: Comparison of the asymptotic scaling of different pebbling strategies. The lower curve is Bennett’s original
strategy [1] in which the number of pebbles scales with the number of time steps. The upper curve is the space-
efficient but exponential-time Lange-McKenzie-Tapp strategy [36]. The other curves show the graceful degradation
of the time complexity, here measured as circuit depth, with the reduction of the number of available pebbles.

Knill [39] showed that for 1D pebble games the cost for the optimal pebbling strategy for any fixed number of
available pebbles can be expressed recursively. Using dynamic programming, we used this to implement a search for
optimal pebbling strategies on 1D graphs for a variety of different space constraints. The findings are summarized in
the plot shown in Figure 2. In there the uppermost curve corresponds to the pebble games shown in Fig. 1(c). The
lowermost curve is the original Bennett strategy shown in Fig. 1(a) in which the number of ancillas scales linearly
with the depth of the circuit, Shown are also various other strategies that are optimal for given space resource
constraints. To summarize our findings of this dynamic programming search for 1D pebble game under the given
space constraints is that a significant reduction of the number of pebbles by a factor of 4 or more leads to an almost
negligible increase in the length of the reversible computation. The extremely parsimonious strategies that achieve a
pebbling of a 1D line graph of size n with O(log(n)) pebbles do not seem advisable from a practical standpoint
as the circuit size increases dramatically. We believe that in practice a middle ground will be best, in particular
constant reduction in terms of the number of pebbles which then lead to only small increase in circuit size and
compilation time.

While for the directed line, the problem of finding the optimal pebbling strategies for a given space can be
solved in practice quite well using dynamical programming [39], for general graphs, finding the optimal strategy
is PSPACE complete [34], i.e., it is unlikely to be solvable efficiently. In our paper we employ heuristics to find
pebbling strategies that work well in practice and often lead to better space complexity than Bennett’s original
method, which is the method implemented e.g. in Quipper [8]. We make no claims about optimality of our strategies
but present empirical evidence for space reductions of Srev of around 70% at only a moderate increase in Trev.

The cleanup strategies we develop in the parts of the paper can be thought of as pebble games that are played on
finite graphs, namely the dependency graphs of the functions that are computed by the program. In our paper we
employ heuristics to find pebbling strategies that work well in practice and often lead to better space complexity
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than Bennett’s original method, which is the method implemented e.g. in Quipper [8]. We make no claims about
optimality of our strategies but present empirical evidence for space reductions of Srev over the original Bennett
strategy [1] of around a factor of 4 or more at only a moderate increase in Trev.

A. Boolean functions

An important special case of programs that need to be turned into reversible circuits are Boolean functions.
Boolean functions are used as the primitives in our implementation. All supported boolean operators are converted

into AND/XOR functions and grouped into boolean expressions. The expressions are then converted into Toffoli/CNOT
circuits while attempting to minimize ancilla use. This is done by combining operations into expressions of the type:

type BoolExp =
| BVar of int
| BAnd of BoolExp list
| BXor of BoolExp list
| BNot of BoolExp

Expressions are always given a target to be evaluated onto. Each BXor term can be constructed by evaluating each
term then adding a CNOT from each of them to a given target. Each BAnd term can be constructed using a multiple
control Toffoli decomposition targeted again to the given target. This means ancilla usage is limited to the bits
required to preform all of the AND operations in the expression. In general, the output of a Boolean function is of
the form y⊕ e where y is the target bit and e is the given Boolean expression. Note that this allows the evaluation
of e by initializing y = 0 as 0⊕ e = e.

It is possible to do further optimization by factoring the expression in an attempt to remove and operations. For
example ab⊕ac⊕bc can be factored as a(b⊕c)⊕bc so that it uses 2 and operations rather then 3. Currently there
is no automated factoring but if the expression is written in a factored form by the programmer it will result in
better circuit generation.

Finally, we remark that some operations can be performed in-place in a reversible fashion. An operation is in-place
if it modifies data without creating any ancilla. For example the CNOT gate preforms the operation (a,b) 7→ (a,a⊕b).
So if we wish to preform the operation a⊕b and do not require b later in the circuit we do not need an additional
ancilla to store the output. Other examples for in-place operations are integer adders. More generally, it is easy to
see that any function f that a) implements a permutation, b) for which an efficient circuit is known and c) for which
f−1 can also be implemented efficiently, gives rise to an efficient in-place reversible circuit that maps x 7→ f (x).

III. REVS: A COMPILER FOR REVERSIBLE CIRCUITS

A. Dependency analysis

Analyzing the dependencies between the instructions in a basic function, between functions, and between larger
units of code is a fundamental topic in compiler design [33], [40]. Typically, dependency analysis consists of
identifying basic units of codes and to identify them with nodes in a directed acyclic graph (DAG). The directed
edges in the graph are the dependencies between the basic units, i.e., anything that might constrain the execution
order for instance control dependencies that arise from the control flow in the program which in turn can be for
instance branching that happen conditional on the value of a variable or, more simply, the causal dependencies that
arise from one unit having to wait for the output of another unit before the computation can proceed.

In our case, the dependency graph is generated in a two step process. First, the F# compiler is invoked to
generate an abstract syntax tree (AST) for the input program. This is done using the mechanism of reflection for
which F# offers support in the form of so-called quotations [41]. Quotations have a simple syntax by surrounding
expressions for which an abstract syntax expression is to be constructed with <@ ... @>. F# quotations are types
which implies that much of the type information present in the program as well as the expression based nature can
be leveraged. In practice this means that the AST will already be represented in a form that can then be easily
dispatched over by using match statement for the various constructors that might be used. Second, we then use
so-called active patterns in our match statements to further aid with the process of walking the AST and turning it
into an internal representation that represents the dependency graph of the program.
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The nodes of this graph captures the control flow and data dependencies between expressions, but also identifies
which blocks can be computed by in-place operations and which blocks have to be computed by out-of-place
operations. Because of this latter feature is related to which elements of the dependency graph are mutable and
which are not, we call this data structure the Mutable Data Dependency graph or MDD. Which parts of the code
can be computed by in-in-place operation is inferred by which variables are labeled in F# as mutable together
with the external knowledge about whether for an expression involving these variables an in-place implementation
is actually known. An example for the latter is the addition operation for which we can chose either an in-place
implementation (a,b) 7→ (a,a+b) or an out-of-place implementation (a,b,0) 7→ (a,b,a+b).

The nodes of the MDD correspond to inputs, computations, initialized and cleaned-up bits. Inputs nodes can
correspond to individual variables but also to entire arrays which are also represented as a single node and treated
atomically. Computation nodes correspond to any expression that occurs in the program and that manipulates the
data. Initialized and cleaned-up bits correspond to bits that are part of the computation and which can be used either
as ancillas or to hold the actual final output of the computation. Initialization implies that those qubits are in the
logical state 0 and the cleaned-up state means these bits are known to be returned back in the state 0.

Algorithm 1 MDD Computes mutable data dependency graph.
Require: AST : The AST of a function to be compiled

1: procedure RESOLVEAST(AST,G)
2: if Root of AST is an operation then
3: for input in inputs(AST) do
4: inputIndex , G ← ResolveAST(input,G)
5: inputIndices ← inputIndex :: inputsIndices
6: end for
7: newNode.type ← OpType(head(AST))
8: newNode.inputs ← addInputArrows(inputIndices)
9: G ← AddNode(newNode)

10: return getIndex(newNode) , G
11: else
12: return getVarIndex(head(AST)) , G
13: end if
14: end procedure
15: G ← Add nodes for all inputs
16: resolveAST(AST,G)

The directed edges in a MDD come in two different kinds of flavors: data dependencies and mutations. Data
dependencies are denoted by dashed arrows and represent any data dependency that one expression might have in
relation to any other expression. Mutations are denoted by bold arrows and represent parts of the program that
are changed during the computation. By tracking the flow of the mutations one can then ultimately determine the
scheduling of the expressions onto reversible operations and re-use a pool of available ancillas which helps to reduce
the overall space requirements of the computation, in some cases even drastically so. A high level description of the
algorithm that computes the MDD from the AST produced by the F# compiler is given in Algorithm 1.

When resolving the AST of a function, each node will either be another function or an input variable. If the node
is a function, Algorithm 1 recursively computes the AST for all of the function inputs adding the results to the
graph. Upon doing so, we use the index numbers of these results as the inputs for the operation and then add the
operation to the graph. If the node is a variable, the algorithm looks up its name in a map of currently defined
variables and returns an index to its node. The type of the operation determines which arrows will be solid input
arrows and which will be data dependencies, i.e., controls. In the example figures given in this paper, the paths from
inputs to outputs that indicate modifications are drawn using bold arrows, whereas controls are shown as dashed
arrows. As the algorithm visits each node in the AST and does a modification of the graph that involves only a
constant number of elements, it is clear that the overall runtime of Algorithm 1 is O(n), where n is the number of
nodes in the AST.

A simple example for this translation of a program into an MDD is given by the following program:
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let f a b = a && b

In this program f is simply the AND function of two inputs a and b. The MDD corresponding to the program is
shown in Figure 3.

Fig. 3: MDD for f (a,b) = a∧b

There are two input nodes in the MDD for f labeled as “var a” and “var b” in the figure. Those nodes are
immutable. Furthermore, there is one node initialized in 0, denoted as “init” and one node which will contain the
final output, denoted as “Out”. Data dependencies are present in the node for the AND operation, meaning that a
node for the AND operation is created and (dashed) input arrows pointing from the variables a and b are added.
The node “init” is used to hold the result. It points to the operation with a solid modification arrow. Finally an
output node is added showing which value is being treated as the output of the function. The final code emission by
the compiler in this concrete case will use a library for Boolean expressions which in this concrete case then is
invoked when mapping the MDD to a reversible circuit. The circuit corresponding to this particular program is just
a single Toffoli gate with control qubits a and b and one target qubit.

let xor4 (a:bool array) (b:bool array) =
let c = Array.zeroCreate 4
for i in 0 .. 3 do

c.[i] <- a.[i] <> b.[i]
c

let and4 (a:bool array) (b:bool array) =
let d = Array.zeroCreate 4
for i in 0 .. 3 do

d.[i] <- a.[i] && b.[i]
d

let mutable a = Array.zeroCreate 4
let b = Array.zeroCreate 4
let c = Array.zeroCreate 4
a <- xor4 a b
and4 a c

Fig. 4: Simple F# snippet using an arrays and in place operations. The mutable data dependency (MDD) graph
corresponding to the and4 function is given in Figure 5

A slightly more involved example is given by the code shown in Figure 4. Here there are new several elements
as compared to the simple Boolean example above that make the MDD construction slightly more non-trivial. First,
a number of arrays are used to store data in a way that allows for easy access and indexing. Note that in F# the
type array is inherited from the .NET array type and by definition is a mutable type. This information is used
when the MDD for the program is constructed as the REVS compiler knows that in principle the values in the array
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can be updated and overwritten. Whether this can actually be leveraged when compiling a reversible circuit will of
course depend on other factors as well, namely whether the parts of the data that is invoked in assignments (denoted
by <-) is used at a later stage in the program, in which case the data might have to be recomputed.

Note further that there are basic control flow elements such as for-loops and function calls and Boolean connectives,
namely the AND function that we already met in the previous example, and the XOR function, denoted by <>. The
MDD corresponding to the main function and4 is shown in Figure 5.

Fig. 5: MDD of the main function and4 from Figure 4

B. Clean-up strategies

If a node has no outgoing modification arrows and all operations pointed to by its dependency arrows have been
completed it is no longer needed by the computation and may be cleaned.

1) Eager Clean-up: With eager clean-up we start at the end of the graph and work our way back in topological
order. When we find a node (A) which does not have an outgoing modification arrow we first find the node furthest
along in topological order which depends on it (B). We then consider all inputs in the modification path of A. If
any of the inputs have outgoing arrows modification arrows pointing levels previous to B we may not clean the bit
eagerly since its inputs are no longer available. If the inputs do not have modification arrows pointing at levels
previous to B we can immediately clean it up but reversing all operations along its modification path.

For example see Figure 6 generated by the f function in the code:

let f a b = a || b
let g a b = a && b
let h a b c d = f a b <> g c d

The values initialized to hold the results of ab and a⊕b are no longer required after they are used to calculate the
final result. The compiler notices that the original values used to produce them are still available and uncomputes
the extra ancilla. Notice in the circuit graph of this operation (Figure 7) that the freed ancilla can be reused in the
other parts of the computation.

Ancilla currently in use are tracked during circuit generation using a heap data structure. Whenever an ancilla is
needed during the compilation from the MDD into a circuit, an identifier (implemented as a number) is taken off
the heap and the bit matching that number is used. After a bit has been cleaned up the corresponding identifier is
pushed back onto the heap. This allows ancilla to be reused and ensures that we use only the minimum indexed
ancllia so we can avoid allocating unneeded space.

Several comments about this example are in order. First, note that like all the other examples in this paper, the
shown F# program can be compiled and executed on a classical computer just like any other F# program. By putting
quotations around the program and sending it to the REVS compiler, we can give another semantic interpretation of
the same program, namely to map it to a reversible network. As can be seen in Figure 6, operations on the same
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var a
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var binit

xor

init

init
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(a) Before cleanup
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and xor

and xor

var binit

xor

init

init

Outclean clean

1 23

4
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67
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10 13 12

(b) After cleanup

Fig. 6: Dependency graph for a||b which is represented as ab⊕a⊕b. The nodes are numbered with a possible
topological order. Starting from the bottom we see that the lowest index which is not an input (var) or output
is xor at 6. The last dependent node of 6 is xor at 8 and the input nodes (var a and var b) have not been
modified after 6. We are therefore able to insert nodes after node 8 to cleanup 6. The nodes we insert are numbered
11 and 12 in the final graph. They are initially numbered 9 and 10 but when we cleanup on the left side we again
insert the nodes after node 8, moving the indices of the previously inserted nodes up by 2.

level can be reordered or even preformed in parallel without changing the outcome of the computation. Finally, the
Toffoli network emitted by the compiler at the back-end, i.e., in the circuit generation phase, is shown in Figure 7.

a
b
c
d

a
b
c
d

result

f f -1
g g-1

Fig. 7: The resulting reversible network for computing the function h(a,b,c,d) = f (a,b)⊕g(c,d). The sub-circuit
labeled with “f” is obtained from the MDD shown in Figure 6. Similarly, a sub-circuit for g is obtained from an
MDD for g, which is an AND function. The final result is copied out into the “result” wire and then cleanup is
performed by running the circuits for f and g in reverse.

It turns out that it is not always possible to do clean-up eagerly. The basic reason for this is that the computation
might result in the production of bits which are not needed in the future execution path of the circuit but which
also cannot be easily cleaned up as they themselves were the result of another computation. A simple example is
the following:

let a = false
let mutable b = false
let c = (a&&b)
b <- b <> c
b
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Algorithm 2 EAGER Performs eager clean-up of an MDD.
Require: An MDD G in reverse topological order, subroutines LastDependentNode, ModificationPath, InputNodes.

1: i← 0
2: for each node in G do
3: if modificationArrows node =∅ then
4: dIndex ← LastDependentNode of node in G
5: path ← ModificationPath of node in G
6: input ← InputNodes of path in G
7: if None (modificationArrows input) ≥ dIndex then
8: cleanUp ← (Reverse path) ++ cleanNode
9: end if

10: else
11: cleanUp ← uncleanNode
12: G ← Insert cleanUp Into G After dIndex
13: end if
14: end for
15: return G

Here the variable c is the result of a non-trivial computation and is then part of a subsequent computation that
involves updating yet another variable b in a mutable update path. The corresponding MDD is shown in Figure 8.

init

and

xor

Out

var a var b

(a)

a
b
0

out
a

g

(b) Circuit for the graph in (a)

a
b
0
0

0

a
b

out

(c) Circuit after cleanup by copy&reverse

Fig. 8: Example illustrating a case in which early cleanup is not possible. Here the last dependent node of the and
operation is the xor operation but the input var b to the and operation has a modification arrow to xor. This
means that eager cleanup will fail (see algorithm 2).

The graph shows that a value is initialized to store the result of the AND operation but cannot be cleared
even though it is not longer needed in the computation. The reason for this is that the node performing the XOR
computation depends on it, indicated by the dashed arrow, and the mutable data b is modified before there is
an opportunity to clear it. Situations like this can be identified in the MDD graph as finding (undirected) cycles
involving at least one bold edge. If a case like this occurs, the function will not be fully cleaned. To resolve this we
can copy out the result and reverse the function.

A pseudo-code implementation of the algorithm to perform eager cleanup is given in Algorithm 2. The algorithm
takes a graph in reverse topological order and tries to find a node that doesn’t modify any nodes that come after it
in reverse topological order, so that this node can be safely cleaned up. As finding such a node involves checking
all nodes that might influence its value along the modification path to which it belongs, which in itself might take a
linear time O(n) of checks, where n is the input size as measured by the number of nodes in the initial MDD G,
we obtain an overall worst-case running time of O(n2) for this algorithm.
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The algorithm uses 3 subroutines: LastDependentNode(Gi,G) is defined to be the index of the last node in
topologically a sorted graph G which depends on node Gi. ModificationPath(Gi,G) is defined as the path made up
of the mutation arrows from initialization to Gi. Finally, InputNodes(p,G) is defined as the set of all input nodes
into a path p.

As discussed above, there are cases, in which no eager cleanup is possible, i.e., where the if statement in line 7 of
the code does not apply. This happens if there are modification arrows greater then the index of the last dependent
node in the input, i.e., the input has changed before eager cleanup can be done, i.e., eager cleanup is not possible
(this is as in the example in Figure 8). In this case, the results must be copied out and the function reversed for a
full cleanup. This is marked by the attribute “unclean” when the else branch in line 10 in Algorithm 2 is executed.
In this case, during the final circuit emission phase which involves walking the modified MDD G that is returned by
Algorithm 2, the unclean nodes are processed by copying out the result and cleaning up as in the Bennett strategy.

2) Proof of correctness of the eager cleanup method: We provide a proof of correctness of the EAGER cleanup
strategy introduced in the previous section. First, we introduce two notions of relationships that mutation paths that
are part of an MDD can have, namely independence and inter-dependence. This naturally captures and generalizes
the notion of conflicts shown in Figure 8.

α

γ δ

ε ζ

β

A B

α

γ

δ

ζ

β

A B

(a) (b)

Fig. 9: Relationships between mutation paths in an MDD: (a) one-way dependent paths A and B. Notice that
dependency edges only point from one graph (here from A to B) to the other and never backwards. (b) interdependent
graphs A and B. Notice that dependency edges point in both directions.

Definition 1 Two paths P1 and P2 that are formed by mutation edges in an MDD G = (V,E) are called one-way
dependent if all edges (v,w) ∈ E that involve one vertex from from P1 and one from P2 can be oriented in such a
way that always the first vertex v ∈ P1 and the second w ∈ P2 (or vice versa). Otherwise the paths P1 and P2 are
called interdependent.

Theorem 2 Let G = (V,E) be an MDD that is obtained from a given irreversible program P . Assume that all
mutation paths in G are pairwise one-way dependent. Then the circuit C produced by the EAGER cleanup method
in Algorithm 2 is correct in the sense that it computes the same function as the original program P for some
assignment of the input values, C is reversible, and all ancillas that may be used by C are returned in their initial
state at the end of the computation.

Proof: It is clear that the circuit computed by C is reversible as it uses only reversible gates in its composition.
Furthermore, by construction, it computes the given function on some of the output wires. It remains to show that
all ancilla used during the computation, and inputs which have mutation paths in the MDD G, can be cleaned up,
i.e., can be returned to the initial state.

Our proof is by induction on the number k of mutation paths P1, . . . ,Pk inside the MDD G. The base case is
trivial as if k = 1 there is only one mutation path and clearly this path either leads to an output, in which case no
cleanup is necessary, or leads to a node that has to be cleaned up. However, since all inputs to the path are still
available by assumption, the output of the path, i.e., its last node, can simply be moved backward step by step,
uncomputing each intermediate result, until the initial state is recovered.

We strengthen out inductive hypothesis slightly by assuming that we can return the final state of each path
P1, . . . ,Pk to an arbitrary intermediate state. Intuitively, we think of the state “sliding up and down the mutation
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path”. Now, we make the inductive step to k+1 paths. Recall that a node v can be reversed if all their dependency
edges pointing to v are available nodes, i.e., nodes which we can compute from the available data, by sliding the
final output either up or down the mutation path. If all dependency arrows of a path point to available nodes, that
segment of the path can be reversed. We hence can make the inductive step as follows: Assume that the paths
P1, . . . ,Pk+1 are arranged in topological order. Let the v be the node holding the current state of the last path Pk+1,
i.e., by assumption on the one-wayness of the graph, all edges point into Pk+1 and none points backward. Now,
consider all nodes in P1, . . . ,Pk that would have to be available in order to move v one step backward. By induction,
we can slide the states for each path into the location that is needed to make this information available for v to
move backward one step. Repeating this argument, we see that we can move the state anywhere along the last path
Pk+1 thereby showing that cleanup is possible and algorithm EAGER will find this cleanup strategy.

3) Incremental Clean-up: When the ancilla management realizes that the pool of available ancillas is running
low, the compiler looks ahead in the graph to check which ones of the currently allocated bits are needed for the
future computation. We then reverse the circuit creating a checkpoint by copying out the required bits. If at a later
stage the ancilla management again runs out of bits, the process is repeated by taking the last checkpoint to be the
beginning of the circuit. In order to clean up the checkpoints the result of the function may be copied out after
which the function can be reversed. Pseudo-code for the incremental clean-up is shown in Figure 3.

Algorithm 3 INCREM Performs incremental clean-up
Require: A dependency graph G in topological order, Nq number of unused qubits remaining, n index of the current

node. cp previous checkpoint index, 0 if no previous exists.
1: cnodes← {v ∈ G[cp..n] that have edge to a node > n)}
2: if Length(cnodes) ≥ Nq then
3: canc← AllocateBits(length cn)
4: G← Add Copy from cnodes to canc into G after n
5: G← Insert (Reverse G[cp..n]) into G after (n+ length cnodes)
6: cp← n+ length cnodes
7: end if
8: return G

4) Testing the correctness of the compiled Toffoli networks: We tested all circuits produced by REVS for correctness
and briefly describe our methodology. While general quantum circuits cannot be simulated efficiently on a classical
computer, it is possible to simulate reversible circuits that are composed of Toffoli (and CNOT and NOT) gates only.
The reason is that all gates that are applied to a given input vector vinput = (x1, . . . ,xn) ∈ {0,1}n can be tracked by
making local updates, eventually leading to an output vector vout put ∈ {0,1}n. In our F# implementation of REVS

we use this observation to provide the following extremely simple simulator:

type Primitive =
| RTOFF of int * int * int
| RCNOT of int * int
| RNOT of int

let simCircuit (gates : Primitive list) (numberOfBits : int) (input : bool
list) =
let bits = Array.init numberOfBits (fun _ -> false)
List.iteri (fun i elm -> bits.[i] <- elm) input
let applyGate gate =

match gate with
| RCNOT(a, b) -> bits.[b] <- bits.[b] <> bits.[a]
| RTOFF(a, b, c) -> bits.[c] <- bits.[c] <> (bits.[a] && bits.[b])
| RNOT a -> bits.[a] <- not bits.[a]

List.iter applyGate gates
bits
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let carryRippleAdder (a:bool []) (b:bool []) =
let n = Array.length a
let result = Array.zeroCreate (n)
result.[0] <- a.[0] <> b.[0]
let mutable carry = a.[0] && b.[0]
result.[1] <- a.[1] <> b.[1] <> carry
for i in 2 .. n - 1 do

// compute outgoing carry from current bits and incoming carry
carry <- (a.[i-1] && (carry <> b.[i-1])) <> (carry && b.[i-1])
result.[i] <- a.[i] <> b.[i] <> carry

result

Fig. 10: F# program that implements a carry ripple adder using a simple for loop while maintaining a running carry.

Our methodology for testing is the following: for a given F# program P which maps a given in put x ∈ {0,1}n

to an output x 7→P(x) ∈ {0,1}m, we first generate a set S = {u1, . . . ,uk} ⊆ {0,1}n of test inputs, where typically
k is of the order of a few tens or hundred of inputs. We now use the F# compiler to compile the given program
into an executable and run the test inputs in S, producing the input/output pairs (ui,P(ui)) for i = 1, . . .k. Then
we use REVS to generate the Toffoli network T that supposedly implements (x,y⊕P(x),0) and use the above
simulator to simulate the output of the Toffoli network on input (a,b,c) := T (ui,0,0). If everything is correct, the
outputs coincide, i.e., a = ui, b = P(ui), and c = 0, where 0 denotes an all-zero vector of the appropriate size.

IV. EXPERIMENTAL DATA

A. Arithmetic functions

A fundamental arithmetic operation that is needed, e.g., as a basic building block to implement the operations
required for Shor’s algorithm for integer factorization [3] is integer addition. There are optimized implementations
of adders known for various design criteria, including overall circuit depth [42] and overall number of ancillas [43].
Here we compare two families of adders for which hand-optimized reversible implementations are known to the
output of the REVS compiler when applied to a classical (non-reversible) implementation of an adder and while
using different cleanup strategies. Specifically, we choose a space-optimized carry ripple circuit [44] that implements
(a,b,0) 7→ (a,b,a+b) whose total number of Toffoli gates for n-bit addition modulo 2n scales as 4n−2 and that
requires 3n+1 qubits.

We compare the resulting hand-optimized circuits for implementing carry-ripple adders reversibly to the output
generated by the REVS compiler. To this end, we first implemented a simple carry ripple adder in F# as shown
in Figure 10. Note that this is a regular F# program that can be compiled, e.g., into an executable and run on a
conventional computer. Adding reflections allows the REVS compiler to use the same piece of code and generate an
AST, generate the corresponding MDD, apply a given cleanup strategy and emit a corresponding Toffoli network.
We applied this for 2 cleanup strategies that are currently implemented, namely the straightforward Bennett strategy
that is oblivious to the dependency structure of the program and the eager cleanup strategy that uses the dependency
information present in the MDD and tries to cleanup as soon as a variable is no longer needed.

The results of the comparison are summarized in Table I and visualized in Figure 11. The main finding is that the
output produced by REVS is within a constant of the output of the hand-optimized function, both, for the overall
circuit size and the overall number of qubits. Moreover, it turns out that applying the Bennett strategy leads to
sub-optimal scaling in terms of the total number of qubits, whereas the number of gates turns out to be the same for
all three kinds of adders, hand-optimized, and the two cleanup strategies investigates. The classical implementation
of the adder is the F# program shown in Figure 10 which is then automatically compiled into a Toffoli network
using REVS using a flag for either the Bennett or the eager cleanup strategy.

We also choose a depth-optimized adder [42] that implements integer n-bit addition modulo 2n in

5n−w(n−1)−3blg(n−1)c−6
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(a) (b)

Fig. 11: Comparison of the resources required to implement carry ripple adders of n-bit integers as a reversible
circuit. The adders are out-of-place adders, i.e., they map (a,b,0) 7→ (a,b,a+b), where the addition is performed
in the integers modulo 2n, i.e., the final carry is ignored. Shown in (a) is the total size of the circuit, as measured
by the total number of Toffoli gates needed in the implementation. Shown in (b) is the total number of qubits,
including the two input registers, the output register, and the used ancillas.

Hand optimized Bennett cleanup Eager cleanup

n #gates #qubits #gates #qubits time #gates #qubits time

10 34 31 34 49 0.0252 34 40 0.0952
15 54 46 54 74 0.0252 54 60 0.0272
20 74 61 74 99 0.0342 74 80 0.0382
25 94 76 94 124 0.0422 94 100 0.0482
30 114 91 114 149 0.0492 114 120 0.0622
35 134 106 134 174 0.0592 134 140 0.0722
40 154 121 154 199 0.0672 154 160 0.0852

TABLE I: Comparison of different compilation strategies for n-bit adders. The optimization criterion is overall
circuit size. Shown are the results for a hand-optimized carry ripple adder, an adder that results from applying
the REVS compiler with a cleanup strategy corresponding to Bennett’s method, and an adder that results from
applying the REVS compiler with the eager cleanup strategy. Overserve that while the total number of gates is the
same for all three methods, the eager cleanup method comes within a space overhead of roughly 33% over the hand
optimized adder which is better than the overhead of roughly 66% for Bennett’s method over the hand optimized
adder.

Toffoli gates, where w(k) denotes the Hamming weight of an integer k. The number of qubit required for this adder
scales as

4n−w(n−1)−blg(n−1)c−1.

The results of the comparison are summarized in Table I and visualized in Figure 12.

B. Hash functions

We applied REVS also to the problem of compiling classical, irreversible implementations of hash functions into
Toffoli networks. As an example, we studied an irreversible implementation of SHA-256 which is a member of the
SHA-2 family that hashes a bitstring of arbitrary length to a bitstring of length 256. Following is a snippet of code
from the main loop of the hash function SHA-2. We give more detail about this function in Appendix C

for i in 0 .. n - 1 do
// Inplace update of 32 bit registers
h <- addMod2_32 (ch e f g)
h <- addMod2_32 (s0 a)
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(a) (b)

Fig. 12: Comparison of the resources required to implement depth-optimized adders of n-bit integers as a reversible
circuit. The adders are out-of-place adders, i.e., they map (a,b,0) 7→ (a,b,a+b), where the addition is performed
in the integers modulo 2n, i.e., the final carry is ignored. Shown in (a) is the total size of the circuit, as measured
by the total number of Toffoli gates needed in the implementation. Shown in (b) is the total number of qubits,
including the two input registers, the output register, and the used ancillas.

h <- addMod2_32 w
h <- addMod2_32 k
d <- addMod2_32 h
h <- addMod2_32 (ma a b c)
h <- addMod2_32 (s1 e)
let t = h
//Reassignment for next iteration
h <- g; g <- f; f <- e; e <- d
d <- c; c <- b; b <- a; a <- t

h

Add G

Chunk 1

Rounds

Extend Extend-1

Chunk 1

Add G

Chunk 2

Rounds

Extend Extend-1

Chunk 2

...

Fig. 13: Data flow diagram corresponding to the SHA-2 cipher. Note that the cipher has an internal state which
gets passed from one round to the next round, leading to garbage qubits, i.e., ancillas that when implemented with
a lazy clean-up strategy will accumulate and will lead to a large space overhead.

In Figure 13 we show how the data flow in the SHA-2 cipher can be visualized. A key feature that allows to
keep the amount of space small is that the cipher has an internal state that gets modified within each round by a
permutation and then gets passed onto the next round. Based on this we were able to hand-optimize a circuit for
SHA-2, see Fig. 15, however, it turns out that the REVS compiler is able to find a decomposition automatically that
comes very close to the hand optimized program. In Table II we compare our method with the Bennett method by
compiling rounds of the SHA-2 hashing algorithm.
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Fig. 14: MDD for 2 rounds of SHA-2.

C. BLIF benchmarks

The Berkeley Logic Interchange Format (BLIF) [45] is a logic level circuit description of a classical operation.
The format allows the specification of hierarchical logical circuits, based on a simple text input form. Circuits can
have combinational components, which typically are given by a collection of truth tables using separate lines for
each input/output combinations, where “don’t cares” are allows, and sequential components, i.e., memory elements
such as latches. A BLIF file has the following structure:

.model decl-model-name

.inputs decl-input-list

.outputs decl-output-list

.clock decl-clock-list
<command>
...
<command>
.end

Here .model is a string describing the name of the circuit, .inputs is a list of input bits, .outputs a list of output
bits, .clock is a list of clocks to describe timing information, and each command is a specification of part of the
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Bennett cleanup Eager cleanup Hand Optimized

Rounds #qubits Toffoli count time #qubits Toffoli count time #qubits Toffoli count

1 704 1124 0.2546002 353 690 0.3290822 353 683
2 832 2248 0.2639522 353 1380 0.3360352 353 1366
3 960 3372 0.2823012 353 2070 0.3420732 353 2049
4 1088 4496 0.2827132 353 2760 0.3543582 353 2732
5 1216 5620 0.2907102 353 3450 0.3664272 353 3415
6 1344 6744 0.3042492 353 4140 0.3784522 353 4098
7 1472 7868 0.3123962 353 4830 0.3918812 353 4781
8 1600 8992 0.3284542 353 5520 0.4025412 353 5464
9 1728 10116 0.3341342 353 6210 0.4130702 353 6147

10 1856 11240 0.3449002 353 6900 0.4304762 353 6830

TABLE II: Comparison of different compilation strategies for the cryptographic hash function SHA-2. Shown
are the resulting circuit size, measured by the total number of Toffoli gates, the resulting total number of qubits,
and the time it took to compile the circuit for various numbers of rounds. All timing data are measure in seconds
and resulted from running the F# compiler in Visual Studio 2013 on an Intel i7-3667 @ 2GHz 8GB RAM under
Windows 8.1. The table shows significant savings of almost a factor of 4 in terms of the total numbers of qubits
required to synthesize the cipher when comparing the simple Bennett cleanup strategy versus the eager cleanup
strategy. The reason for this is that the Bennett cleanup methods allocates new space essentially for each gates
versus the eager cleanup strategy that tries to clean up and reallocate space as soon as possible which for the
round-based nature of the function can be done as soon as the round is completed.

logical description of the gate. As we are interested in combinational circuits only, i.e., circuits without memory, for
us only a subset of all expressible BLIF syntax is relevant.

A typical command statement them looks like a collection of lines, each having the form as follows:

−01−
Where a zero or one in the nth column means that the corresponding input must be zero or one and a dash

means that any input is accepted. In the above example, the specification implies that any input in the set
{(0,0,1,0),(0,0,1,1),(1,0,1,0),(1,0,1,1)} evaluates to 1 and all other inputs evaluate to 0.

If any one statement in a block is true then the entire block is true. For example given the inputs x1, x2, and x3
the following block has the value (¬x1∧ x3)∨ (¬x2)∨ (x1∧ x2∧ x3):

0−1
−0−
111

The BLIF format is attractive as there is a rich set of circuit benchmarks that have been used primarily by the
Circuit and Systems community in the 80s and 90s. These benchmarks include the so-called ISCAS’85, ISCAS’89,
MCNC’91, LGSynth’91 and LGSynth’92 collections [46], [47], [48]. We identified all examples from the union of
these benchmarks that only use combinational circuit elements, i.e., for all those Boolean functions in principle
a reversible circuit can be computed. We obtained a set of 135 benchmark circuits which we used to test the
performance of our Boolean expression generation subroutines in REVS.

1) Optimization of BLIF generation: Converting XOR to OR: In the case of mutually exclusive statements
XOR is equivalent to OR. That is to say a∨ b = a⊕ b if a = 1 =⇒ b = 0 and b = 1 =⇒ a = 0. For example
a∧b∨¬a∧ c = a∧b⊕¬a∧ c.

This is useful as it allows us to avoid the use of Toffoli gates and use less ancillas. For example if we wish to
compute a∨b∨ c we might use the circuit:

a a
b b
c c
0 • 0

0 a∨b∨ c
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Fig. 15: Description of a quantum circuit for SHA-2 that was obtained by inspection of the cipher and translation
into a structured circuit. This circuit contains 7 adders (mod 232). Using the adder from CDKM[43] with a Toffoli
cost of 2n−3 this corresponds to 61 Toffoli gates per adder or 427 per round. Note that the K j adder is a constant
adder so may use slightly less gates if we remove controls where the value is known. Each MA operation can
be implemented with 2 Toffoli gates per bit for a total of 128 Toffoli gates for both operations above. Each CH
operation can also be implemented for a Toffoli cost of 2 leading to a further 128 Toffoli gates per round. The
S0 and S1 operations can be implemented using only Toffoli gates. The total per round Toffoli cost is therefore
427+128+128 = 683

And as another example the function a⊕b⊕ c can be computed as:

a • a
b • b
c • c
0 a⊕b⊕ c

In general, given a set of AND expressions that are combined using OR we want to find sets of mutually exclusive
statements that minimize the use of AND. We consider each AND expression to be a vertex on a graph and add
edges between vertices that are mutually exclusive. Now we cover this graph using the smallest possible number of
cliques using an algorithm that solves the so-called CLIQUE-COVER problem which asks to partition the vertices
of a graph can be partitioned into cliques. The NP-completeness of clique cover for a given upper bound k of
allowed cliques is well-known [49], however, good practical approximation algorithms exist [50].

After finding a cliques partition each set of mutually exclusive statements can be implemented by evaluating the
AND statements and combining all of the values on a single ancilla using XOR for each clique. These results can
then be combined using OR statements. We can preprocess the given BLIF files in such a way that the cliques will
be grouped in the output. This yields a new BLIF file, however, the effect of the reordering is that instead of OR
functions now the much cheaper XOR functions can be used. Using the two earlier examples given above, we can
illustrate this technique by applying it to the following circuit:
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0−1
−0−
111

−0−
0−1
111

Before Reordering After Reordering

After reordering, we can now replace the OR of the rows by the XOR of the row. We obtain the following circuit
from compiling the reordered BLIF circuit using REVS:

Out

We implemented the procedure that first performs the offline conversion of the given BLIF circuit to an equivalent
BLIF circuit by performing the clique-cover-based XOR maximization. Then this circuit is converted directly into
an MDD before cleanup and in doing so, the REVS compiler finds the optimized grouping that replaces OR terms
with XOR terms. We applied this method to the above mentioned suite of benchmarks. Shown in Figure III the
results of applying eager cleanup vs Bennett cleanup to the resulting MDD for 38 benchmarks out of our overall
suite of 135 benchmarks.

V. DISCUSSION

A. Comparison with Bennett at function boundaries

A simple alternative cleanup method is to just to apply the original Bennett compute-copy-uncompute method at
function boundaries, i.e., whenever a result of a computation is no longer needed, the computation is immediately
cleaned up. This method will preform reasonably well in cases where no in-place functions are used. Our primitive
operation (the boolean expression) allows for in-place operation though. Bennett-style cleanup assumes that all
operations are out of place and misses out on many opportunities to save on both space and time.

In contrast, consider the case with in-place functions: suppose we have an input (a,b) and we preform some
calculation arriving at f (b). Now we use an in-place function which maps ( f (b),a) 7→ ( f (b),g( f (b),a)). g( f (b),a)
is then set as the output of the function. Using our method we need only clean up f (b) and to create a new in-place
function (a,b) 7→ (g( f (b),a),b).

Even if we are not seeking to create a new in-place function this cleanup strategy can be useful. Consider the
case where the function input is (a,b) and the output is (a,b,c) (with c being allocated inside the function). Lets
say we first apply some function out of place to a, (a,0) 7→ (a, f (a)), and preform some other calculation arriving
at f (b). Then we want to use an in-place operation to map (g(b), f (a)) 7→ (g(b),h(g(b), f (a))). Using our method
we would again only need to clean f (b) to produce the function (a,b) 7→ (a,b,c) where c = h(g(b), f (a)).

A good example for benefits to using in-place updates is the mentioned examples of the SHA-2 algorithm (see
Figure 15). In the implementation used below functions are calculated at each iteration only to be added in-place
to the result. Using our method we can immediately cleanup those functions since they are not needed after the
addition is preformed. This prevents additional ancilla from being used at each iteration. Even if each iteration were
wrapped in a function the total number of bits used would be higher. Looking again at Figure 15 we see that in the
hand implementation each adder can be cleaned up before bits are allocated for the next. Using the Bennett method
with the function boundary at each iteration all of the adders would be cleaned up at the end so the total number of
bit needed would be greater.

The graph structure also provides information which could be used in other possible improvements to our method.
For example if we wanted trade of some time for space we could temporally clean up some bits and recreate them
later. When doing this we would want to choose bits that are both easy to compute and have a large gap until the
next time they are used in the computation. The graph structure allows us to quantify both of these metrics. It also
allows us to easily generate the cleanup and re-computation strategies.
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Eager cleanup Bennett cleanup

Name Bits Gates Bits Gates Qubit reduction (%) Time

ADDERFDS 76 3394 149 2485 48.99 0.0222
CM150 42 1696 71 1017 40.85 0.0092
CM151 25 795 36 485 30.56 0.0032
CM163 36 843 66 825 45.45 0.0072

DES 992 85351 2123 62425 53.27 1.7202
PARITYFDS 33 290 33 301 0.00 0.0052

alu4cl 175 13487 441 8867 60.32 0.1012
apex7 111 3299 242 3077 54.13 0.0312

b9 127 4444 316 3185 59.81 0.0352
c8 80 4791 213 4149 62.44 0.0222

cht 89 2664 179 3025 50.28 0.0192
cmb 37 1042 60 707 38.33 0.0082

comp 97 2606 162 1991 40.12 0.0172
cordic 130 3094 262 2363 50.38 0.0372
count 71 1304 124 1435 42.74 0.0142

cu 36 1395 80 1045 55.00 0.0092
dalu 1056 77482 3444 49463 69.34 1.4402

decod 27 188 28 365 3.57 0.0032
f51m 49 4684 69 2427 28.99 0.0592
frg2 531 44820 2080 34117 74.47 0.4722
i10 1633 24505 3385 23489 51.76 7.5782
lal 86 4051 212 2939 59.43 0.0262

mux 45 2841 67 1473 32.84 0.0122
pair 666 37630 2137 27091 68.83 0.8632

pcler8cl 57 507 78 599 26.92 0.0062
pm1 41 1248 96 987 57.29 0.0102

rot 325 22407 779 12709 58.28 0.1732
sct 64 4509 202 2923 68.32 0.0242

t481 2096 134542 6774 95393 69.06 3.4702
tcon 37 200 51 289 27.45 0.0032

term1 181 20744 724 11881 75.00 0.1072
toolarge 707 155854 1191 155885 40.64 3.7072

top 2676 33190 3940 30981 32.08 4.7372
ttt2 116 10155 400 8511 71.00 0.0622

unreg 58 1264 103 1129 43.69 0.0112
vda 173 19234 899 19705 80.76 0.1402
x3 377 30258 1309 21467 71.2 0.2302

z4ml 45 3628 60 1887 25.00 0.0242

TABLE III: A selection of combinational circuits from a collection of BLIF benchmarks from the classical Circuits
and Systeme community, including ISCAS’85, ISCAS’89, MCNC’91, LGSynth’91, LGSynth’92. Shown are the
qubit and gate costs for the eager cleanup method and in comparison the corresponding cost for the Bennett cleanup.
Typically, we obtain a qubit reduction of around 50% or more at the price of only a moderate increase of the total
number of Toffoli gates that are needed to implement the reversible circuits. Also shown is the compilation time
with respect to an Intel i7-3667 @ 2GHz 8GB RAM processors under Windows 8.1.
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Finally, we point out that while in some cases cleaning up at the function boundaries can lead to useful resource
reductions, in other cases it can lead to unacceptable time-overheads. It is known for instance in cases of some
recursions such as Karatsuba’s algorithm for multiplication of n-bit integers that by performing a cleanup at the
function boundaries, the advantage of a subquadratic algorithm is lost [51], [52], whereas by performing cleanup at
the very end of the recursion one can still achieve an algorithm that asymptotically scales in time as Θ(nlog2(3)).

B. Conclusions

We presented REVS, a compiler and programming language that allows to automate the translation of classical,
irreversible programs into reversible programs. Contrary to previous approaches of reversible programming languages
such as the reversible languages R or Janus [18], our language does not constrain the programmer. Also, in contrast to
previous approaches for implementing Bennett-style strategies such as Quipper [7], [8] our approach is significantly
more space efficient, in some practically relevant cases (hash functions) the savings of our method compared to
Bennett-style approaches can even be unbounded. We navigate around the PSPACE-completeness of finding the
optimal pebble game by invoking heuristic strategies which seek to identify parts of the program that lead to
mutation which then can be implemented via in-place operations. In order to manage the arising data dependencies,
we introduced MDD graphs which capture data dependencies as well as data mutation in one graph. We prove
that our eager cleanup strategy is correct, provided the mutation paths that occur in the MDD have no inter-path
dependency. In case such dependencies arise, we clean up the paths using the standard Bennett strategy, which
allows us to compile any program that can be expressed in REVS into a Toffoli network.

We found examples where our dependency-graph based method for eager cleanup is better than Bennett’s original
method, even when Bennett’s method is implemented by cleaning up at function boundaries.

Using an example benchmark suite compiled from classical circuits and systems community, we show that the
method can be applied for medium to large scale problems. We also show that hash functions such as SHA-2 and
MD5 can be compiled into reversible circuits with ease.
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APPENDIX A
IMPLEMENTATION OF DEPTH OPTIMIZED ADDERS IN REVS

In the following we give the details of a depth-optimized adder that is obtained from a standard classical
construction which is then subsequently mapped to a reversible circuit using the compilation strategies available in
REVS. A so-called carry-select adder [53] implements the addition of two n-bit integers in depth O(

√
n). The basic

idea is to decompose the n bits into n/k blocks of size k each, then to perform an addition for each block separately
with two adders, one for each possible value of the incoming carry. This leads to a doubling of the hardware cost
plus the cost for multiplexers to select the correct sequence of adders for the given inputs, however, it also leads to
a decrease in circuit depth as both branches can be synthesized for fixed value of the incoming carry and can be
executed in parallel. By choosing the block size to be k = O(

√
n) it can be shown that O(

√
n) depth can be achieved

using a circuit size that still scales linear with n. A basic F# implementation of a carry select adder is given below.

let carrySelectAdder n =
let adderSize = int (sqrt (float n))
let imSpacing = 2*(adderSize+1)
<@@

let carryRipple (a:bool array) (b:bool array) (carry:bool) =
let result = Array.zeroCreate (adderSize + 1)
result.[0] <- a.[0] <> b.[0]
let mutable carry = a.[0] && b.[0]
result.[1] <- a.[1] <> b.[1] <> carry
for i in 2 .. adderSize - 1 do

carry <- (a.[i-1] && (carry <> b.[i-1])) <> (carry && b.[i
-1])

result.[i] <- a.[i] <> b.[i] <> carry
result

let a = Array.zeroCreate (adderSize * adderSize)
let b = Array.zeroCreate (adderSize * adderSize)
let a0b0 = carryRipple a.[0..adderSize-1] b.[0..adderSize-1] false
let a' = a.[adderSize .. adderSize*adderSize-1]
let b' = b.[adderSize .. adderSize*adderSize-1]
let mutable intermediateResults = Array.zeroCreate (0)
for i in 0 .. adderSize - 2 do

intermediateResults <- Array.append intermediateResults
(carryRipple a'.[i*adderSize .. i*adderSize + adderSize-1]

b'.[i*adderSize .. i*adderSize + adderSize-1]
false)

intermediateResults <- Array.append intermediateResults
(carryRipple a'.[i*adderSize .. i*adderSize + adderSize-1]

b'.[i*adderSize .. i*adderSize + adderSize-1] true
)

let mutable result = Array.zeroCreate (0)
result <- Array.append result (a0b0.[0..adderSize-1])
let mutable carry = a0b0.[adderSize]
for i in 0 .. adderSize - 2 do

let sum =
if carry then

carry <- intermediateResults.[i*imSpacing+adderSize]
intermediateResults.[i*imSpacing..i*imSpacing+adderSize

-1]
else

carry <- intermediateResults.[i*imSpacing+2*adderSize+1]
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intermediateResults.
[i*imSpacing+adderSize+1..i*imSpacing+2*adderSize]

result <- Array.append result sum
result

@@>
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APPENDIX B
DEPTH OPTIMIZED ADDERS IN REVS: RESOURCE ESTIMATES

Hand optimized Bennett cleanup Eager cleanup

n #gates #qubits #gates #qubits time #gates #qubits time

10 29 34 54 68 0.0262 76 46 0.1132
15 51 53 54 68 0.0232 76 46 0.0242
20 73 72 118 123 0.0312 194 78 0.0332
25 101 93 206 194 0.0402 344 118 0.0452
30 120 111 206 194 0.0422 344 118 0.0452
35 148 132 206 194 0.0402 344 118 0.0442
40 167 150 318 281 0.0532 566 166 0.0542

TABLE IV: Comparison of different compilation strategies for n-bit adders that are optimized for overall circuit
depth. Shown are the results for a hand-optimized quantum carry lookahead adder and two adders that results from
applying the REVS compiler to a classical depth optimized carry select adder with respect to a cleanup strategy
corresponding to Bennett’s method and a with respect to the eager cleanup strategy. Observe that the overall space
requirement for the quantum circuits derived from the carry save arithmetic increases in a ‘plateau’-like fashion
which is due to the usage of smaller size carry ripple adders that have a number of bits of size O(d

√
ne). Also

observe that unlike Table I here the number of gates differs between the three methods with the hand-optimized
version being lowest, then Bennett’s cleanup method, followed by the eager cleanup which has the highest gate
counts throughout. However, the space requirements for the eager cleanup are better throughout than Bennett’s
method, and for some values of n even better than the hand-optimized one, i.e., the eager cleanup strategy presents
a possible space-time trade-off between circuit size and total number of qubits used. Like in case of the size
optimized adders, the compilation times, measured in seconds, are comparable between the Bennett and eager
cleanup strategies.
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APPENDIX C
IMPLEMENTATION OF HASH FUNCTIONS IN REVS

A. Implementation of SHA-2 in REVS

We already presented the core part of the SHA-2 hash function family in Section IV. Here we present an
implementation of an entire algorithm for computing the entire round functions of the SHA-256 which is a member
of the SHA-2 family that hashes a bitstring of arbitrary length to a bitstring of length 256. Our implementation
actually only implements the round functions, which is the computationally and cryptographically most important part
of the cipher, and not the message expansion step. To describe the round functions, following [54] it is convenient
to introduce 8 registers of 32 bits each and to denote them by A, B, . . . , E. Further, the following Boolean functions
are introduced to describe the round functions:

Ch(E,F,G) := (E ∧F)⊕ (¬E ∧G)

Ma(A,B,C) := (A∧B)⊕ (A∧C)⊕ (B∧C)

Σ0(A) := (A≫2)⊕ (A≫13)⊕ (A≫22)

Σ1(E) := (E≫6)⊕ (E≫11)⊕ (E≫25)

For a given round, the values of all these functions is computed and considered to be 32 bit integers. Further, a
constant 32 integer value Ki is obtained from a table lookup which depends on the number i of the given round,
where i ∈ {0, . . . ,63} and finally the next chunk of the message Wi is obtained from the message after performing a
suitable message expansion is performed as specified in the standard. Finally, H is replaced according to

H← H +Ch(E,F,G)+Ma(A,B,C)+Σ0(A)+Σ1(E)+Ki +Wi

and then the cyclic permutation A← H,B← A, . . . ,H← G is performed. The following F# program performs the
computation of the entire round function for a given number of rounds n.

let exprSha n =
<@
let mutable k = Array.zeroCreate 32
let mutable w = Array.zeroCreate 32
let mutable a = Array.zeroCreate 32
let mutable b = Array.zeroCreate 32
let mutable c = Array.zeroCreate 32
let mutable d = Array.zeroCreate 32
let mutable e = Array.zeroCreate 32
let mutable f = Array.zeroCreate 32
let mutable g = Array.zeroCreate 32
let mutable h = Array.zeroCreate 32

let addMod2_32 (a :bool array) =
let b = Array.zeroCreate 32
let mutable c = false
b.[0] <- b.[0] <> a.[0]
c <- c <> a.[0]
a.[0] <- a.[0] <> (c && b.[0])
for i in 1 .. 30 do

b.[i] <- b.[i] <> a.[i]
a.[i-1] <- a.[i-1] <> a.[i]
a.[i] <- a.[i] <> (a.[i-1] && b.[i])

b.[31] <- b.[31] <> a.[31]
b.[31] <- b.[31] <> a.[30]
for i in 2 .. n - 1 do
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a.[32-i] <- a.[32-i] <> (a.[31-i] && b.[32-i])
a.[31-i] <- a.[31-i] <> a.[32-i]
b.[32-i] <- b.[32-i] <> a.[31-i]

a.[0] <- a.[0] <> (c && b.[0])
c <- c <> a.[0]
b.[0] <- b.[0] <> c
clean c
b

let ch (e :bool array) (f :bool array) (g :bool array) =
let t = Array.zeroCreate 32
for i in 0 .. 31 do

t.[i] <- (e.[i] && f.[i]) <> ((e.[i] <> false) && g.[i])
t

let ma (a :bool array) (b :bool array) (c :bool array) =
let t = Array.zeroCreate 32
for i in 0 .. 31 do

t.[i] <- (a.[i] && (b.[i] <> c.[i])) <> (b.[i] && c.[i])
t

let s0 a =
let a2 = rot 2 a
let a13 = rot 13 a
let a22 = rot 22 a
let t = Array.zeroCreate 32
for i in 0 .. 31 do

t.[i] <- a2.[i] <> a13.[i] <> a22.[i]
t

let s1 a =
let a6 = rot 6 a
let a11 = rot 11 a
let a25 = rot 25 a
let mutable t = Array.zeroCreate 32
for i in 0 .. 31 do

t.[i] <- a6.[i] <> a11.[i] <> a25.[i]
t

for i in 0 .. n - 1 do
// Inplace add functions which
// Take an input and add onto
// the output in the assignment
h <- addMod2_32 (ch e f g)
h <- addMod2_32 (s0 a)
h <- addMod2_32 w
h <- addMod2_32 k
d <- addMod2_32 h
h <- addMod2_32 (ma a b c)
h <- addMod2_32 (s1 e)
let t = h
//Reassignment for next loop iteration
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h <- g; g <- f; f <- e; e <- d
d <- c; c <- b; b <- a; a <- t

Array.concat [a;b;c;d;e;f;g;h]
@>
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B. Implementation of MD5 in REVS

Another hash function that we implemented in REVS is the so-called MD5 hash function. From the cryptographic
standpoint, MD5 is no longer of interest as it is considered to be broken [55], however, we can still use it as an
example to exercise the compiler as the building blocks used in the cipher are well-suited to demonstrate the ease
with which a classical function can be turned into a reversible circuit using REVS. MD5 hashes a bitstring of
arbitrary length to a bitstring of length 128 and, like SHA-256 in the previous section, the cipher consists of a
simple round function that gets applied many times to the current internal state and the next bits from the input and
a message expansion function that takes the incoming bitstream and partitions it into suitable chunks. As in case of
SHA-256, we focus on the round function and show how it can be implemented by means of a reversible circuit.
The 128 bit state of MD5 can be conveniently expressed using 4 registers of 32 bits each, denoted by A, B, C, and
D. Furthermore, the following Boolean functions are introduced:

F(B,C,D) := (B∧C)∨ (¬B∧D)

G(B,C,D) := (B∧D)∨ (C∧¬D)

H(B,C,D) := B⊕C⊕D

I(B,C,D) :=C⊕ (B∨¬D).

For a given round of index i precisely one of the functions fi{F, . . . , I} is chosen according to a fixed schedule,
then the value f (B,C,D) is computed and then A is updated as A→ A⊕ f (B,C,D)⊕Mi⊕Ki is computed, where
Ki are precomputed constants, and Mi are the bits of the message after message expansion has been performed.
Subsequently, a bit rotation to the left by si positions, where si again are precomputed constants, and a further xor
sum with the B register is performed and the overall result is stored in the A register. Finally, a cyclic rotation
A→D, B→ A, C→ B, D→C is performed which is the result of the ith round. The following F# program performs
the computation of the entire round function for a given number of rounds n.

let exprMD5 n =
let s = [| 7; 12; 17; 22; 7; 12; 17; 22; 7; 12; 17; 22; 7; 12; 17;

22;
5; 9; 14; 20; 5; 9; 14; 20; 5; 9; 14; 20; 5; 9; 14;

20;
4; 11; 16; 23; 4; 11; 16; 23; 4; 11; 16; 23; 4; 11; 16;

23;
6; 10; 15; 21; 6; 10; 15; 21; 6; 10; 15; 21; 6; 10; 15; 21

|]
<@
let mutable M = Array.zeroCreate 512
let K = Array.zeroCreate 32
let mutable A = Array.zeroCreate 32
let mutable B = Array.zeroCreate 32
let mutable C = Array.zeroCreate 32
let mutable D = Array.zeroCreate 32

let addMod2_32 (a :bool array) =
let b = Array.zeroCreate 32
let mutable c = false
b.[0] <- b.[0] <> a.[0]
c <- c <> a.[0]
a.[0] <- a.[0] <> (c && b.[0])
for i in 1 .. 30 do

b.[i] <- b.[i] <> a.[i]
a.[i-1] <- a.[i-1] <> a.[i]
a.[i] <- a.[i] <> (a.[i-1] && b.[i])
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b.[31] <- b.[31] <> a.[31]
b.[31] <- b.[31] <> a.[30]
for i in 2 .. n - 1 do

a.[32-i] <- a.[32-i] <> (a.[31-i] && b.[32-i])
a.[31-i] <- a.[31-i] <> a.[32-i]
b.[32-i] <- b.[32-i] <> a.[31-i]

a.[0] <- a.[0] <> (c && b.[0])
c <- c <> a.[0]
b.[0] <- b.[0] <> c
clean c
b

let F (B : bool array) (C : bool array) (D : bool array) =
let t = Array.zeroCreate 32
for i in 0 .. 31 do

t.[i] <- (B.[i] && C.[i]) || ((B.[i] <> false) && D.[i])
t

let G (B : bool array) (C : bool array) (D : bool array) =
let t = Array.zeroCreate 32
for i in 0 .. 31 do

t.[i] <- (D.[i] && B.[i]) || ((D.[i] <> false) && C.[i])
t

let H (B : bool array) (C : bool array) (D : bool array) =
let t = Array.zeroCreate 32
for i in 0 .. 31 do

t.[i] <- (B.[i] <> C.[i] <> D.[i])
t

let I (B : bool array) (C : bool array) (D : bool array) =
let t = Array.zeroCreate 32
for i in 0 .. 31 do

t.[i] <- (C.[i] <> (B.[i] || (D.[i] <> false)))
t

for i in 0 .. 15 do
let mutable t = Array.zeroCreate 32
t <- addMod2_32 A
t <- addMod2_32 (F B C D)
t <- addMod2_32 K
t <- addMod2_32 M.[32*i..32*i+31]
t <- rot s.[i] t
B <- addMod2_32 t
let temp = D
D <- C; C <- B; A <- temp

for i in 16 .. 31 do
let mutable t = Array.zeroCreate 32
t <- addMod2_32 A
t <- addMod2_32 (G B C D)
t <- addMod2_32 K
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t <- addMod2_32 M.[32*((5*i+1)%16)..32*((5*i+1)%16)+31]
t <- rot s.[i] t
B <- addMod2_32 t
let temp = D
D <- C; C <- B; A <- temp

for i in 32 .. 47 do
let mutable t = Array.zeroCreate 32
t <- addMod2_32 A
t <- addMod2_32 (H B C D)
t <- addMod2_32 K
t <- addMod2_32 M.[32*((3*i+5)%16)..32*((3*i+5)%16)+31]
t <- rot s.[i] t
B <- addMod2_32 t
let temp = D
D <- C; C <- B; A <- temp

for i in 48 .. 63 do
let mutable t = Array.zeroCreate 32
t <- addMod2_32 A
t <- addMod2_32 (I B C D)
t <- addMod2_32 K
t <- addMod2_32 M.[32*((7*i)%16)..32*((7*i)%16)+31]
t <- rot s.[i] t
B <- addMod2_32 t
let temp = D
D <- C; C <- B; A <- temp

Array.concat [A; B; C; D]
@>


