
Visual Style Extraction from Chart Images for
Chart Restyling

Danqing Huang1, Jinpeng Wang1, Guoxin Wang2, Chin-Yew Lin1

1 Microsoft Research, Beijing, China 2 Microsoft, Redmond, United States
{dahua, jinpwa, guow, cyl}@microsoft.com

Abstract—Creating a good looking chart for better visualiza-
tion is time consuming. There are plenty of well-designed charts
on the Web, which are ideal references for imitation of chart
style. However, stored as bitmap images, reference charts have
hinder machine interpretation of style settings and thus difficult
to be directly applied.

In this paper, we extract visual properties from reference chart
images as style templates to restyle charts. We first construct a
large-scale dataset of 187,059 chart images from real world data,
labeled with predefined visual property values. Then we introduce
an end-to-end learning network to extract the properties based
on two image-encoding approaches. Furthermore, in order to
capture spatial relationships of chart objects, which are crucial
in solving the task, we propose a novel positional encoding
method to integrate clues of relative positions between objects.
Experimental results show that our model significantly outper-
forms baseline models. By adding positional features, our model
achieves better performance. Finally, we present the application
for chart restyling based on our model.

Index Terms—Chart Restyling, Chart Style Extraction

I. INTRODUCTION

A chart is a graphical representation of data, and is com-
monly used in news articles, scientific papers, and on the
Web. Charts with well-designed styles can not only gain
more attentions, but also make data presentation more clearly.
However, creating a well-designed chart takes time effort and
requires designing skills. There are many good looking charts
on the Web. Imitating styles from these reference charts is an
efficient option. However, stored as bitmap images, reference
charts have hinder machine interpretation of visual settings,
and thus cannot be directly applied.

In this paper, we aim to recover the style template from
a reference image. As shown in Fig. 1b, we first define the
style template with nine common visual properties used in
Excel1. By automatically extracting visual properties from
reference images, we can collect large amount of well-
designed templates, which has great potential applications,
e.g., chart analysis or retrieval. In this paper, we show an
example application for chart restyling. As shown in Fig. 1,
the extracted style template is applied to a chart to imitate the
style from the reference image.

In previous works [1]–[3] of chart proprieties extraction,
data content such as texts or data values are extracted from
chart images. Different from previous setting, we aim to re-
cover style templates by extracting visual properties from chart

1https://en.wikipedia.org/wiki/Microsoft Excel

{

"HasBarBorder": False,

"HasChartTitle": True,

"HasXaxisTitle": False,

"HasYaxisTitle": False,

"HasGridLines": False,

"LegendPosition": Top,

"DataLabelPosition": OutsideEnd,

"ForegroundColor": [■ ■ ■ ■],

"BackgroundColor": [■]

}

a) Reference Image (PNG)

17
18

21

14
15

16

13
14 1414

15

18

0

5

10

15

20

25

2005 2006 2007

Chart Title

Europe & Central Asia North America

United States European Union

b) Extracted Style Template

0

5

10

15

20

25

2005 2006 2007

Europe &
Central Asia

North America

United States

European Union

c) Chart to Restyle

(editable object)

d) Restyled Chart

(editable object)

63

41

21

33

0

20

40

60

80

2017

Rating by Product

Accessories Components Clothing Bikes

Fig. 1: The workflow of chart restyling. To restyle c) with
the style of a), the style template is first extracted from the
reference image, then is applied to an editable chart object
to render the restyled chart. c) and d) are editable objects in
editor like Microsoft Excel, so their properties can be changed
by APIs.

images. Beyond text localization and object detection used
in previous works, our extraction process requires inference
among chart objects with their spatial relations. For example,
in Fig. 1a), to predict the value of DataLabelPosition (i.e.,
the position of the data labels relative to the bars), the model
needs to target to data labels and bars, and be aware that the
data labels are on the top of the bars and therefore labeled as
“OutsideEnd”. This task is non-trivial, as it requires not only
the ability of object detection but also the ability of spatial
inference.

To accomplish this task, we introduce a neural-based end-to-
end learning model, which adopts two encoding approaches for
image representation, given the raw image and chart objects

as input respectively to capture different aspects of features.
To enhance the encoder with the ability of spatial inference,
we propose a novel approach for feature encoding of relative
position. Specifically, for each object, its neighbouring objects
are encoded as context information for representation. In
addition, as most publicly available chart datasets are synthetic
or with limited size, to facilitate the research on this domain,
we construct a large-scale dataset of 187,059 bar chart images
based on real-world data, labeled with visual properties and
chart object bounding boxes.

Our experimental results show that our model achieves
promising results. By adding the positional feature, our model
reduces the position-related errors and leads to improved
performance.

The main contributions of this paper are:
• We provide an end-to-end solution for extracting visual

properties from chart images.
• We propose a novel encoding approach to integrate rel-

ative position clues, which is crucial for spatial relation
inference and visual understanding.

• We construct a large-scale dataset containing 187,059
chart images, labeled with visual properties and chart
object bounding boxes. The dataset will be publicly
released.

• We present an application of our model: extract visual
properties from reference image as style template for
chart redesign.

The remainder of this paper is organized as follows. Sec-
tion II introduces the dataset. Section III describes in detail
the design of the proposed approach, and Section IV is the
experiments. Finally, we discuss related work in Section V
and make our conclusions in Section VI and discuss future
directions.

II. DATASET

In this section, we introduce our chart image dataset.

A. Dataset Property

Each chart image in the dataset is labeled with:
• Visual Properties. Definitions of each visual property are

given in Table I. Furthermore, our dataset provides extra
properties such as text and data contents.

• Bounding Boxes. We define 8 object classes in the chart:
background, plot area, bar, x-axis title, y-axis title, chart
title, legend and data label.

B. Construction & Statistics

Manual annotation of chart images is time consuming.
Instead of collecting chart images and manually labeling them,
we first crawl large amounts of Microsoft Excel files (.xlsx)
from the Web, which already contain meta information. We
currently only consider bar charts in these files and proceed
the following steps to construct the dataset:
• Annotation Extraction. Stored as Excel format, the charts

contain the information of visual properties and chart
objects that can be directly used as annotation. We use

a third-party tool to parse the Excel files to retrieve the
meta information.

• Text Anonymization. For data compliance consideration,
we replace texts in the charts with randomly generated
strings.

• Chart Image Generation. Finally, we export the charts as
bitmap images, which will be used as the input of our
model.

Statistics. Following the above procedures, we collect
187,059 chart images in total. We randomly split the data
into 173,168 / 6,928 / 6,963 charts in the training, devel-
opment and testing sets respectively. We show the visual
property statistics with LegendPosition in Table II, and
DataLabelPosition in Table III. From these tables, we
can see the distributions are highly skewed.

Dataset Comparison. It can be seen in Table IV that
existing datasets are either sythentic or with limited size.
The largest ones (FigureQA and DVQA) are targeted for
Visual Question Answering (VQA) without visual property
annotation, as well as synthetic with low style variations.
Being compared, our dataset provides rich annotation of chart
images from large-scale real-world data.

III. APPROACH

Given a chart image x0, our goal is to extract its visual
properties. Model overview is shown in Fig. 2.

We describe details of each component in this section.

A. Image Encoder

Our image encoder is based on DenseNets [6]. It consists of
several major components as briefly described in the following.

Dense Blocks. A dense block is a group of non-linear
transformation functions:

xl = Hl([x0, x1, ..., xl−1]) (1)

Specifically, xl denotes the output of the lth layer. The dense
block has access to the feature maps its produced in its
proceeding layers 0, ..., l − 1 as input. Following [6], Hl is
composed of three consecutive operations: batch normaliza-
tion, rectified linear unit and a convolution.

Transition Layers. Since the inputs of Eq. 1 have different
feature-map sizes, transition layers are used between adjacent
dense blocks to change the feature-map sizes via convolution
and pooling.

Growth Rate g. Let Hl produces g feature maps, it follows
that the lth layer has g0+g×(l−1) input feature maps, where
g0 is the number of channels in the input image. This hyper-
parameter regulates how much new information each new layer
contributes to the global state.

After l layers of transformation, the image encoder outputs
a hidden representation xl for the image.

B. Object Encoder

Given a set of objects in the input image, the object encoder
represents the image dynamically according to different visual
properties.

TABLE I: Chart visual properties definition.

Visual Property Labels Description

HasBarBorder True, False The bars in the chart has borders or not.
HasChartTitle True, False The chart has title or not.
HasXaxisTitle True, False The x-axis has title or not.
HasYaxisTitle True, False The y-axis has title or not.
HasGridLines True, False The chart has grid lines or not.
LegendPosition None, Top, Right, Bottom, Top Legend position in the chart.
DataLabelPosition None, OutsideEnd, InsideEnd, InsideBase, Center Data label position relative to the bar.
ForegroundColor #000000-#ffffff Colors of the bars in a chart.
BackgroundColor #000000-#ffffff The background color of a chart.

Output for 𝑡

Image Encoder

𝑖-th Dense Block

Object Encoder

C
o

n
v

T
ran

s L
ay

er
𝑖

L
in

ear

Visual Property 𝑡

..
..

Attention

Positional Encoding

…

..

…..

Fig. 2: Model overview.

TABLE II: LegendPosition class distribution (%) in train,
dev and test.

LegendPosition Train Dev Test

None 28.12 26.78 27.79
Top 13.43 15.91 14.82

Bottom 26.73 26.35 25.83
Left 1.87 2.76 2.41
Right 29.84 28.21 29.14

TABLE III: DataLabelPosition class distribution (%) in
train, dev and test.

DataLabelPosition Train Dev Test

None 69.92 63.59 63.52
InsideEnd 0.93 1.93 2.08
OutsideEnd 22.57 25.02 24.46
InsideBase 0.36 0.53 0.79

Center 6.23 8.92 9.16

Object Inputs. Objects are represented as region features.
The input is K region features V = {v1, . . . vK} (vk ∈ RD).
In this work, we follow [7] to train a Faster-RCNN [8] on our
dataset for chart object detection, select all regions with class
detection probability exceeds a certain threshold, and use the
final feature layer output for each region as the input.

Visual Property Embedding. Visual properties are embed-

ded as:
{φ(sty1), φ(sty2), . . . , φ(styT)} (2)

where φ maps the visual property styt to a fixed dimensional
vector.

Visual Property Aware Attention. Attention mecha-
nism [7], [9] has been widely used in many tasks as it can
explicitly weight inputs with importance. Our object encoder
applies a soft attention over all the input objects, and weight
objects according to different visual properties. For each visual
property as a querying vector, an attention function is applied
to attend over the objects:

etk = wT
a tanh(Wvavk +Wsaφ(styt) + battn)

atk =
exp(etk)∑K

k′=1 exp(etk′)

ct =

K∑
k=1

atkhk

(3)

(4)

(5)

Intuitively, atk defines the probability distribution of attention
over the input objects. They are computed from the unnor-
malized attention score etk. ct is the context vector for visual
property t, which is the weighted sum of the input region
features.

C. Positional Encoding

Some visual properties are position-sensitive, which require
spatial relationship inference with other objects to predict the

TABLE IV: Comparison of different datasets.

Dataset Source # Charts Type Annotation

Revision [1] Web 2,601 bar, pie, line, scatter plot bounding box, text
[2] synthetic, docs 5,125 bar, line, scatter plot bounding box, text and role labels
FigureQA [4] synthetic 140,000 bar, line, pie bounding box, chart data, QA pairs
DVQA [5] synthetic 3,487,194 bar bounding box, chart data, QA pairs
Our dataset Web 187,059 bar bounding box, visual properties, chart data

values. For example, DataLabelPosition in Fig. 3 is
labeled as “InsideEnd” since the data label is on the top inside
the bar.

In preliminary experiments, we observed that the two
encoders cannot capture the position information well, and
therefore does not perform well on LegendPosition and
DataLabelPosition. There are existing works [10]–[12]
to incorporate absolute position into the model. However,
absolute coordinates cannot explicitly encode the spatial re-
lations, which does not fit our case.

To address this issue, and to more efficiently learn the
object spatial relations, we propose a novel method to encode
the relative positional features. For each input object k, we
introduce a positional indicator pk ∈ R5. The five dimensions
indicate the distance to the nearest object respectively in the
relation of (1) up; (2) left; (3) down; (4) right; (5) contained.
For example, the nearest object to the data label (red box) in
Fig. 3 in the right direction is legend, and their normalized
distance is 0.27. Also, the data label is contained in a bar
(overlap area rate > 0.7), and their normalized distance is
0.96. The distance function is defined as:

dnorm =

√
(x1 − x2)2 + (y1 − y2)2√

img2w + img2h
(6)

given the bottom-left coordinates of two objects
(x1, y1), (x2, y2). Specifically, imgw, imgh represents
the width and height of the input image. dnorm is the
re-scaled distance function ranged from [0, 1].

2.4

3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Category 1

Series 1

Series 2

Spatial Relation Object (distance)

Up None (0)

Left None (0)

Down X-axis title (0.87)

Right Legend (0.27)

Contained Bar (0.96)

Fig. 3: Spatial relations of a data label object (in red box) with
other objects. We calculate the normalized distance between
the data label and its nearest objects in the direction of up,
left, down, right and contained.

Please note that the choice of distance function depends on
different scenarios. In our case, to differentiate the data labels

inside the bar (InsideEnd, Center, InsideBase), we choose the
distance between two objects’ bottom-left points instead of
center points2.

Then the positional indicator is mapped to a vector, and we
obtain the positional feature of the kth object as:

hpk = V pk (7)

where V is the model parameter. Next, the positional feature
is concatenated to the region feature vk as the input.

D. Visual Property Prediction Layer

For each visual property t, the model concatenates the image
encoder output xl and the object encoder output ct to obtain
the final representation ot. The probability distribution over all
possible values for the corresponding visual property is:

Pt = softmax(Wtot) (8)

where Wt is the model parameter and ot = [xl, ct].
As for BackgroundColor and ForegroundColor,

we extract colors directly from the bars detected by Faster-
RCNN with a tool3. This simple approach for color extraction
has achieved an ForegroundColor accuracy of 85.5% on
development set.

E. Objective

Given a target ground truth property y∗t and a model with
parameters λ, we minimize the standard entropy loss:

Lstd(θ) = −
∑
∀t∈T

log p(y∗t |x) (9)

where we sum up the losses for T visual property predictions.
Imbalanced Classification. We discover that some visual

properties suffer from highly-skewed class imbalance during
training. To address the issue, we apply weights to the loss
function:

L(θ) = −
∑
∀t∈T

∑
∀i∈Nt

wti log p(y
∗
ti|x) (10)

where wti is calculated according to inverse frequency of class
i:

wti =
nti

minj∈Nt ntj

s.t. ntj > 0

(11)

(12)

2distance between center points cannot differentiate data label of InsideEnd
and InsideBase, since they are symmetric and thus have the equal distance to
the center point.

3https://pypi.org/project/extcolors/

nti is the number of instances labeled with class i in visual
property t, and Nt is the number of classes in property t.

IV. EXPERIMENT

A. Settings

Here we describe the baselines and implementation details
in the experiments.

1) Baselines: We consider the following baselines:
• Rule System. As we have trained the Faster-RCNN

with chart object bounding boxes for the Object En-
coder input, we implement a rule-based system with
its detection output. For example, if Faster-RCNN de-
tects a chart title, then HasChartTitle is set to
True. If the Faster-RCNN detects a legend, we use
its predicted bounding box to decide the value of
LegendPosition with predefined rules. The rule-
based system cannot handle certain properties (e.g.,
HasBarBorder, HasGridlines), since no object
outputs can be related to them.

• Image Encoder-Classification (IEC). The input image is
encoded only by the Image Encoder previously described,
and fed into the classification layer for the final predic-
tion. Please note that under this setting, the architecture
is the same as DenseNets [6].

• Object Encoder-Classification (OEC). The input im-
age is encoded only by the Object Encoder previously
described (without positional feature), and fed into the
classification layer for the final prediction.

2) Implementation Details: The chart images are resized
to short side 800px [13]. The Image Encoder has four dense
blocks with numbers of layer (6, 12, 24, 16) respectively.
Kernel size of Conv layers is 3×3. The growth rate is 8.
For the Object Encoder, we first train a Faster-RCNN4 to get
region features. K = 100 for object input. We select regions
with confidence > 0.5. The dimension of region features, style
embedding, position feature is 2048, 30 and 300. We train for
5 epochs with batch size 64. We use the Adam [14] optimizer
with its hyper-parameters set as: learning rate α = 0.001,
momentum parameters β1 = 0.9 and β1 = 0.999, and
ε = 10−8. We apply gradient clipping [15] with range [−5, 5].

B. Results

1) Overall Performance: Table V shows the overall evalu-
ation results. For rule system, we show the detection results of
Faster-RCNN in Table VII. From the table, we can see that the
plot area and legend classes are easier to be detected. The per-
formance of x-axis title and y-axis title is not promising, which
leads to error propagation of the rule system baseline. The rule
system performs badly on most properties, and cannot handle
certain properties (HasBarBorder and HasGridLines)
as no chart objects are related to them. Both IEC and OEC
outperform the rule system on most of visual properties, and
OEC is better than IEC except on HasGridLines where no
chart objects are related to grid lines for the region features.

4https://github.com/facebookresearch/maskrcnn-benchmark

This result indicates that IEC and OEC can capture different
level of features from the image. By combining IEC and OEC,
our model significantly outperforms the baseline models on all
visual properties. In addition, the positional feature is useful,
since under the ablation setting (w/o pos.), the performance
drops consistently on all visual properties.

2) DataLabelPosition Performance: We report accu-
racy of different classes in Table VI. Our model achieves the
best results on {None, InsideEnd, OutsideEnd}, and obtains
the highest macro accuracy. Please note that there are only
a few instances (0.79%) labeled as InsideBase in the test,
thus small margin of performance gain/loss on this class
might not be statistically convincing. It is not surprised
that the rule system has poor performances. Prediction of
DataLabelPosition requires to first pair up data label
object and bar object. When rule system needs complex rules
to implement this while being fragile, our model has encoded
the object relations and therefore performs significantly better.

3) LegendPosition Performance: We further investi-
gate the accuracy of different classes in LegendPosition.
From Table VIII, we can see that our model outperforms the
baselines and the ablation setting on most classes, and our
model achieves the best macro accuracy. As for the class of
{Bottom, Left}, through our error analysis, we figure out that
some x-axis title and y-axis title objects are wrongly detected
as legend, which might misleads the prediction for these
classes, as well as HasXaisTitle and HasYaxisTitle
in Table V.

C. Effect of Weighted Loss

Next, we investigate the effect of weighted loss de-
signed for imbalanced classification. Fig. 4 shows the
DataLabelPosition accuracy with the standard loss func-
tion and weighted loss function respectively. From the figure,
we can see that by using the weighted loss function, the model
performs significantly better on minority classes while pre-
serving promising accuracy on the dominant class (i.e. None).
Especially, the accuracy of both“InsideEnd” and “InsideBase”
drop to 2.8% and 0.14% using standard loss function, which
implies that standard loss cannot provide sufficient training
signals to minority classes.

None

InsideEnd

Outsid
eEnd

InsidebBase
Center

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

Standard Loss Weighted Loss

Fig. 4: DataLabelPosition classification accuracy with
different loss function strategy.

TABLE V: Accuracy (%) of different visual properties. “w/o pos.” means ablation setting of positional feature. “-” means that
the system does not have an output.

Models HasBarBorder HasChartTitle HasXaxisTitle HasYaxisTitle HasGridLines LegendPosition DataLabelPosition

Rule - 91.44 16.62 36.66 - 74.39 75.52
IEC 79.75 88.58 89.60 94.80 93.98 90.08 84.07
OEC 80.18 91.69 88.02 95.03 84.26 90.03 91.66
Our model 88.07 92.06 93.06 95.94 94.50 94.71 92.14
w/o pos. 80.61 90.16 88.74 93.84 94.37 92.76 91.70

TABLE VI: Accuracy (%) of each class in DataLabelPosition. accM means macro accuracy.

Models None InsideEnd OutsideEnd InsideBase Center accM

Rule 86.66 2.08 81.91 0 4.70 35.06
IEC 92.43 75.69 78.51 14.55 48.90 62.02
OEC 91.61 81.94 91.66 67.27 92.24 85.75
Our model 92.77 93.75 93.19 61.82 94.20 86.95
w/o pos. 92.72 91.66 88.67 60.09 94.67 85.56

Reference Image
Type a keywork to search

related images from search

engine, then choose one as

the reference image.

Extracted Properties
Our system extract the visual

properties from the reference

image:

{

"HasBarBorder": False,

"HasGridLines": True,

"LegendPosition": Top,

"DataLabelPosition": None,

"ForegroundColor": [■■■■■],

…

}

Chart to Restyle
A chart object in

Excel. Users can edit

its properties to imitate

the reference image

manually, but it is

time-consuming.

Restyled Chart
By applying the

extracted properties to

the original chart, the

style shown in the

reference image has

been transferred.

Fig. 5: The restyling application which is integrated with Microsoft Excel as a plugin. When a user is working on chart
styling, he/she can type a keywork to search reference image from the search engine. After that, the system extracted the visual
properties from the reference image and then transfer the extracted style to user’s original chart.

TABLE VII: Detection results on our test set using Faster-
RCNN.

Object Class mAP (%)

Plot Area 80.2
Bar 68.1
X-axis Title 43.9
Y-axis Title 51.6
Chart Title 62.1
Legend 75.4
Data Label 51.1

Average 68.1

D. Attention Visualization
In order to demonstrate that our model attends to the correct

chart objects given different visual properties, we show the

TABLE VIII: Accuracy (%) of each class in
LegendPosition. accM means macro accuracy.

Models None Top Bottom Left Right accM

Rule 95.04 70.16 50.78 94.05 76.15 77.23
IEC 91.78 77.54 92.49 82.73 93.30 87.57
OEC 90.54 84.61 94.55 76.19 89.45 87.07
Our model 95.50 87.12 93.45 93.45 95.61 93.81
w/o pos. 93.18 85.87 94.22 92.86 94.58 92.14

attention visualization in Fig. 6. The lighter the object is, the
higher attention score it has obtained. In the figure, we can
see that while predicting the property LegendPosition,
the attention is strongly focused on the legend object (the light
region on the right) with the highest attention score of 0.9999.

0.9999

3.691-06

2.2e-06 9.632e-07

Fig. 6: The visualized attention when predicting
LegendPosition. We only show 4 objects with highest
attention scores. The lighter the object is, the higher attention
score it has obtained.

E. Error Analysis

We have observed two main error types in our model
predictions:
• Charts with Complicated Relations. Figure 7a is a

stacked bar chart, where each bar has its corresponding
data labels with complicated relative position information.
We will improve the relationship modeling for more
diverse charts in the future.

• Object Detection Error Propagation. Our model de-
pends on object detection of Faster-RCNN. Some objects
in chart domain are challenging, such as Figure 7b. The
errors from Faster-RCNN would propagate to our model
inference.

F. Application: Chart Restyling

Figure 5 shows the application of chart restyling which is
integrated with Microsoft Excel as a plugin. In this application,
when a user is working on chart styling, he/she can type
a keywork to search related image from the search engine
and choose on as the reference image. After that, the system
extracts the visual properties from the selected reference image
and then applies the extracted style to user’s original chart for
restyling.

For this application, in addition to the visual properties de-
fined in Table I, we also extract colors of bar objects as another
visual property. Specifically, from the bar objects detected by
Faster-RCNN, we extract their colors using a third-party tool
to get the value of colors. This simple implementation for
color extraction is effective, with an accuracy of 85.5% on
our development set.

V. RELATED WORK

A. Chart Redesign

Previous works mainly follow the approach of recover-
ing data content in a chart image, then fit to a predefined
style template. They are mostly rule-based and make strong
simplifying assumptions. [1] locates graphical marks (e.g.,
bar, pie location) using connected component algorithm [16]

(a) Stacked bars. Model predicts DataLabelPosition wrongly.

(b) Faster-RCNN wrongly detects the highlight box as a bar object.

Fig. 7: Error cases.

and extracts the underlying data with heuristic rules. [2]
extracts text elements in the chart with Optical Character
Recognition (OCR) and a pipeline of post-processing. [17]
extracts data from D3 (a JavaScript library) visualization with
the assumption that direct access to the generating code of
visualization is available. [18] only extracts color given the
legend.

This paper considers a different scenario to generate style
template by extracting visual properties from reference images.
Beyond data extraction, it requires visual understanding of
chart images (e.g., spatial inference), which is more challeng-
ing. Compared with previous work, our task does not take
assumption of any ground-truth object inputs (e.g., legend
region). Also, this paper proposes a learning-based network
on a large-scale real-world dataset, surpassing the limits of
synthetic or small-size data.

B. Visual Question Answering

The task of visual question answering (VQA) is also related
to our task, which deals with answering questions given visual
clues. VQA focuses on open-domain questions for natural
images. Many models [19]–[21] have been proposed based
on VQA datsets [22]–[25]. Please refer to the more extensive
reviews [26], [27].

Recently, several VQA datasets for charts have been intro-
duced. For example, FigureQA [4] is a synthetic chart dataset
with QA pairs. The questions in the dataset are generated
from 15 templates with binary answer type (i.e. True/False).

DVQA [5], which can be seen as an enriched version of Fig-
ureQA in terms of variations of visual style and question types.
Among the questions, the type of structure understanding can
be seen as most related to visual property prediction (e.g.,
“How many bars are there?”). Questions under this category
are simple and can be mostly solved by object detection and
heuristic rules. Being compared, the visual properties defined
in this paper require more visual understanding and inference.

VI. CONCLUSION

In this paper, we explore the task of extracting visual
properties from chart images. An end-to-end network has
been proposed. Furthermore, we propose a novel mechanism
to encode relative positional features. To facilitate research
on this domain, we construct a large-scale dataset of chart
images from real-world data. Experimental results show that
our model achieves the state-of-the art performance. Finally,
we present an add-on application of our model for chart
restyling. In the future, we plan to consider more chart types
and more visual properties.

REFERENCES

[1] M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and J. Heer,
“Revision: Automated classification, analysis and redesign of chart
images,” in ACM User Interface Software & Technology (UIST), 2011.

[2] J. Poco and J. Heer, “Reverse-engineering visualizations: Recovering
visual encodings from chart images,” Comput. Graph. Forum, vol. 36,
no. 3, pp. 353–363, Jun. 2017.

[3] J. Choi, S. Jung, D. G. Park, J. Choo, and N. Elmqvist, “Visualizing
for the non-visual: Enabling the visually impaired to use visualization,”
in Computer Graphics Forum, vol. 38, no. 3. Wiley Online Library,
2019, pp. 249–260.

[4] S. E. Kahou, V. Michalski, A. Atkinson, Á. Kádár, A. Trischler, and
Y. Bengio, “Figureqa: An annotated figure dataset for visual reasoning,”
ArXiv, vol. abs/1710.07300, 2017.

[5] K. Kafle, S. Cohen, B. Price, and C. Kanan, “Dvqa: Understanding data
visualizations via question answering,” in CVPR, 2018.

[6] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in CVPR, 2018.

[7] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and
L. Zhang, “Bottom-up and top-down attention for image captioning and
visual question answering,” in CVPR, 2018.

[8] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in Proceedings
of the 28th International Conference on Neural Information Processing
Systems, 2015, pp. 91–99.

[9] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in ICLR 2015, 2014.

[10] N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer, A. Ku, and
D. Tran, “Image transformer,” in Proceedings of the 35th International
Conference on Machine Learning, 2018, pp. 4055–4064.

[11] Y. Wang, H. Yang, X. Qian, L. Ma, J. Lu, B. Li, and X. Fan, “Position
focused attention network for image-text matching,” in Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelli-
gence, IJCAI-19, 2019, pp. 3792–3798.

[12] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, “Spatial as deep: Spatial
cnn for traffic scene understanding,” ArXiv, vol. abs/1712.06080, 2017.

[13] R. Girshick, “Fast r-cnn,” in Proceedings of the 2015 IEEE International
Conference on Computer Vision (ICCV), 2015, pp. 1440–1448.

[14] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of 3rd International Conference for Learning Represen-
tations, San Diego, 2015.

[15] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks.” ICML (3), vol. 28, pp. 1310–1318, 2013.

[16] M. B. Dillencourt, H. Samet, and M. Tamminen, “A general approach
to connected-component labeling for arbitrary image representations,”
vol. 39, no. 2, 1992.

[17] J. Harper and M. Agrawala, “Deconstructing and restyling d3
visualizations,” in Proceedings of the 27th Annual ACM Symposium
on User Interface Software and Technology, ser. UIST ’14. New
York, NY, USA: ACM, 2014, pp. 253–262. [Online]. Available:
http://doi.acm.org/10.1145/2642918.2647411

[18] J. Poco, A. Mayhua, and J. Heer, “Extracting and retargeting
color mappings from bitmap images of visualizations,” IEEE Trans.
Visualization & Comp. Graphics (Proc. InfoVis), 2018. [Online].
Available: http://idl.cs.washington.edu/papers/extracting-color-mappings

[19] K. Kafle and C. Kanan, “Answer-type prediction for visual question
answering,” 06 2016, pp. 4976–4984.

[20] Z. Yang, X. He, J. Gao, L. Deng, and A. J. Smola, “Stacked attention
networks for image question answering.” in CVPR. IEEE Computer
Society, 2016, pp. 21–29.

[21] M. Acharya, K. Kafle, and C. Kanan, “Tallyqa: Answering complex
counting questions,” in AAAI, 2019.

[22] M. Ren, R. Kiros, and R. S. Zemel, “Exploring models and data for
image question answering,” in Proceedings of the 28th International
Conference on Neural Information Processing Systems, 2015, pp. 2953–
2961.

[23] M. Malinowski and M. Fritz, “A multi-world approach to question
answering about real-world scenes based on uncertain input,” in NIPS,
2014.

[24] A. Agrawal, J. Lu, S. Antol, M. Mitchell, C. L. Zitnick, D. Parikh, and
D. Batra, “Vqa: Visual question answering,” Int. J. Comput. Vision, vol.
123, no. 1, pp. 4–31, 2017.

[25] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh, “Making
the V in VQA matter: Elevating the role of image understanding in
Visual Question Answering,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[26] Q. Wu, D. Teney, P. Wang, C. Shen, A. Dick, and A. Hengel, “Visual
question answering: A survey of methods and datasets,” Computer Vision
and Image Understanding, 2016.

[27] K. Kafle and C. Kanan, “An analysis of visual question answering
algorithms,” in ICCV, 2017.

