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Abstract 

Recently proposed deep neural network (DNN) obtains 

significant accuracy improvements in many large vocabulary 

continuous speech recognition (LVCSR) tasks. However, 

DNN requires much more parameters than traditional systems, 

which brings huge cost during online evaluation, and also 

limits the application of DNN in a lot of scenarios. In this 

paper we present our new effort on DNN aiming at reducing 

the model size while keeping the accuracy improvements. We 

apply singular value decomposition (SVD) on the weight 

matrices in DNN, and then restructure the model based on the 

inherent sparseness of the original matrices. After 

restructuring we can reduce the DNN model size significantly 

with negligible accuracy loss. We also fine-tune the 

restructured model using the regular back-propagation method 

to get the accuracy back when reducing the DNN model size 

heavily. The proposed method has been evaluated on two 

LVCSR tasks, with context-dependent DNN hidden Markov 

model (CD-DNN-HMM). Experimental results show that the 

proposed approach dramatically reduces the DNN model size 

by more than 80% without losing any accuracy. 

Index Terms: deep neural network, singular value 

decomposition, model restructuring 

1. Introduction 

Recent significant progress in deep learning has attracted a lot 

of interest in automatic speech recognition (ASR) 

[1][2][3][4][5][6][7]. The discovery of strong modeling 

capability of deep neural network (DNN) and the availability 

of high-speed hardware has made it feasible to train huge 

networks with tens of millions of parameters. Neural networks 

used in acoustic models in ASR have usually been trained to 

perform frame classification with cross-entropy criterion or 

perform sequential training in recent studies [8][9]. In the 

framework of context-dependent DNN Hidden-Markov-Model 

(CD-DNN-HMM) [1][2], the conventional Gaussian Mixture 

Model (GMM) is replaced by a DNN  to evaluate the senone 

log likelihood. Besides CD-DNN-HMMs, DNN can also be 

used to provide the bottle-neck feature vectors of the GMM in 

a GMM-HMM system [10][11] Both applications of DNN in 

ASR achieved significant accuracy improvement. CD-DNN-

HMM has been shown to achieve relative 16% [2] and 33% 

[4] word error reduction over discriminatively trained CD-

GMM-HMMs, on a voice search task and a switchboard task, 

respectively. The work in [10] shows that DNN trained bottle-

neck feature reduces word error rate by 16% relatively on a 

large vocabulary business search task 

However, the outstanding performance of CD-DNN-HMM 

accompanies with huge computation cost – the immense CPU 

and memory usage, since it uses much more parameters than 

traditional GMM-HMM framework. Although the DNN 

training can be speeded up tremendously with Graphics 

Processing Unit (GPU)[12], the use of GPU in deployment 

machines is implausible. Also, GPU is not always available on 

all types of hardware, especially for some small devices, 

which limits the application of DNN in a lot of scenarios.  

Although the ASR recognition accuracy typically 

improves as the network depth and width increase, it is still 

shown that a large portion of weight parameters in DNN are 

very small [13], which have negligible effect on the output 

values of each layer. So we believe that the model can be 

compressed to a large extent. The work in [13] exploits the 

sparseness in DNN, and presents a nice way to reduce the 

model size. The shortcoming of [13] is that the non-zero 

parameters always distribute randomly on each layer, so we 

need to use indices for the non-zero values, which bring us 

extra memory usage. And the optimum implementation for the 

work heavily depends on hardware architecture, which makes 

it hard to port the system between different frameworks.  

In this work we propose a new method to reduce DNN 

model size. We apply singular value decomposition (SVD) to 

decompose the weight matrices in DNN model, and then 

restructure the model based on the sparseness of the original 

format. The restructured model has similar layout as original 

model, with a couple of extra layers, so all the advanced 

speed-up methods, including streaming SIMD extension (SSE) 

instructions and GPU implementation [12][14], can be applied 

on top of it.  After SVD restructuring, the total model size is 

reduced extensively with possible accuracy loss (depend on 

the extent we compress the model). Then we can fine-tune the 

model with restructured model format to improve the accuracy 

back. 

The rest of the paper is organized as the following. Section 

2 describes the structure of DNN used in ASR. Section 3 

proposes how to apply SVD on weight matrices in DNN to 

restructure the model. Experimental results are presented in 

Section 4 to show the effectiveness of the proposed method. 

We conclude our work in Section 5. 

2. DNN in Automatic Speech Recognition 

 
Fig. 1 DNN used in ASR systems 



DNN is a feed-forward, artificial neural network which has 

more than one layer of hidden units between its inputs and 

outputs. Fig. 1 shows the structure of a DNN used in ASR 

systems, where the bottom layer is input layer, the mid-layers 

are hidden layers, and the top layer is output layer. Usually the 

network is fully connected between adjacent layers. 

2.1 CD-DNN-HMM 

The CD-DNN-HMM combines the discriminative modeling 

power of DNN with the sequential modeling power of HMM. 

In CD-DNN-HMM, we replace the GMM in a conventional 

GMM-HMM system with a DNN, in which the output layer 

consists of all the tied CD phone states (we also called 

senones), and each unit in the input layer corresponds to a data 

point in input feature vectors. We compute HMM’s state 

emission probability density function px|y(x|y=s) by converting 

the state posterior probability py|x(y=s|x) obtained from the 

DNN to 
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    (     )

  (   )
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where s is a tied CD phone state, x is the input feature vector, 

py(y=s) is the prior probability of state s, and p(x) is 

independent of state s and can be crossed out during online 

evaluation. 

We usually choose sigmoid function as the activation 

function of all hidden units, and softmax function for output 

layer units. 

2.2 Training and Decoding 

In our current implementation, CD-DNN-HMMs are 

initialized from traditional CD-GMM-HMMs. More specially, 

the CD-DNN-HMM inherits the model structure, including the 

phone set, HMM topology, and tying of context-dependent 

states, directly from the CD-GMM-HMM system. In addition, 

the senone labels used for training the DNNs are extracted 

from the forced alignment generated by CD-GMM-HMM. The 

detailed training procedure, including the bridge between CD-

GMM-HMMs and momentum values used in the experiments, 

can be found in [2]. We also use GPU to speed up training. 

Decoding is carried out by plugging the DNN into a 

conventional large vocabulary  decoder.  

3. SVD based Model restructuring 

Currently used DNN in ASR system typically has 5-8 hidden 

layers, and each layer consists of a few thousands of units. 

With the same amount of training data, the DNN model 

usually has 2 to 10 times more parameters than traditional CD-

GMM-HMMs. Also in CD-DNN-HMMs, the lower layers of 

DNNs are shared across all units in output layer and need to be 

calculated even only a small amount of states are active during 

search. Therefore, it is extremely important to reduce the DNN 

model size so that fast computation and small memory usage 

can be obtained for runtime evaluation, which is critical to 

real-world deployment.  

Here we present a SVD based model restructuring method 

for DNN models. Fig. 2 depicts how to decompose a weight 

matrix into two matrices with smaller dimensions. 

 
Fig. 2 SVD decomposition on weight matrices 

in DNN models 
 

For a     weight matrix A, if we apply SVD on it, we get 

                 
 ,                                   (2) 

 
where ∑ is a diagonal matrix with A’s singular values on the 

diagonal in the decreasing order. The m columns of U and the 

n columns of V are called the left-singular vectors and right-

singular vectors of A, respectively. Since A is a sparse matrix, 

a large part of A’s singular values should be very small. Fig. 3 

illustrates the distribution of singular values for a 2048×2048 

weight matrix in a 5-hidden-layer DNN, where x-axis is the 

number of singular values, and y-axis is the accumulated 

percentage of total singular values. 
 

 
Fig. 3 Distribution of singular values for a weight  

matrix in a 5-hidden layer DNN 
 

From Fig. 3 we can see that around 15% of singular values 

contribute 50% of total values, and around 40% of singular 

values contribute 80% of total values. So if we set those small 

values to 0, it won’t considerably change the values of 

elements in matrix A. Assume we only keep   k biggest 

singular values of A, we can rewrite formula (2) as 

                 
          ,          (3) 

where              
   

In this way we decompose matrix A into two smaller 

matrices U and N. Fig. 4 describes how we apply them back to 

the original DNN model. For one single layer in a DNN 

model, we replace it with two layers, while the first one has no 

nonlinear function, and the second one does. The number of 

parameters changes from mn to (m+n)k. We reduce the model 

size significantly if k is much smaller than n. In 

implementation, the value of k can be set to a pre-decided 

value. We can also choose the value of k so that a major part 



of A’s singular values are kept. 

 

 
(a) One layer in original DNN model 

 

 
b) Two corresponding layers in new DNN model 

 

Fig. 4 Model conversion in restructured DNN 
 

If we restructure the DNN model aggressively with accuracy 

loss, we can also fine-tune the model with the same back-

propagation method which is used to train original DNN 

model. 

4. Experiments 

Experiments were done on two different LVCSR tasks, to 

completely evaluate the proposed approach. 

4.1 Experiments on the LVCSR task with single data 

resource 

We first evaluated the proposed approach on a Microsoft 

internal task. The training data, called Train-1, consists of 750 

hours of audios. The test set, called Test-1, has 31829 words in 

9562 utterances.  

The input feature to CD-DNN-HMM system is a 13-

dimension mean-normalized MFCC feature with up to third-

order derivatives. We augment the feature vectors with 

previous and next 5 frames (5-1-5). The speaker-independent 

3-state cross-word triphones share 5976 senones, determined 

by the baseline CD-GMM-HMM system.  

 

The original DNN used in CD-DNN-HMM has 5 hidden 

layers, each with 2048 units. The output layer has 5976 units 

corresponding to the 5976 senones. The DNN is initialized 

with DBN-pretraining procedure, and then refined with back-

propagation using senone labels derived from the MLE model 

alignment [1]. 

 

We first apply SVD restructuring on the weight matrix 

below the output layer, since it’s the largest one in the model. 

Table 1 summarizes the experimental results. The first column 

describes the setup of the model, and the number in bracket 

means that how many singular values we keep after SVD 

decomposition. The third column is the number of parameters 

in each model. For example, in the original DNN model the 

number of parameters is 572 × 2048 + (2048 × 2048) × 4 + 

2048 × 5976 ≈ 29M. 

Table 1 Results of SVD restructuring on 

output layer on task 1 

Acoustic Model WER 
Number of 

parameters 

Baseline, GMM model 29.1% 11M 

Original DNN model 25.6% 29M 

SVD (1024) 25.6% 25M 

SVD (512) 25.7% 21M 

SVD (256) 
Before fine-tune 28.6% 

19M 
After fine-tune 25.6% 

 

From Table 1 we can see that model size of our original DNN 

model is nearly 3 times of GMM model, which was trained 

with both feature space and model space discriminative 

training technology: feature minimum phone error (fMPE) and 

boosted maximum mutual information (BMMI). We reduce 

WER at 12% relatively by replacing GMM model with DNN 

model. The following rows in Table 1 verify the effect of the 

proposed approach. When we keep only 1/4 of largest singular 

values (the SVD-512 case) on the matrix below the output 

layer, WER is almost the same as the original model, while we 

reduce the overall model size around 30%. If we compress the 

model further, keeping only 1/8 of largest singular values, 

WER increases a lot, but the following fine-tuning can bring 

the accuracy back. 

We also apply the method on other weight matrices, 

except the one above the input layer, since the number of 

parameters in this matrix is much smaller than others, and 

restructuring it does not affect the model size considerably. 

Table 2 summarizes the results. 

Table 2 Results of SVD restructuring  

on the whole model on task 1 

Acoustic model WER 
Number of 

parameters 

All hidden layers 

(512) 

Before fine-tune 26.0% 
21M 

After fine-tune 25.6% 

All hidden layers 

(256) 

Before fine-tune 27.0% 
17M 

After fine-tune 25.8% 

All hidden and 

output layers (256)  

Before fine-tune 29.7% 
7M 

After fine-tune 25.4% 

All hidden and 

output layer (192) 

Before fine-tune 36.7% 
5.6M 

After fine-tune 25.5% 

 

From Table 2 we observe that when we apply SVD on all 

hidden layers and keep only 1/4 of largest singular values, 

WER increases less than 1% relatively. When we apply SVD 

on all hidden layers and keep 1/8 of largest singular values, we 

lose 40% of the accuracy improvement, but reduce model size 

by 41%. If we compress the model more aggressively, word 

accuracy will drop further after SVD decomposition, but fine-

tuning can get the lost accuracy back. Our best setup (last row) 

shows that we can reduce the model size more than 80% 

without losing any accuracy, which only has half of 

parameters compared to GMM model. 

To further verify the advantage of the proposed method, 

we also built a DNN model with the same model structure as 

SVD-256 case on all hidden and output layers from the 

beginning. The model got 26.3% WER, which is nearly 4% 

worse than the one using proposed method. Also the training 

converged slowly. The number of iterations needed to get the 

final model is more than the one we built the baseline model 



plus the one we used to do fine-tuning after SVD restructuring. 

4.2 Experiments on the LVCSR task with multiple data 

resources 

Our second task is to train a CD-DNN-HMM model for two 

different scenarios by mixing the training data from these two 

scenarios. Model structure is the same as the one in last 

session. Besides the training set Train-1, we also have another 

commercial set called Train-2, which has 300 hours of audio. 

We use these two training sets to train a single DNN model for 

two scenarios. We evaluate the model on test set Test-1 and 

another one Test-2 on the second scenario, which has 16028 

words in 2286 utterances.  

We first apply SVD restructuring using the similar setup 

as the one used on last task. Table 3 shows us the results. 

Table 3 Results of SVD restructuring  

on the whole model on task 2 

Acoustic model 
WER 

Test-1 Test-2 

Original DNN model 25.6% 21.0% 

All hidden and 

output layers (512) 

Before fine-tune 26.2% 22.8% 

After fine-tune 25.7% 21.0% 

All hidden and 

output layers (256)  

Before fine-tune 30.3% 26.3% 

After fine-tune 26.2% 21.3% 

All hidden and 

output layer (192) 

Before fine-tune 33.0% 29.1% 

After fine-tune 26.2% 21.5% 

 

From Table 3 we observe that if we keep 512 singular values 

for each matrix, we can improve the accuracy back after fine-

tuning. In this setup the model size is reduced by 55%. But if 

we compress the model further, keeping 256 or 192 singular 

values during SVD restructuring as in Table 2, we lose 

accuracy around 2.5% relatively even after fine-tuning. We 

believe the reason is that we have multiple data resource on 

this task, which is more variant than the single data resource. 

The DNN model learned from the mixed training data set thus 

needs more parameters to handle the variation, which reduces 

its sparseness.  

Through the analysis of the singular values of each weight 

matrix, we found that their distributions are different. So 

keeping the same number of singular values for all the layers 

may not be the best way to compress the model. Table 4 gives 

us the detail information about it, where the second to fourth 

columns describe how many singular values contribute to the 

certain percentage of total singular values. 

Table 4 Distribution of singular values  

in different weights matrices 

Weight matrix No. of singular values 

20% 30% 40% 50% 

Hidden layer 2 95 164 253 366 

Hidden layer 3 98 171 263 378 

Hidden layer 4 78 140 220 320 

Hidden layer 5 87 155 241 343 

Output layer 125 232 363 519 

 

From Table 4 we can see that the singular values of weight 

matrix for output layer are more spread out than others, which 

means that the matrix is denser. In the following experiments 

we use the 40% setup to restructure the model and then do 

fine-tuning. The final model got 25.9% for WER on Test-1, 

and 21.0% on Test-2, which is similar with the setup that we 

keep 512 singular values for all the matrices.  But we reduce 

the model size by another 40%, which is 73% reduction 

compared to the original model. 

5. Conclusion 

In this paper we described the work of DNN model 

restructuring. We apply SVD on the weight matrices in DNN, 

and then restructure the model based on the sparseness of the 

original matrices. The same accuracy as the original DNN can 

be maintained when we just apply modest parameter 

reduction. If number of parameters of the DNN is reduced 

heavily, we can fine-tune the model with the new structure to 

get the lost accuracy back. We evaluate the approach on two 

LVCSR tasks. On the first task with single training data 

resource we can reduce the model size by more than 80% 

without any accuracy loss. On another LVCSR task with 

multiple data resources, the restructured DNN needs additional 

parameters to handle the data source variability. By keeping 

the singular values proportional to the total of them in each 

layer, we can finally reduce the model size by 73% with less 

than 1% relative accuracy loss. These two experiments also 

show that the training data variability affects the capacity of 

DNN – more parameters are needed for restructured DNN to 

model the variability inside heterogeneous training data in 

addition to the phonetic variability.  
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