
Restructuring of Deep Neural Network Acoustic Models with Singular Value

Decomposition

Jian Xue, Jinyu Li, and Yifan Gong

Microsoft Corporation, One Microsoft Way, Redmond, WA 98052
{jianxue; jinyli; ygong}@microsoft.com

Abstract

Recently proposed deep neural network (DNN) obtains

significant accuracy improvements in many large vocabulary

continuous speech recognition (LVCSR) tasks. However,

DNN requires much more parameters than traditional systems,

which brings huge cost during online evaluation, and also

limits the application of DNN in a lot of scenarios. In this

paper we present our new effort on DNN aiming at reducing

the model size while keeping the accuracy improvements. We

apply singular value decomposition (SVD) on the weight

matrices in DNN, and then restructure the model based on the

inherent sparseness of the original matrices. After

restructuring we can reduce the DNN model size significantly

with negligible accuracy loss. We also fine-tune the

restructured model using the regular back-propagation method

to get the accuracy back when reducing the DNN model size

heavily. The proposed method has been evaluated on two

LVCSR tasks, with context-dependent DNN hidden Markov

model (CD-DNN-HMM). Experimental results show that the

proposed approach dramatically reduces the DNN model size

by more than 80% without losing any accuracy.

Index Terms: deep neural network, singular value

decomposition, model restructuring

1. Introduction

Recent significant progress in deep learning has attracted a lot

of interest in automatic speech recognition (ASR)

[1][2][3][4][5][6][7]. The discovery of strong modeling

capability of deep neural network (DNN) and the availability

of high-speed hardware has made it feasible to train huge

networks with tens of millions of parameters. Neural networks

used in acoustic models in ASR have usually been trained to

perform frame classification with cross-entropy criterion or

perform sequential training in recent studies [8][9]. In the

framework of context-dependent DNN Hidden-Markov-Model

(CD-DNN-HMM) [1][2], the conventional Gaussian Mixture

Model (GMM) is replaced by a DNN to evaluate the senone

log likelihood. Besides CD-DNN-HMMs, DNN can also be

used to provide the bottle-neck feature vectors of the GMM in

a GMM-HMM system [10][11] Both applications of DNN in

ASR achieved significant accuracy improvement. CD-DNN-

HMM has been shown to achieve relative 16% [2] and 33%

[4] word error reduction over discriminatively trained CD-

GMM-HMMs, on a voice search task and a switchboard task,

respectively. The work in [10] shows that DNN trained bottle-

neck feature reduces word error rate by 16% relatively on a

large vocabulary business search task

However, the outstanding performance of CD-DNN-HMM

accompanies with huge computation cost – the immense CPU

and memory usage, since it uses much more parameters than

traditional GMM-HMM framework. Although the DNN

training can be speeded up tremendously with Graphics

Processing Unit (GPU)[12], the use of GPU in deployment

machines is implausible. Also, GPU is not always available on

all types of hardware, especially for some small devices,

which limits the application of DNN in a lot of scenarios.

Although the ASR recognition accuracy typically

improves as the network depth and width increase, it is still

shown that a large portion of weight parameters in DNN are

very small [13], which have negligible effect on the output

values of each layer. So we believe that the model can be

compressed to a large extent. The work in [13] exploits the

sparseness in DNN, and presents a nice way to reduce the

model size. The shortcoming of [13] is that the non-zero

parameters always distribute randomly on each layer, so we

need to use indices for the non-zero values, which bring us

extra memory usage. And the optimum implementation for the

work heavily depends on hardware architecture, which makes

it hard to port the system between different frameworks.

In this work we propose a new method to reduce DNN

model size. We apply singular value decomposition (SVD) to

decompose the weight matrices in DNN model, and then

restructure the model based on the sparseness of the original

format. The restructured model has similar layout as original

model, with a couple of extra layers, so all the advanced

speed-up methods, including streaming SIMD extension (SSE)

instructions and GPU implementation [12][14], can be applied

on top of it. After SVD restructuring, the total model size is

reduced extensively with possible accuracy loss (depend on

the extent we compress the model). Then we can fine-tune the

model with restructured model format to improve the accuracy

back.

The rest of the paper is organized as the following. Section

2 describes the structure of DNN used in ASR. Section 3

proposes how to apply SVD on weight matrices in DNN to

restructure the model. Experimental results are presented in

Section 4 to show the effectiveness of the proposed method.

We conclude our work in Section 5.

2. DNN in Automatic Speech Recognition

Fig. 1 DNN used in ASR systems

DNN is a feed-forward, artificial neural network which has

more than one layer of hidden units between its inputs and

outputs. Fig. 1 shows the structure of a DNN used in ASR

systems, where the bottom layer is input layer, the mid-layers

are hidden layers, and the top layer is output layer. Usually the

network is fully connected between adjacent layers.

2.1 CD-DNN-HMM

The CD-DNN-HMM combines the discriminative modeling

power of DNN with the sequential modeling power of HMM.

In CD-DNN-HMM, we replace the GMM in a conventional

GMM-HMM system with a DNN, in which the output layer

consists of all the tied CD phone states (we also called

senones), and each unit in the input layer corresponds to a data

point in input feature vectors. We compute HMM’s state

emission probability density function px|y(x|y=s) by converting

the state posterior probability py|x(y=s|x) obtained from the

DNN to

 ()
 ()

 ()
 () (1)

where s is a tied CD phone state, x is the input feature vector,

py(y=s) is the prior probability of state s, and p(x) is

independent of state s and can be crossed out during online

evaluation.

We usually choose sigmoid function as the activation

function of all hidden units, and softmax function for output

layer units.

2.2 Training and Decoding

In our current implementation, CD-DNN-HMMs are

initialized from traditional CD-GMM-HMMs. More specially,

the CD-DNN-HMM inherits the model structure, including the

phone set, HMM topology, and tying of context-dependent

states, directly from the CD-GMM-HMM system. In addition,

the senone labels used for training the DNNs are extracted

from the forced alignment generated by CD-GMM-HMM. The

detailed training procedure, including the bridge between CD-

GMM-HMMs and momentum values used in the experiments,

can be found in [2]. We also use GPU to speed up training.

Decoding is carried out by plugging the DNN into a

conventional large vocabulary decoder.

3. SVD based Model restructuring

Currently used DNN in ASR system typically has 5-8 hidden

layers, and each layer consists of a few thousands of units.

With the same amount of training data, the DNN model

usually has 2 to 10 times more parameters than traditional CD-

GMM-HMMs. Also in CD-DNN-HMMs, the lower layers of

DNNs are shared across all units in output layer and need to be

calculated even only a small amount of states are active during

search. Therefore, it is extremely important to reduce the DNN

model size so that fast computation and small memory usage

can be obtained for runtime evaluation, which is critical to

real-world deployment.

Here we present a SVD based model restructuring method

for DNN models. Fig. 2 depicts how to decompose a weight

matrix into two matrices with smaller dimensions.

Fig. 2 SVD decomposition on weight matrices

in DNN models

For a weight matrix A, if we apply SVD on it, we get

 , (2)

where ∑ is a diagonal matrix with A’s singular values on the

diagonal in the decreasing order. The m columns of U and the

n columns of V are called the left-singular vectors and right-

singular vectors of A, respectively. Since A is a sparse matrix,

a large part of A’s singular values should be very small. Fig. 3

illustrates the distribution of singular values for a 2048×2048

weight matrix in a 5-hidden-layer DNN, where x-axis is the

number of singular values, and y-axis is the accumulated

percentage of total singular values.

Fig. 3 Distribution of singular values for a weight

matrix in a 5-hidden layer DNN

From Fig. 3 we can see that around 15% of singular values

contribute 50% of total values, and around 40% of singular

values contribute 80% of total values. So if we set those small

values to 0, it won’t considerably change the values of

elements in matrix A. Assume we only keep k biggest

singular values of A, we can rewrite formula (2) as

 , (3)

where

In this way we decompose matrix A into two smaller

matrices U and N. Fig. 4 describes how we apply them back to

the original DNN model. For one single layer in a DNN

model, we replace it with two layers, while the first one has no

nonlinear function, and the second one does. The number of

parameters changes from mn to (m+n)k. We reduce the model

size significantly if k is much smaller than n. In

implementation, the value of k can be set to a pre-decided

value. We can also choose the value of k so that a major part

of A’s singular values are kept.

(a) One layer in original DNN model

b) Two corresponding layers in new DNN model

Fig. 4 Model conversion in restructured DNN

If we restructure the DNN model aggressively with accuracy

loss, we can also fine-tune the model with the same back-

propagation method which is used to train original DNN

model.

4. Experiments

Experiments were done on two different LVCSR tasks, to

completely evaluate the proposed approach.

4.1 Experiments on the LVCSR task with single data

resource

We first evaluated the proposed approach on a Microsoft

internal task. The training data, called Train-1, consists of 750

hours of audios. The test set, called Test-1, has 31829 words in

9562 utterances.

The input feature to CD-DNN-HMM system is a 13-

dimension mean-normalized MFCC feature with up to third-

order derivatives. We augment the feature vectors with

previous and next 5 frames (5-1-5). The speaker-independent

3-state cross-word triphones share 5976 senones, determined

by the baseline CD-GMM-HMM system.

The original DNN used in CD-DNN-HMM has 5 hidden

layers, each with 2048 units. The output layer has 5976 units

corresponding to the 5976 senones. The DNN is initialized

with DBN-pretraining procedure, and then refined with back-

propagation using senone labels derived from the MLE model

alignment [1].

We first apply SVD restructuring on the weight matrix

below the output layer, since it’s the largest one in the model.

Table 1 summarizes the experimental results. The first column

describes the setup of the model, and the number in bracket

means that how many singular values we keep after SVD

decomposition. The third column is the number of parameters

in each model. For example, in the original DNN model the

number of parameters is 572 × 2048 + (2048 × 2048) × 4 +

2048 × 5976 ≈ 29M.

Table 1 Results of SVD restructuring on

output layer on task 1

Acoustic Model WER
Number of

parameters

Baseline, GMM model 29.1% 11M

Original DNN model 25.6% 29M

SVD (1024) 25.6% 25M

SVD (512) 25.7% 21M

SVD (256)
Before fine-tune 28.6%

19M
After fine-tune 25.6%

From Table 1 we can see that model size of our original DNN

model is nearly 3 times of GMM model, which was trained

with both feature space and model space discriminative

training technology: feature minimum phone error (fMPE) and

boosted maximum mutual information (BMMI). We reduce

WER at 12% relatively by replacing GMM model with DNN

model. The following rows in Table 1 verify the effect of the

proposed approach. When we keep only 1/4 of largest singular

values (the SVD-512 case) on the matrix below the output

layer, WER is almost the same as the original model, while we

reduce the overall model size around 30%. If we compress the

model further, keeping only 1/8 of largest singular values,

WER increases a lot, but the following fine-tuning can bring

the accuracy back.

We also apply the method on other weight matrices,

except the one above the input layer, since the number of

parameters in this matrix is much smaller than others, and

restructuring it does not affect the model size considerably.

Table 2 summarizes the results.

Table 2 Results of SVD restructuring

on the whole model on task 1

Acoustic model WER
Number of

parameters

All hidden layers

(512)

Before fine-tune 26.0%
21M

After fine-tune 25.6%

All hidden layers

(256)

Before fine-tune 27.0%
17M

After fine-tune 25.8%

All hidden and

output layers (256)

Before fine-tune 29.7%
7M

After fine-tune 25.4%

All hidden and

output layer (192)

Before fine-tune 36.7%
5.6M

After fine-tune 25.5%

From Table 2 we observe that when we apply SVD on all

hidden layers and keep only 1/4 of largest singular values,

WER increases less than 1% relatively. When we apply SVD

on all hidden layers and keep 1/8 of largest singular values, we

lose 40% of the accuracy improvement, but reduce model size

by 41%. If we compress the model more aggressively, word

accuracy will drop further after SVD decomposition, but fine-

tuning can get the lost accuracy back. Our best setup (last row)

shows that we can reduce the model size more than 80%

without losing any accuracy, which only has half of

parameters compared to GMM model.

To further verify the advantage of the proposed method,

we also built a DNN model with the same model structure as

SVD-256 case on all hidden and output layers from the

beginning. The model got 26.3% WER, which is nearly 4%

worse than the one using proposed method. Also the training

converged slowly. The number of iterations needed to get the

final model is more than the one we built the baseline model

plus the one we used to do fine-tuning after SVD restructuring.

4.2 Experiments on the LVCSR task with multiple data

resources

Our second task is to train a CD-DNN-HMM model for two

different scenarios by mixing the training data from these two

scenarios. Model structure is the same as the one in last

session. Besides the training set Train-1, we also have another

commercial set called Train-2, which has 300 hours of audio.

We use these two training sets to train a single DNN model for

two scenarios. We evaluate the model on test set Test-1 and

another one Test-2 on the second scenario, which has 16028

words in 2286 utterances.

We first apply SVD restructuring using the similar setup

as the one used on last task. Table 3 shows us the results.

Table 3 Results of SVD restructuring

on the whole model on task 2

Acoustic model
WER

Test-1 Test-2

Original DNN model 25.6% 21.0%

All hidden and

output layers (512)

Before fine-tune 26.2% 22.8%

After fine-tune 25.7% 21.0%

All hidden and

output layers (256)

Before fine-tune 30.3% 26.3%

After fine-tune 26.2% 21.3%

All hidden and

output layer (192)

Before fine-tune 33.0% 29.1%

After fine-tune 26.2% 21.5%

From Table 3 we observe that if we keep 512 singular values

for each matrix, we can improve the accuracy back after fine-

tuning. In this setup the model size is reduced by 55%. But if

we compress the model further, keeping 256 or 192 singular

values during SVD restructuring as in Table 2, we lose

accuracy around 2.5% relatively even after fine-tuning. We

believe the reason is that we have multiple data resource on

this task, which is more variant than the single data resource.

The DNN model learned from the mixed training data set thus

needs more parameters to handle the variation, which reduces

its sparseness.

Through the analysis of the singular values of each weight

matrix, we found that their distributions are different. So

keeping the same number of singular values for all the layers

may not be the best way to compress the model. Table 4 gives

us the detail information about it, where the second to fourth

columns describe how many singular values contribute to the

certain percentage of total singular values.

Table 4 Distribution of singular values

in different weights matrices

Weight matrix No. of singular values

20% 30% 40% 50%

Hidden layer 2 95 164 253 366

Hidden layer 3 98 171 263 378

Hidden layer 4 78 140 220 320

Hidden layer 5 87 155 241 343

Output layer 125 232 363 519

From Table 4 we can see that the singular values of weight

matrix for output layer are more spread out than others, which

means that the matrix is denser. In the following experiments

we use the 40% setup to restructure the model and then do

fine-tuning. The final model got 25.9% for WER on Test-1,

and 21.0% on Test-2, which is similar with the setup that we

keep 512 singular values for all the matrices. But we reduce

the model size by another 40%, which is 73% reduction

compared to the original model.

5. Conclusion

In this paper we described the work of DNN model

restructuring. We apply SVD on the weight matrices in DNN,

and then restructure the model based on the sparseness of the

original matrices. The same accuracy as the original DNN can

be maintained when we just apply modest parameter

reduction. If number of parameters of the DNN is reduced

heavily, we can fine-tune the model with the new structure to

get the lost accuracy back. We evaluate the approach on two

LVCSR tasks. On the first task with single training data

resource we can reduce the model size by more than 80%

without any accuracy loss. On another LVCSR task with

multiple data resources, the restructured DNN needs additional

parameters to handle the data source variability. By keeping

the singular values proportional to the total of them in each

layer, we can finally reduce the model size by 73% with less

than 1% relative accuracy loss. These two experiments also

show that the training data variability affects the capacity of

DNN – more parameters are needed for restructured DNN to

model the variability inside heterogeneous training data in

addition to the phonetic variability.

6. Acknowledgements

The authors would like to thank Dong Yu for valuable

discussion and the support on DNN training tool, Emilian

Stoimenov for helpful discussion, and also thank Jui-Ting

Huang for some experimental results.

7. References

[1] D. Yu, L. Deng, and G. Dahl, “Roles of pre-training and fine-

tuning in context-dependent DBN-HMMs for real-word speech
recognition,” in proceedings of NIPS Workshop on Deep

Learning and Unsupervised Feature Learning, 2010.

[2] F. Seide, G. Li, and D. Yu, “Conversational speech transcription
using context-dependent deep neural networks,” Proc.

Interspeech, pp. 437-440, 2011.

[3] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “An
application of pretrained deep neural networks to large

vocabulary conversational speech recognition,”Proc.

Interspeech, 2012.

[4] T. N. Sainath, B. Kingsbury, and B. Ramabhadran,

“Improvements in using deep belief networks for large

vocabulary continuous speech rcognition,” Tech. Rep. UTML TR
2010-003, Speech and Language Algorithm Group, IBM,

February, 2011.

[5] T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P.
Novak, A.-r. Mohamed, “Making deep belief networks effective

for large vocabulary continuous speech recognition,” Proc.

ASRU, pp. 30-35, 2011.
[6] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Large vocabulary

continuous speech recognition with context-dependent DBN-

HMMs,” Proc. ICASSP, pp. 4688-4691, 2011.
[7] A. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling

using deep belief networks,” IEEE Trans. Audio Speech and

Language Process., vol. 20, no. 1, pp. 14-22, Jan. 2012.
[8] B. Kingsbury, T. Sainath, and H. Soltau, “Scalable minimum

Bayes risk training of deep neural network acoustic models using

distributed Hessian-free optimization,” Proc. Interspeech, 2012.

[9] H. Su, G. Li, D. Yu, and F. Seide, “Error back propagation for

sequence training of context-dependent deep networks for
conversational speech transcription,” Proc. ICASSP, 2013.

[10] D. Yu, and M. L. Seltzer, “Improved bottleneck features using

pretrained deep neural networks,” Proc. Interspeech, pp. 237-
240, 2011.

[11] T. N. Sainath, B. Kingsbury, and B. Ramabhadran, “Auto-

encoder bottleneck features using deep belief networks,” Proc.
ICASSP, pp. 4153-4156, 2012.

[12] K.-S. Oh, and K. Jung, “GPU implementation of neural

networks,” Pattern Recognition, vol. 37, issue 6, pp. 1311-1314,
June 2004.

[13] D. Yu, F. Seide, G. Li, and L. Deng, “Exploiting sparseness in

deep neural networks for large vocabulary speech recognition,”
Proc. ICASSP, pp. 4409-4412, 2012.

[14] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed

of neural networks on CPUs,” in proceedings of NIPS Workshop
on Deep Learning and Unsupervised Feature Learning, 2011.

