
---- - --

GC28-1152-2

File No. S370-36

Program Product

MVS/Extended Architecture
System Programming
Library:
System Modifications

MVS/System Product:

J ES3 Version 2 5665-291
J ES2 Version 2 5740-XC6

--...-.--.-.- ---..-­
-~~.....-- --.. ------_.....

~

­~--_
...

J

Third Edition (March, 1987)

This is a major revision of, and obsoletes, GC28-l152-1. See the Summary of
Amendments following the Contents for a summary of the changes made to this manual.

This edition applies to Version 2 Release 2.0 of MVS/System Product (5665-291 and
5740-XC6) and to all subsequent releases until indicated in new editions or technical
newsletters. Changes are made periodically to the information herein; before using this
publication in connection with the operation of IBM systems, consult the latest IBM
System/370 System/370 Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM's program product may be used. Any functionally equivalent program may
be used instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department 058, Building 921-2, PO Box 390, Poughkeepsie, N.Y. 12602.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982, 1987

Preface

SPL: System Modifications is intended for the people who set up and maintain
the system software for a data processing center running under IBM's Multiple
Virtual Storage/Extended Architecture (MVS/XA) operating system. Although
there are many titles for these people, (system manager, systems analyst,
installation designer, system programmer), we will call them system programmers.
Thus, SPL: System Modifications is written for the system programmer who has
extensive experience with MVS, and who is familiar with its basic concepts.

The purpose of SPL: System Modifications is to help you decide where and how
to modify the operating system. This book presents ways to customize the
system.

Modifying the Operating System: An Overview

Should the software shipped by IBM as the MVSjXA operating system, not
accommodate every device, application, or software add-on included in your
installation, you can customize the system to fit your needs. As your installation
grows and changes to meet new demands and emphasis, you can change the
customization and adapt it to your new needs.

As you customize the system, keep in mind the importance of protecting the
integrity of the system code and your own code. The System Integrity section of
Volume One of MVS/XA SPL System Macros and Facilities tells how to maintain
the integrity of MVS/XA and your programs.

SPL: System Modifications can help you decide the best way to customize the
MVSjXA operating system.

The Customization Task

The MVS/XA operating system includes many points at which you, the system
programmer, can assume control of the system code so you can modify it. These
control points, listed in order of increasing refinement, are:

• 	 MVS Configuration Program which defines the installation's I/O configuration
to the operating system through SYSl.PARMLIB members.

• 	 System initialization, which activates the operating system.

• 	 Job or step execution, which activates or starts an installation application is
accomplished

Preface 111

Within each of these are means of control that become more varied and complex
as the degree of refinement increases. The IBM MVSjXA library of publications \
documents the various tools and means available to the system programmer for .J
customizing the system. Usually the information is specific to the control points
or to the system components. SPL: System Modifications presents the tools and
means you can use to customize the operating system in the context of three
major system programming tasks:

• 	 Modifying the operating system to fit the devices in your installation

• 	 Modifying the operating system to fit the work your installation does

• 	 Accommodating the operating system to other software, especially
subsystems, you want to use

All of these tasks can be addressed at each of the control points listed earlier; the
means available to accomplish them depend on the control point.

You can use the following tools to customize your system at system initialization
(IPL):

• 	 System parameters included in members of SYSl.PARMLIB
• 	 Replaceable modules in LPALIB, LINKLIB, and other system libraries
• 	 System and private macro libraries
• 	 Operator commands
• 	 User exit routines (inserted at IPL; executed at job/step execution)

You can use the following tools to customize your system at job/step execution:

• 	 Installation defaults for JCL and JES2/JES3 parameters
• 	 Operator commands
• 	 User exit routines

In addition to these, the MVS system includes many system services that provide
flexibility and allow you to control installation processing at all three control
points.

IV SPL: System Modifications

How This Book is Organized

This book has four parts:

• 	 Part I, Modifying the System to Fit the Devices in Your Installation
• 	 Part II, Modifying the System to Fit Your Applications,
• 	 Part III, Fitting Your Subsystems into the System,
• 	 Part IV, MVS System Services,

The chapters within each part of the book present the control points where you
can make modifications, the tools IBM supplies to help you modify the operating
system, and the alternatives you might consider.

Even though the topics are presented as separate tasks, they overlap and affect
each other at many points: your device configuration will be influenced by your
applications and job mix; the subsystems you use or develop will depend on both
your device configuration and your applications.

Following is a summary of the chapters in this book.

• 	Part I, Modifying the System to Fit the Devices in Your Installation, includes
the following:

Chapter 1, Writing Unit Information Modules for the MVS Configuration
Program
Chapter 2, Allocation Considerations

Chapter 2 includes discussions of
The Device Preference Table
The Eligible Device Table
The Volume Attribute List
Controlling GRS Requests

• 	 Part II, Modifying the System to Fit Your Applications, includes the following:

Chapter 3, Limiting User Region Size
Chapter 4, Assigning Special Program Properties to Applications
Chapter 5, Creating Your Own Resource Managers
Chapter 6, Executing DAT-off Code in MVS/XA
Chapter 7, Controlling System Messages and the System Log
Chapter 8, Modifying the Master JCL

- Chapter 9, Customizing the System Trace Table

• 	 Part m, Fitting Your Subsystems into the System, presents the following:

Chapter 10, Defining Secondary Subsystems to MVS
Chapter 11, The Subsystem Affinity Service

Preface V

• 	 Part IV, MVS System Services, presents several services provided by
MVSjXA to help you accommodate the system to your installation and its
applications. These system services are:

Chapter 12, The Unit Verification Service
Chapter 13, The Hot I/O Detection Table
Chapter 14, The Internal Reader Facility
Chapter 15, The External Writer
Chapter 16, The Virtual Fetch Service
Chapter 17, The Dumping Services (ABEND and SVC Dumps)

VI SPL: System Modifications

Other MVS/XA Publications

Throughout this book, we give general information about methods and control
points, but do not try to cover a topic exhaustively unless it is not covered
elsewhere in the MVSjXA library. Rather, we refer you to other publications
where you can find more detailed information about a subject.

Note: The actual references in this book, use shortened book titles:
"MVS/Extended Architecture" becomes "MVSjXA," and "System Programming
Library" becomes "SPL."

Following are the publications cited in this book:

• 	 MVS/Extended Architecture Checkpoint/Restart
• 	 MVS/Extended Architecture Data Management Macro Instructions
• 	 MVS/Extended Architecture Data Management Services
• 	 MVS/Extended Architecture Debugging Handbook Volumes 1-5
• 	 MVS/Extended Architecture Diagnostic Techniques
• 	 MVS/Extended Architecture JCL User's Guide
• 	 MVS/Extended Architecture JCL Reference
• 	 MVS/Extended Architecture JES3 Diagnosis
• 	 MVS/Extended Architecture Message Library: Routing and Descriptor Codes
• 	 MVS/Extended Architecture Message Library: System Messages
• 	 MVS/Extended Architecture MVS Configuration Guide and Reference
• 	 MVS/Extended Architecture Operations: JES3 Commands
• 	 MVS/Extended Architecture Operations: System Commands
• 	 MVS/Extended Architecture System Logic Library Multiple volumes; Volume

1 contains order numbers for the other volumes and a general table of
contents.

• 	 MVS/Extended Architecture System Programming Library: Data Management
• 	 MVS/Extended Architecture System Programming Library: Initialization and

Tuning
• 	 MVS/Extended Architecture System Programming Library: JES2 Initialization

and Tuning
• 	 MVS/Extended Architecture System Programming Library: JES3 Initialization

and Tuning
• 	 MVS/Extended Architecture System Programming Library: Service Aids
• 	 MVS/Extended Architecture System Programming Library: Supervisor

Services and Macro Instructions
• 	 MVS/Extended Architecture Installation: System Generation
• 	 MVS/Extended Architecture System Programming Library: System Macros

and Facilities. Two volumes
• 	 MVS/Extended Architecture System Programming Library: System

Management Facilities
• 	 MVS/Extended Architecture System Programming Library: User Exits
• 	 MVS Extended Architecture Interactive Problem Control System (IPCS)

Planning and Customization
• 	 MVS Extended Architecture Interactive Problem Control System (IPCS)

User's Guide
• 	 MVS Extended Architecture Interactive Problem Control System (IPCS)

Command Reference

Preface Vll

Additional References for New Users of MVS/XA

If you are new to the MVS/XA operating system and library, you may want to
read the following books, to learn how the system differs from its predecessors,
and to get a general introduction to its concepts.

• 	 MVS/Extended Architecture Conversion Notebook discusses the differences
between MVSjXA and its immediate predecessor, MVS/370.

• 	 MVS/Extended Architecture System Programming Library: 31-Bit Addressing
presents the concept of extended addressing in terms of the IBM operating
system. It includes information on planning for and writing programs in a
31-bit environment.

Vlll SPL: System Modifications

Contents

Modifying the System to Fit the Devices in Your Installation

Chapter 1. Writing Unit Information Modules for the MVS Configuration

Program 1-1

How MVSCP Vses VIMs 1-2

Initialization Processing 1-2

IODEVICE Statement Processing 1-2

End-of-Data Processing 1-2

VIM Data Areas 1-3

VIM Service Routines 1-4

CBPADIT - Builds DITs Service Routine 1-5

CBPDDCT - Build DCT Service Routine 1-6

CBPIDFT - Build the DFTs Service Routine 1-7

CBPIFEAT - Device Features Checker Service Routine 1-8

CBPIGETM - Getmain Service Routine 1-9

CBPIPARM - IODEVICE Parameter Checker Service Routine 1-10

VIM Processing Logic 1-11

Considerations for VIM Processing 1-12

VIM Macros 1-14

CBPYDIP 1-16

CBPZCPVT 1-17

CBPZDCP 1-18

CBPZDFP 1-19

CBPZDIAG 1-20

CBPZFCP 1-22

CBPZGETM 1-23

CBPZIODV 1-24

CBPZITRH 1-25

CBPZLOG 1-26

CBPZLOGR 1-28

CBPZPCP 1-29

CBPZPPDS 1-30

CBPZVCA 1-31

Device Support Modules and Macros 1-33

IOSDDT - Device Descriptor Table Build Macro 1-34

IOSDMLT - Module Lists Table Macro 1-37

Writing a VIM 1-38

Naming a VIM 1-38

VIM Restrictions 1-40

System Code and MVSCP Data Separation 1-41

Vsing the Sample VIM 1-41

Chapter 2. Allocation Considerations 2-1

Contents IX

Serialization of Resources During Allocation 2-1

Improving Allocation Performance 2-2

The Device Preference Table 2-3
 J
The Eligible Device Table 2-5

The Use of Esoteric Names 2-5

Creating Multiple EDTs 2-6

The Volume Attribute List 2-7

Use and Mount Attributes 2-7

Recovery of Allocated Resources 2-12

Controlling GRS Requests in MVSjXA 2-12

Modifying the System to Fit your Applications

Chapter 3. Limiting User Region Size 3-1

Setting a Default Region Size via JCL 3-1

Setting Default GETMAIN Limits via Exit Routines 3-1

The IEALIMIT Exit 3-2

The IEFUSI Exit 3-2

IEALIMIT Processing 3-3

The IEFUSI Interface 3-4

How VSM Uses the Region Size Value and the Limit Value 3-9

Chapter 4. Assigning Special Program Properties to Applications 4-1

Program Properties Table 4-1

Format of the PPT Table Header 4-2

Format of the PPT Entry 4-2

Contents of the PPT Entry 4-3

U pda ting the PPT 4-9

Chapter 5. Creating Your Own Resource Managers 5-1

Installation-Written Resource Managers 5-1

The Resource Manager Parameter List 5-2

Adding an Installation-Written Resource Manager 5-4

Chapter 6. Executing DAT-off Code in MVS/XA 6-1

Chapter 7. Conttolling System Messages and the System Log 7-1

Controlling System Messages 7-2

Using a Message-Routing/Processing Exit Routine 7-3

Inserting A WTO/WTOR Exit Routine into the Control Program 7-5

Replacing a WTO/WTOR Exit Routine Without a re-IPL 7-7

The Hardcopy Log 7-7

Suppressing the Display of Selected Messages 7-8

Controlling the System Log 7-8

Modifying the System Log 7-9

Chapter 8. Updating the Master Job Control Language Data Set 8-1

IEEMSJCL Example 8-1

Changes to Master JCL 8-2

Alternate Versions of the Master JCL 8-2

Chapter 9. Customizing the System Trace Table 9-1

The USRn System Trace Table Entry 9-1
 J

X SPL: System Modifications

Using the PTRACE Macro 9-2

PTRACE Macro Processing 9-3

Formatting a USRn Trace Table Entry9~4

Replacing a USRn TTE Formatting Routine 9-5

Fitting your Subsystems into the System

Chapter 10. Defining Subsystems To the Operating System 10-1

Defining Subsystems in Members of SYSl.PARMLIB 10-2

Passing Parameters to the Initialization Routine 10-3

System Handling of Duplicate Subsystems 10-4

Chapter 11. The Subsystem Affinity Service 11-1

SSAFF: Set/Obtain Subsystem Affinity 11-2

IEFSSREQ: Obtaining The SSA T Index Value 11-4

MVS/XA System Services

Chapter 12. Unit Verification Service 12-1

Unit Verification Service 12-1

Callers ofIEFEB4UV 12-4

Callers ofIEFGB4UV or IEFAB4UV 12-4

Input To and Output From Unit Verification Service Routines 12-5

Input and Output Data Structures 12-6

Requesting Multiple Functions 12-19

Example 1 Function Codes 0 and 1 12-19

Example 1 Function Codes 0 and 1 (continued) 12-20

Example 2 Function Codes 3 and 10 12-21

Example 3 Function Codes 1 and 5 12-22

Chapter 13. The Hot 1/0 Detection Table 13-1

IOSRHIDT: The HIDT 13-1

Modifying the HIDT 13-3

Chapter 14. The Internal Reader Facility 14-1

Setting Up and Using an Internal Reader 14-1

Requesting a Started Task To Execute on a Secondary Subsystem 14-6

Restrictions when Routing the JCL to the Master Subsystem 14-6

Defaults For The Subsystem 14-7

Chapter 15. The External Writer 15-1

STDWTR: IBM Standard Output Writing Routine 15-2

Writing Your Own Output Writing Routine 15-3

IEFSD094: The Output Separator Routine 15-8

The External Writer Cataloged Procedure 15-12

Chapter 16. The Virtual Fetch Service 16-1

Functions of Virtual Fetch 16-1

Installation Support for the Virtual Fetch Service 16-6

Starting Virtual Fetch 16-7

Refreshing Virtual Fetch 16-8

Considerations When Using Virtual Fetch 16-9

Programming Conventions for Using Virtual Fetch 16-11

Contents Xl

Requesting Dumps When Using Virtual Fetch 16-11

BUILD Request for Virtual Fetch 16-13

FIND Request for Virtual Fetch 16-13
 J
GET Request for Virtual Fetch 16-14

Chapter 17. MVS Dumping Services 17-1

MVS Dumps 17-2

ABEND Dumps 17-3

SVC Dumps 17-4

Suppressing Dumps 17-6

Suppressing Dumps Automatically, by Abend Code 17-6

Tailoring ABEND and SVC Dumps: The Dump Options 17-7

Tailoring Summaries and Symptom Dumps 17-8

Summary Dumps 17-9

Symptom Dumps 17-12

Tailoring Dumps: Other Data Options 17-13

Tailoring Dumps by Type: The Operator Commands 17-17

CHNGDUMP Operator Command 17-18

DISPLAY DUMP Operator Command 17-19

DUMPDS Operator Command 17-20

DUMP Operator Command 17-21

Tailoring and Suppressing Individual Dumps: The User Exits 17-21

Pre-Dump Exits for User Dumps 17-22

Post-Dump Exits for System Dumps 17-23

Dump Analysis and Elimination (DAE) 17-26

Definitions 17-26

Symptoms 17-27

Symptom Strings 17-27

Symptom Queue 17-27

Keys and Keywords 17-27

Minimum Symptoms 17-28

Input to DAE 17-29

DAE Parameter Record in SYSl.PARMLIB 17-29

ADYDFLT 17-30

SYSl.DAE 17-32

ABDUMP Symptom Area of the Dump Header Record 17-34

SDWA 17-34

DAE Processing 17-34

DAE Initialization 17-35

Symptom Extraction 17-35

How DAE Creates Symptoms 17-35

Criteria for DAE to Match for Duplicates 17-38

Criteria for DAE to Suppress Dumps 17-38

SUPPRESS and UPDATE Processing 17-39

Overrides to D AE 17-40

Creating and Modifying Symptom Data 17-40

VRA Keys for DAE 17-41

Adding to the Minimum Symptom String Requirements 17-42

Appendix A. mM Provided Device Preference Table A-I

Index X-I

XU SPL: System Modifications

Figures

2-1. Processing Order Allocation Requests Requiring Serialization 2-2

2-2. Relationships among Generic and Esoteric Device Groups 2-6

2-3. Summary of Mount and Use Attribute Combinations 2-10

2-4. Sharable and Nonsharable Volume Requests 2-11

3-1. How VSM Arrives at Region Size and Limit Values from Values Set by

IEALIMIT and IEFUSI. 3-5

3-2. Parameters Passed to Exit at IEFUSI by SMF 3-6

3-3. Effect of Region Size and Limit Values on Various GETMAIN

Requests 3-9

5-1. Some Key Fields in the Resource Manager Parameter List

(RMPL) 5-3

6-1. Using the DATOFF Macro to Execute DAT-offCode 6-2

8-1. IEEMSJCL Data Set 8-1

9-1. Examples of the PTRACE Macro 9-3

9-2. Continuation Information from PTRACE for Multi-Part TTE 9-4

9-3. Sample Code for Formatting USRn Trace Table Entries 9-8

10-1. Format of the SYS1.PARMLIB member, IEFSSNxx. 10-2

10-2. Parameter List for Subsystem Initialization Routines 10-3

11-1. Subsystem Affinity Service 11-1

12-1. Input Parameter List 12-5

12-2. Requesting Function Code 0 (Check Groups) 12-7

12-3. Requesting Function Code 1 (Check Units) 12-8

12-4. Requesting Function Code 2 (Return Unit Name) 12-9

12-5. Output from Function Code 2 (Return Unit Name) 12-9

12-6. Requesting Function Code 3 (Return UCB Addresses) 12-10

12-7. Output from Function Code 3 (Return UCB Addresses) 12-10

12-8. Requesting Function Code 4 (Return Group ID) 12-11

12-9. Output from Function Code 4 (Return Group ID) 12-11

12-10. Requesting Function Code 5 (Indicate Unit Name is a Look-up
Value) 12-12

12-11. Requesting Function Code 6 (Return Look-up Value) 12-13

12-12. Output from Function Code 6 (Return Look-up Value) 12-13

12-13. Requesting Function Code 7 (Convert Device Type to Look-up

Value) 12-14

12-14. Output from Function Code 7 (Convert Device Type to Look-up

Value) 12-14

12-15. Requesting Function Code 8 (Return Attributes) 12-15

12-16. Requesting Function Code 10 (Specify Subpool for Returned

Storage) 12-17

12-17. Requesting Function Code 11 (Return Unit Names for a Device

Class) 12-18

12-18. Output from Function Code 11 (Return Unit Names for a Device

Class) 12-18

12-19. Input for Function Codes 0 and 1 12-19

Figures Xlll

12-20.
12-21.
12-22.
12-23.
12-24.

13-1.
13-2.
15-1.
15-2.
15-3.
16-1.
16-2.
16-3.
16-4.
16-5.
16-6.
17-1.
17-2.
17-3.
17-4.

17-5.
17-6.
17-7.
17-8.
17-9.

17-10.

Output from Function Codes 0 and 1 12-20

Input for Function Codes 3 and 10 12-21

Output from Function Codes 3 and 10 12-21
 J
Input for Function Codes 1 and 5 12-22

Output from Function Codes 1 and 5 12-22

Valid Hot I/O Recovery Action Codes 13-2

IBM Default Hot I/O Threshold and Recovery Actions. 13-3

External Writer Parameter List 15-3

General Logic of IBM's External Writer Routine 15-5

Parameter List for Separator Routine 15-9

Environment Prior to Virtual Fetch Initialization 16-4

Environment After Virtual Fetch Initialization 16-5

Virtual Fetch Parameter List 16-10

Environment After a BUILD/FIND Request 16-12

Environment'After a GET Request 16-16

A Program Using Virtual Fetch 16-17

Default Dump Options for ABEND and SVC Dumps 17-8

ABEND Summary Dump Contents 17-9

SVC Dump Summary Dump Contents 17-11

Message IEA995I: Symptom Dump Output for SYSABEND and

SYSUDUMP 17-12

SDATA Options for MVS/XA Dumps 17-15

Format of DAE Parameter Record 17-30

Required Symptom Keys in ADYDFLT 17-31

Optional Symptom Keys in ADYDFLT 17-31

Sample JCL in SYSI.SAMPLIB for Creating SYSI.DAE 17-33

Duplicate Areas in ABDUMP Symptom Area and SDW A 17-37

J

XIV SPL: System Modifications

Summary of Amendments

Summary of Amendments
for GC28-1152-2
for MVS/System Products Version 2 Release 2.0

This edition contains changes to support MVSjSystem Product Version 2
Release 2.0. This edition includes the following changes:

• 	 A new chapter on Writing Unit Information Modules in support of the MVS
Configuration Program (MVSCP) is included.

• 	 Information on the MVS configuration program (MVSCP)

• 	 Information on the Eligible Device Table Verification Service is no longer in
this book; this information now appears in MVSjExtended Architecture:
MVS Configuration Program Guide and Reference.

• 	 The chapter on Assigning Special Program Properties to Applications is
rewritten to support the SCHEDxx member of SYSl.PARMLIB.

• 	 The chapter on Updating the Master Job Control Language Data Set is
rewritten to support this release.

• 	 The chapter on Defining Subsystems To the Operation System is rewritten to
document support of the IEFSSNxx member of SYS1.PARMLIB.

• 	 The chapter on Unit Verification Service is rewritten to include new functions
and editorial changes.

• 	 The chapter on MVS Dumping Services is rewritten to include new functions
for IPCS and editorial changes.

• 	 A new appendix is added containing the IBM provided device preference table
values.

Summary of Amendments XV

Summary of Amendments
for GC28-1152-1
As Updated August 2, 1985 J
by Technical Newsletter GN28-1106

This Technical Newsletter, which supports MVS/System Products Version 2
Release 1.3 Vector Facility Enhancement, contains the following updates:

• 	 Information on processor affinity and the PPT in Chapter 3.
• 	 Technical and editorial changes are included for maintenance.

Summary of Amendments
for GC28-1152-1
As Updated January 30, 1984
by TNL GN28-0915

This technical newsletter contains new and updated information in support of
MVS/System Products Version 2 Release 1.2 and includes the following:

• 	 New flag bits in the flag word of the VSM parameter list in Chapter 2,
concerning the IEALIMIT and IEFUSI installation exit routines.

• 	 New general-purpose WTO/WTOR user exit (IEAVMXIT) and user-specified
WTO/WTOR exits in Chapter 6.

• 	 New routing of messages according to the message level specified by the
LEVEL keyword of the CONTROL V command, in Chapter 6.

• 	 Minor technical and editorial changes, marked throughout the text by a
change bar in the left margin.

XVI SPL: System Modifications

Modifying the System to Fit the Devices in Your Installation

An MVS installation can include many input/output devices. They are among the
resources available through the operating system that help accomplish the work of
a data processing installation.

A system programmer is responsible for defining the I/O configuration to MVS
and for coordinating the working of the devices with the operating system and the
installation's applications.

This part of System Modifications presents a general description of defining the
I/O configuration, and how the operating system allocates resources to do the
work of the installation. It also includes descriptions of several means of
influencing the allocation process.

The following books are referenced in this chapter:

• MVS/XA MVS Configuration Program Guide and Reference
• MVS/XA Input/Output Configuration Program User's Guide and Reference
• MVS Planning: Global Resource Serialization
• MVS/XA JCL Reference
• MVS/XA Operations: System Commands
• MVS/XA SPL: Initialization and Tuning
• MVS/XA SPL: JES3 Initialization and Tuning
• MVS/XA SPL: System Generation Reference
• MVS/XA SPL: System Macros and Facilities, Volume 2

Modifying the System to Fit the Devices in Your Installation

----------------------------------- --- ---.

J

SPL: System Modifications

Chapter 1. Writing Unit Information Modules for the MVS
Configuration Program

Installations that install MVS/System Product Version 2 Release 2 (MVS/SP
2.2.0), or subsequent releases must use the MVS configuration program (MVSCP)
to define the I/O configuration to MVS. For each supported device, MVSCP
provides a program called a unit information module (VIM). It is the VIM that
recognizes and processes the values coded on the 10DEVICE statement which is
part of the input stream to MVSCP. MVS/Extended Architecture: MVS
Configuration Program Guide and Reference identifies the devices that MVSCP
supports. A VIM may define the support for several related devices.

For devices that MVSCP does not support, you must supply the information in
one of two ways: either define the device as a DVMMY device on the
10DEVICE statement or write your own VIM to define the device to MVS. A
device specified as DVMMY has some limitations. For example, the system
creates a VCB for a unit record device. Because MVSCP does not support the
ERRTAB or DEVTYPE parameter on the IODEVICE statement, the
IBM-supplied default values may not fit your needs. The VCB will contain the
defaults values for the ERP index, which is zero, and for the VCB type, which is
X'00000800'. Because of these limitations, you may prefer to write a VIM instead
of defining an unsupported device as a DVMMY. This chapter discusses writing
VIMs for MVSCP.

Before reading this chapter, you should be familiar with MVS/XA: MVS
Configuration Program Guide and Reference. While coding a VIM, you may need
to use the MVS/XA Debugging Handbooks for relevant data areas.

This chapter discusses the following:

• How MVSCP uses VIMs
• VIM Data Areas
• VIM Service Routines
• VIM Processing Logic
• lJIM Macros
• Device Support Modules and Macros
• Writing a VIM
• Vsing the Sample VIM

Chapter 1. Writing Unit Infonnation Modules for the MVS Configuration Program 1-1

How MVSCP Uses UIMs
J

During its initialization, MVSCP loads all unit information modules into virtual
storage. MVSCP makes three types of calls to the UIMs while building the I/O
configuration: for initialization, to process the IODEVICE statements, and for
end-of-data processing.

Initialization Processing

MVSCP communicates with each UIM through the UIM communication area
(UCA). The UCA contains fields that a UIM can update and others that a UIM
can read. During initialization, MVSCP calls each UIM to obtain the allocation
information on all the generic device types recognized by a UIM. The UIMs call
a service routine in the MVSCP to build the device information tables (DITs).
The DIT contains information used to build the eligible device table (EDT).
There is one DIT for each generic device type supported by the collection of
UIMs. Each UIM also indicates if it must be invoked for end-of-data processing.

IODEVICE Statement Processing

For each IODEVICE statement, MVSCP invokes the UIMs until one of the
UIMs recognizes the specified device. If no match is found, MVSCP issues an
error message. If a match is found, the UIM validity checks the parameters on
the IODEVICE statement. If they are valid, the UIM calls a service routine in
MVSCP to build a device features table (DFT). The DFT contains information
used to build the unit control blocks (UCBs) and the EDT. For each device
number defined in the I/O configuration, there is a DFT.

End-or-Data Processing

MVSCP performs end-of-data processing for each UIM that, during initialization,
indicated an end-of-data processing. During end-of-data processing, the UIM
checks the I/O configuration for consistency and may update certain device
dependent information.

1-2 SPL: System Modifications

VIM Data Areas

There are three control blocks, external to the VIM, that a VIM must reference:

• VIM communications area (VCA),
• Configuration program vector table (CPVT),
• IODEVICE internal text record (IODV).

See MVS/XA Debugging Handbook for mappings of these data areas.

The other data areas and parameter lists that a VIM uses are contained within
the VIM itself.

VIM Communications Area (UCA)

The VCA contains information that MVSCP uses to communicate with the VIM.
The VCA points to the CPVT, the DFT build routine, the DIT build routine, the
getmain service routine, the feature checker routine, parameter checker routine,
the device characteristics table build routine, and many other vital data areas.
CBPZVCA maps the VCA.

MVSCP Vector Table (CPVT)

The CPVT is the MVSCP vector table. It points to the MVSCP service routines;
it also contains anchors for global data structures and information concerning
MVSCP. CBPZCPVT maps the CPVT.

IODEVICE Internal Text Record (IODV)

The IODV maps the IODEVICE internal text record. The IODEVICE internal
text record is the control block representation of an IODEVICE statement. It
contains the parameters and features that were specified on the IODEVICE
statement. CBPZIODV maps the IODV.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-3

VIM Service Routines
J

The MVS configuration program includes service routines to assist the UIMs.
The following table identifies each routine and what it is used for.

A description for each of these service routines is on the following pages.

Service Routine Name Function of the Routine

CBPADIT Builds device information tables (DlTs).

There is one DIT for each generic device type supported by
the collection of UIMs.

CBPDDCT Builds device characteristics table (DCT).

There is one DCT per I/O configuration.
entry in the DCT for each DASD type de
configuration.

There is a separate
fined in the I/O

CBPIDFf Builds the device features table (DFfs).

There is one DFf per device in the I/O configuration.

CBPIFEAT Checks the 10DEVICE features.

CBPIGETM Obtains storage for the UIM.

CBPIPARM Validity checks the 10DEVICE parameters.

J

1-4 SPL: System Modifications

CBPADIT - Builds DITs Service Routine

Invoking CBPADIT

A UIM must call CBPADIT once for each generic device that it defines. A
separate DIT is built for each generic. All of the DITs are built before the
MVSCP input stream is processed.

UIMs invoke CBPADIT in 31-bit addressing mode by using a BALR instruction.
Use the standard register save area conventions. The address of the CBPADIT
routine is in the field UCADITP in the UCA.

Registers on Entry to CBPADIT

Register 0 Undefined
Register 1 Pointer to a two word parameter list

Word 1 - Address of the UCA
Word 2 - Address of the DIP

Register 2-12 Undefined
Register 13 Address of an 18-word save area
Register 14 Return address
Register 15 CBPADIT entry point address

Registers on Exit from CBPADIT

Register 0-15 Restored

CBPADIT Input Parameters: A UIM provides the input to CBPADIT in the
device information parameters (DIP). The DIP resides in a UIM and is mapped
by CBPYDIP.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-5

CBPDDCT - Build DCT Service Routine

J
Invoking CBPDDCT

The UIMs invoke the CBPDDCT service routine to build DCT entries. A DCT
entry is built for each type of DASD defined in the I/O configuration. A UIM
must call CBPDDCT once for each DCT entry. IHADVCT, which is part of the
Data Facilities Product, maps the DCT.

UIMs invoke CBPDDCT, in 31-bit addressing mode, by using a BALR
instruction. Use standard register save area conventions. The UCADCTP field in
the UCA contains the address of CBPDDCT.

Registers on Entry to CBPDDCT

Register 0 Undefined
Register 1 Pointer to a two word parameter list

Word 1 - Address of the UCA
Word 2 - Address of the DCP

Register 2-12 Undefined
Register 13 Address of an IS-word save area
Register 14 Return address
Register 15 CBPDDCT entry point address

Registers on Exit from CBPDDCT

Register 0-15 Restored J
CBPDDCT Input Parameters: A UIM provides the input to CBPDDCT in the
device characteristics parameters (DCP). The DCP resides in a UIM and is
mapped by CBPZDCP.

1-6 SPL: System Modifications

CBPIDFT - Build the DFTs Service Routine

Invoking CBPIDFT

UIMs invoke CBPIDFT to build device features tables (DFTs). DFTs contain
the information that is used by the MVS configuration program to build UCBs.
There is one DFT for each unit defined in the I/O configuration. One UCB is
built from each DFT.

A UIM invokes CBPIDFT only after verifying that an 10DEVICE statement
contains no errors. A UIM must invoke CBPIDFT once for each DFT that is to
be built. A DFT must be built for each device number defined by the 10DEVICE
statement. (For multiple exposure devices, a separate DFT must be built for each
exposure.)

CBPIDFT is responsible for validating the device number that is to be assigned to
the DFT. CBPIDFT ensures that the device number does not exceed X'FFF' and
that it is unique within the the I/O configuration. If the device number is in error,
CBPIDFT issues an appropriate error message, sets tlte 10DVUINV flag in the
10DV and returns to the UIM without building a DFT.

To invoke CBPIDFT within a VIM, use a BALR instruction in 31-bit addressing
mode. Use standard register save area conventions. The UCADFTP field in in
the UCA contains the address of the CBPIDFT routine.

Registers on Entry to CBPIDFT

Register 0 Undefined
Register 1 Pointer to a two word parameter list

Word 1 - Address of the VCA
Word 2 - Address of the DFP

Register 2-12 Undefined
Register 13 Address of an 18-word save area
Register 14 Return address
Register 15 CBPIDFT entry point address

Registers on Exit from CBPIDFT

Register 0-15 Restored

CBPIDFT Input Parameters: A VIM provides the input to CBPIDFT in the
device features parameters (DFP). The DFP resides in a VIM and is mapped by
CBPZDFP.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-7

CBPIFEAT - Device Features Checker Service Routine

Invoking CBPIFEAT

UIMs invoke CBPIFEA T to determine:

1. 	 Which, if any, of the features that are valid for the device have been specified
on the IODEVICE statement.

2. 	 If any features that are not valid for the device have been specified on the
IODEVICE statement.

CBPIFEAT will issue an error message for each invalid feature that was
specified and set the IODVUINV flag in the IODV.

UIMs invoke CBPIFEAT, in 3l-bit addressing mode, by using a BALR
instruction. Use standard register save area conventions. The field UCAFEATP
in the UCA contains the address of the CBPIFEA T routine.

Registers on Entry to CBPIFEA T

Register 0 Undefined
Register 1 Pointer to a two word parameter list

Word 1 - Address of the UCA
Word 2 - Address of the FCP

Register 2-12 Undefined
Register 13 Address of an IS-word save area
Register 14 Return address
Register, 15 CBPIFEA T entry point address

Registers on Exit from CBPIFEAT

Register 0-15 Restored

CBPIFEAT Input Parameters: A UIM provides the input to CBPIFEAT in the
features checker parameters (FCP). The FCP resides in a UIM and is mapped by
CBPZFCP.

Note: The features that are valid for a device must have names that are from I
to 10 characters long. The name given a particular feature is completely under
the control of the UIM and is specified in the FCP.

J

1-8 SPL: System Modifications

CBPIGETM - Getmain Service Routine

Invoking CBPIGETM

UIMs invoke the CBPIGETM service routine to obtain a specified amount of
storage to be used by the UIM as a work area. CBPIGETM zeros out the area
before returning to the UIM.

UIMs invoke CBPIGETM, in 31-bit addressing mode, by using a BALR
instruction. Standard register save area conventions are used. The field
UCAGETMP in the UCA contains the address of CBPIGETM.

Registers on Entry to CBPIGETM

Register 0 Undefined
Register 1 Pointer to a two word parameter list

Word I - Address of the UCA
Word 2 - Address of the GETM

Register 2-12 Undefined
Register 13 Address of an IS-word save area
Register 14 Return address
Register 15 CBPIGETM entry point address

Registers on Exit from CBPIGETM

Register 0-15 Restored

CBPIGETM Input Parameters: A UIM provides the input to CBPIGETM in the
getmain parameters (GETM). The GETM resides in a UIM and is mapped by
CBPZGETM.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-9

CBPIPARM - IODEVICE Parameter Checker Service Routine

JInvoking CBPIPARM

UIMs invoke CBPIP ARM to determine if:

1. 	 Any required parameters for the particular device were not specified on the
IODEVICE statement.

CBPIPARM will issue an error message for each missing parameter and set
the IODVUINV flag in the IODV.

2. 	 Any parameters were specified on the IODEVICE statement are inappropriate
for the particular device.

CBPIPARM issues an informational message for each inappropriate

parameter that was specified.

UIMs invoke CBPIPARM; in 3i-bit addressing mode, by using a BALR
instruction. Use standard register save area conventions. The field UCAPARMP
in the UCA contains the address of CBPIPARM.

Registers on Entry to CBPIPARM

Register 0 Undefined
Register 1 Pointer to a two word parameter list

Word I - Address of the UCA

Word 2 - Address of the PCP

Register 2-12 Undefined

Register 13 Address of an i8-word save area

Register 14 Return address

Register 15 CBPIP ARM entry point address

Registers on Exit/rom CBPIPARM

Register 0-15 Restored

CBPIPARM Input Parameters: A UIM provides the input to CBPIPARM in the
parameter checker parameters (PCP). The PCP resides in a UIM and is mapped
by CBPZPCP.

1-10 SPL: System Modifications

VIM Processing Logic

During MVSCP's calls to the VIM, the VCAVIMRT field in the VCA indicates
the type of call: initialization, IODEVICE statement checking, or end-of-data
processing.

During the MVSCP's initialization call to the UIM, (UCAUIMRT=UCARINIn, the VIM does the
following:

• Invokes the CBPZPPDS macro to add an entry to the diagnostic stack
• 	 For each generic type defined by this UIM, the UIM:

Builds the CBPYDIP parameter list
Invokes the CBPADIT routine to build the DIT

• If the UIM needs a work area, it
Builds the CBPZGETM parameter list

Invokes CBPIGETM to get the work area

• If necessary, the UIM indicates in the UCA that it must be called for end-of-data processing.
• Invokes the CBPZPPDS macro to remove an entry from the diagnostic stack

During the MVSCP's IODEVICE statement checking call (UCAVIMRT= UCARDFTB) the VIM
does the following:

• Invokes the CBPZPPDS macro to add an entry to the diagnostic stack
• 	 If the unit in the IODV is one of the units defined by this DIMe

Builds the CBPZPCP parameter list
Invokes CBPIPARM to check the 10DEVICE parameters
If one or more features are supported: .

Builds the CBPZFCP parameter list
Invokes CBPIFEAT to check the IODEVICE features.

Validity checks the 10DEVICE internal text record
Invokes the CBPZLOG macro to issue messages, if necessary
If the 10DEVICE internal text record is valid, then for each unit defined in the 10DV:

Builds the CBPZDFP parameter list

Invokes CBPIDFT to build the DFT

• 	 If necessary, saves the following addresses for end-of-data processing:

UCADDSP
UCADDEP
UCADCEP

Indicates in the UCA that the 10DEVICE internal record was processed
• Invokes the CBPZPPDS macro to remove an entry from the diagnostic stack

During MVSCP's end-of-data processing call (UCAUIMRT= UCAREOD), the VIM performing the
end-of-data processing does the following:

• Invokes the CBPZPPDS macro to add an entry to the diagnostic stack
• Performs end-of-data checking
• Invokes the CBPZLOG macro to issue messages, if necessary
• 	 Updates only for the devices defined by this UIM the fo\1owing, if necessary:

UCB device dependent segment
UCB device dependent extension
UCB device class extension

• 	 For each type of DASD supported by this UIM and defined in the I/O configuration, the UIM:
Builds the CBPZDCP parameter list
Invokes CBPDDCT routine to build the DCT entry

• Invokes the CBPZPPDS macro to remove an entry from the diagnostic stack

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-11

Considerations for VIM Processing

VIMs are invoked in task mode and in problem state. However, do not code a J
VIM to depend on being invoked in this manner. A VIM can not invoke any
other module or system service except for those service routines provided by
MVSCP.

VIMs are invoked in 31-bit addressing mode. VIMs must not change to 24-bit
addressing mode. Link-edit VIMs with AMODE(31) and RMODE(ANY).

Each time the MVSCP is invoked, a fresh copy of each VIM is loaded into virtual
storage. The same copy of each VIM is used throughout the processing of the
invocation of MVSCP. This allows a VIM to store information within itself and
to retain this information for subsequent calls to that VIM.

VIMs must use the standard register save area conventions. The VIM must set
register 13 to point to its own register save area before invoking any VIM service
routines or before us'i~g the CBPZPPDS or CBPZLOG macros.

J

1-12 SPL: System Modifications

Entry logic for a VIM

Vpon entry for a VIM:

• 	 Save the contents of the input registers
• 	 Set the VIM base register
• 	 Chain the save areas
• 	 Set register 13 to point to the save area contained within the VIM
• 	 Establish addressability to the UCA,CPVT and IODV

The IODV is present only on IODEVICE calls to the VIM.
• 	 Issue the CBPZPPDS macro to put an entry on the diagnostic stack

Registers on Entry to a VIM

Vpon entry to a UIM, the registers are defined as follows:

Register 0 Undefined
Register 1 Pointer to a fullword containing the VCA address
Register 2-12 Undefined
Register 13 Address of an IS-word save drea
Register 14 Return address
Register 15 UIM entry point address

Exit logic from a VIM

Vpon exit from a VIM:

• 	 Issue the CBPZPPDS macro to remove the VIM's entry from the diagnostic
stack

• 	 Restore the caller's registers

• Return to the caller

Registers on Exit from a VIM

Upon exit from a VIM, the registers are defined as follows:

Register 0-15 Restored

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-13

VIM Macros

The following macros are used by DIMs. These macros reside in
SYSl.AMODGEN.

Macro Name

CBPYDIP

CBPZCPVT

CBPZDCP

CBPZDFP

CBPZDIAG

CBPZFCP

CBPZGETM

CBPZIODV

CBPZITRH

CBPZLOG

CBPZLOGR

CBPZPCP

CBPZPPDS

CBPZUCA

FUDCtiOD of the Macro

Maps the device information parameters (DIP) that provide input to

CBPADIT.

Maps the configuration program vector table (CPVT).

Maps the device characteristics parameters (DCP), that provides

input to CBPDDCT.

Maps the device features parameters (DFP), that provides input to

CBPIDFT.

Builds an MVSCP diagnostic stack entry.

Maps the feature checker parameters (FCP), that provides input to

CBPIFEAT.

Maps the getmain parameters (GETM) that provide input to

CBPIGETM.

Maps the IODEVICE internal text record.

Maps the header of the IODEVICE internal text record.

Macro used to' invoke the message log routine.

Maps the input parameters to the message log routine.

Maps the parameter checker parameters (PCP), that provide input

to CBPIPARM.

Macro used to push an entry on or pop an entry from the MVSCP

diagnostic stack.

Maps the UIM communications area.

See MVS/XA Debugging Handbooks for the mapping macros.

This section contains information and syntax for the preceding DIM macros.

1-14 SPL: System Modifications

CBPZDIAG and CBPZPPDS Macros

These two executable macros are needed within a VIM to support the recovery
routine in MVSCP.

A VIM must not establish its own recovery routine. Instead, the CBPZDIAG
macro allows you to specify diagnostic information to MVSCP's recovery routine.
Vse the CBPZDIAG macro to build a diagnostic stack entry in which you specify
certain diagnostic information. If an abend occurs, this information is placed in
the system diagnostic work area (SDW A).

The CBPZPPDS macro puts an entry on (pushed on) or takes an entry off
(popped off) the MVSCP diagnostic stack. Before issuing this macro, the VIM
must have addressability to MVSCP's vector table (CPVT).

CBPZLOG and CBPZLOGR Macros

Vse the CBPZLOG macro in your VIM to issue messages. Do not use message
ids that IBM uses. Vse message ids in the range CBP900I-CBP999I.

The CBPZLOG macro requires the CBPZLOGR macro. The CBPZLOGR
macro maps the parameter list of the message log routine. This parameter list
resides in the VIM and is built by the code generated in the CBPZLOG macro
expansion. A VIM must have addressability to MVSCP's vector table (CPVT)
when it issues the CBPZLOG macro.

See MVSjXA Debugging Handbooks for the data areas.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-15

CBPYDIP

The CBPYDIP macro maps the device information parameters (DIP). The DIP is
the input parameter list to CBPADIT.

The syntax of the CBPYDIP macro is as follows:

CBPYDIP 	 [DENS=dens],
[GENDNMS=gendnms]

dens specifies the number of entries to be generated in the density list. This
list contains the densities that are supported by the generic device
type. This parameter is optional, the default is O.

gendnms specifies the number of entries to be generated in the compatible
generic device name list. This list contains the generic names of devices
for which this generic device type can be used to satisfy allocation
requests. This parameter is optional, the default is O.

Note: You cannot specify a label on the CBPYDIP macro invocation.

1-16 SPL: System Modifications

CBPZCPVT

The CBPZCPVT macro maps the configuration program vector table (CPVT).
The CPVT points to many of the internal control blocks and service routines used
by the MVSCP. It also contains parameters used by some of these service
routines.

A UIM never directly references the CPVT, but it must have addressability to the
CPVT when it issues the CBPZPPDS or CBPZLOG macros.

The syntax of the CBPZCPVT macro is as follows:

ICBPZCPVT [CSECT~csectJ

csect this operand should never be specified by a UIM.

Note: You cannot specify a label on the CBPZCPVT macro invocation.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-17

CBPZDCP

The CBPZDCP macro maps the device characteristics parameters (DCP). The
DCP is the input parameter list to CBPDDCT.

The syntax of the CBPZDCP macro is as follows:

ICBPZDCP

There are no input parameters on the CBPZDCP macro invocation.

Note: You cannot specify a label on the CBPZDCP macro invocation.

1-18 SPL: System Modifications

CBPZDFP

The CBPZDFP macro maps the device features parameters (DFP). The DFP is
the input parameter list to CBPIDFT.

The syntax of the CBPZDFP macro is as follows:

[MLTS==mlts] IICBPZDFP
[RELOC==reloc]

mUs 	 specifies the number of entries to be generated in the MLT list. This
list identifies the MLT(s) that designate the nucleus and LPA device
support modules for the device. This parameter is optional, the default
is 1. (The maximum number of MLTs allowed for a device is 5.)

reloc 	 specifies the number of entries to be generated in the relocation list.
The relocation list identifies fields in the device dependent sections of
the DCB (device dependent segment, device dependent extension or
device class extension) that point to other sections of the same DCB
or another DCB. This parameter is optional, the default is O.

Note: You cannot specify a label on the CBPZDFP macro invocation.

A DIM may not specify more than 256 bytes of certain device dependent
information for a device. The information that falls within this 256 byte limit
consists of:

• 	 DCB device dependent segment (length specified in DFP field DFPDDSL)

• 	 DCB device dependent extension (length specified in DFP field DFPDDEL)

• 	 DCB device class extension (length specified in DFP field DFPDCEL)

• 	 MLT list (the length of the list is computed by multiplying the number of
entries in the list, which is contained in DFP field DFPMLTLC, by the length
of a list entry, which is 12 bytes)

• 	 Relocation list (the length of the list is computed by multiplying the number
of entries in the list, which is contained in DFP field DFPRELCT, by the
length of a list entry, which is 12 bytes)

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-19

CBPZDIAG

The CBPZDIAG macro is used to build a diagnostic stack entry. The diagnostic
stack entry contains debugging information that is placed in the system diagnostic
work area (SDW A) if an ABEND occurs in the VIM. The diagnostic stack entry
is contained within the VIM.

A VIM must not establish an EST AE to provide diagnostic information in the
event that it abends. Rather, it must:

1. 	 Specify the diagnostic information in a diagnostic stack entry, using the
CBPZDIAG macro.

2. 	 Vse the CBPZPPDS macro to put the entry on the diagnostic stack in its
entry logic.

3. 	 Vse the CBPZPPDS macro to remove the entry from the diagnostic stack in
its exit logic.

The MVSCP EST AE routine uses the information in the active diagnostic stack
entry to fill in the SDW A. Also, the EST AE routine builds a symptom string in
the variable recording area (VRA) consisting of all the CSECT names in the
entries on the diagnostic stack.

The syntax of the CBPZDIAG macro is as follows:

label CBPZDIAG MODNAME=modname,
[CSECT=csect],
COMP=comp,
DESC=desc,
[VRADATA=vradata],
[RELATED=('related')]

label 	 name of the diagnostic stack entry. The labels on the fields generated
in the diagnostic stack entry will start with the same characters as
label does. (In the event that label exceeds four characters, only the
first four characters will be used in building the labels on the
generated fields.) label is required.

modname 	 name of the load module that contains the diagnostic stack entry. If
an ABEND occurs, this value will be placed in SDW A field
SDW AMODN. This parameter is required.

csect 	 name of the CSECT that contains the diagnostic stack entry. If an
ABEND occurs, this value will be placed in SDW A field
SDW ACSCT. This parameter is optional, the default is the assembler
symbol &SYSECT value.

comp 	 component identifier of the VIM. If an ABEND occurs, this value will
be placed in SDW A field SDW ACID. The component identifier
should be five bytes long. This parameter is required.

1-20 SPL: System Modifications

desc 	 DIM description, which should contain the unit names of the device(s)
that the VIM supports. If an ABEND occurs, this value will be placed
in SDW A field SDW ASC. The VIM description can be a maximum of
23 bytes long. This parameter is required.

vradata 	 name of an array that contains the addresses of data to be placed in
the VRA, if an ABEND occurs. The array contains the VRA keys and
data lengths, in additional to the data addresses. This parameter is
optional. If it is not specified, no specific control blocks or data areas
for the DIM will be placed in the VRA. (On IODEVICE calls, the
diagnostic stack entry for CBPICBBR, which is the routine that
invokes DIMs on IODEVICE calls, causes the IODV to be placed in
the VRA.)

Each entry in the VRA array contains eight bytes. The format of an
entry is as follows:

Offset 	 Length Function

o 	 2 Reserved, must be set to zero in all but the
last entry in the array.

2 	 Key of VRA data, as specified in IHA VRA.

3 	 Length ofVRA data.

4 4 	 Address of VRA data. If this field is set to
zero, the EST AE routine will skip this entry
when moving data into the VRA. DIMs are
permitted to dynamically update this field
while the diagnostic entry is on the diagnostic
stack.

The last entry in the VRA array must be set to
X'FFFFFFFFFFFFFFFF'. This entry denotes the end of the VRA
array and does not cause any data to be placed in the VRA.

related 	 optional character string.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-21

CBPZFCP

JThe CBPZFCP macro maps the feature checker parameters (FCP). TheFCP is
the input parameter list to CBPIFEAT. The FCP lists the features that are
supported for a device.

The syntax of the CBPZFCP macro is as follows:

[FEAT=feat] IICBPZFCP
[CFEAT=cfeat]

feat specifies the number of entries to be generated in the feature list. This
list identifies the features that are supported for a device. A maximum
of 64 features can be supported for a device. This parameter is
optional, the default is O.

cfeat specifies the number of entries to be generated in the compatible
feature list. This list identifies obsolete features for the device that are
still permitted to be specified on the IODEVICE statement for
compatibility considerations. This parameter is optional, the default is
O.

Note: You cannot specify a label on the CBPZFCP macro invocation.

CBPIFEAT identifies which features, if any, in the feature list were specified on
the IODEVICE statement by setting the appropriate bit in the FCPOVT field.
(The bits in the FCPOVT field map one-to-one with the entries in the feature
li~t.)

CBPIFEAT issues an error message for each feature specified on the IODEVICE
statement that is not in either the feature list or the compatible feature list.
CBPIFEAT issues an informational 'message for each feature specified on the
IODEVICE statement that is in the compatible feature list. (CBPIFEAT does not
notify the VIM as to which features in the compatible feature list were specified
on the IODEVICE statement.) CBPIFEAT also issues an error message for each
feature specified more than once on the IODEVICE statement.

If CBPIFEA T issues an error message, it also sets the IODVVINV flag in the
IODV to indicate that the IODEVICE internal text record is invalid.

1-22 SPL: System Modifications

CBPZGETM

The CBPZGETM macro maps the getmain parameters (GETM). The GETM is
the input parameter list to CBPIGETM.

The syntax of the CBPZGETM macro is as follows:

ICBPZGETM

There are no input parameters on the CBPZGETM macro invocation.

Note: You cannot specify a label on the CBPZGETM macro invocation.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-23

CBPZIODV

The CBPZIODV macro maps the IODEVICE internal text record (IODV). J
The syntax of the CBPZIODV macro is as follows:

ICBPZIOOV

There are no input parameters on the CBPZIODV macro invocation.

Note: You cannot specify a label on the CBPZIODV macro invocation.

A VIM should never invoke the assembler form of CBPZIODV. It is invoked
automatically by the CBPZITRH macro, which maps the header section of
internal text records. (The CBPZIODV macro will not assemble without the
CBPZITRH macro.)

The IODV is basically a read-only control block. The only field in the IODV that
a VIM is permitted to set is the IODVUINV flag. (The IODVVINV flag is set
when an error is detected in the IODV.)

J

1-24 SPL: System Modifications

CBPZITRH

The CBPZITRH macro maps the internal text record headers (ITRH). (An
internal text record is the control block representation of an MVSCP input
statement.)

The assembler form of the CBPZITRH macro invokes the CBPZIODV macro.
The CBPZITRH and CBPZIODV macros combine to give a complete mapping of
the IODEVICE internal text record. (The CBPZITRH macro is required for the
CBPZIODV macro to assemble.)

The only field in the ITRH that a VIM should ever reference is ITRHSNBR,
which contains the number of the associated input statement. A VIM must never
modify any of the ITRH fields.

The syntax of the CBPZITRH macro is as follows:

ICBPZITRH

There are no input parameters on the CBPZITRH macro invocation.

Note: You cannot specify a label on the CBPZITRH macro invocation.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-25

CBPZLOG

The CBPZLOG macro is used to issue a message to the MVSCP message log file.
A UIM must have addressability to the CPVT when it issues the CBPZLOG
macro. It must also invoke the CBPZLOGR mapping macro. (CBPZLOGR
maps the parameter list that is built by the CBPZLOG macro.)

The syntax of the CBPZLOG macro is as follows:

label CBPZLOG MID=mid,
[SEV=sev] ,
[STMT=stmt] ,
TEXT=text

label .	name of the label to be generated on the first instruction in the macro
expansion. label is optional.

mid 	 message identifier. The message identifier is seven characters long and
is in the form of CBPnnnl, where nnn is a decimal number from 900
to 999 inclusive for customer-written UIMs. This parameter is
required.

sev 	 message severity. The following severities are supported:

LOGRINFO 	 informational message. This message has no effect on
MVSCP processing or its return code. J

LOGRW ARN 	 warning message. This message has no effect on
MVSCP processing but will cause a return code of 4
to be issued (unless a higher severity message is
issued.)

LOGRERR 	 error message. This message will prevent the MVSCP
from building any I/O configuration members, and
will cause a return code of 8 to be issued (unless a
higher severity message is issued.)

LOGRTERM 	 terminating message. This message causes the MVSCP
to terminate its processing and issue a return code of
16. A UIM must never issue a terminating message.

This parameter is optional, the default is LOGRERR.

Note: The equates LOGRINFO, LOGRWARN, LOGRERR and
LOGRTERM are generated by the CBPZLOGR macro.

stInt 	 number of the statement in the MVSCP input stream that the message
refers to. Field ITRHSNBR in the internal text record header
(mapped by CBPZITRH) contains the statement number. This
parameter is optional. If it is omitted, no statement number will be
associated with the message.

1-26 SPL: System Modifications

text 	 message text. This field contains up to 255 bytes of message text. The
length of the text is determined by the length attribute of this field.
This parameter is required.

Note: The message service will compress multiple blanks in the text
and will split the text across multiple lines if necessary .

•

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-27

CBPZLOGR

The CBPZLOGR macro maps the message log routine's input parameter list. The J
parameter list is built by the CBPZLOG macro, which invokes CBPMLOGR.

The syntax of the CBPZLOGR macro is as follows:

ICBPZLOGR

There are no input parameters on the CBPZLOGR macro invocation.

Note: You cannot specify a label on the CBPZLOGR macro invocation.

J

..

1-28 SPL: System Modifications

CBPZPCP

The CBPZPCP macro maps the parameter checker parameters (PCP). The PCP
is the input parameter list to CBPIPARM. The PCP identifies (1) the parameters
that are required for a device and (2) the parameters that are supported for a
device (supported parameters consist of required parameters and optional
parameters).

PCP field PCPREQD is used to indicate which IODEVICE parameters are
required for a device, while field PCPSUPP is used to indicate which IODEVICE
parameters are supported for a device. The IODVPRMS field (contained within
the IODV) must be mapped over the PCPREQD and PCPSUPP fields in order to
set the bits corresponding to the required and supported parameters.

The syntax of the CBPZPCP macro is as follows:

ICBPZPCP

There are no input parameters on the CBPZPCP macro invocation.

Note: You cannot specify a label on the CBPZPCP macro invocation.

CBPIPARM issues an error message for each required parameter that is not
specified on the IODEVICE statement. It also sets the IODVUINV flag in the
IODV, when one or more required parameters are not specified, to indicate that
the IODEVICE internal text record is invalid.

CBPIPARM issues an informational message for each unsupported parameter
that is specified on the IODEVICE statement.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-29

CBPZPPDS

The CBPZPPDS macro is used to push an entry on (put an entry on) or pop an J
entry from (remove an entry from) the diagnostic stack. A UIM must have
addressability to the CPVT when it issues the CBPZPPDS macro. It must also
have invoked the CBPZDIAG macro to build the diagnostic stack entry that is to
be pushed on or popped from the diagnostic stack.

The syntax of the CBPZPPDS macro is as follows:

label CBPZPPDS 	 {PUSH I POP},

DIAG=diag

[,RELATED=('related')]

label 	 name of the label to be generated on the first instruction in the macro
expansion. label is optional.

PUSH 	 The designated diagnostic entry is to be put on the diagnostic stack.
Either PUSH or POP must be specified.

POP 	 The designated diagnostic entry is to be removed from the diagnostic
stack. Either PUSH or POP must be specified.

diag 	 name of the diagnostic entry. This name must be specified on the label
field of the CBPZDIAG macro invocation.

Jrelated 	 optional character string.

J

1-30 SPL: System Modifications

CBPZUCA

Thf CBPZUCA macro maps the UIM communications area (UCA).

The syntax of the CBPZUCA macro is as follows:

ICBPZUC,

There are no input parameters on the CBPZUCA macro invocation.

Note: You cannot specify a label on the CBPZUCA macro instruction.

The UCA contains some fields that are unrelated to the UIM processing. A UIM
may only reference the (UCA) fields listed below. (The only fields in the list that a
UIM may modify are UCARECOG and UCAEODAT.)

UCACPVTP points to CPVT.

UCADFTP points to DFT build routine (CBPIDFT).

UCADITP points to DIT build routine (CBPADIT).

UCAFEATP points to IODEVICE feature checker (CBPIFEAT).

UCAPARMP points to IODEVICE parameter checker (CBPIPARM).

UCAIODVP points to IODEVICE internal text record (IODV), when
UCAUIMRT is set to UCARDFTB.

UCADDSP points to the UCB device dependent segment data. This value is
set by CBPIDFT when a UIM has specified a device dependent
segment in the DFP. This value points to the area within the
DFT that will be used to build the UCB device dependent
segment. If the UIM needs to modify the data in this area on its
end-of-data call, it must save this address after calling CBPIDFT.

UCADDEP points to the UCB device dependent extension data. This value is
set by CBPIDFT when a UIM has specified a device dependent
extension in the DFP. This value points to the area within the
DFT that will be used to build the UCB device dependent
extension. If the UIM needs to modify the data in this area on
its end-of-data call, it must save this address after calling
CBPIDFT.

UCADCEP points to the UCB device class extension data. This value is set
by CBPIDFT when a UIM has specified a device class extension
in the DFP. This value points to the area within the DFT that
will be used to build the UCB device class extension. If the UIM
needs to modify the data in this area on its end-of-data call, it
must save this address after calling CBPIDFT.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-31

VCAUIMRT VIM request type. Set to one of the following values:

VCARINIT VIM is being called to perform its initialization Jfunction. None of the IODEVICE statements
have been processed yet.

VCARDFfB VIM is being called to process an IODEVICE
internal text record (IODV).

VCAREOD VIM is being called to perform its end-of-data
function. All of the IODEVICE statements have
been processed.

VCARECOG set by a VIM when it recognizes the unit parameter in the IODV.
When a VIM sets VCARECOG, it is responsible for processing
the IODV. (The VCARECOG flag can only be set on
IODEVICE calls to a VIM.)

VCAEODAT set by a VIM when it wants an end-of-data call after all the
IODVs have been processed. The VCAEODAT flag can only be
set on the initialization call to a VIM. If a VIM does not set this
flag on its initialization call, then it will not receive an
end-of-data call.

VCADCTP points to the DCT build routine (CBPDDCT).

VCAGETP points to the getmain routine (CBPIGETM).

1-32 SPL: System Modifications

Device Support Modules and Macros

Any module that is required in the system if a particular device(s) is defined in the
I/O configuration is a device support module. Each nucleus device support module
must be a member of SYSl.NUCLEUS. Each LPA device support module must
be a member of SYSl.LINKLIB or any data set within the link list
concatenation.

Note: Nucleus device support modules that contain more than one control section
must be link-edited with the scatter (SCTR) option.

If you write a nucleus or LPA device support module, you must provide a module
lists table (MLT) containing the nucleus and the LPA device support modules for
a given device. Use the IOSDMLT macro to build a MLT.

If you write your own device support module, you will have to provide a device
descriptor table (DDT). Use the IOSDDT macro to build the DDT.

Before writing a device support module, or an error recovery procedure, read the
following:

1. 	 MVS/XA SLL Input/Output Supervisor
2. 	 IBM System/370 Extended Architecture Principles of Operations
3. 	 IBM System/360 and System/370 I/O Interface Channel to Control Unit

Original Equipment Manufacturers' Information

IOSDMLT and IOSDDT Macros

Each device that is defined in an I/O configuration must have a module lists table
(MLT) and a device descriptor table (DDT) associated with it. Similar devices
can share the same DDT and MLT. Both tables must reside in
SYSI.NUCLEUS. The UIM for a device must specify the name of the MLT and
the DDT associated with that device. This is accomplished through the parameter
list to CBPIDFT.

The IOSDMLT macro builds a module lists table (MLT). The MLT contains the
names of the device support routines and, for each routine, it indicates whether
the routine is located in the nucleus or in LPA.

The IOSDDT macro builds a device descriptor table (DDT). The DDT is the
vector table to the device dependent exits for a device. The following pages
describe these macros in more detail.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-33

IOSDDT - Device Descriptor Table Build Macro

The IOSDDT macro builds a device descriptor table (DDT). The DDT, which J
must reside in SYSl.NUCLEUS, is the vector table to the device dependent exits
for a device. The IOSDDT macro is located in SYSl.AMODGEN.

A device descriptor table (DDT) is a vector table that lOS uses to locate the
device support routines. The system requires one of these tables for each device in
the I/O configuration, although similar devices may share the same DDT. When
conditions arise during I/O operations for which specific device dependent
processing is required, lOS gives control to the exit routines through the vector
entries in the DDT.

To build the DDT, you use the 10SDDT macro. With this macro, you specify
either the entry point name or the module name of the DDT exit routines for the
devices supported by that DDT. These exit routines perform the processing for
various system functions that occur when the system performs I/O operations. The
parameters of the 10SDDT macro allow you to specify the following kinds of
routines, which receive control from lOS when the appropriate condition arises:

• 	The start I/O exit routine

• 	The trap exit routine
• 	 The translate CCW table

• 	The ERP message routine

• 	The DDR exit routine
The unsolicited interrupt exit routine •
The sense exit routine •
The end of sense exit routine •
The MIH exit routine •
The device service exit routine •

• 	 The channel program scan exit routine

• 	The subsystem ID

The information in the DDT is created from the parameters of the IOSDDT
macro. The label that you specify on the IOSDDT macro is required because it is
used as the CSECT name for the DDT being generated. When the system is
IPLed, the DDT for each device in the I/O configuration becomes part of the
nucleus. Each use of the IOSDDT macro generates one DDT.

1-34 SPL: System Modifications

The 10SDDT macro instruction is written as follows:

name name:

b One or more blanks must precede IOSDDT.

IOSDDT

b One or more blanks must follow IOSDDT.

SIOEXIT = epname entry point name

,TRPEXIT = epname entry point name

,TCCWTAB = epname entry point name

,ERPEXIT= (epname,type) entry point name

[,DDREXIT= (epname,type) entry point name]

[,UNSEXIT = epname entry point name]

[,SNSEXIT = epname entry point name]

[,EOSEXIT = epname entry point name]

[,MIHEXIT = epname entry point name]

[,DSEXIT = epname entry point name]

[,CPSEXIT = epname entry point name]

[,SSYSID = ssname subsystem name]

The parameters are explained as follows:

name
specifies name of the DDT. 10SDDT uses this name on the CSECT
statement that it generates for the DDT. The name parameter is required.

SIOEXIT = epname
specifies the name of the start I/O exit entry point. This parameter is
required.

TRPEXIT = epname
specifies the name of the trap exit entry point. This parameter is required.

TCCWTAB =epname
specifies the name of the translate CCW table entry point. This parameter
is required.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-35

ERPEXIT = (epname,type)
specifies the name of the ERP message entry point. Type describes whether
the entry point name is to be treated as an entry point name address or a
module name. Type can be specified as A for address or N for EBCDIC
name. If A is specified, the entry point name will be resolved into an
address. The module is loaded into the nucleus region from
SYSl.NUCLEUS. If N is specified, The last 4 characters of the module
name will be placed in the DDT. The module is loaded into the LPA from
the LINK LIST concatenation. If neither is specified, N is the default.
This parameter is required.

\
...",

DDREXIT= (epname,type)
specifies the name of the DDR exit entry point. Type describes whether the
entry point name is to be treated as an entry point name address or a
module name. Type can be specified as A for address or N for EBCDIC
name. If A is specified, the entry point name will be resolved into an
address. The module is loaded into the nucleus region from
SYSl.NUCLEUS. If N is specified, The last 4 characters of the module
name will be placed in the DDT. The module is loaded into the LPA from
the LINK LIST concatenation. If neither is specified, N is the default.

UNSEXIT = epname
specifies the name of the unsolicited interrupt exit entry point.

SNSEXIT = epname
specifies the name of the sense exit entry point.

EOSEXIT = epname
specifies the name of the end of sense exit entry point.

MIHEXIT =epname
specifies the name of the MIH exit entry point.

DSEXIT = epname
specifies the name of the device service exit entry point.

CPSEXIT = epname
specifies the name of the channel program scan exit entry point.

SSYSID = ssname
specifies the name of the subsystem ID, which can be one to four characters.

Note: When both ERPEXIT and DDREXIT are specified as EBCDIC module
names, IOSDDT verifies that both specified module names have the same
4-character prefix. If the prefixes are not the same, lOS DDT issues an MNOTE
and not does generate a DDT.

J

1-36 SPL: System Modifications

IOSDMLT - Module Lists Table Macro

The IOSDMLT macro builds a module lists table (ML T).

The module lists table (MLT) must reside in SYSl.NUCLEUS. It identifies the
nucleus and LPA modules required to support the device you are defining, and
that need to be loaded during the IPL process. For example, the MLT for an
unsupported printer would designate all the modules that must be loaded into the
nucleus and the LPA to support that printer. Note that the MLT must list all the
nucleus and LPA device support modules for the device regardless of whether the
modules are provided by you or by IBM.

To build a module lists table, use the IOSDML T macro. Each IOSDML T macro
that you code creates an MLT CSECT. The label specified on the IOSDMLT
macro, which is required, is used as the CSECT name. As parameters of the
IOSDML T macro, you specify a set of nucleus-resident module names and a set
of LPA-resident module names. Each use of the IOSDMLT macro generates one
MLT, which resides in a separate module. The IOSDMLT macro resides in
SYSl.AMODGEN.

The IOSDMLT macro instruction is written as follows:

name name:

b One or more blanks must precede IOSDML T.

IOSDMLT

b One or more blanks must follow IOSDMLT.

NUCL= (nucid< ,nucid> .. .) nucid: name of nucleus module

,LPAL= (!paid< ,I paid > ...J !paid: name of LPA module

The parameters are explained as follows:

name
specifies the name of the MLT. IOSDML T uses this name on the CSECT
statement that it generates for the MLT. The name parameter is required.

NUCL = (nucid < ,nucid> ...)
specifies the names of the nucleus modules that are to be loaded from
SYSl.NUCLEUS into the nucleus region if the device associated with this
MLT is defined in the I/O configuration.

,LPAL = (lpaid < ,lpaid > ...)
specifies the names of the LPA modules that are to be loaded from the
LINK LIST concatenation into LPA if the device associated with this MLT
is defined in the I/O configuration.

Note: IOSDMLT generates an END statement at the end of its expansion.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-37

Writing a VIM

JThis section contains information on the naming conventions for UIMs, a partial

Naming a VIM

list of IBM-supplied UIMs, and description of using the sample UIM that IBM
supplies in SYSl.SAMPLIB.

IBM-supplied UIMs have member names of CBPUSxxx, where xxx is a decimal
number from 001 to 256. User-supplied UIMs must have member names of
CBPUCxxx, where xxx is a decimal number from 001 to 256.

UIMs must reside in SYSl.LINKLIB or the data set containing the UIM can be
specified on the STEPLIB DD statement when invoking the MVSCP.

CAUTION: The system uses the members in the STEPLIB first. Therefore, if an
installation-written UIM uses the name of an IBM-supplied UIM, the system will
use the information in the installation-written UIM; not IBM's.

1-38 SPL: System Modifications

mM-supplied UIMs

DIMs supplied by IBM are part of the product that supports the associated
device. For example, the DIM supporting 3375s and 3380s is part of the Data
Facility Product. Therefore, your installation has access to DIMs only for the
products it uses. Some device types are defined as another device type. See
MVSjXA MVS Configuration Program Guide and Reference to determine if a
particular device is supported by MVSjXA.

Following is a partial list of the IBM-supplied DIMs, the product that contains
the DIM and the devices the DIM defines. If you are creating a DIM to support
a device that is similar to one that IBM-supplies, you can use the IBM-supplied
DIM as an example. Be sure to name your DIM according to the requirements.

Devices UIMName Product

1050 CBPUS024 MVS
1050X

115A

1287 CBPUS032 MICRjOCR
1288

1403 CBPUS012 DFP

2250 CBPUS021 GAMjSP2

2305 CBPUS013 DFP

2501 CBPUS012 DFP
2540

2740 CBPUS024 MVS
2740C
2740X
2741

2741C CBPUS025 MVS
2741P

3203 CBPUS012 DFP
3211

3270 CBPUS004 MVS
3277
3278
3279

3284 CBPUS031 MVS
3286

3330 CBPUSOOI DFP

3330V CBPUS015 MSSjXA

3340 CBPUSOOI DFP
3350

3350P CBPUS003 DFP
3351P

3375 CBPUS002 DFP
3380

3420 CBPUS005 DFP
3420C
3430
3480

3505 CBPUS012 DFP
3525

3540 CBPUS032 MICRjOCR

3704 CBPUS023 MVS
3705
3791L

3800 CBPUSOll DFP

3838 CBPUS034 VPSSjXA

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-39

VIM Restrictions

Devices UIMName Product
3848 CBPUS041 CUSP

3851 CBPUS015 MSSjXA

3886 CBPUS032 MICRjOCR

3890

3895

4245 CBPUSOl2 DFP

4248

7770 CBPUS023 MVS

83B3 CBPUS025 MVS

BSCl CBPUS026 MVS

BSC2

BSC3

CTC CBPUSOl4 MVS

DUMMY CBPUSOSO MVS

HFGD CBPUS035 GAMjSP2

TWX CBPUS02S MVS
WTTA

The following are restrictions on VIM processing.

For each IODEVICE statement, MVSCP polls your VIMs before polling the
IBM-supplied VIMs. If you want to provide your own device support for a
device that is supported by IBM, you can write a VIM. However, your VIM
must do one of the following:

• 	 Assign to the device a generic name different from the generic name specified
by the corresponding IBM-written VIM.

• 	 Do not invoke CBPADIT to build a DIT for the device. The DIT built by
. the IBM-written VIM will be used for the device.

Whenever a VIM sets the IODVVINV flag in the IODV (to indicate that the
IODEVICE internal text record is invalid), it must use the CBPZLOG macro to
issue an error message. If a VIM service routine sets IODVVINV, the service
routine will use CBPZLOG to issue an error message.

A VIM must not call CBPIDFT if IODVVINV is set.

A VIM must conform to the restrictions on the various data areas that it uses.

J

1-40 SPL: System Modifications

System Code and MVSCP Data Separation

Associated with each unit control block (UCB) that is built by the MVSCP are
the names of the DDT and MLT associated with that device. This association is
made by a UIM in the device features parameters (DFP). These names are the
two links between the data built by the MVSCP and the device support code that
is in a product or a USERMOD.

Since the DDT name and the MLT name form the only links between the device
support code and the data built by MVSCP, you can change your device support
code and not re-run MVSCP to re-define your I/O configuration(s). You can do
this provided:

• 	 The DDT name must not change.
The contents of the DDT may change.

• 	 The MLT name must not change.
The contents of the MLT may change.

• 	 The format and contents of the UCB for the device must not change.

Note: Any of the change in the above bulleted items will result in a change to
the UIM for the device.

Using the Sample UIM

A sample UIM is provided in SYSl.SAMPLIB(SAMPUIM). Copy this sample
and use it as the basic structure for your UIM. The sample defines a unit record
device. Depending on the device you are specifying, the modifications to this
sample may be few or significant. SYSl.SAMPLIB(SAMPUIM) is divided into
5 sections:

1. Directions
2. 	 SAMPUIM The Sample UIM itself.
3. UIMJCL The JCL to assemble and link-edit the UIM.
4. 	 SAMPMLT A Sample MLT.
5. MLTJCL The JCL to assemble and link-edit the MLT.

Read and follow the sample carefully when writing your UIM. The sample con­
tains data set names that you must provide. Check for this throughout the
sample. This sample supports a unit record device. Devices defined on the
IODEVICE statement as UNIT = DUMMY are supported as unit records.
Therefore, if you are using the sample to support a DUMMY device, it will
require very few changes. Other device support may require a lot of changes, for
example, to identify the features. If you are writing a UIM for another type of
device or for a more complex unit record device, you may refer to the IBM-sup­
plied UIM for the device that most closely resembles it.

Chapter 1. Writing Unit Information Modules for the MVS Con~guration Program 1-41

Changing the Sample VIM

JThe sample VIM is set up for a DVMMY device. When using the SAMPUIM,

Sample JCL

you may need to change the following fields as indicated:

UNITNM Put an eight character unit name of the device in the field.
This is the value that must be specified on the UNIT parameter of
the IODEVICE statement. The unit name may contain trailing blanks.

GNRCNM Put an eight character generic name of the device in the field.
This is the value that can be specified on the UNIT parameter of
the JCL DD statements to allocate the device.
The unit name may contain trailing blanks.

GNRCPRTl Put a generic preference value in the field.
See Appendix A for the list of IBM provided generic preference
values. You may specify any unused preference value
to control the order that MVS attempts to satisfy a
request for a device from an esoteric device group.
This changes the default device preference order that is used
with the DEVPREF parameter on the EDT macro. The DEVPREF
parameter may be used to override the order that is
specified through the default.

ERPINDEX Set the equate to a decimal ERP index value.
The ERP index value was formerly specified
on the ERRTAB parameter of the IODEVICE statement.
IBM error routines have the values 000 through 219
and 230 through 254. User routines can have
values 220 through 229.

GNRCTYPI Specify the UCB type information.
The UCB type information was formerly specified on the
DEVTYPE parameter of the IODEVICE statement.

NAMEMLT Specify the ML T name.

In addition to the above changes, you must change all occurrences of
'SAMPVIM' to the name of your VIM and specify the necessary diagnostic infor­
mation on the CBPZDIAG macro.

The JCL for the VIM included in the sample, is to help you assemble and link­
edit the VIM. Be sure to include the correct SYSIN and SYSLMOD data set
names. The SYSLMOD data set may be SYSl.LINKLIB or you can link-edit it
into a data set that you specify as a STEPLIB when you invoke MVSCP.

1-42 SPL: System Modifications

Sample MLT

The sample for the MLT contains support for a unit record device in which you
specify the error recovery procedure. This contains the list of nucleus device
dependent module names and the list of link pack area device dependent module
names that are required for the unit record device.

To use the sample MLT provided, you must

• 	 Change all occurrences of 'SAMPMLT' to the name you selected for the new
MLT.

• 	 Change 'IGEOxxxx' to the name of the ERP for the device.

IBM provides the other modules listed on the NUCL and LPAL parameters. If
you specify your own ERP, it must reside in SYSl.LINKLIB or in a data set
within the link list concatenation.

The JCL to assemble and link-edit the MLT is also included in SAMPUIM.
Again be sure to change the necessary data set naqles appropriately.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-43

J

1-44 SPL: System Modifications

Chapter 2. Allocation Considerations

Before a job can execute, the operating system must set aside the devices, and
space on the devices, for the data that is to be read, merged, sorted, stored,
punched, or printed. In MVS, the "setting-aside" process is called allocation.

The MVS allocation routines assign units (devices), volumes (space for data sets),
and data sets (space for collections of data) according to the data definition (DD)
and data control block (DCB) information included in the JCL for the job step.

When the data definition or DCB information is in the form of SVC 99 text units,
the allocation of resources is said to be dynamic. Dynamic allocation means you
are requesting the system to allocate and/or deallocate resources for a job step
while it's executing. See MVS/XA SPL: System Macros and Facilities for details
on the use of dynamic allocation.

Serialization of Resources During Allocation

The scheduler component of MVS controls allocation. When the scheduler is
setting aside non-sharable devices, devices, volumes and data sets for a job or a
step, it must prevent any other job from using those resources during the allo­
cation process. To prevent a resource from changing status while it is being allo­
cated to a job, the scheduler uses serializatioD. Serialization during allocation
causes jobs to wait for the resources and can have a major impact on system per­
formance. Therefore, the allocation routines attempt to minimize the amount of
time lost to serialization by providing a specific order of allocation processing.
See Figure 2-1.

Knowing the order in which the scheduler chooses devices, you can improve
system performance by making sure your jobs request resources that require the
least possible serialization.

Note: A description of how the collective operation of the allocation routines
relates to performance is in MVS/XA SPL: Initialization and Tuning, in the dis­
cussion of the system resources manager (SRM).

The scheduler processes resource allocation requests in the order shown in
Figure 2-1. As you move down the list, the degree of serialization - and proc­
essing time - increases.

Chapter 2. Allocation Considerations 2-1

KINDS OF ALLOCATION REQUESTS 	 SERIALIZAnON REQUIRED

Requests requiring no specific units or volumes; for example, No serialization.
DUMMY, VIO, and subsystem data sets. J
Requests for sharable units: DASD that have permanently resi- No serialization.

dent or reserved volumes mounted on them.

Teleprocessing devices. 	 Serialized on the requested devices.

Pre-mounted volumes, and devices that do not need volumes. Serialized on the group(s) of devices eligible to satisfy the
Note: Automatic volume recognition (AVR) function reads the request. A single generic device type is serialized at a time.
volume serial numbers of any volumes that have been pre-
mounted on serialized devices.

Online, nonallocated devices that need the operator or MSS to Serialized on the group(s) of devices eligible to satisfy the

mount volumes. request. A single generic device type is serialized at a time.

All other requests: offiine devices, nonsharable devices already Serialized on the group(s) of devices eligible to satisfy the

allocated to other jobs. request. A single generic device type is serialized at a time.

Note: Allocation treats MSS devices (3330V) as direct access

storage devices.

Figure 2-1. Processing Order AUocation Requests Requiring Serialization

Improving Allocation Performance

You can contribute to the efficiency of allocation processing throughout your
installation, in several ways:

• 	 For devices, use the device preference table, specified through the MVSCP
process, to set up the order for device allocation. See Appendix A for a list
of the IBM defined values used in the device preference table.

• 	 For devices, use the eligible device table to identify your installation's devices J
as esoteric groups, and to group them for selection by allocation processing.
See the SCHEDxx member of SYSl.PARMLIB.

• 	 For volumes, use the VATLSTxx members of SYSl.PARMLIB to specify
volume attributes at IPL.

• 	 For data sets, you can prescribe the JCL used for your applications according
to the device selection criteria you have set up through the MVSCP process
and IPL.

Controlling the Number of DD Statements Allowed

The size of the task input output table (TIOT) determines the maximum number
of DD statements allowed per jobstep. The size of the nOT can range from 16K
to 64K. A nOT that is 16K allows a maximum of 816 DD statements per
jobstep. A nOT that is 64K allows a maximum of 3273 DD statements per
jobstep. By changing the size of the nOT, you can control the maximum
number of DD statements allowed in a jobstep. To change the size of the nOT,
specify the hexadecimal value for an integer from 16 to 64 (decimal) in the 8 byte
field, DEFnOTS (offset 23 decimal) in the allocation default CSECT
(IEFAB445). See MVSjXA System Macros and Facilities Volume 1 for more
information.

2-2 SPL: System Modifications

The Device Preference Table

Looking at Figure 2-1, which shows the order in which the scheduler processes
allocation requests, you can see that the last three items on the list involve choices
among device types. The system uses the device preference table to determine the
order in which it selects devices to satisfy requests that could apply to more than
one generic device type. ("Generic device type" means the general identifier IBM
gives a device; for example, the 3330, or the 3800.)

IBM supplies a device preference table that lists the fastest generic device types
first. See Appendix A for a list of the IBM defined values used in the device
preference table. Through the MVSCP process, you can supply your own list of
generic device types on the DEVPREF parameter of the EDT macro. The IBM
default device types follow your specifications to form the device preference table.

The order in which the devices are listed in the device preference table is the order
in which allocation routines will select them to satisfy your allocation requests.
Listing the fastest generic device types at the beginning of the device preference
table can result in heavy contention for the fastest eligible devices, because the
system tries to allocate the fastest devices first. If you set up your DEVPREF
statement to start with generic groups that include many devices (and many
channel paths), these devices will be given preference. This will alleviate the con­
tention, and will also give the allocation routines a wide choice within the device
groups for the device selection process.

See MVS/XA MVS Configuration Program Guide and Reference for details on
using the DEVPREF statement, and for the device preference table shipped with
the operating system.

The Device Preference Table 2-3

To make the best use of device allocation, the installation should decide whether
the operator should respond HOLD or NOHOLD to the following message:

IEF433D jjj-WAIT REQUESTED--REPLY 'HOLD' or 'NOHOLD'

The system issues this message when the operator requests that the allocation for
a specific job wait until the units and/or volumes necessary to complete the allo­
cation are free. The allocation can release the devices that have already been allo­
cated to the job and cannot be shared with other jobs, or can hold the devices
(stay allocated) until the job can be completely allocated.

HOLD 	 This means that the system should hold non-sharable devices and
volumes already allocated to the job. Select this option if the
needed resources are constantly being freed, and allocation requests
for other jobs will probably not be held up by the requests made for
this job. This job can hold up other requests in two ways: (1) the
job has already allocated units needed for another job, or (2) the
job's allocation requests are serialized on devices the job is waiting
for.

NOHOLD 	 This means that the system should release non-sharable devices and
volumes already allocated to the job. Select this option if the
needed resources may not be freed for some time, and allocation
requests for this job are likely to hold up allocation requests issued
for other jobs.

Note: Requests for dynamic allocation are not held up by requests waiting for
batch allocation, even though the jobs awaiting batch allocation are holding
resources.

J

2-4 SPL: System Modifications

The Eligible Device Table

To avoid serializing on specific devices for every allocation request, or serializing
on an entire generic group, MVS uses the concept of esoteric device groups.
Through esoteric device groups, you group together several specific devices under
a unique name.

Your allocation requests that use esoteric names (UNIT = TAPE;

UNIT = SYSDA) tell the scheduler to choose among all the devices in that eso­

teric group. If many devices are eligible for an allocation request, the scheduler

finds all the eligible devices within the esoteric group, using mount and use attri­

butes and the type of request. If there are still several eligible devices, the sched­

uler presents those devices to the system resource manager (SRM). The SRM

applies its own criteria to the devices indicated by the scheduler, and recommends

a device for the data set.

The Use of Esoteric Names

When you establish esoteric group names, users can request different subsets of
the generic device types in your installation, thus cutting down on the number of
devices serialized by allocation processing. For example, if both batch and time
sharing users need 3330s, you could set up two separate esoteric groups with
MVSCP, as follows:

UNITNAME UNIT=(330,4) ,NAME=SYSBATCH
UNITNAME UNIT=(334,4) ,NAME=SYSTSO

The effect of these two UNITNAME specifications is that allocations to SYS­
BATCH serialize only on units 330-333, instead of the entire 3330 generic device
group; and, similarly, allocations to SYSTSO serialize only on units 334-337.
Figure 2-2 shows the relationships among generic device types, esoteric group
names, specific device numbers, and the eligible device groups created by the
scheduler's allocation routines.

Note: The esoteric name SYSALLDA is a default IBM supplies for the use of
the allocation routines. As such, it is a restricted name; do not use it.

Your installation's esoteric device groups are defined in the eligible device table
(EDT), which is built using the MVS configuration program (MVSCP). You
specify the names of the esoteric groups, and the device numbers they include, on
the UNITNAME statement for the MVS configuration program.

MVSCP puts the group names and device numbers into the eligible device table,
forming allocation groups. In the SCHEDxx member of SYS 1.PARMLIB, you
identify the eligible device table the system is to use with a particular configura­
tion. Then during IPL, you can specify a particular EDT either by selecting the
SCHEDxx member or by allowing the system to use the default.

If you do not specify an EDT ID(xx) in SCHEDxx, the default for the EDT is the
IOCONFIG id specified on the SYSCTL frame. If you specify a SCHEDxx
member but do not specify an EDT ID(xx) in it, the system defaults to EDT
ID(OO). See MVS/XA SPL Initialization and Tuning for information on the
SCHEDxx member and the default.

The Eligible Device- Table 2-5

Users specify the esoteric names on DD statements for input and output data sets.
The scheduler uses the allocation groups from the table when selecting devices in
response to allocation requests. J
The order you use to place your devices in esoteric device groups controls the way
the scheduler assigns devices to allocation groups.

Generic 3800 3420 3350 3330

Device

Types

SYSDA3

IEsoteric TAPE2 DA14

Group

Name

DA25

Device
Number 131 151 1 152 181 1182 183 1184 190 191 1 192 193 194

Group7
Number 1 2 3 4 56 6 7 56

Notes:

1 The absence of an esoteric group name means that the 3800 can only be requested as UNIT = 3800.

2 TAPE is the esoteric group name for the two 3420 tape drives, with device numbers 151 and 152. Together these form allocation

group number 2.

3 SYSDA is the esoteric group name for two 3350s (device numbers 183 and 184) and five 3330s (device numbers 190-194). These are in Jallocation group numbers 4, 5, 6, and 7. When UNIT = SYSDA appears on a DD statement, the allocation routines will consider
units 183, 184, 190, 191, 192, 193, and 194 as eligible devices.

4 DAI is the esoteric group name for two 3330 DASDs (device numbers 191 and 192) included in allocation group number 6.

5 DA2 is the esoteric group name for a single 3330 DASD (device number 193). When DA2 is coded on a DD UNIT parameter, this is

the only device eligible for that allocation request. It is in group number 7.

6 Device number sequence is not important: allocation group number 5 consists. of device numbers 190 and 194, which are included in

SYSDA but not in DAI or DA2.

7 Allocation routines assign allocation group numbers within the esoteric group names you specify in the EDT through the

UNITNAME statement for MVSCP. If you do not specify an esoteric group name, then all the devices of the same generic type form

a single allocation group.

Figure 2-2. Relationships among Generic and Esoteric Device Groups

Creating Multiple EDTs

Using the EDT and UNITNAME statements on MVSCP input stream, you can
create as many EDTs as your varying device configurations and applications
require,

See MVS/XA: MVS Configuration Program Guide and Reference for details. On
the EDT parameter in SCHEDxx member of SYSl.PARMLIB, you identify the
EDT the system is to use. During IPL, you select the SCHEDxx member that
contains the EDT needed for a particular configuration.

2-6 SPL: System Modifications

The Volume Attribute List

In MVS, all direct access and tape volumes have volume attributes of use, mount.
and some volumes have a non-sharable attribute. Use attributes control how they
are allocated. Mount attributes control how or whether they are demounted after
being deallocated. Nonsharable attribute controls exclusive use while the volume
is demounted and/or mounted. The allocation routines use the volumes' use and
mount attributes in selecting devices to satisfy allocation requests.

Although the system will assign volume attributes in some circumstances, it is pri­
marily your responsibility to decide which attributes the volumes in your installa­
tion are to have. The scheduler uses volume attributes in selecting devices and
volumes for allocation. Setting use and mount attributes is important to the effi­
ciency of your installation.

During system initialization, you can assign volume attributes to direct access
volumes by means of the volume attribute list (VATLSTxx), a member of
SYS1.PARMLIB. See MVS/XA SPL: Initialization and Tuning for details on
including a volume attribute list in IEASYSxx, and on coding the VATLSTxx
parmlib member itself.

After an IPL, you can assign volume attributes to both direct access and tape
volumes by means of the MOUNT command. The USE = parameter on the
MOUNT command defines the use attribute the volume is to have; a mount attri­
bute of reserved is automatic.

See MVS/XA Operations: System Commands for the details of using the MOUNT
command.

Use and Mount Attributes

Every volume is assigned use and mount attributes via a volume attribute list
entry at IPL, a MOUNT command, or by the allocation routines in response to a
DD statement.

The relationships between use and mount attributes are complex but logical. The
kinds of devices available in an installation, the kinds of data sets that will reside
on a volume, and the kinds of uses the data sets will be put to, all have a bearing
on the attributes assigned to a volume. Generally, the operating system estab­
lishes and treats volume attributes as outlined below.

Use attributes

• 	Private - meaning the volume can only be allocated when its volume serial
number is explicitly or implicitly specified.

• 	Public - meaning the volume is eligible for allocation to a temporary data
set, provided the request is not for a specific volume and PRIVATE has not
been specified on the VOLUME parameter of the DD statement.: Both tape
and direct access volumes are given the public use attribute.

A public volume may also be allocated when its volume serial number is spec­
ified on the request.

The Volume AttribUte List 2-7

• Storage - meaning the volume is eligible for allocation to both temporary
and non-temporary data sets, when no specific volume is requested and
PRIVATE is not specified. Storage volumes usually contain non-temporary Jdata sets, but temporary data sets that cannot be assigned to public volumes
are also assigned to storage volumes.

Mount attributes

• 	 Permanently resident - meaning the volume cannot be demounted. Only
direct access volumes can be permanently resident. The following volumes
are always permanently resident:

All volumes that cannot be physically demounted, such as drum storage
and fixed disk volumes

The IPL volume

The volume containing the system data sets

In the volUme attribute list in SYSl.PARMLIB, you can assign a permanent­
ly-resident volume any of the three use attributes. If you do not assign a use
attribute to a permanently-resident volume, the default is public.

Note: If 3344s emulating 3340s, and 3350s emulating 3330-ls and 3330-11s, .
are to be permanently resident, you must include them in the volume attribute
list. See MVS/XA SPL: Initialization and Tuning.

• 	 Reserved - meaning the volume is to remain mounted until the operator
issues an UNLOAD command.

Both direct access and tape volumes can be reserved as a result of the
MOUNT command; only DASD volumes can be reserved via the volume
attribute list.

The reserved attribute is usually assigned to a volume that will be used by
many jobs to avoid repeated mounting and demounting.

You can assign a reserved direct access volume any of the three use attributes,
via the USE parameter of the MOUNT command or the VATLSTxx member
of SYSl.PARMLIB, whichever is used to reserve the volume.

A reserved tape volume can only be assigned the use attributes of private or
public.

• 	 Removable - meaning that the volume is neither permanently resident nor
reserved. A removable volume can be demounted either after the end of the
job in which it is last used, or when the unit it is mounted on is needed for
another volume.

You can assign the use attributes of private or public to a removable direct
access volume, depending on whether or not VOLUME = PRIVATE is coded
on the DD statement: if this subparameter is coded, the use attribute is
private; if not, it is public.

2-8 SPL: System Modifications

You can assign the use attributes of private or public to a removable tape
volume under the following conditions:

Private

The PRIVATE subparameter is coded on the DD statement;

The request is for a specific volume; or

The data set is nontemporary (not a system-generated data set name,

and a disposition other than DELETE).

Note: The request must be for a tape only data set. If, for example, an
esoteric group name includes both tape and direct access devices, a
volume allocated to it will be assigned a use attribute of public.

Public

The PRIVATE subparameter is not coded on the DD statement;

A nonspecific volume request is being made; or

The data set is temporary (a system-generated data set name, or a

disposition of DELETE).

Figure 2-3 summarizes the mount and use attributes and how they are related to
allocation requests.

The Volume Attribute List 2-9

Temporary Nontemporary
Volume Data Set 	 Data Set

State Type of Volume Request How Assigned 	 How Demounted J
Publici Nonspecific 	 Specific V ATLST entry or by default Always2 mounted
Permanently or Specific
Resident!

Private/ Specific 	 Specific VATLST entry Always2 mounted
Permanently
Resident!

Storage/ Nonspecific 	 Nonspecific V ATLST entry Always2 mounted
Permanently or Specific 	 or Specific
Resident!

Public/ Nonspecific 	 Specific Direct access: V ATLST UNLOAD or VARY
Reserved (tape or Specific 	 entry or MOUNT command OFFLINE commands
and direct 	 Tape: MOUNT command
access)

Private/ Specific 	 Specific Direct access: VATLST UNLOAD or VARY
Reserved (Tape 	 entry or MOUNT command OFFLINE commands
and direct 	 Tape: MOUNT command
access)

Storage/ Nonspecific Nonspecific VATLST entry or MOUNT UNLOAD or VARY

Reserved! or Specific or Specific command OFFLINE commands

Public/ Nonspecific 	 Specific VOLUME = PRIVATE is not When unit is required
Removable or Specific 	 coded on the DD statement. by another volume;
(Tape and 	 (For tape, nonspecific volume or by UNLOAD or VARY
direct access) 	 request and a temporary OFFLINE commands.

data set also cause this assignment.)

Private/ Specific Specific VOLUME = PRIVATE is coded At job termination for

Removable on the DD statement direct access; at step

(Tape and (For tape, a specific volume termination or dynamic

direct access) request or a non temporary unallocation fpr tape

data set also cause this 	 (unless VOL= RETAIN or a
assignment.) 	 disposition of PASS was

specified); or when the unit is
required by another volume.

!Direct access volumes only.

2Note: VARY OFFLINE accomplishes demounting without resetting the permanently-resident flag in the UeB: after a subsequent

VARY ONLINE command, the,volume will still be permanently resident.

Figure 2-3. Summary of Mount and Use Attribute Combinations

The Nonsharable Attribute

Some allocation requests imply the exclusive use of a direct access device while
the volume is demounted and/or mounted. The MVS allocation routines assign
the non-sharable attribute to volumes that might require demounting during step
execution.

When a volume is thus made non-sharable, it cannot be assigned to any other
data set until the non-sharable attribute is removed at the end of step execution.

The following types of requests cause the system to automatically assign the non­
sharable attribute to a volume:

• 	 A specific volume request that specifies more volumes than devices.

• 	 A nonspecific request for a private volume that specifies more volumes than
devices. (For MSS, the MSVGP parameter has the same effect as the
PRIVATE subparameter.)

2-10 SPL: System Modifications

• 	 A volume request that includes a request for unit affinity to a preceding DD
statement, but does not specify the same volume for the data set. See the
discussion of unit affinity in MVS/XA JCL.

• 	 A request for deferred mounting of the volume on which a requested data set
resides.

Normally, the system will NOT assign the non-sharable attribute to a permanent­
ly-resident or reserved volume. The following case is the exception to this rule:

• 	 The allocation request is for more volumes than units, and one of the volumes
is reserved. The reserved volume is to share a unit with one or more remov­
able volumes, which precede it in the list of volume serial numbers.

For example:

DSN=BCA.ABC,VOL=SER=(A,B),UNIT=DISK

where volume A is removable and
volume B is reserved

In this case, both volumes are assigned the non-sharable attribute; neither of them

can be used in another job at the same time.

To avoid this situation, do one of the following:

• 	 Specify the same number of volumes as units

• 	 Specify parallel mounting

• 	 Set the mount attribute of volume A as resident or reserved

System Action: Figure 2-4 shows the system action for sharable and non-sharable
requests.

The Volume is Allocated:

The Request is: Sharable Nonsharable

Sharable allocate the volume wait!

Nonsharable wait! wait l

!The operator has the option of failing the request. The request will always fail if waiting is not

allowed.

Figure 2-4. Sharable and Nonsharable Volume Requests

The Volume Attribute List 2-11

For more detailed information on how an application's job control language
influences the processing of allocation requests, see MVS/XA JCL Reference. J
For details on how dynamic allocation affects the use attributes of the volumes in
your installation, see SPL: System Macros and Facilities.

Recovery of Allocated Resources

When an address space abnormally terminates, the allocation routines use the
data from the ALLOCAS address space to deallocate all unit control blocks
(UCBs) allocated to the failing address space.

If the ALLOCAS address space is not active because of a failure in that address
space, the allocation routines can deallocate all but sharable direct access UCBs.
The units corresponding to these UCBs cannot be varied offline or unloaded until
the next IPL, when they are deallocated.

Controlling GRS Requests in MVS/XA

Global resource serialization is an MVS component designed to protect the integ­
rity of local and global resources, particularly data sets on DASD volumes that
are shared by two or more systems. GRS allows you to protect the integrity of
your installation's resources by serializing the use of them at the data set level.

In order to use GRS to protect global resources, your installation must build a
global resource serialization complex that includes the various systems sharing
your direct access devices. See OS/VS2 MVS Planning:
Global Resource Serialization for more details about GRS and how your installa­

tion can use it.

A program can use GRS by issuing a GRS request. These macros (ENQ, DEQ,
RESERVE, and GQSCAN) form the interface between a problem program and
the GRS facility. In handling these request, GRS may need to insert or remove
an element from the GRS resource queue area.

A system control provides a threshold for the number of requests that GRS will
accept from a single address space. This is to prevent one address space Gob,
started task, or TSO user) from generating enough concurrent requests to exhaust
the GRS resource queue area. The threshold value is stored in the GRS vector
table (GVT) which resides in the nucleus. For unauthorized callers, the threshold
value supplied by IBM is 4096 and is stored in the GVTCREQ field of the GVT.
For authorized callers, the threshold value supplied by IBM is 4111 and is stored
in the GVTCREQA field of the GVT. If these values do not suit your installa­
tion's needs, you can change them by using the AMASPZAP service aid or SMP.
The threshold values apply to each system in your GRS complex so different
systems can have different limits.

Note: If you change the GVTCREQ value, then the GVTCREQA should also be
changed. It is recommended that the GVTCREQA value be kept at 15 greater
than the GVTCREQ value.

2-12 SPL: System Modifications

GRS keeps track of the number of elements added to or removed from the GRS
resource queue area for each address space. This count is recorded in the
ASCBCREQ field of the address space control block (ASCB). This count is nor­
mally increased according to the ENQ, RESERVE AND GQSCAN macros issued
from each address space and normally decreased according to the number of DEQ
macros issued. As each ENQ, RESERVE and GQSCAN request is received,
GRS determines if increasing the count will exceed the allowed threshold value in
the corresponding GVT field. For an unauthorized caller issuing ENQ or
RESERVE macros and for all callers issuing the GQSCAN macro, the count in
the ASCBCREQ is compared to the value in GVTCREQ. For authorized callers
issuing ENQ or RESERVE macros, the count in the ASCBCREQ is compared to
the value in GVTCREQA.

In either case, if the threshold will be exceeded, GRS will issue:

• 	 an ABEND 538 for an unconditional ENQ or RESERVE

• 	 a return code ofX'18' for a conditional ENQ or RESERVE

• 	 a return code ofX'14' for a GQSCAN that normally resulted in a return code
of 8. (Return code 8 results when the caller specifies the token parameter in
the GQSCAN macro and GRS has additional data to pass back that does not
fit into the caller's buffer.)

Note: The GVTCREQA should have a higher threshold value than GVTCREQ.
This allows the termination and error routines to issue additional
ENQ/RESERVE requests to obtain resources needed for their processing if an
unauthorized caller abends with an ABEND 538.

Controlling GRS Requests in MVSjXA 2-13

J

2-14 SPL: System Modifications

Modifying the System to Fit your Applications

The work of a computer installation is done by its application programs, assisted
by the operating system. Setting up the application programs so they will work
efficiently with the operating system is one of the major tasks of a system pro­
grammer.

This part of System Modifications presents discussions of several areas where you
can impose installation-wide standards or defaults on your application programs,
to enhance their efficiency.

The following books are mentioned in this chapter of System Modifications:

• MVSjXA Debugging Handbook
• MVSjXA Diagnostic Techniques
• MVSjXA JCL Reference
• MVSjXA Operations: JES3 Commands
• MVSjXA Operations: System Commands
• MVSjXA SPL: Initialization and Tuning
• MVSjXA SPL: System Macros and Facilities
• MVSjXA SPL: System Management Facilities (SMF)
• MVSjXA SPL: User Exits
• OS/VS Message Library: VS2 Routing and Descriptor Codes

Modifying the System to Fit your Applications

J

SPL: System Modifications

Chapter 3. Limiting User Region Size

You may need to enforce a region size limit for application programs. The
process of setting limits on user regions involves three elements:

1. 	 The JCL statements for the job, started task, or TSO session;

2. 	 An exit routine that transmits the values specified in the JCL statements;

3. 	 The virtual storage management (VSM) routines that allocate storage in the
user region subpools according to the values transmitted.

The system programmer can control this process at two points: when the JCL is
coded, and when the exit is taken.

Setting a Default Region Size via J CL

When setting up the guidelines for the JCL to execute your application programs,
you need to consider the impact of user region size on the performance of your
system.

Based on your judgement, you can supply effective installation defaults that com­
plement those used by virtual storage management.

You can implement your installation defaults by associating selected values with
job classes or accounting information, thus controlling the user region limits for
varying circumstances.

See "IEALIMIT Processing" for a discussion of the impact of allowing no limits
on user region size.

For more information about the REGION parameter on the JOB and EXEC
statements, see MVSjXA JCL Reference.

Setting Default GETMAIN Limits via Exit Routines

The value specified or defaulted on the JCL REGION parameter becomes the size
of the user region available to the job, started task, or TSO user.

The value is transmitted, via a user exit, to VSM, which actually allocates the
virtual storage in response to GETMAIN macros. Jobs that specify a region
value greater than 16 megabytes and that require significant amounts of storage
below 16 megabytes, may require an IEFUSI exit to establish limits below 16
megabytes. This is because VSM establishes an unlimited region below 16

Chapter 3. Limiting User Region Size 3-1

The IEALIMIT Exit

The IEFUSI Exit

megabytes when the region value specified is greater than 16 megabytes. With no
limits set below 16 megabytes, a large variable length GETMAIN could use the
entire non-extended region.

For MVS/370 and MVS/XA installations, IBM supplies an exit routine module
named IEALIMIT that sets region limits for the user private area below 16 mega­
bytes. Virtual storage management routines call IEALIMIT to establish region
size and GETMAIN limits for job steps, started tasks, and TSO logons.

You can replace IBM's IEALIMIT with your own routine, if the values set by the
IBM version do not fit your installation's requirements.

To replace IEALIMIT, linkedit your own version into the nucleus prior to an
initial program load.

Note: You must re-linkedit your routine into the nucleus each time you IPL a
different version of the nucleus; all versions of the nucleus contain the IBM-sup­
plied IEALIMIT routine ..

To code your own version of IEALIMIT, see MVS/XA SPL: User Exits.

For MVS/XA installations, the system management facilities (SMF) supplement
the function provided by IEALIMIT with a user exit interface, opened during step
initiation. At that point, you can supply an exit routine, named IEFUSI, to tran­
smit your desired values to VSM in much the same way that IEALIMIT does.

In IEFUSI, however, you can define region size and GETMAIN limits for the
user regions both below and above 16 megabytes. This means you can use the
IEFUSI interface to set default limits for applications in both 24-bit and 31-bit
addressing modes.

IBM does not supply a routine at the IEFUSI exit; if you do not insert one (or
update an existing one), VSM reverts to IEALIMIT (your version or IBM's), and
uses IEALIMIT's default values. Because IEALIMIT cannot return values
greater than 16 megabytes, VSM attempts to extrapolate meaningful values for
the extended private area from those returned for the area below 16 megabytes.
See Figure 3-1.

Note: You may already have a routine at IEFUSI to gather information for
SMF. If so, you must extend that routine to interface with VSM.

Since VSM uses the information it gets from IEFUSI in the same way it uses that
from IEALIMIT, a discussion of how IEALIMIT works - and how VSM uses its
values - follows.

3-2 SPL: System Modifications

IEALIMIT Processing

On entry, IBM's IEALIMIT routine receives the JCL REGION parameter value
in register 0 (it is repeated in register 1). IEALIMIT calculates a GETMAIN
limit value based on the REGION value, and puts this value in register 1. VSM
allocates space in the user's region, in response to GETMAIN requests, according
to the values IEALIMIT returns in registers 0 and 1.

The values IEALIMIT returns in registers 0 and 1 are determined by the value
specified on the REGION parameter. If the REGION parameter value is 0, or
the parameter is absent (and the installation JES default is 0), IBM's IEALIMIT
routine receives 0 in register 1. In this case, it in effect sets NO LIMIT on region
size or GETMAIN requests, by returning the 0 in register 1.

When VSM receives a value of 0 in register 1 from IEALIMIT, it allows the
GETMAIN limit to default to the size of the user private area, and assigns the
same value to the region size.

If the REGION parameter value in register I is not zero, IBM's IEALIMIT adds
64K to the REGION value and puts the total in register 1. The REGION param­
eter value in register 0 remains the same.

VSM can then use the value from register 1 as the limit for GET MAINs from
user subpools (0-127, 251 and 252), and the value from register 0 as the user
region size.

When IEALIMIT provides no limit on the region size, thus forcing VSM to use
its default values, so much space within a region might be obtained (via repeated
small GETMAINs or a single large GETMAIN) that no space would remain in
the private area for the system to use.

This situation is likely to occur when a program issues a variable-length
GETMAIN specifying such a large maximum value that most or all of the space
remaining in the private area is allocated to the requestor. To avoid an unex­
pected out-of-space condition, you should require the specification of some region
size on JOB or EXEC statements, or make your installation's JES default value
nonzero.

Chapter 3. Limiting User Region Size 3-3

The IEFUSI Interface

IEFUSI is the SMF step-initiation user exit interface; it receives control before the
initiator starts each job step. In an MVSj370 environment, the IEFUSI exit
routine can check job step accounting information, write to a user data set, or
create a separate step-initiation record in case of system failure.

See MVSjXA SPL: System Management Facilities (SMF) for more information
about IEFUSI and other SMF exits.

In MVSjXA, the IEFUSI interface can also include region limit processing for the
private area, both below and above 16 megabytes.

You can use the IEFUSI exit to set region size and GETMAIN limit defaults for
all your applications. This is possible because VSM uses the IEFUSI values for
the private area below 16 megabytes the same way it uses those set by IEAL­
IMIT. The only difference is that IBM's IEALIMIT requests default values by
setting registers °and 1 to 0, whereas the default indicator for IEFUSI is -1, set
by SMF before the exit is taken. The routine at IEFUSI turns on the first bit in
the flag word of the VSM parameter list to indicate that VSM is to use its values
rather than IEALIMIT's.

3-4 SPL: System Modifications

01

Virtual storage management routines use the values developed by IEFUSI or
IEALIMIT to determine how to satisfy a user's GETMAIN requests.

Figure 3-1 shows the algorithms that VSM applies to the values set in IEALIMIT
and IEFUSI to arrive at user region size and GETMAIN limit values.

Value From
IEALIMIT Limit Value Region Size Extended2 Limit Value Extended2 Region Size

Size of priva te Limit value Size of extended Extended limit
area private area value

> 0 	 Size of private Limit value or Z,2 The smaller of: Extended limit value
area or Z,2 whichever is 1. The greater of 32Mb

(Z) 	 whichever is smaller smaller and REGION request.
2. 	The size of the extended

private area.

Value From
IEFUSI Limit Value Region Size Extended Limit Value Extended Region Size

If the REGION parameter specifies O. or defaults to O.

_11 Size of private Size of private Size of extended private Extended limit value
area area area

If the REGION parameter specifies a value greater than O.

_11 The smaller of: Limit value or The smaller of: Extended limit value
1. 	Size of private REGION request 1. The greater of 32Mb

area. whichever is smaller and REGION request.
2. REGION request 	 2. The size of the extended

+ 64K. 	 private area.

Regardless of the REGION parameter specification.

~O 	 Size of private area Limit value or X,2 The smaller of: Extended limit value or X,2

or X,2 whichever is whichever is smaller 1. The greater of 32Mb whichever is smaller

(X) 	 smaller and X2
2. 	The size of the extended

private area.

1 Requesting that VSM use its defaults.
2 Rounded up to a page multiple (4K bytes)

Note: The algorithm for the extended GETMAIN limit value includes a "max. test" between 32 megabytes (the default extended limit
value) and the value specified in IEFUSI. The extended region size will never be less than 32 megabytes.

Figure 3-1. How VSM Arrives at Region Size and Limit Values from Values Set by lEA LIMIT and IEFUSI.

Chapter 3. Limiting User Region Size 3-5

Using the IEFUSI interface

To use the IEPUSI VSM interface, you must supply a routine named IEPUSI,
and link edit it into LPALIB or an LPALISTxx member of SYSI. PARMLIB.
(If your installation already has a routine at exit IEPUSI, you need only update
the code to add the VSM interface function.) Your routine puts the values you
want VSM to use in setting region size and GETMAIN limits into the fullword
fields provided by SMP. Pigure 3-2 shows how SMP presents those fields to the
IEPUSI exit routine.

(
Register 1

t Common SMF exit
parameter area

Job step name (from
t EXEC statement)

t Program name (from

EXEC statement)

Step accountingt information

VSM parameter list/ t
SRM information

full word
I t

V R flag I ReservedI 	 I

o , VSM Parameter List J
Flag word

4 (initialized to Ol

Region size requested
(REGION parameter)8

GETMAIN limit value

below 16 megabytes
12

Region size

16
 below 16 megabytes

GETMAIN limit value

20 above 16 megabytes

Region size

above 16 megabytes

Notes:

1. 	 The last four words in the VSM parameter list will be set to 'FFFFFFFF' (decimal - 1)

on entry to IEFUSI.

2. 	The SMF parameters can control whether or not the IEFUSI exit is called for various

classes of work. If the exit is not called at all, VSM reverts to IEALIMIT.

3. 	 For more details on the calling of the IEFUSI exit, see MVS/XA SPL: System

Management Facilities (SMFl.

Figure 3-2. Parameters Passed to Exit at IEFUSI by SMF

3-6 SPL: System Modifications

Your exit routine sets the flag bits in the flag word of the VSM parameter list.
The bits in the flag word have the following meanings:

Bit Value 	 Meaoing

o 	 o indicates that IEALIMIT is supplying region limit values.
I indicates that IEFUSI is supplying region limit values.

1 o 	 indicates that VSM should check to see if the requested region fits into the
available space below 16 Mb.
indicates that VSM should not check to see if the requested region fits into the
available space below 16 Mb.

2 o 	 indicates that VSM should not check to see if the requested region fits into the
available space above 16 Mb.
indicates that VSM should check to see if the requested region fits into the
available space above 16 Mb.

3-31 	 Reserved.

Notes:

1. 	 Bit 1 is meaningful to VSM only when the requested region is less than 16
megabytes.

2. 	 Bit 2 is meaningful to VSM only when the requested region is greater than 16
megabytes.

3. 	 Because of compatibility considerations for previous MVS/XA releases, the set­
tings for bits 1 and 2 have opposite meanings. In previous releases, VSM made
no checks for free space above 16 megabytes. So, because the flag word is ini­
tialized to zero, if the amount of contiguous free space requested is critical for
the step to be executed, you must set bit 2 to 1.

Here is an example of using the IEFUSI interface. You want to limit all jobs in a
given step-accounting category to a user region of 4 megabytes below and 4 mega­
bytes above 16 megabytes. You also wish to set a GETMAIN limit of 6 mega­
bytes below 16 megabytes and 48 megabytes above 16 megabytes.

Code the exit routine that will receive control at entry point IEFUSI during step
initiation. Your routine would, in this case:

• 	 Examine the step accounting information passed to it to decide whether to
apply the IEFUSI limits to this step.

• 	 Set to one the high-order bit in the flag word; this indicates to VSM that
IEFUSI, rather than IEALIMIT, is supplying region limit values.

• 	 Examine the current requested region size, to find out if it is already at the
desired value.

• 	 Put the GETMAIN limit value for below 16 megabytes (6Mb) in the 3rd full­
word of the VSM parameter list.

• 	 Put the GETMAIN limit value for above 16 megabytes (48Mb) in the 5th
fullword of the VSM parameter list.

• 	 Put the region size value for below 16 megabytes (4Mb) in the 4th fullword of
the VSM parameter list.

Chapter 3. Limiting User Region Size 3-7

• 	 Put the region size value for above 16 megabytes (4 Mb) in the 6th fullword
of the VSM parameter list.

• 	 Return to the calling routine at the address in register 14.

VSM applies the following limits when allocating space for the program whose
values you set in IEFUSI:

(Assume that the user private area below 16 megabytes is 8 megabytes,

and that the extended private area, above 16 megabytes, is approximately

1975 megabytes.)

Limit Value below 16Mb 6Mb (Less than 8Mb)

Limit Value above 16Mb 48Mb (The value from lEPUSI is

greater than 32Mb, but less

than the extended private area)

Region Size below 16Mb 4Mb (Less than limit value)

Region Size above 16Mb 4Mb (Less than extended limit value)

3-8 SPL: System Modifications

How VSM Uses the Region Size Value and the Limit Value

The region size value determines the amount of storage that can be allocated to a
job or step for variable-length GETMAINs, when the minimum amount requested
on the GETMAIN is not greater than the storage still unallocated.

The limit value is the maximum total storage that can be allocated to a job or step
for any combination of GETMAINs. It is, in effect, a second limit on the size of
the user's private area, imposed when the region size value has been exceeded.

Figure 3-3 shows how the REGION parameter and the limit value affect both
fixed-length and variable-length GETMAINs. The examples that follow illustrate
actual allocations based on the interaction of region size and limit values.

Type of GETMAIN Request in Relation
GETMAIN To Region Size and Limit Value Result

FIXED- Limit value minus currently - The GETMAIN is satisfied
LENGTH allocated space ~ requested amount.
GETMAIN

Limit value minus currently- The GETMAIN fails
allocated space < requested amount.

VARIABLE- Unallocated space! ~ maximum The maximum amount
LENGTH amount requested. is allocated.
GETMAIN

Minimum amount requested All unallocated space in the
:s unallocated space, AND region is allocated.
unallocated space :S maximum
amount requested.

Unallocated space! :S 	 The minimum is allocated
minimum amount requested 	 unless the limit value would

be exceeded, in which case
the GETMAIN fails.

! Unallocated space is the region size value minus the currently - allocated space. See "Examples of
Allocations...

Figure 3-3. Effect of Region Size and Limit Values on Various GETMAIN Requests

Chapter 3. Limiting User Region Size 3-9

Examples of Allocations Based on Values Set by IEALIMIT or IEFUSI

Assume that application program A has the following characteristics: J
Limit value 150K

REGION size value lOOK

Space currently allocated 80K

Program A issues the following variable-length GETMAIN requests, in the order
indicated (Note that the GETMAIN requests are cumulative):

1. 	 Request 5K-I0K: 10K is allocated, making currently-allocated space 90K.

Because the amount still unallocated (20K, relative to the region size of lOOK),
was greater than the maximum amount requested, the maximum amount was
allocated.

2. 	 Request 5K-I00K: 10K is allocated, making currently-allocated space
lOOK.

Because the amount still unallocated (10K, relative to the region size) was
between the minimum and maximum requested, the unallocated space was allo­
cated.

3. 	 Request 40K-lOOK: 40K is allocated, making currently-allocated space
140K.

Although the amount still unallocated (OK, relative to the region size) was less
than the minimum amount requested (40K), the minimum amount requested
would not increase the currently-allocated space beyond the limit value, so the
minimum amount was allocated.

4. 	 Request 15K-50K: the GETMAIN fails.

The amount still unallocated (OK, relative to the region size) was less than the
minimum amount requested (15K), AND the minimum requested would increase
the currently-allocated space to 155K, which exceeded the GETMAIN limit
value of 150K.

The region size value is usually set up to be less than the limit value. This will
protect against programs that issue variable-length GETMAINs with very large
maximums and then do not immediately free part of that space, or free such a
small amount that a subsequent GETMAIN (possibly issued by a system service)
causes the job to fail.

As an example, suppose that the region size value equals the limit value, and a
program issues a variable-length GETMAIN with a maximum of 2 gigabytes - 1.
If the GETMAIN is satisfied, all the space in the region up to the limit value will
be allocated, and any subsequent GETMAIN that cannot be satisfied from free
space in an already-existing subpool will cause the job to fail.

J

3-10 SPL: System Modifications

If, however, the region size value is less than the limit value, limit, only space up
to the region size value is allocated for the GETMAIN. Thus, an amount of
space equal to the limit value minus the region size value remains for subsequent
GETMAINs.

Note: For V = R jobs, the REGION parameter is more significant as a limiting
value than are the limits set by IEFUSI. You can use the two factors together to
control the region size for applications that must run V =R:

• 	 Set the region size value where you want it, via IEFUSI.

• 	 If a REGION parameter specification for a V = R job exceeds the region size
value you have set, the job will not be initiated.

Chapter 3. Limiting User Region Size 3-11

J

J

3-12 SPL: System Modifications

Chapter 4. Assigning Special Program Properties to Applications

Program Properties Table

Sometimes, your application programs will need to possess special properties to
run as efficiently and securely as possible. For example, an application that
requires access to fetch-protected system data will need a system key (0-7) instead
of the usual problem program key of 8. Or, for example, an application that
cannot run V = R, but must not be swapped out because of real-time consider­
ations, will need to be identified to the system as nonswappable.

In the program properties table (PPT) you can specify the application programs
that require special treatment by the system. Each entry in the PPT represents the
application program requiring special treatment. To create an entry in the PPT,
you use the PPT parameter in the SCHEDxx member of SYSl.PARMLIB. For
more information on specifying PPT statements, see MVSjExtended Architecture
System Initialization and Tuning.

To override an IBM-supplied entry in the PPT, you specify a PPT statement in
the SCHEDxx member of SYSl.PARMLIB and use the same program name as
the IBM-supplied entry. The system ignores other PPT statements with the same
program name and issues message IEF732I.

To add a new PPT entry, you specify a PPT statement in the SCHEDxx member
of SYSl.PARMLIB, and specify the desired program name and attributes.

During IPL, you specify the SCHEDxx member the system is to use and the cor­
responding PPT is then available to the initiators. An initiator scans the PPT to
determine which, if any, special properties apply to the program it is initiating.

The CSECT IEFSDPPT includes IEFZB610 and resides in LINKLIB. IEFZB610
maps the PPT header and entry.

Chapter 4. Assigning Special Program Properties to Applications 4-1

Format of the PPT Table Header

A table header precedes the first PPT entry. The table header includes the PPT J
acronym, version number, length of the header section, length of a PPT entry, the
number of PPT entries being used, and the total number of PPT entries.

+0 PPTID

+4 PPTVERS Ires'd PPTHDRLN

+8 PPTENTLN PPTUSED

+ 12 PPTENTS (Reserved)

+ 16 PPTMSGAD

+20 PPTIB650

+24
RESERVED

+28

Format of the PPT Entry

Each entry of the PPT is 16 bytes long and has the following format:

+0 PPTNAME

+8 PPTBYTE1 PPTKEY PPTCPUA

+ 12 PPTPUBYT PPTORIG RESERVED

4-2 SPL: System Modifications

Contents of the PPT Entry

Each PPT entry contains the following fields:

1. PPTNAME
2. PPTBYTEI
3. PPTKEY
4. PPTCPUA
5. PPTPUBYT
6. PPTORIG

The following describes these fields. Following the description of the fields are
notes on their usage.

PPTNAME (Program Name) is an 8-byte field for the name specified in the PGM
parameter on the EXEC statement for the job or step.

PPTBYTEI (Program Properties Flags) is a series of bits indicating the special
properties to be assigned to the program. The bit settings are:

Bit Name 	 Meaning When Set

L. PPTNCNCL 	 The program cannot be cancelled .

. 1.. PPTSKEY 	 A unique protection key is to be assigned to the program. The key is
defined in the next byte of the PPT entry (PPTKEY).

.. I. PPTNSWP 	 The program is nonswappable .

... 1 PPTPRIV 	 The program is privileged: the address space will not be swapped
unless it is in a long wait.

1. .. PPTSYSTK The program is a system task, and will not be timed. (The program
must be a one-step job started by a START or MOUNT command.)

.1.. PPTNDSI 	 The program does NOT require data set integrity: it will not need
exclusive use of any data sets. (The program must be a one-step job.)

.. I. PPTNOPAS 	 The program can bypass password protection .

... x 	 Reserved.

PPTKEY (Protection Key) is a I-byte field whose first four bits indicate the
unique protection key to be assigned to the program. A protection key is not
assigned unless bit 1 (pPTSKEy) of the preceding field (pPTBYTEl) is on.

PPTCPUA (processor Affinity Mask) is a 2-byte (halfword) indicating processor
affinity. Each bit in the I6-bit mask refers to a corresponding processor identifier
(O-F) assigned during system generation. For example, bit 0 corresponds to pro­
cessor O. If bit 0 is on, the program is eligible to run on processor O.

The bit mask should be set to X'FFFF' if affinity is not required. Do NOT set
the affinity mask for programs requiring the Vector Facility. For vector facility
programs, the control program dynamically manages affinity. If a vector program
needs to be in the PPT, for example to set PPTNSWP = 1 for non-swappable, set
the processor affinity mask to X'FFFF'.

PPTPUBYT (Preferred Storage Flags) is a one-byte field whose flags indicate
whether LSQA and private area fixed pages require frames in preferred storage
(nonreconfigurable and non-V = R storage).

Chapter 4. Assigning Special Program Properties to Applications 4-3

Use these flags for programs whose fixed pages could prevent the successful exe­
cution of a VARY STOR,OFFLINE command (or could fragment the V = R
area) if they were assigned frames in reconfigurable or V = R storage. J
The bit settings for PPTPUBYT are:

Bit Name Meaning When Set

1..x xxxx PPT2LPU Assign all private area short-term fixed pages to preferred
frames.

.l.x xxxx PPTILPU Assign all private area long-term fixed pages and LSQA pages
to preferred storage frames.

.. Ix xxxx PPTN2LP The system need not assign private area short-term fixed pages
to preferred storage frames.

...x xxxx Reserved .

PPTORIG (PPT Entry Origin) is a one-byte field indicating the origin of a PPT
entry. The high-order bit (PPTDEFLT) is set to 1 if the PPT entry is in the
IBM-supplied program properties table (IEFSDPPT). PPTDEFLT is set to 0 if
the PPT entry originated from a PPT statement in the SCHEDxx member of
SYSl.PARMLIB.

4-4 SPL: System Modifications

Notes on Using the Program Properties Flags (PPTBYTEl)

1. 	 The special properties represented by the various bit settings in PPTBYTEl
might not be honored by the system. A program is assigned special properties
only if it resides in an APF-authorized library and all JOBLIBs and STEPLIBs
associated with it are APF-authorized libraries.

Note: All PPT entries require APF libraries and APF authorization.

2. 	 The requirements of the initiator have a bearing on whether or not a program
needs to maintain data set integrity (bit 5). If one or more data sets requested
by a program are not available when the job is to be initiated, the scheduler
waits until the job can acquire control of all the data sets it needs. Although the
job itself may not require data set integrity, the initiation process for the job
does require it.

3. 	 Jobs that request the no-data-set-integrity property (bit 5) will not be initiated
if BOTH of the following are true:

• 	 The job requests a data set whose name is an alias for a data set that is
unavailable during the job's initiation.

• 	 The job contains either a JOBLIB or STEPLIB.

4. 	 Jobs requesting the bypass-password-protection property (bit 6) will always
receive the property. However, a protected data set cannot be deleted via JCL
(that is, by coding a disposition of DELETE) without the password.

The bypass-password-protection property is turned off when the job enters deal­
location processing.

Notes on Using the Preferred Storage Flags

The first two flags (PPT2LPU and PPTl LPU) in PPTPUBYT are meaningful for
swappable programs (PPTNSWP=O) that have a special requirement for pre­
ferred frames. The third flag (PPTN2LP) is meaningful only for users of the
SYSEVENT TRANSW AP. This includes V = R job steps, nonswappable pro­
grams, applications using the BT AM OPEN function, and any applications using
a system function that issues SYSEVENT TRANSW AP.

The initiator maps the preferred storage flags to corresponding flags in the ASCB.
The ASCB flags determine how the system allocates frames to the address space.

1. 	 IfPPTlLPU= 1 and PPT2LPU=O, the initiator sets ASCBILPU in the
ASCB to I.

2. 	 If PPT2LPU = I, the initiator sets both ASCB I LPU and ASCB2LPU in the
ASCB to I, regardless of the value of PPTl LPU and PPTN2LP.

3. 	 The value of PPTN2LP is copied to ASCBN2LP.

Chapter 4. Assigning Special Program Properties to Applications 4-5

Notes:

1. 	 ASCBN2LP merely prevents SYSEVENT TRANSWAP from setting JASCB2LPU to 1 as the address space changes to a nonswappable state. If
ASCB2LPU is 1 before the TRANSWAP, it is not reset to O.

2. 	 For a SYSEVENT TRANSWAP, if PPTN2LP=O then SRM will set
ASCB1LPU and ASCB2LPU to 1. This will assign all private area fixed pages
and LSQA pages to preferred storage frames. IF PPTN2LP=1, only
ASCBlLPU will be set to 1.

The topic "Examples of Using Preferred Storage Flags" summarizes the effect of
the preferred storage flags on the allocation of frames during program execution.

A program need not be nonswappable to have the system assign its fixed pages to
preferred storage frames.

Tips on Using the Preferred Storage Flags: TIPS APPLYING TO ALL THREE FLAGS
IN PPTPUBYT

For an application program that issues SYSEVENT DONTSW AP, or issues
SYSEVENT REQSW AP followed by a SYSEVENT DONTSW AP, do one of the
following:

• List the program in the PPT with the first two preferred storage flags set on
(PPT 1 LPU = 1, PPT2LPU = 1).

This allows the program to be attached as swappable, but all LSQA and
private area fixed pages will be assigned preferred frames during the entire job
step.

• Remove SYSEVENTs REQSW AP and DONTSW AP from the program.
the program in the PPT as nonswappable (PPTNSWP = l) and set

. PPTN2LP = O.

List

This allows the program to be attached as nonswappable, and all LSQA and
private area fixed pages will be assigned preferred frames during the entire job
step.

An I/O device requiring operator intervention can interfere with taking storage
offline by fixing pages in reconfigurable storage. An example of this is a printer
requiring action to be taken or a tape unit with a mount pending. Until the
required action is completed, the storage associated with the I/O operation cannot
be taken offline. This problem cannot be bypassed through the use of preferred
storage flags.

The system ignores all three flags if any non-APF-authorized JOBLIBs or STEP­
LIBs are defined in the JCL for the job step. All PPT entries require APF
libraries and APF authorization.

4-6 SPL: System Modifications

TIPS APPLYING TO FLAGS PPTILPU AND PPT2LPU

PPTlLPU and PPT2LPU are intended for use with authorized swappable pro­
grams that issue SYSEVENT DONTSW AP to become nonswappable for rela­
tively short periods (rather than setting PPTNSWP= 1).

Use of the preferred storage flags forces the program's private area fixed pages
and LSQA pages into preferred storage frames, thus ensuring that they will not
prevent taking storage offline.

TIPS APPLYING TO FLAG PPTN2LP

PPTN2LP has meaning only for programs for which SYSEVENT TRANSW AP is
issued. TRANSW AP causes the transition of the address space to a nonswap­
pable state. TRANSW AP performs the same function as SYSEVENT DONT­
SWAP and also ensures that preferred storage is used whenever necessary.

1. 	 The initiator issues TRANSW AP for V = R job steps and nonswappable pro­
grams (PPTNSWP = 1).

2. 	 The BTAM OPEN routine issues TRANSWAP.

PPTN2LP should be set to 1 when a program's short-term fixed pages do not
need to be assigned to preferred storage frames. That is, the program's short-term
fixes are indeed short-term fixes and can be allowed in reconfigurable storage.

The PPTlLPU and PPT2LPU bits should both be set to 1 when the preferred
storage requirements for a nonswappable user are unknown. This will ensure that
all fix requests and LSQA requests will get preferred storage.

Chapter 4. Assigning Special Program Properties to Applications 4-7

Examples of Using Preferred Storage Flags

• 	 The following example shows the effect of setting preferred storage flags for J
the nonswappable program JES2.: The JES2 entry in the PPT would include

the following bit values:

PPTNSWP 1

PPTlLPU 0

PPT2LPU 0

PPTN2LP 1

These values indicate that the program is nonswappable and that the short­
term fixes can be allowed in reconfigurable storage. After the initiator issues
a TRANSW AP and attaches JES2, the ASCB flags are set as shown below:

ASCBlLPU 1

ASCB2LPU 0

ASCBN2LP 1

These values result in LSQA and long-term fixed pages in preferred storage

only. ShQrt-term fixed pages are allowed in reconfigurable storage.

• 	 The following example shows the effect of setting the flags for a swappable
program that issues SYSEVENT DONTSW AP.

The program's entry in the PPT would include the following bit values:

PPTNSWP o

PPT1LPU 1

PPT2LPU 1

PPTN2LP o
 J

These values indicate that the program is swappable and that all fixed pages
and LSQA pages must be in preferred storage. The initiator attaches the
program as swappable; the ASCB flags are set as follows:

ASCBlLPU 1

ASCB2LPU 1

ASCBN2LP 0

The program can then issue DONTSW AP, being assured that its fixed and

LSQA pages are in preferred storage and will not prevent storage from being

taken oflline.

J

4-8 SPL: System Modifications

L
Common Usage of the Preferred Storage Flags

Following is a summary of the most common uses of the PPT preferred storage
flags:

PPTNSWP PPTILPU PPT2LPU PPTN2LP Effect on Program

o 	 The initiator makes the address space
nonswappable via the SYSEVENT
TRANSWAP prior to attaching the job
step. LSQA and all private area fixed
pages are in preferred storage.

Same as preceding case except short­
term fixed pages are allowed in recon­
figurable or V =R storage.

o 	 The initiator attaches the job step as
swapp able. LSQA and all private area
fixed pages are in preferred storage. In
this case, the program can issue
DONTSWAP and be assured that its
fixed pages will not prevent reconfig­
uring storage.

Note: A dash (-) indicates that the setting of the bits is irrelevant.

Updating the PPT

You use PPT statements in SCHEDxx member of SYSl.PARMLIB to update the
PPT. See MVSjExtended Architecture Initialization and Tuning for the syntax of
the SCHEDxx member.

Note: A TCAM Message Control Program (MCP) will not operate unless its
name is in the PPT. TCAM OPEN routines must run in key 6; they will abnor­
mally terminate any caller that is not initiated in key 6.

Chapter 4. Assigning Special Program Properties to Applications 4-9

J

4-10 SPL: System Modifications

Chapter 5. Creating Your Own Resource Managers

When the applications in your installation include programs that allocate
resources for their own use or for the use of programs they control, they may
have to include routines that "clean up" the queues and control blocks associated
with the resources, before returning to their calling routines.

MVS provides system resource managers to clean up during termination of its
own tasks and address spaces; you can provide similar routines to do the same for
your application tasks and address spaces.

The responsibilities of a resource manager are:

• 	 At task termination: remove all traces of the fact that the TCB for the termi­
nating task was connected to, allocated to, or associated with, the resources it
used. Each resource (data set, volume, device) is left in such a state that
another task in the address space or system can reuse it.

• 	 At address space termination: release all system queue area and common
service area control blocks obtained for the use of the terminating address
space. All buffers, bit settings, pointers, and so on relating to the address
space are reset to make the system appear as if the ASID and ASCB for the
terminating address space never existed.

• 	 At entry: establish a recovery environment (EST AE or EST AI, or ETXR) to
protect itself against errors during its own processing. If the recovery routine
is an EST AE type, the EST AE macro must include the TERM = YES option.

Installation-Written Resource Managers

Installation-written resource managers can perform the same type of work as a
system-provided resource manager; they can also include any special processing
your installation requires.

The recovery termination manager (RTM) invokes an installation-written resource
manager whenever a task or an address space terminates, either normally or
abnormally. The module names of all the system-provided resource managers are
known to RTM; RTM invokes them after all installation-written resource man­
agers have completed processing.

When RTM invokes an installation-written resource manager at task termination,
the resource manager executes under an RB in the terminating TCB's address
space.

Chapter 5. Creating Your Own Resource Managers 5-1

When RTM invokes an installation-written resource manager at address space ter­
mination, it executes in task mode in the master scheduler's address space. In J ..
either case, the resource manager gets control in key 0, supervisor state, with no
locks held.

The Resource Manager Parameter List

The interface between an installation-written resource manager and recovery ter­
mination management is the resource manager parameter list (RMPL), which
RTM supplies to communicate with the resource manager.

The RMPL tells the resource manager why it was invoked and provides informa­
tion for its use during processing. RMPL fields indicate, for example, whether the
resource manager is being invoked during task termination or address space termi­
nation, and whether the termination is normal or abnormal.

To access the contents of the RMPL, the resource manager routine must include
the IHARMPL mapping macro instruction, which provides the field names and
describes their content and use. Detailed information on the name, offset, and
meaning of each field in the RMPL appears in the MVSjXA Debugging
Handbook.

Figure 5-1 lists the names and meanings of some of the key fields in the param­
eter list.

On entry to the resource manager, register contents are:

Register Contents

Pointer to a 4-byte field containing the address of the resource manager parameter
list (defined in your routine by the IHARMPL mapping macro instruction).

13 Pointer to a standard save area (72 bytes).
14 Return address.
15 Entry point address in the resource manager.
0,2-12 Unpredictable

Your resource manager must save and restore registers 0-14; use register 15 to
pass a return code back to RTM. The possible return codes are:

o Indicates successful processing
4 Indicates unsuccessful processing

5-2 SPL: System Modifications

RMPLTYPE

RMPLTERM

RMPLASID

RMPLASCB

RMPLTCBA

RMPLRMWA

If set to 1, indicates that the resource manager is being invoked during
abnormal termination; if set to 0, indicates that the resource manager is being
invoked during normal termination.

If set to 1, indicates that the resource manager is being invoked during address
space termination; if set to 0, indicates that the resource manager is being
invoked during task termination.

Indicates the ASID associated with the terminating task or address space.

Indicates the address of the ASCB associated with the terminating task or
address space.

Indicates the address of the terminating TCB (for task termination) or contains
zeros (for address space termination).

Indicates the address of a 64-byte work area for use by your resource manager.

Figure 5-1. Some Key Fields in the Resource Manager Parameter List (RMPL)

Chapter 5. Creating Your Own Resource Managers 5-3

Adding an Installation-Written Resource Manager

To add your own resource manager routines for installation applications, place Jtheir names in the CSECT IEAVTRML, which is provided by MVS.

Initially, IEAVTRML consists of four 12-byte entries, each containing zeros.
You can modify each of the first three 12-byte entries (using the AMASPZAP
service aid) to contain a module name in the first eight bytes; the last four bytes
of each entry are reserved and always contain zeros. The last entry must also
contain all zeros, to indicate the end of the list. A typical entry for the CSECT
might be:

DC CL8'MODULENM'
DC XL4'OO'

To add the names of more than three installation-written resource managers,
create an entry for each module and a final entry that contains all zeros. Then
assemble your modified lEAVTRML and use the modified CSECT to replace the
existing IEAVTRML module in load module IGCOOOIC in SYSl.LPALIB. Place
each installation-written resource manager routine in SYSl.LINKLIB (or a
library concatenated to SYSl.LINKLIB via a LNKLSTxx member of
SYS I.P ARM LIB) or SYS I. LP ALIB. If every routine named in lEAVTRML is
not present in one of these libraries, the IPL will fail.

J

5-4 SPL: System Modifications

Chapter 6. Executing DAT-off Code in MVS/XA

In the MVS/XA environment, code that runs with DAT (dynamic address trans­
lation) off must reside in the DAT-off nucleus. You invoke the DAT-off code
using the DATOFF macro, which controls the dynamic address translation
facility.

To add DAT-off code to the DAT-off nucleus, and execute the code, follow these
steps:

1. 	 Create a separate module containing the code that runs with DAT off, as
follows:

• 	 Use entry point lEAVEURn, where n is a number from 1 to 4. MVS/XA
reserves four entry points in the DAT-off nucleus for user code.

• 	 Give the module AMODE 31 and RMODE ANY attributes.

• 	 Make sure the DAT-off code does not alter register 0; it contains the
return address to the routine that issues the DATOFF macro.

• 	 Use BSM 0,14 as the return instruction.

2. 	 Linkedit your DAT-off module (lEAVEURn) into SYS I.NUCLEUS, the
DAT-offnucleus data set. The member name is IEAVEDAT; input to the
linkage editor must include an ENTRY control statement for entry point
IEAVEDAT.

3. 	 Within a DAT-on routine, code a DATOFF macro to invoke the module
created in step 1:

DATOFF INDEX=INDUSRn

The suffix of the index (n) is the same as the suffix of the DAT-off module's
entry point, IEAVEURn. See MVSjXA SPL: System Macros and Facilities
for details on coding the DATOFF macro.

The DATOFF macro branches to a routine in the PSA that turns DAT off and
branches to the DAT-off routine (lEAVEURn) in the DAT-off nucleus. Return
from IEAVEURn is likewise through the PSA routine, which turns DAT on and
returns to the DAT-on code.

Figure 6-1 shows how the DATOFF macro instruction works with your DAT-off
code.

Chapter 6. Executing DAT-off Code in MVS/XA 6-1

Note: You will need to re-linkedit your IEAVEURn module(s) into the DAT-off
nucleus if you re-sysgen the MVS base control program. J

MODA 	 IEAVEDAT

MODA CSECT

IEAVEUR3 CSECT
/ IEAVEUR3 AMODE 31 ,------.

PSA

ManiI:1ulate
DATOFF INDEX-INDUSR3 System IEAVEUR3 RMODE ANY

+ Mask 	 (code~
+ 	 executing

with
+ 	 DAT-off)
+ ~ 8SM 	 0,14

Figure 6-1. Using the DATOFF Macro to Execute DAT-off Code

6-2 SPL: System Modifications

Chapter 7. Controlling System Messages and the System Log

The operating system communicates with your installation through messages
written to the various consoles, user terminals, and printers. The installation
communicates with the operating system through responses to its messages and
through commands entered on the operators' consoles.

You can control the communications between the system and your installation by
controlling the routing of system messages, by suppressing unnecessary messages
and by changing the text of certain messages to provide additional information.

Two subcomponents of MVS can help you control system messages. They are:

• 	 Multiple-console support (MCS), which routes system messages throughout the
installation

• 	 The message processing facility (MPF), which provides a means to identify
messages you want

Suppressed

Retained or not retained through the action message retention facility

(AMRF)

Passed to a user-specified WTO exit for additional processing.

You can also control the routing of system messages to the MVS operators' con­
soles with the LEVEL keyword of the CONTROL V command. Use the LEVEL
keyword to specify the importance levels of messages that a particular console can
accept. For instance, you can specify that a certain console receive some combi­
nation of the following:

• 	 Immediate action messages
• 	 Eventual action messages
• 	 Critical eventual messages
• 	 Broadcast messages
• 	 Informational messages
• 	 Messages requiring a reply (WTORs)

MVSjXA Operations: Systems Commands describes in detail the syntax of the
LEVEL keyword of the CONTROL V command.

In addition to controlling the messages issued by the system, you can control the
system log data sets, where messages and other information are written via the
WTL (write to log) macro and the LOG operator command. See "Controlling
the System Log."

Chapter 7. Controlling System Messages and the System Log 7-1

Controlling System Messages

JThe system uses the WTO (write-to-operator) and WTOR (write-to-operator-with­
reply) macros to issue messages to the operators' consoles. Application programs
can also issue WTO and WTOR macros.

Multiple-console support (MCS) routes messages to different functional areas of
an installation, according to the type of information the message contains. For
MCS, a "functional area" is defined as one or more consoles that are doing the
same kind of work. Some examples of functional areas are:

• The tape library
• The direct access pool
• The system programmer

Each WTO and WTOR macro includes one or more routing codes, used to deter­
mine the destination of the message, and one or more descriptor codes, which
indicate why the message is being issued. The 128 routing codes available for
WTO/WTOR messages are:

Code Meaning

1 Master console action
2 Master console information
3 Tape pool
4 Direct access pool
5 Tape library
6 Disk library
7 Unit record pool
8 Teleprocessing control
9 Systern security J
10 System error/maintenance
11 Programmer information
12 Emulators
13-20 Available for customer use
21-28 Reserved for subsystem use
29-41 Reserved for IBM use
42 General information about JES2 or JES3
43-64 Reserved for JES use
65-96 Message is associated with a particular processor
97-128 Message is associated with a particular device

7 -2 SPL: System Modifications

When a message is ready for writing, the routing codes assigned to the message
are compared with the routing codes assigned to the consoles. The message is
sent to each console whose code matches one of those assigned to the message.

The WTOjWTOR macro also includes descriptor codes, which determine how the
message is displayed; the color, highlighting, or intensity of the message on the
screen; which part of the screen is used for the message; whether or not the
message may be rolled off the display. The descriptor codes for a given message
are selected according to the condition that prompts the message, and the kind of
action or response required of the operator. The descriptor codes for
WTOjWTOR messages are:

Code Meaning

1 System failure
2 Immediate action required
3 Eventual action required
4 System status
5 Immediate command response
6 Job status
7 Application program/processor
8 Out-of-Iine message
9 DISPLAY, DEVSERV, MONITOR command response
10 TRACK command response
11 Critical eventual action required
12-16 Reserved

See MVSjXA Message Library: Routing and Descriptor Codes for more detailed
discussion of the codes listed here.

Using a Message-Routing/Processing Exit Routine

IEECVXIT Routines

When the standard system messages and routing codes are not appropriate for the
console configuration in your installation, you can modify them with your own
exit routines at the WTOjWTOR user exit poin.ts: IEECVXIT, IEAVMXIT, and
one or more user-specified WTO exits. Your exit routines receive control before
the routing of each message. A routine at IEECVXIT can modify only the mes­
sage's routing or descriptor codes; however, your routines at IEAVMXIT and the
user-specified exits can modify the text of the message and do other processing as
well as doing rerouting where necessary. The system then routes the modified
message according to the new or modified routing codes.

The message-routing routine you supply at IEECVXIT uses the multiple console
support function to control which console receives a given message.

Because the text of a message might subsequently be modified by the job entry
subsystem, or another subsystem, your exit routine at IEECVXIT can examine,
but not modify, the text of a message. Also, this exit does not receive control
for all messages. When the WTOjWTOR macro that creates a message includes
both the MSGTYP parameter and the JOBNAMES, STATUS or Y parameter,
the system does not take the IEECVXIT exit. Similarly, for multiple-line WTOs
(including status displays) and messages that are being returned to a requesting
console (a response to a DISPLAY A command, for example), the system
bypasses the IEECVXIT exit. Because this exit cannot modify message texts and
does not receive control for all messages, your use of it is limited. You must use

Chapter 7. Controlling System Messages and the System Log 7-3

the general-purpose lEAVMXIT and the user-specified WTO exits for processing
the other messages and for additional processing on the messages that go to
IEECVXIT.

lEA VMXIT and User-Specified Exit Routines

The general-purpose lEAVMXIT and the user-specified WTO exits allow your
routines not only to examine the text and modify the routing and descriptor
codes of a message, but also to modify the text and do other processing. Either
your general-purpose lEAVMXIT exit routine or your user-specified WTO exit
routine receives control for all messages after the exit routine at IEECVXIT. The
general-purpose routine does processing common to a large number of messages;
the user-specified exit routine does message-specific processing. The exits receive
control during the MPF processing.

The lEAVMXIT exit and user-specified WTO exits are mutually exclusive. That
is, if, for a particular message ID, you have not named a user-specified WTO
exit routine to do specific processing, IEAVMXIT, the general-purpose WTO
user exit, receives control.

Because these routines receive control after the IEECVXIT exit routine has com­
pleted processing, you need not rewrite your existing IEECVXIT exit routines.
However, it is strongly recommended that you replace them with either an
lEAVMXIT or a user-specified WTO exit routine that can not only perform the
same functions but do additional processing (if desired) on a message.

These routines, like the IEECVXIT exit routine, must be reentrant and serially
reusable. They should not:

• 	 Use macros whose expansions store information into an online parameter
list,

• 	 Enter an MVS WAIT
• 	 Invoke any service that can issue an MVS WAIT.

User WTO/WTOR Processing

You can set up user exit routines to do the following:

• 	 Reduce message traffic by selectively suppressing (filtering) occurrences of
messages. (MPF suppresses all occurrences of a particular message.)

• 	 Perform error thresholding to reduce operator load.

• 	 Reduce message traffic at specific consoles by redirecting a portion of the
traffic.

• 	 Handle the common requests (WTORs) from the system, thereby reducing
the need for operator interaction.

• 	 Selectively collect messages at a specific console for a particular purpose.

• 	 Change the presentation of a message to make it more understandable by
the operations staff.

7-4 SPL: System Modifications

With your general-purpose WTO user exit routine, or any message-specific WTO
user exit routine(s), you can:

• 	 Overide MPF suppression

• 	 Change the message text, routing and descriptor code(s), and the console ID
on which the message is to be displayed

• 	 Queue the message to a particular active console, to a particular console
unconditionally (even if the console is not active), or queue it by routing
codes only

• 	 Force the message to go to the hardcopy log, not to go to the hardcopy log,
or to go only to the hardcopy log

• 	 Broadcast a message to all consoles or not broadcast a message already
being broadcast

• 	 Issue supervisor calls (SVCs) such as MGCR and WTO

• 	 Delete the message (Except for a WTOR, prevent it from appearing any­
where - hardcopy or display console)

Note: If you try to delete a WTOR, it will be suppressed instead. Then
you can view it only by using the DISPLAY R command.

• 	 Indicate whether AMRF should retain or not retain an action message

• 	 Reply to a WTOR

• 	 Suppress a WTOR

See MVS/XA User Exits for a more complete description of user-exit capabilities
and coding interface.

Inserting A WTO/WTOR Exit Routine into the Control Program

As part of the basic control program, IBM supplies a dummy module at exit
point IEECVXIT that does not modify the routing codes assigned to
WTO/WTOR messages. If you only want to modify the routing codes, you can
code your own IEECVXIT exit or, preferably, a general-purpose IEAMVXIT or a
user-specified WTO exit routine. However, If you want to change the message
text, or do other types of processing on the messages, you must code your own
general-purposeIEA VMXIT exit and one or more message-specific WTO/WTOR
exit routines.

The procedure for inserting your exit routines into the base control program
differs depending on the type of WTO exit involved.

Chapter 7. Controlling System Messages and the System Log 7-5

IEECVXIT Routine

IEAVMXIT

Before system generation, you can insert your own message-routing routine into
the basic control program by replacing the dummy module with your own. Use
the linkage editor to include the module (named IEECVXIT) in the library named
SYSl.AOSC5.

After system generation, the dummy module is CSECT IEECVXIT, in load
module IEECVXIT, residing in SYSl.LPALIB. Use the linkage editor to replace
the CSECT with your own routine.

See MVS/XA SPL: User Exits for the restrictions and details of coding your mes­
sage-routing exit routine for IEECVXIT.

You can insert your IEA VMXIT exit routine in the control program by:

• 	 Link-editing it into SYSl.LINKLIB. You must use 31-bit addresses in the
routines and assemble them with AMODE 31; the RMODE must be ANY.

• 	 Activating it with the CONTROL command: K M, UEXIT = Y

Note: If you have already link-edited a general-purpose routine into
SYSl.LINKLIB before this IPL, you need not perform the above steps. The
system will activate the general-purpose exit.

JUser-specified WTO Exit Routines

You can insert user-specified WTO exit routines into the control program by:

• 	 Link-editing them into SYSl.LINKLIB. You must use 31-bit addresses in the
routines and assemble them with AMODE 31; the RMODE must be ANY.

• 	 Putting the name of each message-specific WTO exit routine you write into a
MPFLSTxx parmlib member. You must put the name of the WTO exit
routine in the USEREXIT parameter of the message ID entry for each
message the routine is to process.

• 	 Activating the MPFLSTxx member with SET MPF = xx

Note: To activate the MFPLSTxx during IPL, you must have link-edited the exit
routines into SYSl.LINKLIB, and you must have specified the MPF(xx) keyword
on the INIT statement in the CONSOLxx member.

J

7 -6 SPL: System Modifications

Replacing a WTO/WTOR Exit Routine Without a re-IPL

The Hardcopy Log

There may be times when you need to replace a general-purpose or message-spe­
cific exit routine either because of adding function(s) to the routine or because a
routine abended when processing a particular message. Depending on whether
the routine is a general-purpose or message-specific routine, the procedures are as
follows:

lEA VMXlT: If you want to replace a general-purpose routine with a fresh copy,
you must do the following:

• Link-edit the new copy of the exit routine into SYSl.LINKLIB.
• Refresh LLA with the MODIFY LLA,REFRESH command.
• Reactivate the exit routine using the K M,UEXIT=Y command.

User-Specified exit: If you want to replace a user-specified exit routine with a
fresh copy, you must do the following:

• Link-edit the new copy of the message-specific routine into SYSl.LINKLIB
• Refresh LLA with the MODIFY LLA,REFRESH command
• Reactivate the exit routine using the SET MPF = xx command

See MVS/XA SPL: User Exits for the restrictions and details of coding your rou­
tines for IEA VMXIT and user-specified exits.

See MVS/XA SPL: Initialization and Tuning for details and syntax rules that
apply to the creation of MPFLSTxx members of SYSl.PARMLIB.

The hardcopy log contains messages and responses to commands. The log is
often written to an output-only device such as a printer, but it can be buffered on
the system log data set (SYSLOG). Often, the system log (see "Controlling the
System Log") and the hardcopy log are the same; in many installations, the terms
are used interchangeably.

Note: In a JES3 installation, both logs are treated differently than they are under
JES2. See MVS/XA JES3 Commands for more information.

The number and type of messages recorded on the hardcopy log are optional.
Unless you specify otherwise, the hardcopy log includes those messages with
routing codes 1, 2, 3, 4, 7, 8, 10 and 42. You can redefine the routing codes for
the hardcopy log through the CONSOLxx member of SYSl.PARMLIB and after
IPL, by means of the VARY operator command. See MVS/XA SPL: Initializa­
tion and Tuning for information.

If you modify message routing codes in an IEECVXIT, IEAVMXIT, or a user­
specified exit routine, the system normally records the messages with modified
routing codes in the hardcopy log, provided the log is active. However, the instal­
lation's lEAVMXIT and user-specified WTO user exit routine(s) can totally delete
some messages. The hardcopy log is activated via the VARY command, or by the
operating system when MCS and/or JES3 is active. See MVS/XA System Com­
mands for more information.

Chapter 7. Controlling System Messages and the System Log 7 -7

You can direct selected groups or types of messages or commands to the hard­
copy log, using your WTOjWTOR exit routine. If commands are recorded on the
hardcopy log, the system also records command responses. J

Suppressing the Display of Selected Messages

To cut down on the number of messages the operator must deal with, you can
suppress the display of certain messages. The message processing facility, an
extension of the multiple-console support function, builds a table in the common
service area containing IDs of messages to be suppressed.

You can suppress any messages except the following types:

• Action messages (descriptor codes 1,2, 3, and 11)
• WTORs
• Command responses (descriptor code 5 and MCSFLAG = RESP)
• JES3 action messages

Both the message processing facility and the hardcopy log must be active for the
system to allow suppression of messages. This is because suppressed messages are
written to the hardcopy log, and are flagged with an indicator (For JES3 only, &
is the IBM default; you can choose any indicator.).

To suppress the display of messages, you give MPF a list of message IDs for the
table it builds in the CSA.

Create MPFLSTxx members of SYS 1.PARMLIB, each containing a list of IDs J'
and/or prefixes for messages you want suppressed. The messages to be suppressed
might be selected according to different configurations of your system, or
according to the job mix.

The operator activates MPF using the SET command (MPF = xx). He can
display the table of message IDs using the DISPLAY command.

You can also use a general-purpose lEAVMXIT exit and user-specified WTO exit
routines, which get control during MPF processing, to suppress messages that
MPF can not suppress, or to override MPF suppression. The hardcopy log does
not have to be active for you to do this. See MVS/XA SPL: User Exits and
MVS/XA SPL: Initialization and Tuning for details on the syntax and use of these
WTO exits.

Controlling the System Log

The system log is an integral part of MVS. It consists of dynamically-created
data sets that reside in the primary job entry subsystem's spool space and record
the communications among problem programs, operators, and the operating
system.

The system log often includes the hardcopy log (see "The Hardcopy Log"). When
it does, the contents of the hardcopy log are stored on the spool data set rather J
than being printed by a unit record device.

7-8 SPL: System Modifications

The system log contains operating data entered by means of the write-to-log
(WTL) macro, issued by both system functions and problem programs. The log
includes the following information:

• 	 Job time, job step time, and data from the JOB and EXEC statements of a
job that has ended

• 	 Descriptions of unusual events recorded by the operator via the LOG
command

• 	 Write-to-operator (WTO) and write-to-operator-with-reply (WTOR) messages

• 	 Accepted replies to WTOR messages

• 	 Commands issued through operators' consoles and the input stream, and
commands issued by the system

Note: The exact format of the output from the WTL macro varies depending on
whether the job entry subsystem is JES2 or JES3. See MVSjXA JES3 Commands
for information about the format of the WTL message in a JES3 environment.

If you do not modify system log operation, the operating system automatically
allocates the system log data set during IPL as a class A SYSOUT data set
(SYSLOG).

Modifying the System Log

Once activated, the system log keeps track of the number of entries it receives by
counting the WTL macros executed against it. After a certain number of WTLs,
the system closes and dynamically deallocates the full log data set and allocates
and opens a new system log data set.

You can alter the default operation of the system log to control the processing of
the log data sets. You can change the SYSOUT class of the log data sets and the
number of WTLs received before switching log data sets.

The processing of the log data sets can be controlled from the operator console or
via the SYSl.PARMLIB member IEASYSxx. See MVSjXA SPL: Initialization
and Tuning for information on modifying the system using members of
SYSl.PARMLIB.

Chapter 7. Controlling System Messages and the System Log 7-9

Your IEASYSxx parmlib member is included in the system during IPL, in
response to the request to specify the system parameters. The following system
parameters initialize or alter the system log control values:

• 	 LOGLMT - controls the number of WTLs received before the system
switches data sets

• 	 LOGCLS - controls the SYSOUT class of the system log data set

The LOGLMT value must be a six-digit number in the range 000001-999999. An
all-zero LOGLMT value results in the system default of 500. When choosing the
LOGLMT value, consider the following:

• 	 Whether the system log is defined as MCS hardcopy, and

• 	 Whether the system log data is sufficiently critical to the system to justify fre­
quent allocating, switching, and queuing to a SYSOUT class.

The LOGCLS value must be one alphameric character. The default value is class
A.

The following example shows the correct format for including the LOGLMT and
LOGCLS parameters in an IEASYSxx member of SYSl.PARMLIB when speci­
fying the system parameters during IPL:

LOGLMT=004852,LOGCLS=L

These two parameters would cause the system log task to switch data sets after
4852 WTLs, and the job entry subsystem to queue the current data set for
SYSOUT processing with class L.

From the console, the operator can control the processing of the system log with
the WRITELOG system command. For example, the operator can issue a
WRITELOG command with the START operand after a system failure or after a
WRITELOG command with the CLOSE operand.

In addition, the operator can use the WRITELOG command to force the system
to queue the system log data set for printing before the LOGLMT threshold is
reached. For further information about the system log and the WRITELOG
command, see MVS/XA System Commands.

7 -10 SPL: System Modifications

Chapter 8. Updating the Master Job Control Language Data Set

IEEMSJCL Example

You may need to change the master scheduler's JCL. If, for example, your ter­
minal interface is not TSO, you will need to modify the master JCL data set.

The master job control language data set (CSECT name MSTJCLOO and load
module name IEEMSJCL) is a non-executable module. The master scheduler
loads this module into the system during the initialization of the master scheduler.
The IBM-supplied IEEMSJCL module contains data definitions (DD) statements
for all system input and output data sets that are necessary for communication
between the operating system and the primary job entry subsystem. The primary
job entry subsystem can be JES2 or JES3.

IEEMSJCL does not contain the START command that starts the primary job
entry subsystem during master scheduler initialization. You define the primary
job entry subsystem on the PRIMARY parameter in the IEFSSNxx member of
SYS1.PARMLIB.

You can modify the master JCL data set to include START commands for other
subsystems, along with DD statements necessary to communicate with them. You
can also delete DO statements that do not apply to your installation's interactive
configuration.

Figure 8-1 shows IEEMSJCL as it exists before it is loaded into the system.

DC CL80'//MSTJCLOO JOB MSGLEVEL= (0 , 0) ,

DC CL80'// EXEC PGM=IEEMB860,DPRTY=(15,15) ,

DC CL80'//STCINRDR DO SYSOUT=(A,INTRDR) ,

DC CL80'//TSOINRDR DO SYSOUT=(A,INTRDR) ,

DC CL80'//IEFPDSI DO DSN=SYS1.PROCLIB,DISP=SHR'

DC CL80'//IEFPARM DO DSN=SYS1.PARMLIB,DISP=SHR'

DC CL80'//SYSUADS DO DSN=SYS1.UADS,DISP=SHR'

DC CL80'//SYSLBC DO DSN=SYS1.BRODCAST,DISP=SHR'

DC CL80'/*'

Figure 8-1. IEEMSJCL Data Set

Included in IEEMSJCL are the DO statements needed to define the internal
reader data sets for started task control and TSO logons. Also defined are the
system data sets (SYS1.UADS and SYSl.BROOCAST) used in TSO logons and
terminal communications.

Chapter 8. Updating the Master Job Control Language Data Set 8-1

mM-suppUed Sample of Master JCL

IBM supplies SAMPMJCL, a member of SYSl.SAMPLIB. The CSECT name in
SAMPMJCL is MSTJCL05. SAMPMJCL contains the source statements for
MSTJCLOO. IBM provides this member so you can modify the master JCL
according to your needs, Once you have modified the member, you must re-as­
semble and link edit it into the system.

Changes to Master J CL

Changes to the master JCL data set fall into three categories: modifying an
existing statement, adding or deleting a statement, and using alternate versions of
the data set.

Modifying a Statement: To modify a particular statement, use the AMASPZAP
service aid program.

Adding and Deleting a Statement: To delete an existing statement or add a new
one, make the change, reassemble the IEEMSJCL module, adding a CSECT card
and an END card. Link edit it into SYSl.LINKLIB (or a library concatenated to
LINKLIB via a LNKLSTxx member of SYSl.PARMLIB).

Notes:

1. 	 Ifyou add any DD statements to the module, make sure the data sets are
created before the IPL that is to make use of them: if the allocation of any
data set defined in IEEMSJCL fails, the IPL also fails. J

2. 	 For the primary job entry subsystem, do not include the START command in
the master JCL and as a parameter in the SYS1.PARMLIB(IEFSSNxx). If
you include the START command in the master JCL for the primary job entry
subsystem, you must specify the NOSTART parameter for the primary job
entry subsystem in the IEFSSNxx member of SYS1.PARMLIB

3. 	 Until the primary job entry subsystem is started, no work can be done that
requires JES input or output services.

Alternate Versions of the Master JCL

You can select alternate versions of the master JCL data set at IPL using the
MSTRJCL = system parameter. The parameter can be in an IEASYSxx member
of SYSl.PARMLIB. See MVS/XA SPL: Initialization and Tuning for the syntax
of the MSTRJCL = parameter and for details of creating IEASYSxx members of
PARMLIB. MVS/XA SPL: Initialization and Tuning also includes the syntax for
the IEFSSNxx member.

8-2 SPL: System Modifications

Chapter 9. Customizing the System Trace Table

Among the various tracing facilities available to MVS installations is the trace run
by the system itself to record significant software events.

The system trace table appears in a formatted dump as shown in MVSjXA Diag­
nostic Techniques. System trace entries are normally formatted by SNAP or print
dump (AMDPRDMP) processing as part of dump formatting.

In MVSjXA, you can customize the system trace table to include your own instal­
lation-defined events. For each event you want to trace, you put a trace table
entry (TTE) in the system trace table, using the PTRACE macro. The PTRACE
macro creates an explicit trace table entry identified as USRn, where "n" is a
single hexadecimal digit from 0 to F. See "Using the PTRACE Macro."

The MVSjXA system trace table provides for 16 user-defined explicit trace table
entries. IBM supplies 16 identical routines to format the USRn TIEs; if you
want to format a USRn entry differently from the way the default routine would
format it, you can replace the IBM-supplied version with your own. See "For­
matting a USRn Trace Table Entry."

The USRn System Trace Table Entry

The unformatted user trace table entry is mapped by macro IHATTE, as docu­
mented in the MVS/XA Debugging Handbook. An explicit trace table entry of the
USRn type includes a three-word header that identifies the entry type and indi­
cates the length of the TTE and the time of day of the event being recorded.
Following the header are:

• The current TCB address
• The home address space identifier (HASID)
• The primary address space identifier (PASID)
• The secondary address space identifier (SASID)
• The return address of the program issuing the PTRACE macro
• Continuation information
• User data, in up to five full words starting at TTEWRD5

When the TTE is printed in a dump, its contents are formatted in columns. See
MVS/XA Diagnostic Techniques for examples of the formatted system trace table,
and Figure 9-2 for an example of the formatted USRn TTE.

Chapter 9. Customizing the System Trace Table 9-1

Using the PTRACE Macro

The PTRACE macro allows you to trace from one to 1024 fullwords of your own
data as part of the system trace facility. Your user data can be the contents of a
register or a range of registers, or a data area.

To issue the PTRACE macro, a program must be running in key 0, in supervisor
state. The program can be in either 24- or 31-bit addressing mode.

The syntax for the PTRACE macro is:

PTRACE TYPE=USRn,[REGS=(rl,r2)] ,SAVEAREA=STANDARD
[REG= (1) 1

where

USRn
designates the type of entry and supplies the ID to be assigned to the TTE.
The value you substitute for "n" identifies your entry to the system. It can
range from X'O' to X'F'.

REGS
indicates the data you want traced.

REGS =(rl,r2): you can place up to 11 fullwords of data in a range of
registers from 2 through 12, and code the register range on the REGS
keyword. For example, REGS = (2,7) indicates that six fullwords of data, in
registers two through seven, are to be traced.

REGS =(1): you can place the data in a parameter list and put the address
of the list into register 1. Using the parameter list, you can specify up to
1024 fullwords of data to be recorded. The parameter list consists of a
fullword indicating the number of words of data to be traced, followed by
the data.

SAVEAREA=STANDARD
indicates the kind of save area being provided. It must be STANDARD, as
shown.

See SPL: System Macros and Facilities for details on coding the PTRACE macro.
Some additional programming considerations follow:

• 	 If you want to associate your TTE with a particular processor, issue
PTRACE while the processor is disabled for I/O and external interrupts.

• 	 The PTRACE facility records trace data only when the system trace is active.
System trace is activated at IPL and remains active until specifically
deactivated by the TRACE operator command; it can run concurrently with
the generalized trace facility (GTF).

• 	 PTRACE treats all addresses passed to it as 31-bit addresses. J

9-2 SPL: System Modifications

Figure 9-1 shows two examples of the PTRACE macro.

PTRACE TYPE=USR1,REGS=(3,3),SAVEAREA=STANDARD

PTRACE TYPE=USRB,REGS=(l) ,SAVEAREA=STANDARD

Figure 9-1. Examples of the PTRACE Macro

The first example is a request to create a trace table entry for one fu1lword of user
data, which is contained in register 3.

The second example is a request to trace the user data in a parameter list whose
address is in register 1.

PTRACE Macro Processing

PTRACE processing creates one or more TTEs in the system trace table,
assigning each a code corresponding to the acronym ID (USRO - USRF) that you
specify on the macro. PTRACE includes in the entries both system-required data,
and some system-supplied data, to help you identify and use the TIE in a printed
dump. Each USRn TTE can include up to five fu1lwords of data to be traced; if
you request more than that, PTRACE creates additional TTEs that are
continuations of the first one.

Multi-Part Trace Table Entries

If you code the PTRACE macro as follows:

PTRACE TYPE=USR3,REGS=(2,12),SAVEAREA=STANDARD

you are requesting that 11 fullwords of data be traced. Each word of data is in a
general purpose register. In this case, the single invocation of the PTRACE
macro results in three TTEs being placed in the system trace table. All three are
identified by the code corresponding to USR3; the first and second entries each
contain 5 fullwords of user data, and the third contains 1 fullword of user data.

If the program in which you code the PTRACE macro can be interrupted, it is
possible that the three TTEs are not placed consecutively in the system trace
table. The continuation information included in multi-part entries allows you to
find the related TTEs - and, thus, your user data - in the formatted dump.

Figure 9-2 shows the continuation information generated for the USR3 TIEs
requested in the example above. In the formatted TTE, the continuation
information is in the column headed UNIQUE-I.

Chapter 9. Customizing the System Trace Table 9-3

... IDENT ... ADDRESS UNIQUE-1 UNIQUE-2 UNIQUE-3 ... PASD SASD TIMESTAMP. RECORD
UNIQUE-4 UNIQUE-5 UNIQUE-6

... USR3 ... 81A007B6 003D 000 00000001 00000002 ... 0009 0009 93786447F3C83680
00000003 00000001 00000005

... USR3 ... 81A007B6 	 003D 014 00000006 00000007 ... 0009 0009 93786447F3C83BOO
00000008 00000009 00000005

... USR3 ... 81A007B6 	 003D 028 OOOOOOOB ... 0009 0009 93786448F3C8420

Figure 9-2. Continuation Information from PfRACE for Multi-Part TTE

The first halfword of continuation infomlation is a PTRACE identification count,
the same for all the parts of a multi-part TTE. This count relates the parts of a
multi-part TTE to each other.

The second halfword of continuation information contains the relative byte offset
of the user data in a particular part. X'OO' indicates the first byte of user data,
X'14' indicates the twenty-first byte, and so on. You use the continuation
information to locate all the pieces of a multi-part TTE in a formatted dump.

The user data in the example in Figure 9-2 is in the columns headed UNlQUE-2
through UNlQUE-6. The first part of the USR3 TTE contains the data in
registers 2 through 6; the second part of the TTE contains the data in registers 7
through 11; and the third part of the TTE contains the data in register 12.

Formatting a USRn Trace Table Entry

IBM supplies 16 identical routines to format the USRn trace table entries. Their
module names correspond to the USRn identifiers 0 through F: lTRF007F
tIu:.0ugh lTRFOF7F.

Following is a brief explanation of the processing involved in formatting a USRn
trace table entry using the IBM-supplied routines.

The system trace filter/formatter module, IEAVETEF, determines, from the home
ASlD in the TTE, if a particular trace table entry is selected for formatting. If
so, lEAVETEF formats the following system-supplied status information for the
TTE in the trace output buffer:

Note: The labels in parentheses are those mapped by macro lHATROB.

• The processor number (TROBPRlD)

• The HASlD (TROBASlD)

• The currellt TCB address (TROBTCBA)

• The USRn acronym for the TTE (TROBID)

• The return address of the issuer of PTRACE (TROBRET)

9-4 SPL: System Modifications

• 	 The continuation information, if the TTE is part of of a multi-part entry
(TROBUNQI)

• 	 The PASID (TROBPASN)

• 	 The SASID (TROBSASN)

• 	 The time-of-day value for the TTE (TROBTIME)

IEAVETEF then calls the appropriate USRn formatting routine (ITRFOn7F),
which calls ITRFDEFU, the default formatting routine.

ITRFDEFU formats the user data, in hexadecimal, in the trace output buffer
fields labelled TROBUNQl, TROBUNQ2, and TROBUNQ3. These fields
correspond to the columns headed by UNIQUE-I, UNIQUE-2, and UNIQUE-3
in the printed trace table. ITRFDEFU then calls the print buffer service routine
(IEA VETPB) to print the output line. A single USRn TTE can contain up to five
full words of user data, which are formatted on two successive lines in the printed
output. ITRFDEFU calls the print buffer service routine once for each successive
output line.

Replacing a USRn TTE Formatting Routine

You may replace any of the ITRFOn7F formatting routines with one that fits
your installation's requirements, link editing it into load module IEAVETFC in
SYSI.LPALIB.

Generally, your routine must conform to the same conventions and requirements
the ITRFOn7F routines supplied by IBM follow. Specifically:

Parameters Passed to the USRn Formatter

When IEAVETEF passes control to a USRn formatting routine, register I
contains the address of a parameter list. The parameter list contains:

1. 	 Address of a token

2. 	 Address of the trace output buffer

3. 	 Address of the USRn TTE

4. 	 Address of a 512-byte work area

5. 	 Address of a byte containing the subpool number to be used for additional
work space

Each time the formatting routine calls the print buffer service routine,

IEA VETPB, it must pass it the token, which was received as the first parameter.

The trace output buffer, the second parameter, is mapped by IHATROB. It is
initialized with the status information and, if the TTE is a multi-part entry, with
continuation information in TROBUNQl, which corresponds to the UNIQUE-!
column of the formatted output line.

Chapter 9. Customizing the System Trace Table 9-5

The USRn formatting routines must be reentrant. The work area received as the
fourth parameter allows this. Your formatting routine may use the 512 bytes for J.
any purpose; we recommend that it be used as an automatic data area. The same
work area is passed to each USRn formatting routine; it is not zeroed out
between calls. It is, however, initialized to zeroes before the first call to a USRn
routine.

If your USRn routine needs more than 512 bytes for its processing, it can obtain
more storage via the GETMAIN macro. The fifth parameter is the subpool that
must be used for this GETMAIN request.

Note: If your routine does issue a GETMAIN, be sure that it also issues a
FREEMAIN for that storage. If it does not free the storage reserved for its use
when it is running on behalf of a SNAP dump request, the storage it reserves will
remain allocated and unavailable for the life of the job.

Return Codes From the USRn Formatter

When your USRn formatting routine returns control to IEA VETEF, it must put
a return code into register '15, based on whether or not it formatted the TTE.
The possible codes and their meanings are:

Code Meaning

o The USRn TIE was formatted
4 The USRn TTE was not formatted

Printing the Trace Output Buffer Contents

Your routine must update the trace output buffer with the user data and call the
print buffer service routine, IEAVETPB, to print each output line.

IEA VETPB, entry point in module lEAVETF A, prints the trace output buffer.
In the case of a print dump request, IEA VETPB also keeps track of the number
of lines printed on a page and skips to a new page when the maximum has been
printed or the TTE being printed requires more than the lines left on the page.

When your USRn formatting routine passes control to IEAVETPB, register 1
must contain the address of a five-fullword parameter list. The parameter list
contains:

1. 	 Address of the token received from IEA VETEF
2. 	 Address of the trace output buffer (TROB)
3. 	 Address of the relative output line number
4. 	 Address of the number of output lines expected
5. 	 Address of the print option for this call

The trace output buffer print service routine uses the parameters as follows:

1. 	 If it does not receive the token, it issues a X'09E' ABEND with a reason code
of X'00005301', and the system trace formatter terminates.

2. 	 It locates the output line to be printed using the address in the second
parameter.

9-6 SPL: System Modifications

3. 	 The third parameter is the relative output line number for the formatting of a
single TTE. The value in this parameter indicates which line this is of the
total number of output lines needed to format the TIE.

4. 	 The fourth parameter is the total number of lines needed to format the TTE;
that is, the number of times the USRn formatting routine will call
IEA VETPB to print a particular TTE.

For a print dump request, IEAVETPB uses the number of output lines
expected and the relative output line value to determine whether the entire
TTE can fit on the same page. If the TTE cannot be formatted on the
current page, IEA VETPB prints the entire TTE on the next page.

5. 	 The fifth parameter indicates the kind of output contained in the trace output
buffer:

• 	 X'80000000' means the output buffer contains a TTE
• 	 X'OOOOOOOO' means the output buffer contains a message

Having printed a line of output, IEAVETPB returns to the USRn formatting
routine with a return code of zero in register 15.

Handling Errors During TTE Formatting

If your USRn formatting routine encounters a program check, the ESTAE for
IEAVETFC (the system trace formatter controller) gets control. The EST AE
tests the completion code. If it is X'OC6' through X'OCF', indicating a likely
data-dependent arithmetic or conversion error, the following takes place:

• 	 A message is printed in the trace table output saying that the USRn format
routine failed and is disabled.

• 	 The USRn TTE that caused the failure is formatted by ITRFDEFU, the
default USRn formatter routine.

• 	 Future USRn TTEs that would have been formatted by the failing routine
will also be formatted by ITRDEFU.

If the completion code is other than X'OC6' through X'OCF', lEAVETFC
terminates and a message is printed saying that the trace formatter failed because
of an unrecoverable error.

Figure 9-3 is a sample of the assembler language code needed to format a USRn
trace table entry. The sample CSECT formats a USRO TTE that was created by
the following PTRACE:

PTRACE TYPE=USRO,REGS=(2,4),SAVEAREA=STANDARD

Chapter 9. Customizing the System Trace Table 9-7

ITRF007F CSECT,

ITRF007F AMODE 31

ITRF007F RMODE ANY

*---------------------------------REGISTER EQUATES

RO EQU 0

R1 EQU 1

R2 EQU 2

TTEPTR EQU 7 TTE ADDRESSABILITY

R8 EQU 8 MODULE ADDRESSABILITY

R9 EQU 9 DATA AREA ADDRESSABILITY

TROBPTR EQU 12 TROB ADDRESSABILITY

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

*---------------------------------STANDARD ENTRY LINKAGE

DS OH
USING *,R15 TEMPORARY MODULE ADDRESSABILITY
DROP R15 DROP TEMPORARY ADDRESSABILITY
STM R14,R12,12(R13) SAVE REGISTERS
BALR R8,O
USING *,R8 MODULE ADDRESSABILITY

OBTAIN ADDRESSABILITY TO THE PARAMETERS* 	 *

L R9,12(,R1) ADDRESS OF THE AUTOMATIC DATA AREA

* 	 IS THE FOURTH PARAMETER

USING DATA,R9 DATA AREA ADDRESSABILITY

ST R13,SAVE0001+4 BACKWARD CHAIN SAVEAREAS

LA R2,SAVE001 ADDRESS OF MODULE SAVEAREA

ST R2,8(R13) FORWARD CHAIN SAVEAREAS

LR R13,R2 POINT TO CURRENT SAVEAREA

*---------------------------------SAVE THE TOKEN

L R2,O(,R1) ADDRESS OF THE TOKEN

ST R2,TOKEN SAVE TOKEN IN AUTOMATIC AREA

*---------------------------------TRACE OUTPUT BUFFER ADDRESSABILITY

L TROBPTR,4(,R1) GET TROB ADDRESS FROM PARMLIST

USING TROB', TROBPTR TROB ADDRESSABILITY

*---------------------------------USRO 	TTE ADDRESSABILITY

L TTEPTR,8(,R1) ADDRESS OF THE CURRENT TTE

USING TTE,TTEPTR SET USRO TTE ADDRESSABILITY

Figure 9-3 (Part 1 of 3). Sample Code for Formatting USRn Trace Table Entries

9-8 SPL: System Modifications

* FORMAT A HIGHLIGHTING MESSAGE *

L R2,TOKEN TOKEN TO BE PASSED
ST R2,ETPBLIST SET 1ST PARAMETER (TOKEN)
LA R2,HILITE 120 CHAR MESSAGE TO BE OUTPUT
ST R2,ETPBLIST+4 SET 2ND PARAMETER
LA R2,LINE1 RELATIVE LINE NUMBER OF THE LINE

TO BE PRINTED*
ST R2,ETPBLIST+8 SET 3RD PARAMETER
LA R2,MAXLINES NUMBER OF LINES OF OUTPUT EXPECTED
ST R2,ETPBLIST+12 SET 4TH PARAMETER
LA R2,CPMSG THE OUTPUT IS A MESSAGE
ST R2,ETPBLIST+16 SET 5TH PARAMETER
LA R1,ETPBLIST LOAD ADDRESS OF PARAMETER LIST
L R15,IEAVETPB LOAD ADDRESS OF IEAVETPB ROUTINE
BALR R14,R15 CALL IEAVETPB

INITIALIZE THE OUTPUT BUFFER WITH USRO DATA WORDS* *

MVC WORK5,TTEWRD5 MOVE USER WORD TO WORK AREA
UNPK WORK10,WORK5 UNPACK USER DATA WORD 1
TR WORK10,EBCTABL TRANSLATE TO PRINTABLE HEX
MVC TROBUNQ1,WORK10+1 MOVE TO OUTPUT BUFFER UNIQUE1 COLUMN
MVC WORK5,TTEWRD6 MOVE USER WORD TO WORK AREA
UNPK WORK10,WORK5 UNPACK USER DATA WORD 2
TR WORK10,EBCTABL TRANSLATE TO PRINTABLE HEX
MVC TROBUNQ2,WORK10+1 MOVE TO OUTPUT BUFFER UNIQUE2 COLUMN
MVC WORK5,TTEWRD7 MOVE USER WORD TO WORK AREA
UNPK WORK10,WORK5 UNPACK USER DATA WORD 3
TR WORK10,EBCTABL TRANSLATE TO PRINTABLE HEX
MVC TROBUNQ3,WORK10+1 MOVE TO OUTPUT BUFFER UNIQUE3 COLUMN

FORMAT THE USRO TRACE TABLE ENTRY* *

L R2,TOKEN TOKEN TO BE PASSED
ST R2,ETPBLIST SET 1ST PARAMETER (TOKEN)
LA R2,TROB TROB TO BE OUTPUT
ST R2,ETPBLIST+4 SET 2ND PARAMETER
LA R2,LINE1 RELATIVE LINE NUMBER OF THE LINE

TO BE PRINTED*
ST R2,ETPBLIST+8 SET 3RD PARAMETER
LA R2,MAXLINES NUMBER OF LINES OF OUTPUT EXPECTED
ST R2,ETPBLIST+12 SET 4TH PARAMETER
LA R2,CPTTE THE OUTPUT IS A PART OF A TTE
ST R2,ETPBLIST+16 SET 5TH PARAMETER
LA R1,ETPBLIST LOAD ADDRESS OF PARAMETER LIST
L R15,IEAVETPB LOAD ADDRESS OF IEAVETPB ROUTINE
BALR R14,R15 CALL IEAVETPB

Figure 9-3 (Part 2 of 3). Sample Code for Formatting USRn Trace Table Entries

Chapter 9. Customizing the System Trace Table 9-9

* RETURN TO THE CALLER WITH A RETURN CODE OF 0 * J

EXIT LA R1S,0 LOAD UP THE RETURN CODE
L R13,4(R13) LOCATE CALLERS SAVE AREA
L R14,12(R13) RESTORE THE RETURN ADDRESS
LM RO,R12,20(R13) RESTORE REGISTERS
BR 14

*---------------------------------CONSTANTS

DS OD

EBCTABL 	 EQU * TRANSLATE TABLE FOR PRINTABLE HEX

ORG *+240

DC C'01234S6789ABCDEF'

LINE1 DC F'l' RELATIVE LINE NUMBER 1 FOR HILITE
MAXLINES DC F'l' TOTAL NUMBER OF OUTPUT LINES
HILITE DC CL120'*****************THE MUCH AWAITED USRO TRACE EVENT

HAS OCCURRED! ********************************'
*--------------------------------­
CPTTE DC X'80000000' 	 IEAVETPB OPTIONS WORD VALUE

THE OUTPUT IS A TTE
*
CPMSG DC X'01000000' 	 IEAVETPB OPTIONS WORD VALUE

THE OUTPUT IS A MESSAGE
**--------------------------------­
IEAVETPB DC V(IEAVETPB) ADDRESS OF IEAVETPB ROUTINE

*---------------------------------DYNAMIC DATA AREA

DATA DSECT

SAVE0001 DS 18F STANDARD SAVEAREA

ETPBLIS.T DS SF IEAVETPB PARAMETER LIST

TOKEN DS F ADDRESS OF THE TOKEN TO BE PASSED

TO IEAVETPB*
WORKS 	 DS CLS INPUT WORK AREA FOR USER DATA

DS OF

WORK10 DS CL10 OUTPUT WORK AREA FOR USER DATA

ENDDATA EQU *

ITRF007F CSECT

'SIZDATA DC AL4«(ENDDATA-DATA+7)/8)*8)

IHATROB

IHATTE USRN=YES

END

Figure 9-3 (Part 3 of 3). Sample Code for Formatting USRn Trace Table Entries

J

9-10 SPL: System Modifications

Fitting your Subsystems into the System

In order to work with MVS or MVS/XA, all subsystems must be defined to the
operating system, by name. During IPL, you must define the primary job entry
subsystem (JES) to MVS, so you can use the JES input and output services.
During IPL, you also define any secondary subsystems.

Once a subsystem is defined to the operating system, MVS provides some services
that help you use it efficiently. This part of System Modifications includes
discussions of the process of defining a subsystem to MVS and of one of the
services available for subsystems, the subsystem affinity service.

The following books are mentioned in this part of System Modifications:

• MVSjXA SPL: Initialization and Tuning
• MVS/XA MVS Configuration Program Guide and Reference

Fitting your Subsystems into the System

J

J

SPL: System Modifications

Chapter 10. Defining Subsystems To the Operating System

To specify your primary job entry subsystem and secondary subsystems to the
operating system, you use the IEFSSNxx member of SYSl.PARMLIB. The
IEFSSNxx members contain subsystem names and, optionally, the names of
corresponding subsystem initialization routines and parameters for input to the
initialization routines. With the PRIMARY parameter, you specify the primary
job entry subsystem to use. The NOSTART parameter indicates that an
automatic start for the primary job entry subsystem should not be issued.
NOST ART may be specified in conjunction with the PRIMARY parameter and is
not available for use with the secondary subsystem specifications.

For each subsystem you define, MVS constructs a subsystem communication
vector table (SSCVT). MVS processes subsystems defined in IEFSSNxx members
of SYSl.PARMLIB, in the order specified with the SSN system parameter. For
information on specifying the SSN system parameter, see MVSjXA SPL:
Initialization and Tuning.

During master scheduler initialization, the subsystem initialization routines
specified in the IEFSSNxx member receive control as part of the master scheduler
initialization process.

Chapter 10. Defining Subsystems To the Operating System 10-1

Defining Subsystems in Members of SYS1.PARMLIB

At system initialization, you can indicate the specific IEFSSNxx SYS1.PARMLIB J
members needed for this IPL by specifying the SSN = system parameter in

1. 	 the IEASYSxx member of SYS1.PARMLIB or

2. 	 through the operator's response to the "specify system parameters" message.

Notes:

1. 	 IEFSSNOO is the system default parmlib member and contains the definition for
the default primary job entry subsystem (JES2).

2. 	 Ifyou do not specify the SSN parameter for an IPL, the master scheduler looks
for IEFSSNOO; if it exists, the subsystems specified in IEFSSNOO are defined to
MVS. .

Defining subsystems in IEFSSNxx members of parmlib is flexible:

• 	 You can change the parmlib members each time you IPL the system, without
having to do a reassembly and link edit.

• 	 You can include parameters in IEFSSNxx to be passed to a subsystem
initialization routine.

Each SYS1.PARMLIB entry must be on a single record, and only one entry per
record is allowed. There can be only one subsystem per record. The format of
the IEFSSNxx SYS1.PARMLIB member is shown in Figure 10-1. J

ssname [,init-routine [,parm] [,PRIMARY] [,NOSTART]1 comments

ssname
A 1- to 4-character name defining the subsystem. The first character must be either alphabetic or national and the remaining
characters must be alphameric or national.

init-routine

A 1- to 8-character name corresponding to the entry point of the initialization routine for the associated subsystem.

parm

A variable-length field containing data that is passed to the initialization routine.

PRIMARY

This parameter indicates that the specified subsystem name (ssname) will be the primary subsystem name.

NOSTART

This parameter indicates that an automatic start for the primary subsystem is not to be issued.

comments

Begin comments with a blank following the other fields of the record.

Figure 10-1. Format of the SYS1.PARMLIB member, IEFSSNxx.

J

10-2 SPL: System Modifications

Notes:

1. 	 The SYS1.PARMLIB record need not begin in column 1.

2. 	 When ssname terminates with a blank as the delimiter instead of a comma, the
system assumes no initialization routine is present. Any remaining data on the
record is ignored.

3. 	 Ifyou specify parameters without specifying an initialization routine, the
parameters are ignored.

4. 	 If blanks, commas, or apostrophes are included in the parameter field, the entire
field must be enclosed in· apostrophes. Ifyou want an apostrophe to be treated
as part of the parameter, code two consecutive apostrophes.

5. 	 Ifyou want to specify a primary subsystem but you do not want to specify an
initialization routine or any parameters, you must use commas to replace the
positional parameters. For example, ifyou want JES2 as the primary subsystem
but no initialization routine or parameters, you would code JES2",PRIMARY

Passing Parameters to the Initialization Routine

The mptster scheduler initialization routine issues a LINK to the subsystem
initialization routine,s specified in the IEFSSNxx member of SYSl.PARMLIB.

On input to the initialization routine, register 1 points to eight bytes of storage.
The first word points to the SSCVT for that subsystem and the second word
points to a 12-byte parameter list. Macro IEFJSIPL, residing in SYSl.MACLIB,
formats the parameter list as follows:

Offset Field Name Contents

o JSILGTH Length of parameter list
I JSICONID Console id to which the subsystem initialization

routine is to issue messages (see note I
2 JSILGTPR Length of user parameters (see notes 2 and 3)
3 JSIRSVO Reserved
4 JSIADRPR Address of user parameters that are specified in

SYSl.PARMLIB record (see note 3)
8 JSIRSVI Reserved

Notes:

1. 	 When IEFJSINT or IEFJSIN2 calls IEFJSBLD to build the parameter list, the JSICONlD field is
set to zf'0es. These the the default for the master console.

2. 	 Apostrophes that enclose a parameter are not used in the parameter length. Also, when an
apostrophe is part of the parameter and you code two apostrophes, only one is used in determining
the parameter length. For example. if 'PARM"S' appears in the record. it appears as PARM'S
(with a length of6 bytes) to the subsystem initialization routine.

3. 	 MVS places zeros in parameter fields JSILGTPR and JSIADRPRfor a subsystem if the
IEFSSNxx record does not include parameters.

Figure 10-2. Parameter List for Subsystem Initialization Routines

Chapter 10. Defining Subsystems To the Operating System 10-3

Register 13 points to an 18-word save area.

The subsystem initialization routine receives control in supervisor state, key O. J
It is the responsibility of the subsystem initialization routine to establish its own
recovery and perform all cleanup on its behalf.

System Handling of Duplicate Subsystems

You should not define a subsystem to MVS more than once in an IPL.

If the system detects a duplicate name after it has built an SSCVT for a
subsystem, it will not give control to any initialization routine associated with the
duplicate name. Rather, it issues message IEE730I: "DUPLICATE
SUBSYSTEM NOT INITIALIZED."

There are two exceptions to this rule:

1. 	 If the name of a primary job entry subsystem was encountered previously
and it matches the name of the current subsystem, the system checks the
SSCVT for the status of its initialization. If the subsystem has not been
initialized, MVS give the initialization routine control during master scheduler
initialization.

2. 	 If the name of a subsystem was encountered previously and the same name is
now specified as PRIMARY, the following processing occurs:

a. The SSCVT that was created for the first subsystem name remains on the
SSCVT chain. (This is to maintain a record of the subsystem
specification.)

b. A new SSCVT is created for the PRIMARY specification and it becomes
the first SSCVT on the chai~.

10-4 SPL: System Modifications

Chapter 11. The Subsystem Affinity Service

The TeB subsystem affinity service maintains and manages a subsystem affinity
table (SSAT), which consists of one-word entries for every subsystem running in
an IPL. A subsystem's SSAT entry can be used to hold a pointer to its own
control blocks or data areas, thus removing its dependence on information passed
by the problem program.

Each valid TeB has an associated SSAT. Figure 11-1 shows how the SSAT field
in the TeB can point eventually to a subsystem's control blocks.

.. SSAT

HEADER
TCB

} [ijScb",tom" SSAT .,t". d.t.,m;,.d

by the index value.

WTCBSSAT r-

DATA PTR [i]Subsystem's Data

SUBSYSTEM

I CONTROL BLOCK I

Notes:

[IJ 	Address of the SSAT. MVS creates a unique SSAT when processing the first SSAFF SET
request for a particular TCB, and stores its address in the TCBSSAT field.

o Each subsystem has a unique entry in a specific TCB' s SSAT. Each entry consists of one
word. In this figure. the entry is a pointer to the subsystem' s control blocks.

o The subsystem first places a value in the SSAT by issuing the SSAFF SET request. The
subsystem obtains the value from the SSAT, during subsequent execution. by issuing a SSAFF
OBTAIN request. In this figure. the value allows the subsystem to reference its own control
blocks.

Figure 11-1. Subsystem Affinity Service

The subsystem acquires its SSAT index value by invoking the VERIFY
SUBSYSTEM function through the IEFSSREQ macro. See "IEFSSREQ:
Obtaining The SSAT Index Value"

MVS assigns each entry in an SSAT to a unique subsystem based on the
subsystem's index value. The subsystem can use its SSAT entry for each TeB
under which it runs.

Chapter 11. The Subsystem Affinity Service 11-1

An SSAFF SET request places one full word of subsystem-passed data in the
SSAT identified by the TCB keyword. This allows the subsystem to put its entry
in the SSAT of any TCB to which it has addressability.

An SSAFF OBTAIN request extracts and returns to the subsystem the fullword
of data from the SSAT entry identified by the current TCB and the subsystem's
SSAT index value. The OBTAIN request works only for the SSAT pointed to by
the current TCB.

Note: A subsystem that uses the TCB subsystem affinity service cannot rely on
information stored in an SSAT over a checkpoint/restart: the SSAT value could
change from one system initialization to another. For additional information
about the restrictions and use of the checkpoint/restart facility, see MVS
Checkpoint/Restart.

SSAFF: Set/Obtain Subsystem Affinity

You can use the SSAFF macro to SET or OBTAIN an entry in a subsystem
affinity table ~SSAT).

Before you issue the SSAFF macro, register 13 must point to an 18-word save
area.

The format of the SSAFF macro is:

[symbol] SSAFF {
SET [,TCB=tcb-address]

OBTAIN 	 }
,DATA=data-address

,ENTRY=index-value

One blank is required before and after "SSAFF."

SET requests have the following requirements:

• 	 The caller must be enabled and in supervisor state, key O.

• 	 The caller must not be in cross-memory mode.

• 	 The TCBwhose SSAT will be set must be in the caller's home address space
and must be either the current TCB or a subtask of the current TCB. If any
of these conditions are not satisfied, the calling routine abends.

OBTAIN requests have the following requirements:

• 	 The caller must be in task mode. If this condition is not met, the calling
routine abends.

• 	 The caller must have current addressability to the home address space. If this
condition is not met, the results are unpredictable.

11-2 SPL: System Modifications

\
.."

J

The SSAFF macro parameters have the following meanings:

symbol
any valid assembler language symbol.

SET
indicates that MVS is to place the value specified by the DATA parameter
into the subsystem's associated SSAT entry. The SET request destroys the
contents of registers 14, 15, 0, 1, and 2.

OBTAIN
indicates that MVS is to place the contents of the specified SSAT entry of
the issuing task in the register or data area specified by the DATA
parameter. The OBTAIN request destroys the contents of registers 14, 15,
0, and 1.

,TCB=tcb-address - RX-Type Address, or Register (2)-(12)
this parameter, valid only for SET requests, specifies the register or storage
location that contains the address of the TCB whose SSAT MVS is to use
when processing the SET request.

Note: If you omit the TCB keyword, MVS uses the current task's TCB. If
you allow this default, the calling program must include the IHAPSA
mapping macro to identify the current TCB.

,DATA = data-address - RX-Type Address, or Register (1) or (3)-(12)
For SET, this parameter specifies the register or fullword storage location
that contains the subsystem's data. MVS stores the data in the SSAT for a
SET request.

For OBTAIN, this parameter specifies the register or fullword storage
location that is to contain the value extracted from the SSAT.

MVS places a value of zero in the data area if anyone of the following is
true during an OBTAIN request:

• 	 The SSAT entry associated with the specified index-value contains a
zero.

• 	 A null SSAT exists for the caller. (A SET request was not performed
prior to the OBTAIN request.)

• 	 The specified index value exceeds the size of the caller's SSAT.

,ENTRY = index-value - RX-Type Address, or Register (0) or (3)-(12)
this parameter specifies the register or fullword storage location that
contains the subsystem's SSAT index value. If you specify an index value
that is greater than the number of currently-defined subsystems (subsystems
defined using the methods described in Chapter 10, "Defining Subsystems
To the Operating System"), the request fails.

Chapter 11. The Subsystem Affinity Service 11-3

For SSAFF SET rp.quests, the subsystem affinity service uses:

• 	 The TCB address to locate the required SSAT. When the subsystem does not J
supply the TCB address, MVS uses the currently-executing TCB (PSATOLD).

• The SSAT index value to locate the specific SSAT entry that is to be set.

For SSAFF OBTAIN requests, the subsystem affinity service uses:

• 	 The currently-executing TCB to locate the required SSAT.
• 	 The SSAT index value to locate the specific SSAT entry to be returned.

IEFSSREQ: Obtaining The SSAT Index Value

You obtain the SSAT index value by using the IEFSSREQ macro to invoke the
VERIFY SUBSYSTEM function.

The IEFSSREQ macro has the following requirements:

• 	 Register 13 must point to an I8-word save area.

• 	 You must include the CVT and IEFJESCT mapping macros in the calling
program.

• The caller can be in TCB or SRB mode.

The syntax of the IEFSSREQ macro is:

I[symbol] IEFSSREQ

symbol
any valid assembler language symbol.

One blank is required before and after "IEFSSREQ."

When the VERIFY SUBSYSTEM function is invoked, Register 1 points to a
fullword of storage which points to the subsystem options block (SSOB). The
caller must supply some information in the SSOB, as indicated below. Macro
IEFSSOBH, residing in SYSI.MACLIB, formats the subsystem options block
(SSOB) as follows:

SSOBID Identifier, 'SSOB'

SSOBLEN Length of SSOB header

SSOBFUNC Function ID. For a verify subsystem request, this field contains SSOBVERS (a field
defined in IEFSSVS).

SSOBSSIB Pointer to the subsystem information block (SSIB).

SSOBRETN Return code field

SSOBINDV Pointer to the verify subsystem extension (IEFSSVS)

11-4 SPL: System Modifications

~

Macro IEFSSVS, residing in SYSl.MACLIB, formats the verify subsystem
extension (lEFSSVS) as follows:

SSVSLEN Length of the extension

All other fields must be zero.

Macro IEFJSSIB, residing in SYS1.MACLIB, formats the subsystem information
block (SSIB) as follows:

SSIBID Identifier, 'SSIB'

SSIBLEN Length of SSIB

SSIBSSNM The name of the master subsystem ('MSTR'). (This fie
subsystem requests. If more than one request is being
here before each call.)

ld might be altered by verify
made, 'MSTR' must be stored

SSIBJBID Subsystem name to be verified. This is an 8-byte field. The subsystem name must be
left-justified and padded with blanks.

The VERIFY SUBSYSTEM function places a return code in register 15. The
caller should examine the return code to determine if the request was processed.
The possible return codes are:

Code Meaning

0 The verify subsystem request was processed

4 The subsystem specified in SSIBSSNM does not support the VERIFY SUBSYSTEM
function

8 The subsystem specified in SSIBSSNM exists but is not active

12 The subsystem specified in SSIBSSNM is not defined to MVS

16 The pointer to the SSOB is invalid

20 The SSOB or SSIB have invalid lengths or formats

If the request was processed (Register 15 =0), the return code in the SSOB
(SSOBRETN) indicates whether the subsystem name in the SSIB (SSIBJBID) is
valid. Return codes in SSOBRETN and their meanings are:

Code Meaning

o Valid subsystem name
4 Invalid subsystem name

Chapter 11. The Subsystem Affinity Service 11-5

Upon verification of a valid subsystem name, the verify subsystem extension will
contain: J
SSVSSCTP Pointer to the subsystem's SSCVT

SSVSNUM The SSAT index value that you use in a SSAFF macro request.

Note: Prior to using this value as the SSAT index value in the ENTRY parameter of
the SSAFF macro, you must place the value in a register or in storage on a fullword
boundary.

If the caller of the verify subsystem function fails to provide a verify subsystem
extension (IEFSSVS), the address of the SSCVT and the SSAT index value will
not be available to the subsystem.

Notes:

1. 	 The subsystem index value is valid only for use on the MVS processor on which
it was obtained, and during the current IPL.

2. 	 A valid SSAT index value is returned only for subsystems defined via the
methods described in "Defining Subsystems to MVS"

Cross Memory Considerations: The control blocks you access in using the
subsystem affinity service (SSOB, SSIB, and verify subsystem extension) must be
addressable from the address space in which the verify subsystem request is made.

For further information on the use of cross memory services, see MVSjXA SPL:
System Macros and Facilities.

11-6 SPL: System Modifications

MVS/XA System Services

Whenever you add features to your installation's system, you give up some of the
system's performance efficiency. MVS provides various system services that can
help minimize this drop in performance, and can help you maintain or modify
your system as needed. The services include verification services, input/output
facilities, and performance aids.

The following books are mentioned in this part of System Modifications:

• IBM 3800 Printing Subsystem Programmer's Guide
• MVS Interactive Problem Control System (IPCS) User's Guide and Reference
• MVS/XA Checkpoint/Restart
• MVS/XA Data Management Services
• MVS/XA Data Management Macro Instructions
• MVS/XA Debugging Handbook
• MVS/XA Diagnostic Techniques
• MVS/XA JCL
• MVS/XA JES3 Diagnosis
• MVS/XA Operations: System Commands
• MVS/XA Message Library: System Messages
• MVS/XA SPL: Initialization and Tuning
• MVS/XA SPL: JES2 Initialization and Tuning
• MVS/XA SPL: JES3 Initialization and Tuning
• MVS/XA SPL: Service Aids
• MVS/XA SPL: Supervisor Services and Macro Instructions
• MVS/XA SPL: System Macros and Facilities
• MVS/XA SPL: 3I-Bit Addressing

MVS/XA System Services

J

J

SPL: System Modifications

Chapter 12. Unit Verification Service

The scheduler provides the unit verification service. The unit verification service
enables you to obtain information from the eligible device table (EDT) and to
check your device specification against the information in the EDT.

There are two versions of the unit verification service:

1. IEFEB4UV, for problem programs or authorized callers, and
2. IEFGB4UV or IEFAB4UV, for authorized callers.

Unit Verification Service

The unit verification service performs the following functions:

• check groups
• check units
• return unit name
• return UeB addresses
• return group 10
• return look-up value
• convert device type to look-up value
• return attributes
• indicate unit name is a Look-up value
• check units with no validity bit
• specify subpool for returned storage
• return unit names for a device class

Chapter 12. Unit Verification Service 12-1

Check Groups

This function determines whether the input device numbers ma1(e a valid
allocation group. To be valid, the device grouping must include either all the
device numbers being verified, or none of them. If this is not the case, the
allocation group is split and the input device numbers do not make up a valid
allocation group.

Check Units

This function determines whether the input device numbers correspond to the unit
name in the EDT. In addition to a return code in register 15, it sets to one the
high-order flag bit of any invalid device numbers in the parameter list.

Return Unit Name

This function returns the unit name associated with a look-up value provided as
input. The unit name is the EBCDIC representation of the IBM generic device
type (for example, 2305) or the esoteric group name (for example, TAPE) from
the EDT.

A look-up value is an internal representation of the unit name, used as an index
into the EDT. See "The Eligible Device Table" for more infoffilation about the
EDT. Because teleprocessing devices do not have generic device names, you
cannot use this function to request information about teleprocessing devices.

Return UCB Addresses

This function returns the DCB pointer list associated with the unit name provided
as input.

Return Group ID

This function returns the allocation group ID corresponding to each DCB address
specified in the input list.

Return Look-up Value

This function returns the four-byte internal representation of the unit name that
serves as an index into the EDT. It is the converse of the return unit name
function.

Convert Device Type to Look-up Value

This function will convert a four-byte DCB device type to an internal
representation of the unit name, to serve as an index into the EDT. The convert
device type to look-up value function allows programs that have only a four-byte
DCB device type to query the EDT. It may be used whenever a look-up value is
required as input to the unit verification service.

12-2 SPL: System Modifications

Return Attributes

This function returns general information about the specified unit name.

Indicate Unit Name is a Look-up Value

The input to the check units and return UCB addresses functions can be specified
as a four-byte internal representation of the unit name rather than as the unit
name itself.

Check Units With No Validity Bit

This function causes the check units function to set only a return code in case of
an invalid device number. The no validity bit function saves processing in the
case of a check units request for a single unit: because the parameter list is not
modified, it need not be in key 1 storage. The function is available through
IEFGB4UV or IEFAB4UV only.

Specify Subpool for Returned Storage.

This function is used with the return DCB addresses function or with the return
unit names for a device class function. It allows you to specify a particular
subpool to return the requested information in. This function is available through
IEFEB4UV only.

Return Unit Names for a Device Class

This function returns a list of IBM generic device types (for example, 2305)
and/or esoteric group names (for example, TAPE) associated with the input device
class. This function is available through IEFEB4DV only.

Chapter 12. Unit Verification Service 12-3

Callers of IEFEB4UV

The unit verification routine, IEFEB4UV, is for both problem program callers
and for authorized callers. It runs in task mode in the caller's key.

To use IEFEB4UV, the calling program must do the following:

• 	 Create the input data structures and parameter list
• 	 Place the address of an IS-word save area in register 13
• 	 Provide a recovery environment
• 	 Pass control to IEFEB4UV using the LINK macro

On return, IEFEB4UV restores all registers except register 15, which contains a
return code.

Callers of IEFGB4UV or IEFAB4UV

The IEFGB4UV and IEFAB4UV routines are for authorized callers and run in
task mode in scheduler key (1). To use the IEFGB4UV or IEFAB4UV unit
verification routine, the calling program must do the following:

• 	 Create the input data structures and parameter list in non-fetch protected ke}
1 storage

• 	 Place the address of an IS-word save area in register 13
• 	 Provide a recovery environment if authorized
• 	 Pass control to IEFGB4UV or IEFAB4UV using the LINK macro

On return, the routine restores all registers except register 15, which contains a
return code.

IEFAB4UV is the 24-bit addressing mode interface that is provided for
compatibility with previous releases. It changes the environment to 31-bit
addressing mode and calls IEFGB4UV to perform the requested functions. On
return, it converts the environment back to 24-bit addressing mode before
returning to the caller.

J

J

12-4 SPL: System Modifications

Input To and Output From Unit Verification Service Routines

Input Parameter List

You must supply a two-word parameter list when invoking one of the unit
verification routines (IEFGB4UV, IEFAB4UV, or IEFEB4UV).

The first word contains the address of a unit table. The contents vary according
to the function(s) requested.

The second word contains the address of a two-byte field (FLAGS), in which you
specify the function(s) requested.

The bits in the FLAGS parameter field have the following meanings:

Bit Function Requested

o Check groups
1 Check units
2 Return unit name
3 Return UCB addresses
4 Return group ID
5 Indicate unit name is a look-up value
6 Return look-up value
7 Convert device name to a look-up value
8 Return attributes
9 Check units with no validity bit
10 Specify subpool for returned storage
11 Return unit names for a device class
12-15 Reserved

The following diagram shows the input parameter list needed to invoke any unit
verification service routine.

Register 1

l+Parameter
list J

Parameter List
0 +Unit Table
4

+FLAGS

8

Figure 12-1. Input Parameter List

Chapter 12. Unit Verification Service 12-5

Input and Output Data Structures

The diagrams on the following pages show the input data structures and
parameters needed to invoke each unit verification service routine. The output
data structure returned by the routines is also shown.

You must declare the structures exactly as shown to get the response indicated by
the function(s) you request in FLAGS.

Because many of the input and output data structures are the same, you can
request many of the functions in combinations with other functions. The
following table lists the valid single functions and combinations of functions that
you can request in a single invocation of the unit verification service.

Code Verification Service

o
0,1
0,1,5
0,1,5,9 IEFGB4UV or IEFAB4UV only
1
1,5
1,9 IEFGB4UV or IEFAB4UV only
1,5,9 IEFGB4UV or IEFAB4UV only
2
2,7
2,8
2,7,8
3
3,5

J3,8

3,10 IEFEB4UV only

3,5,7

3,5,10 IEFEB4UV only

3,8,10 IEFEB4UV only

3,5,7,10 IEFEB4UV only

4

6

6,8

7

8

10,11 IEFEB4UV only

11 IEFEB4UV only

Register 15 if Request Fails: On return, register 15 will contain a return code. If
the invocation fails, it may be for one of the following reasons:

1. 	 If you request an invalid function or an invalid combination of functions,
register 15 contains a return code of 28 and the request fails.

2. 	 If the JES control table (JESCT) does not contain a valid pointer to the EDT,
the environment is incorrect. Register 15 contains a return code of 24. The
request fails.

12-6 SPL: System Modifications

Requesting Function Code 0 (Check Groups)

The check groups function is available through any of the unit verification

services.

Input: Set bit 0 in FLAGS to 1.

The input unit table structure is shown below.

Unit Table

8
Number of

12
Device Numbers

t Device Number
List r­

..
4

Device Number List

Device Number

Device Number
8

Device Number

Device Number

Figure 12-2. Requesting Function Code 0 (Check Groups)

Output: None.

Register 15 contains one of the following return codes:

Code Meaning

o The specified input is correct.
12 The device groupings are invalid.

Chapter 12. Unit Verification Service 12-7

Requesting Function Code 1 (Check Units)

The check units function is available through any of the unit verification services.

Input: Set bit 1 in FLAGS to 1.

The input unit table structure is shown below. The device number list with the
FLAG byte initialized to 0 for each device number.

Unit Tobie
o

Unit Nome

(EBCDIC)

8
Number of

Device Numbers

12 Device Number Listt Device Number ~-'
List Device Number 1

4

Device Number 1

8

Device Number 1

Figure 12-3. Requesting Function Code 1 (Check Units)

Output: If the device number is invalid, bit 0 of FLAG byte is set to 1.

Register 15 contains one of the following return codes:

Code Meaning

o The specified input is correct.
4 The specified unit name is invalid.
S Unit name has incorrect units assigned.
20 One or more device numbers are invalid.

12-8 SPL: System Modifications

Requesting Function Code 2 (Return Unit Name)

The return unit name function is available through any of the unit verification

servIces.

Input: Set bit 2 in FLAGS to 1.

The input unit table structure is shown below.

Unit Table
0,--------,

81-------1
Look-Up Value

Figure 12-4. Requesting Function Code 2 (Return Unit Name)

Output: The unit table contains the unit name as shown in the following figure.

Unit Table o ,--------,
Unit Name
(EBCDIC)

81-------/

Figure 12-5. Output from Function Code 2 (Return Unit Name)

Register 15 contains one of the following return codes:

Code Meaning

o The unit table contains the EBCDIC unit name.
4 The look-up value could not be found in the EDT.

Chapter 12. Unit Verification Service 12-9

Requesting Function Code 3 (Return UCB Addresses)

The return UCB addresses function is available through any of the unit J
verification services.

Input: Set bit 3 in FLAGS to 1.

The input unit table structure is shown below.

Unit Tobie o ,---------,
Unit Nome

(EBCDIC)

81-------1

Figure 12-6. Requesting Function Code 3 (Return UCB Addresses)

Output: The unit table contains a pointer to the UCB Pointer List as shown in
the following figure.

Unit Tobie
o

Unit Nome

(EBCDIC)

4
UCB Pointer List

8
Sub I Length Jt Returned UCB poolPointer List ~

Number of entries

• UCB

• UCB

Figure 12-7. Output from Function Code 3 (Return UCB Addresses)

For authorized callers, the list is returned in the default subpool, 230. For
unauthorized callers, the subpool default is O. See function code 10 for a
description of how to change the default subpool. The caller must free the
number of bytes in the length field from the subpool before exiting.

Register 15 contains one of the following return codes:

Code Meaniog

o The unit table contains the pointer to the UCB pointer list.
4 The unit name could not be found in the EDT.
16 Storage was not available for the UCB pointer list.

12-10 SPL: System Modifications

Requesting Function Code 4 (Return Group ID)

The return group id function is available through any of the unit verification

services.

Input: Set bit 4 in FLAGS to 1.

The input unit table structure is shown below.

Unit Tobie Group lD List
o
f Group lD List o

4

f UCB List 1"'\

UCB List o
0 Number of

entries
4

f UCB

f UCB

Figure 12-8. Requesting Function Code 4 (Return Group 10)

Note: There is one fullword in the group id list for each UeB in the UeB list.

Output: The group id list contains the group id corresponding to each UeB in

the input UeB list.

Group ID List

Group ID

Group ID

Figure 12-9. Output from Function Code 4 (Return Group 10)

Note: If the UeB is not in the EDT, the group id for that particular entry

remains zero.

Register 15 contains a O.

Chapter 12. Unit Verification Service 12-11

Requesting Function Code 5 (Indicate Unit Name is a Look-up Value)

The indicate unit name is a look-up value function is available through any of the J
unit verification services.

Input: Set bit 5 in FLAGS to 1.

The input unit table structure is shown below.

This function is not valid by itself. It must be used in combination with other
functions that require and input unit name. If you know the look-up value
corresponding to the unit name, you can substitute it for the unit name in the
input unit table. The following figure represents the first two full words of the
unit table when function code 5 is requested.

Unit Table

0,--------,

Look-up Value

4 1------------1

o

Figure 12-10. Requesting Function Code 5 (Indicate Unit Name is a Look-up Value)

Output: None specifically associated with this function.

Register 15 contains one of the following return codes:

Code Meaning

o Processing is successful.
4 The input look-up value could not be found in the EDT.

12-12 SPL: System Modifications

Requesting Function Code 6 (Return Look-up Value)

The return look-up value function is available through any of the unit verification

services.

Input: Set bit 6 in FLAGS to 1.

The input unit table structure is shown below.

This function is the opposite of the return unit name function (Code 2). The

following figure represents the unit table structure when you request function code

6.

Unit Table
0.--------,

Unit Name
(EBCDIC)

8 f---------j

Figure 12-11. Requesting Function Code 6 (Return Look-up Value)

Output: The unit table contains the look-up value.

Unit Table
Or-------,

8 1--------1

Look-up Value

Figure 12-12. Output from Function Code 6 (Return Look-up Value)

Register 15 contains one of the following return codes:

Code Meaning

o Processing is successful.
4 The unit name could not be found; no look-up value is returned.

Chapter 12. Unit Verification Service 12-13

Requesting Function Code 7 (Convert Device Type to Look-up Value)

The convert device type to look-up value function is available through any of theJ

unit verification services.

Input: Set bit 7 in FLAGS to 1.

The input unit table structure is shown below.

Unit Table

81-------1

Device Type

Figure 12-13. Requesting Fllnction Code 7 (Convert Device Type to Look-up Value)

Note: The device type is in the format of the UCBTYP field of the UeB.

Output: The unit table contains the look-up value.

Unit Tobie

81-------1 J
Look-up Value

Figure 12-14. Output from Function Code 7 (Convert Device Type to Look-up Value)

The conversion of the device type to a look-up value is done in place. There is no

error checking of the device type.

Register 15 contains a zero.

12-14 SPL: System Modifications

Requesting Function Code 8 (Return Attributes)

The return attributes function is available through any of the unit verification

services.

Input: Set bit 8 in FLAGS to 1.

The input unit table structure is shown below.

Unit Table o
Unit Nome
(EBCDIC)

8 Attribute Area

t
12 X 'OA'

Attribute ~
0Area
4

0
6

0
8

0
10

0

Figure 12-15. Requesting Function Code 8 (Return Attributes)

Output: The attribute area contains the following:

Byte Contents

o 	 Length of the attribute area (X'OA') This must be filled in prior to calling the unit
verification service.

1-2 	 Flags describing the unit name:

• Bit 0 on -	 unit name is an esoteric group name
• Bit 1 on -	 unit name is VIO-eligible
• Bit 2 on -	 unit name contains 3330V units
• Bit 3 on -	 unit name contains TP class devices
• Bits 4-7 are not used.

3 Number of device classes in the unit name

4-7 Number of generic device types in the unit name

8-9 Reserved

Register 15 contains one of the following return codes:

Code Meaning

o The unit name was found; the attributes are returned.
4 The unit name was not found; no attributes are returned.

Chapter 12. Unit Verification Service 12-15

Requesting Function Code 9 (Check Units with No Validity Bit)

The check unit with no validity bit function is available through IEFAB4UV and
IEFGB4UV only;

Input: Set bit 9 in FLAGS to 1.

There is no other input associated with this function except the input for the
check units function. This function must be used in combination with the check
units function (code 1).

Output: See the output from the check units function.

The FLAG byte of the device number list is not altered; only the return code
from the check units function (code 1) is available to determine if any device
numbers in the device numbers list are invalid.

J

12-16 SPL: System Modifications

Requesting Function Code 10 (Specify Subpool for Returned Storage)

The specify subpool for returned storage function is available only through
IEFEB4DV.

Input: Set bit 10 in FLAGS to 1. This function is not valid alone and must be
used with either the return DCB addresses function (code 3) or the return unit
name function for a device class (code 11). The input unit table structure is
shown in the following figure.

Unit Table

16 1----.-----1

SUb-I
pool

Figure 12-16. Requesting Function Code 10 (Specify Subpool for Returned Storage)

Output: See the output from the function that this is invoked in combination
with.

The subpool field of the returned list contains the input subpool, and the returned
list resides in that subpool. No error checking of the subpool is performed. If the
subpool is invalid, the unit verification routine fails.

Chapter 12. Unit Verification Service 12-17

Requesting Function Code 11 (Return Unit Names (or a Device Class)

The return unit names for a device class function is available only through

IEFEB4UV.

Input: Set bit 11 in FLAGS to 1.

The following figure shows the input unit table structure.

Unit Table

16 I----TI...,.D:-e~vi:-c~e,.--I--f
Class I

Figure 12-17. Requesting Function Code 11 (Return Unit Names for a Device Class)

Output: The unit table contains the pointer to the names list as shown in the
following figure.

Unit Table

4
.. Names List Names List

SUbPOOl1 Length
4

Number of Entries

16 IDevice I
Class

8

16
Unit Name

Unit Name

Figure 12-18. Output from Function Code 11 (Return Unit Names for a Device Class)

For authorized callers, the subpool that the names list is returned in is the default
subpool 230. For unauthorized callers, the default subpool is O. To change this
default, see the description for function code 10 (specify subpool for returned
storage). The caller must free the number of bytes in the length field from the
subpool before exiting.

Register 15 contains one of the following return codes:

Code Meaning

o The pointer to the names list is stored in the unit table.
16 Storage was not available for the names list.

12-18 SPL: System Modifications

Requesting Multiple Functions

The following examples show the input to and output from multiple functions.

Example 1 shows the multiple functions of codes 0 and 1.

Example 2 shows the multiple functions of codes 3 and 10.

Example 3 shows the multiple functions of codes 1 andS.

Example 1 Function Codes 0 and 1

Input

FLAGS

x 'COOO

Unit Table

C'DASD'

8
3

12
Device Number ListtDevice Number ..

rList
C '300' a

C '301' a

C '302' a

Figure 12-19. Input for Function Codes 0 and 1

Chapter 12. Unit Verification Service 12-19

Example 1 Function Codes 0 and 1 (continued)

Output

Device Number List

C '300' 0

C '301' 0

C '302' 0

Register 15

I 0

Figure 12-20. Output from Function Codes 0 and 1

Note: All input device numbers make up a single allocation group and are
associated with the esoteric unit name DASD.

J

12-20 SPL: System Modifications

Example 2 Function Codes 3 and 10

Input

FLAGS

X '1020'

Figure 12-21,

Output

Unit Table
0,----------,

C 'New tape'

16 f---,-----t
2521

Input for Function Codes 3 and 10

Unit Table
o

UCB Pointer ListC 'New tape'

28
8 252 1t UCB Pointer List ~
5

F52800

16 F528EO2521

F529CO

Register 15 F52AAO

C 0
 F52B80
I

Figure 12-22, Output from Function Codes 3 and 10

Note: The caller must be authorized to request subpool 252. The unit
verification service invoked must be IEFEB4UV because function code 10 is
requested. The caller must free the UeB pointer list before exiting.

Chapter 12. Unit Verification Service 12-21

Example 3 Function Codes 1 and 5

Input

FLAGS
Unit Table

X '4400' 0
X '00098000'

Device Number List
8

V4 C '510' 0
12 f uevlce Numoer

List
C '511' 0

C '512' 0

C 'ODE' 0

Figure 12-23. . Input for Function Codes 1 and 5

Output

Device Number List

C '510' 0

C '511' 0

C '512'
 0 J
C 'ODE' X '80'

Figure 12-24. Output from Function Codes 1 and 5

Note: Device OOE did not belong to the unit name that was associated with the
input look-up value.

12-22 SPL: System Modifications

Chapter 13. The Hot 1/0 Detection Table

Some I/O devices and control units generate unsolicited interrupts in the normal
course of their operation. A hardware malfunction that causes repeated,
unsolicited I/O interrupts is called "hot I/O." Undetected, such hot I/O interrupts
can cause the system to loop, or to use up the system queue area. The I/O
supervisor (lOS) attempts to detect a hot I/O condition and perform recovery
before the system requires a re-IPL.

One of the tasks of the installation system programmer is to define the threshold
that the I/O supervisor is to use tq detect hot I/O. You may also specify the
recovery actions lOS is to take. For either task, you use the IECIOSxx member
of SYSl.PARMLIB.

When the number of repeated unsolicited I/O interrupts exceeds the
installation-defined threshold value, the system assumes there is a hot I/O
condition.

When the system detects a hot I/O condition, it checks the recovery action it is to
take according to your specifications on the HOTIO parameters in IECIOSxx. If
you specify the OPER option on the HOTIO parameters in IECIOSxx, the system
requests operator intervention.

IOSRHIDT: The HIDT

Module 10SRHIDT resides in the nucleus and contains the hot I/O detection
table. The IOSDHIDT macro (in SYSl.AMODGEN) maps the HIDT. See the
MVS/XA Debugging Handbook.

The HIDT contains the device threshold value that determines how many
consecutive unsolicited interrupts must occur before a given device is considered
"hot." The threshold value can range from 0 to 32,767 (X'7FFF'). A value of 0
indicates that no hot I/O detection is to be done. Too Iowa threshold value
could result in false hot I/O detection.

The HIDT also contains codes that indicate default recovery actions, along with
anchors to the control blocks used in determining and processing hot I/O
conditions.

The recovery actions are assigned codes according to whether the hot device is a
reserved DASD, a nonreserved DASD, or any other device.

Chapter 13. The Hot I/O Detection Table 13-1

The valid recovery action codes are:

JCode Meaning

X'OO' Operator is to specify the recovery action. This code causes lOS to issue message
IOSllOA, lOS 11 lA, or IOS1l2A, depending upon the device involved.

X'02' Box the hot device (force it offiine).

X'04' Initiate channel path recovery on the channel path over which the last interrupt was
received.

X'05' Force the channel path offiine.

Figure 13-1. Valid Hot 1/0 Recovery Action Codes

Any other values are invalid. When the system encounters an invalid recovery
action option, it issues a message (see "Modifying the HIDT") and obtains the
recovery action from the operator.

The system :'obtains recovery action from the operator" by issuing a message to
the console requesting operator intervention. If the HIDT value indicates an
action code other than X'OO', the system performs the action; it also issues
message IOSl091 to tell the operator that it is performing hot I/O recovery.

Default Values in IOSRHIDT

The version of 10SRHIDT supplied by IBM includes preset values for the
variables in the HIDT. To change these default values, use the options on the
internal parameters for HOTIO as defined in the IECIOSxx member of
SYSl.PARMLIB. See MVS/XA SPL: Initialization and Tuning. Figure 13-2
S)lOWS the default values and their meanings.

J

13-2 SPL: System Modifications

Offset Name 	 Meaning! Default Value2

24 (X'18') HIDDTHR 	 Hot I/O Threshold X'64' (decimal 100)

28 (X'le') HIDllODN 	 Hot non-DASD device; hot condition X'02'
is not recursive.

29 (X'lD') HIDlIODR 	 Hot non-DASD device; hot condition X'02'
is recursive.

30 (X'IE') HIDlIlDN 	 Hot non-reserved DASD; hot X'04'
condition is not recursive.

31 (X'IF') HIDlIlDR 	 Hot non-reserved DASD; hot X'02'
condition is recursive.

32 (X'20') HIDI12DN 	 Hot reserved DASD; hot condition X'04'
is not recursive.

33 (X'21') HIDI12DR 	 Hot reserved DASD; hot condition X'OO'
is recursive.

Notes:
! Recursive - If hot I/O recovery has been performed for a device, and that device becomes 'hot'

again without accepting a start I/O request, the hot condition is called 'recursive'.

If a recursive hot condition persists (three or more occurrences on a device), the system ignores

any nonzero recovery code in the HIDT and requests operator intervention.

2 	 See Figure 13-1 for the meanings of the valid recovery action codes.
3 	 The recovery action defaults are identified with the messages generated by the system for the

various types of hot I/O conditions:
• Message 10SllOA indicates a hot condition for a device other than a DASD.
• Message 10S11lA indicates a hot condition for a non-reserved DASD.
• Message IOS1l2A indicates a hot condition for a reserved DASD.

Figure 13-2. IBM Default Hot 1/0 Threshold and Recovery Actions.

Modifying the HIDT

To modify the threshold and code fields in 10SRHIDT, you use the IECIOSxx
member of SYSl.PARMLIB. Include in it the appropriate default values for hot
I/O for a given IPL.

MVS/XA Initialization and Tuning describes the format of a hot I/O record in
IECIOSxx, and contains more infomlation on using members of SYS1.PARMLIB
for customization.

Chapter 13. The Hot 1/0 Detection Table 13-3

J

13-4 SPL: System Modifications

Chapter 14. The Internal Reader Facility

The internal reader is a software substitute for a card punch and a card reader, a
tape drive, or a TSO terminal. Instead of putting a job into the system (via JES)
on punched cards, or via tape, you can use the output of one job or step as the
input to another job, which will be processed directly by the JES input service.

The internal reader facility is useful for several kinds of applications:

• 	 You can use it to generate another job or a series of jobs from an
already-executing job. An online application program may submit another
job to produce a report, for example, so it does not have to do it itself.

• 	 A job that produces a series of jobs can put its output to an internal reader
for immediate execution. For example, a job that updates data bases and
starts other applications based upon some input parameters or real-time
events, can use the internal reader for its output.

• 	 The operator can start utility programs to read jobs from disk or tape files
and submit them to the system. The IBM-supplied procedure 'RDR' is an
example of a program that does this (See MVS/XA SPL: JES2 Initialization
and Tuning).

• 	 The operating system itself uses internal readers for submitting the JCL to
start up started tasks (STCINRDR) or TSO logons (TSOINRDR).

• 	 A TSO logon session is, in effect, an executing program communicating with
a terminal. When the TSO user submits a job, the internal reader is the
mechanism used to perform the submittal.

Following is a discussion of the batch job internal reader, which is the facility you
can use to submit a job from within another job.

Setting Up and Using an Internal Reader

The process of setting up and using an internal reader involves five tasks:

• 	 Creating and allocating a data set
• 	 Opening the data set
• 	 Putting records into the data set
• 	 Closing/deallocating the data set
• 	 Passing the data set/records to the job entry subsystem for processing

Most of these tasks come under the heading of data management; they act as an
interface to the primary job entry subsystem, which does the actual I/O.

Chapter 14. The Internal Reader Facility 14-1

Note: The VSAM interface and all data management macros and routines reside
below the 16Mb line and operate in 24-bit addressing mode. Therefore, your
internal reader data sets will be allocated storage below the 16Mb line. See
MVS/XA SPL: 31-Bit Addressing for more information.

Allocating the Internal Reader Data Set

You allocate an internal reader data set, in any address space, either with JCL or
dynamically, as follows: .

• 	 Define the data set in the JCL for a job:

//JOBJCL DD SYSOUT=(A,INTRDR)

Notes:

1. 	 "INTRDR" is an IBM-reserved name identifying the internal reader as the
program to process this data set after it is created and written to.

2. 	 The SYSOUT class on this DD statement becomes the message class for
the submitted job unless you specify MSGCLASS on the JOB statement.

• 	 Use the following SVC 99 text unit keys to dynamically allocate an internal
reader data set:

DALSYSOU - define the SYSOUT data set and its class.
DALSPGNM - specify the SYSOUT program name (INTRDR).
DALCLOSE - request that INTRDR be deallocated at close.
DALRTDDN - request the return of the ddname assigned by dynamic
allocation.

See MVS/XA SPL: System Macros and Facilities for the format details of
dynamic allocation text unit keys.

Notes:

1. 	 The INTRDR data set has its own spool space; that is, other spool data sets for
the creating job/task do not share the same collection of spool tracks.
This data set isolation makes the INTRDR data set portable; it can be
transferred from one address space to another, freeing the spool space for reuse
when the J ES has finished entering the job (s) from the data set into the system.

2. 	 An INTRDR data set can contain any number ofjobs.

3. 	 The output destination of the INTRDR data set becomes the job origin of all
jobs contained within it.

4. 	 INTRDR data sets contain sequential, fixed-length records.

\
..."

J

J

14-2 SPL: System Modifications

Opening the Internal Reader Data Set

When JES2 or JES3 uses the internal reader, MVS data management routines
open the data set for output. You can do the same thing by coding the OPEN
macro, specifying the DSORG as PS. See MVS/XA Data Management Services
for information on using the OPEN macro.

Opening the INTRDR data set identifies it to the primary JES and prepares it to
receive records.

Sending Job Output to the Internal Reader

Code a WRITE (BSAM) or PUT (QSAM) macro to send records to the internal
reader.

You can put the output from a group of jobs into the INTRDR data set using a
JCL procedure; or you can enter them one job at a time.

You can select particular jobs for the internal reader, generate special job streams
for the internal reader using MVS utilities, or allow the operator to submit
production job streams to the internal reader from the console.

You can put the output from a secondary subsystem directly into the input stream
for JES processing, via an internal reader data set.

Closing the Internal Reader Data Set

While your program is issuing PUT macros to write records to the internal reader
data set, the internal reader facility is writing them into a buffer in your address
space. When that buffer is full, the internal reader data set is closed. The
contents of the buffer are copied by JES into another buffer in the JES address
space (JES3 then spools the data), from which JES input processing can enter
them into the system.

This input processing is the key to the internal reader: the records in the buffer
are input to the job you have specified, although they started out as output
records from another job. Instead of being sent to the JES output processor, they
are read into the system by input processing.

Filling the buffer in your address space results in the records being sent to the JES
for processing. Close processing terminates the data set; the JES considers it a
completed job stream and treats it as input. You can also send an internal reader
data set to the JES for processing by coding one of the following:

1. Code /*EOF as the last record in the job.

This JES2 control statement simulates the CLOSE instruction; it delimits the
current job and makes it eligible for immediate processing by the JES2 input
service.

If JES3 is the primary subsystem, /*EOF is a request for special end-of-record
processing. The internal reader facility closes the data set without deallocating
it, so it is still available for more records, and sends the job to the JES input
service.

Chapter 14. The Internal Reader Facility 14-3

2. Code /*DEL as the last record in the job.

This JES2 control statement cancels the job, and requests the output from the J
job. The job is immediately scheduled for output processing. The output will
consist of any JCL submitted so far, followed by a message indicating that
the job has been deleted before execution.

If JES3 is the primary subsystem, /*DEL is treated like /*EOF. The data set
is closed, but will be reopened when another record is written to it.

3. 	 Code /*PURGE as the last record in the job.

This control statement is used only by JES2 internal readers. It cancels the
current job and schedules it for purge processing; no output is generated for
the job.

4. 	 Code j*SCAN as the last record in the job.

This statement also applies only to JES2 internal readers. It requests that the
current job be scanned for JCL errors, but not executed.

5. 	 Close the internal reader data set, using the CLOSE macro, if you want it
deallocated.

You can put several groups of output records into the internal reader data set
simply by starting each group with another JCL JOB statement. The following
example illustrates this.

//JOBA JOB D58ELM1,MORRIS

//GENER EXEC PGM=IEBGENER

//SYSIN DD DUMMY

//SYSPRINT DD SYSOUT=A,DEST=2NDFLOOR

//SYSUT2 DD SYSOUT=(M,INTRDR)

//SYSUTl DD DATA

//JOBB JOB D58ELM1,MORRIS,MSGLEVEL=(1,1)

//REPORTl EXEC PGM=SUMMARY

//OUTPUT DD SYSOUT=*

//INPUT DD DSN=REPORTA,DISP=OLD

//JOBC JOB D58ELM1,MORRIS,MSGLEVEL=(1,1)

//REPORT2 EXEC PGM=SUMMARY

//OUTPUT DD SYSOUT=A,DEST=3RDFLOOR

//INPUT DD DSN=REPORTB,DISP=OLD

/*EOF

The IBM-supplied utility program IEBGENER is executed by job A. It reads
from SYSUTl, and submits to the internal reader, jobs Band C, which are
report-producing programs. Note that the message class for jobs Band C will be
M, the SYSOUT class on the internal reader DD statement. Also, the OUTPUT
data set from job B, because it specifies "*,, (defaulting to the job's message
class), will be class M.

The /*EOF control statement following the JCL indicates that the preceding jobs J.
can be sent immediately to the job entry subsystem for input processing. Coding
the CLOSE macro would have the same effect.

14-4 SPL: System Modifications

See MVS/XA SPL: JES2 Initialization and Tuning and MVS/XA SPL: JES3
Initialization and Tuning for more information about setting up and using internal
readers.

Requesting a Started Task To Execute on a Secondary Subsystem 14-5

Requesting a Started Task To Execute on a Secondary Subsystem

You can request that MVS start a task under a specific secondary subsystem by
using the ST ART command. MVS will assign an internal reader to the secondary
subsystem.

Not all subsystems can read JCL. Therefore, to route the JCL for a started task
to a secondary subsystem, the subsystem must:

• 	 be active when the START command is issued.
• 	 support an internal reader.
• 	 support job selection.

In an MVSjXA installation, JES2, JES3, and the Master Subsystem (MSTR) meet
these conditions.

The SUB = keyword of the ST ART command directs the J CL you specify to the
internal reader of the subsystem you specify. For example, the command:

START ANYPROC,SUB=JESX

sends the JCL procedure, ANYPROC, for the started task to the input service of
the subsystem, JESX. JESX assigns a job number, selects the task for execution,
and controls the task's output.

Restrictions when Routing the JCL to the Master Subsystem

There are four restrictions when you route the JCL procedure to the Master
Subsystem.

1. 	 The JCL procedure must not use DD SYSOUT.

The Master Subsystem cannot start any jobs requiring system output services.
Therefore, if the JCL for a job includes the SYSOUT keyword on a DD
statement, MSTR cannot start the job. For example, if you enter:

START RMF,SUB=MSTR

the RMF task will start. However, if it attempts to open a SYSOUT data
set, it will abend. The error message will indicate that there is a JCL error.

2. 	 The JCL procedure may only allocate datasets in the master catalog.

You cannot use private catalogs when starting a task under the Master
Subsystem.

3. 	 The JCL procedure must specify a non-zero value on the TIME keyword on
the EXEC statement.

If you do not specify a value for TIME, the task will abend. The message
error will indicate that there is a TIME error.

J4. 	 The JCL procedure must reside in SYS1.PROCLIB.

14-6 SPL: System Modifications

Defaults For The Subsystem

If you do not code a SUB = parameter on the START command, the starting
subsystem is the primary job entry subsystem. However, if the task to be started
is a subsystem, the Master Subsystem starts the task.

Requesting a Started Task To Execute on a Secondary Subsystem 14-7

J

14-8 SPL: System Modifications

Chapter 15. The External Writer

An external writer is a group of modules that perform output processing for data
sets not eligible for processing by the primary job entry'subsystem. An example
of such a data set would be one destined for a non-IBM printer; or one to be
stored on a device not supported by MVS.

IBM provides an external writer, as part of MVS, that has the following features:

It runs as a started task, in its own address space, in 24-bit addressing mode. •
• 	It removes data sets from the JES spool, dynamically allocates them, reads

them, writes them to output devices, and dynamically deallocates them.

It processes only those data sets that meet its selection criteria. You set these •
at IPL, but you can modify them via the START command.

The usual technique for setting data set selection criteria is to build a list of
eligible SYSOUT classes for the devices that will use the external writer.

However, an external writer can access data sets according to any or all of the
following characteristics:

output class
job ID
forms specification
destination (LOCAL, or remote workstation name)
the name of your output writing routine

• 	 You can use the external writer as provided by IBM, or you can rewrite parts
of it to fit your own requirements. It was designed to be modified by its
users.

• 	 As shipped, it is set up to write class-A SYSOUT data sets to local tape
devices, but it can be used to write to any QSAM-supported device.

The two major parts of the IBM external writer that can be modified or replaced
are the data set processing subtask (the output writing routine) and the output
separator routine. In order to see how you could write your own versions of these
modules, you need to know how IBM's versions work.

Chanter 15. The External Writer 15-1

STDWTR: IBM Standard Output Writing Routine

In IBM's external writer, the output writing routine:

1. 	 Issues an OPEN (J type) for the input data set previously taken from the JES
spool.

• 	 The "input data set" started out as an output data set whose SYSOUT
class made it eligible for processing by the external writer.

• 	 The output writing routine provides its own SYNAD error- handling
routine, on behalf of both the input and output data sets. See MVS/XA
Data Management Macro Instructions for more information about
OPEN-J and SYNAD.

2. 	 Reads the input data set, using the locate mode of the GET macro.

3. 	 Calls a subroutine to handle ANSI and machine control-character differences
and to handle conversions between the input records and the output data set.

4. 	 Calls a routine to write records to the output data set, using the locate mode
of the PUT macro.

5. 	 Closes the input data set after it has been read, and returns control to the
main logic control module of the external writer, using the RETURN macro
and setting a return code.

The module name for the output writing routine is IEFSD087. If you alter or
replace the output writing routine code, you must re-linkedit the new module with
module IASXWROO, the external writer initialization routine. You must call the
new module IEFSD087. IASXWROO is executed by the IBM-supplied cataloged
procedure, XWTR. See "The External Writer Cataloged Procedure."

Parameter List for the External Writer

The main function of module IASXWROO is to initialize a 12-byte parameter list
(PARLIST) for the use of the other external writer routines.

J

J

15-2 SPL: System Modifications

The parameter list contains information about the output devict and DeB
addresses for each data set. Its format follows:

Byte 0 Bits 0-3 The three high-order bits describe the type of output device:

OIl. 2540 punch unit
001. 1403, 3203-5, 3211, or 3800 printer device
010. tape device with punch-destined output
000. tape device with printer-destined output

If bit 2 is on, the output unit is either a printer or a punch.

Bytes 1-3 Not used, but must be present
Bytes 4-7 The address of the DCB for the opened output data set, where the external
writer will put the input records.

Bytes 11-11 The address of the DCB for the input data set, from which the writer will
obtain logical records. (When this parameter list is given to the external writer,
the input data set is not open.)

Figure 15-1. External Writer Parameter Ust

The switches indicated by the three high-order bit settings in byte 0 can be used in
translating control character information from the input records to the form
required by the output device.

Replacing the Standard Output Writing Routine

Figure 15-2 shows the general logic flow of the standard external writer. The
following paragraphs present more detailed requirements and programming
considerations for coding a replacement for the standard output writing routine.

Writing Your Own Output Writing Routine

IBM's external writer includes the standard output writing routine, called
STDWTR.

If, when the extern~l writer is started from the console, the operator does not
specify the name of your output writing routine as one of the data set selection
criteria, STDWTR does the output processing for that data set.

The output writing routine must issue an OPEN-J macro to open the desired
input data set. The processing program that invokes the external writer has
opened, written to, and closed the input data set on a direct access device.

The data set to which the output writing routine will write records is opened
before the routine is loaded. The IBM-supplied output writing routine writes type
6 records to the output data set, providing accounting support for SMF.

Chapter U. The External Writer 15-3

Coding Conventions for the Output Writing Routine

In order for your output writing routine to work in the external writer, the
following conventions must be observed:

• 	 The routine must be reentrant.

• 	 You must link-edit it into the load module IASXWROO, and it must reside in
SYS1.LINKLIB or a library concatenated to LINKLIB via a LNKLSTxx
member of SYSl.PARMLIB.

• 	 You must specify its name in the SYSOUT parameter of the appropriate
output DD statement, in the JCL for the job or step that calls the external
writer. For example, when you want the external writer to use IBM's output
writing routine, you use IEFSD087, the module name.

• 	 The routine must use standard entry and exit linkage, saving and restoring its
caller's registers.

At entry, register 1 points to the parameter list (See Figure 15-1), and register
13 points to an I8-word save area.

• 	 The routine must use the GETMAIN and FREEMAIN macros to acquire
and release any necessary storage.

• 	 The routine must return control to its caller via the RETURN macro, in the
same addressing mode it was called in. It must put a return code in
register 15:

A return code of 0 indicates that the data set was processed successfully
to the output device.

A return code of 8 indicates that the routine was unable to process the
data set because of an output error.

J

15-4 SPL: System Modifications

Return To
Module IASXWROO

Entry From Control
Program Module
IASXWROO

Get Main storage

Open I nput Data Set

__J

< Get Input Record>

Modify Input Record
Length For Control
Character

Translate Control
Character For Output
If Required

No

Set Message If Invalid
________________ L--...:C...:a",n..:.tr;.;:a:..:.I...:C:..:.h:.:a:;..r.:;,ac.:;,t:.:e::..r__-,

Figure 15-2. General Logic of IBM's External Writer Routine

----------------~'___D_C_B_E_X'-11t_R_o_u_t_in_e_----'
- I

8

I~

If Printer, Adjust
Control Character
Attachment

Put Record In
Output Data Set

No

Process Last Record
and Set Up for EOF

Close Input Data Set

Chapter 15. The External Writer 15-5

L

Programming Considerations for the Output Writing Routine

In addition to the coding conventions, consider the following when writing your J
own output writing routine:

• 	 Obtaining Storage for Work Areas: Using the GETMAIN macro, the output
writing routine should obtain storage in which to set up switches and save
record lengths and control characters.

• 	 Processing an Input Data Set: To process a data set, the writing routine must
get each record individually from the input data set, transfonn (if necessary)
the record fonnat and the control characters to confonn to the output data
set's requirements, and put the record in the output data set. Consider each
of these tasks individually:

1. 	 What must be done before the routine actually obtains a record from an
input data set?

If the output device is a printer, the routine must provide a way to handle
the two fonns of record control character that are allowed in an output
data set. Most printers are designed so that if the output data set records
contain machine control characters, a record (line) is printed before the
effect of its control character is considered. However, if ANSI control
characters are used in the output records, the control character's effect is
considered before the printer prints the line.

Thus, if the input data sets do not all have the same type of control
characters, you will need to avoid overprinting the last line of one data
set with the first line of the next.

When the input records have machine control characters and the output
records are to have ANSI control characters, the standard (IBM-supplied)
output writing routine produces a control character that indicates one line
should be skipped before printing the first line of output data.

When the input records have ANSI control characters and the output
records are to have machine control characters, the standard writing
routine prints a line of blanks before printing the first actual output data
set record. Following this line of blanks, the printer generates a one-line
space before printing the first record.

Depending upon the characteristics of the printers in your installation,
you will probably want your output writer to perfonn some kind of
"printer initialization" like that outlined here.

2. 	 After the output writing routine has properly opened the input data set,
and has completed any necessary printer initialization, it must obtain
records from the input data set.

The standard output writing routine uses the locate mode of the GET
macro. If you use this macro, you will need to check the MACRF field
of the input data set's DCB to see if GET in locate mode is allowed. If
not, you can override the MACRF parameter on the GET macro itself.

15-6 SPL: System Modifications

See MVSjXA Data Management Macro Instructions for information on
coding and using all the QSAM macros.

3. 	 Having obtained a record from the input data set, the output writing
routine must now make sure that its format and control character are
compatible with the requirements of the output data set.

Because the output data set is already opened when the output writing
routine is entered, your routine will have to adhere to the established
conventions.

The standard output writing routine uses the PUT macro in the locate
mode to write records to the output data set. For fixed-length output, it
obtains the record length for the output data set from the DCBLRECL
field of the DCB.

If an input record is longer than the length specified for the output
records, the standard output writing routine truncates the input record
from the right.

If an input record is shorter than the length specified for the output
records, the standard output writer left-justifies the input record and pads
the field with blanks.

When the output record length is variable and the input record length is
fixed, the standard output writer adds control character information (if
necessary) and variable record control information to the output record.
Control character information is one byte, and record control information
is four bytes long. Both additions are at the high-order end of the record.

If the output record is not at least 18 bytes long, the standard output
writer pads it on the right with blanks.

The standard output writer also adjusts the length of the output record to
match the length of the output buffer.

4. 	 When the output writing routine has successfully adjusted the input and
output records, it can read the input data set until end of data. At that
point, you need to consider another aspect of input data set processing:
what is going to happen to the last input record?

The standard output writer handles output to either card punch or
printer, as required; your routine could also send output to an
intermediate tape or DASD device. Depending upon the kind of device,
the last few records obtained from the input data set will receive different
treatment.

It might happen that all the records from a given data set are not
available on the output device until the output of records from the next
data set is started, or until the output data set is closed. When the output
data set is closed, the standard output writer automatically puts out the
last record of its last input data set.

Chapter 15. The External Writer 15-7

For Punch Output: When a card punch is the output device, the last three
output cards could still be in the machine when the input data set is
closed.

To put out these three records with the rest of the data set, and with no
breaks, the standard output writer provides for three blank records
following the actual data set records.

For Printer Output: When a printer is the output device, the last record
of the input data set is not normally put in the output data set at the time
the input data set is closed.

To force out this last record, the standard output writer generates a blank
record to follow the last record of the actual data set.

• 	 Closing Input Data Set(s): After the standard output writer finishes putting
out the records of an input data set, it closes the data set before returning
control to the calling module. All input data sets must be closed.

• 	 Releasing Main Storage: The output writing routine should release the
storage it acquired, using the FREEMAIN macro, before returning to its
caller.

• 	 Handling Errors: The routine must put a return code into register 15 before
returning to its caller using the RETURN macro.

The standard output writer sets a return code of 8 if it terminates because of J
an unrecoverable error on the output data set. Otherwise, the return code is
0: 	 the output writing routine must handle input errors itself.

IEFSD094: The Output Separator Routine

Any output processing to a punch or printer must include a means of separating
one job from another within the continuous deck or listing.

Part of IBM's external writer is module IEFSD094, which writes separation
records to the output data set prior to the writing of each job's output.

You can modify this separator routine to suit your installation's needs, or you can
create your own routine. IBM's version does the following:

• 	 For Punch-Destined Output: The separator routine provides three
specially-punched cards (deposited in stacker 1) prior to the punch card
output of each job. Each of these cards is punched in the following format:

Columns I to 35 blanks
Columns 36 to 43 jobname
Columns 44 to 45 blanks
Column 46 output c1assname
Columns 47 to 80 blanks

15-8 SPL: System Modifications

• 	 For Printer-Destined Output: The IBM-supplied separator routine provides
three specially-printed pages prior to printing the output of each job. Each of
these separator pages is printed in the following format:

Beginning at the channel I location (nonnally near the top of the page),
the jobname is printed in block characters over 12 consecutive lines. The
first block character of the 8-character jobname begins in column II.
Each block character is separated by 2 blank columns.

The next two lines are blank.

The output classname is printed in block characters covering the next 12
lines. This is a I-character name, and the block character begins in
column 35.

The remaining lines, to the bottom of the page, are blank.

In addition to the block characters, a full line of asterisks (*) is printed
twice (that is, overprinted) across the folds of the paper. These lines are
printed on the fold preceding each of the three separator pages, and on
the fold following the third page. This is to make it easy for the operator
to separate the job output in a stack of printed pages.

To control the location of the lines of asterisks on the page, the IBM-supplied
separator routine requires that a channel 9 punch be included (along with the
channel I punch) on the carriage control tape or in the forms control buffer
(FCB). The channel 9 punch should correspond to the bottom of the page.
The printer registration should be offset to print the line of asterisks on the
fold of the page.

The IBM-supplied separator routine makes no provision for the 3800 printing
subsystem; if you use it on a 3800, the FCB must locate a channel 9 punch at
least one-half inch from the paper perforation.

Separator Routine Parameter list

IBM's external writer provides its separator routine with a 4-word parameter list
of necessary information. When the separator routine receives control, register 1
contains the address of the parameter list, which contains the following:

Byte 0 This byte contains switches that indicate the type of output device,
as follows:

011. 2540 punch device
001. 1403, 3203-5, 3211, or 3800 printer device
010. tape device with punch-destined output
000. tape device with printer-destined output
Bytes 1-3 Reserved

Bytes 4-7 This word is the address of the output DCB.

Bytes 8-11 This word is the address of an 8-character field containing the jobname.

Bytes 12-15 This word is the address of a I-character field containing the output

c1assname.

Figure 15-3. Parameter List for Separator Routine

Chapter 15. The External Writer 15-9

The parameter list points to a DCB; this DCB is established for the QSAM
output data set, which is already open when the separator program receives
control. J
The address of the jobname and the address of the output classname are provided
in the parameter list so they can be used in the separation records the separator
routine writes.

Output from the Separator Routine

A separator routine can write any kind of separation identification. IBM supplies
a routine that constructs block characters. (See "Using the Block Character
Routine.") The separator routine can punch as many separator cards, or print as
many separator pages, as necessary.

The output from the separator program must conform to the attributes of the
output data set. To find out what these attributes are, examine the open output
DCB pointed to by the parameter list. The attributes are:

• 	 Record format (fixed, variable, or undefined length)
• 	 Record length
• 	 Type of carriage control characters (machine, ANSI, or none)

For printer-destined output, a separator routine can begin its separator records on
the same page as the previous job output, or skip to any subsequent page.
However, the separator routine should skip at least one line before writing any
records because in some cases the printer is still positioned on the line last printed.

After completing the output of the separation records, the separator routine J
should write sufficient blank records to force out the last separation record. This
also allows the 'error exit routine to obtain control if an uncorrectable output
error occurs while writing the last record. One blank record, for printer-destined
output, and three blank records, for punch-destined output, are sufficient to force
ourthe last record.

Writing an Output Separator Routine

If you write your own separator routine, it must conform to the following
requirements:

• 	 The routine must be named IEFSD094, and must reside in SYSl.LINKLIB
or in a library concatenated to LINKLIB via a LNKLSTxx member of
SYS I.PARMLIB.

• 	 The routine must use standard entry and exit linkages, saving and restoring its
caller's registers, and returning to its caller via the RETURN macro, with a
return code in register 15.

• 	 The routine must use the QSAM PUT macro in locate mode to write
separation records to the output data set.

• 	 The routine must use the GETMAIN and FREEMAIN macros to obtain and
release the storage required for work areas. J

15-10 SPL: System Modifications

• 	 The routine must establish its own synchronous error exit routine, and place
the exit address in the DCBSYNAD field of the output DCB. The error
routine will receive control during output writing in case of an uncorrectable
I/O error; it must set a return code of 8 (binary) in register 15 to indicate an
unrecoverable output error.

If the separator routine completes processing successfully, it must set a return
code of 0 in register 15, before returning to its caller.

Note: The separator routine receives control in problem-program state, but with
a protection key of O. Therefore, the routine must ensure data protection during
its execution.

Using the Block Character Routine

For printer-destined output, the separator routine can use an IBM-supplied
routine to construct separation records in a block character format. This routine
is a reentrant module named IEFSD095 that resides in the module library
SYSl.AOSBO.

The block character routine constructs block letters (A to Z), block numbers (0 to
9), and a blank. The separator routine furnishes the desired character string and
the construction area. The block characters are constructed one line position at a
time. Each complete character is contained in 12 lines and 12 columns; therefore,
a block character area consists of 144 print positions. For each position, the
routine provides either a space or the character itself.

The routine spaces 2 columns between each block character in the string.
However, the routine does not enter blanks between or within the block
characters. The separator routine must prepare the construction area with blanks
or other desired background before entering the block character routine.

To invoke the IBM-supplied block character routine, the IBM-supplied separator
routine executes the CALL macro with the entry point name of IEFSD095. Since
the block characters are constructed one line position at a time, complete
construction of a block character string requires 12 entries to the routine. Each
time, the address of a 4-word parameter list is provided in register 1.

The parameter list contains the following:

Bytes 0-3 This full word is the address of a field containing the desired character string in
EBCDIC format.

Bytes 4-7 This fullword is the address ora field containing the line count as a binary integer
from I to 12. This represents the line position to be constructed on this call.

Bytes 8-11 This word is the address of a construction area where the routine will build a line
of the block character string. The required length in bytes of this construction
area is 14n-2, where n represents the number of characters in the string.

Bytes 12-15 This word is the address of a fullword field containing, in binary, the number of
characters in the string.

Chapter 15. The External Writer 15-11

The External Writer Cataloged Procedure

In order for an external writer to work in the MVSjJES2 or JES3 environment, it J
must be described to the system in a cataloged procedure residing in
SYSl.PROCLIB; and it must be started by a START command, either from the
system console or from within a problem program.

The IBM-supplied external writer is described and invoked by the cataloged
procedure named XWTR, which can serve as the base or a model for a procedure
you would write for your own output writer.

XWTR contains one step and consists of two JCL statements:

• 	 The EXEC statement specifies the name of the external writer program to be
executed.

• 	 The DD statement defines the output data set.

Following is the actual XWTR procedure:

IIIEFPROC EXEC PGM=IASXWROO,REGION=20K 	 X
II 	 PARM='PA,IEFSD094'
IIIEFRDER DO UNIT=2400,VOLUME=(",3S), 	 X
II 	 DSNAME=SYSOUT,DISP=(NEW,KEEP), X
II 	 DCB=(BLKSIZE=133,LRECL=133,BUFL=133, X
II 	 BUFNO=2,RECFM=FM)

The EXEC Statement

The generalized format for the EXEC statement is: J
IIIEFPROC EXEC PGM=IASXWROO[,REGION=nnnnnK,ADDRSPC=REAL]
II [,PARM='cxxxxxxxx[,seprname']]

The stepname must be IEFPROC, as shown. The parameter requirements are as
follows:

PGM =IASXWROO
The name of the external writer load module. It must be IASXWROO, as
shown.

REGION =uunnoK
This parameter specifies the region size for the external writer program.
The value nnnnn is a 1- to 5-digit number that is multiplied by lK (1024
bytes) to designate the region size. The region size can vary according to
the size of buffers and the size of your output writing routine. Insufficient
region size will cause the external writer to abend.

ADDRSPC = REAL
Ensures that the external writer program will not be paged out during
execution.

PARM = ('cxxxxxxxx(,sepmame'J)
This is a set of parameters for the output writing routine. The first part of
the field can contain one to nine characters; the second part of the fieldJ
contains the name of the output separator routine.

15-12 SPL: System Modifications

The DD Statement

c
An alphabetic character, either P (for printer) or C (for card punch),
that specifies the control characters for the class of output the output
writing routine will process.

xxxxxxxx
From one to eight (no padding required) single-character SYSOUT
classnames. These characters not only specify the classes the output
writing routine will process, they also establish the priority for those
classes, with the highest priority at the high-order end of the character
string.

Note: If the START command includes classname parameters, they
override all of the classnames coded here. If you do not code
classnames on the procedure EXEC statement or the START
command, then the external writer will wait for a MODIFY command
from the operator before processing any output.

seprname
This is the name of the output separator routine to run with the
output writing routine. IBM's output separator routine is named
IEFSD094. If you write your own output separator routine, you must
name it IEFSD094 and and put its name in SYSl.LINKLIB (or a
library concatenated to LINKLIB via a LNKLSTxx member of
parmlib). In order for your separator routine to be invoked, you must
code its name on this subparameter. If this subparameter is omitted,
no output separator pages are produced.

You must define the output data set the external writer will use in this statement.
The generalized format for the DD statement is:

IIIEFRDER DO UNIT=device,LABEL=(,type), x
II VOLUME=(",volcount),DSNAME=anyname, X
II DISP=(NEW,KEEP) ,DCB=(list of attributes), X

UCS=(codeffl,FOLDlfffl,VERIFylf) ,II 	 X
II FCB=(image-id 	 ,ALIGN)

,VERIFY

This must be the first DD statement in the procedure. The ddname should be
IEFRDER, as shown. However, the system will always treat the first DD
statement in this procedure as an output data set, regardless of the ddname. The
parameter requirements are as follows:

UNIT = device
This specifies the printer, tape, card punch, or DASD device on which the
output data set is to be written.

LABEL =type
This describes a data set label, if one is needed (for tape data sets only). If
this parameter is omitted, a standard tape label is used.

Chapter 15. The External Writer 15-13

VOLUME =(",volcount)
Needed for tape data sets only, this parameter limits the number of tape
volumes that this external writer can use during its entire operation. J

DSNAME == anyname
This specifies a name for the output data set, so later steps in the procedure
can refer to it. The data set name is required for the disposition of KEEP.

DISP'" (NEW,KEEP)
The disposition of KEEP prevents deletion of the data set (tape and DASD
only) at the end of the job step.

DCB - (list of attributes)
The DCB parameter specifies the characteristics of the output data set and
the buffers. The BLKSIZE and LRECL subparameters are always required.
The BUFL value, if you do not code it, is calculated from the BLKSIZE
value. Other subparameter fields may be coded as needed; if they are not,
the defaults are the QSAM default attributes. These are:

BUFNO- Three buffers for the 2540 punch; two buffers for all other devices.

RECFM- V-format, with no control characters.

TRTCH- Odd parity, no data conversion, and no translation.

DEN- Lowest density.

OPTCD- Printer data checks are suppressed, and "select translate table" characters are
printed as data. The IBM external writer does not support OPTCD = J, a 3800
printing subsystem specification.

UCS =(code(,FOLD](,VERIFy])
This specifies the code for a universal character set (UCS) image to be
loaded into the UCS buffer.

FOLD causes bits 0 and 1 to be ignored when comparing characters
between the UCS and print line buffers, thereby allowing lowercase
alphabetic characters to be printed (in uppercase) by an uppercase print
chain or train.

VERIFY causes the specified UCS image to be printed for verification by
the operator.

The UCS parameter is optional, and is valid only when the output device is
a 1403, a 3211, or a 3203-5 printer.

FCB-(image-id ,ALIGN)
,VERIFY

This causes the specified forms control buffer (FCB) image to be loaded into
the FCB. ALIGN and VERIFY are optional subparameters that allow the
operator to align forms. In addition, VERIFY causes the specified FCB
image to be printed for visual verification. The FCB parameter is valid only
for a 3203-5, 3211, or 3800 printer; otherwise, it is ignored.

See MVS/XA JCL for more information on the parameters mentioned here.

15-14 SPL: System Modifications

Special Printer Output Considerations: To process output jobs that require special
chains for printing, you should have specific classes for each different print chain.
You can specify the desired chain in your output writer procedure, and when that
output writer is started, the chain will be loaded automatically. (printers used with
special chains should be named with esoteric group names as defined at sysgen
time. See "The Eligible Device Table."

Following is an example of the JCL needed to define a special print chain in a
cataloged procedure for an external writer.

IIIEFPROC EXEC PGM=IASXWROO,REGION=20K,PARM=' PDEG, IEFSD094 ,

IIIEFRDER DO UNIT=SYSPR,DSNAME=SYSOUT,FCB=(STD2,ALIGN) ,

II UCS=Pll,DISP=(,KEEP),

II DCB=(BLKSIZE=133,LRECL=133,BUFL=133,

II BUFNO=2,RECFM=FM)

In this example, the UCS DD parameter requests the Pll print chain for data sets
in the SYSOUT classes D, E, and G.

If the output device is a 3211 or a 3203-5, a UCS or FCB image can be loaded
dynamically between the printing of data sets. Therefore, you can specify a
mixture of data sets using different images in a single output class for this device.
This will probably require mounting trains and changing forms, however, so it
might not be desirable.

When the output device is a 1403 or 3800, the UCS image or 3800 attributes are
specified at START XWTR time; they cannot be changed until the writer is
stopped. Therefore, all data sets within an output class must be printed using the
same train.

The FCB image is ignored when the 1403 printer is the output device.

External writer output to an IBM 3800 Printing Subsystem can also make use of
the CHARS, COPIES, FLASH, and MODIFY JCL parameters on the DD
statement. For information about using these parameters, see IBM 3800 Printing
Subsystem Programmer's Guide. The coding rules and defaults are documented in
MVS/XA JCL Reference.

X
X
X

Chapter 15. The External Writer 15-15

J

15-16 SPL: System Modifications

Chapter 16. The Virtual Fetch Service

Virtual fetch is a service that reduces the time required to locate a load module
and bring it into storage for execution. The virtual fetch service runs as a started
task in its own address space. When virtual fetch manages a module, it makes a
reformatted copy of the module and moves it to a VIO data set that it owns.

Moving load modules from a data base device complex to paging devices can
reduce contention for data base channels in your installation. At the same time,
the VIO data set is quickly accessible when needed, and virtual fetch relocates the
load module's address constants efficiently.

Thus, you can use virtual fetch to improve the responsiveness of interactive
subsystems or other large-scale processing programs. Using the virtual fetch
service on a system with extended storage will usually result in greater
responsiveness for those load modules in the virtual fetch data set that are
frequently referenced.

Virtual fetch could handle any load module that is executable and not in overlay
format. However, a load module that virtual fetch is to manage must also be
read-only. Because virtual fetch runs as a started task, you must define these
modules to the service by placing DD statements in the JCL procedure that starts
the virtual fetch address space. The DD statements identify the load libraries
virtual fetch is to manage.

You will need to place the virtual fetch JCL procedure in SYSl.PROCLIB. You
must define this procedure as described in the section "Installation Support." You
can further control access to the virtual fetch service by placing the virtual fetch
initialization program in a RACF- or password-protected data set.

Functions of Virtual Fetch

Once the service has been initialized, any user can obtain modules from virtual
fetch, regardless of the caller's state or key.

The virtual fetch functions - initialization, build, find, and get - are described in
the following pages.

Chapter 16. The Virtual Fetch Service 16-1

The Virtual Fetch Initialization Function: CSVVFCRE

The initialization function establishes the virtual fetch service address space.
Initialization consists of starting program CSVVFCRE any time after JES
initialization.

CSVVFCRE initializes the cross-memory environment by creating the virtual
fetch cross-memory entry table. The entry table allows callers in other address
spaces to issue program call (PC) instructions to the virtual fetch search routine
(CSVVFSCH). CSVVFSCH runs in the virtual fetch service address space.

Another cross-memory entry table, created by PCjAUTH during MVS system
initialization, allows virtual fetch interface routines to issue PC instructions to get
into supervisor state.

CSVVFCRE also creates the virtual fetch control block (VFCB) in the common
area, creates a read-only VIO data set of reformatted load modules, and creates a
hash table of virtual fetch directory entries (VFDEs). Each VFDE points to one
of the reformatted load modules in the VIO data set.

The hash table resides in the virtual fetch service address space. Virtual fetch
owns the VIO data set and can read it from any address space.

Program CSVVFCRE is also active during a request to refresh virtual fetch
modules; see "Refreshing Virtual Fetch."

If the initialization of virtual fetch is unsuccessful, CSVVFCRE returns to the
caller with a return code in register 15. The codes and their meanings are:

Code Meaning

4 Another virtual fetch service address space already exists. CSVVFCRE ignores this
initialization request and issues message CSVI08I.

8 Either the caller requested virtual fetch service address space initialization without
providing load modules, or the caller did not provide any valid directory entries for the
load modules. CSVVFCRE ignores this initialization request and issues message
CSV103I.

12 CSVVFCRE received a processing error from ASM's ASSIGN-LGN service when
allocating the VIO data set. CSVVFCRE ignores this initialization request and issues
message CSV117I.

16 CSVVFCRE received a processing error from RSM's ASSIGN-NULL service when
creating a VIO window. CSVVFCRE ignores this initialization request and issues
message CSVI171.

20 CSVVFCRE received a processing error from RSM's MOVEOUT-disconnect service
when writing a reformatted load module to the VIO data set. CSVVFCRE ignores this
initialization request and issues message CSV1171.

24 CSVVFCRE was not invoked as a started task.

J

16-2 SPL: System Modifications

Once the virtual fetch service has been initialized, a problem program can call
virtual fetch to perform three functions:

• 	 To manage a module for the caller (a BUILD request)

• 	 To determine if virtual fetch is managing a module for the caller (a FIND
request)

• 	 To pass control to a module (a GET request)

The environment prior to the initialization of virtual fetch is illustrated in
Figure 16-1. Figure 16-2 illustrates the environment after virtual fetch
ini tializa tion.

Chapter 16. The Virtual Fetch Service 16-3

EXTENDED NUCLEUS

CSVVFTCH
(GET)

NUCLEUS

+CVT

CVTVFIND

CVTVFGET

CVTVFCB

CSA

CSVVFGTE
(GET)

1
/1"

I-­

r- ­

CSVVFNDE
(BUILD/FIND)

CSVVFGLU

"" CSVVFIND
(BUILD/FIND)

"" CSVVFGET
(GET)

CSVVFSNC
(GET)

J
START command
from console

Figure 16-1. Environment Prior to Virtual Fetch Initialization

16-4 SPL: System Modifications

J

EXTENDED NUCLEUS

CSVVFTCH CSVVFGTE CSVVFNDE
(GET) (GET) (BUILD/FIND)

NUCLEUS

CSVVFGLU1 J­CVT
-"" CSVVFIND

CVTVFIND f-----~-----j,~ (BUILD/FIND)

CVTVFGET r---- CSVVFGET
(GET)

~ eVTVFeB
CSVVFSNC
(GET)

CSA

USER ADDRESS SPACE \RTUAL FETCH ADDRESS SPACE

HASH TABLE

VFHE
~ /

VIO

DATA

SET

-C MODULE
A

CSVVFCRE
(INITIALIZATION)

CSVVFSCH
(FIND)

Figure 16-2. Environment After Virtual Fetch Initialization

Chapter 16. The Virtual Fetch Service 16-5

The Virtual Fetch Build Function: CSVVFNDE

The virtual fetch build function (module CSVVFNDE) creates the virtual fetch
work area (VFWK) for the named module, in the caller's address space. When
called for the first time, it also creates the virtual fetch vector table (VFVT) for
the caller.

The VFWK identifies the module that the caller wishes to access via the virtual
fetch find and get functions.

The Virtual Fetch Find Function: CSVVFSCH

FIND requests invoke module CSVVFNDE to perform the find function. The
find function locates (via module CSVVFSCH) the virtual fetch directory entry
(VFDE) for the named module in the virtual fetch service address space and
copies the VFDE into the VFWK in the caller's address space. A return code
indicates whether or not a VFDE for the named module was found.

The Virtual Fetch Get Function: CSVVFGET, CSVVFTCH

The virtual fetch get function uses the VFDE in the VFWK to obtain a copy of
the named module from virtual fetch's read-only VIO data set. Virtual fetch then
completes relocation of address constants and passes control to the named
module. Return flags in the virtual fetch parameter list (VFPM field VFPMRTN)
indicate if the module was invoked.

The get function is activated via a call to a virtual fetch routine (CSVVFGET)
pointed to by field CVTVFGET in the CVT. CSVVFGET invokes module
CSVVFGTE.

Using the VFDE obtained by CSVVFNDE, CSVVFGTE calls CSVVFTCH to
page in a copy of the named module and complete relocation of its address
constants.

CSVVFGTE then passes control to the named module. When the named module
completes, CSVVFGTE cleans up and returns to the caller of CSVVFGET.

Installation Support for the Virtual Fetch Service

If the virtual fetch service address space terminates, it can be restarted by a
START command from the operator's console.

Termination of the virtual fetch service address space does not affect the caller's
address space; callers are informed that modules cannot be obtained from virtual
fetch. In the case of a FIND request, CSVVFNDE returns a code of 8 in register
15. In the case of a GET request, CSVVFGTE sets on (1) bit VFPMRESH in
VFPMRTN. Callers should then use conventional linkage mechanisms to invoke
their modules.

When load modules are managed by virtual fetch, they can be updated. That is,
if you make changes to the partitioned data sets that are input to virtual fetch,
virtual fetch can create a new VIO data set and hash table to reflect these
changes.

16-6 SPL: System Modifications

Starting Virtual Fetch

The virtual fetch refresh process makes all updates take effect simultaneously.
The refresh process is not, however, automatic. When you want to update a
module managed by virtual fetch, you must explicitly request virtual fetch refresh
processing.

Virtual fetch cannot serialize refresh requests or initialization processing with any
updates to the load modules it is managing. You must coordinate the updating of
load modules with requests for virtual fetch processing.

The program that creates the virtual fetch service address space is CSVVFCRE.
The operator can start CSVVFCRE by issuing a START command, or you can
place the START command in a COMMNDxx member of SYSl.PARMLIB; in
this case, the operator starts CSVVFCRE when he includes CMD = xx in his
response to the "SPECIFY SYSTEM PARAMETERS" message during an IPL.
The JCL procedure that executes CSVVFCRE must be in SYSl.PROCLIB. In
either case, virtual fetch must be invoked as a started task.

Only one virtual fetch service address space can exist at anyone time. Therefore,
include in the virtual fetch service ALL the modules needed by any users of
virtual fetch.

Virtual fetch's build, find and get processing operate at the priority of the calling
program.

The procedure that executes CSVVFCRE must contain DD statements with
names in the range VFINOO to VFIN99. These DD statements define partitioned
data sets containing the load modules to be managed by the virtual fetch service.

Although JCL DD concatenation is not supported, the DD statements are opened
in the order implied by their ddnames (for example, VFIN04 before VFIN07),
giving the effect of up to 100 concatenated data sets.

Virtual fetch attempts to access, in numerical order, every DD name from
VFINOO to VFIN99. Therefore, the order in which the DD statements appear is
irrelevant.

The following example of a started procedure for virtual fetch illustrates the use
of the VFINnn names:

//IEFPROC EXEC PGM=CSVVFCRE,TIME=1440
//VFINOO DD DSN=LIB1,DISP=SHR
//VFIN03 DD DSN=LIB2,DISP=SHR
//VFIN02 DD DSN=LIB4,DISP=SHR
//SYSUDUMP DD SYSOUT=A
/*

In this example, the sequence of the data sets as opened by virtual fetch is LIBI,
LIB4, and LIB2.

Chapter 16. The VirtuaJ Fetch Service 16-7

Notes:

1. 	 You should not code FREE = CLOSE on DD statements describing the virtual
fetch libraries. The resulting deallocation of the libraries makes them
unavailable for subsequent virtual fetch processing.

2. 	 If there are identically-named modules in the virtual fetch libraries, virtual fetch
recognizes only the first occurrence of the module. All subsequent occurrences
are ignored.

3. 	 If the data sets containing the modules virtual fetch manages are in private
catalogs, those catalogs are allocated for the life of the virtual fetch service
address space.

Refreshing Virtual Fetch

You can rebuild virtual fetch's VIO data set and hash table to reflect changes
made to the load modules in your source libraries. The refresh process makes all
updates available to virtual fetch users at the same time.

After CSVVFCRE builds the VIO data set and the hash table, it can refresh them.
On receiving a refresh request via program CSVVFRSH, CSVVFCRE builds a
new VIO data set and hash table for the modules it obtains from the input data
sets. Virtual fetch then activates the new VIO data set and hash table, frees the
old VIO data set and hash table, issues a message to the operator that the refresh
process is complete, and waits for another request for refresh processing. The 	 \
wait is terminated either by the operator cancelling CSVYFCRE or by 	 ..,
CSVVFCRE receiving another refresh request.

IfCSVVFCRE cannot complete the refresh, the existing VIO data set and hash
table remain active, if possible. If the existing VIO data set cannot remain active,
CSVVFCRE cleans up and abends.

The POST that initiates the refresh process is issued by program CSVYFRSH.
To invoke the refresh function of virtual fetch, you submit a job to execute
program CSVVFRSH (/ / EXEC PGM = CSVVFRSH).

During refresh processing, virtual fetch uses only those libraries specified at the
time of its initialization. Because CSVYFRSH uses authorized facilities
(cross-memory POST, for example), the program must reside in an
APF-authorized library, and you must linkedit CSVVFRSH using a nonzero
authorization code.

It is your responsibility to run CSVVFRSH when you determine that a refresh is
needed. If you want the operator to control the refresh process, you can put
CSVVFRSH in a password- or RACF-protected data set, and start it with a JCL
procedure in SYSl.PROCLIB.

J

16-8 SPL: System Modifications

Considerations When Using Virtual Fetch

• 	 To use the virtual fetch service, the calling program must:

Have only a single jobstep TCB in its address space

Be in TCB mode

Not be in cross-memory mode

Not have any outstanding FRRs

Not hold any locks

The virtual fetch routines that CVTVFIND and CVTVFGET point to cannot
be invoked by an EST AE-type recovery routine or by an FRR.

• 	 During virtual fetch initialization or refresh processing, do not change the
virtual fetch input libraries; the resulting load modules that virtual fetch
places in its VIO data set could be invalid.

• 	 Modules managed by virtual fetch cannot use the checkpoint/restart facility.
In addition, job steps using virtual fetch services cannot use the
checkpoint/restart facility.

• 	 IDENTIFY cannot be used against modules that have been obtained via a
virtual fetch GET request.

• 	 Modules that receive control by means of a GET request are not reused: a
fresh copy is obtained for each GET request; only one virtual fetch copy can
exist in an address space, and only one caller at a time can use the virtual
fetch copy.

• 	 When the build, find, and get functions are invoked, register 1 points to a
parameter list (VFPM) as mapped by macro IHAVFPM. The format of the
parameter list is shown in Figure 16-3.

Chapter 16. The Virtual Fetch Service 16-9

Length

72
4
8
I

Figure 16-3.

Name 	 Description

VFPMSAVE 	 18-word register save area that the caller wants passed to the requested program (module).
VFPMREGI 	 A value that the caller wants virtual fetch to pass to the requested program in register I.
VFPMNAME 	 Name of the requested program, left-justified with trailing blanks.
VFPMLVL 	 Release level of parameter list. The caller must set this field to the current parameter list level

(presently, 0).
VFPMFUNC 	 Function virtual fetch is to perform.

Decimal I = BUILD function (VFPMBLD)
Decimal 2 = FIND function (VFPMFIND)
Decimal 3 = GET function (VFPMGET)

VFPMFLAG 	 Flag byte.

Bit 	 Name Meaning When Set

o 	 VFPMGETM
On - Fresh module storage is GETMAINed and FREEMAINed on each

invocation.
Off- A GETMAIN is performed for module storage on the first invocation of

the module only. Virtual fetch performs additional GETMAINs only when
a refreshed module requires additional storage. Storage is released by
means of a page release.

1-7 	 Reserved.

VFPMRTN 	 Return indicator flag byte set by the GET function. If VFPMRTN is zero, the module specified in
VFPMNAME has executed and register 15 contains its return code. If VFPMRTN is not zero, a single
bit will be set, as follows:

Bit 	 Name Meaning When Set

0 VFPMBUSY The module is in use. The module does not receive control. The caller
should retry by invoking the find function.

VFPMRESH GET is not able to obtain the requested module. The module does not
receive control. The caller should retry by invoking the find function.

2 VFPMAPF 	 An authorized user tried to invoke a module that originally came from a
non-APF-authorized library. The module does not receive control. The
caller should obtain the module from an authorized library.

3 VFPMBADP 	 Virtual fetch detected an invalid parameter list. Virtual fetch attempts no
further processing. The caller should examine the VFPM for incorrect
values and retry by invoking the get function.

4 VFPMBADE Virtual fetch encountered an environmental error.
(GETMAIN failed, ESTAE failed, etc.). The module does not receive
control. Perform clean-up and retry by invoking the find function.

5 VFPMAPPL The requested program abnormally terminated. This
bit should be examined whenever the caller's recovery routine gains
control. Retry by invoking the find function.

6-7 	 Reserved.

Virtual Fetch Parameter List

Notes:

1. 	 The caller must set to zero all reserved bits infields VFPMFLAG and
VFPMRTN. Virtual fetch uses the flag bits in VFPMRTN to indicate why a
module did not receive control, or that it did receive control but abnormally
terminated. Only one flag bit is on at a time.

2. 	 The VFP MFUNC field of the parameter list communicates to virtual fetch the
function (build,find, or get) that virtual fetch is to perform. You can request
only one function per invocation of virtual fetch. After issuing BUILD requests
for the required modules, a program must invoke virtual fetch twice more (find
and get functions) eachJime it uses any of the modules.

16-10 SPL: System Modifications

Programming Conventions for Using Virtual Fetch

• 	 A caller of virtual fetch must provide a standard IS-word save area, pointed
to by register 13; virtual fetch will save the caller's registers in this area. The
virtual fetch parameter list contains another IS-word save area, VFPMSAVE,
where the called module can save its caller's registers on entry.

• 	 The called module receives control via standard entry linkage. That is,
register 1 contains the value from field VFPMREG1 of the virtual fetch
parameter list, register l3 points to a save area (VFPMSAVE), register 14
contains the return address, and register 15 contains the entry point address.
Any unused high-order address bits of registers 1, 13 and 14 must be zero.

• 	 The find and get functions may be invoked in any key, state, or addressing
mode; however, virtual fetch assumes that the PSW key matches the caller's
TCB key and the jobstep TCB key.

The environment that exists after an initial BUILD request and a subsequent
FIND request is illustrated in Figure 16-4.

Requesting Dumps When Using Virtual Fetch

To get a dump of the in-use modules managed by virtual fetch, specify the JPA
Gob pack area) option either on the SNAP macro or in the appropriate parmlib
member.

Note: You may request a certain module from virtual fetch and, concurrently,
invoke the same module via a conventional contents supervision mechanism
(LINK, for example). If you then request a dump for that module, both copies
will be dumped.

Chapter 16. The Virtual Fetch Service 16-11

EXTENDED NUCLEUS

CSVVFTCH CSVVFGTE CSVVFNDE

(GET) (GET) (BUILD/FIND)

NUCLEUS

CSVVFGLU1 1CVT
I" " CSVVFIND

CVTVFIND ~ (BUILD/FIND)

CVTVFGET :--- CSVVFGET
,.
(GET)

CVTVFCB

CSVVFSNC

(GET)
~

CSA ~
VFCB

I ~
USER ADDRESS SPACE \RTUAL FETCH ADDRESS SPACE

CALLER

"- HASH TABLE

~ , VFHE
VFPM "'- .-/

VFDE

ASXB

~
VIO
DATA
SETI'-----...-.

[MODAULE ~
~' VFWK ~VFCRE

(INITIAL! ZATION)

Gr---­
CSVVFSCH
(FIND)

Figure 16-4. Environment After a BUILD/FIND Request

16-12 SPL: System Modifications

J

BUILD Request for Virtual Fetch

When a program calls virtual fetch to request that it manage a module (a BUILD
request):

• 	 Register 15 is loaded from CVTVFIND prior to invoking virtual fetch.

• 	 VFPMFUNC is set to VFPMBLD (decimal 1).

• 	 Register 14 is the return register. Any unused high-order address bits of
register 14 must be zero.

• 	 Register 1 contains the address of the VFPM. Any unused high-order address
bits of register 1 must be zero.

• 	 Register 13 contains the address of a standard 18-word save area. Any
unused high-order address bits of register 13 must be zero.

• 	 VFPMNAME is set to the name of the program virtual fetch is to manage,
left-justified with trailing blanks.

• VFPMLVL is set to the current parameter list level (presently, 0).

When virtual fetch returns control, register 15 contains a return code. The return
codes and their meanings are:

Code Meaning

o Virtual fetch is able to manage the module.

8 Virtual fetch's local control blocks (VFWKs or VFVT) are unusable.

16 Virtual fetch detected an input parameter error.

20 Virtual fetch detected an environmental error.

Note: A subsystem could invoke virtual fetch's build function during its own
initialization processing. The build function does not depend on the prior
initialization of the virtual fetch service address space.

FIND Request for Virtual Fetch

When a program calls virtual fetch to find the VFDE for a module (a FIND
request):

• 	 Register 15 is loaded from CVTVFIND prior to invoking virtual fetch.

• 	 VFPMFUNC is set to VFPMFIND (decimal 2).

• 	 Register 14 is the return register. Any unused high-order address bits of
register 14 must be zero.

• 	 Register 1 contains the address of the VFPM. Any unused high-order address
bits of register 1 must be zero.

• 	 Register 13 contains the address of a standard 18-word save area. Any
unused high-order address bits of register 13 must be zero.

Chapter 16. The Virtual Fetch Service 16-13

• 	 VFPMNAME is set to the name of the program whose VFDE virtual fetch is
to find. The name is left-justified with trailing blanks.

• VFPMLVL is set to the current parameter list level (presently, 0).

When virtual fetch returns control, register 15 contains a return code. The return
codes and their meanings are:

Code Meaning

o Virtual fetch found the VFDE.

4 Either the module is not managed by virtual fetch or the virtual fetch service's copy of the
module is not usable.

8 The local virtual fetch control blocks (VFWKs or VFVT) contain errors, or the virtual
fetch service address space is not operational.

12 The requested VFDE is not in the current virtual fetch hash table.

16 Virtual fetch detected an input parameter error.

20 Virtual fetch encountered an environmental error.

Requesting the virtual fetch find function causes virtual fetch to locate and
validate the local virtual fetch work area (VFWK) for the requested module. If
necessary, virtual fetch copies the VFDE from the current hash table (in the
virtual fetch service address space) into the VFWK.

GET Request for Virtual Fetch J
When a program calls virtual fetch to pass control to a program (a GET request):

• 	 Register 15 is loaded from CVTVFGET prior to invoking virtual fetch.

• 	 VFPMFUNC is set to VFPMGET (decimal 3).

• 	 VFPMGETM may be on or off.

• 	 VFPMSAVE is available for use by the called program as a standard save
area.

• 	 VFPMREG 1 contains data to be passed to the called program in register 1.

• 	 Register 14 is the return register. Any unused high-order address bits of
register 14 must be zero.

• 	 Register 1 contains the address of the VFPM. Any unused high-order address
bits of register 1 must be zero.

• 	 Register 13 contains the address of a standard I8-word save area. Any
unused high-order address bits of register 13 must be zero.

• 	 VFPMNAME is set to the name of the program virtual fetch is to invoke.
The name is left-justified with trailing blanks.

16-14 SPL: System Modifications

• VFPMLVL is set to the current parameter list level (presently, 0).

• VFPMRTN is set to zero.

When virtual fetch returns control to its caller, the caller should examine field
VFPMRTN in the VFPM. If field VFPMRTN is zero, then the module specified
in VFPMNAME received control. Register 15 contains the return code from the
specified module. If the module received control, it did so in the state and key,
and with the key mask, of the caller of virtual fetch.

If VFPMRTN is not zero, either the named module did not receive control or it
abnormally terminated while executing. Examine field VFPMRTN to deternline
the nature of the error.

Note: Modules managed by virtual fetch within the caller's address space that
are in use when a GET request is made are considered busy (VFPMBUSY is ON)
and are not given control. This applies to all modules, regardless of their
attributes.

Users of virtual fetch may turn off bit VFPMGETM in the parameter list to keep
virtual fetch from issuing GETMAINs and FREEMAINs for module storage.
(See VFPMFLAG in Figure 16-3.) In order to benefit from the performance gain
thus provided, the caller of virtual fetch must be able to tolerate the fact that
virtual storage in the caller's address space, for the modules virtual fetch manages,
is not freed by means of the FREEMAIN macro.

The environment that exists after a GET request is illustrated in Figure 16-5.

Figure 16-6 is a general illustration of the use of virtual fetch.

Chapter 16. The Virtual Fetch Service 16-15

I

EXTENDED NUCLEUS

J
CSVVFTCH CSVVFGTE CSVVFNDE

(GET) (GET) (BUILD/FIND)

NUCLEUS

CSVVFGLU1 1
i 	

CVT
/

CSVVFIND

CVTVFIND (BUILD/FIND)
-
CVTVFGET 	 CSVVFGET-- '" (GET)
CVTVFCB

CSVVFSNC

(GET)
~

CSA ~
VFCB~ ~ 	 J

USER ADDRESS SPACE \RTUAL FETCH ADDRESS SPACE

CALLER

HASH TABLE

'~-'"
VFHE

VFPM

VFDE 	
["-- ~

ASXB

~ 	
~

VIO
DATA

~ SET

MODULE

c=:J-.-r-" A

VFWK ~VFCRE 	

--­

(INITIALIZATION)

[;]----­
CSVVFSCH
(FIND)

REQUESTED

MODULE

Figure 16-5. Environment After a GET Request

16-16 SPL: System Modifications

L

Let VFPMPTR be the name of register 1, which points to the start of the VFPM area.

xc VFPM(VFPMLEN,VFPMPTR),VFPM(VFPMPTR)

MVI VFPMFUNC(VFPMPTR) ,VFPMBLD

MVC VFPMNAME(8,VFPMPTR),MODNAME

R15,CVTVFIND

BALR R14,R15

LTR R15,R15

BZ OK

(Process any errors.)

OK (Normal processing continues)

MODNAME DC CL8

VFPMPTR EQU 1

Figure 16-6. A Program Using Virtual Fetch

*Clear the VFPM area

*Indicate BUILD request.
(For a FIND request use
VFPMFIND. For a GET
request use VFPMGET.)

*Move the name of the
desired module into
the VFPM.

*Set up entry point
address. (For a GET
request use CVTVFGET.)

*Invoke virtual fetch
function.

*Examine return code.
(For a GET request you
first examine the
VFPMRTN field of the
VFPM.)

*Name of requested module

Chapter 16. The Virtual Fetch Service 16-17

J

J

16-18 SPL: System Modifications

Chapter 17. MVS Dumping Services

Along with codes and messages, dumps are among the most important
problem-solving tools available to a system programmer.

Using the MVS/XA operating system, a data processing installation can do a
great deal of work. The potentially large workload can lead to a correspondingly
large number of dumps. In the MVS/XA environment, the extended architecture
has the potential of expanding to 2 gigabytes - more than 2 billion bytes - for
each user's address space. Virtual storage can be very large indeed. Uncontrolled
dumping of storage can become a major cost factor in system time spent in taking
dumps, in hours spent reading dumps, and in the cost of printing the dumps.

MVS dumping services provide dumps for debugging problems within the
operating system and application programs. The dumping services help you
control the number and size of dumps taken in your installation, and so reduce
the costs of taking and debugging dumps.

To use the dumping services to your best advantage, you may want to tailor the
functions to fit your installation. With MVS dumping services and associated
functions, you can:

• 	 Define data sets to be used as dump data sets at IPL, or in JCL, or via the
DUMPDS command

• 	 Suppress SVC dump and SYSMDUMP dumps using dump analysis and
elimination (DAE)

• 	 Suppress dumps automatically according to abend code, via SLIP

• 	 Tailor or suppress types of dumps using the dump options and operator
commands

• 	 Tailor or suppress individual ABEND dumps in pre-dump exits

• 	 Control individual ;:;VC and SYSMDUMP dumps in post-dump exits

This chapter describes these tasks and presents some recommendations on how
best to approach them.

To help you decide how and where best to modify the dumping services, you need
to know how they work. Some general information about the kinds of dumps
available in the MVS and MVS/XA environment follows.

Chapter 17. MVS Dumping Services 17-1

MVS Dumps
J

In the MVS operating system, there are four kinds of dumps:

SNAP 	 produced by SNAP processing in response to the SNAP
macro coded in a problem program.

MVS dumping services do not apply directly to SNAP dumps.
A SNAP dump is not normally produced as a result of an
error condition. MVSjXA Supervisor Services and Macro
Instructions contains information about the SNAP macro and
dump. MVS/XA Debugging Handbook includes examples of
SNAP dumps.

STAND-ALONE 	 produced by the AMDSADMP service aid when the operator
IPLs a SADMP residence volmne. Used as a last resort in the
event of a major system error.

MVS dumping services do not apply directly to stand-alone
dumps; a stand-alone dump is not produced by MVS.
MVSjXA Service Aids describes how to request stand-alone
dumps and how to use AMDPRDMP to format and print
them. MVS/XA Diagnostic Techniques contains information
on debugging stand-alone dumps.

ABEND 	 produced by SNAPjABDUMP processing during abnormal
termination of a job or job step. J

SVC 	 produced by SDUMP processing when a system routine has
an error that should be documented for problem
determination.

Note: JES3 also has facilities for SNAP and ABEND dumping: RJPSNPS,
CBPRNT and DEBUG parameters format and write snap dumps of channel-end
data and JES3 control blocks to specific data sets; and the JESSADMP DD
statement defines a data set to receive an ABEND dump. See MVSjXA JES3
Diagnosis for details.

The MVS dumping services deal with ABEND and SVC dumps.

J

17-2 SPL: System Modifications

ABEND Dumps

ABEND dumps, also called user dumps, may help you to identify a problem in an
application program. An ABEND dump is associated with task-mode error
detection and recovery. To request an ABEND dump you can use any of three
macros: ABEND, CALLRTM, or SETRP. There are three types of ABEND
dumps:

SYSABEND 	 user-oriented, fom1atted dumps of task-related data.
Produced by ABDUMP code.

SYSUDUMP 	 user-oriented, formatted dumps; usually more limited than
SYSABEND dumps. Produced by ABDUMP code.

SYSMDUMP 	 user-oriented, unformatted (machine-readable) dumps.
Produced by SDUMP code at the request of ABDUMP.

Defining ABEND Dump Data Sets

You define the data sets for ABEND dumps in the JCL for each job step. The
ddname corresponds to the type of dump ABDUMP processing is to produce in
case of an abend. SYSABEND and SYSUDUMP dumps are formatted by
ABDUMP routines and are usually processed as system output (SYSOUT) by the
job entry subsystem. SYSMDUMPs are stored on dump data sets until processed
by the print dump service aid (AMDPRDMP) or by Interactive Problem Control
System (IPCS).

Requesting ABEND Dumps

Requesting SYSABEND AND SYSUDUMP Dumps: To generate the
SYSABEND and SYSUDUMP dumps, the JCL for a job step must include a
corresponding DD statement for an output data set. For example:

//STEPNM EXEC PGM=ABC
//SYSUDUMP DD SYSOUT=A

In the above example, jf the job step, STEPNM, has an abnormal termination,
the system takes a SYSUDUMP. The job entry subsystem processes the
SYSUDUMP as class A output. The system determines the contents of the dump
according to one or all of the following:

• 	 Options coded in the SYSUDUMP parmlib member, IEADMPOO

• 	 The dump options list for the invoking macro (ABEND, CALLRTM, or
SETRP)

• 	 Options entered with the CHNGDUMP operator command

Requesting SYSMDUMP Dumps: To generate a SYSMDUMP, the JCL for the
job step must include a DD statement (SYSMDUMP) defining the output data
set to hold the dump:

//STEPNUMB EXEC PGM=DEFG
//SYSMDUMP DD DSN=DUMP,DISP=SHR

Chapter 17. MVS Dumping Services 17-3

If this step has an abnormal termination, the system takes a machine-readable
SYSMDUMP and places it in the existing data set named DUMP. To print the
SYSMDUMP you must request the print dump service, (AMDPRDMP) to print J
it. In a TSO environment, you can use IPCS to examine the dump at the
terminal. Then you can decide whether to print it or not.

The system determines the contents of the SYSMDUMP by one or all of the
following:

• 	 Options coded in the SYSMDUMP parmlib member, IEADMROO

• 	 The dump options list for the invoking macro (ABEND, CALLRTM, or
SETRP)

• 	 Options entered by the CHNGDUMP operator command

SVC Dumps

You use the SVC dump to help diagnose errors in system routines. Only an
authorized program can request an SVC dump. You can request sve dumps
(also called system dumps) through:

• 	 The SDUMP macro as part of MVS system component recovery processing,
• 	 The DUMP operator command, or
• 	 As an action on a SLIP command.

SDUMP processing produces an sve dump. The dump is unformatted, J
machine-readable and consists of the system data for the address spaces involved
with the failing unit of work. The sve dump is stored in a system dump data set
on a direct access or tape device. To format and print the sve dump, you can
use the print dump service aid, PRDMP. In TSO, you can use IPeS to format
the sve dump and to display it at the terminal.

The options you code on the SDUMP macro determine the contents of an SVC
dump. To modify the options on the SDUMP macro, you can use the
CHNGDUMP command. IPCS uses verbexit subcommand to invoke these same
control statements. Control statements coded for PRDMP determine the areas of
the SVC dump to be printed.

For the details of the SDUMP macro, see SPL: System Macros and Facilities.
For details of the PRDMP service aid, see MVS/XA Service Aids. For
information about IPCS, see the MVS Extended Architecture Interactive Problem
Control System (IPCS) Planning and Customization, MVS Extended Architecture
Interactive Problem Control System (IPCS) User's Guide, and MVS Extended
Architecture Interactive Problem Control System (IPCS) Command Reference.

17-4 SPL: System Modifications

SVC Dump Data Sets

You define the data sets for SVC dumps at IPL, using the DUMP parameter in
the IEASYSxx member of SYSI.PARMLIB.

After IPL, you can use the the DUMPDS operator command to:

• Define additional system dump (SYSl.DUMP) data sets
• Delete data sets from the list of those defined as available to the system
• Clear system dump data sets.

In MVSjXA, a maximum of 100 data sets can be set aside to hold system dumps.
SYSl.DUMP data sets can reside on DASD or tape volumes.

When you define system dump data sets for DASD (DUMP=DASD) or
(DASD,xx-yy), you assign a two-digit identifier to the data set (SYSl.DUMPnn).
System dump data sets for tape (DUMP = (TA,xxx,yyy)) are identified by the
device number (unit address) of the unit on which the tape volume is mounted.

For a detailed discussion of the DUMP parameter on the IEASYSxx member of
SYSl.PARMLIB, see MVS/XA Initialization and Tuning.

Allocating SYS1.DUMP Data Sets

To prevent an active dump data set from being scratched or taken offline, the
system dynamically allocates SYS1.DUMP data sets to the dumping services
(DUMPSRV) address space. The dump data sets are allocated with a status of
share (DISP = SHR). This means that any user, other than SDUMP, must
allocate the data sets as DISP = SHR, or first remove them from system. To
remove them from the system, you can issue the DUMPDS DEL command (see
"DUMPDS Operator Command"). Even though a tape SYSl.DUMP data set
has a status of share, the sequential nature of tape prevents two programs from
using it simultaneously.

Chapter 17. MVS Dumping Services 17-5

Suppressing Dumps

Some dumps duplicate previously taken dumps. Processing duplicate dumps is
unnecessary and costly. An installation can suppress unnecessary or duplicate
dumps through Dump Analysis and Elimination (DAE) or through abend codes.
Dump Analysis and Elimination is discussed later in this chapter

Suppressing Dumps Automatically, by Abend Code

Some dumps are almost never needed. The abend code tells you enough about
the problem for you to solve it. To reduce unnecessary dumps, you can suppress
both ABEND and SVC dumps by specifying ACTION = NODUMP on SLIP
commands keyed to the self-explanatory abend codes.

In MVS/XA, you can further refine this process by using the SLIP ACTION
options that suppress specific types of dumps according to the abend code.

If, for example, for abend code B37, you want to suppress SYSUDUMPs but take
SYSABEND, SYSMDUMP, SVC dumps, you can code a SLIP command
specifying

SLIP SET,COMP=B37,ID=XB37,ACTION=NOSYSU,END

You can use a member of SYS1.PARMLIB to include selective SLIP commands
to suppress dumps initiated by abend codes for which dumps are normally
unnecessary. The parmlib member is IEASLPxx. Another member of J...
SYS1.PARMLIB, IEACMDOO, as shipped by IBM, contains SLIP commands to
suppress:

All types of dumps 	 (ACTION = NODUMP)

SVC dumps 	 (ACTION = NOSVCD),

All SVC and SYSUDUMPs 	 (ACTION = (NOSVC,NOSYSU)), depending
on the abend code specified on the COMP =
keyword.

You may prefer copying the SLIP commands from IEACMDOO to an IEASLPxx
member. IEACMDOO contains restrictions that IEASLPxx does not.

Note: Do NOT use the COMMNDxx parmlib member for SLIP commands.
Use IEASLPxx.

See MVS/XA Initialization and Tuning for information on the SYSl.PARMLIB
members. See MVS/XA Diagnostic Techniques for details on using SLIP
commands.

Note: If you are not currently using the SLIP facility, you should be aware that
the system allocates fixed storage for the SLIP command modules as a result of
the execution of IEASLPxx during IPL.

17-6 SPL: System Modifications

Tailoring ABEND and SVC Dumps: The Dump Options

Using the MVS dumping services, you can control the kinds and amounts of data
included in ABEND and SVC dumps. You can control this by manipulating the
options that determine the kinds of data included in each type of dump.

Dump options Usts are built for each dump type and contain parameters specifying
the contents of the dump. The MVS dwnping services use the information in the
dump options lists to determine the contents of the dumps. According to the
options in effect, the dump includes control blocks, data areas, and other
information.

Each type of dump has its own dump options list. Each dump option list is built
from at least three sources:

• 	 For ABEND dumps, the sources include:

1. 	 System default options included in SYS1.PARMLIB members for the
different types of ABDUMPs:

For SYSABEND member IEAABDOO

For SYSUDUMP member IEADMPOO

For SYSMDUMP member IEADMROO

2. 	 Options on a SNAP parameter list indicated by the DUMPOPT
parameter on the ABEND, CALLRTM, or SETRP macro. (The
DUMPOPT parameter indicates the list form of the SNAP macro; the
options are coded on the SDATA and PDATA parameters of SNAP, but
the SNAP macro is not executed.)

3. 	 Options included on the CHNGDUMP command, which can modify the
default parmlib options, or completely override all other options.

• 	 For SVC dumps, the sources include:

1. 	 Options supplied by IBM

2. 	 The parameter list provided on the SDUMP macro or the DUMP
command

3. 	 Options included on the CHNGDUMP command, which can modify the
effective SDUMP options

Figure 17-1 shows the dump options IBM provides - in parmlib members for
ABEND dumps, and as automatic options for SVC dumps.

Figure 17-5 shows the system data (SDATA) options that can be included in a
dump options list, and what each option produces for ABEND and SVC dumps.

The CHNGDUMP command described in "Tailoring Dumps by Type: The
Operator Commands."

Chapter 17. MVS Dumping Services 17-7

SYSABEND (lEAABDOO) J ..
SDATA = (CB,LSQA,IO,ERR,DM,SUM,ENQ,TRT)
PDAT A = (PSW,REGS,SPLS,ALLPA,SA)

SYSUDUMP (IEADMPOO)

•
SDATA=(SUM)

SYSMDUMP (IEADMROO)

..
SDATA= (NUC,SQA,LSQA,SWA,RGN,sUM,TRT)

SVC Dump (SDUMP macro)

SDATA = (ALLPSA,SQA,SUMDUMP)**
SUSPEND = NO BUFFER = NO BRANCH = NO
QUIESCE = YES

.. Symptom dump is an implicit default;
SDATA=NOSYM turns it off .

.... 	As shipped, IEACMDOO contains a CHNGDUMP command that
adds the LSQA and TRT options to the SDATA parameter for
every SVC dump.

Figure 17-1. Default Dump Options for ABEND and SVC Dumps

Tailoring Summaries and Symptom Dumps

In many cases, you do not need to see all the data that could be specified in the
dump options list for a given dump type. You might rather see a selection of the
information being retrieved for the dump.

MVSjXA includes, as part of the dumping services, two ways to look at part of
the data retrieved for a dump. These two ways are the summary dump and the
symptom dump.

The summary dump presents the basic data about an error needed to debug most
problems. You can add data to it, if necessary.

The symptom dump includes the information and data needed to identify a
problem. While the symptom dump may be particularly useful in identifying
duplicate dumps, it may be enough to debug some problems.

J

17-8 SPL: System Modifications

Summary Dumps

Perhaps the most significant dump option for an MVS/XA installation is the one
that requests a summary of the dump contents. Some form of summary is a
default option for every type of user or system dump.

The summary dump is most useful as a means of screening out duplicate
problems, although it often contains enough information to debug a problem
completely.

Figure 17-2 shows the contents of swrunary dumps for each of the ABEND
dump types.

Dump Type

Contents SYSABEND SYSUDUMP SYSMDUMP

Dump Title X X X

Abend code and PSW at
time of error X X X

Instruction length code X X

Interrupt code X X

ERRORID X X X

Name of active load
module, if any X X X

PSWaddress X X X

Offset into load module
of failing instruction X X

System control blocks
(ASCB, TCB, RB, LLE,
CDE, XL, TIOT, etc.) X X

Error control blocks
(RTM2WA, SeB) X X X

Save areas X X

Registers at time of
error (from RTM2WA) X X X

Contents of active
load module X X

Last previous PRB module X X

2K of storage around PSW
and register addresses (see note) X X X

All trace table entries
for the dumped ASID X X

Note: This includes only the storage the caller is authorized to access. Duplicate addresses are

ignored.

Figure 17-2. ABEND Summary Dump Contents

Chapter 17. MVS Dumping Services 17-9

Note: The data included in a SYSMDUMP summary dump is the same as that
included in the enabled SVC summary dump; see Figure 17-3. J
In the case of SYSUDUMP, SUM is the only SDAT A option included in its
parmlib member (IEADMPOO) A SYSUDUMP is frequently requested for
problem program debugging, where the error can be traced without reference to
many system storage areas. In the parmlib members for SYSABEND
(IEAABDOO) and SYSMDUMP (IEADMROO), the SUM option is combined
with options requesting specific system control blocks and data areas to tailor the
dump.

ABEND Summary Dump Formats: When an ABEND summary dump is
combined with a dump of other data areas, the summary information is scattered
throughout the full dump. When SUM is the only SDAT A option for an
ABEND dump, the summary information is grouped together and constitutes the
entire dump.

SVC Dump Summary Dumps

The SUMDUMP SDATA option for SDUMP macro produces three kinds of
summary dumps. The contents depend upon the type of SVC dump and the
mode of entry to the SDUMP code:

• Disabled, produced by BRANCH = YES, SUSPEND = NO
• Suspend, produced by BRANCH = YES, SUSPEND = YES
• Enabled, produced by BRANCH = NO, SUSPEND = NO

See SPL: System Macros and Facilities for the detail~ of coding the SDUMP
macro.

Figure 17-3 shows the contents of the three kinds of summary dumps for SVC
dump, along with the SDUMP options that produce them.

J

J

17-10 SPL: System Modifications

Dump Type
Contents DISABLED SUSPEND ENABLED

ASID record for address
space in which dump task
is running l

SUMLISTjSUMLSTA areas,
if requested

PSA,PCCA and LCCA for
each functioning processor

Current PCLINK stack,2
if present

JHSA/XSB/PCLINK stack

4K of storage around4

PSW and register addresses
from the IHSA

Caller's SDWA, if any

4K of storage around4

PSW and register addresses
from the SDWA

SUPER FRR stacks

WSA vector tables,3
with save areas they
point to

4K of storage around4

address portion of:

• I/O old PSW
• Program check old PSW

• External old PSW

• Restart old PSW

for each processor

Caller's ASCB

All R TM2W As pointed to by
all TCBs in the address space

4K of storage around PSW4

and register addresses from
RTM2WAs

Current FRR Stack

SDUMP's caller:
TCB or SSRB

For TCB Mode:
All RTM2WAs pointed to by
this TCB, with any SDWAs

For SSRB mode:
PCLINK stack and SDWA

Register save area storage

Notes.

(8=Y) (8=Y) (8=N)
(S=N) (S=Y) (S=N)

X X X

X X X

X X

X X

X X

X

X X

X X

X

X

X

X

X

X

X

X

X

X

X

t For disabled and suspend summaries, this is the cross-memory ASID record: home, primary and
secondary ASIDS, and the cross-memory lock ASID if a CML is held.

2 Pointed to by PSASEL.

3 The global, local and CPU work save area vector tables.

4 The addresses are compared, using an address range table, to avoid dumping duplicate areas.

Figure 17-3. SVC Dump Summary Dump Contents

Note: The data included in the SYSMDUMP summary dump (see Figure 17-2)
is the same as that in the enabled SVC swnmary dwnp.

Chapter 17. MVS Dumping Services 17-11

SVC Dump Summary Dump Formats: The summary information for an SVC
dwnp can be scattered throughout the dwnp when other data area options are
specified with SDATA = SUMDUMP. The dumping service writes the Jmachine-readable form of the SVC dump summary to a system dump data set.
When you invoke AMDPRDMP with its SUMDUMP control statement, print
dump organizes and formats all the summary data in the dump.

Symptom Dumps

In addition to the summary dump option in their parmlib members, SYSABEND,
SYSUDUMP, and SYSMDUMP dumps include, as an implicit default, a lO-line
symptom dump.

The symptom dwnp appears as a wnte-to-programmer message in the job log for
the abending job or step. An example of the message is shown in Figure 17-4.

IEA9951 SYMPTOM DUMP OUTPUT
ABEND CODE SYSTEM=OC1 TIME=09.08.10 SEQ=00049 CPU=OOOO ASID=OOOB
PSW AT TIME OF ERROR 078DOOOO 81BOOOD4 ILC 2 INTC 01

ACTIVE LOAD MODULE=DAESM1 ADDRESS=OlBOOOOO OFFSET=000000D4
DATA AT PSW 01BOOOCE - 50000F010 000092E7 A05847FO
GPR 0-3 01BOOOD4 01B02F2C 00000040 01B02F39
GPR 4-7 01B00174 01B02F39 01B02FBC 01B02F38
GPR 8-11 01B02F2C 809FF6D8 01B02EEO 81B00018
GPR 12-15 01B01017 01B02EEO 80F775AO 01B02F39

END OF SYMPTOM DUMP

Figure 17-4. Message IEA9951: Symptom Dump Output for SYSABEND and SYSUDUMP J
ABDUMP processing always produces the symptom dwnp output message for a
SYSABEND, SYSUDUMP or SYSMDUMP. To eliminate the symptom dump
output message, you can specifically turn off the option in the parmlib member.
See "Suppressing the Symptom Dwnp."

In a TSO environment, you can display the symptom data on the screen by
issuing the PROFILE command with the WTPMSG option.

Note: The symptom output data for a SYSMDUMP is put into the dwnp header
record by SDUMP at the request of ABDUMP. The contents are the same as the
symptom data produced for SYSABEND and SYSUDUMP dumps.

Symptom Data in an SVC Dump

Formatted symptom data appears at the beginning of every SVC dump, in the
dump header. This is the same kind of information as that included in the
ABDUMP symptom dump.

The SVC dwnp header also inc1udesthe system diagnostic work area (SDWA),
which contains data retrieved by the recovery routine that requested the dump.

J

17-12 SPL: System Modifications

http:TIME=09.08.10

To display symptom data from DASD system dump data sets, you can enter the
TITLE or ERRDATA option on the DISPLAY DUMP command. See
"Tailoring Dumps by Type: The Operator Commands" for more about the
DISPLAY DUMP command.

Tailoring Dumps: Other Data Options

Unless the dump options list is limited to the SUM or SUMDUMP option, the
MVS dumping services produce a full dump. The dump consists of all the storage
areas and control blocks requested, as shown in Figure 17-5.

To tailor the full dump for each dump, you use the SDAT A (for system dumps)
or PDATA options (for user dumps) in the dump options list. The effects of
these data options can be divided into two parts:

• 	 Dumping the nucleus
• 	 Dumping specific areas of storage

Dumping the Nucleus

In MVSjXA, the system control code resides in two nucleus areas. One area, in
real storage, contains system control modules that never change from one IPL to
another. This area is called the DAT-off nucleus. The other area, in virtual
storage, is called the DAT-on nucleus. It is divided into two parts:

1. 	 The read-only DAT-on nucleus
2. 	 The read/write DAT-on nucleus

The read-only DAT-on nucleus contains protected address space control modules.
The read/write DAT-on nucleus contains modifiable control code.

Note: DAT, dynamic address translation, is the hardware feature that makes
virtual storage possible. When DAT is active (DAT-on), you are addressing
virtual storage; when it is not active (DAT-off), you are addressing real storage.

The options in MVS dumping services allow you to contro~bich parts of the
nucleus are included with each dump. It is seldom necessary 0 dump all the
nucleus modules, or even the entire virtual nucleus, every time\an ABEND occurs.

ABDUMP Nucleus Options: SDATA =NUC/ALLVNUC: ThelABDUMP
SDATA options include two forms of request for a dump of the 'nucleus:

• 	 SDATA=NUC produces only the read/write area of the DAT-on (virtual)
nucleus.

• 	 SDATA=ALLVNUC produces the entire DAT-on nucleus, including both
read/write and read-only areas.

Chapter 17. MVS Dumping Services 1 7 -13

SDUMP Nucleus Options: SDATA =NUC/ALLNUC: The SDUMP SDATA
options also produce two kinds of dumps of the nucleus:

• 	 SDATA=NUC produces the read/write area of the DAT-on (virtual) nucleus.

• 	 SDA T A = ALLNUC produces a dump of all the modules in both the
DAT-off and DAT-on nucleus areas, read/write and read-only.

J

17-14 SPL: System Modifications

Dump Macro/Commaod

Dump Where the Option CaD Be Coded

Option Data Included in the Dump SNAP/ABEND SDUMP DUMP
Macro Macro Command

SDATA

= ALL All possible system data X

areas for user dump,

excluding ALLVNUC

=ALLNUC 	 All of the nucleus X X

=ALLPSA 	 All prefixed storage areas X

in the system

=ALLVNUC 	 All of the OAT-on nucleus, X

and the PSA

=CB 	 Formatted control blocks X

for the task

=CSA 	 Common service area X X
(Subpools 231, 241)

=DM 	 Data management control X

blocks for the task

=ERR 	 RTM control blocks for the task X

=GRSQ 	 Global resource serialization X X
queue

=10 	 lOS control blocks for the task X

=LPA 	 Active link pack area modules X X X
and SVCs for each ASIO
(see note)

= LSQA 	 Local system queue area X X X
for each ASIO (plus subpools
229,230 for SNAP; 229, 230,
233-35, 253-55 for SOUMP)

= NOALLPSA Only the PSA for the current X

(NOALL) processor

= NOPSA 	 No prefixed storage areas X

= NOSQA 	 No system queue area X X

= NOSUMOUMP No summary dump X X
(NOSUM)

=NUC 	 Read-only, OAT-on nucleus X X X
and PSA, including CVT

=PCOATA 	 PCLINK stack information X

=PSA 	 Prefixed save areas X X

=Q(ENQ) 	 GRS control blocks for the task X

=RGN 	 Private area of address space, X X
including LSQA and SWA

=SQA 	 Entire system queue area X X X
(Subpools 227, 228, 239, 245,
for SNAP)

=SUMOUMP 	 Summary dump (see individual X X X
=SUM 	 dump types for contents)

=SWA 	 Scheduler work area X X X
(Subpools 236, 237)

=TRT 	 GTF and system trace data, X X X
with variations. Master
trace and NIP message
hardcopy buffer for SOUMP.

Note: A PDATA option for ABEND dumps.

Figure 17-5. SDATA Options for MVS/XA Dumps

Chapter 17. MVS Dumping Services 17-15

The OAT-on nucleus is dumped as virtual storage; the OAT-off nucleus is
dumped as real storage.

The ABEND dumps do not include the system control areas residing in real
storage; the DAT-off nucleus is unlikely to be needed to debug an ABEND dump.

An SVC dump deals with operating system control blocks and data area and can
include the OAT-off nucleus. The requestor of an SVC dump must be
authorized.

The IEADMROO parmlib member for SYSMDUMP is the only one that includes
dumping any of the nucleus as a default option. One of the IEADMROO SDATA
defaults is NUC. This dumps the read/write section of the virtual (DAT-on)
nucleus. If you use the IBM-supplied default options for other ABDUMPS or for
an SVC dump, none of the nucleus is dumped.

The data in the OAT-off nucleus does not change. You might want to generate
one copy of the DAT-offnucleus to use with other dumps. To save one copy of
the OAT-off nucleus, request an SVC dump using the DUMP command. Specify
ALLNUC as the only SDAT A option.

Note: If you specify SDA T A = ALLVNUC for a SYSMDUMP, SDUMP
generates the ALLNUC option. All of the nucleus that the caller of
SYSMDUMP is authorized to see is dumped, in the caller's key.

Dumping Specific Areas of Storage

The SDATA options other than SUM/SUMDUMP request the dumping of
specific system data areas and control blocks.

All MVS dumps but SYSUDUMP include some additional system data areas as
default or automatic options. Figure 17-5 shows all the SDATA options for
MVS dumps, and the data dumped for each. See Figure 17-1 for the default
options for each type of dump.

Additional details about these and other dwnp options and the dumps they
produce can be found in MVS/XA Supervisor Services and Macro Instructions for
SNAP macros and in MVS/XA SPL: System Macros and Facilities for SDUMP
and SNAP macros.

To tailor a given type of dump, you change the options in the dump options list.
For example, you may wish to suppress the summary dump option for one or
more dump types, and the symptom dump message for ABEND dumps. You can
make these changes in a number or-ways.

Changing the ABEND Summary Dump Option: You can suppress the summary
dump for ABEND dumps by deleting the SDATA option, SUM, in the pamllib
member. You can also by delete SUM from the dump options list via the
CHNGDUMP command.

Suppressing SVC Dump Summary Dumps: You can suppress an SVC dump
summary dump by using the CHNGDUMP command to change the SDUMP
options list to specify SDAT A = NOSUM. See "Tailoring Dumps by Type: The
Operator Commands."

17-16 SPL: System Modifications

Suppressing the Symptom Dump: To prevent the symptom data for an ABEND
dwnp, you can put SDATA=NOSYM in the appropriate pannlib member before
an IPL, or enter SDATA=NOSYM on the CHNGDUMP command after an
IPL. MVSjXA Initialization and Tuning tells how to modify members of
SYS1.PARMLIB. MVS/XA System Commands tells how to use the
CHNGDUMP command.

Special Parameters and Options for Tailoring Dump Types

To tailor the dumps, you can also use some special options specifically designed
to produce more meaningful dumps of the data requested.

Dumping Program Data Areas in ABEND Dumps: In ABEND dumps, you can
request dumps of data areas specific to the abending program (task). To do this,
you can use the PDATA parameter on the SNAP parameter list.

Besides the default PDATA options included in IEAABDOO, for SYSABEND
dumps (see Figure 17-1), you can request a dump that includes all the subtasks
belonging to the abending task. The option that provides this data is
SUBTASKS. SUBTASK is not supplied as a default option. To add SUBTASKS
- or any other valid options - to the options list for an ABEND dump, either
change the entries in the appropriate parmlib member or use the CHNGDUMP
command.

Including Storage Sub pools in ABEND and SVC Dumps: You can include storage
subpools in both ABEND and SVC dwnps. For ABEND dumps, you request
spec!fic subpools using the SUBPLST parameter. With SUBPLST, you can point
to a list of the subpool numbers you want dumped. If you do not code
SUBPLST, the SPLS option causes the dumping of all the virtual storage
subpools. SPLS is one of the default PDAT A options for SYSABEND dwnps.

For an SVC dump, you use the SUBPLST option, specifying a list of subpool
nwnbers, along with address space identifiers (ASIDs), that you want dwnped. If
you code the KEYLIST option with the SVC dump SUBPLST parameter, the
dump is restricted to the subpool areas that have the storage protection keys
specified with the KEYLIST option.

Neither of these options is a default for an SVC dwnp; you must add it to the
options list on the SDUMP macro.

Note that the SVC dwnp summary dwnp does not include any storage subpools.
If you want any storage subpools dumped, you must include SUMLIST or
~UMLSTA in the options list and specify area you want.

Tailoring Dumps by Type: The Operator Commands

In MVS/XA, four operator commands are useful for controlling dump output.
They are:

1. 	 CHNGDUMP (or CD), to dynamically alter dumping options.

2. 	 DISPLAY DUMP (or D D), to determine current dumping options or system
dump data set status, title and error data.

Chapter 17. MVS Dumping Services 17-17

3. 	 DUMPDS (or DD), to dynamically alter the list of system dump data sets, or
to clear the system dump data sets.

4. 	 DUMP, to take a system dump under the operator's control.

CHNGDUMP Operator Command

You can use the CHNGDUMP command to

• 	 Dynamically alter the dump options list for a given dump type,
• 	 Add new options to the dump options list,
• 	 Change the mode of the dump, or
• 	 Suppress a dump.

CHNGDUMP accepts most of the SDAT A dump-tailoring options available for
ABEND and SVC dumps, and some of the PDATA options for ABEND dumps.

Using the CHNGDUMP operator command, you can alter the makeup of any
dump to suit the requirements of a given problem. See MVS/XA System
Commands for all the CHNGDUMP options. Of particular interest in tailoring
dumps are the following:

• 	 For ABDUMPS (SYSABEND, SYSUDUMP, SYSMDUMP):

ALLNUC (for SYSMDUMP only) requests the dumping of the entire

nucleus, including the DAT-off nucleus.

ALLVNUC (for SYSABEND and SYSUDUMP) requests the dumping

of the entire DAT-on (virtual) nucleus, read/write and read-only.

NUC requests the dumping of the read/write area of the DAT-on

nucleus.

NOSYM suppresses the symptom dump message.

SUBTASKS (PDATA option for SYSABEND and SYSUDUMP)

requests the dumping of the program data of all the subtasks of the task

requesting the dump.

SUM requests the summary dump (the default).

• 	 For SVC Dumps (SDUMP):

ALLNUC (SDATA option) requests the dumping of the entire nucleus,

DAT-off and DAT-on, read-only and read/write.

NUC requests the dumping of the read/write area of the DAT -on

nucleus.

SUM requests the summary dump (the default).

NOSUM suppresses the summary dump.

17-18 SPL: System Modifications

Using the NODUMP mode on the SET operand, you can suppress a given dump
type completely.

DISPLAY DUMP Operator Command

Among the many kinds of information available via the DISPLAY command is
current dump information. When the operator enters DISPLAY DUMP or D D,
followed by one of the four parameters, the requested information appears on the
screen, as follows:

Command Syntax 	 Result

D D,OPTIONS 	 Dump mode and dump options currently in effect for ABEND
and SVC dumps.

DD,STATUS 	 A summary of the status (full or available) of the SYS LDUMP
data sets (DASD and tape) currently defined to the system. (This
is the default.)

D D,TITLE,DSN = (aa,bb-cc) 	 Dump titles for the full DASD dump data sets named in DSN = .
"aa." "bb," and "cc" correspond to the two-digit suffixes from
the SYSLDUMPnn data set designations.

D D,ERRDATA,DSN=nn 	 Error data for the full DASD dump data sets named in DSN =.
"nn" corresponds to the two-digit suffix from the
SYSLDUMPnn data set designation.

STATUS is the default parameter on the DISPLAY DUMP command.

The STATUS summary appears in two parts; one is for DASD dump data sets,
the other for tape.

TITLE and ERRDATA can be used only for system dump data sets residing on
direct access devices. They are mutually exclusive; ERRDATA displays the same
information as TITLE, plus the following:

• 	Error identifier

• 	Abend code

• 	 Name of the failing module

• 	 Name of the failing CSECT
Time of error•

• 	 Processor identifier

• 	 PSW at the time of error

• 	 Registers at the time of error

Note that this information is a subset of the information supplied in the symptom
dump; it is taken from the dump header record.

The DSN = parameter allows you to restrict the display of title and/or header
record information to the DASD dump data sets you specify as two-digit numbers
in the range 00 to 99.

You can ask to see TITLE or ERRDATA for individual data set numbers, or for
a range of data set numbers, or for all of your full DASD dump data sets.

Chapter 17. MVS Dumping Services 17-19

Note: The parameters ERRDATA, OPTION, STATUS, and TITLE are
mutually exclusive. See MVS/XA System Commands for more infonnation about
the DISPLAY DUMP command.

DUMPDS Operator Command

You can use the dump data set (DUMPDS or DD) command to modify the
system queue of available dump data sets without having to re-IPL the system.

The DUMPDS command has three possible operands: ADD, DEL (delete), and
CLEAR; plus the DSN and UNIT specifications.

You identify the data sets you want to add to or delete from the system dump
data set queue by DASD data set number (DSN=nn) or by tape device number
(UNIT = uuu). The two-digit number for DASD dump data sets is the two-digit
suffix from SYSI.DUMPnn (00-99).

Adding System Dump Data Sets

The DUMPDS ADD function adds system dump data sets to the queue of those
defined as available for SVC dumps.

Note: You must pre-allocate and catalog any DASD data set you want to add to
the dump data set queue, before issuing the DUMPDS ADD command. It is also
a good idea to provide protection (password or RACF) for the data set, because
system dumps contain sensitive data.

Deleting System Dump Data Sets

The DUMPDS DEL,DSN= function removes DASD dump data sets, singly or
as a group, from the queue, so they can no longer be accessed by SDUMP or the
DISPLAY DUMP command processor. The deleted DASD data sets are not
scratched or uncataloged. DUMPDS DEL,DSN = ALL removes all the DASD
dump data sets from the queue; you may also specify a range of DASD data set
numbers, as in DSN = (xx-yy).

DUMPDS DEL,UNIT = uuu removes tape data sets from the system queue one
at a time; the system unloads the tape volume and deallocates the device.

Clearing Dump Data Sets

Having used the DISPLAY DUMP command (see "DISPLAY DUMP Operator
Command") to display the status, options, and error data. for the full system
dump data sets associated with a processor, the operator can issue the DUMPDS
command to clear the data sets whose dumps have already been off-loaded or
whose contents reflect duplicate problems.

DUMPDS CLEAR,DSN = nn clears a DASD system dump data set; DUMPDS
CLEAR,UNIT = uuu does the same for tape.

DUMPDS CLEAR makes full dump data sets available to SDUMP for other
dumps. The system puts an end-of-file marker at the beginning of the specified
data set, in effect pronouncing it empty and available.

17-20 SPL: System Modifications

As in the DEL parameter, DASD and tape data sets are handled differently for
the CLEAR parameter. DUMPDS CLEAR,DSN = ALL clears all your
currently-defined full DASD dump data sets at once, and DUMPDS
CLEAR,DSN = xx-yy clears the DASD dump data sets whose identifiers are
included in range xx-yy. You must clear each tape dump data set individually, by
device number (DUMPDS CLEAR,UNIT=uuu).

DUMP Operator Command

Using the DUMP command, you can request and tailor a system dump, directing
it to a system dump data set. After entering the DUMP command and the dump
title, you receive message IEE094D, which asks for operands to define the dump.
Using the REPL Y (R) command, you supply the operands.

In MVS/XA, the SDATA parameter for the DUMP command can include the
ALLNUC option, which requests the dumping of the entire nucleus. See
"Dumping the Nucleus" for a description of the logical parts of the MVS/XA
nucleus.

You can specify certain system storage areas by name on the SDAT A parameter
of the DUMP command, as in the SDUMP macro, or you can specify areas of
storage by address, on the STOR parameter. The STOR parameter requires the
beginning and ending addresses of an area of storage, specified as 4-byte
hexadecimal numbers (040BA040) or 7-digit decimal numbers followed by "K"
(0150860K).

You can choose to designate storage as addresses or system areas or address
spaces (ASID parameter); thus, you can tailor the dump to your problem-solving
needs.

See MVS/XA System Commands for more information on the DUMP command,
and MVS/XA System Messages for the texts of the messages involved with its
execution.

Tailoring and Suppressing Individual Dumps: The User Exits

In MVSjXA, you can use your own exit routines to analyze a dump - before or
after it has been taken - and decide if it should be taken, modified, formatted,
printed, or terminated.

The dump-tailoring exit for user (ABDUMP) dumps occurs before a dump is
taken; the exit for system (SDUMP) dumps occurs after a dump has been taken.

In both cases, you can supply your own routines by putting their names in exit
tables provided by IBM. The dumping services component invokes your pre- or
post-dump exit routines as appropriate.

Chapter 17. MVS Dumping Services 17-21

Pre-Dump Exits for User Dumps

You specify pre-dwnp exit routines in the SNAP/ABDUMP exit table, load
module IEA VTABX. Each exit routine has an 8-byte entry in the exit table.

Module IEAVTABX, as shipped by IBM, has the following format: a count field
at offset zero and 10 null entries (8 bytes of X'40'), followed by the module ID
and an end-of-list indicator (8 bytes of zeros).

You fill in the exit entries with the names of your own load modules, in the order
you want them invoked during ABEND dwnp processing. The count field shows
how many module names are in the table.

If you do not want an exit routine to run, you overlay its module name with
blanks, and decrease the number in the count field.

Your process of adding or deleting entries involves assembling the module names
- and blank entries - and link editing them as IEA VT ABX. The modules
named in the exit table must reside in an authorized system library.

It is probably best to change the exit table prior to a cold-start IPL, so the exits
will be in place for recovery management as soon as the system is up.

The pre-dump exits work much the same way as all MVS/XA user exits: your
routine receives control in supervisor state, key 0, enabled, unlocked in
non-cross-memory mode, and in 31-bit addressing mode.

When your exit is given control, the contents of the registers are as follows:

• register 1 points to a parameter list (mapped by mapping macro lHAABEPL)
• register 13 points to a save area
• register 14 contains the return address
• register 15 contains the entry-point address.

Your routine must use standard entry and exit linkages, and must place a return
code in register 15 before returning to its caller. The possible return codes are:

Code Meaning

{) Continue processing with existing dump options
4 Continue processing with new options
8 Terminate the dump

As you can see from the return codes, you can modify or suppress a dump, using
a pre-dump exit routine.

Note: If your exits contain macros, the macros must be compatible with
MVS/XA. See the discussion of the SPLEVEL macro in MVSjXA SPL: System
Macros and Facilities.

The parameter list whose address is in register 1 when your exit receives control
includes:

• lobname for the abending task

• Abend code

17-22 SPL: System Modifications

• 	 Address of the SDW A for the error, if one exists

• 	 Name of the active load module, if any

• 	 Pointer to the SNAP parameter list (dump options) to be updated by the exit
routine

• 	 Parameter list level indicator

• Return code from the previous exit, if any

See the MVSjXA Debugging Handbook for the mapping of IHAABEPL.

Post-Dump Exits for System Dumps

At the end of each SVC dump and SYSMDUMP, the dumping services
component gives control to the routines named in data CSECT IEA VTSEL for
post-dump processing. You put exit routine module names in lEAVTSEL, which
resides in SYSl.LINKLIB, either by reassembling the module or by means of the
AMASPZAP service aid.

As shipped by IBM, IEAVTSEL contains 10 8-byte fields of blanks (X'40')
separated by 4-byte reserved flag fields. The end of the list is indicated by 12

-bytes of zeros.

You can put your own exit module names in the exit list, and you can delete
entries by overlaying them with blanks.

Your exit routines are given control in the order in which their names appear in
the exit list. When a routine gets control, the contents of the registers are as
follows:

• 	 register 1 points to a parameter list, mapped .by IHASDEPL
• register 13 points to a save area
'. register 14 contains the return address
• register 15 contains the entry point address

The exit routines must use standard entry and exit linkages.

The exit routines receive control in the addressing mode specified in their link
edits, in supervisor state, in key 0, in task mode, in the DUMPSRV address space.

Before an exit routine returns control to its caller, it must put a return code into
register 15. Any nonzero return code indicates that the exit was unsuccessful.

The parameter list passed to the exit routine is mapped by macro IHASDEPL, in
SYSl.MACLIB. SDEPL includes the following:

• 	 Exit status flags

• 	 Address of the dump header record mapped by the AMDDATA mapping
macro

Chapter 17. MVS Dumping Services 17-23

• 	 Address of a 200-byte exit work area

• 	 Address and length of an exit interface work area

The two exit status flags indicate if errors occurred in previous exits.

The first, SDEPLEXE, is turned on when an error occurs in an exit routine, and
then turned off if a later exit completes successfully. It indicates that the
immediately preceding exit had an error.

The second flag, SDEPLERR, is turned on when an error occurs, and is not
turned off until all the exits have been called. It indicates that some preceding
exit had an error.

The copy of the dump header record contains the following kinds of data:

• 	 Dump type (SVC dump, SYSMDUMP, SVC dump for a SLIP request)
• 	 Dwnp data set name (SYSl.DUMPnn or, for SYSMDUMP, a unique name)
• 	 Error identifier from this dump
• 	 A copy of the SDW A of the caller of SDUMP (except for SLIP dumps)
• 	 Symptom data

See the mapping macro AMDDATA in the MVSjXA Debugging Handbook for
other information contained in the dump header.

The exit work area is a general work area for the exits. It is cleared to zeros
before each exit gets control.

You can use the exit interface area as a communication area, where one exit can
pass information to successive exits, or as a work area. It is only cleared to zeros
before the first exit gets control.

Post-dump exits can be used to automate dump processing, to extract and log
information from the dump header record, to locate duplicate problems, and to
suppress printing of unnecessary dumps.

Using a Post-Dump Exit to Analyze and Handle System Dumps

Following is a list of steps you might take to recognize and note duplicate
problems in system dumps, and suppress printing of the dumps you do not need.

• 	 Extract a set of symptoms from the header record sufficient for matching
duplicate problems; for example:

Abend code
Reason code
Module name
Smallest difference between the PSW address and a register address at the
time of error
Other indicators of the source of an error

• Build these symptoms into a symptom record.

17-24 SPL: System Modifications

• 	 Dynamically allocate a log data set (SYSl.DUMPLOG, for example), which
contains all the symptom records from previous dumps, along with status
fields to keep track of the number of times each symptom record has
occurred.

• 	 OPEN the dump log data set for input, or update it in place.

• 	 Read each record in the dump log and compare it to the symptom record for
the current dump.

• 	 If the current record matches a previous dump symptom record, the problem
is a duplicate, and the dump data set can be cleared.

• 	 If no match is found for the current symptom record, your routine can notify
the operator to start a job to print or off-load the dump data set.

• 	 Add the current symptom record to the end of the SYSl.DUMPLOG data set
(DISP = MOD).

• 	 Close the dump log data set and dynamically deallocate it.

• 	 Use WTO to add a record of the exit's action to the console log.

Note: These actions duplicate some of the processing that can be performed by
the dump analysis and elimination feature of MVSjXA; see the following
discussion of DAE. If DAE is installed and operational on your system, you
probably do not need to use post-dump exits to compare symptoms from SVC or
SYSMDUMP dumps.

Processing Machine Readable Dumps

To process machine readable dumps, you can use IPCS or PRDMP. To tailor
IPCS and PRDMP to your needs, you can modify the following areas:

1. 	 BLSCECT parmlib member
2. 	 IPCSPRxx parmlib member
3. 	 IPCS dialogs

BLSCECT: Use this parmlib member to define dump analysis and formatting
exits that execute under IPCS and PRDMP. If you have written your own dump
exits for your installation, you must modify the BLSCECT member to define the
exit to IPCS and to PRDMP.

Individual users may specify a substitute parmlib member using the IPCSPARM
DD statement. See MVSjXA Initialization and Tuning for information on the
BLSCECT member of SYSl.PARMLIB.

IPCSPRxx: You can use this member to define session default parameters for all
IPCS users on the system. -See MVSjXA Initialization and Tuning for information
on the IPCSPRxx member of SYSl.PARMLIB.

IPCS dialogs: To assist in the debugging process, IPCS provides a full-screen
dump analysis. You can modify the IPCS dialog to your installation's needs. See
MVSjXA Interactive Problem Control System Planning, and Customization for
more information about IPCS dialog and options.

Chapter 17. MVS Dumping Services 17-25

Dump Analysis and Elimination (DAE)

Definitions

Dump analysis and elimination (DAE) allows an instailation to suppress
SYSMDUMP and SVCDUMP dumps that are unnecessary because they
duplicate previously taken dumps. DAE operates as part of SDUMP processing;
it performs the following functions:

• 	 Matching--DAE compares the symptoms from an SVCDUMP or
SYSMDUMP to symptoms of dumps previously recorded in a special system
data set (SYSl.DAE).

• 	 Updating--If the DAE parameter record specifies UPDATE, DAE either
updates the incidence count in SYSl.DAE when a duplicate dump occurs, or
creates a new record in SYSl.DAE for a unique dump not previously
recorded.

• 	 Suppressing--DAE prevents a dump from occurring when the DAE parameter
record specifies the SUPPRESS option, the dump's symptom data matches
the symptom data of a duplicate dump already recorded in SYSl.DAE, and
the VRAD AE key is set.

The sources of data for DAE processing are:

• 	 The DAE parameter record in ADYSETxx members of SYS1.PARMLIB,
containing DAE processing options

• 	 The ADYDFLT module, containing default values for DAE processing

• 	 The SYSl.DAE data set, containing symptom data that DAE uses

• 	 The ABDUMP symptom area of the dump header record (AMDDATA)

• 	 The system diagnostic work area (SDW A), which DAE uses to locate
symptom data for the dump

The purpose of this section is to describe how you can modify DAE to fit the
needs of your installation. To achieve this purpose, this section defines several
terms used in a specific context by DAE, describes the input data sources to
DAE, and discusses DAE processing.

This section defines some terms useful in understanding how DAB analyzes and
suppresses dumps.

J

17-26 SPL: System Modifications

Symptoms

Symptom Strings

Symptom Queue

Keys and Keywords

DAE defines a symptom as problem data that is useful in explicitly defining the
failing state of the system. A DAE symptom has two parts: a keyword,
describing the type of symptom, and the actual symptom data. For example,
DAE uses the system abend completion code, such as X'00C4', as symptom data.
DAE attaches the system abend completion code keyword, AB/S, to the abend
code. The resultant symptom is AB/SOOC4. See "Keys and Keywords" for
definitions of keys and keywords. .

DAE defines a set of symptoms as a symptom string. The two types of DAE
symptom strings are MVS and RETAIN. If an MVS symptom string meets the
criteria for uniquely identifying a problem and also matches the symptom string
from a previous dump, DAE considers the dump to be a duplicate of the original
dump.

DAE creates an in-storage symptom queue from selected records in the
SYSl.DAE data set. Each record in SYSl.DAE contains symptom strings from
previously recorded dumps. DAE uses the in-storage symptom queue when
matching for duplicate dumps.

The in-storage symptom queue is created when the SET DAE =00 operator
command is executed, or whenever DAE is made operational. When the SET
DAE =01 operator command is executed, and whenever DAE is made
non-operational, DAE frees the storage occupied by the symptom queue. DAE
does the following:

• When DAE finds a problem that is a duplicate of a problem described in the
in-storage symptom queue, DAE increases the incidence count in the
symptom queue element by one. If the DAE parameter record specifies
UPDATE, DAE increases the occurrence count in SYSl.DAE. Then, if all
criteria for dump suppression are present, DAE suppresses the dump.

• When DAE finds a unique problem, it adds an entry to the in-storage
symptom queue to describe this new problem. If the DAE parameter record
specifies UPDATE, DAE adds a new record to SYSl.DAE. Then DAE
allows dumping to continue.

A key is a hexadecimal number that represents a symptom. A visible keyword is
a printable EBCDIC identifier for a symptom. Every key has a corresponding
visible keyword. DAE uses these visible keywords to create symptoms.

DAE uses two types of visible keywords: MVS and RETAIN.

Chapter 17. MVS Dumping Services 17-27

MVS Keywords

RETAIN Keywords

Minimum Symptoms

DAE uses MVS visible keywords to create MVS symptom strings. MVS
symptom strings contain visible keywords meaningful to MVS users, such as
MOD/ for the module name and CSECT/ for the CSECT name. DAE requires
that MVS symptom data be at least one byte long; the maximum length is 50
bytes. These 50 bytes include the visible keyword, the slash separator, and the
symptom data. If the MVS symptom is too long, DAE truncates the symptom at
50 bytes.

The maximum length of the MVS symptom string is 150 bytes. If the MVS
symptom string is too long, DAE truncates the symptom string at 150 bytes.

See "MVS S~I?ptoms" for a discussion of how DAE creates MVS symptoms.
MVS/XA Debugging Handbook, Volume 1 includes a table showing all DAE keys
and keywords, and their meanings.

DAB uses RETAIN visible keywords to create RETAIN symptom strings.
RETAIN symptom strings contain visible keywords that are acceptable for
RETAIN searches. For RETAIN symptoms, the maximum length is 15 bytes.
These 15 bytes include the visible keyword, the slash separator, and the symptom
data. If the RETAIN symptom is too long, DAE truncates the symptom at 15
bytes.

See "RETAIN Symptoms" for a discussion of how DAE creates RETAIN \
symptoms. MVS/XA Debugging Handbook, Volume 1 includes a table showing all .."
DAE keys and keywords, and their meanings.

DAE requires a minimum set of symptoms for MVS symptom strings before it
matches for duplicate dumps. A minimum set of symptoms is the smallest amount
of symptom data that DAE needs to successfully process the matching function.
DAE requires the following:

• 	 A minimum of five non-null symptoms in the MVS symptom string. Each
symptom must contain a meaningful identifying element, such as module
name, CSECT name, abend code, etc.

• 	 A minimum MVS symptom string length of 25 bytes.

• 	 A set of required symptoms and optionai symptoms. Each MVS symptom
string must contain all required symptoms, and enough optional symptoms, to
meet the minimum count of five non-null symptoms.

17-28 SPL: System Modifications

Required Symptoms

Optional Symptoms

Input to DAE

DAE requires certain symptom data before it matches for duplicate dumps. If the
required data is not present, DAE does not perform matching. DAE defines a list
of default required symptom keys in module ADYDFLT. See "ADYDFLT" for
a description of these defaults.

Optional symptoms assist in DAE match processing. DAE uses only nonzero and
non-blank optional symptoms. DAE does not require the presence of optional
symptoms; but if optional symptoms are present, DAE uses them for matching.
DAE defines a list of default optional symptom keys in module ADYDFLT. See
"ADYDFLT" for a description of these defaults.

DAE uses several input data sources for its processing; they are:

• 	 DAE parameter record, a set of DAE processing options that is contained in
an ADYSETxx member of SYSl.PARMLIB

• 	 ADYDFLT, a non-executable load module containing default symptom keys
and minimum matching criteria

• 	 SYSl.DAE, a data set containing a record for every unique dump for which
DAE has recorded information

• 	 The ABDUMP symptom area of the dump header record, which is mapped
by the AMDDATA macro

• 	 SDW A, the system diagnostic work area, and the variable recording area
(VRA) in the SDWA, from which DAE extracts symptom information

DAE Parameter Record in SYS1.PARMLIB

The DAE parameter record is in an ADYSETxx member of SYS1.PARMLIB.
This parameter record specifies the options for DAE processing. IBM supplies
three ADYSETxx members of SYSl.PARMLIB for DAE: ADYSETOO,
ADYSETOl, and ADYSET02. Another SYS1.PARMLIB member, IEACMDOO,
specifies the automatic startup of DAE.

You can create additional ADYSETxx members of SYSl.PARMLIB, so that each
parameter record has a combination of DAE options that your installation might
need. The SET DAE = xx operator command references an ADYSETxx member
of SYSl.PARMLIB. The operator uses the SET DAE command to change the
operational mode of DAE.

MVS/XA Initialization and Tuning describes each IBM-supplied ADYSETxx
member of SYSl.PARMLIB, and discusses the syntax of the DAE parameter
record. MVS/XA Operations: System Commands describes the syntax and use of
the SET DAE operator command.

Chapter 17. MVS Dumping Services 17-29

The format of the DAE parameter record in any ADYSETxx member of
SYSl.PARMLIB is as follows: J

IEACMDOO

DAE={STOPISTART[,RECORDS(n)] [,SVCDUMP(p)] [,SYSMDUMP(p)]}

Figure 17-6. Format of DAE Parameter Record

None of the keyword parameters is positional. The description of the parameters
and subparameters (P) is in MVS/XA Initialization and Tuning.

The IEACMDOO member of SYSl.PARMLIB contains the operator command
SET DAE=OO. IEACMDOO executes before any other COMMNDxx parmlib
member, and causes DAE to read and interpret the ADYSETOO member of
SYSl.PARMLIB. Because ADYSETOO contains DAE=START and DAE
processing options, DAE is automatically started during system initialization.

Note: If SYSl.DAE does not exist, automatic start-up of DAE fails.

SET DAE Operator Command

ADYDFLT

The SET DAE operator command references a corresponding ADYSETxx
member of SYSl.PARMLIB. The ADYSETxx member contains a DAB
parameter record that starts or stops DAE processing. The SET DAE command Jhas the following format:

SET DAE=xx

xx is a two-digit alphameric character.

In addition to the IBM-supplied ADYSETxx members of SYSl.PARMLIB, you
can create ADYSETxx members for specific DAE processing options. The
operator can use the SET DAE command to change the operational mode of
DAE.

ADYDFLT is a non-executable load module containing the constants that define
the minimum criteria for DAB matching. ADYDFLT also contains the default
keys that DAE uses for match processing. The ADYDFLM mapping macro maps
ADYDFLT; MVSjXA Debugging Handbook describes ADYDFLM and the
structures that it maps.

As supplied by IBM, ADYDFLT contains a list of both required symptom keys
and optional symptom keys. Figure 17-7 shows the required keys; Figure 17-8
shows the optional keys.

17-30 SPL: System Modifications

IHAVRA Symptom
Label

EFLDMD Name of the failing load module
EFCSCT Name of the failing CSECT

Figure 17-7. Required Symptom Keys in ADYDFLT

IHAVRA Symptom
Label

EFABS System abend code
EFABU User abend code
EFREXN Name of CSECT containing the recovery routine
EIFllC Failing instruction area
EFPSW PSWjregister difference
EIHRCIC Reason code for this ABEND
EIPIDSIC Product/Component identifier
EISUBIC Subfunction name

Figure 17-8. Optional Symptom Keys in ADYDFLT

MVS/XA Debugging Handbook, Volume 1 includes a table showing all DAE keys
and keywords, and their meanings.

DAE creates the required and optional symptoms by obtaining symptom data
from the SDW A and the ABDUMP symptom area, and concatenating the
symptom data to the appropriate symptom keyword.

For a required symptom, DAE must locate the data to create the symptom. If
DAE cannot locate the data for a required symptom, or if the data is all blanks
or all zeros, DAE cannot build that required symptom. The absence of a required
symptom prevents DAE from matching for duplicates.

For the optional symptoms, DAE locates the data to create the symptom. If
DAE cannot locate the data, or if the data is all blanks or all zeros, DAE cannot
build that optional symptom. The absence of an optional symptom does not
prevent DAE from matching for duplicates, as long as minimum requirements for
matching are met. Refer to "Minimum Symptoms" for a discussion of minimum
MVS symptom string requirements.

Changing Symptom Keys in ADYDFLT

You can change the list of symptom keys defined in ADYDFLT. In addition, a
recovery routine can dynamically add to the list of symptom keys defined in
ADYDFLT by using the VRADATA macro.

Chapter 17. MVS Dumping Services 17-31

Searching for Symptom Data

DAE creates symptoms by obtaining symptom data from the SDW A and the J
ABDUMP symptom area, and concatenating the symptom data to the
appropriate symptom keyword. When DAE searches for the symptom data to
concatenate to a symptom keyword, it follows certain rules:

• 	 DAE searches for the required and optional symptom data in the order of the
symptom keys as shown in Figure 17-7 and Figure 17-8.

• 	 If your recovery routine adds required symptom keys (by specifying
VRAREQ on the VRADATA macro) they follow the required symptom keys
already defined in ADYDFLT. DAE first searches for symptom data for the
ADYDFLT-defined required symptom keys, and then searches for symptom
data for any user-defined required symptom keys.

• 	 If your recovery routine adds optional symptom keys (by specifying VRAOPT
on the VRADATA macro), they follow the optional symptom keys already
defined in ADYDFLT. DAE first searches for symptom data for the
ADYDFLT-defined optional symptom keys, and then searches for symptom
data for any user-defined optional symptom keys.

SYS1.DAE

SYSl.DAE is a data set that contains symptom records for uniquely identified
dumps processed by DAE. DAE creates or updates a record in SYS1.DAE when
the DAE parameter record specifies UPDATE. You can browse the symptom .'
records in SYSl.DAE if you allocate the SYSl.DAE data set DISP = SHR. DAE ..J
requires SYSl.DAE to function; if there is no SYSl.DAE data set created from a
previous IPL, you must create a new one.

Creating the SYSl.DAE Data Set

You can create a SYSl.DAE data set after system generation using IEFBR14 to
allocate space for SYSl.DAE. Note that you can use TSO or ISPF facilities to
allocate space for SYSl.DAE, and to catalog it.

The DAEALLOC member of SYSl.SAMPLIB contains JCL that an installation
can execute to create the SYSl.DAE dataset. Figure 17-9 shows the JCL in this
SAMPLIB member.

17-32 SPL: System Modifications

IIALLOCDAE JOB MSGLEVEL=(l,l)
//DAEALLOC EXEC PGM=IEFBR14
11*
1/* DUMP ANALYSIS AND ELIMINATION (DAE) SC143
11*
11* SAMPLE JCL TO ALLOCATE THE DATASET USED BY DAE TO
11* CONTAIN THE RECORD OF ALL DUMPS THAT IT HAS IDENTIFIED.
11* THIS EXAMPLE ASSUMES A 3350 DEVICE AND THAT FULL TRACK
11* BLOCKING IS THE MOST DESIRABLE. DAE REQUIRES FIXED
11* LENGTH 255 BYTE RECORDS. OTHER PARAMETERS SHOULD BE
11* CHOSEN BY CONSIDERING WHAT IS BEST FOR THE INSTALLATION.
/1*
11001 DD DSN=SYS1.DAE,DISP=(NEW,CATLG),
II DCB=(RECFM=FB,DSORG=PS,LRECL=255,BLKSIZE=18870),
II SPACE=(TRK,(6,2)),UNIT=3350
1/*
11* IN THIS EXAMPLE THE BLKSIZE OF 18870 YIELDS 74
11* RECORDS PER TRACK. THEREFORE THE PRIMARY ALLOCATION
1/* WILL BE 440 RECORDS. THIS IS A GOOD NUMBER TO START
11* WITH IF NO SPECIFIC EXPERIENCE IS AVAILABLE.
11*

Figure 17-9. Sample JCL in SYS1.SAMPLIB for Creating SYS1.DAE

Using an Existing SYSl.DAE Data Set

When you use an existing SYSl.DAE data set, is should have the following DCB
attributes:

RECFM=F or RECFM=FB

LRECL=255

DSORG=PS

Note that record blocking provides the most efficient use of a direct access device.
Also, you should allocate enough space on the DASD for about 400 records of
255 bytes each.

Your SYSl.DAE data set should be password- or RACF-protected. It must be
cataloged, and cannot be shared across systems.

Updating SYSl.DAE After Dump Processing

To complete its processing, DAE updates the SYSl.DAE data set if the DAE
parameter record specified UPDATE. If DAE determines that the current dump
is a unique dump, DAE creates a new record in SYSl.DAE to describe the dump.
If DAE determines that the current dump is a duplicate of a previous dump, DAE
updates the first matching record in SYSl.DAE that describes the original dump.

Notes:

. 1. 	 If DAEfinds more than one record in SYS1.DAE that describes the same
dump, DAE only uses and updates the first record it finds. DAE adds this
record to the in-storage symptom queue.

Chapter 17. MVS Dumping Services 17-33

2. 	 If DAE determines that the existing record in SYSl.DAEfor the most recent
occurrence of this dump is older than 180 days, DAE does not add the record to \
the in-storage symptom queue. "fill

ABDUMP Symptom Area of the Dump Header Record

DAE extracts symptom data from the ABDUMP symptom area of the dump
header record. AMDDATA is the macro that maps the data in the dump header
record. DAE uses two of the structures defined by this macro: PRDSYSMD and
ADSSRNSD.

PRDSYSMD is the ABDUMP symptom area. DAE extracts symptoms from
PRDSYSMD symptom data relevant to SYSMDUMPs. Refer to "Symptom
Dumps" for more information about the ABDUMP symptom area.

ADSSRNSD is the area in which DAE stores symptom strings and other
processing data for the dump header record. The dump formatting programs
(Print Dump and IPCS) later format and print the information stored in
ADSSRNSD.

SDWA

DAE searches various fields in the SDW A to locate symptom data it uses to
create symptoms. Specifically, DAE uses these areas:

• 	 The fixed portion of the SDW A
• 	 The first recordable extension of the SDW A
• 	 The second recordable extension of the SDW A
• 	 The variable recording area (VRA) in the SDWA

MVSjXA Debugging Handbook describes the SDWA.

DAE Processing

This section describes DAE processing, including:

• 	 DAE initialization
• 	 Symptom extraction
• 	 How DAE creates symptoms
• 	 Criteria for DAE to match for duplicates
• 	 Criteria for DAE to suppress dumps
• 	 DAE SUPPRESS and UPDATE processing
• 	 The dump header record
• 	 Overrides to DAE suppressing dumps

17-34 SPL: System Modifications

DAE Initialization

Symptom Extraction

DAE is started at system initialization by the SET DAE=OO command in the
SYSl.PARMLIB member, IEACMDOO. The DAE function that reads and
updates SYSl.DAE, and the DAE post-dump exit, reside in the DUMPSRV
address space. If the DAE parameter record specifies or implies matching, DAE
reads the SYSl.DAE data set. Then DAE selects certain records from
SYSl.DAE, and creates an in-storage symptom queue. DAE loads the default
options module, ADYDFLT. If the operator enters any SET DAE commands,
DAE interprets and processes them.

When SDUMP receives control to take a dump, SDUMP calls DAE, and passes
it information that DAE needs to determine if it should suppress the dump. DAE
initializes the DAE symptom extraction (DSX) parameter list with the addresses
of these source data areas:

• The fixed portion of the SDW A
• The first recordable extension of the SDWA
• The second recordable extension of the SDW A
• The variable recording area (VRA) of the SDW A
• The ABDUMP symptom area (in the dwnp header record)

DAE creates the MVS and RETAIN symptoms from the symptom data in the
SDWA, the SDWA extensions, and the ABDUMP symptom area. DAE places
the symptoms into the DSX. Each entry in the DSX contains data from one
symptom found by DAE. Then, DAE builds a symptom string from all the
entries in the DSX, and places the symptom string in the dump header record.

The keywords in a RETAIN symptom string are not as specific as the keywords
in an MVS symptom string. In constructing the MVS symptom string, DAE
extracts symptoms from specific areas that are meaningful to the MVS specialist.
Thus, the DAE symptom string is designed to have diagnostic meaning for MVS
specialists. The RETAIN symptom string is designed for those who are accessing
RETAIN, not necessarily MVS specialists. Most RETAIN users use the
RETAIN symptom string to determine if a problem is already recorded in
RET AIN, and not for diagnostic purposes.

How DAE Creates Symptoms

In designing recovery routines that use or create symptoms, you should know how
DAE processes data to create symptoms. Your recovery routine must create
symptom data that yields definitive, reproducible, and understandable symptom
strings. DAE uses certain editing rules to create symptoms, depending on the
type of symptom (MVS or RETAIN) and the type of source data defined in the
SDW A and the ABDUMP symptom area.

Chapter 17. MVS Dumping Services 17-35

MVS Symptoms

DAE creates MVS symptoms according to these rules: J
• 	 The format of a symptom is keyword/data.

• 	 The length of the keyword is variable, and the length of the data is variable.

• 	 The maximum length of the symptom is 50 bytes, including the keyword, the
slash (/) separator, and the symptom data.

• The final character in the symptom cannot be the slash separator.

In addition, DAE follows certain guidelines for different types of source data.

Hexadecimal Source Data: DAE creates MVS symptoms from hexadecimal
source data according to these rules:

• 	 If the data contains all zeros, DAE cannot use it as symptom data. The
exception is reason cOGe symptom data. If the SDWARCF flag is on in the
SDWA, DAE uses the reason code regardless of its value. RTM turns on the
SDWARCF flag whenever the SETRP, CALLRTM, and ABEND macros use
the REASON keyword. RTM sets the SDWACRC field equal to the reason
code.

• 	 If the data longer than 4 bytes, DAE eliminates leading and trailing zeros.

• 	 If, after eliminating leading and trailing zeros, the symptom is still more than J
50 bytes long, DAE truncates the data on the right

Character Data: DAB creates symptoms from character source data according to
these rules:

• 	 " If the data contains all zeros or all blanks, DAE cannot use it as symptom
data.

• 	 DAE eliminates leading and trailing zeros and blanks.

• 	 If, after eliminating leading and trailing zeros and blanks, the symptom is still
more than 50 bytes long, DAE truncates the data on the left.

Flag Data: DAE creates symptoms from flag source data according to these
rules:

• 	 If the data contains all binary zeros, DAE cannot use it as a symptom.

• 	 If the symptom is more than 50 bytes long, DAB truncates the data on the
right.

17-36 SPL: System Modifications

RETAIN Symptoms

Duplicate Symptoms

DAE creates RETAIN symptoms according to certain rules. The same source
data might yield a RETAIN symptom that differs from an MVS symptom. In
creating RETAIN symptoms, DAE first applies its rules for editing MVS
symptoms. Then the edited MVS symptom becomes the source for the RETAIN
symptom. DAB further edits the data to create RETAIN symptoms according to
these rules:

• 	 The format of a symptom is keyword/data.

• 	 The length of the keyword is variable, and the length of the data is variable.

• 	 The maximum length of the symptom is 15 bytes, including the keyword, the
slash (I) separator, and the symptom data.

• 	 RETAIN allows use of only three special characters in a symptom; these are:

@ (at symbol)
$ (dollar sign)
(pound sign)

DAB replaces all other special characters and blanks with # (pound sign).

In addition, DAE follows certain guidelines for different types of source data.

Hexadecimal and Character Source Data: DAE creates RETAIN symptoms from
hexadecimal and character MVS symptom data according to this rule:

• 	 If a symptom is more than 15 bytes long, DAE truncates the data on the left.

Flag Source Data: DAE creates RETAIN symptoms from flag MVS symptom
data according to this rule:

• 	 If a symptom is more than 15 bytes long, DAE truncates the data on the
right.

Sometimes DAE locates duplicate symptoms. For instance, the ABDUMP
symptom area contains fields that are also defined in the SDWA. For such
duplicate information, DAE uses the ABDUMP data in preference to the same
data from the SDW A. If the ABDUMP data areas are blank or contain zeros,
DAE uses the data in the SDWA for creating the symptom. Figure 17-10 shows
duplicate areas in the ABDUMP symptom area and the SDW A that DAE uses in
constructing symptoms.

ABDUMP SDWA 	 Description

PRDSMABD SDWAABCC System and user abend codes
PRDSMPSW SDWANXTI Failing PSW
PRDSMLMN SDWAMODN Name of failing load module
PRDSMPDA SDWAFAIN Address of failing instruction
PRDSMGPR SDWAGRSV General purpose registers at time

of failure

Figure 17-10. Duplicate Areas in ABDUMP Symptom Area and SDWA

Chapter 17. MVS Dumping Services 17-3 7

Multiple Specifications of VRA Keys

You can use the VRADATA macro (see "Creating and Modifying Symptom J
Data") to provide specific values for the SDW A VRA keys. If DAE finds multiple
specifications for a VRA key, DAE builds the symptom using the first
specification of that VRA key.

Criteria for DAE to Match for Duplicates

After DAE creates the MVS and RETAIN symptom strings, it determines if the
parameter record specifies or implies MATCH. If so, DAB detennines if the
criteria for matching are present. DAE proceeds with matching for duplicates if
the following requirements are met:

• 	 DAE is initialized successfully and no major DAE or SDUMP failures occur
during the creation of the MVS symptom string.

• 	 The DAE parameter record specifies or implies matching.

• 	 All required symptoms are nonzero and nonblank. This means that DAE
created symptoms and placed them in the MVS symptom string.

• 	 The MVS symptom string meets the minimum length and minimum count
requirements.

• 	 The source data areas that DAE uses to search for symptom data are
available. See "ABDUMP Symptom Area of the Dump Header Record" and
"SDWA" for a list of these symptom data areas.

• 	 The SDW A V RAM flag is on. This indicates that the data in the VRA was
created using the VRADAT A macro, or was created in the same format as if
the VRADATA macro was used. If DAE does not need the data in the VRA

"for matching, this flag is not necessary.

• 	 The SDWAURAL field accurately reflects the length of the symptom data
that you placed in the VRA. If DAE does not need the data in the VRA for
matching, this field is not necessary.

If the requirements for matching are not met, DAE allows SDUMP to proceed
with dumping. If the requirements for matching are met, DAE attempts to match
the newly-created symptom string to the symptom strings in the in-storage
symptom queue.

Criteria for DAE to Suppress Dumps

After matching for duplicates, DAE determines if it should proceed with dump
suppression. For DAB to suppress dumps, the following criteria must be met:

• 	 All the requirements for matching are met.

• 	 DAE finds a symptom string in the in-storage symptom queue that is a
duplicate of the symptom string from the current dump.

17-38 SPL: System Modifications

• 	 The DAE parameter record specifies SUPPRESS for the type of dump (either
SVCDUMP or SYSMDUMP) that DAE is processing.

• 	 The VRADAE key is set (see "VRA Keys for DAE").

• 	 The active SLIP commands for the current dump do not specify the NOSUP,
SVCD, or TRDUMP options.

• 	 DAE does not encounter terminating errors while processing this dump.

SUPPRESS and UPDATE Processing

The Dump Header Record

When the DAE parameter record specifies UPDATE and SUPPRESS, DAE does
the following processing after match processing:

• 	 If DAE locates a duplicate record:

1. 	 DAE places the symptom data from the original occurrence of the dump
in the dump header record.

2. 	 DAE updates the in-storage symptom queue record.

3. 	 If all suppression criteria are met, DAE sets a return code of four; this
prevents SDUMP from taking the dump.

4. 	 DAE updates the incidence count of this dump in the corresponding
SYS1.DAE record.

• 	 If DAE cannot locate a duplicate record in the in-storage symptom queue, it
considers the dump to be a new problem.

1. 	 DAE sets a return code of zero, which allows SDUMP to proceed with
dumping.

2. 	 DAE adds a new record to both the in-storage symptom queue and
SYSl.DAE. The SYS1.DAE record contains the symptom string
representing this new dump.

DAE provides SDUMP and ABDUMP with the results of its processing. If DAE
does not suppress the dump, the DAE dump header record formatting program
takes informational data from the dump header record about why DAE did not
suppress the dump. On the dump title page, DAE might list any of the following
as reasons for not suppressing the dump:

• 	 The dump is unique; DAE did not find any record of a previous dump.
• 	 SLIP requested that the dump be taken.
• 	 VRADAE is not set.
• 	 The DAE parameter record does not specify SUPPRESS for this dump type.
• 	 DAE could not locate all the required symptoms.
• 	 DAE could not locate the minimum number of symptoms.
• 	 DAE could not build a symptom string of the minimum length.

Chapter 17. MVS Dumping Services 17-39

Overrides to DAE

• 	 DAE encountered a user input error, as follows:
Required symptom list has an invalid key.
Minimum symptom string count specified is invalid.
Minimum symptom string length specified is invalid.

If the dump is a duplicate, DAE places informational data in the dump header
record about both the original dump and the current dump.

Some user input errors do not necessarily affect whether or not DAE suppresses
dumps. For the following user input en-ors, DAE still puts information on the
dump title page that it takes from the dump header record:

• 	 Optional symptom list has an invalid key.

• 	 SDW A URAL (length of user-supplied information in VRA) or SDW A VRAL
(length of VRA) value is invalid.

The following are a few of the reasons why DAE might not suppress dumps:

• 	 If the VRADAE key is not set on, DAE does not suppress that dwnp.

• 	 The DAE parameter record does not specify the SUPPRESS option for this
dump type. An installation might omit the SUPPRESS option during testing
of DAE, but should otherwise specify SUPPRESS for improved system
performance.

• 	 Certain SLIP actions override DAE dump suppression.

SLIP actions of SVCD (SVC dump) or TRDUMP (trace dump) always
produce dumps. These actions trap critical problems that always require
a dump.

The SLIP action of NOSUP (no suppression) always produces a dump.

Creating and Modifying Symptom Data

To use DAE most effectively, you might want to modify the defaults provided in
module ADYDFLT, to tailor DAE processing to your installation's needs. Any
of the following procedures might provide your installation with better problem
determination:

• 	 Adding to the required symptoms
• 	 Adding to the optional symptoms
• Increasing the minimum number of symptoms
• Increasing the minimum symptom string length

J

17-40 SPL: System Modifications

VRA Keys for DAE

When DAE creates a symptom string, it obtains symptoms from three main
sources:

• 	 RTM, which creates some symptoms for all dumps except SLIP dumps.

• 	 A program, which creates symptoms when its EST AE or FRR receives
control.

• 	 ABDUMP, which creates symptoms for every SYSMDUMP.

A recovery routine can dynamically define symptom data for DAE to use, by
putting specific values into the SDW A variable recording area (VRA).

Two macros allow a recovery routine to access the VRA. The first is the
IHAVRA mapping macro, which defines the symptom keys that a recovery
routine can put into the VRA. The second is the VRADA T A macro, which a
recovery routine can issue to put specific data into the SDW A VRA.

This section discusses the VRA keys that DAE uses, and describes how a recovery
routine can define additional symptoms for DAE processing. Users must select
symptoms carefully. If the symptom data is too specific, no other dump will have
the same symptoms, and DAE will not suppress any dumps. If the symptom data
is too general, many dumps will have the same symptoms, and DAE might
suppress a dump that is needed.

An EST AE or FRR can place infomlation into the SDW A VRA that DAE later
uses for creating symptoms. A recovery routine can specify symptom data by
using VRA keys, as described below. These keys describe symptom data in the
VRA, SDW A, and ABDUMP symptom area that DAE uses for error analysis.
The IHA VRA macro defines keys for all symptoms. The VRADA T A macro
allows the failing component's recovery routine to put data into the SDW A VRA.

If your recovery routine placcs information into SDWAVRA, it must provide the
information in key/length/data format. Specifically:

key
The key is a one-byte hexadecimal number from X'OI' to X'FF' that defines
the type of data in the data field.

length
The length is a one-byte hexadecimal number from X'O l' to X'FF' that
defines the length of the data field.

data
The data field contains symptom data determined by the recovery routine.

A recovery routine can issue the VRADATA macro to create a VRA entry in
key/length/data format. VRADATA also creates the proper length field in the
SDWAURAL (length of user-supplied information in VRA).

Chapter 17. MVS Dumping Services 17-41

DAE, as supplied by IBM, defines the meaning and content of the keys in the
VRA. However, the keys in the range X'DC' to X'EO' (decimal 220 to 224) are \
available for whatever you define them to be. You might use these keys when no ..,
other keys provide the desired symptoms. You can define a special meaning for
one of these keys, and place the key in the SDW A VRA by issuing the
VRADAT A macro. If you use one of these keys, DAE identifies the
corresponding visible keyword as the key preceded by '@'.

The following VRA keys do not represent symptoms, but DAE does use these
VRA keys for processing:

VRADAE
enables DAE to suppress duplicate dumps if all requirements for matching
and dump suppression are met. To set the VRADAE indicator, the
recovery routine issues the following macro instruction:

VRADATA KEY(VRADAE)

Specification of this key indicates to DAE that the SDW A contains
sufficien.t data to uniquely identify the dump.

Note: Even when the DAE parameter record specifies SUPPRESS, if the
VRADAE key is not set on, DAE does not suppress any dumps.

VRAMINSC
causes DAE to use the specified value as the required minimum symptom
count, if the specified value is not less than the default or more than the
maximum.

VRAMINSL
causes DAE to use the specified value as the required minimum symptom
string length, if the specified value is not less than the default or more than
the maximum.

VRAOPT
identifies a list of VRA keys for this dump that are added to the optional
symptom key list specified by the default module ADYDFLT.

VRAREQ
identifies a list of VRA keys for this dump that are added to the required
symptom key list specifies by the default module ADYDFLT.

Note: You can use the VRADATA macro to provide specific data for the
SDW AVRA. If DAE finds multiple specifications for a VRA key, DAE builds the
symptom using the first specification of that VRA key.

Adding to the Minimum Symptom String Requirements

The ADYDFLT module contains defaults for the required symptoms, optional
symptoms, minimum number of symptoms, and minimum symptom string length
for DAE processing. (See "ADYDFLT" in this chapter for a discussion of the
defaults it contains.) You can use appropriate data areas in the SDWA to modify
these minimum requirements.

17-42 SPL: System Modifications

Adding to the Required Symptoms

You can dynamically add to the required symptoms that DAE uses for matching.
Use the VRADATA macro to create a field in SDWAVRA in key/length/data
format, using the VRAREQ key. The data field must contain binary numbers
corresponding to the labels in the IHAVRA mapping macro. The length must be a
multiple of two.

DAE adds these keys to the default set specified by module ADYDFLT. The
maximum number of required symptoms that DAE can use is 20. If you add more
than 18 required symptoms to the two provided by ADYDFLT, DAE uses the
first 20 and ignores the rest.

If you create the VRAREQ field more than once, DAE accumulates the specified
required symptoms from the data portion of each field until it reaches the
maximum of 20.

Notes:

1. 	 If information is missing from a required symptom (that is, a symptom is all
zeros or all blanks), DAE does not match for duplicates. The title page of the
dump lists a DAE informational message to this effect.

2. 	 Ifyou include an invalid key for a required symptom, DAE does not match for
duplicates. The title page of the dump lists a DAE informational message about
the invalid key.

Adding to the Optional Symptoms

You can dynamically change the number and type of optional symptoms that
DAE uses for matching. Use the VRADATA macro to create a field in
SDW AVRA in key/length/data format, using the VRAOPT key. The data field
must contain binary numbers corresponding to the labels in the IHAVRA
mapping macro. The length must be a multiple of two.

DAE adds these symptom keys to the default set defined by module ADYDFLT.
The maximum number of optional symptoms that DAE can use is 20. If you add
more than 12 optional symptoms to the eight provided by ADYDFLT, DAE uses
the first 20 and ignores the rest.

If you create the VRAOPT field more than once, DAE accumulates the specified
optional symptoms until it reaches the maximum of 20.

Note: If you include an invalid key for an optional symptom, DAE ignores this
key, but still matches for duplicates. The title page of the dump lists a DAE
infom1ational message about the invalid key.

Chapter 17. MVS Dumping Services 17-43

Increasing the Minimum Number of Symptoms

You can increase the minimum number of symptoms that DAE uses for \

matching. Use the VRADAT A macro to create a field in SDW A VRA in ...,

key/length/data format, using the VRAMINSC key. The data field is a

hexadecimal number from X'05' to X'28' (decimal five to 40). This value defines

the number of required and optional symptoms that DAE must find before

matching occurs. DAE can use up to 20 required symptoms and 20 optional

symptoms for matching, as long as the symptom string does not exceed 150 bytes.

The length must always equal two.

If you create the VRAMINSC field more than once, DAE uses the count from
the last valid VRAMINSC field specified. DAE does not match for duplicates
when:

• You specify a value that is less than the default value defined in ADYDFLT.
• You specify a value that is more than 40.

The title page of the dump lists a DAE informational message to this effect.

Increasing the Minimum Symptom String Length

You can increase the minimum symptom string length that DAE requires for
matching. Use the VRADAT A macro to create a field in SDW A VRA in
key/length/data format, using the VRAMINSL key. The data field is a
hexadecimal number from X'19' to X'96' (decimal 25 to 150). This value defines
the minimum symptom string length that DAE must use before matching occurs.
The length must always equal two.

If the VRAMINSL field is created more than once, DAE uses the count from the
la'st valid VRAMINSL field specified. DAE does not match for duplicates when:

• You specify a value that is less than the default value defined in ADYDFLT.
• You specify a value that is more than 150.

The title page of the dump lists a DAB informational message to this effect.

J

17-44 SPL: System Modifications

Appendix A. mM Provided Device Preference Table

The following IBM provided list shows the device order that MVS uses when it
attempts an allocation to satisfy a request for a device from an esoteric device
group. The order of the IBM-defined list ensures that MVS always tries to
allocate the fastest possible available device.

For each UIM that you write, you may add the generic name and generic
preference value to this default list by inserting an unsupported device anywhere
in the list. While you may add to the list, you can not change the order of the
IBM-defined list this way.

For each EDT that you define, you may change the order of the list or add
unsupported devices by coding the changes on the DEVPREF = parameter of the
EDT statement.

Appendix A. IBM Provided Device Preference Table A-I

Device Type Generic Name Generic Preference Value

drum 2305-2 200

direct access 3380 290
 J
3350 300

3375 350

3330-1 400

3330 500

3340 600

magnetic tape 	 3480 1100

3400-9 1101

3400-5 1200

3400-3 1210

3400-6 1220

3400-4 1230

3400-2 1240

2400-3 1300

2400 1310

2400-4 1320

2400-2 1300

2400-1 1340

printers 	 3800 1780

4248 I 1850

4245 1890

3211 1900

3203 2000

1403 2100

readers/punches 	 2501 2300

3505 2400

3525 2500

2540 2800

2540-2 2900

graphic (display) HFGD 3260

devices 2250-3 3500

3277-1 3700

3277-2 3800

3284-1 4\00

3284-2 4200

3286-1 4300

3286-2 4400

2260-1 4600

2260-2 4700

optical or magnetic 3890 4800

character readers 3886 4900

1287 5000

1288 5\00

3895 5400

diskette 	 3540 5600

mass storage 	 3851 5700

subsystem 	 3330V 5800

array processor 	 3838 5900

lBecause the 3262 Model 5 is generated as a 4248 printer, the entry 4248 in the installalion device
preference table may refer to a 4248 printer, a 3262 Model 5 printer, or both. If a 3262 Model 5 printer
is installed on your system, and the 4248 entry in your installation device preference table precedes the
entries for the 4245 or the 3800 printers, youJ system may allocate the slower 3262 Model 5 printer in
preference to the faster 4245, 4248, or 3800.

J

A-2 SPL: System Modifications

Devk:eType Geoerk Name

telecommunication AAAI
device AAA2

AAA5
AAA6
AAA7
AAA8
AAA9
AAAA
AAAB
AAAC
AAAD
AAAE
AAAF
3705
3791L
3704

channel-to-channel eTC
CU
telecommunication AAAG
devices AAAH

AAAI
miscellaneous DUMMY
devices 3848

Generic Preference Valoe

6100

6200

6500

6600

6700

6800

6900

7000

7100

7200

7300

7400

7500

7600

7700

7800

8400

9700

9800

9900

99991
99999

Appendix A. IBM Provided Device Preference Table A-3

J

A-4 SPL: System Modifications

Index

ABDUMP symptom area of dump header
record 17-34

activating general-purpose IEAVMXIT 7-6

adding an installation-written resource manager 5-4

adding entries to the system trace table

See PTRACE macro

adding to minimum symptom string for DAE 17-42

adding to optional symptoms for DAE 17-43

adding to required symptoms for DAE 17-43

adding your own code to the DAT -off nucleus 6-1

address space for allocation/de allocation

See ALLOCAS address space

ADSSRNSD data area and DAE 17-34

ADYDFLT module (DAE)

adding to minimum symptom string 17-42

description 17-30

symptom keys

adding to defaults 17-31

optional 17-31

required 17-31

affinity, processor 4-3

ALLOCAS address space 2-13

allocating SYSl.DUMP data sets 17-5

allocating the internal reader data set 14-2

allocation

See also device preference table, volume attribute
list, mount and use attributes

deallocation of resources in case of abend 2-13

general discussion 2-1

improving efficiency of 2-2

order of device selection 2-1, 2-2

serialization during allocation 2-1

allocation considerations 2-1

AMDDATA mapping macro 17-34

AMDPRDMP

Defining ABEND Dump Data Sets 17-3

SYSMDUMP 17-3

Formatting SVC dumps 17-4

Printing SVC dumps 17-4

AMODE and RMODE attributes, in DAT-off

code 6-1

APF-authorization

required for programs in the PPT 4-5, 4-6

assembler code for creating USRn TTEs 9-7

assigning mount and use attributes 2-8

assigning special program properties to

applications 4-1

See also program properties table

automatic dump suppression
See DAE
See suppressing dumps automatically, by abend code

block character routine for output separator pages

See output separator routine for an external writer

build function of virtual fetch 16-6

See also virtual fetch

BUILD request for virtual fetch 16-13

CBPADIT 1-5

CBPDDCT 1-6

CBPIDFT 1-7

CBPIFEAT 1-8

CBPIGETM 1-9

CBPIPARM 1-10

CBPZDIAG 1-38

CBPZLOG 1-38

CBPZPPDS 1-38

changes to Master JCL 8-2

character source data for DAE

MVS symptoms 17-36

RETAIN symptoms 17-37

check groups function of unit verification service 12-1

check units function of unit verification service 12-2

CHNGDUMP command 17-3

closing the internal reader data set 14-3

coding a formatting routine for USRn TTEs

See writing an ITRFOn7F TTE formatting routine

coding conventions for the output writing routine 15-4

commands

See system operator commands

Configuration program vector table 1-3

considerations when using virtual fetch 16-9

console communications, controlling

See WTO/WTOR exits

contents of the PPT entry 4-3

continued USRn trace table entries

See multi-part trace table entries

Control blocks 1-3

control points for customizing the system 111

job/step execution iii

system initialization (IPL) iii

controlling GRS requests in MVS/XA 2-13

controlling system messages 7-2

processing 7-3

routing 7-3

controlling system messages and the system log 7-1

controlling the system log 7-8

convert device type to look-up value function of unit

verification service 12-2

output return codes 12-15

CPU affinity 4-3

Index X-I

CPVT 1-3

creating your own resource managers 5-1

CSVVFCRE 16-2, 16-7

See also virtual fetch

CSVVFGET 16-6

CSVVFGTE 16-6

CSVVFIND 16-12

CSVVFNDE 16-6

CSVVFSCH 16-2, 16-6

CSVVFTCH 16-6

customization task, the iii

customizing the system trace table 9-1

sample assembler code for 9-7

customizing your system

installation defaults iv

macro instruction libraries iv

module libraries iv

system operator commands iv

system services iv

SYS I.PARMLIB IV

user exits iv

CVTVFGET 16-6

See also virtual fetch

CVTVFIND 16-6

See also virtual fetch

DAE

adding to

minimum symptom string 17-42

optional symptoms 17-43

required symptoms 17-43

changing symptom keys in ADYDFLT 17-31

creating symptom data 17-35, 17-40

default keys in ADYDFLT 17-30

dump header record 17-39

functions 17-26

increasing

minimum number of symptoms 17-44

minimum symptom string length 17-44

initialization 17-35

input data sources 17-29

modifying symptom data 17-40

overrides

SLIP actions 17-40

VRADAE key 17-40

overview 17-26

parameter record

description 17-29

format 17-30

processing

summary 17-34

symptom data

extraction 17-35

searching for 17-32
 J

VRA keys in SDWA 17-38,17-41

DAEALLOC member of SYSI.SAMPLIB 17-32

DAT -off code in MVSjXA 6-1

Data Areas

data set processing sub task

See STDWTR: IBM standard output writing routine

DATOFF macro 6-1

DCT 1-6

DDT 1-38

device descriptor table 1-33

deallocation of resources in case of abend 2-13

using the ALLOCAS address space 2-13

default values in JOSRHIDT 13-2

defining DUMMY devices 1-1

defining dump data sets

for ABEND dumps 17-3

for SVC dumps 17-5

defining subsystems in members of

SYSI.PARMLIB 10-2

entry format 10-2

in IEFSSNxx 10-2

defining subsystems to the operating system 10-1

at system generation 10-1

in members of SYSI.PARMLIB 10-2

initialization routines for subsystems 10-1

parameters for initialization routines 10-3

system handling of duplicates 10-4

defining the job entry subsystem 8-1
 J
descriptor codes 7-3

See also WTOjWTOR exits

Device Characteristics Table

CBPDDCT 1-6

Device class

unit names for 12-3

Device dependent table

for UIMs 1-38

lOSDDT macro 1-38

Device descriptor table

JOSDDT macro 1-33

Device Features Checker

CBPIFEA T 1-8

Device Features Table

CBPIDFT 1-7

Device Information Table

CBPADIT 1-5

device preference table 2-2, 2-3

defined in the EDT macro 2-3

IBM-defined values A-I

device support modules

in SYSI.LINKLIB 1-33

see also DDT 1-33

in SYSI.NUCLEUS 1-33

module list table 1-33

SUPPRESS 17-26, 17-39
 see also ML T 1-33

UPDATE 17-26, 17-39
 device verification 12-1

requirements Jdevices
for matching 17-38
 defining DUMMY device 1-41, 1-42

for suppressing 17-38

X-2 SPL: System Modifications

esoteric group names 2-6
example of setting up 2-6
figure showing relationships to generics 2-7
specified on the UNITNAME statement 2-6

ESTAE
See recovery routines

examples of using preferred storage flags 4-8
executing DAT-off code in MVS/XA 6-1
extended addressing considerations 3-2,6-1, 14-1,

15-1, 16-11
the ex ternal writer 15-1

See also external writer
block characters to separate jobs 15-11
default processing 15-1
defined 15-1
features of IBM-supplied version 15-1
initialized by module IASXWROO 15-2
modifying the IBM version 15-1
output separation processing 15-8
parameter list 15-2

format and contents 15-3
parts of 15-1

output separator routine 15-1, 15-8

output writing routine 15-1, 15-2

selection criteria for data sets 15-1
IBM default 15-1

using the MODIFY command 15-13

using the 3800 Printing Subsystem 15-15

XWTR, IBM cataloged procedure 15-12

the external writer cataloged procedure 15-12,15-14
for the 3800 Printing Subsystem 15-15
modifying for special print chains 15-15

external writer parameter list (PARLIST) 15-2

find function of virtual fetch 16-6
See also virtual fetch

FIND request for virtual fetch 16-13
fitting your subsystems into the system 9-11
fixed pages

See preferred storage flags in the PPT
flag source data for DAE

MVS symptoms 17-36
RETAIN symptoms 17-37

format of the PPT entry 4-2
formatting a USRn trace table entry 9-4

handling errors 9-7
parameters passed to print routine 9-6
parameters received 9-5
possible return codes 9-6
writing your own routine 9-5-9-7

formatting USRn trace table entries
See writing an ITRFOn7F TTE formatting routine

FRR
See recovery routines

defining non-supported devices 1-1
DUMMY 1-1
I/O configuration 1-1
IBM-supplied UIMs 1-39
MVSCP I-I
to support MVSCP 1-39
Unit Information Module 1-1

DEVPREF parameter of the EDT macro 2-3
DFT 1-7
Diagnostics for UIMs

Adding entries to the diagnostic stack 1-38
CBPZPPDS 1-38

Messages 1-38
CBPZLOG macro 1-38
message identifiers 1-38

MVSCP's recovery routine 1-38
CBPVMVSCP 1-38
CBPZDIAG macro 1-38

taking entries off the diagnostic stack 1-38
CBPZPPDS 1-38

DISPLA Y DUMP command
See system operator commands

DIT 1-5
DUMMY device, coding for a 1-42
dump analysis and elimination

See DAE
DUMP command 17-7
dump header record 17-39
dump suppression, function of DAE
dump types, in MVS 17-2

ABEND (user) 17-2
JES3 user dumps 17-2

SNAP 17-2
STAND-ALONE 17-2
SVC (system) 17-2

DUMPDS command 17-20
dumping services

See MVS dumping services
Dumps

Machine readable 17-25
BLSCECT parmlib member
IPCS dialogs 17-25
IPCSPRxx parmlib member

duplicate subsystem names 10-4
duplicate symptoms for DAE 17-37
dynamic allocation 2-1

EDT
See eligible device table

eligible device table 2-2, 2-6

17-26

17-25

17-25

creating new tables using EDT statement 2-7
Unit verification service 12-1

IEFAB4UV 12-1
IEFEB4UV 12-1
IEFGB4UV 12-1 function codes for unit verification service 12-5

ERPINDEX 1-42

Index X-3

L

functional parts of external writers

See external writer

functions of virtual fetch 16-1

general-purpose WTO exit

capabilities 7-5

IEAMVXIT 7-4

routine's function 7-4

generic and esoteric device groups 2-7

generic device types 2-3

on the device preference list 2-3

relationship to esoteric group names 2-7

get function of virtual fetch 16-6

See also virtual fetch

GET request for virtual retch 16-14

GETMAIN limits set by VSM 3-2

effect of region size and limit values on GETMAIN
requests 3-9

example using the IEFUSI interface 3-7

examples of allocations using values from

IEALIMIT 3-10

function of the GETMAIN limit 3-9

using values from IEALIMIT 3-3

defaulting to no limit 3-3

using values from IEFUSI 3-2

GETMAIN requests 3-3

fixed-length 3-9

examples of requests 3-9, 3-10

variable-length 3-3, 3-9

examples of requests 3-9, 3-10

how to avoid using up private area 3-10

Getmain Service Routine
CBPIGETM 1-9

GNRCPRTI 1-42

GNRCTYPI 1-42

GRNCNM 1-42

GRS requests, controlling the number of 2-13

handling errors during TTE formatting 9-7

hardcopy log 7-7

activation 7-7

commands on 7-8

messages deleted from 7-7

messages on 7 -7

on the system log data set 7-7

hash table for virtual fetch
See virtual fetch

hexadecimal source data for DAE

MVS symptoms 17-36

RETAIN symptoms 17-37

HIDT

X-4 SPL: System Modifications

See hot I/O detection table
hot T/0 condition 13-1

definition 13-1

detected by lOS 13-1

hot I/O detection table 13-1

device threshold value in 13-1

IBM default values in 13-2

mapped by macro 10SDHIDT 13-1

modifying 13-3

recovery action codes in 13-1

how this book is organized v

how VSM uses the region size and GETMAIN

limits 3-9

I/O configurations I-I
IASXWROO

See external writer

IBM-supplied UIMs 1-39

IEACMDOO member of SYS1.PARMLIB

automatic start-up of DAE 17-29, 17-35

description 17-30

IEALIMIT exit 3-2

processing by IBM version 3-3

replacing IBM's routine 3-2

requesting VSM defaults 3-4

result of setting no limits in 3-3

setting user region limits in MVS/370 3-2

IEALIMIT processing 3-3

IEASYSxx members of SYSI.PARMLIB

See SYS1.PARMLIB

IEAVEDAT in SYS1.NUCLEUS 6-1

lEAVETEF, system trace filter module 9-4, 9-5

lEAVETFC, load module for USRn TTE

formatter 9-5

lEA VETPB, print routine for the system trace output

buffer 9-6

IEAVEURn entry point for DAT-offcode 6-1

lEAVMXIT 7-7

See also general-purpose WTO exit

procedure for

user-specified exit 7-7

lEAVMXIT - general-purpose WTO exit 7-3

and user-specified WTO exits 7-4

capabilities 7-3

functions 7-4

use in suppressing messages 7-8

IEAVTRML
See resource managers, adding your own

IECIOSxx members of SYSl.PARMLIB
See SYSl.PARMLIB

IEEMSJCL 8-1

IEFAB4UV 12-1,12-4

addressing mode 12-4

authorized callers 12-4

caller's function 12-4

L
key 12-4 mapped by IEFJSIPL, in SYSl.MACLIB 10-3

mode 12-4

IEFEB4UV 12-1,12-4

See also unit verification service

authorized callers 12-4

caller's function 12-4

key 12-4

mode 12-4

problem program callers 12-4

IEFGB4UV 12-1, 12-4

authorized callers 12-4

caller's function 12-4

key 12-4

mode 12-4

IEFGB4UV or IEFAB4UV 12-1

See also unit verification service

IEFJESCT mapping macro 11-4

IEFJSSIB 11-5

IEFSDPPT 4-1

See also program properties table

IBM-supplied PPT 4-4

overridding PPT en tries 4-1

SCH EDxx member of SYS l.PARMLIB 4-1

IEFSD087
See STDWTR: IBM standard output writing routine

IEFSD094: the output separator routine 15-8

IEFSD095

See output separator routine

IEFSSNxx parmlib members 10-2

See also defining subsystems in members of

SYSl.PARMLIB

entry format 10-2

IEFSSNOO, IBM default 10-2

induding parameters for the initialization

routine 10-2

specified on SSN = system parameter 10-2

IEFSSOBH mapping macro 11-4

IEFSSREQ macro

See subsystem affinity service

IEFSSREQ: obtaining the SSAT index value 11-4

IEFSSVS 11-5

IEFUST exit 3-4

example of IEFUSI processing 3-8

requesting VSM defaults 3-4

setting user region limits in MVS/XA 3-2

IEFUSI interface 3-4

IEFZB610 4-1

See also program properties table

IHAVRA mapping macro 17-41

improving allocation performance 2-2

increasing minimum number of symptoms for

DAE 17-44

increasing minimum symptom string length for

DAE 17-44

initialization routines for subsystems 10-1

parameter list 10-3

format 10-3

input to and output from unit verification service

routines 12-5

inserting a WTO/WTOR exit routine into the control

program 7-5

installation support for the virtual fetch service 16-6

installation-written resource managers 5-1

the internal reader facility 14-1

allocating the data set 14-2

notes 14-2

via dynamic allocation (SVC 99) 14-2

via JCL 14-2

closing the data set 14-3

coding /*DEL 14-4

coding /*EOF 14-3

coding /*PURGE 14-4

using the CLOSE macro 14-4

when the buffer is full 14-3

definition 14-1

example 14-4

opening the data set 14-3

sending records to the data set 14-3

starting a secondary subsystem via an internal

reader 14-6

tasks involved in using 14-1

IODEVICE

Internal text record 1-3

10DEVICE internal text record 1-3

IODEVICE Parameter Checker

CBPIPARM 1-10

10DEVICE statement 1-1

limits of DUMMY definition I-I

Processing 1-2

IODV 1-3

lOSDDT 1-38

IOSDDT macro 1-38

lOSDDT macro instruction

syntax 1-35

IOSDHIDT 13-1

See also hot I/O detection table

IOSDMLT 1-38

IOSDMLT macro 1-38

10SDMLT macro instruction

syntax 1-37

10SRHIDT: the HIDT 13-1

IPCS

Defining ABEND Dump Data Sets 17-3

SYSMDUMP 17-3

Formatting SVC dumps 17-4

Printing SVC dumps 17-4

for SVC dumps 17-4

issueing the START command to a secondary

subsystem 14-6

ITRFDEFU, default formatter of trace table

entries 9-5

ITRF007F, or ITRFOn7F 9-4

Index X-5

J

JCL REGION parameter

See REGION parameter on the JOB/EXEC
statement

JCL, master 8-1

JES

See also job entry subsystem

defining 8-1

IEFSSNxx 8-1

Master JCL 8-1

START command 8-1

JES2 4-8, 14-3

See also job entry subsystem

as example of PPT entry 4-8

control statements for internal reader 14-3, 14-4

JES3 14-3

See also job entry subsystem

action messages unsuppressible 7-8

format of WTL macro output 7-9

handling internal reader data 14-3

JES3 user dumps
See dump types, in MVS, ABEND (user)

job entry subsystem 7-9, 7-10, 16-2

and the external writer 15-1, 15-2, 15-12

and the internal reader 14-1,14-2, 14-3

defining to the operating system 9-11

See also primary subsystem, defining

differences in hard copy and system logs in 7-7

REGION default for IEALIMIT 3-3

starting a secondary subsystem 14-7

system message text modified by 7-3

job entry subsystem, defining 8-1

keys for DAE

definition 17-27

in ADYDFLT

optional 17-31

required 17-31

keywords

definition for DAE 17-27

MVS 17-28

RETAIN 17-28

kinds of dumps produced in MVS
See dump types, in MVS

libraries for system modules
See system module libraries

limiting user region size 3-1

by virtual storage management 3-1

figure showing default limits set by VSM 3-5

for V = R jobs 3-11

how VSM uses region size and GETMAIN

limits 3-9

setting JCL defaults 3-1

setting values in exit routines 3-1

IEALIMIT, for MVS/370 3-2

IEFUSI, for MVS/XA 3-2

Link library

&I2@lnklib.

for resource manager routines 5-4

LOGCLS system parameter 7-10

LOGLMT system parameter 7-10

look-up value for the EDT

See also unit verification service

defined 12-2

obtaining 12-2

LPALIB
See system module libraries

J
Machine Readable Dumps

BLSCECT parmlib member 17-25

IPCPSRxx parmlib member 17-25

IPCS dialogs 17-25

Macros
required in UIMs 1-38

CBPZDIAG 1-38

CBPZLOG 1-38

CBPZLOGR 1-38

CBPZPPDS 1-38

IOSDDT 1-38

IOSDMLT 1-38

managing modules
See virtual fetch

Master JCL

adding 8-2

alternate versions of 8-2

changing 8-2.

AMASPZAP 8-2

defining the job entry subsystem 8-1,8-2

deleting 8-2

IBM-supplied sample 8-2

SAMPMJCL 8-2

SYSI.SAMPLIB 8-2

IEEMSJCL 8-1

example 8-1

IEFSSNxx 8-2

X-6 SPL: System Modifications

modifying 8-2

adding DD statements 8-2

deleting the JES START command 8-2

modifying SAMPMJCL 8-2

MSTJCLOO 8-1

notes on 8-2

START command 8-1

Updating 8-1

Master Subsystem

JCL restrictions with START SUB=MSTR 14-6

restrictions with a started task 14-6

matching for duplicate dumps (DAE) 17-26

MCS

See multiple-console support

Message ids for UIMs 1-15

message processing facility 7-1

activating 7-8

suppressing message display 7-8

message routing codes

See also WTO/WTOR exits

functions 7-2, 7-3

in hardcopy log 7-7

messages

controlling the routing of 7-1,7-2

in the hardcopy log 7-7

suppressing display of 7-8

minimum symptom string for DAE

adding to 17-42

increasing length of 17-44

minimum symptoms for DAE

description 17-28

increasing number of 17-44

MLT 1-38

in SYSl.LINKLIB 1-33

in SYSl.NUCLEUS 1-33

IOSDMLT macro 1-33

MODIFY command
See external writer

modifying the HIDT 13-3

modifying the operating system: an overview iii

protecting system integrity iii

modifying the system log 7-9

modifying the system to fit the devices in your

installation 1

modifying the system to fit your applications 2-15

module libraries

See system module libraries
module list table

for UIMs 1-38

IOSDMLT macro 1-38

mount and use attributes for volumes 2-7

assigning 2-7

using a V A TLSTxx parmlib member 2-7

using the MOUNT command 2-7

definitions 2-7

mount attribute of permanently resident 2-8

mount attribute of removable 2-8

mount attribute of reserved 2-8

use attribute of private 2-7

use attribute of public 2-7

use attribute of storage 2-8

relationships to allocation requests 2-10

the non-sharable attribute 2-10

MPF
See message processing facility

MPFLSTxx parmlib members
See SYSl.PARMLIB

MSTJCLOO 8-1

multi-part trace table entries 9~3

See also PTRACE macro

multiple specifications of VRA keys (DAE) 17-38

multiple-console support 7-1

routing messages 7-2

MVS configuration program 1-1

MVS dumping services 17-1

kinds of dumps produced 17-2

tasks accomplished with 17-1

defining dump data sets 17-3,17-5

MVS dumps

See dump types, in MVS

MVS/XA system services 11-7

MVSCP

calls to the UIM 1-11

end-of-processing 1-11

initialization call 1-11

IODEVICE statement checking 1-11

defining devices 1-1

logic of processing 1-11

recovery routine 1-38

CBPVMVSCP 1-38

vector table 1-3

MVSCP Service Routines

CBPADIT 1-5

Builds DITs 1-5

CBPDDCT 1-6

Device Characteristics Table 1-6

CBPIDFT 1-7

CBPIFEAT 1-8

CBPIGETM 1-9

CBPIPARM 1-10

NAMEMLT 1-42

new addressing mode

See extended addressing considerations

no validity bit function of unit verification service 12-3

non-JES output writing routine

See external writer

non-sharable attribute 2-10

relationship between non-sharable and sharable

allocation requests 2-11

notes on the preferred storage flags 4-5

notes on updating the PPT 4-9

notes on using the program properties flags 4-5

Index X-7

J

OPEN macro

J-type issued by STDWTR IS-2

opening the input data set IS-3

opening the internal reader data set 14-3

operator commands

See system operator commands

optional symptom keys for DAE

in ADYDFLT 17-31

optional symptoms for DAE

adding to 17-43

definition 17-29

order of allocation A-I

other MVSjXA publications vii

out-of-space condition 3-3

See also virtual storage management, limiting user
region size

output from the separator routine IS-1O

output separator routine for an external writer IS-8

block character routine supplied by IBM IS-11

functions IS-11

invoking IS-II

module name IEFSD09S IS-II

parameter list IS-11

functions of IBM version 15-8-IS-9

module name IEFSD094 IS-8

note on protection key IS-II

output from the routine IS-10

parameter list IS-9

requirements for writing your own IS-10

return code IS-II
output writer

See external writer
output writing routine for an external writer IS-2

See also external writer

coding conventions IS-4

creating your own IS-3

handling errors IS-8

obtaining storage for work areas IS-6

processing the input data set IS-6

closing the input data set IS-8

EOF on input data set IS-7

handling record control characters lS-6

initializing the printer IS-6

reading the input records, using GET

macro IS-6

reconciling input with output data set IS-7

releasing storage IS-8

setting return codes IS-4, 15-8

parameter record for DAE 17-29

parameters and parameter lists

See also individual topic headings

for a subsystem's initialization routine la-I. 10-3

for ABEND and S V C dumps 17-7

for post-dump exit routines 17-23

for pre-dump exit routines 17-22

for the external writer (PARLIST) 15-2

for the USRn formatting routine 9-5

for virtual fetch service 16-6, 16-9, 16-10, 16-11

from RTM for resource managers 5-2

from SMF for IEFUSI exit routine 3-6

in ADYSETxx for DAE 17-26

on the SSAFF macro 11-3

SUB= parameter on the START command 14-7

to control system log activity 7-10

to put user data into the system trace table 9-2

PARMLIB

See SYSl.PARMLIB

passing parameters to a subsystem initialization

routine 10-3

permanently resident volume 2-9

See also mount and use attributes for volumes,

definitions

assigning use attributes 2-9

notes 2-9

volumes that are always permanently resident 2-9

PPT 4-1

See also program properties table

APF-authorized 4-S

assigning special properties 4-1

CSECT IEFSDPPT 4-1

entry 4-2, 4-3

contents of 4-3

format 4-2

PPTBYTEI 4-2

PPTCPUA 4-2

PPTKEY 4-2

PPTNAME 4-2

PPTORIG 4-2

PPTPUBYT 4-2

format 4-2

PPTENTLN 4-2

PPTENTS 4-2

PPTHDRLN 4-2

PPTIB650 4-2

PPTID 4-2

PPTMSGAD 4-2

PPTUSED 4-2

PPTVERS 4-2

header 4-2

IBM -supplied PPT 4-4

IEFSDPPT 4-4

macro IEFZB610 4-1

notes on using PPTBYTE 1 4-S

overridding PPT entries 4-2

X-8 SPL: System Modifications

PPT entry origin 4-4

PPTORIG 4-4

PPTDEFLT 4-4

residence 4-5

SCHEDxx member of SYSl.PARMLIB 4-1

TCAM message control program 4-9

using program properties flags 4-5

V=R 4-4

vector programs 4-3

with the VARY STOR,OFFLINE 4-4

PPT entries
See program properties table, entries

PPT entry, contents of 4-3

PPTBYTEI 4-2

See also program properties flags in the PPT

PPTCPUA 4-2

See also processor affinity mask in the PPT

PPTENTLN 4-2

PPTENTS 4-2

PPTHDRLN 4-2

PPTIB650 4-2

PPTID 4-2

PPTKEY 4-2

See also protection key in the PPT

PPTMSGAD 4-2

PPTNAME 4-2

See also program name in the PPT

PPTORIG 4-2, 4-4

PPTPUBYT 4-2

See also preferred storage flags in the PPT

PPTUSED 4-2

PPTVERS 4-2

PRDMP

Defining ABEND Dump Data Sets 17-3

SYSMDUMP 17-3

Formatting SVC dumps 17-4

Printing SVC dumps 17-4

PRDSYSMD data area and DAE 17-34

pre-dump exits for user dumps 17-22

Preference table values

IBM-supplied A-I
preferred storage flags in the PPT 4-3

common uses of 4-9

examples of using 4-8

for users of SYSEVENT TRANSWAP 4-5

notes 4-5

for swappable programs 4-5

relationship to ASCB flags 4-5

PPTN2LP: no short-term pages to preferred

frames 4-4

PPTILPU: long-term pages to preferred frames 4-4

PPT2LPU: short-term pages to preferred

frames 4-4

tips on using 4-5, 4-6-4-7

primary subsystem, defining 10-1

printing the trace output buffer contents 9-6

private volume 2-8

See also mount and use attributes for volumes,
definitions

Processing Machine Readable Dumps

BLSCECT parmlib member 17-25

IPCPSRxx parmlib member 17-25

IPCS dialogs 17-25

processor affinity mask in the PPT 4-3

program name in the PPT 4-3

program properties flags in the PPT 4-3

notes on using 4-5

APF-authorization required 4-5

bypass-password-protection property 4-5

data set integrity 4-5

PPTNCNCL: make program noncancellable 4-3

PPTNDSI: data set integrity not required 4-3

PPTNOPAS: bypass password protection 4-3

PPTNSWP: make program nonswappable 4-3

PPTPRIV: make program privileged 4-3

PPTSKEY: assign protection key 4-3

PPTSYSTK: program is a system task 4-3

Program Properties Table 4-1

assigning special properties to programs 4-1

entries 4-1

contents 4-3-4-4

format 4-2

mapping macro IEFZB610 4-1

SCHEDxx member of SYSl.PARMLIB 4-1

header 4-1

meaning 4-1

updating 4-9

notes 4-9

programming conventions for using virtual fetch 16-11

protection key in the PPT 4-3

protection of SYS I.DAE data set 17-33

PTRACE macro 9-2

continuation information for multi-part TTEs 9-3

data to be traced 9-2

for system tracing, only 9-2

processing 9-3

syntax 9-2

public volume 2-8

See also mount and use attributes for volumes,

definitions

Push/Pop macro 1-15

recovery of allocated resources 2-13

Recovery routine

for UIMs 1-38

MVSCP's 1-38

CBPVMVSCP 1-38

recovery routines

creating symptoms for DAE 17-40

modifying symptoms for DAE 17-40

use of VRA keys for DAE 17-41

references for new users of MVS/XA viii

refreshing virtual fetch 16-6, 16-8

REGION parameter on the JOB/EXEC statement 3-1,

3-3

default if parameter is not specified 3-3

Index X-9

example using IEFUSI 3-7

examples of allocations using REGION value 3-10

limiting V = R jobs 3-11

setting region size value 3-1

value if parameter is nonzero 3-3

removable volume 2-9, 2-10

See also mount and use attributes for volumes

~fi~~m '

assigning use attributes 2-9

Replacing a WTO/WTOR exit routine without a re-IPL

procedure for 7-7

replacing the standard output writing routine 15-3

requesting dumps when using virtual fetch 16-11

required symptom keys for DAE

in ADYDFLT 17-31

required symptoms for DAE

adding to 17-43

definition 17-29

reserved attribute 2-9

See also mount and use attributes for volumes

definitions '

assigning use attributes 2-9

resource manager parameter list 5-2

resource managers 5-1

adding your own 5-4

example 5-4

creating your own 5-1

functions 5-1

at address space termination 5-1

at entry 5-1

at task termination 5-1

parameter list from RTM 5-2

key fields in 5-3

system resource managers provided by MVS 5-1

resource recovery

See deallocation of resources in case of abend

return attributes function of unit verification

service 12-3

output return codes 12-15

return codes from the USRn formatting routine 9-6

return group ID function of unit verification

service 12-2

return indicator flag in virtual fetch parameter list

See VFPMRTN

return look up value function of unit verification

service 12-2

return UCB addresses function of unit verification

service 12-2

return unit name function of unit verification

service 12-2

output return codes 12-15

Return unit names for a device class 12-3

Returned storage

specify subpool 12-3

RMPL

See DAT -off code in MVS/XA

J

SAMPUIM 1-41

SCHEDULR sysgen macro

See defining subsystems to the operating system

SDWA

duplicate DAE symptom data with

ABDUMP 17-37

symptom data for DAE 17-34

VRA keys for DAE

multiple specifications of 17-38

symptom data specified by recovery

routines 17-41

selecting data sets for external writer processing

See external writer

sending job output to the internal reader 14-3

separating output jobs

See output separator routine for an external writer

separator routine parameter list 15-9

serialization of devices during allocation 2-1

Service Routines, MVSCP

CBPADIT 1-4

CBPDDCT 1-4

CBPIDFT 1-4

CBPIFEA T 1-4

CBPIGETM 1-4
 J
CBPIPARM 1-4

Service Routines, UIMs 1-4

SET DAE operator command

format 17-30

use 17-30

setting a default region size via JCL 3-1

setting default GETMAIN limits via exit routines 3-1

setting installation defaults

for user region size 3-1

setting up and using an internal reader 14-1

SMF step initiation interface

See also IEFUSI exit
parameter list for IEFUSI 3-6, 3-7

Specify subpool for returned storage 12-3

SSAFF macro 11-2

See also subsystem affinity service

format 11-2

parameters 11-3

DATA 11-3

ENTRY 11-3

OBTAIN 11-3

SET 11-3

symbol 11-3

TCB 11-3

SSOB information required 11-4
See resource managers, parameter list from RTM
SSAFF: set/obtain subsystem affinity 11-2
routing the JCL for a started task to a secondary
SSAT Jsubsystem 14-6

See subsystem affinity table running with DAT off
SSCVT

See subsystem communication vector table

X-10 SPL: System Modifications

SSIB
See SSOB information required for IEFSSREQ

macro
SSOB information required for IEFSSREQ macro 11-4

in the SSIB (subsystem information block) 11-5

in the SSVS (verify subsystem extension) 11-5

SSVS
See SSOB information required for IEFSSREQ

macro
START SUB= command

SUB = JES2 14-6

SUB=JES3 14-6

SUB = MSTR 14-6

START command

and the external writer 15-1, 15-12, 15-13

required for program property 4-3

to restart virtual fetch 16-6

to start virtual fetch 16-7

using a secondary subsystem 14-6

starting an external writer
See external writer cataloged procedure

starting virtual fetch 16-7

STDWTR: IBM standard output writing routine 15-2,

15-3

See also external writer

error return code 15-8

functions performed by 15-2

accessing input records 15-6

adjusting input record for output

processing 15-7

closing the input data set 15-8

handling EOF on input data set 15-7

initializing the printer 15-6

reconciling control characters for output 15-6

releasing storage 15-8

logic flow 15-3

module name IEFSD087 15-2

Storage

subpool returned storage 12-3

storage flags 4-5

storage volume 2-9

See also mount and use attributes for volumes,

definitions

SUB = keyword: starting a task under a specific

subsystem 14-6

the susbystem affinity service 11-1

cross-memory considerations. 11-6

notes 11-6

SSAFF OBTAIN request 11-2

requirements 11-2

SSAFF SET request 11-2

requirements 11-2

using the IEFSSREQ macro 11-1

IEFSSREQ syntax 11-4

requirements for IEFSSREQ 11-4

to invoke the VERIFY SUBSYSTEM

function 11-4

subsystem affinity table 11-1

See also subsystem affinity service

change of value from IPL to IPL 11-2

effect of a null SSAT 11-3

index value for a subsystem 11-1

to obtain a value from an entry I 1-2

to set a value in an entry 11-2

subsystem communication vector table 10-1

subsystem definition

See defining subsystems to the operating system

subsystem options block

See SSOB information required for IEFSSREQ

macro

Subsystems and the START command 14-6

subsystems defined in SYSl.PARMLIB

See defining subsystems in members of
SYSl.PARMLIB

suppressing dumps automatically, by abend code 17-6

suppressing duplicate dumps (DAE) 17-26, 17-39

suppressing the display of selected messages 7-8

nonsuppressable message types 7-8

using IEAVMXIT exit routines 7-8

using MPF 7-8

using user-specified WTO exit routines 7-8

symptom data for DAE

building symptoms 17-27,17-31,17-35

creating and modifying 17-40

from SDWA 17-26, 17-34

in SYSl.DAE records 17-26

length requirements 17-28

matching for duplicates 17-26, 17-29

search order 17-32

symptom keys for DAE

adding to defaults 17-43

changing defaults in ADYDFLT 17-31

optional symptom keys in ADYDFLT 17-31

required symptom keys in ADYDFLT 17-31

using VRAOPT to add to defaults 17-42

using VRAREQ to add to defaults 17-42

symptom queue for DAE

creating 17-27, 17-35

definition 17-27

matching for duplicates 17-27, 17-38

updating after match processing 17-33, 17-39

symptom strings for DAE

definition for DAE 17-27

input sources for 17-41

length, increasing 17-44

matching for duplicates 17-38

minimum requirements 17-28, 17-38, 17-39, 17-42

MVS symptom strings 17-28, 17-35

RETAIN symptom strings 17-28,17-35

stored in ADSSRNSD 17-34

stored in dump header record 17-35

symptoms for DAE

character source data 17-36, 17-37

created by DAE 17-35

created by recovery routines 17-40

default symptom keys in ADYDFLT 17-30

definition 17-27

duplicate 17-37

extraction by DAE 17-35

flag source data 17-36, 17-37

hexadecimal source data 17-36, 17-37

Index X-ll

minimum 17-28

modified by recovery routines 17-40

MVS symptoms 17-36

optional symptom keys in ADYDFLT 17-29,17-31

required symptom keys in ADYDFLT 17-29,

17-3\

RETAIN symptoms 17-37

SYSEVENT TRANSWAP

See preferred storage flags in the PPT

system dumps in MVS

See dump types, in MVS, SVC (system)

system handling of duplicate subsystems 10-4

system integrity

when modifying the system 1I1

system log 7-8

controlling 7-1

controlling from the console 7-10

default operation 7-9

entries made via WTL macro 7-9

including the hardcopy log 7-8

information included 7-9

modifying the operation of 7-9

changing SYSOUT class: LOGCLS 7-9,7-10

changing WTL count: LOGLMT 7-9, 7-10

example 7-10

system module libraries

SYSl.AOSC5 7-6

SYSl.LINKLIB 7-6

SYSl.LPALIB 3-6, 5-4, 7-6

for IEFUSI 3-6

for PPT 4-1

for resource manager routines 5-4

for USRn system trace table entry

formatters 9-5

for WTO/WTOR exit routines 7-6

system operator commands

See also START command

CHNGDUMP, to change dumping options 17-3

DISPLA Y DUMP, to determine current

options 17-18,17-19

DISPLAY DUMP, to display symptom data 17-13

DUMP, for system dumps 17-7

DUMPDS, to add system dump data sets 17-20

DUMPDS, to clear system dump data sets 17-20

DUMPDS, to define system dump data sets 17-1

DUMPDS, to delete system dump data sets 17-5,

17-20

MOUNT, assigning volume attributes 2-8,2-9,

2-11

MOUNT, required for program property 4-3

WRITELOG, controlling the system log 7-10

system parameter library
See SYSl.PARMLIB

system trace facility
See PTRACE macro

system trace table entry, formatting

See formatting a USRn trace table entry

system trace table entry, user-defined

See USRn system trace table entry

SYSl.AOSC5, library for WTO/WTOR exit

module 7-6

SYSl.DAE data set

creating 17-32

DCB attributes 17-33

description 17-32

matching 17-26

protection 17-33

sample JCL for creating 17-33

updating by DAE 17-26, 17-33

using existing data set 17-33

SYSI.LINKLIB
See system module libraries

SYSI.LPALIB
See system module libraries

SYSl.MACLIB 10-3

SYSI.NUCLEUS, the DAT-off nucleus 6-1

SYSI.PARMLIB

ADYSETxx members 17-29

COMMNDxx member, to start virtual fetch 16-7

IEASYSxx member, to select parmlib members at

IPL 10-2

IEASYSxx members, for system parameters 2-7

IEASYSxx members, to control the system log 7-9

IECIOSxx member, for hot I/O control 13-3

IEFSSNxx members, to define subsystems 10-1,

10-2

LNKLSTxx member for external writer

routines 15-4, 15-10, 15-13

LNKLSTxx members, for resource managers 5-4

MPFLSTxx members, to suppress messages 7-8

SCHEDxx member 2-7

V A TLSTxx members, for volume attributes 2-2,

2-8, 2-9

tailoring dumps by type 17-7

tailoring dumps in MVS and MVS/XA

See MVS dumping services

TCAM Message Control Program 4-9

TCB subsystem affinity

See subsystem affinity service

the hot I/O detection table 13-1

the virtual fetch service

See virtual fetch

tips on using the preferred storage flags 4-6

TIE for user data in system trace table

See USRn system trace table entry
TIE, formatting

See formatting a USRn trace table entry

J

J

X-12 SPL: System Modifications

~

UCA 1-3

UIM

communication area 1-2

considerations in coding 1-12

CPVT 1-3

entry logic 1-13

exit logic 1-13

Macros 1-14

CBPYDIP 1-14

CBPZCPVT 1-14

CBPZDCP 1-14

CBPZDFP 1-14

CBPZDIAG 1-14

CBPZFCP 1-14

CBPZGETM 1-14

CBPZIODV 1-14

CBPZITRH 1-14

CBPZLOG 1-14

CBPZLOGR 1-14

CBPZPCP 1-14

CBPZPPDS 1-14

CBPZVCA 1-14

MVSCP vector table 1-3

Processing 1-2

End-of-data 1-2

restrictions 1-12

UCA 1-3

UIM communications area 1-3

UIM Data Areas

control blocks 1-3

external to UIMs 1-3

CPVT 1-3

Configuration program vector table 1-3

IODV 1-3

IODEVICE internal text record 1-3

UCA 1-3

UIM communications area 1-3

UIM Macros 1-38

UIM message identifiers 1-15

UIM Service Routines

CBPADIT 1-4

CBPDDCT 1-4

CBPIDFT 1-4

CBPIFEA T 1-4

CBPIGETM 1-4

CBPIPARM 1-4

VIMs

a Sample UIM I-I, 1-2

general logic of processing a VIM 1-1, 1-2

how MVSCP uses I-I, 1-2

how MVSCP uses UIMs 1-1, 1-2

IBM -supplied 1-39

List of (partial) 1-39

macros required 1-38

CBPZDIAG 1-38

CBPZLOG 1-38

CBPZPPDS 1-38

IOSDDT 1-38

IOSDMLT 1-38

naming 1-38

customer-supplied 1-38

IBM-supplied 1-38

purpose 1-1, 1-2, 1-38

residence 1-38

concatenated to LINKLIB 1-38

LINKLIB 1-38

sample 1-41

VIM Data Areas 1-1, 1-2

VIM Service Routines 1-1, 1-2

using the sample UIM 1-41

in SYSl.SAMPLIB(SAMPUIM) 1-41

writing 1-1 , 1-2, 1-38

writing a UIM I-I, 1-2

UIMs in LINKLIB 1-38

UIMs Service Routines 1-4

Unit Information Modules

coding a DUMMY device 1-42

considerations in coding 1-12

diagnosis I-I 5

CBPZDIAG macro 1-15

CBPZLOG macro 1-15

CBPZLOGR macro 1-15

CBPZPPDS macro 1-15

IBM-supplied 1-39

List of (partial) 1-39

message ids 1-15

naming 1-38

customer-supplied 1-38

IBM-supplied 1-38

processing logic I-II

residence 1-38

concatenated to LINKLIB 1-38

LINKLIB 1-38

sample 1-41

sample JCL 1-42

sample MLT 1-43

using the sample UIM 1-41, 1-42

unit name is a look-up value function of unit

verification service 12-3

Unit names

for a device class 12-3

Unit Verification

specify subpool for returned storage 12-3

unit names for a device class 12-3

unit verification functions

as input to unit verification functions 12-2, 12-3

attributes returned by IEFGB4UV, IEFAB4UV and

IEFEB4UV 12-15

check groups 12-1

check units 12-2

convert device type to look-up value 12-2

no validity bit 12-3

return attributes of unit name 12-3

return group ID 12-2

return look-up value 12-2

return UCB addresses 12-2

return unit name 12-2

Index X-13

unit name is a look-up value 12-3 See The Virtual Fetch Service, DD statements
Unit verification routine

IEFAB4UV 12-4

IEFEB4UV 12-4

IEFGB4UV 12-4

Unit verification service 12-1

explanation 12-1

for authorized programs: IEFGB4UV or

IEFAB4UV 12-1

for problem programs: IEFEB4UV 12-1

input to and output from 12-5

FLAGS parameter field 12-5

parameter list required 12-5

problem program callers 12-1

purpose 12-1

UNITNM 1-42

updating entries in the PPT

See program properties table

updating modules managed by virtual fetch

See virtual fetch, refresh processing

updating SYS1.DAE 17-26, 17-39

updating the master job control language data set 8-1

updating the PPT 4-9

use attribute, for volumes

See mount and use attributes for volumes
user dumps in MVS

See dump types, in MVS, ABEND (user)
user-assigned group names

See esoteric group names
user-specified WTO exits

capabilities 7-5

routine's function 7-4

uses for 7-4

using a message-routing/processing exit routine 7-3

using the block character routine 15-11

using the PTRACE macro 9-2

using virtual fetch service

See virtual fetch
US Rn system trace table entry 9-1

contents 9-1

continuation information in 9-3

example 9-4

sample of code for 9-7

v = R area and PPT 4-4

VATLST

See volume attribute list

verification of devices 12-1

VERIFY SUBSYSTEM function 11-1

See also subsystem affinity service, using the
IEFSSREQ macro

VFCB
See virtual fetch

VFDE
See virtual fetch

VFINOO - VFIN99

X -14 SPL: System Modifications

needed
VFPM J

See virtual fetch service, parameter list

VFPMRTN 16-15

VFVT, created by virtual fetch build function 16-6

VFWK, created by virtual fetch build function 16-6

VIO data sets

See virtual fetch
virtual fetch 16-1

considerations when using 16-9

DD statements needed in cataloged proc 16-7

example 16-7

names range from VFINOO to VFIN99 16-7

defined 16-1

dumping the managed modules 16-11

functions 16-1

BUILD, FIND, and GET requests 16-3

build, using CSVVFNDE 16-6

find function, using CSVVFNDE and

CSVVFSCH 16-6

get, using CSVVFGTE and CSVVFTCH 16-6

initialization by CSVVFCRE 16-2

hash table of directory entries 16-2

initialization 16-2-16-3

parameter list for build, find, and get

functions 16-9

format and contents 16-10

notes on use 16-10, 16-15

programming considerations 16-10

conventions 16-11
 J
for a BUILD request 16-13

for a FIND request 16-13

for a GET request 16-14

parameters 16-10

refresh processing 16-6, 16-8

using CSVVFCRE and CSVVFRSH 16-8

return codes 16-2

from a FIND request 16-14

from BUILD request 16-13

from CSVVFCRE for initialization 16-2

if virtual fetch address space terminates 16-6

in parameter list field VFPMRTN, from a GET

request 16-15

starting 16-1

using a cataloged procedure 16-1

VIO data set 16-1

renewed by refresh processing 16-6, 16-8

virtual fetch build function 16-6

virtual fetch find function 16-6

virtual fetch get function 16-6

virtual fetch initialization function 16-2

virtual storage management

figure showing default limits set by VSM 3-5

how VSM uses region size and GETMAIN

limits 3-9

limiting user region size 3-1

based on IEALIMIT values 3-2, 3-3

based on IEFUSI values 3-2

example using IEFUSI values 3-8

in the absence of an IEFUSI routine 3-2

parameter list 3-6

result of using default values 3-3

setting GETMAIN limits 3-4

volume attribute list 2-2, 2-8

VRA keys in SOW A for DAE

description 17-41

multiple specifications 17-38

user-defined keys 17-42

VRADAE key and DAE processing 17-40,17-42

VRADATA macro 17-41

VRAMINSC key and OAE processing 17-42

VRAMINSL key and OAE processing 17-42

VRAOPT key and DAE processing 17-42

VRAREQ key and DAE processing 17-42

VSAM interface, for internal reader 14-2

VSM parameter list

flag word bit meanings 3-7

parameter list for IEFUSI

flag byte bit meanings 3-7

write-to-operator macros 7-2

as messages to the console 7-2

WRITELOG operator command 7-10

writing an ITRFOn7F TTE formatting routine 9-5

writing an output separator routine 15-10

writing your own output writing routine 15-3

WTO/WTOR exits 7-1

and MCS 7-3

at IEAVMXIT 7-3, 7-4

at IEECVXIT 7-3

at user-specified exits 7-3, 7-4

bypassed by the system 7-3

descriptor codes 7-3

function 7-3

inserting into the control program 7-5

after IPL time 7-6

before IPL 7-6

before sysgen 7-6

lEAVMXIT routine 7-6

user-specified WTO exit routine 7-6

routine's function 7-3, 7-4

routing codes 7-2, 7-3

WTO/WTOR macros

See write-to-operator macros

XWTR cataloged proc

See external writer cataloged procedure

xx value on SET DAE operator command 17-30

ZAP

modifying entries in lEAVTRML 5-4

to modify MSTRJCL statements 8-2

I Numerics I

31-bit addressing
See extended addressing considerations

Index X-I5

X -16 SPL: System Modifications

MVSjExtended Architecture READER'S
System Programming COMMENT
Library: FORM
System Modifications

GC28-1152-2

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or distribute
wh~Jever information you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies ofpublications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

N umber of latest Newsletter associated with this publication:

1:,hank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
~M office or representative will be happy to forward your comments or you may mail directly to the
afdress in the Edition Notice on the back of the title page.)

- --- - ------

MVS/Extended Architecture System Programming Library: System Modifications

GC28-1152-2 5370-36

Reader's Comment Form

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 058, Building 921 -2
PO Box 390 .
Poughkeepsie, New York 12602

11

Please Do Not Staple

Printed in

Fold and tape

--... -.--.-. ..­- ----..­
-..­- -.. -----

~

--_-
-~ -,. -®

Fold and tape

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold and tape

U.S.A.

•

- --

MVS/Extended Architecture System Programming Library: System Modifications

GC28-1152-2 S370-36

--.. .­-_­- ---..­
-~~......- -.

~

--.--­
-~--.--.- ... ­

---" -®

Printed in U.S.A.

