Program Product

GC28-1152-2
File No. S370-36

MVS/ Extended Architecture
stem Programming
rary

System Modifications

MVS/System Product:

JES3 Version 2 5665-291
JES2 Version 2 5740-XC6

([T |
IR THL
(4]
II|||||I

<|||
||||||||

Third Edition (March, 1987)

This is a major revision of, and obsoletes, GC28-1152-1. See the Summary of
Amendments following the Contents for a summary of the changes made to this manual.

This edition applies to Version 2 Release 2.0 of MVS/System Product (5665-291 and
5740-XC6) and to all subsequent releases until indicated in new editions or technical
newsletters. Changes are made periodically to the information herein; before using this
publication in connection with the operation of IBM systems, consult the latest JBM
System/370 System/370 Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM’s program product may be used. Any functionally equivalent program may
be used instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for readers’ comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 921-2, PO Box 390, Poughkeepsie, N.Y. 12602.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982, 1987

Preface

SPL: System Modifications is intended for the people who set up and maintain
the system software for a data processing center running under IBM’s Multiple
Virtual Storage/Extended Architecture (MVS/XA) operating system. Although
there are many titles for these people, (system manager, systems analyst,
installation designer, system programmer), we will call them system programmers.
Thus, SPL. System Modifications is written for the system programmer who has
extensive experience with MVS, and who is familiar with its basic concepts.

The purpose of SPL: System Modifications is to help you decide where and how
to modify the operating system. This book presents ways to customize the
system.

Modifying the Operating System: An Overview

Should the software shipped by IBM as the MVS/XA operating system, not
accommodate every device, application, or software add-on included in your
installation, you can customize the system to fit your needs. As your installation
grows and changes to meet new demands and emphasis, you can change the
customization and adapt it to your new needs.

As you customize the system, keep in mind the importance of protecting the
integrity of the system code and your own code. The System Integrity section of
Volume One of MVS/XA SPL System Macros and Facilities tells how to maintain
the integrity of MVS/XA and your programs.

SPL: System Modifications can help you decide the best way to customize the
MVS/XA operating system.

The Customization Task
The MVS/XA operating system includes many points at which you, the system
programmer, can assume control of the system code so you can modify it. These

control points, listed in order of increasing refinement, are:

e MYVS Configuration Program which defines the installation’s I/O configuration
to the operating system through SYS1.PARMLIB members.

e System initialization, which activates the operating system.

e Job or step execution, which activates or starts an installation application is
accomplished

Preface 1il

Within each of these are means of control that become more varied and complex
as the degree of refinement increases. The IBM MVS/XA library of publications
documents the various tools and means available to the system programmer for
customizing the system. Usually the information is specific to the control points
or to the system components. SPL: System Modifications presents the tools and
means you can use to customize the operating system in the context of three
major system programming tasks:

e Modifying the operating system to fit the devices in your installation
o Modifying the operating system to fit the work your installation does

e Accommodating the operating system to other software, especially
subsystems, you want to use

All of these tasks can be addressed at each of the control points listed earlier; the
means available to accomplish them depend on the control point.

You can use the following tools to customize your system at system initialization

(IPL):

e System parameters included in members of SYSI.PARMLIB

® Replaceable modules in LPALIB, LINKLIB, and other system libraries
e System and private macro libraries

® Operator commands

e User exit routines (inserted at IPL; executed at job/step execution)

You can use the following tools to customize your system at job/step execution:

o Installation defaults for JCL and JES2/JES3 parameters
e Operator commands
e User exit routines

In addition to these, the MVS system includes many system services that provide

flexibility and allow you to control installation processing at all three control
points.

iV SPL: System Modifications

How This Book is Organized

This book has four parts:

Part I, Modifying the System to Fit the Devices in Your Installation
Part II, Modifying the System to Fit Your Applications,

Part III, Fitting Your Subsystems into the System,

Part IV, MVS System Services,

The chapters within each part of the book present the control points where you
can make modifications, the tools IBM supplies to help you modify the operating
system, and the alternatives you might consider.

Even though the topics are presented as separate tasks, they overlap and affect
each other at many points: your device configuration will be influenced by your
applications and job mix; the subsystems you use or develop will depend on both
your device configuration and your applications.

Following is a summary of the chapters in this book.

o Part I, Modifying the System to Fit the Devices in Your Installation, includes
the following:

— Chapter 1, Writing Unit Information Modules for the MVS Configuration
Program
— Chapter 2, Allocation Considerations

Chapter 2 includes discussions of
— The Device Preference Table
— The Eligible Device Table

— The Volume Attribute List

— Controlling GRS Requests

e Part II, Modifying the System to Fit Your Applications, includes the following:

— Chapter 3, Limiting User Region Size

— Chapter 4, Assigning Special Program Properties to Applications
— Chapter 5, Creating Your Own Resource Managers

— Chapter 6, Executing DAT-off Code in MVS/XA

— Chapter 7, Controlling System Messages and the System Log

— Chapter 8, Modifying the Master JCL

— Chapter 9, Customizing the System Trace Table

e Part III, Fitting Your Subsystems into the System, presents the following:

— Chapter 10, Defining Secondary Subsystems to MVS
— Chapter 11, The Subsystem Affinity Service

Preface V

vi

SPL: System Modifications

Part IV, MVS System Services, presents several services provided by
MVS/XA to help you accommodate the system to your installation and its
applications. These system services are:

— Chapter 12, The Unit Verification Service

— Chapter 13, The Hot I/O Detection Table

— Chapter 14, The Internal Reader Facility

— Chapter 15, The External Writer

— Chapter 16, The Virtual Fetch Service

— Chapter 17, The Dumping Services (ABEND and SVC Dumps)

C

Other MVS/XA Publications

Throughout this book, we give general information about methods and control
points, but do not try to cover a topic exhaustively unless it is not covered
elsewhere in the MVS/XA library. Rather, we refer you to other publications
where you can find more detailed information about a subject.

Note: The actual references in this book, use shortened book titles:
“MVS/Extended Architecture” becomes “MVS/XA,” and “System Programming
Library” becomes “SPL.”

Following are the publications cited in this book:

® MVS/Extended Architecture Checkpoint/Restart

® MVS/Extended Architecture Data Management Macro Instructions

® MVS/Extended Architecture Data Management Services

® MVS/Extended Architecture Debugging Handbook Volumes 1-5

® MVS/Extended Architecture Diagnostic Techniques

® MVS/Extended Architecture JCL User's Guide

® MVS/Extended Architecture JCL Reference

® MVS/Extended Architecture JES3 Diagnosis

® MVS/Extended Architecture Message Library: Routing and Descriptor Codes

® MVS/Extended Architecture Message Library: System Messages

® MVS|/Extended Architecture MV'S Configuration Guide and Reference

® MVS/Extended Architecture Operations: JES3 Commands

® MVS/Extended Architecture Operations: System Commands

® MVS/Extended Architecture System Logic Library Multiple volumes; Volume
1 contains order numbers for the other volumes and a general table of
contents.

® MVS/Extended Architecture System Programming Library: Data Management

® MVS/Extended Architecture System Programming Library: Initialization and
Tuning

® MVS|Extended Architecture System Programming Library: JES2 Initialization
and Tuning

® MVS/Extended Architecture System Programming Library: JES3 Initialization
and Tuning

® MVS/Extended Architecture System Programming Library: Service Aids

® MVS/Extended Architecture System Programming Library: Supervisor
Services and Macro Instructions

® MVS/Extended Architecture Installation: System Generation

® MVS/Extended Architecture System Programming Library: System Macros
and Facilities. Two volumes

® MVS/Extended Architecture System Programming Library: System
Management Facilities

® MVS/Extended Architecture System Programming Library: User Exits

® MVS Extended Architecture Interactive Problem Control System (IPCS)
Planning and Customization

® MVS Extended Architecture Interactive Problem Control System (IPCS)
User's Guide

® MVS Extended Architecture Interactive Problem Control System (IPCS)
Command Reference

Preface Vil

Additional References for New Users of MVS/XA

viii

If you are new to the MVS/XA operating system and library, you may want to
read the following books, to learn how the system differs from its predecessors,

and

SPL: System Modifications

to get a general introduction to its concepts.

MVS|Extended Architecture Conversion Notebook discusses the differences
between MVS/XA and its immediate predecessor, MVS/370.

MVS|Extended Architecture System Programming Library: 31-Bit Addressing
presents the concept of extended addressing in terms of the IBM operating
system. It includes information on planning for and writing programs in a
31-bit environment.

Contents

Modifying the System to Fit the Devices in Your Installation

Chapter 1. Writing Unit Information Modules for the MVS Configuration
Program 1-1
How MVSCP Uses UIMs 1-2
Initialization Processing 1-2
IODEVICE Statement Processing 1-2
End-of-Data Processing 1-2
UIM Data Areas 1-3
UIM Service Routines 1-4
CBPADIT - Builds DITs Service Routine 1-5
CBPDDCT - Build DCT Service Routine 1-6
CBPIDFT - Build the DFTs Service Routine 1-7
CBPIFEAT - Device Features Checker Service Routine 1-8
CBPIGETM - Getmain Service Routine 1-9
CBPIPARM - IODEVICE Parameter Checker Service Routine 1-10
UIM Processing Logic 1-11
Considerations for UIM Processing 1-12
UIM Macros 1-14
CBPYDIP 1-16
CBPZCPVT 1-17
CBPZDCP 1-18
CBPZDFP 1-19
CBPZDIAG 1-20
CBPZFCP 1-22
CBPZGETM 1-23
CBPZIODV 1-24
CBPZITRH 1-25
CBPZLOG 1-26
CBPZLOGR 1-28
CBPZPCP 1-29
CBPZPPDS 1-30
CBPZUCA 1-31
Device Support Modules and Macros 1-33
IOSDDT - Device Descriptor Table Build Macro 1-34
IOSDMLT - Module Lists Table Macro 1-37
Writing a UIM~ 1-38
Naming a UIM 1-38
UIM Restrictions 1-40
System Code and MVSCP Data Separation 1-41
Using the Sample UIM 1-41

Chapter 2. Allocation Considerations 2-1

Contents

ix

Serialization of Resources During Allocation 2-1
Improving Allocation Performance 2-2
The Device Preference Table 2-3
The Eligible Device Table 2-5
The Use of Esoteric Names 2-5
Creating Multiple EDTs 2-6
The Volume Attribute List 2-7
Use and Mount Attributes 2-7
Recovery of Allocated Resources 2-12
Controlling GRS Requests in MVS/XA 2-12

Modifying the System to Fit your Applications

Chapter 3. Limiting User Region Size 3-1
Setting a Default Region Size via JCL 3-1
Setting Default GETMAIN Limits via Exit Routines 3-1
The IEALIMIT Exit 3-2
The IEFUSI Exit 3-2
IEALIMIT Processing 3-3
The IEFUSI Interface 3-4
How VSM Uses the Region Size Value and the Limit Value 3-9

Chapter 4. Assigning Special Program Properties to Applications 4-1
Program Properties Table 4-1

Format of the PPT Table Header 4-2

Format of the PPT Entry 4-2

Contents of the PPT Entry 4-3

Updating the PPT 4-9

Chapter 5. Creating Your Own Resource Managers 5-1
Installation-Written Resource Managers 5-1
The Resource Manager Parameter List 5-2
Adding an Installation-Written Resource Manager 5-4

Chapter 6. Executing DAT-off Code in MVS/XA 6-1

Chapter 7. Conttolling System Messages and the System Log 7-1
Controlling System Messages 7-2
Using a Message-Routing/Processing Exit Routine 7-3
Inserting A WTO/WTOR Exit Routine into the Control Program 7-5
Replacing a WTO/WTOR Exit Routine Without a re-IPL 7-7
The Hardcopy Log 7-7
Suppressing the Display of Selected Messages 7-8
Controlling the System Log 7-8
Modifying the System Log 7-9

Chapter 8. Updating the Master Job Control Language Data Set 8-1
IEEMSJCL Example 8-1
Changes to Master JCL 8-2
Alternate Versions of the Master JCL 8-2

Chapter 9. Customizing the System Trace Table 9-1
The USRn System Trace Table Entry 9-1

X SPL: System Modifications

Using the PTRACE Macro 9-2

PTRACE Macro Processing 9-3

Formatting a USRn Trace Table Entry 94
Replacing a USRn TTE Formatting Routine 9-5

Fitting your Subsystems into the System

Chapter 10. Defining Subsystems To the Operating System 10-1
Defining Subsystems in Members of SYSI.PARMLIB 10-2
Passing Parameters to the Initialization Routine 10-3
System Handling of Duplicate Subsystems 10-4

Chapter 11. The Subsystem Affinity Service 11-1
SSAFF: Set/Obtain Subsystem Affinity 11-2
IEFSSREQ: Obtaining The SSAT Index Value 11-4

MYVS/XA System Services

Chapter 12. Unit Verification Service 12-1
Unit Verification Service 12-1
Callers of IEFEB4UV 124
Callers of IEFGB4UV or IEFAB4UV 124
Input To and Output From Unit Verification Service Routines 12-5
Input and Output Data Structures 12-6
Requesting Multiple Functions 12-19
Example 1 Function Codes 0 and 1 12-19
Example 1 Function Codes 0 and 1 (continued) 12-20
Example 2 Function Codes 3 and 10 12-21
Example 3 Function Codes 1 and 5 12-22

Chapter 13. The Hot I/O Detection Table 13-1
IOSRHIDT: The HIDT 13-1
Modifying the HIDT 13-3

Chapter 14. The Internal Reader Facility 14-1
Setting Up and Using an Internal Reader 14-1

Requesting a Started Task To Execute on a Secondary Subsystem 14-6
Restrictions when Routing the JCL to the Master Subsystem 14-6
Defaults For The Subsystem 14-7

Chapter 15. The External Writer 15-1
STDWTR: IBM Standard Output Writing Routine 15-2
Writing Your Own Output Writing Routine 15-3
IEFSD094: The Output Separator Routine 15-8
The External Writer Cataloged Procedure 15-12

Chapter 16. The Virtual Fetch Service 16-1
Functions of Virtual Fetch 16-1
Installation Support for the Virtual Fetch Service 16-6
Starting Virtual Fetch 16-7
Refreshing Virtual Fetch 16-8
Considerations When Using Virtual Fetch 16-9
Programming Conventions for Using Virtual Fetch 16-11

Contents

Xi

xii

Requesting Dumps When Using Virtual Fetch 16-11
BUILD Request for Virtual Fetch 16-13

FIND Request for Virtual Fetch 16-13

GET Request for Virtual Fetch 16-14

Chapter 17. MVS Dumping Services 17-1
MVS Dumps 17-2
ABEND Dumps 17-3
SVC Dumps 17-4
Suppressing Dumps 17-6
Suppressing Dumps Automatically, by Abend Code 17-6
Tailoring ABEND and SVC Dumps: The Dump Options 17-7
Tailoring Summaries and Symptom Dumps 17-8
Summary Dumps 17-9
Symptom Dumps 17-12
Tailoring Dumps: Other Data Options 17-13
Tailoring Dumps by Type: The Operator Commands 17-17
CHNGDUMP Operator Command 17-18
DISPLAY DUMP Operator Command 17-19
DUMPDS Operator Command 17-20
DUMP Operator Command 17-21
Tailoring and Suppressing Individual Dumps: The User Exits 17-21
Pre-Dump Exits for User Dumps 17-22
Post-Dump Exits for System Dumps 17-23
Dump Analysis and Elimination (DAE) 17-26
Definitions 17-26
Symptoms 17-27
Symptom Strings 17-27
Symptom Queue 17-27
Keys and Keywords 17-27
Minimum Symptoms 17-28
Input to DAE 17-29
DAE Parameter Record in SYSI.PARMLIB 17-29
ADYDFLT 17-30
SYSI.DAE 17-32
ABDUMP Symptom Area of the Dump Header Record 17-34
SDWA 17-34
DAE Processing 17-34
DAE Initialization 17-35
Symptom Extraction 17-35
How DAE Creates Symptoms 17-35
Criteria for DAE to Match for Duplicates 17-38
Criteria for DAE to Suppress Dumps 17-38
SUPPRESS and UPDATE Processing 17-39
Overrides to DAE 17-40
Creating and Modifying Symptom Data 17-40
VRA Keys for DAE 17-41
Adding to the Minimum Symptom String Requirements 17-42

Appendix A. IBM Provided Device Preference Table A-1

Index X-1

SPL: System Modifications

Figures

2-1.

Processing Order Allocation Requests Requiring Serialization — 2-2
Relationships among Generic and Esoteric Device Groups 2-6
Summary of Mount and Use Attribute Combinations 2-10
Sharable and Nonsharable Volume Requests 2-11

How VSM Arrives at Region Size and Limit Values from Values Set by

IEALIMIT and IEFUSIL. 3-5

Parameters Passed to Exit at IEFUSI by SMF 3-6

Effect of Region Size and Limit Values on Various GETMAIN
Requests 3-9

Some Key Fields in the Resource Manager Parameter List
(RMPL) 5-3

Using the DATOFF Macro to Execute DAT —off Code 6-2
IEEMSJCL Data Set 8-1

Examples of the PTRACE Macro 9-3

Continuation Information from PTRACE for Multi-Part TTE 9-4

Sample Code for Formatting USRn Trace Table Entries 9-8
Format of the SYSI.PARMLIB member, IEFSSNxx. 10-2
Parameter List for Subsystem Initialization Routines 10-3
Subsystem Affinity Service 11-1

Input Parameter List 12-5

Requesting Function Code 0 (Check Groups) 12-7

Requesting Function Code 1 (Check Units) 12-8

Requesting Function Code 2 (Return Unit Name) 12-9
Output from Function Code 2 (Return Unit Name) 12-9
Requesting Function Code 3 (Return UCB Addresses) 12-10
Output from Function Code 3 (Return UCB Addresses) 12-10
Requesting Function Code 4 (Return Group ID) 12-11
Output from Function Code 4 (Return Group ID) 12-11
Requesting Function Code 5 (Indicate Unit Name is a Look-up
Value) 12-12

Requesting Function Code 6 (Return Look-up Value) 12-13
Output from Function Code 6 (Return Look-up Value) 12-13
Requesting Function Code 7 (Convert Device Type to Look-up
Value) 12-14

Output from Function Code 7 (Convert Device Type to Look-up
Value) 12-14

Requesting Function Code 8 (Return Attributes) 12-15
Requesting Function Code 10 (Specify Subpool for Returned
Storage) 12-17

Requesting Function Code 11 (Return Unit Names for a Device
Class) 12-18

Output from Function Code 11 (Return Unit Names for a Device
Class) 12-18

Input for Function Codes 0 and 1 12-19

Figures

Xiii

12-20.
12-21.
12-22,
12-23.
12-24.
13-1.
13-2.
15-1.
15-2.
15-3.
16-1.
16-2.
16-3.
16-4.
16-5.
16-6.
17-1.
17-2.
17-3.
17-4.

17-5.
17-6.
17-7.
17-8.
17-9.
17-10.

X1V SPL: System Modifications

Output from Function Codes 0 and 1 12-20

Input for Function Codes 3 and 10 12-21

Output from Function Codes 3 and 10 12-21

Input for Function Codes 1 and 5 12-22

Output from Function Codes 1 and 5 12-22

Valid Hot I/O Recovery Action Codes 13-2

IBM Default Hot I/O Threshold and Recovery Actions. 13-3
External Writer Parameter List 15-3

General Logic of IBM’s External Writer Routine 15-5
Parameter List for Separator Routine 15-9

Environment Prior to Virtual Fetch Initialization 16-4
Environment After Virtual Fetch Initialization 16-5

Virtual Fetch Parameter List 16-10

Environment After a BUILD/FIND Request 16-12
Environment ‘After a GET Request 16-16

A Program Using Virtual Fetch 16-17

Default Dump Options for ABEND and SVC Dumps 17-8
ABEND Summary Dump Contents 17-9

SVC Dump Summary Dump Contents 17-11

Message IEA9951: Symptom Dump Output for SYSABEND and
SYSUDUMP 17-12

SDATA Options for MVS/XA Dumps 17-15

Format of DAE Parameter Record 17-30

Required Symptom Keys in ADYDFLT 17-31

Optional Symptom Keys in ADYDFLT 17-31

Sample JCL in SYS1.SAMPLIB for Creating SYSI.DAE 17-33
Duplicate Areas in ABDUMP Symptom Area and SDWA 17-37

9

Summary of Amendments

Summary of Amendments
for GC28-1152-2
for MVS/System Products Version 2 Release 2.0

This edition contains changes to support MVS/System Product Version 2
Release 2.0. This edition includes the following changes:

A new chapter on Writing Unit Information Modules in support of the MVS
Configuration Program (MVSCP) is included.

Information on the MVS configuration program (MVSCP)
Information on the Eligible Device Table Verification Service is no longer in
this book; this information now appears in MV'S/Extended Architecture:

MVS Configuration Program Guide and Reference.

The chapter on Assigning Special Program Properties to Applications is
rewritten to support the SCHEDxx member of SYSI.PARMLIB.

The chapter on Updating the Master Job Control Language Data Set is
rewritten to support this release.

The chapter on Defining Subsystems To the Operation System is rewritten to
document support of the IEFSSNxx member of SYSI.PARMLIB.

The chapter on Unit Verification Service is rewritten to include new functions
and editorial changes.

The chapter on MVS Dumping Services is rewritten to include new functions
for IPCS and editorial changes.

A new appendix is added containing the IBM provided device preference table
values.

Summary of Amendments XV

Xvi

Summary of Amendments

for GC28-1152-1

As Updated August 2, 1985

by Technical Newsletter GN28-1106

This Technical Newsletter, which supports MVS/System Products Version 2
Release 1.3 Vector Facility Enhancement, contains the following updates:

e Information on processor affinity and the PPT in Chapter 3.
e Technical and editorial changes are included for maintenance.

Summary of Amendments

for GC28-1152-1

As Updated January 30, 1984
by TNL GN28-0915

This technical newsletter contains new and updated information in support of
MVS/System Products Version 2 Release 1.2 and includes the following:

e New flag bits in the flag word of the VSM parameter list in Chapter 2,
concerning the IEALIMIT and IEFUSI installation exit routines.

o New general-purpose WTO/WTOR user exit IEAVMXIT) and user-specified
WTO/WTOR exits in Chapter 6.

e New routing of messages according to the message level specified by the
LEVEL keyword of the CONTROL V command, in Chapter 6.

e Minor technical and editorial changes, marked throughout the text by a
change bar in the left margin.

SPL: System Modifications

Modifying the System to Fit the Devices in Your Installation

An MYVS installation can include many input/output devices. They are among the
resources available through the operating system that help accomplish the work of
a data processing installation.

A system programmer is responsible for defining the I/O configuration to MVS
and for coordinating the working of the devices with the operating system and the
installation’s applications.

This part of System Modifications presents a general description of defining the
I/O configuration, and how the operating system allocates resources to do the
work of the installation. It also includes descriptions of several means of
influencing the allocation process.

The following books are referenced in this chapter:

MVS/XA MVS Configuration Program Guide and Reference

MVS/XA Input/Output Configuration Program User's Guide and Reference
MVS Planning: Global Resource Serialization

MVS/XA JCL Reference

MVS/|XA Operations: System Commands

MVS/XA SPL: hitialization and Tuning

MVS/XA SPL: JES3 Initialization and Tuning

MVS/XA SPL: System Generation Reference

MVS/XA SPL: System Macros and Facilities, Volume 2

Modifying the System to Fit the Devices in Your Installation

SPL: System Modifications

Chapter 1. Writing Unit Information Modules for the MVS
Configuration Program

Installations that install MVS/System Product Version 2 Release 2 (MVS/SP
2.2.0), or subsequent releases must use the MVS configuration program (MVSCP)
to define the I/O configuration to MVS. For each supported device, MVSCP
provides a program called a unit information module (UIM). It is the UIM that
recognizes and processes the values coded on the IODEVICE statement which is
part of the input stream to MVSCP. MVS/Extended Architecture: MVS
Configuration Program Guide and Reference identifies the devices that MVSCP
supports. A UIM may define the support for several related devices.

For devices that MVSCP does not support, you must supply the information in
one of two ways: either define the device as a DUMMY device on the
IODEVICE statement or write your own UIM to define the device to MVS. A
device specified as DUMMY has some limitations. For example, the system
creates a UCB for a unit record device. Because MVSCP does not support the
ERRTAB or DEVTYPE parameter on the IODEVICE statement, the
IBM-supplied default values may not fit your needs. The UCB will contain the
defaults values for the ERP index, which is zero, and for the UCB type, which is
X“00000800°. Because of these limitations, you may prefer to write a UIM instead
of defining an unsupported device as a DUMMY. This chapter discusses writing
UIMs for MVSCP.

Before reading this chapter, you should be familiar with MVS/XA: MVS
Configuration Program Guide and Reference. While coding a UIM, you may need
to use the MV S/XA Debugging Handbooks for relevant data areas.

This chapter discusses the following:

How MVSCP uses UIMs

UIM Data Areas

UIM Service Routines

UIM Processing Logic

UIM Macros

Device Support Modules and Macros
Writing a UIM

Using the Sample UIM

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-1

How MVSCP Uses UIMs

During its initialization, MVSCP loads all unit information modules into virtual
storage. MVSCP makes three types of calls to the UIMs while building the I/O
configuration: for initialization, to process the IODEVICE statements, and for

end-of-data processing.

Initialization Processing

MVSCP communicates with each UIM through the UIM communication area
(UCA). The UCA contains fields that a UIM can update and others that a UIM
can read. During initialization, MVSCP calls each UIM to obtain the allocation
information on all the generic device types recognized by a UIM. The UIMs call
a service routine in the MVSCP to build the device information tables (DITs).
The DIT contains information used to build the eligible device table (EDT).
There is one DIT for each generic device type supported by the collection of
UIMs. Each UIM also indicates if it must be invoked for end-of-data processing.

IODEVICE Statement Processing

For each IODEVICE statement, MVSCP invokes the UIMs until one of the
UIMs recognizes the specified device. If no match is found, MVSCP issues an
error message. If a match is found, the UIM validity checks the parameters on
the IODEVICE statement. If they are valid, the UIM calls a service routine in
MVSCP to build a device features table (DFT). The DFT contains information
used to build the unit control blocks (UCBs) and the EDT. For each device
number defined in the I/O configuration, there is a DFT.

End-of-Data Processing

MVSCP performs end-of-data processing for each UIM that, during initialization,
indicated an end-of-data processing. During end-of-data processing, the UIM
checks the I/O configuration for consistency and may update certain device
dependent information.

1-2 SPL: System Modifications

9

UIM Data Areas

There are three control blocks, external to the UIM, that a UIM must reference:

e UIM communications area (UCA),
e Configuration program vector table (CPVT),
e JODEVICE internal text record (IODV).

See MV S/XA Debugging Handbook for mappings of these data areas.

The other data areas and parameter lists that a UIM uses are contained within
the UIM itself.

UIM Communications Area (UCA)

The UCA contains information that MVSCP uses to communicate with the UIM.
The UCA points to the CPVT, the DFT build routine, the DIT build routine, the
getmain service routine, the feature checker routine, parameter checker routine,
the device characteristics table build routine, and many other vital data areas.
CBPZUCA maps the UCA.

MVSCP Vector Table (CPVT)

The CPVT is the MVSCP vector table. It points to the MVSCP service routines;
it also contains anchors for global data structures and information concerning
MVSCP. CBPZCPVT maps the CPVT.

IODEVICE Internal Text Record (IODV)

The IODV maps the IODEVICE internal text record. The IODEVICE internal
text record is the control block representation of an IODEVICE statement. It
contains the parameters and features that were specified on the IODEVICE
statement. CBPZIODYV maps the IODV.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-3

UIM Service Routines

The MVS configuration program includes service routines to assist the UIMs.
The following table identifies each routine and what it is used for.

A description for each of these service routines is on the following pages.

Service Routine Name Function of the Routine
CBPADIT Builds device information tables (DITs).

There is one DIT for each generic device type supported by
the collection of UIMs.

CBPDDCT Builds device characteristics table (DCT).
There is one DCT per I/O configuration. There is a separate
entry in the DCT for each DASD type defined in the I/O
configuration.

CBPIDFT Builds the device features table (DFTs).

There is one DFT per device in the I/O configuration.

CBPIFEAT Checks the IODEVICE features.
CBPIGETM Obtains storage for the UIM.
CBPIPARM Validity checks the IODEVICE parameters.

1-4 SPL: System Modifications

CBPADIT - Builds DITs Service Routine

Invoking CBPADIT

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program

A UIM must call CBPADIT once for each generic device that it defines. A
separate DIT is built for each generic. All of the DITs are built before the
MVSCEP input stream is processed.

UIMs invoke CBPADIT in 31-bit addressing mode by using a BALR instruction.
Use the standard register save area conventions. The address of the CBPADIT
routine is in the field UCADITP in the UCA.

Registers on Entry to CBPADIT

Register 0 Undefined

Register 1 Pointer to a two word parameter list
Word 1 - Address of the UCA
Word 2 - Address of the DIP

Register 2-12 Undefined

Register 13 Address of an 18-word save area

Register 14 Return address

Register 15 CBPADIT entry point address

Registers on Exit from CBPADIT

Register 0-15 Restored

CBPADIT Input Parameters: A UIM provides the input to CBPADIT in the
device information parameters (DIP). The DIP resides in a UIM and is mapped
by CBPYDIP.

1-5

CBPDDCT - Build DCT Service Routine

Invoking CBPDDCT

The UIMs invoke the CBPDDCT service routine to build DCT entries. A DCT
entry is built for each type of DASD defined in the I/O configuration. A UIM
must call CBPDDCT once for each DCT entry. IHADVCT, which is part of the
Data Facilities Product, maps the DCT.

UIMs invoke CBPDDCT, in 31-bit addressing mode, by using a BALR
instruction. Use standard register save area conventions. The UCADCTP field in
the UCA contains the address of CBPDDCT.

Registers on Entry to CBPDDCT

Register 0 Undefined

Register 1 Pointer to a two word parameter list
Word 1 - Address of the UCA
Word 2 - Address of the DCP

Register 2-12 Undefined

Register 13 Address of an 18-word save area

Register 14 Return address

Register 15 CBPDDCT entry point address

Registers on Exit from CBPDDCT
Register 0-15 Restored
CBPDDCT Input Parameters: A UIM provides the input to CBPDDCT in the

device characteristics parameters (DCP). The DCP resides in a UIM and is
mapped by CBPZDCP.

1-6 SPL: System Modifications

C

CBPIDFT - Build the DFTSs Service Routine

Invoking CBPIDFT

UIMs invoke CBPIDFT to build device features tables (DFTs). DFTs contain
the information that is used by the MVS configuration program to build UCBs.
There is one DFT for each unit defined in the I/O configuration. One UCB is
built from each DFT.

A UIM invokes CBPIDFT only after verifying that an IODEVICE statement
contains no errors. A UIM must invoke CBPIDFT once for each DFT that is to
be built. A DFT must be built for each device number defined by the IODEVICE
statement. (For multiple exposure devices, a separate DFT must be built for each
exposure.)

CBPIDFT is responsible for validating the device number that is to be assigned to
the DFT. CBPIDFT ensures that the device number does not exceed X‘FFF’ and
that it is unique within the the I/O configuration. If the device number is in error,
CBPIDFT issues an appropriate error message, sets the IODVUINYV flag in the
IODYV and returns to the UIM without building a DFT.

To invoke CBPIDFT within a UIM, use a BALR instruction in 31-bit addressing
mode. Use standard register save area conventions. The UCADFTP field in in
the UCA contains the address of the CBPIDFT routine.

Registers on Entry to CBPIDFT

Register 0 Undefined

Register 1 Pointer to a two word parameter list
Word 1 - Address of the UCA
Word 2 - Address of the DFP

Register 2-12 Undefined

Register 13 Address of an 18-word save area

Register 14 Return address

Register 15 CBPIDFT entry point address

Registers on Exit from CBPIDFT
Register 0-15 Restored
CBPIDFT Input Parameters: A UIM provides the input to CBPIDFT in the

device features parameters (DFP). The DFP resides in a UIM and is mapped by
CBPZDFP.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-7

CBPIFEAT - Device Features Checker Service Routine

Invoking CBPIFEAT
UIMs invoke CBPIFEAT to determine:

1. Which, if any, of the features that are valid for the device have been specified
on the IODEVICE statement.

2. 1If any features that are not valid for the device have been specified on the
IODEVICE statement.

CBPIFEAT will issue an error message for each invalid feature that was
specified and set the IODVUINV flag in the IODV.

UIMs invoke CBPIFEAT, in 31-bit addressing mode, by using a BALR
instruction. Use standard register save area conventions. The field UCAFEATP
in the UCA contains the address of the CBPIFEAT routine.

Registers on Entry to CBPIFEAT

Register 0 Undefined

Register 1 Pointer to a two word parameter list
Word 1 - Address of the UCA
Word 2 - Address of the FCP

Register 2-12 Undefined

Register 13 Address of an 18-word save area

Register 14 Return address

Register 15 CBPIFEAT entry point address

Registers on Exit from CBPIFEAT

Register 0-15 Restored
CBPIFEAT Input Parameters: A UIM provides the input to CBPIFEAT in the
features checker parameters (FCP). The FCP resides in a UIM and is mapped by
CBPZFCP.
Note: The features that are valid for a device must have names that are from 1

to 10 characters long. The name given a particular feature is completely under
the control of the UIM and is specified in the FCP.

1-8 SPL: System Modifications

C

CBPIGETM - Getmain Service Routine

Inveking CBPIGETM

UIMs invoke the CBPIGETM service routine to obtain a specified amount of
storage to be used by the UIM as a work area. CBPIGETM zeros out the area

before returning to the UIM.

UIMs invoke CBPIGETM, in 31-bit addressing mode, by using a BALR
instruction. Standard register save area conventions are used. The field
UCAGETMP in the UCA contains the address of CBPIGETM.

Registers on Entry to CBPIGETM

Register 0 Undefined

Register 1 Pointer to a two word parameter list
Word 1 - Address of the UCA
Word 2 - Address of the GETM

Register 2-12 Undefined

Register 13 Address of an 18-word save area

Register 14 Return address

Register 15 CBPIGETM entry point address

Registers on Exit from CBPIGETM

Register 0-15 Restored

CBPIGETM Input Parameters: A UIM provides the input to CBPIGETM in the
getmain parameters (GETM). The GETM resides in a UIM and is mapped by

CBPZGETM.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program

1-9

CBPIPARM - IODEVICE Parameter Checker Service Routine

Invoking CBPIPARM

UIMs invoke CBPIPARM to determine if:

1. Any required parameters for the particular device were not specified on the
IODEVICE statement.

CBPIPARM will issue an error message for each missing parameter and set
the IODVUINYV flag in the IODV.

2. Any parameters were specified on the IODEVICE statement are inappropriate
for the particular device.

CBPIPARM issues an informational message for each inappropriate
parameter that was specified.

UIMs invoke CBPIPARM, in 31-bit addressing mode, by using a BALR
instruction. Use standard register save area conventions. The field UCAPARMP
in the UCA contains the address of CBPIPARM.

Registers on Entry to CBPIPARM

Register 0 Undefined

Register 1 Pointer to a two word parameter list
Word 1 - Address of the UCA
Word 2 - Address of the PCP

Register 2-12 Undefined

Register 13 Address of an 18-word save area

Register 14 Return address

Register 15 CBPIPARM entry point address

Registers on Exit from CBPIPARM

Register 0-15 Restored

CBPIPARM Input Parameters: A UIM provides the input to CBPIPARM in the
parameter checker parameters (PCP). The PCP resides in a UIM and is mapped
by CBPZPCP.

1-10 SPL: System Modifications

C

UIM Processing Logic

During MVSCP’s calls to the UIM, the UCAUIMRT field in the UCA indicates
the type of call: initialization, IODEVICE statement checking, or end-of-data
processing.

During the MVSCP’s initialization call to the UIM, (UCAUIMRT = UCARINIT), the UIM does the
following:

® Invokes the CBPZPPDS macro to add an entry to the diagnostic stack
® For each generic type defined by this UIM, the UIM:
— Builds the CBPYDIP parameter list
— Invokes the CBPADIT routine to build the DIT
® If the UIM needs a work area, it
— Builds the CBPZGETM parameter list
— Invokes CBPIGETM to get the work area
® If necessary, the UIM indicates in the UCA that it must be called for end-of-data processing.
® Invokes the CBPZPPDS macro to remove an entry from the diagnostic stack

During the MVSCP’s IODEVICE statement checking call (UCAUIMRT =UCARDFTB) the UIM
does the following:

® Invokes the CBPZPPDS macro to add an entry to the diagnostic stack
® If the unit in the IODV is one of the units defined by this UIM"
— Builds the CBPZPCP parameter list
— Invokes CBPIPARM to check the IODEVICE parameters
— If one or more features are supported:
— Builds the CBPZFCP parameter list
— Invokes CBPIFEAT to check the IODEVICE features.
— Validity checks the IODEVICE internal text record
— Invokes the CBPZLOG macro to issue messages, if necessary
— If the IODEVICE internal text record is valid, then for each unit defined in the IODV:
— Builds the CBPZDFP parameter list
— Invokes CBPIDFT to build the DFT
® If necessary, saves the following addresses for end-of-data processing:
— UCADDSP
— UCADDEP
— UCADCEP
Indicates in the UCA that the IODEVICE internal record was processed
® Invokes the CBPZPPDS macro to remove an entry from the diagnostic stack

During MVSCP’s end-of-data processing call (UCAUIMRT =UCAREOD), the UIM performing the
end-of-data processing does the following:

Invokes the CBPZPPDS macro to add an entry to the diagnostic stack
Performs end-of-data checking
Invokes the CBPZLOG macro to issue messages, if necessary
Updates only for the devices defined by this UIM the following, if necessary:
— UCB device dependent segment
— UCB device dependent extension
— UCB device class extension
® For each type of DASD supported by this UIM and defined in the I/O configuration, the UIM:
— Builds the CBPZDCP parameter list
— Invokes CBPDDCT routine to build the DCT entry
® Invokes the CBPZPPDS macro to remove an entry from the diagnostic stack

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-11

Considerations for UIM Processing

UIMs are invoked in task mode and in problem state. However, do not code a
UIM to depend on being invoked in this manner. A UIM can not invoke any
other module or system service except for those service routines provided by
MVSCP.

UIMs are invoked in 31-bit addressing mode. UIMs must not change to 24-bit
addressing mode. Link-edit UIMs with AMODE(31) and RMODE(ANY).

Each time the MVSCP is invoked, a fresh copy of each UIM is loaded into virtual
storage. The same copy of each UIM is used throughout the processing of the
invocation of MVSCP. This allows a UIM to store information within itself and
to retain this information for subsequent calls to that UIM.

UIMs must use the standard register save area conventions. The UIM must set

register 13 to point to its own register save area before invoking any UIM service
routines or before using the CBPZPPDS or CBPZLOG macros.

1-12 SPL: System Modifications

Entry logic for a UIM

L Upon entry for a UIM:
e Save the contents of the input registers
o Set the UIM base register
o Chain the save areas
e Set register 13 to point to the save area contained within the UIM
e Establish addressability to the UCA, CPVT and IODV

The IODV is present only on IODEVICE calls to the UIM.
e [Issue the CBPZPPDS macro to put an entry on the diagnostic stack

Registers on Entry to a UIM
Upon entry to a UIM, the registers are defined as follows:

Register 0 Undefined

Register 1 Pointer to a fullword containing the UCA address
Register 2-12 Undefined

Register 13 Address of an 18-word save drea

Register 14 Return address

Register 15 UIM entry point address

Exit logic from a UIM
Upon exit from a UIM:
e Issue the CBPZPPDS macro to remove the UIM’s entry from the diagnostic
b stack

o Restore the caller’s registers
e Return to the caller
Registers on Exit from a UIM
Upon exit from a UIM, the registers are defined as follows:

Register 0-15 Restored

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-13

UIM Macros

The following macros are used by UIMs. These macros reside in
SYS1.AMODGEN.

Macro Name

Function of the Macro

CBPYDIP

Maps the device information parameters (DIP) that provide input to
CBPADIT.

CBPZCPVT

Maps the configuration program vector table (CPVT).

CBPZDCP

Maps the device characteristics parameters (DCP), that provides
input to CBPDDCT.

CBPZDFP

Maps the device features parameters (DFP), that provides input to
CBPIDFT.

CBPZDIAG

Builds an MVSCP diagnostic stack entry.

CBPZFCP

Maps the feature checker parameters (FCP), that provides input to
CBPIFEAT.

CBPZGETM

Maps the getmain parameters (GETM) that provide input to
CBPIGETM.

CBPZIODV

Maps the IODEVICE internal text record.

CBPZITRH

Maps the header of the IODEVICE internal text record.

CBPZLOG

Macro used to invoke the message log routine.

CBPZLOGR

Maps the input parameters to the message log routine.

CBPZPCP

Maps the parameter checker parameters (PCP), that provide input
to CBPIPARM.

CBPZPPDS

Macro used to push an entry on or pop an entry from the MVSCP
diagnostic stack.

CBPZUCA

Maps the UIM communications area.

See MVS/XA Debugging Handbooks for the mapping macros.

This section contains information and syntax for the preceding UIM macros.

1-14 SPL: System Modifications

J

C

CBPZDIAG and CBPZPPDS Macros

These two executable macros are needed within a UIM to support the recovery
routine in MVSCP.

A UIM must not establish its own recovery routine. Instead, the CBPZDIAG
macro allows you to specify diagnostic information to MVSCP’s recovery routine.
Use the CBPZDIAG macro to build a diagnostic stack entry in which you specify
certain diagnostic information. If an abend occurs, this information is placed in
the system diagnostic work area (SDWA).

The CBPZPPDS macro puts an entry on (pushed on) or takes an entry off
(popped off) the MVSCP diagnostic stack. Before issuing this macro, the UIM
must have addressability to MVSCP’s vector table (CPVT).

CBPZLOG and CBPZLOGR Macros

Use the CBPZLOG macro in your UIM to issue messages. Do not use message
ids that IBM uses. Use message ids in the range CBP900I-CBP9991.

The CBPZLOG macro requires the CBPZLOGR macro. The CBPZLOGR
macro maps the parameter list of the message log routine. This parameter list
resides in the UIM and is built by the code generated in the CBPZLOG macro
expansion. A UIM must have addressability to MVSCP’s vector table (CPVT)
when it issues the CBPZLOG macro.

See MVS/XA Debugging Handbooks for the data areas.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-15

CBPYDIP

The CBPYDIP macro maps the device information parameters (DIP). The DIP is
the input parameter list to CBPADIT.

The syntax of the CBPYDIP macro is as follows:

CBPYDIP [DENS=dens],
[GENDNMS=gendnms]

dens specifies the number of entries to be generated in the density list. This
list contains the densities that are supported by the generic device
type. This parameter is optional, the default is 0.

gendnms specifies the number of entries to be generated in the compatible
generic device name list. This list contains the generic names of devices
for which this generic device type can be used to satisfy allocation
requests. This parameter is optional, the default is 0.

Note: You cannot specify a label on the CBPYDIP macro invocation.

1-16 SPL: System Modifications

C

CBPZCPVT

The CBPZCPVT macro maps the configuration program vector table (CPVT).
The CPVT points to many of the internal control blocks and service routines used
by the MVSCP. It also contains parameters used by some of these service
routines.

A UIM never directly references the CPVT, but it must have addressability to the
CPVT when it issues the CBPZPPDS or CBPZLOG macros.

The syntax of the CBPZCPVT macro is as follows:

CBPZCPVT [CSECT=csect]

csect this operand should never be specified by a UIM.

Note: You cannot specify a label on the CBPZCPVT macro invocation.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-17

CBPZDCP

The CBPZDCP macro maps the device characteristics parameters (DCP). The
DCP is the input parameter list to CBPDDCT.

The syntax of the CBPZDCP macro is as follows:

CBPZDCP

There are no input parameters on the CBPZDCP macro invocation.

Note: You cannot specify a label on the CBPZDCP macro invocation.

1-18 SPL: System Modifications

CBPZDFP

L The CBPZDFP macro maps the device features parameters (DFP). The DFP is
the input parameter list to CBPIDFT.

The syntax of the CBPZDFP macro is as follows:

CBPZDFP [MLTS=mlts],
[RELOC=reloc]

mlts specifies the number of entries to be generated in the MLT list. This
list identifies the MLT(s) that designate the nucleus and LPA device
support modules for the device. This parameter is optional, the default
is 1. (The maximum number of MLTs allowed for a device is 5.)

reloc specifies the number of entries to be generated in the relocation list.
The relocation list identifies fields in the device dependent sections of
the UCB (device dependent segment, device dependent extension or
device class extension) that point to other sections of the same UCB
or another UCB. This parameter is optional, the default is 0.

Note: You cannot specify a label on the CBPZDFP macro invocation.

A UIM may not specify more than 256 bytes of certain device dependent
information for a device. The information that falls within this 256 byte limit

b consists of:

e UCB device dependent segment (length specified in DFP field DFPDDSL)

e UCB device dependent extension (length specified in DFP field DFPDDEL)

e UCB device class extension (length specified in DFP field DFPDCEL)

e MLT list (the length of the list is computed by multiplying the number of
entries in the list, which is contained in DFP field DFPMLTLC, by the length
of a list entry, which is 12 bytes)

® Relocation list (the length of the list is computed by multiplying the number

of entries in the list, which is contained in DFP field DFPRELCT, by the
length of a list entry, which is 12 bytes)

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-19

CBPZDIAG

The CBPZDIAG macro is used to build a diagnostic stack entry. The diagnostic
stack entry contains debugging information that is placed in the system diagnostic
work area (SDWA) if an ABEND occurs in the UIM. The diagnostic stack entry
is contained within the UIM.

A UIM must not establish an ESTAE to provide diagnostic information in the
event that it abends. Rather, it must:

1. Specify the diagnostic information in a diagnostic stack entry, using the
CBPZDIAG macro.

2. Use the CBPZPPDS macro to put the entry on the diagnostic stack in its
entry logic.

3. Use the CBPZPPDS macro to remove the entry from the diagnostic stack in
its exit logic.

The MVSCP ESTAE routine uses the information in the active diagnostic stack
entry to fill in the SDWA. Also, the ESTAE routine builds a symptom string in
the variable recording area (VRA) consisting of all the CSECT names in the
entries on the diagnostic stack.

The syntax of the CBPZDIAG macro is as follows:

label

CBPZDIAG MODNAME=modname,
[CSECT=csect],
COMP=comp,

DESC=desc,
[VRADATA=vradatal,
[RELATED=("'related')]

label

modname

csect

comp

1-20 SPL: System Modifications

name of the diagnostic stack entry. The labels on the fields generated
in the diagnostic stack entry will start with the same characters as
label does. (In the event that label exceeds four characters, only the
first four characters will be used in building the labels on the
generated fields.) label is required.

name of the load module that contains the diagnostic stack entry. If
an ABEND occurs, this value will be placed in SDWA field
SDWAMODN. This parameter is required.

name of the CSECT that contains the diagnostic stack entry. If an
ABEND occurs, this value will be placed in SDWA field
SDWACSCT. This parameter is optional, the default is the assembler
symbol &SYSECT value.

component identifier of the UIM. If an ABEND occurs, this value will
be placed in SDWA field SDWACID. The component identifier
should be five bytes long. This parameter is required.

I

9

desc UIM description, which should contain the unit names of the device(s)
that the UIM supports. If an ABEND occurs, this value will be placed
in SDWA field SDWASC. The UIM description can be a maximum of
23 bytes long. This parameter is required.

vradata name of an array that contains the addresses of data to be placed in
the VRA, if an ABEND occurs. The array contains the VRA keys and
data lengths, in additional to the data addresses. This parameter is
optional. If it is not specified, no specific control blocks or data areas
for the UIM will be placed in the VRA. (On IODEVICE calls, the
diagnostic stack entry for CBPICBBR, which is the routine that
invokes UIMs on IODEVICE calls, causes the IODV to be placed in
the VRA))

Each entry in the VRA array contains eight bytes. The format of an
entry is as follows:

Offset Length Function
0 2 Reserved, must be set to zero in all but the
last entry in the array.
2 1 Key of VRA data, as specified in IHAVRA.
3 1 Length of VRA data.
4 4 Address of VRA data. If this field is set to

zero, the ESTAE routine will skip this entry
when moving data into the VRA. UIMs are
permitted to dynamically update this field
while the diagnostic entry is on the diagnostic
stack.

The last entry in the VRA array must be set to
X‘FFFFFFFFFFFFFFFF’. This entry denotes the end of the VRA
array and does not cause any data to be placed in the VRA.

related optional character string.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-21

CBPZFCP

The CBPZFCP macro maps the feature checker parameters (FCP). The FCP is
the input parameter list to CBPIFEAT. The FCP lists the features that are
supported for a device.

The syntax of the CBPZFCP macro is as follows:

CBPZFCP [FEAT=feat],
[CFEAT=cfeat]

feat specifies the number of entries to be generated in the feature list. This
list identifies the features that are supported for a device. A maximum
of 64 features can be supported for a device. This parameter is
optional, the default is 0.

cfeat specifies the number of entries to be generated in the compatible
feature list. This list identifies obsolete features for the device that are
still permitted to be specified on the IODEVICE statement for
compatibility considerations. This parameter is optional, the default is
0.

Note: You cannot specify a label on the CBPZFCP macro invocation.

CBPIFEAT identifies which features, if any, in the feature list were specified on
the IODEVICE statement by setting the appropriate bit in the FCPOUT field.
(The bits in the FCPOUT field map one-to-one with the entries in the feature
list.)

CBPIFEAT issues an error message for each feature specified on the IODEVICE
statement that is not in either the feature list or the compatible feature list.
CBPIFEAT issues an informational ‘message for each feature specified on the
IODEVICE statement that is in the compatible feature list. (CBPIFEAT does not
notify the UIM as to which features in the compatible feature list were specified
on the IODEVICE statement.) CBPIFEAT also issues an error message for each
feature specified more than once on the IODEVICE statement.

If CBPIFEAT issues an error message, it also sets the IODVUINY flag in the
IODYV to indicate that the IODEVICE internal text record is invalid.

1-22 SPL: System Modifications

J

CBPZGETM

L The CBPZGETM macro maps the getmain parameters (GETM). The GETM is
the input parameter list to CBPIGETM.

The syntax of the CBPZGETM macro is as follows:

CBPZGETM

There are no input parameters on the CBPZGETM macro invocation.

Note: You cannot specify a label on the CBPZGETM macro invocation.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-23

CBPZIODV
The CBPZIODV macro maps the IODEVICE internal text record (IODV). J

The syntax of the CBPZIODV macro is as follows:

CBPZIODV

There are no input parameters on the CBPZIODV macro invocation.
Note: You cannot specify a label on the CBPZIODYV macro invocation.

A UIM should never invoke the assembler form of CBPZIODV. It is invoked
automatically by the CBPZITRH macro, which maps the header section of
internal text records. (The CBPZIODYV macro will not assemble without the
CBPZITRH macro.)

The IODV is basically a read-only control block. The only field in the IODV that

a UIM is permitted to set is the IODVUINYV flag. (The IODVUINY flag is set
when an error is detected in the IODV.)

1-24 SPL: System Modifications

C

CBPZITRH

The CBPZITRH macro maps the internal text record headers (ITRH). (An
internal text record is the control block representation of an MVSCP input
statement.)

The assembler form of the CBPZITRH macro invokes the CBPZIODYV macro.
The CBPZITRH and CBPZIODYV macros combine to give a complete mapping of
the IODEVICE internal text record. (The CBPZITRH macro is required for the
CBPZIODYV macro to assemble.)

The only field in the ITRH that a UIM should ever reference is ITRHSNBR,
which contains the number of the associated input statement. A UIM must never

modify any of the ITRH fields.

The syntax of the CBPZITRH macro is as follows:

CBPZITRH

There are no input parameters on the CBPZITRH macro invocation.

Note: You cannot specify a label on the CBPZITRH macro invocation.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-25

CBPZLOG

The CBPZLOG macro is used to issue a message to the MVSCP message log file.
A UIM must have addressability to the CPVT when it issues the CBPZLOG
macro. It must also invoke the CBPZLOGR mapping macro. (CBPZLOGR
maps the parameter list that is built by the CBPZLOG macro.)

The syntax of the CBPZLOG macro is as follows:

label

CBPZLOG MID=mid,
[SEV=sev],
[STMT=stmt],
TEXT=text

label

mid

sev

1-26 SPL: System Modifications

name of the label to be generated on the first instruction in the macro
expansion. label is optional.

message identifier. The message identifier is seven characters long and
is in the form of CBPnnnl, where nnn is a decimal number from 900
to 999 inclusive for customer-written UIMs. This parameter is
required.

message severity. The following severities are supported:

LOGRINFO informational message. This message has no effect on
MVSCP processing or its return code.

LOGRWARN warning message. This message has no effect on
MVSCP processing but will cause a return code of 4
to be issued (unless a higher severity message is
issued.)

LOGRERR error message. This message will prevent the MVSCP
from building any I/O configuration members, and
will cause a return code of 8 to be issued (unless a
higher severity message is issued.)

LOGRTERM terminating message. This message causes the MVSCP
to terminate its processing and issue a return code of
16. A UIM must never issue a terminating message.

This parameter is optional, the default is LOGRERR.

Note: The equates LOGRINFO, LOGRWARN, LOGRERR and
LOGRTERM are generated by the CBPZLOGR macro.

number of the statement in the MVSCP input stream that the message
refers to. Field ITRHSNBR in the internal text record header
(mapped by CBPZITRH) contains the statement number. This
parameter is optional. If it is omitted, no statement number will be
associated with the message.

9

text message text. This field contains up to 255 bytes of message text. The
length of the text is determined by the length attribute of this field.
This parameter is required.

Note: The message service will compress multiple blanks in the text
and will split the text across multiple lines if necessary.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-27

CBPZLOGR

The CBPZLOGR macro maps the message log routine’s input parameter list. The
parameter list is built by the CBPZLOG macro, which invokes CBPMLOGR.

The syntax of the CBPZLOGR macro is as follows:

CBPZLOGR

There are no input parameters on the CBPZLOGR macro invocation.

Note: You cannot specify a label on the CBPZLOGR macro invocation.

1-28 SPL: System Modifications

CBPZPCP

c The CBPZPCP macro maps the parameter checker parameters (PCP). The PCP
is the input parameter list to CBPIPARM. The PCP identifies (1) the parameters
that are required for a device and (2) the parameters that are supported for a
device (supported parameters consist of required parameters and optional
parameters).

PCP field PCPREQD is used to indicate which IODEVICE parameters are
required for a device, while field PCPSUPP is used to indicate which IODEVICE
parameters are supported for a device. The IODVPRMS field (contained within
the IODV) must be mapped over the PCPREQD and PCPSUPP fields in order to
set the bits corresponding to the required and supported parameters.

The syntax of the CBPZPCP macro is as follows:

CBPZPCP

There are no input parameters on the CBPZPCP macro invocation.

Note: You cannot specify a label on the CBPZPCP macro invocation.
CBPIPARM issues an error message for each required parameter that is not
specified on the IODEVICE statement. It also sets the IODVUINYV flag in the
IODV, when one or more required parameters are not specified, to indicate that

‘ the IODEVICE internal text record is invalid.

CBPIPARM issues an informational message for each unsupported parameter
that is specified on the IODEVICE statement.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-29

CBPZPPDS

The CBPZPPDS macro is used to push an entry on (put an entry on) or pop an
entry from (remove an entry from) the diagnostic stack. A UIM must have
addressability to the CPVT when it issues the CBPZPPDS macro. It must also
have invoked the CBPZDIAG macro to build the diagnostic stack entry that is to
be pushed on or popped from the diagnostic stack.

The syntax of the CBPZPPDS macro is as follows:

label

CBPZPPDS {PUSH | POP},
DIAG=diag
[,RELATED=("'related')]

label

PUSH

POP

diag

related

1-30 SPL: System Modifications

name of the label to be generated on the first instruction in the macro
expansion. label is optional.

The designated diagnostic entry is to be put on the diagnostic stack.
Either PUSH or POP must be specified.

The designated diagnostic entry is to be removed from the diagnostic
stack. Either PUSH or POP must be specified.

name of the diagnostic entry. This name must be specified on the label
field of the CBPZDIAG macro invocation.

optional character string.

J

CBPZUCA
‘ The CBPZUCA macro maps the UIM communications area (UCA).

The syntax of the CBPZUCA macro is as follows:

CBPZUCA

There are no input parameters on the CBPZUCA macro invocation.
Note: You cannot specify a label on the CBPZUCA macro instruction.

The UCA contains some fields that are unrelated to the UIM processing. A UIM
may only reference the (UCA) fields listed below. (The only fields in the list that a
UIM may modify are UCARECOG and UCAEODAT.)

UCACPVTP points to CPVT.

UCADFTP points to DFT build routine (CBPIDFT).

UCADITP points to DIT build routine (CBPADIT).

UCAFEATP points to IODEVICE feature checker (CBPIFEAT).
UCAPARMP points to IODEVICE parameter checker (CBPIPARM).

UCAIODVP points to IODEVICE internal text record (I0ODV), when
UCAUIMRT is set to UCARDFTB.

UCADDSP points to the UCB device dependent segment data. This value is
set by CBPIDFT when a UIM has specified a device dependent
segment in the DFP. This value points to the area within the
DFT that will be used to build the UCB device dependent
segment. If the UIM needs to modify the data in this area on its
end-of-data call, it must save this address after calling CBPIDFT.

UCADDEP points to the UCB device dependent extension data. This value is
set by CBPIDFT when a UIM has specified a device dependent
extension in the DFP. This value points to the area within the
DFT that will be used to build the UCB device dependent
extension. If the UIM needs to modify the data in this area on
its end-of-data call, it must save this address after calling
CBPIDFT.

UCADCEP points to the UCB device class extension data. This value is set
by CBPIDFT when a UIM has specified a device class extension
in the DFP. This value points to the area within the DFT that
will be used to build the UCB device class extension. If the UIM
needs to modify the data in this area on its end-of-data call, it

Q must save this address after calling CBPIDFT.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-31

UCAUIMRT

UCARECOG

UCAEODAT

UCADCTP

UCAGETP

1-32 SPL: System Madifications

UIM request type. Set to one of the following values:

UCARINIT UIM is being called to perform its initialization
function. None of the IODEVICE statements
have been processed yet.

UCARDFTB UIM is being called to process an IODEVICE
internal text record (IODV).

UCAREOD UIM is being called to perform its end-of-data
function. All of the IODEVICE statements have
been processed.

set by a UIM when it recognizes the unit parameter in the IODV.
When a UIM sets UCARECOG, it is responsible for processing
the IODV. (The UCARECOG flag can only be set on
IODEVICE calls to a UIM.)

set by a UIM when it wants an end-of-data call after all the
IODVs have been processed. The UCAEODAT flag can only be
set on the initialization call to a UIM. If a UIM does not set this
flag on its initialization call, then it will not receive an
end-of-data call.

points to the DCT build routine (CBPDDCT).

points to the getmain routine (CBPIGETM).

Device Support Modules and Macros

Any module that is required in the system if a particular device(s) is defined in the
1/O configuration is a device support module. Each nucleus device support module
must be a member of SYSI.NUCLEUS. Each LPA device support module must
be a member of SYSI.LINKLIB or any data set within the link list
concatenation.

Note: Nucleus device support modules that contain more than one control section
must be link-edited with the scatter (SCTR) option.

If you write a nucleus or LPA device support module, you must provide a module
lists table (MLT) containing the nucleus and the LPA device support modules for
a given device. Use the IOSDMLT macro to build a MLT.

If you write your own device support module, you will have to provide a device
descriptor table (DDT). Use the IOSDDT macro to build the DDT.

Before writing a device support module, or an error recovery procedure, read the
following:

1. MVS/XA SLL Input/Output Supervisor

2. IBM System/370 Extended Architecture Principles of Operations

3. IBM System/360 and System/370 I/O Interface Channel to Control Unit
Original Equipment Manufacturers’ Information

IOSDMLT and IOSDDT Macros

Each device that is defined in an I/O configuration must have a module lists table
(MLT) and a device descriptor table (DDT) associated with it. Similar devices
can share the same DDT and MLT. Both tables must reside in
SYS1.NUCLEUS. The UIM for a device must specify the name of the MLT and
the DDT associated with that device. This is accomplished through the parameter
list to CBPIDFT.

The IOSDMLT macro builds a module lists table (MLT). The MLT contains the
names of the device support routines and, for each routine, it indicates whether
the routine is located in the nucleus or in LPA.

The IOSDDT macro builds a device descriptor table (DDT). The DDT is the

vector table to the device dependent exits for a device. The following pages
describe these macros in more detail.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-33

IOSDDT - Device Descriptor Table Build Macro

The IOSDDT macro builds a device descriptor table (DDT). The DDT, which
must reside in SYSI.NUCLEUS, is the vector table to the device dependent exits
for a device. The IOSDDT macro is located in SYSI.AMODGEN.

A device descriptor table (DDT) is a vector table that IOS uses to locate the
device support routines. The system requires one of these tables for each device in
the I/O configuration, although similar devices may share the same DDT. When
conditions arise during I/O operations for which specific device dependent
processing is required, IOS gives control to the exit routines through the vector
entries in the DDT.

To build the DDT, you use the IOSDDT macro. With this macro, you specify
either the entry point name or the module name of the DDT exit routines for the
devices supported by that DDT. These exit routines perform the processing for
various system functions that occur when the system performs I/O operations. The
parameters of the IOSDDT macro allow you to specify the following kinds of
routines, which receive control from IOS when the appropriate condition arises:

The start I/O exit routine

The trap exit routine

The translate CCW table

The ERP message routine

The DDR exit routine

The unsolicited interrupt exit routine
The sense exit routine

The end of sense exit routine

The MIH exit routine

The device service exit routine

The channel program scan exit routine
The subsystem ID

The information in the DDT is created from the parameters of the IOSDDT
macro. The label that you specify on the IOSDDT macro is required because it is
used as the CSECT name for the DDT being generated. When the system is
IPLed, the DDT for each device in the I/O configuration becomes part of the
nucleus. Each use of the IOSDDT macro generates one DDT.

1-34 SPL: System Modifications

9

The IOSDDT macro instruction is written as follows:

name

b

I10SDDT

b

name.

One or more blanks must precede IOSDDT.

One or more blanks must follow IOSDDT.

SIOEXIT = epname
,TRPEXIT = epname

, TCCWTAB = epname
,ERPEXIT = (epname,type)
[, DDREXIT = (epname,type)
[LUNSEXIT = epname
[,SNSEXIT = epname
[LEOSEXIT = epname
[LMIHEXIT = epname
[,DSEXIT = epname
[,CPSEXIT = epname

[,SSYSID = ssname

entry point name
entry point name
entry point name
entry point name
entry point name)
entry point name]
entry point name]
entry point name]
entry point name)
entry point name)
entry point name)

subsystem name]

The parameters are explained as follows:

name

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program

specifies name of the DDT. IOSDDT uses this name on the CSECT
statement that it generates for the DDT. The name parameter is required.

SIOEXIT = epname
specifies the name of the start I/O exit entry point. This parameter is
required.

TRPEXIT = epname
specifies the name of the trap exit entry point. This parameter is required.

TCCWTAB = epname

specifies the name of the translate CCW table entry point. This parameter
is required.

1-35

ERPEXIT = (epname,type)
specifies the name of the ERP message entry point. Type describes whether
the entry point name is to be treated as an entry point name address or a
module name. Type can be specified as A for address or N for EBCDIC
name. If A is specified, the entry point name will be resolved into an
address. The module is loaded into the nucleus region from
SYS1I.NUCLEUS. If N is specified, The last 4 characters of the module
name will be placed in the DDT. The module is loaded into the LPA from
the LINK LIST concatenation. If neither is specified, N is the default.
This parameter is required.

DDREXIT = (epname, type)
specifies the name of the DDR exit entry point. Type describes whether the
entry point name is to be treated as an entry point name address or a
module name. Type can be specified as A for address or N for EBCDIC
name. If A is specified, the entry point name will be resolved into an
address. The module is loaded into the nucleus region from
SYSI.NUCLEUS. If N is specified, The last 4 characters of the module
name will be placed in the DDT. The module is loaded into the LPA from
the LINK LIST concatenation. If neither is specified, N is the default.

UNSEXIT = epname
specifies the name of the unsolicited interrupt exit entry point.

SNSEXIT = epname
specifies the name of the sense exit entry point.

EOSEXIT = epname
specifies the name of the end of sense exit entry point.

MIHEXIT = epname
specifies the name of the MIH exit entry point.

DSEXIT = epname
specifies the name of the device service exit entry point.

CPSEXIT = epname
specifies the name of the channel program scan exit entry point.

SSYSID = ssname
specifies the name of the subsystem ID, which can be one to four characters.

Note: When both ERPEXIT and DDREXIT are specified as EBCDIC module
names, IOSDDT verifies that both specified module names have the same
4-character prefix. If the prefixes are not the same, IOSDDT issues an MNOTE
and not does generate a DDT.

1-36 SPL: System Modifications

IOSDMLT - Module Lists Table Macro
L The IOSDMLT macro builds a module lists table (MLT).

The module lists table (MLT) must reside in SYSI.NUCLEUS. It identifies the
nucleus and LPA modules required to support the device you are defining, and
that need to be loaded during the IPL process. For example, the MLT for an
unsupported printer would designate all the modules that must be loaded into the
nucleus and the LPA to support that printer. Note that the MLT must list all the
nucleus and LPA device support modules for the device regardless of whether the
modules are provided by you or by IBM.

To build a module lists table, use the IOSDMLT macro. Each IOSDMLT macro
that you code creates an MLT CSECT. The label specified on the IOSDMLT
macro, which is required, is used as the CSECT name. As parameters of the
IOSDMLT macro, you specify a set of nucleus-resident module names and a set
of LPA-resident module names. Each use of the IOSDMLT macro generates one
MLT, which resides in a separate module. The IOSDMLT macro resides in
SYS1.AMODGEN.

The IOSDMLT macro instruction is written as follows:

name name:
b One or more blanks must precede IOSDMLT.
IOSDMLT
b b One or more blanks must follow IOSDMLT.
NUCL = (nucid < ,nucid> ...) nucid: name of nucleus module
,LPAL = (lpaid < Ipaid> ...) Ipaid: name of LPA module

The parameters are explained as follows:

name
specifies the name of the MLT. IOSDMLT uses this name on the CSECT
statement that it generates for the MLT. The name parameter is required.

NUCL = (nucid < ,nucid> ...)
specifies the names of the nucleus modules that are to be loaded from
SYS1.NUCLEUS into the nucleus region if the device associated with this
MLT is defined in the I/O configuration.

,LPAL = (Ipaid < ,lpaid> ...)
specifies the names of the LPA modules that are to be loaded from the
LINK LIST concatenation into LPA if the device associated with this MLT
is defined in the I/O configuration.

‘ Note: TOSDMLT generates an END statement at the end of its expansion.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-37

Writing a UIM

This section contains information on the naming conventions for UIMs, a partial
list of IBM-supplied UIMs, and description of using the sample UIM that IBM
supplies in SYS1.SAMPLIB.

Naming a UIM

IBM-supplied UIMs have member names of CBPUSxxx, where xxx is a decimal
number from 001 to 256. User-supplied UIMs must have member names of
CBPUCxxx, where xxx is a decimal number from 001 to 256.

UIMs must reside in SYS1.LINKLIB or the data set containing the UIM can be
specified on the STEPLIB DD statement when invoking the MVSCP.

CAUTION: The system uses the members in the STEPLIB first. Therefore, if an

installation-written UIM uses the name of an IBM-supplied UIM, the system will
use the information in the installation-written UIM; not IBM's.

1-38 SPL: System Modifications

C

IBM-supplied UIMs

UIMs supplied by IBM are part of the product that supports the associated

device. For example, the UIM supporting 3375s and 3380s is part of the Data
Facility Product. Therefore, your installation has access to UIMs only for the

products it uses. Some device types are defined as another device type. See
MVS/XA MVS Configuration Program Guide and Reference to determine if a
particular device is supported by MVS/XA.

Following is a partial list of the IBM-supplied UIMs, the product that contains
the UIM and the devices the UIM defines. If you are creating a UIM to support
a device that is similar to one that IBM-supplies, you can use the IBM-supplied
UIM as an example. Be sure to name your UIM according to the requirements.

Devices UIM Name Product
1050 CBPUS024 MVS
1050X

115A

1287 CBPUS032 MICR/OCR
1288

1403 CBPUS012 DFP
2250 CBPUS021 GAM/SP2
2305 CBPUS013 DFP
2501 CBPUS012 DFP
2540

2740 CBPUS024 MVS
2740C

2740X

2741

2741C CBPUS025 MVS
2741P

3203 CBPUS012 DFP
3211

3270 CBPUS004 MVS
3277

3278

3279

3284 CBPUS031 MVS
3286

3330 CBPUS001 DFP
3330V CBPUSO015 MSS/XA
3340 CBPUS001 DFP
3350

3350P CBPUSO003 DFP
3351P

3375 CBPUS002 DFP
3380

3420 CBPUS005 DFP
3420C

3430

3480

3505 CBPUSO012 DFP
3525

3540 CBPUS032 MICR/OCR
3704 CBPUS023 MVS
3705

3791L

3800 CBPUSO011 DFP
3838 CBPUS034 VPSS/XA

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program

1-39

UIM Restrictions

Devices UIM Name Product

3848 CBPUS041 CUSP

3851 CBPUSO015 MSS/XA
3886 CBPUS032 MICR/OCR
3890

3895

4245 CBPUS012 DFP

4248

7770 CBPUS023 MVS

83B3 CBPUS025 MVS

BSCl CBPUS026 MVS
BSC2
BSC3

CTC CBPUS014 MVS
DUMMY| CBPUSO050 MVS
HFGD | CBPUS035 GAM/SP2

TWX CBPUSO025 MVS
WTTA

The following are restrictions on UIM processing.

For each IODEVICE statement, MVSCP polls your UIMs before polling the
IBM-supplied UIMs. If you want to provide your own device support for a
device that is supported by IBM, you can write a UIM. However, your UIM
must do one of the following:

® Assign to the device a generic name different from the generic name specified
by the corresponding IBM-written UIM.

® Do not invoke CBPADIT to build a DIT for the device. The DIT built by
-the IBM-written UIM will be used for the device.

Whenever a UIM sets the IODVUINYV flag in the IODV (to indicate that the
IODEVICE internal text record is invalid), it must use the CBPZLOG macro to
issue an error message. If a UIM service routine sets IODVUINYV, the service
routine will use CBPZLOG to issue an error message.

A UIM must not call CBPIDFT if IODVUINYV is set.

A UIM must conform to the restrictions on the various data areas that it uses.

1-40 SPL: System Modifications

System Code and MVSCP Data Separation

Associated with each unit control block (UCB) that is built by the MVSCP are
the names of the DDT and MLT associated with that device. This association is
made by a UIM in the device features parameters (DFP). These names are the
two links between the data built by the MVSCP and the device support code that
is in a product or a USERMOD.

Since the DDT name and the MLT name form the only links between the device
support code and the data built by MVSCP, you can change your device support
code and not re-run MVSCP to re-define your I/O configuration(s). You can do
this provided:

e The DDT name must not change.
The contents of the DDT may change.
® The MLT name must not change.
The contents of the MLT may change.
o The format and contents of the UCB for the device must not change.

Note: Any of the change in the above bulleted items will result in a change to
the UIM for the device.

Using the Sample UIM

A sample UIM is provided in SYSI.SAMPLIB(SAMPUIM). Copy this sample
and use it as the basic structure for your UIM. The sample defines a unit record
device. Depending on the device you are specifying, the modifications to this
sample may be few or significant. SYSI.SAMPLIB(SAMPUIM) is divided into

S sections:
1. Directions
: 2. SAMPUIM The Sample UIM itself.
3. UIMICL The JCL to assemble and link-edit the UIM.
4. SAMPMLT A Sample MLT.
5. MLTICL The JCL to assemble and link-edit the MLT.

Read and follow the sample carefully when writing your UIM. The sample con-
tains data set names that you must provide. Check for this throughout the
sample. This sample supports a unit record device. Devices defined on the
IODEVICE statement as UNIT=DUMMY are supported as unit records.
Therefore, if you are using the sample to support a DUMMY device, it will
require very few changes. Other device support may require a lot of changes, for
example, to identify the features. If you are writing a UIM for another type of
device or for a more complex unit record device, you may refer to the IBM-sup-
plied UIM for the device that most closely resembles it.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-41

Changing the Sample UIM

The sample UIM is set up for a DUMMY device. When using the SAMPUIM,
you may need to change the following fields as indicated:

UNITNM Put an eight character unit name of the device in the field.
This is the value that must be specified on the UNIT parameter of
the IODEVICE statement. The unit name may contain trailing blanks.

GNRCNM Put an eight character generic name of the device in the field.
This is the value that can be specified on the UNIT parameter of
the JCL DD statements to allocate the device.

The unit name may contain trailing blanks.

GNRCPRT!1 Put a generic preference value in the field.
See Appendix A for the list of IBM provided generic preference
values. You may specify any unused preference value
to control the order that MVS attempts to satisfy a
request for a device from an esoteric device group.
This changes the default device preference order that is used
with the DEVPREF parameter on the EDT macro. The DEVPREF
parameter may be used to override the order that is
specified through the default.

ERPINDEX Set the equate to a decimal ERP index value.
The ERP index value was formerly specified
on the ERRTAB parameter of the IODEVICE statement.
IBM error routines have the values 000 through 219
and 230 through 254. User routines can have
values 220 through 229.

GNRCTYPI Specify the UCB type information.
The UCB type information was formerly specified on the
DEVTYPE parameter of the IODEVICE statement.

NAMEMLT Specify the MLT name.
In addition to the above changes, you must change all occurrences of

‘SAMPUIM’ to the name of your UIM and specify the necessary diagnostic infor-
mation on the CBPZDIAG macro.

Sample JCL
The JCL for the UIM included in the sample, is to help you assemble and link-
edit the UIM. Be sure to include the correct SYSIN and SYSLMOD data set

names. The SYSLMOD data set may be SYS1.LINKLIB or you can link-edit it
into a data set that you specify as a STEPLIB when you invoke MVSCP.

1-42 SPL: System Modifications

C

Sample MLT

The sample for the MLT contains support for a unit record device in which you
specify the error recovery procedure. This contains the list of nucleus device
dependent module names and the list of link pack area device dependent module
names that are required for the unit record device.

To use the sample MLT provided, you must

e Change all occurrences of ‘SAMPMLT’ to the name you selected for the new
MLT.

e Change ‘IGEOxxxx’ to the name of the ERP for the device.
IBM provides the other modules listed on the NUCL and LPAL parameters. If
you specify your own ERP, it must reside in SYS1.LINKLIB or in a data set

within the link list concatenation.

The JCL to assemble and link-edit the MLT is also included in SAMPUIM.
Again be sure to change the necessary data set names appropriately.

Chapter 1. Writing Unit Information Modules for the MVS Configuration Program 1-43

1-44 SPL: System Modifications

e

Chapter 2. Allocation Considerations

Before a job can execute, the operating system must set aside the devices, and
space on the devices, for the data that is to be read, merged, sorted, stored,
punched, or printed. In MVS, the “setting-aside” process is called allocation.

The MVS allocation routines assign units (devices), volumes (space for data sets),
and data sets (space for collections of data) according to the data definition (DD)
and data control block (DCB) information included in the JCL for the job step.

When the data definition or DCB information is in the form of SVC 99 text units,
the allocation of resources is said to be dynamic. Dynamic allocation means you
are requesting the system to allocate and/or deallocate resources for a job step
while it’s executing. See MVS/XA SPL: System Macros and Facilities for details
on the use of dynamic allocation.

Serialization of Resources During Allocation

The scheduler component of MVS controls allocation. When the scheduler is
setting aside non-sharable devices, devices, volumes and data sets for a job or a
step, it must prevent any other job from using those resources during the allo-
cation process. To prevent a resource from changing status while it is being allo-
cated to a job, the scheduler uses serialization. Serialization during allocation
causes jobs to wait for the resources and can have a major impact on system per-
formance. Therefore, the allocation routines attempt to minimize the amount of
time lost to serialization by providing a specific order of allocation processing.
See Figure 2-1.

Knowing the order in which the scheduler chooses devices, you can improve
system performance by making sure your jobs request resources that require the
least possible serialization.

Note: A description of how the collective operation of the allocation routines
relates to performance is in MVS/XA SPL: Iitialization and Tuning, in the dis-
cussion of the system resources manager (SRM).

The scheduler processes resource allocation requests in the order shown in

Figure 2-1. As you move down the list, the degree of serialization — and proc-
essing time — increases.

Chapter 2. Allocation Considerations 2-1

KINDS OF ALLOCATION REQUESTS SERIALIZATION REQUIRED

Requests requiring no specific units or volumes; for example, No serialization.
DUMMY, VIO, and subsystem data sets.
Requests for sharable units: DASD that have permanently resi- No serialization.

dent or reserved volumes mounted on them.

Teleprocessing devices.

Serialized on the requested devices.

Pre-mounted volumes, and devices that do not need volumes. Serialized on the group(s) of devices eligible to satisfy the

Note: Automatic volume recognition (AVR) function reads the request. A single generic device type is serialized at a time.
volume serial numbers of any volumes that have been pre-
mounted on serialized devices.

Online, nonallocated devices that need the operator or MSS to Serialized on the group(s) of devices eligible to satisfy the
mount volumes.

request. A single generic device type is serialized at a time.

All other requests: offline devices, nonsharable devices already Serialized on the group(s) of devices eligible to satisfy the
allocated to other jobs.

request. A single generic device type is serialized at a time.

Note: Allocation treats MSS devices (3330V) as direct access
storage devices.

Figure 2-1.

Processing Order Allocation Requests Requiring Serialization

Improving Allocation Performance

You can contribute to the efficiency of allocation processing throughout your
installation, in several ways:

For devices, use the device preference table, specified through the MVSCP
process, to set up the order for device allocation. See Appendix A for a list
of the IBM defined values used in the device preference table.

For devices, use the eligible device table to identify your installation’s devices
as esoteric groups, and to group them for selection by allocation processing.
See the SCHEDxx member of SYS1.PARMLIB.

For volumes, use the VATLSTxx members of SYSI.PARMLIB to specify
volume attributes at IPL.

For data sets, you can prescribe the JCL used for your applications according
to the device selection criteria you have set up through the MVSCP process
and IPL.

Controlling the Number of DD Statements Allowed

2-2

The size of the task input output table (TIOT) determines the maximum number
of DD statements allowed per jobstep. The size of the TIOT can range from 16K
to 64K. A TIOT that is 16K allows a maximum of 816 DD statements per
jobstep. A TIOT that is 64K allows a maximum of 3273 DD statements per
jobstep. By changing the size of the TIOT, you can control the maximum
number of DD statements allowed in a jobstep. To change the size of the TIOT,
specify the hexadecimal value for an integer from 16 to 64 (decimal) in the 8 byte
field, DEFTIOTS (offset 23 decimal) in the allocation default CSECT
(IEFAB445). See MVS/XA System Macros and Facilities Volume 1 for more
information.

SPL: System Modifications

C

The Device Preference Table

Looking at Figure 2-1, which shows the order in which the scheduler processes
allocation requests, you can see that the last three items on the list involve choices
among device types. The system uses the device preference table to determine the
order in which it selects devices to satisfy requests that could apply to more than
one generic device type. (“Generic device type” means the general identifier IBM
gives a device; for example, the 3330, or the 3800.)

IBM supplies a device preference table that lists the fastest generic device types
first. See Appendix A for a list of the IBM defined values used in the device
preference table. Through the MVSCP process, you can supply your own list of
generic device types on the DEVPREF parameter of the EDT macro. The IBM
default device types follow your specifications to form the device preference table.

The order in which the devices are listed in the device preference table is the order
in which allocation routines will select them to satisfy your allocation requests.
Listing the fastest generic device types at the beginning of the device preference
table can result in heavy contention for the fastest eligible devices, because the
system tries to allocate the fastest devices first. If you set up your DEVPREF
statement to start with generic groups that include many devices (and many
channel paths), these devices will be given preference. This will alleviate the con-
tention, and will also give the allocation routines a wide choice within the device
groups for the device selection process.

See MVS/XA MVS Configuration Program Guide and Reference for details on

using the DEVPREF statement, and for the device preference table shipped with
the operating system.

The Device Preference Table 2-3

To make the best use of device allocation, the installation should decide whether
the operator should respond HOLD or NOHOLD to the following message:

1IEF433D jjj-WAIT REQUESTED--REPLY ‘HOLD’ or ‘'NOHOLD’

The system issues this message when the operator requests that the allocation for
a specific job wait until the units and/or volumes necessary to complete the allo-
cation are free. The allocation can release the devices that have already been allo-
cated to the job and cannot be shared with other jobs, or can hold the devices
(stay allocated) until the job can be completely allocated.

HOLD

NOHOLD

This means that the system should hold non-sharable devices and
volumes already allocated to the job. Select this option if the
needed resources are constantly being freed, and allocation requests
for other jobs will probably not be held up by the requests made for
this job. This job can hold up other requests in two ways: (1) the
job has already allocated units needed for another job, or (2) the
job’s allocation requests are serialized on devices the job is waiting
for.

This means that the system should release non-sharable devices and
volumes already allocated to the job. Select this option if the
needed resources may not be freed for some time, and allocation
requests for this job are likely to hold up allocation requests issued
for other jobs.

Note: Requests for dynamic allocation are not held up by requests waiting for
batch allocation, even though the jobs awaiting batch allocation are holding

resources.

2-4 SPL: System Modifications

J

C

The Eligible Device Table

To avoid serializing on specific devices for every allocation request, or serializing
on an entire generic group, MVS uses the concept of esoteric device groups.
Through esoteric device groups, you group together several specific devices under
a unique name.

Your allocation requests that use esoteric names (UNIT =TAPE;
UNIT=SYSDA) tell the scheduler to choose among all the devices in that eso-
teric group. If many devices are eligible for an allocation request, the scheduler
finds all the eligible devices within the esoteric group, using mount and use attri-
butes and the type of request. If there are still several eligible devices, the sched-
uler presents those devices to the system resource manager (SRM). The SRM
applies its own criteria to the devices indicated by the scheduler, and recommends
a device for the data set.

The Use of Esoteric Names

When you establish esoteric group names, users can request different subsets of
the generic device types in your installation, thus cutting down on the number of
devices serialized by allocation processing. For example, if both batch and time
sharing users need 3330s, you could set up two separate esoteric groups with
MVSCP, as follows:

UNITNAME UNIT=(330,4),NAME=SYSBATCH
UNITNAME UNIT=(334,4) ,NAME=SYSTSO

The effect of these two UNITNAME specifications is that allocations to SYS-
BATCH serialize only on units 330-333, instead of the entire 3330 generic device
group, and, similarly, allocations to SYSTSO serialize only on units 334-337.
Figure 2-2 shows the relationships among generic device types, esoteric group
names, specific device numbers, and the eligible device groups created by the
scheduler’s allocation routines.

Note: The esoteric name SYSALLDA is a default IBM supplies for the use of
the allocation routines. As such, it is a restricted name; do not use it.

Your installation’s esoteric device groups are defined in the eligible device table
(EDT), which is built using the MVS configuration program (MVSCP). You
specify the names of the esoteric groups, and the device numbers they include, on
the UNITNAME statement for the MVS configuration program.

MVSCP puts the group names and device numbers into the eligible device table,
forming allocation groups. In the SCHEDxx member of SYS1.PARMLIB, you
identify the eligible device table the system is to use with a particular configura-
tion. Then during IPL, you can specify a particular EDT either by selecting the
SCHEDxx member or by allowing the system to use the default.

If you do not specify an EDT ID(xx) in SCHEDxx, the default for the EDT is the
IOCONFIG id specified on the SYSCTL frame. If you specify a SCHEDxx
member but do not specify an EDT ID(xx) in it, the system defaults to EDT
ID(00). See MVS/XA SPL Initialization and Tuning for information on the
SCHEDxx member and the default.

The Eligible Device Table 2-5

Users specify the esoteric names on DD statements for input and output data sets.
The scheduler uses the allocation groups from the table when selecting devices in
response to allocation requests.

The order you use to place your devices in esoteric device groups controls the way
the scheduler assigns devices to allocation groups.

Generic 3800 3420 3350 3330
Device

Types

SYSDA3

Esoteric 1 TAPE? DA14
Group
Name

DA2’

Device
Number 131 151 152 181 182 183 184 190 191 192 193 194

Group’
Number 1 2 3 4 56 6 7 56

Notes:

1 The absence of an esoteric group name means that the 3800 can only be requested as UNIT = 3800.
2 TAPE is the esoteric group name for the two 3420 tape drives, with device numbers 151 and 152. Together these form allocation
group number 2.

3 SYSDA is the esoteric group name for two 3350s (device numbers 183 and 184) and five 3330s (device numbers 190-194). These are in
allocation group numbers 4, 5, 6, and 7. When UNIT=SYSDA appears on a DD statement, the allocation routines will consider
units 183, 184, 190, 191, 192, 193, and 194 as eligible devices.

4 DAL is the esoteric group name for two 3330 DASDs (device numbers 191 and 192) included in allocation group number 6.

5 DA2 is the esoteric group name for a single 3330 DASD (device number 193). When DA2 is coded on a DD UNIT parameter, this is
the only device eligible for that allocation request. It is in group number 7.

6 Device number sequence is not important: allocation group number 5 consists of device numbers 190 and 194, which are included in
SYSDA but not in DA1 or DA2.)

7 Allocation routines assign allocation group numbers within the esoteric group names you specify in the EDT through the
UNITNAME statement for MVSCP. If you do not specify an esoteric group name, then all the devices of the same generic type form
a single allocation group.

Figure 2-2. Relationships among Generic and Esoteric Device Groups

Creating Multiple EDTs

Using the EDT and UNITNAME statements on MVSCP input stream, you can
create as many EDTs as your varying device configurations and applications
require,

See MVS/XA: MVS Configuration Program Guide and Reference for details. On
the EDT parameter in SCHEDxx member of SYSI.PARMLIB, you identify the
EDT the system is to use. During IPL, you select the SCHEDxx member that
contains the EDT needed for a particular configuration.

2-6 SPL: System Modifications

J

The Volume Attribute List

In MVS, all direct access and tape volumes have volume attributes of use, mount.
and some volumes have a non-sharable attribute. Use attributes control how they
are allocated. Mount attributes control how or whether they are demounted after
being deallocated. Nonsharable attribute controls exclusive use while the volume
is demounted and/or mounted. The allocation routines use the volumes’ use and
mount attributes in selecting devices to satisfy allocation requests.

Although the system will assign volume attributes in some circumstances, it is pri-
marily your responsibility to decide which attributes the volumes in your installa-
tion are to have. The scheduler uses volume attributes in selecting devices and
volumes for allocation. Setting use and mount attributes is important to the effi-
ciency of your installation.

During system initialization, you can assign volume attributes to direct access
volumes by means of the volume attribute list (VATLSTxx), a member of
SYS1.PARMLIB. See MVS/XA SPL: Initialization and Tuning for details on
including a volume attribute list in IEASYSxx, and on coding the VATLSTxx
parmlib member itself.

After an IPL, you can assign volume attributes to both direct access and tape
volumes by means of the MOUNT command. The USE = parameter on the
MOUNT command defines the use attribute the volume is to have; a mount attri-
bute of reserved is automatic.

See MVS/XA Operations: System Commands for the details of using the MOUNT
command.

Use and Mount Attributes

Every volume is assigned use and mount attributes via a volume attribute list
entry at IPL, a MOUNT command, or by the allocation routines in response to a
DD statement.

The relationships between use and mount attributes are complex but logical. The
kinds of devices available in an installation, the kinds of data sets that will reside
on a volume, and the kinds of uses the data sets will be put to, all have a bearing
on the attributes assigned to a volume. Generally, the operating system estab-
lishes and treats volume attributes as outlined below.

Use attributes

e Private — meaning the volume can only be allocated when its volume serial
number is explicitly or implicitly specified.

e Public — meaning the volume is eligible for allocation to a temporary data
set, provided the request is not for a specific volume and PRIVATE has not
been specified on the VOLUME parameter of the DD statement.: Both tape
and direct access volumes are given the public use attribute.

A public volume may also be allocated when its volume serial number is spec-
ified on the request.

The Volume Attribute List 2-7

o Storage — meaning the volume is eligible for allocation to both temporary
and non-temporary data sets, when no specific volume is requested and
PRIVATE is not specified. Storage volumes usually contain non-temporary)
data sets, but temporary data sets that cannot be assigned to public volumes
are also assigned to storage volumes.

Mount attributes

e Permanently resident — meaning the volume cannot be demounted. Only
direct access volumes can be permanently resident. The following volumes
are always permanently resident:

— All volumes that cannot be physically demounted, such as drum storage
and fixed disk volumes

— The IPL volume
— The volume containing the system data sets

In the volume attribute list in SYS1.PARMLIB, you can assign a permanent-
ly-resident volume any of the three use attributes. If you do not assign a use
attribute to a permanently-resident volume, the default is public.

Note: If 3344s emulating 3340s, and 3350s emulating 3330-1s and 3330-11s,
are to be permanently resident, you must include them in the volume attribute
list. See MVS/XA SPL: Initialization and Tuning.

o Reserved — meaning the volume is to remain mounted until the operator ’
issues an UNLOAD command.

Both direct access and tape volumes can be reserved as a result of the
MOUNT command; only DASD volumes can be reserved via the volume
attribute list.

The reserved attribute is usually assigned to a volume that will be used by
many jobs to avoid repeated mounting and demounting.

You can assign a reserved direct access volume any of the three use attributes,
via the USE parameter of the MOUNT command or the VATLSTxx member
of SYS1.PARMLIB, whichever is used to reserve the volume.

A reserved tape volume can only be assigned the use attributes of private or
public.

e Removable — meaning that the volume is neither permanently resident nor
reserved. A removable volume can be demounted either after the end of the
job in which it is last used, or when the unit it is mounted on is needed for
another volume.

You can assign the use attributes of private or public to a removable direct
access volume, depending on whether or not VOLUME =PRIVATE is coded
on the DD statement: if this subparameter is coded, the use attribute is

private; if not, it is public. ’

2-8 SPL: System Modifications

You can assign the use attributes of private or public to a removable tape
volume under the following conditions:

— Private

— The PRIVATE subparameter is coded on the DD statement;

— The request is for a specific volume; or

— The data set is nontemporary (not a system-generated data sét name,
and a disposition other than DELETE).

Note: The request must be for a tape only data set. If, for example, an
esoteric group name includes both tape and direct access devices, a
volume allocated to it will be assigned a use attribute of public.

— Public
— The PRIVATE subparameter is not coded on the DD statement;
— A nonspecific volume request is being made; or
— The data set is temporary (a system-generated data set name, or a

disposition of DELETE).

Figure 2-3 summarizes the mount and use attributes and how they are related to
allocation requests.

The Volume Attribute List 2-9

direct access)

request or a nontemporary
data set also cause this
assignment.)

Temporary Nontemporary
Volume Data Set Data Set
State Type of Volume Request How Assigned How Demounted
Public/ Nonspecific Specific VATLST entry or by default Always? mounted
Permanently or Specific
Resident!
Private/ Specific Specific VATLST entry Always? mounted
Permanently
Resident!
Storage/ Nonspecific Nonspecific VATLST entry Always? mounted
Permanently or Specific or Specific
Resident!
Public/ Nonspecific Specific Direct access: VATLST UNLOAD or VARY
Reserved (tape or Specific entry or MOUNT command OFFLINE commands
and direct Tape: MOUNT command
access)
Private/ Specific Specific Direct access: VATLST UNLOAD or VARY
Reserved (Tape entry or MOUNT command OFFLINE commands
and direct Tape: MOUNT command
access)
Storage/ Nonspecific Nonspecific VATLST entry or MOUNT UNLOAD or VARY
Reserved or Specific or Specific command OFFLINE commands
Public/ Nonspecific Specific VOLUME=PRIVATE is not When unit is required
Removable or Specific coded on the DD statement. by another volume;
(Tape and (For tape, nonspecific volume or by UNLOAD or VARY
direct access) request and a temporary OFFLINE commands.

data set also cause this assignment.)

Private/ Specific Specific VOLUME=PRIVATE is coded At job termination for
Removable on the DD statement direct access; at step
(Tape and (For tape, a specific volume termination or dynamic

unallocation for tape

(unless VOL= RETAIN or a
disposition of PASS was
specified); or when the unit is
required by another volume.

IDjrect access volumes only.
2Note: VARY OFFLINE accomplishes demounting without resetting the permanently-resident flag in the UCB: after a subsequent
VARY ONLINE command, the.volume will still be permanently resident.

Figure 2-3. Summary of Mount and Use Attribute Combinations

The Nonsharable Attribute

Some allocation requests imply the exclusive use of a direct access device while

the volume is demounted and/or mounted. The MVS allocation routines assign
the non-sharable attribute to volumes that might require demounting during step
execution.

When a volume is thus made non-sharable, it cannot be assigned to any other
data set until the non-sharable attribute is removed at the end of step execution.

The following types of requests cause the system to automatically assign the non-
sharable attribute to a volume:

A specific volume request that specifies more volumes than devices.

A nonspecific request for a private volume that specifies more volumes than
devices. (For MSS, the MSVGP parameter has the same effect as the
PRIVATE subparameter.)

2-10 SPL: System Modifications

e A volume request that includes a request for unit affinity to a preceding DD
statement, but does not specify the same volume for the data set. See the
discussion of unit affinity in MVS/XA JCL.

e A request for deferred mounting of the volume on which a requested data set
resides.

Normally, the system will NOT assign the non-sharable attribute to a permanent-
ly-resident or reserved volume. The following case is the exception to this rule:

e The allocation request is for more volumes than units, and one of the volumes
is reserved. The reserved volume is to share a unit with one or more remov-
able volumes, which precede it in the list of volume serial numbers.

For example:

DSN=BCA.ABC,VOL=SER=(A,B) ,UNIT=DISK

where volume A is removable and
volume B is reserved

In this case, both volumes are assigned the non-sharable attribute; neither of them
can be used in another job at the same time.

To avoid this situation, do one of the following:
e Specify the same number of volumes as units
e Specify parallel mounting

o Set the mount attribute of volume A as resident or reserved

System Action: Figure 2-4 shows the system action for sharable and non-sharable
requests.

The Volume is Allocated:
The Request is: Sharable Nonsharable
Sharable allocate the volume wait!
Nonsharable wait! wait!
1Tllllc og;rator has the option of failing the request. The request will always fail if waiting is not
allowed.

Figure 2-4. Sharable and Nonsharable Volume Requests

The Volume Attribute List 2-11

For more detailed information on how an application’s job control language
influences the processing of allocation requests, see MVS/XA JCL Reference. ’

For details on how dynamic allocation affects the use attributes of the volumes in
your installation, see SPL: System Macros and Facilities.

Recovery of Allocated Resources

When an address space abnormally terminates, the allocation routines use the
data from the ALLOCAS address space to deallocate all unit control blocks
(UCBs) allocated to the failing address space.

If the ALLOCAS address space is not active because of a failure in that address
space, the allocation routines can deallocate all but sharable direct access UCBs.
The units corresponding to these UCBs cannot be varied offline or unloaded until
the next IPL, when they are deallocated.

Controlling GRS Requests in MVS/XA

Global resource serialization is an MVS component designed to protect the integ-

rity of local and global resources, particularly data sets on DASD volumes that

are shared by two or more systems. GRS allows you to protect the integrity of

your installation’s resources by serializing the use of them at the data set level. J

In order to use GRS to protect global resources, your installation must build a
global resource serialization complex that includes the various systems sharing
your direct access devices. See OS/VS2 MVS Planning:

Global Resource Serialization for more details about GRS and how your installa-
tion can use it.

A program can use GRS by issuing a GRS request. These macros (ENQ, DEQ,
RESERVE, and GQSCAN) form the interface between a problem program and
the GRS facility. In handling these request, GRS may need to insert or remove
an element from the GRS resource queue area.

A system control provides a threshold for the number of requests that GRS will
accept from a single address space. This is to prevent one address space (job,
started task, or TSO user) from generating enough concurrent requests to exhaust
the GRS resource queue area. The threshold value is stored in the GRS vector
table (GVT) which resides in the nucleus. For unauthorized callers, the threshold
value supplied by IBM is 4096 and is stored in the GVTCREQ field of the GVT.
For authorized callers, the threshold value supplied by IBM is 4111 and is stored
in the GVTCREQA field of the GVT. If these values do not suit your installa-
tion’s needs, you can change them by using the AMASPZAP service aid or SMP.
The threshold values apply to each system in your GRS complex so different
systems can have different limits.

changed. It is recommended that the GVTCREQA value be kept at 15 greater

Note: If you change the GVTCREQ value, then the GVTCREQA should also be J
than the GVTCREQ value.

2-12 SPL: System Modifications

GRS keeps track of the number of elements added to or removed from the GRS
resource queue area for each address space. This count is recorded in the
ASCBCREQ field of the address space control block (ASCB). This count is nor-
mally increased according to the ENQ, RESERVE AND GQSCAN macros issued
from each address space and normally decreased according to the number of DEQ
macros issued. As each ENQ, RESERVE and GQSCAN request is received,
GRS determines if increasing the count will exceed the allowed threshold value in
the corresponding GVT field. For an unauthorized caller issuing ENQ or
RESERVE macros and for all callers issuing the GQSCAN macro, the count in
the. ASCBCREQ is compared to the value in GVTCREQ. For authorized callers
issuing ENQ or RESERVE macros, the count in the ASCBCREQ is compared to
the value in GVTCREQA.

In either case, if the threshold will be exceeded, GRS will issue:

e an ABEND 538 for an unconditional ENQ or RESERVE

e a return code of X‘18’ for a conditional ENQ or RESERVE

e a return code of X‘14’ for a GQSCAN that normally resulted in a return code
of 8. (Return code 8 results when the caller specifies the token parameter in
the GQSCAN macro and GRS has additional data to pass back that does not
fit into the caller’s buffer.)

Note: The GVTCREQA should have a higher threshold value than GVTCREQ.

This allows the termination and error routines to issue additional

ENQ/RESERVE requests to obtain resources needed for their processing if an
unauthorized caller abends with an ABEND 538.

Controlling GRS Requests in MVS/XA 2-13

2-14 SPL: System Modifications

Modifying the System to Fit your Applications

The work of a computer installation is done by its application programs, assisted
by the operating system. Setting up the application programs so they will work
efficiently with the operating system is one of the major tasks of a system pro-
grammer.

This part of System Modifications presents discussions of several areas where you
can impose installation-wide standards or defaults on your application programs,
to enhance their efficiency.

The following books are mentioned in this chapter of System Modifications:

MVS|XA Debugging Handbook

MVS/|XA Diagnostic Techniques

MVS/XA JCL Reference

MVS/XA Operations: JES3 Commands

MVS/XA Operations: System Commands

MVS|XA SPL: Initialization and Tuning

MVS|/XA SPL: System Macros and Facilities

MVS/XA SPL: System Management Facilities (SMF)
MVS/XA SPL: User Exits

OS/VS Message Library: VS2 Routing and Descriptor Codes

Modifying the System to Fit your Applications

SPL: System Modifications

Chapter 3. Limiting User Region Size

You may need to enforce a region size limit for application programs. The
process of setting limits on user regions involves three elements:

1. The JCL statements for the job, started task, or TSO session;
2. An exit routine that transmits the values specified in the JCL statements;

3. The virtual storage management (VSM) routines that allocate storage in the
user region subpools according to the values transmitted.

The system programmer can control this process at two points: when the JCL is
coded, and when the exit is taken.

Setting a Default Region Size via JCL

When setting up the guidelines for the JCL to execute your application programs,
you need to consider the impact of user region size on the performance of your
system.

Based on your judgement, you can supply effective installation defaults that com-
plement those used by virtual storage management.

You can implement your installation defaults by associating selected values with
job classes or accounting information, thus controlling the user region limits for
varying circumstances.

See “IEALIMIT Processing” for a discussion of the impact of allowing no limits
on user region size.

For more information about the REGION parameter on the JOB and EXEC
statements, see MV S/ XA JCL Reference.

Setting Default GETMAIN Limits via Exit Routines

The value specified or defaulted on the JCL REGION parameter becomes the size
of the user region available to the job, started task, or TSO user.

The value is transmitted, via a user exit, to VSM, which actually allocates the
virtual storage in response to GETMAIN macros. Jobs that specify a region
value greater than 16 megabytes and that require significant amounts of storage
below 16 megabytes, may require an IEFUSI exit to establish limits below 16
megabytes. This is because VSM establishes an unlimited region below 16

Chapter 3. Limiting User Region Size 3-1

The IEALIMIT Exit

The IEFUSI Exit

megabytes when the region value specified is greater than 16 megabytes. With no
limits set below 16 megabytes, a large variable length GETMAIN could use the
entire non-extended region.

For MVS/370 and MVS/XA installations, IBM supplies an exit routine module
named IEALIMIT that sets region limits for the user private area below 16 mega-
bytes. Virtual storage management routines call IEALIMIT to establish region
size and GETMAIN limits for job steps, started tasks, and TSO logons.

You can replace IBM’s IEALIMIT with your own routine, if the values set by the
IBM version do not fit your installation’s requirements.

To replace IEALIMIT, linkedit your own version into the nucleus prior to an
initial program load.

Note: You must re-linkedit your routine into the nucleus each time you IPL a
different version of the nucleus; all versions of the nucleus contain the IBM-sup-
plied IEALIMIT routine..

To code your own version of IEALIMIT, see MVS/XA SPL: User Exits.

For MVS/XA installations, the system management facilities (SMF) supplement
the function provided by IEALIMIT with a user exit interface, opened during step
initiation. At that point, you can supply an exit routine, named IEFUSI, to tran-
smit your desired values to VSM in much the same way that IEALIMIT does.

In IEFUSI, however, you can define region size and GETMAIN limits for the
user regions both below and above 16 megabytes. This means you can use the
IEFUSI interface to set default limits for applications in both 24-bit and 31-bit
addressing modes.

IBM does not supply a routine at the IEFUSI exit; if you do not insert one (or
update an existing one), VSM reverts to IEALIMIT (your version or IBM’s), and
uses IEALIMIT’s default values. Because IEALIMIT cannot return values
greater than 16 megabytes, VSM attempts to extrapolate meaningful values for
the extended private area from those returned for the area below 16 megabytes.
See Figure 3-1.

Note: You may already have a routine at IEFUSI to gather information for
SMF. If so, you must extend that routine to interface with VSM.

Since VSM uses the information it gets from IEFUSI in the same way it uses that
from IEALIMIT, a discussion of how IEALIMIT works — and how VSM uses its
values — follows.

3-2 SPL: System Modifications

J

C

IEALIMIT Processing

On entry, IBM’s IEALIMIT routine receives the JCL REGION parameter value
in register 0 (it is repeated in register 1). IEALIMIT calculates a GETMAIN
limit value based on the REGION value, and puts this value in register 1. VSM
allocates space in the user’s region, in response to GETMAIN requests, according
to the values IEALIMIT returns in registers 0 and 1.

The values IEALIMIT returns in registers 0 and 1 are determined by the value
specified on the REGION parameter. If the REGION parameter value is 0, or
the parameter is absent (and the installation JES default is 0), IBM’s IEALIMIT
routine receives 0 in register 1. In this case, it in effect sets NO LIMIT on region
size or GETMAIN requests, by returning the 0 in register 1.

When VSM receives a value of 0 in register 1 from IEALIMIT, it allows the
GETMAIN limit to default to the size of the user private area, and assigns the
same value to the region size.

If the REGION parameter value in register 1 is not zero, IBM’s IEALIMIT adds
64K to the REGION value and puts the total in register I. The REGION param-
eter value in register 0 remains the same.

VSM can then use the value from register 1 as the limit for GETMAINs from
user subpools (0-127, 251 and 252), and the value from register 0 as the user
region size.

When IEALIMIT provides no limit on the region size, thus forcing VSM to use
its default values, so much space within a region might be obtained (via repeated
small GETMAINS or a single large GETMAIN) that no space would remain in
the private area for the system to use.

This situation is likely to occur when a program issues a variable-length
GETMAIN specifying such a large maximum value that most or all of the space
remaining in the private area is allocated to the requestor. To avoid an unex-
pected out-of-space condition, you should require the specification of some region
size on JOB or EXEC statements, or make your installation’s JES default value
nonzero.

Chapter 3. Limiting User Region Size 3-3

The IEFUSI Interface

IEFUSI is the SMF step-initiation user exit interface; it receives control before the
initiator starts each job step. In an MVS/370 environment, the IEFUSI exit
routine can check job step accounting information, write to a user data set, or
create a separate step-initiation record in case of system failure.

See MVS/XA SPL: System Management Facilities (SMF) for more information
about IEFUSI and other SMF exits.

In MVS/XA, the IEFUSI interface can also include region limit processing for the
private area, both below and above 16 megabytes.

You can use the IEFUSI exit to set region size and GETMAIN limit defaults for
all your applications. This is possible because VSM uses the IEFUSI values for
the private area below 16 megabytes the same way it uses those set by IEAL-
IMIT. The only difference is that IBM’s IEALIMIT requests default values by
setting registers 0 and 1 to 0, whereas the default indicator for IEFUSI is -1, set
by SMF before the exit is taken. The routine at IEFUSI turns on the first bit in
the flag word of the VSM parameter list to indicate that VSM is to use its values
rather than IEALIMIT's.

3-4 SPL: System Modifications

J

Virtual storage management routines use the values developed by IEFUSI or
IEALIMIT to determine how to satisfy a user’s GETMAIN requests.

Figure 3-1 shows the algorithms that VSM applies to the values set in IEALIMIT
and IEFUSI to arrive at user region size and GETMAIN limit values.

Value From
IEALIMIT Limit Value Region Size Extended? Limit Value Extended” Region Size
0! Size of private Limit value Size of extended Extended limit
area private area value
>0 Size of private Limit value or Z,2 The smaller of: Extended limit value
area or Z, whichever is 1. The greater of 32Mb
@) whichever is smaller | smaller and REGION request.
2. The size of the extended
private area.
Value From
IEFUSI Limit Value Region Size Extended Limit Value Extended Region Size
If the REGION parameter specifies 0, or defaults to 0.
-1 Size of private Size of private Size of extended private Extended limit value
area area area
If the REGION parameter specifies a value greater than 0.
-1! The smaller of: Limit value or The smaller of: Extended limit value
1. Size of private REGION request 1. The greater of 32Mb
area. whichever is smaller and REGION request.
2. REGION request 2. The size of the extended
+ 64K. private area.
Regardless of the REGION parameter specification.
20 Size of private area Limit value or X,? The smaller of: Extended limit value or X,2
or X,2 whichever is whichever is smaller 1. The greater of 32Mb whichever is smaller
(0,9) smaller and X?
2. The size of the extended
private area.
! Requesting that VSM use its defaults.
2 Rounded up to a page multiple (4K bytes)

Note: The algorithm for the extended GETMAIN limit value includes a “max. test” between 32 megabytes (the default extended limit

value) and the value specified in IEFUSI. The extended region size will never be less than 32 megabytes.

Figure 3-1.

How VSM Arrives at Region Size and Limit Values from Values Set by IEALIMIT and IEFUSI.

Chapter 3. Limiting User Region Size 3-5

Using the IEFUSI interface

To use the IEFUSI VSM interface, you must supply a routine named IEFUSI, J
and link edit it into LPALIB or an LPALISTxx member of SYS1. PARMLIB.

(If your installation already has a routine at exit IEFUSI, you need only update

the code to add the VSM interface function.) Your routine puts the values you

want VSM to use in setting region size and GETMAIN limits into the fullword

fields provided by SMF. Figure 3-2 shows how SMF presents those fields to the

IEFUSI exit routine.

/ Register 1

Common SMF exit
parameter area

Job step name (from
EXEC statement)

EXEC statement)

Step accounting
information

VSM parameter list

SRM information
fullword

*
$
¢ Program name (from
*
A
¢

T —
T V R flag 7‘ Reserved 1

Oy VSM Parameter List J

Flag word
4 (initialized to O)

Region size requested
8 (REGION parameter)

GETMAIN limit value
12 below 16 megabytes

Region size
16 below 16 megabytes

GETMAIN limit value
20 above 16 megabytes

Region size
above 16 megabytes

Notes:

1. The last four words in the VSM parameter list will be set to 'FFFFFFFF' (decimal - 1)
on entry to IEFUSIL.

2. The SMF parameters can control whether or not the IEFUSI exit is called for various
classes of work. If the exit is not called at all, VSM reverts to IEALIMIT.

3. For more details on the calling of the IEFUSI exit, see MVS/XA SPL: System
Management Facilities (SMF).

Figure 3-2. Parameters Passed to Exit at IEFUSI by SMF

3-6 SPL: System Modifications

Your exit routine sets the flag bits in the flag word of the VSM parameter list.
The bits in the flag word have the following meanings:

Bit Value Meaning
0 0 indicates that IEALIMIT is supplying region limit values.
1 indicates that IEFUSI is supplying region limit values.
1 0 indicates that VSM should check to see if the requested region fits into the
available space below 16 Mb.
1 indicates that VSM should not check to see if the requested region fits into the
available space below 16 Mb.
2 0 indicates that VSM should not check to see if the requested region fits into the
available space above 16 Mb.
1 indicates that VSM should check to see if the requested region fits into the
available space above 16 Mb.
33 Reserved.
Notes:

1. Bit 1 is meaningful to VSM only when the requested region is less than 16
megabytes.

2. Bit 2 is meaningful to VSM only when the requested region is greater than 16
megabytes.

3. Because of compatibility considerations for previous MVS/XA releases, the set-
tings for bits 1 and 2 have opposite meanings. In previous releases, VSM made
no checks for free space above 16 megabytes. So, because the flag word is ini-
tialized to zero, if the amount of contiguous free space requested is critical for
the step to be executed, you must set bit 2 to 1.

Here is an example of using the IEFUSI interface. You want to limit all jobs in a
given step-accounting category to a user region of 4 megabytes below and 4 mega-
bytes above 16 megabytes. You also wish to set a GETMAIN limit of 6 mega-
bytes below 16 megabytes and 48 megabytes above 16 megabytes.

Code the exit routine that will receive control at entry point IEFUSI during step
initiation. Your routine would, in this case:

e Examine the step accounting information passed to it to decide whether to
apply the IEFUSI limits to this step.

e Set to one the high-order bit in the flag word; this indicates to VSM that
IEFUSI, rather than IEALIMIT, is supplying region limit values.

e Examine the current requested region size, to find out if it is already at the
desired value.

o Put the GETMAIN limit value for below 16 megabytes (6Mb) in the 3rd full-
word of the VSM parameter list.

o Put the GETMAIN limit value for above 16 megabytes (48Mb) in the Sth
fullword of the VSM parameter list.

e Put the region size value for below 16 megabytes (4Mb) in the 4th fullword of
the VSM parameter list.

Chapter 3. Limiting User Region Size 3-7

e Put the region size value for above 16 megabytes (4 Mb) in the 6th fullword

of the VSM parameter list.

e Return to the calling routine at the address in register 14.

VSM applies the following limits when allocating space for the program whose

values you set in IEFUSI:

(Assume that the user private area below 16 megabytes is 8 megabytes,
and that the extended private area, above 16 megabytes, is approximately

1975 megabytes.)
Limit Value below 16Mb
Limit Value above 16Mb

Region Size below 16Mb
Region Size above 16Mb

3-8 SPL: System Modifications

6Mb
48Mb

4Mb
4Mb

(Less than 8Mb)

(The value from IEFUSI is
greater than 32Mb, but less
than the extended private area)

(Less than limit value)
(Less than extended limit value)

9

C

How VSM Uses the Region Size Value and the Limit Value

The region size value determines the amount of storage that can be allocated to a
job or step for variable-length GETMAINs, when the minimum amount requested
on the GETMAIN is not greater than the storage still unallocated.

The limit value is the maximum total storage that can be allocated to a job or step
for any combination of GETMAINSs. It is, in effect, a second limit on the size of
the user’s private area, imposed when the region size value has been exceeded.

Figure 3-3 shows how the REGION parameter and the limit value affect both
fixed-length and variable-length GETMAINs. The examples that follow illustrate
actual allocations based on the interaction of region size and limit values.

Type of
GETMAIN

GETMAIN Request in Relation
To Region Size and Limit Value

Result

FIXED-
LENGTH
GETMAIN

Limit value minus currently -

allocated space > requested amount.

The GETMAIN is satisfied

Limit value minus currently -

allocated space < requested amount.

The GETMAIN fails

VARIABLE-
LENGTH
GETMAIN

Unallocated space! > maximum
amount requested.

The maximum amount
is allocated.

Minimum amount requested

< unallocated space, AND
unallocated space < maximum
amount requested.

All unallocated space in the
region is allocated.

Unallocated space! <
minimum amount requested

The minimum is allocated
unless the limit value would
be exceeded, in which case
the GETMAIN fails.

1 Unallocated space is the region size value minus the currently - allocated space. See “Examples of
Allocations.”

Figure 3-3. Effect of Region Size and Limit Values on Various GETMAIN Requests

Chapter 3. Limiting User Region Size 3-9

Examples of Allocations Based on Values Set by IEALIMIT or IEFUSI

Assume that application program A has the following characteristics:

Limit value 150K
REGION size value 100K
Space currently allocated 80K

Program A issues the following variable-length GETMAIN requests, in the order
indicated (Note that the GETMAIN requests are cumulative):

1. Request SK—10K: 10K is allocated, making currently-allocated space 90K.

Because the amount still unallocated (20K, relative to the region size of 100K),
was greater than the maximum amount requested, the maximum amount was
allocated.

2. Request SK—100K: 10K is allocated, making currently-allocated space
100K.

Because the amount still unallocated (10K, relative to the region size) was
between the minimum and maximum requested, the unallocated space was allo-
cated.

3. Request 40K—100K: 40K is allocated, making currently-allocated space
140K.

Although the amount still unallocated (0K, relative to the region size) was less
than the minimum amount requested (40K), the minimum amount requested
would not increase the currently-allocated space beyond the limit value, so the
minimum amount was allocated.

4. Request 15K—50K: the GETMAIN fails.

The amount still unallocated (0K, relative to the region size) was less than the
minimum amount requested (15K), AND the minimum requested would increase
the currently-allocated space to 155K, which exceeded the GETMAIN limit
value of 150K.

The region size value is usually set up to be less than the limit value. This will
protect against programs that issue variable-length GETMAINSs with very large
maximums and then do not immediately free part of that space, or free such a
small amount that a subsequent GETMAIN (possibly issued by a system service)
causes the job to fail.

As an example, suppose that the region size value equals the limit value, and a
program issues a variable-length GETMAIN with a maximum of 2 gigabytes - 1.
If the GETMALIN is satisfied, all the space in the region up to the limit value will
be allocated, and any subsequent GETMAIN that cannot be satisfied from free
space in an already-existing subpool will cause the job to fail.

3-10 SPL: System Modifications

If, however, the region size value is less than the limit value, limit, only space up
to the region size value is allocated for the GETMAIN. Thus, an amount of
space equal to the limit value minus the region size value remains for subsequent

GETMAIN:S.

Note: For V=R jobs, the REGION parameter is more significant as a limiting
value than are the limits set by IEFUSI. You can use the two factors together to
control the region size for applications that must run V=R:

e Set the region size value where you want it, via IEFUSL

e If a REGION parameter specification for a V=R job exceeds the region size
value you have set, the job will not be initiated.

Chapter 3. Limiting User Region Size 3-11

3-12 SPL: System Modifications

Chapter 4. Assigning Special Program Properties to Applications

Program Properties Table

Sometimes, your application programs will need to possess special properties to
run as efficiently and securely as possible. For example, an application that
requires access to fetch-protected system data will need a system key (0-7) instead
of the usual problem program key of 8. Or, for example, an application that
cannot run V=R, but must not be swapped out because of real-time consider-
ations, will need to be identified to the system as nonswappable.

In the program properties table (PPT) you can specify the application programs
that require special treatment by the system. Each entry in the PPT represents the
application program requiring special treatment. To create an entry in the PPT,
you use the PPT parameter in the SCHEDxx member of SYSI.PARMLIB. For
more information on specifying PPT statements, see MV'S/Extended Architecture
System Initialization and Tuning.

To override an IBM-supplied entry in the PPT, you specify a PPT statement in
the SCHEDxx member of SYS1.PARMLIB and use the same program name as
the IBM-supplied entry. The system ignores other PPT statements with the same
program name and issues message IEF7321L

To add a new PPT entry, you specify a PPT statement in the SCHEDxx member
of SYS1.PARMLIB, and specify the desired program name and attributes.

During IPL, you specify the SCHEDxx member the system is to use and the cor-
responding PPT is then available to the initiators. An initiator scans the PPT to
determine which, if any, special properties apply to the program it is initiating.

The CSECT IEFSDPPT includes IEFZB610 and resides in LINKLIB. IEFZB610
maps the PPT header and entry.

Chapter 4. Assigning Special Program Properties to Applications 4-1

Format of the PPT Table Header

A table header precedes the first PPT entry. The table header includes the PPT w)
acronym, version number, length of the header section, length of a PPT entry, the
number of PPT entries being used, and the total number of PPT entries.

+0 PPTID
+4 PPTVERS |res'd PPTHDRLN
+8 PPTENTLN PPTUSED
+12 PPTENTS (Reserved)
+16 PPTMSGAD
+20 PPTIB650
+24

RESERVED
+28

Format of the PPT Entry

Each entry of the PPT is 16 bytes long and has the following format: J
+0 PPTNAME
+8 PPTBYTEI PPTKEY PPTCPUA

+12 PPTPUBYT PPTORIG RESERVED

4-2 SPL: System Modifications

C

Contents of the PPT Entry

Each PPT entry contains the following fields:

1. PPTNAME
2. PPTBYTEI
3. PPTKEY

4. PPTCPUA
5. PPTPUBYT
6. PPTORIG

The following describes these fields. Following the description of the fields are
notes on their usage.

PPTNAME (Program Name) is an 8-byte field for the name specified in the PGM
parameter on the EXEC statement for the job or step.

PPTBYTEI1 (Program Properties Flags) is a series of bits indicating the special
properties to be assigned to the program. The bit settings are:

Bit Name Meaning When Set
L. .. PPTNCNCL The program cannot be cancelled.
Al PPTSKEY A unique protection key is to be assigned to the program. The key is
defined in the next byte of the PPT entry (PPTKEY).
WL PPTNSWP The program is nonswappable.
[0 PPTPRIV The program is privileged: the address space will not be swapped
unless it is in a long wait.
1... PPTSYSTK The program is a system task, and will not be timed. (The program
must be a one-step job started by a START or MOUNT command.)
A PPTNDSI The program does NOT require data set integrity: it will not need
exclusive use of any data sets. (The program must be a one-step job.)
WL PPTNOPAS The program can bypass password protection.
..X Reserved.

PPTKEY (Protection Key) is a 1-byte field whose first four bits indicate the
unique protection key to be assigned to the program. A protection key is not
assigned unless bit 1 (PPTSKEY) of the preceding field (PPTBYTEI) is on.

PPTCPUA (Processor Affinity Mask) is a 2-byte (halfword) indicating processor
affinity. Each bit in the 16-bit mask refers to a corresponding processor identifier
(0-F) assigned during system generation. For example, bit 0 corresponds to pro-
cessor 0. If bit 0 is on, the program is eligible to run on processor 0.

The bit mask should be set to X°’FFFF’ if affinity is not required. Do NOT set
the affinity mask for programs requiring the Vector Facility. For vector facility
programs, the control program dynamically manages affinity. If a vector program
needs to be in the PPT, for example to set PPTNSWP =1 for non-swappable, set
the processor affinity mask to X‘FFFF’.

PPTPUBYT (Preferred Storage Flags) is a one-byte field whose flags indicate

whether LSQA and private area fixed pages require frames in preferred storage
(nonreconfigurable and non-V=R storage).

Chapter 4. Assigning Special Program Properties to Applications 4-3

Use these flags for programs whose fixed pages could prevent the successful exe-
cution of a VARY STOR,OFFLINE command (or could fragment the V=R
area) if they were assigned frames in reconfigurable or V=R storage.

The bit settings for PPTPUBYT are:

Bit Name Meaning When Set

l.x xxxx PPT2LPU Assign all private area short-term fixed pages to preferred
frames.

dx xxxx PPTILPU Assign all private area long-term fixed pages and LSQA pages

to preferred storage frames.

Jdx xxxx PPTN2LP The system need not assign private area short-term fixed pages
to preferred storage frames.

X XXXX Reserved.

PPTORIG (PPT Entry Origin) is a one-byte field indicating the origin of a PPT
entry. The high-order bit (PPTDEFLT) is set to 1 if the PPT entry is in the
IBM-supplied program properties table IEFSDPPT). PPTDEFLT is set to 0 if
the PPT entry originated from a PPT statement in the SCHEDxx member of
SYS1.PARMLIB.

4-4 spL: System Modifications

C

Notes on Using the Program Properties Flags (PPTBYTE1)

1.

The special properties represented by the various bit settings in PPTBYTE]
might not be honored by the system. A program is assigned special properties
only if it resides in an APF-authorized library and all JOBLIBs and STEPLIBs
associated with it are APF-authorized libraries.

Note: All PPT entries require APF libraries and APF authorization.

The requirements of the initiator have a bearing on whether or not a program
needs to maintain data set integrity (bit 5). If one or more data sets requested
by a program are not available when the job is to be initiated, the scheduler
waits until the job can acquire control of all the data sets it needs. Although the
Jjob itself may not require data set integrity, the initiation process for the job
does require it.

Jobs that request the no-data-set-integrity property (bit 5) will not be initiated
if BOTH of the following are true:

® The job requests a data set whose name is an alias for a data set that is
unavailable during the job's initiation.

® The job contains either a JOBLIB or STEPLIB.
Jobs requesting the bypass-password-protection property (bit 6) will always
receive the property. However, a protected data set cannot be deleted via JCL

(that is, by coding a disposition of DELETE) without the password.

The bypass-password-protection property is turned off when the job enters deal-
location processing.

Notes on Using the Preferred Storage Flags

The first two flags (PPT2LPU and PPT1LPU) in PPTPUBYT are meaningful for
swappable programs (PPTNSWP =0) that have a special requirement for pre-
ferred frames. The third flag (PPTN2LP) is meaningful only for users of the
SYSEVENT TRANSWAP. This includes V=R job steps, nonswappable pro-
grams, applications using the BTAM OPEN function, and any applications using
a system function that issues SYSEVENT TRANSWAP.

The initiator maps the preferred storage flags to corresponding flags in the ASCB.
The ASCB flags determine how the system allocates frames to the address space.

1.

If PPTILPU=1 and PPT2LPU =0, the initiator sets ASCBILPU in the
ASCB to 1.

If PPT2LPU =1, the initiator sets both ASCBILPU and ASCB2LPU in the
ASCB to 1, regardless of the value of PPTILPU and PPTN2LP.

The value of PPTN2LP is copied to ASCBN2LP.

Chapter 4. Assigning Special Program Properties to Applications 4-5

Notes:

1. ASCBN2LP merely prevents SYSEVENT TRANSWAP from setting '
ASCB2LPU to 1 as the address space changes to a nonswappable state. If
ASCB2LPU is | before the TRANSWAP, it is not reset to 0.

2. For a SYSEVENT TRANSWAP, if PPTN2LP =0 then SRM will set
ASCBILPU and ASCB2LPU to 1. This will assign all private area fixed pages
and LSQA pages to preferred storage frames. IF PPTN2LP=1, only
ASCBILPU will be set to 1.

The topic “Examples of Using Preferred Storage Flags” summarizes the effect of
the preferred storage flags on the allocation of frames during program execution.

A program need not be nonswappable to have the system assign its fixed pages to
preferred storage frames.

Tips on Using the Preferred Storage Flags: TIPS APPLYING TO ALL THREE FLAGS
IN PPTPUBYT

For an application program that issues SYSEVENT DONTSWAP, or issues
SYSEVENT REQSWAP followed by a SYSEVENT DONTSWAP, do one of the
following:

e List the program in the PPT with the first two preferred storage flags set on
(PPTILPU =1, PPT2LPU=1).

This allows the program to be attached as swappable, but all LSQA and "
private area fixed pages will be assigned preferred frames during the entire job J
step.

o Remove SYSEVENTs REQSWAP and DONTSWAP from the program. List
the program in the PPT as nonswappable (PPTNSWP=1) and set
“PPTN2LP=0.

This allows the program to be attached as nonswappable, and all LSQA and
private area fixed pages will be assigned preferred frames during the entire job
step.

An I/O device requiring operator intervention can interfere with taking storage
offline by fixing pages in reconfigurable storage. An example of this is a printer
requiring action to be taken or a tape unit with a mount pending. Until the
required action is completed, the storage associated with the I/O operation cannot
be taken offline. This problem cannot be bypassed through the use of preferred
storage flags.

The system ignores all three flags if any non-APF-authorized JOBLIBs or STEP-

LIBs are defined in the JCL for the job step. All PPT entries require APF
libraries and APF authorization.

4-6 SPL: System Modifications

C

TIPS APPLYING TO FLAGS PPTILPU AND PPT2LPU

PPT1LPU and PPT2LPU are intended for use with authorized swappable pro-
grams that issue SYSEVENT DONTSWAP to become nonswappable for rela-
tively short periods (rather than setting PPTNSWP =1).

Use of the preferred storage flags forces the program’s private area fixed pages
and LSQA pages into preferred storage frames, thus ensuring that they will not
prevent taking storage offline.

TIPS APPLYING TO FLAG PPTN2LP

PPTN2LP has meaning only for programs for which SYSEVENT TRANSWAP is
issued. TRANSWAP causes the transition of the address space to a nonswap-
pable state. TRANSWAP performs the same function as SYSEVENT DONT-
SWAP and also ensures that preferred storage is used whenever necessary.

1. The initiator issues TRANSWAP for V=R job steps and nonswappable pro-
grams (PPTNSWP=1).

2. The BTAM OPEN routine issues TRANSWAP.

PPTN2LP should be set to 1 when a program’s short-term fixed pages do not
need to be assigned to preferred storage frames. That is, the program’s short-term
fixes are indeed short-term fixes and can be allowed in reconfigurable storage.

The PPTILPU and PPT2LPU bits should both be set to 1 when the preferred

storage requirements for a nonswappable user are unknown. This will ensure that
all fix requests and LSQA requests will get preferred storage.

Chapter 4. Assigning Special Program Properties to Applications 4-7

Examples of Using Preferred Storage Flags

4-8 SPL: System Modifications

The following example shows the effect of setting preferred storage flags for
the nonswappable program JES2.: The JES2 entry in the PPT would include
the following bit values:

PPTNSWP
PPT1LPU
PPT2LPU
PPTN2LP

[T T
RPOORK

These values indicate that the program is nonswappable and that the short-
term fixes can be allowed in reconfigurable storage. After the initiator issues
a TRANSWAP and attaches JES2, the ASCB flags are set as shown below:

ASCB1LPU = 1
ASCB2LPU = 0
ASCBN2LP = 1

These values result in LSQA and long-term fixed pages in preferred storage
only. Short-term fixed pages are allowed in reconfigurable storage.

The following example shows the effect of setting the flags for a swappable
program that issues SYSEVENT DONTSWAP.

The program’s entry in the PPT would include the following bit values:

PPTNSWP
PPT1LPU
PPT2LPU
PPTN2LP

oo

These values indicate that the program is swappable and that all fixed pages
and LSQA pages must be in preferred storage. The initiator attaches the
program as swappable; the ASCB flags are set as follows:

ASCB1LPU
ASCBZ2LPU
ASCBN2LP

nmnwn
or P

The program can then issue DONTSWAP, being assured that its fixed and
LSQA pages are in preferred storage and will not prevent storage from being
taken offline.

J

Common Usage of the Preferred Storage Flags

Following is a summary of the most common uses of the PPT preferred storage

flags:

PPTNSWP

1

Effect on Program

The initiator makes the address space
nonswappable via the SYSEVENT
TRANSWAP prior to attaching the job
step. LSQA and all private area fixed
pages are in preferred storage.

Same as preceding case except short-
term fixed pages are allowed in recon-
figurable or V=R storage.

The initiator attaches the job step as
swappable. LSQA and all private area
fixed pages are in preferred storage. In
this case, the program can issue
DONTSWAP and be assured that its
fixed pages will not prevent reconfig-
uring storage.

Note: A dash (-) indicates that the setting of the bits is irrelevant.

Updating the PPT

You use PPT statements in SCHEDxx member of SYS1.PARMLIB to update the
PPT. See MVS/Extended Architecture Initialization and Tuning for the syntax of

the SCHEDxx member.

Note: A TCAM Message Control Program (MCP) will not operate unless its
name is in the PPT. TCAM OPEN routines must run in key 6; they will abnor-
mally terminate any caller that is not initiated in key 6.

Chapter 4. Assigning Special Program Properties to Applications 4-9

4-10 SPL: System Modifications

Chapter 5. Creating Your Own Resource Managers

When the applications in your installation include programs that allocate
resources for their own use or for the use of programs they control, they may
have to include routines that “clean up” the queues and control blocks associated
with the resources, before returning to their calling routines.

MYVS provides system resource managers to clean up during termination of its
own tasks and address spaces; you can provide similar routines to do the same for
your application tasks and address spaces.

The responsibilities of a resource manager are:

o At task termination: remove all traces of the fact that the TCB for the termi-
nating task was connected to, allocated to, or associated with, the resources it
used. Each resource (data set, volume, device) is left in such a state that
another task in the address space or system can reuse it.

® At address space termination: release all system queue area and common
service area control blocks obtained for the use of the terminating address
space. All buffers, bit settings, pointers, and so on relating to the address
space are reset to make the system appear as if the ASID and ASCB for the
terminating address space never existed.

e Atentry: establish a recovery environment (ESTAE or ESTAI or ETXR) to
protect itself against errors during its own processing. If the recovery routine
is an ESTAE type, the ESTAE macro must include the TERM = YES option.

Installation-Written Resource Managers

Installation-written resource managers can perform the same type of work as a
system-provided resource manager; they can also include any special processing
your installation requires.

The recovery termination manager (RTM) invokes an installation-written resource
manager whenever a task or an address space terminates, either normally or
abnormally. The module names of all the system-provided resource managers are
known to RTM; RTM invokes them after all installation-written resource man-
agers have completed processing.

When RTM invokes an installation-written resource manager at task termination,

the resource manager executes under an RB in the terminating TCB’s address
space.

Chapter 5. Creating Your Own Resource Managers -1

When RTM invokes an installation-written resource manager at address space ter-
mination, it executes in task mode in the master scheduler’s address space. In
either case, the resource manager gets control in key 0, supervisor state, with no
locks held.

The Resource Manager Parameter List

The interface between an installation-written resource manager and recovery ter-
mination management is the resource manager parameter list (RMPL), which
RTM supplies to communicate with the resource manager.

The RMPL tells the resource manager why it was invoked and provides informa-
tion for its use during processing. RMPL fields indicate, for example, whether the
resource manager is being invoked during task termination or address space termi-
nation, and whether the termination is normal or abnormal.

To access the contents of the RMPL, the resource manager routine must include
the IHARMPL mapping macro instruction, which provides the field names and
describes their content and use. Detailed information on the name, offset, and
meaning of each field in the RMPL appears in the MV S/XA Debugging
Handbook.

Figure 5-1 lists the names and meanings of some of the key fields in the param-
eter list.

On entry to the resource manager, register contents are:

Register Contents
1 Pointer to a 4-byte field containing the address of the resource manager parameter
list (defined in your routine by the IHARMPL mapping macro instruction).
13 Pointer to a standard save area (72 bytes).
14 Return address.
15 Entry point address in the resource manager.

0,2-12 Unpredictable

Your resource manager must save and restore registers 0-14; use register 15 to
pass a return code back to RTM. The possible return codes are:

0 Indicates successful processing
4 Indicates unsuccessful processing

5-2 SPL: System Modifications

RMPLTYPE

RMPLTERM

RMPLASID

RMPLASCB

RMPLTCBA

RMPLRMWA

If set to 1, indicates that the resource manager is being invoked during
abnormal termination,; if set to 0, indicates that the resource manager is being
invoked during normal termination.

If set to 1, indicates that the resource manager is being invoked during address
space termination,; if set to 0, indicates that the resource manager is being
invoked during task termination.

Indicates the ASID associated with the terminating task or address space.

Indicates the address of the ASCB associated with the terminating task or
address space.

Indicates the address of the terminating TCB (for task termination) or contains
zeros (for address space termination).

Indicates the address of a 64-byte work area for use by your resource manager.

Figure 5-1. Some Key Fields in the Resource Manager Parameter List (RMPL)

Chapter 5. Creating Your Own Resource Managers 5-3

Adding an Installation-Written Resource Manager

To add your own resource manager routines for installation applications, place)
their names in the CSECT IEAVTRML, which is provided by MVS.

Initially, IEAVTRML consists of four 12-byte entries, each containing zeros.
You can modify each of the first three 12-byte entries (using the AMASPZAP
service aid) to contain a module name in the first eight bytes; the last four bytes
of each entry are reserved and always contain zeros. The last entry must also
contain all zeros, to indicate the end of the list. A typical entry for the CSECT
might be:

DC CL8 'MODULENM'
DC XL4'00"

To add the names of more than three installation-written resource managers,
create an entry for each module and a final entry that contains all zeros. Then
assemble your modified IEAVTRML and use the modified CSECT to replace the
existing IEAVTRML module in load module IGC0001C in SYS1.LPALIB. Place
each installation-written resource manager routine in SYSI.LINKLIB (or a
library concatenated to SYSI1.LINKLIB via a LNKLSTxx member of
SYS1.PARMLIB) or SYS1.LPALIB. If every routine named in IEAVTRML is
not present in one of these libraries, the IPL will fail.

5-4 SPL: System Modifications

Chapter 6. Executing DAT-off Code in MVS/XA

In the MVS/XA environment, code that runs with DAT (dynamic address trans-
lation) off must reside in the DAT-off nucleus. You invoke the DAT-off code
using the DATOFF macro, which controls the dynamic address translation
facility.

To add DAT-off code to the DAT-off nucleus, and execute the code, follow these
steps:

1. Create a separate module containing the code that runs with DAT off, as
follows:

e Use entry point IEAVEURnN, where n is a number from 1 to 4. MVS/XA
reserves four entry points in the DAT-off nucleus for user code.

e Give the module AMODE 31 and RMODE ANY attributes.

e Make sure the DAT-off code does not alter register 0; it contains the
return address to the routine that issues the DATOFF macro.

e Use BSM 0,14 as the return instruction.

2. Linkedit your DAT-off module TEAVEURn) into SYSI.NUCLEUS, the
DAT-off nucleus data set. The member name is IEAVEDAT; input to the
linkage editor must include an ENTRY control statement for entry point
IEAVEDAT.

3. Within a DAT-on routine, code a DATOFF macro to invoke the module
created in step 1:

DATOFF INDEX=INDUSRn

The suffix of the index (n) is the same as the suffix of the DAT-off module’s
entry point, IEAVEURn. See MVS/XA SPL: System Macros and Facilities
for details on coding the DATOFF macro.

The DATOFF macro branches to a routine in the PSA that turns DAT off and

branches to the DAT-off routine IEAVEURn) in the DAT-off nucleus. Return
from IEAVEURn is likewise through the PSA routine, which turns DAT on and
returns to the DAT-on code.

Figure 6-1 shows how the DATOFF macro instruction works with your DAT-off
code.

Chapter 6. Executing DAT-off Code in MVS/XA 6-1

Note: You will need to re-linkedit your IEAVEURnN module(s) into the DAT-off

nucleus if you re-sysgen the MVS base control program.)
MODA IEAVEDAT
MODA CSECT
. IEAVEUR3 CSECT
PSA IEAVEUR3 AMODE 31
: Manipulate
DATOFF INDEX=INDUSR3 System IEAVEUR3 RMODE ANY
+ Mask . (code
+ . executing
. . with
. DAT-off)
* D BSM 0,14
Figure 6-1. Using the DATOFF Macro to Execute DAT — off Code

6-2 SPL: System Modifications

Chapter 7. Controlling System Messages and the System Log

The operating system communicates with your installation through messages
written to the various consoles, user terminals, and printers. The installation
communicates with the operating system through responses to its messages and
through commands entered on the operators’ consoles.

You can control the communications between the system and your installation by
controlling the routing of system messages, by suppressing unnecessary messages
and by changing the text of certain messages to provide additional information.

Two subcomponents of MVS can help you control system messages. They are:

® Multiple-console support (MCS), which routes system messages throughout the
installation

® The message processing facility (MPF), which provides a means to identify
messages you want

— Suppressed

— Retained or not retained through the action message retention facility
(AMRF)

— Passed to a user-specified WTO exit for additional processing.

You can also control the routing of system messages to the MVS operators’ con-
soles with the LEVEL keyword of the CONTROL V command. Use the LEVEL
keyword to specify the importance levels of messages that a particular console can
accept. For instance, you can specify that a certain console receive some combi-
nation of the following:

Immediate action messages

Eventual action messages

Critical eventual messages

Broadcast messages

Informational messages

Messages requiring a reply (WTORs)

MVS/XA Operations: Systems Commands describes in detail the syntax of the
LEVEL keyword of the CONTROL V command.

In addition to controlling the messages issued by the system, you can control the
system log data sets, where messages and other information are written via the
WTL (write to log) macro and the LOG operator command. See “Controlling
the System Log.”

Chapter 7. Controlling System Messages and the System Log 7-1

Controlling System Messages

The system uses the WTO (write-to-operator) and WTOR (write-to-operator-with- ‘)
reply) macros to issue messages to the operators’ consoles. Application programs
can also issue WTO and WTOR macros.

Multiple-console support (MCS) routes messages to different functional areas of
an installation, according to the type of information the message contains. For
MCS, a “functional area” is defined as one or more consoles that are doing the
same kind of work. Some examples of