# Masterpact NT and NW NAVY 

LV power circuit breakers and switch-disconnectors

## Catalogue 2009




The original Masterpact has set a new standard for power circuit breakers around the world.

Today, Schneider Electric continues to innovate with the NAVY version of Masterpact made up of the following products:
> Masterpact NT NAVY
$>$ Masterpact NW NAVY

The design of this NAVY version is based on the outstanding features developed for the industrial version including:
> the breaking principle
$>$ modular design using composite materials.

Schneider Electric has added anti-shock and anti-vibration systems to these circuit breakers to meet the severe requirements of naval applications.

Masterpact NT and NW NAVY devices incorporate the latest technology to enhance both performance and safety. Easy to install, with userfriendly, intuitive operation and environment-friendly design, they are, quite simply, circuit breakers of their time.

# Masterpact NAVY, levels of performance 



High shock and vibration resistance certified by inspection organisations (Veritas, Lloyd's)

## Mechanical shocks

Masterpact NAVY devices are guaranteed to withstand mechanical shocks:
$>18 \mathrm{~g}-11 \mathrm{~ms}-1 / 2$ sine shock pulse.
Tests are carried out in compliance with standard IEC 60068-2-7.
They are carried out in 3 directions, with the circuit breaker open and closed.

## Vibrations

Masterpact NAVY devices are guaranteed to withstand electromagnetic or mechanical vibrations:
$>5$ to $22 \mathrm{~Hz}: \pm 1 \mathrm{~mm}$ displacement amplitude
$>5$ to $60 \mathrm{~Hz}: 2 \mathrm{~g}$ acceleration.
Tests are carried out in compliance with standard IEC 60068-2-6.
They are carried out in 3 directions, with the circuit breaker open and closed.

## Four performance levels

N 1 : for standard applications with low short-circuit levels.
H 1 : for vessels with high short-circuit levels or installations with two parallel-connected transformers.
H 2 : high-performance circuit breaker for very high short-circuits.
L1: current-limiting circuit breaker (Masterpact NT NAVY only). Intended for the protection of cable-type feeders.
Also used to protect a limited-performance switchboard when the transformer power rating is increased.

## Integration in a communication network

Masterpact NAVY can be integrated in a general supervision system to optimise installation operation and maintenance. The communication architecture is open, and may be upgraded for interfacing with any protocol.

## Switch-disconnector versions (only NW NAVY)

The switch-disconnectors are derived directly from the circuit breakers and offer the same features and performance levels.

## 2 frame sizes, 2 families

The range of power circuit breakers includes two families:
> Masterpact NT NAVY, the world's smallest true power circuit breaker, with ratings from 630 to 1600 A
> Masterpact NW NAVY from 800 to 4000 A.


Masterpact NW NAVY
800 to 4000 A


## Optimised volumes



## The smallest circuit breaker in the world

Masterpact NT NAVY innovates by offering all the performance of a power circuit breaker in an extremely small volume. The 70 mm pole pitch means a three-pole drawout circuit breaker can be installed in a switchboard section 400 mm wide and 400 mm deep.

## Practical installation solutions

The range improves upon all the installation solutions which have already made Masterpact NAVY a success. It has been designed to standardise switchboards, optimise volumes and simplify installation:
$>$ incoming connection to top or bottom terminals
> no safety clearance required
> connection:

- horizontal or vertical rear connection
- front connection with minimum extra space
- mixed front and rear connections
> 115 mm pole pitch on all versions
$>$ no derating up to $55^{\circ} \mathrm{C}$ and 4000 A .


## Optimised volumes

Up to 4000 A, Masterpact NW NAVY circuit breakers are all the same size, the same as the old M08 to 32 range.

## Ease of installation



Front connection of a drawout Masterpact NW NAVY.

With optimised sizes, the Masterpact NT and NW NAVY ranges simplify the design of switchboards and standardise the installation of devices:
> a single connection layout for Masterpact NT NAVY
> two connection layouts for Masterpact NW NAVY:

- one from 800 to 3200 A
- one for 4000 A
> identical connection terminals from 800 to 4000 A (Masterpact NW NAVY)
$>$ front connection requires little space because the connectors to not increase the depth of the device
> rear connection to vertical or horizontal busbars simply by turning the connectors $90^{\circ}$.


Vertical and horizontal rear connection of a drawout Masterpact NW NAVY.


Filtered breaking.


Navigation buttons on a Micrologic P control unit.

## Greater dependability... Filtered breaking

## 'patented

The patented new design of the arc chutes includes stainless-steel filters. The chutes absorb the energy released during breaking, thus limiting the stresses exerted on the installation. They filter and cool the gases produced, reducing effects perceptible from the outside.

## Automatic unlatching

## patented

The automatic unlatching of the circuit breaker operating mechanism for high short-circuits extends performance up to 150 kA. It produces ultrafast tripping for all short-circuits higher than 37 kA (L1). For lower shortcircuits, the system does not react so that the control unit can provide total discrimination with downstream devices.

## More intelligent trip units...

Today, with the high speed of calculation, the small size of memories and advances in miniaturisation, trip units have become circuit breaker control units offering increasingly powerful functions. They accurately measure system parameters, instantly calculate values, store data, log events, signal alarms, communicate, take action, etc. The Masterpact NAVY ranges, equipped with Micrologic control units, constitute both an extremely reliable protective device and an accurate measurement instrument.

## User friendly... Intuitive use...

Micrologic control units are equipped with a digital LCD display used in conjunction with simple navigation buttons. Users can directly access parameters and settings. Navigation between screens is intuitive and the immediate display of values greatly simplifies settings. Text is displayed in the desired language.

## patented

## ... backed by incomparable security

Protection functions are separate from the measurement functions and are managed by an ASIC electronic component. This independence guarantees immunity from conducted or radiated disturbances and ensures a high degree of reliability.
A patented "double setting" system for protection functions establishes:
> a maximum threshold set using the control-unit dials
$>$ fine adjustments via the keypad or remotely. The fine adjustments for thresholds (to within one ampere) and tripping delays (to within a fraction of a second) are displayed directly on the screen.
The control unit cover can be lead-sealed to prevent uncontrolled access to the dials and protect the settings.

## Ready for the future

## Compliance with environmental requirements

Schneider Electric fully takes into account environmental requirements, starting right from the design phase of every product through to the end of its service life:
$>$ the materials used for Masterpact NAVY are not potentially dangerous to the environment
$>$ the production facilities are non-polluting in compliance with the ISO 14001 standard
> filtered breaking eliminates pollution in the switchboard
> the energy dissipated per pole is low, making energy losses insignificant
$>$ the materials are marked to facilitate sorting for recycling at the end of product service life.

## Simple upgrading of installations

Installations change, power levels increase, new equipment is required and switchboards must be extended. Masterpact NAVY is designed to adapt to these changes: > all control units are interchangeable > communication with a supervision system is an option that may be added at any time
> a reserve chassis can be pre-addressed so that system parameters do not have to be modified when a drawout device is installed at a later date
$>$ any future changes to the products will be designed to ensure continuity with the current ranges, thus simplifying installation upgrades.
Presentation

## Functions and characteristics

Dimensions and connection

Electrical diagrams

## Additional characteristics

$\qquad$

Catalogue numbers and order form

## schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: - complete library: technical documents, catalogs, FAQs, brochures...

- selection guides from the e-catalog. - product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

The technical guide

These technical guides help you comply with installation standards and rules i.e.: the electrical installation guide, the protection guide, the switchboard implementation guide, the technical booklets and the co-ordination tables all form genuine reference tools for the design of high performance electrical installations. For example, the LV protection co-ordination guide - discrimination and cascading-optimises choice of protection and connection devices while also increasing markedly continuity of supply in the installations.

Presentation ..... 1
General overview ..... A-2
Detailed contents ..... A-2
Circuit breakers and switch-disconnectors ..... A-5
NT06 to NT16 NAVY and NW08 to NW40 NAVY ..... A-5
NT06 to NT16 NAVY ..... A-6
NW08 to NW40 NAVY ..... A-8
Micrologic control units ..... A-10
Overview of functions ..... A-10
Micrologic A "ammeter" ..... A-12
Micrologic P "power" ..... A-14
Micrologic H "harmonics" ..... A-18
Accessories and test equipment ..... A-20
Portable data acquisition ..... A-22
Masterpact and GetnSet ..... A-22
Communication ..... A-24
COM option in Masterpact ..... A-24
Overview of functions ..... A-25
Masterpact in a communication network ..... A-26
Connections ..... A-28
Overview of solutions ..... A-28
Accessories ..... A-29
Locking ..... A-31
On the device ..... A-31
On the chassis ..... A-32
Indication contacts ..... A-33
Remote operation ..... A-35
Remote ON / OFF ..... A-35
Remote tripping ..... A-38
Accessories ..... A-39
Installation recommendations ..... B-1
Dimensions and connections ..... C-1
Electrical diagrams ..... D-1
Additional characteristics ..... E-1
Catalogue numbers and order form ..... F-1

## Functions and characteristics

## General overview

Detailed contents

This chapter describes all the functions offered by Masterpact NT and NW devices. The two product families have identical functions implemented using the same or different components depending on the case.


## Circuit breakers and switch-disconnectors page A-5

- Ratings:
- Masterpact NT NAVY 630 to 1600 A
- Masterpact NW NAVY 800 to 4000 A
- Circuit breakers type N1, H1, H2, L1

■ Switch-disconnectors type HA (only NW NAVY)

- 3 poles
- Drawout versions
- Protection derating.
Micrologic control units
Ammeter A
2.0 basic protection
5.0 selective protection
Power meter $\mathbf{P}$
5.0 selective protection
Harmonic meter H
5.0 H selective protection
$\square$ Setting options (long-time rating plug):
$\square$ low setting 0.4 to 0.8 x Ir
$\square$ high setting 0.8 to $1 \times \mathrm{Ir}$
$\square$ without long-time protection
$\square$ External power-supply module
$\square$ Battery module.

| Portable data acquisition | page A-22 |
| :--- | :--- | :--- |
| Masterpact and GetnSet. |  |
| Communication |  |
| COM option in Masterpact NAVY |  |
| Masterpact NAVY in a communication network. |  |

Connections
$\square$ Rear connection (horizontal or vertical)
$\square$ Front connection
$\square$ Mixed connections
$\square$ Optional accessories
$\square$ bare-cable connectors and connector shields
$\square$ terminal shields
$\square$ vertical-connection adapters
$\square$ cable-lug adapters
$\square$ interphase barriers
$\square$ spreaders
$\square$ safety shutters, shutter locking blocks.

Indication contacts page A－33
－Standard or low－level contacts：
－ON／OFF indication OF⿳亠二口欠口⿱亠䒑口阝
－＂fault trip＂indication SDE
$\square$ carriage switches for connected
CE disconnected CD and test CT positions．

Remote operation
■ Remote ON／OFF：
$\square$ gear motor MCH
$\square \mathrm{XF}$ closing or MX opening voltage releases
$\square \mathrm{PF}$ ready－to－close contact
$\square$ options：RAR automatic remote reset
－BPFE electrical closing pushbutton
■ Remote tripping function：
$\square$ MN voltage release
－standard
－adjustable or non－adjustable delay
$\square$ or second MX voltage release．


MX，XF and MN voltage releases．
Accessories
Auxiliary terminal shield CB
－Operation counter CDM
Escutcheon CDP
Transparent cover for escutcheon CP
Escutcheon blanking plate OP．

Functions and characteristics

# Circuit breakers <br> and switch-disconnectors <br> NT06 to NT16 NAVY <br> and NW08 to NW4ONAVY 

## NT and NW NAVY selection criteria

|  | Masterpact NT NAVY |  |  | Masterpact NW NAVY |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | NAVY applications |  |  | NAVY applications |  |  |
|  | NT06 to NT16 H1 | NT06 to NT16 H2 | NT06 to NT10 L1 | NW08 to NW16 N1 | NW08 to NW40 H1 | NW08 to NW40 H2 |
| Type of application | Standard applications with low short-circuit currents | Applications with medium-level short-circuit currents | Limiting circuit breaker for protection of cable-type feeders or upgraded transformer ratings | Standard applications with low short-circuit currents | Circuit breaker for industrial sites with high short-circuit currents | High-performance circuit breaker for heavy industry with high shortcircuit currents |
| Icu/lcs at 440 V | 42 kA | 50 kA | 130 kA | 42 kA | 65 kA | 100 kA |
| Icu/lcs at 1000 V | - | - | - | - | - | - |
| Icu/lcs at $500 \mathrm{~V} \mathrm{DC} \mathrm{L/R}<15 \mathrm{~ms}$ | - | - | - | - | - | - |
| Drawout | D | D | D | D | D | D |
| Switch-disconnector version | No | No | No | Yes | Yes | Yes |
| Front connection | Yes | Yes | Yes | Yes | Yes up to 3200 A | Yes up to 3200 A |
| Rear connection | Yes | Yes | Yes | Yes | Yes | Yes |
| Type of Micrologic control unit | A, P, H |

Masterpact NT06 to NT16 NAVY installation characteristics

| Circu |  | NT06, NT08, NT10 |  |  | NT12, NT16 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type |  | H1 | H2 | L1 | H1 | H2 |
| Connection |  |  |  |  |  |  |
| Drawout | FC | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ |
|  | RC | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ |
| Dimensions (mm) H $\times$ W $\times$ D |  |  |  |  |  |  |
| Drawout | 3P | $322 \times 288 \times 277$ |  |  |  |  |
| Weight (kg) (approximate) |  |  |  |  |  |  |
| Drawout | 3P | 30 |  |  |  |  |

Masterpact NW08 to NW40 NAVY installation characteristics

(1) Except 4000 A.

## Functions

and characteristics

Circuit breakers
and switch-disconnectors
NT06 to NT16NAVY

(1) $50^{\circ} \mathrm{C}$ : rear vertical connected. Refer to temperature derating tables for other connection types.
(2) See the current-limiting curves in the "additional characteristics" section.
(3) SELLIM system.
(4) Available for 480 V NEMA.
(5) Suitable for motor control (direct-on-line starting).

| Common characteristics |  |  | 3 |
| :--- | :--- | :--- | :--- |
| Number of poles | Ui | 1000 |  |
| Rated insulation voltage (V) | Uimp | 12 |  |
| Impulse withstand voltage (kV) | Ue | 690 |  |
| Rated operational voltage $(\mathrm{V} \mathrm{AC} 50 / 60 \mathrm{~Hz})$ | IEC $60947-2$ | K |  |
| Suitability for isolation | IEC 60664-1 | 3 |  |
| Degree of pollution |  |  |  |

Circuit-breaker characteristics as per IEC 60947-2

| Rated current (A) | In | at $40^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}^{(1)}$ |
| :---: | :---: | :---: |
| Sensor ratings (A) |  |  |
| Type of circuit breaker |  |  |
| Ultimate breaking capacity (kA rms) | Icu | 220/415 V |
| V AC 50/60 Hz |  | 440 V |
|  |  | 525 V |
|  |  | 690 V |
| Rated service breaking capacity (kA rms) | Ics | \% Icu |
| Utilisation category |  |  |
| Rated short-time withstand current (kA rms) VAC $50 / 60 \mathrm{~Hz}$ | Icw | 0.5 s |
|  |  | 1 s |
|  |  | 3 s |
| Integrated instantaneous protection (kA peak $\pm 10 \%$ ) |  |  |
| Rated making capacity (kA peak) | Icm | 220/415 V |
| V AC 50/60 Hz |  | 440 V |
|  |  | 525 V |
|  |  | 690 V |
| Break time (ms) between tripping order and arc extinction |  |  |
| Closing time (ms) |  |  |
| Circuit-breaker characteristics as per NEMA AB1. |  |  |
| Breaking capacity (kA) |  | 240 V |
| $V$ AC 50/60 Hz |  | 480 V |
|  |  | 600 V |

Mechanical and electrical durability as per IEC 60947-2/3 at In/le
Service life Mechanical without maintenance

C/O cycles $\times 1000$

| Type of circuit breaker |  |  |
| :---: | :---: | :---: |
|  |  |  |
| C/O cycles $\times 1000$ Electrical | without maintenance | $440 \mathrm{~V}^{(4)}$ |
| IEC 60947-2 |  | 690 V |
| Type of circuit breaker |  |  |
| Rated operationnal current | le (A) | AC23A |
| C/O cycles x 1000 Electrical | without maintenance | $440 \mathrm{~V}^{(4)}$ |
| IEC 60947-3 |  | 690 V |
| Type of circuit breaker |  |  |
| Rated operationnal current | le (A) | AC3 ${ }^{\text {(5) }}$ |
| Motor power |  | 380/415 V (kW) |
|  |  | 440 V (kW) |
| C/O cycles $\times 1000$ Electrical | without maintenance | $440 \mathrm{~V}{ }^{(4)}$ |
| IEC 60947-3 Annex M/IEC 60947-4-1 |  | 690 V |

Sensor selection
Sensor rating (A)
Ir threshold setting(A)

400
160 to 400

80

| 800 |
| :--- | :--- |
| 320 to 800 |


| 1000 |
| :--- | :--- |
| 400 to 1000 |

1250

500 to 1250
1600
640 to 1600

| NT |  |  | NT08 |  |  | NT10 |  |  | NT12 |  | NT16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 630 |  |  | 800 |  |  | 1000 |  |  | 1250 |  | 1600 |
| 400 to 630 |  |  | 400 to 800 |  |  | 400 to 1000 |  |  | 630 to 1250 |  | 800 to 1600 |
| H1 | H2 | L1 ${ }^{(2)}$ |  |  |  |  |  |  | H1 | H2 |  |
| 42 | 50 | 150 |  |  |  |  |  |  | 42 | 50 |  |
| 42 | 50 | 130 |  |  |  |  |  |  | 42 | 50 |  |
| 42 | 42 | 100 |  |  |  |  |  |  | 42 | 42 |  |
| 42 | 42 | 25 |  |  |  |  |  |  | 42 | 42 |  |
| 100 \% |  |  |  |  |  |  |  |  | 100 \% |  |  |
| B | B | A |  |  |  |  |  |  | B B |  |  |
| 42 | 36 | 10 |  |  |  |  |  |  | 4236 |  |  |
| 42 | 36 | - |  |  |  |  |  |  | 4236 |  |  |
| 24 | 20 | - |  |  |  |  |  |  | $24 \quad 20$ |  |  |
| - | 90 | $10 \times \ln { }^{(3)}$ |  |  |  |  |  |  | $-\quad 90$ |  |  |
| 88 | 105 | 330 |  |  |  |  |  |  | $88 \quad 105$ |  |  |
| 88 | 105 | 286 |  |  |  |  |  |  | $88 \quad 105$ |  |  |
| 88 | 88 | 220 |  |  |  |  |  |  | $88 \quad 88$ |  |  |
| 88 | 88 | 52 |  |  |  |  |  |  | $88 \quad 88$ |  |  |
| 25 | 25 | 9 |  |  |  |  |  |  | 25.25 |  |  |
| < 50 |  |  |  |  |  |  |  |  | < 50 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 42 | 50 | 150 |  |  |  |  |  |  | 4250 |  |  |
| 42 | 50 | 100 |  |  |  |  |  |  | 4250 |  |  |
| 42 | 42 | 25 |  |  |  |  |  |  | $42 \quad 42$ |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 12,5 |  |  |  |  |  |  |  |  |  |  |  |
| H1 | H2 | L1 | H1 | H2 | L1 | H1 | H2 | L1 | H1/H |  | H1/H2 |
| 630 |  |  | 800 |  |  | 1000 |  |  | 1250 |  | 1600 |
| 6 | 6 | 3 | 6 | 6 | 3 | 6 | 6 | 3 | 6 |  | 3 |
| 3 | 3 | 2 | 3 | 3 | 2 | 3 | 3 | 2 | 3 |  | 1 |
| H1/H2 |  |  |  |  |  |  |  |  |  |  |  |
| 630 |  |  | 800 |  |  | 1000 |  |  | 1250 |  | 1600 |
| 6 |  |  | 6 |  |  | 63 |  |  | 63 |  | 6 |
| 3 |  |  |  |  |  | 3 |  |  |
| H1/H2 |  |  |  |  |  |  |  |  |  |  |  |
| 500 |  |  | 630 |  |  |  |  |  | 800 |  |  | 1000 |  | 1000 |
| $\begin{aligned} & \leqslant 250 \\ & \leqslant 300 \end{aligned}$ |  |  | $\begin{aligned} & 250 \text { to } 335 \\ & 300 \text { to } 400 \end{aligned}$ |  |  | $\begin{aligned} & 335 \text { to } 450 \\ & 400 \text { to } 500 \end{aligned}$ |  |  | 450 to 560 |  | 450 to 560 |
|  |  |  | 500 to 630 | 500 to 630 |  |  |  |  |  |

6

## Functions and characteristics

(1) $50^{\circ} \mathrm{C}$ : rear vertical connected. Refer to temperature derating tables for other connection types.
(2) External protection must comply with permissible thermal constraints of the circuit breaker (please consult us).
No fault-trip indication by the SDE or the reset button.
(3) Available for 480 V NEMA.
(4) Suitable for motor control (direct-on-line starting).


Circuit breakers
and switch-disconnectors
NW08 to NW4O NAVY

| Common characteristics |  |  | 3 |
| :--- | :--- | :--- | :--- |
| Number of poles | Ui | 1000 |  |
| Rated insulation voltage (V) | Uimp | 12 |  |
| Impulse withstand voltage (kV) | Ue | 690 |  |
| Rated operational voltage (V AC $50 / 60 \mathrm{~Hz})$ | IEC $60947-2$ | -H |  |
| Suitability for isolation | IEC $60664-1$ | $4(1000 \mathrm{~V}) / 3(1250 \mathrm{~V})$ |  |
| Degree of pollution |  |  |  |

Circuit-breaker characteristics as per IEC 60947-2

| Rated current (A) |  | at $40^{\circ} \mathrm{C} / 50^{\circ} \mathrm{C}{ }^{(1)}$ |
| :---: | :---: | :---: |
| Sensor ratings (A) |  |  |
| Type of circuit breaker |  |  |
| Ultimate breaking capacity (kA rms) $\text { V AC } 50 / 60 \mathrm{~Hz}$ | Icu | $\begin{aligned} & 220 / 415 / 440 \mathrm{~V} \\ & 525 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$ |
| Rated service breaking capacity (kA rms) | Ics | \% Icu |
| Utilisation category |  |  |
| Rated short-time withstand current (kA rms) <br> VAC $50 / 60 \mathrm{~Hz}$ | Icw | 1 s |
|  |  | 3 s |
| Integrated instantaneous protection (kA peak $\pm 10 \%$ ) |  |  |
| Rated making capacity (kA peak)$\text { V AC } 50 / 60 \mathrm{~Hz}$ | Icm | 220/415/440 V |
|  |  | 525 V |
|  |  | 690 V |
| Break time (ms) between tripping order and arc extinction |  |  |
| Closing time (ms) |  |  |
| Circuit-breaker characteristics as per NEMA AB1 |  |  |
| Breaking capacity (kA) |  | 240/480 V |
| V AC 50/60 Hz |  | 600 V |
| Unprotected circuit-breaker characteristics: |  |  |
| Tripping by shunt trip as per IEC 60947-2 |  |  |
| Type of circuit breaker |  |  |
| Ultimate breaking capacity (kA rms) V AC 50/60 Hz | Icu | 220... 690 V |
| Rated service breaking capacity (kA rms) | Ics | \% Icu |
| Rated short-time withstand current (kA rms) | Icw | 1 s |
|  |  | 3 s |

Overload and short-circuit protection
External protection relay: short-circuit protection, maximum delay: $350 \mathrm{~ms}^{(2)}$
Rated making capacity (kA peak) V AC 50/60 Hz Icm $220 \ldots 690 \mathrm{~V}$

Switch-disconnector characteristics as per IEC 60947-3
and Annex A

| Type of switch-disconnector |  |  |
| :--- | :--- | :--- | :--- |
| Rated making capacity (kA peak) | Icm | $220 \ldots 690 \mathrm{~V}$ |
| AC23A/AC3 category V AC $50 / 60 \mathrm{~Hz}$ |  |  |
| Rated short-time withstand current (kA rms) | Icw | 1 s |
| AC23A/AC3 category V AC $50 / 60 \mathrm{~Hz}$ |  | 3 s |

Mechanical and electrical durability as per IEC 60947-2/3 at In/le
Service life Mechanical with maintenance

| C/O cycles x 1000 | without maintenance |  |
| :---: | :---: | :---: |
| Type of circuit breaker |  |  |
| Rated current | In (A) |  |
| C/O cycles $\times 1000$ Electrical | without maintenance | $440 \mathrm{~V}^{(3)}$ |
| IEC 60947-2 |  | 690 V |
| Type of circuit breaker or switch-disconnector |  |  |
| Rated operational current | le (A) | AC23A |
| C/O cycles $\times 1000$ Electrical | without maintenance | $440 \mathrm{~V}^{(3)}$ |
| IEC 60947-3 |  | 690 V |
| Type of circuit breaker or switch-disconnector |  |  |
| Rated operational current | le (A) | AC3 ${ }^{(4)}$ |
| Motor power |  | 380/415 V (kW) |
|  |  | $440 \mathrm{~V}^{(3)}$ (kW) |
|  |  | 690 V (kW) |
| C/O cycles $\times 1000$ Electrical | without maintenance | $440 / 690 \mathrm{~V}^{(3)}$ |
| IEC 60947-3 Annex M/IEC 60947-4-1 |  |  |

## Sensor selection

| Sensor rating (A) | 400 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3200 | 4000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ir threshold setting(A) | $\begin{aligned} & 160 \\ & \text { to } 400 \end{aligned}$ | $\begin{aligned} & 250 \\ & \text { to } 630 \end{aligned}$ | $\begin{array}{\|l\|} \hline 320 \\ \text { to } 800 \end{array}$ | $\begin{array}{\|l\|} \hline 400 \\ \text { to } 1000 \end{array}$ | $\begin{aligned} & 500 \\ & \text { to } 1250 \end{aligned}$ | $\begin{array}{\|l\|} \hline 630 \\ \text { to } 1600 \end{array}$ | $\begin{aligned} & 800 \\ & \text { to } 2000 \end{aligned}$ | $\begin{array}{\|l\|} \hline 1000 \\ \text { to } 2500 \end{array}$ | $\begin{array}{\|l\|} \hline 1250 \\ \text { to } 3200 \end{array}$ | $\begin{aligned} & \hline 1600 \\ & \text { to } 4000 \end{aligned}$ |



| HA |
| :--- |
| 50 |
| $100 \%$ |
| 50 |
| 36 |
| - |
| 105 |


| HA | HA |
| :--- | :--- |
| 50 | 55 |
| $100 \%$ | $100 \%$ |
| 50 | 55 |
| 36 | 55 |
| - | - |
| 105 | 121 |

NW08/NW10/NW12
HA
105
-
50
36

| NW16 |
| :--- |
| HA |
| 105 |
| - |
| 50 |
| 36 |


| NW20 |
| :--- |
| HA |
| 105 |
| - |
| 50 |
| 36 |


| NW25/NW32/NW40 |
| :--- |
| HA |
| 121 |
| - |
| 55 |
| 55 |



6

## Micrologic control units <br> Overview of functions

All Masterpact NAVY circuit breakers are equipped with
a Micrologic control unit.
Control units are designed to protect Power circuits and loads. Alarms may be programmed for remote indications.
Measurements of current, voltage, frequency, power and power quality optimise continuity of service and energy management.

## Dependability

Integration of protection functions in an ASIC electronic component used in all Micrologic control units guarantees a high degree of reliability and immunity to conducted or radiated disturbances.
On Micrologic A, P and H control units, advanced functions are managed by an independent microprocessor.

## Accessories

Certain functions require the addition of Micrologic control unit accessories, described on page page A-20.
The rules governing the various possible combinations can be found in the electronic catalogue (E-catalogue) accessible via the Products menu of the www.schneider-electric.com web site.

Micrologic name codes

### 2.0 A

X Y Z
X: type of protection

- 2 for basic protection
- 5 for selective protection.

Y: control-unit generation Identification of the control-unit generation.
" 0 " signifies the first generation.
Z: type of measurement

- A for "ammeter"
- P for "power meter"

■ H for "harmonic meter"


Current protection
Micrologic 2: basic protection


Micrologic 5: basic protection


Protection
long time + instantaneous

Protection:
long time

+ short time
+ instantaneous


## Measurements and programmable protection

## A: ammeter

$\square I_{1}, I_{2}, I_{3}, I_{N}, I_{\text {earth-fault }}, l_{\text {earth-leakage }}$ and maximeter for these measurements

- Fault indications
- Settings in amperes and in seconds.


## P: A + power meter + programmable protection

■ Measurements of $\mathrm{V}, \mathrm{A}, \mathrm{W}, \mathrm{VAR}, \mathrm{VA}, \mathrm{Wh}, \mathrm{VARh}, \mathrm{VAh}, \mathrm{Hz}, \mathrm{V}{ }^{\text {n }}$, $\mathrm{A}_{\text {}}$, power factor and maximeters and minimeters

- IDMTL long-time protection, minimum and maximum voltage and frequency, voltage and current imbalance, phase sequence, reverse power
■ Load shedding and reconnection depending on power or current
■ Measurements of interrupted currents, differentiated fault indications, maintenance indications, event histories and time-stamping, etc.


## H: P + harmonics

■ Power quality: fundamentals, distortion, amplitude and phase of harmonics up to the 31st order

- Waveform capture after fault, alarm or on request

■ Enhanced alarm programming: thresholds and actions.
2.0 A

5.0 A
5.0 P

5.0 H


Functions and characteristics

Micrologic control units
Micrologic A "ammeter"

Micrologic A control units protect power circuits.
They also offer measurements, display, communication and current maximeters


1 Long-time current setting and tripping delay.
2 Overload signal (LED) at 1.125 Ir.
3 Short-time pick-up and tripping delay.
4 Instantaneous pick-up.
5 Long-time rating plug screw.
6 Test connector.
7 Lamp test, reset and battery test.
8 Indication of tripping cause.
9 Digital display.
10 Three-phase bargraph and ammeter.
11 Navigation buttons.

## "Ammeter" measurements

Micrologic A control units measure the true rms value of currents.
They provide continuous current measurements from 0.2 to 20 In and are accurate to within $1.5 \%$ (including the sensors).
A digital LCD screen continuously displays the most heavily loaded phase (Imax) or displays the $I_{1}, I_{2}, I_{3}, I_{N}, I_{g}, I_{\Delta n}$, stored-current (maximeter) and setting values by successively pressing the navigation button.
The optional external power supply makes it possible to display currents $<20 \%$ In. Below 0.05 In , measurements are not significant. Between 0.05 and 0.2 In , accuracy is to within $0.5 \% \ln +1.5 \%$ of the reading.

## Communication option

In conjunction with the COM communication option, the control unit transmits the following:

- setting values
- all "ammeter" measurements
- tripping causes
- maximeter reset.


## Protection settings

Protection thresholds and delays are set using the adjustment dials.
The selected values are momentarily displayed in amperes and in seconds.

## Overload protection

True rms long-time protection.
Thermal memory: thermal image before and after tripping.
Setting accuracy may be enhanced by limiting the setting range using a different long-time rating plug.
The long-time rating plug "OFF" enables to cancel the overload protection.
Short-circuit protection
Short-time (rms) and instantaneous protection.
Selection of $I^{2} t$ type (ON or OFF) for short-time delay.

## Zone selective interlocking (ZSI)

A ZSI terminal block may be used to interconnect a number of control units to provide total discrimination for short-time and earth-fault protection, without a delay before tripping.


Functions and characteristics Micrologic control units Micrologic P"power"

Micrologic P control units include all the functions offered by Micrologic A.
In addition, they measure voltages and calculate power and energy values.


1 Long-time current setting and tripping delay.
2 Overload signal (LED).
3 Short-time pick-up and tripping delay.
4 Instantaneous pick-up.
5 Long-time rating plug screw.
6 Test connector
7 Lamp + battery test and indications reset.
8 Indication of tripping cause.
9 High-resolution screen.
10 Measurement display.
11 Maintenance indicators.
12 Protection settings.
13 Navigation buttons.
14 Hole for settings lockout pin on cover.

Protection
箵 + (1)
Protection settings
The adjustable protection functions are identical to those of Micrologic A overloads, short-circuits.

## Fine adjustment

Within the range determined by the adjustment dial, fine adjustment of thresholds (to within one ampere) and time delays (to within one second) is possible on the keypad or remotely using the COM option.

## IDMTL (Inverse Definite Minimum Time lag) setting

Coordination with fuse-type or medium-voltage protection systems is optimised by adjusting the slope of the overload-protection curve. This setting also ensures better operation of this protection function with certain loads.

## Programmable alarms and other protection

Depending on the thresholds and time delays set using the keypad or remotely using the COM option, the Micrologic P control unit monitors currents and voltage, power, frequency and the phase sequence. Each threshold overrun is signalled remotely via the COM option. Each threshold overrun may be combined with tripping (protection).

## Load shedding and reconnection

Load shedding and reconnection parameters may be set according to the power or the current flowing through the circuit breaker. Load shedding is carried out by a supervisor via the COM option.

## Communication option (COM)

The communication option may be used to:

- remotely read and set parameters for the protection functions
- transmit all the calculated indicators and measurements
- signal the causes of tripping and alarms
- consult the history files and the maintenance-indicator register

■ maximeter reset.
An event log and a maintenance register, stored in control-unit memory but not available locally, may be accessed in addition via the COM option.


[^0]
## Functions and characteristics

Micrologic P"power"


Default display.


Display of a voltage.


Display of a frequency.


Display of a demand power.


Power View software.

## Measurements

 (b)The Micrologic $P$ control unit calculates in real time all the electrical values $(V, A, W$, VAR, VA, Wh, VARh, VAh, Hz), power factors and $\cos \varphi$ factors.
The Micrologic $P$ control unit also calculates demand current and demand power over an adjustable time period. Each measurement is associated with a minimeter and a maximeter.
In the event of tripping on a fault, the interrupted current is stored. The optional external power supply makes it possible to display the value with the circuit breaker open or not supplied.
Instantaneous values
The value displayed on the screen is refreshed every second.
Minimum and maximum values of measurements are stored in memory (minimeters and maximeters).minimètres).

| Currents |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 rms | A | 1 | 2 | 3 |
| I max rms | A | 1 | 2 | 3 |
| Voltages |  |  |  |  |
| U rms | V | 12 | 23 | 31 |
| V rms | V | 1N | 2N | 3 N |
| $\underline{U}$ average rms | V | $(\mathrm{U} 12+\mathrm{U} 23+\mathrm{U} 31) / 3$ |  |  |
| U unbalance | \% |  |  |  |
| Power, energy |  |  |  |  |
| P active, Q reactive, S apparent | W, Var, VA | Totals |  |  |
| E active, E reactive, E apparent | Wh, VARh, VAh | Totals consumed - supplied <br> Totals consumed <br> Totals supplied |  |  |
| Power factor | PF | Total |  |  |
| Frequencies |  |  |  |  |
| F | Hz |  |  |  |

## Demand metering

The demand is calculated over a fixed or sliding time window that may be programmed from 5 to 60 minutes. According to the contract signed with the power supplier, an indicator associated with a load shedding function makes it possible to avoid or minimise the costs of overrunning the subscribed power. Maximum demand values are systematically stored and time stamped (maximeter).

| Currents |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Idemand | A | 1 | 2 | 3 |
| Imax demand | A | 1 | 2 | 3 |
| Power |  |  |  |  |
| P, Q, S demand | W, Var, VA | Totals |  |  |
| P, Q, S max demand | W, Var, VA | Totals |  |  |

## Minimeters and maximeters

Only the current and power maximeters may be displayed on the screen.

## Time-stamping

Time-stamping is activated as soon as time is set manually or by a supervisor. No external power supply module is required (max. drift of 1 hour per year).

## Reset

An individual reset, via the keypad or remotely, acts on alarms, minimum and maximum data, peak values, the counters and the indicators.
Additional measurements accessible with the COM option
Some measured or calculated values are only accessible with the COM
communication option:
■ I peak / $\sqrt{2}$, $\left(\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}\right) / 3$, I unbalance

- load level in \% Ir

■ total power factor.
The maximeters and minimeters are available only via the COM option for use with a supervisor.

## Additional info

Accuracy of measurements (including sensors).
■ voltage (V) $0.5 \%$
■ current (A) 1.5 \%

- frequency $(\mathrm{Hz}) 0.1 \%$

■ power $(W)$ and energy $(W h) 2$ \%.



RSU configuration screen for a Micrologic.

## Histories and maintenance indicators

$\qquad$ 8
The last ten trips and alarms are recorded in two separate history files that may be displayed on the screen:

- tripping history:
$\square$ type of fault
$\square$ date and time
$\square$ values measured at the time of tripping (interrupted current, etc.)
- alarm history:
- type of alarm
$\square$ date and time
$\square$ values measured at the time of the alarm.
All the other events are recorded in a third history file which is only accessible through the communication network.
■ Event log history (only accessible through the communication network)
$\square$ modifications to settings and parameters
$\square$ counter resets
$\square$ system faults:
$\square$ fallback position
$\square$ thermal self-protection
- loss of time
$\square$ overrun of wear indicators
$\square$ test-kit connections
$\square$ etc.
Note:
All the events are time stampled: time-stamping is activated as soon as time is set manually or by a supervisor. No external power supply module is required (max. drift of 1 hour per year).


## Maintenance indicators (with COM option)

A number of maintenance indicators may be called up on the screen to better plan for device maintenance:

- contact wear

■ operation counter:

- cumulative total
$\square$ total since last reset.
Additional maintenance indicators are also available through the COM network, and can be used as an aid in troubleshooting:
■ highest current measured
- number of test-kit connections
- number of trips in operating mode and in test mode.


## Additional technical characteristics

## Safety

Measurement functions are independent of the protection functions. The highaccuracy measurement module operates independently of the protection module.

## Simplicity and multi-language

Navigation from one display to another is intuitive. The six buttons on the keypad provide access to the menus and easy selection of values. When the setting cover is closed, the keypad may no longer be used to access the protection settings, but still provides access to the displays for measurements, histories, indicators, etc.
Micrologic is also multi-language, including the following languages: English, Spanish, Portuguese, Russian, Chinese, French, German...

## Intelligent measurement

Measurement-calculation mode:
■ energies are calculated on the basis of the instantaneous power values, in two manners:
$\square$ the traditional mode where only positive (consumed) energies are considered $\square$ the signed mode where the positive (consumed) and negative (supplied) energies are considered separately
■ measurement functions implement the new "zero blind time" concept which consists in continuously measuring signals at a high sampling rate. The traditional "blind window" used to process samples no longer exists. This method ensures accurate energy calculations even for highly variable loads (welding machines, robots, etc.).

## Always powered

All current-based protection functions require no auxiliary source. Voltage-based protection functions are connected to AC power via a voltage measurement input built into the circuit breaker.

## Stored information

The fine setting adjustments, the last 100 events and the maintenance register remain in the control-unit memory even when power is lost.

## Functions and characteristics

## Micrologic control units

Micrologic H"harmonics"

Micrologic H control units include all the functions offered by Micrologic P. Integrating significantly enhanced calculation and memory functions, the Micrologic H control unit offers in-depth analysis of power quality and detailed event diagnostics. It is intended for operation with a supervisor.


1 Long-time current setting and tripping delay.
2 Overload signal (LED).
3 Short-time pick-up and tripping delay.
4 Instantaneous pick-up.
5 Long-time rating plug screw.
6 Test connector.
7 Lamp + battery test and indications reset
8 Indication of tripping cause.
9 High-resolution screen.
10 Measurement display.
11 Maintenance indicators.
12 Protection settings.
13 Navigation buttons.
14 Hole for settings lockout pin on cover.

In addition to the Micrologic $P$ functions, the Micrologic $H$ control unit offers:

- in-depth analysis of power quality including calculation of harmonics and the
fundamentals
■ diagnostics aid and event analysis through waveform capture
■ enhanced alarm programming to analyse and track down a disturbance on the AC power system.


## Measurements

The Micrologic H control unit offers all the measurements carried out by Micrologic P , with in addition:

- phase by phase measurements of:
- power, energy
$\square$ power factors
- calculation of:
$\square$ current and voltage total harmonic distortion (THD)
- current, voltage and power fundamentals
$\square$ current and voltage harmonics up to the 31st order.
Instantaneous values displayed on the screen

| Currents |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| I rms | A | 1 | 2 | 3 |  |
| Imax rms | A | 1 | 2 | 3 |  |
| Voltages |  |  |  |  |  |
| $\underline{\text { U rms }}$ | V | 12 | 23 | 31 |  |
| V rms | V | 1N | 2N | 3N |  |
| U average rms | V | $(\mathrm{U} 12+\mathrm{U} 23+\mathrm{U} 31) / 3$ |  |  |  |
| U unbalance | \% |  |  |  |  |
| Power, energy |  |  |  |  |  |
| P active, Q reactive, $S$ apparent | W, Var, VA | Totals | 1 | 2 | 3 |
| E active, E reactive, E apparent | Wh, VARh, VAh | Totals consumed - supplied <br> Totals consumed <br> Totals supplied |  |  |  |
| Power factor | PF | Total | 1 | 2 | 3 |
| Frequencies |  |  |  |  |  |
| F | Hz |  |  |  |  |
| Power-quality indicators |  |  |  |  |  |
| Total fundamentals |  | U I P | S |  |  |
| THD | \% | $\cup 1$ |  |  |  |
| U and I harmonics | Amplitude | 357 | 11 |  |  |

Harmonics 3, 5, 7, 9, 11 and 13, monitored by electrical utilities, are displayed on the screen.

## Demand measurements

Similar to the Micrologic $P$ control unit, the demand values are calculated over a fixed or sliding time window that may be set from 5 to 60 minutes.

| Currents |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| I demand | A | 1 | 2 | 3 |
| Imax demand | A | 1 | 2 | 3 |
| Power |  |  |  |  |
| P, Q, S demand | W, Var, VA | Totals |  |  |
| P, Q, S max demand | W, Var, VA | Totals |  |  |
| Mamer |  |  |  |  |

## Maximeters

Only the current maximeters may be displayed on the screen.

## Histories and maintenance indicators

These functions are identical to those of the Micrologic P.

Note: Micrologic H control units come with a non-transparent lead-seal cover as standard.


Display of harmonics up to 12 th order.


## With the communication option

## Additional measurements, maximeters and minimeters

Certain measured or calculated values are only accessible with the COM communication option:

- I peak $/ \sqrt{2}\left(I_{1}+I_{2}+I_{3}\right) / 3$,
- load level in \% Ir
- power factor (total and per phase)
- voltage and current THD
- K factors of currents and average K factor
- crest factors of currents and voltages
- all the fundamentals per phase
- fundamental current and voltage phase displacement
- distortion power and distortion factor phase by phase
- amplitude and displacement of current and voltage harmonics 3 to 31 .

The maximeters and minimeters are available only via the COM option for use with a supervisor.

## Waveform capture

The Micrologic H control unit stores the last 4 cycles of each instantaneous current or voltage measurement. On request or automatically on programmed events, the control unit stores the waveforms. The waveforms may be displayed in the form of oscillograms by a supervisor via the COM option. Definition is 64 points per cycle.

## Pre-defined analogue alarms (1 to 53)

Each alarm can be compared to user-set high and low thresholds. Overrun of a threshold generates an alarm. An alarm or combinations of alarms can be linked to programmable action such as selective recording of measurements in a log, waveform capture, etc.

## Event log and maintenance registers

The Micrologic H offers the same event log and maintenance register functions as the Micrologic P. In addition, it produces a log of the minimums and maximums for each "real-time" value.

## Additional technical characteristics

## Setting the display language

System messages may be displayed in six different languages. The desired language is selected via the keypad.

## Protection functions

All current-based protection functions require no auxiliary source. Voltage-based protection functions are connected to AC power via a voltage measurement input built into the circuit breaker.

## Measurement functions

Measurement functions are independent of the protection functions.
The high-accuracy measurement module operates independently of the protection module, while remaining synchronised with protection events.

## Measurement-calculation mode

An analogue calculation function dedicated to measurements enhances the accuracy of harmonic calculations and the power-quality indicators. The Micrologic H control unit calculates electrical magnitudes using $1.5 \mathrm{x} \ln$ dynamics ( $20 \mathrm{x} \ln$ for Micrologic P).
Measurement functions implement the new "zero blind time" concept
Energies are calculated on the basis of the instantaneous power values, in the traditional and signed modes.
Harmonic components are calculated using the discrete Fourier transform (DFT).

## Accuracy of measurements (including sensors)

■ voltage (V) 0.5 \%
■ current (A) 1.5 \%

- frequency (Hz) 0.1 \%

■ power $(\mathrm{W})$ and energy $(\mathrm{Wh}) 2$ \%
■ total harmonic distortion 1 \%.

## Stored information

The fine-setting adjustments, the last 100 events and the maintenance register remain in the control-unit memory even when power is lost.

## Time-stamping

Time-stamping is activated as soon as time is set manually or by a supervisor no external power supply module is required (max. drift of 1 hour per year).

## Reset

An individual reset, via the keypad or remotely, acts on alarms, minimum and maximum data, peak values, the counters and the indicators.


## External sensors

## Voltage measurement inputs

Voltage measurement inputs are required for power measurements (Micrologic P or H ). As standard, the control unit is supplied by internal voltage measurement inputs placed downstream of the pole for voltages between 220 and 690 V AC. On request, it is possible to replace the internal voltage measurement inputs by an external voltage input (PTE option) which enables the control unit to draw power directly from the distribution system upstream of the circuit breaker. An 3 m cable with ferrite comes with this PTE option.

## Long-time rating plug

Four interchangeable plugs may be used to limit the long-time threshold setting range for higher accuracy.
The time delay settings indicated on the plugs are for an overload of 6 Ir .
As standard, control units are equipped with the 0.4 to 1 plug.

## Setting ranges

| Standard | $\operatorname{Ir}=\ln \mathrm{x} \ldots$ | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 0.95 | 0.98 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Low-setting option | $\operatorname{Ir}=\ln \mathrm{x} \ldots$ | 0.4 | 0.45 | 0.50 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75 | 0.8 |
| High-setting option | $\operatorname{Ir}=\ln \times \ldots$ | 0.80 | 0.82 | 0.85 | 0.88 | 0.90 | 0.92 | 0.95 | 0.98 | 1 |
| Off plug | No long-time protection (Ir = In for Isd setting) |  |  |  |  |  |  |  |  |  |
| Important: long-time rating plugs must always be removed before carrying out insulation or <br> dielectric withstand tests. |  |  |  |  |  |  |  |  |  |  |

## External 24 V DC power-supply module

The external power-supply module makes it possible to use the display even if the circuit breaker is open or not supplied (for the exact conditions of use, see the "electrical diagrams" part of this catalogue).
This module powers both the control unit ( 100 mA ).
If the COM communication option is used, the communication bus requires its own 24 V DC power supply, independent with respect to that of the Microlocig control unit. With the Micrologic A control unit, this module makes it possible to display currents of less than $20 \%$ of In.
With the Micrologic P and H , it can be used to display fault currents after tripping.

## Characteristics

- Power supply:

ㅁ 110/130, 200/240, 380/415 V AC (+ 10 \% - 15 \%)

- 24/30, 48/60, 100/125 V DC (+20 \% -20 \%)
output voltage: 24 V DC $\pm 5 \%, 200 \mathrm{~mA}$.
- Ripple < 1 \%

■ Dielectric withstand : 3.5 kV rms between input/output, for 1 minute
■ Overvoltage category: as per IEC 60947-1 cat. 4.


## Battery module

The battery module maintains display operation and communication with the supervisor if the power supply to the Micrologic control unit is interrupted. It is installed in series between the Mricrologic control unit and the AD module.

## Characteristics

■ Battery run-time: 4 hours (approximately)

- Mounted on vertical backplate or symmetrical rail.



## Spare parts

## Lead-seal covers

A lead-seal cover controls access to the adjustment dials.
When the cover is closed:

- it is impossible to modify settings using the keypad unless the settings lockout pin on the cover is removed
- the test connector remains accessible
- the test button for the earth-fault and earth-leakage protection function remains accessible.


## Characteristics

- Transparent cover for basic Micrologic and Micrologic A control units

■ Non-transparent cover for Micrologic P and H control units.

## Spare battery

A battery supplies power to the LEDs identifying the tripping causes. Battery service life is approximately ten years.
A test button on the front of the control unit is used to check the battery condition. The battery may be replaced on site when discharged.

## Test equipment

## Hand-held test kit

The hand-held mini test kit may be used to:

- check operation of the control unit and the tripping and pole-opening system by sending a signal simulating a short-circuit
- supply power to the control units for settings via the keypad when the circuitbreaker is open (Micrologic P and H control units).
Power source: standard LR6-AA battery.


## Full function test kit

The test kit can be used alone or with a supporting personal computer.
The test kit without PC may be used to check:

- the mechanical operation of the circuit breaker

■ the electrical continuity of the connection between the circuit breaker and the control unit

- operation of the control unit:
$\square$ display of settings
$\square$ automatic and manual tests on protection functions
$\square$ test on the zone-selective interlocking (ZSI) function
- inhibition of the earth-fault protection
$\square$ inhibition of the thermal memory.
The test kit with PC offers in addition:
- the test report (software available on request).


## Functions <br> and characteristics

## Portable data acquisition <br> Masterpact and GetnSet

GetnSet is a portable data acquisition and storage accessory that connects directly to the Micrologic control units of Masterpact circuit breakers to read important electrical installation operating data and Masterpact protection settings.
This information is stored in the GetnSet internal memory and can be transferred to a PC via USB or Bluetooth for monitoring and analysis.


## Overview of Masterpact GetnSet functions

GetnSet ${ }^{(1)}$ is a portable data acquisition and storage device that works like a USB drive, letting users manually transfer data to and from a Masterpact circuit breaker or PC.
GetnSet can download operating data from Masterpact and download or upload settings.
Downloadable operating data include measurements, the last 3 trip history records and contact wear status.
Accessible settings include protection thresholds, external relay assignment modes and pre-defined alarm configurations if applicable.
(1) See page F-2 for catalogue numbers.


1 On/Off
2 batterie indicator
3 Download settings
4 Download operating parameters
5 Upload settings
6 USB indicator
7 Bluetooth indicator


## Operating data functions

Electrical installation information such as energy measurements and contact wear status is increasingly important to help reduce operating expenses and increase the availability of electrical power. Such data is often available from devices within the installation, but needs to be gathered and aggregated to allow analysis and determine effective improvement actions.
With GetnSet, this operating data can be easily read and stored as .dgl files in the internal memory. It can then be transferred to a PC via a USB or Bluetooth link and imported in an Excel spreadsheet.
The provided Excel spreadsheet can be used to display the operating data from several breakers in order to:
■ analyse changes in parameters such as energy, power factor and contact wear
■ compare the values of parameters between circuit breakers

- create graphics and reports using standard Excel tools

GetnSet data accessible in the Excel spreadsheet

| Type of data | Micrologic |  |  |
| :--- | :--- | :--- | :--- |
| Current | A | P | H |
| Energy, voltages, frequency, power, power factor |  | P | H |
| Power quality: fundamental, harmonics |  |  | H |
| Trip history |  | P | H |
| Contact wear |  | P | H |

## Functions <br> and characteristics



## Protection setting functions

GetnSet can also be used to back up circuit breaker settings and restore them on the same device or, under certain conditions, copy them to any Masterpact circuit breaker equipped with the same type of Micrologic control unit. This concerns only advanced settings, as other parameters must be set manually using the dials on the Micrologic control unit
■ When commissioning the installation, safeguard the configuration parameters of your electrical distribution system by creating a back-up of circuit breaker settings so that they can be restored at any time.
■ The settings read by GetnSet can be transferred to a PC and are compatible with RSU software (Remote Setting Utility). Protection configurations can also be created on a PC using this software, copied to GetnSet's internal memory and uploaded to a Masterpact circuit breaker with a compatible Micrologic trip unit and dial settings.

## Operating procedure

The procedure includes several steps.

- Plug GetnSet into the receptacle on the front of the Micrologic control unit of a Masterpact circuit breaker
■ On the keypad, select the type of data (operating data or settings) and the transfer direction (download or upload). This operation can be done as many times as required for the entire set of Masterpact circuit breakers.
■ Downloaded data is transferred to the GetnSet internal memory and a file is created for each Masterpact device (either an .rsu file for settings or a.dgl file for operating data).
■ Data can be transferred between GetnSet and a PC via a USB or Bluetooth connection.
■ Operating data can be imported in an Excel spreadsheet and protection settings can be read with RSU (remote setting utility) software.


## Features

■ Battery-powered to power a Micrologic control unit even if the breaker has been opened or tripped. This battery provides power for an average of 1 hour of use, enough for more than 100 download operations.

- Can be used on Masterpact circuit breakers equipped or not equipped with a Modbus "device" communication module
- Portable, standalone accessory eliminating the need for a PC to connect to a Masterpact circuit breaker.
■ No driver or software required for GetnSet connection to a PC.
- Can be used with many circuit breakers, one after the other.
- Embedded memory sized to hold data from more than 5000 circuit breakers.

■ Supplied with its battery, a cable for connection to Micrologic trip units, a USB cable for connection to a PC and a battery charger.

## Compatibility

- Micrologic control units A, P, H
- PC with USB port or Bluetooth link and Excel software


## Technical characteristics

| Charger power supply | $100-240 \mathrm{~V} ; \sim 1 \mathrm{~A} ; 50-60 \mathrm{~Hz}$ |
| :--- | :--- |
| Charger power consumption | Max 100 W |
| Battery | $3.3 \mathrm{~V} \mathrm{DC;} \mathrm{9mAh;} \mathrm{Li-lon}$ |
| Operating temperature | -20 to $+60^{\circ} \mathrm{C}$ |
| GetnSet dimensions | $95 \times 60 \times 35 \mathrm{~mm}$ |

## Communication COM option in Masterpact

The COM option is required for integration of the circuit breaker or switch-disconnector in a supervision system.
Masterpact NAVY uses the Modbus communications protocol for full compatibility with the supervision systems.
An external gateway is available for communication on other networks:
■ Ion Enterprise (power management system)
■ Ethernet gateway (MPS100/EGX)

- Ethernet
- Profibus

Eco COM is limited to the transmission of metering data and does not allow the control of the circuit breaker.


Modbus "device" communication module.

## Modbus "chassis"

 communication module.The COM option is made up of a "device" communication module, installed behind the Micrologic control unit and supplied with its set of sensors (OF, SDE, PF and CH micro-contacts) and its kit for connection to XF and MX communicating voltage release a "chassis" communication module supplied separately with its set of sensors (CE, CD and CT contacts).
Status indication by the COM option is independent of the device indication contacts. These contacts remain available for conventional uses.

## Modbus "Device" communication module

This module is independent of the control unit. It receives and transmits information on the communication network. An infra-red link transmits data between the control unit and the communication module.
Consumption: $30 \mathrm{~mA}, 24 \mathrm{~V}$.

## Modbus "chassis" communication module

This module is independent of the control unit. With Modbus "chassis" communication module, this module makes it possible to address the chassis and to maintain the address when the circuit breaker is in the disconnected position. Consumption: $30 \mathrm{~mA}, 24 \mathrm{~V}$.

## XF and MX1 communicating voltage releases

The XF and MX1 communicating voltage releases are equipped for connection to the "device" communication module.
The remote-tripping function (second MX2 or MN) are independent of the communication option. They are not equipped for connection to the "device" communication module.


## Overview of functions



The Masterpact NAVY circuit breakers and switch-disconnectors are compatible with the Modbus COM option.

## The COM option may be used to:

$\square$ identify the device

- indicate status conditions
- control the device

Depending on the different types of Micrologic (A, P, H) control units, the COM option also offers:

- setting of the protection and alarms functions
- analysis of the AC-power parameters for operating-assistance and maintenance purposes.

|  | Switch-disconnector <br> with communication <br> bus Modbus | Circuit br <br> communi <br> Modbus |  |
| :--- | :--- | :--- | :--- |
| Device identification - A P H <br> Address - A P H <br> Rating P H   <br> Type of device - A P H <br> Type of control unit - A P H |  |  |  |
| Type of long-time rating plug | - |  |  |

## Status indications

| ON/OFF OF | $\square$ | A | P | H |
| :---: | :---: | :---: | :---: | :---: |
| Spring charged CH | - | A | P | H |
| Ready to close PF | (1) | A | P | H |
| Fault-trip SDE | $\square$ | A | P | H |
| Connected/disconnected/ test position CE/CD/CT | $\square$ | A | P | H |
| Controls |  |  |  |  |
| ON/OFF MX/XF | $\square$ | A | P | H |
| Spring charging |  |  |  |  |
| Reset of the mechanical indicator |  |  |  |  |

Protections and alarms settings


Note: see the description of the Micrologic control units for further details on protection and alarms, measurements, waveform capture, histories, logs and maintenance indicators, (1) With Modbus it is possible to monitor the PF status please use the instruction bulletin COMBT32AK at page 51/Register 661 documentation.

## Communication

Masterpact in a communication network

## Modbus

- Modbus is the most widely used communication protocol in industrial networks.
.)
Masterpact, Compact NSX, PowerLogic and Sepam products all operate with this protocol. A Modbus network is generally implemented on an LV or MV switchboard scale.



Web page.

## Gateway

A Modbus TCP gateway can be used to connect the Modbus network to ethernet. The gateway has the two main functions:
■ access to the company intranet (Ethernet) by converting Modbus frames to the
TCP/IP Modbus protocol,
■ optional web-page server for the information from the devices.
Examples include MPS100, EGX400 and EGX100.

## MPS100

■ Plug and play device. It comes loaded with a web-page application for graphic display of currents and voltages and viewing of circuit-breaker status and power and energy values.
To use the application, simply declare the Modbus addresses of the connected slaves. Automatically recognised devices include all Masterpact and Compact NSX Micrologic trip units and the PM500/700/800 and PM9c power monitoring units
■ Can be used for automatic alarm notification via a messaging server available on
the site intranet or via mobile phones (e-mail converted into SMS).
■ Can be used for logging of data that can be automatically sent as e-mail attachments, e.g. a weekly consumption report.

## Modbus bus

The Modbus (RS 485) system is an open bus on which communicating Modbus devices (Masterpact NAVY with Modbus COM, Sepam, Vigilohm...) are installed. All types of PLCs and microcomputers may be connected to the bus.

## Addresses

The Modbus parameters (address, baud rate, parity) are entered using the keypad on the Micrologic A, P or H. For a switch-disconnector, it is necessary to use the RSU (Remote Setting Utility) Micrologic utility.
The software layer of the Modbus protocol can manage up to 255 addresses (1 to 255).
The "device" communication module comprises three addresses linked to:

- circuit-breaker manager
- measurement manager
- protection manager

The "chassis" communication module comprises one address linked to the chassis manager.
The division of the system into four managers secures data exchange with the supervision system and the circuit-breaker actuators.
The manager addresses are automatically derived from the circuit-breaker address @xx entered via the Micrologic control unit (the default address is 47).

| Logic addresses | Circuit-breaker manager | $(1$ to 47$)$ |
| :--- | :--- | :--- |
| $@ x x$ | Chassis manager | $(51$ to 97$)$ |
| $@ x x+50$ | Measurement managers | $(201$ to 247$)$ |
| $@ x x+200$ | Protection manager | $(101$ to 147$)$ |

## Number of devices

The maximum number of devices that may be connected to the Modbus bus depends on the type of device (Masterpact NAVY with Modbus COM, PM500, Sepam, Vigilohm, etc.), the baud rate (19200 is recommended), the volume of data exchanged and the desired response time. The RS485 physical layer offers up to 32 connection points on the bus (1 master, 31 slaves).
A fixed device requires only one connection point (communication module on the device).
A drawout device uses two connection points (communication modules on the device and on the chassis).
The number must never exceed 15 drawout devices.

## Length of bus

The maximum recommended length for the Modbus bus is 1200 meters.

## Bus power source

A 24 V DC power supply is required (less than 20 \% ripple, insulation class II).

## Communication interface

The Modbus bus may be connected to the central processing device in any of three manners:

- direct link to a PLC. The communication interface is not required if the PLC is equipped with a Modbus port
■ direct link to a computer. The Modbus (RS485) / Serial port (RS232)
communication interface is required
■ connection to a TCP/IP (Ethernet) network. The Modbus (RS485) / TCP/IP
(Ethernet) communication interface is required.
Software
To make use of the information provided by the communicating devices, software with a Modbus driver must be used.


## Micrologic utilities

This is a set of software that may be used with a PC to:
■ display the variables (I, U, P, E, etc.) with the RDU (Remote Display Utility)
■ read/write the settings with the RSU (Remote Setting Utility)

- remotely control (ON / OFF) the device with the RCU (Remote Control Utility).

Micrologic utilities are available upon request

## SMS (System Manager Software)

SMS is a software to monitor LV and/or MV electrical energy.
The SMS family includes a software range depending on the application and function, from single product monitoring to the management of a multiple building:
■ Power Meter and Circuit Monitor units

- LV devices
- Sepam units.

Functions and characteristics

## Connections

Overview of solutions

Three types of connection are available: - vertical or horizontal rear connection - front connection

- mixed connection.


Simply turn a horizontal rear connector $90^{\circ}$ to make it a vertical connector.


Front connection is available up to 3200 A.


Note: Masterpact NAVY circuit breakers can be connected indifferently with bare-copper, tinnedcopper and tinned-aluminium conductors, requiring no particular treatment.

## Accessories

| Type of accessory | Masterpact NT06 to NT16 NAVY | Masterpact NW08 to NW40 NAVY |
| :---: | :---: | :---: |
|  | Drawout | Drawout |
| Vertical connection adapters |  |  |
| Cable lug adapters |  |  |
| Interphase barriers |  |  |
| Spreaders | DB101150 |  |
| Safety shutters with padlocking | DB101152 <br> standard | DB101153 <br> standard |

(1) Mandatory for voltages $>500 \mathrm{~V}$.
(2) Except for an NW40 equipped for horizontal rear connection.

Functions and characteristics

## Connections

Accessories


## Vertical-connection adapters (option)

Mounted on front-connected chassis, the adapters facilitate connection to a set of vertical busbars.


## Cable-lug adapters (option)

Cable-lug adapters are used in conjunction with vertical-connection adapters.
They can be used to connect a number of cables fitted with lugs.
To ensure adequate mechanical strength, the connectors must be secured together via spacers (catalogue number 07251).


## Interphase barriers (option)

These barriers are flexible insulated partitions used to reinforce isolation of connection points in installations with busbars, whether insulated or not. For Masterpact NT/NW NAVY devices, they are installed vertically between rear connection terminals. They are mandatory for NT NAVY devices at voltages > 500 V .

## Spreaders (option)

Mounted on the front or rear connectors, spreaders are used to increase the distance between bars in certain installation configurations.

## Safety shutters Vo (standard)

Mounted on the chassis, the safety shutters automatically block access to the disconnecting contact cluster when the device is in the disconnected or test positions (degree of protection IP 20) When the device is removed from its chassis, no live parts are accessible.
The shutter-locking system is made up of a moving block that can be padlocked (padlock not supplied). The block:

- prevents connection of the device
- locks the shutters in the closed position.

For Masterpact NW08 to NW40 NAVY
A support at the back of the chassis is used to store the blocks when they are not used:

- 2 blocks for NW08 to NW40 NAVY.


## Locking <br> On the device



Access to pushbuttons protected by transparent cover.


Pushbutton locking using a padlock.


OFF position locking using a padlock.


OFF position locking using a keylock.


## Pushbutton locking VBP

The transparent cover blocks access to the pushbuttons used to open and close the device.
It is possible to independently lock the opening button and the closing button.
The locking device is often combined with a remote operating mechanism.
The pushbuttons may be locked using either:

- three padlocks (not supplied)
- lead seal
two screws.


## Device locking in the OFF position

## By padlocks (VCPO option) - By keylocks (VSPO option)

The circuit breaker is locked in the OFF position by physically maintaining the opening pushbutton pressed down:
$\square$ using padlocks (one to three padlocks, not supplied)

- using keylocks (one or two different keylocks, supplied).

Keys may be removed only when locking is effective (Profalux or Ronis type locks).
The keylocks are available in any of the following configurations:

- one keylock

■ one keylock mounted on the device + one identical keylock supplied separately for interlocking with another device
■ two different key locks for double locking
Profalux and Ronis keylocks are compatible with each other.
A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux, Kirk or Castell).

## Accessory-compatibility

For Masterpact NT NAVY: 3 padlocks or 1 keylock.
For Masterpact NW NAVY: 3 padlocks and/or 2 keylocks

Functions and characteristics

## Locking

On the chassis


"Disconnected" position locking by padlocks.


Racking interlock.

"Disconnected" position locking by keylocks.

## "Disconnected" position locking By padlocks (standard) or keylocks (VSPD option)

Mounted on the chassis and accessible with the door closed, these devices lock the circuit breaker in the "disconnected" position in two manners:
$\square$ using padlocks (standard), up to three padlocks (not supplied)

- using keylocks (optional), one or two different keylocks are available.

Profalux and Ronis keylocks are available in different options:
■ one keylock

- two different keylocks for double locking

■ one (or two) keylocks mounted on the device + one (or two) identical keylocks supplied separately for interlocking with another device.
A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux, Kirk or Castell).

## "Connected", "disconnected" and "test" position locking

The "connected", "disconnected" and "test" positions are shown by an indicator and are mechanically indexed. The exact position is obtained when the racking handle blocks. A release button is used to free it.
As standard, the circuit breaker can be locked only in "disconnected" position.
On request, the locking system may be modified to lock the circuit breaker in any of the three positions: "connected", "disconnected" or "test".

## Racking interlock VPOC

This device prevents insertion of the racking handle when the cubicle door is open.

## Indication contacts

Indication contacts are available:

- in the standard version for relay applications - in a low-level version for control of PLCs and electronic circuits.


ON/OFF indication contacts (OF) (microswitch type).


Additional "fault-trip" indication contacts (SDE).


Combined contacts.


ON/OFF indication contacts (OF) (rotary type).

ON/OFF indication contacts (OF)
Two types of contacts indicate the ON or OFF position of the circuit breaker:

- microswitch type changeover contacts for Masterpact NT NAVY
- rotary type changeover contacts directly driven by the mechanism for Masterpact

NW NAVY. These contacts trip when the minimum isolation distance between the main circuit-breaker contacts is reached.

| OF |  |  | NT NAVY | NW NAVY |
| :---: | :---: | :---: | :---: | :---: |
| Supplied as standard |  |  | 4 | 4 |
| Maximum number |  |  | 4 | 8 |
| Breaking capacity (A) | Standard |  | Minimum load | $100 \mathrm{~mA} / 24 \mathrm{~V}$ |
| p.f.: 0.3 | VAC | 240/380 | 6 | $10 / 6{ }^{(1)}$ |
| AC12/DC12 |  | 480 | 6 | $10 / 6{ }^{(1)}$ |
|  |  | 690 | 6 | 6 |
|  | V DC | 24/48 | 2,5 | 10/6 ${ }^{(1)}$ |
|  |  | 125 | 0,5 | $10 / 6{ }^{(1)}$ |
|  |  | 250 | 0,3 | 3 |
|  | Low-level |  | Minimum load | $2 \mathrm{~mA} / 15 \mathrm{~V}$ |
|  | V AC | 24/48 | 5 | 6 |
|  |  | 240 | 5 | 6 |
|  |  | 380 | 5 | 3 |
|  | V DC | 24/48 | 5/2.5 | 6 |
|  |  | 125 | 0.5 | 6 |
|  |  | 250 | 0.3 | 3 |

(1) Standard contacts: 10 A ; optional contacts: 6 A .
"Fault-trip" indication contacts SDE
Circuit-breaker tripping due to a fault is signalled by:

- a red mechanical fault indicator (reset)

■ one changeover contact SDE.
Following tripping, the mechanical indicator must be reset before the circuit breaker may be closed. One SDE is supplied as standard. An optimal SDE may be added.
This latter is incompatible with the electrical reset after fault-trip option (Res).

| SDE |  |  | NT/NW NAVY |
| :---: | :---: | :---: | :---: |
| Supplied as standard |  |  | 1 |
| Maximum number |  |  | 2 |
| $\begin{aligned} & \text { Breaking capacity (A) } \\ & \text { p.f.: } 0.3 \\ & \text { AC12/DC12 } \end{aligned}$ | Standard |  | Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$ |
|  | VAC | 240/380 | 5 |
|  |  | 480 | 5 |
|  |  | 690 | 3 |
|  | V DC | 24/48 | 3 |
|  |  | 125 | 0.3 |
|  |  | 250 | 0.15 |
|  | Low-level |  | Minimum load: $2 \mathrm{~mA} / 15 \mathrm{~V}$ |
|  | V AC | 24/48 | 3 |
|  |  | 240 | 3 |
|  |  | 380 | 3 |
|  | VDC | 24/48 | 3 |
|  |  | 125 | 0.3 |
|  |  | 250 | 0.15 |

## Combined "connected/closed" contacts (EF)

The contact combines the "device connected" and the "device closed" information to produce the "circuit closed" information. Supplied as an option for Masterpact NW NAVY, it is mounted in place of the connector of an additional OF contact.

| EF <br> Maximum number |  |  | NW NAVY <br> 4 |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| Breaking capacity (A) | Standard |  | Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$ |
| p.f.: 0.3 | VAC | 240/380 | 6 |
| AC12/DC12 |  | 480 | 6 |
|  |  | 690 | 6 |
|  | V DC | 24/48 | 2.5 |
|  |  | 125 | 0.8 |
|  |  | 250 | 0.3 |
|  | Low-level |  | Minimum load: $2 \mathrm{~mA} / 15 \mathrm{~V}$ |
|  | VAC | 24/48 | 5 |
|  |  | 240 | 5 |
|  |  | 380 | 5 |
|  | V DC | 24/48 | 2.5 |
|  |  | 125 | 0.8 |
|  |  | 250 | 0.3 |



CCE, CD and CT "connected/disconnected/test" position carriage switches.

## "Connected", "disconnected" and "test" position carriage switches <br> Three series of optional auxiliary contacts are available for the chassis: <br> ■ changeover contacts to indicate the "connected" position CE <br> - changeover contacts to indicate the "disconnected" position CD. This position is indicated when the required clearance for isolation of the power and auxiliary circuits <br> is reached <br> ■ changeover contacts to indicate the "test" position CT. In this position, the power circuits are disconnected and the auxiliary circuits are connected.

Additional actuators
A set of additional actuators may be installed on the chassis to change the functions of the carriage switches.


## Remote operation Remote ON/OFF

Two solutions are available for remote operation of Masterpact NAVY devices:
■ a point-to-point solution
■ a bus solution with the COM communication option.


Note: an opening order always takes priority over a closing order.
If opening and closing orders occur simultaneously, the mechanism discharges without any movement of the main contacts. The circuit breaker remains in the open position (OFF).
In the event of maintained opening and closing orders, the standard mechanism provides an anti-pumping function by blocking the main contacts in open position.
Anti-pumping function. After fault tripping or intentional opening using the manual or electrical controls, the closing order must first be discontinued, then reactivated to close the circuit breaker.
When the automatic reset after fault trip (RAR) option is installed, to avoid pumping following a fault trip, the automatic control system must take into account the information supplied by the circuit breaker before issuing a new closing order or blocking the circuit breaker in the open position (information on the type of fault, e.g. overload, short-time fault, earth fault, earth leakage, short-circuit, etc.).

Note: MX1 communicating releases are of the impulse type only and cannot be used to lock a circuit breaker in OFF position. For locking in OFF position, use the remote tripping function (MX2 or MN).
When MX1 or XF communicating releases are used, the third wire (C3, A3) must be connected even if the communication module is not installed. When the control voltage (C3-C1 or A3A1) is applied to the MX1 or XF releases, it is necessary to wait 1.5 seconds before issuing an order. Consequently, it is advised to use standard MX1 or XF releases for applications such as source-changeover systems.

The remote ON / OFF function is used to remotely open and close the circuit breaker. It is made up of:
■ an electric motor MCH equipped with a "springs charged" limit switch contact CH

- two voltage releases:
$\square$ a closing release XF
$\square$ an opening release MX1.
Optionally, other functions may be added:
■ a "ready to close" contact PF
■ an electrical closing pushbutton BPFE
- remote RES following a fault.

A remote-operation function is generally combined with:

- device ON / OFF indication OF
- "fault-trip" indication SDE.

Wiring diagram of a point-to-point remote ON / OFF function


Wiring diagram of a bus-type remote ON / OFF function


## Functions and characteristics

## Remote operation Remote ON / OFF


$X F$ and $M X$ voltage releases.

"Ready to close" contacts (PF).

## Electric motor MCH

The electric motor automatically charges and recharges the spring mechanism when the circuit breaker is closed. Instantaneous reclosing of the breaker is thus possible following opening. The spring-mechanism charging handle is used only as a backup if auxiliary power is absent.
The electric motor $(\mathrm{MCH})$ is equipped as standard with a limit switch contact $(\mathrm{CH})$ that signals the "charged" position of the mechanism (springs charged).

| Characteristics |  |
| :--- | :--- |
| Power supply V AC 50/60 Hz | $100 / 130-200 / 240-250 / 277$ (NW only) $-380 / 415-400 / 440$ |
| Operating threshold | 0.85 to 1.1 Un |
| Consumption (VA or W) | 180 |
| Motor overcurrent | 2 to 3 In for 0.1 s |
| Charging time | maximum 3 s for Masterpact NT NAVY <br>  <br> maximum 4 s for Masterpact NW NAVY <br> Operating frequency |
| CH contact | 10 A at 240 V |

## Voltage releases XF and MX1

Their supply can be maintained or automatically disconnected.

## Closing release XF

The XF release remotely closes the circuit breaker if the spring mechanism is charged.
Opening release MX1
The MX release instantaneously opens the circuit breaker when energised. It locks the circuit breaker in OFF position if the order is maintained (except for MX1 "communicating" releases).
Note: whether the operating order is maintened or automatically disconnected (pulse-type), XF or MX1 "communicating" releases ("bus" solution with "COM" communication option) always have an impulse-type action (see diagram).

| Characteristics | XF | MX1 |
| :--- | :--- | :--- |
| Power supply V AC 50/60 Hz $115-220-380 / 440$  <br> Operating threshold 0.85 to 1.1 Un 0.7 to 1.1 Un <br> Consumption (VA or W) Hold: 4.5 Hold: 4.5 <br>  Pick-up: $200(200 \mathrm{~ms})$ Pick-up: $200(200 \mathrm{~ms})$ <br> Circuit-breaker response time at Un $55 \mathrm{~ms} \pm 10($ Masterpact NT $50 \mathrm{~ms} \pm 10$ <br>  NAVY)  <br>  $70 \mathrm{~ms} \pm 10(\mathrm{NW} \leqslant 4000 \mathrm{~A})$  <br>  $80 \mathrm{~ms} \pm 10(\mathrm{NW}>4000 \mathrm{~A})$  |  |  |

## "Ready to close" contact PF

The "ready to close" position of the circuit breaker is indicated by a mechanical indicator and a PF changeover contact. This signal indicates that all the following are valid:
■ the circuit breaker is in the OFF position

- the spring mechanism is charged
- a maintained opening order is not present:
$\square$ MX1 energised
- fault trip
$\square$ remote tripping (MX2 or MN)
- device not completely racked in
$\square$ device locked in OFF position
$\square$ device interlocked with a second device.

| Characteristics |  |  | NT/NW NAVY |
| :---: | :---: | :---: | :---: |
| Maximum number |  |  | 1 |
| Breaking capacity (A) | Standard |  | Minimum load: $100 \mathrm{~mA} / 24 \mathrm{~V}$ |
| p.f.: 0.3 | VAC | 240/380 | 5 |
| AC12/DC12 |  | 480 | 5 |
|  |  | 690 | 3 |
|  | VDC | 24/48 | 3 |
|  |  | 125 | 0.3 |
|  |  | 250 | 0.15 |
|  | Low-level |  | Minimum load: $2 \mathrm{~mA} / 15 \mathrm{~V}$ |
|  | VAC | 24/48 | 3 |
|  |  | 240 | 3 |
|  |  | 380 | 3 |
|  | V DC | 24/48 | 3 |
|  |  | 125 | 0.3 |
|  |  | 250 | 0.15 |



## Electrical closing pushbutton BPFE

Located on the front panel, this pushbutton carries out electrical closing of the circuit breaker. It is generally associated with the transparent cover that protects access to the closing pushbutton.
Electrical closing via the BPFE pushbutton takes into account all the safety functions that are part of the control/monitoring system of the installation.
The BPFE connects to the closing release (XF com) in place of the COM module.
The COM module is incompatible with this option.
Different types of voltage exist and the XF electromagnet is compulsary if the BPFE option is selected.


## Automatic reset after fault trip RAR

Following tripping, a reset of the mechanical indicator (reset button) is no longer required to enable circuit-breaker closing. The mechanical (reset button) and electrical SDE indications remain in fault position until the reset button is pressed. The use of XF closing release is compulsory with this option.

Functions and characteristics

## Remote operation

Remote tripping


MX or MN voltage release.

This function opens the circuit breaker via an electrical order. It is made up of:

- a shunt release MX2
- or an undervoltage release MN
- or a delayed undervoltage release ( $\mathrm{MN}+$ delay unit).

These releases (MX2 or MN) cannot be operated by the communication bus. The delay unit, installed outside the circuit breaker, may be disabled by an emergency OFF button to obtain instantaneous opening of the circuit breaker.
Wiring diagram for the remote-tripping function


Voltage releases MX2
When energised, the MX2 voltage release instantaneously opens the circuit breaker. A continuous supply of power to the second MX2 locks the circuit breaker in the OFF position.

| Characteristics |  |  |
| :--- | :--- | :--- | :--- |
| Power supply $\quad$ VAC $50 / 60 \mathrm{~Hz}$ | $115-220-380 / 440$ |  |
| Operating threshold | 0.7 to 1.1 Un |  |
| Permanent locking function | 0.85 to 1.1 Un | Hold: 4.5 |
| Consumption (VA or W) | Pick-up: $200(80 \mathrm{~ms})$ |  |
| Circuit-breaker response time at Un | $50 \mathrm{~ms} \pm 10$ |  |

Instantaneous voltage releases MN
The MN release instantaneously opens the circuit breaker when its supply voltage drops to a value between $35 \%$ and $70 \%$ of its rated voltage. If there is no supply on the release, it is impossible to close the circuit breaker, either manually or electrically. Any attempt to close the circuit breaker has no effect on the main contacts. Circuit-breaker closing is enabled again when the supply voltage of the release returns to $85 \%$ of its rated value.

| Characteristics |  |  |  |
| :--- | :--- | :--- | :--- |
| Power supply | VAC 50/60 Hz | $100 / 130-200 / 250-380 / 480$ |  |
| Operating threshold | Opening | 0.35 to 0.7 Un |  |
|  | Closing | 0.85 Un | Hold: 4.5 |
| Consumption (VA or W) | Pick-up: $200(200 \mathrm{~ms})$ | Hold: 4.5 |  |
| MN consumption | Pick-up: $200(200 \mathrm{~ms})$ |  |  |
| with delay unit (VA or W) |  |  |  |
| Circuit-breaker response time at Un | $40 \mathrm{~ms} \pm 5$ for NT |  |  |
|  | $90 \mathrm{~ms} \pm 5$ for NW |  |  |

## MN delay units

To eliminate circuit-breaker nuisance tripping during short voltage dips, operation of the MN release can be delayed. This function is achieved by adding an external delay unit in the MN voltage-release circuit. Two versions are available, adjustable and non-adjustable.

| Characteristics |  |  |
| :--- | :--- | :--- |
| Power supply | Non-adjustable | $100 / 130-200 / 250$ |
| V AC 50-60 Hz /DC | Adjustable | $100 / 130-200 / 250-380 / 480$ |
| Operating threshold | Opening | 0.35 to 0.7 Un |
|  | Closing | 0.85 Un |
| Delay unit consumption | Pick-up: $200(200 \mathrm{~ms})$ |  |
| Circuit-breaker response time at Un | Non-adjustable | 0.25 s |
|  | Adjustable | $0.5 \mathrm{~s}-0.9 \mathrm{~s} \mathrm{-}-1.5 \mathrm{~s} \mathrm{-}-3 \mathrm{~s}$ |

## Accessories



## Auxiliary terminal shield CB

Optional equipment mounted on the chassis, the shield prevents access to the terminal block of the electrical auxiliaries


## Operation counter CDM

The operation counter sums the number of operating cycles and is visible on the front panel. It is compatible with manual and electrical control functions.


Escutcheon CDP with blanking plate.


[^1]
## Escutcheon CDP

Optional equipment mounted on the door of the cubicle, the escutcheon increases the degree of protection to IP 40 (circuit breaker installed free standing: IP30).

Blanking plate OP for escutcheon
Used with the escutcheon, this option closes off the door cut-out of a cubicle not yet equipped with a device.

## Transparent cover CCP for escutcheon

Optional equipment mounted on the escutcheon, the cover is hinged and secured by a screw. It increases the degree of protection to IP54, IK10.

## schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: - complete library: technical documents, catalogs, FAQs, brochures...

- selection guides from the e-catalog. - product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...


## CAD software and tools

The CAD software and tools enhance productivity and safety. They help you create your installations by simplifying product choice through easy browsing in the Schneider Electric offers.
Last but not least, they optimise use of our products while also complying with standards and proper procedures.

Presentation ..... 1
Functions and characteristics ..... A-1
Operating conditions ..... B-2
Installation in switchboard ..... B-3
Control wiring ..... B-5
Power connection ..... B-6
Recommended busbars drilling ..... B-8
Masterpact NT06 to NT16 NAVY ..... B-8
Masterpact NW08 to NW40 NAVY ..... B-9
Busbar sizing ..... B-10
Temperature derating Power dissipation and input / output resistance ..... B-12
Derating in switchboards ..... B-13
Dimensions and connections ..... C-1
Electrical diagrams ..... D-1
Additional characteristics ..... E-1
Catalogue numbers and order form ..... F-1

## Operating conditions



## Ambient temperature

Masterpact NAVY devices can operate under the following temperature conditions:

- the electrical and mechanical characteristics are stipulated for an ambient
temperature of $-5^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- circuit-breaker closing is guaranteed down to $-35^{\circ} \mathrm{C}$.

Storage conditions are as follows:
■ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for a Masterpact NAVY device without its control unit

- $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the control unit.


## Extreme atmospheric conditions

Masterpact NAVY devices have successfully passed the tests defined by the following standards for extreme atmospheric conditions:
■ IEC 60068-2-1: dry cold at $-55^{\circ} \mathrm{C}$

- IEC 60068-2-2: dry heat at $+85^{\circ} \mathrm{C}$
- IEC 60068-2-30: damp heat (temperature $+55^{\circ} \mathrm{C}$, relative humidity $95 \%$ )

■ IEC 60068-2-52 level 2: salt mist.
Masterpact NAVY devices can operate in the industrial environments defined by standard IEC 947 (pollution degree up to 4).
It is nonetheless advised to check that the devices are installed in suitably cooled switchboards without excessive dust.

## Vibrations

Masterpact NAVY devices are guaranteed to withstand electromagnetic or mechanical vibrations:
■ 5 to $22 \mathrm{~Hz}: \pm 1 \mathrm{~mm}$ displacement amplitude
■ 5 to $60 \mathrm{~Hz}: 2 \mathrm{~g}$ acceleration.
Tests are carried out in compliance with standard IEC 60068-2-6.
They are carried out in 3 directions, with the circuit breaker open and closed.

## Mechanical shocks

Masterpact NAVY devices are guaranteed to withstand mechanical shocks:

- $15 \mathrm{~g}-11 \mathrm{~ms}-1 / 2$ sine shock pulse under the following conditions:
$\square$ required clearance maintained between open main contacts
$\square$ no opening or closing of auxiliary contacts exceeding 3 ms .
■ $18 \mathrm{~g}-11 \mathrm{~ms}-1 / 2$ sine shock pulse under the following conditions:
$\square$ required clearance maintained between open main contacts.
Tests are carried out in compliance with standard IEC 60068-2-7.
They are carried out in 3 directions, with the circuit breaker open and closed.


## List and trim

- Masterpact Navy devices have passed tests for operation under $\pm 45^{\circ}$ list and trim conditions.


## Electromagnetic disturbances

Masterpact NAVY devices are protected against:
$\square$ overvoltages caused by devices that generate electromagnetic disturbances

- overvoltages caused by atmospheric disturbances or by a distribution-system
outage (e.g. failure of a lighting system)
- devices emitting radio waves (radios, walkie-talkies, radar, etc.)

■ electrostatic discharges produced by users.
Masterpact NAVY devices have successfully passed the electromagneticcompatibility tests (EMC) defined by the following international standards:

- IEC 60947-2, appendix F
- IEC 60947-2, appendix B (trip units with earth-leakage function).

The above tests guarantee that:
■ no nuisance tripping occurs

- tripping times are respected.


## Possible positions



Power supply
Masterpact NAVY devices can be supplied either from the top or from the bottom without reduction in performance, in order to facilitate connection when installed in a switchboard.


## Mounting the circuit-breaker

It is important to distribute the weight of the device uniformily over a rigid mounting surface such as rails or a base plate.
This mounting plane should be perfectly flat (tolerance on support flatness: 2 mm ). This eliminates any risk of deformation which could interfere with correct operation of the circuit breaker.
Masterpact NAVY devices can also be mounted on a vertical plane using the special brackets.


Mounting on rails.


## Partitions

Sufficient openings must be provided in partitions to ensure good air circulation around the circuit breaker; Any partition between upstream and downstream connections of the device must be made of nonmagnetic material.
For high currents, of 2500 A and upwards, the metal supports or barriers in the immediate vicinity of a conductor must be made of non-magnetic material A. Metal barriers through which a conductor passes must not form a magnetic loop.

## Busbars (NT NAVY, NW NAVY)

The mechanical connection must be exclude the possibility of formation of a magnetic loop around a conductor.


## Busbars (NT NAVY)

For live busbars installed immediately above the circuit breaker (respecting the 100 mm safety clearance), the distance between bars must be 65 mm minimum.


## Interphase barrier

If the insulation distance between phases is not sufficient ( $\leqslant 14 \mathrm{~mm}$ ), it is advised to install phase barriers (taking into account the safety clearances). Mandatory for a Masterpact NAVY NT > 500 V.


## Control wiring

## Wiring of voltage releases

During pick-up, the power consumed is approximately 150 to 200 VA. For low control voltages ( $12,24,48 \mathrm{~V}$ ), maximum cable lengths are imposed by the voltage and the cross-sectional area of cables.
Recommended maximum cable lengths (meter).


Note: the indicated length is that of each of the two wires.

## 24 V DC power-supply module

External 24 V DC power-supply module for Micrologic (F1-, F2+)

- Do not connect the positive terminal (F2+) to earth
- The negative terminal (F1-) can be connected to earth, except in IT systems
- A number of Micrologic control units can be connected to the same 24 V DC power
supply (the consumption of a Micrologic control unit is approximately 100 mA )
■ Do not connect any devices other than a Micrologic control unit
- The maximum length for each conductor is ten metres. For greater distances, it is advised to twist the supply wires together
- The 24 V DC supply wires must cross the power cables perpendicularly. If this is difficult, it is advised to twist the supply wires together
- The technical characteristics of the external 24 V DC power-supply module for Micrologic control units are indicated on page A-20.


## Communication bus

- Do not connect the positive terminal (E1) to earth
- The negative terminal (E2) can be connected to earth
- A number of "device" or "chassis" communication modules can be connected to the same 24 V DC power supply (the consumption of each module is approximately 30 mA )
- The 24 V DC (E1, E2) power supply for the communication bus must be separate from the external 24 V DC power-supply module for Micrologic control units (F1-, F2+).

| E1 | E2 | E3 | E4 | E5 | E6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| + | - | $A / T x^{-}$ | $B / T x^{+}$ | $A^{\prime} / R x$ | $B^{\prime} / R x^{+}$ |

To create a two-wire Modbus communication bus, simply connect Tx with Rx and $\mathrm{Tx}^{+}$with $\mathrm{Rx}^{+}$.
To connect a Modbus slave (Micrologic) to a Modbus master (PLC), connect:
the slave $T x$ to the master $R x$ the slave $R x$ to the master $T x-$
the slave $\mathrm{Tx}^{+}$to the master $R x^{+}$the slave $R x^{+}$to the master $T x^{+}$.
RS 485 Modbus junction block


| Pins | Signal |
| :---: | :--- |
| 1 | 0 V |
| 2 | 24 V |
| 3 | NC |
| 4 | $\mathrm{~B}^{\prime} / \mathrm{Rx}^{+}$ |
| 5 | $\mathrm{~B} / \mathrm{Tx}^{+}$ |
| 6 | 0 V |
| 7 | 24 V |
| 8 | $\mathrm{~A}^{\prime} / \mathrm{Rx}$ |
| 9 | $\mathrm{~A} / \mathrm{Tx}$ |

Color
Black
Red

Blue
Yellow
Black
Red
White
Brown

Wiring of ZSI: it is recommended to use twisted shielded cable. The shield must be connected to earth at both ends.

## Cables connections

If cables are used for the power connections, make sure that they do not apply excessive mechanical forces to the circuit breaker terminals.
For this, make the connections as follows:

- extend the circuit breaker terminals using short bars designed and installed according to the recommendations for bar-type power connections: $\square$ for a single cable, use solution B opposite
$\square$ for multiple cables, use solution $\mathbf{C}$ opposite
- in all cases, follow the general rules for connections to busbars:
$\square$ position the cable lugs before inserting the bolts
$\square$ the cables should firmly secured to the framework E.



## Busbars connections

The busbars should be suitably adjusted to ensure that the connection points are positioned on the terminals before the bolts are inserted $\mathbf{B}$
The connections are held by the support which is solidly fixed to the framework of the switchboard, such that the circuit breaker terminals do not have to support its weight $\mathbf{C}$. (This support should be placed close to the terminals).


Electrodynamic stresses
The first busbar support or spacer shall be situated within a maximum distance from the connection point of the breaker (see table below). This distance must be respected so that the connection can withstand the electrodynamic stresses between phases in the event of a short circuit.
Maximum distance A between busbar to circuit breaker connection and the first busbar support or spacer with respect to the value of the prospective short-circuit current.

| Isc (kA) | 30 | 50 | 65 | 80 | 100 | 150 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Distance A (mm) | 350 | 300 | 250 | 150 | 150 | 150 |



1 Terminal screw factory-tightened to 16 Nm (NW), 13 Nm (NT).
2 Breaker terminal.
3 Busbar.
4 Bolt.
5 Washer.
6 Nut.

## Clamping

Correct clamping of busbars depends amongst other things, on the tightening torques used for the nuts and bolts. Over-tightening may have the same consequences as under-tightening.
For connecting busbars (Cu ETP-NFA51-100) to the circuit breaker, the tightening torques to be used are shown in the table below.
These values are for use with copper busbars and steel nuts and bolts, class 8.8. The same torques can be used with AGS-T52 quality aluminium bars (French standard NFA 02-104 or American National Standard H-35-1).

## Examples



## Busbar drilling



Isolation distance



Dimensions (mm)

| Ui | $X$ min |
| :--- | :--- |
| 600 V | 8 mm |

## Busbar bending

When bending busbars maintain the radius indicated below (a smaller radius would cause cracks).


## Dimensions (mm)

| e | Radius of curvature $\mathbf{r}$ <br> Min | Recommended |
| :--- | :--- | :--- |
| 5 | 5 | 7.5 |
| 10 | 15 | 18 to 20 |

Installation
recommendations

## Recommended busbars drilling

Masterpact NT06 to NT16 NAVY


## Vertical rear connection








Front connection


Horizontal rear connection NW08 to NW32 NAVY


Vertical rear connection NW08 to NW32 NAVY


Front connection NW08 to NW32 NAVY


Top connection
Bottom connection


| os |
| :---: |
| $\stackrel{\text { O }}{\circ}$ |
| $\stackrel{\circ}{0}$ |
| 0 |



Basis of tables:
■ maximum permissible busbars temperature: $100^{\circ} \mathrm{C}$

- Ti: temperature around the circuit breaker and its
connection
- busbar material is unpainted copper.

Front or rear horizontal connection


| Masterpact NAVY | Maximum service current | Ti : $40{ }^{\circ} \mathrm{C}$ |  | Ti : $50{ }^{\circ} \mathrm{C}$ |  | Ti : $60{ }^{\circ} \mathrm{C}$ |  | Ti : $70{ }^{\circ} \mathrm{C}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | No. of 5 mm thick bars | No. of 10 mm thick bars | No. of 5 mm thick bars | No. of 10 mm thick bars | No. of 5 mm thick bars | No. of 10 mm thick bars | No. of 5 mm thick bars | No. of 10 mm thick bars |
| NT06 NAVY | 630 | $2 \mathrm{~b} .40 \times 5$ | $1 \mathrm{~b} .40 \times 10$ | $2 \mathrm{~b} .40 \times 5$ | $1 \mathrm{~b} .40 \times 10$ | $2 \mathrm{~b} .40 \times 5$ | $1 \mathrm{~b} .40 \times 10$ | $2 \mathrm{~b} .40 \times 5$ | $1 \mathrm{~b} .40 \times 10$ |
| NT08 or NW08 NAVY | 800 | $2 \mathrm{~b} .50 \times 5$ | $1 \mathrm{~b} .50 \times 10$ | $2 \mathrm{~b} .50 \times 5$ | $1 \mathrm{~b} .50 \times 10$ | $2 \mathrm{~b} .50 \times 5$ | $1 \mathrm{~b} .63 \times 10$ | $2 \mathrm{~b} .50 \times 5$ | $1 \mathrm{~b} .63 \times 10$ |
| NT10 or NW10 NAVY | 1000 | $3 \mathrm{~b} .50 \times 5$ | $1 \mathrm{~b} .63 \times 10$ | $3 \mathrm{~b} .50 \times 5$ | $2 \mathrm{~b} .50 \times 10$ | $3 \mathrm{~b} .63 \times 5$ | $2 \mathrm{~b} .50 \times 10$ | $3 \mathrm{~b} .63 \times 5$ | $2 \mathrm{~b} .50 \times 10$ |
| NT12 or NW12 NAVY | 1250 | $3 \mathrm{~b} .50 \times 5$ | $2 \mathrm{~b} .40 \times 10$ | $3 \mathrm{~b} .50 \times 5$ | $2 \mathrm{~b} .50 \times 10$ | $3 \mathrm{~b} .63 \times 5$ | $2 \mathrm{~b} .50 \times 10$ | $3 \mathrm{~b} .63 \times 5$ | $2 \mathrm{~b} .50 \times 10$ |
|  |  | $2 \mathrm{~b} .80 \times 5$ | $2 \mathrm{~b} .40 \times 10$ | $2 \mathrm{~b} .80 \times 5$ |  |  |  |  |  |
| NT16 or NW16 NAVY | 1400 | $3 \mathrm{~b} .63 \times 5$ | $2 \mathrm{~b} .40 \times 10$ | $3 \mathrm{~b} .63 \times 5$ | $2 \mathrm{~b} .50 \times 10$ | $3 \mathrm{~b} .80 \times 5$ | $2 \mathrm{~b} .63 \times 10$ | $3 \mathrm{~b} .80 \times 5$ | $2 \mathrm{~b} .63 \times 10$ |
| NT16 or NW16 NAVY | 1600 | $3 \mathrm{~b} .80 \times 5$ | $2 \mathrm{~b} .63 \times 10$ | $3 \mathrm{~b} .80 \times 5$ | $2 \mathrm{~b} .63 \times 10$ | $3 \mathrm{~b} .80 \times 5$ | $3 \mathrm{~b} .50 \times 10$ | $3 \mathrm{~b} .80 \times 5$ | $3 \mathrm{~b} .50 \times 10$ |
| NW20 NAVY | 1800 | $3 \mathrm{~b} .80 \times 5$ | $2 \mathrm{~b} .63 \times 10$ | $3 \mathrm{~b} .80 \times 5$ | $2 \mathrm{~b} .63 \times 10$ | $3 \mathrm{~b} .100 \times 5$ | $2 \mathrm{~b} .80 \times 10$ | $3 \mathrm{~b} .100 \times 5$ | $2 \mathrm{~b} .80 \times 10$ |
| NW20 NAVY | 2000 | 3b. $100 \times 5$ | $2 \mathrm{~b} .80 \times 10$ | $3 \mathrm{~b} .100 \times 5$ | $2 \mathrm{~b} .80 \times 10$ | 3b. $100 \times 5$ | $3 \mathrm{~b} .63 \times 10$ | 3b. $100 \times 5$ | $3 \mathrm{~b} .63 \times 10$ |
| NW25 NAVY | 2200 | 4b. $100 \times 5$ | $2 \mathrm{~b} .80 \times 10$ | 4b. $100 \times 5$ | $2 \mathrm{~b} .80 \times 10$ | 4b. $100 \times 5$ | $2 \mathrm{~b} .100 \times 10$ | $5 \mathrm{~b} .80 \times 5$ | $2 \mathrm{~b} .100 \times 10$ |
| NW25 NAVY | 2500 | 4b. $100 \times 5$ | $2 \mathrm{~b} .100 \times 10$ | 4b. $100 \times 5$ | $2 \mathrm{~b} .100 \times 10$ | 4b. $100 \times 5$ | $3 \mathrm{~b} .80 \times 10$ | 4b. $100 \times 5$ | $3 \mathrm{~b} .80 \times 10$ |
| NW32 NAVY | 2800 | 4b. $100 \times 5$ | 3 b. $80 \times 10$ | 4b. $100 \times 5$ | 3b. $80 \times 10$ | 5b. $100 \times 5$ | $3 \mathrm{~b} .100 \times 10$ | 5b. $100 \times 5$ | $3 \mathrm{~b} .100 \times 10$ |
| NW32 NAVY | 3000 | $5 \mathrm{~b} .100 \times 5$ | $3 \mathrm{~b} .80 \times 10$ | $6 \mathrm{~b} .100 \times 5$ | $3 \mathrm{~b} .100 \times 10$ | $8 \mathrm{~b} .100 \times 5$ | 4b. $80 \times 10$ | $6 \mathrm{~b} .100 \times 5$ | $4 \mathrm{~b} .80 \times 10$ |
| NW32 NAVY | 3200 | $6 \mathrm{~b} .100 \times 5$ | $3 \mathrm{~b} .100 \times 10$ | $8 \mathrm{~b} .100 \times 5$ | $3 \mathrm{~b} .100 \times 10$ |  | $4 \mathrm{~b} .100 \times 10$ |  | $4 \mathrm{~b} .100 \times 10$ |
| NW40 NAVY | 3800 |  | $4 \mathrm{~b} .100 \times 10$ |  | $5 \mathrm{~b} .100 \times 10$ |  | $5 \mathrm{~b} .100 \times 10$ |  | $5 \mathrm{~b} .100 \times 10$ |

With Masterpact NT NAVY, it is recommanded to use 50 mm wideness bars (see "Recommended busbars drilling").

## Example

## Conditions:

- drawout version
- horizontal busbars
- $\mathrm{T}_{\mathrm{i}}: 50^{\circ} \mathrm{C}$

■ service current: 1800 A .

## Solution:

For $\mathrm{T}_{\mathrm{i}}=50^{\circ} \mathrm{C}$, use an NW20 NAVY which can be connected with three $80 \times 5 \mathrm{~mm}$ bars or two $63 \times 10 \mathrm{~mm}$ bars.

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.

## Basis of tables:

- maximum permissible busbars temperature: $100^{\circ} \mathrm{C}$

■ Ti: temperature around the circuit breaker and its
connection

- busbar material is unpainted copper.


## Rear vertical connection



| Masterpact NAVY | Maximum service current | Ti : $40{ }^{\circ} \mathrm{C}$ |  | Ti: $50{ }^{\circ} \mathrm{C}$ |  | Ti: $60{ }^{\circ} \mathrm{C}$ |  | Ti: $70{ }^{\circ} \mathrm{C}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | No. of 5 mm thick bars | No. of 10 mm thick bars | No. of 5 mm thick bars | No. of 10 mm thick bars | No. of 5 mm thick bars | No. of 10 mm thick bars | No. of 5 mm thick bars | No. of 10 mm thick bars |
| NT06 NAVY | 630 | $2 \mathrm{~b} .40 \times 5$ | $1 \mathrm{~b} .40 \times 10$ | $2 \mathrm{~b} .40 \times 5$ | $1 \mathrm{~b} .40 \times 10$ | $2 \mathrm{~b} .40 \times 5$ | $1 \mathrm{~b} .40 \times 10$ | $2 \mathrm{~b} .40 \times 5$ | 1b. $40 \times 10$ |
| NT08 or NW08 NAVY | 800 | $2 \mathrm{~b} .50 \times 5$ | $1 \mathrm{~b} .50 \times 10$ | $2 \mathrm{~b} .50 \times 5$ | $1 \mathrm{~b} .50 \times 10$ | $2 \mathrm{~b} .50 \times 5$ | $1 \mathrm{~b} .50 \times 10$ | $2 \mathrm{~b} .50 \times 5$ | 1b. $50 \times 10$ |
| NT10 or NW10 NAVY | 1000 | $2 \mathrm{~b} .50 \times 5$ | $1 \mathrm{~b} .50 \times 10$ | $2 \mathrm{~b} .50 \times 5$ | $1 \mathrm{~b} .50 \times 10$ | $2 \mathrm{~b} .63 \times 5$ | $1 \mathrm{~b} .63 \times 10$ | $2 \mathrm{~b} .63 \times 5$ | $1 \mathrm{~b} .63 \times 10$ |
| NT12 or NW12 NAVY | 1250 | $2 \mathrm{~b} .63 \times 5$ | $1 \mathrm{~b} .63 \times 10$ | $3 \mathrm{~b} .50 \times 5$ | $2 \mathrm{~b} .40 \times 10$ | $3 \mathrm{~b} .50 \times 5$ | $2 \mathrm{~b} .40 \times 10$ | $3 \mathrm{~b} .63 \times 5$ | $2 \mathrm{~b} .40 \times 10$ |
| NT16 or NW16 NAVY | 1400 | $2 \mathrm{~b} .80 \times 5$ | $1 \mathrm{~b} .80 \times 10$ | $2 \mathrm{~b} .80 \times 5$ | $2 \mathrm{~b} .50 \times 10$ | $3 \mathrm{~b} .63 \times 5$ | $2 \mathrm{~b} .50 \times 10$ | $3 \mathrm{~b} .63 \times 5$ | $2 \mathrm{~b} .50 \times 10$ |
| NT16 or NW16 NAVY | 1600 | $3 \mathrm{~b} .63 \times 5$ | $2 \mathrm{~b} .50 \times 10$ | $3 \mathrm{~b} .63 \times 5$ | $2 \mathrm{~b} .50 \times 10$ | $3 \mathrm{~b} .80 \times 5$ | $2 \mathrm{~b} .63 \times 10$ | $3 \mathrm{~b} .80 \times 5$ | $2 \mathrm{~b} .63 \times 10$ |
| NW20 NAVY | 1800 | $2 \mathrm{~b} .100 \times 5$ | $1 \mathrm{~b} .80 \times 10$ | $2 \mathrm{~b} .100 \times 5$ | $2 \mathrm{~b} .50 \times 10$ | $3 \mathrm{~b} .80 \times 5$ | $2 \mathrm{~b} .63 \times 10$ | $3 \mathrm{~b} .80 \times 5$ | $2 \mathrm{~b} .63 \times 10$ |
| NW20 NAVY | 2000 | 3b. $100 \times 5$ | $2 \mathrm{~b} .63 \times 10$ | $3 \mathrm{~b} .100 \times 5$ | $2 \mathrm{~b} .63 \times 10$ | $3 \mathrm{~b} .100 \times 5$ | $2 \mathrm{~b} .80 \times 10$ | 3b. $100 \times 5$ | $2 \mathrm{~b} .80 \times 10$ |
| NW25 NAVY | 2200 | 3b. $100 \times 5$ | $2 \mathrm{~b} .63 \times 10$ | $3 \mathrm{~b} .100 \times 5$ | $2 \mathrm{~b} .63 \times 10$ | 3b. $100 \times 5$ | $2 \mathrm{~b} .80 \times 10$ | 4b. $100 \times 5$ | $2 \mathrm{~b} .100 \times 10$ |
| NW25 NAVY | 2500 | 4b. $100 \times 5$ | $2 \mathrm{~b} .80 \times 10$ | 4b. $100 \times 5$ | $2 \mathrm{~b} .80 \times 10$ | 4b. $100 \times 5$ | $3 \mathrm{~b} .80 \times 10$ | 4b. $100 \times 5$ | $3 \mathrm{~b} .80 \times 10$ |
| NW32 NAVY | 2800 | 4b. $100 \times 5$ | $2 \mathrm{~b} .100 \times 10$ | $4 \mathrm{~b} .100 \times 5$ | $2 \mathrm{~b} .100 \times 10$ | 4b. $100 \times 5$ | $3 \mathrm{~b} .80 \times 10$ | 4b. $125 \times 5$ | $3 \mathrm{~b} .80 \times 10$ |
| NW32 NAVY | 3000 | $5 \mathrm{~b} .100 \times 5$ | $3 \mathrm{~b} .80 \times 10$ | $6 \mathrm{~b} .100 \times 5$ | $3 \mathrm{~b} .100 \times 10$ | $5 \mathrm{~b} .100 \times 5$ | $4 \mathrm{~b} .80 \times 10$ | $5 \mathrm{~b} .125 \times 5$ | $4 \mathrm{~b} .80 \times 10$ |
| NW32 NAVY | 3200 | $6 \mathrm{~b} .100 \times 5$ | $3 \mathrm{~b} .100 \times 10$ | $6 \mathrm{~b} .100 \times 5$ | $3 \mathrm{~b} .100 \times 10$ |  | $4 \mathrm{~b} .100 \times 10$ |  | $4 \mathrm{~b} .100 \times 10$ |
| NW40 NAVY | 3800 |  | $4 \mathrm{~b} .100 \times 10$ |  | 4b. $100 \times 10$ |  | 4b. $100 \times 10$ |  | $4 \mathrm{~b} .100 \times 10$ |

## Example

## Conditions

drawout version

- vertical connections
- $\mathrm{T}_{\mathrm{i}}: 40^{\circ} \mathrm{C}$
- service current: 1100 A .


## Solution :

For $\mathrm{T}_{\mathrm{i}}=40^{\circ} \mathrm{C}$ use an NT12 NAVY or NW12 NAVY which can be connected with two $63 \times 5 \mathrm{~mm}$ bars or with one $63 \times 10 \mathrm{~mm}$ bar.

Installation
recommendations

## Temperature derating Power dissipation and input / output resistance

## Temperature derating

The table below indicates the maximum current rating, for each connection type, as a function of Ti around the circuit breaker and the busbars.
Circuit breakers with mixed connections have the same derating as horizontally connected breakers.
For Ti greater than $70^{\circ} \mathrm{C}$, consult us.
Ti: temperature around the circuit breaker and its
connection.

| Version | Drawout |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Connection | Front or rear horizontal |  |  |  |  |  |  | Rear vertical |  |  |  |  |  |  |
| Temp. Ti | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 40 | 45 | 50 | 55 | 60 | 65 | 70 |
| NT06 NAVY H1/H2/L1 | 630 |  |  |  |  |  |  | 630 |  |  |  |  |  |  |
| NT08 NAVY H1/H2/L1 | 800 |  |  |  |  |  |  | 800 |  |  |  |  |  |  |
| NT10 NAVY H1/H2/L1 | 1000 |  |  |  |  |  |  | 1000 |  |  |  |  | 990 | 850 |
| NT12 NAVY H1/H2 | 1250 |  |  |  |  |  |  | 1250 |  |  |  |  |  |  |
| NT16 NAVY H1/H2 | 1600 |  | 1520 | 1480 | 1430 | 1380 | 1330 | 1600 |  |  | 1560 | 1510 | 1450 | 1250 |
| NW08 NAVY N/H/L | 800 |  |  |  |  |  |  | 800 |  |  |  |  |  |  |
| NW10 NAVY N/H/L | 1000 |  |  |  |  |  |  | 1000 |  |  |  |  |  |  |
| NW12 NAVY N/H/L | 1250 |  |  |  |  |  |  | 1250 |  |  |  |  |  |  |
| NW16 NAVY N/H/L | 1600 |  |  |  |  |  | 1500 | 1600 |  |  |  |  |  |  |
| NW20 NAVY H1/H2/H3 | 2000 |  |  | 1980 | 1890 | 1790 | 1690 | 2000 |  |  |  |  |  | 1750 |
| NW25 NAVY H1/H2/H3 | 2500 |  |  |  |  | 2400 | 2300 | 2500 |  |  |  |  |  |  |
| NW32 NAVY H1/H2/H3 | 3200 |  | 3100 | 3000 | 2900 | 2800 | 2700 | 3200 |  |  |  |  |  | 3150 |
| NW40 NAVY H1/H2/H3 | 4000 |  | 3900 | 3750 | 3650 | 3500 | 3350 | 4000 |  |  |  | 3850 | 3700 | 3450 |

## Power dissipation and input / output

## resistance

Total power dissipation is the value measured at $I_{N}$, $50 / 60 \mathrm{~Hz}$, for a 3 pole or 4 pole breaker (values above the power $\mathrm{P}=3 \mathrm{RI}^{2}$ ).
The resistance between input / output is the value measured per pole (cold state).

| Version | Drawout |  |
| :--- | :--- | :--- |
|  | Power dissipation (Watts) | $38 / 72$ |
| NT06 NAVY H1/H2/L1 | $55 / 115(\mathrm{H} 1 / \mathrm{L} 1)$ | $38 / 72$ |
| NT08 NAVY H1/H2/L1 | $90 / 140(\mathrm{H} 1 / \mathrm{L} 1)$ | $38 / 72$ |
| NT10 NAVY H1/H2/L1 | $150 / 230(\mathrm{H} 1 / \mathrm{L} 1)$ | 36 |
| NT12 NAVY H1/H2 | 250 | 36 |
| NT16 NAVY H1/H2 | 460 | 42 |
| NW08 NAVY N1 | 137 | 30 |
| NW08 NAVY H | 100 | 42 |
| NW10 NAVY N1 | 220 | 30 |
| NW10 NAVY H | 150 | 42 |
| NW12 NAVY N1 | 330 | 27 |
| NW12 NAVY H | 230 | 37 |
| NW16 NAVY N1 | 480 | 27 |
| NW16 NAVY H | 390 | 27 |
| NW20 NAVY H | 470 | 19 |
| NW25 NAVY H1/H2 | 600 | 13 |
| NW32 NAVY H1/H2 | 670 | 11 |
| NW40 NAVY H1/H2 | 900 |  |

## Derating in switchboards

Factors affecting switchboard design
The temperature around the circuit breaker and its connections:
This is used to define the type of circuit breaker to be used and its connection arrangement.
Vents at the top and bottom of the cubicles:
Vents considerably reduce the temperature inside the switchboard, but must be designed so as to respect the degree of protection provided by the enclosure. For weatherproof heavy-duty cubicles, a forced ventilation system may be required.
The heat dissipated by the devices installed in the switchboard:
This is the heat dissipated by the circuit breakers under normal conditions (service current).

## The size of the enclosure:

This determines the volume for cooling calculations.
Switchboard installation mode:
Free-standing, against a wall, etc.
Horizontal partitions:
Partitions can obstruct air circulation within the enclosure.

## Basis of tables

- Switchboard dimensions

■ Number of circuit-breakers installed

- Type of breaker connections
- Drawout versions
- Ambient temperature outside of the switchboard: $T_{a}$ (IEC 60439-1).

Masterpact NT06-16 NAVY H1/H2/L1 (switchboard $2000 \times 400 \times 400$ ) - area of outlet vents: $150 \mathrm{~cm}^{2}$
Type NT06 NAVY H1/H2/L1 NT08 NAVY H1/H2/L1 NT10 NAVY H1/H2/L1 NT12 NAVY H1/H2 NT16 NAVY H1/H2

(1) Area of outlet vents: $150 \mathrm{~cm}^{2}$.
(2) Area of intlet vents: $150 \mathrm{~cm}^{2}$.

| Non ventilated switchboard$(\rightarrow \text { IP54) }$ |  | 4 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3 | 630 | 630 | 800 | 800 | 1000/960 | 1000/1000 | 1250 | 1250 | 1330 | 1400 |
| $>$ | $\mathrm{T}_{\mathrm{a}}=35^{\circ} \mathrm{C}$ | 2 |  |  |  |  |  |  |  |  |  |  |
|  |  | 1 |  |  |  |  |  |  |  |  |  |  |
| $\checkmark$ | $\mathrm{T}_{\mathrm{a}}=45^{\circ} \mathrm{C}$ | 4 |  |  |  |  |  |  |  |  |  |  |
|  |  | 3 | 630 | 630 | 800 | 800 | 1000/910 | 1000/980 | 1220 | 1250 | 1260 | 1330 |
| 2000 |  |  |  |  |  |  |  |  |  |  |  |  |
| - |  | 1 |  |  |  |  |  |  |  |  |  |  |
|  | $\mathrm{T}_{\mathrm{a}}=55^{\circ} \mathrm{C}$ | 4 |  |  |  |  |  |  |  |  |  |  |
| , |  | 3 | 630 | 630 | 800 | 800 | 1000/860 | 1000/930 | 1150 | 1230 | 1200 | 1260 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| -400 |  | 1 |  |  |  |  |  |  |  |  |  |  |

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.
The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

## Installation

 recommendations
## Derating in switchboards

Masterpact NAVY NT06-08 H1/H2/L1 (switchboard $2300 \times 1100 \times 500$ ) - area of outlet vents: $300 \mathrm{~cm}^{2}$

| Type |
| :--- |
| Switchboard composition |

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.
The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

Masterpact NAVY NT10-16 H1/H2/L1 (switchboard $2300 \times 1100 \times 500$ ) - area of outlet vents: $300 \mathrm{~cm}^{2}$


Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.
The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

## Derating in switchboards

Masterpact NW08-10 NAVY N/H (switchboard $2300 \times 800 \times 900$ ) - area of outlet vents: $350 \mathrm{~cm}^{2}$

(1) Area of outlet vents: $350 \mathrm{~cm}^{2}$.
(2) Area of intlet vents: $350 \mathrm{~cm}^{2}$.

Non ventilated switchboard

oard
$T_{a}=35^{\circ} \mathrm{C}$
$T_{a}=45^{\circ} \mathrm{C}$
$T_{a}=55^{\circ} \mathrm{C}$

| 4 |  |  |  |  | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 |  |  |  | 800 | 800 |
| 2 |  |  | 800 | 800 | 800 |
| 1 | 800 | 800 | 800 | 800 | 800 |
| 4 |  |  |  |  | 800 |
| 3 |  |  |  | 800 | 800 |
| 2 |  |  | 800 | 800 | 800 |
| 1 | 800 | 800 | 800 | 800 | 800 |
| 4 |  |  |  |  | 800 |
| 3 |  |  |  | 800 | 800 |
| 2 |  |  | 800 | 800 | 800 |
| 1 | 800 | 800 | 800 | 800 | 800 |


|  |  |  |  | 1000 |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  | 1000 | 1000 |
|  | 1000 | 1000 | 1000 |  |
|  |  |  |  |  |
|  |  |  | 1000 | 1000 |
|  |  |  |  |  |
|  |  |  |  | 1000 |
|  |  |  | 1000 | 1000 |
|  |  | 1000 | 1000 | 1000 |

[^2]Masterpact NW12-16 NAVY N/H (switchboard $2300 \times 800 \times 900$ ) - area of outlet vents: $350 \mathrm{~cm}^{2}$

(1) Area of outlet vents: $350 \mathrm{~cm}^{2}$.
(2) Area of intlet vents: $350 \mathrm{~cm}^{2}$.

| Non ventilated switchboard $(\rightarrow$ IP54) |  | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3 |  |  | 1240 |  |  |  | 1250 |  |  |  |  |  |  |
| - | $\mathrm{T}_{\mathrm{a}}=35^{\circ} \mathrm{C}$ | 2 |  | 1250 | 1250 |  |  | 1250 | 1250 |  |  | 1425 |  |  | 1600 |
| $\rightarrow$ - |  | 11250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1440 | 1550 | 1550 | 1600 | 1600 | 1600 |
|  |  | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 3 |  |  | 1170 |  |  |  | 1250 |  |  |  |  |  |  |
|  | $\mathrm{T}_{\mathrm{a}}=45^{\circ} \mathrm{C}$ | 2 |  | 1210 | 1210 |  |  | 1250 | 1250 |  |  | 1360 |  |  | 1500 |
| 2300 |  | 11200 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1250 | 1360 | 1470 | 1470 | 1500 | 1600 | 1600 |
|  |  | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 3 |  |  | 1100 |  |  |  | 1250 |  |  |  |  |  |  |
| 1 | $\mathrm{T}_{\mathrm{a}}=5{ }^{\circ}$ | 2 |  | 1140 | 1170 |  |  | 1250 | 1250 |  |  | 1280 |  |  | 1400 |
|  |  | 11130 | 1200 | 1200 | 1200 | 1250 | 1250 | 1250 | 1250 | 1280 | 1380 | 1380 | 1400 | 1520 | 1520 |

[^3]
## Derating in switchboards


(1) Area of outlet vents: $350 \mathrm{~cm}^{2}$.
(2) Area of intlet vents: $350 \mathrm{~cm}^{2}$.

Non ventilated switchboard


| $\mathrm{T}_{\mathrm{a}}=35^{\circ} \mathrm{C}$ | 4 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 |  | 2000 |  |  |  |  |  |  |
|  | 22000 | 2000 | 2000 | 2125 | 2275 | 2650 | 2850 | 3040 | 3320 |
|  | 1 |  |  |  |  |  |  |  |  |
| $\mathrm{T}_{\mathrm{a}}=45^{\circ} \mathrm{C}$ | 4 |  |  |  |  |  |  |  |  |
|  | 3 |  | 1900 |  |  |  |  |  |  |
|  | 21900 | 1960 | 1960 | 2000 | 2150 | 2550 | 2700 | 2880 | 3120 |
|  | 1 |  |  |  |  |  |  |  |  |
| $\mathrm{T}_{\mathrm{a}}=55^{\circ} \mathrm{C}$ | 4 |  |  |  |  |  |  |  |  |
|  | 3 |  | 1780 |  |  |  |  |  |  |
|  | 21800 | 1920 | 1920 | 1900 | 2020 | 2370 | 2530 | 2720 | 2960 |
|  | 1 |  |  |  |  |  |  |  |  |

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.
The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

## TOOLS

## schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: - complete library: technical documents, catalogs, FAQs, brochures...

- selection guides from the e-catalog. - product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

Training

Training allows you to acquire the Schneider Electric expertise (installation design, work with power on, etc.) for increased efficiency and a guarantee of improved customer service.
The training catalogue includes beginner's courses in electrical distribution, knowledge of MV and LV switchgear, operation and maintenance of installations, design of LV installations to give but a few examples.

Presentation ..... 1
Functions and characteristics ..... A-1
Installation recommendations ..... $B-1$
NT06 to NT16 NAVY circuit breakers ..... C-2
Drawout device ..... C-2
NW08 to NW32 NAVY circuit breakers ..... C-6
Drawout device ..... C-6
NW40 NAVY circuit breakers ..... C-8
Drawout device ..... C-8
NT/NW NAVY accessories ..... C-10
NT/NW NAVY external modules ..... C-11
Electrical diagrams ..... D-1
Additional characteristics ..... E-1
Catalogue numbers and order form ..... F-1

Dimensions and connection

## NT06 to NT16 NAVY circuit breakers

## Drawout device

## Dimensions


(*) Disconnected position.

Bottom mounting (on base plate or rails)
Rear mounting detail (on upright or backplate)



## Safety clearances



## Door cutout

Rear panel cutout


For voltages < 690 V.

|  | Parts <br> Insulated | Metal | Energised |
| :--- | :--- | :--- | :--- |
| A | 0 | 0 | 30 |
| B | 10 | 10 | 60 |
| C | 0 | 0 | 30 |



Dimensions and connection

NT06 to NT16 NAVY circuit breakers

## Drawout device

## Connections

Front connection with spreaders


Connections
Front connection via vertical connection adapters fitted with cable-lug adapters


## Dimensions and connection <br> NW08 to NW32 NAVY circuit breakers <br> Drawout device



Safety clearances


## Door cutout



|  | Insulated <br> parts | Metal <br> parts | Energised <br> parts |
| :--- | :--- | :--- | :--- |
| A | 0 | 0 | 0 |
| B | 0 | 0 | 60 |

E: datum.
(1) Without escutcheon.
(2) With escutcheon.

Note: $X$ and $Y$ are the symmetry planes for a 3-pole device.


View A detail.


Note: recommended connection screws: M10 class 8.8
Tightening torque: $\mathbf{5 0} \mathbf{N m}$ with contact washer.

Dimensions and connection

NW4O NAVY circuit breakers
Drawout device

(*) Disconnected position.

Mounting on base plate or rails


Mounting detail


## Safety clearances

## Door cutout


\(\left.$$
\begin{array}{l|l|l|l}\text { Insulated } \\
\text { parts }\end{array}
$$ \quad $$
\begin{array}{l}\text { Metal } \\
\text { parts }\end{array}
$$ \quad \begin{array}{l}Energised <br>

parts\end{array}\right]\)| A |
| :--- |
| B |

F : datum.
(1) Without escutcheon.
(2) With escutcheon.

Note: $X$ and $Y$ are the symmetry planes for a 3-pole device.
The safety clearances take into account the space required to remove the arc chutes.

Connections
Horizontal rear connection


Vertical rear connection



View A detail.


Rear panel cutout (drawout devices)
NW08 to NW40 NAVY


Masterpact NW NAVY
Drawout device


F: datum.


## Battery module (BAT)

Mounting

"Chassis" communication module
ModBUS


## TOOLS

## schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: - complete library: technical documents, catalogs, FAQs, brochures...

- selection guides from the e-catalog. - product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

The electrical installation guide

## According to IEC 60364

This guide, part of the
Schneider Electric offer, is the essential tool to "guide" you any time in your business:

- design office, consultant
- contractor, panelbuilder
- teacher, trainer.


## Comprehensive

 and concrete information on:- all the new technical solutions
- all the components
- of an installation from a global point of view
- all the IEC standards modifications - all the fundamental electrotechnical knowledge - all the design stages, from medium to low voltage.

Presentation ..... 1
Functions and characteristics ..... A-1
Installation recommendations ..... $B-1$
Dimensions and connections ..... C-1
Masterpact NT06 to NT16 NAVY ..... D-2
Drawout devices ..... D-2
Masterpact NW08 to NW63 NAVY ..... D-4
Drawout devices ..... D-4
Masterpact NT and NW NAVY ..... D-6
Communications option 24 V DCexternal power supply ..... D-6
Zone selective interlocking ..... D-8
Additional characteristics ..... E-1
Catalogue numbers and order form ..... F-1

The diagram is shown with circuits de-energised, all devices open, connected and charged and relays in
normal position.


## Remote operation



| Remote operation |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SDE2 | SDE1 | MN | MX2 | MX1 | XF | PF | MCH |
| $\overleftarrow{184}^{\circ}$ | $\overleftarrow{84}_{8}$ | $\mathrm{\sigma}_{\mathrm{D} 2}$ | $\mathrm{C}_{\text {C12 }}$ | $\underset{\mathrm{C} 2}{\mathrm{O}}$ | $\delta_{\mathrm{A} 2}^{\mathrm{o}}$ | ${ }_{254}^{\circ}$ | $\underset{\mathrm{B} 2}{\mathrm{O}}$ |
| $\overleftarrow{182}^{\circ}$ | $\overleftarrow{82}^{\circ}$ |  |  | $\mathrm{O}_{\mathrm{C} 3} \mathrm{O}$ | $\delta_{\mathrm{A} 3}$ | ${ }_{252}$ | $\mathrm{O}_{\mathrm{B} 3}$ |
| $\bigcirc_{181}{ }^{\circ}$ | $\delta_{81}$ | ס | $\overleftarrow{C l 11}^{\circ}$ | $\mathrm{O}_{\mathrm{C} 1} \mathrm{O}$ | $\overleftarrow{\mathrm{A} 1}^{\circ}$ | ${ }_{251}$ | ${ }_{\mathrm{B} 1}^{\mathrm{O}}$ |

## Remote operation

SDE2 : fault-trip indication contact
SDE1 : fault-trip indication contact (supplied as standard)
MN : undervoltage release
or
MX2 : shunt release
MX1 : shunt release (standard or communicating)
XF

PF : ready-to-close contact

MCH : electric motor

Note: when communicating MX or XF releases are used, the third wire $(C 3, A 3)$ must be connected even if the communication module is not installed.


| Indication contacts |  |  |  |
| :---: | :---: | :---: | :---: |
| OF4 | OF3 | OF2 | OF1 |
| $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\sigma_{14}^{\circ}$ |
| $\bigcirc{ }_{42}$ | $\bigcirc_{32}$ | $\bigcirc{ }_{22}$ | $\sigma_{12}$ |
| $\bigcirc_{41}$ | ס31 | $\sigma_{21}$ | $\delta_{11}$ |

Indication contacts
OF4 / OF3 / OF2 / OF1 : ON/OFF indication contacts.

## (*) Spring charging motor 440/480 V AC

 (380 V motor + additional resistor)| Chassis contacts |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CD2 | CD1 | CE3 | CE2 | CE1 | CT1 |
| ${ }_{824}^{\circ}$ | $\delta_{814}$ | $\stackrel{\circ}{334}$ | ${ }_{324}$ | $\overleftarrow{314}^{\circ}$ | $\delta_{914}$ |
| $\delta_{822}{ }^{\circ}$ | $\delta_{812}{ }^{\circ}$ | $\mathrm{O}_{332}$ | $\delta_{322}$ | $\mathrm{O}_{312}^{\circ}$ | $\delta_{912}$ |
| $\delta_{821}{ }^{\circ}$ | $\bigcirc_{811}{ }^{\circ}$ | ${ }_{331}{ }^{\circ}$ | $\bigcirc_{321}{ }^{\circ}$ | $\mathrm{O}_{311}{ }^{\circ}$ | $\bigcirc_{911}{ }^{\circ}$ |

Chassis contacts
CD2: disconnected CE3: connected CT1: test

| CD1 | position <br> contacts | CE2 | position |
| :--- | :--- | :--- | :--- |$\quad$ position



Key:
$\square$ drawout device only.

The diagram is shown with circuits de-energised, all devices open, connected and charged and relays in
normal position.




| A | P | H | Control unit |
| :---: | :---: | :---: | :---: |
| ■ | $\square$ | ■ | Com: E1-E6 communication |
| $\square$ | $\square$ | $\square$ | UC1: Z1-Z5 zone selective interlocking $\begin{aligned} & \text { Z1 = ZSI OUT SOURCE } \\ & \text { Z2 }=\text { ZSI OUT ; Z3 = ZSI IN SOURCE } \\ & \text { Z4 }=\text { ZSI IN ST (short time) } \\ & \text { Z5 }=\text { ZSI IN GF (earth fault) } \end{aligned}$ |
| $\square$ | $\square$ | $\square$ | M1 = Vigi module input (Micrologic 7) |
| $\square$ | $\square$ | $\square$ | UC2 : T1, T2, T3, T4 = external neutral |
| $\square$ | $\square$ | $\square$ | M2, M3 = Vigi module input (Micrologic 7) |
| $\square$ |  |  | UC3 : F2+, F1- external 24 V DC power supply VN external voltage connector (must be connected to the neutral with a 3P circuit breaker) |
|  | - | - | UC4 : External Voltage Connector (PTE option) |

Note: when communicating MX or XF releases are used, the third wire (C3,A3) must be connected even if the communication module is not installed.

## A : digital ammeter.

$\boldsymbol{P}$ : A + power meter + additional protection.
H: $P+$ harmonics.


## Indication contacts

| OF4 | OF3 | 0F2 | OF1 |
| :---: | :---: | :---: | :---: |
| ${ }_{44}$ | ${ }_{34}$ | ${ }_{24}$ | $\delta_{14}$ |
| ${ }^{\circ}{ }_{42}$ | ${ }_{32}{ }^{\circ}$ | ${ }_{22}$ | $\delta_{12}$ |
| $\overleftarrow{41}^{\circ}$ | $\begin{array}{r} \circ \\ \hline \end{array}$ | $\begin{gathered} \circ \\ 21 \\ \hline \end{gathered}$ | ${ }^{\circ} \mathrm{O}$ |


| 14 | OF13 | O |  |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} \circ \\ 144 \end{gathered}$ |  |  |  |
| ${ }_{142}^{\circ}$ | $\sigma_{132}^{\circ}$ | $\delta_{122}^{\circ}$ | $\delta_{112}^{\circ}$ |
| $\begin{array}{r} \circ \\ \hline 141 \\ \hline \end{array}$ | $\begin{gathered} \circ \\ \hline 131 \end{gathered}$ | $\begin{gathered} \circ \\ 121 \\ \hline \end{gathered}$ | $\begin{gathered} \circ \\ 111 \end{gathered}$ |
| or | or | or |  |
| EF14 | EF13 | EF12 | F11 |
| $\begin{aligned} & \circ \\ & \hline 148 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0 \\ & \hline \end{aligned}$ | $128$ | $\begin{aligned} & \circ \\ & \\ & 118 \end{aligned}$ |
| $\begin{aligned} & \hline 0 \\ & 146 \\ & \hline \end{aligned}$ | $\begin{gathered} \hline 0 \\ 136 \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline 06 \\ \hline 126 \\ \hline \end{array}$ | $\begin{gathered} \circ \\ \hline 116 \end{gathered}$ |
| $50$ | $\circ 0$ | $\% 0$ | $\circ 0$ |


| Indication contacts |  |  |
| :--- | :--- | :--- |
| OF4: ON/OFF indication contacts | OF14 or | Combined |
| OF3 |  | EF14 |$\quad$ "connected-deconnected"



| Chassis contacts |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| CD3 | disconnected CE3 | connected | CT3 | test position |
| CD2 | position | CE2 | position | CT2 |
| contacts |  |  |  |  |
| CD1 | contacts | CE1 | contacts | CT1 |

Key:

|  | drawout device only. |
| :--- | :--- |
| XXX SDE1, OF1, OF2, OF3, OF4 supplied as standard. <br> $\square$ interconnected connections <br> (only one wire per connection point). |  |

# Masterpact NT and NW NAVY <br> Communications option 24VDC <br> external power supply 

Connection of the communications option


None of the control-unit protection functions require an auxiliary source. However, the 24 V DC external power-supply (AD module) is required for certain operating configurations as indicated in the table below.
$\left.\begin{array}{l|l|l|l}\text { Circuit breaker } & \text { Closed } & \text { Open } & \\ \text { Voltage measurement inputs } & \text { Powered } & \text { No } & \text { Powered }\end{array}\right)$
(1) Drawout device equipped with Modbus chassis COM.
(3) Except for Micrologic A control units (if current < 20 \% In).
(4) Except for Micrologic A control units.
(5) Time setting is manual and can be carried out automatically by the supervisor via the communications bus.

The communications bus requires its own 24 V DC power source (E1, E2). This source is not the same as the 24 V DC external power-supply module (F1-, F2+). In case of using the $24 V D C$ external power supply (AD module), maximum cable length between 24 V DC (G1, G2) and the control unit (F1-, F2+) must not exceed 10 meters.
The BAT battery module, mounted in series upstream of the AD module, ensures an uninterrupted supply of power if the AD module power supply fails.
The voltage measurement inputs are standard equipment on the downstream connectors of the circuit breaker.
External connections are possible using the PTE external voltage measurement input option. With this option, the internal voltage measurement inputs are disconnected and terminals VN, V1, V2, V3 are connected only to the control unit (Micrologic P and H only). The PTE option is required for voltages less than 220 V and greater than 690 V (in which case a voltage transformer is compulsory). For three-pole devices, the system is supplied with terminal VN connected only to the control unit (Micrologic $P$ and $H$ ).
When the PTE option is implemented, the voltage measurement input must be protected against short-circuits. Installed as close as possible to the busbars, this protection function is ensured by a P25M circuit breaker (1 A rating) with an auxiliary contact (cat. no. 21104 and 21117). This voltage measurement input is reserved exclusively for the control unit and must not ever be used to supply other circuits outside the switchboard.

## Examples using the COM communications option

## Switchboard display unit

This architecture provides remote display of the variables managed by Micrologic control units equipped with the eco COM Modbus module.

- I (Micrologic A)
- I, U, P, E (Micrologic P)

■ I, U, P, E, THD (Micrologic H)
No programming is required.
For Micrologic A control unit (if current < 20 \% In), it is recommended to use the 24 V DC external power supply (AD module).


## Communicating switchboard

This configuration provides remote display and control of Masterpacts NAVY equipped with the Modbus COM module. The Digipact bus can be combined with the Modbus bus.

| Software |
| :--- | :--- | :--- |
| Communication |
| interface |

## Zone selective interlocking

Zone-selective interlocking is used to reduce the electrodynamic forces exerted on the installation by shortening the time required to clear faults, while maintaining time discrimination between the various devices.
A pilot wire interconnects a number of circuit breakers equipped with Micrologic A/P/H control units, as illustrated in the diagram above.
The control unit detecting a fault sends a signal upstream and checks for a signal arriving from downstream. If there is a signal from downstream, the circuit breaker remains closed for the full duration of its tripping delay. If there is no signal from
downstream, the circuit breaker opens immediately, regardless of the tripping-delay setting.

## Fault 1.

Only circuit breaker $A$ detects the fault. Because it receives no signal from downstream, it opens immediately, regardless of its tripping delay set to 0.3.

## Fault 2.

Circuit breakers $A$ and $B$ detect the fault. Circuit breaker $A$ receives a signal from $B$ and remains closed for the full duration of its tripping delay set to 0.3 . Circuit breaker $B$ does not receive a signal from downstream and opens immediately, in spite of its tripping delay set to 0.2.

Note: the maximum permissible distance between two devices is 3000 m . A downstream circuit breaker can "control" up to ten upstream circuit breakers.


## schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: - complete library: technical documents, catalogs, FAQs, brochures...

- selection guides from the e-catalog. - product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

The technical guide

These technical guides help you comply with installation standards and rules i.e.: the electrical installation guide, the protection guide, the switchboard implementation guide, the technical booklets and the co-ordination tables all form genuine reference tools for the design of high performance electrical installations. For example, the LV protection co-ordination guide - discrimination and cascading-optimises choice of protection and connection devices while also increasing markedly continuity of supply in the installations.

Presentation ..... 1
Functions and characteristics ..... A-1
Installation recommendations ..... $B-1$
Dimensions and connections ..... C-1
Electrical diagrams ..... D-1
Tripping curves ..... E-2
Limitation curves ..... E-4
Current limiting ..... E-4
Energy limiting ..... E-5
Protection discrimination ..... E-6
Catalogue numbers and order form ..... F-1

## Additional characteristics <br> Tripping curves



Micrologic 5.0



Additional characteristics

## Limitation curves

## Current limiting

Voltage 380/415/440 V AC
Limited short-circuit current (kÂ peak)


Rated short-circuit current (kA rms)


Rated short-circuit current (kA rms)

## Energy limiting

## Voltage 380/415/440 V AC



Rated short-circuit current (kA rms)

## Voltage 660/690 V AC



## Additional

 characteristics| DOWNSTREAM | UPSTREAM trip | $\begin{aligned} & \text { NS250H/L DB } \\ & \text { TM-D } \end{aligned}$ |  |  | $\begin{aligned} & \text { NR/NS250H/L DB } \\ & \text { STR22SE } \end{aligned}$ |  |  |  |  | NR/NS630H/L DB STR23SE/53UE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | rating (A) adjustment Ir | 160 | 200 | 250 |  |  | 160 | 200 | 250 |  | 320 | 400 | 500 | 630 |
|  | Im (kA) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NS100H/L DB | 16 | 36 | T | T | T | T | T | T | T | T | T | T | T | T |
| trip TM-D | 25 | 36 | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 40 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | T | T | T | T | T |
|  | 63 | 36 | 36 | 36 |  | 36 | 36 | 36 | 36 | T | T | T | T | T |
|  | 80 | 3 | 36 | 36 |  |  | 36 | 36 | 36 | T | T | T | T | T |
|  | 100 | 3 | 36 | 36 |  |  |  |  | 36 | T | T | T | T | T |
| NS100H/L DB | 16 | 3 | T | T | T | T | T | T | T | T | T | T | T | T |
| trip STR22SE | $\underline{25}$ | 3 | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 40 | 3 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | T | T | T | T | T |
|  | 63 | 3 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | T | T | T | T | T |
|  | 80 | 3 | 36 | 36 |  | 36 | 36 | 36 | 36 | T | T | T | T | T |
|  | 100 | 3 | 36 | 36 |  |  | 36 | 36 | 36 | T | T | T | T | T |
| NS250H/L DB | $\leqslant 100$ |  |  |  |  |  |  |  |  | T | T | T | T | T |
| trip TM-D | 125 |  |  |  |  |  |  |  |  |  | T | T | T | T |
|  | 160 |  |  |  |  |  |  |  |  |  |  | T | T | T |
|  | 200 |  |  |  |  |  |  |  |  |  |  |  | T | T |
|  | 250 |  |  |  |  |  |  |  |  |  |  |  |  | T |
| NS250H/L DB | $\leq 100$ |  |  |  |  |  |  |  |  | T | T | T | T | T |
| trip STR22SE | 125 |  |  |  |  |  |  |  |  | T | T | T | T | T |
|  | 160 |  |  |  |  |  |  |  |  | T | T | T | T | T |
|  | 200 |  |  |  |  |  |  |  |  |  | T | T | T | T |
|  | 250 |  |  |  |  |  |  |  |  |  |  | T | T | T |
| NS630H/L DB | $\underline{250}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| STR23SE | 320 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| STR53UE | 400 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 500 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 630 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DB83 | 320 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| STR35SE | 400 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| STR55UE | 500 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 630 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 800 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DBL83 | 320 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| STR35SE | 400 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| STR55UE | 500 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 630 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 800 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY | NT06 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| H1 | NT10 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Micrologic 2.0 | NT12 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY | NT06 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| H1 | NT10 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Micrologic 5.0 | NT12 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY | NT06 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| H2 | NT10 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Micrologic 2.0 | NT12 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY | NT06 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| H2 | NT10 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Micrologic 5.0 | NT12 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY L1 | NT06 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Micrologic 2.0 | NT10 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY L1 | NT06 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Micrologic 5.0 | NT10 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NW NAVY | NW08 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{N} 1 / \mathrm{H} 1 / \mathrm{H} 2$ | NW10 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Micrologic 2.0 | NW12 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW16 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW20 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW25 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW32 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW40 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NW NAVY | NW08 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| N1/H1/H2 | NW10 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Micrologic 5.0 | NW12 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW16 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW20 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW25 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW32 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW40 |  |  |  |  |  |  |  |  |  |  |  |  |  |

[^4]| DOWNSTREAM | UPSTREAM trip | DB83 <br> STR35SE - STR55UE |  |  |  |  | DBL83 <br> STR35SE - STR55UE |  |  |  |  | DBL83 STR45BE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | adjustment Ir | 400 | 500 | 630 | 800 | 1000 | 320 | 400 | 500 | 630 | 800 | 320 | 400 | 500 | 630 | 800 |
|  | Im (kA) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NS100H/L DB | 16 | 45 | 45 | 45 | 45 | 45 | 10 | 10 | 10 | 10 | 10 | T | T | T | T | T |
| trip TM-D | $\underline{25}$ | 45 | 45 | 45 | 45 | 45 | 10 | 10 | 10 | 10 | 10 | T | T | T | T | T |
|  | 40 | 45 | 45 | 45 | 45 | 45 | 10 | 10 | 10 | 10 | 10 | T | T | T | T | T |
|  | 63 | 45 | 45 | 45 | 45 | 45 | 10 | 10 | 10 | 10 | 10 | T | T | T | T | T |
|  | 80 | 45 | 45 | 45 | 45 | 45 | 10 | 10 | 10 | 10 | 10 | T | T | T | T | T |
|  | 100 | 45 | 45 | 45 | 45 | 45 | 10 | 10 | 10 | 10 | 10 | T | T | T | T | T |
| NS100H/L DB | 16 | 45 | 45 | 45 | 45 | 45 | 10 | 10 | 10 | 10 | 10 | T | T | T | T | T |
| trip STR22SE | 25 | 45 | 45 | 45 | 45 | 45 | 10 | 10 | 10 | 10 | 10 | T | T | T | T | T |
|  | 40 | 45 | 45 | 45 | 45 | 45 | 10 | 10 | 10 | 10 | 10 | T | T | T | T | T |
|  | 63 | 45 | 45 | 45 | 45 | 45 | 10 | 10 | 10 | 10 | 10 | T | T | T | T | T |
|  | 80 | 45 | 45 | 45 | 45 | 45 | 10 | 10 | 10 | 10 | 10 | T | T | T | T | T |
|  | 100 | 45 | 45 | 45 | 45 | 45 | 10 | 10 | 10 | 10 | 10 | T | T | T | T | T |
| NS250H/L DB | $\leqslant 100$ | 45 | 45 | 45 | 45 | 45 | 7 | 7 | 7 | 7 | 7 | T | T | T | T | T |
| trip TM-D | 125 | 45 | 45 | 45 | 45 | 45 | 7 | 7 | 7 | 7 | 7 | T | T | T | T | T |
|  | 160 | 45 | 45 | 45 | 45 | 45 |  | 7 | 7 | 7 | 7 | T | T | T | T | T |
|  | 200 |  | 45 | 45 | 45 | 45 |  |  | 7 | 7 | 7 | T | T | T | T | T |
|  | 250 |  |  | 45 | 45 | 45 |  |  |  | 7 | 7 |  | T | T | T | T |
| NS250H/L DB | $\leqslant 100$ | 45 | 45 | 45 | 45 | 45 | 7 | 7 | 7 | 7 | 7 | T | T | T | T | T |
| trip STR22SE | 125 | 45 | 45 | 45 | 45 | 45 | 7 | 7 | 7 | 7 | 7 | T | T | T | T | T |
|  | 160 | 45 | 45 | 45 | 45 | 45 | 7 | 7 | 7 | 7 | 7 | T | T | T | T | T |
|  | 200 | 45 | 45 | 45 | 45 | 45 | 7 | 7 | 7 | 7 | 7 | T | T | T | T | T |
|  | 250 | 45 | 45 | 45 | 45 | 45 |  | 7 | 7 | 7 | 7 |  | T | T | T | T |
| NS630H/L DB | $\underline{250}$ |  |  |  |  |  | 15 | 15 | 15 | 15 | 15 |  | T | T | T | T |
| STR23SE | 320 |  |  |  |  |  |  | 15 | 15 | 15 | 15 |  |  | T | T | T |
| STR53UE | 400 |  |  |  |  |  |  |  | 15 | 15 | 15 |  |  |  | T | T |
|  | 500 |  |  |  |  |  |  |  |  | 15 | 15 |  |  |  |  | T |
|  | 630 |  |  |  |  |  |  |  |  |  | 15 |  |  |  |  |  |
| DB83 | 320 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| STR35SE | 400 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| STR55UE | 500 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $630$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 800 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DBL83 | 320 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| STR35SE | 400 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| STR55UE | 500 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 630 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 800 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY | NT06 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| H1 | NT10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Micrologic 2.0 | NT12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY | NT06 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| H1 | NT10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Micrologic 5.0 | NT12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY | NT06 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| H2 | NT10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Micrologic 2.0 | NT12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY | NT06 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Micrologic 5.0 | NT12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY L1 Micrologic 2.0 | NT06 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY L1 Micrologic 5.0 | NT06 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NW NAVY N1/H1/H2 <br> Micrologic 2.0 | NW08 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW20 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW25 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW32 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW40 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NW N1/H1/H2 Micrologic 5.0 | NW08 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW20 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW25 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW32 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW40 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Additional characteristics

| DOWNSTREAM | UPSTREAM | Masterpact NT NAVY H1 <br> Micrologic 2.0 <br> Isd : 10 Ir |  |  |  |  | Masterpact NT NAVY H1 Micrologic 5.0-6.0-7.0 Inst 15 In |  |  |  |  | Masterpact NT NAVY H1 <br> Micrologic 5.0-6.0-7.0 Inst OFF |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | trip | NT06 | NT08 | NT10 | NT12 | NT16 | NT06 | NT08 | NT10 | NT12 | NT16 | NT06 | NT08 | NT10 | NT12 | NT16 |
|  | rating (A) | 630 | 800 | 1000 | 1250 | 1600 | 630 | 800 | 1000 | 1250 | 1600 | 630 | 800 | 1000 | 1250 | 1600 |
|  | adjustment Ir | 630 | 800 | 1000 | 1250 | 1600 | 630 | 800 | 1000 | 1250 | 1600 | 630 | 800 | 1000 | 1250 | 1600 |
|  | Im (kA) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NS100H/L DB | 16 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| trip TM-D | 25 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 40 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 63 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 80 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 100 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| NS100H/L DB | 16 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| trip STR22SE | 25 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 40 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 63 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 80 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 100 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| NS250H/L DB | $\leqslant 100$ | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| trip TM-D | 125 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 160 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 200 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 250 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| NS250H/L DB | $\leqslant 100$ | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| trip STR22SE | 125 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 160 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 200 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 250 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| NS630H/L DB | 250 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| STR23SE | 320 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| STR53UE | 400 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 500 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
|  | 630 | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
| DB83 | 320 |  |  | 10 | 12.5 | 16 |  |  | 15 | 18.7 | 24 |  |  | T | T | T |
| STR35SE | 400 |  |  | 10 | 12.5 | 16 |  |  | 15 | 18.7 | 24 |  |  | T | T | T |
| STR55UE | 500 |  |  | 10 | 12.5 | 16 |  |  | 15 | 18.7 | 24 |  |  | T | T | T |
|  | 630 |  |  |  | 12.5 | 16 |  |  |  | 18.7 | 24 |  |  |  | T |  |
|  | 800 |  |  |  |  | 16 |  |  |  |  | 24 |  |  |  |  | T |
| DBL83 | 320 |  |  | 10 | 12.5 | 16 |  |  | 15 | 18.7 | 24 |  |  | T | T | T |
| STR35SE | 400 |  |  | 10 | 12.5 | 16 |  |  | 15 | 18.7 | 24 |  |  | T | T | T |
| STR55UE | 500 |  |  | 10 | 12.5 | 16 |  |  | 15 | 18.7 | 24 |  |  | T | T | T |
|  | 630 |  |  |  | 12.5 | 16 |  |  |  | 18.7 | 24 |  |  |  | T | T |
|  | 800 |  |  |  |  | 16 |  |  |  |  | 24 |  |  |  |  | T |
| Masterpact NT NAVY | NT06 |  |  | 10 | 12.5 | 16 |  |  | 15 | 18.7 | 24 |  |  | T | T |  |
| H1 | NT08 |  |  |  | 12.5 | 16 |  |  |  | 18.7 | 24 |  |  |  | T |  |
| Micrologic 2.0 | NT10 |  |  |  |  | 16 |  |  |  |  | 24 |  |  |  |  | T |
|  | NT12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY | NT06 |  |  |  |  |  |  |  | 15 | 18.7 | 24 |  |  | T | T | T |
| H1 | NT08 |  |  |  |  |  |  |  |  | 18.7 | 24 |  |  |  | T | T |
| Micrologic 5.0, 6.0, 7.0 | NT10 |  |  |  |  |  |  |  |  |  | 24 |  |  |  |  | T |
|  | NT12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT06 |  |  | 10 | 12.5 | 16 |  |  | 15 | 18.7 | 24 |  |  | T |  | T |
| $\mathrm{H} 2$ | NT08 |  |  |  | 12.5 | 16 |  |  |  | 18.7 | 24 |  |  |  | T | T |
| Micrologic 2.0 | NT10 |  |  |  |  | 16 |  |  |  |  | 24 |  |  |  |  | T |
|  | NT12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY | NT06 |  |  |  |  |  |  |  | 15 | 18.7 | 24 |  |  | T | T | T |
| H2 | NT08 |  |  |  |  |  |  |  |  | 18.7 | 24 |  |  |  | T | T |
| Micrologic 5.0, 6.0, 7.0 | NT10 |  |  |  |  |  |  |  |  |  | 24 |  |  |  |  | T |
|  | NT12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY L1 | NT06 |  |  | 10 | 12 | 16 |  |  | 15 | 18.7 | 24 |  |  | T | T | T |
| Micrologic 2.0 | NT08 |  |  |  | 12 | 16 |  |  |  | 18.7 | 24 |  |  |  | T | T |
|  | NT10 |  |  |  |  | 16 |  |  |  |  | 24 |  |  |  |  | T |
| Masterpact NT NAVY L1 | NT06 |  |  |  |  |  |  |  | 15 | 18.7 | 24 |  |  | T | T | T |
| Micrologic 5.0, 6.0, 7.0 | NT08 |  |  |  |  |  |  |  |  | 18.7 | 24 |  |  |  | T | T |
|  | NT10 |  |  |  |  |  |  |  |  |  | 24 |  |  |  |  | T |
| Masterpact NW NAVY | NW08 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| N1/H1/H2 | NW10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Micrologic 2.0 | NW12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Micrologic 5.0 | NW16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW20 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW25 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW32 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW40 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| DOWNSTREAM | UPSTREAM | Masterpact NT NAVY H2 Micrologic 2.0 <br> Isd : 10 Ir |  |  |  |  | Masterpact NT NAVY H2 <br> Micrologic 5.0, 6.0, 7.0 <br> Inst 15 In |  |  |  |  | Masterpact NT NAVY H2 <br> Micrologic 5.0, 6.0, 7.0 Inst OFF |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | trip | NT06 | NT08 | NT10 | NT12 | NT16 | NT06 | NT08 | NT10 | NT12 | NT16 | NT06 | NT08 | NT10 | NT12 | NT16 |
|  | rating (A) | 630 | 800 | 1000 | 1250 | 1600 | 630 | 800 | 1000 | 1250 | 1600 | 630 | 800 | 1000 | 1250 | 1600 |
|  | adjustment Ir | 630 | 800 | 1000 | 1250 | 1600 | 630 | 800 | 1000 | 1250 | 1600 | 630 | 800 | 1000 | 1250 |  |
|  | Im (kA) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NS100H/L DB trip TM-D | 16 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 25 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 40 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 63 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 80 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 100 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
| NS100H/L DB trip STR22SE | 16 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 25 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 40 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 63 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 80 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 100 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
| $\begin{aligned} & \text { NS250H/LDB } \\ & \text { trip TM-D } \end{aligned}$ | $\leq 100$ | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 125 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 160 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 200 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 250 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
| NS250H/L DB trip STR22SE | $\leqslant 100$ | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 125 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 160 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 200 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 250 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
| NS630H/L DB STR23SE STR53UE | 250 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 320 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 400 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 500 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
|  | 630 | T |  | T | T | T | T |  | T | T | T | T |  | T | T | T |
| DB83 <br> STR35SE <br> STR55UE | 320 |  |  | 15 | 18.7 | 24 |  | 12 | 15 | 18.7 | 24 |  |  | 36 | 36 | 36 |
|  | 400 |  |  | 15 | 18.7 | 24 |  | 12 | 15 | 18.7 | 24 |  |  | 36 | 36 | 36 |
|  | 500 |  |  | 15 | 18.7 | 24 |  | 12 | 15 | 18.7 | 24 |  |  | 36 | 36 | 36 |
|  | 630 |  |  |  | 18.7 | 24 |  |  |  | 18.7 | 24 |  |  |  | 36 | 36 |
|  | 800 |  |  |  |  | 24 |  |  |  |  | 24 |  |  |  |  | 36 |
| DBL83 STR35SE STR55UE | 320 |  | 12 | 15 | 18.7 | 24 |  | 12 | 15 | 18.7 | 24 |  | 36 | 36 | 36 | 36 |
|  | 400 |  | 12 | 15 | 18.7 | 24 |  | 12 | 15 | 18.7 | 24 |  | 36 | 36 | 36 | 36 |
|  | 500 |  |  | 15 | 18.7 | 24 |  |  | 15 | 18.7 | 24 |  |  | 36 | 36 | 36 |
|  | 630 |  |  |  | 18.7 | 24 |  |  |  | 18.7 | 24 |  |  |  | 36 | 36 |
|  | 800 |  |  |  |  | 24 |  |  |  |  | 24 |  |  |  |  | 36 |
| ```Masterpact NT NAVY H1 Micrologic 2.0``` | NT06 |  |  | 10 | 12.5 | 16 |  |  | 15 | 18.7 | 24 |  |  | 36 | 36 | 36 |
|  | NT08 |  |  |  | 12.5 | 16 |  |  |  | 18.7 | 24 |  |  |  | 36 | 36 |
|  | NT10 |  |  |  |  | 16 |  |  |  |  | 24 |  |  |  |  | 36 |
|  | NT12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ```Masterpact NT NAVY H1 Micrologic 5.0, 6.0, 7.0``` | NT06 |  |  |  |  |  |  |  | 15 | 18.7 | 24 |  |  | 36 | 36 | 36 |
|  | NT08 |  |  |  |  |  |  |  |  | 18.7 | 24 |  |  |  | 36 | 36 |
|  | NT10 |  |  |  |  |  |  |  |  |  | 24 |  |  |  |  | 36 |
|  | NT12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ```Masterpact NT NAVY H2 Micrologic 2.0``` | NT06 |  |  | 10 | 12.5 | 16 |  |  | 15 | 18.7 | 24 |  |  | 36 | 36 | 36 |
|  | NT08 |  |  |  | 12.5 | 16 |  |  |  | 18.7 | 24 |  |  |  | 36 | 36 |
|  | NT10 |  |  |  |  | 16 |  |  |  |  | 24 |  |  |  |  | 36 |
|  | NT12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY H2 <br> Micrologic 5.0, 6.0, 7.0 | NT06 |  |  |  |  |  |  |  | 15 | 18.7 | 24 |  |  | 36 | 36 | 36 |
|  | NT08 |  |  |  |  |  |  |  |  | 18.7 | 24 |  |  |  | 36 | 36 |
|  | NT10 |  |  |  |  |  |  |  |  |  | 24 |  |  |  |  | 36 |
|  | NT12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY L1 Micrologic 2.0 | NT06 |  |  | 10 | 12.5 | 16 |  |  | 15 | 18.7 | 24 |  |  | 36 | 36 | 36 |
|  | NT08 |  |  |  | 12.5 | 16 |  |  |  | 18.7 | 24 |  |  |  | 36 | 36 |
|  | NT10 |  |  |  |  | 16 |  |  |  |  | 24 |  |  |  |  | 36 |
| Masterpact NT NAVY L1 Micrologic 5.0, 6.0, 7.0 | NT06 |  |  |  |  |  |  |  | 15 | 18.7 | 24 |  |  | 36 | 36 | 36 |
|  | NT08 |  |  |  |  |  |  |  |  | 18.7 | 24 |  |  |  | 36 | 36 |
|  | NT10 |  |  |  |  |  |  |  |  |  | 24 |  |  |  |  | 36 |
| Masterpact NW NAVY <br> N1/H1/H2 <br> Micrologic 2.0 <br> Micrologic 5.0 | NW08 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW20 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW25 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW32 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NW40 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Additional characteristics

| DOWNSTREAM | UPSTREAM | Masterpact NT NAVY L1 <br> Micrologic 2.0 <br> Isd: 10 Ir |  |  | Masterpact NT NAVY L1 Micrologic 5.0 Inst 15 In |  |  | Masterpact NT NAVY L1 Micrologic 5.0 Inst off |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | trip | $\begin{aligned} & \text { NT06 } \\ & 630 \\ & 630 \end{aligned}$ | $\begin{aligned} & \text { NT08 } \\ & 800 \\ & 800 \end{aligned}$ | NT10 <br> 1000 <br> 1000 | $\begin{aligned} & \text { NT06 } \\ & 630 \\ & 630 \end{aligned}$ | $\begin{array}{\|l\|} \text { NT08 } \\ 800 \\ 800 \end{array}$ | $\begin{aligned} & \text { NT10 } \\ & 1000 \\ & 1000 \end{aligned}$ | $\begin{aligned} & \text { NT06 } \\ & 630 \\ & 630 \end{aligned}$ | $\begin{array}{\|l\|} \text { NT08 } \\ 800 \\ 800 \end{array}$ | $\begin{aligned} & \text { NT10 } \\ & 1000 \\ & 1000 \end{aligned}$ |
|  | rating (A) |  |  |  |  |  |  |  |  |  |
|  | adjustment Ir |  |  |  |  |  |  |  |  |  |
|  | Im (kA) |  |  |  |  |  |  |  |  |  |
| NS100H/L DB trip TM-D | 16 | T | T | T | T | T | T | T | T | T |
|  | 25 | T | T | T | T | T | T | T | T | T |
|  | 40 | T | T | T | T | T | T | T | T | T |
|  | 63 | T | T | T | T | T | T | T | T | T |
|  | 80 | T | T | T | T | T | T | T | T | T |
|  | 100 | T | T | T | T | T | T | T | T | T |
| NS100H/L DB trip STR22SE | 16 | T | T | T | T | T | T | T | T | T |
|  | 25 | T | T | T | T | T | T | T | T | T |
|  | 40 | T | T | T | T | T | T | T | T | T |
|  | 63 | T | T | T | T | T | T | T | T | T |
|  | 80 | T | T | T | T | T | T | T | T | T |
|  | 100 | T | T | T | T | T | T | T | T | T |
| $\begin{aligned} & \text { NS250H/L DB } \\ & \text { trip TM-D } \end{aligned}$ | $\leq 100$ | T | T | T | T | T | T | T | T | T |
|  | 125 | T | T | T | T | T | T | T | T | T |
|  | 160 | T | T | T | T | T | T | T | T | T |
|  | 200 | T | T | T | T | T | T | T | T | T |
|  | 250 | T | T | T | T | T | T | T | T | T |
| NS250H/L DB trip STR22SE | $\leqslant 100$ | T | T | T | T | T | T | T | T | T |
|  | $125$ | T | T | T | T | T | T | T | T | T |
|  | 160 | T | T | T | T | T | T | T | T | T |
|  | 200 | T | T | T | T | T | T | T | T | T |
|  | 250 | T | T | T | T | T | T | T | T | T |
| NS630H/L DB STR23SE STR53UE | 250 | T | T | T | T | T | T | T | T | T |
|  | 320 | T | T | T | T | T | T | T | T | T |
|  | 400 | T | T | T | T | T | T | T | T | T |
|  | 500 | T | T | T | T | T | T | T | T | T |
|  | 630 | T | T | T | T | T | T | T | T | T |
| DB83 <br> STR35SE <br> STR55UE | 320 |  |  |  |  |  | 10 |  |  | 10 |
|  | 400 |  |  |  |  |  | 10 |  |  | 10 |
|  | 500 |  |  |  |  |  | 10 |  |  | 10 |
|  | 630 |  |  |  |  |  |  |  |  |  |
|  | 800 |  |  |  |  |  |  |  |  |  |
| DBL83 STR35SE STR55UE | 320 |  |  | 10 |  |  | 10 |  |  | 10 |
|  | 400 |  |  | 10 |  |  | 10 |  |  | 10 |
|  | 500 |  |  | 10 |  |  | 10 |  |  | 10 |
|  | 630 |  |  |  |  |  |  |  |  |  |
|  | 800 |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY | NT06 |  |  | 10 |  |  | 10 |  |  | 10 |
|  | NT08 |  |  |  |  |  |  |  |  |  |
| H1 <br> Micrologic 2.0 | NT10 |  |  |  |  |  |  |  |  |  |
|  | NT12 |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY | NT06 |  |  |  |  |  |  |  |  | 10 |
|  | NT08 |  |  |  |  |  |  |  |  |  |
| H1 <br> Micrologic 5.0, 6.0, 7.0 | NT10 |  |  |  |  |  |  |  |  |  |
|  | NT12 |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY | NT06 |  |  | 10 |  |  | 10 |  |  | 10 |
|  | NT08 |  |  |  |  |  |  |  |  |  |
| H2 <br> Micrologic 2.0 | NT10 |  |  |  |  |  |  |  |  |  |
|  | NT12 |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY | NT06 |  |  |  |  |  |  |  |  | 10 |
|  | NT08 |  |  |  |  |  |  |  |  |  |
| H2 <br> Micrologic 5.0, 6.0, 7.0 | NT10 |  |  |  |  |  |  |  |  |  |
|  | NT12 |  |  |  |  |  |  |  |  |  |
|  | NT16 |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY L1 | NT06 |  |  | 10 |  |  | 10 |  |  | 10 |
|  | NT08 |  |  |  |  |  |  |  |  |  |
| Micrologic 2.0 | NT10 |  |  |  |  |  |  |  |  |  |
| Masterpact NT NAVY L1 | NT06 |  |  |  |  |  |  |  |  | 10 |
|  | NT08 |  |  |  |  |  |  |  |  |  |
| Micrologic 5.0, 6.0, 7.0 | NT10 |  |  |  |  |  |  |  |  |  |
| Masterpact NW NAVY <br> N1/H1/H2 <br> Micrologic 2.0 <br> Micrologic 5.0 | NW08 |  |  |  |  |  |  |  |  |  |
|  | NW10 |  |  |  |  |  |  |  |  |  |
|  | NW12 |  |  |  |  |  |  |  |  |  |
|  | NW16 |  |  |  |  |  |  |  |  |  |
|  | NW20 |  |  |  |  |  |  |  |  |  |
|  | NW25 |  |  |  |  |  |  |  |  |  |
|  | NW32 |  |  |  |  |  |  |  |  |  |
|  | NW40 |  |  |  |  |  |  |  |  |  |



Additional
Protection discrimination
characteristics

| DOWNSTREAM | UPSTREAM | Masterpact NW NAVY N1 - H1 - H2 <br> Micrologic 5.0-6.0-7.0 <br> Inst OFF |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | trip | NW08 | NW10 |  | NW16 | NW20 | NW25 | NW32 | NW40 |
|  | rating (A) | 800 |  |  |  |  | 2500 | 3200 | 4000 |
|  | adjustment Ir | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3200 | 4000 |
|  | Im (kA) |  |  |  |  |  |  |  |  |
| NS100H/L DB trip TM-D | 16 | T | T | T | T | T | T | T | T |
|  | 25 | T | T | T | T | T | T | T | T |
|  | 40 | T | T | T | T | T | T | T | T |
|  | 63 | T | T | T | T | T | T | T | T |
|  | 80 | T | T | T | T | T | T | T | T |
|  | 100 | T | T | T | T | T | T | T | T |
| NS100H/L DB trip STR22SE | 16 | T | T | T | T | T | T | T | T |
|  | 25 | T | T | T | T | T | T | T | T |
|  | 40 | T | T | T | T | T | T | T | T |
|  | 63 | T | T | T | T | T | T | T | T |
|  | 80 | T | T | T | T | T | T | T | T |
|  | 100 | T | T | T | T | T | T | T | T |
| $\begin{aligned} & \overline{\text { NS250H/L DB }} \\ & \text { trip TM-D } \end{aligned}$ | $\leqslant 100$ | T | T | T | T | T | T | T | T |
|  | 125 | T | T | T | T | T | T | T | T |
|  | 160 | T | T | T | T | T | T | T | T |
|  | 200 | T | T | T | T | T | T | T | T |
|  | 250 | T | T | T | T | T | T | T | T |
| $\overline{\mathrm{NS} 250 \mathrm{H} / \mathrm{L}} \mathrm{DB}$ trip STR22SE | $\leqslant 100$ | T | T | T | T | T | T | T | T |
|  | $125$ | T | T | T | T | T | T | T | T |
|  | 160 | T | T | T | T | T | T | T | T |
|  | 200 | T | T | T | T | T | T | T | T |
|  | 250 | T | T | T | T | T | T | T | T |
| $\begin{aligned} & \text { NS630H/L DB } \\ & \text { STR23SE } \\ & \text { STR53UE } \end{aligned}$ | 250 | T | T | T | T | T | T | T | T |
|  | 320 | T | T | T | T | T | T | T | T |
|  | 400 | T | T | T | T | T | T | T | T |
|  | 500 | T | T | T | T | T | T | T | T |
|  | 630 | T | T | T | T | T | T | T | T |
| DB83 <br> STR35SE <br> STR55UE | 320 |  | T | T | T | T | T | T | T |
|  | 400 |  | T | T | T | T | T | T | T |
|  | 500 |  | T | T | T | T | T | T | T |
|  | 630 |  |  | T | T | T | T | T | T |
|  | 800 |  |  |  | T | T | T | T | T |
| $\begin{aligned} & \hline \text { DBL83 } \\ & \text { STR35SE } \\ & \text { STR55UE } \end{aligned}$ | 320 |  | T | T | T | T | T | T | T |
|  | 400 |  | T | T | T | T | T | T | T |
|  | 500 |  | T | T | T | T | T | T | T |
|  | $630$ |  |  | T | T | T | T | T | T |
|  | $800$ |  |  |  | T | T | T | T | T |
| ```Masterpact NT NAVY H1 Micrologic 2.0``` | NT06 |  | T | T | T | T | T | T | T |
|  | NT08 |  |  | T | T | T | T | T | T |
|  | NT10 |  |  |  | T | T | T | T | T |
|  | NT12 |  |  |  |  | T | T | T | T |
|  | NT16 |  |  |  |  |  | T | T | T |
| ```Masterpact NT NAVY H1 Micrologic 5.0, 6.0, 7.0``` | NT06 |  | T | T | T | T | T |  | T |
|  | NT08 |  |  | T | T | T | T | T | T |
|  | NT10 |  |  |  | T | T | T | T | T |
|  | NT12 |  |  |  |  | T | T | T | T |
|  | NT16 |  |  |  |  |  | T | T | T |
| $\begin{aligned} & \text { Masterpact NT NAVY L1 } \\ & \text { Micrologic } 2.0 \end{aligned}$ | NT06 |  | T | T | T | T | T | T | T |
|  | NT08 |  |  | T | T | T | T | T | T |
|  | NT10 |  |  |  | T | T | T | T | T |
| Masterpact NT NAVY L1 <br> Micrologic 5.0, 6.0, 7.0 | NT06 |  | T | T | T | T | T | T | T |
|  | NT08 |  |  | T | T | T | T | T | T |
|  | NT10 |  |  |  | T | T | T | T | T |
| Masterpact NW NAVY N1/H1/H2 Micrologic 2.0 | NW08 |  |  | T | T | T | T | T | T |
|  | NW10 |  |  |  | T | T | T | T | T |
|  | NW12 |  |  |  |  | T | T | T | T |
|  | NW16 |  |  |  |  |  | T | T | T |
|  | NW20 |  |  |  |  |  |  | T | T |
|  | NW25 |  |  |  |  |  |  |  | T |
|  | NW32 |  |  |  |  |  |  |  |  |
|  | NW40 |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \hline \text { Masterpact NW NAVY } \\ & \text { N1/H1/H2 } \\ & \text { Micrologic } 5.0 \end{aligned}$ | NW08 |  |  | T | T | T | T | T | T |
|  | NW10 |  |  |  | T | T | T | T | T |
|  | NW12 |  |  |  |  | T | T | T | T |
|  | NW16 |  |  |  |  |  | T | T | T |
|  | NW20 |  |  |  |  |  |  | T | T |
|  | NW25 |  |  |  |  |  |  |  | T |
|  | NW32 |  |  |  |  |  |  |  |  |
|  | NW40 |  |  |  |  |  |  |  |  |

## schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: - complete library: technical documents, catalogs, FAQs, brochures...

- selection guides from the e-catalog. - product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...


## CAD software and tools

The CAD software and tools enhance productivity and safety. They help you create your installations by simplifying product choice through easy browsing in the Schneider Electric offers.
Last but not least, they optimise use of our products while also complying with standards and proper procedures.


## Masterpact NT and NW NAVY <br> Catalogue numbers and order form

Presentation ..... 1
Functions and characteristics ..... A-1
Installation recommendations ..... B-1
Dimensions and connections ..... C-1
Electrical diagrams ..... D-1
Additional characteristics ..... E-1
NT06 to NT16 Navy drawout circuit breakers ..... F-3
Circuit breakers ..... F-3
Connections ..... F-4
Chassis locking and accessories ..... F-5
Indication contacts ..... F-6
Remote operation ..... F-7
Accessories for NT06 to NT16 Navy drawout circuit breakers ..... F-8
NW08 to NW40 Navy drawout circuit breakers ..... F-10
Circuit breakers ..... F-10
Chassis and connections ..... F-11
Chassis locking and accessories ..... F-12
Chassis accessories ..... F-13
Indication contacts ..... F-14
Remote operation ..... F-15
Accessories for NW08 to NW40 Navy drawout circuit breakers ..... F-16
NW08 to NW40 Navy drawout circuit breakers ..... F-18
Switch-disconnectors ..... F-18
Connections ..... F-19
Masterpact NT NAVY ..... F-20
Connection ..... F-20
Micrologic control unit, communication option, portable data acquisition ..... F-21
Remote operation ..... F-22
Chassis locking and accessories ..... F-23
Clusters ..... F-24
Circuit breaker locking and accessories ..... F-25
Indication contacts ..... F-26
Masterpact NW NAVY ..... F-27
Connection ..... F-27
Micrologic control unit, communication option ..... F-28
Remote operation ..... F-29
Chassis locking and accessories ..... F-30
Clusters ..... F-31
Circuit breaker locking and accessories ..... F-32
Indication contacts ..... F-33
Masterpact NT or NW NAVY ..... F-34
Circuit breakers and switch-disconnectors ..... F-34

## Catalogue numbers

NT06 to NT16 Navy drawout circuit breakers

## Circuit breakers

A Navy Masterpact drawout circuit breaker is described by 5 catalogue numbers corresponding to:

- the basic circuit breaker
- a control unit
- a chassis
- a top connection

■ a bottom connection.
A communication option and various auxiliaries and accessories may also be added.


## Navy basic circuit breaker <br> Type H1



Catalogue numbers
NT06 to NT16 Navy drawout circuit breakers

## Connections

## Chassis front connection



Front connection accessories
Vertical connection adapters 630/1600 A


3P (3 parts)
| 33642

Chassis rear connection
Vertical connection


Common accessories for front and rear connection
Spreaders


800-1600 A
3P
| 33622
For front and horizontal rear connection.

Cable lug adapters 630/1600 A


## Chassis locking and accessories

| Chassis locking |  |  |  |
| :---: | :---: | :---: | :---: |
| "Disconnected" position locking |  |  |  |
|  | By padlocks |  |  |
|  |  | VCPO | Standard |
|  | By Profalux keylocks |  |  |
|  | Profalux | 1 lock with 1 key + adaptation kit | 33773 |
|  |  | 2 locks 1 keys + adaptation kit | 33774 |
|  |  | 2 locks 2 different keys + adaptation kit | 33775 |
|  | 1 keylock Profalux (without adaptation kit): |  |  |
|  |  | identical key not identified combination | 33173 |
|  |  | identical key identified 215470 combination | 33174 |
|  |  | identical key identified 215471 combination | 33175 |
|  | By Ronis keylocks |  |  |
|  | Ronis | 1 lock with 1 key + adaptation kit | 33776 |
|  |  | 2 locks 1 keys + adaptation kit | 33777 |
|  |  | 2 locks 2 different keys + adaptation kit | 33778 |
|  | 1 keylock Ronis (without adaptation kit): |  |  |
|  |  | identical key not identified combination | 33189 |
|  |  | identical key identified EL24135 combination | 33190 |
|  |  | identical key identified EL24153 combination | 33191 |
|  |  | identical key identified EL24315 combination | 33192 |
|  | Optional disconnected/test/connected position locking |  | 33779 |
|  | Adaptation kit (without keylock): |  |  |
|  |  | adaptation kit Profalux | 33769 |
|  |  | adaptation kit Ronis | 33770 |
|  |  | adaptation kit Castell | 33771 |
|  |  | adaptation kit Kirk | 33772 |
| Racking interlock |  |  |  |
|  | Racking interlock (VPOC) |  | 33788 |

## Chassis accessories

## Arc chute cover



Auxiliary terminal shield (CB)


Terminal shield
33763

## Safety shutters as standard



Safety shutters (VO)
| Standard

## Catalogue numbers

NT06 to NT16 Navy
drawout circuit breakers
Indication contacts

## ON/OFF indication contacts (OF)



Changeover contacts (6A-240 V)
1 low-level OF to replace 1 standard OF (4 max.)
4 (standard)
33806
"Fault trip" indication contacts (SDE)


Changeover contact (5A-240 V)
1 (standard)
1 additional SDE (5A-240 V)
1 additional low-level SDE

## Carriage switches (connected / disconnected / test position)



Changeover contacts (6 A-240 V)
1 connected position contact (3 max.)
1 test position contact (1 max.) | 33751
$\frac{1}{1}$ disconnected position contact (2 max.) 33752

And/or low-level changeover contacts
33753

| And/or low-level changeover contacts | 33754 |
| :--- | :--- |
| 1 connected position contact (3 max.) | 33755 |

1 test position contact (1 max.) 33755

| 1 disconnected position contact (2 max.) | 33756 |
| :--- | :--- |

Auxiliary terminals for chassis alone

| 3 wire terminal (30 parts) | 47071 |
| :--- | :--- | :--- |
| 6 wire terminal (10 parts) | 47072 |
| Jumpers (10 parts) | 47900 |

## Remote operation

Remote ON/OFF
Gear motor


| AC $50 / 60 \mathrm{~Hz}$ | $\frac{100 / 130 \mathrm{~V}}{200 / 240 \mathrm{~V}}$ |
| :--- | :--- |
|  | $\frac{277 / 415 \mathrm{~V}}{440 / 480 ~ V}$ |
| DC | $\underline{24 / 30 \mathrm{~V}}$ |

Navy instantaneous voltage release


| Standard |  |
| :--- | :--- |
| AC $50 / 60 \mathrm{~Hz}$ | $\frac{115 \mathrm{~V} \mathrm{AC} / D C}{220 \mathrm{~V} \mathrm{AC} / D C}$ |
| DC | $380 / 480 \mathrm{VAC}$ |
| Communicating |  |
| AC $50 / 60 \mathrm{~Hz}$ | $\underline{215 \mathrm{~V} \mathrm{AC} / D C}$ |
| DC | $380 / 480 \mathrm{~V} \mathrm{AC}$ |


| Closing release |
| :--- |
| Navy XF |
| 64587 |
| 64588 |
| 64589 |
| Navy XF com |
| 64597 |
| 64598 |
| 64599 |

Opening release Navy MX
64592
64593
64594
Navy MX com
64602
64603
64604
"Ready to close" contact (1 max.)

1 changeover contact (5A-240 V)
1 low-level changeover contact
PF

## Electrical closing pushbutton

(

Remote reset after fault trip



47346

## Remote tripping

Navy instantaneous voltage release (MN or $\mathbf{2}^{\text {nd }} \mathbf{M X}$ )

|  |  |  | $2^{\text {nd }} \mathrm{MX} \quad$ or | MN |
| :---: | :---: | :---: | :---: | :---: |
|  | AC $50 / 60 \mathrm{~Hz}$ DC | $24 / 30 \mathrm{VDC}, 24 \mathrm{VAC}$ |  | 33819 |
|  |  | 100/130 V AC/DC |  | 33821 |
|  |  | $115 \mathrm{VAC} / \mathrm{DC}$ | 64612 |  |
|  |  | 200/250 V AC/DC |  | 33822 |
|  |  | $220 \mathrm{VAC} / \mathrm{DC}$ | 64613 |  |
|  |  | $380 / 480$ VAC | 64614 | 33824 |
| MN delay unit |  |  |  |  |
|  | AC $50 / 60 \mathrm{~Hz}$ DC |  | R (non-adjustable) | Rr (adjustable) |
|  |  | $48 / 60 \mathrm{VAC} / \mathrm{DC}$ |  | 33680 |
|  |  | 100/130 V AC/DC | 33684 | 33681 |
|  |  | 200/250 V AC/DC | 33685 | 33682 |
|  |  | 380/480 V AC |  | 33683 |

Circuit breaker locking
Pushbutton locking device


By padlocks
| 33897



Operation counter CDM
| 33895

Escutcheon and accessories


Escutcheon



Blanking plate


Long-time rating plug (limits setting range for higher accuracy)


Test equipment Mini test kit


Hand held test kit (HHTK)

Portable test kit


| Full function test kit (FFTK) | 33595 |
| :--- | :--- |

Test report edition come from FFTK
FFTK test cable 2 pin for STR trip unit
FFTK test cable 7 pin for Micrologic trip unit

For circuit breaker derating
To be specified when ordering

| Rating | NT08 | NT10 | NT12 | NT16 |
| :--- | :--- | :--- | :--- | :--- |
| 400 | Available | Available |  |  |
| 630 | Available | Available | Available |  |
| 800 |  | Available | Available | Available |
| 1000 |  |  | Available | Available |
| 1250 |  |  |  | Available |

Catalogue numbers
NW08 to NW40 Navy drawout circuit breakers
Circuit breakers

A Navy Masterpact drawout circuit breaker is described by 5 catalogue numbers corresponding to:

- the basic circuit breaker
- a control unit
- a chassis
- a top connection

■ a bottom connection.
A communication option and various auxiliaries and accessories may also be added.


Basic circuit breaker + chassis $\leqslant 4000$ A


Chassis $\leqslant 4000$ A

Navy basic circuit breaker

|  |  |  | P |
| :---: | :---: | :---: | :---: |
| Type N1 |  |  |  |
|  | $\ln \left(\mathrm{A}\right.$ at $\left.40^{\circ} \mathrm{C}\right)$ | Icu (kA for U = 220/440 V) - Ics = $100 \%$ Icu |  |
| NW08 | 800 | 42 | 64500 |
| NW10 | 1000 | 42 | 64501 |
| NW12 | 1250 | 42 | 64502 |
| NW16 | 1600 | 42 | 64503 |
| Type H1 |  |  |  |
|  | $\ln \left(\right.$ A at $\left.40^{\circ} \mathrm{C}\right)$ | Icu (kA for U = 220/440 V ) - Ics = $100 \% \mathrm{Icu}$ |  |
| NW08 | 800 | 65 | 64505 |
| NW10 | 1000 | 65 | 64506 |
| NW12 | 1250 | 65 | 64507 |
| NW16 | 1600 | 65 | 64508 |
| NW20 | 2000 | 65 | 64509 |
| NW25 | 2500 | 65 | 64510 |
| NW32 | 3200 | 65 | 64511 |
| NW40 | 4000 | 65 | 64512 |
| Type H2 |  |  |  |
|  | $\ln \left(\right.$ A at $\left.40^{\circ} \mathrm{C}\right)$ | Icu (kA for U = 220/440 V) - Ics = 100 \% Icu |  |
| NW08 | 800 | 100 | 64523 |
| NW10 | 1000 | 100 | 64524 |
| NW12 | 1250 | 100 | 64525 |
| NW16 | 1600 | 100 | 64526 |
| NW20 | 2000 | 100 | 64527 |
| NW25 | 2500 | 100 | 64528 |
| NW32 | 3200 | 100 | 64529 |
| NW40 | 4000 | 100 | 64530 |
| Micrologic control unit |  |  |  |
| "Ammeter" A |  |  |  |
| Microlog | OA | tion | 48358 |
| Microlog | OA | tection | 48360 |
| "Power meter" P |  |  |  |
| Microlog | 0 P | tection | 48363 |
| "Harmonic meter" H |  |  |  |
| Micrologic 5.0 H |  | Selective protection | 48366 |
| Navy | assis |  |  |


| For type N1 |  | 3P |
| :---: | :---: | :---: |
|  |  |  |
| 800/1250 A |  | 64514 |
| 1600 A |  | 64515 |
| For type H1/H2 |  |  |
| 800/1600 A |  | 64517 |
| 2000 A |  | 64518 |
| 2500 A |  | 64519 |
| 3200 A |  | 64520 |
| 4000 A |  | 64521 |
| Communication option |  |  |
|  | Chassis | Circuit breaker |
| Modbus COM | 33852 | 48384 |
| Eco Modbus COM module |  | 48385 |
| Portable data acquisition |  |  |
| Masterpact GetnSet product with battery and accessories |  | 48789 |

## Chassis and connections

| Chassis front connection |
| :--- |

Catalogue numbers
NW08 to NW40 Navy
drawout circuit breakers
Chassis locking and accessories

| Chassis locking |  |  |
| :---: | :---: | :---: |
| "Disconnected" position locking |  |  |
|  | By padlocks |  |
|  | VCPO | Standard |
|  | By Profalux keylocks |  |
|  | Profalux 1 lock with 1 key + adaptation kit | 48568 |
|  | 2 locks 1 key + adaptation kit | 48569 |
|  | 2 locks 2 different keys + adaptation kit | 48570 |
|  | 1 keylock Profalux (without adaptation kit): |  |
|  | identical key not identified combination | 33173 |
|  | identical key identified 215470 combination | 33174 |
|  | identical key identified 215471 combination | 33175 |
|  | By Ronis keylocks |  |
|  | Ronis 1 lock with 1 key + adaptation kit | 48572 |
|  | 2 locks 2 same keys + adaptation kit | 48573 |
|  | 2 locks 2 different keys + adaptation kit | 48574 |
|  | 1 keylock Ronis (without adaptation kit): |  |
|  | identical key not identified combination | 33189 |
|  | identical key identified EL24135 combination | 33190 |
|  | identical key identified EL24153 combination | 33191 |
|  | identical key identified EL24315 combination | 33192 |
|  | Optional disconnected/test/connected position locking Adaptation kit (without keylock): | 33779 |
|  |  |  |
|  | adaptation kit Profalux / Ronis | 48564 |
|  | Kirk key adapter kit | 48565 |
|  | Castell key adapter kit | 48566 |
| Racking interlock |  |  |
| \% | 1 part | 48582 |

## Chassis accessories



## Shutter locking block (for remplacement)

2 parts for 800/4000 A

NW08 to NW40 Navy drawout circuit breakers

## Indication contacts



## Remote operation

Remote ON/OFF
Gear motor

| (2) ${ }_{\text {a }}$ |  |  | MCH |
| :---: | :---: | :---: | :---: |
|  | AC $50 / 60 \mathrm{~Hz}$ | 100/130 V | 48526 |
|  |  | 200/240 V | 48527 |
|  |  | 250/277 V | 48528 |
|  |  | $380 / 415 \mathrm{~V}$ | 48529 |
|  |  | $440 / 480 \mathrm{~V}$ | 48530 |
|  | DC | $24 / 30 \mathrm{~V}$ | 48521 |

Navy instantaneous voltage releases

|  |  |  |  | Closing release | Opening release |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Standard |  | Navy XF | Navy MX |
|  |  | AC 50/60 Hz | 115 V AC/DC | 64542 | 64547 |
|  |  | DC | 220 V AC/DC | 64543 | 64548 |
|  |  |  | 380-480 V AC | 64544 | 64549 |
|  |  | Communicati |  | Navy XF com | Navy MX com |
|  |  | AC $50 / 60 \mathrm{~Hz}$ | 115 V AC/DC | 64552 | 64559 |
|  |  | DC | 220 VAC/DC | 64553 | 64560 |
|  |  |  | 380/480 V AC | 64554 | 64561 |
| "Ready to close" contact (1 max.) |  |  |  |  |  |
|  |  |  |  | PF |  |
|  |  | 1 changeover contact (5A-240 V ) |  | 48469 |  |
|  |  | 1 low-level changeover contact |  | 48470 |  |
| Electrical closing pushbutton |  |  |  |  |  |
|  |  | 1 pushbutton |  | BPFE |  |
|  |  | 48534 |  |

Remote reset after fault trip

| 蝺 |  | Automatic reset | RAR |
| :---: | :---: | :---: | :---: |
|  |  | Adaptation | 47346 |


| Remote tripping |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Instantaneous voltage release |  |  |  |  |
|  | AC $50 / 60 \mathrm{~Hz}$ DC |  | $2^{\text {nd }} \mathrm{MX} \quad$ or | MN |
|  |  | 24/30 V DC, 24 VAC |  | 48501 |
|  |  | 100/130 V AC/DC |  | 48503 |
|  |  | 115 V AC/DC | 64569 |  |
|  |  | 200/250 V AC/DC |  | 48504 |
|  |  | 220 V AC/DC | 64570 |  |
|  |  | 380/480 V AC | 64571 | 48506 |
| MN delay unit |  |  |  |  |
|  |  |  | R (non-adjustable) | Rr (adjustable) |
|  | AC $50 / 60 \mathrm{~Hz}$ | 48/60 V AC/DC |  | 33680 |
|  | DC | 100/130 V AC/DC | 33684 | 33681 |
|  |  | 200/250 V AC/DC | 33685 | 33682 |
|  |  | 380/480 V AC/DC |  | 33683 |

Circuit breaker locking
Pushbutton locking device


By padlocks
| 48536

OFF position locking


| By padlocks |  |  |
| :---: | :---: | :---: |
|  | VCPO | 48539 |
| By Profalux keylocks |  |  |
| Profalux | 1 lock with 1 key + adaptation kit | 48545 |
|  | 2 locks 2 same keys + adaptation kit | 48546 |
|  | 2 locks 2 different keys + adaptation kit | 48547 |
| 1 keylock Profalux (without adaptation kit): | identical key not identified combination | 33173 |
|  | identical key identified 215470 combination | 33174 |
|  | identical key identified 215471 combination | 33175 |
| By Ronis keylocks |  |  |
| Ronis | 1 lock with 1 key + adaptation kit | 48549 |
|  | 2 locks 2 same keys + adaptation kit | 48550 |
|  | 2 locks 2 different keys + adaptation kit | 48551 |
| 1 keylock Ronis (without adaptation kit): | identical key not identified combination | 33189 |
|  | identical key identified EL24135 combination | 33190 |
|  | identical key identified EL24153 combination | 33191 |
|  | identical key identified EL24315 combination | 33192 |
| Adaptation kit (without keylock): | adaptation kit Profalux / Ronis | 48541 |
|  | adaptation kit Kirk | 48542 |
|  | adaptation kit Castell | 48543 |

Other circuit breaker accessories
Mechanical operation counter

operation counter CDM

Escutcheon and accessories



Long-time rating plug (limits setting range for higher accuracy)

|  | Standard | 0.4 to $1 \times \mathrm{lr}$ | 33542 |
| :---: | :---: | :---: | :---: |
|  | Low-setting option | 0.4 to $0.8 \times \mathrm{lr}$ | 33543 |
|  | High-setting option | 0.8 to $1 \times \mathrm{lr}$ | 33544 |
|  | Without long-time pr | off | 33545 |
| Zone Selective Interlocking option for Micrologic P and H |  |  |  |
|  | ZSI |  | Standard |
| External power supply module (AD) |  |  |  |
|  | $24 / 30 \mathrm{VDC}$ |  | 54440 |
|  | $48 / 60 \mathrm{VDC}$ |  | 54441 |
|  | 100/125 V DC |  | 54442 |
|  | 110/130 VAC |  | 54443 |
|  | 200/240 VAC |  | 54444 |
|  | $380 / 415 \mathrm{VAC}$ |  | 54445 |
| Battery module (BAT) |  |  |  |
| ¢ | 124 V battery |  | 54446 |

## Test equipment

Mini test kit


| Special settings |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| For circuit breaker derating |  |  |  |  |  |  |  |
| To be sp | when orde |  |  |  |  |  |  |
| Rating | NW08 | NW10 | NW12 | NW16 | NW20 | NW25 | NW32 |
| 400 | Available | Available |  |  |  |  |  |
| 630 | Available | Available | Available |  |  |  |  |
| 800 |  | Available | Available | Available |  |  |  |
| 1000 |  |  | Available | Available | Available |  |  |
| 1250 |  |  |  | Available | Available | Available |  |
| 1600 |  |  |  |  | Available | Available | Available |
| 2000 |  |  |  |  |  | Available | Available |
| 2500 |  |  |  |  |  |  | Available |
| Rating | NW40 |  |  |  |  |  |  |
| 2000 | Available |  |  |  |  |  |  |
| 2500 | Available |  |  |  |  |  |  |
| 3200 | Available |  |  |  |  |  |  |
| 4000 |  |  |  |  |  |  |  |

Catalogue numbers
NW08 to NW4O Navy
drawout switch-disconnectors
Switch-disconnectors

A Navy Masterpact drawout switch-disconnector is described by 4 catalogue numbers corresponding to: $\square$ the basic switch-disconnector

- a chassis
- a top connection
- a bottom connection.

A communication option and various auxiliaries and accessories may also be added.


Basic switch-disconnector + chassis $\leqslant 4000 \mathrm{~A}$

Navy basic switch-disconnector
Type HA

|  |  |  | 3P |
| :---: | :---: | :---: | :---: |
|  | In (A a | Icm (kA p | V V) |
| NW08 | 800 | 105 | 64532 |
| NW10 | 1000 | 105 | 64533 |
| NW12 | 1250 | 105 | 64534 |
| NW16 | 1600 | 105 | 64535 |
| NW20 | 2000 | 105 | 64536 |
| NW25 | 2500 | 135 | 64537 |
| NW32 | 3200 | 135 | 64538 |
| NW40 | 4000 | 135 | 64539 |
| Navy chassis |  |  |  |
| Type HA |  |  |  |
|  |  |  | 3P |
| 800/1600 A |  |  | 64517 |
| 2000 A |  |  | 64518 |
| 2500 A |  |  | 64519 |
| 3200 A |  |  | 64520 |
| 4000 A |  |  | 64521 |
| Communication option |  |  |  |
|  |  | Chassis | Switch |
| Modbus COM |  | 33852 | 48384 |

Auxiliaries and accessories: see page F-8 and page F-9.

## Connections

| Chassis front connection |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  | 3P |
|  | 800-1600 A | Top | 48415 |
|  |  | Bottom | 48418 |
|  | 2000 A | Top | 48413 |
|  |  | Bottom | 48414 |
|  | 2500/3200 A | Top | 48416 |
|  |  | Bottom | 48419 |
| Chassis rear connection |  |  |  |
| Vertical connection |  |  |  |
|  |  |  | 3P |
|  | 800-2000 A | Top | 48133 |
|  |  | Bottom | 48138 |
|  | 2500/3200 A | Top | 48134 |
|  |  | Bottom | 48139 |
|  | 4000 A | Top | 48135 |
|  |  | Bottom | 48140 |
| Horizontal connection |  |  |  |
|  |  |  | 3P |
|  | 800-2000 A | Top | 48143 |
|  |  | Bottom | 48148 |
|  | 2500/3200 A | Top | 48144 |
|  |  | Bottom | 48149 |
|  | 4000 A | Top | 48145 |
|  |  | Bottom | 48150 |
|  | ries |  |  |
|  |  |  |  |
|  | 3P/4P (3 parts) |  | 48600 |

Catalogue numbers:

## Masterpact NT NAVY

spare parts

## Connection

## Connection

Drawout circuit breakers
Front connection / Replacement kit (6 parts)

|  | Top and bottom 630/1600 A | 33588 |
| :---: | :---: | :---: |
|  | Installation manual | \| 47102 |
| Rear connection (vertical or horizontal mounting) / Replacement kit (3 parts) |  |  |
| 密 | 630/1600 A | 33586 |
| Vert. mounting. Horiz. mounting. | Installation manual | \| 47102 |
| Connection accessories |  |  |
| Vertical connection adapters 630/1600 A / Replacement kit (3 parts) |  |  |
|  | For drawout front-connected circuit breakers | 33642 |
|  | Installation manual | \| 47102 |
| Cable lug adapters 630/1600 A / Replacement kit (3 parts) |  |  |
|  | For drawout front-connected circuit breakers | 33644 |
|  | Installation manual | \| 47102 |
| Spreaders / Replacement kit (3 parts) |  |  |
| 采 | For drawout front and rear-connected circuit breakers | 33622 |
|  | Installation manual | 47102 |
| Interphase barriers / Replacement kit (3 parts) |  |  |
| $y_{6}^{5}$ | For drawout front and rear-connected circuit breakers | 33648 |
|  | For drawout rear-connected circuit breakers | 33768 |
|  | Installation manual | 47102 |

## Micrologic control unit, communication option, portable data acquisition



[^5]Catalogue numbers:
spare parts

Masterpact NT NAVY
Remote operation


|  | Terminal block (1 part) | For drawout circuit breaker | 33098 |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Drawout. |  |  |
|  | Installation manual |  |  | 47103 |
| MN delay unit |  |  |  |  |
|  | MN delay unit (1 part) |  |  |  |
|  |  |  | R (non-adjustable) | Rr (adjustable) |
|  | AC 50/60 Hz | 100-130 V | 33684 | 33681 |
|  |  | 200-250 V | 33685 | 33682 |
|  |  | 380-480 V |  | 33683 |
|  | Installation manual |  |  | 47103 |

## Chassis locking and accessories



Catalogue numbers:
Masterpact NT NAVY
spare parts

## Clusters



## Circuit breaker locking and accessories

| Circuit breaker locking |  |  |  |
| :---: | :---: | :---: | :---: |
| Pushbutton locking device / 1 part |  |  |  |
| By padlocks |  |  | 33897 |
| $x$ | Installation manual |  | 47103 |
| OFF position locking / 1 part |  |  |  |
|  | By padlocks + BPFE support |  |  |
|  |  |  | 47514 |
|  | By keylocks + BPFE support |  |  |
|  | Profalux | 1 lock | 47519 |
|  |  | 1 lock + 1 lock with same key profile | 47520 |
|  |  |  |  |
|  | 1 identical keylock Profalux with the same key: key: random not identified combination |  | 33173 |
|  |  | key: random identified 215470 combination | 33174 |
|  |  | key: random identified 215471 combination | 33175 |
|  | Ronis | 1 lock | 47521 |
|  |  | 1 lock + 1 lock with same key profile | 47522 |
|  | 1 identical keylock Ronis with the same key: |  |  |
|  |  | key: random not identified combination | 33189 |
|  |  | key: random identified EL24135 combination | 33190 |
|  |  | key: random identified EL24153 combination | 33191 |
|  |  | key: random identified EL24315 combination | 33192 |
|  | Locking kit without locks for | Profalux | 47515 |
|  |  | Ronis | 47516 |
|  |  | Kirk | 47517 |
|  |  | Castell | 47518 |
|  | Installation manual |  | 47103 |
| Other circuit breaker accessories |  |  |  |
| Mechanical operation counter / 1 part |  |  |  |
|  | Operation counter CDM |  | 33895 |
|  | Installation manual |  | 47103 |
| Escutcheon and accessories / 1 part |  |  |  |
|  |  | Escutcheon | 33857 |
|  |  | Transparent cover (IP54) | 33859 |
|  |  | Escutcheon blanking plate | 33858 |
|  |  |  |  |
|  |  |  |  |  |
|  | Front cover |  | 47094 |
|  | Installation manual |  | 47103 |
| Spring charging handle / 1 part |  |  |  |
|  | Spring charging handle |  | 47092 |
|  | Installation manual |  | 47103 |
| Arc chute for Masterpact NT NAVY / 1 part |  |  |  |
|  | Type H1/H2 |  | 47095 |
|  | Type L1 |  | 47096 |
|  | Installation manual |  | 47103 |


| Indication contacts |  |  |
| :---: | :---: | :---: |
| ON/OFF indication contacts (OF) / 1 part |  |  |
|  | Changeover contacts (6 A-240 V) | 47076 |
|  | 1 low-level OF to replace 1 standard OF (4 max.) | 47077 |
|  | Wiring For drawout circuit breaker | 33098 |
|  |  |  |
|  | Installation manual | 47103 |
| "Fault trip" indication contacts (SDE) / 1 part |  |  |
|  | 1 additional SDE (5A-240 V) | 47078 |
|  | 1 additional low-level SDE | 47079 |
|  | Wiring For drawout circuit breaker | 33098 |
|  | Installation manual | 47103 |
| "Ready to close" contact (1 max.) / 1 part |  |  |
|  |  | PF |
|  | 1 changeover contact (5A-240 V) | 47080 |
|  | 1 low-level changeover contact | 47081 |
|  | Wiring For drawout circuit breaker | 33098 |
|  | Installation manual | 47103 |
| Electrical closing pushbutton / 1 part |  |  |
|  |  | BPFE |
|  | 1 pushbutton | 47512 |
|  | Installation manual | 47103 |
| Carriage switches (connected / disconnected / test position) / 1 part |  |  |
|  | Changeover contacts (6A-240 V) |  |
|  | 1 connected position contact (3 max.) | 33170 |
|  | 1 test position contact (1 max.) | 33170 |
|  | 1 disconnected position contact (2 max.) | 33170 |
|  | And/or low-level changeover contacts |  |
|  | 1 connected position contact (3 max.) | 33171 |
|  | 1 test position contact (1 max.) | 33171 |
|  | 1 disconnected position contact (2 max.) | 33171 |
| Auxiliary terminals for chassis alone |  |  |
|  | 3 wire terminal (1 part), terminal block (1 part) | 33098 |
|  | Jumpers (10 parts) | 47900 |
|  | Installation manual | 47104 |

## Masterpact NW NAVY <br> Connection

| Connection |  |  |  |
| :---: | :---: | :---: | :---: |
| Drawout circuit breakers |  |  |  |
| Front connection / Replacement kit (3 parts) |  |  |  |
|  | 800/1600 A | Top or bottom | 47960 |
|  | 2000/3200 A | Top or bottom | 47962 |
|  | Installation manual |  | 47950 |
| Rear connection (vertical or horizontal mounting) / Replacement kit (3 parts) |  |  |  |
|  | 800/2000 A types N1/H1/H2 | Vertical | 47964 |
|  | 800/1600 A types H3/L1 | Horizontal | 47964 |
|  | 2500/3200 A types H1/H2 | Vertical | 47966 |
|  | 2000/3200 A types H3/L1 | Horizontal | 47966 |
|  | 4000 A | Vertical | 47968 |
|  |  | Horizontal | 47970 |
|  | Installation manual |  | 47950 |
| Connection accessories |  |  |  |
| Interphase barriers / Replacement kit (3 parts) |  |  |  |
|  | For drawout rear-connected circuit breaker |  | 48600 |
|  | Installation manual |  | 47950 |

Catalogue numbers:
spare parts

Masterpact NW NAVY
Micrologic control unit, communication option

## Replacement parts for Micrologic control units

Long-time rating plug (limits setting range for higher accuracy) / 1 part

| 臺 | Standard | 0.4 at $1 \times \mathrm{lr}$ | 33542 |
| :---: | :---: | :---: | :---: |
|  | Low-setting option | 0.4 at $0.8 \times \mathrm{lr}$ | 33543 |
|  | High-setting option | 0.8 at $1 \times \mathrm{lr}$ | 33544 |
|  | Without long-time p |  | 33545 |

## Battery + cover


Battery (1 part)

|  | 33593 |
| :--- | :--- | :--- |
| For Micrologic A | 33592 |
| For Micrologic P and H | 47067 |

Communication option
Chassis

|  | Modbus COM |  | \| 33852 |
| :---: | :---: | :---: | :---: |
|  | 6 wires terminal drawout (1 part) |  | 47850 |
|  | 6 wires terminal fixed (1 part) |  | 47075 |
|  | Installation |  | \| 33088 |
| External power supply module / 1 part |  |  |  |
|  |  | 24-30 V DC | 54440 |
|  |  | 48-60 V DC | 54441 |
|  |  | 100-125 V DC | 54442 |
|  |  | 110-130 V AC | 54443 |
|  |  | 200-240 V AC | 54444 |
|  |  | 380-415 V AC | 54445 |
| Battery module / 1 part |  |  |  |
|  | 1 battery | 24 V DC | \| 54446 |
| Test equipments / 1 part |  |  |  |
|  | Mini test kit |  | 33594 |
|  | Portable test kit |  | 33595 |
|  | Wiring kit or mini test kit or portable test kit |  | 33590 |

(*) Consult us.

## Remote operation

## Remote operation

Gear motor


MCH (1 part) AC $50 / 60 \mathrm{~Hz}$
$100-130 \mathrm{~V}$
$200-240 \mathrm{~V}$
$380-415 \mathrm{~V}$
$440-480 \mathrm{~V}$

4789
47894
47896
47897


Terminal block (1 part)
For drawout circuit breaker
47849


Closing and opening release (XF or MX)


Standard coil (1 part)
AC $50 / 60 \mathrm{~Hz}$
$\frac{115 \text { V AC }}{220 \text { V AC }}$
$380-480$ V AC

Communicating coil (1 part)

| AC 50/60 Hz | 115 V AC | 64633 |
| :--- | :--- | :--- |
|  | 220 V AC | 64634 |
| Terminal block (1 part) | For drawout circuit breaker | 64635 |

Drawout.
Installation manual
| 47951
Undervoltage release MN


| Undervoltage release (1 part) |  |
| :--- | :--- |
| AC $50 / 60 \mathrm{~Hz}$ | 1 |


| $100-130$ V AC | 33670 |
| :--- | :--- |
| $200-250$ V AC | 33671 |
| $380-480$ V AC | 33673 |


| , | Terminal block (1 part) | For drawout circuit breaker |  | 47849 |
| :---: | :---: | :---: | :---: | :---: |
| Drawout. | Installation manual |  |  | 47951 |
| MN delay unit |  |  |  |  |
|  | MN delay unit (1 part) $\mathbf{R}$ (non-adjustable) $\operatorname{Rr}$ (adjustable) |  |  |  |
|  |  |  |  |  |
|  | AC $50 / 60 \mathrm{~Hz}$ | $100-130 \mathrm{~V}$ | 33684 | 33681 |
|  |  | $200-250 \mathrm{~V}$ | 33685 | 33682 |
|  | $380-480 \mathrm{~V}$ |  |  | 33683 |
|  | Installation manual |  |  | 47951 |

Catalogue numbers:
spare parts

## Masterpact NW NAVY

Chassis locking and accessories

| Chassis locking |  |  |  |
| :---: | :---: | :---: | :---: |
| "Disconnected" position locking / 1 part |  |  |  |
|  | By padlocks |  |  |
|  |  |  | Standard |
|  | By Profalux keylocks |  |  |
|  | Profalux | 1 lock | 48568 |
|  |  | 1 locks + 1 lock with same key profile | 48569 |
|  |  | 2 locks (different key profiles) | 48570 |
|  | 1 identical keylock Profalux with the same key: |  |  |
|  |  | key: random not identified combination | 33173 |
|  |  | key: random identified 215470 combination | 33174 |
|  |  | key: random identified 215471 combination | 33175 |
|  | By Ronis keylocks |  |  |
|  | Ronis | 1 lock | 48572 |
|  |  | 1 lock + 1 lock with same key profile | 48573 |
|  |  | 2 locks (different key profiles) | 48574 |
|  | 1 identical keylock Ronis with the same key : |  |  |
|  |  | key: random not identified combination | 33189 |
|  |  | key: random identified EL24135 combination | 33190 |
|  |  | key: random identified EL24153 combination | 33191 |
|  |  | key: random identified EL24315 combination | 33192 |
|  | Locking kit without locks for | Profalux, Ronis | 48564 |
|  |  | Kirk key adapter kit | 48565 |
|  |  | Castell key adapter kit | 48566 |
|  | Installation manual |  | 47952 |
| Racking interlock |  |  |  |
|  | 5 parts |  | 48582 |
|  | Installation manual |  | 47952 |
| Chassis accessories |  |  |  |
| Auxiliary terminal shield (CB) / 1 part |  |  |  |
|  | 800/4000 A 3P |  | 48595 |
|  | Installation manual |  | 47952 |
| Safety shutters + locking block / 1 part |  |  |  |
|  | 800/4000 A 3P |  | 48721 |
|  | Installation manual |  | 47952 |
| Shutter locking block (for replacement) / 1 part |  |  |  |
|  | 2 parts for 800/4000 A |  | 48591 |
|  | Installation manual |  | 47952 |

## Clusters

Clusters


Catalogue numbers:
spare parts

## Masterpact NW NAVY

Circuit breaker locking and accessories

## Circuit breaker locking

Pushbutton locking device / 1 part


By padlocks

| Installation manual | 47951 |
| :--- | :--- |


| OFF position locking / 1 part |  |  |
| :---: | :---: | :---: |
|  | By padlocks | 48539 |



| By Profalux keylocks |  |
| :--- | :--- |
| Profalux |  |
|  | $\frac{1 \text { lock }}{1 \text { lock }+1 \text { lock with same key profile }}$ |
|  | $\frac{2 \text { locks (different key profiles) }}{}$ |
| 1 identical |  |

48545
48546
48547
1 identical keylock Profalux with the same key:

| key: random not identified combination | 33173 |
| :--- | :--- | :--- |
| key: random identified 215470 combination | 33174 |
| key: random identified 215471 combination | 33175 |

By Ronis keylocks

| Ronis 1 lock | 48549 |
| :--- | :--- | :--- |


| 1 lock +1 lock with same key profile | 48550 |
| :--- | :--- |


| 2 locks (different key profiles) | 48551 |
| :--- | :--- |

1 identical keylock Ronis with the same key:

| key: random not identified combination | 33189 |
| :--- | :--- |


| key: random identified EL24135 combination | 33190 |
| :--- | :--- |
| ken: |  |

key: random identified EL24153 combination
key: random identified EL24315 combination
33192
Locking kit without locks for
Kirk key adapter kit
Castell key adapter kit

| Kirk key adapter kit |
| :--- |
| Castell key adapter kit |

48541

Installation manual
48542
48543


Mechanical operation counter / 1 part



| Installation manual | 47951 |
| :--- | :--- |


| Spring charging handle / 1 part |  |  |
| :---: | :---: | :---: |
| $\cdots$ | Spring charging handle | 47940 |


|  |  | Spring charging handle | 47940 |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Installation manual |  | 47951 |
| Arc chute for Masterpact NW / 1 part |  |  |  |  |
|  |  | Type N1 | 3 x | 47935 |
|  |  | Type H1/H2 (NW08 to NW40 NAVY) | 3 x | 47935 |

## Indication contacts



| ned closed / connected contacts for use with 1 auxiliary contact / 1 part |  |  |
| :---: | :---: | :---: |
|  | 1 contact (5A-240 V) | 48477 |
|  | or 1 low-level contact | 48478 |

## Order form

Masterpact NT or NW NAVY
Circuit breakers and
switch-disconnectors

To indicate your choice, check the applicable square boxes and enter the appropriate information in the rectangles $\square$



Communication
COM module JBus/ Device $\square$ Chassis $\square$

|  |  |  |
| :--- | :--- | :--- |
| Eco COM | ModBus |  |
| module | (for XF or MX communicating release) |  |

## Connection



Micrologic control unit functions:
2.0 : basic protection (long time +inst.)
5.0 : selective protection (long time + short time + inst.)

| Indication contacts |  |  |  |
| :---: | :---: | :---: | :---: |
| OF - ON/OFF indication contacts |  |  |  |
| Standard | 4 OF 6 A-240 V AC (10 A-240 V AC and low-level for NW) |  |  |
| Alternate | 1 OF low-level for NT | Max. 4 | qty |
| Additional | 1 block of 4 OF for NW | Max. 1 | qty |
| EF - combined "connected/closed" contacts |  |  |  |
|  | 1 EF 6 A-240 V AC for NW | Max. 4 | qty |
|  | 1 EF low-level for NW | Max. 4 | qty |

SDE - "fault-trip" indication contact


Locking

## VBP - ON/OFF pushbutton locking (by transparent cover + padlocks)

OFF position locking:

| VCPO - by padlocks |  |  | Ronis Ronis |
| :---: | :---: | :---: | :---: |
| VSPO - by keylocks | Keyock kit (w/o keylock) | Profalux |  |
|  | 1 keylock | Profalux |  |
|  | 2 identical keylocks, 1 key | Profalux | Ronis |
|  | 2 keylocks, different keys (NW) | Profalux | Ronis |

Chassis locking in "disconnected" position:


Schneider Electric Industries SAS
35, rue Joseph Monier
CS 30323
F-92506 Rueil Malmaison Cedex
RCS Nanterre 954503439
Capital social $896313776 €$
www.schneider-electric.com

As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

This document has been printed on ecological paper
Design: Schneider Electric
Photos: Schneider Electric
Printed: Centre Impression - made in France


[^0]:    Note: all current-based protection functions require no auxiliary source.
    Voltage-based protection functions are connected to AC power via a voltage measurement input built into the circuit breaker.

[^1]:    Transparent cover CCP for escutcheon.

[^2]:    Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.
    The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

[^3]:    Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test
    The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

[^4]:    T Total discrimination, up to breaking capacity of the downstream circuit breaker.

[^5]:    (*) Consult us.

