DIGITAL MULTIMETER

隹

2704 C HoL

SAFETY INFORMATION

The following safety information must be observed to ensure maximum persona
Use the meter only as specified in this manual or the protection provided by the meter might be impaired.
Test the meter on a known voltage before using it to determine if hazardous

Do not use the meter if the meter or test leads look damaged, or if you suspect
Never ground yourself when taking electrical measurements. Do not touch exposed metal pipes, outlets, fixtures, etc., which might be at ground potential. Keep your body isolated from ground by using dry clothing, rubber shoes, rubber

Turn off power to the circuit under test before cutting, unsoldering, or breaking the circuit. Small amounts of current can be dangerous.
Use caution when working above 60 V dc or 30 V ac ms . Such voltages pose a shock hazard.
When using the probes, keep your fingers behind the finger guards on the

Measuring voltage which exceeds the limits of the multimeter may damage the
meter and expose the operator to a shock hazard. Always recognize the meter voltage limits as stated on the front of the meter.

99 Washington Stree
Melrose, MA 02176 Phone 781-665-1400 Toll Free 1-800-517-8431

SPECIFICATIONS

Display: $3^{1 / 2}$ digit liquid crystal display (LCD) with a maximum reading of 1999. Polarity: Automatic, positive implied, negative polarity indication.
Overrange: (OL) or $(-$ Ot $)$ is displayed Overrange: (OL)
Low battery indication: The " " is displayed when the battery voltage drops below the operating level
Measurement rate: 2.5 times per second, nomin
Operating environment: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ at $<70 \%$ relative humidity.
Storage temperature: $-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}, 0$ to 80% relative humidity. Accuracy: Stated accuracy at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},<75 \%$ relative humidity.
Temperature Coefficient: $0.1 \times$ (specified accuracy) per ${ }^{\circ} \mathrm{C}$. $\left({ }^{\circ} \mathrm{C}\right.$ to $18^{\circ} \mathrm{C}, 28^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$).
Altitude: 6562 feet (2000 m). Battery life: 150 hours typical with carbon-zinc.
Dimensions: 165 mm (H) $\times 78 \mathrm{~mm}$ (W) $\times 425 \mathrm{~mm}$ (D)
Dimensions: $165 \mathrm{~mm}(\mathrm{H}) \times 78 \mathrm{~mm}$ (W) $\times 42.5 \mathrm{~mm}$ (D).
Weight: Approx. 10.0 ozz. 285 g) including holster
Accessories: One set test leads, one spare fuse, 9V battery (installed), and
Operating Instruction

DC VOLTS

Ranges: $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$
Resolution: 0.1 mV
Accuracy: $+(0.8 \%$
Accuracy: $\pm(0.8 \%$ rdg +1 dgt $)$
Input impedance: 10M0
Input impedance: $10 \mathrm{M} \Omega, 100 \mathrm{VDC}$ or 750 VAC rms
$600 \mathrm{VDC} / \mathrm{AC}$ rms 15 seconds on 200 mV range
AC VOLTS $\quad(50 \mathrm{~Hz}-500 \mathrm{~Hz})$
Ranges: $200 \mathrm{mV}, 2 \mathrm{~V}$
Accuracy:
$\pm(1.5 \%$ rdg +5 dgts) on 200 mV to 20 V ranges
$\pm(2.0 \%$ rdg +5 dgts) on 200 V 750 V ranges
Input impedance: $10 \mathrm{M} \Omega$
verlioad protection: 1000 VDC or 750 VAC rms
600VDC/AC rms 15 seconds on 200 mV range
CURRENT
DC Ranges: $20 \mathrm{~mA}, 200 \mathrm{~mA}, 10 \mathrm{~A}$
CC Resolution: 10uA
$\pm(1.0 \%$ rdg +1 dgts $)$ on 20 mA to 20
$\pm(3.0 \%$ rdg +3 dgts $)$ on 10 A range
C Input protection: 0.5 A 500 V fast blow ceramic fus
AC Ranges: $\begin{gathered}10 \mathrm{~mA}, 200 \mathrm{~mA}, 10 \mathrm{~A}(50 \mathrm{~Hz} \sim 500 \mathrm{~Hz})\end{gathered}$
AC Resolution: 10 uA
$\pm(2.0 \%$ rdg $+5 \mathrm{dgts})$ on 20 mA to
$\pm(3.5 \%$ rdg $+5 \mathrm{dgtsts})$ on 10 A rang
$\pm(3.5 \% \mathrm{rdg}+5 \mathrm{dgts})$ on 10 A range
AC Input protection: 0.5 A 500 V fast blow ceramic fuse
$10 \mathrm{~A} / 600 \mathrm{~V}$ fast blow ceramif
10A AC \& DC Input: 10 A for 60 seconds maximum followed
by a 10 minute cooling period

RESISTANCE

Ranges: 200Ω, $2 \mathrm{~K} \Omega 200 \mathrm{k} \Omega, 20 \mathrm{M} \Omega$, 2000 $\mathrm{M} \Omega$
Accuracy:
\quad uracy:
$\pm(1.0 \%$ rdg +4 dgts) on 200Ω to $200 \mathrm{k} \Omega$ ranges
$+(20 \%$ rdg +4 dgts $)$
$\pm(2.0 \% \mathrm{rdg}+4 \mathrm{dgts})$ on 20M2 range
$\pm[(5.0 \%$ rdg -10 dgts $)+10 \mathrm{dgtsts}]$ on 2000 MO rang open circuit volts typical: 0.3 Vdg ($(3.0 \mathrm{Vdc}$ on $200 \Omega, 2000 \mathrm{M} \Omega$ ranges) Overload protection: 500VDC or AC rms

CONTINUITY

Audible indication: Less than 100Ω
Audible indication: Less than 100Ω
DIODE TEST
Test current: Approx. 1.0 mA
Accuracy: $\pm(1.5 \%$ rdg +3 dgts)
Open circuit volts: 3.0 Vdctyp,
Open circuit volts: 3.0 Vdc typical

CAPACITANCE

Ranges: 2nF, 20nF, 200nF, 2uF, 20uF

Accuracy: $\pm(4 \%$ rdg +10 dgts $)$

RANSISTOR hFE

Base current: 10uAdc approx. (VCE $=3.0 \mathrm{Vdc})$

FREQUENCY (Autoranging)

Ranges: $2 \mathrm{kHz}, 20 \mathrm{kHz}, 200 \mathrm{kHz}, 2 \mathrm{MHz}, 20 \mathrm{MHz}$
Accuracy: $\pm(0.1 \%$ rdg +3 dgts $)$
Sensitivity: 2.0 V RMS min
Minimum pulse width: 25
inimum pulse width: 25 ns
Overload protection: 500 VDC or AC rm

LOGIC TEST

Threshold: Logic Hi $(2.8 \pm 0.8 \mathrm{~V})$
Logic Lo $(0.8 \pm 0.5 \mathrm{~V})$
Indication: 40 msec beep at logic low
Overload protection: 500 VDC or AC rms

OPERATION

Before taking any measurements, read the Safety Information Section. Always xamine the instrument for damage, contamination (excessive dirt, grease, etc.) abnormal conditions exist do not attempt to make any measurements.

nput Warning Beeper

The meter has a beeper that warns the user when the test lead is in the current feature to protect the meter and you.

Data Hold

Press [HOLD] button to lock the reading on display, and release it by pressing

MAX/MIN

Press MAXIMIN once begins recording MIN and MAX
Press MAXMIN to select current reading MIN or MAX
Hold down for 2 seconds to exit MAX/MIN function.

Voltage Measurements

Connect the red test lead to "V Ω " jack and the black test lead to the "COM"
jack.
2.Set the Function/Range switch to the desired voltage type (AC or DC) and and reduce until a satisfactory reading is obtained
3. Connect the test leads to the device or criccuit being measured.
4. For dc, a $(-)$ sign is displayed for negative polarity; positive pol
4. For dc, a (-) sign is displayed for negative polarity; positive polarity is implied.

Current Measurements

.Connect the red test lead to the (mA or 10A) jack and the black test lead to the "COM" jack.
2.Set the Functio
2. Set the Function/Range switch to the DC or AC ranges

Remove power from the circuit under test and open the normal circuit path
where the measurement is to be taken. Connect the meter in series with the circuit.
Apply power and read the value from the display

Resistance and Continuity Measurements

.Set the Function/Range switch to the desired resistance range or continuity position.
2. Remove power from the equipment under test.
3. Connect the red tes
the "COM" jack.
4. Touch the probes to the test points. In ohms, the value indicated in the display
is the measured value of resistance. In continuity test, the beeper sounds is the measured value of resistance. In continuity test, the beeper sounds

Note when using $\mathbf{2 0 0 0} \mathbf{M} \Omega$ Range
The 2000M2 range has a fixed 10 -count offset in the reading. When the test eading must be subtracted from the reading. For example, when meas reading must be subtracted from the reading. For example, when measuring
$11100 \mathrm{M} \mathrm{\Omega}$ on the $2000 \mathrm{M} \Omega$ range, the display will read 1100 , from which the 10
residual is subtracted to obtain the actual resistance of 1100 MQ

Diode Tests

Connect the red test lead to the "V Ω " jack and the black test lead to
Set the Function/Range switch to the " \rightarrow " position
Turn off power to the circuit under test
Touch probes to the diode. A forward-voltage drop is about 0.6 V (typical for a
silicon diode)
5.Reverse probes. If the diode is good, "OL" is displayed. If the diode is shorted "Of
If the diode another is open, "OL" is displayed in both directions.

Capacitance Measurements

1. Set the Function/Range switch to the desired F (capacitance) range,
2. Never apply an external voltage to the Cx sockets.
Damage to the meter rnay result

Damage to the meter may result.
3.Insert the capacitor directly into the Cx sockets.
4. Read the capacitance directly from the display.

Transistor hFE Measurements

1. Set the Function/Range switch to the desired hFE range (PNP or NPN type

Dama
Damage to the meter may result.
3.Plug the transistor directly into the hFE sockets. The sockets are labeled E , B and C for emitter, base, and collector.
4. Read the transistor hFE directly from the display

Frequency Measurements

1.Set the Function/Range switch to the "Hz" position.
black test lead to the "COM"
jack.
3. Connect the test leads to the point of measurement and read the frequency from the display

Logic Measurements

1. Set the Function/Range switch to the "LOGIC" position

. jack.
3. Conne
3.Connect the red test lead to the test point and the black lead to the commo buss of the
4. " $\mathbf{\Delta}$. on the display indicates TTL logic high and a " \mathbf{V} " indicates a TTL log low. Both indicators are on when the point of measurement is toggling high

MAINTENANCE

WARNING Remove test leads before changing battery or fuse or performing any servicing.

Battery Replacement
9 volt battery. (NEDA 1604, IEC 6F22). The "島" appears on the LCD display when replacement is needed. To replace the battery, remove
he three screws from the back of the meter and lift off the front case. Remove the battery from case bottom

Fuse Replacemen

ents are possible. Check for a blown overload protection use. For access to fuses, remove the three screws from the back of the meter
and lift off the front case. Replace $F 1$ only with the original type $0.5 \mathrm{~A} / 500 \mathrm{~V}$, fast cting ceramic fuse, $6.35 \times 32 \mathrm{~mm}$.
eplace $F 2$ only with the original type 10 A 600 V , fast acting ceramic fuse,
25.4mm

Cleaning

Wipe the case with a damp cloth and mild detergent. Do not use abrasives or solvents. Dirt or moisture in the terminals can affect readings.

C

Safety: Conforms to IEC61010-1 (EN61010-1), CATII 1000V, CATIII 600V, Class CATII: Is for measurements performed on circuits directly connected to the low-voltage installation.
CAT III: Is for measurements performed in the building installation.
EMC: Conforms to EN61326.
The symbols used on this instrument are:
Caution, refer to accompanying documents
Equipment protected throughout by Double insulation (Class II)
Alternating current
$=$ Direct cu

