
Automatic Extraction of Clickable Structured Web
Contents for Name Entity Queries

Xiaoxin Yin, Wenzhao Tan, Xiao Li, Yi-Chin Tu
Microsoft Research
One Microsoft Way
Redmond, WA 98052

{xyin, wentan, xiaol, yichint}@microsoft.com

ABSTRACT

Today the major web search engines answer queries by showing

ten result snippets, which need to be inspected by users for identi-

fying relevant results. In this paper we investigate how to extract

structured information from the web, in order to directly answer

queries by showing the contents being searched for. We treat us-

ers’ search trails (i.e., post-search browsing behaviors) as implicit

labels on the relevance between web contents and user queries.

Based on such labels we use information extraction approach to

build wrappers and extract structured information. An important

observation is that many web sites contain pages for name entities

of certain categories (e.g., AOL Music contains a page for each

musician), and these pages have the same format. This makes it

possible to build wrappers from a small amount of implicit labels,

and use them to extract structured information from many web

pages for different name entities. We propose STRUCLICK, a fully

automated system for extracting structured information for queries

containing name entities of certain categories. It can identify im-

portant web sites from web search logs, build wrappers from us-

ers’ search trails, filter out bad wrappers built from random user

clicks, and combine structured information from different web

sites for each query. Comparing with existing approaches on in-

formation extraction, STRUCLICK can assign semantics to extracted

data without any human labeling or supervision. We perform

comprehensive experiments, which show STRUCLICK achieves

high accuracy and good scalability.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval – search process.

General Terms
Algorithms, Measurement, Experimentation.

Keywords
Web search, Information extraction.

1. INTRODUCTION
Although web search engines have evolved much in the past

decade, the paradigm of “ten result snippets” barely changes over

time. After submitting a query, the user needs to read each snippet

to decide whether the corresponding web page has the contents he

is searching for, and clicks on the link to see the page.

If a search engine can provide “direct answers” for a significant

portion of user queries, it can save a large amount of time spent by

each user in reading snippets. Take the query {Britney Spears

songs}1 as an example. For this query Google does not show

songs directly (except two results from video vertical). There are

actually many web pages providing perfect contents for this query.

For example, http://www.last.fm/music/Britney+Spears/ and

http://www.rhapsody.com/britney-spears contain lists of songs by

Britney Spears sorted by popularity, in rather structured layouts. If

we can show a list of songs as results for this query, or convert the

snippet of each search result into a list of songs, the user can di-

rectly see the information he is searching for, and click on some

links to fulfill his need, e.g., listening to the songs.

It would not be very difficult to provide such direct answers if a

search engine could understand the semantics of web page con-

tents. However, in lack of an effective approach for understanding

web contents, the “ten result snippets” still dominate the search

result pages. Some search engines show direct answers for a very

small portion of queries, such as query {rav4} on Bing.com.

However, these direct answers are usually based on backend rela-

tional databases containing well structured data, instead of infor-

mation on the web.

Many approaches have been proposed for extracting structured

information from the web. One popular category of approaches is

wrapper induction [12][18], which builds a wrapper for web pages

of a certain format based on manually labeled examples. Another

popular category is automatic template generation

[2][7][8][15][21], which converts an HTML page into a more

structured format such as XML. Unfortunately neither of them can

be directly used to supply structured data to search engines.

Wrapper induction cannot scale up to the whole web because ma-

nual labeling is needed for each format of pages on each web site.

Automatic template generation approaches can only convert all

contents on web pages into structured format, but cannot provide

semantics for the data to allow search on them.

In this paper we try to bridge the gap between web search que-

ries and structured information on web pages. We propose an

approach for finding and extracting structured information from

the web that match with queries. Our approach is based on the

search trails of users, i.e., a sequence of URLs a user clicks after

submitting a query and clicking a search result. Because these

post-search clicks are usually for fulfilling the original query in-

tent, we use the contents being clicked (e.g., the clicked URLs and

their anchor texts) as implicit labels from users, and use such la-

bels to build wrappers and extract more data to answer queries.

For example, a user may search for {Britney Spears songs}, click

on a result URL http://www.last.fm/music/Britney+Spears/ (as

shown in Figure 1(a)), and on that page click another URL

http://www.last.fm/music/Britney+Spears/_/Womanizer, which

links to a song “Womanizer”. Then we can know the last clicked

1 We use “{x}” to represent a web search query x.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom

use, and personal use by others.

WWW 2010, April 26-30, 2010, Raleigh, North Carolina, USA.

ACM 978-1-60558-799-8/10/04.

URL and its anchor text “Womanizer” are likely to be a piece of

relevant answer for the original query. We can also extract other

songs on the same page as pieces of answers for that query.

A web site containing structured web pages usually has pages in

uniform format for many name entities of the same category. For

example, www.last.fm has a page for each of many musicians,

like the pages in Figure 1 (a) and (b). If we have a list of musi-

cians, and have seen different queries like {[musician] songs}

with clicks on URLs like http://www.last.fm/music/*/, we can

infer that each such web page contains songs of a musician, which

can be extracted to answer corresponding queries.

We present the STRUCLICK system in this paper. In general, it

takes many categories of name entities (e.g., musicians, actors,

cities, national parks), and finds web sites providing structured

web pages for each category of name entities. Based on user

search trails of queries containing name entities, it extracts struc-

tured information from the web pages, and uses them to answer

user queries directly. STRUCLICK is a very powerful system as it

can build a wrapper from a small number of user clicks, and apply

it to all web pages of the same format to extract information. It is

a fully automated system, as it does not require any manual labe-

ling or supervision, and can generate structured information for

different generic and popular search intents for a category of enti-

ties2 (e.g., songs of musicians or attractions of cities).

To the best of our knowledge, this is the first study on extract-

ing structured information using web search logs. Because intents

of user queries are best captured through web search logs, we

believe logs are a most necessary input for answering queries with

structured data. In this first study we confine our scope within

queries containing name entities, and contents on web pages that

are clickable, i.e., associated with hyperlinks. The first constraint

does not limit the significance of our work as it is reported 71% of

queries contain name entities [11]. It will be our future work to

remove the second constraint.

There are three major challenges for accomplishing the above

task. The first challenge is how to identify sets of web pages with

uniform format, when it is impossible to inspect the content of

every page because of the huge data amount. We propose an ap-

proach for finding URLs with common patterns. According to our

experiments, URLs with same pattern correspond to pages with

uniform formats most of time. The second challenge is that the

2 It is very easy to get entities in different categories from web

sites like Wikipedia and freebase.

amount of user clicked contents is usually small, based on which

we need to build HTML wrappers to extract large amount of

structured information. An approach based on paths of HTML

tags [16] is used, which can build wrappers and extract informa-

tion efficiently. The third challenge is how to distinguish relevant

data from irrelevant data. As shown by our experiments, users

often click on URLs not relevant to their original queries, which

leads to significant amount of noise in the extracted data. Moreo-

ver, there is no information for the relevance of vast majority of

extracted items without user clicks. Based on the observation that

items extracted by a wrapper are usually all relevant or all irrele-

vant, we propose a graph-regularization based approach to identi-

fy the relevant items and good wrappers.

We perform comprehensive experiments to study the accuracy

and scalability of STRUCLICK, and use human judgments via Ama-

zon Mechanical Turk [1] to validate the results. It is shown that

STRUCLICK can extract a large amount of structured information

from a small number of user clicks, filter out the significant

amount of noise caused by noises in users’ search trails, and final-

ly produce highly relevant structured information (with accuracy

90%‒99% for different categories of queries). It is also shown that

STRUCLICK is highly scalable, which makes it an ideal system for

information extraction from the web.

The rest of this paper is organized as follows. We discuss re-

lated work in Section 2. Section 3 describes the architecture and

algorithms of STRUCLICK system. We present empirical study in

Section 4, and conclude this study in Section 5.

2. RELATED WORK
Extracting structured information from web pages has been stu-

died for more than a decade. Early work is focused on wrapper

induction, which learns extraction rules from manually labeled

examples [13]. Such systems include WIEN [12], Stalker [18].

These approaches are semi-automatic as they require labeled ex-

amples for each set of web pages of a certain format from a web

site. Such labeling procedure is not scalable as there are a very

large number of such web sites, with new sites emerging and ex-

isting sites changing formats from time to time.

In the last decade there are many studies on automatic extrac-

tion of structured information from web pages. IEPAD [7] and

MDR [15] focus on extracting repeated patterns from a single web

page. [16] utilizes “path of tags” to identify each type of objects in

HTML DOM trees. The approaches in [2][8][21] create patterns

or templates from many web pages of same format, in order to

extract data from them. RoadRunner [8] uses a web page as the

initial template, and keeps modifying the template when compar-

ing it with more pages. EXALG [2] is based on the assumption

that a set of tokens co-occurring with same frequency in different

pages are likely to form a template. DEPTA [21] uses partial tree

alignment on HTML DOM trees to extract data.

Although the above approaches can automatically extract struc-

tured data from web pages of the same format, they cannot pro-

vide any semantics to each data field being extracted, which

means they simply organize the data in HTML pages into a struc-

tured format (e.g., XML). To get semantics of data, one has to

label each data field for each format of pages, which is unscalable

for web scale tasks. It is also difficult to select the web sites to

extract data from, for both semi-automatic and automatic informa-

tion extraction methods. In contrast, we combine the searching

and post-searching browsing behaviors of users to identify the

semantics of data fields, which enables extracting data suitable for

answering queries.

 (a) (b)

Figure 1: (a) Part of music page of Britney Spears on

www.last.fm, (b) That of Josh Groban

User click

The problem of automatically annotating data on the web has

been studied extensively for creating the Semantic Web [3]. Sem-

Tag [9] uses an existing knowledge base, and learns distributions

of keywords to label a huge number of web pages. In [17] an ap-

proach is proposed to extract information with a given ontology

by learning from user supplied examples. These approaches both

require user provided training data, and are based on spatial lo-

cality of web page layout, i.e., semantic tags can be found from

surrounding contents on HTML pages. These features may limit

their accuracy because different web sites may have very different

styles, and semantic tags may not exist in surrounding contents.

Our approach is very different from them, as we use users’ search

trails for training, and build wrappers using information extraction

approaches instead of relying on spatial layout of web pages.

 Automated information extraction from web pages of arbitrary

formats has also been well studied. In [5] Banko et al. study how

to automatically extract information using linguistic parser from

the web. In [6] Cafarella et al. extract information from tables and

lists on the web to answer queries. Although these approaches can

be applied to any web pages, they rely on linguistics or results

from search engines to assign semantics to extracted data for ans-

wering queries, which limits their accuracy. [6] reports that a rele-

vant table can be returned in top-2 results in 47% of cases. Our

approach is very different from above approaches as we perform

information extraction from web pages of uniform format. Based

on users’ search trails, and the consistent semantics of data ex-

tracted from uniformly formatted pages, we achieve very high

accuracy (≥ 97% for top results).

Paşca [19] has done many studies on automatically finding enti-

ties of different categories, and important attributes for each cate-

gory. These are very important inputs for our system, as our goal

is to find important data items for each category of entities.

3. STRUCLICK SYSTEM

3.1 System Overview
In this section we provide an overview of the STRUCLICK sys-

tem. Three inputs are needed for this system. The first input is a

reasonably comprehensive set of HTML pages on the web, which

can be retrieved from index of Bing.com. The second input is the

search trails of users, i.e., the clicks made by users after querying

a major search engine (Google, Yahoo!, or Bing), which can be

found in the browsing logs of consenting users of Internet Explor-

er 8. The third input is name entities of different categories. The

titles of articles within each category or list of Wikipedia or free-

base can be used as a category of entities. We can also get such

data from different web sites like IMDB or Amazon, or use auto-

matic approach [19] to collect them.

We focus on web search queries containing name entities of

each category (e.g., musicians), and possibly a word or phrase

indicating generic and popular intent for that category of entities

(e.g., songs of musicians). We call a word (or phrase) that co-

appears with many entities of a category in user queries as an

intent word for that category. Table 1 shows the intent words with

most clicks in search trails for four categories3. Many web sites

provide certain aspects of information for a category of entities,

and our goal is to extract information from clickable contents of

web pages, which can answer queries involving each category of

entities and each popular intent word. Although we cannot find

structured information for every generic intent of every category

3 We ignore words with redundant meanings and offensive words

like “sex”.

of entities, we can handle many of the important intents such as

movies, songs, lyrics, concerts, coupons, hotels, restaurants, etc.

As shown in Figure 2, the STRUCLICK system contains three

major components: The URL Pattern Summarizer, the Information

Extractor, and the Authority Analyzer. The URL Pattern Summa-

rizer takes different categories of name entities as input, and finds

queries consisted of an entity in some category and an intent

word. Then it analyzes the clicked result URLs for these queries

to find sets of URLs sharing the same pattern, which correspond

to web pages of uniform format. For example, www.last.fm has a

page for each musician with URLs like

http://www.last.fm/music/*/, and such pages are often clicked for

queries like {[musician] songs}.

The second component is Information Extractor, which takes

each set of uniformly formatted web pages and analyzes the post-

search clicks on them. It builds one or more wrappers for the enti-

ty names, clicked URLs and their anchor texts, and extracts such

information from all web pages of the same format, no matter

whether they have been clicked or not.

These extracted data usually contains much noise because users

may click on links irrelevant to their original search intents. The

Authority Analyzer takes data extracted from different web sites,

and infers the relevance of data and authority of web sites using a

graph-regularization approach, based on the observation that items

extracted by same wrapper are usually all relevant or all irrele-

vant. Finally it merges all relevant data, and show to user when

receiving a suitable query.

In general, STRUCLICK is a highly-automated system and relies

on search and browsing logs to extract structured information for

certain categories of entities. Comparing with existing systems for

extracting data with semantics, STRUCLICK is almost free as it

does not require any manual labeling or supervision.

3.2 URL Pattern Summarizer
Similar to most existing approaches, our information extractor

can only be applied to web pages with uniform format. Therefore,

the first step of STRUCLICK is to find sets of web pages of same

format, from all result pages clicked by users for each category of

entities and each intent word.

Figure 2: Overview of STRUCLICK system

Table 1: Top intent words for four categories of entities

Actors Musicians Cities National parks

pictures lyrics craiglist lodging

movies songs times map

songs pictures hotels pictures

wallpaper live university camping

thriller 2009 airport hotels

Name
entities of
different
categories

User clicked
result URLs

Post-search
clicks

URL Pattern
Summarizer

Information

Extractor
Authority
Analyzer

Web
pages

Structured
data for

answering
queries

Sets of
uniform
format
URLs

Structured
data from
each web

site

Because of the large number of pages involved, it is prohibi-

tively expensive to compare the formats of these pages. On the

other hand, we find pages of uniform format usually share a

common URL pattern. For example, each page of musician on

last.fm has URL like http://www.last.fm/music/*, and each page

of songs of musician on Yahoo! music has URL like

http://new.music.yahoo.com/*/tracks. Therefore, we try to find

such URL patterns from the search result URLs clicked by users,

which correspond to sets of uniform format pages most of time.

DEFINITION 1 (URL pattern). A URL pattern contains a list of

tokens, each being a string or a “*” (wildcard). A URL pattern

matches with a URL if all strings in the pattern can be matched in

the URL and each wildcard matches with a string without token

separators (“/”, “.”, “&”, “?”, “=”). □

When matching a URL with a pattern there are three outcomes:

(1) Matched, (2) no match because they have different number of

tokens or different token separators, and (3) compromised, i.e., the

pattern needs to be generalized to match with the URL. Suppose

pattern p1 = http://www.imdb.com/name/nm0000*. For URL u1 =

http://www.imdb.com/name/nm2067953/, p1 and u1 are compro-

mised to form pattern http://www.imdb.com/name/nm*. For URL

u2 = http://www.imdb.com/title/tt0051418/, p1 and u1 are com-

promised to generate pattern http://www.imdb.com/*/*. For URL

http://www.imdb.com/video/imdb/vi3338469913/, p1 cannot be

matched with it.

Given all clicked result URLs, we hope to select a list of URL

patterns, so that most URLs can match with at least one pattern.

Each pattern should match many URLs, but should be as special

as possible so that it does not match URLs of different formats.

First we divide all result URLs by their web domains as we do

not study patterns applicable to multiple domains. For URLs from

each domain, we start from an empty pattern set. We iterate

through the URLs, and try to match each URL with every existing

pattern. If a URL and a pattern are compromised with a new pat-

tern generated, we include the new pattern into our pattern set. We

also create a new pattern based on each URL, unless it can be

matched or compromised with an existing pattern and there are

already many patterns (>100).

A set of patterns are generated after iterating through all URLs

in a domain, and we need to select a subset of good patterns. In

general, we prefer patterns that are more specific (i.e., containing

less wildcards and more characters) and cover more URLs. For

each pattern p, let coverage(p) be the number of URLs matching

with p, wildcard(p) be the number of wildcards in p, and length(p)

be the number of non-wildcard characters in p (not including the

web domain). The score of a pattern is defined as

���� = � �
�	
��
������� + � ∙ �����ℎ���� ∙ log�� !�"#�����, (1)

where � is set to 0.03 in our system.

We select a subset of good patterns using a greedy algorithm,

by selecting the pattern with highest score, removing all URLs

matched with it, and selecting the next pattern. This procedure is

stopped when less than 5% of all URLs are left.

It is shown by our experiments that each selected URL pattern

usually matches with a large number of URLs of the same format.

Therefore, in the following components we treat URLs matching

with each pattern as a separate source of information.

3.3 Information Extractor
Information extractor takes the search trails of queries contain-

ing name entities, builds wrappers for the clicked links which are

likely to be items of interests for the user, and extracts structured

information from all web pages of the same format. We will ex-

plain these three steps in this section.

After a user submits a query, he usually clicks on a result URL,

and on that page he may make some clicks. We call these clicks as

follow-up clicks, and the clicked links are usually relevant to his

original search intent. We treat each unique link from follow-up

clicks as a relevant item for the original query. For example, if a

user queries with {Britney Spears songs}, clicks on

http://www.last.fm/music/Britney+Spears/ (Figure 1(a)), and clicks on

http://www.last.fm/music/Britney+Spears/_/Womanizer (with anchor

text “Womanizer”), then we consider “Womanizer” and the cor-

responding URL as a relevant item for {Britney Spears songs}.

For each URL pattern p found in the result URLs, let U(p) be

the set of all URLs matched with p. For each u in U(p), we get

fc(u), the set of URLs clicked by follow-up clicks made on u,

from the search trails of users. Our goal is to build wrappers that

can extract URLs in fc(u) and their anchors from the result URLs,

and also extract other URLs and anchors of the same format from

all URLs in U(p).

Information extraction from web pages of uniform format has

been extensively studied in the past decade, based on different

approaches including regular expressions [8], HTML templates

[2][8], and partial tree alignment [21]. A recent study [16] pro-

vides a simple and effective approach based on “tag-path”, i.e.,

the tags on a path from the root to each node in the HTML DOM

tree. Based on our observations, tag-paths are very effective in

identifying a type of clicked links in a set of uniformly formatted

web pages, because the layout of such links is usually unique on

the pages. There is often class information on tags that distinguish

different types of HTML elements, and we consider the class in-

formation specified for any tag that is closest to the leaf nodes.

For example, on pages with URL pattern

http://www.last.fm/music/*, each song URL has a tag-path of

“<html><body><div><div><div><div><div><div>

<div><table><tbody><tr><td class="subjectCell"><div><a>”.

We adopt a tag-path based approach that is similar to [16] for

building wrappers. When processing a URL pattern p, we build

the HTML DOM tree for each page u in U(p) using Html Agility

Pack4, and search for the clicked URLs on u in every element in

the DOM tree. Whenever a clicked URL is found, we store the

tag-path of that element as a candidate wrapper. After generating

all candidate wrappers, we calculate the coverage of each of them,

which is the percentage of URLs with follow-up clicks that can be

extracted by this wrapper. All candidate wrappers with coverage

lower than 5% are removed, and the remaining ones are used to

extract data.

There are wrappers that extract apparently useless data and we

remove them in this step. Some wrappers extract items containing

navigational links (e.g., “Photos”, “Videos”) or function links

(e.g., “sort by year”). We can usually remove them by calculating

the uniqueness of the anchor texts and URLs extracted by a wrap-

per. The uniqueness of a set of anchor texts (or URLs) is defined

as the number of unique anchor texts (or URLs) divided by the

total number. Any wrapper with uniqueness less than 20% for

either anchor texts or URLs will be removed. Although many

irrelevant wrappers and items can be removed in this way, many

of them remain in our dataset. For example, for musicians’ songs

we still have many wrappers extracting musicians’ names, con-

certs, user comments, etc. Authority Analyzer will identify the

relevant wrappers and combine data from them.

4 http://www.codeplex.com/htmlagilitypack

Besides extracting the clicked items from web pages following

each URL pattern, we also need to extract the entity name from

each page, in order to know which entity these items belong to.

This can be done using the same approach based on tag-paths,

with some minor modifications. The first difference is that, since

the entity name often appears with some extra text in HTML ele-

ments, we incorporate such text in our wrappers. For example,

suppose we want build a candidate wrapper from the page of Brit-

ney Spears on AOL Music (http://music.aol.com/artist/britney-

spears/1290171), and find “Britney Spears” appears in the page

title which is “Britney Spears – AOL Music”, we build a candi-

date wrapper of “<html><head><title>(*) – AOL Music”, in

which (*) is a wildcard and represents the string to be extracted.

After generating all candidate wrappers, we need to select a single

wrapper for extracting entity names, because each page should

contain a single entity name. We say a wrapper is correct on a

page if it extracts exactly one string that is the entity name. The

wrapper that is correct on most pages is selected, which will be

used to extract the entity name from each page.

3.4 Authority Analyzer

3.4.1 Overview
For each web search topic studied (e.g., musicians’ songs), the

Information Extractor creates a set of wrappers, each extracting a

set of entities and a list of items for each entity from qualified web

pages. Each item contains a URL and an anchor text, which can be

considered as the name of the item. Because these wrappers are

built from follow-up clicks, and some follow-up clicks are not

relevant to the original search intent (e.g., users explore different

types of information), there are usually a significant portion of

wrappers extracting irrelevant items. For example, a user may

search for songs of a musician, go to a result page, and then click

on a link to a concert of the musician. We may build a wrapper for

concerts of musicians from such follow-up clicks, which provides

irrelevant items for the search topic.

It is a challenging task to select wrappers providing relevant

items and remove the others. There are two important facts to take

advantage of. The first one is that because each wrapper extracts

items following a certain format, the items extracted by the same

wrapper are usually all relevant or all irrelevant. For example, on

musicians’ pages on www.last.fm (with URLs like

http://www.last.fm/music/*/), different wrappers extract the songs,

albums, similar artists, events, user comments, or navigational

links. But no wrapper extracts multiple types of items. The second

fact is there are many popular and relevant items provided by

many different web sites. For example, each web site listing Brit-

ney Spears’ songs usually has the most popular songs like “Wo-

manizer” and “Piece of me”. If we can infer these are relevant

items based on information from one web site, they can help us

infer the relevance of items in many other web sites.

Some existing papers focus on the truth discovery problem

[10][20], which studies how to find authoritative information

sources, based on the assumption that correct information from

different sources should be same or similar, while incorrect infor-

mation should be different. However, this assumption does not

hold in our problem, as different web sites often contain the same

set of irrelevant items. For example, many different music web

sites put albums, concerts, similar artists, etc. on the same page

with songs of each musician. These items may be clicked by users

for {[musician] songs} queries and then extracted by our wrap-

pers. Our problem is also different as we only know the items

clicked by follow-up clicks are more likely to be relevant, but

know nothing about the relevance of most of the items which are

never clicked. Therefore, we base our approach on the following

basic principles:

(1) Two items extracted by the same wrapper are likely to

be both relevant or both irrelevant.

(2) An item is likely to be relevant to a topic if it is clicked

by a follow-up click of a query on that topic.

Principle (1) indicates that an item should have higher relev-

ance if it is provided by wrappers that provide many relevant

items. The reader may have concerns with principle (2) because

some follow-up clicks are on irrelevant items. This is unlikely to

cause problems for our algorithm, because we will optimize a

function that combines all items provided by all wrappers, and a

relatively small number of irrelevant clicks will not affect the

accuracy. If a wrapper provides irrelevant items, even if a few of

them are clicked, we can still infer this wrapper is not relevant

based on principle (1).

3.4.2 Optimization
Based on above principles, we hope to assign a relevance score

to each item so that items extracted by the same wrapper have

similar scores, and items with more follow-up clicks have higher

scores. We propose an approach based on graph regularization

based learning [14][22][23], and we make significant modifica-

tions to it to fit our problem. The goal of graph regularization is to

assign values to each node in a graph, so that neighbor nodes have

similar values and the value of each node is similar to its pre-

assigned value (which is usually a class label taking value of 0 or

1). This can fit into an optimization framework with an analytical

solution [22].

One option for solving our problem is to use graph regulariza-

tion by creating a graph according to our two principles. The

graph contains a node for each item and an edge between each

two nodes if the corresponding items are extracted by same wrap-

per. Each node has a label of 1 if the item is clicked and 0 other-

wise. However, this method is problematic because an item not

being clicked only means its relevance is unknown, instead of it

being irrelevant. In fact our problem is more similar to one-class

classification with a very small number of positive examples

(usually <1%). Graph regularization [22][23] treats each node as

equally important, and thus will assign zero or almost zero relev-

ance to most items. Moreover, items receiving more clicks are

obviously more popular for users, and we are also more confident

about their relevance. Therefore, they should play more important

roles in graph regularization.

We modify the approach in [22][23] by assigning different

weights to different nodes in the optimization procedure. Very low

weights are assigned to un-clicked items, and the weight of each

clicked item is proportional to the number of clicks. We find an

analytical solution to this problem, which can be computed effi-

ciently. The details are as follows.

For a category of entities and an intent word (e.g., musicians’

songs), suppose there are n wrappers w1, …, wn, and m items t1,

…,tm. An item may be provided by multiple wrappers, because

items are considered to be the same if they are for the same entity

and share the same name. Each wrapper w provides a set of items

T(w), and we construct a $ × � matrix & so that &	' equals 1 if �	 ∈)�*'� and 0 otherwise. Consider a graph + containing a

node for each item. There is an edge �	, ∈ -�+� if any wrapper

provides both ti and tj, and its weight *.�	,/ is the number of such

wrappers. It can be easily proved that &&0 is the adjacency ma-

trix of G, i.e., *.�	,/ = �&&0�	, .

We want to assign a relevance score fi to each item ti, so that (1)

if ti has high relevance, its neighbors in graph G should also have

high relevance, and (2) if ti receives follow-up click(s) from a

query on the specific search topic, it should have high relevance.

Let 1 be the vector (f1, …, fm), and y be a vector so that yi=1 if ti

receives follow-up click(s). A good function for optimization is

provided in [22]:

2�1� = �
� �∑ *.�	,/ ∙ 4 56

7�6 − 59
7�9:�

;69∈<�=� + >‖1 − @‖�� (2)

, where > > 0, and C	 equals the sum of all elements in the ith row

of &&0 (i.e., total weight of all edges from the node of ti).

2�1� contains two parts: 2��1� = ∑ *.�	,/ ∙ 4 56
7�6 − 59

7�9:�
;69∈<�=�

represents the coherence within the graph, and 2��1� = ‖1 − @‖�

represents the coherence with labeled examples, which are items

receiving follow-up clicks in our case. It is proved in [22][23] that 2�1� is minimized when

1∗ = �1 − F��G − FH�I�@ (3)

, where F = 1/�1 + >� , H = KI�/�&&LKI�/� , and K is a di-

agonal matrix with K		 = C	 .
In [22][23] there is a class label on each example. While in our

problem the relevance of an item is unknown if there is no follow-

up click on it. This means there are only labels on some positive

examples, but not on majority of them and the negative examples.

Therefore, our problem is more similar to one-class classification,

and 2�1� cannot be used.

In general we should consider an unlabeled item to be positive

if it is tightly related to positive items in the graph, and consider it

to be negative if otherwise. This can be modeled by modifying the

optimization function 2�1�. We keep the original 2��1� and de-

fine

2��1� = ∑ M	�N	 − O	��P	Q� (4)

, where M	 is the weight of item ti. Let N���	� be the number of

follow-up clicks on ti. We set M	 = 1 if N���	� = 0, and M	 = R ∙N���	� if N���	� > 0, where R is a parameter that is much higher

than 1. In this way it becomes much less important that items

without follow-up clicks match with their “labels”. Please note

assigning different weights (M) to different items is very different

from assigning different labels (O), because N	 and O	 represent

probability of an item being relevant and should be in range [0,1],

and assigning very different O	 to different clicked items make it

very difficult to minimize 2�1�.

Let S be a diagonal matrix that S		 = M	. The function to be mi-

nimized becomes

2�1� = �
� T2��1� + >�1 − @�LS�1 − @�U. (5)

The following theorem tells us how 2�1� can be minimized.

THEOREM 1. 2�1� is minimized by

1∗ = >SVI�.G − HSVI�/I�S@ (6)

, where SV = G + >S.

PROOF. 2�1� is minimized when
WX
W1 = 0. It is shown in [22] that

WXY
W1 = 1 − H1. Thus we have

Z[2
[1\

1Q1∗
= 1∗ − H1∗ + >S1∗ − >S@ = 0

⟺ �G + >S − H�1∗ = >S@
With SV = G + >S, we have

.G − HSVI�/SV1∗ = >S@

 ⟺ SV1∗ = >.G − HSVI�/I�S@. □
3.4.3 Iterative computation procedure

Because the high dimensionality of S and the high cost of ma-

trix inversion, it is impractical to directly compute 1∗ based on

Equation (6). As shown in [22], if we set 1^ = @ and iteratively

compute 1'�� = FH1' + �1 − F�@ (where F = 1/�1 + >�), then lim'→b�1'� = 1∗ as defined in Equation (3). We can convert

Equation (6) into

FSV1∗ = �1 − F� TG − F.Y
cHSVI�/UI� S@ (7)

Since Equation (7) is analogous to Equation (3), we can use a

similar iterative procedure as shown below.

1. Let d^ = S@.

2. Repeat:

3. d'�� = F.Y
cHSVI�/d' + �1 − F�S@ (8)

4. Until d' converges to d∗

We can easily infer lim'→b�d'� = FSV1∗ as in [22], and thus

1∗ = �
f SVI�d∗.

Please note H = KI�/�&&LKI�/� is a $ × $ matrix, and it is

very costly to compute H when $ is large. Fortunately we can

decompose step 3 into two steps to simplify computation as in

[14]. Let g = KI�/�&. Step 3 can be decomposed into

3(1). h' = g0SVI�d' (9)

3(2). d'�� = gh' + �1 − F�S@ (10)

It is much easier to compute h', which represents the score of

each wrapper in kth step. The number of non-zero entries in g is

equal to that in & (since K is a diagonal matrix), which is the total

number of items provided by the wrappers. Therefore, each itera-

tion can finish in linear time w.r.t. input size.

As shown in [22], the above procedure converges when the max

eigen value of Y
cHSVI�

 is no greater than 1. This posts some re-

quirements on weight M	, according to the following lemma.

LEMMA 1. The maximum eigen value of Y
cHSVI�

 is no greater than

1 if M	 ≥ 1, k = 1, … , $.

PROOF. Matrix Y
cHSVI�

 is similar to Y
cSVI�H because

SV.Y
cSVI�H/SVI� = Y

cHSVI�
. Since H is positive-definite, ‖Hd‖ ≤‖Mnopd‖, where Mnop is the maximum eigen value of H. (This can

be easily proved through orthogonalization H = 20Sq2 .) It is

already shown in [22] that any eigen value of H is no greater than

1, which means ‖Hd‖ ≤ ‖d‖ for any x. We can guarantee

rY
cSVI�Hdr ≤ ‖d‖ if no entry of Y

cSVI�
 is greater than 1. Since

SVI�		 = �
��st6, this condition becomes

�
f

�
��st6 ≤ 1, which means

M	 ≥ 1. □

3.4.4 Relevance of wrappers
In general, the relevance of each item can be computed using

the above iterative procedure. After it converges, we have the final

relevance of each item, from which we can infer the relevance of

wrapper *	 as the average relevance of its items, i.e.,

"���*	� = ∑ 56u6∈v.w6/
|0��6�| . (11)

Because each URL pattern usually provides relevant items in a

single format, we select the wrapper from each URL pattern with

highest relevance, and ignore other wrappers from the same URL

pattern. Because the pages from each URL pattern with significant

number of user clicks usually contain some relevant information,

the best wrapper from each URL pattern is usually relevant. We

also remove wrappers with very relevance (< 0.001).

3.4.5 Combining data from different web sites
After selecting relevant wrappers and extracting data from dif-

ferent web sites, there is a final step of combining extracted data.

This step is only needed when we want to generate a unified list

of extracted items for each entity, which can be directly shown to

users to answer their queries.

When combining all items for an entity e, we first get the list of

items extracted by each wrapper for e. Then we order all items for

each entity according to their popularities. An item appearing on

multiple web domains for an entity is usually a popular item.

Therefore, we simply use the number of web domains providing

each item to rank the items. Whenever there is a tie, we use the

sum of relevance of wrappers providing each item to resolve the

ties. Please note we do not rely on relevance of wrappers to rank

items, because relevance is very different from popularity.

Because different web domains often represent the same item in

slightly different ways, we consider two item names to be the

same if their normalized forms are the same. An item name is

normalized by (1) removing contents in parentheses (e.g., year of

a movie), (2) applying Porter’s stemmer on each word, and (3)

sorting the words alphabetically.

A list of items can be generated for each entity using the above

procedure. In our experiments we will study whether such items

are relevant to user queries.

4. EXPERIMENTS
We now present the experimental evaluation of our approaches.

All experiments are run on a Windows server with dual 2.66GHz

Intel quad-core CPU and 32GB main memory. All experiments

are run with a single core.

4.1 Datasets
 We collect users’ search trails from the browsing logs of Inter-

net Explorer 8 of consenting users from 2009/04/01 to

2009/08/31. For each web search query submitted to Google, Ya-

hoo!, or Bing Search (or Live Search), we collect the user query,

clicked URL on search result page, and the next clicked URL.

Since we will test the accuracy of the items found by STRUC-

LICK by human (via Amazon Mechanical Turk [1]), we need to use

queries with clear intents. Each query should contain an entity of a

known category, and another word or phrase indicating unambi-

guous intent. We choose four very different categories of queries:

Movies of actors, songs of musicians, lodging of national parks,

and tourism of cities. Table 2 shows the source of each type of

entities (where “*” represents wildcard). For each type of entities

and each corresponding intent word (“movies”, “songs”, “tour-

ism”, or “lodging”), we collect all queries consisted of an entity

and an intent word (e.g., {Tom Hanks movies}), and find their

search trails in our logs. Although we only test the accuracy of

STRUCLICK on these categories of queries, there is no human labe-

ling or intervention needed. STRUCLICK can be easily applied to

queries containing all categories of entities and all important in-

tent words for each category in fully automated ways. The

processing of different categories of entities and different intent

words are independent and can be done in parallel.

When extracting data from web pages, we use the indexed pag-

es of Bing Search on 2009/06/01 as a replicate of the Web5.

4.2 URL Pattern Summarizer
We first show results of URL Pattern Summarizer. Table 3

shows the number of search result URLs with follow-up clicks,

number of URL patterns found, and percentage of result URLs

covered by any pattern. We can see majority of URLs are covered

by some pattern, which shows it is possible to use information

extracted from these patterns to satisfy majority of users’ needs.

Table 3: Statistics of URL patterns

Category of queries #URLs #Patterns Coverage

actor movies 70750 83 89.72%

musician songs 55057 153 83.76%

city tourism 3234 19 52.50%

national park lodging 2383 13 50.10%

Total 131424 268 85.46%

The following are the URL patterns covering most URLs for

musician songs queries. It can be easily verified that each of them

provides many URLs of the same format providing songs of dif-

ferent musicians.

http://music.aol.com/artist/*/*

http://www.songarea.com/music-codes/*.html

http://www.whosdatedwho.com/music/songs/*.htm

http://www.allthelyrics.com/lyrics/*

http://www.stlyrics.com/songs/*/*.html

http://www.mp3.com/artist/*/summary

http://new.music.yahoo.com/*/tracks

http://mog.com/music/*

http://www.mtv.com/music/artist/*/lyrics.jhtml

http://www.allbutforgottenoldies.net/*.html

The most important job of URL Pattern Summarizer is to find

web pages with same format. Therefore, we test how likely a pair

of URLs satisfying a URL pattern are of the same format. We

randomly select 20 pairs of URLs from each category that satisfy

the same URL pattern, and manually label whether each pair of

URLs contain contents relevant to the query intent in the same

format. The results are shown in Table 4, and we can see the URL

Pattern Summarizer achieves high accuracy in finding web pages

in same format. In fact even a URL pattern contains web pages in

a few different formats, the Information Extractor can build dif-

ferent wrappers to extract information from each of them.

We also study the scalability of URL Pattern Summarizer, by

applying it on URL sets with different sizes. We randomly select

1000, 2000, 4000, …, 32000 URLs from all URLs in

5 We exclude a set of domains which have huge number of pages

but usually do not provide structured information for entities:

“google.*”, “bing.*”, “flickr.*”, “myspace.*”, “ask.*”, “you-

tube.*”, “wikipedia.org”, “amazon.*”, “ebay.*”, “answer.com”,

“shopping.yahoo.*”, “answer.yahoo.*”, “video.yahoo.*”.

Table 2: Data sources for each class of entities

Class of entity Num. Entity Wikipedia categories or Web source

actors 19432 *_film_actors

musicians 21091 *_female_singers, *_male_singers,

music_groups
cities 1000 www.tiptopglobe.com/biggest-

cities-world
national parks 2337 *_national_parks, national_parks_*

www.imdb.com with follow-up clicks. The runtime of URL Pat-

tern Summarizer on each set of URLs is shown in Figure 3. We

can see the runtime grows slightly faster than linear (growing

about 128% when number of URLs doubles). Because most do-

mains contain several or tens of URL patterns, it is usually suffi-

cient to use thousands of URLs from each domain to infer URL

patterns. In this experiment the same set of URL patterns are gen-

erated when the number of URLs is no less than 2000. URL Pat-

tern Summarizer can finish in about 100 seconds for 32000 URLs,

which is efficient enough for most domains.

4.3 Information Extractor and Authority
Analyzer

4.3.1 Accuracy
Information Extractor learns wrappers from users’ search trails,

and extracts structured information from all web pages satisfying

each URL pattern. Then Authority Analyzer infers the relevance

of each wrapper, and combines items from different web domains

to create an ordered list of items for each entity. Authority Ana-

lyzer has two parameters: > for controlling the weight of cohe-

rence with labels, and R for controlling the weight of each follow-

up click. We set > = 0.1 and R = 10. In fact we try various values

and find they do not have significant influence on the output.

We test the accuracy of the final lists of items by human judg-

ments via Amazon Mechanical Turk [1]. For each category of

queries, we randomly select 50 or 100 queries (100 for actor mov-

ies and musician songs, 50 for city tourism and national park

lodging), and the probability a query being selected is proportion-

al to its frequency in the year of 2008. For each selected query, we

get the top 10 items found by STRUCLICK, and ask three Mechani-

cal Turk workers to judge whether each item is relevant for the

query. Figure 4 shows an example of our questions on Mechanical

Turk, which is about whether “Flashlight” (with URL

http://www.last.fm/music/George+Clinton/_/Flashlight) is rele-

vant for query {George Clinton songs}. We consider a name or

URL to be relevant if majority of workers think that way6.

6 If equal number of workers vote for “Yes” and “No”, this case is

ignored. This happens in about 5% of cases.

In order to see if the workers are really making judgments or

simply clicking on “Yes”, we add about 10% of noise by replacing

each item at rank 10 with a randomly selected item that is irrele-

vant to the query. All workers who label more than half of noise

items as relevant are ignored.

We measure the accuracy of the names and URLs of top-k items

for each category of queries, as shown in Table 5. Each row con-

tains average accuracy of all items with rank through 1 to k (k = 1,

…, 9). It can be seen that STRUCLICK achieves very high accuracy

on city’s tourism and musicians’ songs. It is a little less accurate

on actor movies, because it mixes starring with other types of

contributions such as singing songs. The accuracy on national

park lodging is lower because the workers often consider an item

to be irrelevant if he cannot find any information about the na-

tional park on the web page of a hotel, although the hotel is ac-

tually very close to the park.

One advantage of STRUCLICK is its capability of extracting a

large amount of structured information for each category of que-

ries based on a very small amount of user clicks. Table 6 shows

the numbers of entities and items with follow-up clicks, numbers

of entities and items extracted by Information Extractor, and those

of the final results by Authority Analyzer (with items combined

for each entity). We can see the final results of STRUCLICK contain

hundreds or thousands times more entities and items than the user

clicked contents.

In order to test the capability of STRUCLICK in distinguishing re-

levant items and wrappers from irrelevant ones, we randomly

sample items clicked by users and items extracted by Information

Extractor, and use Mechanical Turk to judge their relevance. We

sample 200 user clicked items, 200 filtered user clicked items, and

200 extracted items for actor movies and musician songs, and 100

for city tourism and national park lodging. The results are shown

Table 4: Accuracy of URL Pattern Summarizer

Category of queries #pairs #correct Accuracy

actor movies 20 20 100%

musician songs 20 20 100%

city tourism 20 18 90%

national park lodging 20 19 95%

Total 80 77 96.25%

Figure 3: Scalability of URL Pattern Summarizer

Figure 4: An example of Mechanical Turk question

Table 5: Accuracy of STRUCLICK

 Actor movies Musician

songs

City tourism National park

lodging

k Name URL Name URL Name URL Name URL

1 .970 .979 .978 .989 1.00 1.00 1.00 .978

2 .964 .974 .984 .995 1.00 1.00 .978 .966

3 .959 .962 .982 .989 1.00 .993 .978 .954

4 .962 .958 .981 .984 .990 .985 .960 .924

5 .967 .962 .978 .982 .992 .988 .954 .924

6 .967 .960 .977 .980 .993 .990 .950 .905

7 .969 .961 .975 .978 .991 .988 .939 .890

8 .968 .962 .973 .977 .992 .990 .910 .866

9 .962 .955 .973 .975 .991 .991 .906 .849

Noise 0 0 0 0 .044 .114 .024 .073

1

10

100

1000

1000 2000 4000 8000 16000 32000

R
u

n
 t

im
e

 (
se

c)

Number of URLs

in Table 7. We can see a significant portion of user clicked items

are irrelevant to the queries. For example, when searching for

movies of an actor, a user often clicks on links such as “more”,

“by year”, and other irrelevant items such as photos and user

comments. Some of these links point to pages containing relevant

movies, and therefore the Mechanical Turk workers consider the

URLs as relevant, which makes the URLs have higher relevance

than the item names. The data extracted by Information Extractor

has comparable accuracy with user clicked items. On one hand,

Information Extractor removes many irrelevant wrappers having

repeated items from many pages (as described in Section 3.3). On

the other hand, it introduces many new irrelevant items, because

when an irrelevant wrapper is built, even from a very small num-

ber of clicked items, it can extract many irrelevant items. Fortu-

nately Authority Analyzer can identify the relevant wrappers and

generates good lists of items. By comparing Table 5 and Table 7,

we can see the accuracy of STRUCLICK is much higher than the

user clicked items and extracted items in most cases.

Table 7: Accuracy of user clicked items and extracted items

Actor

movies

Musician

songs

City

tourism

National park

lodging

 Name URL Name URL Name URL Name URL

User

clicked
.713 .970 .527 .964 .770 .962 .842 .967

Extracted .735 .724 .747 .789 .780 .840 .932 .857

Noise 0 0 0 0 .148 .148 .053 .053

4.3.2 Examples of Output
Here we show some examples of the list of items combined from

different sources by STRUCLICK. If different sources have slightly

different names for each item, we choose the name of the source

with highest relevance. The ranked lists of items (together with

URLs for the first item) for four queries are shown in Table 8. We

can see STRUCLICK successfully extracts relevant and popular

items for each query.

4.3.3 Scalability and converging speed
We monitor the run-time of Information Extractor on building

wrappers for each URL pattern, and using such wrappers to ex-

tract information from web pages. Figure 5 shows the run-time

and number of URLs for building wrappers and extracting infor-

mation for each URL pattern. Please note there are much less

URLs for wrapper building because only URLs with follow-up

clicks are useful. In general Information Extractor is linear scala-

ble on both tasks. On the other hand, these two tasks can both be

easily computed in distributed ways.

Because Authority Analyzer uses an iterative procedure which

converges to optimal solution, we test how fast it converges. After

each iteration Authority Analyzer generates a relevance score for

each item. Let !' be the vector of relevance scores after kth itera-

tion. We monitor the relative change of !' , i.e., ‖!' − !'I�‖/

‖!'I�‖, which is shown in Figure 6. It can be seen that Authority

Analyzer converges quickly, and the relative change drops to 10-7

or 10-8 at iteration 100. We stop the procedure after the relative

change is less than 10-7, with at least 100 iterations.

Table 6: Numbers of entities and items clicked by users and

numbers of those extracted by STRUCLICK

Actor

movies

Musician

songs

City

tourism

National park

lodging

 entity item entity item entity item entity item

User

clicked
1834 27906 962 10562 170 1097 18 68

Extracted 1.24M 121M 121K 21.2M 25932 5.8M 32027 19.4M

Final

result
1.23M 11.7M 97232 1.75M 20789 285K 23338 955K

Table 8: Example output of STRUCLICK

Query: {Britney Spears songs}
1. Baby One More Time

http://www.kissthisguy.com/1874song-Baby-One-More-Time.htm

http://www.poemhunter.com/song/baby-one-more-time/

http://new.music.yahoo.com/britney-spears/tracks/baby-one-more-time--

1486500

http://album.lyricsfreak.com/b/britney+spears/baby+one+more+time_2000189

4.html

http://www.mtv.com/lyrics/spears_britney/baby_one_more_time/1492102/lyri

cs.jhtml

http://www.lyred.com/lyrics/Britney%20Spears/%7E%7E%7EBaby+One+Mo

re+Time/

2. Oops I Did It Again
3. Circus
4. (You Drive Me) Crazy
5. Lucky
6. Satisfaction
7. Everytime
8. Piece of Me
9. Radar
10. Toxic

Query: {Leonardo DeCaprio movies}
1. Body of Lies

http://www.netflix.com/Movie/Body_of_Lies/70101694

http://movies.yahoo.com/movie/1809968047/info

http://www.hollywood.com/movie/Penetration/3482012

http://us.imdb.com/title/tt0758774/

http://movies.msn.com/movies/movie/body-of-lies/

http://www.imdb.com/title/tt0758774/

2. Shutter Island (2009)
3. Revolutionary Road (2008)
4. Catch Me If You Can
5. Blood Diamond
6. The Departed
7. The Aviator
8. Conspiracy of Fools
9. Confessions of Pain (Warner Bros.)
10. The Low Dweller

Query: {Mount Rainier National Park lodging}
1. Crystal Mountain Village Inn

http://www.tripadvisor.com/Hotel_Review-g143044-d1146125-Reviews-

Crystal_Mt_Hotels-Mount_Rainier_National_Park_Washington.html

2. Cougar Rock Campground
3. Alta Crystal Resort at Mount Rainier
4. Travelodge Auburn Suites
5. Holiday Inn Express Puyallup (Tacoma Area)
6. Tayberry Victorian Cottage B&B
7. Crest Trail Lodge
8. Auburn Days Inn
9. Paradise Inn
10. Copper Creek Inn

Query: {Los Angeles tourism}
1. Universal Studios

http://www.planetware.com/los-angeles/universal-studios-us-ca-uns.htm

http://www.igougo.com/attractions-reviews-b80978-Universal_City-

Universal_Studios_Hollywood.html

2. J. Paul Getty Center
3. Hollywood - Sunset Strip
4. Hollywood - Grauman's Chinese Theatre / Mann Theaters
5. Bunker Hill
6. El Pueblo de Los Angeles Historical Monument
7. Farmers Market
8. J Paul Getty Museum
9. Hollywood - Walk of Fame
10. Map of Los Angeles- Downtown

 (a) Building wrappers (b) Extracting information

Figure 5: Run-time of Information Extractor

Figure 6: Convergence of Authority Analyzer

Then we test the scalability of Authority Analyzer. We random-

ly select 10000 to 50000 entities in musicians, and apply Authori-

ty Analyzer to their items. The number of items and run-time are

shown in Figure 7, which shows linear scalability.

Figure 7: Scalability of Authority Analyzer

5. CONCLUSIONS
In this paper we present STRUCLICK, a fully automated system

for extracting structured information from the web to answer web

search queries. Comparing with existing approaches, it does not

require manually labeled data, and can assign semantics to ex-

tracted data according to user queries. STRUCLICK utilizes users’

search trails as implicit labels for wrapper building and informa-

tion extraction, and can overcome the problem of high noise rate

in such implicit labels. As many web sites provide uniformly for-

matted web pages for certain categories of name entities, STRUC-

LICK is capable of extracting large amounts of high-quality data

for web search.

6. REFERENCES
[1] Amazon Mechanical Turk. https://www.mturk.com/mturk/

[2] A. Arasu and H. Garcia-Molina. Extracting structured data

from web pages. SIGMOD’03.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. Semantic web.

Scientific American, 1(1):68–88, 2000.

[4] M. Bilenko, R. W. White. Mining the search trails of surfing

crowds: Identifying relevant websites from user activity.

WWW’08.

[5] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and

O. Etzioni. Open information extraction from the web. IJ-

CAI’07.

[6] M. J. Cafarella, A. Halevy, N. Khoussainova. Data Integra-

tion for the Relational Web. VLDB’09.

[7] C. Chang and S. Lui. IEPAD: Information extraction based

on pattern discovery. WWW’01.

[8] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: To-

wards automatic data extraction from large web sites.

VLDB’01.

[9] S. Dill et al. SemTag and Seeker: Bootstrapping the semantic

web via automated semantic annotation. WWW’03.

[10] X. Dong, L. Berti-Equille, and D. Srivastava. Truth discovery

and copying detection in a dynamic world. VLDB’09.

[11] J. Guo, G. Xu, X. Cheng, and H. Li. Named entity recogni-

tion in query. SIGIR’09.

[12] N. Kushmerick. Wrapper induction for information extrac-

tion. PhD thesis (1997).

[13] A. H. F. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and J. S.

Teixeira. A brief survey of Web data extraction tools. ACM

SIGMOD Record, 31(2):84-93, 2002.

[14] X. Li, Y.-Y. Wang, and A. Acero. Learning query intent from

regularized click graphs. SIGIR’08.

[15] B. Liu. Mining data records in Web pages. KDD’03.

[16] G. Miao, J. Tatemura, W.-P. Hsiung, A. Sawires, and L. E.

Moser. Extracting data records from the web using tag path

clustering. WWW’09.

[17] S. Mukherjee and I.V. Ramakrishnan. Automated semantic

analysis of schematic data. World Wide Web Journal. 11(4):

427-464 (2008).

[18] I. Muslea, S. Minton, and C. Knoblock. A hierarchical ap-

proach to wrapper induction. AGENTS’99.

[19] M. Paşca. Organizing and searching the world wide web of

facts - step two: harnessing the wisdom of the crowds.

WWW’07.

[20] X. Yin, J. Han, and P. S. Yu. Truth discovery with multiple

conflicting information providers on the web. KDD’07.

[21] Y. Zhai and B. Liu. Web data extraction based on partial tree

alignment. WWW’05.

[22] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, B. Schölkopf.

Learning with local and global consistency. NIPS’03.

[23] D. Zhou, J. Huang, B. Schölkopf. Learning from labeled and

unlabeled data on a directed graph. ICML’05.

0.01

0.1

1

10

100

1000

1 10 100 1000 10000

R
u

n
ti

m
e

 (
se

c)

Number of URLs

0.01

0.1

1

10

100

1000

10000

R
u

n
ti

m
e

 (
se

c)

Number of URLs

1E-09

1E-08

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100

R
e

la
ti

v
e

 C
h

a
n

g
e

#Iteration

Actor movies

Musician songs

City tourism

National park lodging

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200000 400000 600000 800000 1000000

T
im

e
 p

e
r

it
e

ra
ti

o
n

 (
se

c)

Number of Items

