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ABSTRACT 

Today the major web search engines answer queries by showing 

ten result snippets, which need to be inspected by users for identi-

fying relevant results. In this paper we investigate how to extract 

structured information from the web, in order to directly answer 

queries by showing the contents being searched for. We treat us-

ers’ search trails (i.e., post-search browsing behaviors) as implicit 

labels on the relevance between web contents and user queries. 

Based on such labels we use information extraction approach to 

build wrappers and extract structured information. An important 

observation is that many web sites contain pages for name entities 

of certain categories (e.g., AOL Music contains a page for each 

musician), and these pages have the same format. This makes it 

possible to build wrappers from a small amount of implicit labels, 

and use them to extract structured information from many web 

pages for different name entities. We propose STRUCLICK, a fully 

automated system for extracting structured information for queries 

containing name entities of certain categories. It can identify im-

portant web sites from web search logs, build wrappers from us-

ers’ search trails, filter out bad wrappers built from random user 

clicks, and combine structured information from different web 

sites for each query. Comparing with existing approaches on in-

formation extraction, STRUCLICK can assign semantics to extracted 

data without any human labeling or supervision. We perform 

comprehensive experiments, which show STRUCLICK achieves 

high accuracy and good scalability.  

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval – search process.  

General Terms 
Algorithms, Measurement, Experimentation. 

Keywords 
Web search, Information extraction. 

1. INTRODUCTION 
Although web search engines have evolved much in the past 

decade, the paradigm of “ten result snippets” barely changes over 

time. After submitting a query, the user needs to read each snippet 

to decide whether the corresponding web page has the contents he 

is searching for, and clicks on the link to see the page.  

If a search engine can provide “direct answers” for a significant 

portion of user queries, it can save a large amount of time spent by 

each user in reading snippets. Take the query {Britney Spears 

songs}1  as an example. For this query Google does not show 

songs directly (except two results from video vertical). There are 

actually many web pages providing perfect contents for this query. 

For example, http://www.last.fm/music/Britney+Spears/ and 

http://www.rhapsody.com/britney-spears contain lists of songs by 

Britney Spears sorted by popularity, in rather structured layouts. If 

we can show a list of songs as results for this query, or convert the 

snippet of each search result into a list of songs, the user can di-

rectly see the information he is searching for, and click on some 

links to fulfill his need, e.g., listening to the songs. 

It would not be very difficult to provide such direct answers if a 

search engine could understand the semantics of web page con-

tents. However, in lack of an effective approach for understanding 

web contents, the “ten result snippets” still dominate the search 

result pages. Some search engines show direct answers for a very 

small portion of queries, such as query {rav4} on Bing.com. 

However, these direct answers are usually based on backend rela-

tional databases containing well structured data, instead of infor-

mation on the web. 

Many approaches have been proposed for extracting structured 

information from the web. One popular category of approaches is 

wrapper induction [12][18], which builds a wrapper for web pages 

of a certain format based on manually labeled examples. Another 

popular category is automatic template generation 

[2][7][8][15][21], which converts an HTML page into a more 

structured format such as XML. Unfortunately neither of them can 

be directly used to supply structured data to search engines. 

Wrapper induction cannot scale up to the whole web because ma-

nual labeling is needed for each format of pages on each web site. 

Automatic template generation approaches can only convert all 

contents on web pages into structured format, but cannot provide 

semantics for the data to allow search on them. 

In this paper we try to bridge the gap between web search que-

ries and structured information on web pages. We propose an 

approach for finding and extracting structured information from 

the web that match with queries. Our approach is based on the 

search trails of users, i.e., a sequence of URLs a user clicks after 

submitting a query and clicking a search result. Because these 

post-search clicks are usually for fulfilling the original query in-

tent, we use the contents being clicked (e.g., the clicked URLs and 

their anchor texts) as implicit labels from users, and use such la-

bels to build wrappers and extract more data to answer queries. 

For example, a user may search for {Britney Spears songs}, click 

on a result URL http://www.last.fm/music/Britney+Spears/ (as 

shown in Figure 1(a)), and on that page click another URL 

http://www.last.fm/music/Britney+Spears/_/Womanizer, which 

links to a song “Womanizer”.  Then we can know the last clicked 

                                                                 
1 We use “{x}” to represent a web search query x. 

Copyright is held by the International World Wide Web Conference 
Committee (IW3C2). Distribution of these papers is limited to classroom 

use, and personal use by others. 

WWW 2010, April 26-30, 2010, Raleigh, North Carolina, USA. 

ACM  978-1-60558-799-8/10/04. 



URL and its anchor text “Womanizer” are likely to be a piece of 

relevant answer for the original query. We can also extract other 

songs on the same page as pieces of answers for that query.  

A web site containing structured web pages usually has pages in 

uniform format for many name entities of the same category. For 

example, www.last.fm has a page for each of many musicians, 

like the pages in Figure 1 (a) and (b). If we have a list of musi-

cians, and have seen different queries like {[musician] songs} 

with clicks on URLs like http://www.last.fm/music/*/, we can 

infer that each such web page contains songs of a musician, which 

can be extracted to answer corresponding queries. 

We present the STRUCLICK system in this paper. In general, it 

takes many categories of name entities (e.g., musicians, actors, 

cities, national parks), and finds web sites providing structured 

web pages for each category of name entities. Based on user 

search trails of queries containing name entities, it extracts struc-

tured information from the web pages, and uses them to answer 

user queries directly. STRUCLICK is a very powerful system as it 

can build a wrapper from a small number of user clicks, and apply 

it to all web pages of the same format to extract information. It is 

a fully automated system, as it does not require any manual labe-

ling or supervision, and can generate structured information for 

different generic and popular search intents for a category of enti-

ties2 (e.g., songs of musicians or attractions of cities).  

To the best of our knowledge, this is the first study on extract-

ing structured information using web search logs. Because intents 

of user queries are best captured through web search logs, we 

believe logs are a most necessary input for answering queries with 

structured data. In this first study we confine our scope within 

queries containing name entities, and contents on web pages that 

are clickable, i.e., associated with hyperlinks. The first constraint 

does not limit the significance of our work as it is reported 71% of 

queries contain name entities [11]. It will be our future work to 

remove the second constraint.  

There are three major challenges for accomplishing the above 

task. The first challenge is how to identify sets of web pages with 

uniform format, when it is impossible to inspect the content of 

every page because of the huge data amount. We propose an ap-

proach for finding URLs with common patterns. According to our 

experiments, URLs with same pattern correspond to pages with 

uniform formats most of time. The second challenge is that the 

                                                                 
2 It is very easy to get entities in different categories from web 

sites like Wikipedia and freebase.  

amount of user clicked contents is usually small, based on which 

we need to build HTML wrappers to extract large amount of 

structured information. An approach based on paths of HTML 

tags [16] is used, which can build wrappers and extract informa-

tion efficiently. The third challenge is how to distinguish relevant 

data from irrelevant data. As shown by our experiments, users 

often click on URLs not relevant to their original queries, which 

leads to significant amount of noise in the extracted data. Moreo-

ver, there is no information for the relevance of vast majority of 

extracted items without user clicks. Based on the observation that 

items extracted by a wrapper are usually all relevant or all irrele-

vant, we propose a graph-regularization based approach to identi-

fy the relevant items and good wrappers. 

We perform comprehensive experiments to study the accuracy 

and scalability of STRUCLICK, and use human judgments via Ama-

zon Mechanical Turk [1] to validate the results. It is shown that 

STRUCLICK can extract a large amount of structured information 

from a small number of user clicks, filter out the significant 

amount of noise caused by noises in users’ search trails, and final-

ly produce highly relevant structured information (with accuracy 

90%‒99% for different categories of queries). It is also shown that 

STRUCLICK is highly scalable, which makes it an ideal system for 

information extraction from the web. 

The rest of this paper is organized as follows. We discuss re-

lated work in Section 2. Section 3 describes the architecture and 

algorithms of STRUCLICK system. We present empirical study in 

Section 4, and conclude this study in Section 5. 

2. RELATED WORK 
Extracting structured information from web pages has been stu-

died for more than a decade. Early work is focused on wrapper 

induction, which learns extraction rules from manually labeled 

examples [13]. Such systems include WIEN [12], Stalker [18]. 

These approaches are semi-automatic as they require labeled ex-

amples for each set of web pages of a certain format from a web 

site. Such labeling procedure is not scalable as there are a very 

large number of such web sites, with new sites emerging and ex-

isting sites changing formats from time to time. 

In the last decade there are many studies on automatic extrac-

tion of structured information from web pages. IEPAD [7] and 

MDR [15] focus on extracting repeated patterns from a single web 

page. [16] utilizes “path of tags” to identify each type of objects in 

HTML DOM trees. The approaches in [2][8][21] create patterns 

or templates from many web pages of same format, in order to 

extract data from them. RoadRunner [8] uses a web page as the 

initial template, and keeps modifying the template when compar-

ing it with more pages. EXALG [2] is based on the assumption 

that a set of tokens co-occurring with same frequency in different 

pages are likely to form a template. DEPTA [21] uses partial tree 

alignment on HTML DOM trees to extract data. 

Although the above approaches can automatically extract struc-

tured data from web pages of the same format, they cannot pro-

vide any semantics to each data field being extracted, which 

means they simply organize the data in HTML pages into a struc-

tured format (e.g., XML). To get semantics of data, one has to 

label each data field for each format of pages, which is unscalable 

for web scale tasks. It is also difficult to select the web sites to 

extract data from, for both semi-automatic and automatic informa-

tion extraction methods. In contrast, we combine the searching 

and post-searching browsing behaviors of users to identify the 

semantics of data fields, which enables extracting data suitable for 

answering queries.  
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Figure 1: (a) Part of music page of Britney Spears on 

www.last.fm, (b) That of Josh Groban 

User click 



The problem of automatically annotating data on the web has 

been studied extensively for creating the Semantic Web [3]. Sem-

Tag [9] uses an existing knowledge base, and learns distributions 

of keywords to label a huge number of web pages. In [17] an ap-

proach is proposed to extract information with a given ontology 

by learning from user supplied examples. These approaches both 

require user provided training data, and are based on spatial lo-

cality of web page layout, i.e., semantic tags can be found from 

surrounding contents on HTML pages. These features may limit 

their accuracy because different web sites may have very different 

styles, and semantic tags may not exist in surrounding contents. 

Our approach is very different from them, as we use users’ search 

trails for training, and build wrappers using information extraction 

approaches instead of relying on spatial layout of web pages.  

 Automated information extraction from web pages of arbitrary 

formats has also been well studied. In [5] Banko et al. study how 

to automatically extract information using linguistic parser from 

the web. In [6] Cafarella et al. extract information from tables and 

lists on the web to answer queries. Although these approaches can 

be applied to any web pages, they rely on linguistics or results 

from search engines to assign semantics to extracted data for ans-

wering queries, which limits their accuracy. [6] reports that a rele-

vant table can be returned in top-2 results in 47% of cases. Our 

approach is very different from above approaches as we perform 

information extraction from web pages of uniform format. Based 

on users’ search trails, and the consistent semantics of data ex-

tracted from uniformly formatted pages, we achieve very high 

accuracy (≥ 97% for top results). 

Paşca [19] has done many studies on automatically finding enti-

ties of different categories, and important attributes for each cate-

gory. These are very important inputs for our system, as our goal 

is to find important data items for each category of entities. 

3. STRUCLICK SYSTEM 

3.1 System Overview 
In this section we provide an overview of the STRUCLICK sys-

tem. Three inputs are needed for this system. The first input is a 

reasonably comprehensive set of HTML pages on the web, which 

can be retrieved from index of Bing.com. The second input is the 

search trails of users, i.e., the clicks made by users after querying 

a major search engine (Google, Yahoo!, or Bing), which can be 

found in the browsing logs of consenting users of Internet Explor-

er 8. The third input is name entities of different categories. The 

titles of articles within each category or list of Wikipedia or free-

base can be used as a category of entities. We can also get such 

data from different web sites like IMDB or Amazon, or use auto-

matic approach [19] to collect them. 

We focus on web search queries containing name entities of 

each category (e.g., musicians), and possibly a word or phrase 

indicating generic and popular intent for that category of entities 

(e.g., songs of musicians). We call a word (or phrase) that co-

appears with many entities of a category in user queries as an 

intent word for that category. Table 1 shows the intent words with 

most clicks in search trails for four categories3. Many web sites 

provide certain aspects of information for a category of entities, 

and our goal is to extract information from clickable contents of 

web pages, which can answer queries involving each category of 

entities and each popular intent word. Although we cannot find 

structured information for every generic intent of every category 

                                                                 
3 We ignore words with redundant meanings and offensive words 

like “sex”. 

of entities, we can handle many of the important intents such as 

movies, songs, lyrics, concerts, coupons, hotels, restaurants, etc. 

As shown in Figure 2, the STRUCLICK system contains three 

major components: The URL Pattern Summarizer, the Information 

Extractor, and the Authority Analyzer. The URL Pattern Summa-

rizer takes different categories of name entities as input, and finds 

queries consisted of an entity in some category and an intent 

word. Then it analyzes the clicked result URLs for these queries 

to find sets of URLs sharing the same pattern, which correspond 

to web pages of uniform format. For example, www.last.fm has a 

page for each musician with URLs like 

http://www.last.fm/music/*/, and such pages are often clicked for 

queries like {[musician] songs}. 

The second component is Information Extractor, which takes 

each set of uniformly formatted web pages and analyzes the post-

search clicks on them. It builds one or more wrappers for the enti-

ty names, clicked URLs and their anchor texts, and extracts such 

information from all web pages of the same format, no matter 

whether they have been clicked or not. 

These extracted data usually contains much noise because users 

may click on links irrelevant to their original search intents. The 

Authority Analyzer takes data extracted from different web sites, 

and infers the relevance of data and authority of web sites using a 

graph-regularization approach, based on the observation that items 

extracted by same wrapper are usually all relevant or all irrele-

vant. Finally it merges all relevant data, and show to user when 

receiving a suitable query. 

In general, STRUCLICK is a highly-automated system and relies 

on search and browsing logs to extract structured information for 

certain categories of entities. Comparing with existing systems for 

extracting data with semantics, STRUCLICK is almost free as it 

does not require any manual labeling or supervision. 

3.2 URL Pattern Summarizer 
Similar to most existing approaches, our information extractor 

can only be applied to web pages with uniform format. Therefore, 

the first step of STRUCLICK is to find sets of web pages of same 

format, from all result pages clicked by users for each category of 

entities and each intent word.  

Figure 2: Overview of STRUCLICK system 

Table 1: Top intent words for four categories of entities 

Actors Musicians Cities National parks 

pictures lyrics craiglist lodging 

movies songs times map 

songs pictures hotels pictures 

wallpaper live university camping 
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Because of the large number of pages involved, it is prohibi-

tively expensive to compare the formats of these pages. On the 

other hand, we find pages of uniform format usually share a 

common URL pattern. For example, each page of musician on 

last.fm has URL like http://www.last.fm/music/*, and each page 

of songs of musician on Yahoo! music has URL like 

http://new.music.yahoo.com/*/tracks. Therefore, we try to find 

such URL patterns from the search result URLs clicked by users, 

which correspond to sets of uniform format pages most of time. 

DEFINITION 1 (URL pattern). A URL pattern contains a list of 

tokens, each being a string or a “*” (wildcard). A URL pattern 

matches with a URL if all strings in the pattern can be matched in 

the URL and each wildcard matches with a string without token 

separators (“/”, “.”, “&”, “?”, “=”). □ 

When matching a URL with a pattern there are three outcomes: 

(1) Matched, (2) no match because they have different number of 

tokens or different token separators, and (3) compromised, i.e., the 

pattern needs to be generalized to match with the URL. Suppose 

pattern p1 = http://www.imdb.com/name/nm0000*. For URL u1 = 

http://www.imdb.com/name/nm2067953/, p1 and u1 are compro-

mised to form pattern http://www.imdb.com/name/nm*. For URL 

u2 = http://www.imdb.com/title/tt0051418/, p1 and u1 are com-

promised to generate pattern http://www.imdb.com/*/*. For URL 

http://www.imdb.com/video/imdb/vi3338469913/, p1 cannot be 

matched with it.  

Given all clicked result URLs, we hope to select a list of URL 

patterns, so that most URLs can match with at least one pattern. 

Each pattern should match many URLs, but should be as special 

as possible so that it does not match URLs of different formats.  

First we divide all result URLs by their web domains as we do 

not study patterns applicable to multiple domains. For URLs from 

each domain, we start from an empty pattern set. We iterate 

through the URLs, and try to match each URL with every existing 

pattern. If a URL and a pattern are compromised with a new pat-

tern generated, we include the new pattern into our pattern set. We 

also create a new pattern based on each URL, unless it can be 

matched or compromised with an existing pattern and there are 

already many patterns (>100).  

A set of patterns are generated after iterating through all URLs 

in a domain, and we need to select a subset of good patterns. In 

general, we prefer patterns that are more specific (i.e., containing 

less wildcards and more characters) and cover more URLs. For 

each pattern p, let coverage(p) be the number of URLs matching 

with p, wildcard(p) be the number of wildcards in p, and length(p) 

be the number of non-wildcard characters in p (not including the 

web domain). The score of a pattern is defined as 

���� = � �
�	
��
������� + � ∙ �����ℎ���� ∙ log�� !�"#�����,   (1) 

where � is set to 0.03 in our system. 

We select a subset of good patterns using a greedy algorithm, 

by selecting the pattern with highest score, removing all URLs 

matched with it, and selecting the next pattern. This procedure is 

stopped when less than 5% of all URLs are left. 

It is shown by our experiments that each selected URL pattern 

usually matches with a large number of URLs of the same format. 

Therefore, in the following components we treat URLs matching 

with each pattern as a separate source of information. 

3.3 Information Extractor 
Information extractor takes the search trails of queries contain-

ing name entities, builds wrappers for the clicked links which are 

likely to be items of interests for the user, and extracts structured 

information from all web pages of the same format. We will ex-

plain these three steps in this section. 

After a user submits a query, he usually clicks on a result URL, 

and on that page he may make some clicks. We call these clicks as 

follow-up clicks, and the clicked links are usually relevant to his 

original search intent. We treat each unique link from follow-up 

clicks as a relevant item for the original query. For example, if a 

user queries with {Britney Spears songs}, clicks on 

http://www.last.fm/music/Britney+Spears/ (Figure 1(a)), and clicks on 

http://www.last.fm/music/Britney+Spears/_/Womanizer (with anchor 

text “Womanizer”), then we consider “Womanizer” and the cor-

responding URL as a relevant item for {Britney Spears songs}. 

For each URL pattern p found in the result URLs, let U(p) be 

the set of all URLs matched with p. For each u in U(p), we get 

fc(u), the set of URLs clicked by follow-up clicks made on u, 

from the search trails of users. Our goal is to build wrappers that 

can extract URLs in fc(u) and their anchors from the result URLs, 

and also extract other URLs and anchors of the same format from 

all URLs in U(p). 

Information extraction from web pages of uniform format has 

been extensively studied in the past decade, based on different 

approaches including regular expressions [8], HTML templates 

[2][8], and partial tree alignment [21]. A recent study [16] pro-

vides a simple and effective approach based on “tag-path”, i.e., 

the tags on a path from the root to each node in the HTML DOM 

tree. Based on our observations, tag-paths are very effective in 

identifying a type of clicked links in a set of uniformly formatted 

web pages, because the layout of such links is usually unique on 

the pages. There is often class information on tags that distinguish 

different types of HTML elements, and we consider the class in-

formation specified for any tag that is closest to the leaf nodes. 

For example, on pages with URL pattern 

http://www.last.fm/music/*, each song URL has a tag-path of 

“<html><body><div><div><div><div><div><div> 

<div><table><tbody><tr><td class="subjectCell"><div><a>”.  

We adopt a tag-path based approach that is similar to [16] for 

building wrappers. When processing a URL pattern p, we build 

the HTML DOM tree for each page u in U(p) using Html Agility 

Pack4, and search for the clicked URLs on u in every element in 

the DOM tree. Whenever a clicked URL is found, we store the 

tag-path of that element as a candidate wrapper. After generating 

all candidate wrappers, we calculate the coverage of each of them, 

which is the percentage of URLs with follow-up clicks that can be 

extracted by this wrapper. All candidate wrappers with coverage 

lower than 5% are removed, and the remaining ones are used to 

extract data.  

There are wrappers that extract apparently useless data and we 

remove them in this step. Some wrappers extract items containing 

navigational links (e.g., “Photos”, “Videos”) or function links 

(e.g., “sort by year”). We can usually remove them by calculating 

the uniqueness of the anchor texts and URLs extracted by a wrap-

per. The uniqueness of a set of anchor texts (or URLs) is defined 

as the number of unique anchor texts (or URLs) divided by the 

total number. Any wrapper with uniqueness less than 20% for 

either anchor texts or URLs will be removed. Although many 

irrelevant wrappers and items can be removed in this way, many 

of them remain in our dataset. For example, for musicians’ songs 

we still have many wrappers extracting musicians’ names, con-

certs, user comments, etc. Authority Analyzer will identify the 

relevant wrappers and combine data from them. 

                                                                 
4 http://www.codeplex.com/htmlagilitypack 



Besides extracting the clicked items from web pages following 

each URL pattern, we also need to extract the entity name from 

each page, in order to know which entity these items belong to. 

This can be done using the same approach based on tag-paths, 

with some minor modifications. The first difference is that, since 

the entity name often appears with some extra text in HTML ele-

ments, we incorporate such text in our wrappers. For example, 

suppose we want build a candidate wrapper from the page of Brit-

ney Spears on AOL Music (http://music.aol.com/artist/britney-

spears/1290171), and find “Britney Spears” appears in the page 

title which is “Britney Spears – AOL Music”, we build a candi-

date wrapper of “<html><head><title>(*) – AOL Music”, in 

which (*) is a wildcard and represents the string to be extracted. 

After generating all candidate wrappers, we need to select a single 

wrapper for extracting entity names, because each page should 

contain a single entity name. We say a wrapper is correct on a 

page if it extracts exactly one string that is the entity name. The 

wrapper that is correct on most pages is selected, which will be 

used to extract the entity name from each page. 

3.4 Authority Analyzer 

3.4.1 Overview 
For each web search topic studied (e.g., musicians’ songs), the 

Information Extractor creates a set of wrappers, each extracting a 

set of entities and a list of items for each entity from qualified web 

pages. Each item contains a URL and an anchor text, which can be 

considered as the name of the item. Because these wrappers are 

built from follow-up clicks, and some follow-up clicks are not 

relevant to the original search intent (e.g., users explore different 

types of information), there are usually a significant portion of 

wrappers extracting irrelevant items. For example, a user may 

search for songs of a musician, go to a result page, and then click 

on a link to a concert of the musician. We may build a wrapper for 

concerts of musicians from such follow-up clicks, which provides 

irrelevant items for the search topic. 

It is a challenging task to select wrappers providing relevant 

items and remove the others. There are two important facts to take 

advantage of. The first one is that because each wrapper extracts 

items following a certain format, the items extracted by the same 

wrapper are usually all relevant or all irrelevant. For example, on 

musicians’ pages on www.last.fm (with URLs like 

http://www.last.fm/music/*/), different wrappers extract the songs, 

albums, similar artists, events, user comments, or navigational 

links. But no wrapper extracts multiple types of items. The second 

fact is there are many popular and relevant items provided by 

many different web sites. For example, each web site listing Brit-

ney Spears’ songs usually has the most popular songs like “Wo-

manizer” and “Piece of me”. If we can infer these are relevant 

items based on information from one web site, they can help us 

infer the relevance of items in many other web sites. 

Some existing papers focus on the truth discovery problem 

[10][20], which studies how to find authoritative information 

sources, based on the assumption that correct information from 

different sources should be same or similar, while incorrect infor-

mation should be different. However, this assumption does not 

hold in our problem, as different web sites often contain the same 

set of irrelevant items. For example, many different music web 

sites put albums, concerts, similar artists, etc. on the same page 

with songs of each musician. These items may be clicked by users 

for {[musician] songs} queries and then extracted by our wrap-

pers. Our problem is also different as we only know the items 

clicked by follow-up clicks are more likely to be relevant, but 

know nothing about the relevance of most of the items which are 

never clicked. Therefore, we base our approach on the following 

basic principles: 

(1) Two items extracted by the same wrapper are likely to 

be both relevant or both irrelevant. 

(2) An item is likely to be relevant to a topic if it is clicked 

by a follow-up click of a query on that topic.  

Principle (1) indicates that an item should have higher relev-

ance if it is provided by wrappers that provide many relevant 

items. The reader may have concerns with principle (2) because 

some follow-up clicks are on irrelevant items. This is unlikely to 

cause problems for our algorithm, because we will optimize a 

function that combines all items provided by all wrappers, and a 

relatively small number of irrelevant clicks will not affect the 

accuracy. If a wrapper provides irrelevant items, even if a few of 

them are clicked, we can still infer this wrapper is not relevant 

based on principle (1).  

3.4.2 Optimization 
Based on above principles, we hope to assign a relevance score 

to each item so that items extracted by the same wrapper have 

similar scores, and items with more follow-up clicks have higher 

scores. We propose an approach based on graph regularization 

based learning [14][22][23], and we make significant modifica-

tions to it to fit our problem. The goal of graph regularization is to 

assign values to each node in a graph, so that neighbor nodes have 

similar values and the value of each node is similar to its pre-

assigned value (which is usually a class label taking value of 0 or 

1). This can fit into an optimization framework with an analytical 

solution [22]. 

One option for solving our problem is to use graph regulariza-

tion by creating a graph according to our two principles. The 

graph contains a node for each item and an edge between each 

two nodes if the corresponding items are extracted by same wrap-

per. Each node has a label of 1 if the item is clicked and 0 other-

wise. However, this method is problematic because an item not 

being clicked only means its relevance is unknown, instead of it 

being irrelevant. In fact our problem is more similar to one-class 

classification with a very small number of positive examples 

(usually <1%). Graph regularization [22][23] treats each node as 

equally important, and thus will assign zero or almost zero relev-

ance to most items. Moreover, items receiving more clicks are 

obviously more popular for users, and we are also more confident 

about their relevance. Therefore, they should play more important 

roles in graph regularization. 

We modify the approach in [22][23] by assigning different 

weights to different nodes in the optimization procedure. Very low 

weights are assigned to un-clicked items, and the weight of each 

clicked item is proportional to the number of clicks. We find an 

analytical solution to this problem, which can be computed effi-

ciently. The details are as follows. 

For a category of entities and an intent word (e.g., musicians’ 

songs), suppose there are n wrappers w1, …, wn, and m items t1, 

…,tm. An item may be provided by multiple wrappers, because 

items are considered to be the same if they are for the same entity 

and share the same name. Each wrapper w provides a set of items 

T(w), and we construct a $ × � matrix & so that &	' equals 1 if �	 ∈ )�*'�  and 0 otherwise. Consider a graph +  containing a 

node for each item. There is an edge �	, ∈ -�+� if any wrapper 

provides both ti and tj, and its weight *.�	,/ is the number of such 

wrappers. It can be easily proved that &&0 is the adjacency ma-

trix of G, i.e., *.�	,/ = �&&0�	, .  



We want to assign a relevance score fi to each item ti, so that (1) 

if ti has high relevance, its neighbors in graph G should also have 

high relevance, and (2) if ti receives follow-up click(s) from a 

query on the specific search topic, it should have high relevance. 

Let 1 be the vector (f1, …, fm), and y be a vector so that yi=1 if ti 

receives follow-up click(s). A good function for optimization is 

provided in [22]: 

2�1� = �
� �∑ *.�	,/ ∙ 4 56

7�6 − 59
7�9:�

;69∈<�=� + >‖1 − @‖��    (2) 

, where > > 0, and C	 equals the sum of all elements in the ith row 

of &&0 (i.e., total weight of all edges from the node of ti). 

2�1�  contains two parts: 2��1� = ∑ *.�	,/ ∙ 4 56
7�6 − 59

7�9:�
;69∈<�=�  

represents the coherence within the graph, and 2��1� = ‖1 − @‖� 

represents the coherence with labeled examples, which are items 

receiving follow-up clicks in our case. It is proved in [22][23] that 2�1� is minimized when  

1∗ = �1 − F��G − FH�I�@                          (3) 

, where F = 1/�1 + >� , H = KI�/�&&LKI�/� , and K  is a di-

agonal matrix with K		 = C	 .  
In [22][23] there is a class label on each example. While in our 

problem the relevance of an item is unknown if there is no follow-

up click on it. This means there are only labels on some positive 

examples, but not on majority of them and the negative examples. 

Therefore, our problem is more similar to one-class classification, 

and 2�1� cannot be used.  

In general we should consider an unlabeled item to be positive 

if it is tightly related to positive items in the graph, and consider it 

to be negative if otherwise. This can be modeled by modifying the 

optimization function 2�1�. We keep the original 2��1� and de-

fine 

2��1� = ∑ M	�N	 − O	��P	Q�                          (4) 

, where M	  is the weight of item ti. Let N���	� be the number of 

follow-up clicks on ti. We set M	 = 1 if N���	� = 0, and M	 = R ∙N���	� if N���	� > 0, where R is a parameter that is much higher 

than 1. In this way it becomes much less important that items 

without follow-up clicks match with their “labels”. Please note 

assigning different weights (M	) to different items is very different 

from assigning different labels (O	 ), because N	  and O	  represent 

probability of an item being relevant and should be in range [0,1], 

and assigning very different O	 to different clicked items make it 

very difficult to minimize 2�1�.  

Let S be a diagonal matrix that S		 = M	. The function to be mi-

nimized becomes 

2�1� = �
� T2��1� + >�1 − @�LS�1 − @�U.               (5) 

The following theorem tells us how 2�1� can be minimized. 

THEOREM 1. 2�1� is minimized by  

1∗ = >SVI�.G − HSVI�/I�S@                         (6) 

, where SV = G + >S. 

PROOF. 2�1� is minimized when 
WX
W1 = 0. It is shown in [22] that 

WXY
W1 = 1 − H1. Thus we have 

Z[2
[1\

1Q1∗
= 1∗ − H1∗ + >S1∗ − >S@ = 0 

⟺ �G + >S − H�1∗ = >S@ 
With SV = G + >S, we have 

.G − HSVI�/SV1∗ = >S@ 

           ⟺ SV1∗ = >.G − HSVI�/I�S@.   □ 
3.4.3 Iterative computation procedure 

Because the high dimensionality of S and the high cost of ma-

trix inversion, it is impractical to directly compute 1∗  based on 

Equation (6). As shown in [22], if we set 1^ = @ and iteratively 

compute 1'�� = FH1' + �1 − F�@ (where F = 1/�1 + >�), then lim'→b�1'� = 1∗  as defined in Equation (3). We can convert 

Equation (6) into 

FSV1∗ = �1 − F� TG − F.Y
cHSVI�/UI� S@                (7) 

Since Equation (7) is analogous to Equation (3), we can use a 

similar iterative procedure as shown below. 

1. Let d^ =  S@. 

2. Repeat: 

3.  d'�� = F.Y
cHSVI�/d' + �1 − F�S@            (8) 

4. Until d' converges to d∗ 

We can easily infer lim'→b�d'� = FSV1∗ as in [22], and thus 

1∗ = �
f SVI�d∗. 

Please note H = KI�/�&&LKI�/� is a  $ × $ matrix, and it is 

very costly to compute H  when $  is large. Fortunately we can 

decompose step 3 into two steps to simplify computation as in 

[14]. Let g = KI�/�&. Step 3 can be decomposed into  

3(1).             h' = g0SVI�d'                                              (9) 

3(2).             d'�� = gh' + �1 − F�S@                            (10) 

It is much easier to compute h', which represents the score of 

each wrapper in kth step. The number of non-zero entries in g is 

equal to that in & (since K is a diagonal matrix), which is the total 

number of items provided by the wrappers. Therefore, each itera-

tion can finish in linear time w.r.t. input size. 

As shown in [22], the above procedure converges when the max 

eigen value of Y
cHSVI�

 is no greater than 1. This posts some re-

quirements on weight M	, according to the following lemma. 

LEMMA 1. The maximum eigen value of Y
cHSVI�

 is no greater than 

1 if M	 ≥ 1, k = 1, … , $. 

PROOF. Matrix Y
cHSVI�

 is similar to Y
cSVI�H because 

SV.Y
cSVI�H/SVI� = Y

cHSVI�
. Since H  is positive-definite, ‖Hd‖ ≤‖Mnopd‖, where Mnop is the maximum eigen value of H. (This can 

be easily proved through orthogonalization H = 20Sq2 .) It is 

already shown in [22] that any eigen value of H is no greater than 

1, which means ‖Hd‖ ≤ ‖d‖  for any x. We can guarantee 

rY
cSVI�Hdr ≤ ‖d‖  if no entry of Y

cSVI�
 is greater than 1. Since 

SVI�		 = �
��st6, this condition becomes  

�
f

�
��st6 ≤ 1, which means 

M	 ≥ 1.  □ 

3.4.4 Relevance of wrappers 
In general, the relevance of each item can be computed using 

the above iterative procedure. After it converges, we have the final 

relevance of each item, from which we can infer the relevance of 

wrapper *	 as the average relevance of its items, i.e.,  



"���*	� = ∑ 56u6∈v.w6/
|0��6�| .                                 (11) 

Because each URL pattern usually provides relevant items in a 

single format, we select the wrapper from each URL pattern with 

highest relevance, and ignore other wrappers from the same URL 

pattern. Because the pages from each URL pattern with significant 

number of user clicks usually contain some relevant information, 

the best wrapper from each URL pattern is usually relevant. We 

also remove wrappers with very relevance (< 0.001). 

3.4.5 Combining data from different web sites 
After selecting relevant wrappers and extracting data from dif-

ferent web sites, there is a final step of combining extracted data. 

This step is only needed when we want to generate a unified list 

of extracted items for each entity, which can be directly shown to 

users to answer their queries.  

When combining all items for an entity e, we first get the list of 

items extracted by each wrapper for e. Then we order all items for 

each entity according to their popularities. An item appearing on 

multiple web domains for an entity is usually a popular item. 

Therefore, we simply use the number of web domains providing 

each item to rank the items. Whenever there is a tie, we use the 

sum of relevance of wrappers providing each item to resolve the 

ties. Please note we do not rely on relevance of wrappers to rank 

items, because relevance is very different from popularity.  

Because different web domains often represent the same item in 

slightly different ways, we consider two item names to be the 

same if their normalized forms are the same. An item name is 

normalized by (1) removing contents in parentheses (e.g., year of 

a movie), (2) applying Porter’s stemmer on each word, and (3) 

sorting the words alphabetically.  

A list of items can be generated for each entity using the above 

procedure. In our experiments we will study whether such items 

are relevant to user queries. 

4. EXPERIMENTS 
We now present the experimental evaluation of our approaches. 

All experiments are run on a Windows server with dual 2.66GHz 

Intel quad-core CPU and 32GB main memory. All experiments 

are run with a single core. 

4.1 Datasets 
 We collect users’ search trails from the browsing logs of Inter-

net Explorer 8 of consenting users from 2009/04/01 to 

2009/08/31. For each web search query submitted to Google, Ya-

hoo!, or Bing Search (or Live Search), we collect the user query, 

clicked URL on search result page, and the next clicked URL.  

Since we will test the accuracy of the items found by STRUC-

LICK by human (via Amazon Mechanical Turk [1]), we need to use 

queries with clear intents. Each query should contain an entity of a 

known category, and another word or phrase indicating unambi-

guous intent. We choose four very different categories of queries: 

Movies of actors, songs of musicians, lodging of national parks, 

and tourism of cities. Table 2 shows the source of each type of 

entities (where “*” represents wildcard). For each type of entities 

and each corresponding intent word (“movies”, “songs”, “tour-

ism”, or “lodging”), we collect all queries consisted of an entity 

and an intent word (e.g., {Tom Hanks movies}), and find their 

search trails in our logs. Although we only test the accuracy of 

STRUCLICK on these categories of queries, there is no human labe-

ling or intervention needed. STRUCLICK can be easily applied to 

queries containing all categories of entities and all important in-

tent words for each category in fully automated ways. The 

processing of different categories of entities and different intent 

words are independent and can be done in parallel.  

When extracting data from web pages, we use the indexed pag-

es of Bing Search on 2009/06/01 as a replicate of the Web5. 

4.2 URL Pattern Summarizer 
We first show results of URL Pattern Summarizer. Table 3 

shows the number of search result URLs with follow-up clicks, 

number of URL patterns found, and percentage of result URLs 

covered by any pattern. We can see majority of URLs are covered 

by some pattern, which shows it is possible to use information 

extracted from these patterns to satisfy majority of users’ needs. 

Table 3: Statistics of URL patterns 

Category of queries #URLs #Patterns Coverage 

actor movies 70750 83 89.72% 

musician songs 55057 153 83.76% 

city tourism 3234 19 52.50% 

national park lodging 2383 13 50.10% 

Total 131424 268 85.46% 
 

The following are the URL patterns covering most URLs for 

musician songs queries. It can be easily verified that each of them 

provides many URLs of the same format providing songs of dif-

ferent musicians. 

http://music.aol.com/artist/*/* 

http://www.songarea.com/music-codes/*.html 

http://www.whosdatedwho.com/music/songs/*.htm 

http://www.allthelyrics.com/lyrics/* 

http://www.stlyrics.com/songs/*/*.html 

http://www.mp3.com/artist/*/summary 

http://new.music.yahoo.com/*/tracks 

http://mog.com/music/* 

http://www.mtv.com/music/artist/*/lyrics.jhtml 

http://www.allbutforgottenoldies.net/*.html 

The most important job of URL Pattern Summarizer is to find 

web pages with same format. Therefore, we test how likely a pair 

of URLs satisfying a URL pattern are of the same format. We 

randomly select 20 pairs of URLs from each category that satisfy 

the same URL pattern, and manually label whether each pair of 

URLs contain contents relevant to the query intent in the same 

format. The results are shown in Table 4, and we can see the URL 

Pattern Summarizer achieves high accuracy in finding web pages 

in same format. In fact even a URL pattern contains web pages in 

a few different formats, the Information Extractor can build dif-

ferent wrappers to extract information from each of them. 

We also study the scalability of URL Pattern Summarizer, by 

applying it on URL sets with different sizes. We randomly select 

1000, 2000, 4000, …, 32000 URLs from all URLs in 

                                                                 
5 We exclude a set of domains which have huge number of pages 

but usually do not provide structured information for entities: 

“google.*”, “bing.*”, “flickr.*”, “myspace.*”, “ask.*”, “you-

tube.*”, “wikipedia.org”, “amazon.*”, “ebay.*”, “answer.com”, 

“shopping.yahoo.*”, “answer.yahoo.*”, “video.yahoo.*”. 

Table 2: Data sources for each class of entities 

Class of entity Num. Entity Wikipedia categories or Web source 

actors 19432 *_film_actors 

musicians 21091 *_female_singers, *_male_singers, 

music_groups 
cities 1000 www.tiptopglobe.com/biggest-

cities-world 
national parks 2337 *_national_parks, national_parks_* 

 



www.imdb.com with follow-up clicks. The runtime of URL Pat-

tern Summarizer on each set of URLs is shown in Figure 3. We 

can see the runtime grows slightly faster than linear (growing 

about 128% when number of URLs doubles). Because most do-

mains contain several or tens of URL patterns, it is usually suffi-

cient to use thousands of URLs from each domain to infer URL 

patterns. In this experiment the same set of URL patterns are gen-

erated when the number of URLs is no less than 2000. URL Pat-

tern Summarizer can finish in about 100 seconds for 32000 URLs, 

which is efficient enough for most domains.  

4.3 Information Extractor and Authority 
Analyzer 

4.3.1 Accuracy 
Information Extractor learns wrappers from users’ search trails, 

and extracts structured information from all web pages satisfying 

each URL pattern. Then Authority Analyzer infers the relevance 

of each wrapper, and combines items from different web domains 

to create an ordered list of items for each entity. Authority Ana-

lyzer has two parameters: > for controlling the weight of cohe-

rence with labels, and R for controlling the weight of each follow-

up click. We set > = 0.1 and R = 10. In fact we try various values 

and find they do not have significant influence on the output. 

We test the accuracy of the final lists of items by human judg-

ments via Amazon Mechanical Turk [1]. For each category of 

queries, we randomly select 50 or 100 queries (100 for actor mov-

ies and musician songs, 50 for city tourism and national park 

lodging), and the probability a query being selected is proportion-

al to its frequency in the year of 2008. For each selected query, we 

get the top 10 items found by STRUCLICK, and ask three Mechani-

cal Turk workers to judge whether each item is relevant for the 

query. Figure 4 shows an example of our questions on Mechanical 

Turk, which is about whether “Flashlight” (with URL 

http://www.last.fm/music/George+Clinton/_/Flashlight) is rele-

vant for query {George Clinton songs}. We consider a name or 

URL to be relevant if majority of workers think that way6.  

                                                                 
6 If equal number of workers vote for “Yes” and “No”, this case is 

ignored. This happens in about 5% of cases. 

In order to see if the workers are really making judgments or 

simply clicking on “Yes”, we add about 10% of noise by replacing 

each item at rank 10 with a randomly selected item that is irrele-

vant to the query. All workers who label more than half of noise 

items as relevant are ignored.  

We measure the accuracy of the names and URLs of top-k items 

for each category of queries, as shown in Table 5. Each row con-

tains average accuracy of all items with rank through 1 to k (k = 1, 

…, 9). It can be seen that STRUCLICK achieves very high accuracy 

on city’s tourism and musicians’ songs. It is a little less accurate 

on actor movies, because it mixes starring with other types of 

contributions such as singing songs. The accuracy on national 

park lodging is lower because the workers often consider an item 

to be irrelevant if he cannot find any information about the na-

tional park on the web page of a hotel, although the hotel is ac-

tually very close to the park.  

One advantage of STRUCLICK is its capability of extracting a 

large amount of structured information for each category of que-

ries based on a very small amount of user clicks. Table 6 shows 

the numbers of entities and items with follow-up clicks, numbers 

of entities and items extracted by Information Extractor, and those 

of the final results by Authority Analyzer (with items combined 

for each entity). We can see the final results of STRUCLICK contain 

hundreds or thousands times more entities and items than the user 

clicked contents.  

In order to test the capability of STRUCLICK in distinguishing re-

levant items and wrappers from irrelevant ones, we randomly 

sample items clicked by users and items extracted by Information 

Extractor, and use Mechanical Turk to judge their relevance. We 

sample 200 user clicked items, 200 filtered user clicked items, and 

200 extracted items for actor movies and musician songs, and 100 

for city tourism and national park lodging. The results are shown 

Table 4: Accuracy of URL Pattern Summarizer 

Category of queries #pairs #correct Accuracy 

actor movies 20 20 100% 

musician songs 20 20 100% 

city tourism 20 18 90% 

national park lodging 20 19 95% 

Total 80 77 96.25% 
 

 

Figure 3: Scalability of URL Pattern Summarizer 

 

Figure 4: An example of Mechanical Turk question 

Table 5: Accuracy of STRUCLICK 

 Actor movies Musician 

songs 

City tourism National park 

lodging 

k Name URL Name URL Name URL Name URL 

1 .970 .979 .978 .989 1.00 1.00 1.00 .978 

2 .964 .974 .984 .995 1.00 1.00 .978 .966 

3 .959 .962 .982 .989 1.00 .993 .978 .954 

4 .962 .958 .981 .984 .990 .985 .960 .924 

5 .967 .962 .978 .982 .992 .988 .954 .924 

6 .967 .960 .977 .980 .993 .990 .950 .905 

7 .969 .961 .975 .978 .991 .988 .939 .890 

8 .968 .962 .973 .977 .992 .990 .910 .866 

9 .962 .955 .973 .975 .991 .991 .906 .849 

Noise 0 0 0 0 .044 .114 .024 .073 
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in Table 7. We can see a significant portion of user clicked items 

are irrelevant to the queries. For example, when searching for 

movies of an actor, a user often clicks on links such as “more”, 

“by year”, and other irrelevant items such as photos and user 

comments. Some of these links point to pages containing relevant 

movies, and therefore the Mechanical Turk workers consider the 

URLs as relevant, which makes the URLs have higher relevance 

than the item names. The data extracted by Information Extractor 

has comparable accuracy with user clicked items. On one hand, 

Information Extractor removes many irrelevant wrappers having 

repeated items from many pages (as described in Section 3.3). On 

the other hand, it introduces many new irrelevant items, because 

when an irrelevant wrapper is built, even from a very small num-

ber of clicked items, it can extract many irrelevant items. Fortu-

nately Authority Analyzer can identify the relevant wrappers and 

generates good lists of items. By comparing Table 5 and Table 7, 

we can see the accuracy of STRUCLICK is much higher than the 

user clicked items and extracted items in most cases. 

Table 7: Accuracy of user clicked items and extracted items 

 
Actor    

movies 

Musician 

songs 

City     

tourism 

National park 

lodging 

 Name URL Name URL Name URL Name URL 

User 

clicked 
.713 .970 .527 .964 .770 .962 .842 .967 

Extracted .735 .724 .747 .789 .780 .840 .932 .857 

Noise 0 0 0 0 .148 .148 .053 .053 
 

4.3.2 Examples of Output 
Here we show some examples of the list of items combined from 

different sources by STRUCLICK. If different sources have slightly 

different names for each item, we choose the name of the source 

with highest relevance. The ranked lists of items (together with 

URLs for the first item) for four queries are shown in Table 8. We 

can see STRUCLICK successfully extracts relevant and popular 

items for each query. 

4.3.3 Scalability and converging speed 
We monitor the run-time of Information Extractor on building 

wrappers for each URL pattern, and using such wrappers to ex-

tract information from web pages. Figure 5 shows the run-time 

and number of URLs for building wrappers and extracting infor-

mation for each URL pattern. Please note there are much less 

URLs for wrapper building because only URLs with follow-up 

clicks are useful. In general Information Extractor is linear scala-

ble on both tasks. On the other hand, these two tasks can both be 

easily computed in distributed ways. 

Because Authority Analyzer uses an iterative procedure which 

converges to optimal solution, we test how fast it converges. After 

each iteration Authority Analyzer generates a relevance score for 

each item. Let !' be the vector of relevance scores after kth itera-

tion. We monitor the relative change of !' , i.e., ‖!' − !'I�‖/

‖!'I�‖, which is shown in Figure 6. It can be seen that Authority 

Analyzer converges quickly, and the relative change drops to 10-7 

or 10-8 at iteration 100. We stop the procedure after the relative 

change is less than 10-7, with at least 100 iterations. 

 

Table 6: Numbers of entities and items clicked by users and 

numbers of those extracted by STRUCLICK 

 
Actor    

movies 

Musician 

songs 

City     

tourism 

National park 

lodging 

 entity item entity item entity item entity item 

User 

clicked 
1834 27906 962 10562 170 1097 18 68 

Extracted 1.24M 121M 121K 21.2M 25932 5.8M 32027 19.4M 

Final 

result 
1.23M 11.7M 97232 1.75M 20789 285K 23338 955K 

 

Table 8: Example output of STRUCLICK 

Query: {Britney Spears songs} 
1. Baby One More Time 

http://www.kissthisguy.com/1874song-Baby-One-More-Time.htm  

http://www.poemhunter.com/song/baby-one-more-time/ 

http://new.music.yahoo.com/britney-spears/tracks/baby-one-more-time--

1486500 

http://album.lyricsfreak.com/b/britney+spears/baby+one+more+time_2000189

4.html 

http://www.mtv.com/lyrics/spears_britney/baby_one_more_time/1492102/lyri

cs.jhtml 

http://www.lyred.com/lyrics/Britney%20Spears/%7E%7E%7EBaby+One+Mo

re+Time/ 

2. Oops I Did It Again 
3. Circus 
4. (You Drive Me) Crazy 
5. Lucky 
6. Satisfaction 
7. Everytime 
8. Piece of Me 
9. Radar 
10. Toxic 

Query: {Leonardo DeCaprio movies} 
1. Body of Lies 

http://www.netflix.com/Movie/Body_of_Lies/70101694 

http://movies.yahoo.com/movie/1809968047/info 

http://www.hollywood.com/movie/Penetration/3482012 

http://us.imdb.com/title/tt0758774/ 

http://movies.msn.com/movies/movie/body-of-lies/ 

http://www.imdb.com/title/tt0758774/ 

2. Shutter Island (2009) 
3. Revolutionary Road (2008) 
4. Catch Me If You Can 
5. Blood Diamond 
6. The Departed 
7. The Aviator 
8. Conspiracy of Fools 
9. Confessions of Pain (Warner Bros.) 
10. The Low Dweller 

Query: {Mount Rainier National Park lodging} 
1. Crystal Mountain Village Inn 

http://www.tripadvisor.com/Hotel_Review-g143044-d1146125-Reviews-

Crystal_Mt_Hotels-Mount_Rainier_National_Park_Washington.html 

2. Cougar Rock Campground   
3. Alta Crystal Resort at Mount Rainier   
4. Travelodge Auburn Suites   
5. Holiday Inn Express Puyallup (Tacoma Area)   
6. Tayberry Victorian Cottage B&B   
7. Crest Trail Lodge   
8. Auburn Days Inn   
9. Paradise Inn   
10. Copper Creek Inn 

Query: {Los Angeles tourism} 
1. Universal Studios 

http://www.planetware.com/los-angeles/universal-studios-us-ca-uns.htm 

http://www.igougo.com/attractions-reviews-b80978-Universal_City-

Universal_Studios_Hollywood.html 

2. J. Paul Getty Center 
3. Hollywood - Sunset Strip   
4. Hollywood - Grauman's Chinese Theatre / Mann Theaters   
5. Bunker Hill   
6. El Pueblo de Los Angeles Historical Monument   
7. Farmers Market   
8. J Paul Getty Museum   
9. Hollywood - Walk of Fame   
10. Map of Los Angeles- Downtown   



  

             (a) Building wrappers              (b) Extracting information        

Figure 5: Run-time of Information Extractor 

 

Figure 6: Convergence of Authority Analyzer 

Then we test the scalability of Authority Analyzer. We random-

ly select 10000 to 50000 entities in musicians, and apply Authori-

ty Analyzer to their items. The number of items and run-time are 

shown in Figure 7, which shows linear scalability. 

 

Figure 7: Scalability of Authority Analyzer 

5. CONCLUSIONS 
In this paper we present STRUCLICK, a fully automated system 

for extracting structured information from the web to answer web 

search queries. Comparing with existing approaches, it does not 

require manually labeled data, and can assign semantics to ex-

tracted data according to user queries. STRUCLICK utilizes users’ 

search trails as implicit labels for wrapper building and informa-

tion extraction, and can overcome the problem of high noise rate 

in such implicit labels. As many web sites provide uniformly for-

matted web pages for certain categories of name entities, STRUC-

LICK is capable of extracting large amounts of high-quality data 

for web search.  
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