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ABSTRACT
Can a smartphone administer a driver license test?We ask this ques-
tion because of the inadequacy of manual testing and the expense of
outfitting an automated testing track with sensors such as cameras,
leading to less-than-thorough testing and ultimately compromising
road safety. We present ALT, a low-cost smartphone-based system
for automating key aspects of the driver license test. A windshield-
mounted smartphone serves as the sole sensing platform, with the
front camera being used to monitor driver’s gaze, and the rear cam-
era, together with inertial sensors, being used to evaluate driving
maneuvers such as parallel parking. The sensors are also used in
tandem, for instance, to check that the driver scanned their mirror
during a lane change.

The key challenges in ALT arise from the variation in the subject
(driver) and the environment (vehicle geometry, camera orienta-
tion, etc.), little or no infrastructure support to keep costs low, and
also the limitations of the smartphone (low-end GPU). The main
contributions of this paper are: (a) robust detection of driver’s gaze
by combining head pose and eye gaze information, and performing
auto-calibration to accommodate environmental variation, (b) a
hybrid visual SLAM technique that combines visual features and a
sparse set of planar markers, placed optimally in the environment,
to derive accurate trajectory information, and (c) an efficient real-
ization on smartphones using both CPU and GPU resources. We
perform extensive experiments, both in controlled settings and on
an actual driving test track, to validate the efficacy of ALT.
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1 INTRODUCTION
Road safety is a major public health issue, with road accidents
causing an estimated 1.25 million fatalities and many more injuries
each year [7], placing it among the top ten causes of death. Many
studies have found that the primary factors responsible for road
accidents centre on the driver [8]. A significant contributor is that
drivers are often not trained or tested adequately, e.g., an estimated
59% of licenses in India were issued without conducting a test [10].

The reasons for inadequate or improper testing of drivers are
many. It is tedious for a human inspector to thoroughly monitor
and evaluate all aspects of a license applicant’s driving. Indeed, it is
quite challenging for an inspector, who is seated beside the driver,
to turn and monitor the driver’s gaze, say to know whether the
driver is scanning the mirrors. The human involvement also creates
incentives for shortcuts and corruption. Efforts at automation, cen-
tered around instrumenting driving tracks, have been stymied by
poor test parameters coverage and high cost (e.g., a system with 15
pole-mounted cameras, for monitoring just the vehicle trajectory
during driving maneuvers on a track, costs about USD 100K [11].)

Our goal is to have a smartphone administer the driver license
test in an automated manner. We present ALT, a step towards
Automating License Testing using a smartphone. Dependence on
the smartphone and little else makes ALT low-cost, scalable, and
hence amenable to broad deployment. Figure 1a shows the overview
of ALT. The smartphone in ALT is mounted on the windshield or
dashboard, such that its front-facing camera has a view of the dri-
ver’s face and monitors the driver’s gaze, while the rear-facing
camera has a view of the road for evaluating driving maneuvers.

Driver license testing entails two broad components: (1) how
well and safely a driver performs in regular driving scenarios (e.g.,
scanning mirrors before performing lane changes or turns), and
(2) how much control the driver exhibits during special maneuvers
(e.g., driving in a figure of 8 or parallel parking). Testing a driver on
the former entails monitoring vehicle maneuvers (e.g., lane change)
and driver actions (e.g., mirror scanning) in tandem, while testing
on the latter focuses largely on the maneuvers but requires them
to be tracked with precision (e.g., whether the vehicle was parallel
parked within the designated box or not). We leverage prior work
for detecting speeding, lane changes, turns, etc. [20, 47, 54]. In ALT,
we focus on the novel technical challenges pertaining to driver
testing and our contributions are:

1. Driver gaze monitoring: During maneuvers such as lane
change or turn, it is important to know whether the driver scanned
the mirrors before executing the maneuver. Even during regular
driving, it is important to know that the driver is scanning the
mirrors regularly to maintain situational awareness. It is quite
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(b) Layout of the driving test track (c) Smartphone mounting in ALT
Figure 1: Overview of ALT.

tedious and hence challenging for a human inspector, who sits
beside the driver, to monitor the driver’s gaze.

In principle, the front camera of the smartphone in ALT could be
used tomonitor the driver’s gaze. However, challenges arise because
of variation in the environment (e.g., phone orientation, vehicle
geometry) and across drivers (e.g. seating position). To address these
challenges, ALTcombines head pose and eye tracking information
to determine the driver’s gaze. Furthermore, ALT employs auto-
calibration, where we cluster observations of gaze direction over
time to learn the positions of the mirrors relative to the driver
automatically, without requiring any manual per-driver training
(Section 3). This is more robust than past work, which has used
fixed thresholds or focused on the head pose in isolation [32, 54].

2. Fine-grained vehicle tracking: Fine-grained tracking of a
vehicle’s trajectory and movement are key to evaluate driving ma-
neuvers. For instance, it is necessary to know whether the vehicle
was parked within a designated box during parallel parking, or that
it did not roll back while climbing up an incline (see Section 2.2 for a
description of these driving tests). Both GPS positioning and inertial
tracking fall short of the requirement of fine-grained resolution.

In ALT, we develop a novel hybrid visual SLAM technique, aided
by a minimal deployment of fiducial markers (just printed on sheets
of paper, as shown in Figure 5(c)). The hybrid visual SLAM approach
tracks vehicle trajectory using just a smartphone camera and re-
duces trajectory error to 20 cm across various maneuvers. This
improves on prior work, yielding better accuracy than approaches
based just on visual features [45]. It uses fewer fiducial markers
and avoids the need for prior mapping, in contrast to approaches
based just on fiducial markers [27] (Section 4).

3. Efficient smartphone implementation: For efficiency, our
implementation of ALT takes full advantage of the typical low-
end, non-Nvidia GPUs available on these platforms. We perform
several optimizations towards efficient facial-landmarks tracking
for driver’s gaze estimation and fuse inertial and GPS data to speed
up execution of visual localization on smartphones (Section 8).

We have evaluated ALT’s efficacy in automating aspects of driver
license testing, with multiple drivers in actual driving test tracks.
We performed an extensive evaluation of driver’s gaze and driving
maneuvers. We obtained an accuracy (F1 score) of 91% for mirror
scan detection and the trajectory derived using the proposed hybrid
approach outperforms the state-of-the-art visual SLAM (simulta-
neous localization and mapping) techniques. Our implementation

of ALT as an Android app can support processing at up to 10 fps
(frames per second) on a low-end smartphone.

Besides the above, there are also other aspects of ALT that help
address the inadequacies of manual testing today and improve
the integrity of the testing process (see [28] for more details). For
instance, continuous face recognition helps ensure that the person
taking the test is the same as the one to whom the license is being
issued. However, in the interest of focusing on the novel research
elements, we do not discuss such additional aspects in this paper.
2 SYSTEM DESIGN
2.1 Driving test overview
In ALT, we focus on a driving test conducted on a testing track like
that pictured in Figure 1b. It comprises several segments, each de-
signed to test the driver’s skills in the context of a specific maneuver.
In each maneuver, various parameters are monitored to evaluate
the driving. These parameters are generally derived based on the
rules for the issuance of driving licenses per the regulations of the
respective countries [1, 2]. Some of these parameters according to
Indian Central Motor Vehicles Rules [1] include the driver’s ability
to maneuver the vehicle in reverse, obey traffic signal lights, the
driver’s gaze for situational awareness, maintaining smooth speed
profile, and so on. Based on extensive conversations with personnel
involved in driver training and license testing across multiple cities,
we arrived at the following set of tests to focus on automating in
ALT (although the specifics of the tests may vary, we believe that
these tests are representative of those in other countries too [3]):

(1) Reverse Smaneuver:The driver reverses through an S-shaped
track and is expected to do so without changing direction (i.e.,
rolling forward) more than twice.

(2) Reverse Parking (RP): The driver reverses into the designated
parking spot. The driver is expected to execute this maneuver
without changing direction (i.e., rolling forward) more than
twice and park their vehicle within the designated box.

(3) 8-formation: The driver is expected to drive through an 8-
shaped section with proper speed control and without changing
direction (i.e., stopping and reversing). The driver is expected
to enter and exit the 8 section at the designated points.

(4) Incline start: The driver is asked to bring the vehicle to a stop
on an inclined road segment and then asked to start moving
forward again, without rolling back more than 12 inches or
stalling the engine.
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(5) Turns and Lane change: The driver drives through a left/right
turn and/or lane change, where the driver’s gaze is monitored
to check if they scanned the mirrors correctly before executing
the turn or lane change.

Current driving tests are typically conducted manually, with
an inspector seated beside the driver. This is prone to shortcuts
and provides inadequate coverage as the human inspector may not
be able to monitor all aspects of the candidate’s driving behavior
such as mirror scanning. This motivates the need for automating
driving license tests. In an automated setup, the system has to
objectively evaluate various parameters in each maneuver and
determine whether the driver passed the driving test or not. The
accuracy requirement for evaluating these parameters are relatively
high. For example, the system should be able to accurately detect
a mirror scan even if the driver performs one quick glance during
a lane change. Similarly, for trajectory estimation, the positioning
error should be under 15-20 cm, so that the system can evaluate
various parameters accurately, e.g., whether the vehicle is parked
inside the designated area or how much it rolled back during an
incline start. Furthermore, the system should be able to process
the videos and evaluate all the parameters in near real-time so that
soon after the test, the candidate knows the result and the mistakes,
if any, committed during the test.
2.2 ALT Design Choices and Setup
For reasons of cost and ease of setup, the automation system should
ensure there is little or no instrumentation of the infrastructure.
Furthermore, the license test is typically conducted on the driver’s
own vehicle, so there is little scope for extensive instrumentation
of the vehicle.

Accordingly, ALT uses a minimal setup comprising a windshield-
mounted smartphone as the sole sensing platform. This setup is
used to gather multiple sensor streams, including imagery captured
simultaneously from the front (driver-facing) and rear (road-facing)
cameras at 1080p and 30 fps, along with the inertial sensor and GPS
data. Based on extensive discussion and evaluation with the drivers
in our deployments, we have found the optimal placement of the
smartphone in the vehicle to be just below the center mirror (as
shown in Figure 1c), as it does not obstruct driver’s view.

It is clear that the tests noted in Section 2.1 require precise and
continuous monitoring of the trajectory and movement of the vehi-
cle, along with driver’s gaze. To do these with just a smartphone
is challenging. ALT makes novel contributions in addressing the
following technical challenges.

2.2.1 Robust monitoring of driver’s gaze. Past work on dri-
ver gaze detection has focused on just tracking the driver’s head
pose [32, 38, 54]. We argue that this is insufficient; indeed, as our
results in Section 6.2 show, a pure head pose based approach tends
to fail in real-world settings in which a driver often scans the sur-
rounding environment with quick glances, without turning their
head much. Therefore, to robustly track the driver’s gaze, it is im-
perative to track the eyes as well as the head pose of the driver. To
address this, we train a deep neural network (DNN) to combine the
head pose information and eye patch image to obtain the direction of
the driver’s gaze (Section 3.2).

2.2.2 Accurate vehicle trajectory tracking: Themaneuvers
noted above require accurate, sub-meter tracking using a single

(i.e., monocular) smartphone camera. One possible approach is to
use visual SLAM to derive trajectories, wherein visual features, or
keypoints, detected in successive frames are used to obtain corre-
spondences and thereby estimate camera pose. However, the feature
points obtained tend to be fragile, resulting in noisymatching across
frames. Also, this approach lacks knowledge of the true scale of
the 3D scene, as detailed in Section 4.1. To overcome these issues,
recent work [27] has used an exhaustive deployment of fiducial
markers of known size in the environment to enable accurate trajec-
tory estimation. However, this involves plastering the environment
with markers to ensure that at least few are within view of the
camera at all times and moreover requires recording the ground
truth location of each marker, both of which are tedious.

We present a novel hybrid-visual-SLAM technique that combines
visual features and sparse fiducial markers to obtain the accurate
trajectory of the vehicle. Specifically, we introduce fiducial markers,
in the form of April Tags [48], in a scene. Each marker provides four
correspondence points (corners of the marker), that can be localized
with pixel-level precision. The proposed SLAM technique detects
these markers and uses the corresponding features to compute
correct camera pose information, while adjusting scale based on
the known fiducial marker size (see Section 4.2). Furthermore, by
also leveraging visual features in the image scene, the need for
fiducial markers in the environment is reduced and the need for
knowing their exact positions and mapping the environment is also
avoided.

2.2.3 Efficient realization of ALT on smartphones. Since a
smartphone is used as the sole sensing and computation platform,
we perform several optimizations to run ALT efficiently on smart-
phones. To derive the driver’s gaze, we use a standard facial land-
mark model [35], which yields 68 landmarks, as the starting point
but then identify a subset of 22 landmarks that yields a significant
speedup up to 1.5×, while trading off some accuracy (Section 8.1).
Furthermore, we leverage the GPU available on a low-end smart-
phone to run our DNN model for driver gaze estimation, yielding
over 2× speedup as compared to running on the CPU. Finally, while
the hybrid SLAM approach, by default, uses all the frames to esti-
mate the vehicle’s trajectory, the fact is that in between successive
frames, there is very little or no displacement and hence the visual
features obtained will be almost the same. Therefore, we discard
all frames with little or no displacement to trade off some accuracy
for speed of execution.

3 ROBUST DRIVERS GAZE MONITORING
We now present how ALT monitors the driver’s gaze information
robustly, focusing on our novel contributions of combining the head
pose and eye gaze (Section 3.2), and performing auto-calibration
to accommodate variations in camera position, driver seating, and
vehicle configuration (Section 3.3).

3.1 Facial Landmarks Detection
We present some background and our optimizations on facial land-
marks detection, which is fundamental to estimating a driver’s gaze.
The first step is face detection, which yields a bounding box around
the driver’s face [25]. We then detect facial landmarks, correspond-
ing to facial features such as eye corners, mouth corners, nose tip,
etc., as shown in Figure 2(a).
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(a) (b)
Figure 2: Facial landmarks (a) 68-landmarks derived using
CLNF model (b) 22 landmarks used in ALT.

Figure 3: Overview of driver gaze detection.

To robustly obtain landmarks in a driving setting, we extend
state-of-the-art computer vision algorithms, viz., the CLNF (Con-
strained Local Neural Fields) [17] facial landmarkmodel, by training
on new datasets, which include multiple subjects, with extreme
head poses, and diverse lighting conditions, mimicking real-world
conditions. We use Menpo [55] and Multi-Pie [29] datasets that
include over 30,000 face images with annotations and exhibiting
a wide range in pose, expression, gender, and environmental con-
ditions, to obtain 68 facial landmarks. We chose to build on top
of CLNF models because: (i) these models are relatively computa-
tionally inexpensive and can run on smartphones, and (ii) they are
robust against adverse lighting conditions. While CLNF models are
computationally less expensive, we still need to further optimize
their operation to run efficiently on smartphones. We now present
two optimizations:

3.1.1 Detect and localize a subset of 68 landmarks. Based on our
experimentation and prior work, we picked out landmarks corre-
sponding to the nose, chin, eye and mouth regions, to determine
the accurate head pose. This yields a subset of 22 landmarks, as
shown in Figure 2(b), which is 1.5× faster to detect than the set of
all 68 landmarks (see Section 8.1 for detailed results.

3.1.2 Landmarks tracking in subsequent frames. Tominimize the
cost incurred on landmark detection, ALT performs tracking of the
identified landmarks, where possible, instead of a fresh detection in
consecutive frames. Since the driver’s face position does not change
drastically across successive frames, tracking previously obtained
landmarks is robust and efficient (as it narrows the region of interest
for the landmark predictor). The landmarks are re-initialized (i.e.,
a fresh detection is made) only when there is no face detected
or the landmarks in successive frames do not overlap sufficiently,
indicating that the head pose has changed significantly.

3.2 Robust Driver Gaze Detection
We design a novel framework that combines both head pose and eye
information to derive a driver’s gaze. Figure 3 shows an overview
of driver gaze detection. The input to the neural network is an eye-
ROI (Region of Interest) image and the head-pose angles – yaw and
pitch. The network combines these and outputs a vector with the
overall yaw and pitch of the driver’s gaze direction, as elaborated
on below.

Head pose computation: Obtaining head pose angles from
landmarks is a well-studied problem [17]. We use the PnP (Per-
spective n Point) and Random sample consensus (RANSAC) algo-
rithms [56] to obtain the head pose, specifically yaw and pitch
angles with respect to the camera.

Eye-ROI extraction: Previous efforts, centered on identifying
iris and eye corners to determine the gaze direction [24, 33], are
prone to errors due to adverse lighting conditions and inadequate
(smartphone) camera resolution. To avoid these difficulties, ALT
just extracts an eye-ROI (region of interest) that bounds the eyes of
the driver. Such an eye-ROI can be extracted more robustly than
specific landmarks in the eye region. The eye-ROI and the head pose
are both fed as inputs to a convolutional neural network (CNN).

Combining headpose and eye-ROI:We use a neural network
that takes as inputs the yaw and pitch angles estimated based on
the head pose and the eye-ROI, and outputs the combined yaw
and pitch angles. Our network is based on LeNet [37], which is a
shallow CNN and can be ported onto a smartphone with a minimal
computation overhead (see Section 8.3). Wemake twomodifications
to the neural network:

First, we use a synthetically generated dataset, Unity Eyes[51], to
train the network since, to our knowledge, there are no large-scale
datasets available with real images due to the difficulty in annotat-
ing gaze direction. To aid the model in generalizing, the training
data is augmented using random scaling and rotation along with a
random shift in brightness, gamma, and hue values, to account for
variation in skin tone and illumination. We use 60,000 synthetically
generated images, split into training (90%), validation (5%), and test
(5%).

Second, we add a spatial-transformer (STN) module [31], which
corrects misaligned eye-ROIs originating from occasional incorrect
landmark localization. For example, if the eye-ROI image is slightly
displaced or rotated, STN learns a suitable affine transformation to
“fix” the eye-ROI.

3.3 Auto-Calibration for Mirror Scanning
Mirror scanning helps drivers maintain situational awareness of
their surroundings. The view obtained by the camera in respect of
the driver’s mirror scanning behaviour could vary depending on the
mounting and orientation of the camera, the seating position of the
driver, and the geometry of the vehicle. For example, a driver who
sits close to the steering column would tend to turn their head more
to look at themirrors than onewho sits further back.While previous
work has used fixed yaw thresholds [54] to determine when the
driver scans the left/right mirrors, in ALT, we develop a novel auto-
calibration approach, which is employed at the beginning of a drive
and helps calibrate for the particular setting automatically, without
any human input or any explicit per-driver model training.

In the auto-calibration phase, ALT analyzes the gaze distribu-
tion during the initial part of the drive, to identify the dominant
directions of the driver’s gaze. Although the driver’s gaze is not
restricted in an uncontrolled setting, there are three frequently
recurring states: (1) Left-mirror scan, (2) Right-mirror scan, and (3)
Straight gaze (driver focusing on the road straight ahead). This is
evident in Figure 4(a), which shows the gaze distribution for the
frames in the auto-calibration phase (the yaw and pitch angles are
the combined ones from Section 3.2). There are three high density
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Figure 4: Gaze distribution. In our right-hand drive vehicles, the driver
sits much closer to the right mirror, so scanning the right mirror involves
a smaller yaw magnitude (looking to the right) but a larger pitch magnitude
(looking down) compared to scanning the left mirror.

regions corresponding to the three aforementioned recurring states.
Empirically, the high-density region closest to the mean yaw value
corresponds to “Straight". To delineate “Left" and “Right" more
clearly, we remove the “Straight" region by removing the frames
with |y(t) − µy | ≤ σy , where µy is the mean yaw and σy the stan-
dard deviation. We then fit two Gaussian kernels to the remaining
two distributions, as shown in Figure 4(b). These probability dis-
tributions corresponding to the 3 states (left, right and straight),
allow us to perform classification. We use Naïve Bayes algorithm to
identify the three clusters using the above probability distributions.
Thus, auto-calibration enables ALT to track driver‘s mirror scanning
behavior despite variations.
4 ACCURATE TRAJECTORY TRACKING
We now present how ALT derives accurate vehicle trajectory using
just a smartphone camera, focusing on our novel contributions of
augmenting visual SLAM techniques with sparse fiducial markers
(Section 4.2) and placing fiducial markers to maximize the trajectory
accuracy (Section 4.3).

4.1 Background on Visual SLAM
Visual SLAM (Simultaneous Localization and Mapping) comprises
two parts: (i) mapping: building a map of the environment using
visual feature detection and matching across successive frames, and
(ii) localization: using the map generated to determine the camera’s
position and orientation. The camera’s pose information is then
used to derive the trajectory.

An alternative to visual SLAM is to use of built-in inertial sensors
in the smartphone to derive vehicle trajectory. Previous research
efforts have utilized smartphone inertial sensors to identify various
driving events such as lane changes, left/right turns, and speed-
ing [20, 50]. Such use of inertial sensors from the smartphone is
valid only for short maneuvers, as inertial sensors suffer from inte-
gration drift over longer time scales and poor sampling frequency
(typically <50Hz sampling) leading to noisy signals. Further, iner-
tial sensor based trajectory estimation has error in the range of
90cm [36], which is large compared to the requirement of 15-20cm
in ALT. In Section 9, we present opportunities for fusing inertial
data with visual SLAM to enable accurate trajectory estimation.

Since the majority of the smartphone cameras are monocular, i.e.,
a camera with a single sensor, we restrict our focus to monocular
SLAM techniques. While recent smartphones have multiple rear
cameras, the short baseline (a separation of just a few centimeters
between the cameras) severely limits the accuracy of distance, and
hence trajectory, estimation.

(a) ORB Features (b) Fiducial Markers Setup (c) Planar fiducial marker

Figure 5: (a) visual features obtained using ORB, (b) fiducial
markers in an outdoor setup, and (c) fiducial marker.

4.1.1 Visual SLAMwith features. A popular, state-of-the-art
monocular visual feature-based SLAM technique is ORB SLAM2 [45].
Figure 5(a) shows the ORB features in an image used to derive
camera pose. While deriving accurate trajectory using monocular
SLAM is an active area of research in robotics [16, 53], this approach
generally suffers from two problems:
(1) Fragility of visual features:Visual feature detection andmatch-

ing is often fragile, especially when there is a significant scene
change (quite common in outdoor environments) and/or vary-
ing illumination, leading to poor trajectory estimation.

(2) Absence of scale information:Monocular SLAM techniques
do not have depth information during localization and map-
ping. Hence, the trajectory derived is on an arbitrary scale,
unconnected with the true scale in the real world [9, 15]. Fur-
ther, due to error in correspondence points, the estimated scale
could change over time (“scale drift”), resulting in the trajectory
length being either expanded or contracted over time.

4.1.2 Fiducial marker based SLAM:. To avoid the problems
of using the visual features in a scene, an alternative approach for
mapping and localization is placing fiducial markers of a known
size in the environment [39]. Recent works have used square planar
fiducial markers such as ArUco [27] or April Tags [48] for cam-
era pose estimation and localization. Each marker comprises an
external black border and an inner binary matrix used to uniquely
identify the marker (e.g., Figure 5(c)). The main advantage of using
such fiducial markers is that each marker provides four correspon-
dence points (its four corners), which can be detected robustly even
in varying illumination and are sufficient for estimating camera
pose [27]. Furthermore, the known size of the markers (e.g., 26.7
cm on a side when printed on an A3 sheet) helps establish scale.
However, this approach suffers from the following drawbacks:
(1) Need for a priori map creation: To derive camera pose and

hence trajectory using fiducial markers, we have to first create
a map of the actual position and orientation of each marker
in the environment. Further, this process has to be repeated
whenever there is a change in marker placement, which makes
it infeasible for real deployments.

(2) Infrastructure support: Fiducial markers need to be placed
extensively in the environment, such that at least one but ideally
more are within the camera’s view at all times. The redundancy
helps combat the ambiguity in pose estimation when there is
only one planar marker in the scene [27] (see Figure 5(b)).

4.2 Hybrid Visual SLAM in ALT
Can we get the accuracy of SLAM using fiducial markers while
avoiding, or at least minimizing, the need for an extensive deploy-
ment or calibration of such markers?
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To this end, we present a novel hybrid visual SLAM technique
that augments visual features from the scene with a sparse set of
fiducial markers placed optimally in the environment. The idea is
to place fiducial markers to act as “bridges” between frames at just
the places where there is are insufficient matches of visual features
across frames, say because there is a sharp curve in the trajectory
that causes a significant shift in the pose of the vehicle-mounted
smartphone camera. Since these markers are used just to serve as
bridges, there is no need to map their locations a priori.

ALT’s hybrid approach extends ORB SLAM [45] by integrating
fiducial markers in the environment. We will briefly describe how
ORB SLAM works and then present our hybrid approach in detail.

4.2.1 ORB SLAMOverview. ORB SLAM uses visual features
to localize and map the environment. We now enumerate the key
steps involved; more details can be found in [45]:
1. Feature extraction. For every frame in the video, the system
begins by extracting ORB feature points and descriptors. These
feature points are usually points of local extrema, such as corner
points, edges, etc., which are more likely to be detected in successive
frames of the same scene.
2. Map Initialization. Map initialization computes the relative
camera pose between two frames to triangulate an initial set of
map points. Map points are ORB feature points that are matched in
successive frames. A good map initialization requires two frames
with displacement along with good feature correspondences be-
tween the frames.
3. Pose Estimation. The ORB features from the previous frame
are matched with the ORB features in the current frame to get
correspondences. The correspondences are then projected onto a
local map, which contains a set of keyframes K1 that share corre-
spondences with the current frame and a set of keyframes K2 with
neighbors to the keyframes K1. Finally, the decision to add a frame
as a keyframe in the map is based on the extent of the scene change.
4. Pose Optimization. As we keep updating the map, the camera
pose is optimized using the current keyframe and all the keyframes
connected to it based on correspondences. The algorithm takes
as input, poses from all keyframes and map points to obtain opti-
mized poses and 3D points by performing non-linear least squares
optimization [40].
5. Covisibility graph. The map details is stored as a covisibility
graph – an undirected, weighted graph, where each node represents
a keyframe and edges between keyframes are created only if they
share a minimum number of correspondences. Further, the weight
of the edge represents the number of correspondence points.

4.2.2 Integration of fiducialmarkers intoORBSLAM. We
use April tags [48] as our planar fiducial markers. These enable ro-
bust detection and derivation of scale information. We now discuss

(a) Reverse S (b) ORB Map (c) Hybrid SLAM Map
Fiducial Marker

Figure 7: Map and trajectory information (in yellow) using
ORB SLAM and hybrid SLAM with fiducial markers.

how these fiducial markers are leveraged to improve trajectories
obtained from SLAM.

1. Scale recovery using markers. Figure 6(a) shows the ORB
SLAM trajectory obtained (without scale) for the reverse S maneu-
ver (in red) compared to the ground truth trajectory (in blue). The
mismatch is because the visual features used by ORB SLAM do not
provide any sense of scale. To address this, in our hybrid approach,
we leverage the known fixed size of fiducial markers (e.g., Smarker
=26.7cm, when printed on an A3 sheet) to derive the scale factor.
The idea, in a nutshell, is that when comparing two different camera
poses (e.g., the smartphone camera at two different points along the
driving track, in the context of ALT), the view of fiducial markers of
known size allows the translation between the poses (which defines
the initial baseline) to be estimated in terms of real-world scale. We
have extended ORB SLAM to detect a fiducial marker in a scene.
The 2D coordinates of the marker corners are then translated to
the 3D map of ORB SLAM. Further, when we integrate the marker
into the map, we ensure the marker remains planar and its size is
translated based on the real-world scale. We then trigger a global
adjustment to optimize the map points. This results in an initial
map that is at the correct scale. We defer a more detailed discussion
to Appendix - 1.

2. Accurate pose estimation. For every new frame, we derive
pose information using both points extracted by ORB SLAM and
markers in the scene. Previously, ORB SLAMpose optimization used
only ORB map points to optimize the pose. We extend the optimizer
to also include fiducial marker map points for pose optimization.
The inclusion of markers in the pose optimization helps improve
the accuracy, as described in Section 7. We defer a more detailed
discussion to Appendix - 1.

Figure 7(a) depicts the setting of the reverse S maneuver. Fig-
ure 7(b) shows the map and trajectory derived using ORB SLAM.
We can clearly see that the trajectory derived is erroneous both in
shape and scale. Figure 7(c) shows the map and trajectory derived
using hybrid SLAM. We can see that the markers in the real-world
are correctly integrated into the map and further, the trajectory
derived is accurate in both shape and scale.
4.3 Optimal Marker Placement
As described in the previous section, our hybrid approach, which
combines visual SLAM with (a few) fiducial markers, is useful in
both reducing the error in pose information and in recovering scale
reliably. A key question, however, is how markers should be placed
in the environment to maximize the benefit derived in terms of
trajectory accuracy while minimizing the number of markers.

To address this, we present a generic approach to optimally
place fiducial markers in the environment using the covisibility
graph defined by ORB SLAM (as described in Section 4.2.1). A
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(a) Without markers (b) With 6 markers
Figure 8: Covisibility graph- Reverse S with(out) markers.

significant scene change between two keyframes will result in a
weak (or no) edge between the corresponding nodes. To strengthen
the overall connectivity of the graph, we identify loosely connected
“communities” and their corresponding connections. We then place
markers at the peripheral points corresponding to the community
boundaries, which helps increase the connectivity of the covisibility
graph. In more detail:

(i) Determine the number of communities:We partition the
covisibility graph G into C communities based on the modularity
measure [19]. Modularity measures the strength of communities.
Communities with high modularity have dense connections be-
tween the nodes within the community but sparse connections
with nodes in a different community.

(ii) Determine peripheral nodes of a community: In order
to determine the set of peripheral nodes in a community, we de-
fine a metric based on the weighted out/in degree of nodes. The
intuition is that nodes with high weighted out-degree (to other
communities) compared to weighted in-degree (to nodes in the
same community) are peripheral nodes of a community. So, for
each node i , we computemi :

mi =

(
wout
i

kouti
)

(
win
i

kini
)

=
wout
i

w in
i

k ini
kouti

, (1)

wherewout
i (orwin

i ) is the sum of weights of edges from node i to
all other nodes in different communities (or same community) and
kouti (or kini ) is the degree of node i to all the nodes in different
communities (or same community). The number of correspondences
between the keyframes indicates the weight of the edge. Intuitively,
mi would be large for the peripheral nodes of a community; we
designate the nodes with mi ≥ λ as the set of peripheral nodes,
where λ is a threshold.

(iii) Determine the placement for fiducial marker: Finally,
we determine the node (or keyframe) that has the highest weighted
out/in degree for each community. This keyframe will have the
lowest feature correspondence with all other keyframes from the
same community, making it likely that the computed pose at this
keyframe would be inaccurate. The selected keyframe for each
community represents the location in the environment to place the
fiducial markers such that the correspondence between communi-
ties increases the most. This leads to overall improvement in graph
connectivity and hence pose estimation accuracy, while maintain-
ing the sparsity of marker placement. Figure 8 shows the covisibility
graph for the reverse S maneuver (a) without any markers, and
(b) with six markers, placed based on the proposed approach. We
can clearly see the increase in graph connectivity, leading to better
correspondences across frames (see Section 5 for results).

4.4 Performance Enhancement using Inertial
and GPS Data

The current visual SLAM techniques analyze all the frames in a
video to identify a small number of keyframes, which are the only
frames used for mapping and localization.

In order to run our system on smartphones efficiently, we present
a technique to discard non-keyframes without expensive comput-
ing. Intuitively, it is the frames with a significant change in the
scene relative to the previous frame, due to a large displacement or
rotation of the camera, that are likely to be keyframes. So, we use
inertial and GPS measurements to filter out frames that correspond
to small displacements and so are unlikely to be keyframes.

Latitude and longitude readings from a GPS receiver can be
used to directly estimate displacement of the vehicle. However,
the GPS modules in mobiles are not accurate and their sampling
frequency is low. An accelerometer provides measurements at a
higher frequency but this comes with higher noise. We draw on the
advantages of inertial sensors and GPS, using a Kalman Filter [20]
to combine the two measurement streams, to obtain a reliable esti-
mate of position and velocity of the vehicle. We formulate the state
of the vehicle as: st = [xt ,yt , Ûxt , Ûyt , Üxt , Üyt ]

T Here, xt andyt are the
position coordinates in the world reference frame (North and East
axes), and Ûxt , Ûyt , and Üxt , Üyt denote velocity and acceleration, respec-
tively, in the same reference frame. We use the orientation matrix
obtained using the Android SDK, to transform the accelerometer
readings from local to world reference frame.

At each time step, the state is predicted with: st = Ast−1 and
subsequently updated using st = st + K · (zt − Hst ) , where A
is the state transition matrix, H is the observation matrix, K is
the Kalman gain, zt is a vector of position coordinates from GPS
and acceleration readings from the accelerometer. Thus, a frame
is discarded only if the corresponding displacement of the camera,
and hence of the vehicle it is mounted on, is less than d—the mean
displacement between two consecutive measurements.

5 EVALUATION SETUP
In this section, we describe our deployment setup and data collec-
tion procedure to evaluate our two core contributions —driver gaze
detection and vehicle trajectory tracking, both of which are key to
automating driver license testing.
5.1 Deployment Setup
We perform extensive experiments to evaluate ALT in both con-
trolled settings and on driving test tracks.

Driving test track:We deploy ALT in multiple large driver train-
ing institutes, which trains several thousand drivers each year. The
institute conducts driver training and testing with a similar range
of maneuvers and requirements as required by the license issuing
authority. We use this setup to evaluate ALT’s ability to automate
the driver’s license test. Figure 1b depicts the driving track along
with the maneuvers being tested.

Controlled real-world experiments: In addition to an actual
driving test track, we also evaluate ALT’s ability in controlled out-
door settings. In such controlled settings, we can add instrumen-
tation (e.g., an eye tracker worn by the driver) to collect accurate
ground truth. This allows us to test the efficacy of our gaze detector
and trajectory estimator extensively.
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(a) Ground truth using Tobii. (b) Occlusion issue with Tobii.
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(c) Precision and Recall for mirror scan evaluation.
Figure 9: Mirror scan evaluation in ALT.

5.2 Data Collection
We use a windshield-mounted Android smartphone (Lenovo ZUK
Z2 model running Android 7) for data acquisition. We record multi-
ple sensor streams, including images captured simultaneously from
the front (driver-facing) and rear (road-facing) cameras, motion
data captured from inertial sensors, and location data captured from
a GPS sensor. The videos are captured at 1080p and 30 fps, the data
from inertial sensors (accelerometer, gyroscope) is sampled at 20
Hz and the data from GPS is sampled at 1 Hz. We collect data from
the driving test track for the maneuvers described in Section 2.2
— reverse S, reverse parking, 8 maneuver, incline start, and lane
change/turns. We collect data (camera and sensor) for 20 instances
of each maneuver for each of 10 drivers.

6 EVALUATING MIRROR SCANNING
We present ALT’s accuracy in detecting left and right mirror scans,
both in controlled outdoor experiments, wherewe obtain the ground
truth by having the driver on a wearable sensor for accurate gaze
tracking, and also on an actual driving test track, where ground
truth was obtained by annotating the recorded videos manually.

We use Precision (P), Recall (R), and F1 score to evaluate the
accuracy of mirror scanning in ALT. The F1 score is defined as
the harmonic mean of precision and recall: F1 = 2 · P ·R

P+R . Mirror
scanning evaluation is performed at two levels:
Frame-level: How many individual frames are correctly classified
as left or right mirror scans?
Instance-level: How many instances of left or right mirror scans
are correctly identified? An instance is a temporal window of 10
frames, which we label according to the class that the majority of
the frames correspond to.
6.1 Controlled Setting with Tobii Eye Tracker
We are not aware of any public datasets with annotated mirror
scanning events, so we use a wearable eye tracker to accurately
annotate the driver’s gaze in controlled outdoor settings (with the
driver driving on a pre-determined track). Specifically, we use the
Tobii Pro Glasses 2 [6], which includes four eye cameras, a wide-
angle HD camera, and an inertial sensor. Tobii’s proprietary 3D
eye model combines data from these sensors to provide accurate
gaze information. The gaze sampling frequency of the tracker is
100 Hz and the data is stored on an onboard SD card. The images
in Figure 9a show a driver wearing the Tobii eye tracker (captured
using the ALT windshield-mounted smartphone camera). The inset
images show the front view from the Tobii, with the red dot marking
Tobii’s estimate of where exactly the driver is looking.

The high cost of the Tobii device (over USD 15,000) means that
we only perform limited experiments with a loaner device. We
collect over an hour of actual driving data using the Tobii tracker,

Expt
Fixed-Yaw threshold ALT
Left Right Left Right

P R P R P R P R
Exp1 D1 0.93 0.65 1 0.08 1 1 1 0.69

D2 1 0.2 nan 0 1 0.95 1 1
Exp2 C1 1 0.65 1 0.08 1 1 1 0.69

C2 1 0.31 nan 0 1 1 1 0.89
Exp3 O1 1 0.46 0.4 0.15 0.93 1 1 1

O2 1 0.85 0.75 0.16 1 0.9 0.91 0.68

Table 1: Precision (P), Recall (R) for left/right mirror scan instances based
on fixed thresholds vs. ALT, with different drivers (D1 & D2), cars (C1 (SUV) &
C2 (hatchback)), cam. orientation (O1 & O2).

along with our windshield-mounted smartphone setup. Using the
software provided by Tobii, we define Areas of Interest (AoIs) cor-
responding to the left and right mirrors in the vehicle, thereby
obtaining a filtered subset of frames corresponding to just when the
driver was looking at the left or the right mirror. The ground truth
data thus obtained includes 62 and 58 instances respectively, of left
and right mirror scans. ALT identifies these left/right mirror scan
instances with a precision of 85% and recall of 82% (F1 score: 83%).
Most of the misclassifications can be attributed to the intrusive
nature of the eye tracker, as in several frames it occludes the eyes
of the driver from the view of the windshield-mounted smartphone
(as shown in Figure 9b).

6.1.1 Ground truthwithmanual annotations. To overcome
the occlusion problem, we manually annotate a subset of videos
from our dataset corresponding to around 120,000 frames (over an
hour of video) across drivers. The annotations include 220 and
276 instances, respectively, of left and right mirror scans. Figure 9c
shows the Precision and Recall values for identifying both left/right
frames and instances. Note that ALT identifies individual left/right
frameswith a precision of nearly 84% and recall of 82%. Furthermore,
it has a precision of over 98% and recall of over 85% in identifying
left/right mirror scanning instances (F1 score: 91%).

Summary: ALT has an F1 score of 91% for identifying left/right
mirror scans at frame and instance levels, respectively.

6.2 ALT’s Auto-calibration vs Fixed thresholds
In Section. 3.2 we argued that to track mirror scanning, auto-
configuration is needed to ensure robustness to variations in camera
orientation, driver seating, and vehicle geometry.

We perform multiple experiments in the context of mirror scan-
ning detection to show the efficacy of ALT’s auto-calibration com-
pared to using fixed yaw angle thresholds (+/-15 deg, as in [54]). In
each experiment (lasting for about an hour), we vary one of the
driver seating position, the vehicle type (which typically means
that the geometry of the mirrors relative to the driver also changes),
or the camera orientation (which could arise simply because of
variation in how the smartphone is mounted).
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Figure 10: Ratings from driving instructors for video snip-
pets picked out by ALT from driver training sessions.

Exp1: Two drivers, a short (D1) and a tall (D2) driver, with
different seating positions, in the same type of car.

Exp2: Same driver, different cars (SUV vs hatchback).
Exp3: Same driver, same car but with slightly different camera

orientations.
Table 1 summarizes the results. In general, ALT has higher preci-

sion and recall than an approach based on just head pose with fixed
yaw thresholds. It is instructive to also delve into the numbers for
the fixed yaw threshold case.

In Exp1, Driver 1 (short and hence seated more forward) tended
to turn his head more to scan the left mirror compared to driver
2 (tall), which accounts for the higher recall (0.65 vs 0.2) but at
the expense of precision (since the fixed threshold is likely to be
exceeded more often in the case of driver 1).

In Exp2, the driver in an SUV tended to turn his head more to
scan his mirrors compared to the same driver driving a hatchback,
accounting for higher recall (0.65 vs 0.31). Since these were right-
hand drive vehicles, looking at the left mirror involved turning the
head to a greater extent than looking at the right mirror, so the
recall tends to be higher for the left mirror.

In contrast to the fixed threshold based approach, the gaze distri-
bution in the initial part of the drive enables auto-calibration in ALT
to identify clusters corresponding to left and right mirrors scans
in the particular setting of driver seating, vehicle geometry, and
camera orientation. This contributes to the robustness of mirror
scanning detection in ALT.

Summary: ALT’s auto-calibration has higher precision and recall
than an approach based on just head pose with fixed yaw thresholds.
This is so across drivers, vehicles, and camera orientations.

6.3 Mirror scanning evaluation on testing track
We deployed ALT in 10 vehicles to monitor trainee drivers 1, with
the specific objective of evaluating their mirror scanning behavior.
The trainee drives around the test track shown in Figure 1b. ALT
generates an event whenever the trainee did not scan either of
the mirrors for at least 8 seconds and records a short video clip
documenting the episode. At the conclusion of a training session,
these clips were rated by an instructor based on whether these
contained an event of interest.

ALT was deployed for a total of 200 sessions, each lasting about
an hour, across 140 trainees and 12 instructors over a month. It
selected about 2200 video clips with events of interest, out of which
1200 were rated by the instructors to indicate the appropriateness
of the clip: from 1-star (least) to 5-star (most). A 1-star rating is

1Our project has been vetted and approved by our IRB

Markers Method 0-5 m 5+ m

11 Our method (Hybrid SLAM) 0.04 0.05
(dense) Prior work [44] 0.04 0.1

5 Our method (Hybrid SLAM) 0.05 0.05
(sparse) Prior work [44] 0.09 0.13

Table 2: Average error (in metres) in camera localization at
various distances using fiducial markers and hybrid SLAM.

provided when the event generated is a false positive or otherwise
not interesting, and a 5-star rating is provided when ALT is able
to correctly identify an instance of the trainee not scanning the
mirrors, which the instructor had also missed during the actual test.
We ran two variants of the mirror scanning detection algorithm,
one (i) with only head pose, and the other (ii) with both head pose
and eye gaze. Figure 10 shows the percentage of clips rated from 5-
star to 1-star. When only head pose information is considered, 47%
of the clips receive a 4-star or 5-star rating, whereas this number
goes up to 75% when both head pose and eye gaze information is
used. This shows the importance of combining both head pose and
eye gaze in ALT to detect mirror scanning robustly.

Summary: The evaluation with trainees in a driver training school
shows the efficacy of ALT even in the hands of an external party who
are unconnected with us, the researchers.

7 ACCURACY OF HYBRID SLAM
In this section, we evaluate the accuracy of trajectory tracking in
ALT using our hybrid SLAM approach. We present results from both
a controlled environment and a driving test track.

7.1 Controlled Experiments
We place 11 markers (April tags) in an unstructured configuration
and capture a few images from different viewpoints, to create an
initial map. Subsequently, we move the camera along a straight line
and capture images every meter. The camera positions estimated
from these images are then compared with the ground truth. The
configuration of themarkers alongwith the trajectory of the camera
is shown in Figure 7.

To evaluate our method, we capture a video by moving the
camera on the same line while pausing for a few seconds at every
meter mark to enable the ground truth to be recorded. From the
trajectory of the camera estimated using hybrid SLAM, we extract
the estimated position of the camera whenever it was static. We
compare these estimated positions with ground truth, to estimate
the error in camera localization.

We compare our method against a state-of-the-art, fiducial mark-
ers based camera localization method by Munoz-Salinas et al. [44].
Their method comprises of two stages: mapping and localization.
Images from various viewpoints, with at least two markers visible
in every image, are captured to create an initial map. The map so
obtained is subsequently used for localizing the camera in the scene
through pose estimation.

As shown in Table 2, the average error in camera localization
with hybrid SLAM is similar to the error obtained using the state-
of-the-art method from [44]. However, mapping and localization
are decoupled in [44], whereas our approach achieves them simul-
taneously without requiring any offline map creation.

We also evaluate the accuracy of both the approaches, with fewer
markers placed in the scene. As shown in Table 2, the accuracy
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Figure 11: Fiducial marker locations for 8, Reverse S, incline
start and reverse parallel parking. Colors represent clusters
in covisibility graph.

of [44] degrades as the number of markers in the scene decreases.
This is evident from the increase in overall error, both with fewer
markers in the scene and alsowith distance to themarkers (i.e., error
increases with fewer markers being visible at larger distances). In
contrast, with our hybrid SLAM approach, the camera localization
error with 5 markers is almost as good as it is with 11 markers,
underscoring the effectiveness of hybrid SLAM even with a sparse
deployment of fiducial markers.

Summary: Hybrid SLAM performs comparably with a state-of-
the-art localization approach with a dense set of markers, and outper-
forms it when a sparse set of markers is used.
7.2 Experiments on Driving Test Track
To evaluate the performance of hybrid SLAM on the test track,
we need to place a small number of fiducial markers in strategic
locations. We first describe our method for placing these markers
and then turn to the accuracy of trajectory estimation.

7.2.1 Fiducial Marker Placement. Recall from Section 4.3
that our hybrid SLAM approach uses the covisibility graph to iden-
tify the locations where visual SLAM by itself would suffer from
errors (e.g., places where there is a drastic scene change, say due to
a curve in the trajectory) and hence the introduction of markers
would be most beneficial.

Figure 11 shows the marker locations identified by our approach
for the reverse S and 8 maneuvers. The coloured lines, overlaid
on the track, show the vehicle trajectories obtained using our ap-
proach. Each colored line segment corresponds to a community
in the covisibility graph (see Section 4.3), with reverse S having
3 communities and the 8 maneuver having 6 communities. The
boundaries between these communities are the places where the
scene changes significantly and where we place markers, as shown
in Figure 11.

By adding markers in these locations, we help increase the con-
nectivity among nodes, i.e., keyframes in the neighbouring com-
munities in the covisibility graph. We quantify this increase in
connectivity in Table 3 using two metrics: 1) Density (D), and 2)
Average Weighted Degree (W). D represents the average number
of edges per node in the graph andW represents the average edge
weight (see Section. 4.3). Increase in both the metrics corresponds to
increase in feature correspondence between nodes. Table 3 shows
a significant increase in both density (D) and average weighted
degree (W) from the introduction of markers, across each of 3
maneuvers.

Maneuver Reverse S 8 maneuver Reverse parking
% increase in D 7.1 6.2 30.5
% increase in W 8.8 33.8 23.2

Table 3: % increase in density (D) and average weighted de-
gree (W) of the graph for three maneuvers.

(a) (b)
Figure 12: Comparison of ground truth (GT) trajectory with
Hybrid SLAM (Ours) and ORB-SLAM, where x-axis and y-
axis is in meters.
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Figure 13: Trajectory for 8maneuver using ORB-SLAM&hy-
brid. For illustration, loop closure in hybrid SLAM is used
for right loop only.

7.2.2 Deriving accurate trajectory. We evaluate the accu-
racy of the trajectory derived using our hybrid approach and with
ORB-SLAM [45], which is a pure visual SLAM based approach. Note
that unlike with the controlled experiments in Section 7.1, we are
unable to compare with [44], since the number of markers needed
for this approach would be prohibitive.

Hybrid SLAM improves trajectory estimation over ORB-SLAM
by performing pose adjustment, scale recovery, and loop closure
using the fiducial markers (Section 4.2). We obtain the ground truth
using the pole-mounted static cameras placed along the track.

Figure 12 shows the ground truth (GT) trajectory from the pole-
mounted cameras, and the trajectories obtained from ORB-SLAM
and our hybrid SLAM approach, for the reverse S and reverse par-
allel parking maneuvers. The trajectory estimated by hybrid SLAM
matches the ground truth closely, due to scale recovery and pose
adjustment using fiducial markers (Figure 12(a)). To measure the
accuracy of the trajectory, we computer the root mean square error
(RMSE) in meters of each estimated trajectory relative to the ground
truth. For the reverse S maneuver, the RMSE between our hybrid
SLAM and GT is 0.15 m, or 15 cm. However, as mentioned earlier,
ORB-SLAM derives trajectory with an arbitrary scale, which leads
to a poor trajectory estimate. It is non-trivial to derive and fix the
scale of ORB SLAM without fine-tuning other components of the
SLAM technique. Hence, we compute RMSE with respect to ground
truth only. Furthermore, Figure 12(b) show the trajectory obtained
for reverse parallel parking using ORB-SLAM and our approach.
The RMSE between GT and our hybrid SLAM is 0.25 m.

Figure 13 shows the trajectory for 8-maneuver. It can be seen that
hybrid localization was able to derive the trajectory with accurate
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# of Mean Yaw Mean Pitch Detection Tracking
landmarks error error time (ms) time (ms)

68 2.7o 3.3o 89 25
22 5.3o 8.2o 58 10

Table 4: Impact of 68 vs. 22 landmark configurations
shape and size (even in presence of loops). However, ORB-SLAM
was not able to detect the loop and suffers from scale drift, resulting
in inaccurate pose, and hence trajectory, estimation.

Summary: Hybrid SLAM’s RMSE for trajectory estimation on an
actual driving track is about 20 cm, which is quite small relative to
the dimensions (length, width) of both the vehicle and the track. This
level of accuracy suffices for automating license testing.

8 MOBILE IMPLEMENTATION
The key objectives of our mobile implementation are efficiency
and effective operation on affordable smartphones with modest
specifications. Therefore, we benchmark the performance of ALT
running on low-to-mid end Android phones such as the Lenovo
Zuk2 (USD 155) and OnePlus 3 (USD 350), both based on the Qual-
comm Snapdragon 820 with Quad-core CPU and Adreno 530 GPU.
ALT has two main components, (i) driver gaze monitoring, and (ii)
fine-grained trajectory estimation using hybrid SLAM.
8.1 Landmarks reduction and tracking
To improve computational efficiency, we pare down the number of
landmarks from 68 to 22 (see Figure 2(b) and Section 3.1) to derive
head pose information. Table 4 shows the error in yaw and pitch
angles with the 68 and 22 landmark configurations along with the
time taken on a smartphone CPU to detect landmarks. Selecting
the chosen subset of 22 landmarks out of 68, yields a 35% speedup
(58ms vs 89ms) with only a marginal increase in error. For instance,
while the yaw error goes up from 2.7o to 5.3o , this error is small
relative to the −30o to +20o yaw range for a left/right mirror scan.

Even with the speedup, the detection time of 58 ms per frame
is substantial. To further reduce the computational cost, we track
landmarks across consecutive frames instead of detecting these
afresh in each frame. Tracking 22 landmarks across successive
frames only takes 10 ms on a smartphone CPU, as compared to 58
ms for detection, yielding an 80% speedup (see Table 4). Therefore,
the system persists with tracking unless a face is not detected or
the landmarks in successive frames do not overlap much.

8.2 Leveraging GPU for Gaze Tracking
Certain operations in ALT are based on DNNs, hence we seek to
run these efficiently on a smartphone. Specifically, in ALT a LeNet
model (see Figure 3) is used to for gaze detection. We implemented
this in TensorFlow and saved the model as a protocol buffer (PB) file.
Currently, the TensorFlow models saved as PB files can run only on
Nvidia GPUs. However, most of the low-to-mid end smartphones,
only have the Qualcomm Adreno GPUs. While there has been
recent work on custom accelerators to enable DNN execution on
mobile GPUs (e.g., RSTensorFlow [14]), this is applicable only to
a small set of GPUs, typically not the low-end GPUs. We seek
a cleaner approach to leverage mobile GPUs, in particular, the
commonly-used Qualcomm Adreno GPUs. To this end, we employ
Qualcomm’s Snapdragon Neural Processing Engine (SNPE) [12],
which is a unified SDK for running neural network models on all
Snapdragon platforms. SNPE takes the PB file and converts it into a

Qualcomm-specific DLC file (Deep Learning Container). The DLC
file can be used to run on either CPU or GPU of the smartphone.
The LeNet model on the phone is 4.3 MB in size and in the next
section we report the time taken to run it on the smartphone.

8.3 Benchmarking ALT on Android
We benchmark the two components of ALT running on phones:

Driver gaze monitoring: Gaze estimation takes 45 ms per
frame on the CPU but only 16 ms (a speedup of over 2.5X), on
the low-end Adreno 530 GPU on the smartphone.

Hybrid SLAM: The SLAM system takes 80 ms per frame to
detect features and localize and runs only on the CPU. Finally, ALT
supports 8-10 fps to run both driver gaze and hybrid SLAM together
on CPU and GPU of the smartphone.

8.4 Performance Enhancement of Hybrid
SLAM by fusing Inertial and GPS data

In this work, to improve the speed of hybrid SLAM, we discard
consecutive frames with little or no displacement. This allows us
to only process the relevant frames, without trading off accuracy.

By fusing the inertial and GPS data, as described in Section 4.4,
we compute the reduction in number of frames that need to be pro-
cessed. The reduction for reverse S, 8, incline and reverse parallel
parking is 34.4%, 31.1%, 28.3% and 29.4%, respectively. Since around
30% of the frames can be discarded across various maneuvers, there
is a corresponding speedup in the execution of hybrid SLAM. Fur-
thermore, the error (RMSE), relative to the ground truth, of the
trajectory obtained using all frames versus fewer frames, is similar.
Thus, discarding frames with little displacement has minimal affect
on the accuracy of the estimated trajectory.

Summary: ALT supports 8-10 fps to run both driver gaze detection
and vehicle trajectory estimation on a smartphone.

9 DISCUSSION
ALT is currently deployed for driver license testing at a site in
India. Based on an extensive evaluation, we find that the results
based on ALT match with the manually-scored results in around
95% of the cases. In many cases, ALT was able to catch aspects of
the test overlooked by the inspector during manual evaluation,
e.g., the driver scanning their mirrors before performing a lane
change, the number of forward and backward movements during a
reversing maneuver, etc. While ALT is a promising first step towards
comprehensively automating license testing, we now discuss some
of its limitations and opportunities for improvement.

(i) Generalization to other tracks: Based on extensive con-
versations with experts in license testing, we believe the core com-
ponents of ALT (driver’s gaze, trajectory estimation) would be ap-
plicable to driver testing and tracks in general.

(ii) On-the-road testing:While the portable, smartphone-based
design of ALT lends itself to going beyond confined tracks and test-
ing on actual roads, our current trajectory estimation still relies on
having a sparse set of markers in the environment. We believe that
this requirement can be eliminated by leveraging recent advance-
ments in low-cost Lidar [13] and/or fusing inertial sensor data with
visual SLAM, as discussed next.

(iii) Leverage inertial sensor data to improve accuracy and
performance: In this paper we showed the usage of inertial sensor
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data to eliminate frames with no displacement, consequently im-
proving the efficiency of our hybrid SLAM (see Section 4.4). Recent
work [49] has shown that using inertial sensor data can increase the
accuracy of visual SLAM techniques, but this is done by relying on
high sampling rate (200Hz) inertial sensor data, which is typically
not supported by low-end smartphones. An interesting direction
to improve the accuracy of SLAM is to fuse low-rate inertial sensor
samples from smartphones with visual SLAM techniques that uses
sparse fiducial markers such as hybrid SLAM or markerSfM [26].

10 RELATEDWORK
We discuss the relevant literature and the unique aspects of ALT.

Smartphone-based system for driver gazemonitoring: Some
of the past work has used smartphones and their sensors to provide
ADAS-like (Advance Driver Assistance System) capabilities [21, 46,
52, 54]. Much of the work has focused on driving-related issues
like speeding, sharp braking, lane departure, etc. [18, 20, 30, 42, 50],
however, our focus is on drivermonitoring (i.e., gaze) and extending
the driving monitoring for specific maneuvers using just a smart-
phone. Recent work [22, 34] has focused on driver gaze detection
to determine situational awareness. However, these techniques de-
pend upon (i) reliable pupil detection, and (ii) individual driver’s
calibration for gaze.

One work that is particularly relevant to ALT is CarSafe [54],
which uses a smartphone to detect distracted driving. However,
ALT differs from CarSafe in significant ways. CarSafe determines
the driver’s gaze solely based on head pose and also uses fixed
thresholds (+/-15o relative to when the driver is looking straight),
to determine when the driver is looking to the left or right. As
shown in Section 6.2, such an approach has shortcomings, and
hence we design ALT to combine both head pose and eye gaze, and
perform auto-calibration for robustness.

Fine-grained vehicle trajectory tracking: One approach to
derive trajectory is using sensors such as LIDAR [5, 41], which are
accurate but also have a high cost that stymies adoption. Another
approach is to use inertial sensors on the smartphone to derive
trajectory information. However, sensor drift, integrated over time,
results in inaccurate trajectory estimation [20]. Monocular camera-
based visual SLAM, e.g., ORB SLAM [45], has also been employed.
However, the reliance solely on visual features tends to increase
error and does not yield the real-world scale. On the other hand,
approaches based on fiducial markers [43, 44] yield greater accuracy
but suffer from the need for an extensive deployment of markers.

While ALT also relies on a monocular camera, it employs a novel
hybrid SLAM approach that combines the accuracy of a fiducial
markers based approach with the minimal infrastructure depen-
dence of visual SLAM. ALT also incorporates a number of elements
for efficient yet accurate processing on smartphones.

11 CONCLUSION
In this paper, we presented ALT, a low-cost smartphone-based sys-
tem towards the goal of automating the driver’s license test. The
windshield-mounted smartphone acts as the sole sensing and com-
putation platform in ALT, and monitors both the driver’s gaze and
maneuvers to assess the driver’s performance. Our controlled ex-
periments and deployments in real-world settings show ALT’s ef-
fectiveness in automating many aspects of driver license testing.

APPENDIX - 1
Scale recovery and pose optimization using
fiducial markers
We now describe the approach to recover scale using fiducial mark-
ers. Inspired by the initialization procedure described in [43], we
find all possible relative poses from the common markers present
in the initial keyframe and the current keyframe. This is com-
puted using the corner points of each marker to find two possible
poses of a frame [23]. Say, for a marker m (all of a known side
length s) seen in both the frames, the two sets of poses would
be {P1, P̂1} and {P2, P̂2} and the set of relative poses would be
Cm = {P2(P1)−1, P2(P̂1)−1, P̂2(P1)−1, P̂2(P̂1)−1}. Let the set of all rel-
ative poses generated from every marker common in both frames
be denoted by C1,2.

We select the relative pose from this set such that it minimizes the
reprojection error of all the corners of all themarkers in all the frames
(i.e. we triangulate the corners to the map using the computed poses
and then re-project the corners back to each frame and compute
the squared difference, denoted by Ei,m where subscripts refer to
the frame and marker respectively). That is,

Popt = argmin
P ∈C1,2

∑
m∈M1∩M2

min(E2,m (PP1,m ),E2,m (PP̂(1,m))

+min(E1,m (P−1P2,m ),E1,m (P−1P̂2,m ))

Instead of using the correspondences found by ORB-SLAM to
compute the pose, we use the aforementioned pose to establish
the global reference system and initialize the map. We also ensure
the two frames satisfy all map initialization conditions imposed by
ORB-SLAM. Moreover, we add the markers found in our frames
to our map structure and save their pose wrt the global reference
system established (details in [43]). Lastly, we trigger a global bundle
adjustment to optimize the computed poses and map points. This
results in an initial map that’s at the correct scale. However, the
scale may drift as the SLAM progresses, the next step ensures that
we minimize the drift and computed pose is accurate.

For every new frame we derive pose information using both
points extracted by ORB SLAM and markers in the scene. For every
frame we then detect if there are fiducial markers present in the
scene. If there’s a new marker that’s detected in the frame, we
add the new marker to the map structure and make the current
frame a keyframe. To incorporate the contribution of markers to
the estimation of pose, we weigh bywi,m and add the reprojection
error of the markers to the optimization that optimizes pose with
the correspondences only. The cost function then becomes,

C =
∑
i, j

ρh (e
T
i, jΩ

−1
i, jei, j ) +

∑
i,m

wi,mEi,m

where i denotes the keyframe, ei, j denotes the error of the map
point j in keyframe i , Ωi, j denotes the covariance matrix related to
pyramid scale of map point detection and ρh denotes huber cost
function. As in ORB-SLAM, the same cost function is optimized
when performing pose optimization (all points fixed and just the
camera pose as parameter), local bundle adjustment (local points
are optimized while the keyframe subset is kept fixed) and global
bundle adjustment (where all points and keyframes are optimized).
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