

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

M3T-CC32R V.4.30
User’s Manual <C Compiler>

32

U
ser’s M

anual

Rev.1.00 2004.09

Cross Tool Kit for M32R Family

 Microsoft, MS-DOS, Windows, and Windows NT are registered trademarks of Microsoft Corporation in the U.S. and other countries.
 Sun, Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. or
other countries, and are used under license.
 Linux is a trademark of Linus Torvalds.
 Turbolinux and its logo are trademarks of Turbolinux, Inc.
 IBM and AT are registered trademarks of International Business Machines Corporation.
 Intel and Pentium are registered trademarks of Intel Corporation.
 Adobe, Acrobat, and Acrobat Reader are trademarks of Adobe Systems Incorporated.
 All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

Keep safety first in your circuit designs!
 Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention
against any malfunction or mishap.

Notes regarding these materials
 These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited
to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corporation, Renesas Solutions Corporation or a third party.
 Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of
any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application
examples contained in these materials.
 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information
on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and
Renesas Solutions Corporation without notice due to product improvements or other reasons. It is therefore recommended that
customers contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product
distributor for the latest product information before purchasing a product listed herein. The information described here may contain
technical inaccuracies or typographical errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no
responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information
published by Renesas Technology Corporation and Renesas Solutions Corporation by various means, including the Renesas home
page (http://www.renesas.com).
 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and
algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the
information and products. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any
damage, liability or other loss resulting from the information contained herein.
 Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under
circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions
Corporation or an authorized Renesas Technology product distributor when considering the use of a product contained herein for any
specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
 The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or
reproduce in whole or in part these materials.
 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from
the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport
contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
 Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the
products contained therein.

For inquiries about the contents of this document or product, fill in the text file the installer generates in the following directory and email
to your local distributor.

¥SUPPORT¥Product-name¥SUPPORT.TXT

Renesas Tools Homepage http://www.renesas.com/

CC32R MANUAL - iii

Contents

Contents

Preface x
Audience .. x

References ... x

Conventions ...xi

Chapter 1 Overview of CC32R 1
Features ... 1

Components of CC32R .. 1

Overview of the Components of CC32R .. 1

Programming Flow ... 2

Input and Output File Names for CC32R ... 4

Chapter 2 Overview of cc32R 5
2.1 About the C Compiler cc32R ... 5

2.1.1 cc32R Functions ... 5

2.1.2 cc32R Features .. 5

2.2 Compatibility with an old version ... 8

Chapter 3 Invoking the Compiler 9
3.1 How to Invoke the Compiler ... 9

3.1.1 Invoking Procedure ... 9

3.1.2 Setting Environment Variables ... 9

3.1.3 Command Line Syntax and Rules .. 10

3.1.4 Command file .. 11

3.1.5 Input File Conditions ... 13

3.1.6 Input File Names ... 13

3.1.7 Output File Naming ... 14

3.1.8 Output During Execution ... 14

3.2 Command Options ... 15

3.2.1 Command Options .. 15

3.2.2 Notes about -rel16 option to be taken when programming 23

3.2.3 Debugging Limitations when Optimize Options Are Specified 25

3.2.4 "-switch_by_offset" Option .. 26

3.3 Command Line Example ... 28

CC32R MANUAL - iv

Contents

3.4 The other notes.. 29

Chapter 4 C Programming Language Specification 32
4.1 Token ... 32

4.1.1 Keywords .. 32

4.1.2 Identifiers .. 33

4.1.3 Constants .. 35

4.1.3.1 Floating-Point Constant ... 36

4.1.3.2 Integer Constant .. 37

4.1.3.3 Enumeration Constant ... 39

4.1.3.4 Character Constant .. 39

4.1.4 String Literals .. 39

4.1.5 Operators .. 40

4.1.6 Punctuators ... 42

4.1.7 Comment .. 42

4.2 Data Types .. 43

4.2.1 Types and Type Specifiers ... 43

4.2.2 Types .. 44

4.2.3 Data Size and Range of Basic Types ... 47

4.2.4 Data Format for Floating-Point Constants .. 47

4.2.5 Type Qualifiers .. 48

4.2.6 Storage Class Specifiers .. 49

4.3 Conversions ... 51

4.3.1 Explicit Conversions (Cast) ... 51

4.3.2 Implicit Conversions .. 52

4.4 Preprocessing Directives ... 55

4.5 System Reserved Names .. 56

4.6 Limitations for C Language .. 57

Chapter 5 Internal Data Representation 59
5.1 Data Representation on Memory ... 59

5.2 Integral Types .. 60

5.3 Floating Types ... 62

5.4 Arrays .. 64

5.5 Structures .. 65

5.6 Unions.. 68

5.7 Enumeration Types.. 70

5.8 Pointers .. 71

5.9 Bit-Fields .. 72

5.9.1 Data Type for Bit-Field .. 72

5.9.2 Packing and Alignment ... 74

CC32R MANUAL - v

Contents

Chapter 6 C Calling Conventions 78
6.1 Register Usage .. 78

6.1.1 General Register (R0-R15) Usage ... 78

6.1.2 Register Consideration ... 80

6.2 Stack Frame Configuration .. 81

6.3 Call and Return Procedures .. 82

6.4 Parameter Passing .. 85

6.4.1 Rules Parameter Passing ... 85

6.4.2 The Cases where Stack-passing is Valid ... 86

6.4.2.1 Pushing onto the stack ... 86

6.4.3 Function Names after Compiling .. 88

6.4.4 How to Refer set Arguments ... 88

6.5 Setting Return Value.. 89

6.6 Interface with Assembly Program .. 90

6.6.1 Referencing Assembly Data from a C Program .. 90

6.6.2 Referencing C Data from an Assembly Program .. 91

6.6.3 Calling Assembly Routines from a C Program ... 92

6.6.4 Calling C Routines from an Assembly Program ... 93

Chapter 7 Embedded Applications Programming 94
7.1 Compiler-Generated Sections ... 94

7.2 Embedded Application Programming Procedure .. 98

7.3 Programming the Start-up Program... 102

7.3.1 Tasks in the Start-up Program .. 102

7.3.2 Getting the Stack Area .. 102

7.3.3 Initializing the Processor Modes ... 103

7.3.4 Initializing the Stack Pointer .. 103

7.3.5 Initializing the Data Sections ... 103

7.3.6 Calling the Main Function ... 105

7.3.7 Start-up Program Example ... 105

7.4 About start-up file start.ms in HEW.. 109

7.5 In-line Assembling ... 110

7.5.1 Overview of In-line Assembling .. 110

7.5.2 How to Write the asm Function ... 110

7.5.3 Limitations of asm Function .. 111

7.5.4 asm Function Example ... 114

CC32R MANUAL - vi

Contents

Chapter 8 Standard Header Files 116
8.1 Overview of the Header Files .. 116

8.2 Contents of the Header Files ... 118

8.2.1 assert.h ... 118

8.2.2 ctype.h .. 118

8.2.3 errno.h .. 119

8.2.4 float.h .. 119

8.2.5 limits.h ... 124

8.2.6 locale.h ... 125

8.2.7 math.h ... 126

8.2.8 setjmp.h .. 128

8.2.9 signal.h ... 128

8.2.10 stdarg.h ... 129

8.2.11 stddef.h ... 130

8.2.12 stdio.h ... 131

8.2.13 stdlib.h .. 134

8.2.14 string.h .. 136

8.2.15 time.h .. 137

Chapter 9 C Standard Library 138
9.1 Overview of the C Standard Library ... 138

9.1.1 The Library Files Contained in CC32R ... 138

9.1.2 Library Function Groups ... 139

9.1.3 Consideration for using the Library ... 140

9.1.4 Library Error Message .. 140

9.2 Rebuild to Method of Standard Library .. 141

9.2.1 Library Building Procedure ... 141

9.3 Library Function Descriptions .. 143

Chapter 10 The cc32R's Behavior 280
10.1 Undefined Behavior ... 281

10.2 Implementation-defined Behavior .. 297

10.2.1 Translation .. 297

10.2.2 Environment .. 297

10.2.3 Identifiers .. 298

10.2.4 Characters .. 298

10.2.5 Integers ... 300

10.2.6 Floating-Point .. 301

10.2.7 Arrays and Pointers .. 301

10.2.8 Registers ... 302

CC32R MANUAL - vii

Contents

10.2.9 Structures, Unions, Enumerations, and Bit-fields ... 302

10.2.10 Qualifiers ... 303

10.2.11 Declarators ... 303

10.2.12 Statements .. 303

10.2.13 Preprocessing Directive .. 303

10.2.14 Library Functions .. 304

10.3 Locale-specific Behavior .. 311

Chapter 11 Low-level Library 313
11.1 The Low-level Library Programming .. 313

11.1.1 The Low-level Library for the C Standard Library ... 313

11.1.2 Input/Output with the Low-level Library .. 317

11.2 The Low-level Functions Specifications... 318

Chapter 12 Single-precision Mathematical Function Library 328
12.1 Composition of Functions .. 328

12.2 Using the Library.. 330

12.2.1 Header File ... 330

12.2.2 Link with the Single-precision Mathematic Function Library 331

12.3 Precautions .. 331

12.3.1 Dynamic range .. 331

12.3.2 About error handling ... 332

Chapter 13 The set of 64-bit integer arithmetic functions 333
13.1 Header file long64.h... 333

13.2 Function structure .. 333

13.3 Method for using the functions and example usage .. 337

13.4 Notes ... 338

13.4.1 Precautions regarding the sign ... 338

Chapter 14 Messages from the C Compiler 339
14.1 Getting Execution Result of the C Compiler .. 339

14.1.1 Message Format ... 339

14.1.2 Message Types .. 340

14.1.3 Exit Status ... 340

14.2 Message Lists .. 341

14.2.1 Information Messages .. 341

14.2.2 Warning Messages ... 342

CC32R MANUAL - viii

Contents

14.2.3 Command Line Error Messages ... 346

14.2.4 Error Messages .. 347

14.2.5 Fatal Error Messages ... 362

Appendix A Extended Functions Reference 1
A.1 Base Register Function ... 2

A.1.1 What is the Base Register Function? ... 2

A.1.2 Types of Access Targeted by Base Register Function, and Code Output 3

A.1.2.1 Access to Variables ... 3

A.1.2.2 Accessing constants .. 3

A.1.3 Objects Targeted by Base Register Function ... 4

A.1.3.1 Memory class linkage ... 4

A.1.3.2 Object types .. 4

A.1.3.3 Types of type qualifier ... 5

A.1.4 Objects Not Targeted by Base Register Function ... 5

A.1.4.1 Types of types and derived types, etc. ... 5

A.1.4.2 Memory classes and storage .. 5

A.1.4.3 Qualifiers ... 5

A.1.5 Setting Base Symbols and Base Registers .. 6

A.1.6 Base Register Function Limitations .. 6

A.1.7 The Access Control File .. 7

A.1.7.1 Contents of the Access Control File ... 7

A.1.7.2 The Access Control File Syntax .. 8

A.1.7.3 Hints on describing the Access Control File ... 9

A.1.8 Example of Using Base Register Function ... 11

A.1.8.1 Example Use of Base Register Function .. 11

A.2 Memory Models ... 15

A.2.1 About Memory Models .. 15

A.2.2 Detailes of Memory Models .. 15

A.3 #pragma Extended Functions.. 19

A.3.1 List of #pragma Extended Functions .. 19

A.4 Inline expansion ... 29

A.5 M32R/ECU#5 (M32R-FPU core) Compatible Function ... 33

A.5.1 Option designation .. 33

A.5.2 Utilize FPU Instruction Effectively ... 33

A.5.3 Precautions in Utilizing FPU Instruction .. 34

A.5.3.1 [CAUTION] "-float_only" Option .. 34

A.5.3.2 Not normalized ... 35

A.5.3.3 Round-off mode ... 35

A.5.3.4 "-fminst" Option .. 35

A.6 About Japanese-Kanji character processing ... 36

A.6.1 character sets and character code ... 36

A.6.1.1 The Japanese character .. 36

A.6.1.1 kind of character code .. 36

CC32R MANUAL - ix

Contents

A.6.1.3 Method of selecting character codes ... 37

A.6.2 Description method of the Japanese character .. 38

A.6.2.1 Multi-byte character ... 38

A.6.2.2 Wide character ... 38

A.6.3 Programming that used a Japanese processing function 39

A.6.4 Restriction items ... 41

A.6.4.1 Message display .. 41

A.6.4.2 Attention on multi-byte character string processing ... 41

A.6.4.3 Attention on standard function use .. 41

A.6.4.4 Correspondence of the assembler ... 42

A.6.4.5 Correspondence of the relation tools ... 42

A.6.4.6 preprocessor output (-P,-E option) .. 42

A.6.4.7 Restriction item of Unicode .. 42

A.6.5 The supplement of Japanese processing ... 43

A.6.5.1 Inside expression of the Japanese character .. 43

A.6.5.2 Standard library .. 44

Appendix B The C Standard Library Function List 1
■ Program diagnostic function .. 1

■ Character handling function ... 1

■ Mathematics function ... 2

■ Non-local jump function ... 3

■ Variable arguments access function .. 3

■ Input/output function .. 3

■ General utility function ... 5

■ String handling function ... 6

■ Localization function .. 7

■ Date and time function ... 7

■ Signal handling function .. 8

■ Initialization function (non-ANSI) ... 8

■ Termination function (non-ANSI) ... 8

■ Special floating-point values judgement function (non-ANSI) ... 8

Appendix C Restrictions on Usage 1
■ How to get files that is not included the debug-informatio ... 1

■ Cautions on using the base register function with standard library for C 2

■ Avoiding the integral zero-division problem of M32R/ECU series 2

■ On indirect calling a function that has variable arguments .. 4

■ Data definition within the code section .. 4

■ Use of preprocessor variables inside a macro body .. 4

■ About compiling the functions of 500 or more lines ... 5

■ Precautions about changing C Calling Convention ... 5

CC32R MANUAL - x

Preface

Preface

M3T-CC32R(abbreviated as CC32R) is a cross tool kit which supports software

development for the Renesas M32R family of 32-bit RISC architecture

microcomputers. It provides many functions suitable for development of

embedded systems for the M32R family. The CC32R manual set provides

information for programming by use of CC32R, targeting an M32R system.

Audience

The CC32R manual set assumes that the readers are developers programming

for the M32R system using the C or assembly language. Accordingly, it also

assumes that the readers are familiar with programming languages (C or

assembly) and their development environment (a host machine and its

operating system etc.), and have basic knowledge of the target M32R systems.

References

A manual related to development for the M32R family is :

• M32R Family User's Manual

• M32R Family Software Manual

Refer to the WWW site of the "Renesas Microcomputers" .

The URL is : http://www.renesas.com/

For details about the ANSI-C language, refer to :

• ANSI/ISO 9899-1990 American National Standard for Programming Languages -

C (American National Standards Institute, Inc.)

http://www.infomicom.maec.co.jp/indexe.htm

CC32R MANUAL - xi

Preface

Conventions

The CC32R manual set uses the following conventions :

• Symbols

Symbol Meaning

Italics Represents a generic description that should be
replaced with a specific.

a |b Represents alternative items. a|b represents either a
or b.

[] Encloses optional elements that can be included or
omitted.

... Indicates to repeat the preceding item zero or more
times.

: Represents omission of a or more lines.

<RET> Represents to enter the return key.

• Terms(1/2)

Term Meaning

ANSI-C American National Standard for Programming
Languages-C (ANSI/ISO 9899-1990)

Assembler (as32R) The assembler in CC32R.

Assembly program A program written in the assembly language.

CC32R The cross tool kit for an M32R system.

C compiler (cc32R) The C compiler in CC32R.

C program A program written in the C language.

CRx Any control register of M32R.

C standard library The CC32R-supplied ANSI-C conforming library.

Default A value (or values) or the process provided
automatically if there is none specified by the user.

EWS An engineering work station.

Librarian (lib32R) The librarian in CC32R.

Library (file) A C library file for an M32R system. It is an output
file from lib32R.

Linker (lnk32R) The linker in CC32R.

CC32R MANUAL - xii

Preface

• Terms(2/2)

Term Meaning

Link map A list have information on sections and global
symbols in an object module or a load module. It is
generated by map32R.

Load module (file) A linked object module, which is an executable file for
an M32R system. It is an output file from lnk32R or
lmc32R.

Load module converter (lmc32R) The load module converter in CC32R.

Local variable This variable is only effective in a function.

M32R A Renesas 32-bit RISC architecture microcomputer.
M32Rx

M32R system A system using the M32R.

Map generator (map32R) The map generator in CC32R.

Object module (file) An object file which is translated from the C or
assembly code into the object code of machine
instructions for M32R. It is an output file from the C
compiler or the assembler.

OS An operating system.

Release notes The document related to the release of the CC32R in a
CC32R package (Please read it at first.).

Return value A function value returned as an operation result from
a called function to a calling function.

Rx Any general register of M32R.

Source file A text file written source code in the C language or the
assembly language.

Space (character) A blank which is entered by the space key or the tab
key.

User library A library file made by a user using the librarian.

Windows Any of Microsoft Windows3.1 or Microsoft
Windows95.

CC32R MANUAL - 1

Chapter 1 Overview of CC32R

Chapter 1

Overview of CC32R

Features

CC32R is a cross tool kit designed to develop an application program for the

M32R family. Its versatile features are especially useful for development of a

control system to be embedded. Major features of the CC32R include the

following :

• Generates a load module file which is executable on the M32R from a source

file written in C or assembly language.

• Converts a load module into S-format one which can be written into ROM.

• Offers optimizing functions which generate efficient object codes to speed

execution time.

Components of CC32R

CC32R consists of the following cross tools :

• C complier (cc32R) with C standard libraries

• Assembler (as32R)

• Linker (lnk32R)

• Librarian (lib32R)

• Map generator (map32R)

• Load module converter (lmc32R)

Overview of the Components of CC32R

The following tools are contained in CC32R :

• C compiler (cc32R)

The C compiler cc32R conforms with ANSI/ISO 9899-1990. It

generates an assembly source file by compiling a C source file.

As a driver, it also invokes the assembler and/or the linker. You

can perform a chain process as creating a load module from a

source file.

CC32R MANUAL - 2

Chapter 1 Overview of CC32R

• Assembler (as32R)

The as32R generates an object module by assembling an

assembly source file. In an assembly source file, you can write

the pseudo-instructions and the macro-instructions. Also, the

assembler outputs an assemble list with the -l option.

• Linker (lnk32R)

The lnk32R generates a load module file by linking an object

module, the relocatable load module files and library files. It is

selectable that either a generated load module is relocatable

format or absolute format. A relocatable load module can be

reloaded onto the linker.

• Librarian (lib32R)

The lib32R generates an M32R compatible library file from object

modules or relocatable load modules.

• Map generator (map32R)

The map32R outputs a link map which consists of a map list and

global symbol list from an object module, an relocatable load

module and an absolute load module.

• Load module converter (lmc32R)

The lmc32R converts a load module generated at the linker into

the S-format load module (ROMable). This tool is necessary to

write a program into ROM.

Programming Flow

The programming flow using CC32R is shown in Figure 1.1.

CC32R MANUAL - 3

Chapter 1 Overview of CC32R

Librarian

lib32R

Library file

C standard
library files

m32Rc.lib
m32RcR.lib

etc...

SYSROF format
object module file

C Language
source file

Assembly
language
source file

Assemble
list

SYSROF format
load module file

* Only relocatable
 load module file

Map generator

map32R
Load module converter

lmc32R

Link map
Motolora S-format

load module file

Assembler

as32R
C compiler

cc32R

Linker

lnk32R

Assembly
language
source file

Figure 1.1 Programming Flow by CC32R

: Input/output file

: A component of CC32R

: Data flow

: Main data flow (default)

CC32R MANUAL - 4

Chapter 1 Overview of CC32R

Input and Output File Names for CC32R

CC32R identifies the type of an input file by its file name extension. And

CC32R will determine the file name or the extension for an output file. Table

1.1 lists the input/output file names that are handled by CC32R. file represents

any file name.

Table 1.1 File names for CC32R

File Type

file.c C source file

file.mi Preprocessor output file (i.e., a C source file after

expansion by the preprocessor)

file.ms Assembly source file

file.mo Object module file

a.mout Load module file

file.mot Load module file (Motorola S-format)

CC32R MANUAL - 5

Chapter 2 Overview of cc32R

Chapter 2

Overview of cc32R

2.1 About the C Compiler cc32R

2.1.1 cc32R Functions

The cc32R is the C complier contained in the CC32R cross tool kit, and has the

following functions :

• Generates an assembly source file by compiling each C source file (specified

by the -S option).

• Generates an object module file from each C or assembly source file (as

default or specified by the -c option).

• Generates a load module file from C and/or assembly source files. This

function is the default. By default, cc32R performs a chain process as

compiling, assembling, and linking. Contents of each source file (e.g., a use

language) are discriminated by the filename extension.

2.1.2 cc32R Features

• Conformance with ANSI

The C complier and the C standard libraries conform with the

ANSI Standard, ANSI/ISO 9899-1990.

• The set of 64-bit integer arithmetic functions is supported

The set of functions to perform C language integer arithmetic in

the 64-bit dynamic range has been added to the standard

library. As for the integer type in C language, these functions

can perform the four fundamental operations in arithmetic, as

well as bitwise, shift and compare operations in the 64-bit range.

• Floating-point operation is supported

Internal data representation of floating-point data conforms with

the IEEE (The Institute of Electrical and Electronics Engineers)

754 Standard.

CC32R MANUAL - 6

Chapter 2 Overview of cc32R

• Creating ROMable programs is supported

ROMable object modules can be created (This depends on the

linker’s functions.). When linking and placing sections of object

modules, space can be allocated for the section which contains

initialized data within the RAM area, and the initialized data can

be placed in the ROM area.

• Supports optimization function

Optimization function enables efficient generation of object code.

The following optimization levels are supported :

• Optimization at assembly language :

Eliminates unnecessary codes at assembly language level,

converts to most suitable codes and schedules instructions.

• Local optimization :

Analyzes C language structure locally, transfers or copies

constants and deletes unnecessary codes and common sub-

expressions.

• Global optimization :

Analyzes C language structure globally, analyzes live

variables, replaces codes and optimizes control flow.

The following lists the optimization items performed:

• Optimize control flow

• Delete expressions in common parts

• Propagate constants and copy

• Analyze valid variables

• Delete dead code

• Optimize register assignment

The combination of different optimization levels further

improves efficiency of code generation although each

optimization can be used independently.

Most optimizations combined at different levels increase

program execution speed and reduce code size. However, some

optimizations offer only one advantage or offer better functional

performance at the sacrifice of some other advantage. When

using these optimization functions, the user should specify

which optimization advantage should come first.

• Selectable output file

The result of compiling can be output in the form of an assembly

language source file, an object module file or a load module file

(linked object module). The assembly language source file is

useful when checking the C language source program at the

assembly language level.

CC32R MANUAL - 7

Chapter 2 Overview of cc32R

• Output of C language source line debug information

Information on debugging of C language source line can be

added to the load module generated by the linker (with the -g

option selected). By using the load module, the debugger can be

used for debugging at the C language source line level.

• C++ like comments can be written.

A comment can be written starting from "//" to the end of line.

Example:
void foo(void)
{

char x[3];
x[0] = 0; // Comments can be written in this manner

}

• Development Support Utilities

❍ C source merge utility strip32R
We provide the C source merge utility cmerge.
The utility cmerge merges the assembler source file (with -CS
option added) that is output by the compiler with the original C
source file to generate a C/ASM-mixed list.
The utility strip32R is not a standard product of the compiler.
For details on how to handle it, refer to the file written about the
Handling of Development Support Utilities.For more
information of strip32R, refer to the certain documents in
directory "UnSpt32R" (PC version) or "unsupport" (EWS
version). The "license.txt" explains about license, and the
"strip32R.txt" explains about how to use it.

❍ Absolute listing utility abslist
We provide the absolute listing utility abslist.
The utility abslist generates an absolute list file in which the
LOCATION values in the assembly list files output by the
assembler (as32R) have been converted into the actual addresses
after linking.
The utility abslist is not a standard product of the compiler. For
details on how to handle it, refer to the file written about the
Handling of Development Support Utilities. For details on how
to use it, refer to the file in which a description is made of
Absolute Listing Utility (abslist.sj).

❍ Stack size calculation utility stk32R
We provide the Stack size calculation utility stk32R.
The utility stk32R processes the stack amount usage files
output by the compiler (-stack option added) to find the stack
size required for program operation.Also available are the stack
amount usage files (m32Rc.stk, m32RcR.stk, etc.) for the
functions registered in C standard libraries(m32Rc.lib,
m32RcR.lib, etc.). To enter the stack amount usage file for the
program that calls library functions in stk32R, specify in -I
option the stack amount usage files present in the library file
used. Note that correct values cannot be obtained for the

CC32R MANUAL - 8

Chapter 2 Overview of cc32R

functions pow and setlocale because these are recursive-call
functions. The values in the files are for reference purposes
only.
The utility stk32R is not a standard product of the compiler. For
details on how to handle it, refer to the file written about the
Handling of Development Support Utilities. For details on how
to use it, refer to the file in which a description is made of Stack
Size Calculation Utility (stk.txt).

2.2 Compatibility with an old version

• About inputting old CC32R's object (V.2.10 Release 1 or older) to new linker

To correspond to the new function, a part of object format has

been changed.Accordingly, if you have the object that was made

with old CC32R (V.2.10 Release 1 or older), when you input

them to new linker (CC32R V.3.00 Release 1 or newer), this

linker displays a warning message like the following.

lnk32R: " filename": warning: old interface module: "revision:01"

In this case, please remake these objects by using the new

CC32R.

• Problems encountered when linking objects of V.1.00 Release 3 or earlier

An error "relocation out of range " may be encountered when

linking some objects generated by CC32R V.1.00 Release 3 or

earlier by the linker in V.1.00 Release 4 or later (including this

version). In such a case, regenerate the objects using the assem-

bler in V.1.00 Release 4 or later.

CC32R MANUAL - 9

Chapter 3 Invoking the Compiler

Chapter 3

Invoking the Compiler

3.1 How to Invoke the Compiler

3.1.1 Invoking Procedure

To invoke the C compiler, first set the environment variables (see 3.1.2), enter

the “cc32R” command according to the command line rules and execute it (see

3.1.3).

3.1.2 Setting Environment Variables

Set the valid directories for the environment variables M32RBIN, M32RINC,

M32RLIB and M32RTMP. (This step may be skipped since these variables are

normally set during installation.) For the setting procedure, refer to “ CC32R

Installation Guide” . If you do not set the directories, the default directories are

selected automatically.

Table 3.1 Environment Variables

Environment Variable Default

M32RBIN /usr/local/M32R/bin

M32RINC /usr/local/M32R/include

M32RLIB /usr/local/M32R/lib

M32RTMP /tmp

M32RKIN EWS version “euc” MS-Windows(PC) version “sjis”

NR32RKOUT EWS version “euc” MS-Windows(PC) version “sjis”

CC32R MANUAL - 10

Chapter 3 Invoking the Compiler

3.1.3 Command Line Syntax and Rules

The command line syntax and rules for the command, “cc32R”, which invokes

the C compiler are as follows (For details on the command options and input/

output files, see 3.1.4 to 3.2.) :

cc32R [-access=access_control_file] [-c] [-C]

[-constr] [-D name[=def]] [-e entrypoint] [-E]

[-float_only] [-fminst] [-g] [-I path] [-L dir]

[-l lib] [-M] [-MAP map_filename]

[-MEM addr1,addr2] [-noinline]

[-o output_filename] [-Opriority]

[-O[level]] [-m32re5] [-P] [-r] [-R old=new] [-S]

[-SEC name[=addr][,name[=addr]...]]

[-switch_by_offset] [-U name] [-v] [-V] [-w]

[-warn_suppressed_nested_comment] [-rel16]

[-XX[=symbol_num]]

[-small [-memlarge]] [-medium] [-large]

[-CS] [-stack] [-zdiv][-@]

[input_filenames] <RET>

where :

• Without [] : Indispensable

• In [] : Optional

• Prefixed by - : A command option (see 3.2)

• <RET> : Enter the return key

Figure 3.1 cc32R Command Line Syntax

• Write into the command line by following the format shown in Figure 3.1.

Each of the items (i.e., the command name, an option, an input file name)

must be separated from adjacent items by at least one space character. By

entering the return key at the end of a command line, the C complier starts

execution.

• Between an option and its parameter(s), one or more spaces may be inserted.

• input_filenames represents the specification of one or more input file names.

Between input file names, one or more spaces are needed for separation.

The number of files is not limited.

• The type of each input file is determined based on its extension as listed in

Table 3.2 :

Table 3.2 Input File Name and Type

Extension Type

.c C source file

.ms Assembly source file

.mo Object module file

Others Object module file

CC32R MANUAL - 11

Chapter 3 Invoking the Compiler

3.1.4 Command file

When invoking CC32R,one or more command options listed in a command file

(a text file) can be specified by one parameter.

cc32R @file_name [-@] <RET>

where :

• file_name : File name of Command file

• In [] : Optional

• <RET> : Enter the return key

Figure 3.2 cc32R Command file Syntax

• As a parameter, specify only a command file name prefixed by ‘@’. If

anything other than one “@command_filename”(except for the -@ option) is

specified, it will not assumed as a command file even if its beginning

character is ‘@’.

Example 1 : @sample.cmd processed as a command file :

>cc32R @sample.cmd

>cc32R -@ @sample.cmd

>cc32R @sample.cmd -@

Example 2 : @sample.cmd is not assumed as a command file :

>cc32R -v @sample.cmd ––– there is a parameter which is not command

 file specification (except for -@) .

>cc32R @sample.cmd -v ––– ditto.

>cc32R @sample.cmd @sample.cmd ––– there are two or more

 command file specifications.

• Rules for the command file are :

O Each parameter (options, input/output filenames, etc.) takes the same

format as parameters specified on the command line.

O Delimit parameters with one or more spaces or a new-line character

(return key).

O Lines starting with @ are seen as comments and are skipped.

O You cannot call a command file from within a command file.

Figure 3.3 shows results when commands are executed from a command file

and from the command line in ordinary format.

CC32R MANUAL - 12

Chapter 3 Invoking the Compiler

Figure 3.3 When executing commands from a command file and from the command line

||||| NOTE! |||||

lnk32R (linker) and lib32R (librarian) process files as command files even when

the filename does not start with ‘@’. Note, however, that lines starting with ‘@’

in such command files are not processed as comments.

||||| NOTE! |||||

Do NOT use filenames starting with ‘@’ other than for command files, as com-

mand lines will not be processed correctly (operation cannot be assured).

Same results are

obtained

> cc32R -I b:\include -C -o a:\work\sample.mo a:\work\sample.c

> cc32R @sample.cmd
-I b:\include

-C

@This is a comment line

-o a:\work\sample.mo

a:\work\sample.c

sample.cmd

CC32R MANUAL - 13

Chapter 3 Invoking the Compiler

3.1.5 Input File Conditions

Conditions of the input files which can be processed on the compiler are listed

in Table 3.3. If a file does not meet these conditions, you should not input the

file.

Table 3.3 Input File Conditions

Where Conditions

Valid input files C source file(s) or M32R assembly source file(s)

Object module file(s)

Load module file(s)

Library(s)

Valid name length Identifiers(function name, variable name and

etc...) : Up to 240 characters

Note:

The different names as if the initial parts which

consists of characters from the 1st to the 240th

are matched and the other characters from the

241st are unmatched are recognized as the same

identifiers.

Maximum number of names Section names : Up to 65535/file

Symbol names : Up to 65535/file

Module names : Up to 65535/file

Note:

The number may be limited by the capacity of

the development environment system memory.

3.1.6 Input File Names

The C compiler identifies the type of input file by its extension and then starts

the process required for that file, such as, compiling the file if it is written in C

language or linking the file if it is object module. Table 3.4 shows the starting

process for each type of file. (See Figure 1.1 “Programming Flow by CC32R”.)

Table 3.4 Input File and First Procedure

Extension Type determined by the C Compiler First Procedure

.c C language source file Compiling

.ms Assembly language source file Assembling

.mo Object module file Linking

Others Object module file Linking

CC32R MANUAL - 14

Chapter 3 Invoking the Compiler

3.1.7 Output File Naming

The name of the output file is the one specified by the -o option. If this option is

not used, the C compiler automatically gives the name to the output file as

shown in Table 3.5.

The -o option (lower case) is ignored if two more input files are specified and

the output is not a load module. The output file is given the name according to

Table 3.5.

Table 3.5 Output File Names (default)

File name Description

file.mi The name of the preprocessed C language source file.

The file name is the name of the C language file with the

extension replaced as .mi.

file.ms The name of the compiled assembly language source file.

The file name is the name of the C language file with the

extension replaced with .ms.

file.mo The name of the assembled object module file.

The file name is the name of the source file with the extension

replaced with .mo.

a.mout The linked load module file.

3.1.8 Output During Execution

When two or more input files are specified, the compiler outputs the following

status information during execution :

• Upon start of compiling :

The name of file being compiled is output (when the input file is

a source file).

• Upon start of linking :

The message “Linking” is displayed.

The C compiler will end by doing nothing if no input file name is specified. No

starting or ending messages will appear.

CC32R MANUAL - 15

Chapter 3 Invoking the Compiler

3.2 Command Options

3.2.1 Command Options

The functions of the C compiler command options are listed in Table 3.6.

Table 3.6 Command Options for the C Compiler (1/8)

Option Description

-access=Access Control File Specified when using the base register function. Based on

the contents of the Access Control File, this option

determines the code for the following two types of access

(read/write):

(1) Access to objects (variables and structures,

 etc.) assigned to the default D or B section

(2) Access to objects at fixed addresses.

Code is generated as a command using 16-bit register

relative indirect addressing mode.

-c (lower case) Performs only compiling, and generates an object module
file (file.mo). This option is ignored when the
-S option is used.

-C (upper case) The C preprocessor does not delete any comment.

-constr Allocates character string constant to C section, enabling
allocation in the ROM area.

-D name Defines the name or constant specified by the def
-D name=def into the macro named name. The name=1 if def is not

used.

-e entrypoint Sets the entry point of a load module at entrypoint (symbol).
This option is effective during linking.

-E Invokes the C preprocessor only. The preprocessor output
is sent to the standard output.

-float_only he double type is regarded forcedly as the float type. If this
option is used together with the -m32re5 option, all floating
point operations can be made applicable to the FPU
instruction. For more details, refer to Chapter A.5.

-fminst A code is generated, using FMADD (Floating-point multiply
and add operation instruction) and FMSUB (Floating-point
multiply and substract operation instruction). This option is
disregarded where no -m32re5 option is valid. Where this
option is not specified, the FMADD and FMSUB
instructions are not used. For more details, refer to Chapter
A.5.

-g Outputs the information (debug information) as necessary
for debugging, to the object module file or the load module
file.This option had been always designated.
This option is always enabled.

CC32R MANUAL - 16

Chapter 3 Invoking the Compiler

Table 3.6 Command Options for the C Compiler (2/8)

Option Description

-I path Adds a path to the directory under which a header file is to
be searched.
The header file search is performed in the order shown :
 (1) Within the directory under which source file is stored
 (2) Within the directory specified by this option.
 (3) Within the directory for which the environment
 variable M32RINC is set (If not set, in the order
 /usr/local/M32R/include.).
The search procedure (1) described above is skipped in the
case of a header file search using the format : #include <file.h>

-l lib Specifies a library named lib. The library is searched in the
following order :
(1) The directory specified in -L option.
(2) The directory set for the environment variable
 M32RLIB. (If not set, /usr/local/M32R/lib.)

-L dir Specifies the library search directory.

-M Starts only the C preprocessor to identify the dependency of
“makefile” and outputs the result to the standard output.

-MAP map_filename Outputs the map_filename map file. This option becomes
effective at linking.

-MEM addr1,addr2 This option allows writing of the C program into the ROM
by assigning the sections to the appropriate memory
locations. This option is a simplified version of the -SEC
option and is made effective when the section is composed
of P, D, B and C and cannot be used if a user made section
exists.

Specify the address in hexadecimal. The hexadecimal
number starting with an alphabetic letter must have a 0
(zero) preceding the letter.

addr1 must be assigned the start address of the RAM area
(locations for D, B section). The sections must be linked in
the order of D and B. The RAM memory locations specified
by addr1 are reserved but they are not used to store the
initial value data.

addr2 must be assigned the start address of the ROM area
(locations for initial value data of P, C and D sections). The
sections must be linked in the order of P, C and D. The D
section (initial value data) is output as the section name,
ROM_D.

The -MEM option cannot be used together with the
-SEC or -r option.

Each of the following options denotes the same process :

-MEM 1000,8000

-SEC @D=1000,B,P=8000,C,D

CC32R MANUAL - 17

Chapter 3 Invoking the Compiler

Table 3.6 Command Options for the C Compiler (3/8)

Option Description

-noinline The inline keyword is made invalid. The

inline keyword,if specified, is ignored even

when it is described.(This is not a error.)

For more details about the inline expansion

function,refer to Chapter A.4.

-o output_filename Gives the name output_filename to the output file. If this
option is skipped and if the output file is a load module file,
the output file is given the name, a.mout. The
output_filename specified by this option is also effective
when the -P, -S or -c option is specified. If the number of
input files is two or more, the output_filename is ignored and
the name of output file is the input file name with extension
either .mi, .ms or .mo.

-Opriority The option priority is used to specify a higher priority
between code size and speed during optimization. Use the
time priority or space priority by referring to the
definition below. Do not separate symbols -O from the
word priority.

-Otime : Optimization with the speed has priority
over code size.

-Ospace : Optimization with the size reduction has
priority over speed.

-Otime and -Ospace cannot be specified simultaneously.

Specifying this option without specifying -Olevel is equal to
specifying “-O7” as -Olevel.

Skipping both this option and -Olevel cannot start
optimization.

Specifying only -O is equal to specifying -Opriority to “-
Otime” and -Olevel to “-O7”.

<Examples>

-Otime : Priority on speed, optimization at -O7
level

-Ospace -O4 : Priority on size, optimization at -O4
level

-Ospace -O : Priority on size, optimization at -O7
level

-O : Priority on speed, optimization at -O7
level

When using this option simultaneously with the debug
option (-g), the function of debugging receives an

influence.For more details, refer to Section 3.2.3.

(“O” is an lower case)

(“O” is an upper case)

CC32R MANUAL - 18

Chapter 3 Invoking the Compiler

Table 3.6 Command Options for the C Compiler (4/8)

Option Description

-Olevel Specifies optimization level. Do not separate the symbols -
O from the word level by a space character. Set -Olevel to
one of the following values :

0 : No optimization
1 : Optimization of assembly language
2 : Local optimization
4 : Global optimization

Note that combination of values 1, 2 and 4 achieves
optimization at these levels.

Specifying this option without specifying -Opriority is equal
to specifying “-Otime” as -Opriority.

Skipping both this option and -Opriority cannot start
optimization.

Specifying only -O is equal to specifying -Opriority to “-
Otime” and -Olevel to “-O7”.

<Examples>

-O1 : Optimization at level 1, giving priority
to speed

-O6 : Optimization at levels 2 and 4, giving
priority to speed

-O -Ospace : Optimization at levels 1, 2 and 4, giving
priority to size

-O : Optimization at levels 1, 2 and 4, giving
priority to speed

When using this option simultaneously with the
debug option (-g), the function of debugging receives
an influence.For more details, refer to Section 3.2.3.
Also, where the optimization exceeding Level 4 is
effective, the inline expansion is made effective.
For more details about the inline expansion function,
refer to Chapter A.4.

-m32re5 A code is generated, using the M32R/ECU#5 extension
instructions (FPU instructions of M32R-FPU core).
Also, the non-normalized numeral in the floating point
constant is reduced to "0.0". For more details, refer to
Chapter A.5.

-P (upper case) Uses the C preprocessor only and generates a file with the
extension .mi (file.mi). The file does not include line
information.

-r Creates a load module file in the form of relocatable one. If
this option is not specified, the module file is generated as
an absolute file. This option becomes effective at during

linking. This option cannot be used with -MEM or -SEC.

(“O” is an upper case)

CC32R MANUAL - 19

Chapter 3 Invoking the Compiler

Table 3.6 Command Options for the C Compiler (5/8)

Option Description

-R old=new The C compiler changes the name of the section it is
creating.

The C compiler classifies the C program into the following 4
sections according to its function (default):

Section name Description

 P Program
 C Constant value
 D Global variable having initial value
 B Global variable having no initial value

When changing these section names, use this option to enter
the original section name (P, C, D or B) to old and the new
section name to new.

-S (upper case) Generates assembly language source file(s) (file.ms) by

compiling only.

CC32R MANUAL - 20

Chapter 3 Invoking the Compiler

Table 3.6 Command Options for the C Compiler (6/8)

Option Description

-SEC name
-SEC name=addr
-SEC name=addr,name=addr...

Specifies the linking order of sections and the start address.
Enter the section name into name, and the address of the
location for the section into addr.

Next to the = , specify the start address in hexadecimal.
Affix 0 (zero) to the first letter of the hexadecimal, if the hex.
number starts with an alphabetic character. If the start
address is not specified, a section is immediately followed
by the next section.

If the symbol “@” is affixed to the beginning of the section
name, the memory reserve information for that section is
output without any data (initial data elimination function of
the linker).

The initial data which is not output because of the
elimination function of “@” can be output to another area
(initial data extraction function of the linker). To output,
enter the section name without “@” in the command line.
The data is output under the section name, ROM_name.

Example : -SEC @D=1000,B,P=0c000,C,D

This example assigns address 100016 and subsequent
addresses for the D section and places the D section initial
data next to the C section. The initial data is output to the
load module file under the section name, ROM_D.

This option cannot be used with -MEM or -r.

-switch_by_offset Additional designation to cc32R command line option is
required at compiling. For more details, refer to Chapter
3.2.4.

-U name (upper case) Undefines the defined preprocessor macro specified by
name.

-v (lower case) Displays the command used to invoke each subprocess of
the C compiler as they are executed.

-V (upper case) Outputs the invoking message to the standard error output.
The other options are ignored. No processing actually takes
place.

-w (lower case) Disables the warning message and the information message
displays.

-warn_suppressed_nested_comment

Generation of a warning for nested comments is suppressed.

CC32R MANUAL - 21

Chapter 3 Invoking the Compiler

Table 3.6 Command Options for the C Compiler (7/8)

Option Description

-rel16 For access to the symbols of D and B sections located in

RAM, this option outputs load/store instructions by register

relative indirect addressing. Access to symbols are

performed in register relative indirect addressing mode via

the fixed register, R12. When using this option, pay

attention to the precautions below:
(1) Set the R12 register and define the "__REL_BASE"

symbol.
(2) If the total size of D and B sections exceed 64 Kbytes,
do not use this option.

(3) For const-qualified variables (located in C section) to be
referenced in another source, a prototype accompanied
by const must always be declared.

(4) Do not destroy the content of the R12 register.

Also refer to Section 3.2.2 for more information about this

option.

-XX = symbol_num This option allocates memory for symbols that are required

when compiling. The required memory size is expressed by

a number of symbols, which is specified in symbol_num.

The default value of symbol_num is 40,000.

Specify this option when compiling a source file, such as

middleware, which has more than 40,000 symbols.

-small

-small -memlarge

-medium

-large These options specify the memory model in which to
compile. If none of these options is specified, the source file
is compiled in small model (-small).

The option -small specifies that the source file be compiled
for the small model (both code and data stored within the
range of 0x00000000 to 0x00FFFFFF).

The option -small -memlarge specifies that the source file
be compiled for the small model with -memlarge attached
(full 32-bit memory space supported for only data).

The option -medium specifies that the source file be
compiled for the medium model (code stored within the
range of given address A to A + 0x00FFFFFF, and the full
32-bit memory space supported for data).

The option -large specifies that the source file be compiled
for the large model (full 32-bit memory space supported
for both code and data).

Also refer to Appendix A.2 for more information about this
option.

CC32R MANUAL - 22

Chapter 3 Invoking the Compiler

Table 3.6 Command Options for the C Compiler (8/8)

Option Description

-CS With the -CS option, the C compiler cc32R generates an
assembly language source file (default file extension
“.ms”) with C source file. No object file is generated.

-stack Selecting the -stack option generates a stack utilization
display file (a text file whose input file name extension is
changed to ".stk") and generates an object file too at the
same time.
One stack utilization display file is generated for each
source file written in C language. Stack sizes of individual
functions are output to the file together with a list of
function names called by them.
The stack utilization display file is used as an input file to
the stack size calculation utility (stk32R).
Selecting this option concurrently with one of the -E, -M,
and -P options generates no stack utilization display file.
The use status of the stack used under the in-line assembly
feature is not output.
Functions defined under the in-line assembly feature are
not output.
Functions called under the in-line assembly feature are not
output.
No stack utilization display file is generated for the
assembler function (the source file written assembly
language). If the stack utilization display file for the
assembler function is necessary, make a text file separately.
For descriptions as to the stack utilization display file, see
the file "stack size caluculation utility guide".
For information on functions and usage of the stack size
caluculation utility (stk32R), see description in the file
"stack size caluculation utility guide".

-zdiv For avoiding the integral zero-division problem of M32R/
ECU series, to generate assembly source with inserting
NOP instructions each after the all of created DIV-
instructions.
Also, it inserts NOP instructions as same in asm functions
too.
In the case of inputting assembly sources to cc32R, it
performs same from assembling by as32R.

-@ Invoking the tool with the -@ option, you can output
messages (which are output to the standard error by
default) to the standard output.

CC32R MANUAL - 23

Chapter 3 Invoking the Compiler

3.2.2 Notes about -rel16 option to be taken when programming

When the option -rel16 is specified, the compiler outputs load/store
instructions by register relative indirect addressing for access to the symbols of
D and B sections located in RAM. Access to symbols are performed in register
relative indirect addressing mode via the fixed register, R12.

Example: Differences in codes output with and without -rel16 option

When -rel16 option is not used When -rel16 option is specified

LD24 R1, #_symbol
LDUB R1, @R1 LDUB R1, @(_symbol-__REL_BASE, R12)

When the option -rel16, pay attention to the precautions below during
programming:

• Be sure to set the R12 register and define the "__REL_BASE" symbol.
When using this option, you need to set the R12 register and
define the "__REL_BASE" symbol at the beginning of the
program. Generally, these may be set in the startup program
start.ms. (Refer to Section 7.3, Programming Start-up Program.")
The values set for the R12 register and "__REL_BASE" symbol
must be the start addresses of the D and B sections plus 32
Kbytes. For example, if linked in order of D and B sections, with
the total area of 64 Kbytes and the start address of D section =
h'20000, then you set the value h'28000. (See Figures 3.1 and 3.2.)

• Make sure the total size of data in D and B sections is within 64 Kbytes.
When using this option, make sure the total size of data in D and
B sections is within 64 Kbytes, and that the data are located at
contiguous addresses. If the total size of data in D and B sections
exceeds 64 Kbytes, do not specify this option. Otherwise, a
"relocation size overflow" or another error may occur, because
the 16-bit displacement is exceeded. (See Figures 3.1 and 3.2.)

• Prototype declaration of const-qualified variables.
When const-qualified variables (located in D section) are going to
be referenced in another source, a prototype accompanied by
const must always be declared.

Example: When a variable declared in program 'b' is referenced
in program 'a'.

Program ‘b’

 int aa;

const int bb;

void test(void)

{

 aa = 0;

 bb = 1;

 foo();

}

Program ‘a’

extern int aa;

extern const int bb; /* const */

void foo(void)

{

 if (aa > bb)

 else

}

CC32R MANUAL - 24

Chapter 3 Invoking the Compiler

• Do not destroy the content of the R12 register.

Because the R12 register is used, from start to end of the

program, as the Rsrc register for register relative indirect

addressing, be careful not to destroy the content of the R12

register.

Figure 3.4 Values to be set in R12 and __REL_BASE

 ADDI R6, #-1

 BGTZ R6, loop1

loop_cntl:

 .export __REL_BASE ;Newly added

__REL_BASE .EQU h’28000 ;Newly added

 LD24 R12, #__REL_BASE ;Newly added

 BL $_c_main

 .END

Figure 3.5 Setup examples of R12 and __REL_BASE (start.ms)

Address space

Area of D and B
sections Within

64Kbytes

+32Kbytes

Top Address of RAM

Values set in "R12"
and "__REL_BASE"

↓Higher
↓Address

↑Lower
↑Address

CC32R MANUAL - 25

Chapter 3 Invoking the Compiler

3.2.3 Debugging Limitations when Optimize Options Are Specified

The compiler is always specified the function for debugging. Therefore, the

compiler allows for source-level debugging during optimization.However,
unnecessary lines or variables may be deleted or the sequence of evaluation
may be changed as a result of optimization. Therefore, it is only when the
conditions shown below are met that the values of variables can be verified by
the debugger.

This limitation does not apply when optimization is not specified.

• At a breakpoint at the entry of a function, any variable from (1) to (4) shown
below can be checked (“Breakpoint at the entry of a function” is the first
statement in which it is possible to set a breakpoint within the function.):

(1) A global variable
(2) A static-declared global variable used inside that function
(3) A static-declared local variable used inside that function
(4) A function parameter

• At a breakpoint at the exit of a function, any variable from (1) to (3) shown
below can be checked (“Breakpoint at the exit of a function” is the last
statement in which it is possible to set a breakpoint within the function.):

(1) A global variable
(2) A static-declared global variable
(3) A static-declared local variable used inside that function

• At the other breakpoints, any variable from (1) to (2) shown below can be
checked :

(1) A global variable which is type struct, union, or array
(2) A local variable which is type struct, union, or array used

inside that function

CC32R MANUAL - 26

Chapter 3 Invoking the Compiler

3.2.4 "-switch_by_offset" Option

 When the compiler generates a code, using the table jump command for the

switch statement, an offset table excellent in ROM efficiency is created.

[PRECAUTIONS]

The offset table generated when this option is designated can be handled only

up to the range of 32K bytes with the initial case of switch statement as origin.

Accordingly, if such a large switch statement as exceeds 32K bytes is described,

the code may be unable to be generated normally. (There arises overflow in

linking with linker lnk32R). At this time, remove the -switch_by_offset option

for re-compiling effect.

[Format:]

Example)

cc32R [] -switch_by_offset [] filename.c

 Additional designation to cc32R command line option is required at compiling.

[Effect:]

Where the switch statement is generated by the table jump command with the

conventional CC32R, the ROM size can be reduced.

[Actually generated code:]

The following is the branch table of switch statement generated by CC32R with

conventional compatibility and "-switch_by_offset".

• For explanation, only the branch table (address table & jump table) is

 described.

• The top label of statements a, b, c, d shall be L1, L2, L3 and Ld respectively.

• Where the ROM size becomes larger than in linear searching, the linear search

 is used without employing the address table and offset table, but explanation

 is given here on the premise that the branch table is always used.

CC32R MANUAL - 27

Chapter 3 Invoking the Compiler

[Explanation]

The address table generated with conventional compatibility indicates the array

with which the branch addresses are stored. Each element of the array is 32 bits

(4 bytes).The switch statement is branched to the addresses shown by Table

[Expression - 1] after checking to see if the expression value is 1 to 4. If "-

switch_by_offset" is provided at compiling, the address table becomes the offset

table.

The offset table also shows the array, but each element becomes offset (distance

from L1) in place of the branch address, and each element of the array is as

small as 16 bits (2 bytes). The compiler generates a code branched to the address

with the origin (L1) added to the offset value shown in Table [Expression - 1]

for the switch statement.

CC32R MANUAL - 28

Chapter 3 Invoking the Compiler

3.3 Command Line Example

An invocation example of the C compiler is shown here (% is a prompt, <RET>

shows an inputting return key) :

• % cc32R -c -g -v test0.ms test1.c test2.c<RET>

The -c option generates the object module files for test0.ms,
test1.c and test2.c (file.ms is an assembly language source file and
file.c is a C language source file). The name of each object
module file is the name of the source file with the extension
changed to .mo (test0.mo, test1.mo, test2.mo).

With -g, debug information is included in each object module
generated by the compiler.

The -v option allows verification on the screen, at the start of
each phase of the C compiler.

CC32R MANUAL - 29

Chapter 3 Invoking the Compiler

3.4 The other notes

• Stack frame capacity limit (limit to size of auto variable)
The maximum stack frame that can be assigned per function is
32,764 bytes. An error results if you attempt to secure more stack
frame, and no code is generated. Data over 32,764 bytes should
be secured as static or global data.

Code example that an error arises :
void foo(void)
{

 char x[32765]; /* Over 32,764 byts */
 x[0] = 0;

}

• Use of the run-time library for assigning or returning struct
In your program, if assignment of a structure or a function which
returns a structure as a return value is written, an error may
arises at link-time. (The linker error message “error: external
symbol not defined: $_100_builtin_memcopy” is displayed
to show that the $_100_builtin_memcopy function does not exist.)
This occurs because the assignment and setting of the return
value are performed by the run-time library function
$_100_builtin_memcopy .
The $_100_builtin_memcopy function is included in the ANSI-C
standard library (m32RcR.lib,etc ...) for stack-passing parameters,
or m32RcR.lib,m32RcRM.lib,m32RcRL.lib for register-passing
parameters). Specify either one of these libraries when linking.

Code example
that an error arises at link-time :
struct s {

char xx[100];
}x,y;

void foo(void)
{

x = y; /* assignment of a structure */
}

• Notes on data access
The C compiler generates the code by selecting the optimum
instruction for the size of the data type being accessed.
Therefore, if your program attempts to access data that is not
aligned via the pointer, an address exception (AE) arises at run-
time. This may also occur with the type of casting shown in the
example below.

CC32R MANUAL - 30

Chapter 3 Invoking the Compiler

Code example in which an exception may occur :
long *p;
char array[10]; /* mapped to 4-byte boundary address */

void foo(void)
{

p = (long *)&array[1]; /* address not on 4-byte
 boundary assigned as long* */

p = 1; / access using the ST instruction, but as
 address is not on 4-byte boundary,
 an address exception (AE) occurs */

}

• Notes on setting the stack pointer
For loading and storing data on the stack, the C compiler outputs
code for the LD, ST, LDH, and STH instructions, etc. Therefore,
when you set a value into the stack pointer in the startup
program or in a user program, be sure to specify an address that
is on a 4-byte boundary. (See the sample startup program in the
“7.3 Programming the Start-up Program”.)If you specify an
address that is not on a 4-byte boundary, an address exception
(AE) may occur when the program is run.

• Calling the floating-point operation function
If you compile a program written in C language that performs a
floating-point operation, there can be instances in which a code is
internally generated that calls the floating-point operation
function (_100_F~). The floating-point operation function is
included in the library files (m32RcR.lib, etc...). With the code for
calling the floating-point operation function generated, an error
results if you don't specify the library files in performing linker.
For this reason, specify the library files in performing linker even
for a program that doesn't use the C's standard library functions.

• The problem that a module name that starts with a numeric turns to "ASM32R_MPRO"
Don't generate an object file whose name starts with a numeric. If
you generate an object file whose name starts with a numeric, the
module name becomes "ASM32R_MPRO", and module names
duplicate when generating a library, as a result, library files
cannot be generated. Also, the module name within a map file
generated by use of map32R becomes "ASM32R_MPRO".

Example:
(1) cc32R -o 1234.mo file.c
(2) as32R -o 1234.mo file.ms

• Notes about MS-Windows(PC) version
(1) Floating-point numbers

For the floating-point value -0.0, the code for +0.0 are output
(2) Path delimiter

The path delimiter symbol is the backslash (\).
However, to specify the path for included files specified in
the source file, you can use either \ or /. In this case, / is
only recognized when input and is internally replaced by \.

CC32R MANUAL - 31

Chapter 3 Invoking the Compiler

Therefore, the path delimiter output into warning/error
messages, listing files, and debugging information is always
\.

(3) Upper/lower case in a file name
A file name is upper/lower case insensitive .
For example, “file.c”, “FILE.C” and “FiLe.C” are all process
-ed as the same file name.
However, upper/lower case in the generated file is effective
for the long file names.

(4) Specifying Path
You do not use the relative path name with a drive letter.

CC32R MANUAL - 32

Chapter 4 C Programming Language Specification

Chapter 4

C Programming Language Specification

This chapter describes basic specifications of the ANSI-C programming

language processed by the compiler (e.g., the elements of the C programming

language and the structure of a C language source program).

4.1 Token

A token is the minimal lexical element of the C language text for manipulation

and analysis by the compiler. The compiler manipulates and analyzes the

following elements as tokens in conformance with the ANSI Standard :

• Keywords (see 4.1.1)

• Identifiers (see 4.1.2)

• Constants (see 4.1.3)

• String Literals (see 4.1.4)

• Operators (see 4.1.5)

• Punctuators (see 4.1.6)

• Comment (see 4.1.7)

4.1.1 Keywords

A keyword is used as a reserved word in the C language. In translation phases

of the compiler, the words in Figure 4.1 are keywords.

auto break case char

const continue default do

double else enum extern

float for goto if

int long register return

short signed sizeof static

struct switch typedef union

unsigned void volatile while

Figure 4.1 Keywords

CC32R MANUAL - 33

Chapter 4 C Programming Language Specification

4.1.2 Identifiers

Identifiers are names listed as follows :

• Function name, Variable name

• Label name

• Tag name of a structure, union or enumeration

• Member name of a structure, union or enumeration

• Macro name

• Object name

• Typedef name

An identifier must begin with either a letter (Table 4.1) or an underscore (_) .

The other part can contain letters, digits (Table 4.1), and underscores. The first

240 characters are significant for an identifier.

Table 4.1 Letters and Digits

Called Character(s)

Letters A B C D E F G H I J K L M N O P Q R S T U

V W X Y Z

a b c d e f g h i j k l m n o p q r s t u

v w x y z

Digits 0 1 2 3 4 5 6 7 8 9

Alphanumerics Both letters and digits

A region of program text in which identifiers can be used (called “scope”) is

shown below (Table 4.2) :

CC32R MANUAL - 34

Chapter 4 C Programming Language Specification

Table 4.2 Scopes of Identifiers

Identifier Scope

• A variable declared outside Each of the identifiers has “file scope” which

a function begins at its declaration or definition and

• A function prototype terminates at the end of the file.

declaration

• A function definition

A parameter in a function The identifier has “block scope” which

definition begins at the { and ends at the } .

A parameter in a function The identifier has “function prototype scope”.

prototype declaration It is visible only in the function prototype

declaration in which it appears.

A label The identifier has “function scope” which

begins at its declaration or definition and

terminates at the end of the function.

A variable declared inside The identifier has “block scope”.

a block If the identifier is the same as an identifier

outside the current block, in the current block,

the external identifier is invalid. The external

identifier becomes visible after the current

block terminates.

There are four kinds of name spaces of identifiers (see Table 4.3) :

Table 4.3 Name Spaces of Identifiers

Name Space Identifier in the Name Space

Function Name, Variable Name

An identifier which is not any of the identifiers, a

label name, a tag name, and a member name.

Label Name An identifier which is followed by a colon (:) and is in

goto statement.

Tag Name An identifier disambiguated by following any of the

keywords, struct, union, or enum.

Member Name An identifier disambiguated by the type of the

expression used to access the member via a period(.)

or the operator (->).

CC32R MANUAL - 35

Chapter 4 C Programming Language Specification

Identifiers having different name space can have the same name because the C

compiler differentiates between them as described above. The identifiers in the

same space cannot have the same name. For example, the name of a label can

be the same as that of a function. On the contrary, a structure tag and union tag

cannot have the same name .

||||| Note |||||

A key word cannot be used as an identifier (see 4.1.1).

4.1.3 Constants

A constant represents a constant numerical value. It has a type determined by

its form and value, as follows :

• Floating-point constants (See 4.1.3.1.)

• Integer constants (See 4.1.3.2.)

• Enumeration constants (See 4.1.3.3.)

• Character constants (See 4.1.3.4.)

CC32R MANUAL - 36

Chapter 4 C Programming Language Specification

4.1.3.1 Floating-Point Constant

A floating-point constant describes a floating-point number. It consists of a

mantissa (a fractional constant or a digit sequence) , an exponent part, and a

suffix as shown follows :

Example : 1 . 2 3 E 1 0 L

Suffix

Exponent

Mantissa

Table 4.4 Floating-Point Constant Representation

Part Format Description

Mantissa fractional_constant A numeric character string containing a

floating-point constant and a decimal

point. It can be one of the following

types :

integer . fraction Example : 3.12

integer. Example : 123.

.fraction Example : .12

digit_sequence Decimal point is not included.

Example : 123

Exponent e [+|-] exponent

 or

E [+|-] exponent A description to express a constant as the

base 10 exponent. Sign (-, +) can be

omitted. The exponent is decimal

number.

Suffix L, l Indicates a long double type constant

F, f Indicates a float type constant

Without A double type constant

Note) [] encloses optional text. | divides choices (Select one).

If the mantissa is a fractional_constant (a digit sequence containing a floating-

point) , it is clear that the number is a floating-point constant and the exponent

part can be omitted. If the mantissa consists of only digit_sequence, the number

is either a floating-point constant or a different constant, and the exponent part

is required if it is a floating-point constant.

• Expression when the mantissa is fractional_constant :

CC32R MANUAL - 37

Chapter 4 C Programming Language Specification

fractional_constant [Exponent] [Suffix]

• Expression when the mantissa is numerical character string :

digit_sequence Exponent [Suffix]

Note) The content in [] can be omitted.

The examples in Table 4.5 show floating-point constant expressions.

Table 4.5 Expression of Floating-Point Constant

Example Description

1.0 When the mantissa is a floating-point constant (including a

decimal point), the exponent part can be omitted.

10E3 When the mantissa is a numerical character string (not

including a decimal point), the exponent part cannot be

omitted.

1.0E1L If an L or l is suffixed to the end of the data, it becomes a long

double type data.

1.0E1f If F or f is suffixed to the end of the data, it becomes float type

data.

1.0E1 If F or f or L or l is not used, the data becomes double type

data.

.1E1 The number can start with a decimal point.

4.1.3.2 Integer Constant

The integer constant is used to express integer. It starts with a number and

does not include exponent and fractional parts. The following three radix

numeration systems can be used :

CC32R MANUAL - 38

Chapter 4 C Programming Language Specification

Table 4.6 Expression of Integer Constant

Radix Consists of Base and Integer Constant.

Decimal number Starts with a number other than 0 followed by

numbers.

Numbers : 0 1 2 3 4 5 6 7 8 9

Hexadecimal number A hexadecimal number starting with 0x or 0X.

Hexadecimal numbers : 0 1 2 3 4 5 6 7 8 9

a b c d e f or A B C D E F

Octal number An octal number starting with 0.

Octal numbers : 0 1 2 3 4 5 6 7

When the character u or U is suffixed to an integer constant, the constant is

treated as an unsigned constant. If neither character is suffixed, the constant is

treated as a signed constant. When the character l or L is suffixed to an integer

constant, the constant is treated as a long type constant. If neither character is

suffixed, the constant is treated as an int type constant.

Table 4.7 Integer Type Constant Data Type

Following constant Process by C compiler (data type)

u or U suffixed Unsigned constant

No u or U suffix Signed constant

l or L suffixed long type constant

No l or L suffix int type constant

Table 4.8 shows examples of integer type constant expression.

Table 4.8 Description of Integer Type Constant

Example Description

123 Signed int type decimal number 123

123u Unsigned int type decimal number 123

123l Signed long type decimal number 123

123ul Unsigned long type decimal number 123

0123 Signed octal number 123

0x123 Signed hex. number 123

CC32R MANUAL - 39

Chapter 4 C Programming Language Specification

4.1.3.3 Enumeration Constant

The enumeration constant is a member of type enum and has type int.

Example : enum rgb{ red, green, blue }

The red, green and blue are enumeration constant.

4.1.3.4 Character Constant

The character constant represents the character or escape sequence and is

enclosed by single quotation marks. To include a quotation mark (') itself in a

character constant, prefix the mark \' to “ ' ” (\'). The following escape

sequences can be used.

\' \" \\ \? \a \b \f \n \r \t \v

Figure 4.2 Escape Sequence (Character Constant)

To express a hexadecimal number prefix \x, to express an octal number, \.

Valid hex. and octal number consists of up to 3 figures.

Table 4.9 describes how to write character constant.

Table 4.9 Example of Character Constant Expression

Example Description

'\' ' Escape sequence. Represents single quote.

'\n' Escape sequence. Represents line feed.

'\0' Octal number. Represents character code 00 (hex).

'\x7' Hexadecimal number. Represents character code 07 (hex).

'\xFF' Hexadecimal number. Represents character code FF (hex).

4.1.4 String Literals

Enclose a string literal with double quotations (“). The escape sequences shown

in Figure 4.3 can be used in a string literal.

\' \" \\ \? \a \b \f \n \r \t \v

Figure 4.3 Escape Sequence (String Literal)

CC32R MANUAL - 40

Chapter 4 C Programming Language Specification

To express a hexadecimal number, use the prefix \x; to express an octal

number, use \.

4.1.5 Operators

An operator performs an operation. Figure 4.4 shows the operators that are

available.

[] () . ->

++ -- & * + - ~ ! sizeof

/ % << >> < > <= >= == !=

^ | && || ? :

= *= /= %= += -= <<= >>= &= ^= |= ,

Figure 4.4 Operators

“[“ and “]”, “(“ and “)”, “?” and “:” are used as a pair (an expression may be

sandwiched between them.)

Table 4.10 describes the operators and their functions.

Table 4.10 Operators (1/2)

Operator Description

[] Array reference

() Casting (e.g., (int))

. Structure/union reference

-> Structure/union pointer reference

++ Pre-increment/post-increment

-- Pre-decrement/post-decrement

& Bitwise AND

Address of (as an unary operator)

* Binary Multiply

Pointer dereference (as an unary operator)

+ Binary Add

Unary add (as an unary operator)

- Binary Subtract

Unary Negate (as an unary operator)

~ Bitwise complement

CC32R MANUAL - 41

Chapter 4 C Programming Language Specification

Table 4.10 Operators (2/2)

Operator Description

! Logical Negate

sizeof Returns the operand size in bytes

/ Divide

% Modulo

<< Left shift in bytes

>> Right shift in bytes

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal

== Equal

!= Not equal

^ Bitwise XOR

| Bitwise OR

&& Logical AND

|| Logical OR

?: Conditional expression

= Assignment

*= Multiply and assign

/= Divide and assign

%= Take modulo and assign

+= Add and assign

-= Subtract and assign

<<= Shift left and assign

>>= Shift right and assign

&= Bitwise AND and assign

^= Bitwise XOR and assign

|= Bitwise OR and assign

, Evaluate from left of a comma to right and assume the

rightmost value.

CC32R MANUAL - 42

Chapter 4 C Programming Language Specification

4.1.6 Punctuators

Punctuators direct other tokens or specify a range. The punctuators in Table

4.11 are available.

Table 4.11 Punctuators

Punctuators Applications

[] Declaration of array.

() Declaration of function or variable.

{ } Member declaration of structure or union.

Punctuation of initial value.

* Declaration of pointer.

, Punctuation of initial value. Punctuation of parameter

of function.

: Declaration of bit field. Punctuation of label.

= Start of initial value.

; End of declaration or statement.

... Declaration of prototype of function (used when the

number of parameters is variable).

“[“ and “]” , “(“ and “)”, “{” and “}” are used as a pair (An expression may be

sandwiched between them.).

A punctuation character can be recognized as an operator depending on how it

is written.

4.1.7 Comment

 A comment is text, though embedded in a program,that is not processed by

the compiler.It starts with /* and ends with */.A comment cannot be nested.

 To describe a comment in Japanese, Use the character code that designated it

to M32RKIN environment variable. However, when the M32RKIN environment

variable is undefined, use EUC (extended UNIX code) for EWS-version

CC32R; or use shifted JIS code for MS-Windows(PC) version CC32R.

 The compiler also allows C++ like comments to be written in the source pro-

gram. A comment can start from "//."

Example:

void foo(void)

{
char x[3];
x[0] = 0; // Comments can be written in this manner

}

CC32R MANUAL - 43

Chapter 4 C Programming Language Specification

4.2 Data Types

4.2.1 Types and Type Specifiers

The type (data type) determines the meaning of a value stored in an object or a

return value from a function. The types supported by the C compiler and their

type specifiers (identifiers in C) for declaration are:

• Basic types

Character types char (=signed char), unsigned char

Signed integer types char (=signed char),

int (=signed int),

short (=signed short, signed short int),

long (=signed long, signed long int)

Unsigned integer types unsigned char, unsigned int,

unsigned short (=unsigned short int),

unsigned long (=unsigned long int)

Floating types float, double, long double

• The others

Array types

Structure types struct

Union types union

Enumeration types enum

Void type void

Pointer types

Function types

signed and unsigned are type specifiers that indicate whether an entity is

either signed or unsigned. As for an array, pointer, or function assigned no

type specifier, you specify that either an object or a function is of the type you

declare in a fixed format in ANSI-C.

As for a type specifier that is alternatively represented by (= alias) such as (=

signed char), the C compiler translates the alternative representation as

having the same meaning. In ANSI-C, the definition of signed or unsigned

integer type includes the character types (see Table 4.12), so both char and

unsigned char are given in the above list.

CC32R MANUAL - 44

Chapter 4 C Programming Language Specification

||||| Note |||||

A char type data without signed or unsigned specification is recognized as a

signed char data.

An int type data without signed or unsigned specification is recognized as a

signed int data.

A long int type data without signed or unsigned specification is recognized as a

signed long data.

A short int type data without signed or unsigned specification is recognized as a

signed short data.

A enum type data is a signed int type data.

4.2.2 Types

Types are classified into several groups according to their properties or

standpoints. For example, the integer types (including the character types), the

floating types, and the pointer type are generically called scalar types. Such

groups are shown in Table 4.12 and in Figure 4.5, and other representations of

types are shown in Table 4.13. This manual uses these terms to give

explanations in some instances.

Table 4.12 Types

Called Types

Character types char, unsigned char

Signed integer types char, int, short, long

Unsigned integer types unsigned char, unsigned int,

unsigned short, unsigned long

Floating types float, double, long double

Basic types signed integer types, unsigned integer types,

floating types

integer types signed integer types, unsigned integer types,

enumerated types (enum)

Arithmetic types integer types, floating types

Scalar types integer types, floating types, pointer types

Aggregate types structure types (struct), array types

Derived declarator types array types, pointer types, function types

Derived types array types, pointer types, function types,

structure types (struct), union types (union)

CC32R MANUAL - 45

Chapter 4 C Programming Language Specification

Table 4.13 Type Representations

Called Description

Composite types They are constructed from two types which are

compatible.

Incomplete types They describe object but lack information

needed to determine the sizes of objects (e.g.,

an array type unspecified its size).

Object types Describe objects without function types.

Function types Describe functions. They determine types of

the return value and parameters, and the

number of parameters.

Example : char *(*func1)(int,int)

func1 is the pointer to a function which

returns “a pointer to char” and has two

int type parameters.

Qualified types Types with any type qualifier (const or

volatile).

Unqualified types Types without any type qualifier (const or

volatile).

Top type In a derived type, the top type is outermost

derivation represented by type specifiers and

qualifiers.

In a no derived type, the top type is itself.

Example : const int *i;

This means that i is “pointer to qualified

int”. The top type is “pointer type”

and is not “qualified type” or “int type”.

CC32R MANUAL - 46

Chapter 4 C Programming Language Specification

 char int short long

pointer
types

 signed integer types

unsigned char unsigned int unsigned short unsigned long

 unsigned integer types

 character types

float double long double

 floating types

enum

enumerated

Note) Underlined type specifiers are basic types.

 <Scalar Types>

 <arithmetic types>

array typesstruct

structure
 types

 <aggregate types>

union

 union types

<integral types>

void

function types

 <derived declarator types>

 <derived types>

type

Figure 4.5 Types

CC32R MANUAL - 47

Chapter 4 C Programming Language Specification

4.2.3 Data Size and Range of Basic Types

The size and limits (maximum and minimum values that can be expressed) of

basic type data are as shown in Table 4.14. For further information, see Chapter

5 “Internal Data Representation”.

Table 4.14 Data Type and Size

Data Type Size Minimum Value Maximum Value

char
1-byte(8-bits)

-128 127

unsigned char 0 255

short
2-byte(16-bits)

-32768 32767

unsigned short 0 65535

int
4-byte(32-bits)

-2147483648 2147483647

unsigned int 0 4294967295

long
4-byte(32-bits)

-2147483648 2147483647

unsigned long 0 4294967295

float 4-byte(32-bits) 1.17549435e-38F 3.40282347e+38F

double
8-byte(64-bits) 2.2250738585072014e-308 1.7976931348623157e+308long double

4.2.4 Data Format for Floating-Point Constants

Floating type data is assumed to be in the IEEE-754 format. IEEE-754 is the

internal representation of real numbers in the form specified by Institute of

Electrical and Electronics Engineers (IEEE). For internal representation of

floating type data, see Chapter 5, “Internal Data Representation”.

CC32R MANUAL - 48

Chapter 4 C Programming Language Specification

4.2.5 Type Qualifiers

Type qualifiers (const and volatile) can be added to any data type supported by

the C compiler. The type qualifiers are :

• const The type qualifier indicating that the value of the

object cannot be changed. The value of an object, once

declared by a data type such as const, cannot be

replaced.

Example : const char c=1; ––––– (a)

const char *ptr; ––––– (b)

(a) Variable c is fixed at 1 and cannot be replaced.

(b) The content specified by the pointer ptr is fixed

and cannot be changed. The ptr itself can be

changed.

• volatile The type qualifier implying that the object can be

changed. Once volatile is specified, the C compiler

will not optimize the object and directly outputs

writing and reading processes to the object code.

For example, specifying volatile to an area or a

memory map I/O area suggests that the contents in

that area may be changed.

In the following example, the C compiler does not

perform optimization and outputs objects to the object

codes.

volatile int i;

volatile int j;

j = i;

j = i;

CC32R MANUAL - 49

Chapter 4 C Programming Language Specification

4.2.6 Storage Class Specifiers

Compiler-supported types can be prefixed the following 5 storage class

specifiers. If a variable that appears inside a function body is not specified a

storage class, auto is assumed.

• auto Declares that an object under consideration is of automatic

storage class. You can make this declaration only on an object

within a function, and the object turns effective within a block

only (the part between { and }). When the block finishes, the

storage area is released.

Example : auto int a=1;

a is visible only inside the block in which this

declaration appears.

• extern The object or function declared “extern” is the external storage

class. The extern declaration is to make an object or function

with global declaration visible in the current source file.

Example : extern int val;

The declaration to use in the source file in which

this declaration appears the variable val declared

in another source file.

• static The object or function declared “static” is the static storage class.

It is visible only in the source file in which its static declaration

appears.

Example : static void f(int);

The prototype declaration to use only in the source

file in which this declaration appears the function

f declared in the same source file.

• register The object declared “register” is the register storage class. The

register declaration requires the C compiler that an object that

will be accessed frequently can be faster accessed. “register” can

be declared for only an object inside a function. The object

declared “register” has block scope (visible only between { and

 }). Such object is called “register variable”.

Example : register reg;

The variable reg is used frequently.

CC32R MANUAL - 50

Chapter 4 C Programming Language Specification

• typedef By using “typedef”, you can define any name for a type. (In the

ANSI standard, “typedef” is a storage class specifier for

convenience. However, no storage is created.)

Example : typedef char * STR;

STR can be used as a type specifier. The type of an

object declared by using STR is a pointer to char.

(i.e., STR str; equals char *str; .)

CC32R MANUAL - 51

Chapter 4 C Programming Language Specification

4.3 Conversions

4.3.1 Explicit Conversions (Cast)

You can temporarily convert (cast) the type name of an object or a function by

use of the cast operator.

The syntax for a cast is show in Figure 4.6. A cast to an lvalue is not allowed.

Syntax (new_type_specifier) identifier

where:

new_type_specifier : Either a scalar type or void.

identifier : An identifier declared as a scalar type.

Example char *str = "abc";

int *a = (int *)str;

In order to substitute the operation value of int type a for

double type x, it convert into a double type.

Figure 4.6 Syntax of Explicit Conversion (Cast)

Although a type is converted to its compatible type, the value in the object or

from the function is unchanged. However, making conversion to an

incompatible type changes the value as shown in Table 4.15 and 4.16 in 4.3.2

“Implicit Conversion”.

CC32R MANUAL - 52

Chapter 4 C Programming Language Specification

4.3.2 Implicit Conversions

Even though no an explicit conversion is specified, a conversion may be done

by the C compiler. This is termed “implicit conversion”, and includes the

following :

• Conversion of enumerations

A constant declared as enum is assumed as int.

• Conversion of characters and integers

If an int can be represented all values of the original type, the

value is converted to an int. Otherwise, it is converted to an

unsigned int. This implicit conversions termed “integral

promotion”.

• Conversion of signed/unsigned integers

Results of conversions from a signed integral type to an

unsigned integral type or vice versa are as shown in Table 4.15.

Table 4.15 Signed/unsigned integers Conversions

Original New Type Value after Conversion

(after conversion)

Positive signed Unsigned integer has Unchanged.

integer equal or greater size

Negative signed Unsigned integer has “The original value +

integer equal size (the maximum value for unsigned type

+1)”

Unsigned integer has First, the original value is promoted

greater size to the signed integer corresponding to

the unsigned integer.

Then, the value is converted to unsigned

by : “the result in promotion +

(the maximum value for the unsigned

 integer type +1)”.

Unsigned integer Signed integer has The low bits in the original value will be

equal size copied to the shorter signed integer.

(The highest bit means a sign).

Signed/unsigned Signed integer has The low bits in the original value will be

integer shorter size copied to the shorter signed integer.

(The highest bit means a sign).

Unsigned integer has The positive remainder on :

shorter size “The original value ÷ (1 + the maximum

value for the new type)”

CC32R MANUAL - 53

Chapter 4 C Programming Language Specification

• Floating and integral

Results of conversions from a floating type to an integral type,

vice versa and from a floating type to another floating type are as

shown in Table 4.16.

Table 4.16 Floating and Integral Conversions

Original New The Value after Conversion

Integral type Floating type It is unchanged if the value can be

represented with the new type.

It is rounded to the nearest value which

can be represented with the new type if

the value cannot be represented exactly.

Floating type Integral type The fractional part is discarded.

Floating type Shorter floating type It is unchanged if the value can be

represented with the new type.

It is rounded to the nearest value which

can be represented with the new type if

the value cannot be represented exactly.

float double or long double Unchanged.

double long double Unchanged.

• Usual arithmetic conversions

In performing a binary operation, the types of the operands are

converted implicitly in order to yield a common type (as shown

in Table 4.17) , which is also the type of the operation result.

These are termed “usual arithmetic conversions”.

CC32R MANUAL - 54

Chapter 4 C Programming Language Specification

Table 4.17 Usual Arithmetic Conversions

Either operand The other operand Usual arithmetic conversion

long double non long double The other operand is converted to long

double.

double non double The other operand is converted to

double.

float non float The other operand is converted to float.

unsigned long non unsigned long The other operand is converted to

unsigned long.

long unsigned int If the other operand is represented in

long, it is converted to long. Otherwise,

both operands are converted to

unsigned long.

long non long The other operand is converted to long.

unsigned int non unsigned int The other operand is converted to

unsigned int.

Otherwise in this table, both operands have type int.

||||| Note |||||

Be warned that implicit conversions are yield, when you write a program.

For example, as shown in the example given below, when some integer which

has type unsigned int (its value will be equal to or greater than 0) is compared

to the data -1 which is assumed int, the comparison result is that the integer is

greater than the -1 in logical, however a converse judgement is actually made.

unsigned int u;

if(u>(-1)){ /* expected relation yields true in logical */
 printf("True"); /* if true, this printf is executed */
}else{
 printf("false"); /* in actual, the relation yields false and

this printf is executed */
}

This is because following implicit conversions are executed.

(1) According to usual arithmetic conversions, the -1 (type int) is converted to

type unsigned int.

(2) According to signed/unsigned integers conversions, when (1), the -1 is

converted to 0xffffffff calculated from “the original value + (the maximum

number for unsigned type +1)” shown in Table 4.15 , that is,

“-1 + 0xffffffff, which is the maximum value for int +1”.

CC32R MANUAL - 55

Chapter 4 C Programming Language Specification

4.4 Preprocessing Directives

A preprocessing directive starts with # and processed by the C compiler in the

C preprocessor phase. Preprocessing directives include the commands shown

in Table 4.18.

Table 4.18 Preprocessing Directives

Preprocessing Directive Description

#include Insert file

#define Defines macro

#undef Undefines macro

#if Executes conditional compile

#else Executes conditional compile

#endif Ends conditional compile

#elif Executes conditional compile

#ifdef Executes conditional compile

#ifndef Executes conditional compile

#line Specifies line

#error Issues an error message and pauses process

The macros shown in Table 4.19 are predefined (reserved) .

Table 4.19 Predefined Macros

Predefined Macro Description

_ _LINE_ _ The line number of file being compiled

_ _FILE_ _ The name of the file being compiled

_ _STDC_ _ 1 when ANSI compatible

_ _DATE_ _ Current compiling date

_ _TIME_ _ Current compiling time

_ _M32R_ _ The target microprocessor is M32R

The operators shown in Figure 4.7 can be used in a constant expression.

CC32R MANUAL - 56

Chapter 4 C Programming Language Specification

() & * + - ~ !

sizeof / % << >> < > <=

>= == != ^ | && || ?

:

Figure 4.7 Operators that can be used in a constant expression

4.5 System Reserved Names

The names in Figure 4.6 are reserved during development environment of the

M32R and can be used in a C program.

Syntax _Number_Name

Number : 3-digit decimal number

Name : Character string consisting of alphanumerics and

 underscore(s) (see 4.1.2.)

_ : An underscore

Example

_900_main, _900_INITLIB

Figure 4.8 System reserved names

Reserved names are classified into the three groups. Of these names, the names

numbered 000-099 and 901-999 can be used in most programs. The 3 groups are:

• System names reserved for operating systems (000-099)

System names reserved for variables and functions

offered by different operating systems (OS) and

therefore, may vary from OS to OS. These names are

used to interface with a particular OS.

• System names reserved for languages and libraries (100-900)

These names are used by development support tools

such as languages and libraries. Do not use these

names in a program because they may be used by

language processing and libraries. These names are

used in the C standard libraries.

CC32R MANUAL - 57

Chapter 4 C Programming Language Specification

• Names reserved for user systems (901-999)

These symbols can be used in the user program. By

providing layers in the user system, symbols can be

used without confliction.

The names in the object program that correspond to external definitions and

reference symbols in a C program are the names used in the C program but

have a underscore (_) or dollar mark ($) prefixed to the name. For examples,

the system reserved names shown in Figure 4.6 are expressed as follows when

used in an object file : _ _900_main, _ _900_INITLIB or $_900_main,

$_900_INITLIB.

4.6 Limitations for C Language

The C compiler places various limits on coding as shown in Table 4.15.

Table 4.20 Limitations on C Language Coding (1/2)

Description Items Limits

Preprocessing Nest level by #include statement Practically not

directives limited.

Number of macro identifiers Practically not

limited.

Number of parameters that can be specified by macro definitions Practically not

and macro call limited.

Nesting level of #if, #ifdef, #ifndef, #else and #elif statements Practically not

limited.

Total number of operators and operands that can be specified Practically not

 by #if and #elif statements limited.

Declaration Number of external identifiers Practically not

limited.

Valid Number of identifiers in a block Practically not

limited.

Number of qualifying pointers, arrays and function declarators Practically not

in a declaration limited.

Valid Number of characters in external and internal identifiers Up to 31

and macro names characters

CC32R MANUAL - 58

Chapter 4 C Programming Language Specification

Table 4.20 Limitations on C Language Coding (2/2)

Description Items Limits

Statements and Nest levels of compound statements, iteration structure, Practically not

expressions or selection statements. limited.

Number of case labels in a switch statement Practically not

limited.

Number of parameters in a function definition or function call Practically not

limited.

Others Size of the stack frame that can be allocated per function Practically not

limited.

Number of nests in parentheses Practically not

limited.

Number of initial values that can be defined by a variable Practically not

definition with initialization expression limited.

Length of source program line Up to 512

characters

including line

feed code

CC32R MANUAL - 59

Chapter 5 Internal Data Representation

Chapter 5

Internal Data Representation

This chapter describes memory allocation of C program data for various types.

5.1 Data Representation on Memory

Representation of C language data on memory is determined by the following

items:

• Data size Memory size occupied by data

• Function of data Relationship between data contents on memory (bit

pattern) and C language data value. Defines the

range of value of scalar type data and allocation of

aggregate type data elements.

• Alignment of data (adjusting boundaries)

If a data item is put in a location having an address of

a multiple of an integer, either 2 or 4, there can be

instances in which you can access it quickly, though

this depends on the type of data. This integer is

termed “alignment”. The C compiler allocates data

according to the alignment in compliance with its

type.

A data item whose alignment is an integer n is dealt

with as “n-byte alignment”. In this instance, an

address of a multiple of n is called either “alignment

boundary” or “n-byte boundary”. An n-byte

alignment data item is not allocated across its

alignment boundaries (n-byte boundaries).

CC32R MANUAL - 60

Chapter 5 Internal Data Representation

5.2 Integral Types

Table 5.1 lists integral types used in C language.

Table 5.1 Internal Representation of Integral Types

Type Size Alignment Signed? Minimum Value Maximum Value

char 1byte 1byte Yes -2
7
(-128) 2

7
-1(127)

unsigned char 1byte 1byte No 0 2
8
-1(255)

short 2bytes 2bytes Yes -2
15

(-32768) 2
15

-1(32767)

unsigned short 2bytes 2bytes No 0 2
16

-1(65535)

int 4bytes 4bytes Yes -2
31

(-2147483648) 2
31

-1(2147483647)

unsigned int 4bytes 4bytes No 0 2
32

-1(4294967295)

long 4bytes 4bytes Yes -2
31

(-2147483648) 2
31

-1(2147483647)

unsigned long 4bytes 4bytes No 0 2
32

-1(4294967295)

The MSBNote) of a non unsigned data indicates the sign (0 , positive data or 0, 1,

negative data.). Negative data is expressed as two’s complement.

An unsigned type data has no sign and its value is positive or 0.

Examples of the internal representation are shown in Table 5.2.

Note) MSB = most significant bit

CC32R MANUAL - 61

Chapter 5 Internal Data Representation

Table 5.2 Examples of Internal Representation of Integers

Type Internal Representation Value

char 0000 0001 1

1111 1111 -1

unsigned char 0000 0001 1

1111 1111 255

short 0000 0000 0000 0001 1

1111 1111 1111 1111 -1

unsigned short 0000 0000 0000 0001 1

1111 1111 1111 1111 2
16

-1(65535)

int 0000 0000 0000 0000 0000 0000 0000 0001 1

1111 1111 1111 1111 1111 1111 1111 1111 -1

unsigned int 0000 0000 0000 0000 0000 0000 0000 0001 1

1111 1111 1111 1111 1111 1111 1111 1111 2
32

-1

(4294967295)

long 0000 0000 0000 0000 0000 0000 0000 0001 1

1111 1111 1111 1111 1111 1111 1111 1111 -1

unsigned long 0000 0000 0000 0000 0000 0000 0000 0001 1

1111 1111 1111 1111 1111 1111 1111 1111 2
32

-1

(4294967295)

CC32R MANUAL - 62

Chapter 5 Internal Data Representation

5.3 Floating Types

Table 5.3 shows internal representation of floating type data.

Table 5.3 Internal Representation of Floating Types

Type Size Alignment Signed? Minimum Value Maximum Value

float 4bytes 4bytes Yes 1.17549435e-38F 3.40282347e+38F

double 8bytes 4bytes Yes 2.2250738585072014e-308 1.7976931348623157e+308

long double 8bytes 4bytes Yes 2.2250738585072014e-308 1.7976931348623157e+308

A floating-point number is expressed in IEEE standard format. Floating type is

expressed in IEEE single-precision format (32 bits); double and long double

types in IEEE double-precision format (64 bits). Figure 5.1 shows these internal

representations.

• float

0 1 8 9 31

Exponent Mantissa

 Sign

• double, long double

0 1 11 12 63

Exponent Mantissa

 Sign

Sign : Indicates the sign of floating-point number. When 0,

indicates positive. When 1, indicates negative.

Exponent : Indicates the characteristic of the floating-point number as

a power of 2.

Mantissa : Indicates the effective value of the floating-point number

(binary).

Figure 5.1 Internal Representation of Floating Types

CC32R MANUAL - 63

Chapter 5 Internal Data Representation

Table 5.4 shows examples of internal representation of floating type data.

Table 5.4 Examples of Internal Representation of Floating Type Data

Type Internal Representation Value

float 0011 1111 1000 0000 0000 0000 0000 0000 1.0

0011 1111 0100 0000 0000 0000 0000 0000 0.75

double, long double

0011 1111 1111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1.0

0011 1111 1110 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0.75

CC32R MANUAL - 64

Chapter 5 Internal Data Representation

5.4 Arrays

The elements of array type data are continuously allocated to a series of

memory locations. The size of array type data is “the size of array element × the

number of elements”. The alignment of the array type data is the same as that

of the data type of array element. The examples show the following internal

presentation of array type data and their alignment :

• Example 1

Coding char a[5];

Internal
Representation a[0]

5 bytes

a[1] a[2] a[3] a[4]

Alignment a is 5 bytes (1 byte x 5). Since the data type of the array

element is char, the alignment is also char type

alignment (1).

• Example 2

Coding int *b[3];

Internal
Representation

12 bytes

b[2]b[1]b[0]

Alignment b is 12 bytes (4 bytes x 3). Since the data type of the

array element is pointer, the alignment is also pointer

type alignment (4).

CC32R MANUAL - 65

Chapter 5 Internal Data Representation

• Example 3

Coding char c[3][2];

Internal
Representation

6 bytes

c[0][0] c[0][1] c[1][0] c[1][1] c[2][0] c[2][1]

Alignment c is 6 bytes (1 byte x 2 x 3). Since the data type of array

element is char, the alignment is also char type

alignment (1).

5.5 Structures

The member data of structure type is allocated to continuous locations in the

order of member declaration. Particular allocation rule applies to bit-field

members (see 5.9 “Bit-Fields”).

The alignment of structure type data is determined by the data type alignment

of that member, i.e., the largest alignment. The size of a structure is, in general,

the sum of the sizes of that member. Exception: when allocating members of

structure, 1-3 bytes of gap may be inserted after the end location of the

preceding member due to alignment for each member.

Since the alignment of a structure type is equal to the largest alignment in the

member, if the end location of the last member is at an address which does not

match the alignment, the location is assumed to end at the address which

matches the alignment. Therefore, the size of a structure type is always a

multiple of the alignment. Examples of internal presentations of structure type

data and their alignment are shown in Examples 1 to 4 :

CC32R MANUAL - 66

Chapter 5 Internal Data Representation

• Example 1

Coding struct s1{

char a;

char b[2];

char c;

}x1;

Internal
Representation

4 bytes

x1.a x1.b[0] x1.b[1] x1.c

Alignment Since alignment of each member is 1 byte, total

alignment is also 1 byte. The size of a structure is 4

bytes.

• Example 2

Coding struct s2{

char a, b;

short c;

char *d;

}x2;

Internal
Representation

8 bytes

x2.a x2.b x2.c x2.d

Alignment Since a member has 4-byte alignment pointer type, the

alignment of the structure is 4 bytes.

CC32R MANUAL - 67

Chapter 5 Internal Data Representation

• Example 3

Coding struct s3{

char a;

int b;

}x3;

Internal
Representation

3 bytes

8 bytes

x3.a x3.b

Alignment Since a member has 4-byte alignment int type, the

alignment of the structure is 4 bytes. Since 3 byte gap is

used for alignment of member b, the total size is 8

bytes.

• Example 4

Coding struct s4{

short a;

char b[3];

}x4;

Internal
Representation x4.b[0] x4.b[1] x4.b[2]

1 byte

6 bytes

x4.a

Alignment Since a member has 2-byte alignment short type, the

alignment of the structure is 2 bytes. Since the location

of the last member ends at odd byte, a 1 byte of

memory space is added and the size becomes 6 bytes.

CC32R MANUAL - 68

Chapter 5 Internal Data Representation

5.6 Unions

The data of members of union are assigned the same address. The alignment of

union type data is the maximum value of the alignment of the data type of that

member. The alignment of entire union is either 4, 2 or 1 byte(s) depending on

the largest alignment among the members.

The size of a union is the maximum size of a member. If the alignment of the

union is 2 bytes or 4 bytes and the largest value is not a multiple of alignment,

the area of the union is set to a multiple of the alignment. The size of the union

is always a multiple of the alignment.

Examples 1 to 3 show the internal presentation of union type data.

• Example 1

Coding union u1{

char a;

char b[3];

}x1;

Internal
Representation x1.a

x1.b[0] x1.b[1] x1.b[2]

3 bytes

Alignment The alignment of each member is 1 byte and therefore

the alignment of the entire union is 1 byte. The size is 3

bytes.

CC32R MANUAL - 69

Chapter 5 Internal Data Representation

• Example 2

Coding union u2{

char a;

int b;

short c;

}x2;

Internal
Representation

x2.c

x2.b

x2.a
4 bytes

Alignment One member has 4-byte alignment and therefore the

alignment of whole union is 4 bytes. The size is 4

bytes.

• Example 3

Coding union u3{

short a;

char b[3];

}x3;

Internal
Representation

x3.b[0] x3.b[1] x3.b[2] 1 byte

x3.a
4 bytes

Alignment One member has 2-byte alignment and therefore the

alignment of whole union is 2 bytes. Since the size of

the member having the largest location is odd byte, a 1

byte of memory space is added and the size becomes 4

bytes.

CC32R MANUAL - 70

Chapter 5 Internal Data Representation

5.7 Enumeration Types

The internal representation of an enumeration type is the same as that for an int

type.

Table 5.5 Internal Representation of Enum Type

Type Size Alignment Signed? Minimum Value Maximum Value

enum 4bytes 4bytes Yes -2
31

(-2147483648) 2
31

-1(2147483647)

The value of the enumeration type member's name starts with 0 and subsequent

integers in that order with 0 given to the member which first appears.

• Example enum{ a, b, c }

The value of the members: a = 0, b = 1, c = 2

CC32R MANUAL - 71

Chapter 5 Internal Data Representation

5.8 Pointers

The value of a pointer type data represents the address of the location at which

the data or function is stored. The pointer type data is 4 bytes.

Table 5.6 Internal Representation of Pointer Type

Type Size Alignment Signed? Minimum Value Maximum Value

Pointer 4bytes 4bytes No 0 2
32

-1(4294967295)

4 bytesPointer address

data

Figure 5.2 Pointer Type Data

||||| Note |||||

The C compiler treats pointer type data as unsigned data. To use pointer type

data as a signed logical address value, first convert the data into an int type.

CC32R MANUAL - 72

Chapter 5 Internal Data Representation

5.9 Bit-Fields

A bit-field is a set of bits. Members in a structure or union have data in the

form of bit-field. When declaring a bit-field, specify the field width (number of

bits).

The bit-field data are stored into the byte (8 bit), half word (16 bit) or word (32

bit) memory area in the order which they declared.

5.9.1 Data Type for Bit-Field

Valid bit-field data types can be signed or unsigned, char, short, int or long

types.

||||| Note |||||

ANSI-C allows only the int (signed int or unsigned int) for bit-field data. This

means that a program using char or short type data may not be processed by

compilers other than CC32R.

Before being used, a bit-field is expanded to data of the size of the type of which

it is declared. The specified bit-field width is allocated with the expanded data

bits, low-order bit first. The high-order bit, the expanded field, is set as follows

depending on whether the bit-field is signed or unsigned.

• Unsigned bit-field The high-order bit is set to 0 during promotion

(zero extension).

• Signed bit-field The high-order bit is set to the MSBNote) of the

bit-field (sign extension).

For example, see “char member:2” in Figure 5.3, when using a char type bit-

field whose width is declared as 2 bits, high-order 6 bits are sign extended to 8

bits and are processed as a 1 byte data. The value of the byte allocated to the

bit-field is “1100 0000”. The upper 2 bits, “11”, are allocated to the member.

IMPORTANT! : A bit-field, though having the same bit pattern, may take on a

different range that it expresses depending on signed or unsigned (see the

example below). So be careful.

Example : char a:4; ––– a ranges between -8 and 7. -1 for 1111.

unsigned char b:4; ––– b ranges between 0 and 15.

 15 for 1111.

Note) MSB = most significant bit

CC32R MANUAL - 73

Chapter 5 Internal Data Representation

bit 7 0

1 byte

for member

bit 7 0

Lower 6 bits are
unknown.

Sign

Assigned Value

1 1

Sign Extension

1 1

1 1 1 1 1 1 1 1

 By the declaration, char member:2,
 the area is gotten as shown below :

 When member is referenced,
 (such as char s= abc.member),
 the bit field is sign extended.

 If -1 is assigned to member:

Figure 5.3 Example of Internal Representation of Bit-Field

||||| Note |||||

The behavior of a bit-field may depend on an implementation. So be careful of

the following in transporting an application or the like :

• int

In ANSI-C, a bit-field declared with “signed int” is sign-extended, whereas

whether a bit-field declared with “int” is zero-extended or sign-extended is

indeterminate. Thus there can be a chance for a bit-field declared with “int”,

though holding a signed data item, to be zero-extended depending on a com-

piler used.

struct b1 {

signed int a:4;

int b:4;

}x;

x.a=-1; /* The value stored in x.a becomes -1. */

x.b=-1; /* The value stored in x.b is indeterminate. It correctly becomes -1

 by sign-extension, but becomes 15 by zero-extension. */

• signed int

In ANSI-C, a bit-field declared with "signed int" is sign-extended. Thus specify-

ing 1 for the field width allows the value to range between -1 and 0, not between

0 and 1.

singed int c:1; /* c can take on a range between -1 and 0. */

CC32R MANUAL - 74

Chapter 5 Internal Data Representation

5.9.2 Packing and Alignment

The size of the type specifiers that can be used for bit-fields is signed or

unsigned 1 byte (8 bits, char), 2 bytes (16 bits, short) and 4 bytes (32 bits, int or

long).

Allocation of a bit-field to a memory location is shown in examples below :

• Size of the alignment boundary at location.

Memory space to accommodate all members are reserved in

units of size (1, 2, and 4 bytes) denoted by the type specifiers. For

example, memory space is divided in 4 byte locations in the case

where the structure is composed of int type bit-fields.

• Bit-field is packed into the memory space denoted by the type specifier.

A series of bit-fields are packed into a unit memory space (1, 2 or

4 bytes) as long as they can go. (See Example 1.) For example, an

int type structure consisting of 3 members of field width 4 (12

bits) is completely packed into a 4-byte location (32 bits).

• Arrangement is from upper to lower bits.

A series of fields are placed, in the order of declarations, starting

with the left side (upper bit) to the right (lower bit) of the

memory location whose size is specified by the type specifier.

• No field can exist across an alignment boundary

No bit-field is separated by an alignment boundary. If not all

bits of a field is accommodated in a location, the field is shifted to

the next location, leaving unused bits in the preceding location.

This means that the data string is discontinued. (See Example 2.)

• 0-bit-field is placed on the next location

If the size of the next field is 0 bit, the field is placed at the next

location. (See Example 3.)

• Different alignments for different type bit-fields

If a structure or union is composed of bit-fields (members) of

different types, every time a field is placed, the size of the type

specifier of that bit-field is recognized as the alignment of the

memory location. The size of the alignment of the structure and

union is equal to the size of the type which has the largest size.

(See Example 4.)

CC32R MANUAL - 75

Chapter 5 Internal Data Representation

• Example 1

Coding struct b1 {

unsigned int a:5;

unsigned int b:6;

unsigned int c:7;

} x;

Internal
Representation x.a

0 17 18104 5 3111

x.b x.c

Description The member of structure b1 is stored at the leftmost

and subsequent 4 byte location (size of unsigned int).

• Example 2

Coding struct b2 {

short a:5;

short b:5;

short c:8;

} y;

Internal
Representation y.a

0 15 094 5 1510

y.b y.c

7 8

Description The c of the structure b2 would overflow from the

third location (6 bits) and is allocated a new location.

CC32R MANUAL - 76

Chapter 5 Internal Data Representation

• Example 3

Coding struct b3 {

short a:5;

short b:5;

short:0;

unsigned short c:5;

} z;

Internal
Representation z.a

0 15 094 5 1510

z.b z.c

4 5

Description The 0-bit bit-field (short: 0) of structure b3 is placed

before c which is then allocated a new location.

• Example 4

Coding struct b4 {

short a:5;

short b:7;

int c:9;

int d:9;

short e:6;

short f:8;

 } z;

Internal

Representation

a b c d e f

4 bytes

The area allocated for
4-byte alignment.

4 bytes

75 9 6 89

2 bytes2 bytes 2 bytes

Description In the structure b4, different bit-field type specifiers are

used. The largest type specifier is int and the entire

alignment is 4 byte (32 bit) long. The type specifier for

each field specifies the bytes of the location at which

the bit-field is to be placed. Because c is int type, the

alignment is 4 bytes. The 9 bits can follow b.

CC32R MANUAL - 77

Chapter 5 Internal Data Representation

If c is short type, the alignment is 2 bytes. There are 4

bits left following b in that 2-byte location, the 9-bit

long c is not accommodated. c is stored in the next 2-

byte location. If c is short type, it is stored in the next

2-byte location (see figure below).

a b c d e f

When the data type of c is short, c is allocated
in the next 2-byte area.
↓

9 86975

4 bytes4 bytes

2 bytes2 bytes 2 bytes 2 bytes

CC32R MANUAL - 78

Chapter 6 C Calling Conventions

Chapter 6

C Calling Conventions

This chapter describes the way C compiler calls a C program, and how to

interface with an assembly program.

• Register Usage (See 6.1.)

• Stack Frame Configuration (See 6.2.)

• Call and Return Procedures (See 6.3.)

• Parameter Passing (See 6.4.)

• Setting Return Value (See 6.5.)

• Interface with Assembly Program (See 6.6.)

6.1 Register Usage

6.1.1 General Register (R0-R15) Usage

The M32R is provided with 16 32-bit general registers (R0-R15) (see Figure 6.1).

The C compiler uses R14 as the link register; R15 as the stack pointer (SP); and

R0-R13 as working register to temporarily store intermediate results of function

operation and the variables.

Registers R11-R13 can also be used as the base register when declared to do so

in the program (in this case R11 to R13, as specified in the base register, always

store the base addressR11 to R13, as specified in the base register, always store

the base address.).

CC32R MANUAL - 79

Chapter 6 C Calling Conventions

Registers
for
C language
Function
Arguments

Work Registers

Link Register

Stack Pointer

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R0 : The return value
of a function is stored
here.

R11 to R13, as specified in the
base register,always store the
base address.

General Registers

The Base Register

Figure 6.1 General Registers Used

The applications and associated operations of the general registers used by the

C compiler are described below.

• Work registers (R0-R13)

Store intermediate results of function operation and

variables. The R0 stores the values returned by

function.

• Registers for function arguement (R4-R7)

The registers R4-R7 are used to store function

argument(C language).

• Registers for the Base Registerf (R11-R13)

The registers R11-R13 are used to the Base

Register(See Appendix A).

• Link register (R14)

The R14 stores the return address during function call.

It may also be used as work register or register

variable register by the C compiler.

CC32R MANUAL - 80

Chapter 6 C Calling Conventions

• Stack pointer (R15)

The R15 is a stack pointer (SP) which stores the lowest

address of the stack area. The SP manages the stack.

6.1.2 Register Consideration

Table 6.1 shows whether the contents of register is retained or not when a

function is called by the C program. "Yes" means that the register is saved and

restored automatically by a called function, and "No" shows that you must save

and store the register when you call a function.

Table 6.1 Is State of the Register Assured?

Register(s) Consideration

R0~R3 No

R4~R7 No For Function Argument

R8~R10 Yes

R11~R13 Yes For the Base Register

R14 (Link register) No

R15 (SP) Yes

PSW(CR0)
Note1

Yes

CBR(CR1)
Note2

Yes

Accumulator Yes

Note 1) PSW(CR0): Processor post status register. An M32R control register in which conditional bit of stack mode, interrupt

enable and operation result, and saved value of them are set.

Note 2) CBR(CR1): Conditional bit register. An M32R read only control register which stores the results of the preceding

operation (carry, borrow, overflow, etc.).

CC32R MANUAL - 81

Chapter 6 C Calling Conventions

6.2 Stack Frame Configuration

The stack frame is an area allocated on the stack each time a function is called.

The Figure 6.2 shows a typical stack frame (areas (0) to (2) in the order from

higher to lower address). The argument area of area (0) is pushed to the stack

only under the conditions described in 6.4.2, "The Cases where Stack-passing is

Valid."

Local Variable
Area

Register Save
Area

Argument Area
↓Higher
↓Address

↑Lower
↑Address

SP(R15)→

Figure 6.2 Typical Stack Frame

(1) Argument area Case of the Stack-passing, arguments to be passed to

the function called are set in this area.

Arguments are arranged so that the first argument is

at the lowest address.

(2) Local variable area The area into which the local variable declared by the

called function is to set.

(3) Register save area Used to save the current contents of the general

register which will be used by the function called.

CC32R MANUAL - 82

Chapter 6 C Calling Conventions

6.3 Call and Return Procedures
Calling and returning of a function by C program are performed in the order

given in Figure 6.3.

(1) Set arguments

(2) Call Function

(8) Free argument area

(3) Allocate local variable area

(4) Save registers

(5) Restore registers

(6) Free local variable area

(7) Return (to the caller)

Calling Program (Caller) Called Function (Callee)

…
…

(execution of the
function)

(1)-(2) : Precalling process

(3)-(4) : Input process of the called function

(5)-(7) : Output process of the called function

(8) : Postcalling process

Figure 6.3 Function Call and Return in C

(1) Setting arguments

C compilers generally use "register passing" to pass arguments when a

function is called. Note that type conversion and alignment rules apply to

how the content of arguments is stored (see 6.4, "parameter register").

(1-1) "Register passing"

The first four arguments are stored sequentially in registers R4 to R7. If

the function takes fewer than four arguments, the number of registers

equivalent to the number of arguments is used. (For example, only R4

and R5 are used in the case of two arguments.) Also, if there are five or

more arguments, stack passing is applied to the fifth and subsequent

arguments.

(1-2) "Stack passing"

The following applies if the conditions in 6.4.2, " The Cases where Stack-

passing is Valid" are satisfied.)

The arguments are pushed onto the stack and the argument area is set

up. The arguments are stacked in sequence from the last argument. The

first argument is set at the lowest address in the argument area, as shown

in Figure 6.4.

CC32R MANUAL - 83

Chapter 6 C Calling Conventions

SP→

SP→

SP→
1st Argument

n th Argumentn th Argument ↓Higher
↓Address

↑Lower
↑Address

…

Figure 6.4 Argument Setting

When a called function returns the structure or union

type return value, after the first argument is pushed,

the top address of the area where the return value is

set is pushed . The return value setting area (general-

ly, in the stack area) is reserved by the calling side

before starting the function call. Figure 6.5 shows the

argument area for the function having structure or

union type return value.

~~ ~~

Top Address of
Return Value Area

 1st Argument

4 bytes

 2nd Argument

 n th Argument

Return
Value Area

Size of
Return
Value

Argument
Area

↓Higher Address

↑Lower Address

Figure 6.5 Argument Area for the Function which Returns Structure or Union

(2) Call function This function is called by BL or JL instruction. The

address (return address) of the instruction following

the function call instruction is set in the link register

R14.

(3) Allocate local variable area

On the stack, a local variable area is allocated, which

the called function will use. The size of the reserved

area is subtracted from the SP value. The size of the

reserved area is always a multiple of 4.

CC32R MANUAL - 84

Chapter 6 C Calling Conventions

(4) Save registers The contents of registers (R8-R13) to be used by the

called function are saved on the stack. The size of the

saving area is “the number of registers to be saved ¥

4 bytes”. When the link register R14 is used, then the

link register is saved.

(5) Restore registers The register(s) saved at the entry of a called function

(see “(4)Save registers ”above) is restored.

(6) Free local variable area

The local variable area reserved at the entry of a

called function (see “(3) Allocate local variable area”

above) is released. That is, the size of the area is

added to the SP.

(7) Return (to the caller)

The return address stored in the link register is reset

in the Program Counter, returning process control to

the calling side program.

(8) Free argument area

Once the control is returned. the size of the argument

area is returned back to the SP, releasing the argu-

ment area.

CC32R MANUAL - 85

Chapter 6 C Calling Conventions

6.4 Parameter Passing

C compilers generally use "register passing" to pass arguments when a function

is called. (If the function takes five or more arguments, or if the function's

arguments include floating point types (double, long double), structure types,

or union types, etc., stack passing is used. The following describes how to set

the arguments.

6.4.1 Rules Parameter Passing

By register-passing, actual arguments to a function are passed via the registers

R4 to R7. The first 4 arguments are stored in R4-R7 one by one in the order

declared by the functions. For example, if only two arguments are declared,

only two registers, R4 and R5, are used. Once the function is called by register-

passing, the values in R0-R7 are not guaranteed.

The arguments that can pass into the registers are those of character, integer,

pointer and float types.

Example : int func(a, b, c);

Executing this function call stores the arguments;

R4 a

R5 b

R6 c

• Type conversions

If the type of an argument has been declared by the function prototype

declaration, the argument is converted to that type. Otherwise, the rules

given below are applied :

• char, unsigned char, short, or unsigned short is promoted to int.

• float is promoted to double *.

• Otherwise unconverted.

• Store into the register

Arguments which have done type conversion as above are stored into the

registers follows depending on their types :

• If the type after conversion is one of char, unsigned char, short and

unsigned short type, the argument first is converted to type int and then

is pushed onto the stack.

* float type arguments are converted to double types and pushed to the stack if their type has not been declared in a

prototype declaration.

To use register passing with float type arguments, be sure to declare their type in a prototype declaration.

CC32R MANUAL - 86

Chapter 6 C Calling Conventions

6.4.2 The Cases where Stack-passing is Valid

Part of or all arguments are passed through the stack in the following cases :

• If there are five or more arguments, stack passing is applied to the fifth and

subsequent arguments.

• If the first 4 arguments include either floating type, structure type or union

type, the arguments up to the argument preceding the argument of such a

type are passed by registers. The remaining arguments are passed by the

stack.

• If the return value is either floating types, structure type or union type, all

the arguments are passed by the stack.

• If the function has a variable parameter (“...” is specified at the end of the

parameter list, as with the printf function), the variable argument and the

preceding argument are passed by the stack.

6.4.2.1 Pushing onto the stack

Arguments which have done type conversion as above are pushed onto the

stacks :

• If the type after conversion is one of char, unsigned char, short and

unsigned short type, the argument first is converted to type int and then

is pushed onto the stack. If an argument has another scalar type, it

pushed on without being converted. An argument which has converted

to type float will not be converted to type double when pushed on the

stack.

• If an argument has type struct or union with 4-byte boundary alignment

is directly stacked. Otherwise (i.e., it is not a 4-byte boundary), first the

area with 4-byte boundary which can be represented the argument is

allocated on the stack, and then, the argument is set to the lowest

address (a multiple of 4) and subsequent of that area.

The examples, 1 to 5 shown below, describe various stack-passing procedures

(figures are images of the argument are on the stack) :

• Example 1

int f();

 f(1.0f, 2);

8 bytes1.0

2 4 bytes

Argument Area

The first argument is type float without the function prototype

declaration. It is therefore first converted to type double and then

is pushed on the argument area on the stack.

•
•
•

CC32R MANUAL - 87

Chapter 6 C Calling Conventions

• Example 2

int f(float, char);

 f(1, 49);

1.0

49 4 bytes

4 bytes

Argument Area

The first argument is converted to 1.0 as type float. The second

argument is first converted to type char according to the function

prototype declaration and then is reconverted to type int as it

being pushed on the stack.

• Example 3

struct s{

char x,y,z;
}a;

int f();

 f(a);

z

Argument Area

4 bytesyx

unused

The argument s requires 3 bytes size and is aligned with 1 byte

boundary. When the argument is pushed on the stack, a single

byte of unused area is added to the argument area on the stack to

make its size 4 bytes.

• Example 4
struct s{
 int x, y;
}f();

 f(1);

14 bytes

4 bytes

Argument Area

Return
Value Area

x

y

When the function returns struct, the pointer (address) to the

return value area (reserved by the calling side) is set to the low

address of the argument area on the stack.

• Example 5
int f(float, ...);

 f(1.0, 1.0f);
8 bytes1.0 (double)

4 bytes

Argument Area

1.0 (float)

Since the first argument is denoted as type float by the function

prototype declaration, the argument is converted to type float.

The second argument is not declared its type and is therefore

converted to type double.

•
•
•

•
•
•

•
•
•

•
•
•

CC32R MANUAL - 88

Chapter 6 C Calling Conventions

6.4.3 Function Names after Compiling

Function names in the object module are named by preceding the names of

functions in the C program with a dollar mark ($). However, in the case of

functions that return floating-point types (double or long double), structure

types, or union types, and in the case of functions that have variable arguments,

the following rules apply:

• Functions which return either floating-point number, structure or union :

The function name is preceded by an underscore (_).

• Functions having variable parameters :

Assume that the number of arguments passed via register is n,

When n=0 : The name is a function name used by the C program

with a preceding underscore (_).

Example : int foo(char *, ...);

is given the name _foo.

When n=4 : The name is a function name used by the C program

with a preceding dollar mark ($).

Example : int foo(int, int, int, int,

int,…);

is given the name $foo.

When n=1, 2 or 3 :

The name is a function name used by the C program

with a preceding dollar mark ($) and the number of

arguments passed by register-passing.

Example : int foo(int, int,…);

is given the name $1foo.

6.4.4 How to Refer set Arguments

To refer to an arguments within the called function, refer to the stack frame if

the argument is passed through the stack, or refer to the register into which the

argument is set when the argument is passed through the register. Note that

some arguments are passed through stack even if register- passing is specified

(e.g., structure type) . In such a case, refer to the stack frame.

CC32R MANUAL - 89

Chapter 6 C Calling Conventions

6.5 Setting Return Value

The return value (from the function) is first converted into a value of the type

suitable for return.

• Integer, pointer The called side set the return value to R0. The calling

side refers to R0.

• Floating-point number

Same as for the structure and union types.

• Structure, union The calling side set the address of the return value

setting area as the first argument (see Figure 6.5 and

Figure 6.6). The called side set the return value by

using this address. The calling side refers to the

return value setting area.

Register Save
Area

Local Variable
Area

Argument
Area

SP(R15)→

4 bytes

↓Higher
↓Address

↑Lower
↑Address

Return
Value Area

Size of
Return
Value

Figure 6.6 Struct or Union Type Return Value Setting

CC32R MANUAL - 90

Chapter 6 C Calling Conventions

6.6 Interface with Assembly Program

When developing an application by linking more than two programs

(modules), a program may refer to data of a different program, or may call a

function from another program. This section describes how a C program can

refer to an assembly program and how the assembly program can refer to the C

program.

To call C program function from a different C program, see 6.3 “Call and

Return Procedure”. For data reference, see 6.4 “Parameter Passing”.

To reference C program data from an assembly program, or to call a C program

function from an assembly program, it is necessary to write a program by

following the C calling rule.

6.6.1 Referencing Assembly Data from a C Program

To reference assembly data from a C program, write programs by following the

example described in Figure 6.7.

C program Assembly program

extern int i, j; .EXPORT _i, _j

 .SECTION D,DATA,ALIGN=4

func() _i: .DATA.W 1

{ _j: .DATA.W 1

 i = j; .END

}

Figure 6.7 Referencing Assembly Program Data

• In an assembly program

Declare the C program data to be referenced in a pseudo-

instruction, .EXPORT or .GLOBAL to enable external reference.

In the example in Figure 6.7, declare labels _i and _j in .EXPORT.

• In an C program

Specify the assembly program data to be referenced by using an

external declaration. When declaring, use a corresponding

assembly program label name but remove the underscore (_)

from the name.

CC32R MANUAL - 91

Chapter 6 C Calling Conventions

6.6.2 Referencing C Data from an Assembly Program

To reference C data from an assembly program, write an assembly program by

following the example in Figure 6.8.

C program Assembly program

 : .GLOBAL _a

char a ,b; .GLOBAL _b

 : .SECTION P,CODE,ALIGN=4

LD24 R1,#_a

LDB R1,@R1

LD24 R0,#_b

STB R1,@R0

JMP R14

.END

Figure 6.8 Referencing C Program Data

• In the assembly program

To reference char type variables a and b written in C from the

assembly program, specify labels _a and _b by the pseudo-

instruction, .IMPORT or .GLOBAL.

The CC32R prefixes an underscore (_) to the external reference and the

definition symbol of C upon outputting them to the object module. The

variables in the C program in Figure 6.8, for example, correspond to the labels

_a and _b in the assembly program.

CC32R MANUAL - 92

Chapter 6 C Calling Conventions

6.6.3 Calling Assembly Routines from a C Program

To call an assembly function from a C program, write programs by following

examples described in Figure 6.9.

Calling program (C program)

extern int func();

main()

{

 func(1,2);

}

Called program (assembly program)

.EXPORT $func

 .SECTION P,CODE,ALIGN=4

$func:

 MV R0,R5 ;Transfer content of the 2nd argument

 ;to R0

 ADD R0,R4 ;Set result of the 2nd argument

 ; + the 1st argument to R0

 JMP R14

 .END

Figure 6.9 Calling Assembly Program Function

• As passing arguments

A symbol name of the assembly program is the corresponding

function name but preceded by the dollar mark ($).

• Calling program (C program)

Arguments are set to the registers.

• Called program (assembly program)

In the example shown in Figure 6.9, the program references

the first argument by R4 and the second argument by R5. It

sets the return value to R0.

CC32R MANUAL - 93

Chapter 6 C Calling Conventions

6.6.4 Calling C Routines from an Assembly Program

To call a C program function from an assembly program, write an assembly

program by following the example described in Figure 6.10.

Calling program (assembly program) - register-passing

.GLOBAL $func

 .SECTION P,CODE,ALIGN=4

 LDI R5,#2 ;y

 LDI R4,#1 ;x

 BL $func

 .END

Called program (C program)

func(int x, int y)

{

}

Figure 6.10 Calling C Program Function

• As passing arguments

A symbol name of the assembly program is the corresponding

function name but preceded by the dollar mark ($).

The calling program (assembly program) sets arguments to the

registers (R4-R7). In the example shown in Figure 6.10,

arguments are two, so that the first argument is set to R4 and the

second to R5.

CC32R MANUAL - 94

Chapter 7 Embedded Applications Programming

Chapter 7

Embedded Applications Programming

This chapter provides information necessary to program embedded application

programs (embedded applications) for the M32R system. For further information

on the link function, refer to “CC32R User’s Manual <Assembler>”,

Chapter , “Linker lnk32R”.

7.1 Compiler-Generated Sections

When an object module file is generated by the C compiler using a C source file,

all codes and data contained in the program are automatically defined as one of

the following sections :

• The P section Program code area.

• The C section Constant data area (for const-declared variables).

• The D section Data area with initializers (for global variables having

initial values).

• The B section Data area without initializers (for uninitialized global

variables).

Object Module A

Object Module B

Object Module C

Program 1

…………………………………………………………………

Program 2

…………………………………………………………………

Program 3

…………………………………………………………………

P

C

D

P

D

C

C

D

Figure 7.1 C Compiler Defines a Program to Sections

CC32R MANUAL - 95

Chapter 7 Embedded Applications Programming

A section is a unit program processed by linker. Each section has the section

name, section attribute and location attribute, as shown in Table 7.1 Note1).

Table 7.1 Sections Output from C Compiler

Section Section Location Description
Name Attribute Attribute

P CODE ALIGN=4 Program code area

C DATA ALIGN=4 Constant data area (for const-declared

variables).

D DATA ALIGN=4 Data area with initializers (for global

variables having initial values excluding

const-declared variables).

B DATA ALIGN=4 Data area without initializers (for

uninitialized global variables).

The linker assumes the sections are the same section when these sections have

the same name and attributes. It links these same sectionsNote2) and arranges

them continuously in the load module as shown in Figure 7.2.

Load Module

P

C

D

P

D

C

C

D

D

D

P

P

C

C

C

D

Object Module A

Object Module B

Object Module C

Program 1

…………………………………………………………………

Program 2

…………………………………………………………………

Program 3

…………………………………………………………………

P

C

D

P

D

C

C

D

Link

Figure 7.2 Linking Sections by Sections (Image when “-SEC D,P,C” is specified)

Note1) The section name and attributes can be defined as other than those in Table 7.1 by using the pseudo-instruction .SECTION

(assembler- supported). The use of .SECTION are described in “CC32R User’s Manual <Assembler>”. For details on

section name and attributes, see “CC32R User’s Manual <Assembler>”, in Chapter lnk32R.

Note2) Linking method varies with section attribute and linking order varies with the command options.

CC32R MANUAL - 96

Chapter 7 Embedded Applications Programming

With the C compiler, section linking order and the start address of each section

can be specified by using the command option -SEC or -MEM (equivalent to -

LOC used for direct startup from linker). The linker determines the address of

each section by following these specifications.

These features are useful when developing embedded application or writing

the application program into ROM. For further information, refer to the

“CC32R User’s Manual 3 - The Others”, Chapter Linker.

||||| Note |||||

Options -SEC and -MEM cannot be specified simultaneously.

In practice, the linking order and start address of each section are determined

by the conditions described in this section. For function of options and use of

options, refer to Chapter 3 “Invoking the Compiler”.

• Section linking order

When the linking order is specified, the sections are linked in the order of

priority levels. Sections having no linking priority are linked following the

lowest level section.

(1) When specified by the -SEC or -MEM :

When specified by the -SEC option

Sections are linked in the order -SEC option is written.

When specified by the -MEM option (-LOC in the case of linker)

• RAM area D→B

• ROM area P→C→D

(2) Without order setting (default) :

Sections are linked in the order of the files specified (written) in the

command line: If a specified file contains two or more sections, the

are linked in the order they appear (written).

• Start address

Specified addresses have priority. Unspecified sections are assigned relative

address according to the linking format. Default alignment is 4 bytes (any

value can be specified by using the assembler pseudo-directive .SECTION).

The start address of a load module is 0 if not specified.

(1) When specified by the -SEC or -MEM :

When specified by the -SEC option

The address is specified for each section

The start address of section having unspecified address is auto-

matically specified according to the linking order.

CC32R MANUAL - 97

Chapter 7 Embedded Applications Programming

When specified by the -MEM option (-LOC in the case of linker)

• D section The address specified for RAM area

• P section The address specified for ROM area

• B, C, D section The address immediately following the

end address (lower address) of the

preceding linked section.

(2) When not specified (default) :

• Each section The address immediately following the

end address (lower address) of the

preceding linked section.

• Entire load module Address 0

CC32R MANUAL - 98

Chapter 7 Embedded Applications Programming

7.2 Embedded Application Programming Procedure

When programming an embedded application, the start-up program and lower

level libraries must be developed as well as the user program which performs the

desired functions. To link the application, arrange specification and entry point

specification suitable for embedding and allocation of address for burning into

ROM are required. The load module file must be converted into an S-format file

for burning it into ROM. These activities are included in a development of an

embedded application and must follow steps (1) to (6) as shown in Figure 7.3.

(5)
Convert to S-format
Using lmc32R

(4)
Generate a load module
Using cc32R, as32R,
and lnk32R

(1)-(3)
User written
programs

Load Module

ROM

M32R

(3)
Low level

library

(2)
Start-up
Program

(1)
User Program
(main() etc.)

C Standard
Library

S-format Load Module

Tasks in the start-up program :

1. Gets the stack area

2. Initializes the processor modes

3. Initializes the stack pointer

4. Initializes the data sections

5. Calls the main function

(6)
Embed onto the target
system (by burning into
the ROM)

Figure 7.3 Embedded Application Programming

(1) Write user program

Write the main function and other routines which perform the

required processes. To write in C, follow the C specification

(refer to Chapter 4 “C Language Elements”). To write in

assembly, follow the M32R assembly specification (refer to

“CC32R User’s Manual - 2 Assembler”). Some processes can be

performed by writing assembly instructions in the C source

CC32R MANUAL - 99

Chapter 7 Embedded Applications Programming

program (in-line assembling function).

(2) Write the start-up program

Write a start-up program for the target system. The start-up

program performs initialization to allow the application to run

on the target system and generally performs the following

processes :

1. Gets the stack area

2. Initializes the processor mode

3. Initializes the stack pointer

4. Initializes data area sections

5. Initializes the C standard library

6. Calls the main function

7. Terminates the C standard library

Perform processes 1 to 4 above from the assembly program and 5

to 7 from assembly or C program. For writing the start-up

program, refer to 7.3 “Tasks in the Start-up Program”.

(3) Write the low level library

If the application performs the following tasks by using C

standard libraries, low level libraries should be prepared.

• Standard input and outputs

• Memory management

• Signal handling

• Time management

For information on the low level function(s) which is required by

each C standard library function, and on the specifications of the

low level functions, refer to Chapter 11 “Low-Level Library”.

Programming by following these specifications, use the librarian

to make these programs libraries.

(4) Generate a load module

Using the cc32R command, prepare load module based on

generated user program and start-up program.

When linking, files are referenced in the order specified by the

command line and the sections are linked in that order. When

writing the input files into the command line, be sure to specify

the start-up program in the beginning.

CC32R MANUAL - 100

Chapter 7 Embedded Applications Programming

Also specify options for linking as follows :

• -l and -L

Specify linking of low level library and C standard library.

• -e

Specifies the start-up address of the start-up program as the

entry point.

• -SEC (or -MEM)

Specifies the order and address of the section allocation.

With an embedded application, in general, allocate the D

and B sections onto the RAM area, D section initialization

data and the P and C sections onto the ROM area. To

allocate the data used to initialize the D section onto the

ROM area, use linker’s “Initial value data sampling

function” (the section is named ROM_D).

If the execution of a cc32R command results in a compile error,

correct the source file. When all error causes are removed, the

linker automatically starts and the load module is generated

according to linking specified by the command option(s).

The following example shows the commands specified in the

cc32R command line (% is a prompt) :

Example : % cc32R -l m32RcR.lib -e startup

-SEC @D=1000,B,SPI,SPU,P=8000,C,D

start.ms initlib.c user1.c user2.c

This example assumes the following input files :

• start.ms

A start-up program initial setting process corresponding to

the target system (see samples in 7.3.9).

• initlib.c

A start-up program which calls the main function (see

samples in 7.3.9).

• user1.c user2.c

User program including the main function.

When executing the command line of this example, the load

module a.mout reflecting the following specifications is

generated :

CC32R MANUAL - 101

Chapter 7 Embedded Applications Programming

• -l m32Rc.lib

C standard library m32Rc.lib is linked.

• -e startup

Entry point is the start address of the start-up program (when

the start address is defined by the symbol start-up in the start-

up program). The application is then executed from the start-

up program.

• -SEC @D=1000,B,SPI,SPU,P=8000,C,D

The linking order of sections is

D→B→SPI→SPU→P→C→ROM_D (SPI and SPU sections are

sections prepared for stack by the user in the assembly

program. ROM_D section is the data area to initialize D

section). The sections are arranged as follows :

D Only area is located starting at address 100016

P Located starting at address 800016

B, SPI, SPU, C, ROM_D

Located following the preceding section

• start.ms, initlib.c, user1.c, user2.c

After each of these files is compiled and/or assembled, they

are linked.

(5) Convert to S-format file

Convert the load module into S-format to write it into the ROM.

Use the load module converter lmc32R.

Example : % lmc32R -d 4 -o file a.mout

The load module a.mout is converted into S-format and divided

into four files, file.m40, file.m41, file.m42 and file.m43. For

operation of the load module converter, refer to “CC32R User’s

Manual 3 - The Others”, Chapter Load Module Converter.

(6) Embed onto the target system

Using a ROM programmer, write the S-format load module

program into the ROM. Install the ROM on the target system.

CC32R MANUAL - 102

Chapter 7 Embedded Applications Programming

7.3 Programming the Start-up Program

7.3.1 Tasks in the Start-up Program

To run an embedded application on a target system, “start-up program” is

required that is executed before and after a user program (starting with the

main function) is called. The start-up program carries out initialization and

termination — the steps (1) through (5) given below.

(1) Gets the stack area

(2) Initializes the processor modes

(3) Initializes the stack pointer

(4) Initializes the data sections

(5) Calls the main function

These tasks are basic . The user program and your environment may require

adding other tasks and/or removing some of them.

Here follow details of respective steps, and examples of the start-up program

are given in Section 7.3.7.

7.3.2 Getting the Stack Area

Get the stack area necessary for the application to run. First declare the stack

section area in the assembly program by using pseudo directive .SECTION, and

then reserve the stack area by using pseudo directive .RES.

Every time the C program calls a function, stack frame is created on the stack

(see 6.2). The stack frame is saved until the called function returns process to

the calling program. Therefore, if functions are called successively without

returning to their caller such as “the function A → function B → function C” ,

all stack frames for these functions will be saved when the functions C is called.

Determine the stack size necessary for the application to run by taking into

considerations these function calling behavior and stack size necessary for these

functions. Since the size cannot be exactly determine, estimate approximate

size by referring to Chapter 5 “Internal Data Representation” and Chapter 6 “C

Calling Conventions”. Most practical way is to actually monitor the stack while

running the program for debugging and evaluating purposes (reserving

enough stack area at initial stage or measuring stack area space with the

debugger etc.). Provide the stack area needed for interrupts in the similar way.

CC32R MANUAL - 103

Chapter 7 Embedded Applications Programming

7.3.3 Initializing the Processor Modes

Specify the stacks and interrupt levels for the target microprocessor (register

PSW setting). For information on settings (PSW configuration), refer to the

microprocessor manual.

7.3.4 Initializing the Stack Pointer

Set the highest address of the reserved stack area as the stack pointer.

7.3.5 Initializing the Data Sections

Embedded application requires the initial setting of the data area (sections D

and B). Perform the following steps during application linking and running of

the start-up program.

• Tasks during linking of the embedded application

• Allocate area of sections D and B on the RAM area (no data output).

• Allocate initial value data of section D (ROM_D) on the ROM area.

D

 P

 ROM_D

100016

800016

RAM Area

ROM Area

 B

Initial data is not placed
here, RAM. (Only area
for data sections are
Allocated.)

Initial data for the D
section is placed
here, ROM.

~~~ ~

C

Figure 7.4  Allocation of Sections for data

Allocation of the section area and data sampling during linking can be

specified by the -SEC or -MEM option.  For the generated load module, the

labels indicating the start and end addresses, respectively, will be

automatically generated.  These labels are named as shown in Table 7.2.



CC32R MANUAL - 104

Chapter 7 Embedded Applications Programming

Table 7.2  Reserved Label Names for Sections

Address Label Name Example Example

(D section) (ROM_D section)

Satrt address
_ _TOP_ _ _TOP_D _ _TOP_ROM_D

of section

End address
_ _END_ _ _END_D _ _END_ROM_D

of section

||||| Note |||||

For further information on section allocation and section initialization, refer to

the “M3T-CC32R User’s Manual <Assembler>”, “Part 1  Linker lnk32R“.  The

link can be specified by the command option during start-up of the C compiler.

• Initialization by the start-up program

• For initialization purposes, the data in the ROM_D section in the ROM

area is transferred to the D section of the RAM area.

• The B section in the RAM area is cleared to zero (filling with 0 data).

 D

 P

 ROM_D

100016

800016

RAM Area

ROM Area

 B

C

Zero clear

Transfer this initial 
data block to the 
area for the D 
section in RAM.

~~~ ~

Figure 7.5 Initial Setting of Data Area

When programming these processes, use the reserved labels (see Table 7.2)

and the section names for referencing the start address of the sections.

CC32R MANUAL - 105

Chapter 7 Embedded Applications Programming

7.3.6 Calling the Main Function

By calling the “$main” function, start a user program.

To use the C standarf library in an embedded application, by calling the

“$_c_main” function, start a user program.

Initialize the “$_c_main” function with Cstandard library, and call “$main”

function.

7.3.7 Start-up Program Example

The following shows an example of the start-up program.

• Start-up program start.ms

In this sample program, the basic processes, (1) to (5), are performed by the

assembly program starting with the “STARTUP”.

;; RENESAS TECHNOLOGY CORPORATION AND RENESAS SOLUTIONS CORPO-
RATION

;;
;; start.ms (2000/06/28)
;;
;; [Contents]
;;
;; (1) Sample startup routine.
;; (2) Sample low-level routine.
;; (3) Heap and stack memory area
;; (4) Reset vector area
;;

;;;
;;
;; (1) Startup routine
;;
;;;
 .export STARTUP
 .export HALT
 .import $_c_main
 .section P,code,align=4
 ;
 ; Initialize PSW control-register.
 ;
STARTUP: LDI R0, #128
 MVTC R0, PSW
 ;
 ; Setting the user and interrupt stack.
 ;
 SETH R0, #HIGH(U_STACK)
 OR3 R0, R0, #LOW(U_STACK)
 MVTC R0, SPU
 SETH R0, #HIGH(S_STACK)
 OR3 R0, R0, #LOW(S_STACK)
 MVTC R0, SPI

CC32R MANUAL - 106

Chapter 7 Embedded Applications Programming

 ;
 ; Clear the B section to zero.
 ;
 SETH R1, #HIGH(B)
 OR3 R1, R1, #LOW(B)
 SETH R2, #HIGH(sizeof(B))
 OR3 R2, R2, #LOW(sizeof(B))
 BLEZ R2, SKIP1
 LDI R0, #0
LOOP1: STB R0, @R1
 ADDI R1, #1
 ADDI R2, #-1
 BGTZ R2, LOOP1
SKIP1:
 ;
 ; Transfer the data in the ROM_D section in ROM
area
 ; to the RAM area.
 ;
 SETH R1, #HIGH(ROM_D)
 OR3 R1, R1, #LOW(ROM_D)
 SETH R2, #HIGH(D)
 OR3 R2, R2, #LOW(D)
 SETH R3, #HIGH(sizeof(ROM_D))
 OR3 R3, R3, #LOW(sizeof(ROM_D))
 BLEZ R3, SKIP2
LOOP2: LDB R0, @R1
 STB R0, @R2
 ADDI R1, #1
 ADDI R2, #1
 ADDI R3, #-1
 BGTZ R3, LOOP2
SKIP2:
 ;
 ; Jump to the C standard initialize routine.
 ;
 SETH R0, #HIGH($_c_main)
 OR3 R0, R0, #LOW($_c_main)
 JL R0
 ;
 ; End of program (infinity loop)
 ;
HALT: BRA HALT

 .section C,data,align=4
 .section ROM_D,data,align=4

;;;
;;
;; (2) Sample low-level routine.
;;
;;;
 .export $_exit
 .export $_get_core
 .export $write
 .export $_rel_core
 .export $_strerror
 .export $close
 .export $getuniqnum
 .export $lseek
 .export $open
 .export $read
 .export $getenv
 .export $raise
 .export $remove
 .section P,code,align=4

CC32R MANUAL - 107

Chapter 7 Embedded Applications Programming

 ;
 ; Terminate the program run.
 ;
$_exit: BRA HALT
 ;
 ; Get the heap memory routine.
 ;
$_get_core: MV R1, R4
 SETH R2, #HIGH(HEAP_POINTER)
 OR3 R2, R2, #LOW(HEAP_POINTER)
 LD R0, @R2
 ADD R1, R0
 ST R1, @R2
 JMP R14
 ;
 ; Write data to memory buffer routine.
 ;
$write: LDI R3, #0
 BRA SKIP3
LOOP3: SETH R1, #HIGH(WRITE_POINTER)
 OR3 R1, R1, #LOW(WRITE_POINTER)
 LD R2, @R1
 ADD3 R0, R2, #1
 ST R0, @R1
 MV R1, R5
 LDI R0, #H'3FF
 ADD R1, R3
 REM R2, R0
 SETH R0, #HIGH(WRITE_BUFFER)
 OR3 R0, R0, #LOW(WRITE_BUFFER)
 ADDI R3, #1
 ADD R2, R0
 LDB R1, @R1
 STB R1, @R2
SKIP3: LD R0, @R15
 CMP R3, R0
 BC LOOP3
 LD R0, @R15
 JMP R14
 ;
 ; (Not implemented routine)
 ;
$_rel_core:
$_strerror:
$close:
$getuniqnum:
$lseek:
$open:
$read:
$getenv:
$raise:
$remove: LDI R0, #0
 JMP R14
 ;
 ; low-level routines use area.
 ;
 .export WRITE_BUFFER
 .section D,data,align=4
HEAP_POINTER: .DATA.W HEAP
WRITE_POINTER: .DATA.W 0
WRITE_BUFFER: .RES.B H'400

CC32R MANUAL - 108

Chapter 7 Embedded Applications Programming

;;;
;;
;; (3) Heap and stack memory area (common use)
;;
;;;
 .section B,data,align=4
HEAP:
 .RES.B H'4000
U_STACK:
 .RES.B H'1000
S_STACK:

;;;
;;
;; (4) Reset vector area
;;
;;;
 .section RI,code,locate=h'7FFFFFF0
 SETH R0, #HIGH(STARTUP)
 OR3 R0, R0, #LOW(STARTUP)
 JMP R0

 .end STARTUP

;; RENESAS TECHNOLOGY CORPORATION AND RENESAS SOLUTIONS CORPO-
RATION

❈This “Start-up program start.ms” is sample program.

CC32R MANUAL - 109

Chapter 7 Embedded Applications Programming

7.4 About start-up file start.ms in HEW

The Hew generates a file "start.ms" when creating new project. This file was

modified from one that was using with the TM and the User's Manual.

Fundamentally, the contents of these start.ms are nearly equal. However, the

start.ms HEW generated can be controled by the assembler as32R with setting

following paramter into -D option. If you will modify this start.ms, be careful in

this point.

Table 7.3. Meaning of control symbols of start.ms the HEW generated

SymbolName Item name of Means Initial
HEW project Name value
creating dialog

__STANDARD_IO__ Use Standard I/O Decides whether or not that 0
Library the start.ms initializes the (The stand-

standard library before calling ard library
function main(). is not initia-

lized.
__HEAPSIZE__ Heap Size Heap Size (for malloc(), etc.) H'4000
__USTACKSIZE__ User Stack User Stack (SPU pointed) Size H'1000

PointerStack Size
__ISTACKSIZE__ Interrupt Stack Interrupt Stack (SPI pointed) Size H'1000

PointerStack Size

CC32R MANUAL - 110

Chapter 7 Embedded Applications Programming

7.5 In-line Assembling

7.5.1 Overview of In-line Assembling

Embedded application also requires low level processes such as controlling of

hardware and operating system (OS) as well as high speed efficient functional

processes. To meet these various processing requirements, the C compiler

supports the “In-line assembly function” which allows to write an assembly

language command in the C language source program.

To insert an assembly description into the C source program, use the special

function asm. The asm function allows embedding an assembly language code

into the C source program.

||||| Note |||||

The C compiler optimization feature is powerful when used for removing unnec-

essary codes, replacing commands and substituting commands. When using

the in-line assembling feature, take into consideration effects of C compiler

optimization feature.

7.5.2 How to Write the asm Function

To use the asm function, use the following definition.

#pragma keyword asm on

This does not specify the “asm” as a normal identifier but as a reserved word.

To use the asm again as the identifier, write the following :

#pragma keyword asm off

Write the asm function in the format shown in Figure 7.6.

#pragma keyword asm on

asm ("assembly_code"[,argument1] [,argument2]);

assembly_code : The assembly code to be embedded

argument1 : Expression to be set to register R0

argument2 : Expression to be set to register R1

Figure 7.6 Format of asm function

Write the assembly language code to be embedded into the assembly_code field

by following the assembler writing specification. An escape sequence as well as

a string literal (see 4.1.4) can be written. Since the beginning of an assembly_code

is recognized as a label, the first mnemonic must be preceded by one or more

CC32R MANUAL - 111

Chapter 7 Embedded Applications Programming

space characters.

Example : asm(" ldi R0, #h'10");

 ↑ one or more spaces

With the asm function, up to 2 arguments (expressions) can be specified in

addition to assembly code. Each argument is evaluated before executing the

assembly code of the asm function. A value stored in argument1 is set to

register R0 and that stored in argument2 to register R1. A valid argument value

is an integer only. (Bear in mind that integral promotion described in 4.3.2

“Implicit Conversions” will be applied to signed and unsigned, char and short

types.) Arguments having other types may not guarantee proper C compiler

operation.

Example : int i, j;

asm (" add R0, R1", i, j);

The variable i is preset to R0, and the variable j preset to R1.

If no argument is specified, the contents of R0 and R1 are unknown.

7.5.3 Limitations of asm Function

When writing the asm function, take the following limits into consideration :

• Limited register usage

The asm function can normally recognize four registers R0-R3.

When using the other registers and the accumulator in the asm

function, the user program must assure that the contents of the

register are recovered after the function releases the register. To

do so, save the contents of the register before the asm function

uses it and then return the contents to the register upon releasing

of the register by the function.

Example : Saving and recovering of register R4 within asm

function

asm(" ST R4,@-sp\n" /* Save R4 */

 " ……………………… \n" /* Any process

 using R4 */

 " LD R4,@sp+\n"); /* Restore R4 */

• Limits during compiling (optimization specified)

During optimization, the compiler deletes unnecessary codes

and replaces and substitutes instructions. When compiling and

specifying optimization of the source file using the asm function,

CC32R MANUAL - 112

Chapter 7 Embedded Applications Programming

take into consideration the effects of optimization by the C

compiler.

• Error check considerations

The C compiler does not check the contents of the assembly code

used in the asm function. If the asm function contains invalid

assembly code, the error is detected by the assembler and the

error message is output to the assembly source file, but not to the

C source file. If an assembler error message is output after

starting the C compiler, first check the contents of the asm

function.

• Limitations on parameter specification

Although expressions can be written in asm function parameters,

we recommend that only constant expressions and identifiers,

but no other expressions, be written. If an expression like the one

shown below is written, the C compiler may not operate

correctly.

⋅ An expression that has side effect

(e.g., operators such as ++, -, =, +, -; expressions that contain a function call)

⋅ Complicated expression

• Limitations on length of asm function

Up to about 1,000 characters can be written in an asm function.

When writing multiple lines of assembly code, we recommend

that they be divided and written in multiple asm functions.

• Limitations on labels

We recommend using labels which are not the duplicates of

those generated internally by the compiler (label names

beginning with the underscore ‘_’). Make sure any parts of label

names except the underscore are not the duplicates of symbol or

function names defined in C language.

• Limitations on instructions writable in asm function

Pseudo-instruction and macro-instructions cannot be written in a

asm function.

• Limitations on optimization of a program in which asm functions are

written

When a program that contains a description of one or more asm

functions is compiled after specifying optimization, a warning

CC32R MANUAL - 113

Chapter 7 Embedded Applications Programming

message like the one shown below may appear, with the

optimization partly suppressed. We recommend that functions

which use the inline assembly facility be defined in another

module.

⋅ Warning message

<command line>:warning: xxx.c: unable to optimize -- skipped phase

• Other limits

The following descriptions should not be included in the asm

function. If such a description is included in the asm function,

the user must be responsible for the results.

• Branch instructions

• Assembler's pseudo-instructions and macro-instructions

• Changing contents of stack

• Label definitions

• Reference to C compiler-generated labels

CC32R MANUAL - 114

Chapter 7 Embedded Applications Programming

7.5.4 asm Function Example

Figure 7.7 shows examples using the asm functions.

/* Multiply arrays X[cnt] and Y[cnt], and obtain the result */

#pragma keyword asm on

void sumXY(short *X, short *Y, int cnt, int *output)

{

 asm(" mvtachi r0\n"

 " mvtaclo r0”, 0);

 for (; cnt-- > 0; ++X, ++Y)

 asm(" macwlo r0, r1", *X, *Y);

 asm(" mvfachi r3\n"

 " st r3, @r0\n"

 " mvfaclo r3\n"

 " st r3, @+r0\n", (int)output);

}

Figure 7.7 Example of asm Functions

Figure 7.8 shows the compiled source program shown in Figure 7.7.

CC32R MANUAL - 115

Chapter 7 Embedded Applications Programming

 .IMPORT $_100_builtin_memcopy

 .SECTION P,CODE,ALIGN=4

 .EXPORT $sumXY

$sumXY:

 LDI R0,#0

 mvtachi r0

 mvtaclo r0

 BRA L5

L4:

 LDH R0,@R4

 LDH R1,@R5

 macwlo r0, r1

L2:

 ADDI R4,#2

 ADDI R5,#2

L5:

 MV R1,R6

 ADD3 R6,R1,#-1

 BGTZ R1,L4

L3:

 MV R0,R7

 mvfachi r3

 st r3,@r0

 mvfaclo r3

 st r3,@+r0

L1:

 JMP R14

 .END

Figure 7.8 Example of Compiled asm Functions

CC32R MANUAL - 116

Chapter 8 Standard Header Files

Chapter 8

Standard Header Files

8.1 Overview of the Header Files

A standard header file is a file in which prototype declaration, macro definition

and data type declaration necessary to for use of the C standard libraries are

written. Available standard header files include 15 types (Table 8.1). When

using a C standard library function, the header file containing definition and

declaration required to execute the library function must be included for each

process.

Table 8.1 shows the standard header files and associated library functions (type

name).

CC32R MANUAL - 117

Chapter 8 Standard Header Files

Table 8.1 Standard Header Files

Header File Description Associated Library Function

assert.h Macro definition that outputs program diagnostic Program diagnostic

information function

ctype.h Macro definition of the character handling function Character handling

and character check function function

errno.h Macro definition related to the error number All functions (as necessary)

float.h Macro definition of the limit value related to internal Mathematics function,etc.

representation of a floating-point number (only when float.h macro is

used)

limits.h Macro definition of the limit value related to All functions(as necessary)

the compiler internal process

locale.h Declaration of the locale (localization) handle function Localization function

math.h Declaration of the double and float type mathematical Mathematics function

unction and macro definition

mathf.h Declaration of the float type mathematical function Mathematics function

and macro definition

setjmp.h Declaration of the branch function, data type declaration Non-local jump function

signal.h Signal (interrupt) declaration of the number of processes Signal handling function

stdarg.h Macro declaration of variable arguments functions, Variable arguments access

Data type declaration function

stddef.h Definition common to standard headers, data type All functions (as necessary)

declaration

stdio.h Declaration of the input and output functions, data type Input /output function

declaration, macro definition

stdlib.h Declaration of the C program standard process function, General utility function

e.g., memory management, data type declaration,

macro definition

string.h Declaration of the string handle function and memory String handling function

handle function

time.h Declaration of the date and time handle functions Date and time function

CC32R MANUAL - 118

Chapter 8 Standard Header Files

8.2 Contents of the Header Files

The section describes standard library functions declared or defined in standard

header files. To use these functions, the associated header file must be

included. The macros defining limit values are listed. The header files are

listed in the alphabetical order (8.2.1-8.2.15).

8.2.1 assert.h

Defines the program diagnostic function assert (macro definition with

parameter).

8.2.2 ctype.h

Prototype declaration and macro definition of the character handling function.

These functions are listed in Table 8.2.

Table 8.2 Functions Declared by ctype.h

Function Description Reentrant

isalnum Judges whether a letter or decimal digit. ❍

isalpha Judges whether a letter or not. ❍

iscntrl Judges whether a control character or not. ❍

isdigit Judges whether a decimal digit or not. ❍

isgraph Judges whether a printable character other than space. ❍

islower Judges whether a lower case letter or not. ❍

isprint Judges whether a printable character including space. ❍

ispunct Judges whether a special character or not. ❍

isspace Judges whether a white-space or not. ❍

isupper Judges whether an upper case letter or not. ❍

isxdigit Judges whether a hexadecimal digit or not. ❍

tolower Converts an upper case letter into lower case. ❍

toupper Converts a lower case letter into upper case. ❍

CC32R MANUAL - 119

Chapter 8 Standard Header Files

8.2.3 errno.h

Upon occurrence of an error, defines the external variable errno that holds the

error number and the macro that indicates the error number. Table 8.3 shows

the macros defined by errno.h.

Table 8.3 Macros Defined by errno.h

Macro Name Description

EDOM If the value of input parameter is outside the range defined by a function,

EDOM indicates the value to be set to errno.

ERANGE If the calculation of a function results in a value which cannot be expressed in

double type, or if it results in an overflow or underflow, ERANGE indicates the

value to be set to errno.

8.2.4 float.h

Defines the limits concerning internal representation of a floating-point

number. Table 8.4 describes the macros defined by float.h.

Table 8.4 Macros Defined by float.h (1/3)

Macro Name Description

FLT_RADIX Indicates the radix of an exponent.

FLT_ROUNDS Indicates the round mode in addition operation. The macro definitions are as

shown below :

• Round to the nearest value : 1

• Round toward +∞ : 2

• Round toward -∞ : 3

• Round down to 0 : 0

• Not specified : -1

Round and round off are process system definitions.

FLT_MAX Indicates the max. positive value which can be expressed in a float type

floating-point number.

DBL_MAX Indicates the max. positive value which can be expressed in a double type

floating-point number.

LDBL_MAX Indicates the max. positive value which can be expressed in a long double type

floating-point number.

FLT_MIN Indicates the min. positive value which can be expressed in a float type floating-

point number.

CC32R MANUAL - 120

Chapter 8 Standard Header Files

Table 8.4 Macros Defined by float.h (2/3)

Macro Name Description

DBL_MIN Indicates the min. positive value which can be expressed in a double type

floating-point number.

LDBL_MIN Indicates the min. positive value which can be expressed in a long double type

floating-point number.

FLT_MAX_EXP Indicates the max. value of the power of the base which can be expressed in a

float type floating-point number.

DBL_MAX_EXP Indicates the max. value of the power of the base which can be expressed in a

double type floating-point number.

LDBL_MAX_EXP Indicates the max. value of the power of the base which can be expressed in a

long double type floating-point number.

FLT_MIN_EXP Indicates the min. value of the power of the base which can be expressed in a

float type floating-point number.

DBL_MIN_EXP Indicates the min. value of the power of the base which can be expressed in a

double type floating-point number.

LDBL_MIN_EXP Indicates the min. value of the power of the base which can be expressed in a

long double type floating-point number.

FLT_MAX_10_EXP Indicates the max. value of the power of 10 which can be expressed in a float

type floating-point number.

DBL_MAX_10_EXP Indicates the max. value of the power of 10 which can be expressed in a double

type floating-point number.

LDBL_MAX_10_EXP Indicates the max. value of the power of 10 which can be expressed in a long

double type floating-point number.

FLT_MIN_10_EXP Indicates the min. value of the power of 10 which can be expressed in a float

type floating-point number.

DBL_MIN_10_EXP Indicates the min. value of the power of 10 which can be expressed in a double

type floating-point number.

LDBL_MIN_10_EXP Indicates the min. value of the power of 10 which can be expressed in a long

double type floating-point number.

FLT_DIG Indicates the max. No. of digits of decimal precision of a float type floating-

point number.

DBL_DIG Indicates the max. No. of digits of decimal precision of a double type floating-

point number.

CC32R MANUAL - 121

Chapter 8 Standard Header Files

Table 8.4 Macros Defined by float.h (3/3)

Macro Name Description

LDBL_DIG Indicates the max. No. of digits of a decimal precision of a long double type

floating-point number.

FLT_MANT_DIG Indicates the max. No. of digits of the mantissa of a float type floating-point

number (when expressed to radix).

DBL_MANT_DIG Indicates the max. No. of digits of the mantissa of a double type floating-point

number (when expressed to radix).

LDBL_MANT_DIG Indicates the max. No. of digits of the mantissa of a long double type floating-

point number (when expressed to radix).

FLT_EPSILON Indicates the min. floating-point number x, 1.0 + x ≠ 1.0 of the float type.

DBL_EPSILON Indicates the min. floating-point number x, 1.0 + x ≠ 1.0 of the double type.

LDBL_EPSILON Indicates the min. floating-point number x, 1.0 + x ≠ 1.0 of the long double type.

Classification definition name value Explanation

 FLT_GUARD 1 Specifies whether or not the

multiplication calculation result.

The macro definitions are as

shown below :

*Use the guard-bit : 1

*Not use the guard-bit : 0

 FLT_NORMALIZE 1 Specifies whether or not the library

normalize floating numeric

number.The macro definitions are

as shown below :

*Normalize : 1

*Not normalize : 0

 FLT_EXP_DIG 8 Indicates the max.No.of digits of

binary precision of the power of

the base which can be expressed in

a float type floating-point number.

 DBL_EXP_DIG 11 Indicates the max.No.of digits of

binary precision of the power of

the base which can be expressed in

a double type floating-point

number.

CC32R MANUAL - 122

Chapter 8 Standard Header Files

Classification definition name value Explanation

 LDBL_EXP_DIG 11 Indicates the max.No.of digits of

binary precision of the power of

the base which can be expressed in

a long double type floating-point

number.

 FLT_POS_EPS 5.9604648328104304e-8F Indicates the min.floating-point

number x ,1.0 +x ≠1.0 of the float

type.

 DBL_POS_EPS 1.1102230246251567e-16 Indicates the min.floating-point

number x ,1.0 +x ≠1.0 of the double

type.

 LDBL_POS_EPS 1.1102230246251567e-16 Indicates the min.floating-point

number x ,1.0 +x ≠1.0 of the long

double type.

 FLT_NEG_EPS 5.9604642999033786e-8F Indicates the min.floating-point

number x ,1.0 -x ≠1.0 of the float

type.

 DBL_NEG_EPS 1.1102230246251565e-16 Indicates the min.floating-point

number x ,1.0 -x ≠1.0 of the double

type.

 LDBL_NEG_EPS 1.1102230246251565e-16 Indicates the min.floating-point

number x ,1.0 -x ≠1.0 of the long

double type.

 FLT_POS_EPS_EXP -23 Indicates the min.No.of the power

of the binary base which can be

expressed floating-point number

x,1.0 +x ≠1.0 of the float type.

 DBL_POS_EPS_EXP -52 Indicates the min.No.of the power

of the binary base which can be

expressed floating-point number

x,1.0 +x ≠1.0 of the double type.

 LDBL_POS_EPS_EXP -52 Indicates the min.No.of the power

of the binary base which can be

expressed floating-point number

x,1.0 +x ≠1.0 of the long double

type.

CC32R MANUAL - 123

Chapter 8 Standard Header Files

Classification definition name value Explanation

Macro FLT_NEG_EPS_EXP -24 Indicates the min.No.of the power

of the binary base which can be

expressed floating-point number

x,1.0 -x ≠1.0 of the float type.

Macro DBL_NEG_EPS_EXP -53 Indicates the min.No.of the power

of the binary base which can be

expressed floating-point number

x,1.0 -x ≠1.0 of the double type.

Macro LDBL_NEG_EPS_EXP -53 Indicates the min.No.of the power

of the binary base which can be

expressed floating-point number

x,1.0 -x ≠1.0 of the long double

type.

CC32R MANUAL - 124

Chapter 8 Standard Header Files

8.2.5 limits.h

Defines limits concerning numerical value of each type. Table 8.5 shows the

macros defined.

Table 8.5 Macros Defined by Limits.h

Macro Name Description

CHAR_BIT Indicates the number of bits composing a char type.

CHAR_MAX Indicates the max. value that a char type variable can have.

CHAR_MIN Indicates the min. value that a char type variable can have.

SCHAR_MAX Indicates the max. value that a signed char type variable can have.

SCHAR_MIN Indicates the min. value that a signed char type variable can have.

UCHAR_MAX Indicates the max. value that an unsigned char type variable can have.

SHRT_MAX Indicates the max. value that a short int type variable can have.

SHRT_MIN Indicates the min. value that a short int type variable can have.

USHRT_MAX Indicates the max. value that an unsigned short int type variable can have.

INT_MAX Indicates the max. value that an int type variable can have.

INT_MIN Indicates the min. value that an int type variable can have.

UINT_MAX Indicates the max. value that an unsigned int type variable can have.

LONG_MAX Indicates the max. value that a long type variable can have.

LONG_MIN Indicates the min. value that a long type variable can have.

ULONG_MAX Indicates the max. value that an unsigned long type variable can have.

CC32R MANUAL - 125

Chapter 8 Standard Header Files

8.2.6 locale.h

Performs prototype declaration and macro definition of a function (locale

handle function) which processes localization of the program. Table 8.6 and

Table 8.7 list the functions declared and macros declared by locale.h.

Table 8.6 Functions Declared by locale.h

Function Description Reentrant

localeconv Initialize struct lconv. ✕

setlocale Sets and searches for locale information. ✕

Table 8.7 Macros Defined by locale.h

Macro Name Description

LC_ALL Sets and searches all locale information.

LC_COLLATE Sets and searches information that affects the strcoll function and strxfrm

function.

LC_CTYPE Sets and searches information that affects functions handling character and

multi bytes, except for the isdigit and isxdigit functions.

LC_MONETARY Sets and searches information that affects currency information returned from

the localeconv function.

LC_NUMERIC Sets and searches information that affects information other than decimal point

used by the input and output functions and the character handling functions

and currency information returned from the localeconv function.

LC_TIME Sets and searches information that affects the strftime function.

CC32R MANUAL - 126

Chapter 8 Standard Header Files

8.2.7 math.h

Performs prototype declaration and macro definition of arithmetic functions.

Table 8.8 and Table 8.9 list the functions declared and macros declared by

math.h.

Table 8.8 Functions Declared by math.h

Function Description Reentrant

acos Obtains the arc cosine of a floating-point number. ✕

asin Obtains the arc sine of a floating-point number. ✕

atan Obtains the arc tangent of a floating-point number. ✕

atan2 Divides a floating-point number by a floating-point ✕

number and obtains the arc tangent of the result.

ceil Computes the integer ceiling of a floating-point number. ✕

cos Obtains the cosine of radians of a floating-point number. ✕

cosh Obtains the hyperbolic cosine of a floating-point number. ✕

exp Obtains the exponential function of a floating-point ✕

number.

fabs Obtains the absolute value of a floating-point number. ✕

floor Cuts off the fraction of a floating-point number. ✕

fmod Computes the floating-point remainder. ✕

frexp Divides a floating-point number into products of value ✕

(0.5, 1.0) and 2 to the nth power.

ldexp Performs multiplication of a floating-point number and 2 ✕

to the nth power.

log Obtains natural logarithm of a floating-point number. ✕

log10 Obtains the base 10 logarithm of a floating-point number. ✕

modf Divides a floating-point number into integer and ✕

fractional parts.

pow Obtains a floating-point number to nth power. ✕

sin Obtains the sine of the radians of a floating-point ✕

number.

sinh Obtains hyperbolic sine of a floating-point number. ✕

sqrt Obtains the positive square root of a floating-point ✕

number.

tan Obtains the tangent of the radians of a floating-point ✕

number.

tanh Obtains hyperbolic tangent of a floating-point number. ✕

CC32R MANUAL - 127

Chapter 8 Standard Header Files

Table 8.9 Macro Defined by math.h

Macro Name Description

HUGE_VAL Indicates the value that the function returns when its operation results in an

overflow.

CC32R MANUAL - 128

Chapter 8 Standard Header Files

8.2.8 setjmp.h

Performs the prototype declaration of a branch function and necessary data

type declaration. The declared functions and data types are shown in Table

8.10 and Table 8.11.

Table 8.10 Functions Declared by setjmp.h

Function Description Reentrant

longjmp Recovers the execution environment saved by setjmp ❍

and transfers control to the program location of a setjmp

call.

setjmp Saves the current environment to a memory area. ❍

Table 8.11 Data Types Declared by setjmp.h

Data Type Description

jmp_buf Indicates the type name corresponding to the memory location where

information that enables movement of the control between functions.

8.2.9 signal.h

Performs the prototype declaration and macro definition of the signal process

functions. The declared functions are shown in Table 8.12.

Table 8.12 Functions declared by signal.h

Function Description

raise Send a signal to the executing-program.

signal Sets up a signal handler that responds to the signal.

CC32R MANUAL - 129

Chapter 8 Standard Header Files

8.2.10 stdarg.h

Performs the macro definition and data type declaration required for the

variable arguments functions. The defined macros and declared data types are

shown in Table 8.13 and Table 8.14. Theses macros are further described in 9.2

“Library Function Descriptions”.

Table 8.13 Macros Defined by stdarg.h

Macro Name Description Reentrant

va_arg (Macro) Gets variable arguments in turn. ❍

va_end (Macro) Ends the reference to variable arguments. ❍

va_start (Macro) Initializes to reference variable arguments. ❍

Table 8.14 Data Types Declared by stdarg.h

Data Type Description

va_list Indicates the types of variable arguments used by the macros va_start, va_arg

and va_end for referencing variable arguments.

CC32R MANUAL - 130

Chapter 8 Standard Header Files

8.2.11 stddef.h

Defines the macros which are commonly used by the standard header files and

declares the common data types. The defined macros and declared data types

are shown in Table 8.15 and Table 8.16.

Table 8.15 Macros Defined by stddef.h

Macro Name Description

errno Every time an error occurs while processing the errno library function, the error

code set for that library is set to the errno macro. To check the error that

occurred during processing of a library function, set the errno to 0 before calling

the library function and then check the code set into errno after the process.

NULL Indicates the value when the pointer is pointing to nothing.

Table 8.16 Data Types Declared by stddef.h

Data Type Description

ptrdiff_t Indicates the type resulting from subtraction of two pointers.

size_t Indicates the type resulting from operation of the sizeof operator.

wchar_t Indicates the type of the wide-character (L’...’)

CC32R MANUAL - 131

Chapter 8 Standard Header Files

8.2.12 stdio.h

Performs the prototype declaration of the input and output functions and the

definition of macro definition and data type declaration required for input and

output functions. The declared functions, defined macros and data types are

shown in Table 8.17, Table 8.18 and Table 8.19, respectively.

Table 8.17 Functions Declared by stdio.h (1/2)

Function Description Reentrant

clearerr Clears an error condition in a stream. ✕

fclose Closes a file. ✕

feof Checks if the end of a stream is reached. ✕

ferror Checks if a stream is in an error condition. ✕

fflush Outputs the contents of a stream to a file. ✕

fgetc Gets a character from a stream. ✕

fgetpos Locates the current position on a stream. ✕

fgets Gets a string from an input stream. ✕

fopen Opens a file. ✕

fprintf Outputs data to a stream according to the format. ✕

fputc Outputs a character to a stream. ✕

fputs Outputs a string to a stream. ✕

fread Transfers data from a stream to a memory area. ✕

freopen Closes a currently opened stream, and reopens a new ✕

file with the new file name.

fscanf Gets data from a stream, and converts the data by ✕

following the format.

fseek Moves the current read/write position within a stream. ✕

fsetpos Changes the current position on a stream. ✕

ftell Locates the current read/write position in a stream. ✕

fwrite Transfers data from a memory area to a stream. ✕

getc Gets one character from a stream. ✕

getchar Gets a character from the standard input (stdio). ✕

gets Gets a string from the standard input (stdio). ✕

perror Outputs the error message corresponding to the error ✕

code to the standard error file (stderr).

printf Converts data by following the format and outputs it to ✕

the standard output file (stdout).

CC32R MANUAL - 132

Chapter 8 Standard Header Files

Table 8.17 Functions Declared by stdio.h (2/2)

Function Description Reentrant

putc Outputs a character to a stream. ✕

putchar Outputs a character to the standard output file (stdout). ✕

puts Outputs a string to the standard output file (stdout). ✕

remove Deletes a file. Depends on user description

rename Renames a file. Depends on user description

rewind Moves the current read/write position on a stream to ✕

the beginning of the file.

scanf Gets data from the standard input file (stdin) and ✕

converts the data by following the format.

setbuf Defines a buffer for an I/O stream. ✕

setvbuf Defines and sets a buffer for an I/O stream. ✕

sprintf Converts the data by following the format and outputs ✕

the data to an area.

sscanf Gets data from a memory area and converts the data ✕

by following the format.

tmpfile Creates a temporary file. ✕

tmpnam Creates a not-existing temporary file name. ✕

ungetc Returns a character a stream. ✕

vfprintf Outputs a variable argument list to a stream by ✕

following the format.

vprintf Outputs a variable argument list to the standard output ✕

(stdout) by following the format.

vsprintf Outputs a variable arguments list to a memory area ✕

by following the format.

CC32R MANUAL - 133

Chapter 8 Standard Header Files

Table 8.18 Macros Defined by stdio.h

Macro Name Description

_IOFBF Indicates that all input and output processes use the buffer area.

_IOLBF Indicates that input and output processes use the buffer area in units of one

line.

_IONBF Indicates that input and output processes do not use the buffer area.

BUFSIZ Indicates the size of the buffer required for input and output processes.

EOF End of file, i.e., indicates that no further input will come from the file.

L_tmpnam Indicates that the size of the location is enough to store the string of the name of

the temporary file generated by the tmpnam function.

SEEK_CUR Indicates that the current read/write position of the file is moved from the

current of file to the offset.

SEEK_END Indicates that the current read/write position of the file is moved from the end

of the file to the offset.

SEEK_SET Indicates that the current read/write position of the file is moved from the

beginning of the file to the offset.

TMP_MAX Indicates the maximum number of file names generated by the tmpnam

function.

FOPEN_MAX Indicates the maximum number of files including stdio, stdout and stderr, that

the fopen function can open at the same time.

FILENAME_MAX Indicates the maximum size of the name of the file that can be opened.

stderr The file pointer which indicates the standard error.

stdin The file pointer which indicates the standard input file.

stdout The file pointer which indicates the standard output file.

Table 8.19 Data Type Declared by stdio.h

Data Type Description

FILE Indicates the type of structure that stores the pointer of the buffer necessary for

the stream input and output processes and error indicator and end indicator

and other control information.

fpos_t Used by fsetpos and fgetpos functions to indicate file position.

CC32R MANUAL - 134

Chapter 8 Standard Header Files

8.2.13 stdlib.h

Performs the prototype declaration of general utility functions (memory

management, end process), definition of macros, and declaration of data types

necessary for general utility functions. These functions, macros and data types

are shown in Tables 8.20, 8.21 and 8.22.

Table 8.20 Functions Declared by stdlib.h(1/2)

Function Description Reentrant

abort Puts the running program to forced stop. ✕

abs Obtains the absolute value of an int type integer. ❍

atexit Catalogs the function to be called upon successful ✕

termination of the program.

atof Converts the character string representing a number ✕

into a double type floating-point number.

atoi Converts the character string representing a decimal ✕

number into a int type integer.

atol Converts the character string representing a decimal ✕

number into a long type integer.

bsearch Performs binary search. ❍ (Depends on comparison function)

calloc Allocates a memory space and initializes the allocated ✕

memory space to 0.

div Divides an int type integer and obtains the quotient ❍

and remainder.

exit Terminates the program. ✕

free Releases the specified memory area. ✕

getenv Gets the content of an environmental variable. Depends on user description

labs Obtains the absolute value of a long type integer. ❍

ldiv Divides a long type integer and obtains the quotient ❍

and remainder.

malloc Allocates memory area. ✕

mblen Obtains the number of bytes composed of multibyte ❍

characters.

mbstowcs Converts a multibyte character string into a wide ❍

character string.

mbtowc Converts a multibyte character into a wide character. ❍

qsort Performs sorting. ❍ (Depends on comparison function)

CC32R MANUAL - 135

Chapter 8 Standard Header Files

Table 8.20 Functions Declared by stdlib.h(2/2)

Function Description Reentrant

rand Generates a pseudo-random integer which resides ✕

between 0 and RAND_MAX.

realloc Changes the memory area size to the specified size. ✕

srand Sets the initial values of the pseudo-random integers ✕

which the rand function generates.

strtod Converts a string into a double type floating-point ✕

number.

strtol Converts a string into a long type integer. ✕

strtoul Converts a string into an unsigned long type integer. ✕

system Passes a command string to the host environment. Depends on user description

wcstombs Converts a wide string into a multibyte string. ❍

wctomb Converts a wide character into a multibyte character. ❍

Table 8.21 Macro Defined by stdlib.h

Macro Name Description

RAND_MAX Indicates the maximum value of a pseudo-random integer generated by the

rand function.

Table 8.22 Data Type Declared by stdlib.h

Data Type Description

div_t Indicates the type of structure of the value div function returns.

ldiv_t Indicates the type of structure of the value ldiv function returns.

CC32R MANUAL - 136

Chapter 8 Standard Header Files

8.2.14 string.h

Performs the prototype declaration of the character string handle function and

memory handle function. Table 8.23 shows the functions declared by string.h.

Table 8.23 Functions Declared by string.h

Function Description Reentrant

memchr Locates, in a memory area, the position where ❍

a character first appears.

memcmp Compares the contents of two memory areas. ❍

memcpy Copies the contents of a memory area to the destination ❍

memory area.

memmove Moves the contents from a memory area to ❍

the destination memory area.

memset Copies a character into the first n characters in memory ❍

area.

strcat Links a string to the end of a string. ❍

strchr Locates, in a string, the position where a character first ❍

appears.

strcmp Compares two strings. ❍

strcoll Compares the two strings based on the current locale. ❍

strcpy Copies the contents (including null characters) of the ❍

source string to the target memory area.

strcspn Computes the length of initial segment of a string which ❍

consists of unspecified characters.

strerror Returns the error message. ❍ (Depends on _strerror function)

strlen Measures the size of string. ❍

strncat Links the specified number of characters to the string. ❍

strncmp Compares specified number of characters of two strings. ❍

strncpy Copies the specified number of characters from the ❍

string to memory.

strpbrk Locates the position where one of the specified ❍

characters first appears in a string.

strrchr Locates the position where a character last appears in ❍

a string.

strspn Computes the length of initial segment of a string ❍

which consists of specified characters.

strstr Finds the first occurrence point of a string within another. ❍

strtok Separates a string into tokens. ✕

strxfrm Converts the string based on the current locale. ❍

CC32R MANUAL - 137

Chapter 8 Standard Header Files

8.2.15 time.h

Performs the prototype declaration and macro definition of the date and time

handle functions. Table 8.24 shows the declared functions.

Table 8.24 Functions Declared by time.h

Function Description Reentrant

asctime Converts data and time (a struct tm) into the equivalent ✕

text string.

clock Gets the elapsed processor time. Depends on user description

ctime Converts the calendar time (a time_t value) into ✕

the equivalent text string.

difftime Computes the difference between the two specified ❍

times.

gmtime Converts calendar time to Coordinated Universal Time ✕

(UTC).

localtime Converts current calendar time to the local time. ✕

mktime Converts date and time (a struct tm) to the calendar time. ✕

strftime Converts date and time (a struct tm) to the format ✕

specified.

time Reads the current calendar time. Depends on user description

CC32R MANUAL - 138

Chapter 9 C Standard Library

Chapter 9

C Standard Library

This Chapter describes the C standard libraries contained in CC32R.

9.1 Overview of the C Standard Library

9.1.1 The Library Files Contained in CC32R

CC32R provides two versions of the library which should be used properly

according to the argument passing method for library functions : “m32RcR.lib,

m32RcRM.lib, m32RcRL.lib” for “register- passing”.

• m32RcR.lib, m32RcRM.lib, m32RcRL.lib

Specify either libraries with the -l option as you invoke the C compiler or linker.

||||| Note |||||

Do not mix-use m32Rc.lib, m32RcM.lib, m32RcL.lib (for stack-passing) and

m32RcR.lib, m32RcRM.lib, m32RcRL.lib (for register-passing) in an application.

CC32R MANUAL - 139

Chapter 9 C Standard Library

9.1.2 Library Function Groups

C standard libraries are in conformity to ANSI specifications (ANSI/ISO 9899-

1990). The functions are classified into 11 groups as shown in Table 9.1 Each

library can be made available for use in a unit process only when the

corresponding standard header file is included.

Table 9.1 C Standard Library Function Groups

Group Summary Corresponding
Header file

Program diagnostic function Program diagnostic information output assert.h

Character handling function Character handling and checking ctype.h

Mathematics function Arithmetic operations e.g., trigonometric functions math.h

Non-local jump function Transfer of control from function to function setjmp.h

Variable arguments access Access to arguments of variable arguments function stdarg.h

function

Input/output function Input and output operations stdio.h

General utility function C program standard processes, stdlib.h

e.g., memory management

String handling function Comparison, copy, etc., of character string string.h

Localization function Setting and handling of locale (localization) locale.h

Date and time function Setting, changing, etc. of date and time time.h

Signal handling function Transferring of signal (interrupt) signal.h

In addition, there are “initialization function” and “termination function” that

effect several settings for using functions shown above. They are undefined in

ANSI-C. Their function names begin with an underscore (_) . In general, they

should be used in the start-up program (see 7.3.6 to 7.3.8).

CC32R MANUAL - 140

Chapter 9 C Standard Library

9.1.3 Consideration for using the Library

When using C standard library, observe the following precautions :

• Include the standard header files.

If you use the C standard library, include necessary standard

header files. For header files, refer to Chapter 8 “Standard

Header Files”. Header file(s) for each function are described in

Syntax in 9.2 “Library Function Descriptions” .

• Do not create any function of the same name as the C standard library function.

In a user program, do not create any function named as the same

name as one of C standard library functions, which conforms to

the ANSI-C specifications. It is not recommendable.

9.1.4 Library Error Message

Some library function sets an error number in errno defined in the standard

header file errno.h, when an error occurs during execution of the library

function. An error message is defined by the error number and such an error

message can be output. An example of program to check errno is shown

below :

#include <stdio.h>

#include <math.h>

#include <errno.h>

#include <string.h>

void main(void)

{

 double x,a=2.0;

 x = asin(a);

 if(errno == EDOM)

 printf("%s\n",strerror(errno)); /* print error message */

}

Figure 9.1 Example of Checking errno

In the example in Figure 9.1, an arc sine value of a number is calculated through

the asin function. When an argument a exceeds the domain [-1, 1] of the asin

function, a value EDOM is set in errno and, therefore, an error message is

output by the printf function. When an error number is passed as a real

argument, the strerror function returns a string pointer to the corresponding

error message.

CC32R MANUAL - 141

Chapter 9 C Standard Library

9.2 Rebuild to Method of Standard Library

The source environment of the standard library is attached.

Using this environment, the library can be created using any code generation

option.Explain the procedure of creating a library using this environment.

This description is for the MS-Windows(PC) version. If you are using the EWS

version, change the following as shown:

MS-Windows(PC) version EWS version

lib32\src ⇒ lib/src

BUILD.bat ⇒ BUILD.csh

CLEAN.bat ⇒ CLEAN.csh

9.2.1 Library Building Procedure

<Storage location>

When CC32R is installed, directory name lib32R\src is created in the

installation directory and the required directories and files created in that

directory.

(1) Modify the BUILD batch file.

Specify the library name and compile options (code generation-related

items; memory model, and specification of optimization). Change the

following in BUILD.bat.

set TARGET=<TARGET NAME>

set CFLAGS=<COMPILE OPTION>

set AFLAGS=<ASSEMBLE OPTION>

set MMODEL=<MEMORY MODEL>

■<TARGET NAME>

Specify the filename (excluding extension) of the library file.

A library (with the .lib extension) and stk file (with the .stk

extension) are generated from the specified name.

■<COMPILE OPTION>

Specify the cc32R option(s).

■<ASSEMBLE OPTION>

Specify the as32R option(s).

■<MEMORY MODEL>

Specify the memory model name (one of "small", "medium" and

"large").

CC32R MANUAL - 142

Chapter 9 C Standard Library

[Example of specification]

If library name m32RcR.lib, small model and the library

corresponds to time critical optimization is generated.

set TARGET=m32RcR

set CFLAGS=-small -Otime -zdiv

set AFLAGS=

set MMODEL=small

In the EWS version, quote the detail of specification with single

quote marks, etc, and specify as follows:

set CFLAGS=’-small -Otime -zdiv’

<Reference>

List of option specifications corresponding to items in library

supplied as standard.

Library TARGET CFLAGS AFLAGS MMODEL

name

m32RcR.lib m32RcR -small -Otime -zdiv None small

m32RcRm.lib m32RcRM -medium -Otime -zdiv None medum

m32cRL.lib m32RcRL -large -Otime -zdiv None large

(2) Execute BUILD

Move the current directory to lib32R\src and execute BUILD.bat from the

command line.

After execution has completed, the following two files are generated if set

TARGET=m32RcR is specified in (1).

m32RcR.lib (Library file)

m32RcR.stk (stk file of all of m32RcR.lib)

(3) Execute CLEAN (if necessary)

If necessary, execute CLEAN.bat.

Deletes all *.mo files temporarily created when executing BUILD, as well

as individual *.stk files.

(The library and stk file for the whole library are not deleted.)

CC32R MANUAL - 143

Chapter 9 C Standard Library

9.3 Library Function Descriptions

This section describes the functions of the C standard library in alphabetical

order. How to refer each function description is shown in Figure 9.2 :

Function name Group
Note)

Summary

Syntax Shows a call type of function. #include <header_file> is a standard header
file to use this function. Be sure to include it.

Return Value Shows a return value of function. A comment preceded by ' : ' which is stated
immediately after a return value explains the return value (return conditions,
etc.).

Description Explains the specifications of the function.

Caution Shows something to be considered, if any.

Figure 9.2 C Standard Library Function Reference Format

Note) The parenthesized “non-ANSI” here means a function that is included in the C standard library and it however is not

defined in ANSI-C. (see Sections 7.3.6, 7.3.7 and 7.3.8).

CC32R MANUAL - 144

Chapter 9 C Standard Library

_action_atexit Termination function (non-ANSI)

Performs user-registered terminations.

Syntax void _action_atexit (void);

Return Value None

Description The _action_atexit function calls all of termination functions registered by using
the atexit function, and then, clears the counter which counts registered
functions.

Caution Call this function always after terminating the main function in the start-up
program. (See 7.2, 7.3.)

_exit_mem Termination function (non-ANSI)

Terminating for I/O, general utility, and localization groups.

Syntax void _exit_mem (void);

Return Value None

Description The _exit_mem function deallocates the whole memory space allocated, and
initializes the memory management pointer. Call this function only once after
all of input/output, general utility, and localization functions terminate.

Caution Call this function always after terminating the main function in the start-up
program. (See 7.2, 7.3.)

CC32R MANUAL - 145

Chapter 9 C Standard Library

_exit_stdio Termination function (non-ANSI)

Terminating for I/O function group.

Syntax void _exit_stdio (void);

Return Value None

Description The _exit_stdio function closes all of input/output streams. Call this function
only once after all of input/output functions terminate.

Caution Call this function always after terminating the main function in the start-up
program. (See 7.2, 7.3.)

_get_exit_code Termination function (non-ANSI)

Gets the exit status from exit().

Syntax void _get_exit_code (void);

Return Value The exit status (the termination code) returned from the exit function.

Description The _get_exit_code function gets the exit status code from the exit function.
Call this function always in the start-up program to check the exit status for the
function which has been terminated with the exit function. (See 7.3.9 "Start-up
Program Example.")

CC32R MANUAL - 146

Chapter 9 C Standard Library

_init_atexit Initialization function (non-ANSI)

Initializing for atexit().

Syntax void _init_atexit (void);

Return Value None

Description The _init_atexit function initializes the counter which counts registered
functions by the _atexit function. Call this function only once before the first
atexit function call.

Caution Call this function always before calling the main function in the start-up
program. See _action_atexit(). (See 7.2, 7.3.)

_init_base_year Initialization function (non-ANSI)

Initializing for the date and time function group.

Syntax void _init_base_year (int year);

year; /* base year */

Return Value None

Description The _init_base_year function initializes the base year to year. Call this function
only once prior to all of the functions of the date and time function group.

Caution Call this function always before calling the main function in the start-up
program. (See 7.2, 7.3.)

CC32R MANUAL - 147

Chapter 9 C Standard Library

_init_exit_environ Initialization function (non-ANSI)

Initializing for exit().

Syntax void _init_exit_environ (void);

Return Value 0 : The status as it is before the function is called (the current environment
has been saved).

non-0 : Control has returned as a result of executing the exit function (this
return value turns to 1 if the exit status code of the routine that issued
this function is 0).

Description The _init_exit_environ function saves the current execution environment by
using the setjmp function. This initializes the return destination handled by the
exit function. Having called this function before executing the main function
within the start-up program allows control to return to the point at the time of
issuing this function when the main function terminates with the exit function.

This function returns a value other than 0 if returned from the exit function,
otherwise returns 0.

In the start-up program, calling this function before calling the main function
and checking its return value enables the following (see also 7.3.9 “Start-up
Program Examples”) :

• Return Value = 0 This means that the initialization of the return
destination from the exit function has been finished,
so you can call the main function.

• Return Value = a value other than 0
This means that the main function has terminated
with the exit function and that control has returned to
the point at the time of issuing this function. you can
obtain the exit status of the exit function through the
_get_exit_code function.

CC32R MANUAL - 148

Chapter 9 C Standard Library

_init_mem Initialization function (non-ANSI)

Initializing for I/O, general utility, and localization groups.

Syntax void _init_mem (void);

Return Value None

Description The _init_mem function initializes the memory management pointer. Call this
function only once prior to all of input/output, general utility, and localization
functions.

Caution Call this function always before calling the main function in the start-up
program. The corresponding termination process with the _exit_mem function
is required after control returns from the main function. (See 7.2, 7.3.)

CC32R MANUAL - 149

Chapter 9 C Standard Library

_init_stdio Initialization function (non-ANSI)

Initializing for I/O function group.

Syntax void _init_stdio (void);

Return Value None

Description The _init_stdio function effect the initialization to use the standard input
stream, standard output stream, and standard error stream. Call this function
only once prior to all of the functions of the input/output function group.

Caution Call this function always before calling the main function in the start-up
program. The corresponding termination process with the _exit_stdio function
is required after control returns from the main function. (See 7.2, 7.3.)

CC32R MANUAL - 150

Chapter 9 C Standard Library

abort General utility function

Puts the running program to forced stop.

Syntax #include < stdlib.h >

void abort (void);

Return Value None

Description The abort function terminates execution of the program and generates a signal
SIGABRT. Abort function does not flush any buffer, close any file nor delete
any temporary file.

abs General utility function

Obtains the absolute value of an int type integer.

Syntax #include < stdlib.h >

int abs (int j);

j; /* an integer to be computed */

Return Value An absolute value of the result

Description The abs function calculates an absolute value of int type. Any operation cannot
be guaranteed if the result cannot be expressed in the int type.

CC32R MANUAL - 151

Chapter 9 C Standard Library

acos Mathematics function

Obtains the arc cosine of a floating-point number.

Syntax #include < math.h >

double acos (double x);

x;

Return Value Calculated value of argument

Description The acos function calculates the arc cosine of argument x and returns a value in
a range from 0 to π. Value x must be in a range between -1 and 1. This function
sets a value of EDOM in errno if x is less than -1 or more than 1.

asctime Date and time function

Converts data and time (a struct tm) into the equivalent text string.

Syntax #include < time.h >

char *asctime (const struct tm *timeptr);

timeptr; /* pointer to tm type structure */

Return Value Pointer for a converted character string

Description The asctime function converts the time and date specified by timeptr into the
format as follows :

Thu May 12 16:00:00 1995\n\0

CC32R MANUAL - 152

Chapter 9 C Standard Library

asin Mathematics function

Obtains the arc sine of a floating-point number.

Syntax #include < math.h >

double asin (double x);

x;

Return Value Calculated value of argument

Description The asin function calculates the arc sine of argument x and returns a value in a
range from -π/2 to π/2. Value x must be in a range between -1 and 1. This
function sets a value of EDOM in errno if x is less than -1 or more than 1.

CC32R MANUAL - 153

Chapter 9 C Standard Library

assert Program diagnostic function

Adds a diagnostic function to a program.

Syntax #include < assert.h >

#include < stdio.h >

void assert (int expression);

expression; /* an expression to be diagnosed */

Return Value None

Description The assert function is defined as a macro and it outputs a diagnosis message to
a standard error file when expression is false (0). And then the assert function
starts the abort function. This function does nothing when expression is true.

The assert function is usually used to detect a logical error of the program and a
conditional expression is specified so that expression can be true only when a
program runs correctly.

 If the description of assert is deleted from the program after the program has
been debugged, define a macro called NDEBUG in the #define statement before
fetching <assert.h> (#define NDEBUG).

 If the #undef statement is used for a macro called assert, the effect of the assert
function is not guaranteed any more.

CC32R MANUAL - 154

Chapter 9 C Standard Library

atan Mathematics function

Obtains the arc tangent of a floating-point number.

Syntax #include < math.h >

double atan (double x);

x;

Return Value Calculated value of argument

Description The atan function calculates the arc tangent of x. This function returns a value
in a range from 0 to π.

atan2 Mathematics function

Divides a floating-point number by a floating-point number and obtains the arc tangent
of the result.

Syntax #include < math.h >

double atan2 (double y, double x);

y, x;

Return Value Calculated value of argument

Description The atan2 function calculates the arc tangent of y/x. This function returns a
value in a range from -π to π. The result of the atan2 function indicates an angle
made by the x axis of a memory area through a point (x, y) and origin (0, 0).
When both arguments, x and y, of the atan2 function is 0, this function sets a
value EDOM in errno.

CC32R MANUAL - 155

Chapter 9 C Standard Library

atexit General utility function

Catalogs the function to be called upon successful termination of the program.

Syntax #include < stdlib.h >

int atexit (void (*func)(void));

func; /* pointer to registered function */

Return Value 0 : Registered

Other than 0 : Not registered

Description The atexit function registers a function called when a program has completed
correctly or when the exit function has been called. A maximum of 32 functions
can be registered. When the program has completed, the functions are executed
in the reverse order of registration.

atof General utility function

Converts the character string representing a number into a double type floating-point
number.

Syntax #include < stdlib.h >

double atof (const char *nptr);

nptr; /* pointer to string to be converted */

Return Value Converted value : Successful

Description The atof function converts a character string nptr expressing a number into a
double type value and returns a converted value. If a conversion result
overflows or underflows, this function sets a value of ERANGE in errno and
returns HUGE_VAL (-HUGE_VAL if negative) or 0 as a return value.

CC32R MANUAL - 156

Chapter 9 C Standard Library

atoi General utility function

Converts the character string representing a decimal number into a int type integer.

Syntax #include < stdlib.h >

int atoi (const char *nptr);

nptr; /* pointer to string to be converted */

Return Value Converted value : Successful

Description The atoi function converts a character string nptr expressing a number into an
int type value and returns a converted value. If a conversion result overflows,
this function sets a value of ERANGE in errno and returns INT_MAX
(INT_MIN if negative) or 0 as a return value.

atol General utility function

Converts the character string representing a decimal number into a long type integer.

Syntax #include < stdlib.h >

long atol (const char *nptr);

nptr; /* pointer to string to be converted */

Return Value Converted value : Successful

Description The atol function converts a character string nptr expressing a number into an
long type value and returns a converted value. If a conversion result overflows,
this function sets a value of ERANGE in errno and returns LONG_MAX
(LONG_MIN if negative) or 0 as a return value.

CC32R MANUAL - 157

Chapter 9 C Standard Library

bsearch General utility function

Performs binary search.

Syntax #include < stdlib.h >

void *bsearch (const void *key, const void *base,

size_t nmemb, size_t size,

 int (*compar)(const void *, const void *));

key; /* pointer to data to be surched */

base; /* pointer to table to be surched */

nmemb; /* the number of members to be surched */

size; /* bytes of a member */

compar; /* pointer to function to be compared */

Return Value Pointer for specified members : Specified members have been searched

NULL : Not searched

Description The bsearch function searches for members who meet the conditions of data
specified by key through a table specified by base. A function which performs
comparison receives pointers p1 (the 1st argument) and p2 (the 2nd argument)
for the two comparison data and returns the result according to the following
specifications :

• *p1 < *p2 this function returns a negative value.
• *p1 == *p2 this function returns a value.
• *p1 > *p2 this function returns a positive value.

All the members to be searched must be arranged in ascending order.

CC32R MANUAL - 158

Chapter 9 C Standard Library

calloc General utility function

Allocates a memory space and initializes the allocated memory space to 0.

Syntax #include < stdlib.h >

void *calloc (size_t nelem, size_t elsize);

nelem; /* the number of elements */

elsize; /* bytes of an element */

Return Value Top element address in

allocated memory area

: Successful

NULL : Error (No memory area has been

allocated. Any of the arguments is 0.)

Description The calloc function allocates nelem objects of the memory area in elsize bytes .
This function initializes all of the allocated area to 0.

Note 12 bytes more area have been secured as memory area allocated by each the
calloc functions. This memory area of 12 bytes is stored a allocation infomation
(size etc.).

CC32R MANUAL - 159

Chapter 9 C Standard Library

ceil Mathematics function

Computes the integer ceiling of a floating-point number.

Syntax #include < math.h >

double ceil (double x);

x; /* floating-point number */

Return Value The calculation result

Description The ceil function returns a minimum integer equal to or greater than value x as
double type value.

CC32R MANUAL - 160

Chapter 9 C Standard Library

clearerr Input/output function

Clears an error condition in a stream.

Syntax #include < stdio.h >

void clearerr (FILE *fp);

fp; /* pointer to FILE structure */

Return Value None

Description The clearerr function clears the error and EOF (end-of-file) indicators for the
stream pointed to by fp. The indicators are data held per stream file. Both data
indicate whether an error is occurred or not and whether a file is completed or
not and such data can be referred through the ferror and feof function
respectively. If any information on the error occurrence and file completion
cannot be obtained through the return value of the functions which handle the
stream, this function checks the status of the file by means of these data.

CC32R MANUAL - 161

Chapter 9 C Standard Library

clock Date and time function

Gets the elapsed processor time.

Syntax #include < time.h >

clock_t clock (void);

Return Value Not supported

Description The clock function depends on your system environment. Therefore, the clock
function is not supported for the present.

Caution To call the clock function in actual, the user-written clock function is required
(see Section 11.1 and Table 11.2).

cos Mathematics function

Obtains the cosine of radians of a floating-point number.

Syntax #include < math.h >

double cos (double x);

x; /* floating-point number (in radians) */

Return Value Calculated value of argument

Description The cos function calculates cosine of x.

CC32R MANUAL - 162

Chapter 9 C Standard Library

cosh Mathematics function

Obtains the hyperbolic cosine of a floating-point number.

Syntax #include < math.h >

double cosh (double x);

x; /* floating-point number */

Return Value Calculated value of argument : Successful

Description The cosh function calculates the hyperbolic cosine of x. When the calculation
result of the function cannot be expressed as a double type value, this function
sets a value of ERANGE in errno. If the calculation result overflows, this
function returns HUGE_VAL as a return value.

ctime Date and time function

Converts the calendar time (a time_t value) into the equivalent text string.

Syntax #include < time.h >

char *ctime (const time_t *timer);

timer; /* calendar time */

Return Value Pointer to a converted character string

Description The ctime function converts the calendar time specified by timer into the
following format :

Thu May 12 16:00:00 1995\n\0

CC32R MANUAL - 163

Chapter 9 C Standard Library

difftime Date and time function

Computes the difference between the two specified times.

Syntax #include < time.h >

double difftime (time_t time1, time_t time2);

time1; /* time 1 */

time2; /* time 2 */

Return Value The value of time2 subtracted from time1 (by the second)

Description The difftime function calculates the value of time2 subtracted from time1.

div General utility function

Divides an int type integer and obtains the quotient and remainder.

Syntax #include < stdlib.h >

div_t div (int number, int denom);

number; /* dividend */

denom; /* divisor */

Return Value Quotient and the remainder in calculation result

Description The div function calculates the quotient and the remainder for the result of
dividing number by denom. The return value is div_t structure and the
quotient and the remainder are put in quot and rem respectively of the
member.

CC32R MANUAL - 164

Chapter 9 C Standard Library

exit General utility function

Terminates the program.

Syntax #include < stdlib.h >

void exit (int status);

status; /* exit status code */

Return Value None

Description The exit function terminates a program by executing the following :

(1) Flashes all the buffers of an opened stream.
(2) Closes all the opened files.
(3) Deletes all the files generated by tmpfile.
(4) Executes all the functions registered by atexit functions in reverse order.
(5) Returns control to the environment saved by a setjmp function.
 (Control no returns to the caller.)

To check status in the environment to which the process returns, you can use
the _get_exit_code function.

CC32R MANUAL - 165

Chapter 9 C Standard Library

exp Mathematics function

Obtains the exponential function of a floating-point number.

Syntax #include < math.h >

double exp (double x);

x; /* floating-point number */

Return Value Value of exponential function (ex) : Successful

Description The exp function calculates the exponential function (ex) of x and returns the
result. If a conversion result overflows, this function sets a value of ERANGE in
errno and returns HUGE_VAL as a return value.

fabs Mathematics function

Obtains the absolute value of a floating-point number.

Syntax #include < math.h >

double fabs (double x);

x; /* floating-point number */

Return Value Absolute value of x

Description The fabs function returns the absolute value of x.

CC32R MANUAL - 166

Chapter 9 C Standard Library

fclose Input/output function

Closes a file.

Syntax #include < stdio.h >

int fclose (FILE *fp);

fp; /* pointer to FILE structure */

Return Value 0 : Successful

EOF : Error

Description The fclose function closes the I/O stream specified by file pointer fp. If an
output file of the I/O stream is opened and if any data not yet output still
remains in the buffer, this function outputs it to a file and closes the file. If the
I/O buffer is assigned automatically by a system, this function release it.
Moreover, if the stream is opened by the tmpfile function, this function deletes
the corresponding file.

feof Input/output function

Checks if the end of a stream is reached.

Syntax #include < stdio.h >

int feof (FILE *fp);

fp; /* pointer to FILE structure */

Return Value 0 : When a file is not ended
non-0 : When a file is ended

Description The feof function judges whether the I/O stream specified by the file pointer fp
is ended or not. The feof function judges that the file is ended if the EOF (end-
of-file) indicator is set.

CC32R MANUAL - 167

Chapter 9 C Standard Library

ferror Input/output function

Checks if a stream is in an error condition.

Syntax #include < stdio.h >

int ferror (FILE *fp);

fp; /* pointer to FILE structure */

Return Value 0 : No error condition for the file

non- 0 : An error condition for the file

Description The ferror function judges whether any error is made in the I/O stream
specified by the file pointer fp. The ferror function judges that an error is made
in the file if the error indicator is set.

fflush Input/output function

Outputs the contents of a stream to a file.

Syntax #include < stdio.h >

int fflush (FILE *fp);

fp; /* pointer to FILE structure */

Return Value 0 : Successful

EOF : Error

Description When the stream specified by fp is opened for output, the fflush function
outputs the stream buffer content, which has not yet been output, to the file.
This function disables the designation of the ungetc function if such a file is
opened for input.

CC32R MANUAL - 168

Chapter 9 C Standard Library

fgetc Input/output function

Gets a character from a stream.

Syntax #include < stdio.h >

int fgetc (FILE *fp);

fp; /* pointer to FILE structure */

Return Value The character read : Successful

EOF : End-of-file is encountered or a read error occurs.

Description The fgetc function inputs one character from the stream specified by the file
pointer fp and returns the character.

When EOF (end-of-file) is encountered, the EOF indicator for the stream is set
and this function returns EOF. When a read error occurs during the operation,
the error indicator for the stream is set and this function returns EOF.

The EOF indicator can be referred by the feof function and the error indicator
can be referred by the ferror function.

CC32R MANUAL - 169

Chapter 9 C Standard Library

fgetpos Input/output function

Locates the current position on a stream.

Syntax #include < stdio.h >

int fgetpos (FILE *stream, fpos_t *pos);

stream; /* pointer to FILE structure */

pos; /* current position on the stream */

Return Value 0 : Successful

non- 0 : Error (An error is returned to errno.)

Description The fgetpos function returns the current value of the file position indicator of
the stream specified by stream to the memory area specified by pos.

CC32R MANUAL - 170

Chapter 9 C Standard Library

fgets Input/output function

Gets a string from an input stream.

Syntax #include < stdio.h >

char *fgets (char *s, int n, FILE *fp);

s; /* pointer to data storage location */

n; /* the number of characters to be stored */

fp; /* pointer to FILE structure */

Return Value s : Successful

NULL : End-of -file is encountered or a read error occurs.

Note) The content of the storage specified by s does not vary when an input file is ended, but it

depends on the user-defined read function when an error occurs.

Description The fgets function inputs a string from the stream specified by the file pointer fp

and stores it in the memory area specified by the pointer s. This function inputs
n-1 characters, any characters up to the new-line character or to the end of the
file and it adds a null character to the end of the string. The input new-line
character is included in the string and is stored.

When EOF (end-of-file) is encountered, the EOF indicator for the stream is set
and this function returns EOF. When a read error occurs during the operation,
the error indicator for the stream is set and this function returns EOF.

The EOF indicator can be referred by the feof function and the error indicator
can be referred by the ferror function.

CC32R MANUAL - 171

Chapter 9 C Standard Library

floor Mathematics function

Cuts off the fraction of a floating-point number.

Syntax #include < math.h >

double floor (double x);

x; /* floating-point number */

Return Value Calculation result

Description The floor function returns the maximum integer equal to or less than the value x

as a double type value.

fmod Mathematics function

Computes the floating-point remainder.

Syntax #include < math.h >

double fmod (double x, double y);

x, y; /* floating-point number */

Return Value The remainder of x/y

Description The fmod function calculates the remainder of x/y and returns the result as a
double type. The return value (assumed as f) has the same sign as the dividend
x , the absolute value of f is smaller than the absolute value of the divisor y,
and the following expression is satisfied :

x=y*i+f where, i is some integer.

If the quotient of x/y cannot be expressed (e.g., when y=0), any result is not
guaranteed.

CC32R MANUAL - 172

Chapter 9 C Standard Library

fopen Input/output function

Opens a file.

Syntax #include < stdio.h >

FILE *fopen (const char *fname, const char *mode);

fname; /* file name */

mode; /* file access mode */

Return Value Pointer to opened stream : Successful

NULL : Error

Description The fopen function opens a file specified by fname. Set any of the following file
access modes to the argument mode :

Access Mode Meaning

"r" Opens a file for reading
"w" Opens a file for writing
"a" Opens a file for appending
"r+" Opens a file for reading and updating
"w+" Opens a file for writing and updating
"a+" Opens a file for appending and updating

A file is opened in a text mode. The file can be opened in a binary mode by
adding b after the access mode designation (Example : r+b).

If any file to be opened is not found in the writing mode or reading mode, a
new file is created.

If any existing file is opened in the writing mode, the beginning of the file is
overwritten and the former record is erased.

If any file is opened in the appending mode, writing is performed from the end
of the file.

If any file is opened in the updating mode, I/O processing is available for the
file. However, input processing cannot be continued without executing the
fflush, fseek or rewind function after output processing. Moreover, the output
processing cannot be continued without executing these functions after the
input processing.

CC32R MANUAL - 173

Chapter 9 C Standard Library

fprintf Input/output function

Outputs data to a stream according to the format.

Syntax #include < stdio.h >

int fprintf (FILE *fp, const char *control, ...);

fp; /* pointer to FILE structure */

control; /* pointer to format string */

...; /* variable argument list (output data) */

Return Value The number of output characters : Successful

Negative value : Error

Description The fprintf function converts and edits the output data specified by the variable
argument list according to the format control and then outputs them to the I/O
stream specified by the pointer fp .

Details of the format are (Ditto for formats handled in the printf, sprintf,
vfprintf, vprintf and vsprintf functions.) :

<Contents of the Format>

A format is character string (pointed to by control) which can contain two

kinds of character sequences such as “plain characters” and “conversion

specification”. The number of and the appearance order of conversion

specifications correspond to them of arguments in the variable argument list.

• Plain characters

Characters in a sequence beginning with non-% (i.e., other than a

conversion specification) . They are output directly.

Example : fprintf(fp,"data=%02d", a);

The underlined are plain characters.

• Conversion specification

A character sequence beginning with %. It specifies how to convert the

corresponding argument in the variable argument list. It consists of %

and following specifiers shown below (They are optional.) :

CC32R MANUAL - 174

Chapter 9 C Standard Library

• Flags

• Field width

• Precision

• Size specifier (for the corresponding argument)

• Conversion specifier

Example : fprintf(fp,"data=%02d", a);

The underlined is a conversion specification. It converts a.

<Conversion Specification Syntax>

A conversion specification can be specified by the following format (a

specifier enclosed in [] is optional) :

%[flags][field_width][.[precision]][size_specifier]conversion_specifier

Example : %02d

The %, the flag 0, the field width 2, and the conversion

specifier d.

Every item shall be described continuously (not separated by a space). If

there is no corresponding argument for a conversion specification (such

as : there is no variable argument list. arguments are not enough.), the

operation is not guaranteed. If the number of arguments is larger than

the number of conversion specifications, all of the excessive arguments

are ignored.

<Details of Conversion Specifiers>

The function of each conversion specifier and how to specify are :

• Flag

A flag specifies processing for the data to be output, such as marking

with a symbol. Types and meaning of the available flags are described

as follows :

CC32R MANUAL - 175

Chapter 9 C Standard Library

Flag Meaning

'-' Left-justified. If the number of characters of converted data

is smaller than the specified field width, this function

outputs the data as left-justification in the filed. If this flag is

not specified, this function will output the data as right-

justification.

'+' With a sign. Upon converting into data followed by a sign,

this function adds the sign ‘+’ or ‘-’ to the beginning of the

converted data.

' ' (space) Without a sign. Upon converting into data followed by a

sign, a space is added to the beginning of converted data if

no sign is added to the beginning of the data. This flag is

ignored if it is specified together with ‘+’.

'#' Processing. This function processes the converted data

according to the conversion specifier as follows :

Conversion Processing
Specifier

c,d,i,s,u This flag is ignored.

o 0 is added to the beginning of
converted data if the data is not 0.

x,X 0x (or 0X if X conversion) is added to
the beginning of the converted data
if the data is not 0.

e,E,f,g,G A floating-point is output even if the
converted data has no fractional
part. When g or G, 0 which is
appended to the converted data is
not removed.

0 If a conversion specifier is d, i, o, u, x, X, e, E, f, g or G, a

space at the left of value is filled with several 0s to eliminate

the space. If it is specified together with the flag ‘-’ or if a

conversion specifier is d, i, o, u, x or X, this flag is ignored

when any precision is specified.

CC32R MANUAL - 176

Chapter 9 C Standard Library

• Field width

A field width specifies the number of output characters of converted

data in decimal number format or * (asterisk).

If the number of output characters of the converted data is smaller than

the field width, several spaces added to the beginning of the data to

adapt to the field width. However, if the flag ‘-’ is specified, the spaces

are appended to the data.

If the number of output characters of converted data is larger than the

field width, the field width is expanded so that the conversion result can

be output.

If the flag ‘0’ is specified, a character ‘0’ instead of space is added to the

beginning of the output data.

• Precision

A precision specifies the precision of the converted data according to the

kind of conversion specifier.

Upon specifying, write the decimal integers and the * after a period (.).

If the decimal integers are omitted, it is assumed that 0 has been

specified. As the result of the accuracy specification, if there is any

discrepancy between the field width and the specification, the field

width specification is disabled.

The type of conversion specifier and the meaning of the precision

specification are stated below :

Conversion specifier Precision specification

d,i,o,u,x,X Shows the minimum number of digits of converted

data.

e,E,f Shows the number of digits of fractional part of

converted data.

g,G Shows the maximum number of effective digits of

converted data.

s Show the maximum characters to be printed.

• The * specification for field width or precision

An * (asterisk) can be used to specify the field width or precision.

When * is specified, the value of the variable argument corresponding to

the conversion specification is used as a value to specify the field width

or precision. If the value of the variable argument is negative, the field

width * is assumed that the '-' flag has been specified for a positive field

width. The precision * is assumed that the precision has been omitted.

CC32R MANUAL - 177

Chapter 9 C Standard Library

• Size specifier (for the corresponding argument)

With the size specifiers h, l, or L at the preceding a conversion specifier,

size of the corresponding argument can be specified when the

conversion specifier is d, i, o, u, x, X, e, E, f, g, G or n. Types of the size

specifiers and their meanings are shown below:

Size Following conversion Type of the corresponding
specifier specifier argument is...

h d,i,o,u,x,or X short int, or unsigned short int

n pointer to short int

l(ell) d,i,o,u,x,or X long int, or unsigned long int

n pointer to long int

L e,E,f,g,or G long double

A size specifier is ignored, if the following conversion specifier is other

than d, i, o, u, x, X, e, E, f, g, G or n.

• Conversion specifier

A conversion specifier specifies how the corresponding argument is

converted.

If the argument to be converted is a structure or array type or any

pointer for those types, the operation is not guaranteed (except upon

converting character array by s conversion and upon converting pointer

by p conversion).

The conversion specifiers and conversion methods are shown below

(Tables). If specifying any character not mentioned here as the

conversion specifier, the operation is not guaranteed.

Notice in the tables : Types in the “Type of the Argument” columns are

shown, assuming that a size specifier (h, l, or L) is not specified in the

conversion specification. “The argument” and “the precision” mean an

argument (in the variable argument list) and the precision in the

conversion specification, respectively, correspond to the conversion

specifier.

CC32R MANUAL - 178

Chapter 9 C Standard Library

(Conversion Specifiers for fprintf (1/3))

Conversion Conversion Method Type of the Notes on Precision

Specifier Argument

d or i Converts int type data into a

character sequence of signed

decimal notation.

The conversion specifier d

behaves the same as i.

o Converts unsigned int type data

into a character sequence of

unsigned octal notation.

u Converts unsigned int type data

into a character sequence of

unsigned decimal notation.

x Converts unsigned int type data

into a character sequence of

unsigned hexadecimal notation.

The hexadecimal letters abcdef

are used.

X Converts unsigned int type data

into a character sequence of

unsigned hexadecimal notation.

The hexadecimal letters ABCDEF

are used.

f Converts double type data into a

character sequence of decimal

notation in the format [-]ddd.ddd.

int

unsigned

int

unsigned

int

unsigned

int

unsigned

int

double

The precision shows how

many characters are output

at least.

If the number of converted

characters is smaller than

the value of precision, 0 is

added to the beginning of

the character string.

If the precision is omitted, 1

is assumed.

Even if any data of value 0

is output with a precision of

0 and converting it, nothing

is output.

The precision shows the

number of digit of

fractional part.

If there is (are) any decimal

place(s), a figure is output

before a decimal point.

If the precision is omitted, 6

is assumed.

If the precision is 0, a

fractional part is not output.

Output data is rounded.

CC32R MANUAL - 179

Chapter 9 C Standard Library

(Conversion Specifiers for fprintf (2/3))

Conversion Conversion Method Type of the Notes on Precision

Specifier Argument

e Converts double type data into a

character sequence of decimal

notation in the format [-]d.ddde ±
ddd. The exponent is output at

least two digits.

E Converts double type data into a

character sequence of decimal

notation in the format [-]d.dddE

±ddd. The exponent is output at

least two digits.

g (or G) Outputs the value (double type)

stored int the argument in either

the f conversion format or in the e

(or E) conversion format

depending on a value stored in

the argument and the precision

which specifies the number of

effective digits.

If the exponent of converted data

is smaller than -4 or more than

the precision, this function

converts to the e (or E) conversion

format.

After the conversion, a 0 at the

end of the decimal places is

removed.

If there is no character at any of

the decimal places, the decimal

point is also removed.

c Considers int type data as

unsigned char and converts it into

a character corresponding to the

data.

double

double

double

int

The precision shows the

number of digit of

fractional part.

For a converted character,

one figure is output before

a decimal point and the

number of digits equal to

the precision is output after

the decimal point.

If the precision is omitted, 6

is assumed. If the precision

is 0, a decimal point and

decimal place are not

output.

Output data is rounded.

The precision shows the

maximum number of

effective digits of converted

data.

The precision is disabled.

CC32R MANUAL - 180

Chapter 9 C Standard Library

(Conversion Specifiers for fprintf (3/3))

Conversion Conversion Method Type of the Notes on Precision

Specifier Argument

s Outputs a character sequence

specified by data of the pointer to

char type up to the null character

which shows the end of the

character string or the output the

number of characters specified by

the precision. (The null character

is not output.)

p Regards data as pointer type and

converts it into a printable

character string depending on the

compiler.

n Considers the data is regarded as

pointer type to int type and sets

the number of characters of data

output to the memory area

specified by the data.

% Outputs %.

Note) Specifying the n or % specifier cannot convert the corresponding argument.

pointer to

char

pointer to

void

pointer to

int

None.

The precision shows the

number of characters to be

output. If the precision is

omitted, the character

string specified by the data

up to the null character is

output. (The null character

is not output.)

The precision is disabled.

The precision is disabled.

The precision is disabled.

CC32R MANUAL - 181

Chapter 9 C Standard Library

fputc Input/output function

Outputs a character to a stream.

Syntax #include < stdio.h >

int fputc (int c, FILE *fp);

c; /* character(s) to be output */

fp; /* pointer to File structure */

Return Value The character written : Successful

EOF : A write error occurs.

description The fputc function outputs the character c into the stream specified by the file
pointer fp.

When a write error occurs during the operation, the error indicator for the
stream is set and this function returns EOF.

The error indicator can be referred by the ferror function.

CC32R MANUAL - 182

Chapter 9 C Standard Library

fputs Input/output function

Outputs a string to a stream.

Syntax #include < stdio.h >

int fputs (char *s, FILE *fp);

s; /* pointer to character(s) to be output */

fp; /* pointer to File structure */

Return Value 0 : Successful

EOF : A write error occurs.

Description The fputs function outputs the character(s) specified by s into the stream
specified by the file pointer fp. However, the null character is not output.

When a write error occurs during the operation, the error indicator for the
stream is set and this function returns EOF.

The error indicator can be referred by the ferror function.

CC32R MANUAL - 183

Chapter 9 C Standard Library

fread Input/output function

Transfers data from a stream to a memory area.

Syntax #include < stdio.h >

size_t fread (void *ptr, size_t size, size_t n, FILE *fp);

ptr; /* pointer to data storage area */

size; /* the number of bytes of one member */

n; /* the number of members to be read */

fp; /* pointer to File structure */

Return Value The number of read members : Successful

(the same value as n usually)

A value smaller than n : The file is ended or an error occurs (It can

be judged by the ferror and feof function)

Description The fread function reads up to n members which have size-byte data from the
stream pointed to by fp to the memory area specified by ptr.

If size or n is 0, this function returns 0 as a return value and the contents of the
memory area specified by ptr does not change. If an error in encountered or if
the members are not read completely, the value of the file position indicator is
not guaranteed.

CC32R MANUAL - 184

Chapter 9 C Standard Library

free General utility function

Releases the specified memory area.

Syntax #include < stdlib.h >

void free (void *ptr);

ptr; /* top address of memory area to be free */

Return Value None

Description The free function frees the memory area specified by ptr so that the memory
area can be allocated again for use. This function does nothing if ptr is NULL.

If the memory area to be free by the free function or the memory area specified
by ptr of the realloc function is not any of memory area allocated by the calloc,
malloc and realloc functions, or if the memory area has been already freed by
the free and realloc functions, the operation is not guaranteed.

CC32R MANUAL - 185

Chapter 9 C Standard Library

freopen Input/output function

Closes a currently opened stream, and reopens a new file with the new file name.

Syntax #include < stdio.h >

FILE *freopen (const char *fname, const char * mode,

FILE *fp);

fname; /* file name */

mode; /* file access mode */

fp; /* pointer to File structure */

Return Value Pointer for opened stream : Successful

NULL pointer : Error

Description The freopen function closes the stream pointed to by fp opened currently and
opens a new file fname for the stream by reusing the FILE structure specified by
the same fp. Select any file access mode from the access modes used in the
fopen function and set it as the mode.

CC32R MANUAL - 186

Chapter 9 C Standard Library

frexp Mathematics function

Divides a floating-point number into products of value (0.5, 1.0) and 2 to the nth power.

Syntax #include < math.h >

double frexp (double x, int *e);

x; /* floating-point number */

e; /* pointer to area in which exponent (integer) is */

Return Value Value of coefficient m

Description The frexp function calculates a power (n) of 2, which meets the condition,
x=m*2

n
, and the coefficient (m), where the absolute value of the coefficient m is

smaller than 1.0 and larger than 0.5. A power value n is stored in the memory
area specified by the argument e and the coefficient m is returned as a return
value. If x is 0.0, both m and n are 0.0.

CC32R MANUAL - 187

Chapter 9 C Standard Library

fscanf Input/output function

Gets data from a stream, and converts the data by following the format.

Syntax #include < stdio.h >

int fscanf (FILE *fp, const char *control , ...);

fp; /* pointer to File structure */

control; /* pointer to format string */

...; /* variable argument list (receivers) */

Return Value The number of arguments converted

and substituted

: Successful (Substitution suppression

by %n conversion and * is not

included in this number)

EOF : Input data has been completed before

the first conversion (excluding %%)

has been succeeded. Otherwise an

error occurred.

Description The fscanf function reads input data from the I/O stream pointed to by the file
pointer fp, converts and edits the input according to the format control, and then
stores the result into the memory area(s) specified by the variable argument list.

An input item (text in a file when the fscanf function) is separated into tokens
by on or more white-spaces : space(' '), horizontal tab ('\t'), newline ('\n').
Those white-spaces are ignored. For example, the input “ ABCD abcd” is
translated into the 2 tokens “ABCD” and “abcd”. The 2 tokens are converted
and then stores into the corresponding areas specified by arguments in the
variable argument list. (In this example, 2 arguments are required.)

Details of the format are shown below (Ditto for formats handled in the scanf
and sscanf functions) :

<Contents of the Format>

A format is character string (pointed to by control) which can contain two

kinds of character sequences such as “plain characters” and “conversion

specification”. The number of and the appearance order of conversion

specifications correspond to them of arguments (in the variable argument list)

which are pointers to the areas in which the separated input items store.

CC32R MANUAL - 188

Chapter 9 C Standard Library

• Plain characters

Characters in a sequence beginning with non-% (i.e., other than a

conversion specification) but White-spaces. They can be input if there

are the characters matched up to them in the input item (text in a file

when the fscanf function). If there are characters unmatched up to them,

the unmatched characters are remained in the input stream.

• Conversion specification

A character sequence beginning with %. It specifies how to convert the

input data. It consists of % and following specifiers shown below (They

are optional.) :

• *

• Field width

• Size specifier (for the corresponding argument)

• Conversion specifier

<Conversion Specification Syntax>

A conversion specification can be specified by the following format (a

specifier in [] is optional) :

%[*][field_width][size_specifier]conversion_specifier

Example : %2d%f

Two conversion specifications :

The %, the field width 2, and the conversion specifier d.

The % and the conversion specifier f .

Every item shall be described continuously (not separated by a space). If

there is no corresponding argument for a conversion specification (such

as : there is no variable argument list. there are insufficient arguments.),

the operation is not guaranteed. If the number of arguments is larger

than the number of conversion specifications, all of the excessive

arguments are ignored.

<Details of Conversion Specifiers>

The function of each conversion specifier and how to specify are :

• * (asterisk)

Prefixing * prior to a conversion specifier allows reading the

corresponding token from the input but suppresses assignment.

• Field width

A field width specifies the number of characters in decimal number

CC32R MANUAL - 189

Chapter 9 C Standard Library

format which can be input.

• Size specifier (for the corresponding argument)

With the size specifiers h, l, or L at the preceding a conversion specifier,

type of the corresponding argument can be specified when the

conversion specifier is d, i, o, u, x, X, e, E, f, g, G or n :

Size Following conversion Type of the corresponding
specifier specifier argument is...

h d,i,o,u,x,or X short int, or unsigned short int

n pointer to short int

l(ell) d,i,o,u,x,or X long int, or unsigned long int

n pointer to long int

L e,E,f,g,or G long double

A size specifier is ignored, if the following conversion specifier is other

than d, i, o, u, x, X, e, E, f, g, G or n.

• Conversion specifier

A conversion specifier specifies how the corresponding argument is

converted.

The fscanf function, unless the conversion specifier is c, [, n or %, skips

the white-spaces in the input before conversion (The skipped characters

are not included in the field width).

When a space is read during conversion, if it is any character

unauthorized for conversion, processing is terminated without reading

the character. When the specified field width is completed during

conversion, processing is terminated.

The conversion specifiers and conversion methods are shown below

(Tables). If specifying any character not mentioned here as the

conversion specifier, the operation is not guaranteed.

Notice in the tables : Types in the “Type of the Argument” columns are

shown, assuming that a size specifier (h, l, or L) is not specified in the

conversion specification. “The argument” means an argument (in the

variable argument list) which corresponds to the conversion specifier.

CC32R MANUAL - 190

Chapter 9 C Standard Library

(Conversion Specifiers for fscanf (1/2))

Conversion Conversion Method Type of the Argument

Specifier

d Converts a character sequence which represents

a decimal number into integer data.

i Converts a character sequence beginning with a

sign or followed by u (or U) or l (or L) in decimal

digit into integral data.

Considers a character sequence beginning with

0x (or 0X) as a hexadecimal digit and converts

the character sequence into integral data.

Considers a character sequence beginning with 0

as an octal digit and converts the character

sequence into integral data.

o Converts a character sequence which represents

an octal digit into integral data.

u Converts a character sequence which represents

an unsigned decimal digit into integral data.

x or X Converts a character sequence which represents

a hexadecimal digit into integral data.

The x and X conversion specifiers are the same.

s Converts the initial part preceding the first

appearance white-space (either a space, a

horizontal tab or a newline) into a character

string suffixing the null character. (The area

pointed to the corresponding argument should

be enough to store it including the null

character.)

c Inputs one character. Then, the input character

is not skipped even if the character is a white-

space.

Specifying the field width allows to read

specified number of characters. Therefore the

area pointed to the corresponding argument

should be enough to store the characters.

e, E, f, F, Converts a character sequence showing a

floating-point number into the floating type

data. Input format is a floating-point number

which can be expressed by the strtod function.

pointer to int

pointer to int

pointer to unsigned int

pointer to unsigned int

pointer to unsigned int

g or G

pointer to char

pointer to char

pinter to float

CC32R MANUAL - 191

Chapter 9 C Standard Library

(Conversion Specifiers for fscanf (2/2))

Conversion Conversion Method Type of the Argument

Specifier

p Converts a character sequence in the format to

be converted by the p conversion in the fprintf

function into pointer type data.

n No data is input and the number of characters

which have been input is set.

[Specifies a set of characters between [and]

called “scan set” (e.g., [abcd], [a-z], [^abcd]).

The scan set defines characters to be read.

If a scan set begins with non-^, the initial

character sequence preceding the first

appearance one unspecified in the scan set is

read.

If a scan set begins with ^, the initial character

sequence preceding the first appearance one

specified in the scan set is read.

Appends the null character to the read character

sequence automatically. (The area pointed to

the corresponding argument should be enough

to store it including the null character.)

% A % is read. No conversion or assignment

occurs.

pointer to void

pointer to int

pointer to char

None.

CC32R MANUAL - 192

Chapter 9 C Standard Library

fseek Input/output function

Moves the current read/write position within a stream.

Syntax #include < stdio.h >

int fseek (FILE *fp, long offset, int type);

fp; /* pointer to File structure */

offset; /* offset from the location specified by type*/

type; /* offset type */

Return Value 0 : Successful

non-0 : Error

Description The fseek function moves a read-write position of the stream specified by the
file pointer fp from a place specified by the offset type type to a position of
offset byte. Types of offset are shown as follows :

type Meaning offset

SEEK_SET Beginning of file 0, a positive value

SEEK_CUR Current read-write position A negative value, 0,

a positive value

SEEK_END End of file 0, a negative value

For a text file, type must be SEEK_SET and offset must be 0 or any value
returned by the ftell function for the file.

The ungetc function is disabled by calling the fseek function.

CC32R MANUAL - 193

Chapter 9 C Standard Library

fsetpos Input/output function

Changes the current position on a stream.

Syntax #include < stdio.h >

int fsetpos (FILE *stream, const fpos_t *pos);

stream; /* pointer to File structure */

pos; /* a position on the stream to be modified */

Return Value 0 : Successful

non-0 : Error (Returns an error number to errno.)

Description The fsetpos function moves the position on the stream specified by stream to a
place designated by memory location specified by pos. pos specifies a value
returned by the fgetpos function.

ftell Input/output function

Locates the current read/write position in a stream .

Syntax #include < stdio.h >

long ftell (FILE *fp);

fp; /* pointer to File structure */

Return Value A file read-write position

Description The ftell function seeks a read-write position of the stream specified by the file
pointer fp and returns it as a return value.

CC32R MANUAL - 194

Chapter 9 C Standard Library

fwrite Input/output function

Transfers data from a memory area to a stream.

Syntax #include < stdio.h >

size_t fwrite (const void *ptr, size_t size, size_t n,

 FILE *fp);

ptr; /* pointer to data storage area */

size; /* number of bytes per member */

n; /* number of written members */

fp; /* pointer to File structure */

Return Value The number of read members

(the same value as n usually)

: Successful

A value smaller than n : When an error is made

Description The fwrite function reads n members which have size-byte data from the
memory area pointed to by ptr to the stream pointed to by fp.

CC32R MANUAL - 195

Chapter 9 C Standard Library

getc Input/output function

Gets one character from a stream.

Syntax #include < stdio.h >

int getc (FILE *fp); /* one character input from file */

fp; /* pointer to File structure */

Return Value The character read : Successful

EOF : End-of-file is encountered or a read error occurs.

Description The getc function inputs one character from the stream specified by the file
pointer fp and returns that character.

When EOF (end-of-file) is encountered, the EOF indicator for the stream is set
and this function returns EOF. When a read error occurs during the operation,
the error indicator for the stream is set and this function returns EOF.

The EOF indicator can be referred by the feof function and the error indicator
can be referred by the ferror function.

CC32R MANUAL - 196

Chapter 9 C Standard Library

getchar Input/output function

Gets a character from the standard input (stdio).

Syntax #include < stdio.h >

int getchar (void);

/* one character input from standard input */

Return Value The character read : Successful

EOF : End-of-file is encountered or a read error occurs.

Description The getchar function is the same as getc(stdin) function.

When EOF (end-of-file) is encountered, the EOF indicator for the stream is set
and this function returns EOF. When a read error occurs during the operation,
the error indicator for the stream is set and this function returns EOF.

The EOF indicator can be referred by the feof function and the error indicator
can be referred by the ferror function.

CC32R MANUAL - 197

Chapter 9 C Standard Library

getenv General utility function

Gets the content of an environmental variable.

Syntax #include < stdlib.h >

char *getenv (const char *name);

name; /* environment variable name */

Return Value Pointer to the character string

specified by variable

: Variable specified by name has been found

NULL : Variable specified by name has not been found

Description The getenv function searches for the variable specified by name in an
environment list.

Caution To call the getenv function in actual, the user-written getenv function is
required (see Section 11.1 and Table 11.2).

CC32R MANUAL - 198

Chapter 9 C Standard Library

gets Input/output function

Gets a string from the standard input (stdio).

Syntax #include < stdio.h >

char *gets (char *s); /* string input from

standard input */

s; /* pointer to data storage area */

Return Value s : Successful

NULL : End-of -file is encountered or a read error occurs.

Note) The content of the storage specified by s does not vary when an input file is ended, but it

depends on the user-defined read function when an error occurs.

Description The gets function inputs the data of one line from the standard input file (stdin)
and stores it in the memory area specified by s. Data of one line shall be a string
from the start of the input to a new-line character (or the end of file). The new-
line character in the input character is discarded and null character is
appended.

When EOF (end-of-file) is encountered, the EOF indicator for the stream is set
and this function returns EOF. When a read error occurs during the operation,
the error indicator for the stream is set and this function returns EOF.

The EOF indicator can be referred by the feof function and the error indicator
can be referred by the ferror function.

CC32R MANUAL - 199

Chapter 9 C Standard Library

gmtime Date and time function

Converts calendar time to Coordinated Universal Time (UTC).

Syntax #include < time.h >

struct tm *gmtime (const time_t *timer);

timer; /* time */

Return Value Converted result (pointer to tm structure) : Successful

NULL : timer could not be converted

into UTC

Description The gmtime function converts the calendar time shown by timer into
Coordinated Universal Time (UTC) and converts it to a struct tm (broken-
down time).

CC32R MANUAL - 200

Chapter 9 C Standard Library

isalnum Character handling function

Judges whether a letter or decimal digit.

Syntax #include < ctype.h >

int isalnum (int c);

c; /* character to be judged */

Return Value non-0 : c is alphanumeric (‘A’-‘Z’,‘a’-‘z’,‘0’-¨9’)

0 : c is anything other than alphanumeric

Description Returns any value other than 0 if c is alphanumeric and returns 0 if c is not
alphanumeric. Alphanumeric shall be defined as follows :

• Upper case letters A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
• Lower case letters a b c d e f g h i j k l m n o p q r s t u v w x y z
• Decimal digits 0 1 2 3 4 5 6 7 8 9

Caution If a value of c is not included in a range expressed by the unsigned char type
and if it is not EOF, the operation of this function is not guaranteed.

CC32R MANUAL - 201

Chapter 9 C Standard Library

isalpha Character handling function

Judges whether a letter or not.

Syntax #include < ctype.h >

int isalpha (int c);

c; /* character to be judged */

Return Value non-0 : c is alphabetic (‘A’-‘Z’,‘a’-‘z’)

0 : c is non alphabetic (‘A’-‘Z’,‘a’-‘z’)

Description Returns any value other than 0 if c is alphabetic and returns 0 if c is not
alphabetic. The alphabetic shall be defined as follows :

• Upper case letters A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
• Lower case letters a b c d e f g h i j k l m n o p q r s t u v w x y z

Caution If a value of c is not included in a range to be expressed by the unsigned char
type and if it is not EOF, the operation of this function is not guaranteed.

CC32R MANUAL - 202

Chapter 9 C Standard Library

iscntrl Character handling function

Judges whether a control character or not.

Syntax #include < ctype.h >

int iscntrl (int c);

c; /* character to be judged */

Return Value non-0 : c is control character

0 : c is anything other than control character

Description Returns any value other than 0 if c is a control character and returns 0 if c is not
a control character. A control character is any character other than a printable
character. A printable character is a character to be indicated on a display and
corresponds to the ASCII codes from 0x20 to 0x7E.

Caution If a value of c is not included in a range to be expressed by the unsigned char
type and if it is not EOF, the operation of this function is not guaranteed.

CC32R MANUAL - 203

Chapter 9 C Standard Library

isdigit Character handling function

Judges whether a decimal digit or not.

Syntax #include < ctype.h >

int isdigit (int c);

c; /* character to be judged */

Return Value non-0 : c is decimal digit

0 : c is anything other than decimal digit

Description Returns any value other than 0 if c is a decimal digit and returns 0 if c is not a
decimal digit

• Decimal digits : 0 1 2 3 4 5 6 7 8 9

Caution If a value of c is not included in a range to be expressed by the unsigned char
type and if it is not EOF, the operation of this function is not guaranteed.

CC32R MANUAL - 204

Chapter 9 C Standard Library

isgraph Character handling function

Judges whether a printable character other than space.

Syntax #include < ctype.h >

int isgraph (int c);

c; /* character to be judged */

Return Value non-0 : c is a printable character excluding space

0 : c is not a printable character excluding space

Description Returns any value other than 0 if c is a printable character excluding space (' ')
and returns 0 if c is not a printable character or is a space. "Printable character
excluding space" is visible on a display and corresponds to the ASCII codes
from 0x21 to 0x7E.

Caution If a value of c is not included in a range to be expressed by the unsigned char
type and if it is not EOF, the operation of this function is not guaranteed.

CC32R MANUAL - 205

Chapter 9 C Standard Library

islower Character handling function

Judges whether a lower case letter or not.

Syntax #include < ctype.h >

int islower (int c);

c; /* character to be judged */

Return Value non-0 : c is lower case letter

0 : c is anything other than lower case letter

Description Returns any value other than 0 if c is a lower case letter and returns 0 if c is not a
lower case letter. A lower case letter shall be defined as follows :

• Lower case letters : a b c d e f g h i j k l m n o p q r s t u v w x y z

Caution If a value of c is not included in a range to be expressed by the unsigned char
type and if it is not EOF, the operation of this function is not guaranteed.

CC32R MANUAL - 206

Chapter 9 C Standard Library

isprint Character handling function

Judges whether a printable character including space.

Syntax #include < ctype.h >

int isprint (int c);

c; /* character to be judged */

Return Value non-0 : c is a printable character including space

0 : c is not a printable character which is not space

Description Returns any value other than 0 if c is a printable character including space (' ')
and returns 0 if c is not a printable character or a space. "Printable character
including space" is visible on a display and corresponds to the ASCII codes
from 0x20 to 0x7E.

Caution If a value of c is not included in a range to be expressed by the unsigned char
type and if it is not EOF, the operation of this function is not guaranteed.

CC32R MANUAL - 207

Chapter 9 C Standard Library

ispunct Character handling function

Judges whether a special character or not.

Syntax #include < ctype.h >

int ispunct (int c);

c; /* character to be judged */

Return Value non-0 : c is special character

0 : c is anything other than special character

Description Returns any value other than 0 if c is a special character and returns 0 if c is not
a special character. A special character is any printable character excluding
space, capital letter, small letter and decimal digit.

Caution If a value of c is not included in a range to be expressed by the unsigned char
type and if it is not EOF, the operation of this function is not guaranteed.

CC32R MANUAL - 208

Chapter 9 C Standard Library

isspace Character handling function

Judges whether a white-space or not.

Syntax #include < ctype.h >

int isspace (int c);

c; /* character to be judged */

Return Value non-0 : c is a white-space

0 : c is anything other than a white-space

Description Returns any value other than 0 if c is a white-space and returns 0 if c is not a
white-space. A white-space shall be as the following characters :

• White-spaces white-space (), form feed (\f), line feed (\n), carriage return
(\r), horizontal tab (\t) and vertical tab (\v)

Caution If a value of c is not included in a range to be expressed by the unsigned char
type and if it is not EOF, the operation of this function is not guaranteed.

CC32R MANUAL - 209

Chapter 9 C Standard Library

isupper Character handling function

Judges whether an upper case letter or not.

Syntax #include < ctype.h >

int isupper (int c);

c; /* character to be judged */

Return Value non-0 : c is an upper case letter

0 : c is anything other than an upper case letter

Description Returns any value other than 0 if c is an upper case letter and returns 0 if c is not
an upper case letter. An upper case letter shall be defined as follows :

• Upper case letters : A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Caution If a value of c is not included in a range to be expressed by the unsigned char
type and if it is not EOF, the operation of this function is not guaranteed.

CC32R MANUAL - 210

Chapter 9 C Standard Library

isxdigit Character handling function

Judges whether a hexadecimal digit or not.

Syntax #include < ctype.h >

int isxdigit (int c);

c; /* character to be judged */

Return Value non-0 : c is hexadecimal digit

0 : c is anything other than hexadecimal digit

Description Returns any value other than 0 if c is a hexadecimal digit and returns 0 if c is not
a hexadecimal digit.

• Hexadecimal digits : 0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

Caution If a value of c is not included in a range to be expressed by the unsigned char
type and if it is not EOF, the operation of this function is not guaranteed.

CC32R MANUAL - 211

Chapter 9 C Standard Library

labs General utility function

Obtains the absolute value of a long type integer.

Syntax #include < stdlib.h >

long labs (long j);

j; /* integer calculating an absolute value */

Return Value Absolute value of calculation result

Description The labs function calculates an absolute value of a long type integer. If the
calculation result cannot be expressed as a long type, the operation is not
guaranteed.

ldexp Mathematics function

Performs multiplication of a floating-point number and 2 to the nth power.

Syntax #include < math.h >

double ldexp (double x, int f);

x; /* floating-point number */

f; /* index (integer) */

Return Value Result of x*2f

Description The ldexp function calculates a value of x*2f and return the result.

If the calculation result overflows, this function sets a value of ERANGE in
errno and returns HUGE_VAL (-HUGE_VAL if negative) as a return value.

CC32R MANUAL - 212

Chapter 9 C Standard Library

ldiv General utility function

Divides a long type integer and obtains the quotient and remainder.

Syntax #include < stdlib.h >

ldiv_t ldiv (long number, long denom);

number; /* dividend */

denom; /* divisor */

Return Value Quotient and remainder of the calculation result

Description The ldiv function calculates the quotient and the remainder as the result of
dividing number by denom. The return value is the ldiv_t structure and the
quotient and the remainder are put in the quot and rem of the member,
respectively.

localeconv Localization function

Initialize struct lconv.

Syntax #include < locale.h >

struct lconv *localeconv (void);

Return Value Pointer to initialized lconv structure

Description The localeconv function initializes the lconv structure

Caution As the locale, only the "C" environment is supported.
In order to use the localeconv function, user-written _get_core or _rel_core
function called by this function (internally) needs to be created.

CC32R MANUAL - 213

Chapter 9 C Standard Library

localtime Date and time function

Converts current calendar time to the local time.

Syntax #include < time.h >

struct tm *localtime (const time_t *timer);

timer; /* time */

Return Value Converted result (Pointer to the tm structure)

Description The localtime function converts a calendar time shown by timer to the local time
and converts it into the tm type.

Caution As the locale, only the "C" environment is supported.
In order to use the localtime function, user-written getenv function called by
this function (internally) needs to be created.

log Mathematics function

Obtains natural logarithm of a floating-point number.

Syntax #include < math.h >

double log (double x);

x; /* floating-point number */

Return Value Natural logarithm of x

Description The log function calculates the natural logarithm of x and returns the result. If a
value of x is negative, this function sets the value of EDOM in errno. If the
value of x is 0.0, this function sets the value of ERANGE in errno.

CC32R MANUAL - 214

Chapter 9 C Standard Library

log10 Mathematics function

Obtains the base 10 logarithm of a floating-point number.

Syntax #include < math.h >

double log10 (double x);

x; /* floating-point number */

Return Value Common logarithm of x

Description The logl0 function calculates the common logarithm of x and returns the result.
If a value of x is negative, this function sets a value of EDOM in errno. If the
value of x is 0.0, this function sets a value of ERANGE in errno.

CC32R MANUAL - 215

Chapter 9 C Standard Library

longjmp Non-local jump function

Recovers the execution environment saved by setjmp and transfers control to the
program location of a setjmp call.

Syntax #include < setjmp.h >

void longjmp (jmp_buf env, int ret);

env; /* variable in which executable environment

is stored */

ret; /* return value to setjmp */

Return Value None

Description The longjmp function recovers the executable environment saved by the last
call of setjmp function and transfers control to the location of program which
called the setjmp function. Then, ret of the longjmp function returns as a return
value of the setjmp function. The longjmp function does not return.

If longjmp function is executed before setjmp function is executed at a
destination or if any function which called the setjmp function has already
executed a return statement, the operation is not guaranteed.

Note In using the longjmp function, the general-purpose registers are saved/
recovered, by contrast, the accumulator (ACC) and the control registers are not
saved/recovered.

CC32R MANUAL - 216

Chapter 9 C Standard Library

malloc General utility function

Allocates memory area.

Syntax #include < stdlib.h >

void *malloc (size_t size);

size; /* number of bytes of memory area

to be allocated */

Return Value Top element address in the allocated

memory area

: Successful

NULL : Error (No memory area has been

allocated. Any of the arguments is 0.)

Description The malloc function allocates the memory area in bytes specified by size.

Note 12 bytes more area have been secured as memory area allocated by each the
malloc functions. This memory area of 12 bytes is stored a allocation infomation
(size etc.).

CC32R MANUAL - 217

Chapter 9 C Standard Library

mblen General utility function

Obtains the number of bytes composed of multibyte characters.

Syntax #include < stdlib.h >

int mblen (const char *s, size_t n);

s; /* pointer to the multibyte character */

n; /* number of the inspection bytes */

Return Value • If s is NULL,

• non-0 : Multibyte character set depends on the status

• 0 : Multibyte character set does not depend on the status.

• If s is not NULL,

• number of bytes : s is a multibyte character. The number of bytes of it is

returned.

• 0 : The pointer s indicates a null character

• -1 : s is not a multibyte character

Description The mblen function returns the number of bytes which consists of multibyte
characters specified by s. If the mbtowc function is not affected by the shift
status, mblen is the same value as the following example :

Example : mbtowc((wchar_t*)0, s, n);

Caution The maximum value of multibyte-characte is 3 byte. And even “euc”, ”sjis”,
”utf8”, in addition to “C” are supported as the locale.

CC32R MANUAL - 218

Chapter 9 C Standard Library

mbstowcs General utility function

Converts a multibyte character string into a wide character string.

Syntax #include < stdlib.h >

size_t mbstowcs (wchar_t *pwcs, const char *s, size_t n);

pwcs; /* storage buffer of wide character string */

s; /* pointer to multibyte character string */

n; /* number of wide characters to be converted */

Return Value Number of converted characters : Successful (However, a null character at

the end shall not be included in number of

characters)

-1 : Casts -1 as size_t and returns it when any

character other than multibyte character is

detected during conversion

Description The mbstowcs function converts the number of characters pointed to by n
among the multibyte character string specified by s into the corresponding
character string of wide characters and returns the result to the buffer pwcs.

Caution The maximum value of multibyte-characte is 3 byte. And even “euc”, ”sjis”,
”utf8”, in addition to “C” are supported as the locale.

CC32R MANUAL - 219

Chapter 9 C Standard Library

mbtowc General utility function

Converts a multibyte character into a wide character.

Syntax #include < stdlib.h >

int mbtowc (wchar_t *pwc, const char *s, size_t n);

pwc; /* storage buffer of wide character */

s; /* pointer to multibyte character */

n; /* number of inspection bytes */

Return Value Number of bytes : Both pwc and s are not NULL. The number of bytes of the

converted multibyte characters.

0 : s indicates a null character

-1 : s does not correctly indicate a multibyte character

Note) If multibyte character encoding has state-dependent encoding, a non-zero is returned.

Otherwise, a zero is returned.

Description The mbtowc function processes multibyte characters specified by s as follows:

• When both pwc and s are not NULL :
It converts multibyte characters of n bytes from the point specified by s into
wide characters, and stores them into the buffer pws.

• When pwc is NULL and s is not NULL :
It operates like the mblen function.

• When s is NULL, or both pwc and s are NULL :
It checks whether a multibyte character set depends on the status.

Caution The maximum value of multibyte-characte is 3 byte. And even “euc”, ”sjis”,
”utf8”, in addition to “C” are supported as the locale.

CC32R MANUAL - 220

Chapter 9 C Standard Library

memchr String handling function

Locates, in a memory area, the position where a character first appears.

Syntax #include < string.h >

void *memchr (const void *s, int c, size_t n);

s; /* pointer to memory area to be searched */

c; /* character to be searched */

n; /* number of characters to be searched */

Return Value Pointer to character position : As the result of search, the character has been

found

NULL : As the result of search, the character has not

been found

Description The memchr function returns the pointer, as a return value, to the position of
the same character as the character c which appears for the first time in n
characters from the beginning of the specified memory area.

CC32R MANUAL - 221

Chapter 9 C Standard Library

memcmp String handling function

Compares the contents of two memory areas.

Syntax #include < string.h >

int memcmp (const void *s1, const void *s2, size_t n);

s1; /* pointer to compared memory area */

s2; /* pointer to comparing memory area */

n; /* number of characters of comparing memory

location */

Return Value Positive value : content of s1 > content of s2

0 : content of s1 == content of s2

Negative value : content of s1 < content of s2

Description The memcmp function compares the contents of the first n bytes of the memory
areas specified by s1 and s2.

memcpy String handling function

Copies the contents of a memory area to the destination memory area.

Syntax #include < string.h >

void *memcpy (void *s1, const void *s2, size_t n);

s1; /* copy destination */

s2; /* original */

n; /* number of copied bytes */

Return Value Pointer to the memory area at the copy destination

Description The memcpy function copies n characters of the memory area s2 to the
destination memory area s1.

CC32R MANUAL - 222

Chapter 9 C Standard Library

memmove String handling function

Moves the contents from a memory area to the destination memory area.

Syntax #include < string.h >

void *memmove (void *s1, const void *s2, size_t n);

s1; /* copy destination (storage buffer) */

s2; /* original */

n; /* number of copied bytes */

Return Value s1

Description The memmove function copies the first n bytes of content of s2 to s1. The
memmove function copies correctly even if the object (memory area) of s1 and
that of s2 overlaps with each other (However, original data in the overlapped
area is erased.). The operation is not guaranteed if the copied data exceeds the
buffer area of s1 as the result of copy.

CC32R MANUAL - 223

Chapter 9 C Standard Library

memset String handling function

Copies a character into the first n characters in memory area.

Syntax #include < string.h >

void *memset (void *s, int c, size_t n);

s; /* pointer to area in which character is set */

c; /* character to be set */

n; /* number of characters to be set */

Return Value Pointer s to memory area in which character is set

Description The memset function sets n characters of c into memory area pointed to by s.

CC32R MANUAL - 224

Chapter 9 C Standard Library

mktime Date and time function

Converts date and time (a struct tm) to the calendar time.

Syntax #include < time.h >

time_t mktime (struct tm *timeptr);

timeptr; /* pointer to tm structure */

Return Value Conversion result : Converted into a calendar time correctly

-1 : Could not be converted (Casts -1 to time_t type and

returns it)

Description The mktime function converts the broken-down time of the tm structure shown
by timeptr into calendar time. The mktime function handles the tm structure
specified by timeptr as follows :

• Ignores tm_wday of the tm type structure and the original value (upon
reading) of tm_yday.

• Contents of the tm structure of timeptr are updated according to the calendar
time.

CC32R MANUAL - 225

Chapter 9 C Standard Library

modf Mathematics function

Divides a floating-point number into integer and fractional parts.

Syntax #include < math.h >

double modf (double x, double *i);

x; /* floating-point number */

i; /* pointer to memory area which stores

integral part */

Return Value Fractional part of x

Description The modf function divides the value of x into fractional part and integral part
and returns the fractional part. It stores the integral part in the memory area
specified by i.

perror Input/output function

Outputs the error message corresponding to the error code to the standard error file
(stderr).

Syntax #include < stdio.h >

void perror (const char *s);

s; /* pointer to error message */

Return Value None

Description The perror function outputs the error message indicated by s and the
corresponding errno to a standard error file (stderr).

CC32R MANUAL - 226

Chapter 9 C Standard Library

pow Mathematics function

Obtains a floating-point number to nth power.

Syntax #include < math.h >

double pow (double x, double y);

x, y; /* floating-point number */

Return Value Value of xy : Successful

HUGE_VAL : Calculation result overflows

Description The pow function returns a value of x raised to the power y. If the value of x is
0.0 and the value of y is 0.0 or less, or if a value of x is negative and a value of y
is not an integer, this function sets EDOM in errno. If the calculation result
overflows, this function sets ERANGE in errno.

printf Input/output function

Converts data by following the format and outputs it to the standard output file
(stdout).

Syntax #include < stdio.h >

int printf (const char *control ,…);

control; /* pointer to format string */

…; /* variable argument list (output data)

Return Value Number of output characters : Successful

Negative value : Error

Description The printf function converts and edits variable arguments according to format
control and then outputs them to a standard output file (stdout). For the details
of format control, refer to the description of the fprintf function.

CC32R MANUAL - 227

Chapter 9 C Standard Library

putc Input/output function

Outputs a character to a stream.

Syntax #include < stdio.h >

int putc (int c, FILE *fp);

c; /* character to be output */

fp; /* pointer to FILE structure */

Return Value The character written : Successful

EOF : A write error occurs.

Description The putc function (it may be implemented as a macro) outputs the character c
into the stream specified by the file pointer fp.

When a write error occurs during the operation, the error indicator for the
stream is set and this function returns EOF.

The error indicator can be referred by the ferror function.

CC32R MANUAL - 228

Chapter 9 C Standard Library

putchar Input/output function

Outputs a character to the standard output file (stdout).

Syntax #include < stdio.h >

int putchar (int c);

c; /* character to be output */

Return Value The character written : Successful

EOF : A write error occurs.

Description The putchar function (it may be implemented as a macro) is the same as
putc (c, stdout).

When a write error occurs during the operation, the error indicator for the
stream is set and this function returns EOF.

The error indicator can be referred by the ferror function.

CC32R MANUAL - 229

Chapter 9 C Standard Library

puts Input/output function

Outputs a string to the standard output file (stdout).

Syntax #include < stdio.h >

int puts (char *s);

s; / * pointer to string to be output */

Return Value 0 : Successful

EOF : A write error occurs.

Description The puts function outputs the string indicated by s to the standard output
(stdout). The null character at end of the string is replaced with the new-line
character upon output.

When a write error occurs during the operation, the error indicator for the
stream is set and this function returns EOF.

The error indicator can be referred by the ferror function.

CC32R MANUAL - 230

Chapter 9 C Standard Library

qsort General utility function

Performs sorting.

Syntax #include < stdlib.h >

void qsort (const void *base, size_t nmemb, size_t size,

 int(*compar)

 (const void *,

 const void *)

);

base; /* pointer to the sort target table */

nmemb; /* the number of members to be sorted */

size; /* size (bytes) of the member to be sorted */

compar; /* pointer to the function to be compared */

Return Value None

Description The qsort function sorts the table denoted by base. The order of the sorted data
depends on the compar function. The specification of this function is the same
as that for the bsearch function.

CC32R MANUAL - 231

Chapter 9 C Standard Library

raise Signal handling function

Send a signal to the executing program.

Syntax #include < signal.h >

int raise (int sig);

sig; /* signal to be generated */

Return Value 0 : Successful

non-0 : Error

Description The raise function sends the signal indicated by sig to the program.

Caution To call the raise function in actual, the user-written raise function is required
(see Section 11.1 and Table 11.2).

rand General utility function

Generates a pseudo-random integer which resides between 0 and RAND_MAX.

Syntax #include < stdlib.h >

int rand (void);

Return Value Generated pseudo-random integer

Description The rand function generates a pseudo-random integer in the range of 0 to
RAND_MAX.

CC32R MANUAL - 232

Chapter 9 C Standard Library

realloc General utility function

Changes the memory area size to the specified size.

Syntax #include < stdlib.h >

void *realloc (void *ptr, size_t size);

ptr; /* pointer to the memory area to be changed */

size; /* size (bytes) of the changed memory area */

Return Value The start address : Memory area is allocated.

of the allocated memory area

NULL : Memory space is not allocated, or successfully

freed. (size is 0, ptr is not 0.)

Description The realloc function changes the size of the memory space indicated by ptr to
the bytes denoted by the size. If the changed memory size is smaller than
before, the contents is unchanged up to the changed memory size.

If the space denoted by ptr of the realloc function is not allocated by the calloc,
malloc or realloc function, or the space is already freed by the free or realloc
function, the operation is not guaranteed.

When ptr is NULL, the realloc function operates like the malloc function. When
size is 0 and ptr is not NULL, the memory area is freed.

Note 12 bytes more area have been secured as memory area allocated by each the
realloc functions. This memory area of 12 bytes is stored a allocation infomation
(size etc.).

CC32R MANUAL - 233

Chapter 9 C Standard Library

remove Input/output function

Deletes a file.

Syntax #include < stdio.h >

int remove (const char *filename);

filename; /* name of the file to be deleted */

Return Value 0 : Successfully deleted

non-0 : Error

Description The remove function deletes the file denoted by filename even if the denoted file
is currently open.

Caution Whether a currently open file is changed or deleted depends on the operating
environment.

To call the remove function in actual, the user-written remove function is
required (see Section 11.1 and Table 11.2).

CC32R MANUAL - 234

Chapter 9 C Standard Library

rename Input/output function

Renames a file.

Syntax #include < stdio.h >

int rename (const char *old, const char *new);

old; /* original file name */

new; /* new file name */

Return Value 0 : File name is changed

non- 0 : Error

Description The rename function changes the name of the file specified by old to the name
denoted by new. The rename function will change the name of the file which is
denoted by old and currently open, also it will change the name of the file
specified by new even if the name specified already exists.

Caution Whether the currently open file is changed or deleted depends on the operating
environment.

To call the rename function in actual, the user-written rename function is
required (see Section 11.1 and Table 11.2).

CC32R MANUAL - 235

Chapter 9 C Standard Library

rewind Input/output function

Moves the current read/write position on a stream to the beginning of the file.

Syntax #include < stdio.h >

void rewind (FILE *fp);

fp; /* pointer to FILE structure */

Return Value None

Description The rewind function moves the current read/write position of the I/O stream
denoted by the file pointer fp to the beginning of the file. The rewind function
disables the ungetc function.

CC32R MANUAL - 236

Chapter 9 C Standard Library

scanf Input/output function

Gets data from the standard input file (stdin) and converts the data by following the
format.

Syntax #include < stdio.h >

int scanf (const char *control, ...);

control; /* pointer to format string */

...; /* variable argument list (receivers) */

Return Value The number of arguments converted

and substituted
:

EOF : The end of the input data is reached

before the completion of the first

conversion (except for %%), or an error

occurs.

Description The scanf function gets data from the standard input file (stdin), exchanges and
edits it according to the format specified by control, and stores the results into
the memory area specified by the variable argument list (…) .

For further information on format control, see the fscanf function description.

Successful (the number excludes

arguments for %n conversion and

arguments inhibited by *)

CC32R MANUAL - 237

Chapter 9 C Standard Library

setbuf Input/output function

Defines a buffer for an I/O stream.

Syntax #include < stdio.h >

void setbuf (FILE *fp, char *buf);

fp; /* pointer to FILE structure */

buf; /* pointer to buffer */

Return Value None

Description The setbuf function changes the buffer for the stream associated with the input/
output file pointed to by fp from the default buffer

Note1)
 to the storage area

denoted to by buf. The buffer size is unchanged. To change the buffer size, use
the setvbuf function.

Setting NULL in buf causes the buffer not to be used (effects no buffering). This
is equivalent to specifying _IONBF for the third argument type (buffer
management method) of the setvbuf function.

Note1) The default buffer is an automatically allocated buffer when either the fopen function or the freopen function opens a file.

Its buffer size (BUFSIZ) is defined in the header file stdio.h.

CC32R MANUAL - 238

Chapter 9 C Standard Library

setjmp Non-local jump function

Saves the current environment to a memory area.

Syntax #include < setjmp.h >

int setjmp (jmp_buf env);

env; /* the current environment */

Return Value 0 : The setjmp function has been executed.

The current environment has been set

to env.

The second argument ret of longjmp

function
: Control is returned to the setjmp

function upon execution of the

longjmp. If the second argument ret of

the longjmp function is 0, 1 is returned

to setjmp.

Description The setjmp function saves the current calling environment in env into the
specified memory area. By using this function in conjunction with the longjmp
function, a global jump to outside the function can be achieved. This function is
used to pass the error handling execution control to the previously called
routine without using the normal function calling or return convention.

When the setjmp function is called with a complex expression, a portion of
current execution environment such as the temporary result of an expression
evaluation may be lost. To avoid this, use the setjmp function only for the
purpose of comparing the result of the setjmp function and a constant
expression, and don't call this function in a complex expression.

Note In using the setjmp function, the general-purpose registers are saved/
recovered, by contrast, the accumulator (ACC) and the control registers are not
saved/recovered.

CC32R MANUAL - 239

Chapter 9 C Standard Library

setlocale Localization function

Sets and searches for locale information.

Syntax #include < locale.h >

char *setlocale (int category, const char *locale);

category; /* portion of locale to be set/search */

locale; /* locale to be set */

Return Value The pointer to the available string for locale : Successful (locale will not be

returned)

NULL : Both category and locale are

invalid

Description As the locale, only the "C" environment is supported.
The setlocale function sets the portion of the program's locale denoted by
category into the locale specified by locale. If locale is NULL, the setlocale
function searches the current locale information and the locale is not changed.
The following are the macros that can be specified in category :

category Description

LC_ALL Sets or searches for all locale information.

LC_COLLATE Sets or searches for information that affects the strcoll

and strxfrm functions.

LC_CTYPE Sets or searches for information that affects all character

handling functions and multibyte handling functions

except for the isdigit and isxdigit functions.

LC_MONETARY Sets or searches for information that affects the currency

information which the localeconv function returns.

LC_NUMERIC Sets or searches for information that affects input and

output functions, decimal points used by character

handling functions, and information, excluding the

currency information which the localeconv function

returns.

LC_TIME Sets or searches for information that affects the strftime

function.

CC32R MANUAL - 240

Chapter 9 C Standard Library

setvbuf Input/output function

Defines and sets a buffer for an I/O stream.

Syntax #include < stdio.h >

int setvbuf (FILE *fp, char *buf, int type, size_t size);

fp; /* pointer to FILE structure */

buf; /* pointer to buffer */

type; /* buffer management method */

size; /* size of buffer */

Return Value 0 : New buffer has been defined
non-0 : Error

Description The setvbuf function changes the buffer for the stream associated with the
input/output (I/O) file pointed to by fp from the default buffer

Note1)
 to the

storage area denoted to by buf. And it redefines the buffer size to size and the
buffer management method to type. The following three buffer management
methods are available:

type Description

_IOFBF Full buffering. Every I/O process uses a buffer. Data are taken

out of the buffer either when the buffer is fulled or when

flushed.

_IOLBF Line buffering. Every I/O process uses a buffer line by line.

Data are taken out of the buffer either when the buffer is fulled,

when flushed, or when a newline character is encountered.

_IONBF No buffering. I/O processing is done in quantities of reading/

writing from/to a stream without using the buffer.

Caution The setvbuf function must be used after the stream input/output file is opened
and before the start of the input/output process. Do not deallocate the buffer
before closing the file.

Note1) The default buffer is an automatically allocated buffer when either the fopen function or the freopen function opens a file.

Its buffer size (BUFSIZ) is defined in the header file stdio.h.

CC32R MANUAL - 241

Chapter 9 C Standard Library

signal Signal handling function

Sets up a signal handler that responds to the signal.

Syntax #include < signal.h >

void (*signal (int sig, void (*func)(int)))(int);

sig; /* signal number */

func; /* The handler to be executed upon detecting

the signal */

Return Value The latest func value : Successful

SIG_ERR : Error (returns corresponding value to errno)

Description The signal function calls the process handler denoted by func when the signal
specified by sig is detected.

func specifies the following two special macros in addition to the user defined
ones :

• SIG_DFL Executes the default signal process
• SIG_IGN Ignores signals

Caution To call the signal function in actual, the user-written signal function is required
(see Section 11.1 and Table 11.2).

CC32R MANUAL - 242

Chapter 9 C Standard Library

sin Mathematics function

Obtains the sine of the radians of a floating-point number.

Syntax #include < math.h >

double sin (double x);

x; /* floating-point number (in radians) */

Return Value Calculated argument value

Description The sin function calculates sine of x.

sinh Mathematics function

Obtains hyperbolic sine of a floating-point number.

Syntax #include < math.h >

double sinh (double x);

x; /* floating-point number */

Return Value Calculated argument value

Description The sinh function calculates the hyperbolic sine of x. If the calculation result
cannot be expressed in double type value, the function sets the ERANGE value
in the errno. If the calculation result overflows, the function returns
HUGE_VAL (-HUGE_VAL if negative).

CC32R MANUAL - 243

Chapter 9 C Standard Library

sprintf Input/output function

Converts the data by following the format and outputs the data to an area.

Syntax #include < stdio.h >

int sprintf (char *s, const char *control , ...);

s; /* pointer to the memory area to which

 data is output */

control; /* pointer to format string */

...; /* variable argument list (output data) */

Return Value Number of output characters

Note) No return value when an error is shown

Description The sprintf function converts and edits the output data specified by the variable
argument list according to the format control and then outputs the result to the
memory area denoted by s. For more information on the format control, refer to
the description of the fprintf function.

CC32R MANUAL - 244

Chapter 9 C Standard Library

sqrt Mathematics function

Obtains the positive square root of a floating-point number.

Syntax #include < math.h >

double sqrt (double x);

x; /* floating-point number */

Return Value Positive square root of x

Description The sqrt function obtains the positive square root of x. If x is a negative, the
value of EDOM is set into errno.

srand General utility function

Sets the initial values of the pseudo-random integers which the rand function generates.

Syntax #include < stdlib.h >

void srand (unsigned int seed);

seed; /* initial value for a sequence of pseudo-

random integers generation */

Return Value None

Description The srand function sets the initial value (seed) for the sequence of pseudo-
random integers generated by the rand function. If the srand function sets the
same value as the initial value while the rand function is generating pseudo-
random numbers, the same sequence of pseudo-random integers is generated
again.

When the rand function is called before the srand function, the initial value for
the sequence of pseudo-random integer generation is set to 1.

CC32R MANUAL - 245

Chapter 9 C Standard Library

sscanf Input/output function

Gets data from a memory area and converts the data by following the format.

Syntax #include < stdio.h >

int sscanf (char s, const char *control, ...);

s; /* pointer to the memory area to which

 data is to be stored */

control; /* pointer to format string */

...; /* variable argument list (receivers) */

Return Value The number of arguments

converted and substituted

: Successful (the number excludes arguments of

%n conversion and arguments inhibited by *)

EOF : The end of input data is reached before

completion of the first conversion (except for

%%), or an error occurs

Description The sscanf function gets data from the memory area denoted by s, exchanges
and edits the data in the format specified by control, and stores the result into
the memory area denoted by the variable argument list (,…) . For further
information on the format control, refer to the fscanf function description.

CC32R MANUAL - 246

Chapter 9 C Standard Library

strcat String handling function

Links a string to the end of a string.

Syntax #include < string.h >

char *strcat (char *s1, const char *s2);

s1; /* pointer to string */

s2; /* pointer to string to be appended to s1 */

Return Value The pointer, s1, after linking

Description The strcat function links the string s2 to the end of the string s1. The last NULL
character of string s1 is replaced with the first character of s2 string. A NULL
character is always added to the end of the linked s2 string. The strncat
function can specify the number of characters to be linked to, by using the
parameter n.

CC32R MANUAL - 247

Chapter 9 C Standard Library

strchr String handling function

Locates, in a string, the position where a character first appears.

Syntax #include < string.h >

char *strchr (const char *s, int c);

s; /* pointer to string used to search */

c; /* character to be searched */

Return Value Pointer to the first searched character : Character is found

NULL : Character is not found

Description The strchr function returns the pointer to where the character c first appears in
the string s.

strcmp String handling function

Compares two strings.

Syntax #include < string.h >

int strcmp (const void *s1, const void *s2);

s1; /* pointer to string to be compared */

s2; /* pointer to string to be used for comparison */

Return Value Positive value : contents of s1 > contents of s2

0 : contents of s1 == contents of s2

Negative value : contents of s1 < contents of s2

Description The strcmp function compares the contents of string specified by s1 and those
specified by s2 and returns the result.

CC32R MANUAL - 248

Chapter 9 C Standard Library

strcoll String handling function

Compares the two strings based on the current locale.

Syntax #include < string.h >

int strcoll (const char *sl, const char *s2);

s1; /* comparison string 1 */

s2; /* comparison string 2 */

Return Value Positive value : contents of s1 > contents of s2

0 : contents of s1 == contents of s2

Negative value : contents of s1 < contents of s2

Description As the locale, only the "C" environment is supported.

The strcoll function compares s1 with s2 based on LC_COLLATE (locale.h
definition) denoted by the current locale .

strcpy String handling function

Copies the contents (including null characters) of the source string to the target memory
area.

Syntax #include < string.h >

char *strcpy (char *s1, const char *s2);

s1; /* pointer to space to which string is copied */

s2; /* pointer to string to be copied */

Return Value Pointer of the memory area to which the characters are copied

Description The strcpy function copies the string including the terminating null character
specified by s2 into the memory area specified by s1.

CC32R MANUAL - 249

Chapter 9 C Standard Library

strcspn String handling function

Computes the length of initial segment of a string which consists of unspecified
characters.

Syntax #include < string.h >

size_t strcspn (const char *s1, const char *s2);

s1; /* pointer to string to be checked */

s2; /* pointer to string used to check the s1 string */

Return Value The length of the searched string

Description The strcspn function computes the length of the maximum initial segment of
the string pointed to by s1 which consists of characters not from the string
pointed to by s2. And it returns the length (i.e., the number of characters).

strerror String handling function

Returns the error message.

Syntax #include < string.h >

char *strerror (int e);

e; /* error number */

Return Value Pointer to the error message corresponding to the error number e

Description The strerror function returns the pointer to the error message corresponding to
the error number e as the return value.

CC32R MANUAL - 250

Chapter 9 C Standard Library

strftime Date and time function

Converts date and time (a struct tm) to the format specified.

Syntax #include < time.h >

size_t strftime (char *s, size_t maxsize,

 const char *format,

 const struct tm *timeptr);

s; /* buffer for storing converted string */

maxsize; /* maximum number of conversion characters */

format; /* format string */

timeptr; /* pointer to tm structure */

Return Value Number of characters written : Number of characters written into s is smaller

than or equal to maxsize

0 : Number of characters written into s is larger

than the maxsize (contents is unknown)

Description As the locale, only the "C" environment is supported.

The strftime function converts the broken-down time of the tm structure
specified by timeptr according to the format specified by format and stores the
conversion result into s. The maximum number of characters to be stored into s
is the number specified by maxsize.

The following lists the conversion specifiers that can be used in format. Any
conversion specifier not included in the table makes operation result unknown.

(1/2)

Conversion Description
Specifier

%a Abbreviation for the day of the week in the locale

%A The name of the day of the week in the locale

%b Abbreviation for the month in the locale

%B The name of month in the locale

%c Representation of the date and time appropriate in the locale

%d Representation of the date of a month (integer, 01 through 31)

CC32R MANUAL - 251

Chapter 9 C Standard Library

(2/2)

Conversion Description
Specifier

%H Representation of the time of a day in 24-hour system (integer,

00 through 23)

%I Representation of the time of a day in 12-hour system (integer,

01 through 12)

%j The number of days starting at the first day of the year (integer,

001 through 366)

%m Representation of the month (integer, 01 through 12)

%M Representation of the minute (integer, 00 through 59)

%p AM or PM of the locale used when representing in 12-hour

system

%S Representation of the second (integer, 00 through 59)

%U The number of the week starting at the first week of the year

(integer, 00 through 53 with Sunday defined as the first day of

week)

%w The nth day of the week with Sunday defined as the 0th day

(integer, 0 through 6)

%W The number of weeks starting at the first week of the year

(integer, 00 through 53 with Monday defined as the first day of

week)

%x Representation of the date appropriate in the locale

%X Representation of the time of a day appropriate in the locale

%y Representation of nth year of a century (integer, 00 through 99)

%Y Representation of a year of the Christian era (integer)

%Z Time zone or abbreviation of the zone (null character if the time

zone cannot be specified)

%% Representation of % itself

CC32R MANUAL - 252

Chapter 9 C Standard Library

strlen String handling function

Measures the size of string.

Syntax #include < string.h >

size_t strlen (const char *s);

s; /* pointer to string whose length is

 to be measured */

Return Value Number of characters of the string measured

Description The strlen function measures the length of the string s. The null character
indicating the end of the character is not counted.

CC32R MANUAL - 253

Chapter 9 C Standard Library

strncat String handling function

Links the specified number of characters to the string.

Syntax #include < string.h >

char *strncat (char *s1, const char *s2, size_t n);

s1; /* pointer to string to be linked by */

s2; /* pointer to string to be linked to */

n; /* number of characters to be linked to */

Return Value Pointer s1 of the linked string

Description The strncat function links the string s2 to the end of the string s1. The last null
character of the string s1 is replaced with the first character of s2. The last
character of the linked string s2 is always followed by a null character. The
number of characters to be linked is specified by the parameter n.

CC32R MANUAL - 254

Chapter 9 C Standard Library

strncmp String handling function

Compares specified number of characters of two strings.

Syntax #include < string.h >

int strncmp (const void *s1, const void *s2, size_t n);

s1; /* pointer to string to be compared */

s2; /* pointer to string used to compare */

n; /* maximum number of characters to be compared */

Return Value Positive value : contents of s1 > contents of s2

0 : contents of s1 == contents of s2

Negative value : contents of s1 < contents of s2

Description The strncmp function compares the contents of string specified by s1 with the
contents of the string specified by s2, up to the nth characters specified by the
parameter n, and sets the result as the return value.

CC32R MANUAL - 255

Chapter 9 C Standard Library

strncpy String handling function

Copies the specified number of characters from the string to memory.

Syntax #include < string.h >

char *strncpy (char *s1, const char *s2, size_t n);

s1; /* pointer to space to which copy is made */

s2; /* pointer to string to be copied */

n; /* the number of characters to be copied */

Return Value Pointer to the memory area to which the characters are to be copied

Description The strncpy function copies the specified number of characters within the string
s2 to the specified memory area s1. If the size of the string specified by s2 is
smaller than the number of characters specified by n, null characters are added
until the s2-specified character size matches the n-specified character size. If the
number of s2-specified characters is larger than that of the n-specified character
size, the last character of the string copied to s1 is other than a null character.

CC32R MANUAL - 256

Chapter 9 C Standard Library

strpbrk String handling function

Locates the position where one of the specified characters first appears in a string.

Syntax #include < string.h >

char *strpbrk (const char *s1, const char *s2);

s1; /* pointer to string in which

 the character is searched */

s2; /* pointer to string which consists of

 characters to be found */

Return Value Pointer to the character found : The character is found.

NULL : The character is not found.

Description The strpbrk function locates in the string s1 the position where one of
characters in the string s2 first appears and returns the pointer to that position.

CC32R MANUAL - 257

Chapter 9 C Standard Library

strrchr String handling function

Locates the position where a character last appears in a string.

Syntax #include < string.h >

char *strrchr (const char *s, int c);

s; /* pointer to string in which

 the character is searched */

c; /* the character to be searched for */

Return Value Pointer to the character found : The character is found.

NULL : The character is not found.

Description The strrchr function searches for the character c in the character string s and
locates the location where the c last appears, and returns the pointers of the
position. The null character indicating the end of the string s is included in the
characters to be searched.

CC32R MANUAL - 258

Chapter 9 C Standard Library

strspn String handling function

Computes the length of initial segment of a string which consists of specified characters.

Syntax #include < string.h >

size_t strspn (const char *s1, const char *s2);

s1; /* pointer to string to be checked */

s2; /* pointer to string used to check s1 */

Return Value The length of the searched string

Description The strspn function searches the string s1 starting from the beginning for a
series of characters which match the characters of the string s2 and returns the
number of continuous characters that precede the first match series of
characters of s2.

strstr String handling function

Finds the first occurrence point of a string within another.

Syntax #include < string.h >

char *strstr (const char * s1, const char *s2);

s1; /* pointer to string to be searched */

s2; /* pointer to string to be searched for */

Return Value Pointer to the character found : The character is found in the string s1.

NULL : The character is not found, or s2 is null.

Description The strstr function locates in the character string s1 the position where the
character string s2 first appears and returns the pointer to that position. If s2 is
null, the return value is also null.

CC32R MANUAL - 259

Chapter 9 C Standard Library

strtod General utility function

Converts a string into a double type floating-point number.

Syntax #include < stdlib.h >

double strtod (const char *nptr, char **endptr);

nptr; /* pointer to string to be converted */

endptr; /* end point of reading */

Return Value Converted value

Description The strtod function converts a string into a double type numeric value. The
input string must be an array of characters that, after conversion into a numeric
value of a type, can be interpreted as a valid numeric value of that type. The
strtod function, upon encountering a character which cannot be interpreted as a
value, stops inputting current string and sets the pointer to the first character
found in the input string which cannot be interpreted as a numeric value, in the
area indicated by endptr. If the endptr is null, the function does not perform this
setting.

If the conversion results in overflow or underflow, the function sets ERANGE
value to the errno and returns either HUGE_VAL (-HUGE_VAL in case of
negative value) or 0.

CC32R MANUAL - 260

Chapter 9 C Standard Library

strtok String handling function

Separates a string into tokens.

Syntax #include < string.h >

char *strtok (char *s1, const char *s2);

s1; /* pointer to string to be divided into tokens */

s2; /* pointer to string used to divide a string */

Return Value Pointer to the top character

of the token after division

: Divided into tokens

NULL : Cannot be divided into tokens

Description The strtok function uses a particular character in the string s2 as the punctuator
to divide the string s1 into tokens. The function is called continuously, once for
each token. The function, upon first calling, separates the first group of the s1

string by using the character in the string s2; and the second group upon the
second calling, etc.

When the second and subsequent calls, specify NULL as the first parameter.
The contents of s2 may be different from call to call. A null character is added
to end of each token.

CC32R MANUAL - 261

Chapter 9 C Standard Library

strtol General utility function

Converts a string into a long type integer.

Syntax #include < stdlib.h >

long strtol (const char *nptr, char **endptr, int base);

nptr; /* pointer to string to be converted */

endptr; /* end point of reading */

base; /* radix of conversion (0,2-36) */

Return Value Numeric value after conversion : Successful

0 : Failed

Description The strtol function reads a string pointed to by ntpr, and converts it into a value
(long type) having a radix specified by base.

The strtol function reads a string to be brought to conversion sequentially from
the first character and stops reading when it detects either a null character or a
character that it cannot interpret as a number that assumes a value having the
radix base; and sets in endptr the pointer pointing to the character handled at the
time (only when endptr does not hold NULL). Space characters preceding the
string to be brought to conversion (the first segment where a non-space
character does not appear) are ignored and not converted.

If base is 0, strtol makes a judgment on the radix from the first character that
nptr points to (see 4.1.3.2 “Integer Constants”). When the value of base is
between 2 and 36, the value of base becomes the radix for conversion.

Characters a through z (and A through Z) among a string to be brought to
conversion are made to correspond to 10 through 35, and a character equal to or
greater than the value of base is recognized as a character that strtol cannot
interpret. 0 after a sign and 0x (0X) at the time when base is 16 are ignored.

If conversion fails, strtol returns 0 as a return value, and nptr is set in endptr

(only when endptr does not hold NULL).

If the value after conversion overflows (i.e., it cannot be expressed by long),
strtol function returns LONG_MAX (LONG_MIN if negative) as a return value,
and ERANGE is set in errno.

CC32R MANUAL - 262

Chapter 9 C Standard Library

strtoul General utility function

Converts a string into an unsigned long type integer.

Syntax #include < stdlib.h >

unsigned long int strtoul (const char *nptr,

char **endptr,

int base);

nptr; /* pointer to string to be converted */

endptr; /* end point of reading */

base; /* radix */

Return Value Numeric value after conversion : Successful

0 : Failed

Description The strtoul function reads a string pointed to by ntpr, and converts it into a
value (unsigned long type) having a radix specified by base.

The strtoul function reads a string to be brought to conversion sequentially
from the first character and stops reading when it detects either a null character
or a character that it cannot interpret as a number that assumes a value having
the radix base; and sets in endptr the pointer pointing to the character handled at
the time (only when endptr does not hold NULL). Space characters preceding
the string to be brought to conversion (the first segment where a non-space
character does not appear) are ignored and not converted.

If base is 0, strtoul function makes a judgment on the radix from the first
character that nptr points to (see 4.1.3.2 “Integer Constants”). When the value
of base is between 2 and 36, the value of base becomes the radix for conversion.

Characters a through z (and A through Z) among a string to be brought to
conversion are made to correspond to 10 through 35, and a character equal to or
greater than the value of base is recognized as a character that strtoul cannot
interpret. 0 after a sign and 0x (0X) at the time when base is 16 are ignored.

If conversion fails, strtoul function returns 0 as a return value, and nptr is set in
endptr (only when endptr does not hold NULL).

If the value after conversion overflows (i.e., it cannot be expressed by unsigned
long), strtol returns ULONG_MAX as a return value, and ERANGE is set in
errno.

CC32R MANUAL - 263

Chapter 9 C Standard Library

strxfrm String handling function

Converts the string based on the current locale.

Syntax #include < string.h >

size_t strxfrm (char *s1, const char *s2, size_t n);

s1; /* buffer to store the converted string */

s2; /* pointer to string to be converted */

n; /* number of characters converted */

Return Value The number of bytes of the converted string (except the last null of the string)
Note) When the return value is larger than the n, the contents of s1 are unknown.

Description As the locale, only the "C" environment is supported.

The strxfrm function converts n bytes of the s2 string starting at the beginning
of the string according to LC_COLLATE specified by the current locale and
stores the result into s1.

CC32R MANUAL - 264

Chapter 9 C Standard Library

system General utility function

Passes a command string to the host environment.

Syntax #include < stdlib.h >

int system (const char *string);

string; /* command string */

Return Value non-0 : string is NULL and command processor exists

0 : string is NULL and no command processor exists
Note) If the command string is not NULL, the return value depends on the processing

system.

Description The system function passes the string specified by string to the host
environment where the command processor runs. When NULL is specified as
string, the function checks whether the command processor exists.

Caution To call the system function in actual, the user-written system function is
required (see Section 11.1 and Table 11.2).

CC32R MANUAL - 265

Chapter 9 C Standard Library

tan Mathematics function

Obtains the tangent of the radians of a floating-point number.

Syntax #include < math.h >

double tan (double x);

x; /* floating-point number (in radians) */

Return Value Calculated parameter, the tangent of x

Description The tan function calculates the tangent of x. If the result of the function cannot
be expressed as a double type value, the ERANGE value is set into errno. If the
operation results in an overflow, HUGE_VAL (-HUGE_VAL in the case of
negative value) is returned.

tanh Mathematics function

Obtains hyperbolic tangent of a floating-point number.

Syntax #include < math.h >

double tanh (double x);

x; /* floating-point number */

Return Value Calculated parameter

Description The tanh function calculates the hyperbolic tangent of x. If the calculation result
overflows, the function returns HUGE_VAL (-HUGE_VAL if negative value).

CC32R MANUAL - 266

Chapter 9 C Standard Library

time Date and time function

Reads the current calendar time.

Syntax #include < time.h >

time_t time (time_t *timer);

timer; /* calendar time */

Return Value Current calendar time : The timer is not NULL

-1 : Current calendar time was not

obtained (casting -1 to time_t type

upon returning)

Description The time function writes the current calendar time into the buffer specified by
timer.

Caution To call the time function in actual, the user-written time function is required
(see Section 11.1 and Table 11.2).

CC32R MANUAL - 267

Chapter 9 C Standard Library

tmpfile Input/output function

Creates a temporary file.

Syntax #include < stdio.h >

FILE *tmpfile (void);

Return Value Pointer to the stream of the generated file : The file is generated

NULL : The file cannot be generated

Description The tmpfile function generates a temporary file. The generated file is opened in
the binary file update mode (wb+) and is automatically deleted upon closing of
the file or terminating the program.

CC32R MANUAL - 268

Chapter 9 C Standard Library

tmpnam Input/output function

Creates a not-existing temporary file name.

Syntax #include < stdio.h >

char *tmpnam (char *s);

s; /* buffer to store the name of file

 generated by the tmpnam */

Return Value Generated file name : The file name is generated

NULL : The number of the tmpnam function

calls exceeds TMP_MAX

Description The tmpnam function generates a new temporary file name and stores it into
the buffer specified by s. When NULL is substituted for s, the result is written
into the tmpnam internal buffer. The buffer is overwritten every time tmpnam
is called.

The tmpnam function can be repeatedly called up for TMP_MAX times
(defined in stdio.h). The tmpnam function returns NULL upon exceeding
TMP_MAX times.

At least the space whose size is equal to L_tmpnam (defined in stdio.h) must be
secured in the buffer.

CC32R MANUAL - 269

Chapter 9 C Standard Library

tolower Character handling function

Converts an upper case letter into lower case.

Syntax #include < ctype.h >

int tolower (int c);

c; /* character to be converted */

Return Value Converted character : When the character c specified as the parameter

meets the condition

Character c (as it is) : When the character c specified as the parameter

cannot meet the condition

Description The tolower function converts the character corresponding to the parameter c

into lower case if it is an upper case character, and returns the lower case
character. Otherwise, returns the character without converting it.

CC32R MANUAL - 270

Chapter 9 C Standard Library

toupper Character handling function

Converts a lower case letter into upper case.

Syntax #include < ctype.h >

int toupper (int c);

c; /* character to be converted */

Return Value Converted character : When the character c specified as the parameter

meets the condition

Character c (as it is) : When the character c specified as the parameter

cannot meet the condition

Description The toupper function converts the character corresponding to the parameter c

into upper case if it is a lower case character, and returns the upper case
character. Otherwise, returns the character without converting it.

CC32R MANUAL - 271

Chapter 9 C Standard Library

ungetc Input/output function

Returns a character a stream.

Syntax #include < stdio.h >

int ungetc (int c, FILE *fp);

c; /* character of pushback */

fp; /* pointer to FILE structure */

Return Value Pushed-back character c : Successful (Normal)

EOF : Failed

Description The ungetc function returns the character c to the I/O stream specified by the
file pointer fp. The pushed-back character will become the next input data if the
fflush, fseek or rewind function is not called. If the ungetc function is called
twice or more without first one of the three functions being called, the operation
is not guaranteed.

Upon execution of the ungetc function, the position indicator for the file is
moved backward by one step. If the indicator is already at the beginning of the
file, the indicator is not guaranteed.

When an error occurs during the operation, the error indicator for the stream is
set or the EOF indicator is set; and this function returns EOF.

The EOF indicator can be referred by the ferror function. The error indicator
can be referred by the ferror function.

CC32R MANUAL - 272

Chapter 9 C Standard Library

va_arg (Macro) Variable arguments access function

Gets variable arguments in turn.

Syntax #include < stdarg.h >

type va_arg (va_list ap, type);

ap; /* pointer to variable parameter list

 (the same as ap initialized by va_start) */

type; /* type of return value */

Return Value Value of the argument

Description By using macros va_start, va_arg and va_end, the arguments of the function
having variable parameters can be referenced.

Specify the va_list type ap initialized by the va_start macro as the first
parameter. The second parameter type is a the type name of parameter to be
referenced. Each call of the va_arg function updates the value of ap so that the
values of successive arguments are returned as the return value one by one.

Caution When the type is a type whose size changes by type conversion, the parameter is
not correctly referenced. The operation is not guaranteed if such a type is
specified.

CC32R MANUAL - 273

Chapter 9 C Standard Library

va_end (Macro) Variable arguments access function

Ends the reference to variable arguments.

Syntax #include < stdarg.h >

void va_end (va_list ap);

ap; /* pointer to variable parameter list

 (the same as ap initialized by va_start) */

Return Value None

Description By using macros va_start, va_arg and va_end, the arguments of the function
having variable parameters can be referenced.

The va_end macro terminates the reference to variable arguments. ap must be
equal to the ap initialized by the va_start macro. If the va_end macro is not
called before the return, the operation is not guaranteed.

CC32R MANUAL - 274

Chapter 9 C Standard Library

va_start (Macro) Variable arguments access function

Initializes to reference variable arguments.

Syntax #include < stdarg.h >

void va_start (va_list ap, parmN);

ap; /* pointer to variable parameter list */

parmN; /* the rightmost identifier in

 parameter list */

Return Value None

Description By using macros va_start, va_arg and va_end, the arguments of the function
having variable parameters can be referenced.

The va_start macro initializes the ap used by the va_arg and va_end macro. The
parmN is the identifier indicating the rightmost parameter in the parameter list
of the external function definition, namely, the identifier just before the variable
parameter list (,...).

To reference an unnamed parameter of the variable parameters, first call the
va_start macro.

CC32R MANUAL - 275

Chapter 9 C Standard Library

vfprintf Input/output function

Outputs a variable argument list to a stream by following the format.

Syntax #include < stdarg.h >

#include < stdio.h >

int vfprintf (FILE *fp, const char *control, va_list arg);

fp; /* pointer to FILE structure */

control; /* pointer to format string */

arg; /* pointer to variable argument list */

Return Value Number of characters output : Successful

Negative value : Output error occurs

Description The vfprintf function converts and edits the variable arguments pointed to by
arg according to the format control and then outputs the result to the stream
specified by fp. This function is equivalent to the fprintf function but receives
“pointer to a variable argument list” as data to be output, not a variable
argument list itself.

This function suffixes a null character to actual output character sequence
however the null character is not counted as the number of output characters
(return value). For more information on the format control, refer to the
description of the fprintf function.

The arg indicating the variable argument list must be initialized by the va_start
and va_arg macros. The vfprintf function does not call the va_end macro.

CC32R MANUAL - 276

Chapter 9 C Standard Library

vprintf Input/output function

Outputs a variable argument list to the standard output (stdout) by following the
format.

Syntax #include < stdarg.h >

#include < stdio.h >

int vprintf (const char *control, va_list arg);

control; /* pointer to format string */

arg; /* pointer to variable argument list */

Return Value Number of characters output : Successful

Negative value : Output error occurs

Description The vprintf function converts and edits the variable arguments pointed to by
arg according to the format control and then outputs the result to the standard
output (stdout). This function is equivalent to the printf function but receives
“pointer to a variable argument list” as data to be output, not a variable
argument list itself.

This function suffixes a null character to actual output character sequence
however the null character is not counted as the number of output characters
(return value). For more information on the format control, refer to the
description of the fprintf function.

The arg indicating the variable argument list must be initialized by the va_start
and va_arg macros. The vprintf function does not call the va_end macro.

CC32R MANUAL - 277

Chapter 9 C Standard Library

vsprintf Input/output function

Outputs a variable arguments list to a memory area by following the format.

Syntax #include < stdarg.h >

#include < stdio.h >

int vsprintf (char *s, const char *control, va_list arg);

s; /* pointer to space to which data is output */

control; /* pointer to format string */

arg; /* pointer to variable argument list */

Return Value Number of characters output

Description The vsprintf function converts and edits the variable arguments pointed to by
arg according to the format control and then outputs the result to the area of
memory pointed to by s. This function is equivalent to the sprintf function but
receives “pointer to a variable argument list” as data to be output, not a variable
argument list itself.

This function suffixes a null character to actual output character sequence
however the null character is not counted as the number of output characters
(return value). For more information on the format control, refer to the
description of the fprintf function.

The arg indicating the variable argument list must be initialized by the va_start
and va_arg macros. The vsprintf function does not call the va_end macro.

CC32R MANUAL - 278

Chapter 9 C Standard Library

wcstombs General utility function

Converts a wide string into a multibyte string.

Syntax #include < stdlib.h >

size_t wcstombs (char *s, const wchar_t *pwcs, size_t n);

s; /* multibyte string storage buffer */

pwcs; /* wide string */

n; /* number of bytes to be written */

Return Value Number of characters converted : Successful (the number excludes the

termination null)

-1 : Invalid wide character is found during

conversion (casting -1 to size_t upon

returning)

Description The maximum value of multibyte-characte is 3 byte. And even “euc”, ”sjis”,
”utf8”, in addition to “C” are supported as the locale.

The wcstombs function converts the number of bytes specified by n, out of the
wide string specified by pwcs, into multibyte characters and stores the result
into the buffer specified by s.

CC32R MANUAL - 279

Chapter 9 C Standard Library

wctomb General utility function

Converts a wide character into a multibyte character.

Syntax #include < stdlib.h >

int wctomb (char *s, wchar_t wchar);

s; /* multibyte character storage buffer */

wchar; /* wide character */

Return Value • If s is NULL,

• 0 : Current multibyte character set does not depend on the

status.

• non-0 : Current multibyte character set depends on the status.

• If s is not NULL,

• number of bytes : The number of bytes of converted multibyte characters.

• 0 : wchar is 0.

• -1 : A multibyte character correspond to wchar dose not exist.

Description he maximum value of multibyte-characte is 3 byte. And even “euc”, ”sjis”,
”utf8”, in addition to “C” are supported as the locale.

The wctomb function converts the wide character specified by wchar into the
corresponding multibyte character and stores the result into the buffer specified
by s. When s is NULL, the function checks if the multibyte character set
depends on the status at that time.

Chapter 10 The cc32R's Behavior

CC32R MANUAL - 280

Chapter 10

The cc32R's Behavior

This chapter describes the C compiler(cc32R)'s behavior corresponding to

“undefined behavior”, “implementation-defined behavior”, and “locale-specific

behavior” in ANSI-C. Each description is preceded by its corresponding section

number in the ANSI-C (American National Standard for Programming

Languages - C, ANSI/ISO 9899-1990). The ANSI-C says as follows:

• Undefined behavior

Behavior, upon use of a nonportable or erroneous program

construct, of erroneous data, or of indeterminately valued

objects, for which this International Standard imposes no

requirements.

• Implementation-defined behavior

Behavior, for a correct program construct and correct data, that

depends on the characteristics of the implementation and that

each implementation shall document.

• Locale-specific behavior

Behavior that depends on local conventions of nationality,

culture, and language that each implementation shall document.

Chapter 10 The cc32R's Behavior

CC32R MANUAL - 281

10.1 Undefined Behavior

The operation dealt with as “undefined behavior” in ANSI-C is not guaranteed

in the C compiler. In most cases, the result may be ignoring, the issuance of a

diagnostic message, or occurrence of run-time error. Thus it is recommended to

write a program that is free from “undefined behavior”.

Here follow operations corresponding to “undefined behavior” that may be

probable (not guaranteed) in the C compiler cc32R. The number and the head-

ing subsequent to “• ANSI-C” are the section number and the section heading

of the corresponding ANSI-C, ANSI/ISO 9899-1990.

• ANSI-C 5.1.1.2 Translation Phases

(End of source file)

If no new-line character is present at the end of source file, a

new-line character is automatically added (the last line of a file

need not to end with a new-line character).

If the source file ends with a new-line character preceded by a

backslash, the backslash and the new-line character are deleted.

If the source file ends at a midpoint of a preprocessing token Note 1)

or of a comment, an error occurs.

Note 1) Preprocessing token (see the ANSI-C 6.1)

A minimal lexical element of text within a source file in C, and

includes the following : header names, identifiers, preprocess-

ing numbers, character constants, string literals, operators,

punctuators, and single non-white-space character that do not

match the above.

• ANSI-C 5.2.1 Character Sets

(Characters other than those belonging to the character set)

If characters that do not belong to the variable character set ap-

pear in a source file (excluding preprocess tokens not to be con-

verted into tokens, character constants, string literals, header

names, and comments), a warning is given, and the characters

are ignored.

• ANSI-C 5.2.1.2 Multi-byte Characters

If multi-byte characters are used anywhere other than comments,

character-constant and string-literal the operation is not guaran-

teed. There can be instances in which the end of comment is not

detected if what immediately precedes the end of comment, */, is

in shift state.

Chapter 10 The cc32R's Behavior

CC32R MANUAL - 282

• ANSI-C 6.1 Lexical elements

(Pair of quotation marks)

Either a ' or " that does not form a pair, if appears in a source,

results in an error.

• ANSI-C 6.1.2.1 Scopes of identifiers

Using the same identifier twice or more as a label within a

function results in an error.

Using an identifier that is not present in the current scope results

in an error.

• ANSI-C 6.1.2 Identifiers

Characters subsequent to the significant characters, if different in

an identifier that identifies the same entity, result in a warning.

• ANSI-C 6.1.2.2 Linkages of identifiers

If you declare the same identifier that stands for a function both

for internal identifier and external identifier, it is regarded as an

external identifier. If the identifier is put to static declaration in

function definition, it is regarded as an internal identifier. If you

define an identifier standing for anything else than functions for

both internal identifier and external identifier, it is regarded as

an internal identifier.

• ANSI-C 6.1.2.4 Storage durations of objects

If a storage area reserved for an object that has automatic storage

duration becomes no longer guaranteed, and if you use the

pointer value that references the object, no error occurs during

compilation but its operation is not guaranteed.

• ANSI-C 6.1.2.6 Compatible type and composite type

If there are two declarations for the same object or for a function

and if their types are not compatible, an error results.

• ANSI-C 6.1.3.4 Character constants

A non-supported escape sequence, if appears either in a

character constant or in a string literal, results in a warning, and

the backslash is ignored (example: '\c' is interpreted as 'c').

Chapter 10 The cc32R's Behavior

CC32R MANUAL - 283

• ANSI-C 6.1.4 String literals

Mixing wide character string literals and character literals

With regular string literal specified, if a wide character string

literal token appears, the prefix character L is ignored and

concatenated as a character string literal. With wide character

literal specified, character strings cannot be concatenated.

• ANSI-C 6.1.7 Header names

The characters \,", or /*, if appear in a header name, are

recognized as characters making up a file name (not processed as

special characters).

• ANSI-C 6.2.1 Arithmetic operations

If the result of an arithmetic conversion cannot be expressed

within a given space (deficiency in accuracy), an approximate

value is used. In the case of conversion into an integer, however,

digits to the right of the decimal points and the bit pattern of

higher-order digits that couldn't be accommodated is discarded.

• ANSI-C 6.2.2.1 Lvalues and function designators

In other cases than initializing an array by use of an initialization

expression, using an incomplete type on the lvalue results in an

error.

• ANSI-C 6.2.2.2 void

Either accessing an object by use of a value of void type or

adapting an implicit conversion to a void expression (except

conversion into void) results in an error.

• ANSI-C 6.3 Expressions

Side effects

A side effect that occurs between sequence points of an

expression is indeterminate. Do not write code that might lead

to a different operation result due to a side effect.

For example, there can be chances in which *p+5 of code

“*p++=*p+5” is evaluated before or after p++, so that what is

assigned *p+5 turns indeterminate. In this instance, code a

program in either way given below according to the purpose of

process.

Chapter 10 The cc32R's Behavior

CC32R MANUAL - 284

p=*p+5;

++p;

or

*(p+1)=*p+5;

p++;

Invalid operation, domain error

An invalid operation (division by 0 for example) results in an

error. A domain error (an overflow, an underflow, or the like), if

results from an operation, results in a warning. A warning is

given only when either domain error is detected during

compilation. In either case, the operation based on the arithmetic

operation is not guaranteed.

• ANSI-C 6.3.2.2 Function calls

If the argument to a function is a void expression

Specifying a void expression other than null argument for an

actual argument results in an error. If a null argument (void

expression) is specified and if one or more formal arguments are

defined for the function called, the value passed to the function is

indeterminate.

Type incompatibility between argument and parameter

If the function is defined in a position where the function is not

visible in calling a function with no function prototype

declaration, and if the type of actual argument is not consistent

with that of the formal argument after promotion (after

executing implicit type conversion), the value of the actual

argument is not guaranteed. For example, if an actual argument

that has been declared as short (implicitly converted into int if no

function prototype is given) is passed to a function that has a

formal argument of unsigned int, an error occurs, but no error

occurs if the said actual argument is passed to a function that has

a formal argument of int.

Type incompatibility between function prototype and

function definition

In calling a function when the function prototype declaration is

visible, if the function is not defined for the type compatible with

the declaration, an error results.

Chapter 10 The cc32R's Behavior

CC32R MANUAL - 285

Prototype declaration of variable arguments

If a function that accepts a variable arguments list is called in a

position where the function prototype that ends with "..." is not

visible, there can be a chance that part of variable number of

actual arguments is not correctly passed.

• ANSI-C 6.3.3.2 Address and indirection operators (Unary operators &, *)

If you perform a reference as given below by use of an address

arithmetic operator & or an indirect reference operator *, the

operation is not guaranteed.

• Referencing an invalid array

• Referencing a null pointer

• Referencing an object having automatic storage duration

whose scope has expired

• ANSI-C 6.3.4 Cast operators

If you cast a pointer toward a function to a pointer toward a

function of different type, and if you call a function of a type

incompatible with the original type, the operation is not

guaranteed.

You can cast a pointer toward a function to a pointer toward an

object, and you can cast a pointer toward an object to a pointer

toward a function.

If you cast a pointer to an entity of non-integer type (non-

character type either) or to an entity of non-pointer type, an error

occurs in most cases. The operation of program is not

guaranteed even though no error occurs.

• ANSI-C 6.3.6 Additive operation

If you add/subtract a pointer toward an array and if the pointer

points toward an area outside the area for the array elements, the

value of the pointer is correctly derived (no error occurs).

Referencing the content that a pointer points toward by use of

the operator * allows you to reference the data stored there. The

data is not an array element, so the operation of program is not

guaranteed.

Chapter 10 The cc32R's Behavior

CC32R MANUAL - 286

• ANSI-C 6.3.7 Bitwise shift operators

If you specify a negative number for the extent of a shift

operation or a number greater than the bit width of the

expression to be shifted, the operation is not guaranteed. (An

example of operation: if you give a negative shift extent, there

can be instances in which the shift direction reverses. If the shift

extent is greater than the bit width of the expression to be

shifted, there can be a chance that the shift is correctly performed

provided that the result can be expressed by the size that the

type can afford.)

• ANSI-C 6.3.8 Relational operators (macro replacement)

Even if a pointer to be compared by a relational operator

(<, <=, >, >=) points neither to the same aggregate nor union, no

error occurs; but the operation is not assured.

• ANSI-C 6.3.16.1 Simple assignment (simple assignment =)

If you assign an object to objects in an overlapping manner, data

in the overlapped part are not guaranteed.

• ANSI-C 6.5 Declarations

If an object declared without linkage is incomplete even after the

declaration ends (if the objects has an initial value) or even after

the initial declaration ends, an error occurs.

• ANSI-C 6.5.1 Storage-Class Specifiers

If a function is declared by use of a storage class specifier other

than extern in a block scope, the operation is not guaranteed.

• ANSI-C 6.5.2.1 Structure and union specifiers

Unnamed members

If you define either a structure or a union made up of unnamed

members only, the operation is not guaranteed.

Type of bit field in structure

Types valid for the declaration of a structure's bit field include

char, short, int, and long, either signed or unsigned. If you

declare any type other than these, the operation is not

guaranteed.

Chapter 10 The cc32R's Behavior

CC32R MANUAL - 287

• ANSI-C 6.5.3 Type qualifiers

If you attempt to change an object declared as const by a value

other than const on the left-hand side, that is, if you attempt to

process an area declared as const by a cast or the like as if it is not

const, the operation is not guaranteed (there can be instances in

which no error occurs).

If you attempt to change an object declared as volatile by a value

other than volatile on the left-hand side, that is, if you attempt to

process an area declared as volatile by a cast or the like as if it is

not volatile, the operation is not guaranteed (there can be

instances in which no error occurs).

• ANSI-C 6.5.7 Initialization

If you use an object that has a non-initialized automatic storage

duration before assigning a value to it, there can be instances in

which a warning such as an error is not issued. It value is

indeterminate.

There can a chance that a warning such as an error is not issued

in the instances given below, but the operation is not guaranteed.

• An instance in which an object of either aggregate type or

union type having a static storage duration has an initial value

that are not enclosed in a pair of braces { }.

• An instance in which an object of either aggregate type or

union type having an automatic storage duration has either an

initialization expression of the type of the object or an initial

value that are not enclosed in a pair of braces { }.

• ANSI-C 6.6.6.4 The return statement

If a function's value referenced is not returned from the function,

the function's value referenced is indeterminate.

• ANSI-C 6.7 External definitions

If you define two or more identical identifiers having external

linkage, and if they are included in one source, an error occurs

during compilation; if they are separately included in two or

more sources, an error occurs during linking.

Chapter 10 The cc32R's Behavior

CC32R MANUAL - 288

• ANSI-C 6.7.1 Function definitions

If the parameter list in defining a function that accepts variable

arguments doesn't end with ", ...", and if an attempt is made to

pass more arguments than the number declared in the parameter

list, an error occurs.

• ANSI-C 6.7.2 External object definitions

The identifier of an incomplete object having internal linkage is

declared by an ambiguous definition, the operation is not

guaranteed (there can be instances in which a warning is issued).

• ANSI-C 6.8.1 Conditional inclusion

The token defined that is generated during expanding the

preprocessing directive for #if or #elif is dealt with as an

operator.

• ANSI-C 6.8.2 Source file inclusion

If the preprocessing directive for #include agrees with neither of

two header files, an error occurs.

• ANSI-C 6.8.3 Macro replacement

A macro call on a function sequence having no arguments results

in a error.

A line that begins with # — a preprocessing directive, if present

in the actual argument list in a macro call, is regarded as a

preprocessing directive.

• ANSI-C 6.8.3.2 The # operator (character string formation)

If string formation based on the operator # for preprocess doesn't

result in a valid string constant, the operation is not guaranteed.

There can be a chance that an error occurs during expansion.

• ANSI-C 6.8.3.3 The ## operator (token coupling)

If coupling tokens with the operator ## for preprocess doesn't

turn to a valid preprocess token, the operation is not guaranteed.

For example, func#1, if expanded, turns to func1, but if func1

is a meaningless token, then there can be a chance that an

warning is issued during compilation or that an error occurs

during linking.

Chapter 10 The cc32R's Behavior

CC32R MANUAL - 289

• ANSI-C 6.8.4 Line control

If the syntax of the preprocessing directive for #line after

expansion is incorrect, an error occurs. In this instance, the line

information is not updated.

• ANSI-C 6.8.8 Predefined macro names

_ _LINE_ _, _ _FILE_ _, _ _DATE_ _, _ _TIME_ _, and _ _STDC_ _

are macros already defined. Defining them or canceling their

definition by use of either #define or #undef causes an error.

• ANSI-C 7 Library

If you attempt to copy an object to objects in an overlapping

manner by use of a library function other than memmove, data

in the overlapped part are not guaranteed.

• ANSI-C 7.1.2 Standard headers

Including standard headers inside an external definition

As for function declaration, object declaration, type definition,

macro definition, and macro definition using a the same name as

a keyword, the corresponding standard header files must have

been included before the first reference. If you include them

after referencing, they don't operate correctly.

Redefining a reserved external name

The process at the time of defining an external name other than

program-reserved ones (an external name within a header, for

example) depends on the linker.

• ANSI-C 7.1.4 Errors <errno.h>

errno has been realized from macros and external variables. You

can access errno even when you nullify the macro definition.

• ANSI-C 7.1.6 Common definition <stddef.h>

Specifying a bit field member of a structure for the second

parameter of the offsetof macro results in an error.

• ANSI-C 7.1.7 Use of library functions

If the number of actual arguments of a library function is invalid,

the operation of program is not guaranteed.

If a library function that accepts variable arguments is not

declared by means of including headers, there can be a chance

Chapter 10 The cc32R's Behavior

CC32R MANUAL - 290

that the function being handled doesn't operate correctly.

• ANSI-C 7.2 Diagnostics <assert.h>

assert has been realized from macros. If you call assert by

nullifying a macro call so as to access a function, a warning is

issued during compilation, and an error occurs during linking

due to the absence of external symbols.

• ANSI-C 7.3 Character handling <ctype.h>

The argument to be passed to a character handling function is

neither unsigned char nor EOF, the operation is not guaranteed.

• ANSI-C 7.6 Nonlocal jumps <setjmp.h>

setjmp, if the macro definition is nullified, doesn't result in an

error.

• ANSI-C 7.6.1.1 The setjmp macro

Using the setjmp macro in the ways given below is

recommended. If you use it in ways other than these, no error

results, but if you use it in an complex expression, there can be a

chance that part of the current execution environment (an

interim result of expression evaluation, for example) is lost.

• Controlling an operand in selection statement, iteration

statement, and in comparing an integer constant expression

(implicit process by use of the unary operator !, or the like).

• Controlling an operand in a selection statement or an iteration

statement

• Expression statement (casting to void)

• ANSI-C 7.6.2.1 The longjmp function

If you change an object of an automatic storage class that is not

qualified as volatile during a period from executing setjmp to

calling longjmp, the value of the object is not guaranteed.

If the longjmp function starts up from a nested signal routine, it

returns to the setjmp function, but the subsequent operation

depends on the specifications of a signal function (a low-level

function) you prepare.

Chapter 10 The cc32R's Behavior

CC32R MANUAL - 291

• ANSI-C 7.7.1.1 The signal function

The signal function is not packaged in the C standard library.

The process relating to a signal depends on the specifications of a

signal function (a low-level function) you prepare. Thus the

instances given below also depends on a signal function (a low-

level function) you prepare.

• An instance in which a signal occurs as a result of calling the

abort function or the raise function.

• An instance in which the signal handler calls a standard

library function other than the signal function.

• An instance in which the signal handler references any static

object of type other than volatile sig_atomic_t.

• An instance in which the value of errno is referenced after a

signal occurs (except the result of calling the abort function or

the raise function) and the corresponding signal handler calls

the signal function that returns the value SIG_ERR.

• ANSI-C 7.8.1 Variable arguments list access macros

When a certain function (let this be A) invokes a function (let this

be B) by using, as an actual argument, ap (pointer to variable

argument list) updated by a va_arg macro, if the function B calls

a va_arg macro by using ap, the following results.

• The function B (the function invoked by the function A) can

carry out reference from variable arguments that ap indicates

at the time when the function B is invoked.

• The function A (the function that invoked the function B) can

carry out reference from variable arguments indicated by ap

as it is at the time when the function A invokes the function B

regardless of whether the function B references arguments of a

variable number.

If you pass the ap's address as an argument, or if you pass an

aggregate (if ap is an aggregate) as an argument, ap of the

function A at the time when returned from the function B

continues from the value at the time when the function B

terminates.

va_start, va_arg, and va_end have been realize from macros. If

you invoke these by nullifying a macro call so as to access a

function, a warning is issued during compilation, and an error

Chapter 10 The cc32R's Behavior

CC32R MANUAL - 292

occurs during linking due to the absence of external symbols.

• ANSI-C 7.8.1.1 The va_start macro

If the second argument parmN of the va_start macro has been

declared as a register class variable, function type, or array type,

or if the declaration doesn't agree with the type as it becomes

after the default actual argument promotions (the type resulting

from applying implicit type conversion to an argument), the

operation is not guaranteed.

• ANSI-C 7.8.1.2 The va_arg macro

If the argument to be handled is not actually present in calling

va_arg, the operation is not guaranteed.

If the argument to be handled is not of the type specified in

calling va_arg, the operation is not guaranteed.

• ANSI-C 7.8.1.3 The va_end macro

Invoking va_end before invoking va_start doesn't cause an error,

and the program operates properly.

If a function having a variable argument list initialized by the

va_start macro returns before the va_end macro is invoked, no

error occurs; but the operation of program is not guaranteed.

• ANSI-C 7.9.5.2 The fflush function

fflush for an input stream is ignored (no error returns).

• ANSI-C 7.9.5.3 The fopen function

If neither the fflush function nor file positioning functionNote 2) is

invoked during a period from an input request to an output

request for one stream, the input/output operation is not

guaranteed.

Note 2) File positioning functions are : fgetpos, fseek, fsetpos, ftell, and rewind.

Chapter 10 The cc32R's Behavior

CC32R MANUAL - 293

• ANSI-C 7.9.6 Formatted input/output functions

'printf'-like functionsNote 3) / 'scanf'-like functionsNote 4)

Though the type of function specifications doesn't agree with the

corresponding number in the argument list, or the number of

actual arguments are less than the number of conversion

specifications, no error occurs, but the operation is not

guaranteed. If the number of arguments is greater than specified

by the conversion specifier, the excess arguments are ignored.

The input/output result for invalid conversion specifications in

the 'printf'-like functions or the 'scanf'-like functions is

indeterminate. In most cases, no error message is output. If

input/output is different from what is expected, check that the

code for conversion specifications is in correct format.

'printf'-like functions / 'scanf'-like functions %% conversion

In dealing with conversion specifications %% for the 'printf'-like

functions or the 'scanf'-like functions, in most cases in which

characters other than numeric characters are contained between

% and %, the characters between % and % are subjected to

input/output. For example, "%abcdef%" is converted into

"abcdefg".

• ANSI-C 7.9.6.1 The fprintf function

Qualifier

In dealing with conversion specifications of the 'printf'-like

functions, if the qualifier (the size specifying character, h or l) is

specified previous to h or l preceding the conversion specifier

other than the one involved (o, x, X, e, E, f, g, G), then the

qualifier is ignored.

Flag

In dealing with conversion specifications of the 'printf'-like

functions, if the flag # is specified previous to a conversion

specifier other than the one involved (o, x, X, e, E, f, g, G), then

the flag is ignored.

In dealing with conversion specifications of the 'printf'-like

functions, if the flag 0 is specified previous to a conversion

specifier other than involved (d, i, o, u, x, X, e, E, f, g, G), then the

flag is ignored.

Note 3) The 'printf'-like functions : fprintf, printf, sprintf, vfprintf, vprintf, and vsprintf

Note 4) The 'scanf'-like functions : fscanf, scanf, and sscanf

Chapter 10 The cc32R's Behavior

CC32R MANUAL - 294

Conversion result

Though an aggregate, a union, or a pointer toward an aggregate

or a union is specified for an item other than %p and %s of the

'printf'-like functions, the program operates properly.

If the result of % conversion effected by the printf function

exceeds 509 characters, the operation is not guaranteed.

• ANSI-C 7.9.6.2 The fscanf function

Qualifier

In dealing with conversion specifications of 'scanf'-like functions,

if the qualifier (the size specifying character, h, l, L) is specified

previous to a conversion specifier other than the one involved as

given below, then the qualifier is ignored.

• Either h or l put previous to a conversion specifier other than

d, i, n, o, u, or x.

• L put previous to a conversion specifier other than e, f, or g.

Compatibility with %p of 'printf'-like functions

The output format of the %p conversion of the 'printf'-like

functions is compatible with the address format assigned to %p

of the 'scanf'-like functions.

Storage area for the conversion result

If the area to which the resultant value of conversion effected by

the 'scanf'-like functions is assigned is insufficient in capacity or

of incompatible type, the operation is not guaranteed.

• ANSI-C 7.10.1 String conversion functions (conversion from a string into a

numerical value)

If the conversion result effected by one of the functions (atof,

atoi, atol) that converts a string into a numerical value cannot be

expressed due to a domain error, the function returns the

maximum value of the domain (HUGE_VAL, INT_MAX, or the

like.).

• ANSI-C 7.10.3 Memory management functions (the free function, realloc

function)

If you reference an area deallocated either by the free function or

the realloc function, the operation is not guaranteed.

Chapter 10 The cc32R's Behavior

CC32R MANUAL - 295

If you pass a value as given below to the first argument (the

pointer toward an area to be deallocated) of the free function or

the realloc function, the operation is not guaranteed.

· A value that is not a return value (the pointer toward an area

whose allocation has been completed) of the calloc function,

malloc function, or the realloc function

· A pointer toward an area that was formerly deallocated either

by the free function or by the realloc function.

• ANSI-C 7.10.4.3 The exit Function

If a program executes a call to the exit function twice or more

(runs the atexit function so as to catalog the exit function, for

example), the operation is not guaranteed.

• ANSI-C 7.10.6 Integer arithmetic functions

If the result of running one of the arithmetic functions of integer

type (abs, div, lab, ldiv) cannot be expressed, then the value

cannot be guaranteed.

• ANSI-C 7.10.7 Multibyte character function (shift state)

The shift state of the multi-byte exists. However, all functions

implement processing in supposing that it is in absolutely the

inital shift state when these functions were called.

• ANSI-C 7.11.2 Copying functions, 7.11.3 Concatenation functions

The operation of these functions is not guaranteed in such

instances as given below.

If the size of the copy destination is less than the copy source in

running the memcpy, memmove, strcpy, or strncpy function.

If the area for storing the result of concatenating character strings

is insufficient in running either the strcat function or the strncat

function.

• ANSI-C 7.12.3.5 The strftime function

If a character that is not a conversion specifier is present in the

time conversion format format of the strftime function, then the

character is output without being changed.

Chapter 10 The cc32R's Behavior

CC32R MANUAL - 296

A subtraction involved in two pointers that don't point toward

the same array doesn't result in an error, provided that all the

types of operands (pointers) are compatible. But if you make the

types compatible by casting, the operation result is not

guaranteed.

A mismatch between the number of arguments and that of

parameters

If the number of actual arguments does not agree with that of

formal parameter in calling a function at a position where the

function's prototype is invisible, the values of unmatched

dummy arguments are not guaranteed.

Concatenating wide string literals

With wide string literals specified, concatenated strings turn

invalid.

Accessing an object by use of an lvalue

If you assign to an object a value on an lvalue having an

incompatible type, the operation is not guaranteed.

CC32R MANUAL - 297

Chapter 10 The cc32R's Behavior

10.2 Implementation-defined Behavior

Here follows how the operation dealt with as “implementation-defined

behavior” in ANSI-C goes on in the C compiler cc32R, such as how messages

are notified, the number of significant characters for an identifier, or the format

of integer or floating-point number, etc.

The number and the heading subsequent to “• ANSI-C” are the section number

and the section heading of the corresponding ANSI-C, ANSI/ISO 9899-1900.

Each issue as “implementation-defined behavior” is shown in a pair of angular

brackets < >, and the corresponding behavior of cc32R is detailed subsequent to

< >.

10.2.1 Translation

• ANSI-C 5.1.1.3 Diagnostics

<How a diagnostic is identified.>

The diagnosis messages include information messages, warning

messages, error messages, and fatal error messages. For details of

output formats of messages, see Chapter 12 "Messages from the

C Compiler".

10.2.2 Environment

• ANSI-C 5.1.2.2.1 Program startup

<The semantics of the arguments to main.>

The arguments passed to the main function depend on the

specifications of the startup program you prepare.

• ANSI-C 5.1.2.3 Program execution

<What constitutes an interactive device.>

The operation of input/output devices depends on the

specifications of the read function and the write function (low-

level functions) you prepare.

CC32R MANUAL - 298

Chapter 10 The cc32R's Behavior

10.2.3 Identifiers

• ANSI-C 6.1.2 Identifiers

<The number of significant initial character (beyond 31) in

an identifier without external linkage.>

As for an identifier without external linkage, the first 240 charac-

ters are significant. The 241st character and subsequent ones are

ignored.

<The number of significant initial character (beyond 6) in an

identifier with external linkage.>

As for an identifier, the first 240 characters are significant. The

241st character and subsequent ones are ignored. Identifiers are

case-sensitive.

<Whether case distinctions are significant in an identifier

with external linkage.>

You can describe only an integer constant expression in the case

statement.

10.2.4 Characters

• ANSI-C 5.2.1 Character sets

<The members of the source and execution character sets,

except as explicitly specified in this International Standard.>

Both the source character set and execution character set comply

with JIS X 0201,0208 character set. (The Latin character part of JIS

X 0201 will be regarded as ASCII.)

The EUC(Expanded Unix Code),Shift-JIS and UCS-2(UTF-8

encoded) are supported as the actual character-encoding.

• ANSI-C 5.2.1.2 Multibyte characters

<The shift states used for the encoding of multibyte

characters.>

The shift state (character strings that indicate the beginning and

the end of a multibyte character) for multibyte characters is not

available.

CC32R MANUAL - 299

Chapter 10 The cc32R's Behavior

• ANSI-C 5.2.4.2.1 Sizes of integral types <limits.h>

<The number of bits in a character in the execution

character set.>

8 bits.

• ANSI-C 6.1.3.4 String literals

<The mapping of member of the source character set (in

character constants and string literals) to members of the

execution character set.>

If the M32RKIN enviromen variable is not “utf8”, the arrange-

ment correspondence between the characters in the source

character set and those in the execution charcter set is one to one.

Otherwise, the characters that have same meaning and different

character-code may be changed to normalize with the character

set of JIS X 0201 and JIS X 0208.

<The value of an integer character constant that contains a

character or escape sequence not represented in the basic

execution character set or the extended character set for a

wide character constant .>

If the M32RKIN enviroment variable is not “utf8” ,the most right

edge of 2 byte in this character will be combined by the big-

endian order.

Otherwise,this character will be changed to 0xffff.

<The value of an integer character constant that contains

more than one character or a wide character constant that

contains more than one multibyte character.>

If this character constant is not wide-character, it is the value of

the rightmost characters in a string literal.

The wide-character constatnt is processed in accordance with the

M32RKOUT enviroment variable.

<The current locale used to convert multibyte characters

into corresponding wide characters (codes) for a wide

character constant.>

The “euc”,”sjis” and “utf8” locales are supported.

• ANSI-C 6.2.1.1 Characters and integers

<Whether a "plain" char has the same range of values as

signed char or unsigned char.>

"char" behaves like "signed char" on the code CC32R

generated.Yet, the CC32R processes "char" with regarding as

different model from "signed char" when a interpreting.

CC32R MANUAL - 300

Chapter 10 The cc32R's Behavior

10.2.5 Integers

• ANSI-C 6.1.2.5 Types

<The representations and sets of values of the various types

of integers.>

For internal representation and the limit values of various

integer data, see 5.2 “Integral Types”. The C compiler interprets

int as equivalent to signed int, short to signed short, and long to

signed long. Yet, the C compiler interprets assuming that char

and signed char differ when the grammar interpretation. But the

generated binary code executes as equivalent to char and signed

char.

• ANSI-C 6.2.1.2 Signed and unsigned integers

<The result of converting an integer to a shorter signed

integer, or the result of converting an unsigned integer to a

signed integer of equal length, if the value cannot be

represented.>

In converting an integer into a "signed integer less in size than

the original", the lower-order bits of the original integer are

converted into a signed integer without being changed. The most

significant bit of the singed integer after conversion is used for

the sign bit.

In converting an unsigned integer into a "signed integer of the

same size", the lower-order bits are converted into a signed

integer without being changed.

• ANSI-C 6.3 Expressions

<The results of bitwise operations on signed integers.>

The bit operation of a signed integer is dealt with as that of

unsigned integer.

• ANSI-C 6.3.5 Multiplicative operators

<The sign of the remainder on integer division.>

The sign of the remainder is the same as that of the dividend.

CC32R MANUAL - 301

Chapter 10 The cc32R's Behavior

• ANSI-C 6.3.7 Bitwise shift operators

<The result of a right shift of a negative-valued signed

integral type.>

A right shift of negative-valued signed integer is an arithmetic

right shift.

10.2.6 Floating-Point

• ANSI-C 6.1.2.5 Types

<The representations and sets of values of the various types

of floating-point numbers.>

Refer to 5.3 “Floating Types” for internal representations and

sets of values of floating types.

• ANSI-C 6.2.1.3 Floating and integral

<The direction of truncation when an integral number is

converted to a floating-point number that cannot exactly

represent the original value.>

Numbers are rounded to the nearest value within representable

range of the floating type that is the result of conversion.

• ANSI-C 6.2.1.4 Floating types

<The direction of truncation or rounding when floating-point

number is converted to a narrower floating-point number.>

Numbers are rounded to the nearest value within representable

range of the floating type that is the result of conversion.

10.2.7 Arrays and Pointers

• ANSI-C 6.3.3.4 The sizeof operator, 7.1.1 Definitions of terms

<The type of integer required to hold the maximum size of

an array - that is, the type of the sizeof operator, size_t .>

The type of the sizeof operator,size_t,is defined as unsigned long.

• ANSI-C 6.3.4 Cast operators

<The result of casting a pointer to an integer or vice versa.>

In converting a pointer to an integer or vice versa, all the bits are

used with the notation unchanged, so a correct conversion

CC32R MANUAL - 302

Chapter 10 The cc32R's Behavior

results.

• ANSI-C 6.3.6 Additive operators, 7.1.1 Definitions of terms

<The type of integer require to hold the difference between

two pointers to elements of the same array, ptrdiff_t .>

The type of integer that holds the difference between two

pointers, ptrdiff_t, is defined as int.

10.2.8 Registers

• ANSI-C 6.5.1 Storage-class specifiers

<The extent to which objects can actually be placed in

registers by use of the register storage-class specifier.>

The register storage-class specifier is ignored.

10.2.9 Structures, Unions, Enumerations, and Bit-fields

• ANSI-C 6.3.2.3 Structure and union members

<A member of a union object is accessed using a member of

a different type.>

The bit pattern stored in the member of union is accessed, and

the value is interpreted according to the type of the member

accessed.

• ANSI-C 6.5.2.1 Structure and union specifiers

<The padding and alignment of members of structures. This

should present no problem unless binary data written by

one implementation are read by another.>

Details of padding and alignment of bit field, see 5.9 "Bit Fields".

<Whether a "plain" int bit-field is treated as a signed int bit-

field or as an unsigned int bit-field.>

A normal bit field of int type is dealt with as a bit field of signed

int type.

<The order of allocation of bit-fields within a unit.>

Bit fields are allocated from high-order to low-order in storage.

CC32R MANUAL - 303

Chapter 10 The cc32R's Behavior

<Whether a bit-field can straddle a storage-unit boundary.>

A bit field is not allocated across an alignment boundary.

• ANSI-C 6.5.2.2 Enumeration specifiers

<The integer type chosen to represent the values of an

enumeration type.>

An enumeration type is treated as a int.

10.2.10 Qualifiers

• ANSI-C 6.5.3 Type qualifiers

<What constitutes an access to an object that has volatile-

qualified type.>

Each reference to a volatile object name will constitute one access

to the object. volatile-qualified objects are not optimized.

10.2.11 Declarators

• ANSI-C 6.5.4 Declarators

<The maximum number of declarators that may modify an

arithmetic, structure, or union type.>

No limit is placed on the maximum number of declarators.

10.2.12 Statements

• ANSI-C 6.6.4.2 The switch statement

<The maximum number of case values in a switch

statement.>

The maximum value of case in a switch statement depends on

the available memory capacity.

10.2.13 Preprocessing Directive

• ANSI-C 6.8.1 Conditional inclusion

<Whether the value of a single-character character constant

in a constant expression that controls conditional inclusion

matched the value of the same character constant in the

CC32R MANUAL - 304

Chapter 10 The cc32R's Behavior

execution character set. Whether such a character constant

may have a negative value.>

The value of a single-character constant in the constant

expression that controls conditional inclusion agrees with the

value of the same character constant in the execution character

set. Such character constant can be assigned a negative value.

• ANSI-C 6.8.2 Source file inclusion

<The method for locating includable source files.>

The sequence of retrieving header files specified by #include is

given in the Function column for the -I option (-I path) in Table

3.6 in 3.2 "Startup Options of the C Compiler".

<The support of quoted names for includable source files.>

In the #include preprocess instruction, you can specify a file

name to include by means of enclosing it in a pair of quotation

marks (" ").

<The mapping of source file character sequences.>

The values of ASCII characters are respectively assigned to the

characters in the source file.

• ANSI-C 6.8.6 Pragma directive

<The behavior on each recognized #pragma directive.>

Unrecognized #pragma directives are ignored.

• ANSI-C 6.8.8 Predefined macro names

<The definitions for _ _DATE_ _ and _ _TIME_ _ when

respectively, the date and time of translation are not

available.>

__DATE__and __TIME__are always available.

10.2.14 Library Functions

• ANSI-C 7.1.6 Common definitions <stddef.h>

<The null pointer constant to which the macro NULL

expands.>

NULL (the null pointer) is defined as ((void *) 0).

CC32R MANUAL - 305

Chapter 10 The cc32R's Behavior

• ANSI-C 7.2 Diagnostics <assert.h>

<The diagnostic printed by and the termination behavior of

the assert function .>

The diagnostic message from assert is :

Assertion failed:expression, file:file_name, line:line_number

• ANSI-C 7.3.1 Character testing functions

<The set of characters tested for by the isalnum, isalpha,

iscntrl, islower, isprint, and isupper functions.>

Characters (ASCII characters) for which isalnum, isalpha, iscntrl,

islower, isprint, or isupper returns true are as follows.

Function Tested character set

isalnum '0'-'9', 'A'-'Z', 'a'-'z'

isalpha 'A'-'Z', 'a'-'z'

iscntrl 0x00-0x1F, 0x7F

islower 'a'-'z'

isupper 'A'-'Z'

isprint 0x20-0x7E

• ANSI-C 7.5.1 Treatment of error conditions

<The value returned by the mathematics functions on

domain errors.>

If a definition area error occurs in a numerical value calculating

function, EDOM is set to errno.

<Whether the mathematics functions set the integer

expression errno to the value of the macro ERANGE on

underflow range errors.>

If an underflow occurs in a numerical value calculating function,

ERANGE is set in errno.

• ANSI-C 7.5.6.4 The fmod function

<Whether a domain error occurs or zero is returned when

the fmod function has a second argument of zero.>

If the second argument of the fmod function is 0, a domain error

occurs, and EDOM is set in errno (the calculation result is not

guaranteed).

CC32R MANUAL - 306

Chapter 10 The cc32R's Behavior

• ANSI-C 7.7.1.1 The signal function

<The set of signals for the signal function.>

It is depends on the user-defined signal function (a low-level

function).

<The semantics for each signal recognized by the signal

function.>

It is depends on the user-defined signal function (a low-level

function).

<The default handling and the handling at program startup

for each signal recognized by the signal function.>

They are depend on the user-defined signal function (a low-level

function).

<If the equivalent of signal (sig, SIG_DEL); is not executed

prior to the call of a signal handler, the blocking of the

signal that is performed.>

It is depends on the user-defined signal function (a low-level

function).

<Whether the default handling is reset if the SIGILL signal is

received by a handler specified to the signal function.>

It is depends on the user-defined signal function (a low-level

function).

• ANSI-C 7.9.2 Streams

<Whether the last line of a text stream requires a terminating

new-line character.>

Whether the line feed character is required depends on the

specifications of the read function and the write function (low-

level functions) you prepare. Functions in the C standard library

used for calling them are so designed that they operate properly

though the line feed code is missing from the last line.

<Whether space characters that are written out to a text

stream immediately before a new-line character appear

when read in.>

Whether the null character is output depends on the

specifications of the read function and the write function (low-

level functions) you prepare.

<The number of null characters that may be appended to

data written to a binary stream.>

No null characters are appended to a binary stream.

CC32R MANUAL - 307

Chapter 10 The cc32R's Behavior

• ANSI-C 7.9.3 Files

<Whether the file position indicator of an append mode

stream is initially positioned at the beginning or end of the

file.>

The file position indicator is initially located at the end of file.

<Whether a write on a text stream causes the associated file

to be truncated beyond that point.>

Truncating the associated file is not caused.

<The characteristics of file buffering.>

Three methods are available for buffering — full buffering, line

buffering, and no buffering. You can set/change them by use of

the setbuf function or the setvbuf function.

<Whether a zero-length file actually exists.>

It is depends on user-defined low-level functions.

<The rules for composing valid file names.>

They depend on user-defined low-level functions.

<Whether the same file can be open multiple times.>

It is depends on the user-defined open function (a low-level

function).

• ANSI-C 7.9.4.1 The remove function

<The effect of the remove function on an open file.>

It is depends on the user-defined remove function (a low-level

function).

• ANSI-C 7.9.4.2 The rename function

<The effect if a file with the new name exists prior to a call to

the rename function .>

It is depends on the user-defined rename function (a low-level

function).

CC32R MANUAL - 308

Chapter 10 The cc32R's Behavior

• ANSI-C 7.9.6.1 The fprintf function

<The output for %p conversion in the fprintf function.>

The output for %p in the 'printf'-like functionsNote 5) turns equal to

%X.

• ANSI-C 7.9.6.2 The fscanf function

<The input for %p conversion in the fscanf function.>

The input for %p in the 'scanf'-like functionsNote 6) turns equal to

%X.

<The interpretation of a - character that is neither the first

nor the last character in the scanlist for %[conversion in the

fscanf function.>

The conversion %[in the 'scanf'-like functions allows to indicate

an inclusive range of characters by using '-' (hyphen) as follows,

assuming that the character set is ASCII :

%[Character set

%[a-f] 'a'-'f' (i.e., 'a', 'b', 'c', 'd', 'e', and 'f')

%[0-9][a-f] '0'-'9' and 'a'-'f'

%[--a] '-' through 'a'

%[---] '-' only

%[z-a] Nothing

%[-af] '-', 'a', and 'f ' ('-' at the top do not indicate a range)

%[af-] 'a', 'f', and '-' ('-' at the end do not indicate a range)

%[a-f-z] 'a'-'f', '-', and 'z'

• ANSI-C 7.9.9.1 The fgetpos function, 7.9.9.4 The ftell function

<The value to which the macro errno is set by the fgetpos or

ftell function on failure.>

errno is set to EFSEEK if the result of the fgetpos or ftell

function is unsuccessful (i.e., an error was returned from the

environment).

Note 5) The 'printf'-like functions : fprintf, pointf, sprintf, vfprintf, vprintf, and vsprintf

Note 6) The 'scanf'-like functions : fscanf, scanf, and sscanf

CC32R MANUAL - 309

Chapter 10 The cc32R's Behavior

• ANSI-C 7.9.10.4 The perror function

<The messages generated by the perror function.>

It is depends on the user-defined _strerror function (a low-level

function).

• ANSI-C 7.10.3 Memory management functions

<The behavior of the calloc, malloc, or realloc function if the

size requested is zero.>

NULL is returned.

• ANSI-C 7.10.4.1 The abort function

<The behavior of the abort function with regard to open and

temporary files.>

It is depends on the user-defined abort function (a low-level

function).

• ANSI-C 7.10.4.3 The exit function

<The status returned by the exit function if the value of the

argument is other than zero, EXIT_SUCCESS, or

EXIT_FAILURE.>

It is depends on the user-defined _exit function (a low-level

function).

• ANSI-C 7.10.4.4 The getenv function

<The set of environment names and the method for altering

the environment list used by the getenv function.>

It is depends on the user-defined getenv function (a low-level

function).

• ANSI-C 7.10.4.5 The system function

<The contents and mode of execution of the string by the

system function.>

It is depends on the user-defined system function (a low-level

function).

• ANSI-C 7.11.6.2 The strerror function

<The contents of the error message strings returned by the

strerror function.>

It is depends on the user-defined _strerror function (a low-level

function).

CC32R MANUAL - 310

Chapter 10 The cc32R's Behavior

• ANSI-C 7.12.1 Components of time

<The local time zone and Daylight Saving Time.>

The environment variable TZ is used to set the local time (the

calender time in each locale). As the local time, JST (default),

EST5EDT, CST6CDT, MST7MDT, PST8PDT, and UTC are

supported. As daylight saving time, EST5EDT, CST6CDT, and

MST7MDT are supported.

• ANSI-C 7.12.2.1 The clock function

<The era for the clock function.>

It is depends on the user-defined clock function (a low-level

function).

CC32R MANUAL - 311

Chapter 10 The cc32R's Behavior

10.3 Locale-specific Behavior

Here follows how the operation dealt with as “locale-specific behavior” in

ANSI-C goes on in the C compiler cc32R.

The number and the heading subsequent to “• ANSI-C” are the section number

and the section heading of the corresponding ANSI-C, ANSI/ISO 9899-1900.

Each issue as “locale-specific behavior” is shown in a pair of angular brackets

< >, and the corresponding behavior of cc32R is detailed subsequent to < >.

• ANSI-C 5.2.1 Character sets

<The content of the execution character set, in addition to

the required members.>

The character code set of JIS X 0201 (except for the Latin

characters) and JIS X 0208 were extended.

• ANSI-C 5.2.2 Character display semantics

<The direction of printing.>

Always left to right.

• ANSI-C 7.1.1 Definitions of terms

<The decimal-point character.>

The decimal point is 0x2E (‘.’) in the all locales.

• ANSI-C 7.3 Character handling <ctype.h>

<The implementation-defined aspects of character testing

and case mapping functions.>

Same as “• ANSI-C 7.3.1 Character testing functions” in 10.2

“Implementation-defined Behavior”, 10.2.14 “Library

Functions”.

The behavior of macros declared and functions defined in

ctype.h in the all locales are the same as in “C” locale.

• ANSI-C 7.11.4.4 The strncmp function

<The collation sequence of the execution character set.>

In the all locales, the collation sequence of the character set under

the strncmp function is the same as that of ASCII.

CC32R MANUAL - 312

Chapter 10 The cc32R's Behavior

• ANSI-C 7.12.3.5 The strftime function

<The formats for time and date.>

The strftime function allows to represent time and date in the all

enviroments(locales) as follows :

• Date mm1/dd/yy

(mm1 is the month, dd is the day, and yy is low- order

2 digits of the year in Christian Era.)

• Time hh:mm2:ss

(hh is hours, mm2 is minutes, and ss is seconds.)

Chapter 11 Low-level Library

CC32R MANUAL - 313

Chapter 11

Low-level Library

11.1 The Low-level Library Programming

11.1.1 The Low-level Library for the C Standard Library

Part of actions of the library functions, such as standard input/output, memory

management, signal handling, time manipulation, etc. depend on the target

system. In the C standard library, the functions dependent on the target system

are separated as low-level functions (low-level library), and input/output

specifications of the process functions (low-level functions, see Table 11.1 and

Table 11.2) that achieve respective actions are defined.

In the C standard library, the actions dependent on the target system are

effected by means of calling the low-level functions. To use actions dependent

on the target system in a C program, you must prepare necessary low-level

functions.

Specifications of individual low-level functions are given in 11.2 “The Low-level

Functions Specifications”. Table 11.3 shows which C standard library function

uses which low-level function.

Table 11.1 Low-level Functions (Used by C Standard Library)

Low-level Function Description

open Opens a file

close Closes a file

read Reads data from a file

write Writes data into a file

lseek Reposition the read/write point in a file

_get_core Allocates a memory area

_rel_core Frees a memory area

getuniqnum Obtains the unique number for each process

_strerror Gets the error message corresponding to an error number

_exit Exits a program

Chapter 11 Low-level Library

CC32R MANUAL - 314

Table 11.2 shows the functions which are defined as low-level functions in C

standard library but defined as entry functions in ANSI. For specifications for

these functions, refer to Chapter 9 “C Standard Library”.

Table 11.2 Functions defined as low-level functions in cc32R

Header Function Description

signal.h raise Send a signal to the executing program.

signal Sets up a signal handler that responds to the signal.

stdio.h remove Deletes a file.

rename Renames a file.

stdlib.h getenv Gets the content of an environmental variable.

system Passes a command string to the host environment.

time.h clock Gets the elapsed processor time.

time Reads the current calendar time.

Table 11.3 shows C standard library functions which need low-level library

listed in Table 11.1 and Table 11.2.

Table 11.3 C Standard Library vs Low-level Library (1/3)

Header C Standard Library Required Low-level Function(s)
Function

assert.h assert _get_core, _rel_core, write, lseek, raise

locale.h localeconv _get_core, _rel_core

setlocale _get_core, _rel_core

signal.h raise raise

signal signal

stdio.h perror write, _get_core, _rel_core, lseek, _strerror

fclose write, getuniqnum, _rel_core, close, remove, lseek

fflush write, lseek

fopen open, close, lseek

freopen write, getuniqnum, _rel_core, close, open, remove, lseek

remove remove

rename rename

tmpfile getuniqnum, open, close, lseek

tmpnam getuniqnum

fgetpos lseek

Chapter 11 Low-level Library

CC32R MANUAL - 315

Table 11.3 C Standard Library vs Low-level Library (2/3)

Header C Standard Library Required Low-level Function(s)
Function

stdio.h fseek lseek, write

(Cont.) fsetpos lseek, write

ftell lseek

rewind lseek, write

fgetc read, _get_core, _rel_core

fgets read, _get_core, _rel_core

fputc write, _get_core, lseek, _rel_core

fputs write, _get_core, lseek, _rel_core

getc read, _get_core, _rel_core

getchar read, _get_core, _rel_core

gets read, _get_core, _rel_core

putc write, _get_core, _rel_core, lseek

putchar write, _get_core, _rel_core, lseek

puts write, _get_core, _rel_core, lseek

ungetc _get_core, rel_core

fread read, _get_core, _rel_core

fwrite write, _get_core, _rel_core, lseek

fprintf write, _get_core, _rel_core, lseek

fscanf read, _get_core, _rel_core

printf write, _get_core, _rel_core, lseek

scanf read, _get_core, _rel_core

sprintf write, _get_core, _rel_core, lseek

sscanf read, _get_core, _rel_core

setbuf _rel_core

setvbuf _rel_core

vfprintf write, _get_core, _rel_core, lseek

vprintf write, _get_core, _rel_core, lseek

vsprintf write, _get_core, _rel_core, lseek

Chapter 11 Low-level Library

CC32R MANUAL - 316

Table 11.3 C Standard Library vs Low-level Library (3/3)

Header C Standard Library Required Low-level Function(s)
Function

stdlib.h abort() raise()

calloc() _get_core(), _rel_core()

free() _rel_core()

getenv() getenv()

malloc() _get_core(), _rel_core()

realloc() _rel_core(), _get_core()

system() system()

time.h asctime() write(), _get_core(), _rel_core(), lseek()

clock() clock()

ctime() write(), _get_core(), getenv(), _rel_core(), lseek()

localtime() getenv()

strftime() write(), _get_core(), getenv(), _rel_core(), lseek()

time() time()

||||| Note |||||

Before starting C program, initial setting of the low-level libraries is required. To

do so, write the initial setting program in the startup program.

Chapter 11 Low-level Library

CC32R MANUAL - 317

11.1.2 Input/Output with the Low-level Library

Files of standard input and output functions of C standard library level are

controlled with file type data. Files of low-level library are controlled with “file

numbers”. A file number is an integer corresponding to the file number of the

actual file and starts with 0.

File numbers 0, 1 and 2 should be assigned to a standard input, standard output

and standard error output, respectively. Typically, 0 is input from console, 1

and 2 are output to console. For file numbers 0 to 2, prepare low-level libraries

which are compatible with execution environment for file number. When 0 to 2

are already assigned, make sure that the open function will not return values 0,

1 and 2.

Low-level library’s open function assigns the file number to the given file path

name (the name to identify the file in the file system). The open function must

set the following information so that the file can be input and output by using

this file number.

• Device type of file (console, printer, disk file, etc.) :

Give unique name to files of special devices such as console and

printer and identify these files with the open function.

• Information on buffer location and size :

This information is necessary when buffering files.

• Byte offset from the start of a file to the next reading or writing location :

The byte offset is necessary to read/write disk file.

By using the information set by the open function, read/write the file (read/

write function), set read/write location (lseek function). The close function

reads contents of file buffer and writes the contents into the file, allowing the

data area set by the open function to be used again.

CC32R MANUAL - 318

Chapter 11 Low-level Library

11.2 The Low-level Functions Specifications

This section describes specifications of functions for low-level library in

alphabetical order. The specifications include Syntax (interface to call the

function), Summary (general description), Return Value (value : meaning) and

Description (operation, precaution, example, etc.).

_exit Low-level function

Syntax void _exit(int ex_num);

ex_num; /* exit status code of program */

Summary Exits a program.

Return Value None

Description The _exit function terminates the program run and returns the exit status of the
program to the environment.

This function signals the environment that the program is to end. Write the end
process of the current environment in this function definition.

CC32R MANUAL - 319

Chapter 11 Low-level Library

_get_core Low-level function

Syntax void *_get_core (int size);

size; /* the size of data to be allocated */

Summary Allocates a memory area.

Return Value The start address of the allocated area : Successful

(void*) 0 : Failed

Description The _get_core function allocates a memory area. size is the size of memory area
to be allocated. If size is smaller than the available space to allocate, an error is
occurred.

When allocation is successful, the start address of the location is returned.
Otherwise, (void*)0. Refer to examples shown below :

#define HEAPSIZE bytes ------ Specify the size (bytes) of the area managed by _get_core().

static union{

 int dummy;

 char heap [HEAPSIZE];

}heap_area; ------ Declare the data area for allocation. This is union which

 has the int type member as the first menber to align in

the

 4-byte boundary.

static char *brk = heap_area.heap; ------ Initialize by substituting the start

 address to be allocated.

void *_get_core(int size)

{

 char *p;

 if(brk + size > heap_area.heap + HEAPSIZE) --- Check the area for

 remainder.

 return((void *)0);

 p = brk;

 brk += size; ---------- Update the end address of the allocated area.

 return((void *)p); ---------- Return the start address of the allocated area.

}

CC32R MANUAL - 320

Chapter 11 Low-level Library

_rel_core Low-level function

Syntax void _rel_core (void *ptr);

ptr; /* pointer to the memory space to be freed */

Summary Frees a memory area.

Return Value None

Description This function frees a memory area being managed by the _get_core function is
deallocated. ptr is the pointer to the memory area to be released.

_strerror Low-level function

Syntax char *_strerror(int error_number);

error_number; /* user-defined error number */

Summary Gets the error message corresponding to an error number.

Return Value Pointer to an error message (character string)

Description The _strerror function returns the pointer to the error message corresponding to
the error number error_number.

CC32R MANUAL - 321

Chapter 11 Low-level Library

close Low-level function

Syntax int close (int file_no);

file_no; /* file number of the file to be closed */

Summary Closes a file.

Return Value 0 : Successful

-1 : Failed

Description The close function closes the file denoted to by the file number file_no which is
gotten by the open function.

This function clears the file control information storage area set by the open
function so that the area can be used again. When file buffering is used within
low-level library, this function outputs the buffer content to the actual file.

This function returns 0 when the file is successfully closed, if not, -1.

CC32R MANUAL - 322

Chapter 11 Low-level Library

getuniqnum Low-level function

Syntax int getuniqnum (void);

Summary Obtains the unique number for each process.

Return Value The value specific to a unit of the program operations.
This value must be kept unchanged during program is running.

Description The getuniqnum function returns the number by which the environment
specifies the operation unit when two or more programs are to run
simultaneously. The number may differ from operation unit to unit even
though these units have the same execution code. However, it must be the
same for the same operation unit codes. This function returns the same value to
environment where the program performs only one operation.

CC32R MANUAL - 323

Chapter 11 Low-level Library

lseek Low-level function

Syntax long lseek (int file_no, long offset, int base);

file_no; /* target file number */

offset; /* offset (bytes) indicating the read/write point */

base; /* origin of offset */

Summary Reposition the read/write point in a file.

Return Value The new offset (bytes) from the read/write position to in a file : Successful

-1 : Failed

Description The lseek function sets the read/write position as measured in bytes in the file
denoted by file_no. The new position is set by the third parameter (base) as
shown below :

(a) base is 0 At the position, beginning of the file plus offset bytes.
(b) base is 1 At the position, current position plus offset bytes.
(c) base is 2 At the position, file size plus offset bytes.

When the file is interactive device, for example, console, printer or the like, if
the new offset value is negative or setting of (a) or (b) exceeds the file size, error
occurs. When the correct file position is set, this function returns the new read/
write position represented by the offset from the beginning of the file.
Otherwise, it returns -1.

CC32R MANUAL - 324

Chapter 11 Low-level Library

open Low-level function

Syntax int open (const char *name, int mode, int flag);

name; /* string denoting the file path name */

mode; /* specification of mode upon opening the file */

flag; /* specification of process upon opening the file (always 0666) */

Summary Opens a file.

Return Value File Number of the open file : Successful

-1 : Failed

Description The open function prepares process to handle the file which corresponds to the
path name of the file specified by name. This function must determine the type
of file (console, printer, disk or file) for later reading/writing. The type of file
will be referenced every time read/write process is taken by using the file
number returned from the open function. The second parameter mode specifies
the process which must be taken upon opening the file. Each bit of the data has
the following function.

0 23 24 25 26 27 28 29 30 31

 mode (g) (f) (e) (d) (c) (a,b)

Bit Description

(a) (31st bit) When 0, indicates that the file is read only.

When 1, indicates that the file is write only.

(b) (31st bit) Indicates that the file is read and write when both this bit

and the 31st bit are 0. Note that this bit is not set to 1 when

the 31th bit is 1.

(c) (30th bit) When 1, the read/write point of the next file can be set at the

end of the file; and when 0, at the beginning of the file.

(cont.)

CC32R MANUAL - 325

Chapter 11 Low-level Library

Bit Description

(d) (27th bit) When 1, indicates that a new file can be opened if the file

indicated by path name is not found.

(e) (26th bit) When1, and if the file indicated by the path name is found,

indicates that the contents of the file are discarded and file

size is set to 0.

(f) (25th bit) When 1, indicates that a file is opened on binary mode.

When 0, indicates that a file is opened on text mode.

(g) (23rd bit) When 0, the file is opened in text mode.

If the bit is 1, the file is opened in binary mode.

If the file process specified by mode is not compatible with the nature of the real
file, an error is occurred. When the file is successfully open, this function
returns the number (integer, 0 or larger) of the file which will be used in read,
write, lseek and close routines. The file number and corresponding real file
must be controlled by low level library. -1 is returned if the file cannot be
opened.

CC32R MANUAL - 326

Chapter 11 Low-level Library

read Low-level function

Syntax int read (int file_no, char *buffer, unsigned int count);

file_no; /* file number of the file to be read */

buffer; /* pointer to the area in which the data read is stored */

count; /* number of bytes to be read */

Summary Reads data from a file.

Return Value Number of bytes actually read : Successful

-1 : Failed

Description This function reads a range of data within the bytes indicated by count from the
file indicated by file number file_no and stores it in the area indicated by buffer.
The read/write position in the file is advanced forward by the number of bytes
read. When the function was able to read normally, return the number of bytes
read; if it failed to read, return the value "-1."

If there was no data to read and the end of file (EOF) was reached, return the
value 0, and not -1.

CC32R MANUAL - 327

Chapter 11 Low-level Library

write Low-level function

Syntax int write (int file_no, const char *buffer, unsigned int count);

file_no; /* file number of the write target file */

buffer; /* pointer to the area into which data is written */

count; /* bytes of data to be written */

Summary Writes data into a file.

Return Value Number of bytes actually written : Successful

-1 : Failed

Description The write function writes the count-byte data stored in the area pointed to by
buffer into the file denoted by file_no. The read/write point in the file advances
by the bytes written. When writing is successful, the number of bytes actually
written is returned. Otherwise, -1 is returned.

CC32R MANUAL - 328

Chapter 12 Single-precision Mathematical Function Library

Chapter 12

Single-precision Mathematical

Function Library
This library is a version of the C standard mathematic function library (defined

in the math.h header) that has been turned into single-precision arithmetic. It

helps to increase the efficiency of applications using conventional double-

precision mathematic function libraries (by increasing the execution speed and

reducing the code size).Some single-precision mathematic functions use the

FPU instructions and others do not.

12.1 Composition of Functions

Table 12.1 lists the functions in the single-precision mathematic function library.

Check the C language formats of prototype declarations shown in the table to

find the types of return values and arguments of these single-precision

mathematic functions.

CC32R MANUAL - 329

Chapter 12 Single-precision Mathematical Function Library

Table 12.1. Single-precision Mathematic Function Library

Specifications for these single-precision mathematic functions have been

determined based on the C standard double-precision mathematic functions

according to the rules described below.

[1] Operation

The basic operations of these functions are the same as each

double-precision mathematic functions from which they have been

Single-precision mathematic functions Function Corresponding
(C language formats of prototype declarations) math.h
Those do not use Those that use functions
the FPU instructions the FPU instructions
float cosf(float) float cosf5(float) Cosine cos

float sinf(float) float sinf5(float) Sine sin

float tanf(float) float tanf5(float) Tangent tan

float acosf(float) float acosf5(float) Inverse cosine acos

float asinf(float) float asinf5(float) Inverse sine asin

float atanf(float) float atanf5(float) Inverse tangent atan

float atan2f(float,float) float atan2f5(float,float) Inverse tangent atan
(with division)

float coshf(float) float coshf5(float) Hyperbolic cosine cosh

float sinhf(float) float sinhf5(float) Hyperbolic sine sinh

float tanhf(float) float tanhf5(float) Hyperbolic tangent tanh

float powf(float,float) float powf5(float,float) Power pow

float sqrtf(float) float sqrtf5(float) Positive square root sqrt

float ceilf(float) float ceilf5(float) Integral value with ceil
fractions rounded up

float expf(float) float expf5(float) Exponential function exp

float fabsf(float) float fabsf5(float) Absolute value fabs

float floorf(float) float floorf5(float) Integral value with floor
fractions rounded down

float fmodf(float,float) float fmodf5(float,float) Remainder fmod

float frexpf(float,int*) float frexpf5(float,int*) Resolve into 0.5-1.0 rexp
values and power of 2

float ldexpf(float,int) float ldexpf5(float,int) Multiply power of 2 ldexp

float logf(float) float logf5(float) Natural logarithm log

float log10f(float) float log10f5(float) Base-ten logarithm log10

float modff(float,float*) float modff5(float,float*) Resolve into integral modf
and fractional parts

CC32R MANUAL - 330

Chapter 12 Single-precision Mathematical Function Library

derived, except that internal arithmetics are performed with the

type float.

[2] Function name

The functions that do not use the FPU instructions are named after

the double-precision mathematic functions from which they have

been derived, by adding the letter 'f' to each. The functions that use

the FPU instructions are named in the same way by adding the

string 'f5' to each.

[3] Type of argument and return value

The arguments and return values have their types changed from

double to float.

12.2 Using the Library

12.2.1 Header File

Before the single-precision mathematic functions can be used, one of the

following header files must be included. Choose either one that suits to your

need.

mathf.h When you use only the single-precision mathematic

functions.

math.h When you use the C standard double-precision mathematic

functions or the single-precision mathematic functions.

Note that because the header math.h includes the functions of mathf.h, you do

not need to include mathf.h if you already have math.h included. The following

shows the contents written in these header files.

[1] Prototype declaration of functions

The prototype declaration of single-precision mathematic functions

are written in mathf.h, while the prototype declaration of both

double-precision and single-precision mathematic functions are

written in math.h.

[2] Function name replacement

In mathf.h, if the -m32re5 option (to use the FPU instructions of the

M32R-FPU core) is specified when compiling the source file, calls

to the single-precision mathematic functions that do not use the

FPU instructions are changed to calls to the equivalent functions in

the single-precision mathematic function library that use the FPU

instructions.

CC32R MANUAL - 331

Chapter 12 Single-precision Mathematical Function Library

Example 1: When -m32re5 is specified at the same time

#include <mathf.h> /* <math.h> also acceptable */

ans = cosf(rd);

↓ Compiled with -m32re5 added

ans = cosf5(rd); /* Becomes equivalent to this */

This replacement for the cosf function case, for example, is

accomplished by a macro like the one shown below.

#define cosf cosf5

 :

(Defined the same way for other single-precision
mathematic functions)

 :

[Caution]

The function name that is stored in the load module when a called

function name is replaced, is the replaced function name and not the pre-

replacement function name. Therefore, pre-replacement function names

can be neither specified nor displayed in the debugger (e.g., M3T-PD32R)

or TM inspector.

 (You can specify or display replaced function names, though.)

12.2.2 Link with the Single-precision Mathematic Function Library

The single-precision mathematic function library is contained in the C standard

library (e.g., m32RcR.lib) included with your package. Link the C standard

library in the same way as you would use conventional C standard libraries.

12.3 Precautions

12.3.1 Dynamic range

In single-precision representation (type float), the magnitude of representable

values is smaller than in double-precision (type double). When you replace the

double-precision mathematic functions with single-precision mathematic

functions, make sure the input or output values will not exceed the range of

values representable by single-precision numbers.

CC32R MANUAL - 332

Chapter 12 Single-precision Mathematical Function Library

12.3.2 About error handling

The error occurring conditions listed below are handled the same way as for the

C standard double-precision mathematic functions. Because these conditions

vary with each function, refer to the Section 9.3, "Details of C Standard Library

Functions" in the user's manual to confirm function specifications for the

corresponding double-precision mathematic functions.

• Conditions in which a domain error (EDOM) occurs

• Conditions in which a range error (ERNAGE) occurs

• Conditions in which an overflow value (HUGE_VAL) is returned to

 the calling function

• Conditions in which an underflow value (0) is returned to the calling

 function

CC32R MANUAL - 333

Chapter 13 A set of 64-bit integer arithmetic functions

Chapter 13

The set of 64-bit integer arithmetic functions
The set of functions to perform C language integer arithmetic in the 64-bit

dynamic range has been added to the standard library. As for the integer type

in C language, these functions can perform the four fundamental operations in

arithmetic, as well as bitwise, shift and compare operations in the 64-bit range.

13.1 Header file long64.h

For the 64-bit integer arithmetic functions to be used, the header file long64.h

must be included.

In long64.h, the necessary types, constants and function prototypes are declar-

ed.

(1) Type name

The type (structure) holds a 64-bit integer. All of the 64-bit integer arithmetic

functions use this type as they input and output 64-bit integers.

Signed 64-bit integer... LONG64

Unsigned 64-bit integer... ...ULONG64

(2) Constant

The constant represents the maximum and minimum values of a 64-bit

integer.

LONG64_MAX...Maximum value of LONG64

LONG64_MIN... Minimum value of LONG64

ULONG64_MAX... ... Maximum value of ULONG64

(3) Prototype declaration

Prototype for a 64-bit integer arithmetic function is declared.

13.2 Function structure

Comprised mainly of the C language operators that are put into functions.

(1) Arithmetic operation functions

Performs a 64-bit integer arithmetic operation, with the result returned by

64-bit integer type.

* Four rules of arithmetic (addition, subtraction, multiplication and

division), remainder and monadic negative

CC32R MANUAL - 334

Chapter 13 A set of 64-bit integer arithmetic functions

(2) Bitwise operation functions

Performs a 64-bit integer bitwise operation, with the result returned by 64-

bit integer type.

* Bitwise shifts (left shift, right logical shift, right arithmetic shift)

* Bitwise logical operations (OR, AND, exclusive-OR and inversion)

(3) Comparison and determination functions

Compares a 64-bit integer or determines if it is 0, with the result returned by

int type.

* Comparison

* Determination of whether or not 0

(4) Type conversion functions

Converts type from 64-bit integer to C language integer or floating-point

type or vice versa.

* Signed 64-bit integer <----> unsigned 64-bit integer

* Signed 64-bit integer <----> float or double

* Unsigned 64-bit integer <----> float or double

* Signed 64-bit integer <----> long or unsigned long

* Unsigned 64-bit integer <----> long or unsigned long

(5) Other functions

Sets immediate data or replaces a decimal string, etc. with a 64-bit integer.

* Immediate set

* String to 64-bit integer conversion

These 64-bit integer arithmetic library functions are listed in Table 13.1 (1) to (5)

below.

For the return values and return types of these functions, refer to the C langua-

ge prototype declaration formats shown in the table.

Table 13.1 64-bit integer arithmetic functions (1) Arithmetic operation functions(1/2)

function name Perform Operation
(Prototype declaration of C language) (S)=signed

(U)=unsigned

[Four rules of arithmetic, remainder and monadic negative]

LONG64 addl64(LONG64 n1, LONG64 n2); (S) addition n1 + n2

LONG64 subl64(LONG64 n1, LONG64 n2); (S)subtraction n1 - n2

LONG64 mull64(LONG64 n1, LONG64 n2); (S)multiplication n1 * n2

LONG64 divl64(LONG64 n1, LONG64 n2); (S)division n1 / n2

LONG64 modl64(LONG64 n1, LONG64 n2); (S)remainder n1 % n2

LONG64 negl64(LONG64 n1); (S)monadic negative -n1

ULONG64 addul64(ULONG64 n1, ULONG64 n2); (U)addition n1 + n2

CC32R MANUAL - 335

Chapter 13 A set of 64-bit integer arithmetic functions

Table 13.1 64-bit integer arithmetic functions (1) Arithmetic operation functions(2/2)

function name Perform Operation
(Prototype declaration of C language) (S)=signed

(U)=unsigned

ULONG64 subul64(ULONG64 n1, ULONG64 n2); (U)subtraction n1 - n2

ULONG64 mulul64(ULONG64 n1, ULONG64 n2); (U)multiplication n1 * n2

ULONG64 divul64(ULONG64 n1, ULONG64 n2); (U)division n1 / n2

ULONG64 modul64(ULONG64 n1, ULONG64 n2); (U) remainder n1 % n2

ULONG64 negul64(ULONG64 n1); (U) monadic negative -n1

Table 13.1 64-bit integer arithmetic functions (2) Bitwise operation functions

function name Perform Operation
(Prototype declaration of C language) (S)=signed

(U)=unsigned

[Bitwise shifts (left shift, right logical shift, right arithmetic shift)]

LONG64 shltl64(LONG64 n1, unsigned int nbit); (S)left shift n1 << nbit

LONG64 shrtl64(LONG64 n1, unsigned int nbit); (S)right arithmetic shift n1 >> nbit

ULONG64 shltul64(ULONG64 n1,unsigned int nbit); (U)left shift n1 << nbit

ULONG64 shrtul64(ULONG64 n1,unsigned int nbit); (U)right arithmetic shift n1 >> nbit

[Bitwise logical operations (OR, AND, exclusive-OR and inversion)]

LONG64 orl64(LONG64 n1, LONG64 n2); (S)OR n1 | n2

LONG64 andl64(LONG64 n1, LONG64 n2); (S)AND n1 & n2

LONG64 xorl64(LONG64 n1, LONG64 n2); (S)exclusive-OR n1 ^ n2

LONG64 notl64(LONG64 n1); (S)inversion ~n1

ULONG64 orul64(ULONG64 n1, ULONG64 n2); (U)OR n1 | n2

ULONG64 andul64(ULONG64 n1, ULONG64 n2); (U)AND n1 & n2

ULONG64 xorul64(ULONG64 n1, ULONG64 n2); (U)exclusive-OR n1 ^ n2

ULONG64 notul64(ULONG64 n1); (U)inversion ~n1

CC32R MANUAL - 336

Chapter 13 A set of 64-bit integer arithmetic functions

Table 13.1 64-bit integer arithmetic functions (3) Comparison and determination functions

function name Perform Operation
(Prototype declaration of C language) (S)=signed (Returns)

(U)=unsigned

[Comparison]

int cmpl64(LONG64 n1, LONG64 n2); (S)Comparison n1 > n2 --> positive

int cmpul64(ULONG64 n1, ULONG64 n2); (U)Comparison n1 == n2 --> 0

n1 < n2 --> negative

[Determination of whether or not 0]

int evall64(LONG64 n1); (S)Determination n1 == 0 --> 0

1int evalul64(ULONG64 n1); (U)Determination n1 != 0 --> not 0

Table 13.1 64-bit integer arithmetic functions (4) Type conversion functions

function name Conversion
(Prototype declaration of C language)

[Signed 64-bit integer <----> unsigned 64-bit integer]

ULONG64 l64_to_ul64(LONG64 input); LONG64 --> ULONG64

LONG64 ul64_to_l64(ULONG64 input); ULONG64 --> LONG64

[Signed 64-bit integer <----> float or double]

float l64_to_float(LONG64 input); LONG64 --> float

double l64_to_double(LONG64 input); LONG64 --> double

LONG64 float_to_l64(float input); float --> LONG64

LONG64 double_to_l64(double input); double --> LONG64

[Unsigned 64-bit integer <----> float or double]

float ul64_to_float(ULONG64 input); ULONG64 --> float

double ul64_to_double(ULONG64 input); ULONG64 --> double

ULONG64 float_to_ul64(float input); float --> ULONG64

ULONG64 double_to_ul64(double input); double --> ULONG64

[Signed 64-bit integer <----> long or unsigned long]

long l64_to_long(LONG64 input); LONG64 --> long

unsigned long l64_to_ulong(LONG64 input); LONG64 --> unsigned long

LONG64 long_to_l64(long input); long --> LONG64

LONG64 ulong_to_l64(unsigned long input); unsigned long --> LONG64

[Unsigned 64-bit integer <----> long or unsigned long]

long ul64_to_long(ULONG64 input); ULONG64 --> long

unsigned long ul64_to_ulong(ULONG64 input); ULONG64 --> unsigned long

ULONG64 long_to_ul64(long input); long --> ULONG64

ULONG64 ulong_to_ul64(unsigned long input); unsigned long --> ULONG64

CC32R MANUAL - 337

Chapter 13 A set of 64-bit integer arithmetic functions

Table 13.1 64-bit integer arithmetic functions (5) Other functions

function name Perform Operation
(Prototype declaration of C language) (S)=signed

(U)=unsigned

[Immediate set]

LONG64 imml64(signed long shigh, (S)Immediate set shigh<<32 + ulow
unsigned long ulow);

ULONG64 immul64(unsigned long uhigh, (U)Immediate set uhigh<<32 + ulow
unsigned long ulow);

[String to 64-bit integer conversion]

LONG64 strtol64(const char *s, (S)String->Integer 64-bit version
char **endptr, int base); of strtol

ULONG64 strtoul64(const char *s, (U)String->Integer 64-bit version
char **endptr, int base); of strtoul

13.3 Method for using the functions and example usage

To use the functions, create a program as described below.

(1) Include long64.h.

(2) Define the variable in which to store a value with either LONG64 or

ULONG64.

(3) From Table 8, select the function corresponding to the relevant type for

the necessary operation and call it in your program.

(4) Hold the return value in a variable of type LONG64 or ULONG64.

The set of 64-bit integer arithmetic functions are included in the C standard

library (e.g., m32RcR.lib) that is included with your software. Link the C stand-

ard library in the same way as when using the conventional C standard library

functions.

The following shows a function as a programming example that performs

“a = (b * (c - 10)) >> 33” with signed 64 bits and returns the result after being

converted to long type.

#include <long64.h>
LONG64 a, b, c;
long
func(void)
{
 LONG64 s1, s2, s3;
 long k;
 s1 = long_to_l64(10L); /* s1 = (LONG64)10L */
 s2 = subl64(c,s1); /* s2 = c - s1 */
 s3 = mull64(b,s2); /* s3 = b * s2 */
 a = shrtl64(s3,33); /* a = s3 >> 33 */
 k = l64_to_long(a); /* k = (long)a */
 return k;

}

CC32R MANUAL - 338

Chapter 13 A set of 64-bit integer arithmetic functions

13.4 Notes

13.4.1 Precautions regarding the sign

In the 64-bit arithmetic functions, no operations can be performed where signed

and unsigned types coexist. When using the arithmetic functions, please make

sure that all of the 64-bit integers input and output unanimously are either

signed or unsigned.

Example:

When adding a signed (LONG64) variable 'b' to an unsigned (ULONG64)

variable 'a' and assigning the sum to an unsigned variable 'c'

Incorrect: c = add164(a,b); or c = addu164(a,b);

b is converted to unsigned type, and all are changed to

unsigned type

Correct: c = addu164(a, 164_to_u164(b));

CC32R MANUAL - 339

Chapter 14 Messages from the C Compiler

Chapter 14

Messages from the C Compiler

14.1 Getting Execution Result of the C Compiler

You can judge the execution result yielded by the C compiler by looking into

the messages and the exit status.

14.1.1 Message Format

Upon encountering an error condition, the C compiler outputs the error

message describing the error status to the standard error output, in the following

format :

• Syntax
input_information : message_type: message

Note) “input_information :” is output only when necessary.

• Pattern file name : message_type : message

file name,line number : message_type : message

<command line> : message_type : message

message_type : message

Note: Underlined items are input_information (no the underline is output).

• Example "smp.c", line 2: error: unterminated #ifdef conditional

File name Line number Message type Message

<command line>: error: macro name missing after -D option

 Message type Message

"a.c", line 9: warning: main: function has no return statement

File name Line number Message type Message

CC32R MANUAL - 340

Chapter 14 Messages from the C Compiler

14.1.2 Message Types

Messages are classified into three types depending on their severity, as shown

in Table 14.1

Table 14.1 Message Type

Message Type When an Error Occurs

Information Outputs an information message and continues

processing.

Warning Outputs a warning message and continues

processing.

Command line error Outputs an error message which corresponds to the

command line and stops processing.

Error Outputs an error message and stops processing.

Fatal error Outputs an error message and stops processing.

For details of messages, see 14.2 “Message Lists”.

14.1.3 Exit Status

Upon completion of the execution, the C compiler returns the exit status (value

showing the execution result) as shown in Table 14.2.

Table 14.2 Exit Status

Exit Status Result

0 Complete successfully or warning occurs.

1 Error occurs.

CC32R MANUAL - 341

Chapter 14 Messages from the C Compiler

14.2 Message Lists

Tables 14.2 to 14.7 show messages of the C compiler alphabetically. 'xxx' in the

messages means arbitrary input information: an input file name, and an

identifier, a name, numbers, strings in a source cord.

14.2.1 Information Messages

Table 14.3 Information Messages

Message Description

constant out of range due to unportable conversion

A constant will be out of the range of the type in other implementations.

less complete than prior compatible declaration — this declaration ignored

This declaration contains less declaration elements than in the previous compatible

declaration. This declaration is ignored.

more complete than prior compatible declaration — prior declaration ignored

This declaration contains more declaration elements than in the previous compatible

declaration. The prior declaration is ignored.

prior identical declaration — ignored

There is an identical declaration before this. This declaration is ignored.

some garbage after #xxx argument

There is an improper character after #xxx.

unnecessarily punctuated parameter list in #define

The parameter list in a function-like macro definition is incomplete under #define.

#xxx with no argument

Argument(s) is(are) missing from #xxx.

CC32R MANUAL - 342

Chapter 14 Messages from the C Compiler

14.2.2 Warning Messages

Table 14.4 Warning Messages (1/4)

Message Description

argument type inconsistent with (imputed) declaration

The type of an argument is inconsistent with the declaration.

array subscript imply one element initialized by 0

A subscript of an array contains an element that has been initialized to 0.

calling a non-function object: “xxx”.

The source code contains an attempt to call the object xxx that is not a function.

‘ch’: illegal escape sequence

An escape sequence is improper.

xxx: conflicts with prior option — ignored

The option xxx conflicts with prior option. The prior option takes effect.

constant out of range due to unportable conversion

A constant may fall outside the range of the type when porting.

xxx: empty macro definition; regarded as empty

The -D option lacked the macro definition. (No definition is given after -D xxx=.)

EOF in character constant — constant truncated

EOF is contained in a character constant. The constant is truncated.

EOF or NUL in string literal — string truncated

Either EOF or NUL is contained in a character string literal. The character string is

truncated.

fewer arguments specified than in (imputed) definition

There is shortage of arguments designated.

floating-point number overflow

A floating-point number has overflowed.

floating-point number underflow

A floating-point number has underflowed.

CC32R MANUAL - 343

Chapter 14 Messages from the C Compiler

function called before declared

A function is called before declared.

function does not return value with defined return type

A function has not returned a return value in the type defined.

function has no return statement

The return statement is missing from a function.

illegal character in input file — ignored illegal character

A invalid character is present in the input file. The invalid character is ignored.

xxx is referenced before set

The name xxx was referenced without being assigned to.

length of character constant is greater than 512 — constant truncated

The length of a character constant has exceeded 512 characters. The constant has been

truncated.

length of identifier name is 240 characters — name truncated

The length of an identifier is up to 240 characters. The name has been truncated.

length of identifier name is 31 characters — name truncated

The length of an identifier is up to 31 characters. The name has been truncated.

length of string literal is greater than 512 — string truncated

The length of a character string literal has exceeded 512 characters. The character

string has been truncated.

xxx: may be referenced before set

There is a chance that the name xxx may have been referenced without being

assigned.

missing terminal ‘’’’ for string — assumed at end of line

The termination of a character string “ is missing. The end of line has been assumed

to be termination.

mixed normal and wide characters in the same string — concatenated string omitted

Regular characters and wide characters are mixed in a single character string. The

concatenated string has been omitted.

Table 14.4 Warning Messages (2/4)

Message Description

CC32R MANUAL - 344

Chapter 14 Messages from the C Compiler

more arguments specified than in (imputed) definition

The number of arguments designated is too many.

xxx: multiple optimization options — ignored

The command line option for optimization is duplicated. The option xxx is ignored.

nothing declared in current declaration — ignored

No declaration has been made in a declaration line. The declaration has been ignored.

number of parameters not equal between use and definition

The number of arguments doesn’t agree with that given in the prototype declaration.

parameter incompatible with previous use

There is no compatibility between arguments.

#xxx: requires exactly 1 identifier

What is to be specified by #xxx is a single identifier.

shift count greater than number of bits

The count of shift has turned greater than the number of bits.

storage specifier conflicts with prior declaration — this declaration ignored

The storage class designation doesn’t agree with that previously declared. This

declaration has been ignored.

the characters /* are found in a comment

The characters /* is found inside a comment.

too many digits in floating-point number; extra digits ignored

The number of digits of a floating-point number is too many. The excess digits have

been ignored.

xxx: unable to optimize — skipped phase

Optimization of the input file xxx is impossible. The optimization steps have been

passed by.

xxx: undefined name in #if constant expression; regarded as 0

An undefined name xxx is present in the constant expression given after #if. It is

regarded as 0.

Table 14.4 Warning Messages (3/4)

Message Description

CC32R MANUAL - 345

Chapter 14 Messages from the C Compiler

unknown commandline option — ignored

This command option is unsupported. The option is ignored.

unknown directive — directive ignored

This directive is unsupported. The directive is ignored.

unknown size static global array used

You cannot specify this size for a static global array.

xxx: unknown suffix, passed to linker

The extension of the input file xxx cannot be determined (neither .c, .ms, nor .mo). It is

regarded as an object file, and its name is left unchanged and passed to the linker.

unportable character constant

The value of a character constant is troublesome in portability.

unrecognized #pragma — directive ignored

This is not a #pragma directive supported. The directive is ignored.

\x is hex escape sequence

A character that represents a hexadecimal number has not been specified after \x (\x

is the prefix of hexadecimal number code).

Table 14.4 Warning Messages (4/4)

Message Description

CC32R MANUAL - 346

Chapter 14 Messages from the C Compiler

14.2.3 Command Line Error Messages

Table 14.5 Command Line Error Messages

Message Description

xxx: can’t execute

The subordinate process xxx cannot be started up. Check the setting of the

environment variable M32RLIB or files in the default directory, and set the

environment so that the subordinate process can be started up.

xxx: invalid multicharacter option

The option xxx does not recognize.

xxx: invalid parameter

The parameter specified after the option xxx is improper. Example: In -R old=new,

neither of P, D, C, and B has been specified for old; or nothing has been specified for

new.

xxx: invalid unicharacter option

The option xxx is not available.

xxx: missing parameter

A necessary argument is not specified after the option xxx.

-: there is no option

An option is not specified.

CC32R MANUAL - 347

Chapter 14 Messages from the C Compiler

14.2.4 Error Messages

Table 14.6 Error Messages (1/15)

Message Description

#xxx after #else

#xxx is present after #else.

aggregate/union type object must have constant expression initializer list

You must initialize an aggregate and a shared set by use of a constant expression.

argument name not specified in function header

No argument is specified for a function header.

#xxx argument starts with a digit

The first argument of the preprocessing directive #xxx starts with a numeric character

(it must be an identifier).

arguments given to macro ‘xxx’

Arguments are required on the macro xxx.

array subscript requires combination of pointer to object type and integral type

An array must be a combination of pointers and entities of integer type.

at most one storage class specifier per declaration

Two or more storage class specifiers are present in a declaration (you can specify only

a single storage class specifier in a declaration).

‘auto’ must appear within a function

You must declare an auto variable within a function.

badly punctuated parameter list in #define

An improper character is present in an argument of #define.

bit field members must have integral types

A member of bit field must be of integer type.

bit field size must be integral constant expression

A bit field size must be specified by an integer constant.

bit field size must not be negative

A bit field size must be specified by a positive number.

CC32R MANUAL - 348

Chapter 14 Messages from the C Compiler

bit field size too large

A size specified for a bit field is too large.

block scope initialization not allowed for external declaration

You must not initialize an external variable within a block.

break statement in invalid context

You cannot use break here.

call to non-function attempted

You have attempted to perform a function call to an entity that is not a function.

cannot const a function type object

You cannot make a const declaration on an entity of function type.

cannot initialize a typedef variable

You cannot perform initialization when making a typedef declaration.

cannot start or end with ## operator

The ## operator must not lie at the beginning or the end of a replacement character

string list.

cannot typedef function definition

You cannot make typedef declaration on a function definition.

case label must be an integral constant expression

You must specify an integer constant expression for case.

case or default label in invalid context

You can use neither case nor default here.

cast type must be “void” or scalar type

You must specify either void or an entity of scalar type for cast.

character constant must fit its storage range

The value of a character constant must be within a proper range.

constant expression evaluated out of range

The value of a constant expression has exceeded a proper range.

Table 14.6 Error Messages (2/15)

Message Description

CC32R MANUAL - 349

Chapter 14 Messages from the C Compiler

constant should fit its storage range

The value of a constant must be within a proper range.

continue statement in invalid context

You cannot use continue here.

controlling expression of if statement must have scalar type

An expression within an if statement must be of scalar type.

controlling expression of iteration statement must have scalar type

An expression within an iteration statement must be of scalar type.

controlling expression of switch statement must have integral type

An expression within a switch statement must be of integer type.

xxx: ‘-D option’ must be followed by an identifier

Specify an identifier for the -D option.

‘defined’ is followed by invalid macro name

The macro name after defined is improper (it must be an identifier).

xxx: ‘defined’ is followed by invalid macro name

The macro name after defined is improper (it must be an identifier).

dereference a pointer to void

You cannot perform an indirect reference to a pointer toward void.

directive has unexpected non-whitespace preceding newline

An improper character is present in the #line declaration.

division by zero

A division by zero is contained.

division by zero in #if constant expression

An attempt has been made to perform division by 0 in an expression under #if.

double quoted strings not allowed in #if constant expression

You cannot specify a character string enclosed in a pair of quotation marks in an

expression under #if.

Table 14.6 Error Messages (3/15)

Message Description

CC32R MANUAL - 350

Chapter 14 Messages from the C Compiler

duplicate case label in switch statement

case is duplicated in a switch statement.

duplicate definition of enumeration-constant

A definition is duplicated in an enum constant.

empty constant expression in #if

An expression is missing from #if.

enum used as type is incomplete or undefined

Either an incomplete or an undefined enum is used.

enumeration-constant out of range

The value of enum constant has exceeded a proper range.

EOF in comment

The end of comment is not present.

expected parameter list missing -or- missing type for variable

Either an argument or an initializer is not found. Or the type of a variable is

indefinite.

fewer arguments are specified than declared

The number of arguments is less than declared.

first operand of conditional operator must have scalar type

The first term of a conditional operation must be of scalar type. A ternary operation

must be of scalar type.

first operand of “.” is not struct/union type

The operator . (period) must be used for a structure or a union.

first operand of “->” must be pointer to struct/union type

The operator -> must be used for a pointer of a structure or a union.

floating-point numbers are not allowed in #if constant expression

You cannot specify a floating-point number in an expression under #if.

function already defined

The function has already been defined.

Table 14.6 Error Messages (4/15)

Message Description

CC32R MANUAL - 351

Chapter 14 Messages from the C Compiler

function cannot be an array element

You cannot make a function an array element.

function cannot return a function

A function cannot return an entity of function type.

function cannot return an array

A function cannot return an array.

function missing parameter declaration

No arguments have been declared on a function.

function return type incompatible with previous declaration

The return-type of the function is different from that declared earlier.

function return type is not declared

The return-type of the function has not been declared.

garbage after end of constant expression in #if

An improper character is present after a constant expression under #if.

identifier already used as member name in this struct/union

The member name has already been used.

identifier cannot have type “void”

You cannot define an identifier as an entity of void type.

identifier is not member of left hand side struct/union

You used a member which is not the declared member of a structure or union.

xxx: identifier is required between ‘(‘ and ‘)’ in `defined ()’

You must put an identifier in () of defined.

identifier must be defined as a typedef-name

You used a name which is not the typedef-defined name.

identifier not member of left-hand side struct/union

You used a member which is not the declared member of a structure or union.

identifier redeclared in current declaration

An identifier declared in a duplicate manner is present.

Table 14.6 Error Messages (5/15)

Message Description

CC32R MANUAL - 352

Chapter 14 Messages from the C Compiler

identifier redefined in current declaration

An identifier defined in a duplicate manner is present.

identifier undeclared in current declaration

The specified identifier has not been declared.

identifier undefined

An undefined identifier is present.

identifier with no linkage and incomplete object type

There is an identifier of incomplete type without linkage.

illegal combination of types in initialization

The combination of types in performing initialization is incorrect.

illegal floating-point constant

The description of a floating-point number is incorrect.

illegal hexadecimal constant

The description of a hexadecimal digit is incorrect.

illegal octal constant

The description of an octal digit is incorrect.

implicit declaration conflicts with prior (possibly implicit) declaration

An implicit declaration is inconsistent with a previous implicit declaration.

initializer must be constant expression

Initialization must be in terms of a constant expression.

integer character constant requires one or more multibyte characters enclosed

in single-quotes

A character constant has be so formed that one or more characters are enclosed in a

pair of single quotation marks.

invalid character constant in #if

The way of specifying a character constant in #if is erroneous.

invalid combination of types in assignment

The combination of types in an assignment is incorrect.

Table 14.6 Error Messages (6/15)

Message Description

CC32R MANUAL - 353

Chapter 14 Messages from the C Compiler

invalid file name in #xxx

A file name specified in the preprocessing directive #xxx is incorrect.

xxx: invalid file name in #include

A file name specified in the preprocessing directive #include is incorrect.

invalid initializers

Initialization has been performed in an incorrect manner.

invalid line number in #line

The way of specifying a line number in #line is improper.

xxx: invalid macro name

A macro name is incorrect.

invalid macro name

A macro name is incorrect.

invalid parameter name in #define

A parameter name in #define is improper.

invalid token in #if constant expression

An improper token is present in a constant expression under #if.

#xxx is not within a conditional

The position of the preprocessing directive #xxx is improper.

‘)’ is required after ‘defined (macroname’

The right parenthesis for enclosing an identifier after defined is missing (the identifier

is not enclosed).

left operand of assignment operator must be modifiable lvalue

The lvalue of an assignment expression must be modifiable.

less parameters than definition

There is a shortage of the number of parameters in a function prototype declaration.

line number shall not specify zero, nor a number greater than 32767

A line number must be between 1 and 32767.

Table 14.6 Error Messages (7/15)

Message Description

CC32R MANUAL - 354

Chapter 14 Messages from the C Compiler

xxx: macro body/parameter-list redefined

The source code attempted to redefine either a macro or an argument list.

macro name ‘xxx’ is reserved

xxx is a predefined macro.

macro name missing after -D option

A macro name hasn’t been specified for the -D option.

macro name missing after -U option

There is no macro name after the -U option.

member fields with bit size of zero must not be named

You cannot give a name to a bit field whose size is 0.

more arguments are specified than declared

The number of arguments is greater than declared.

more parameters than definition

The number of parameters in a function prototype declaration is too many. The

number of parameters does not agree with that in a function definition.

new style function can not have an old style parameter declaration

An old way of declaring arguments must not be mixed with a new way.

newline character not allowed

You cannot include a line feed character in a character constant.

no arguments to macro ‘xxx’

No arguments are present in the macro xxx.

no repetition of type qualifier in declaration

You cannot declare a type qualifier repeatedly.

xxx: No such file or directory

The file to be included xxx cannot be read.

non-integral constant-expression for enumeration-constant

An attempt has been made to define a non-integral constant for an enum constant.

Table 14.6 Error Messages (8/15)

Message Description

CC32R MANUAL - 355

Chapter 14 Messages from the C Compiler

nonintegral initialization of bitfield

An attempt has been made to initialize a bit field with an entity of non-integer.

#: not first non-whitespace character

has been written in a position other than the beginning of a line.

not in any file

FILE cannot be expanded.

object with block scope and external or internal linkage can not be initialized

You cannot initialize an object with external/internal linkage.

only xxxa argument(s) to macro ‘xxxb’ (xxxc argument(s) expected)

There is a shortage of the number of arguments in a macro (the macro xxxb requires

xxxc arguments but no more than xxxa arguments have been specified).

only leftmost dimension of array may be incomplete

The leftmost dimension of an array is incomplete.

only one default statement allowed per switch statement

You can describe no more than one default statement in a switch statement.

operand of cast can not be type “void”

The operand of a cast to void must have scalar type.

operand of equality operator has invalid type

The type of operand of the equivalence operator is incorrect.

operand of “-” has invalid type

The type of operand of the - operator is incorrect.

operand of “+” has invalid type

The type of operand of the + operator is incorrect.

operand of “++”/”--” must be modifiable lvalue

The lvalue of the ++ operator and — — operator may be modifiable.

operand of “++”/”--” must have arithmetic type or pointer to object type

The operand of the ++ operator and — — operator must have arithmetic or pointer type.

Table 14.6 Error Messages (9/15)

Message Description

CC32R MANUAL - 356

Chapter 14 Messages from the C Compiler

operand of “~” must have integral type

The operand of the ~ operator must be integer.

operand of “++”/”--” must have scalar type

The operand of the ++ operator and — — operator must have scalar type.

operand of “!” must have scalar type

The operand of the ! operator must have scalar type.

operand of “sizeof” must not be bitfield

You may not specify a bit field for the operand of the sizeof operator.

operand of “sizeof” must not be function type

You may not specify an function type for the operand of the sizeof operator.

operand of “sizeof” must not be incomplete type

You may not specify an incomplete type for the operand of the sizeof operator.

operand of unary “&” must be lvalue or function designator

The operand of the & address operator must be either an lvalue or a function specifier.

operand of unary “*” must be pointer type

The operand of the * indirect reference operator must be pointer type.

operand of unary “+”/”-” must have arithmetic type

The operand of the + unary operator and - unary operator must be arithmetic type.

operand of unary “&” must not refer to bitfield

You cannot use the & address operator for a bit field.

operand of unary “&” must not refer to register object

You cannot use the & address operator for an object brought under a register

declaration.

operands of “*”/”/” (multiply/divide) must have arithmetic type

The operand of the * (multiplication) operator and / (division) operator must be

arithmetic type.

operands of “&”/”^”/”|” must have integral type

The operand of the & operator, ^ operator, and | operator must be arithmetic type.

Table 14.6 Error Messages (10/15)

Message Description

CC32R MANUAL - 357

Chapter 14 Messages from the C Compiler

operands of “<<“/”>>” must have integral type

The operator of the << operator and >> operator must be integral type.

operands of “%” must have integral type

The operand of the % operator must be integral type.

operands of “&&”/”||” must have scalar type

The operand of the && operator and || operator must be scalar type.

operands of relational operator have invalid type

The type of the relational operator (<,<=,>,>=) is improper.

operator should be followed by a macro argument name

A macro argument name must be present after the # operator.

parameter can not have any storage class other than register

You cannot specify any storage class other than register for an argument.

parameter cannot have initializer in function header

You cannot initialize an argument at a function’s header segment.

parameter in this definition incompatible with prior use

An argument defined is inconsistent with the previous declaration.

parameter incompatible with previous declaration

An argument is inconsistent with the previous declaration.

parameter missing, declaration is not allowed

The number of arguments is insufficient (different from what is declared).

parameter name only is not allowed on function declaration

Giving an argument name alone in declaring a function is not permitted.

parameter name starts with a digit in #define

The first argument of #define starts with a digit (it must be an identifier).

parameter redeclared in current declaration

An argument has been redefined.

#pragma keyword has unrecognized keyword/option

An improper specification is present in #pragma.

Table 14.6 Error Messages (11/15)

Message Description

CC32R MANUAL - 358

Chapter 14 Messages from the C Compiler

prior errors have corrupted symbol type

The type of a symbol has been broken by a previous error.

proscribed type specifier combination in declaration

A declaration is present in which a given combination of types is forbidden.

redefined statement label in function scope

A label has been redefined in a function.

referenced label not declared in current function scope

A label to be referenced cannot be found in a function.

‘register’ must appear within a function

A declaration of a register variable is present outside a function.

return type incompatible with function’s defined return type

The return value of a function is different from the one declared.

return with expression in function with “void” return type

An attempt has been made to return a value from a function brought under a void

declaration.

same argument name used in macro xxx

An identical argument is used in a macro.

second or third operand of conditional operator has invalid type

An improper type has been defined in a ternary operation.

size of return type from function must be known

The return-size of a function is unknown.

sizeof object is of unknown length

An object whose length is indefinite has been specified in the sizeof operator.

xxx: : storage class incompatible with subsequent file scope declaration

The storage class declaration is inconsistent with the next file scope declaration.

xxx: storage class is nonvalid for formal argument

The storage class declaration is incorrect.

Table 14.6 Error Messages (12/15)

Message Description

CC32R MANUAL - 359

Chapter 14 Messages from the C Compiler

struct or union must not contain member of function type

You cannot include an entity of function type either in a structure or a union.

struct used as type is incomplete or undefined

A structure is either incomplete or undefined.

struct/union improperly defined, possibly as a result of previous error(s)

Either a structure or a shared set is improper. There is a chance that an error may

have occurred previously.

subscript must be positive, non-zero, integral value

An array size must be an constant of integer sequence greater than 0.

syntax error

A syntax error.

syntax error: at or near symbol xxx

A syntax error is present near the symbol xxx.

syntax error in #if constant expression:

A syntax error is present in the description of a constant expression under #if.

tag conflicts with prior struct/union appearance

A tag is inconsistent with that of struct/union previously described.

tag conflicts with prior struct/union/enum appearance

A tag is inconsistent with that of struct/union/enum previously described.

tag redeclared in current declaration

A tag re-declared is present.

xxx: tag use inconsistant with previous definition

The use of the tag xxx is inconsistent with the one in the previous definition.

xxx: tentative definition static object shall not have incomplete type at declaration

The type declaration of the static object is incomplete.

too many arguments to macro ‘***’ (n arguments)

The number of arguments of the macro xxx is too many (n arguments are present).

Table 14.6 Error Messages (13/15)

Message Description

CC32R MANUAL - 360

Chapter 14 Messages from the C Compiler

too many characters in a character constant

The number of characters in a character constant is too many.

too many initializers

The number of initializers is too many.

too many parameters for ‘asm’

The number of arguments of the asm function is too many.

type cannot be inherited from a typedef

This type cannot be taken over by typedef.

type incompatible with subsequent definition

Type is not compatible with the later definition.

xxx: type incompatible with subsequent definition

The type is inconsistent with the next definition.

type of argument does not match with prototype

The type of argument does not agree with that given in the function prototype

declaration.

type of ‘asm’ parameter must be integral

The argument of the asm function must be integer type.

xxx: type of initialized entity can not be function type

The type of initialized components cannot be put into the function type.

type of struct member is an array of unknown length

An array whose size is indefinite is declared on a structure’s member.

type used for this symbol is incomplete or undefined

This type of symbol is either incomplete or undefined.

unable to evaluate case label (out of range?)

The expression cannot be evaluated by case.

unbalanced #endif

Meaningless #endif has been specified.

Table 14.6 Error Messages (14/15)

Message Description

CC32R MANUAL - 361

Chapter 14 Messages from the C Compiler

undefined static function

A function brought under a static declaration cannot be found.

xxx: undefining not-userdefined macro

You have attempted to eliminate a macro which is not defined.

unexpected string as initializer

An unexpected character string has appeared.

union used as type is incomplete or undefined

The name of a shared set is either incomplete or undefined.

xxx: unknown preprocessor directive

A preprocessing directive is indefinite.

unnamed parameter

An argument name is missing.

unterminated character constant

The end of a character constant cannot be found.

unterminated comment

The end of a comment cannot be found.

unterminated #xxx conditional

The #endif directive for the #xxx directive is missing.

unterminated macro call

The end of a macro call cannot be found.

unterminated string

The end of a character string cannot be found.

Table 14.6 Error Messages (15/15)

Message Description

CC32R MANUAL - 362

Chapter 14 Messages from the C Compiler

14.2.5 Fatal Error Messages

Table 14.7 Fatal Error Messages

Message Description

file inclusion is too deep (up to %d nesting level)

A file has been nested too deep.

no memory available

No memory available

out of memory

No memory available (From the optimizer.)

prior errors have corrupted symbol scoping

The scope has been broken by a previous error.

Appendix A - 1

Appendix A Extended Functions Reference

Appendix A

Extended Functions Reference
CC32R has additional extended functions to facilitate its incorporation in systems using the

M32R family.

Appendix A describes how to use the extended functions other than those related to

language specifications.

Table A.1 Extended Functions

Description of function
1.This function enables the code size to be minimized by speci-

fying which of the several dedicated base registers for 16-bit
register relative indirect addressing each variable is relative
to (16-bit register relative indirect addressing).

2. The following are required in order to use this function:
(1) Access Control File*, and
(2) Compile option "-access=access_control_file".

1. When compiling the program, this function hypothesizes
multiple storage patterns in the application's memory space
so that the optimum object can be generated depending on
the size and location of the code (P and C sections) and
data (D and B sections) in the address space.

2. This compiler has four memory models.
(1) Small model
(2) Small model (with C compiler option "-memlarge")
(3) Medium model
(4) Large model

1. This extended functions can be used to efficiently access
the M32R family hardware specifications from the C lan-
guage.

 This function is such that the contents of C language
function to be called are expanded directly in place of
function call. Since the overhead, such as the subroutine
jump instruction (BL), can be omitted, it is possible to obtain
a more advantageous code in view of speed than normal
function call by means of inline expansion.

 The new 32180 and 32182 Group (abbreviated as M32R/
ECU#5) MCU's extension instructions and FPU instructions
support.
This function is compatible with the M32R/ECU#5

1. The Japanese character can be described to the character
constant of a program. * The Japanese character can be
processed as the multi-byte character and wide-character.

2. JIS (EUC-JP, Shift-JIS), Unicode (UTF-8) are able to be
used as the character code of the Japanese character
correspondence.

3. You can control those character codes flexibly by operation
of the environment variable.

Extended function
Base register function

Memory Models

#pragma Extended
functions

Inline expansion

M32R/ECU#5 (M32R-
FPU core) Compatible
Function

About Japanese-Kanji
character processing

*. The Access Control File contains the following information:
(1)Base address for 16-bit register relative indirect addressing
(2)Register storing the base address
(3)Objects to which the base register function is applied (variables and structures)

 See A.1.7, "The access Control File" for details.

Appendix A - 2

Appendix A Extended Functions Reference

A.1 Base Register Function

A.1.1 What is the Base Register Function?

The base register function enables the code size to be minimized by specifying which of the

several dedicated base registers for 16-bit register relative indirect addressing each variable

is relative to (16-bit register relative indirect addressing).

The code generated by CC32R consists of the following:

(1) Code using 16-bit register relative indirect addressing is generated for accessing

objects allocated to the D section (area for data with initial values) and B section

(area for data without initial values).

(2) Code using 16-bit register relative indirect addressing is generated for the read/

write access of objects at fixed addresses.

To use this function, the following are required:

• Access Control File *1

• When compiling, the compile option "-access=access_control_file"

Note that the Access Control File can be generated using the "map32R" *2 map generator.

*1. The Access Control File contains the following information:
(1)Base address for 16-bit register relative indirect addressing
(2)Register storing the base address
(3)Objects to which the base register function is applied (variables and structures)See A.1.7,

"The access Control File" for details.
*2. For details of the 'map32R" map generator, see Part 3, "Map Generator map32R" in the "M3T-

CC32R User's Manual <Assembler>".

Appendix A - 3

Appendix A Extended Functions Reference

A.1.2 Types of Access Targeted by Base Register Function, and Code Output

A.1.2.1 Access to Variables

a. Targeted variables
The variables specified on the object registration line of the Access Control File and

matching A.2.2, "Objects Targeted by Base Register Function" are targeted by the base

register function. (Objects defining addresses mapped by #pragma ADDRESS are treated in

the same way).

b. Generated code
When outputting the code for accessing variables, the expression "variable label - base

symbol" is used for the relative indirect offset.

The base symbol shows the corresponding base address, and the format is __REL_BASExx

(where xx is the number of the register (11 to 13)). However, note that this symbol is not

defined in the output code of the compiler (referenced by .IMPORT), and it is therefore

necessary to define the value in the startup file, etc.

[Example code output]

The following is an example of the code output for base R12 and global variable var access.

(In this example, var is an unsigned char type.)

Example 1) Writing

[No base register definition] [Using base register function]

LD24 R0,#_var STB R1,@(_var-__REL_BASE12,R12)

STB R1,@R0

Example 2) Reading

[No base register definition] [Using base register function]

LD24 R0,#_var LDUB R1,@(_var-__REL_BASE12,R12)

LDUB R0,@R0

A.1.2.2 Accessing constants

a. Targeted constants
When casting constants to the pointers shown below (A.1.3, "Objects Targeted by Base

Register Function), to access an area specified by the pointer and when this address is in the

range (base address -0x8000 to base address +0x7FFF) around the base address, they are the

target of the base register function.

Example 1) *((int*)0x12345678) = 100; /* writing to address 0x12345678 */

Example 2) return *((int*)0x12345678); /* reading from address 0x12345678 */

Appendix A - 4

Appendix A Extended Functions Reference

b. Generated code
When outputting code for access to a constant address, the expression "constant address,

base address" is used as the relative indirect offset.

[Example code output]

When the base register is R13 = 012340000 (Hex).

Example 1) Writing

[No base register definition] [Using base register function]

SETH R0,#HIGH(0x12345678)

OR3 R0,R0,#LOW(0x12345678) ST R1,@(0x5678,R13)

ST R1,@R0

Example 2) Reading

[No base register definition] [Using base register function]

SETH R0,#HIGH(0x12345678)

OR3 R0,R0,#LOW(0x12345678) LD R0,@(0x5678,R13)

LD R0,@R0

A.1.3 Objects Targeted by Base Register Function

A.1.3.1 Memory class linkage

Objects targeted by the base register function must be objects statically mapped to memory.

[Non-function objects]

(1) Global variables

(2) static global variables

(3) extern global variables

[Objects in functions]

(4) static variables in functions

(5) static variables in blocks

A.1.3.2 Object types

The following types of objects are targeted by the base register function:

(1) Integer types (char/short/long, signed/unsigned, enum)

(2) Floating-point numbers (float/double)

(3) Structures (including bit field members)

Appendix A - 5

Appendix A Extended Functions Reference

(4) Unions

(5) Arrays

(6) Pointers

A.1.3.3 Types of type qualifier

The following object type qualifiers are targeted by the base register function:

(1) No type qualifier

(2) Volatile

A.1.4 Objects Not Targeted by Base Register Function

A.1.4.1 Types of types and derived types, etc.

(1) Member names (Structure type names can be specified.)

(2) Functions

(3) Constants

A.1.4.2 Memory classes and storage

(1) static variables in functions or in blocks that have the same name as those in objects

not in functions

(2) Global variables with names the same as objects in functions

(3) auto

(4) register

(5) typedef

A.1.4.3 Qualifiers

(1) const

Appendix A - 6

Appendix A Extended Functions Reference

A.1.5 Setting Base Symbols and Base Registers

With the base register function, the compiler's output code does not "(1) Definition of base

symbol" or "(2) Initialization of base registers". These operations must therefore be included

in, for example, the start up program.

In the example shown below, we have extracted the relevant portion of a start up program

in which the three base registers R11 to R13 are used.

Note that in this example, all three registers R11 to R13 are assigned as base registers but

that it is not necessary to set up all of R11 to R13 when they are not used.

[Note]

When the base address is specified in the Access Control File, you must specify the same

value for the base symbol as at that address.

(1) Definition of base symbol (.export can also be .global)

.EXPORT __REL_BASE11

.EXPORT __REL_BASE12

.EXPORT __REL_BASE13

__REL_BASE11: .EQU 0x10000000

__REL_BASE12: .EQU 0x20000000

__REL_BASE13: .EQU 0x30000000

(2) Initialization of base registers

SETH R11,#HIGH(__REL_BASE11)

OR3 R11,R11,#LOW(__REL_BASE11)

SETH R12,#HIGH(__REL_BASE12)

OR3 R12,R12,#LOW(__REL_BASE12)

SETH R13,#HIGH(__REL_BASE13)

OR3 R13,R13,#LOW(__REL_BASE13)

A.1.6 Base Register Function Limitations

(1) When the offset is 32768 or greater

With extremely large structures or arrays, the base register function cannot be used to

access members or elements mapped to offsets greater than 32768 bytes from the base.

(2) Duplication of base addresses

If there are duplicate ranges covered by the base registers and objects covered by

A.1.2.2, "Accessing Constant Addresses" are within the duplicated areas, the first base

register with a base address defined is used to cover that area.

Appendix A - 7

Appendix A Extended Functions Reference

A.1.7 The Access Control File

The Access Control File contains the following information, which is required in order to

use the base register function:

(1) Base address for 16-bit register relative indirect addressing

(2) Register storing the base address

(3) Objects to which the base register function is applied (variables and structures)

This file is specified in the compiler option "-access=access_control_file".

Note that the Access Control File can also be generated using the "map32R" map generator *.

A.1.7.1 Contents of the Access Control File

The Access Control File contains the following:

(1) Base address

This item specifies the base address for the base register function (register relative

indirect addressing).

When using fixed address access (read/write) of the area around the base address

(base address -0x8000 to base address +0x7FFF), the code will be generated for register

relative indirect addressing.

(2) Base register

This item specifies the register storing the base address.

Any of R11, R12, and R13 can be allocated.

Registers assigned as base registers are not used within functions for other purposes

such as temporary work areas.

(3) Target objects

This item specifies the objects that are to be targeted by the base register function

(16-bit register relative indirect addressing).

The addresses to which objects (variables, structures, arrays, etc.) are mapped are not

decided at the time of compiling, so each object must be registered in the Access

Control File (including #pragma ADDRESS).

*. For details of the 'map32R" map generator, see Part 3, "Map Generator map32R" in the "M3T-CC32R
User's Manual <Assembler>".

Appendix A - 8

Appendix A Extended Functions Reference

A.1.7.2 The Access Control File Syntax

The Access Control File is written with each item on a new line.

(1) Comment line

[Code format] [Format 1] ; Comment

[Format 2] (Blank line)

[Functions] The comment line is ignored.

[Example] ;This is comment 1 Comment in [format 1]

Comment in [format 2] (blank line)

;This is comment 2 Comment in [format 1]

(2) Base register definition line

[Code format] @base register name [base address]

[Functions] Defines the base address and the registers allocated as base registers

(a) Base registers

• The same register cannot be specified two or more times as a base register.

(b) Base address

• Omissible. If omitted, accessing fixed addresses is not available.

• Specify the hexadecimal value (in 8 or fewer digits) preceded by '0x'.

• Base address 0xffffffff is reserved and cannot be specified.

[Example] @R13 0xF78000

@R12

(3) Object registration line

[Code format] [Format 1] Object name

[Format 2] Object name | source file name | function name

[Format 3] ∗
[Format 4] ∗ SectionName

[Functions] One or more object registration lines can be included following the

base register definition line. The object registration lines specify the

names of the objects for 16-bit register relative indirect addressing

using the base register specified in the preceding line.

(a) Format 1:

• Global variables, and static variables within the file

(b) Format 2:

• Variables within the specified function in the specified file

(c) Format 3:

• All static objects not written in other object definition lines in the

Access Control File (wildcard specification).

• Format 3 can only be used once in the Access Control File.

(d) Format 4:

∗ Applies to all static objects belonging to the specified section that

Appendix A - 9

Appendix A Extended Functions Reference

are not written in other object definition lines (except Format 3)

of the access control file (i.e., section-specified wildcard

specification).

∗ The specified section name is either (1) altered section name by

#pragma SECTION or (2) designated section name. The base

register is applied to the static objects that are allocated to these

sections.

∗ Even if the designated section specifies a P or C section name, the

specification is ignored.

∗ Specification of format 4 for the same section name can be

written only once in an access control file.

[Examples] var1 [Format 1]

var2|samplw.c|func [Format 2]

∗ [Format 3]

∗D1 [Format 4]

A.1.7.3 Hints on describing the Access Control File

••••• To specify static variables in a function.

Specifying "variable name | file name | function name" as the variable name makes static

variables within that function the subject of the base register.

Example: var2|sample.c|func

This specifies variable var2 in function func in source file sample.c. This does not apply to

var2 not belonging to the specified function.

••••• To specify all variables together.

You can specify the wildcard "*" for the variable name to include all variables not

otherwise specified that are allocated to the data area (sections D and B).

Example: The following example shows the lines from the Access Control File that

assigns base register R13 to global variable var1 and base register R12 to all other

variables in the data area (D and B sections).

Example:

@R13 0x00F78000

var1

@R12 0x00F88000

∗

••••• Comments

(1) Lines starting with the semicolon (;) are processed as comments.

(2) If a blank is encountered after the name of a variable, the rest of that line is processed

as a comment. (Note, however, that the bar (|) cannot be included in comments.)

Appendix A - 10

Appendix A Extended Functions Reference

••••• Blanks

(1) Tabs are processed as blanks.

(2) Successive blanks at the beginning of a line are ignored. (This also applies to blanks

before a semicolon.)

••••• Duplicate specifications

The following cannot be duplicated:

◆ Identical base register names

◆ Identical variable names

◆ Wildcard specifications

Appendix A - 11

Appendix A Extended Functions Reference

A.1.8 Example of Using Base Register Function

This section describes how to use the base register function.

A.1.8.1 Example Use of Base Register Function

As shown in the figure below, there are three 64KB data areas. Explain the basic procedure

([1] to [5] below) for allocating a base register to each of these data areas.

••••• In the example, base registers R13, R12, and R11 are allocated respectively to data

areas 1, 2, and 3.

••••• Additionally, data area 1 accommodates global variables var1, var2 and var3, data

area 2 accommodates global variables var4 and var5, and data area 3 accommodates

global variable var6.

00F70000

00F7FFFF

00F80000

00F8FFFF

00FC0000

00FCFFFF

[data area 1]

variables: var1

var2

var3

[data area 2]

variables: var4

var5

[data area 3]

variables; var6

Appendix A - 12

Appendix A Extended Functions Reference

[1] Determining the base address

The base address is a fixed address set in the base register.

Because of the M32R register relative indirect specifications, the base registers can

cover the following range:

Base address -0x8000 to base address +0x7FFF.

The base addresses for covering data areas 1 to 3 are as follows:

data area 1 0xF78000

data area 2 0xF88000

data area 3 0xFC8000

These are allocatde to R13, R12, and R11, respectively.

00F70000

00F7FFFF

00F80000

00F8FFFF

00FC0000

00FCFFFF

[data area 1]

variables: var1

var2

var3

[data area 2]

variables: var4

var5

[data area 3]

variables; var6

R13

(F78000)

R12

(F88000)

R11

(FC8000)

Appendix A - 13

Appendix A Extended Functions Reference

[2] Creating the Access Control File

After determining the base addresses, create the Access Control File, which defines

the details of the base register function. (Assume the file name is sample.acc.)

As shown above, the base register is defined using the following format:

'@' base_register_name '0x' base_address (hex)

The global variables to be covered by that base register are listed on the following

lines.

• The Access Control File can also be automatically generated from the load modules.

See Section 2, "map32 Map Generator" in the "CC32R User's Manual <Assembler>"

for details.

• For details of how to specify static variables in a function, see "A.1.7.3, Hints on

describing the Access Control File."

[3] Compiling

Compile the program specifying the Access Control File created in step [2].

Add -access=sample.acc to the compiler command line.

[Example output code]

The following shows the code for var1 and var4 resulting from compiling the

program with sample.acc specified and var1 and var4 as int type global

variables.

• C language

(Expression 1) var1 = 5; /* writing var1 */

(Expression 2) return var4: /* reading var4 */

• Output code when applying base register function

(Expression 1) LDI R0,#5

ST R0,@(_var1-__REL_BASE13,R13)

(Expression 2) LD R0,@(_var4-__REL_BASE12,R12)

sample.acc

@R13 0xF78000

var1

var2

var3

@R12 0xF88000

var4

var5

@R11 0xFC8000

var6

Appendix A - 14

Appendix A Extended Functions Reference

[4] Defining the base symbols and setting the base registers

Next, add the code for (a) defining the base symbols, and (b) setting the base registers

in the startup program.

The base address is represented by the base symbol __REL_BASExx (where xx is the

base register number. This symbol is required for calculating the offsets when

generating the code. (See "Example output code" in step [3], "Compiling.")

In the following example, the settings are for base registers R13, R12, and R11.

(a) Definition of base symbols

(b) Setting base registers

[Note]

• As with the Access Control File, a base register setting program can also be

automatically generated by map32R. See Section 2, "map32 Map Generator" in

the "CC32R User's Manual <Assembler>" for details.

[5] Linking

Link the component programs, including the program created in step [4].

Appendix A - 15

Appendix A Extended Functions Reference

A.2 Memory Models

A.2.1 About Memory Models

This compiler has four memory models available, helping to develop your application

programs efficiently.

Memory models refer to several assumed patters for applications to be stored in address

space, provided to ensure that optimum objects will be generated according to the size and

position of address space in which code (sections P, C) and data (sections D, B) are stored

when compiling.

This helps to generate the most suitable object for the size of each application developed.

The four memory models available for this compiler are shown below.

Memory model name Address space usable C standard library
for code and data

Small model Code 0x00000000 to 0x00FFFFFF m32RcRlib
Data 0x00000000 to 0x00FFFFFF

Small model Code 0x00000000 to 0x00FFFFFF m32RcRM.lib
(with -memlarge attached) Data 0x00000000 to 0xFFFFFFFF

(Entire 32-bit memory space)

Medium model Code Given address A to (A + 0x00FFFFFF) m32RcRM.lib
Data 0x00000000 to 0xFFFFFFFF

(Entire 32-bit memory space)

Large model Code 0x00000000 to 0xFFFFFFFF m32RcRL.lib
(Entire 32-bit memory space)

Data 0x00000000 to 0xFFFFFFFF
(Entire 32-bit memory space)

❈ When using C standard libraries, be sure to use the library file that

corresponds to each memory model.

A.2.2 Detailes of Memory Models

Each memory model is detailed below.

• Small model.

The small model is a memory model in which both code and

data of the application are assumed to be stored within the

address space of

0x00000000 to 0x00FFFFFF (colored shaded part in Figure

3.3). To compile the source in this memory model, specify the

option shown below when compiling

-small

If no memory model is specified, the compiler by default

assumes the small model as it compiles the source.

The C standard libraries that correspond to this memory model

are:

m32RcR.lib (for functions passed via register)

Appendix A - 16

Appendix A Extended Functions Reference

Figure A.1 Address Space in Small Model

• Small model (with -memlarge attached)

The small model (with -memlarge attached) is a memory model

in which the code and the data of the application respectively are

assumed to be stored within the address space of

0x00000000 to 0x00FFFFFF (colored part in Figure A.2)

and the address space of

0x00000000 to 0xFFFFFFFF (colored part in Figure A.2).

To compile the source in this memory model, specify the option

shown below when compiling

-small -memlarge

The C standard libraries that correspond to this memory model

are:

m32RcRM.lib (for functions passed via register)

Figure A.2 Address Space in Smal(with -memlarge attached)l Model

DATA

0x00000000

CODE

0x00000000

0xFFFFFFFF 0xFFFFFFFF

0x00FFFFFF 0x00FFFFFF

DATA

0x00000000

CODE

0x00000000

0xFFFFFFFF 0xFFFFFFFF

0x00FFFFFF 0x00FFFFFF

Appendix A - 17

Appendix A Extended Functions Reference

• Medium model

The medium model is a memory model in which the code and

the data of the application respectively are assumed to be stored

within the address space of

given address A to A + 0x00FFFFFF (colored part in Figure A.3)

and the address space of

0x00000000 to 0xFFFFFFFF (colored part in Figure A.3).

To compile the source in this memory model, specify the option

shown below when compiling

-medium

The C standard libraries that correspond to this memory model

are:

m32RcRM.lib (for functions passed via register)

Figure A.3 Address Space in Medium Model

• Large model

The large model is a memory model in which both code and data

of the application are assumed to be stored within the address

space of

0x00000000 to 0x00FFFFFF (colored part in Figure A.4).

To compile the source in this memory model, specify the option

shown below when compiling

-large

The C standard libraries that correspond to this memory model

are:

m32RcRL.lib (for functions passed via register)

DATA

0x00000000

CODE

0x00000000

0xFFFFFFFF 0xFFFFFFFF

Any Address "A"

"A" + 0x00FFFFFF

Appendix A - 18

Appendix A Extended Functions Reference

Figure A.4 Address Space in Medium Model

DATA

0x00000000

CODE

0x00000000

0xFFFFFFFF 0xFFFFFFFF

Appendix A - 19

Appendix A Extended Functions Reference

A.3 #pragma Extended Functions

A.3.1 List of #pragma Extended Functions

The following table lists the contents and rules pertaining to the extended functions related

to #pragma.

Table A.2 List of #pragma Extended Functions

Description of function

Declares that the specified variable is mapped to the

specified absolute address.

Syntax : #pragma ADDRESS variable-name∆absolute-address *1

Example : #pragma ADDRESS val_1 0x1000

Changes the default section name created by the com-

piler.

Syntax : #pragma SECTION default-section-name∆modified-sec-

tion-name *1

Example : #pragma SECTION B USR_SEC_B

Declares an interrupt function described in C.

This declaration generates the code for processing of

an interrupt processing function at the entry and exit

points of a function. Additionally, a return is performed

by the RTE instruction at the exit of the function.

Syntax :

#pragma INTERRUPT interrupt-function∆[register -name∆register-name ...]*1

Example : #pragma INTERRUPT int_func R6

Declares the use of the in-line assembly function (asm

function) *2

This setting is used so that asm is interpreted not as a

normal identifier but as a keyword. Specify #pragma

keyword asm off to restore asm to a normal identifier.

Syntax : #pragma keyword asm on (or off)

Example : #pragma keyword asm on

Extended function

 #pragma ADDRESS

#pragma SECTION

#pragma INTERRUPT

(#pragma INTF)

#pragma ketword asm on

#pragma keyword asm off

*1. “∆” is space code (mandatory).
*2. For details of the 'The in-line assembly function", see Section 7.4.

Appendix A - 20

Appendix A Extended Functions Reference

Declares that a variable is mapped to the specified absolute address.

#pragma ADDRESS variable-name∆absolute-address

●#pragma ADDRESS declares that a variable is mapped to a specified absolute ad-

dress.

●The compiler generates the code to define the variable name specified in this declara-

tion as the value of the symbol in the assembler pseudocommand .EQU. Therefore,

the area for the variable is not secured.

●The absolute address is output as a character string in a .EQU pseudocommand ex-

pression. Therefore, the coding rules for the assembler .EQU pseudocommand apply.

Note that only the following numerical format constants can be specified for the abso-

lute address. Also, the expression can only be described as a constant expression.

Octal : A constant starting with 0 and consisting of 0 to 7 numerals.

Decimal : A constant starting with other than 0 and consisting of 0 to 9 numerals.

Hexadecima : A constant starting with 0x or 0X and consisting of numerals 0 to 9 and A(a) to F(f).

●Variable names of the following storage classes and data types can be specified for

the variable name.

[Storage classes]

Externally definition variables (global variable)

Externally referenced variables (extern variable)

Static definition variables (static variables excluding static variables defined within a function)

[Data types]

char, short, int,long

unsigned char, unsigned short, unsigned int, unsigned long,

long double, float, double,

struct, union

enum,pointers

●The #pragma ADDRESS declaration applies to variables defined both prior to and

subsequent to this declaration.

●If #pragma ADDRESS is declared two or more times for the same variable name, error

is returned at compiling.

●Variables for which an initialization expression has been described cannot be speci-

fied. If they are specified, a warning is returned at compiling and the declaration has no

effect.

●Variables (local variables, and static variables defined within a function) defined within

a function cannot be specified. If they are specified, a warning is returned at compiling

and the declaration has no effect.

●Structure member names, union member names, enum-type member names, or array

elements cannot be specified as variable names. If they are specified, the declaration

has no effect (no warning is displayed).

●Function arguments cannot be specified as variable names. If they are specified, the

declaration has no effect (no warning is displayed).

Function :

Syntax :

Description :

Rules :

#pragma ADDRESS
Function to specify absolute address of variable

Appendix A - 21

Appendix A Extended Functions Reference

#pragma ADDRESS

●No check is performed to see if the specified absolute address follows the variable

alignment. Be sure to specify the absolute address following the alignment of data

type.

●No check is performed to see if the variable areas overlap as a result of the specified

absolute address. Take care when specifying the address.

●No check is performed to see if array or structure access addresses overflow the 32-

bit address as a result of the specified absolute address. Take care when specifying

the absolute address that there is no overflow.

●The specifying of the same absolute address in a #pragma ADDRESS declaration for

a different variable has an effect on the compiler's optimization processing and correct

code may not be generated. When specifying the same absolute address, use the

volatile qualifier as a variable.

●Note that the following will result in faulty operation but are not checked by the com-

piler.

Notes:

[Example of specifying addresses that overlap for variable porta and portb areas]
#pragma ADDRESS porta 0x10010

#pragma ADDRESS portb 0x10012

int porta;

int portb;

[Example of specifying overflow array access address]
#pragma ADDRESS x 0xffffffff

char x[2];

void func(void)

{

x[1] = 0;

}

[Example of effect on compiler's optimization processing]
#pragma ADDRESS x 0x1000

#pragma ADDRESS y 0x1000

int x, y;

int func(void)

{

x = 0;

y += 1;∗

if (x == 0)

return 0;

return 1;

}

∗ Under the ANSI-C specifications, the interpretation of modification (y += 1)

of y, above, does not affect the value of x, and is allowed. Thus, the if

statement x == 0 can be interpreted as always true, and the compiler might

generate code that always returns 0.

Figure A.5 Examples of #pragma ADDRESS Coding Not Checked by Compiler

Appendix A - 22

Appendix A Extended Functions Reference

#pragma ADDRESS

●#pragma ADDRESS is written directly into the C source code, as follows:

In this example code, var1 is mapped to address 0x10000 and var2 is mapped to

address 0x20000.

By so doing, code is generated such that 1 byte is read from address 0x20000 and

written to address 0x10000 by the expression var1 = var2 in func().

Also, because var1 is an externally defined variable, .EQU defines the corresponding

symbol "var1" and .EXPORT makes it possible for other objects to reference it

Examples:

Figure A.6 Example Use of #pragma ADDRESS declaration

[Example coding:]
#pragma ADDRESS var1 0x10000

#pragma ADDRESS var2 0x20000

char var1;

static char var2;

void

func(void)

{

var1 = var2;

}

[Output from example coding (assembler code]
_var1: .EQU 0x10000

.SECTION P,CODE,ALIGN=4

.EXPORT $func

$func:

LD24 R1,#0x20000

LD24 R0,#0x10000

LDB R1,@R1

STB R1,@R0

JMP R14

.EXPORT _var1

.END

Appendix A - 23

Appendix A Extended Functions Reference

Declares that a variable is mapped to the specified absolute address.

#pragma SECTION default-section-name∆modified-section-name

●#pragma SECTION changes the default section name created by the compiler to a

user-defined section name. This declaration is valid until another #pragma SECTION

declaration for the same section is encountered or the end of the file.

●Specify one of the following section names created by the compiler in default section

name.

Section Section Location Description

Name Attribute Attribute

P CODE ALIGN=4 Program code area

C DATA ALIGN=4 Constant data area

D DATA ALIGN=4 Data area with initializers

B DATA ALIGN=4 Data area without initializers

●Specify a new user-defined section name in modified section name. The rules of de-

scription for section names depend on the rules of description for the assembler

names (see 3.5, "The rules of description for names" in the "User's Manual <Assem-

bler>"). The section attributes (section attribute and location attribute) of the modified

section name are the same as the attributes of default section name. The following is

extracted from section 3.5, "The rules of description for names" in the "User's

Manual<Assembler>".

Rules for names are given below :

■Characters you can use for the leading character

One of alphabetic letters, dollar sign ($), and underscore (_).

You cannot use a digit for the leading character.

■Characters you can use for the second and subsequent characters

One of alphanumeric characters, dollar sign ($), and underscore (_)

■The number of characters you can use in a name

Module name : 206 characters

Symbol name : 243 characters

Section name : 243 characters

Preprocessing name : 32 characters

Macro name : 32 characters

■Distinction between uppercase and lowercase letters

Distinction is made for names the user can define.

No distinction is made for names the user cannot define.

You define a name according to the preceding rules. Be careful about the following

in that instance :

■You cannot use a name identical to a reserved word for an entity other than

a module name.

■Names the user defines, such as symbol names, section names, cannot be

duplicated.

Function :

Syntax :

Description :

#pragma SECTION
Function to change section name

Appendix A - 24

Appendix A Extended Functions Reference

#pragma SECTION

●The default compiler section name can be restored by specifying the default section

name in modified section name.

●To change the section name, declare the #pragma SECTION before the function defi-

nitions or data definitions.

●The D section must be initialized to the initial values at startup. If you change the name

of the D section, be sure to initialize the modified section to the initial values at startup.

●The B section must normally be cleared (to zeros) at startup. If you have changed the

name of the B section, be sure to clear the modified section (to zeros) at startup.

●If you change the name of the P section, section names in functions defined after this

declaration take the modified section name.

●If you change the names of the C, D, or B sections, section names for variables and

constant data defined after this declaration take the modified section name. However,

this is only valid until a delimiter (comma ",", semicolon ";", or equal sign "=") after a

variable name for which data has been defined.

●This declaration can be made multiple times for the same default section.

●The section attribute or location attribute cannot be specified.

● If #pragma SECTION is used together with the "-R" compiler command line option ("-

R = default section name=modified section name", which changes the section name

created by the C compiler):

• The #pragma SECTION declaration is not affected by the -R command line

option. If both are used, the #pragma declaration takes precedence where the

#pragma SECTION declaration is valid.

• If modified section name in the #pragma SECTION declaration is the same as

the default section name (if the default section name generated by the compiler

is restored), the command line option '-R" is valid.

●You cannot split one function or one data definition into two or more section names.

●If a C source program with a renamed P section is compiled using the debugging

information ("-g" option), a P section with a zero size is created as a result of the object

format specifications. This has no effect on program execution.

●Use the same section name #pragma declaration for the same variables. Do not

specify a different section name in a temporary definition, etc.

Description :

Rules:

Notes:

Appendix A - 25

Appendix A Extended Functions Reference

#pragma SECTION

●#pragma SECTION is directly written into the C source code, as follows:Examples:

Figure A.7 Example Use of #pragma SECTION Declaration

[Example coding:]
int a;

#pragma SECTION B B1

int b;

#pragma SECTION B B2

int c;

#pragma SECTION P P1

void func(void)

{

 ...

}

Variable a is mapped to section B (because it occurs before the #pragma SECTION declaration).

Variable b is mapped to section B1.

Variable c is mapped to section B2.

Function func is mapped to section P1.

Appendix A - 26

Appendix A Extended Functions Reference

Declares an interrupt processing function written in C.

#pragma INTERUPT interrupt-processing-function-name∆[register-name∆register-name∆...] *

#pragma INTF interrupt-processing-function-name∆[register-name∆register-name∆...] *

●#pragma INTERRUPT declares a specified function as an interrupt processing func-

tion.

● The compiler generates the code for evacuating and returning the register to be used

to the stack at the entry and exit points of the function declared as the interrupt pro-

cessing function. It uses the RTE instruction to execute a return at the exit of the

function.

●If no register name is specified (default setting), the compiler generates the code for

evacuating and returning registers R0 to R7 and register R14 (if there is a function call

within the interrupt processing function).

Because, due to the function call rules (see 6.3, "Basic Procedures for Function Call

and Return " in the "User's Manual"), registers R8 to R13 are reserved, they are not

evacuated or returned. (Even if any of R11 to R13 are specified as base registers, they

are similarly, by default, not evacuated or returned.) The following is extracted from

6.3, " Basic Procedures for Function Call and Return " in the "User's Manual."

(4)Save registers

The contents of registers (R4-R13) to be used by the called function are saved on the stack.

The size of the saving area is ìthe number of registers to be saved ×

4 bytesî. When the link register R14 is used, then the link register is saved.

● The following registers can be specified for register names:

General registers: R0,R1,R2,R3,R4,R5.R6,R7,R8,R9,R10,R11,R12,R13,R14

Control registers: PSW (or CR0), BPC (or CR6)

Accumulator: ACC0 (or A0), ACC1 (or A1), ACC

When a register name is specified, it is added to the default setting and the compiler

generates the code for evacuating and returning that register. To have other than the

default registers evacuated and returned, register names must be specified. To

specify two or more registers, specify their names delimited by spaces. Note that there

is no differentiation between uppercase and lowercase letters when specifying the

names.

Notes: 1. ACC1 (or A1) is a reserved register name for the M32Rx core instruction

 set, and this specification is ignored.

2. If ACC is specified, the operation is the same as when only ACC0 (or A0)

 is specified.

●The #pragma INTERRUPT declaration is valid whether the actual function is defined

before or after the declaration.

●To ensure compatibility with other compilers, it is able to describe #pragma INTF in-

stead of #pragma INTERRUPT.

●Base registers (R11 to R13) specified using the -access option are not evacuated or

returned unless specified in a #pragma INTERRUPT statement.

Function :

Syntax :

Description :

#pragma INTERRUPT (#pragma INTF)
Function to describe interrupt-processing function

Appendix A - 27

Appendix A Extended Functions Reference

#pragma INTERRUPT

●An error is returned when compiling in the case of interrupt processing functions other

than those of the void type and an interrupt processing function that has arguments are

described.

●An error is returned when compiling if a #pragma INTERRUPT is declared two or more

times for the same function.

●If other than a function name is specified, that specification is ignored (#pragma IN-

TERRUPT is invalid).

●The compiler does not generate instruction code for reenabling the interrupt within the

interrupt processing function.

●The compiler does not handle multiple interrupts (no code is generated for reenabling

the interrupt within the specified function).

#pragma INTERRUPT is written directly into the C source code as follows:

In this example, the #pragma INTERRUPT specifies function int_func as the interrupt

processing function and the compiler generates the code for evacuating and returning

the default registers (R0 to R7) as well as the specified register R12. Also, instruction

RTE is executed at the end of the function.

Rules:

Examples:

[Example of use:]
#pragma INTERRUPT int_func R12

extern int counter;

void int_func(void)

{

 counter ++;

}

Appendix A - 28

Appendix A Extended Functions Reference

Declares the use of the in-line assembly function (asm function)

#pragma keyword asm on

#pragma keyword asm off

●#pragma keyword asm on (off) causes "asm" to be interpreted as an asm keyword

rather than as the normal identifier. This enables the in-line assembly function to be

used. To have asm again used as an identifier, specify #pragma keyword asm off.

See 7.4, "In-line Assembly function" for details of the in-line assembly function.

Function :

Syntax :

Description :

#pragma keyword asm on (#pragma keyword asm off)
Function to declaration of using in-line assembler

Appendix A - 29

Appendix A Extended Functions Reference

A.4 Inline expansion

This function is such that the contents of C language function to be called are expanded
directly in place of function call. Since the overhead, such as the subroutine jump instruction
(BL), can be omitted, it is possible to obtain a more advantageous code in view of speed than
normal function call by means of inline expansion.

[CAUTION]
When the size and scale of a function to be expanded are large, and there are many areas to
be called, this expansion may adversely be affected; for example, the code size increases. It
is, therefore, necessary to use this inline expansion function after satisfactorily checking this
effect.

[Format]

 inline ∆ type-specifier ∆ function(...); (∆ means one or more white space characters.)

 Example 1: Function declaration)

 inline int func1(void);

 Example 2: Function definition)
 inline static int func2 (int a)
 {
 a *= 2;
 return a;

 }

 [Compile Option]

1. " -O <level> (<level> = 0 to 7) "

Where the optimization exceeding Level 4 is effective, the inline expansion is made
effective.

 In the event of Levels 0 to 3 without optimization, no inline expansion is valid.

[NOTE]

When "-Ospace and -Otime" are designated, "-O7" becomes effective in the default
even if "-O<level>" is not specified; therefore, the inline expansion becomes valid.

2. " -noinline "

The inline keyword is made invalid. The inline keyword, if specified, is ignored even

when it is described. (This is not a error.)

[Explanation]

1. The inline keyword designates the specified function as the inline function
(a function of applicatable to inline expansion).
Also, designate the inline keyword when the function is defined. Even when it is
specified for function declaration, it does not recognize this function as inline
function in the absence of inline keyword when the function is defined.

2. The inline keyword, even if specified, is ignored where "-noinline" option is
designated at the time of compiling. (This is not a error.)

Appendix A - 30

Appendix A Extended Functions Reference

3. Since inline expansion is carried out as one optimizing, it should be carried out
only when -O4 level optimizing is effective.

4. Even in the event of forward reference of inline function, inline development is
carried out.

5. Even when the nested inline function is called (the inline function calls another
inline function), inline expansion is carried out, except for the inline function
corresponding to the Precautions "2. Where inline development is suppressed"
described later.

[Sample Use]

 [Source file]
 % cat sample.c

 inline int func (int a)
 {
 int b = a * 2;
 return b;
 }
 int answer;
 void foo(int a)
 {
 answer = func(a);
 }

 [Command line]

 % cc32R -S -O7 sample.c

 [Code to be generated]

 % cat sample.ms

 .IMPORT $_100_builtin_memcopy
 .EXPORT _answer
 .SECTION P,CODE,ALIGN=4
 .EXPORT $func
 $func:
 MV R0,R4
 SLLI R0,#1
 JMP R14
 .EXPORT $foo
 $foo:
 MV R0,R4 ; --- Inline expansion
 SLLI R0,#1 ; (Equal to "answer = a*2;")
 LD24 R1,#_answer
 ST R0,@R1
 JMP R14
 .SECTION B,DATA,ALIGN=4
 .ALIGN 4
 _answer:
 .RES.B 4
 .END

Appendix A - 31

Appendix A Extended Functions Reference

[Precautions]

1. Static declared inline function
Where static declared inline function calling was all inline expanded or it was not
originally called from any place, the compiler deletes its function body by judging it
as unnecessary.

2. Where inline expansion is suppressed
For the following inline function call, no inline expansion is carried out:

[a] Variable arguments are included.

[b] The static variable is included in the function.

[c] The type of actual argument in function calling is not compatible with that of
dummy argument.

[d] The calling and function definition are not described on the same compilation
unit.

[e] The function calls itself. (Recursive call)

3. Debugging information
The debugging information (C-source and generated code related information) in the
inline expanded part is generated from the contents of inline function body before
inline expansion. For example, if the inline expanded part is step executed with the
debugger, such as PD32R, the source line of inline function body before inline
expansion is displayed. However, in the following cases, the corresponding
debugging function is to be restricted.

[Restrictions to debugger during inline expansion]
(The command name is associated with PD32R and PD32RSIM.)

[a] Step execution.
The line near the function entrance or exit and the line near the place where
its function was called may be inversed in sequence.

[b] Function call status display ("where" command).
Among the functions in the calling path, the inline expanded function is not
displayed.

[c] Specified function (func command).
For the inline function with static declaration, the original function that has
not been required any more is deleted. In this case, no command for
referencing the function can be used.

[d] For the inline expanded function, avoid the following operation; otherwise,
an unexpected result may be reached.

[Assignment and reference of variable]
Where the same name exists in the variable (including the dummy
argument) inside the inline expanded function and the expansion
destination (calling source), the debugger cannot discriminate
between the both. In such a case, the value of these variables should
not be changed and referenced.

[Break point in source line]
Where the source line is inline expanded and several codes are made,

Appendix A - 32

Appendix A Extended Functions Reference

only one of these codes is effective in source line break. No other
source lines break are disabled.

4. Inline Development Compatibility
Except the item not defined yet with ANSI-C, the program execution results are
coincident between inline expansion and non-inline expansion.
However, it should be noted that for the item not defined yet with ANSI as shown in
the following example, the results may change, depending on inline expansion.

[Example]
For the local character string literal within the function, a new area is
maintained at each inline expansion. Consequently, the results may differ,
depending on inline expansion and non-inline expansion of function for
rewriting the local character string literal.
(Rewriting the character string literal is not recommendable, which is not
defined yet in ANSI-C.)

 [Source file]
 char c;
 inline char * func(void)
 {
 char *s = "abcde";
 c = s[2]; /* Set s[2] before rewriting to "c" */
 s[2] = '-'; /* Rewrite the character string */
 /*literal here */
 return s; /* Return the present pointer */
 }

 char c1, c2, c3, c4;
 void foo(void)
 {
 char *s;
 s = func();
 c1 = c;
 c2 = s[2];
 s = func();
 c3 = c;
 c4 = s[2];
 }

 [Function foo() execution results]

 In the case of non-inline expansion of func()
 (Operation for the same "abcde")
 C1: 'c'
 C2: '-'
 c3: 'c'
 c4: '-'
 In the case of inline expansion of func()
 (Operation for different "abcde")
 C1: 'c'
 C2: '-'
 c3: '-'
 c4: '-'

Appendix A - 33

Appendix A Extended Functions Reference

A.5 M32R/ECU#5 (M32R-FPU core) Compatible Function

The new 32180 and 32182 Group (abbreviated as M32R/ECU#5) MCU's extension
instructions and FPU instructions support.
This function is compatible with the M32R/ECU#5.

 [a] A code can be generated, using M32R/ECU#5 added instruction. (C Compiler)

 [b] The program using M32R/ECU#5 added instruction can be assembled. (Assembler)

 [c] The floating point constant can be handled. (Assembler)

A.5.1 Option designation

 -m32re5 A code is generated, using the M32R/ECU#5 extension

instruction. Also, the non-normalized numeral in the

floating point constant is reduced to "0.0".

-fminst A code is generated, using FMADD (Floating-point

multiply and add operation instruction) and FMSUB

(Floating-point multiply and substract operation

instruction).

This option is disregarded where no "-m32re5" option is

valid. Where this option is not specified, the FMADD and

FMSUB instructions are not used. Where this option is used,

also refer to "A.5.3.4".

-float_only The double type is regarded forcedly as the float type. If this

option is used together with the "-m32re5" option, all

floating point operations can be made applicable to the FPU

instruction.

In utilizing this function, be sure to refer to the contents

given in "A.5.3.1 <CAUTION> -float-only Option" as well.

A.5.2 Utilize FPU Instruction Effectively

The "-m32re5" option generates the FPU instruction for float type operation. To exhibit
M32R/ECU#5 capacity to the maximum in floating-point operation, make arrangements so
that as many floating-point operations as possible are of a float type by using the following
method.

Even if the "-m32re5" option is effective, the run-time routine is used as usual for the double
type operation.

[1] Change the double type declaration to the float type one:
However, even in the float type, ensure that there is no problem in computing
accuracy and effective range of floating-point value.

[2] Specify the precision in the floating-point constant:
Carry out precision designation (f) indicating the float type with the real arithmetic

Appendix A - 34

Appendix A Extended Functions Reference

constant suffixed by "f" as shown below.

1.234f The suffix "f" denotes the float type

1.234 Since no precision is specified, this real constant indicates the double
type.

[3] Declare the argument in the float type in prototype declaration:
 Where the floating-point numerical value is used for the function return value and
argument, be sure to carry out prototype declaration with type declaration in the
argument.

 Example)

extern void func1(float);
void func2(floa fv)
{

func1(fv);

}

 * In the absence of prototype declaration of func1 function, the argument is of a
double type.

[4] Do not use variable arguments:
Since the float type covering the variable arguments is transformed to the double type,
see to it that no float type is handled in variable arguments.

A.5.3 Precautions in Utilizing FPU Instruction

A.5.3.1 [CAUTION] "-float_only" Option

The "-float_only" option is such that the FPU instruction is applicable to all floating-point
operations even when the source files as described. If used, however, give the greatest
possible care thereto since there arises a problem of compatibility as described below.

[a] It is not match to ANSI-C standard.
[b] Function name replacement

In math.h, if the -float_only option is specified when compiling the source file, calls
to the double-precision mathematic functions are changed to calls to the equivalent
functions in the single-precision mathematic function.

 Example 1: When "-float_only" is specified at the same time
 #include <math.h>
 ans = cos(rd);

 ↓ Compiled with -float_only added

 ans = cosf(rd); /* Becomes equivalent to this */

This replacement for the cos function case, for example, is accomplished by a
macro like the one shown below.

Appendix A - 35

Appendix A Extended Functions Reference

 #define cos cosf
 :
 (Defined the same way for other double-precision
 mathematic functions)

 :

The function name that is stored in the load module when a called function name
is replaced, is the replaced function name and not the pre-replacement function
name. Therefore, pre-replacement function names can be neither specified nor
displayed in the debugger (e.g., M3T-PD32R) or TM inspector. (You can specify or
display replaced function names, though.)

[c] The interface specifications for the function having the double type argument and
variable arguments (that may possibly handle the floating-point value) change.
Consequently, where the object generated by compiling it with the "-float_only"
option and the object corresponding to any one of the following are interfaced with
the function having the double type argument or variable arguments, the both cannot
be linked.

• Object generated without "-float_only".

• Object generated with V.3.20 or earlier CC32R.

• Standard library (math.h, printf & scan functions, etc.)
(All floating-point operation functions of the standard library are of a double type.)

A.5.3.2 Not normalized

[a] At compiling:
Where the -m32re5 option is effective, a warning is issued when the floating-point
constant is not normalized, then it is reduced to "+0.0".

[b] During execution:
Where the floating-point constant is not normalized during FPU instruction
operation, there may arise non-packaging exceptions. (For FPU instruction non-
normalized constant handling, refer to the M32R/ECU#5 software manual.)

A.5.3.3 Round-off mode

The CC32R is designed on the premise that the round-off mode is rounding to the nearest in
float operation; it is, therefore, necessary to allow the M32R/ECU#5 rounding mode to
match this mode as well.

A.5.3.4 "-fminst" Option

The FMADD instruction differs in round-off handling from the FMUL and FADD combined
for computing. (This is also the same with the FMSUB and FMUL & FSUB combinations.)

It should, therefore, be noted that there may arise a difference in results between the cases
where the -fminst option was designated and not designated.
(For the FPU instruction rounding mode, refer to the M32R/ECU#5 Software Manual.

Appendix A - 36

Appendix A Extended Functions Reference

A.6 About Japanese-Kanji character processing

* The Japanese character can be described to the character constant of a program.

* The Japanese character can be processed as the multi-byte character and wide-character.

* JIS (EUC-JP, Shift-JIS), Unicode (UTF-8) are able to be used as the character code of the Jap-
 anese character correspondence.

* You can control those character codes flexibly by operation of the environment variable.
 For example case that the C source file is written by Shift-JIS and the corresponding object
 shall be outputted by UTF-8.

A.6.1 character sets and character code

A.6.1.1 The Japanese character
The character set that is defined with JIS(The Japanese Industrial Standard) X 0201 and also
JIS X 0208 can be used.
(Yet, the Latin character part of JIS X 0201 considers as ASCII and process.)

JIS X 0201 ... Generally it is called a "Hankaku Characters".

JIS X 0208 ... The Japaneze-Kanji character of the 1st JIS standard, the 2nd standard are
 included. Both those characters are called "Zenkaku Characters" general-
 ly.

In this chapter, if a character is called 'Japanese character', it includes right half of JIS X 0201
characters and all of JIS X 0208 characters.

A.6.1.1 kind of character code

The character code name that corresponds is shown in Table A.3.
In this chapter, These character codes are expressed with the name that is written to the
"Character code name" column in Table A.3.

Table A.3 The chart of corresponding Japanese-Kanji character codes

Character General Outline Able to be used ?
code name notation C source Multi-byte wide

character character
string string

euc euc-JP JIS X 0201,0208 Yes Yes Yes
EUC(Extended Unix
Code) encoding

sjis Shift-JIS Shift-JIS encoding of Yes Yes Yes
JIS X 0201,0208

utf8 UTF-8 The UTF-8 encoded Yes Yes No
Unicode (UCS-2) that
was transformed from
JIS X 0201,0208

UTF-16 The UTF-16 encoded No No Yes
Unicode (UCS-2) that
transformed from
JIS X 0201,0208

 Pay attention to several points on the using of the Unicode (utf8) application.
As for the details, refer to A.6.4.7.

Appendix A - 37

Appendix A Extended Functions Reference

A.6.1.3 Method of selecting character codes

Designate the name of the character code column of Table 9 to each for the environment var-

iable (for compiler) and the setlocale function (LC_CTYPE category, for standard library) to

select the character code code that wants to use it.

Furthermore, please pay attention to the difference - the environment variable does not

distinguish between the upper and lower of character code name, but setlocale function

distinguishes them.

a. Character code at the time of input (C Compiler)
Environment variable [M32RKIN]

The character code that describes the C source file is designated.

* The name that shows it to "character code name" of Table A.3 is designated.

* The upper and lower have the same meaning in this environment variable.

* If this environment variable is undefined, sjis (in PC version) or euc (in EWS version) is

 selected in the default.

b. Character code at the time of output (C Compiler)
Environment variable [M32RKOUT]

This environment variable teaches the character code which is best for outputting character

constant and string letteral to the compiler.

* The name that shows it to "character code name" of Table A.3 is designated.

* The upper and lower have the same meaning in this environment variable.

* If this environment variable is undefined, sjis (in PC version) or euc (in EWS version) is

 selected in the default.

c. Character code (the standard library) at the time of implementation
locale [LC_CTYPE category]

* The name that shows it to "the character code name" of Table A.3 is designated.

* The upper character or lower character are distinguished in this locale name.

* The character code is set to LC_CTYPE even in the case that the character code name is

 designated to the LC_ALL category.

* The initial value of the LC_ALL category is "C".

* This designation is effective to the multi-byte processing functions, printf series functions

 and scanf series functions.

 Please pay attention because it is ineffective to string.h and ctype.h function group. As for

 the details, refer to A.6.4.3.

Appendix A - 38

Appendix A Extended Functions Reference

A.6.2 Description method of the Japanese character

The Japanese character can be described to the character constant and character string letter-

al directly.

Also, there are 2 kinds of a wide character (or a string) and multi-byte character about

whether 'L' is attached or not.

● " " ... Multi-byte character (char *)

● L' ' ... Wide character (wchar_t)

● " " ... Multi-byte character string (char *)

● L" " ... Wide character string (wchar_t *)

(Parentheses inside show a regular value style name.)

[Attention]

The character in the character constant ('..' style) must not be multi-byte character.

Namely, 'Kan' is not possible description.(It will become warning.)

A.6.2.1 Multi-byte character

This is the one that expressed 1 character of Japanese-Kanji with 1 or more plural byte.

* And this is expressed with a character string (the array type of char).

* Even if it is a simple only 1 character, it becomes the form of a character string as " ".

* Length of the multi-byte character is not stable. Therefore, if you needs to searching, inse-

rtion and elimination for a multi-byte character in a multi-byte string (continuation of the

multi-byte characters), it is necessary to confirm continually boundaries between neighb-

or characters during the processing.

* On the other side, there is the advantage that conventional functions (the standard functi-

on of printf and strcpy etc.) that handle the byte string can be used without changing it.

A.6.2.2 Wide character

This expresses one character of Japanese-Kanji.

* The wide character can be declared with the wchar_t type. This type is defined with std-

def.h standard header.

* The wide character string (the array of the wide characters) has so many data volume in

comparison with the multi-byte string.

* On the other side, because one element becomes one character, there is the advantage that

wide character string can be searched, inserted and eliminated at an optional position wi-

thout concerning the gap between the characters.

[Attention]

In CC32R, the wchar_t type is equal to the signed short type.

(However, do not suppose it in your programming.)

Appendix A - 39

Appendix A Extended Functions Reference

A.6.3 Programming that used a Japanese processing function

This is an example of the programming that used a Japanese processing function.

#include <stddef.h> /* Wchar_t type definition */
#include <locale.h> /* Due to the control of locale */
#include <stdlib.h> /* Due to the mbstowcs function application */
#include <stdio.h>
#include <string.h>

char str1[] = "CC32R";
char str2[] = " ? "; /* (1) Description of Japanese with

a multi-byte character string */
wchar_t wstr[] = L": "; /* (2) Description of Japanese with

a wide character string */

#define BUFSIZE 256
#define WBUFSIZE 128

char buff[BUFSIZE];
wchar_t wbuff[WBUFSIZE];

void kanjiout(wchar_t wc) /* The function for outputting wide
 character (dummy) */

{
 /* Make program as that wc is outputted to the display devices */
 return;
}

int
main(void)
{
 int size_wch, i;

 /* (3) Multi-byte character string if there be not division etc.
conventional character string processing possibility */

 strcpy(buff, str1);
 strcat(buff, str2);

 /* (4) Setting up the character code for preparation to use the
mbstowcs function */

 setlocale(LC_CTYPE, "sjis");/*(In the case of Shift JIS)*/

 /* (5) Transformation to the wide character string */
 size_wch = mbstowcs(wbuff, buff, WBUFSIZE);

 /* (6) Sending each 1 character to output function while taking out
each 1 letter from wide character string that transformed */

 /* (Yet, "?" and "No" will be omitted) */
 for (i = 0; i < size_wch; ++i) {
 if (wbuff[i] != L'?' && wbuff[i] != L' ')
 kanjiout(wbuff[i]);
 }

 /* (7) Sending 1 character to output function while taking out each
 1 letter from another wide character string */

 for (i = 0; i < sizeof(wstr); ++i) {
 kanjiout(wstr[i]);
 }

 return 0;
}

A.8 Programming that used a Japanese processing function

Appendix A - 40

Appendix A Extended Functions Reference

This program processes the character string including Japanese that was written in the str1,

str2, wstr, and sends each 1 character to output function.

Although the kanjiout function of this example does not work yet, this program can be appl-

ied to the usage such as the likes that carries out the output to the indicator.

It explains about each part of the program below.

(1) Description of Japanese with a multi-byte character string

char str2[] = " ? ";

String can be described similarly as conventional character string letteral, even if it inclu-

des Japanese characters.

(2) Description of Japanese with the wide character string

wchar_t wstr[] = L": ";

'L' is attached to the top of character string letteral in the case of a wide character string.

Even both the Japanese character and conventional characters can be described in wide

string.

(3) Copy and connect of a multi-byte character string

strcpy(buff, str1);
strcat(buff, str2);

As for the multi-byte character string the processing such as the copy and connection are

possible like the conventional character string.

(4) Setting of a character code

setlocale(LC_CTYPE, "sjis");

Setting up the locale name (the character code name of Table A.3) by the setlocale functio-

n for converting from multi-byte character string to wide character string in the next part-

(5). At this time, the same character code as M32RKOUT needs to be designated, to

LC_CTYPE.

If the M32RKOUT is undefined, please designate "sjis" (for PC version) or "euc" (for EWS

version) to the setlocale function.

(5) Transformation to a wide character string

size_wch = mbstowcs(wbuff, buff, WBUFSIZE);

Transforming from the multi-byte character string that made it in the above (3) to the wi-

de character string for the byte unit processing(in next (6)).

(6) Taking out each a character and outputting it (except particular character).

for (i = 0; i < size_wch; ++i) {
if (wbuff[i] != L'?' && wbuff[i] != L' ')

 kanjiout(wbuff[i]);

}

Appendix A - 41

Appendix A Extended Functions Reference

The wide character string is a wchar_t type array.

Taking out each a character, removing one of the particular characters (those are '?' or

'No' in this program) of it, and outputting it to the function.

(7) Taking out each a character from another string and outputting it

for (i = 0; i < sizeof(wstr); ++i) {
 kanjiout(wstr[i]);

}

It is similar to above (6), taking out each a character, ouputting it to the function.

This is a simple case that letter check is nonexistent.

A.6.4 Restriction items

A.6.4.1 Message display

When the compiler output the Japanese-Kanji string in the compile message, it may be octal

number instead of original character.

Example) A warning message to ' ' (M32RKOUT a case of sjis)

warning: \0212\0277: unportable character constant

(\0212\0277 is 2 octal notation of Kan (0x8a and 0xbf) in sjis.)

The display result is different each in host environments.

A.6.4.2 Attention on multi-byte character string processing

Because the boundary between the characters is unstable, if you need process a mult-byte

character string as conventional char type (argument), please carry out several operations

(show below) only in that this boundary is known clearly.

Otherwise, a character will be broken or searching will finish incorrectly.

* A character string is divided in an optional place.

* A character and character string are inserted in an optional place.

* The forwarding of a character string is discontinued halfway.

* A character is searched from an optional place.

* A string is compared with other string from an optional place.

A.6.4.3 Attention on standard function use

The following functions are supposing always that LC_CTYPE is "C" locale.

Therefore, pay attention in the case that the string or character including the Japanese

character is processed with these functions.

Appendix A - 42

Appendix A Extended Functions Reference

(1) Character string operation function (Function that belongs to string.h)

Because this function does not know boundary between multi-byte characters, if a multi-

byte character has Japanese-Kanji character, the function does not act along to expectati-

on.

* memchr, strchr, strpbrk, strrchr functions ... The searching may not act normally.

* strcspn, strspn functions ... The exact character number may not be returned.

(2) Character operation function (Function that belongs to ctype.h)

This function can not process it normally, in the case that the Japanese character is desig-

nated.

Example) Do not call a function as follows.

isprint(L' ')

isupper(L'A') /* Zenkaku A */

A.6.4.4 Correspondence of the assembler

Japanese is unable to be described with assembly language.

A.6.4.5 Correspondence of the relation tools

If the debugger that is for CC32R V.3.00 or older or is not corresponding to the Japanese

character displays the Japanese character may not be displayed correctly.

A.6.4.6 preprocessor output (-P,-E option)

The compiler that the -P or -E option is designated outputs always the Japanese letter with

euc.

A.6.4.7 Restriction item of Unicode

Pay attention to the next point, in the case of programming to use utf8 (Unicode).

(1) Character that is able to use it

Only the character in the 6.1(1) can be used even if environment variable is designated to

utf8.

The program including the character other than Japanese that is defined with JIS X 0201/

0208 is not able to process normally.

(2) Character that differs by the implement

The number that is assigning the Unicode correspondence to the same character by impl-

ement of host environment (an editor) and target environment, even if it is called may di-

ffer.

Because of this, if utf8 is designated to environment variable M32RKIN, M32RKOUT, ple-

ase use and pay attention to the handling of Unicode.

Appendix A - 43

Appendix A Extended Functions Reference

(3) Handling of a resemblance character

The character that was inputed will be transforming to euc at first in the compiler inside.

The several of the character that form resembled on Unicode are normalized to same cha-

racter on euc.Therefore, even if both M32RKIN and M32RKOUT are utf8, several charact-

ers of source and output may not be equal.

A.6.5 The supplement of Japanese processing

A.6.5.1 Inside expression of the Japanese character

(1) Inside expression of the multi-byte character string

The multi-byte character string on C source will be transformed to the character code that

is designated by M32RKOUT, and be transformed to the text stream (image of the content

of the text file) of 8bit.

Example) Multi-byte character string

Next some program is shown description of the same meaning as

char kanji1[] = " 1";.

/* sjis */ char kanji1[] = {0x8a,0xbf,0x8e,0x9a,0x31,0};

/* euc */ char kanji1[] = {0xb4,0xc1,0xbb,0xfa,0x31,0};

/* utf8 */ char kanji1[] = {0xe6,0xbc,0xa2,0xe5,0xad,0x92,0x31,0};

(2) Expression of a wide character

* It is euc or sjis, if the multi-byte character is transformed a wide character, the highest

byte of wide character is 1st byte of multi-byte character, the lowest byte of wide char-

acter is 2nd byte of multi-byte character.

* In same environment, if the 1byte multi-byte character is transformed a wide characte-

r, the highest bytes of wide character is zero, the lowest byte of wide character is

multi-byte character.

* It is utf8, if the multi-byte character is transformed a wide character, this value is UTF-

16.

Example 1) wide character string

Next some program is shown description of the same meaning as

wchar_t kanji2[] = L" 2"; .

/* sjis */ wchar_t kanji2[] = {0x8abf,0x8e9a,0x0032,0x0000};

/* euc */ wchar_t kanji2[] = {0xb4c1,0xbbfa,0x0032,0x0000};

/* utf8 */ wchar_t kanji2[] = {0x6f22,0x5b57,0x0032,0x0000};

Example 2) wide character

Next some program is shown description of the same meaning as

wchar_t kanji3 = L' ';

/* sjis */ wchar_t kanji3 = 0x8abf;

/* euc */ wchar_t kanji3 = 0xb4c1;

/* utf8 */ wchar_t kanji3 = 0x6f22;

char kanji4 = L' '; It becomes an overflow.

Appendix A - 44

Appendix A Extended Functions Reference

A.6.5.2 Standard library

(1) Designate the locale (locale.h)

It is possible designated a character code name that shows it in Table 9 in addition to loc-

ale, conventional "C" a locale name as it is.

(2) A wide character transformation function (mbtowc, mbstowcs, mblen, wctomb, wcstombs)

LC_CTYPE processes on the basis of each character code in the case of euc, sjis and also

utf8 locale.

(3) Function of printf, scanf series

A format designated character string considers as the multi-byte character string of a cha-

racter code that was designated to LC_CTYPE.

(4) Other standard functions

The locale will be regarded that it is the same action as C locale always.

(5) About shifting condition

A standard library function is not remembering shifting condition.

It supposes that shifting condition is already initialized when it is called.

Appendix B - 1

Appendix B The C Standard Library Function List

Appendix B

The C Standard Library Function List

This appendix lists the C standard library functions and their summaries by

function group.

Program diagnostic function

assert Adds a diagnostic function to a program.

Character handling function

isalnum Judges whether a letter or decimal number.

isalpha Judges whether a letter or not.

iscntrl Judges whether a control character or not.

isdigit Judges whether a decimal number or not.

isgraph Judges whether a printable character other than a space.

islower Judges whether a lower case letter or not.

isprint Judges whether a printable character including a space.

ispunct Judges whether a special character or not.

isspace Judges whether a space or not.

isupper Judges whether an upper case letter or not.

isxdigit Judges whether a hexadecimal number or not.

tolower Converts an upper case letter into lower case.

toupper Converts a lower case letter into upper case.

Appendix B - 2

Appendix B The C Standard Library Function List

Mathematics function

acos Obtains the arc cosine of a floating-point number.

asin Obtains the arc sine of a floating-point number.

atan Obtains the arc tangent of a floating-point number.

atan2 Divides a floating-point number by a floating-point number and

obtains the arc tangent of the result.

ceil Computes the integer ceiling of a floating-point number.

cos Obtains the cosine of radians of a floating-point number.

cosh Obtains hyperbolic cosine of a floating-point number.

exp Obtains the exponential function of a floating-point number.

fabs Obtains the absolute value of a floating-point number.

floor Cuts off the fraction of a floating-point number.

fmod Multiplies fractions of two floating-point numbers and obtains the

remainder.

frexp Divides a floating-point number into products of value (0.5, 1.0)

and 2 to the nth power.

ldexp Performs multiplication of a floating-point number and 2 to the nth

power.

log Obtains natural logarithm of a floating-point number.

log10 Obtains the base 10 logarithm of a floating-point number.

modf Divides a floating-point number into integer and decimal.

pow Obtains a floating-point number to nth power.

sin Obtains the sine of the radians of a floating-point number.

sinh Obtains hyperbolic sine of a floating-point number.

sqrt Obtains the positive square root of a floating-point number.

tan Obtains the tangent of the radians of a floating-point number.

tanh Obtains hyperbolic tangent of a floating-point number.

Appendix B - 3

Appendix B The C Standard Library Function List

Non-local jump function

longjmp Recovers the execution environment saved by setjmp and transfers

control to the program location of a setjmp call.

setjmp Saves the current environment to a memory area.

Variable arguments access function

va_arg (Macro) Gets variable arguments in turn.

va_end (Macro) Ends the reference to variable arguments.

va_start (Macro) Initializes to reference variable arguments.

Input/output function

clearerr Clears an error condition in a stream.

fclose Closes a file.

feof Checks if the end of a stream is reached.

ferror Checks if a stream is in an error condition.

fflush Outputs the contents of a stream to a file.

fgetc Gets a character from a stream.

fgetpos Locates the current position on a stream.

fgets Gets a string from an input stream.

fopen Opens a file.

fprintf Outputs data to a stream, according to the format.

fputc Outputs a character to a stream.

fputs Outputs a string to a stream.

fread Transfers data from a stream to a memory area.

freopen Closes a currently opened stream, and reopens a new file with the

new file name.

fscanf Gets data from a stream, and converts the data by following the

format.

fseek Moves the current read/write position within a stream.

Appendix B - 4

Appendix B The C Standard Library Function List

fsetpos Changes the current position on a stream.

ftell Locates the current read/write position in a stream .

fwrite Transfers data from a memory area to a stream.

getc Gets one line from a stream.

getchar Gets a character from the standard input file (stdio).

gets Gets a string from the standard input file (stdio).

perror Outputs the error message corresponding to the error code to the

standard error file (stderr).

printf Converts data by following the format and outputs it to the

standard output file (stdout).

putc Outputs a character to a stream.

putchar Outputs a character to the standard output file (stdout).

puts Outputs a string to the standard output file (stdout).

remove Deletes a file.

rename Renames a file.

rewind Moves the current read/write position on a stream to the

beginning of the file.

scanf Gets data from the standard input file (stdin) and converts the data

by following the format.

setbuf Defines a buffer for an I/O stream.

setvbuf Defines and sets a buffer for an I/O stream.

sprintf Converts the data by following the format and outputs the data to

an area.

sscanf Gets data from a memory area and converts the data by following

the format.

tmpfile Creates a temporary file.

tmpnam Creates a named temporary file.

ungetc Returns a character a stream.

vfprintf Outputs a variable argument list to a stream by following the

format.

Appendix B - 5

Appendix B The C Standard Library Function List

vprintf Outputs a variable argument list to the standard output (stdout) by

following the format.

vsprintf Outputs a variable arguments list to a memory area by following

the format.

General utility function

abort Puts the running program to forced stop.

abs Obtains the absolute value of an int type integer.

atexit Catalogs the function to be called upon successful termination of

the program.

atof Converts the character string representing a number into a double

type floating-point number.

atoi Converts the character string representing a decimal number into a

int type integer.

atol Converts the character string representing a decimal number into a

long type integer.

bsearch Performs binary search.

calloc Allocates a memory space and initializes the allocated memory

space to 0.

div Divides an int type integer and obtains the quotient and

remainder.

exit Terminates the program.

free Releases the specified memory area.

getenv Gets the content of an environmental variable.

labs Obtains the absolute value of a long type integer.

ldiv Divides a long type integer and obtains the quotient and

remainder.

malloc Allocates memory area.

mblen Obtains the number of bytes composed of multibyte characters.

mbstowcs Converts a multibyte character string into a wide character string.

mbtowc Converts a multi byte character into a wide character.

Appendix B - 6

Appendix B The C Standard Library Function List

qsort Performs sorting.

rand Generates a pseudo-random integer which resides between 0 and

RAND_MAX.

realloc Changes the memory area size to the specified size.

srand Sets the initial value of the pseudo-random integer which the rand

function generates.

strtod Converts a string representing a number into a double type

floating-point number.

strtol Converts a string into a long type integer.

strtoul Converts a string into an unsigned long type integer.

system Passes a command string to the host environment.

wcstombs Converts a wide character string into a multibyte character string.

wctomb Converts a wide character into a multibyte character.

String handling function

memchr Locates, in a memory area, the position where a character first

appears.

memcmp Compares the contents of two memory areas.

memcpy Copies the contents of a memory area to the destination memory

area.

memmove Moves the contents from a memory area to the destination

memory area.

memset Copies a character into the first n characters in memory area.

strcat Links a string to the end of a string.

strchr Locates, in a string, the position where a character first appears.

strcmp Compares two strings.

strcoll Compares the two strings based on the current locale.

strcpy Copies the contents (including null characters) of the source string

to the target memory area.

strcspn Computes the length of initial segment of a string which consists of

unspecified characters.

Appendix B - 7

Appendix B The C Standard Library Function List

strerror Returns the error message.

strlen Measures the size of string.

strncat Links the specified number of characters to the string.

strncmp Compares specified number of characters of two strings.

strncpy Copies the specified number of characters from the string to

memory.

strpbrk Locates the position where one of the specified characters first

appears in a string.

strrchr Locates the position where a character last appears in a string.

strspn Computes the length of initial segment of a string which consists of

specified characters.

strstr Finds the first occurrence point of a string within another.

strtok Separates a string into tokens.

strxfrm Converts the string based on the current locale.

Localization function

localeconv Initialize struct lconv.

setlocale Sets and searches locale information.

Date and time function

asctime Converts data and time (a struct tm) into the equivalent text string.

clock Gets the elapsed processor time.

ctime Converts the calendar time (a time_t value) into the equivalent text

string.

difftime Computes the difference between the two specified times.

gmtime Converts calendar time to Coordinated Universal Time (UTC).

localtime Converts current calendar time to the local time.

mktime Converts date and time (a struct tm) to the calendar time.

strftime Converts date and time (a struct tm) to the format specified.

time Reads the current calendar time.

Appendix B - 8

Appendix B The C Standard Library Function List

Signal handling function

raise Send a signal to the executing program.

signal Sets up a signal handler that responds to the signal.

Initialization function (non-ANSI)

_init_atexit Initializing for atexit().

_init_base_year Initializing for the date and time group.

_init_exit_environ Initializing for exit().

_init_mem Initializing for I/O, general utility, and localization groups.

_init_stdio Initializing for I/O group.

Termination function (non-ANSI)

_action_atexit Performs user-registered terminations.

_exit_mem Terminating for I/O, general utility, and localization groups.

_exit_stdio Terminating for I/O group.

_get_exit_code Gets the exit status from exit().

Special floating-point values judgement function (non-ANSI)

These are the functions that judges whether or not the value corresponds to any

special floating-point values (float or double) one of 0.0 (Zero), Infinity or NaN

(Not a Number).

The floating-point operation program can use these functions, for checking

previously input value of the operation, and for checking whether or not the

result of the operation is special value.

Table B.1 Special floating-point values judgement function

The floating-point value type Checking functions (C language formats of
that these functions check. prototype declarations)

double type float type

Infinity int isinf(double) int isinff(float)
Zero 0.0 int iszero(double) int iszerof(float)

Not a Number NaN int isnan(double) int isnanf(float)

Appendix B - 9

Appendix B The C Standard Library Function List

These functions return 1 if input value was corresponds to the special value of

each function. Otherwise, these functions return 0.

Before the judgement functions can be used, one of the following header files

must be included. Choose either one that suits to your need.

mathf.h When you use only the float type judgement functions.

math.h When you use the float or double type judgement functions.

Note that because the header math.h includes the functions of mathf.h, you do

not need to include mathf.h if you already have math.h included.

Example : A function returns 1 if input is infinity or NaN.

#include <mathf.h> /* <math.h> also acceptable */

float

func(float fin)

{

 if (isinff(fin))

 return -1.0f; /* In the case of infinity */

 if (isnanf(fin))

 return -1.0f; /* In the case of NaN */

 return fin * 2.0f; /* Other cases */

}

Appendix C - 1

Appendix C Restrictions on Usage

Appendix C

Restrictions on Usage
There are restrictions of the CC32R.

For other precautions of only this version, see the 'Precautions on using' of the next chapter.

■ How to get files that is not included the debug-informatio

C compiler cc32R, assembler as32R and linker lnk32R have come to be generating the

debugging information always. Namely, the object module and load module files that these

tools generate always include the debugging information.

Such a outputting debug-information is not possible to impede in those options.

The strip32R can process even the object module that compiler and assembler generated in

addition to the load module that the linker. The strip32R can process even the object module

that compiler and assembler generated in addition to the load module that generated the

linker. In other words, if each output files are processed with strip32R after cc32R, as32R or

lnk32R, these tools act as conventional CC32R (V.4.10 or before).

Example of using strip32R: (% expresses a prompt)

Usually usage:

The strip32R is able to apply to each output file of the cc32R, as32R and lnk32R.

Strip32R is able to process both files of object-module (before the link) and load

module (after the link).

% cc32R -c -o sample1.mo sample1.c

% strip32R sample1.mo

% as32R sample2.ms

% strip32R sample2.mo

% lnk32R -o sample.abs sample1.mo sample2.mo

% strip32R sample.abs

To process two or more files at a time:

For example, after all the compiling and the assembling completed, the strip32R can

process all the files of them.

% cc32R -c sample1.c sample2.c sample3.c

% cc32R -c sample4.c

% as32R -c sample5.ms

% strip32R sample1.mo sample2.mo sample3.mo sample4.mo sample5.mo

Even the wild card can be designated.

% strip32R *.mo

Appendix C - 2

Appendix C Restrictions on Usage

■ Cautions on using the base register function with standard library for C

[The supplement of attention on using the base register function]

Combinations of the object file as follows are not recommended. (For more details, refer to

the "A.1.6 Base Register Function Limitations" of the M3T-CC32R User's Manual <C

Compiler>.)

(1) The combination of object files that was created in using base register function and in

not using this function.

(2) The combination of object files that was created by using different access control files.

[Attention to use the base register function and C standard library in same time]

Attached C standard library was created when the base register function is ineffective.

Therefore, attached C standard library and the object file that used the base register function

correspond to above (1).

In such case, the base register does not have the base address when the standard library

function is executing. The base register will returns the base address after these standard

functions, although the base register will not have the base address when as follows:

(1) Interrupt processing routine

Because the interrupt process happens during execution of standard library functions,

you must think value of the base register is undefined.

(2) User function that is called from the particular standard library functions (qsort, bsea-

rch etc.)

[Solutions]

When the base register function and the C standard library are used in same time, please use

one of the solution methods following (1) and (2).

(1) Create a special standard library by using same access control file from the user progr-

am. And replace present standard library with it.

(2) Re-compile interrupt processing routine and user function that is called from the part-

cular standard library functions (qsort, bsearch etc.) by not using the base register fun-

ction.

■ Avoiding the integral zero-division problem of M32R/ECU series

In M32R/ECU Series Microcomputer, if zero division calculation (its divisor is equal zero) is

executed for integral division instructions (they are DIV, DIVU, REM and REMU. abbreviat-

ed as DIV-instructions), the result will be inaccurate calculations for some instructions that

are executed immediately after 0 division.

For more details, refer to the Technical News No.M32R-06-0301 “M32R/ECU series Usage

Notes for 0 Division Instruction”.

The correspondence in CC32R and explain about avoiding the zero-division problem by

-zdiv option below.

Appendix C - 3

Appendix C Restrictions on Usage

[Correspondence methods]

The case of C language program or assembly language program

(1) Please re-program so the zero-division does not occur in logical, following the teh-

nical news suggests. CC32R generates the DIV-instructions to the integral calculat-

ions both divisions (/ and also /=) and remainders (% and also %=) of C language,

please program so that the divisor do not become 0. Also, in assembly language,

please program so that the second parameter of DIV-instructions (it means divisor)

do not become 0.

(2) If you can not accomplish (1) completely, re-compile or re-assemble with -zdiv opt-

ion insted of (1).

The case of using standard libraries

Even if the DIV-instructions computes the zero-dividion in the standard library funct-

ons, the problem does not occur. It is because the standard library is already treated

about avoiding this problem.

Furthermore, The functions of the zero-division measurement libraries (m32RcRZ.lib,

m32RcRZM.lib, m32RcRZL.lib) that was prepared in CC32R V.4.10 Release 1, have be-

en incorporated to general standard libraries (m32RcR.lib, m32RcRM.lib, m32RcRL.lib).

Because of this, If you have been using CC32R V.4.10 Release 1 and use the zero-divis-

ion measurement libraries, please use general standard libraries instead of them.

The case of using non-standard libraries

In use the customer-made libraries or the re-build libraries from the standard library

sources set of attachment to CC32R, please re-build or re-compile with -zdiv option.

[Explanation of the -zdiv option]

When it uses in compiling with cc32R

Compiling with -zdiv option, it generates assembly source with inserting NOP instru-

ctions each after the all of created DIV-instructions. Also, it inserts NOP instructions

as same in asm functions too.

However, if you use -zdiv option with -S or -CS in same time, compiler generates asse-

mbly source with removing comment and coverting alphabetic letters to upper.

In the case of inputting assembly sources to cc32R, it performs same from assembling

by as32R.

When it uses in assembling with as32R

If assemble code includes DIV-instructions with -zdiv option, it inserts NOP instructi-

ons each after the all of this DIV-instructions. However, it except case of that NOP ins-

truction already exists after the DIV-instruction.

It means there is not following object between the DIV-instruction and the NOP-instr-

uction. In other words, the compiler inserts NOP instruction after the DIV-instruction,

if there is following object between the DIV-instruction and the NOP-instruction.

(1) Labels

(2) Generic M32R instructions except NOP instruction

(3) as32R pseudo-instructions influencing the code areas (as follows)

.ALIGN .DATA .DATAB .END .FDATA .FDATAB .FRES .RES

.SDATA .SDATAB .SECTION

Appendix C - 4

Appendix C Restrictions on Usage

■ On indirect calling a function that has variable arguments

The program will not run correctly if a function having a variable argument is called indirec-

tly by using a pointer variable to a function without prototype declaration.

[Code Example]

 #include <stdio.h>
 int (*funcptr)() = printf;
 int main (void) {
 (*funcptr) ("calling printf with %d\n", 1);
 }

[Solution]

Include a prototype declaration for the pointer variable to the function. (Rewrite the above

code as follows.)

 #include <stdio.h>
 int (*funcptr) (const char *,...) = printf;
 int main(void) {
 (*funcptr) ("calling printf with %d\n", 1);

 }

■ Data definition within the code section

The assembler outputs a warning (warning: caution! there are some data in code section) so

as to alert you to data items (or space areas) present in the code section.

It is recommended to put data items in the data section.

You can suppress this warning by use of the option "-warn_suppress_code_data".

■ Use of preprocessor variables inside a macro body

If, as in the following example, a preprocessor variable appears starting in the first column of

the line immediately after a macro call in the macro body, the preprocessor variable may not

be correctly expanded when the macro call is effected.

[Code Example]

 .macro INST_MACRO
 MOV #0,R0
 .endm
 .macro LABEL_MACRO label
 INST_MACRO
 \label: ; putting a preprocessor variable from the first column
 .endm
 .section P,code,align=2
 LABEL_MACRO L1 ; this expansion will be failed
 LABEL_MACRO L2 ; this expansion will be failed

 .end

[Solution]

Inside a macro body, write a preprocessor variable from the second column or the subseque-

nt.

Appendix C - 5

Appendix C Restrictions on Usage

■ About compiling the functions of 500 or more lines

When you compile a program that has the big functions of 500 or more lines by CC32R, a er-

ror "Out of memory" will occur.

In this case, divide this function so that its lines decrease.

■ Precautions about changing C Calling Convention

CC32R V.3.00 Release 1 (or newer) always generates code for function parameters by regist-

ers. Accordingly, objects of CC32R V.3.00 Release 1 (or newer) and V.2.10 Release 1 can't be

linked without measuring. Correspond in the following methods.

(1) C language program that passes the function argument by using stack

It means objects and libraries that was compiled by the CC32R V.2.10 Release 1 without

-RBPP option.

[How to adapt]

Compile them with CC32R V.3.00 Release 1 (or newer).

(2) Program of the assembly language that is handing over the function argument by stack

It is the program of the assembly language passing the argument of the function by using

stack, and that calls function of C language or is called from it. (They include start up pr-

ogram and low level library functions.)

[How to adapt]

* Change the assembly language program in accordance with the setting rule of the

function argument of V.3.00 Release 1. (Refer to the chapter of "the C calling rule" of

the M3T-CC32R user's manual <C Compiler>.)

* When function passes the argument by registers, this function name is not under score

(_) to the top but dollar mark ($) is added in object file. You need to change the functi-

on name in the assembly language that you have this to the name that complied with.

When you links these programs (above (1) and (2)) without this adaptation and program

made for CC32R V.3.00 Release 1 (or newer), the error "external symbol not defined" will

occur.

M3T-CC32R V.4.30 User’s Manual <C Compiler>

Rev. 1.00
September 01, 2004
REJ10J0514-0100Z

COPYRIGHT ©2004 RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

M3T-CC32R V.4.30

REJ10J0514-0100Z

User’s Manual <C Compiler>

	Title
	Keep safety first in your circuit designs!
	Contents
	Preface
	References
	Audience
	Conventions

	Chapter 1 Overview of CC32R
	Features
	Components of CC32R
	Overview of the Components of CC32R
	Programming Flow
	Input and Output File Names for CC32R

	Chapter 2 Overview of cc32R
	2.1 About the C Compiler cc32R
	2.1.1 cc32R Functions
	2.1.2 cc32R Features

	2.2 Compatibility with an old version

	Chapter 3 Invoking the Compiler
	3.1 How to Invoke the Compiler
	3.1.1 Invoking Procedure
	3.1.2 Setting Environment Variables
	3.1.3 Command Line Syntax and Rules
	3.1.4 Command file
	3.1.5 Input File Conditions
	3.1.6 Input File Names
	3.1.7 Output File Naming
	3.1.8 Output During Execution

	3.2 Command Options
	3.2.1 Command Options
	3.2.2 Notes about -rel16 option to be taken when programming
	3.2.3 Debugging Limitations when Optimize Options Are Specified
	3.2.4 "-switch_by_offset" Option

	3.3 Command Line Example
	3.4 The other notes

	Chapter 4 C Programming Language Specification
	4.1 Token
	4.1.1 Keywords
	4.1.2 Identifiers
	4.1.3 Constants
	4.1.3.1 Floating-Point Constant
	4.1.3.2 Integer Constant
	4.1.3.3 Enumeration Constant
	4.1.3.4 Character Constant

	4.1.4 String Literals
	4.1.5 Operators
	4.1.6 Punctuators
	4.1.7 Comment

	4.2 Data Types
	4.2.1 Types and Type Specifiers
	4.2.2 Types
	4.2.3 Data Size and Range of Basic Types
	4.2.4 Data Format for Floating-Point Constants
	4.2.5 Type Qualifiers
	4.2.6 Storage Class Specifiers

	4.3 Conversions
	4.3.1 Explicit Conversions (Cast)
	4.3.2 Implicit Conversions

	4.4 Preprocessing Directives
	4.5 System Reserved Names
	4.6 Limitations for C Language

	Chapter 5 Internal Data Representation
	5.1 Data Representation on Memory
	5.2 Integral Types
	5.3 Floating Types
	5.4 Arrays
	5.5 Structures
	5.6 Unions
	5.7 Enumeration Types
	5.8 Pointers
	5.9 Bit-Fields
	5.9.1 Data Type for Bit-Field
	5.9.2 Packing and Alignment

	Chapter 6 C Calling Conventions
	6.1 Register Usage
	6.1.1 General Register (R0-R15) Usage
	6.1.2 Register Consideration

	6.2 Stack Frame Configuration
	6.3 Call and Return Procedures
	6.4 Parameter Passing
	6.4.1 Rules Parameter Passing
	6.4.2 The Cases where Stack-passing is Valid
	6.4.2.1 Pushing onto the stack
	6.4.3 Function Names after Compiling
	6.4.4 How to Refer set Arguments

	6.5 Setting Return Value
	6.6 Interface with Assembly Program
	6.6.1 Referencing Assembly Data from a C Program
	6.6.2 Referencing C Data from an Assembly Program
	6.6.3 Calling Assembly Routines from a C Program
	6.6.4 Calling C Routines from an Assembly Program

	Chapter 7 Embedded Applications Programming
	7.1 Compiler-Generated Sections
	7.2 Embedded Application Programming Procedure
	7.3 Programming the Start-up Program
	7.3.1 Tasks in the Start-up Program
	7.3.2 Getting the Stack Area
	7.3.3 Initializing the Processor Modes
	7.3.4 Initializing the Stack Pointer
	7.3.5 Initializing the Data Sections
	7.3.6 Calling the Main Function
	7.3.7 Start-up Program Example

	7.4 About start-up file start.ms in HEW
	7.5 In-line Assembling
	7.5.1 Overview of In-line Assembling
	7.5.2 How to Write the asm Function
	7.5.3 Limitations of asm Function
	7.5.4 asm Function Example

	Chapter 8 Standard Header Files
	8.1 Overview of the Header Files
	8.2 Contents of the Header Files
	8.2.1 assert.h
	8.2.2 ctype.h
	8.2.3 errno.h
	8.2.4 float.h
	8.2.5 limits.h
	8.2.6 locale.h
	8.2.7 math.h
	8.2.8 setjmp.h
	8.2.9 signal.h
	8.2.10 stdarg.h
	8.2.11 stddef.h
	8.2.12 stdio.h
	8.2.13 stdlib.h
	8.2.14 string.h
	8.2.15 time.h

	Chapter 9 C Standard Library
	9.1 Overview of the C Standard Library
	9.1.1 The Library Files Contained in CC32R
	9.1.2 Library Function Groups
	9.1.3 Consideration for using the Library
	9.1.4 Library Error Message

	9.2 Rebuild to Method of Standard Library
	9.2.1 Library Building Procedure

	9.3 Library Function Descriptions

	Chapter 10 The cc32R's Behavior
	10.1 Undefined Behavior
	10.2 Implementation-defined Behavior
	10.2.1 Translation
	10.2.2 Environment
	10.2.3 Identifiers
	10.2.4 Characters
	10.2.5 Integers
	10.2.6 Floating-Point
	10.2.7 Arrays and Pointers
	10.2.8 Registers
	10.2.9 Structures, Unions, Enumerations, and Bit-fields
	10.2.10 Qualifiers
	10.2.11 Declarators
	10.2.12 Statements
	10.2.13 Preprocessing Directive
	10.2.14 Library Functions

	10.3 Locale-specific Behavior

	Chapter 11 Low-level Library
	11.1 The Low-level Library Programming
	11.1.1 The Low-level Library for the C Standard Library
	11.1.2 Input/Output with the Low-level Library

	11.2 The Low-level Functions Specifications

	Chapter 12 Single-precision Mathematical Function Library
	12.1 Composition of Functions
	12.2 Using the Library
	12.2.1 Header File
	12.2.2 Link with the Single-precision Mathematic Function Library

	12.3 Precautions
	12.3.1 Dynamic range
	12.3.2 About error handling

	Chapter 13 The set of 64-bit integer arithmetic functions
	13.1 Header file long64.h
	13.2 Function structure
	13.3 Method for using the functions and example usage
	13.4 Notes
	13.4.1 Precautions regarding the sign

	Chapter 14 Messages from the C Compiler
	14.1 Getting Execution Result of the C Compiler
	14.1.1 Message Format
	14.1.2 Message Types
	14.1.3 Exit Status

	14.2 Message Lists
	14.2.1 Information Messages
	14.2.2 Warning Messages
	14.2.3 Command Line Error Messages
	14.2.4 Error Messages
	14.2.5 Fatal Error Messages

	Appendix A Extended Functions Reference
	A.1 Base Register Function
	A.1.1 What is the Base Register Function?
	A.1.2 Types of Access Targeted by Base Register Function, and Code Output
	A.1.2.2 Accessing constants
	A.1.2.1 Access to Variables

	A.1.3 Objects Targeted by Base Register Function
	A.1.3.1 Memory class linkage
	A.1.3.2 Object types
	A.1.3.3 Types of type qualifier

	A.1.4 Objects Not Targeted by Base Register Function
	A.1.4.1 Types of types and derived types, etc.
	A.1.4.2 Memory classes and storage
	A.1.4.3 Qualifiers

	A.1.5 Setting Base Symbols and Base Registers
	A.1.6 Base Register Function Limitations
	A.1.7 The Access Control File
	A.1.7.1 Contents of the Access Control File
	A.1.7.2 The Access Control File Syntax
	A.1.7.3 Hints on describing the Access Control File

	A.1.8 Example of Using Base Register Function
	A.1.8.1 Example Use of Base Register Function

	A.2 Memory Models
	A.2.1 About Memory Models
	A.2.2 Detailes of Memory Models

	A.3 #pragma Extended Functions
	A.3.1 List of #pragma Extended Functions

	A.4 Inline expansion
	A.5 M32R/ECU#5 (M32R-FPU core) Compatible Function
	A.5.1 Option designation
	A.5.2 Utilize FPU Instruction Effectively
	A.5.3 Precautions in Utilizing FPU Instruction
	A.5.3.1 [CAUTION] "-float_only" Option
	A.5.3.2 Not normalized
	A.5.3.3 Round-off mode
	A.5.3.4 "-fminst" Option

	A.6 About Japanese-Kanji character processing
	A.6.1 character sets and character code
	A.6.1.1 The Japanese character
	A.6.1.1 kind of character code
	A.6.1.3 Method of selecting character codes

	A.6.2 Description method of the Japanese character
	A.6.2.1 Multi-byte character
	A.6.2.2 Wide character

	A.6.3 Programming that used a Japanese processing function
	A.6.4 Restriction items
	A.6.4.1 Message display
	A.6.4.2 Attention on multi-byte character string processing
	A.6.4.3 Attention on standard function use
	A.6.4.4 Correspondence of the assembler
	A.6.4.5 Correspondence of the relation tools
	A.6.4.6 preprocessor output (-P,-E option)
	A.6.4.7 Restriction item of Unicode

	A.6.5 The supplement of Japanese processing
	A.6.5.1 Inside expression of the Japanese character
	A.6.5.2 Standard library

	Appendix B The C Standard Library Function List
	Program diagnostic function
	Character handling function
	Mathematics function
	Non-local jump function
	Variable arguments access function
	Input/output function
	General utility function
	String handling function
	Localization function
	Date and time function
	Signal handling function
	Initialization function (non-ANSI)
	Termination function (non-ANSI)
	Special floating-point values judgement function (non-ANSI)

	Appendix C Restrictions on Usage
	How to get files that is not included the debug-informatio
	Cautions on using the base register function with standard library for C
	Avoiding the integral zero-division problem of M32R/ECU series
	On indirect calling a function that has variable arguments
	Data definition within the code section
	Use of preprocessor variables inside a macro body
	About compiling the functions of 500 or more lines
	Precautions about changing C Calling Convention

	Publisher's imprint

