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From its roots in 1997 to support Intel® Itanium® based servers and the first 
published Extensible Firmware Interface (EFI) specification around 2000, 
Unified Extensible Firmware Interface (UEFI) has now eclipsed legacy BIOS 
across all computing platforms from high performance servers to mobile 
devices to deeply embedded devices. The success of UEFI would not have 
been possible without industry support of the open source implementation 
and industry-guided platform firmware specification. UEFI as an open 
standard specification ensured that it received broad support and investment 
from across the industry to evolve as required to support technology changes 
in our industry, for example boot time requirements and an ever increasing 
focus on security. This issue of the Intel Technology Journal is completely 
focused on UEFI.

The first article is an introduction to UEFI written by Mark Doran,  
Vincent J. Zimmer, and Michael A. Rothman; it provides both the  
details on the history of UEFI and how the specifications are managed 
within the UEFI Forum. The intent here is to not only better understand 
how UEFI is maintained as an open specification, but to also provide  
clarity on the usages and capabilities UEFI has made possible within our 
industry.

Silicon enabling provides vendor-specific value-added features on the platform 
with key chipset and CPU enabling code for the latest hardware. UEFI 
Platform Initialization (PI) specifications support this capability. In “Silicon 
Enabling,” authors Isaac Oram, Tim Lewis, and Vincent J. Zimmer focus on 
building block elements in PI that are the cornerstone of silicon enabling that 
provides OEMs with consistent and sufficient interfaces to build real systems 
without precluding opportunities for differentiation.

Regardless of how the computer industry has evolved over the years, the need 
for interoperability between the platform elements is unchanged. In “UEFI  
and the OEM and IHV Community,” authors Nathan Skalsky, Terry Kirch,  
Al Rickey, and Michael A. Rothman discuss how the UEFI standard introduces 
the composite pieces for such interoperability, and in so doing, illustrate how 
the end user benefits by both the OEM and IHV communities’ use of UEFI 
standards. 

Target platforms supported by UEFI span deeply embedded devices to 
massive server clusters and everything in-between. One common desire 

FOREwORD
by	Doug	Fisher
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across all of these domains is the desire to reduce the time it takes for the 
platform to initialize (boot). Authors Michael A. Rothman, and John 
Mese, in “Booting in an Instant” cover the elements associated with boot 
performance from various points of view in the technology value chain. They 
also discuss how the evolution of standards (such as UEFI) have resulted in 
boot performance enhancements, and give examples of how these technology 
elements were incorporated into products to provide meaningful results to 
the end user.

The protection from security threats at all platform states, pre- and post-
OS boot are increasingly important for our industry. In “UEFI Networking 
and Pre-OS security” authors Magnus Nystrom, Martin Nicholes, and 
Vincent J. Zimmer focus on how UEFI includes security in pre-OS state 
and networking for the platform boot process from local and remote 
media, assets to be protected, threats against those assets, and the various 
technologies that allow for their protection. They also go one step further 
to discuss forward-looking security capabilities and approaches enabled by 
UEFI.

For software developers, debugging can be a challenge and robust debugging 
tools are essential at every phase of development. UEFI is no different, and 
can be very difficult especially for embedded devices where access is limited. 
Stefano Righi, Brian Richardson, Jiewen Yao, and Elvin Li in “Debugging 
Issues with UEFI” provide an overview of common debug solutions including 
hardware-based debugging, system checkpoints, and source-level debugging. 
Firmware-specific concepts such as status codes, DEBUG/ASSERT macros 
and the UEFI debug protocol are introduced. They also discuss source-
level debugging support using AMI and Intel solutions, comparing them to 
hardware-based alternatives.

To further emphasize the broad platform range (printers to high performing 
servers) associated with UEFI, the final article in this edition of the journal 
discusses one specific company’s use of UEFI across broad product lines. Dong 
Wei, Kimon Berlin, and Eugene Cohen all from Hewlett Packard discuss the 
specific strategy for value add for leveraging UEFI across the HP product 
portfolio. 

This set of articles will show both a) the value of UEFI to our industry and 
how UEFI is positioned to continue to evolve and extend as required to meet 
the rapidly evolving requirements of our industry and customers, and b) the 
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impact of open standards like UEFI and how they are uniquely capable to 
provide the needed capability without precluding OEM differentiation. UEFI 
has covered tremendous ground since that first EFI specification around 2000, 
and I’m looking forward to watching how it evolves for the next 10 years to 
cover computing capabilities and usages that we’ve not yet imagined.

Doug Fisher
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This article describes the basic capabilities of the specifications produced by the 
UEFI Forum as well as the history of how these standards evolved.

Introduction
The purpose of this article is to describe the basic capabilities of the UEFI 
Forum Specifications including the UEFI Specification version 2.3.1, the 
Platform Initialization Specification version 1.2, along with the structure 
and use of UDK2010, an open source implementation of the UEFI Forum 
Specifications. The history and evolution of these technologies provides some 
context for those descriptions.

The Chicken and the Egg
The very first effort that is considered a direct ancestor of UEFI technology had 
a very specific tactical goal. In the course of 1997 people at Intel were working 
on how to boot computers based on the prospective Itanium® Processor 
family. The original plan was to use the conventional BIOS code base for this 
job: while more or less everything else about the machines would be new—
processors, chipsets, board designs, operating systems, and so on—it was felt 
that keeping stability in one element of the machine recipe a known quantity 
would be of some advantage. Without getting to specifics, this plan ultimately 
proved infeasible for technical and business reasons. This left the problem of 
how to boot an OS on these platforms, with something less than a year of time 
for resolution.

This challenge spawned the effort inside Intel that became known as the Intel 
Boot Initiative (IBI), specifically targeting development of a boot paradigm 
for Itanium Processor based machines. The IBI effort considered a set of 
alternatives, “make” versus “buy,” and that included among others adoption of 
the IEEE Open Firmware standard, use of the ARC platform standard, and of 
course building a solution from scratch. The Open Firmware standard offered 
a good technical solution but fell short in terms of business infrastructure for 
deployment in the time available while the ARC platform standard ended up 
being too prescriptive on platform design. Similarly other “buy” alternatives 
offered no clear path to deployment in the time available. Thus the decision 
was taken to pursue in-house development of a new mechanism.

A high-level C language interface between platform firmware and the OS 
loader seemed like a natural for Itanium Processor machines given the 
complexity of low level programming and the desirability of having the OS 
know as little about the platform hardware specifics as possible in advance 

“A high-level C language interface 

between platform firmware and the 

OS loader seemed like a natural.”

Mark Doran
Intel Corporation
Vincent J. Zimmer
Intel Corporation 
Michael A. Rothman
Intel Corporation 
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of being able to load OS drivers. Having made that leap, it was a short hop 
from there to imagine a CPU-architecture–neutral API for firmware and OS 
communication for the boot process.

An Abstract Interface to Promote Innovation for OS and Firmware
The value of having such an interface and having it be broadly applicable to 
computers in general was driven home by experience on IA-32 platforms: 
there, the OS historically had hard-coded assumptions about the presence an 
operation of platform hardware devices and intimate familiarity with internals 
of many parts of system BIOS. All these factors on IA-32 discouraged change 
and made innovation tricky and relatively expensive. Obviously a successor 
technology that alleviates the need for the platform and OS to share intimate 
details for their respective implementation would provide an opportunity to 
decouple the rate of innovation for both the platform and the operating system.

This set of realizations led to the first big scope increase for the fledgling 
firmware interface. By taking on board the CPU-ISA–neutral approach, the 
scope of the program could increase to cover more of the Intel Processor family. 
Even in the late 1990s it was apparent that the conventional BIOS used on 
IA-32 computers was starting to become something of a drag on innovation. 
The designers of the new firmware interface thus turned their attention to 
including the ability to boot IA-32 processors as well as the original mission. 
It was around this time in late 1999 that the IBI program produced initial 
specifications for the new interface. The change in scope and the deliberate 
intention to foster a pro-innovation environment in the pre-OS space informed 
choice of the name for the new specification: the Extensible Firmware Interface 
(EFI)—neutral to any particular type of computer, deliberately describing only 
the interface (and explicitly not implementation of either producer [BIOS] or 
consumer [OS]), and calling out the idea that the interface would be a baseline 
for future additions.

EFI was adopted for the very first generation of Itanium Processor based 
computers and has been the boot interface there ever since. The initial version 
of the EFI specification 1.02 was published by Intel in December 2000 
covering the operational scope needed to transfer control from platform 
firmware to the operating system. From the outset Intel kept the barriers to 
adoption for EFI as low as practical with little if any licensing restrictions 
and royalty-free sample implementation code. The principle of low barrier to 
adoption remains central to the management of the technology right up to 
present day.

To that initial publication the EFI Specification 1.10 was added in late 2002. 
This updated specification added a firmware driver model that addressed the 
problem of using add-in card devices in the boot process and providing code to 
operate those without requiring changes to the operating system boot loaders 
per device. In essence this provided a path to replace the fragile system of 16-
bit option ROMs first advanced for ISA bus devices and later adopted for PCI 
boot devices as well.

“Even in the late 1990s it was 

apparent that the conventional BIOS 

used on IA-32 computers was starting 

to become something of a drag on 

innovation.”

“EFI was adopted for the very first 

generation of Itanium Processor based 

computers and has been the boot 

interface there ever since.”



Intel® Technology Journal | Volume 15, Issue 1, 2011

10   |   Beyond BIOS: Exploring the Many Dimensions of the Unified Extensible Firmware Interface

Industry Backing: Advent of the Unified EFI Forum
Adoption on the IA-32 family would follow gaining momentum slowly but by 
early 2005 business conditions and technical constraints made it clear that the 
conventional BIOS technology would eventually run out of steam. In recognition 
of the fact that becoming a critical piece of the infrastructure for delivering IA-
32 platforms to market is a multilateral industry intercept, a group of industry 
stakeholders comprising BIOS vendors, OS vendors, system manufacturers, and 
silicon production companies agreed to form the Unified EFI Forum in mid-2005 
and the long-term home and governance model for this technology.

Intel contributed the EFI Specification as a starting point for the new Forum’s 
work and the founding Promoter members worked in a truly unified fashion 
to produce a specification with broad industry support and endorsement. This 
initial publication from the Forum, the UEFI Specification 2.0, was published 
in January 2006.

In parallel with work on the interface between firmware and operating 
system, the Forum agreed to take on work to standardize interfaces for the 
internal construction mechanisms within an implementation of the UEFI 
Specification. This work led to the publication of the Platform Initialization 
(PI) Specification 1.0 in October 2006. This five-volume set aims to make it 
possible for silicon component support firmware to work unmodified with 
firmware on platforms developed by a variety of system building companies, 
simplifying and shortening deployment work for new product generations. The 
latest version of the PI Specification is version 1.1 published in February 2008.

The Forum continued to build consensus around updates to the UEFI 
Specification, publishing version 2.1 in January 2007. Among other things this 
introduced infrastructure that results in more graphical, better localized user 
interfaces for the pre-OS space.

Version 2.2 came along in September 2008 introducing IPv6 support for 
networking and also improved platform security primitives. Version 2.2’s reign 
as the latest/greatest was relatively short-lived, however, largely as a result of 
work in the implementation world behind the specification.

Open Source Firmware Implementation
Intel had initially made available open source sample implementations of 
the original EFI Specification. That work continued as the EFI Specification 
evolved into the UEFI Specification and also delivered an implementation of 
the PI Specifications. This implementation found a permanent home as the 
EFI Developers Kit open source project still housed at www.TianoCore.org. 
This is known as the EDK for historical reasons although today of course the 
implementation conforms to the UEFI Forum’s Specifications in its EDK II 
(second generation) form.

In addition to implementations of the various specifications, the Forum has 
also promoted the creation of test suites both for the UEFI Specification and 
for the PI Specification. These tests are designed to help developers build high 

“a group of industry stakeholders 

comprising BIOS vendors, OS 

vendors, system manufacturers, and 

silicon production companies agreed to 

form the Unified EFI Forum.”

“In addition to implementations of the 

various specifications, the Forum has 

also promoted the creation of test suites 

both for the UEFI Specification and 

for the PI Specification.”
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quality implementations of the specifications and are yet another example of 
the philosophy of making UEFI an easy technology to adopt in this case by 
making useful tools freely available for developers.

Completing the Specification Picture
As commonly happens with open source projects, interested parties come along 
and find new and interesting ways to use the code. In the case of the EDK, 
several companies found that the code was useful on ARM based platforms. 
Following successful ports to ARM platforms, it was proposed to add an ARM 
binding for the UEFI Specification. This was completed by the Forum in May 
of 2009 leading to the publication of the 2.3 version of the specification.

The 2.3 version of the Specification represents an interesting milestone for the 
community around Intel Architecture firmware. That specification represents 
the first point in time where all the interfaces for the boot process are written 
down in a formal document with industry-wide agreement on the content.

Looking Forward
The most recent version of the UEFI Specification is now 2.3.1, which as the 
name suggests, is an incremental release based on the 2.3 version. The new 
areas refine support for scalable platform security solutions and help to support 
faster and more sophisticated look and feel for the boot process.

With the state of the specifications now caught up to the present day platform 
design needs, attention is turning to driving technology forward to improve 
and expand capabilities in the pre-OS space. One of the first such efforts, 
radical reduction in boot time, may seem counterintuitive in that frame—the 
innovation is in fact to do less not more in the pre-OS space. However, this 
clearly represents a step forward in terms of appeal to the market as a whole 
and it is equally something that depends in large part on the abstraction of 
firmware and OS implementation from each other that is integral to the 
UEFI design—each part of the implementation of boot, firmware platform 
component initialization, and operating system startup can be optimized to 
work best with each other, yielding significant improvements overall.

UEFI technology is already in widespread use, in everything from smart 
phones to printers, notebooks, servers, and even supercomputers. There are 
new devices and platform technologies in prospect that will benefit from 
easier enabling through UEFI shortening time to market. There are new types 
of platforms like system-on-chip starting to adopt UEFI technologies for 
infrastructure in new product categories. In short, UEFI technology is helping 
to power the leading edge of compute platform innovations backed by broad 
industry collaboration for deployment and support.

“With the state of the specifications 

now caught up to the present day 

platform design needs, attention is 

turning to driving technology forward 

to improve and expand capabilities in 

the pre-OS space.”

“UEFI technology is already in 

widespread use, in everything from 

smart phones to printers, notebooks, 

servers, and even supercomputers.”
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Where Does This Fit in the Ecosystem?
When we discuss UEFI, we need to emphasize that UEFI is a pure interface 
specification that does not dictate how the platform firmware is built; the 
“how” is relegated to PI. The consumers of UEFI include but are not limited 
to operating system loaders, installers, adapter ROMs from boot devices, pre-
OS diagnostics, utilities, and OS runtimes (for the small set of UEFI runtime 
services). In general, though, UEFI is about booting, or passing control to a 
successive layer of control, namely an operating system loader, as shown in 
Figure 1. UEFI offers many interesting capabilities and can exist as a limited 
runtime for some application set, in lieu of loading a full, shrink-wrapped 
multi-address space operating system like Microsoft Windows*, Apple OS X*, 
HP-UX*, or Linux, but that is not the primary design goal. 

“UEFI is a pure interface specification 

that does not dictate how the platform 

firmware is built; the “how” is 

relegated to PI.”

UEFI & OS Loader
handshake

Run Time
(RT)

EFI/UEFI
Interfaces

OS-Absent
App

Transient OS
Environment

Transient OS
Boot Loader

Device,
Bus, or
Service
Driver

Boot
Manager

Final OS
Boot Loader

Final OS
Environment

OS-Present
App

Components covered by EFI & UEFI

Not
Covered
By EFI or

UEFI

Security
(SEC)

Pre EFI
Initialization

(PEI)

Boot Dev
Select
(BDS)

verify

CPU
Init

PEI
Core

Pre
Verifier

Chipset
Init

EFI Driver
Dispatcher

Architectural
Protocols

Board
Init

Not
Covered
By EFI or

UEFI

          [ . . Platform initialization . . ]            ShutdownPower on [ . . . . OS boot . . . . ]

Driver
Execuation

Environment
(DXE)

Figure 1: where EFI and UEFI Fit into the platform Boot Flow
(Source: Intel Corporation, 2010)

PI, on the other hand, should be largely opaque to the pre-OS boot devices, 
operating systems, and their loaders since it covers many software aspects 
of platform construction that are irrelevant to those consumers. PI instead 
describes the phases of control from the platform reset and into the success 
phase of operation, including an environment compatible with UEFI, as 
shown in Figure 2. In fact, the PI DXE component is the preferred UEFI core 
implementation. 
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Within the evolution of Framework to PI, some things were omitted from 
inclusion in the PI specifications. Specifically, the CSM specification abstracted 
booting on a PC/AT system. This requires an x86 processor, PC/AT hardware 
complex (for example, 8254, 8259, RTC). The CSM also inherited other 
conventional BIOS boot limitations, such as the 2.2-TB disk limit of Master 
Boot Record (MBR) partition tables. For a world of PI and UEFI, you get all 
of the x86 capabilities (IA-32 and x64, respectively), ARM*, Itanium®, and 
future CPU bindings. Also, via the polled driver model design, UEFI APIs, 
and the PI DXE architectural protocols, the platform and component hardware 
details are abstracted from all consumer software. Other minor omissions 
also include data hub support. The latter has been replaced by purpose-built 
infrastructure to fill the role of data hub in Framework-based implementations, 
such as SMBIOS table creation and agents to log report status code actions.

What has happened in PI beyond Framework, though, includes the addition 
of a multiprocessor protocol, Itanium E-SAL and MCA support, the above-
listed report-status code listener and SMBIOS protocol, an ACPI editing 
protocol, and an SIO protocol. With Framework collateral that moved 
to PI, a significant update was made to the System Management Mode 
(SMM) protocol and infrastructure to abstract out various CPU and chipset 
implementations from the more generic components. On the DXE front, 

Figure 2: where pI and Framework Fit into the platform Boot Flow
(Source: Intel Corporation, 2010)
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small cleanup was added in consideration of UEFI 2.3 incompatibility. Some 
additions occurred in the PEI foundation for the latest evolution in buses, 
such as PCI Express*. In all of these cases, the revisions of the SMM, PEI, and 
DXE service tables were adjusted to ease migration of any SMM drivers, DXE 
drivers, and PEI module (PEIM) sources to PI. In the case of the firmware file 
system and volumes, the headers were expanded to comprehend larger file and 
alternate file system encodings, respectively. Unlike the case for SMM drivers, 
PEIMs, and DXE drivers, these present a new binary encoding that isn’t 
compatible with a pure Framework implementation. 

The notable aspect of the PI is the participation of the various members of 
the UEFI Forum, which will be described below. These participants represent 
the consumers and producers of PI technology. The ultimate consumer of a 
PI component is the vendor shipping a system board, including multinational 
companies such as Apple, Dell, HP, IBM, Lenovo, and many others. The 
producers of PI components include generic infrastructure producers such 
as the independent BIOS vendors (IBVs) like AMI, Insyde, Phoenix, and 
others. And finally, the vendors producing chipsets, CPUs, and other hardware 
devices like AMD, ARM, and Intel would produce drivers for their respective 
hardware. The IBVs and the OEMs would use the silicon drivers, for example. 
If it were not for this business-to-business transaction, the discoverable binary 
interfaces and separate executable modules (such as PEIMs and DXE drivers) 
would not be of interest. This is especially true since publishing GUID-based 
APIs, marshalling interfaces, discovering and dispatching code, and so on take 
some overhead in system board ROM storage and boot time. Given that there’s 
never enough ROM space, and also in light of the customer requirements 
for boot time such as the need to be “instantly on,” this overhead must be 
balanced by the business value of PI module enabling. If only one vendor had 
access to all of the source and intellectual property to construct a platform, a 
statically bound implementation would be more efficient, for example. But in 
the twenty-first century with the various hardware and software participants 
in the computing industry, software technology such as PI is key to getting 
business done in light of the ever-shrinking resource and time-to-market 
constraints facing all of the UEFI forum members.

There is a large body of Framework-based source-code implementations, such 
as those derived or dependent upon EDK I (EFI Developer Kit version 1), 
which can be found on www.tianocore.org. These software artifacts can be 
recompiled into a UEFI 2.3, PI 1.2-compliant core, such as UDK2010 (the 
UEFI Developer Kit revision 2010), via the EDK Compatibility Package 
(ECP). For new development, though, the recommendation is to build native 
PI 1.2, UEFI 2.3 modules in the UDK2010 since these are the specifications 
against which long-term silicon enabling and operating system support will 
occur, respectively.

“Some additions occurred in the PEI 

foundation for the latest evolution in 

buses, such as PCI Express*.”

“Given that there’s never enough 
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Terminology
The following list provides a quick overview of some of the terms that have 
existed in the industry associated with the BIOS standardization efforts.

 • UEFI Forum. The industry body which produces UEFI, Platform 
Initialization (PI), and other specifications.

 • UEFI Specification. The firmware-OS interface specification.

 • EDK. The EFI Development Kit, an open sourced project that provides a 
basic implementation of UEFI, Framework, and other industry standards. 
It, is not however, a complete BIOS solution. An example of this can be 
found at www.tianocore.org.

 • UDK. The UEFI Development Kit is the second generation of the EDK 
(EDK II), which has added a variety of codebase-related capabilities and 
enhancements. The inaugural UDK is UDK2010, with the number 
designating the instance of the release.

 • Framework. A deprecated term for a set of specifications that define 
interfaces and how various platform components work together. What this 
term referred to is now effectively replaced by the PI specifications.

 • Tiano. An obsolete codename for an Intel codebase that implemented the 
Framework specifications.

Managing the Specifications in UEFI
Regarding the UEFI Forum, there are various aspects to how it manages both 
the UEFI and PI specifications. Specifically, the UEFI forum is responsible for 
creating the UEFI and PI specifications. 

When the UEFI Forum first formed, a variety of factors and steps were part of 
the creation process of the first specification: 

 • The UEFI forum stakeholders agree on EFI direction

 • Industry commitment drives need for broader governance on specification

 • Intel and Microsoft contribute seed material for updated specification

 • EFI 1.10 components provide starting drafts

 • Intel agrees to contribute EFI test suite

As this had established the framework of the specification material that was 
produced and that the industry used, the forum itself was formed.

The UEFI Forum was established as a Washington nonprofit corporation. It 
develops, promotes, and manages evolution of Unified EFI Specification and 
continues to drive low barrier for adoption.

The UEFI Forum has a form of tiered membership: Promoters, Contributors, 
and Adopters. More information on the membership tiers can be found at 
www.uefi.org. The Promoter members for the UEFI forum are AMD, AMI, 
Apple, Dell, HP, IBM, Insyde, Intel, Lenovo, Microsoft, and Phoenix.

“the UEFI forum is responsible 

for creating the UEFI and PI 

specifications.”
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The UEFI Forum has several work groups. Figure 3 illustrates the basic 
makeup of the forum and the corresponding roles.

“The UEFI Forum has several work 

groups.”

Sub-teams are created in the main owning workgroup when a topic of 
sufficient depth requires a lot of discussion with interested parties or experts in 
a particular domain. These teams are collaborations amongst many companies 
who are responsible for addressing the topic in question and bringing back 
to the workgroup either a response or material for purposes of inclusion in 
the main working specification. Some examples of sub-teams that have been 
created are as follows as of this writing:

 • UCST – UEFI Configuration Sub-team. Chaired by Michael Rothman 
(Intel), this sub-team is responsible for all configuration related 
material and the team has been responsible for the creation of the UEFI 
configuration infrastructure commonly known as HII, which is in the 
UEFI Specification. 

 • UNST – UEFI Networking Sub-team. Chaired by Vincent Zimmer (Intel), 
this sub-team is responsible for all network related material and the team has 
been responsible for the update/inclusion of the network related material in 
the UEFI specification, most notably the IPv6 network infrastructure.

 • USST – UEFI Security Sub-team. Chaired by Tim Lewis (Phoenix), 
this sub-team is responsible for all security related material and the team 
has been responsible for the added security infrastructure in the UEFI 
specification. 

PIWG and USWG
The Platform Initialization Working Group (PIWG) is the portion of the 
UEFI forum that defines the various specifications in the PI corpus. The UEFI 
Specification Working Group (USWG) is the group that evolves the main 
UEFI specification. Figure 4 illustrates the layers of the platform and shows the 
scope for the USWG and PIWG, respectively.

“The Platform Initialization Working 

Group (PIWG) is the portion of the 

UEFI forum that defines the various 

specifications in the PI corpus.”

Figure 3: Forum group hierarchy
(Source: Intel Corporation, 2011)
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Figure 4: pI/UEFI layering
(Source: Intel Corporation, 2011)
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Figure 5 shows how the PI elements evolve into UEFI. The left half of the 
diagram with SEC, PEI, and DXE are described by the PI specifications. 
BDS, UEFI+OS Loader handshake, and RT are the province of the UEFI 
specification.
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In addition, as time has elapsed, the specifications have evolved. Figure 6 is a 
timeline for the specifications and the implementations associated with them.

Figure 6: Specification and Codebase Timeline
(Source: Intel Corporation, 2011)
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Platform Trust/Security
Recall that PI allowed for business-to-business engagements between 
component providers and system builders. UEFI, on the other hand, has a 
broader set of participants. These include the operating system vendors that 
built the OS installers and UEFI-based runtimes; BIOS vendors who provide 
UEFI implementations; platform manufacturers, such as multinational 
corporations who ship UEFI-compliant boards; independent software vendors 
who create UEFI applications and diagnostics; independent hardware vendors 
who create drivers for their adapter cards; and platform owners, whether a 
home PC user or corporate IT, who must administer the UEFI-based system.

PI differs from UEFI in the sense that the PI components are delivered under 
the authority of the platform manufacturer and are not typically extensible by 
third parties. UEFI, on the other hand, has a mutable file system partition, 
boot variables, a driver load list, support of discoverable option ROMs in 
host-bus adapters (HBAs), and so on. As such, PI and UEFI present different 
issues with respect to security. Chapter 10 treats this topic in more detail, 
but in general, the security dimension of the respective domains include the 
following: PI must ensure that the PI elements are only updateable by the 
platform manufacturer, recovery, and that PI is a secure implementation  
of UEFI features, including security; UEFI provides infrastructure  
to authenticate the user, validate the source and integrity of UEFI  
executables, network authentication and transport security, audit (including 
 hardware-based measured boot), and administrative controls across UEFI 
policy objects, including write-protected UEFI variables. 

“PI differs from UEFI in the sense 

that the PI components are delivered 

under the authority of the platform 

manufacturer and are not typically 

extensible by third parties.”
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A fusion of these security elements in a PI implementation is shown in 
Figure 7.

Figure 7: Trusted UEFI/PI stack
(Source: Intel Corporation, 2011)
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Embedded Systems: The New Challenge
As UEFI took off and became pervasive, a new challenge has been taking 
shape in the form of the PC platform evolution to take on the embedded 
devices, more specifically the consumer electronic devices, which have a 
completely different set of requirements driven by user experience factors like 
instant power-on for various embedded operating systems. Many of these 
operating systems required customized firmware with OS-specific firmware 
interfaces and did not fit well into the PC firmware ecosystem model.

The challenge now is to make the embedded platform firmware have similar 
capabilities to the traditional model such as being OS-agnostic, being scalable 
across different platform hardware, and being able to lessen the development 
time to port and to leverage the UEFI standards.

How the Boot Process Differs between a Normal Boot and  
an Optimized/Embedded Boot
Figure 8 illustrates that, from the point of view of UEFI architecture, there are no 
design differences between the normal boot and an optimized boot. Optimizing 
a platform’s performance does not mean that one has to violate any of the design 
specifications. It should also be noted that to comply with UEFI, one does not 

“The challenge now is to make the 

embedded platform firmware have 

similar capabilities to the traditional 

model such as being OS-agnostic, 

being scalable across different platform 

hardware, and being able to lessen 

the development time to port and to 

leverage the UEFI standards.”
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need to encompass all of the standard PC architecture, but instead the design 
can limit itself to the components that are necessary for the initialization of 
the platform itself. Chapter 2 in the UEFI 2.3 Specification does enumerate the 
various components and conditions that comprise UEFI compliance.

Figure 8: architectural Boot Flow Comparison
(Source: Intel Corporation, 2011)
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Summary
We have provided some background about the history that led to the creation 
of the BIOS standards that are developed today. In addition, we have hopefully 
provided some insight on how the UEFI forum operates and opened the 
door for people to understand how UEFI applies within their platform. 
Finally, we have given some pointers to the open source aspect of UEFI such 
that people can follow the evolution of the codebase technology to help 
realize implementations of this technology. As you read the other articles in 
this journal, you should see a very clear indication of some of the usage and 
capabilities exhibited by various members of the industry.

So fasten your seatbelt and dive into a journey through industry standard 
firmware.
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The Unified Extensible Interface UEFI Platform Initialization (PI) 
specifications allow for modular silicon enabling using defined building blocks. 
This includes system initialization, boot, and the unique requirements of the 
pre-boot space.

The adoption of UEFI specifications in the BIOS industry has reached critical 
mass in recent years. UEFI is now a component of firmware, operating 
systems, add-in devices, and other industry standards. Most products in the 
Intel® Architectures Personal Computer ecosystem are based on designs derived 
from the original EFI specifications and their current counterparts: the UEFI 
specification, and extensions such as the Intel® Platform Innovation Framework 
for EFI (Framework) and UEFI Platform Initialization (PI) specifications. 
These specifications have become the cornerstone for Intel silicon enabling in 
the Intel Architectures Personal Computer ecosystem.

This article will explore the use of the UEFI Platform Initialization (PI) 
specifications as a framework for silicon enabling. We will examine the 
building block elements provided for by the specification as well as the 
platform boot process, unique modes, and common uses. Additionally, we will 
examine drivers for different processors, memory and graphics controllers, and 
support chips.

Introduction
Personal computing has undergone a quiet revolution in the last five years, 
which was primarily driven by silicon enabling. As the industry evolved from 
personal computers (PCs) into many distinct product lines built on several 
architectures, an extensible and component-oriented industry standard 
firmware architecture was introduced and generally accepted into the BIOS 
environment. This revolution started for a number of reasons, but ultimately 
was driven by the need to initialize and utilize increasingly complex silicon and 
products in a cost-effective manner.

Definition: Silicon enabling can be defined as the activities required for OEM 
to deliver products to market utilizing a particular set of silicon products. 
This goal can be met through delivery of silicon specifications, reference code, 
sample code, binary modules, default settings, and the like.

Industry standards typically arise from a distinct need. Even with an identified 
need an industry standard relies on more than simply being documented in 
order to be successful. The “generally accepted extensible industry standard 

“Definition: Silicon enabling can be 

defined as the activities required for 

OEM to deliver products to market 

utilizing a particular set of silicon 

products. This goal can be met through 

delivery of silicon specifications, 

reference code, sample code, binary 

modules, default settings, and the like.”
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Phoenix Technologies
Vincent Zimmer
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architecture” in this case is the UEFI Forum’s Platform Initialization (PI) 
architecture and is effectively realized as a standard through five vectors:

 • It is documented in the UEFI Platform Initialization Specification. 
This provides a binary interoperable component architecture that is 
predominately applicable for silicon initialization prior to loading an 
operating system (OS). It is commonly thought of as a BIOS construction 
architecture specification.

 • It is publicly instantiated in two open source software development 
environments, the EFI Development Kit (EDK) and EDK II; a common 
location for these kits is the website www.tianocore.org. These provide 
widely available and readily reusable implementations that module 
developers can utilize as a reference for building products that conform to 
the various UEFI and PI specifications.

 • It is instantiated in BIOS products as a de facto standard implementation 
through a concept known as the Intel Green H, which is fundamentally 
a specific version of interface header files (corresponding to industry 
standards), library implementations, and some core modules. This provides 
a means to deliver source code into multiple BIOS codebases with minimal 
integration required.

 • It is testable utilizing the UEFI published Self-Certification Tests (SCT). 
The SCT exercise the interfaces defined in the various UEFI specifications.

 • It is used by leading hardware, software, and systems companies and thus is 
effectively required in the marketplace.

A BIOS software standard has the special constraints of having to support 
many different activities, most germane to this discussion are hardware 
initialization and system debug. These special constraints necessitate both 
source code and binary module compatibility and interoperability. These 
are required in order to effectively realize a component-oriented architecture 
used by a multitude of companies across the industry that support the 
Intel Architectures Personal Computer ecosystem. In the case of PI, binary 
compatibility is supported through the specifications and tests. Source 
compatibility is supported through the EDK and Intel Green H. Widespread 
requirement is realized through the support of BIOS, hardware, and software 
vendors throughout the industry.

In order to explore the modern silicon enabling environment, it is necessary 
to discuss the PI definition itself, the extensive silicon initialization performed 
within this infrastructure, the opportunities that are available, examples of the 
relevance, and the future opportunities not yet realized.

Platform Initialization Architecture
What is a BIOS? The term BIOS stands for basic input/output system. BIOS 
is a class of firmware that runs on the in-band processors or CPUs of a system 
in order to initialize the platform hardware complex and pass control to an 

“A BIOS software standard has 

the special constraints of having to 

support many different activities, 

most germane to this discussion are 

hardware initialization and system 

debug.”

“In the case of PI, binary 

compatibility is supported through the 

specifications and tests.”
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operating system. For purposes of the security architecture mentioned in the 
earlier chapter, it is the “firmware” layer.

The original PC/XT had an 8-KB BIOS that initialized the system and passed 
control to DOS*. This was 1982. Since that time, the BIOS domain has 
evolved significantly, including the transition of the industry to the Unified 
Extensible Firmware Interface (UEFI).

We will refer to the original BIOS as the conventional BIOS and the UEFI-
based boot code as UEFI. Conventional BIOS and UEFI (UEFI Specification) 
based-systems must carry out several roles. First, each has the concept of 
platform initialization. This phase is the code that commences execution 
immediately after a platform restart (S3, S5, and so on). In a conventional 
BIOS, this is a vendor-specific flow and construction, but is sometimes referred 
to as the stackless assembly or boot-block code. In UEFI, there is a separate set 
of standards referred to as the Platform Initialization (PI) standards (UEFI PI 
Specification). In a PI-based platform initialization, the SEC and PEI phases 
commence this early execution.

The temporal evolution of a UEFI PI-based boot is shown in Figure 1.

“The original PC/XT had an 8-KB 

BIOS that initialized the system and 

passed control to DOS*.”

“In UEFI, there is a separate set of 

standards referred to as the Platform 

Initialization (PI) standards (UEFI 

PI Specification).”

Figure 1: uEFI PI boot flow
(Source: Intel Corporation, 2011)
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Afterward, each platform needs to discover I/O buses, dispatch option ROMs 
from host-bus adapter cards, and so on. In conventional BIOS, this I/O 
enumeration happens in the power-on-self test (POST) phase. There is no real 
standard for POST on a conventional BIOS. For UEFI PI-based firmware, though, 
this phase of execution occurs in the Driver Execution Environment (DXE).  
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DXE also serves as the UEFI core for purposes of supporting UEFI-based 
operating systems.

After BIOS POST and DXE, though, the “standard” part of the interface to 
the platform appears. For a PC/AT BIOS, the standard includes the de facto 
interrupt-callable interface (for example, Int13h for disk, Int10h for video) 
that executes in 16-bit real mode on the x86 architecture. For UEFI, this 
option ROM and loader interoperability includes the UEFI boot services and 
protocols (for example, EFI_BLOCK_IO_PROTOCOL as analog to BIOS 
int13h) and is described by the UEFI specification. It is during this phase of 
execution where third party content can appear from disk or adapters that did 
not necessarily ship with the platform manufacturer’s (PM) system board.

This taxonomy above is critical because the transition from an execution 
regime provided by the PM into a space where third party codes can run has 
implications on the construction of a trusted platform.

Figure 2 shows the generic BIOS initialization flow. This flow includes the 
initialization of the platform CPU, memory, and I/O devices during POST. 
The POST flow again is analogous to the DXE flow in Figure 1.

“the transition from an execution 

regime provided by the PM into a 

space where third party codes can run 

has implications on the construction of 

a trusted platform.”

Figure 2: high-level bIoS flow
(Source: Intel Corporation, 2011)

Console
Init

Legacy OS
Load

Boot Dev
Select

OS
Runtime

POST
DispatchReset

CPU Init

Memory Init
CS Init

Boot
Mode

Normal Boot

S3
Resume

Recovery

Device Init

Bus Init

UEFI Firmware
Above the hardware layer of the security architecture is the firmware, as shown 
in Figure 3.
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Since there are several code-base implementations of platform firmware today 
and possibly in the future, this discussion will be held in the context of the 
Platform Initialization (PI) standards and some representative codebases 
thereof.

As a backgrounder, the Platform Initialization Working Group of the UEFI 
Forum delivers the Platform Initialization Architecture Specifications, based 
on Intel PEI and DXE specifications. The Platform Initialization Architecture 
Specifications are independent of the UEFI 2.0 Specification. The PI 
Architecture platforms can still boot today’s operating systems. AMD, AMI, 
Apple, Dell, HP, IBM, Insyde, Intel, Lenovo, Microsoft, and Phoenix own 
the specifications. The goal of the Platform Initialization Working Group 
is to allow silicon vendors who create “reference code” today to package 
this reference code as modules that snap into PI Architecture firmware 
implementations. Figure 4 illustrates the PI scope.

Figure 3: Firmware layer of the 
security architecture
(Source: Intel Corporation, 
2011)
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UEFI and PI specifications only describe normative material around interface 
definition and mechanism, but no informative content, such as why and how. 
The latter is intended to be the purview of design guides.

More information on the UEFI PI Specifications can be found at the UEFI 
Web site.[1]

In contrast to the monolithic nature of a BIOS, the UEFI PI allows 
hardware agility via software extensibility by exposing a driver model, such 
as dependency-expression–based PEI Modules (PEIMs) and DXE drivers. 
Extensibility points can serve as a point of attack for malware. This type of 
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malware is essentially undetectable by OS-hosted protection technologies, 
such as antivirus software, since the malware could execute well before the 
OS. Consequently, the security integrity foundation of the pre-OS boot 
environment provided by UEFI and other pre-OS extensibility must be solid, 
while still providing enough flexibility to support hardware agility.

The PI phase is intended to only be extensible by the platform manufacturer 
(PM), not third party (in contrast to UEFI and its option ROM/loader/driver 
model). The installation and behavior of code in this early PI flow is said to act 
under the authority of the platform manufacturer; this will be referred to as 
“PM_AUTH” below.

Preservation of this PI as PM-extensible-only-intent in both construction and 
survivability in the field is a goal of the system design.

Figure 5 describes the UEFI PI boot flow, including annotation of the PM-
extensible-only PI code and the third party extensible UEFI.

Figure 5: UEFI PI boot flow
(Source: Intel Corporation, 2011)
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Silicon Initialization
The UEFI Platform Initialization or Intel® Platform Innovation Framework for 
EFI (Framework) specifications provide a software environment that allows a 
silicon vendor to deliver nearly all required core silicon initialization. For the 
purposes of this discussion, we are not distinguishing between the two sets 
of specifications, as they largely cover similar infrastructure for component 
development and interoperability.
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Silicon initialization remains required due to the costs and complexities 
associated with initialization in hardware and the relative inflexibility of 
hardware as opposed to software. In the last 15 years, we have seen processors 
grow from ,10 to .800 million transistors.[2] Accompanying this growth 
was a range of increasingly complex features and capabilities. Software remains 
the most efficient method of initializing and supporting this increasingly 
complex hardware.

For the purposes of this discussion, we are focused on the critical components 
(core silicon) that are a part of every Intel architecture system: processors, 
memory controllers, graphics controllers, storage controllers, system bus 
controllers, IO controllers, and the like. There are a host of additional devices 
that comprise a modern Intel architecture system, but their needs are primarily 
met by the UEFI Specification. Additionally, these devices tend to be initialized 
later in the boot process with more reliance on other industry standards, such 
as USB, PCIE, and ACPI. In some cases, BIOS plays a minimal role in their 
initialization.

Where Does Silicon Initialization Occur?
Core silicon initialization relies on a phased approach. At initial system reset, 
a very limited set of hardware resources is available; devices are inaccessible, 
memory is not available, and so forth. This leads BIOS to change the basic 
operating environment for software as hardware is initialized and resources 
expand. In PI:

 • The system commences at reset (the first instruction fetched by the host 
bootstrap processor) in the SEC phase, where it makes memory available by 
initializing the processor cache and then transitions to PEI phase.

 • The system starts PEI with a small amount of stack and heap available, and 
initializes enough hardware to have permanent memory available and then 
we transition to DXE phase.

 • The system starts DXE with permanent memory, initializes core silicon, and 
then transitions to BDS phase.

 • The system starts BDS with core silicon initialized and proceeds to initialize 
hardware required to boot an OS (input, output, and storage devices). At a 
high level, BDS corresponds to “executing the UEFI driver model” for the 
purposes of booting an OS.

There are special sub-phases in the flow:

 • PEI pre-mem

 • PEI post-mem

 • SMM

 • CSM
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SEC PEI  
(Pre-memory)

PEI (Post-
Memory)

DXE SMM BDS CSM

Native 
Processor 
Mode

Debug 
Infrastructure

Final Stack/
Heap

MP Support Code 
Infrastructure

PCI Legacy OS 
interfaces

Initial  
Stack/Heap

Memory Full Config 
(S3)

SMM Protection 
mechanisms

USB

Microcode 
Update

Processor/
Chipset 
interfaces

Flash Update 
(Capsule)

Power/Terminal 
Management

Flash Write SATA

Long 
Initialization 
devices

Cache 
Configuration

PCI Graphics

Storage

Table 1: Mapping of core SI to phases

As Table 1 shows, silicon initialization is spread throughout the boot 
process. The reasons are generally based on cost and complexity. As the boot 
progresses, the cost and complexity of initializing a set of silicon functionality 
goes down as more infrastructure becomes available. This is not to say that 
SMM initialization is not complex, but it is significantly less complex after 
permanent memory and DXE services are available. The cost stems from the 
need to execute directly from uncompressed FLASH memory prior to memory 
availability. The end result is that various core silicon initialization activities 
included in the table can be accomplished reasonably cheaply by PI modules 
and typically comprise greater than 90 percent of the silicon initialization 
required.

How Is Silicon Initialization Implemented?
In the Intel case, silicon initialization takes the form of a set of packages that 
correspond roughly to silicon products. These silicon reference packages 
may support a single product, multiple products, a subset of the features 
associated with a single product, or even a capability that spans multiple 
products. Examples include the platform power management (PPM) reference 
package, which has often supported multiple generations of silicon, the 
platform controller hub (PCH) reference package, which typically supports 
a single generation of silicon, and the integrated clock controller (ICC) 
reference package, which is only applicable when the PCH is used in a specific 
configuration. The complexity in the object model arises from the complexity 
of the overall platform as well as the variability in the use of the reference 
package. An example of the latter is that PPM reference package is often 
enabled later in the product development cycle, so packaging it separately from 
the “always necessary” processor code gives customers flexibility in developing 
their product.

Each package effectively contains dynamic linked libraries (DLLs) for the 
different BIOS environments, such as pre-memory (PEIM), UEFI boot 
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services and runtime services (DXE), system management mode (SMM), and 
so on. These DLLs are usually delivered in source form, in a silicon reference 
package typically containing:

1. Source code

2. Custom interfaces as well as their documentation

3. Build files for use in an open source EDK

4. Sample code

5. Static libraries

6. Design and integration documentation

In order to reduce the number of supported configurations, the silicon 
reference packages are developed and tested against a specific version of 
industry standard interfaces and useful libraries, the Intel Green H. By defining 
the Intel Green H as a specific set of files, it is reasonable to deliver source 
code that has the attributes of being easily integrated and reusable without 
modification. By agreeing on such basics as the header files containing the 
services tables, common protocol structure definitions, and the like, a host of 
source code portability problems are avoided.

While PI provides a rich set of basic services, and in some cases abstracts 
more complex services, it is not sufficient to cover all possible silicon features 
with industry standard interfaces. In order to address this, reference packages 
provide custom interfaces. These interfaces typically take the form of variables, 
HOB, PPI, and protocols, as well as dependency expressions, callbacks, and 
other UEFI and PI services. With this toolbox available, silicon vendors can 
provide rich services to abstract silicon initialization. In the current silicon 
reference packages, it is common for there to be a “policy” protocol allowing 
the consumer to pass in board and design specific parameters. In other cases, 
interfaces, such as the I/O trap protocol, are provided. These services allow 
even the most complex silicon feature implementation to be shared between 
the producer and the consumer.

In total, with a silicon reference package that delivers the code and the Intel 
Green H giving it a “socket” to plug into, the consumer can build the modules 
using a widely available EDK and then focus their efforts on integrating into 
their BIOS build environment and enabling the various features of the silicon 
reference package in their BIOS. This allows the silicon vendor to deliver 
silicon initialization that is reused in widely divergent BIOS codebases that 
have unique requirements and attributes.

Silicon Enabling: Changing the Role of BIOS
The advent of the UEFI PI standards represents a watershed moment for the 
industry.  
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Implement Once
PI has allowed core silicon initialization to be developed by the silicon provider 
and used everywhere that silicon is used. Previously, core silicon initialization 
was done by many different companies based on the limited documentation 
available for said silicon (SI). The downside of this set of behaviors is that the 
various implementations of said SI initialization by the SI consumers may 
deviate from the intent of the SI producers. Also, the validation effort applied 
internally by the SI producer towards the SI producer’s implementation of the 
initialization code does not directly map to the results of the SI consumer; the 
latter will have its own SI initialization implementation and possibly different 
system board design.   

Deployment
With many of the SI consumers aligning system board designs closely with the 
SI producers because of sensitive analog signaling and layout considerations, 
the point of variability more becomes the SI initialization code. As noted 
above, the SI producer creates SI initialization code to validate the SI internally. 
If the SI producer and SI consumer both support the UEFI PI specification 
for their system board firmware, the SI producer can release its SI initialization 
modules at the same time the physical SI components are released. This allows 
for a deployment model wherein there is no time delay between “hardware and 
firmware” with respect to deployment.

Integration
The advent of systems supporting the UEFI and UEFI PI specifications is 
changing the relationship and responsibilities of the players in the PC firmware 
space. 

In the “old” days (before UEFI and PI), the silicon vendor produced reference 
source code that showed the important initialization and configuration steps 
for initializing their specific chip or chips. The BIOS vendor took that source 
code, modified it for their build system, and hooked up each of the reference 
code fragments to their code base. Rolling out bug fixes to all customers was 
time-consuming because each one required an integration step that was unique 
to the target code base. Quality assurance for the BIOS focused on functional 
test or homegrown API testing, because there were few well-defined APIs. The 
only standard means of extending the BIOS was the option ROM, which was 
essentially unchanged for 20 years. 

As time went by, many silicon vendors began to create a “core” source code 
package for their chips, as well as a “plug-in” layer for each of the BIOS code 
bases that they supported. This eased some of the problems for the silicon 
vendor, because now the single change they made to the “core” would work 
in all of the target code bases. But it created a problem for the BIOS vendors. 
Each silicon vendor was creating a unique “plug-in” style, with its own quirks, 
often favoring the BIOS code base that the silicon vendor used internally. 
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With UEFI and then, later, PI, there was a jump forward. Now each 
silicon vendor could package the support for their chips into drivers. The 
specifications defined how they were launched, how they published interfaces 
and how they discovered interfaces. Because of the standardization, there is no 
longer a separate “plug-in” layer for different BIOS vendor code bases. This 
has led to a decoupling of the code producer (silicon vendor) from the code 
consumer (BIOS vendor or OEM).

There have been a few consequences of this new model:

1. Write Once, Run Anywhere Drivers. If the BIOS complies with these 
specifications, a driver can be inserted in any BIOS and it should work. 

2. Silicon-Vendor Produced Drivers. With UEFI, over time, the responsibility 
for all source code related to silicon support is shifting to the silicon vendor. 
Previously, despite the large amount of reference code given out in the “old” 
days, the BIOS vendor was still responsible for filling in the gaps. 

3. Increased Testability. UEFI provides well-defined APIs for all services 
required for booting the system. The robustness of the implementation for 
these APIs is critical for insuring interoperability. Taking advantage of the 
well-defined APIs, the UEFI Testing Working Group has produced the Self-
Certification Test (SCT) for each generation of the specifications. 

4. Monolithic To Modular BIOS. More and more, the BIOS functions as 
a platform running a collection of drivers and applications, rather than a 
single body of code with a few strange appendages. 

5. Drivers Offer Built-In Customization. In the “old” model, customization 
for a specific platform or product was handled by the OEM or BIOS 
vendor much later in the development cycle and often involved an insertion 
of hooks and flags directly into vendor-provided code. Now, the silicon 
vendors are inserting customizability into their drivers, using PI’s Platform 
Configuration Database (PCD), policy protocols, and EFI variables. 

Once the inner workings of the BIOS world were exposed via a public 
specification, many new ideas came forward. The UEFI BIOS is gaining new 
capabilities because UEFI lowers the barrier to implementing new ideas that 
work on every PC.

Interoperability in Practice
The UEFI PI specification does not give you everything you need to build a PC 
platform. Many of the small silicon components—embedded controllers, super 
I/O controllers, flash devices—are represented in the specification but are not 
fully developed. However, the PI specification provides a solid foundation on 
which production-quality firmware can be built. 

A good of example of this can be found in the PI specification’s support for 
the System Management Bus (SMBus). Originally developed for supporting 
battery-management subsystems, this two-wire multi-master bus interface has 
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evolved into a standard motherboard side-band bus for sensor and platform 
management.[3] Since its introduction in 1995, it has become an integral part 
of other industry standards, including PCI, IPMI[4], DASH[5] and ASF[6].

The specification describes two APIs that abstract the SMBus host controller’s 
low-level features: EFI_PEI_SMBUS2_PPI (for the PEI phase) and the 
EFI_SMBUS_HC_PROTOCOL (for the DXE phase). These APIs allow 
commands to be sent and received on the SMBus address without specific 
knowledge of the hardware interface.

typedef struct _EFI_SMBUS_HC_PROTOCOL {
EFI_SMBUS_HC_EXECUTE_OPERATION Execute;
EFI_SMBUS_HC_PROTOCOL_ARP_DEVICE ArpDevice;
EFI_SMBUS_HC_PROTOCOL_GET_ARP_MAP GetArpMap;
EFI_SMBUS_HC_PROTOCOL_NOTIFY Notify;

}  EFI_SMBUS_HC_PROTOCOL; 

Code 1. SMbus host Controller Protocol.
(Source: uEFI Forum, Inc.)

This protocol interface structure has function pointers to different abstracted 
functions. Execute will send a command to a targeted SMBus device over the 
SMBus. ArpDevice and GetArpMap will handle the SMBus address-resolution 
protocol to assign unique addresses to SMBus devices and report the results. 
Notify allows other drivers to register for a callback when SMBus devices send 
event notifications.

For example, the following code fragment sends the Get UDID (directed) 
command and then prints the error message or else the device’s Unique Device 
Identifier (UDID).

EFI_STATUS s;
EFI_SMBUS_DEVICE_ADDRESS DeviceAddr;
SMBUS_GET_UDID_DIRECTED_RESP GetUdidResp;
s 5 SmbusHc–.Execute (
               SmbusHc,
               SMBUS_ADDR_DEV_DEFAULT_WRITE,
               DeviceAddr | 1,
               EfiSmbusReadBlock,
               TRUE,
               &DataSize,
               &GetUdidResp);
if (EFI_ERROR (s)) {
  printf (“Failed (%r). Skipped\n”, s);
} else {
  DumpUdid (&GetUdidResp.Udid);
}

Code 2. SMbus host Controller Protocol Execute() Example
(Source: Phoenix Technologies ltd.)
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The caller is not required to know anything about how the SMBus Host 
Controller is implemented in hardware or, indeed, whether or not hardware is 
present at all. 

Where’s the SMBus Bus?
So the PI specification provides access to the host controller. But where’s the 
bus? Where’s the SMBus device driver? In the UEFI driver model, support for 
an industry standard bus is usually broken into three drivers:

1. Host Controller Device Driver. This driver abstracts a specific type of host 
controller and produces a Host Controller Protocol to allow the attributes 
and features to be discovered and manipulated.

2. Bus Driver. This driver implements the requirements of the industry 
standard bus. It uses the Host Controller Protocol to enumerate the bus, 
finding all child devices, creating handles for them and installing an 
instance of the I/O Protocol on each. 

3. Device Driver. This driver implements the requirements of a specific 
device on the bus. It uses the I/O Protocol to discover device features, 
send commands, and produce new protocols used by other drivers and 
applications.

This model is seen in the UEFI Specification with the PCI bus. The chipset 
drivers produce the PCI Root Bridge I/O Protocol (Host Controller). The PCI 
bus driver produces the PCI I/O Protocol (I/O). The graphics device drivers 
(for example) use the PCI I/O Protocol and produces the Graphics Output 
Protocol. 

The USB bus follows a similar model. The PCI-XHCI drivers produce the 
USB Host Controller2 Protocol (Host Controller). The USB bus driver uses 
the USB Host Controller Protocol and produces the USB I/O Protocol (I/O). 
The USB keyboard driver (for example) uses the USB I/O Protocol and 
produces the Simple Text Input Protocol.

However, when we look back at what the PI specification describes, we can see 
that it provides just the basics: the Host Controller protocol. But where is the 
bus driver? Where is the I/O protocol? The subsequent sections talk about the 
methods that layer on top of the host controller itself so a consumer can talk to 
the necessary device.

The SMBus Driver Model
Phoenix’s SecureCore Tiano* builds on the strong foundation provided by the 
PI specification to create a full UEFI-style driver model. This allows SMBus 
device drivers to be started, stopped, and enumerated. It also allows DASH, 
ASF, and IPMI to be layered on top in a well-understood fashion.

For example, Figure 6 shows the ASF architecture layered on top of a driver 
producing the PI specification’s SMBus Host Controller protocol.
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The SMBus Host Controller driver still occupies the critical role, abstracting 
communication across the SMBus. But a new driver, the SMBus Bus driver, 
enumerates all the devices on the bus, creates child handles for each of the 
discovered devices and installs an instance of the SMBus I/O protocol on each. 
This follows the UEFI driver model shown earlier for PCI and USB.

typedef struct _SCT_SMBUS_IO_PROTOCOL {
  UINT32 Size;

  SMBUS_ADDR Addr;                      

  SCT_SMBUS_IO_IDENTIFY Identify;       
  SCT_SMBUS_IO_EXECUTE Execute;         
} SCT_SMBUS_IO_PROTOCOL, *PSCT_SMBUS_IO_PROTOCOL;

Code 3. Secure Core Tiano (SCT) I/o Protocol
(Source: Phoenix Technologies ltd., 2011)

Figure 6: ASF/SMbus uEFI driver model
(Source: Phoenix Technologies ltd., 2011)

Sensor
Device Path
Driver Binding
HII FormsASF ASD

ASF I/O

SMBus I/O

SMBus Host Controller

SMBus

ASF ASD
Driver

H
A

R
D

W
A

R
E

S
IL

IC
O

N
S

Y
S

T
E

M
O

S
/

A
P

P
S

Setup

ASF & SMBus
Sensor
Drivers

ASD

ASF Bus

SMBus Bus

SMBus Host Controller

ASF Sensors

HII
Database



Intel® Technology Journal | Volume 15, Issue 1, 2011

36   |   Silicon Enabling in a Modular Architecture

The Execute member function is a pass-through function to the SMBus Host 
Controller protocol for the host controller to which this device is attached. 
The new member function Identify is used to return the Unique Device 
Identifier (UDID), which provides the vendor identifier and device identifier 
(similar to PCI configuration space fields of the same name) and some 
capabilities flags. 

This UDID is used by the Supported() and Start() member functions of the 
Driver Binding protocol produced by the ASF and SMBus device drivers. 

The device drivers can, in turn, produce additional protocols and even setup 
pages. For example, sensor drivers can provide real-time temperature, voltage, 
or fan-speed values to the user. 

ASF-Beyond SMBus
The Alert Standard Format is one of the remote platform management 
standards created by the Desktop Management Task Force. On the  
local PC platform, it uses the SMBus to communication between different 
ASF-compliant devices, such as NICs (or Alert Signaling Devices/ASDs), 
serial EEPROMs, and sensors. Each of these is an SMBus device,  
and more.

In Figure 6, the ASF bus driver examines each instance of the SMBus I/O 
protocol created previously to see if it is also an ASF-compliant device. It does 
this by examining the capabilities flags in the SMBus device’s UDID. From the 
Supported() function of the ASF Bus driver:

  SMBUS_UDID Udid;
  s 5 SmbusIo–.Identify (SmbusIo, &Udid);
  if (EFI_ERROR (s)) {
    DPRINTF_ERROR (“Could Not Return Device UDID.\n”);
    goto Done;
  } 

  if ((Udid.Interface & SMBUS_UDID_INTERFACE_ASF) 55 0) {
    s 5 EFI_UNSUPPORTED;
  } 

  ...install an instance of the ASF I/O protocol...
  s 5 EFI_SUCCESS;
Done:
  return s;

Code 4. ASF device identification
(Source: Phoenix Technologies, ltd., 2011)

In this case, the protocol is installed on the same device handle, since it 
is referring to the same device. The ASF I/O protocol converts ASF-style 
commands into SMBus commands and sends them to the ASF device.
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Going one step further, the Alert Signaling Devices (or ASD) drivers or 
ASF sensor drivers in Figure 6 examine each device handle to see whether 
it supports ASF I/O and its UDID matches a specific device and vendor 
identifier, or responds to a specific command.

Building on the UEFI PI Specification
The same idea described for ASF is used for other industry specifications, such 
as DASH and IPMI. Each adds a layer on top of the SMBus I/O, such as 
DASH’s MCTP and PLDM or IPMI’s system interface. 

The UEFI PI specification describes the base level APIs necessary to create a fully 
functional SMBus driver stack. Using this, device drivers can be made to support 
individual SMBus devices and additional standards, such as ASF, DASH, and IPMI. 
Phoenix’s SecureCore Tiano* has employed this similar model for other small silicon 
devices, including embedded controllers, Super I/O controllers, and flash devices.

Making the SMBus devices into UEFI driver-model devices also allows the 
developer to take advantage of the wealth of debugging and development tools 
available, including the UEFI Shell.[7]

Future Directions
Going forward, the PI architecture allows for coordinated release of silicon 
and silicon initialization. Given the UEFI PI-defined interfaces and binary 
image format, the full advantages of implementations of the architecture can 
be realized. Specifically, the module implementations are decoupled from the 
code base implementation instance; the only criteria is a level of UEFI PI 
specification compatibility. The modules can be built as self-describing binaries 
that allow for SI consumers to do source or binary debug. And ultimately, 
the modules can be released only as binaries depending upon the support 
agreement or other business criteria. The UEFI PI also allows for automated 
integration and testing, wherein a new module can only demand testing related 
to its functionality, not a full testing regression regime.

Finally, PI allows for more of an OS-like model. Just as there are well-
defined buses and sockets for SI, PI provides the same pin-outs and sockets 
for “firmware.” Removing the time and effort to produce independent SI 
initialization modules will move the bar to providing more vendor-specific value 
added features on the platform that are end-customer visible, such as accelerated 
boot time or a rich graphical user interface. The advantages of UEFI PI become 
even more powerful for both the small and highly-integrated system-on-a-chip 
(SOC). The intent of UEFI PI specifications is to cover enough interfaces to 
“build real systems” but not so much as to make every implementation look the 
same or remove the opportunity to innovate and differentiate.

UEFI PI will continue to offer a robust execution environment for system 
board manufacturers to innovate and provide assurance around the 
implementation of UEFI and UEFI PI features. 
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And finally, the UEFI PI provides a menu of items from the SI producer, 
BIOS vendor, and others who can provide content. And it is from this  
menu that the system board vendors can choose elements that they need to 
build basic platform capabilities, freeing up their development resources  
to build differentiated added value while covering basic tasks from these 
menu items. 
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The computer industry has evolved a great deal over the years, experiencing 
various design changes over time. One thing that has remained the same has been 
the need for interoperability between the platform elements. This article describes 
how the UEFI standard introduces the composite pieces for such interoperability, 
and in so doing, the article illustrates how the end user benefits from the 
advantages gained by from such standards both the OEM and IHV communities.

Introduction to Pre-OS Platform Configuration
The modern UEFI configuration infrastructure that was first described in the 
UEFI 2.1 specification is known as the Human Interface Infrastructure (HII). 
HII includes the following set of services:

 • Database Services. A series of UEFI protocols that are intended to be an 
in-memory repository of specialized databases. These database services are 
focused on differing types of information:

 • Database Repository – This is the interface that drivers interact with 
to manipulate configuration related contents. It is most often used to 
register data and update keyboard layout related information.

 • String Repository – This is the interface that drivers interact with to 
manipulate string-based data. It is most often used to extract strings 
associated with a given token value.

 • Font Repository – The interface to which drivers may contribute font-
related information for the system to use. Otherwise, it is primarily used 
by the underlying firmware to extract the built-in fonts to render text 
to the local monitor. Note that since not all platforms have inherent 
support for rendering fonts locally (think headless platforms), general 
purpose UI designs should not presume this capability.

 • Image Repository – The interface to which drivers may contribute 
image-related information for the system to use. This is for purposes 
of referencing graphical items as a component of a user interface. Note 
that since not all platforms have inherent support for rendering images 
locally (think headless platforms), general purpose UI designs should 
not presume this capability.

 • Configuration Routing Services. The interface that manages the 
movement of configuration data from drivers to target configuration 
applications. It then serves as the single point to receive configuration 
information from configuration applications, routing the results to the 
appropriate drivers.
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 • Browser Services. The interface that is provided by the platform’s BIOS 
to interact with the built-in browser. This service’s look-and-feel is 
implementation-specific, which allows for platform differentiation.

 • Configuration Access Services. The interface that is exposed by a driver’s 
configuration handler and is called by the configuration routing services. 
This service abstracts a driver’s configuration settings and also provides a 
means by which the platform can call the driver to initiate driver-specific 
operations.

Figure 1: Software Interface Relationships with devices
(Source: Intel Corporation, 2011)
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Driver Health Protocol
The UEFI driver model has also introduced the Driver Health Protocol. The 
Driver Health Protocol exposes additional capabilities that a boot manager 
might use in concert with a device. These capabilities include EFI_DRIVER_
HEALTH_PROTOCOL.GetHealthStatus() and EFI_DRIVER_HEALTH_
PROTOCOL.Repair() services. The former will allow the boot manager to 
ascertain the state of the device, and the latter API will allow for the invocation 
of some recovery operation. An example of the usage may include a large 
solid-state disk cache or redundant array of inexpensive disks (RAID). If the 
system were powered down during operating system runtime in an inconsistent 
state, say not having the RAID5 parity disk fully updated, the Driver Health 
Protocol would allow for exposing the need to synchronize the cache or 
RAID during the pre-OS without “disappearing” for a long period during 
this operation and making the user believe the machine had failed. More 
information on the Driver Health Protocol can be found in Chapter 10 of the 
UEFI 2.3 Specification.

“The Driver Health Protocol exposes 

additional capabilities that a boot 

manager might use in concert with a 

device.”
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Firmware Management Protocol
One of the interfaces that also can be found in the latest UEFI specifications 
is the Firmware Management Protocol, which provides an abstraction for 
devices to manage the firmware images associated with them. For instance, 
a particular device (such as a RAID controller) would often have an option 
ROM associated with it that resides on a nonvolatile storage component on 
the physical controller itself. There normally would not be a mechanism for 
the platform to interact with the content of that nonvolatile storage aside from 
a PCI configuration space interaction. Having the device expose abstractions 
that allow the manipulation (such as GetImage, SetImage, CheckImage, and 
GetImageInfo) of the image contents allows the device to have its own option 
ROM content inventoried or even updated. In absence of such an interface, 
data directly associated with the image in the option ROM is largely opaque to 
the platform owners.

Error Reporting
The error interface consists of a set of OS runtime APIs implemented by 
system firmware accessible through runtime UEFI interface mechanisms (that 
is, GetVariable/SetVariable). In the UEFI specification a UEFI variable named 
HwErrRec#### is defined. 

By using this abstraction for a common hardware error record format, the 
following capabilities are provided: 

 • Error reporting to the OS through standardized error log formats.

 • The ability to store OS- and OEM-specific records to the platform 
nonvolatile storage in a standardized way and to manage these records 
based on an implementation-specific usage model.

By standardizing the means by which platform error records are produced/
consumed, a much more robust mechanism of information interchange can be 
achieved between the hardware and software elements of the platform.

Why UEFI Matters to IBM and the x86 Server/HPC 
Marketplace
This section provides targeted examples on how the advent of UEFI as a 
standard has helped address prior limitations and improve the offerings that 
IBM has been able to provide in the pre-OS environment.

Limitations of BIOS
BIOS originated with the first IBM PC in 1981 and has grown over time to 
accommodate the ever-increasing demands of enterprise and high-performance 
computing. Significant architectural limitations restrict the further growth of 
BIOS. One major architectural restraint is that BIOS runs in 16-bit processor 
mode, causing the following functionality limitations:

 • Generally, only 1 MB of memory is addressable at any time.

“the Firmware Management Protocol, 

which provides an abstraction for 

devices to manage the firmware images 

associated with them.”

“By standardizing the means by 

which platform error records are 

produced/consumed, a much more 

robust mechanism of information 

interchange can be achieved between 

the hardware and software elements  

of the platform.”
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 • The space for PCI option ROMs and how much code they can run are 
limited, restricting both the number of adapters that can be installed 
(approximately four) and how much functionality they can contain.

 • Space for advanced BIOS functionality is limited.

 • The firmware image is monolithic and nonmodular.

Although much of the x86 processor, memory, and I/O technology has greatly 
evolved over the past 30 years, the system BIOS has remained essentially 
unchanged. 

The original BIOS was not intended to accommodate server technologies such 
as scalable multi-way systems, advanced power and energy management and 
capping, remote console, and systems management. 

Advantages of UEFI for High-Performance and Enterprise Systems
The primary advantages of UEFI for high-performance and enterprise systems 
are:

1. The ability to boot 2.21 TB Storage Partitions

2. The ability to configure/deploy HII-complaint adapters

3. The ability to grow beyond 128k PCI OPROM space limitations and other 
BIOS memory map restrictions

4. 64-bit UEFI pre-boot space for add-on pre-OS technologies

Recent History and Future of IBM x86 UEFI Development
As platforms within IBM adopted the UEFI standard, the immediate goal 
was to achieve at least parity with our current pre-OS capabilities. This was 
achieved, and as we developed ongoing solutions we were able to outstrip 
our prior capabilities and add further innovation as the platforms evolved, as 
shown in Figure 2. 

“Although much of the x86 processor, 

memory, and I/O technology has 

greatly evolved over the past  

30 years, the system BIOS has 

remained essentially unchanged.”

Figure 2: Evolution of UEFI within some IBM platforms
(Source: IBM Corporation, 2011)
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IBM UEFI-Compliant Firmware Boot Manager 
IBM UEFI firmware supports UEFI booting and BIOS booting without 
requiring that boot modes or settings be changed. Unlike in other UEFI/BIOS 
compatible systems, IBM UEFI firmware supports both boot methods within 
one managed boot order. 

The UEFI boot process is significantly different from the BIOS boot process: 
instead of booting devices, the system boots specific targets from physical or 
logical device paths, so boot media can contain virtually unlimited boot targets 
(operating-system instances). 

By default, the firmware favors UEFI boot targets if both are available; for 
example, if the CD drive is first in the boot list and a dual bootable media 
(booted BIOS or UEFI) is present, the firmware detects that the CD is UEFI-
bootable and hands off to the EFI boot loader. You can override this preference 
by inserting the Legacy Only flag above a boot target in the boot list that you 
want to boot BIOS only.

Notes:

 • If you insert the Legacy Only flag into the boot order list, the server invokes 
the compatibility module for booting regardless of whether there appears 
to be anything there to boot (that is, UEFI is not aware of media behind 
non-UEFI compliant adapters). When the Legacy Only option is invoked, 
the server is committed to a BIOS boot, and the server eventually resets if 
nothing is booted during the BIOS boot process. 

 • Some UEFI-aware operating systems that also have BIOS support are 
installed according to how the dual-boot installation media was booted. 
Therefore, if you want to install Microsoft Windows* Server 2008 x64 as a 
UEFI-aware operating system, you must boot the UEFI boot loader on the 
installation media. This happens by default unless you use the Legacy Only 
flag to force the media to be booted as a BIOS boot target. 

The Boot Process
The UEFI specification extends the boot process to allow several new boot 
management capabilities. Key features of UEFI include the ability to create 
user-defined boot options, associate additional parameters to pass to the boot 
loader, assign unique names (for example,  “Emma’s Maintenance OS”), and 
manage multiple operating-system installations on one boot device. 

Table 1 compares the boot processes and highlights some of the differences 
between BIOS booting and UEFI booting.

“The UEFI specification extends the 

boot process to allow several new boot 

management capabilities.”
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BIOS Boot Process UEFI Boot Process

Hands off control to the master boot 
record (MBR)

Hands off control to a boot loader 
on the UEFI partition

One MBR per boot device Possible multiple boot loaders on one 
device

Options are limited to categories 
such as CD or hard disk drive.

User-defined boot options can be 
created in addition to generic boot 
device categories. 

Configuration information cannot 
be passed to the MBR and operating 
system.

The user or operating-system agent 
can add parameters to the boot 
options.

The boot order information is stored 
in CMOS memory.

Boot options and their order are 
stored in NVRAM.

Table 1: Comparison of BIOS and UEFI Boot Processes
(Source: IBM Corporation, 2011)

Notes:

 • IBM UEFI firmware supports both boot processes through the System x 
boot manager with the limitation that BIOS booting is terminal; that is, 
when the compatibility support module (CSM) is invoked for a boot, the 
system cannot return to the UEFI boot manager.

 • In UEFI bootable media, the main UEFI boot loader is usually at \efi\
boot\bootx64.efi. It must be at that location if the firmware is to boot it 
automatically without requiring that you manually add a boot option for 
where the applicable boot loader binary is located and named. Any valid 
UEFI boot loader at efi\boot\bootx64.efi is invoked when the boot option 
for the device is enumerated.

Generic Boot Options
The generic boot options shown in Table 2 are, for the most part, smart options. If 
a CD or DVD contains a UEFI boot record in the master catalog, the CD/DVD 
boot is an EFI boot. If the CD or DVD does not contain a UEFI boot record but 
it does contain an x86 boot record, the CD/DVD boot is a BIOS boot.

Dual-boot media is media that can simultaneously meet UEFI and BIOS boot 
requirements. 

“Dual-boot media is media that can 

simultaneously meet UEFI and BIOS 

boot requirements.”
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Generic Boot Option Dual-Boot Media Support

CD or DVD Yes*
Diskette Yes*
USB storage Yes*
Hard disk 0,1, 2, 3, 4 No; either master boot record (MBR) or GUID 

partition table (GPT)
Network N/A; will try EFI network boot first*
Embedded hypervisor N/A; hard-wired to boot the hypervisor option 

Table 2: Meeting both UEFI and Legacy BIOS boot requirements
* If there is no Legacy Only flag in the boot order list, the boot manager gives preference to 
booting dual-boot media as UEFI. If you insert the Legacy Only flag above a boot target in the 
boot order list, that media will be forced into a BIOS boot.

(Source: IBM Corporation, 2011)

Note: All UEFI bootable media must be FAT formatted. 

Legacy Only is not a boot option but a flag that indicates to the firmware that 
any generic boot options below it in the boot order list are to be BIOS booted, 
even if they could be UEFI booted. There are two designed reasons for the 
Legacy Only option:

 • To force a CD/DVD BIOS installation for a dual-boot CD or DVD

 • To boot to a hard disk that is not visible to the EFI environment (a non-
IBM disk controller without EFI firmware)

CD or DVD 
A table of contents describes partitions and indicates whether those partitions 
are bootable and, if they are, which architecture (BIOS x86 or UEFI). 

Notes:

 • The Microsoft Windows Server 2008 installation DVD contains two 
bootable partitions: one for BIOS x86 and one for UEFI.

 • Some versions of SLES 11 installation media contain two bootable 
partitions; however, both are designated for BIOS x86 and therefore will be 
booted through the BIOS compatibility mechanism. 

Diskette 
Diskettes use a FAT file system, and they are not able to store a large amount of 
data. However, a diskette is tested to determine whether it is bootable, and if it 
is, the server goes into BIOS mode to boot the diskette. Note that a formatted 
diskette always appears to be bootable, even if it has no DOS or other bootable 
image; therefore, the presence of a diskette in the drive causes the server to 
attempt to boot from it. Remove any diskette from the drive before you boot 
the server unless you intend to boot from it.
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USB Storage 
USB storage is similar to a hard disk in that it has a master boot record (MBR). 
However, because it is removable media, the specification allows for USB 
storage to include an \efi\boot\bootx64.efi file. If a USB key contains the file, it 
is EFI bootable. You can place a fullshell.efi file on a USB key and rename it to 
\efi\boot\bootx64.efi. Then, if you boot from the USB key, it EFI boots to the 
shell. If there is no \efi\boot\bootxX64.efi file on the USB key, the UEFI boot 
manager examines the MBR, and if it is designated as bootable, the server goes 
into BIOS mode and boots from the USB key. (See “Starting the UEFI Shell” 
for information about obtaining and running the shell environment.)

Hard disk 
A BIOS-bootable operating system can be installed only to a master boot 
record (MBR) partition, and an EFI-bootable operating system can be 
installed only to a GUID partition table (GPT) partition. MBR partitions and 
GPT partitions may not coexist on the same volume. Therefore, if a selected 
partition is MBR, it is BIOS-booted; if it is GPT, it is EFI-booted.

Network 
The server first attempts an EFI network boot. If that fails, the server passes 
control to the compatibility source module (CSM) to attempt a BIOS network 
boot. You can configure the iSCSI and PXE settings through the Setup utility 
(System Settings ➝ Network panel). You can specify Legacy, UEFI, Both, or 
None. 

Embedded Hypervisor
An embedded hypervisor key is a USB key with a specific vendor ID/product 
ID (VID/PID). It is excluded from processing in the USB storage entry, and 
USB keys are excluded when the Embedded Hypervisor entry is processed. An 
embedded hypervisor key can be installed internally or externally.

Operating System Deployment
The UEFI boot manager processes devices in the boot order list, one at a time, 
as it searches for a potential bootable device. If the boot manager detects a 
UEFI-bootable device, it attempts to boot that device. If that attempt fails, 
the boot manager returns to the boot order list. For most devices, the boot 
manager goes to the next device and tries again. For PXE and iSCSI, the boot 
manager checks for Legacy at this time. 

If the firmware detects that the boot target is only BIOS bootable (that is, it 
has only a bootable MBR), it will take the current boot order list and perform 
the same step as Legacy Only, and transition to legacy mode. 

“A BIOS-bootable operating system 

can be installed only to a master boot 

record (MBR) partition, and an 

EFI-bootable operating system can be 

installed only to a GUID partition 

table (GPT) partition.”
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Example: 

The boot order is as follows:

1. DVD

2. Hard disk drive 0 (formatted with a bootable BIOS MBR) 

3. USB

The UEFI boot manager inspects for a DVD and determines that no DVD is 
present. 

Next, the boot manager attempts to inspect hard disk drive 0. If the boot 
manager successfully inspects hard disk drive 0 and determines that it is has 
a bootable BIOS MBR, the boot manager sends the boot order list to the 
compatibility support module (CSM), unloads UEFI from memory, and starts 
the CSM for a BIOS boot. However, if the boot manager is unable to inspect 
hard disk drive 0 (for example, because it is managed by an atypical legacy 
storage adapter that does not have a UEFI device driver and cannot have UEFI 
support emulated through thunking), the boot manager does not recognize a 
BIOS operating system. In this case, you must manually add the Legacy Only 
flag above HardDrive0 to instruct the boot manager to assume that a BIOS 
operating system is associated with hard disk drive 0. 

For information about adapter support issues and use of the Legacy Only flag, 
see “BIOS Support” and “Optimizing Boot-time Performance.”

Notes:

 • Before you attempt to install a UEFI-aware operating system on a hard disk 
that is already formatted with an MBR, you must delete all partitions from 
the disk or reformat the disk with GPT.

 • The UEFI 2.3.1 specification allows the UEFI boot manager to look in \efi\
boot\bootx64.efi for a valid UEFI boot loader on a hard disk drive when no 
specific boot loader is specified in the boot option, because a generic boot 
option (such as HardDrive0) or a partial media path is being used. Earlier 
UEFI specifications provide this capability only for removable media such 
as USB keys.

Boot Management Limitations
This section describes the boot management limitations that are associated with 
the UEFI firmware and how to work around those limitations.

Non-UEFI-Compliant Boot Devices
Some non-UEFI-compliant adapters, such as storage controllers, provide UEFI 
emulation interface wrappers (known as legacy adapter thunking) through the 
IBM UEFI firmware. A controller adapter that is not UEFI compliant (that 
is, it does not have a UEFI device driver) and is not enabled for legacy adapter 

“If the boot manager successfully 

inspects hard disk drive 0 and 

determines that it is has a bootable 

BIOS MBR, the boot manager sends 

the boot order list to the compatibility 

support module (CSM), unloads 

UEFI from memory, and starts the 

CSM for a BIOS boot.”
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thunking requires special consideration when you configure the server to boot 
from targets that are managed by that controller. You must insert the Legacy 
Only flag above the generic boot option that represents the target adapter. For 
more information, see “Using the Legacy Only Flag.” Inserting the Legacy Only 
flag instructs the UEFI firmware to invoke the compatibility support module 
(CSM) and attempt a legacy boot, even though it cannot detect a boot target. 
The CSM detects the boot target because the legacy option ROM will have run 
in this case.

Generic Boot Options
Generic boot options provide BIOS-like ease of configuration; however, they 
do not allow you to specify which specific device in a category to boot first. To 
overcome this limitation, you can reorder the option ROM execution order 
(for legacy boots from adapters) or add specific device path boot options (for 
UEFI boots).

Multi-Path Controllers 
Although you can use the Setup utility to effectively create UEFI and BIOS 
boot options, there are cases in which it is preferable to use the boot option 
that is created by a UEFI-aware operating system (for example, multipath 
controllers). Manually adding a boot option by traversing the file system and 
adding the boot loader results in a specific device path, whereas the operating 
system can create a media path that allows a multipath controller to lose a path 
and still boot.

Understanding Boot Performance on x86 Systems
Optimizing Boot-time Performance 
The simplest way for customers to achieve quicker boot times for a 
configuration is to install and boot UEFI-aware operating systems whenever 
possible. For deployments in which a UEFI-aware operating system is not 
available, this section introduces concepts and techniques for optimally 
configuring adapter support for legacy boots. 

The major variable determinants of server boot-time performance are how much 
memory capacity is available and what adapters are installed. Other determinants 
of boot-time performance are inherent to the design and core technologies of the 
server design (such as CRTM/TPM, platform self-test, and power management) 
and are not configurable. Always use the latest available firmware, because any 
optimizations to these core features will be in the latest firmware releases.

Memory
The more memory that is installed, the more there is to initialize ECC and test. 
You can install less memory, but that usually does not result in significant boot-
time improvement. The best approach for optimizing boot time and memory 
use is to balance DIMMs and memory capacity among installed processors. 

“The simplest way for customers 

to achieve quicker boot times for 

a configuration is to install and 

boot UEFI-aware operating systems 

whenever possible.”

“The best approach for optimizing 

boot time and memory use is to 

balance DIMMs and memory capacity 

among installed processors.”
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Balancing memory optimizes memory initialization on servers with integrated 
memory controllers (such as Intel Xeon® 5500 based servers). For details, see 
the Optimizing the Performance of IBM System x and BladeCenter Servers Using 
Intel Xeon 5500 Series Processors whitepaper.

Adapters
Some classes of server adapters, such as network or RAID controllers, can 
take considerable time to initialize in the pre-operating-system UEFI or BIOS 
environment. Because IBM UEFI firmware simultaneously supports both 
UEFI and BIOS boot mechanisms, there can be unwanted repetition of adapter 
initialization when BIOS operating systems are booted. This repetition can 
occur with an adapter that includes native UEFI device drivers in addition to 
BIOS code on its adapter ROM.  Figure 3 illustrates how there are some factors 
that show where time is spent during the initialization process in a platform.  

Figure 3: Relative determinants of boot-time performance
(Source: IBM Corporation, 2011)
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UEFI-Compliant and Legacy BIOS Adapter Support
There are three places where adapters can be initialized:

 • UEFI: Driver execution environment (DXE) dispatcher and boot device 
selection (BDS) connect controllers. 

 • UEFI legacy compatibility: 16-bit thunk device drivers initialize legacy 
option ROMs and provide a UEFI compatibility wrapper.

 • Legacy compatibility module boot process: Legacy option ROMs are initialized 
as part of the legacy boot process (only when booting legacy, non-UEFI-
aware operating systems).

Optimal Scenario
The best way to ensure the fastest boot time is to use UEFI-compliant 
adapters and a UEFI-aware operating system. Figure 4 illustrates the firmware 
interactions of an adapter with both a UEFI-compliant device driver and legacy 
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Non-Optimized BIOS Boot Scenario
Figure 5 illustrates the worst-case scenario, in which an adapter with both a 
UEFI-compliant device driver and a legacy option ROM has its UEFI device 
driver connected during UEFI preboot and its legacy option ROM run during 
a BIOS boot. This redundancy is due to the UEFI preboot requirement to 
detect whether there is bootable media behind the adapter. The preferred 
method of doing this is to connect the UEFI device driver and check for 
bootable media. If the media contains a UEFI-aware operating system, there 
is no redundancy; however, if the media contains a legacy master boot record 
(MBR) operating system, the redundancy occurs because UEFI unloads 
(including the adapter UEFI device driver) and loads the compatibility support 
module (CSM), which calls the adapter legacy option ROM. 

Figure 4: Optimal scenario—default dual BIOS/UEFI-compatibility adapter behavior 
during a UEFI boot  
(Source: IBM Corporation, 2011)
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ROM. The legacy code of the adapter is never invoked; therefore, the time 
penalty of that initialization is not incurred. Because the server is booting a 
UEFI-aware operating system, there is no need for BIOS compatibility for this 
boot. 
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Optimized Legacy BIOS Boot Scenario
Figure 6 illustrates a scenario in which the server is going to boot a BIOS 
operating system and, therefore, boot-time performance can be optimized by 
disabling UEFI support for the adapter. The result depends on the PCI class of 
the adapter:

 • Storage adapters: The IBM UEFI firmware invokes thunking support to 
provide a UEFI compatibility wrapper, enabling the UEFI boot manager 
to detect the media that the adapter is managing, if UEFI or legacy boot 
targets are available. This is critical, because if the UEFI boot manager 
cannot detect the media, it cannot recognize that an operating system is 
available to be booted.

 • Other adapters: The UEFI boot device selection (BDS) logic cannot 
recognize that an operating system is available to be booted, so you must 
insert the Legacy Only flag above the category that the adapter is in (for 
example, Network). This flag instructs the firmware to assume that a BIOS 
operating system is available to be booted and that the compatibility 
support module (CSM) will detect it after the legacy adapter ROM is 
called.

“if the UEFI boot manager cannot 

detect the media, it cannot recognize 

that an operating system is available to 

be booted.”

Figure 5: Worst-case scenario—default full-compatibility adapter behavior during a 
BIOS boot
(Source: IBM Corporation, 2011)
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Using UDK2010 to Profile, Understand, and Improve IHV Adapter 
and Driver Boot Times 
There are six significant steps to using UDK2010 to profile, understand, and 
improve IHV adapter and driver boot times:

1. Use System x UEFI/UDK2010-based firmware with performance 
monitoring enabling. Contact the platform OEM for instructions or test 
build to enable this functionality. (Contact your IBM/OEM IHV building 
block owner for development platform availability.)

2. Use the UDK2010 DP Tool (Driver Performance) that is compiled for the 
target system. Note: this driver can be platform-unique, and in the case 
of IBM x86 servers and blades the use of the IBM-version of the DP tool 
is highly recommended. (Contact your IBM/OEM IHV building block 
owner.)

3. Run the system under the desired profiling conditions and configuration. 

4. Enter the UEFI Shell (internal or using “load from file”) and invoke the DP 
tool (from USB or other FAT formatted media).

5. Analyze the output form DP tool to understand overall driver execution 
time.

Figure 6: Optimized BIOS boot scenario–adapter behavior with UEFI support 
disabled on UEFI/BIOS adapter ROM during a BIOS boot
(Source: IBM Corporation, 2011)
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6.	 If	execution	time	is	longer	than	desired,	additional	performance	start/
end	checkpoints	can	be	added	to	understand	what	functions/calls	
are	consuming	the	most	time	and	return	to	step	3	(repeat	until	the	
performance	issues	are	understood	and	accounted	for).

UEFI HII Configuration Support and Legacy OPROMs
IBM	System	x	Servers	and	Blades	released	since	the	first	half	of	2009	support	
both	the	UEFI	2.1	and	2.0/1.10	means	of	driver	configuration	(Human	
Interaction	interface	and	Driver	Configuration	Protocol	respectively).	

Future	IBM	systems	will	include	a	UEFI	2.3-compliant	HII	browser	(aka	F1	
Setup	and	Boot	Management).	As	such,	IHV	support	should	be	tested	for	its	
ability	to	present	and	function	properly	on	UEFI	2.3-compliant	HII	browsers.	

IBM	typically	prefers	that	x86	boot	adapters	support	both	UEFI	2.3	
and	include	a	legacy	OPROM	image.	The	legacy	OPROM	should	take	
its	configuration	from	the	UEFI	driver	and	accordingly	the	OPROM	is	
not	expected	to	present	the	user	with	a	Ctrl	sequence	to	enter	a	adapter	
configuration	UI.	

Built-in settings

(DCP)

UEFI < 2.1 drivers

UEFI 2.1+ drivers 
(HII)

Figure 7: Organization of a Platform Configuration Screen.
(Source: IBM Corporation, 2011)

Developing UEFI2.3 HII Support for New IBM  
x86-based Servers and Blades 
When	migrating	existing	or	building	new	add-on	driver	support	for	adapters	or	
pre-boot	technologies,	there	are	two	major	requirements	to	be	aware	of:

1.	 Drivers	must	follow	the	HII	code	definition	in	the	Unified Extensible 
Firmware Interface Specification	whose	version	is	no	later	than	v2.3.

2.	 Driver	developers	must	use	VFR Programming Language	whose	version	is	no	
later	than	v1.3,	which	supports	UEFI2.3	HII	IFR	opcodes.
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HII 2.3 Protocols 
For HII driver support developed using the Intel framework HII and 
currently use EFI HII protocol gEfiHiiProtocolGuid, they should instead 
use UEFI HII database protocol gEfiHiiDatabaseProtocolGuid. Additionally, 
UEFI HII configuration access protocol should be used instead of 
gEfiHiiConfigAccessProtocolGuid.

Driver Implementation of Configuration Access Protocol 
HII-compliant drivers must implement both EFI_HII_CONFIG_ACCESS_
PROTOCOL.ExtractConfig() and EFI_HII_CONFIG_ACCESS_PROTOCOL.
RouteConfig(). The configuration setting values output in the Result parameter 
of ExtractConfig() should be those extracted from permanent storage, and the 
extract action should be done by ExtractConfig(). The configuration setting 
values input in the Configuration parameter of RouteConfig() should be stored 
into permanent storage and the store action should be done by RouteConfig().

VFR Writing Syntax
Driver developers should define VFR files in the UEFI 2.3 VFR syntax. VFR 
files defined in framework VFR syntax should be migrated into UEFI 2.3 VFR 
syntax.

UDK2010 VFR Compiler 
When using the VFR compiler, developers should not indicate -c or 
--compatible-framework to avoid the VFR compiler treating the VFR file to be 
built as a framework VFR file. The VFR compile option is indicated in DSC 
file.

VFR compiler options example:

$(R8_DIR)\Platform\$(PROJECT_FAMILY)\$(PROJECT_NAME)\Setup\
Dxe\DxePlatform.inf {
    <BuildOptions>
      *_*_*_VFR_FLAGS 5 -c   # This line should be removed when using 
UefiSetup/Dxe/DxePlatform.inf
      *_*_*_BUILD_FLAGS 5 -c
  } #flashmap

Default Setting Stores
Driver developers should at define at least one default setting store.

Default setting store example:
defaultstore MyStandard, prompt 5 
STRING_TOKEN(STR_STANDARD_DEFAULT), attribute5 
EFI_HII_DEFAULT_CLASS_STANDARD
IBM UEFI-compliant firmware will set standard defaults to drivers if they 
cannot find out the current configurations.

Defining Settings on the Fly
IHV Driver developers should statically list as many of the configuration 
settings in the VFR file as possible. If some settings have to be created 
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dynamically, try to do this action in a driver binding protocol service, such 
as Start() and Stop(), or when IFR data is populated into HII database. 
Avoid adding new questions to the formset from within EFI_HII_CONFIG_
ACCESS_PROTOCOL.CallBack() whenever possible.

All settings should be manipulated via the IFR opcodes (that is, suppress-
if, gray-if, and so on) and not through EFI_HII_CONFIG_ACCESS_
PROTOCOL.CallBack(), which should only be used for non-setting 
questions.

Question ID Value
In the VFR Programming Language specification, assigning a value to 
questionid is optional; if it is not defined the compiler assigns a unique ID 
automatically. IBM strongly prefers that IHV drivers assign a fixed ID number 
for all questions whether the question represents a configuration setting or not. 

If a question is removed in future updates, the questionID number reserved for 
it should not be used again.

For questions that are dynamically created, questionid should be fixed and 
unique in the scope of existing static questionIDs defined in VFR and other 
dynamic questions created in runtime.

Question Prompt Style Guidance
IHV drivers should use prompt strings as short as possible, capitalize the first 
letter of each word, and ensure that a question’s “prompt” is unique within a 
FormSet. 

Prompts should remain consistent from build to build to maintain consistency 
for consumers. 

Question Duplication
Question duplication is a case where two or more formsets use the same 
varstore location. IBM prefers that IHV drivers avoid duplicate questions as 
this can complicate customer experience and inhibit the ability of automated 
deployment entities to accurately model the driver configuration. 

Note/Tip: if developers need to use the value of a question in another formset 
to build an expression, question reference can be used instead of creating a 
duplicate question. 

Defining Settings for OEM/MFG Use
Questions representing settings that are not intended for customer use can 
use the “suppressif TRUE;” VFR syntax to contribute the question to the HII 
database while keeping production versions of the system HII browser from 
rendering the question. Note that this is not a secure means of protecting 
settings, but rather an alternative way of representing settings deemed useful to 
manufacturing processes but not useful for end users. 
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Emulex Driver Development: Legacy, EFI 1.10, and 
UEFI 2.x
Emulex has collaborated with Intel for nearly ten years on driver development 
for their HBAs (Host Bus Adapter) in a Fibre Channel storage area network 
(SAN). Beginning with the Itanium® servers, Emulex developed the legacy 
(X86) driver. With Emulex’s expertise adding to the driver development 
process, their legacy X86 boot driver quickly evolved to EFI, with a monolithic 
driver architecture that combined Block I/O, SCSI I/O and SCSI Pass Thru 
protocols. As EFI evolved, Emulex took a lead role in replacing the X86 driver 
with the EFI (1.10) driver. Most recently, Emulex developed the HII driver, 
based on UEFI 2.x, for its HBAs (see Figure 8).

This section provides a historical view of the driver evolution, with the legacy 
development covered first, followed by the EFI 1.10 development, and 
then finishing with the UEFI 2.x development. For these three phases, the 
challenges and advantages are noted.

Legacy Driver: Understanding Expansion ROMs
Legacy Expansion ROMs are the mechanism by which IHVs include 
initialization, software interrupt services, and configuration utilities with 
their add-in cards. These services allow system BIOS, software, and operating 
systems to access devices that are not natively supported by the BIOS. 

During Power-On Self-Test (POST), expansion ROMs are loaded into the 
upper memory area by the system BIOS and initialized by calling a well-known 
initialization entry point. It is the responsibility of the expansion ROM to 
initialize the add-in card, discover any devices managed by the add-in card, 
install the appropriate interrupt services, and prompt the user for keystrokes to 
enter the IHV’s configuration utility.

The Constraints and Restrictions of Option ROMs in Legacy  
BIOS Systems
Expansion ROMs are single-threaded real-mode drivers that provide software 
interrupt services for the devices they control. The basic model for expansion 
ROMs and BIOS ROM scan date back to IBM XTs. 

In the ensuing decades, a number of enhancements were introduced in 
hardware and in the BIOS to extend the capabilities to meet evolving needs 
and to mitigate architectural limitations. Despite this, system resources, 
particularly in fully configured enterprise systems, remain at a premium. The 
size of the upper memory region places a limit on the number and size of 
expansion ROMs that can be loaded and initialized by the system BIOS.

Other aspects of the PC/AT architecture impose limits and challenges for 
IHVs, BIOS developers, and system integrators as well, described below. In 
other cases, such as allocation of Extended BIOS Data Area (EBDA), there are 
multiple algorithms that have been employed over the years that can conflict 
with BIOS or other expansion ROMs.

“As EFI evolved, Emulex took a lead 

role in replacing the X86 driver with 

the EFI (1.10) driver.”

“Legacy Expansion ROMs are the 
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with their add-in cards.”

“system resources, particularly in fully 
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Figure 8: an example of a storage adapter with 
HII support 
(Source: Emulex Corporation, 2011)

IBM 42D0494
8Gb/s Dual Channel HBA
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Following are some of the complications that have to be dealt with by 
expansion ROM developers:

 • Extended BIOS Data Area (EBDA) - The algorithm for allocation of EBDA 
is covered in the PCI 3.0 specification, but was not standardized prior 
to that. Several algorithms for allocating EBDA memory were used by 
different OEMs, causing various compatibility issues with BIOS features 
that utilize EBDA, such as CD-ROM boot.

 • Memory allocation - Options for memory allocation vary such as POST 
Memory Manager (PMM), use of EBDA for scratch memory during 
initialization, or looking for unused segments in the lower 640 K of 
conventional memory.

 • No hard drive boot failover - By convention only the first enumerated hard 
drive in a legacy system will be used as a boot device.

 • Access of memory and I/O above 1 MB - In order to access memory above 1 
MB, expansion ROMs have to switch in and out of Big Real Mode.

 • Lack of published standards - BIOS documentation and standards 
are incomplete and often exist as tribal knowledge. This can lead to 
interoperability issues.

 • Reliance on obsolete development tools - Expansion ROM developers often 
rely on unsupported and out-of-date tools capable of building 16-bit 
executables, such as MASM, and TASM. In addition, developers often have 
to write their own utilities to convert the compiled and linked executable 
into the final ROM image. Setting up the initial build environment and the 
basic framework for an option ROM is not a trivial task.

Legacy Expansion ROM Configuration Utility User Interface 
Development Challenges
Expansion ROM configuration utilities are small embedded applications that 
can be invoked by the user during POST by entering a key sequence when 
prompted by the expansion ROM. They are typically developed in C or 
assembly language and compiled into the expansion ROM image.  

Implementations vary from simple text-driven prompts for user input to fairly 
elaborate menu driven utilities. They are, however, all designed to run in a pre-
boot environment and are limited to using the available BIOS services.

In practice, because of the variety of BIOS implementations, such utilities are 
often designed for the lowest common denominator. In this way, they are not 
prevented from running on systems that lack optional advanced BIOS services, 
such as PMM.

Furthermore, the basic constructs of a user interface, such as menus, must be 
developed from scratch using a relative sparse set of primitive services provided 
by the video BIOS.

Figure 9 shows a screenshot of the X86 BIOS entry point during POST. 

“Lack of published standards - BIOS 

documentation and standards are 

incomplete and often exist as tribal 

knowledge.”

An expansion ROM configuration utility is 
a stand-alone embedded application relying 
exclusively on BIOS services, with the following 
development challenges:

 • Size restrictions at runtime and in flash

 • Stack and variable space

 • Screen management must be developed from 
primitive BIOS video services. These are used 
to construct menus

 • Obsolete build environment and tools

 • Assembly language

 • No provision for multi-language 

 • Configuration changes require system reboot

 • Small window of time to invoke 
configuration utility during POST



Intel® Technology Journal | Volume 15, Issue 1, 2011

UEFI and the OEM and IHV Community   |   59

Early Emulex EFI Drivers
When Emulex first switched from a legacy driver to one that was EFI 
compatible, this was early in the history of technology adoption with the EFI 
1.1 version of the specification. This section describes some of the history and 
key learnings achieved from that effort.

EFI 1.10 Driver Development History
The EFI 1.10 specification was published by Intel Corporation in 2002. Intel 
also developed an EFI 1.10 sample implementation that was available for 
download from their Web site. 

The EFI sample implementation included source code for a variety of EFI 
drivers, as well as makefile examples that could be easily leveraged by a 
developer to create a new EFI driver that would build along with the sample 
implementation. 

The Intel EFI 1.10 was adopted as the basis of the UEFI 2.0 specification. The 
reader should be aware that all references to the 1.10 specification apply equally 
to UEFI 2.0.

The Intel Sample Implementation is no longer maintained and has been 
replaced by the TianoCore open source project, which is based on the Intel 
Sample Implementation. 

EFI 1.10 Driver Development
Emulex’s early EFI focus was on porting the existing Fibre Channel expansion 
ROM to an EFI 1.10 driver, in order to provide basic boot from SAN support 
(see Figure 10) on Itanium platforms and only support switched fabric. 

“The Intel Sample Implementation is 

no longer maintained and has been 

replaced by the TianoCore open source 

project, which is based on the Intel 

Sample Implementation.”

Figure 9: Legacy Post Screen Banner 
(Source: Emulex Corporation, 2011)
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Subsequent releases focused primarily on expanding Fibre Channel support 
(that is, arbitrated loop) and enabling the user to access adapter firmware 
features, such as forcing specific link speeds, as well as options for depth of 
device discovery. 

Boot LUN
Server A

Boot LUN
Server B

Server A Server B

Figure 10: This “boot from San” diagram shows two 
servers using Fibre Channel HBas to access their boot 
images, which are located on an external array.
(Source: Emulex Corporation, 2011)

SCSI Driver Model
The Emulex Fibre Channel driver is based on the SCSI Driver Model as 
originally defined in the Intel SCSI Driver Model document, which is 
incorporated in the UEFI 2.3 specification as Section 14. The SCSI Driver 
Model defines a driver stack with abstraction layers for block I/O, SCSI bus, 
and a SCSI passthrough protocol, which provides the abstraction layer for the 
host interface of an IHV’s storage adapter.

The SCSI Driver Model document suggests producing separate drivers for the 
three abstraction layers that comprise the SCSI driver stack. Following this, 
Emulex’s first implementation did consist of three drivers and lacked provisions 
for configuration and diagnostics. 

Customer feedback and support issues led Emulex to produce a single 
monolithic driver capable of producing all of the handles and protocols called 
for in the SCSI driver model documentation.

EFI Architecture Advantages over Legacy
Moving from legacy development to EFI resulted in the following notable 
advantages:

 • Sample implementations available in the UEFI specification and EFI 
Developer’s Kit (EDK) make it easy to put together the basic framework of 
a driver 

“Customer feedback and support 
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 • EFI drivers more closely resemble a modern OS device driver

 • A rich set of system services 

 • An exclusively C language development environment (no assembly language)

 • System firmware services are more standardized, and better documented

 • Modern build tools

 • Full access to system memory 

 • Capable of multilanguage support

 • Configuration changes don’t require reboot

 • EFI byte code allows a single driver image to support multiple processor 
architectures

 • Standard means of compressing the boot driver image

 • Decompression code is not carried in the driver

Emulex development engineers discovered that though working with the UEFI 
standard, OEMs implement the standard in slightly different ways. With 
the 1.10 driver, there were very few differences across OEMs and no noted 
conflicts with other storage drivers in the system, whereas expansion ROM 
conflicts are a fairly common occurrence.

The 1.10 Configuration Utility User Interface  
Development Challenges
The EFI 1.10 specification provides a mechanism for driver configuration 
through the DriverConfigurationProtocol. The protocol defines three 
functions, which can be entered through the EFI shell command “drvcfg”.

EFI 1.10 configuration utilities are fairly similar to Expansion ROM utilities. 
They are embedded configuration programs that rely on the available system 
services and are responsible for implementing the screen management 
functions required to render the application menus and screens.

In some cases, EFI configuration utilities have slight advantages over their 
expansion ROM counterparts, such as better access to system memory. In other 
cases they have slight disadvantages, with the most notable being the relative 
sparseness of the Simple Text Output protocol over the services provided by the 
BIOS interrupt 10h interface.

The model for the 1.10 driver configuration requires a significant amount of 
developer effort and code space in order to produce a reasonably useful user 
interface for configuring the driver and the IHV’s add-in card. The following 
section provides details on topics the developer should be aware of.

Simple Text Output
The SimpleText Output protocol comprises the standard set of text-based 
console I/O services available to EFI drivers. The protocol provides very basic 
functions for setting cursor position, setting output attributes, setting screen 
modes, and outputting text strings.
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Menu Navigation / User Experience
Screen management is the sole responsibility of the developer who needs to 
create whatever screen management routines and constructs, such as menus 
and windows, that are required. The sample implementation does include some 
library functions for console I/O that leverage the Simple Text Output protocol 
for things like formatted output.

Among the challenges encountered by Emulex were some behavioral changes 
noted in library functions when changing EDKs. Additionally, there were 
difficulties displaying data types that vary in size from machine to machine.

Input of User Data
User input is read through the Simple Input protocol, which provides a single 
function for reading keyboard input, similar to interrupt 16 function 0h. All 
user input data has to be parsed and validated by the developer.

Shell Requirement
EFI supports loading of a command interpreter through the EFI system 
boot manager known as the EFI Shell. However, the EFI specification 
does not require OEMs to include an EFI shell in the system’s ROM. The 
shell optionally supports an internal command for launching EFI driver 
configuration utilities by calling into the Driver Binding protocol.

To launch a configuration utility, the user must load the EFI shell, then run the 
shell command “drivers” to obtain the handle for the driver that they would 
like to configure. Once the user has the driver image handle, the user can call 
the driver’s configuration protocol by passing the handle to the shells “drvcfg” 
command (see Figure 11).

“Screen management is the sole 

responsibility of the developer who 

needs to create whatever screen 

management routines and constructs, 

such as menus and windows, are 

required.”

Figure 11: Example of EFI shell “drvcfg” command 
(Source: Emulex Corporation, 2011)
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This mechanism for launching configuration utilities has caused difficulties for 
Emulex and other IHVs. OEMs are not required to include an EFI shell in 
the system’s ROM and some implementations of the shell have had commands 
removed to free up system ROM space.

Emulex HII UEFI Driver
This section describes the latest driver development: HII UEFI 2.x.

Emulex HII Driver Development History
With the release of the UEFI 2.1 specification, which added the EFI HII 
Configuration Access Protocol, Emulex was one of the first IHVs to port its EFI 
1.10 (drvcfg) driver to be compatible with any system BIOS that had implemented 
the HII. In the development effort, Emulex worked closely with IBM, as they were 
one of the first IHVs to have a UEFI 2.1–compliant system BIOS.

Use of the EDK Sample Driver as a Template
At the start of this task, the discovery of the DriverSample code in the UEFI 
EDK, now called the UEFI Developer’s Kit 2010 (UDK2010), was a great 
help in jump-starting the HII driver development effort. This code has many 
examples showing how a device driver’s configuration utility could present forms, 
navigate forms, and input data in collaboration with a system BIOS HII browser. 

User of VFR for Menus
One of the most helpful examples in the DriverSample code was demonstrating 
the use of Visual Forms Representation (VFR) files. In addition to facilitating 
a quick, easily maintainable implementation of menus and basic navigation, 
the VFR file also allows the developer to implement localization. A given 
string token used in the VFR file can be translated into different languages and 
tagged with a language code. With these tagged strings in the database, the 
system UEFI browser can prompt users to select their preferred language. Thus, 
configuration utility menus are displayed in the chosen language. 

Useful Documents
The most useful documents for this driver development are:

 • Unified Extensible Firmware Interface Specification 2.1: Chapters 27, 28, 
and 29 

 • Intel VFR Programming Language

 • VfrCompiler_Utility_Man_Page

The Challenges of Keeping Up with the UEFI Specification Versions (,2.1)
The UEFI specification has evolved over time. With each revision of the 
specification, new protocols are added, while some older protocols get 
deprecated. Emulex adds the appropriate new protocols to their driver as they 
are published with each revision. However, there is a challenge in maintaining 
backward compatibility with the previous EFI versions that continue to run on 
older platforms.

“In addition to facilitating a quick, 

easily maintainable implementation 

of menus and basic navigation, the 
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Emulex uses the EDK to compile code. Emulex has always made use of the 
EDK infrastructure for building the UEFI Fibre Channel driver. The EDK 
has also evolved over time to support the changes in the UEFI specification. 
There have been occasions where library functions contained in the then new 
EDK version were modified from the previous EDK. This caused some issues 
in the code, requiring modifications to ensure that the calls to the EDK library 
function were producing the expected results.

Emulex HII Driver Implementation Challenges
The following describes the HII driver implementation challenges.

Challenges of “Hybrid” x86/UEFI Systems
The first EFI systems were primarily based on the Itanium processor. With the 
release of the x64 processor series, Emulex began seeing more systems that had 
the ability to boot both EFI-aware and legacy operating systems. The Emulex 
HBA carries both EFI and legacy option ROM drivers. Both of these carry 
their own configuration utility. 

On these systems, if an EFI boot device is not found, the system will “thunk” 
into legacy mode. At that point, the legacy option ROMs are loaded to facilitate 
booting a non-EFI operating system, making it possible for a user to enter the 
Emulex Fibre Channel legacy utility on this system to configure the HBA.

Traditionally, the configuration data areas of these two drivers were 
independent of each other. With the appearance of these systems, Emulex felt 
it was important to ensure that if either configuration utility was used to enter 
new HBA configuration settings and/or to configure boot LUNs, both utilities 
would reflect those settings.

Use of Callbacks to Display Dynamically Discovered Data
Emulex has a single driver that manages all the Fibre Channel adapters in 
a system. The number of adapters in a system and the number of targets 
connected to those adapters are not static entities. The driver must discover all 
the Emulex adapters, display them, and allow the user to configure them. The 
utility must also have the ability to discover and display all the targets connected 
to an adapter. This dynamic discovery necessitates the use of HII callbacks to 
update the form that the browser uses to display the devices that were found.

Differences in System BIOS Browsers
OEMs implement their browser interface in different ways. Even though 
standards exist, each OEM will have some differences in how their browser 
interface looks, navigates, and interacts with installed devices. Emulex 
performs extensive testing to ensure that the UEFI Fibre Channel boot driver 
configuration utility is fully compatible with all platforms that the Emulex 
HBA is installed on. 

Emulex Documentation (Where to Enter the Configuration Utility)
During development, it was noticed that the Emulex FC driver utility entry 
point could appear under different menus in a given platform’s setup menu 

“dynamic discovery necessitates the use 
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screens. This is because the platform’s HII system BIOS makes that decision. 
This presents a challenge in generating the HII driver utility documentation as 
to specifying where the entry point to the driver utility can be found. Figure 12 
shows the Emulex driver entry point presented by an IBM system BIOS browser.

Figure 12: UEFI entry point screen
(Source: Emulex Corporation, 2011)

Flash ROM Space Growth
One development concern was the ROM space size increase due to the need 
to carry the 1.10 (drvcfg) code. Emulex decided to continue to carry the 1.10 
(drvcfg) code because this allowed maintenance of a single codebase that could 
support both pre- and post-UEFI 2.1 systems. However, Emulex decided that 
only one configuration utility would be exposed on a given platform and this 
would be dependent on the UEFI support level of the system the driver was 
running on. 

To determine what version of UEFI a system supports, you access the Revision 
entry in the EFI_TABLE_HEADER structure contained in the EFI System Table.

Implementation and Advantages of Having HII
The following describes the implementation and advantages of using HII.

Integration with System BIOS Browser Menu and Navigation
With HII, Emulex adapter configuration menus integrate into the BIOS 
browser, and adapter setup is significantly changed. HII makes the integration 
much easier, but at first, it was a challenge to determine how to transition 
configuration utility menus and navigation. They had previously existed in an 
environment where they were completely coded and controlled by the Emulex 
utility (using the Simple Text Protocol).

“To determine what version of UEFI 

a system supports, you access the 

Revision entry in the EFI_TABLE_

HEADER structure contained in the 

EFI System Table.”



Intel® Technology Journal | Volume 15, Issue 1, 2011

66   |   UEFI and the OEM and IHV Community

Now with HII, the system BIOS HII browser controls all these processes. Since 
it was not possible to keep the same look and feel of the 1.10 configuration 
utility, developers designed the new configuration menu forms to flow in a 
logical manner, allowing the user to configure the same set of parameters as 
they had in the past. 

As mentioned above, developers needed the ability to update forms to display 
dynamically discovered devices. These device entries would require submenus. 
Emulex also needed the ability to navigate into those submenus. To accomplish this, 
the “Create OpCode” library functions contained in the UEFI EDK are very useful. 

User Input and Saving the Configuration Data
Acquiring user data input is made considerably easier by leveraging the HII 
system BIOS browser. Instead of using the Simple Input Protocol to return a 
single input character, one can define a buffer storage structure in the VFR file. 
The browser populates the members of this structure according to the data type 
that is defined for the corresponding question. 

Any function that requires a configuration parameter value can call the library 
function GetBrowserData. This call returns the current buffer storage structure 
values. The configuration utility stores these values in the HBA’s flash memory, 
allowing each individual adapter to be programmed back to the desired state 
after a restart. 

HII Protocols for External Applications to Push Configuration Data  
to the Driver
OEMs typically use a proprietary web-based configuration utility for managing 
their blade servers. The Emulex Fibre Channel boot driver contains code 
that accepts various commands from these utilities. Common commands 
sent to the Emulex driver may be to specify new adapter World Wide Names 
(WWNs) and to discover specific boot LUNs. The Configuration Routing and 
Configuration Access Services introduced in the UEFI 2.1 specification allow 
for a more standardized way of provisioning a platform.

UEFI Adoption
Working over the past ten years with Intel on driver development, Emulex has 
initiated and developed many driver improvements using UEFI and HII. UEFI 
is the most current and useful system firmware development standard today, 
also providing useful development tools for OEM and IHV driver engineers. 
As UEFI continues to enjoy widespread adoption by OEMs, Emulex expects 
they will see the significant added value using HII to manage their server 
platforms locally and remotely.
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BooTIng In an InsTanT

The PC platform today scales from the deeply embedded solution space to giant 
server cluster solutions and everything in between. One common desire across 
all of these domains is the desire to reduce the time it takes for the platform 
to initialize (boot). With this article, many elements associated with boot 
performance will be discussed from various points of view in the technology 
food chain. In addition, methods for measuring boot performance will be 
discussed, how the evolution of standards (such as UEFI) resulted in boot 
performance enhancements, and examples of how these technology elements 
were incorporated into products to provide meaningful results to the end-user.

The Elements of the Boot Process
This section deconstructs the elements of the boot process and the items that 
might affect the behavior or characteristics of a platform’s initialization.

What Is POST?
Power On Self Test (POST) is a longstanding term that typically refers to the 
actions a BIOS undergoes during its initialization of a platform. Even though 
many of these actions can vary in their details, there are a variety of activities 
that a platform undergoes that drive a series of different behaviors based on 
certain technical and nontechnical requirements. For instance, whether or not 
a platform allows certain devices to be initialized during the platform boot 
process, whether or not the boot can be interrupted by the user, supporting 
older boot standards, as well as a myriad of other desired behaviors can have a 
factor in the boot performance characteristics of a system.

Figure 1 illustrates the evolution of the platform initialization from the first moment 
that power is applied until the point where the BIOS hands-off to the target O/S.

“Power On Self Test (POST) is a 

longstanding term that typically refers 

to the actions a BIOS undergoes 

during its initialization of a platform.”

Figure 1: UEFI boot phases and aCPI behavior
(source: Intel Corporation, 2011)
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For a more detailed description of each of these phases, refer to “Reducing 
Platform Boot Time”[1].

Factors Affecting Boot Performance
Boot performance is not necessarily isolated to the hardware characteristics of 
a platform. Often there are various elements that affect how long it takes to 
initialize a platform, and this section discusses what those elements may be.

Marketing Requirements
Marketing requirements are not the first thing that comes to mind when an 
engineer sits down to optimize BIOS performance. However, the reality is that 
marketing requirements form the practical limits for how the technical solution 
can be adjusted.

 • What are the design goals? – How does the user need to use the platform? Is 
it a “closed box” system? Is it a traditional desktop? Is it a server? How the 
platform is thought of will ultimately affect what the user expects. Making 
conscious design choices to either enable or limit some of these expectations 
is where the platform policy can greatly affect the resulting performance 
characteristics.

 • Platform policy – One of the first considerations when looking at a BIOS 
and the corresponding requirements is whether or not an engineer can 
limit the number of variables associated with what the user can do “to” the 
system. For instance, it might be reasonable to presume that in a platform 
with no add-in slots, a user will not be able to boot from a RAID controller 
since the user cannot physically plug one in. This is where a designer enters 
the zone of platform policy. Even though a platform may not expose a slot, 
the platform might expose a USB connection. A conscious decision needs 
to be made for how and when these components are used. A good general 
performance optimization statement would be: “If you can put off doing 
something in BIOS that the OS can do, then put it off  !” Since a user can 
connect anything from a record player to a RAID chassis via USB, the user 
might think that they would be able to boot from a USB-connected device 
if physically possible. Though this is physically possible, it is within the 
purview of the platform design to enable or disable such a behavior.

 • What type of boot media is supported? – Even though most people are often 
considering the total size of the media as the primary factor and don’t 
necessarily give much thought beyond that, this is often a mistake. Though 
it may not be obvious, the choice of boot media can be a significant 
element in the boot time when you consider that some drives require 
1–5 seconds (or much more) to spin up. The characteristics of the boot 
media are very important since, regardless of whatever else you might 
do to optimize the boot process, the platform still has to read from the 
boot media and there are some inherent tasks associated with doing that. 
Spin-up delays are one of those tasks that are unavoidable in today’s 
rotating magnetic media. Even though today there might be a cost and 
size differential between solid-state devices (SSDs) and the typical rotating 
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media, the SSDs usually save not only time associated with spin-up, they 
do not have the seek times required for a request to moving read heads to 
the appropriate location on the platters associated with magnetic storage 
rotating media.

New Behaviors Attributable to UEFI
With the advent of UEFI, certain behavior is possible that may not have 
been available in what is often termed legacy BIOS. This section attempts to 
illustrate what some of those differences are and how they relate to platform 
initialization complexity.

Avoid Unnecessary Driver Execution
It is useful to understand the details of how we avoided executing some of 
the extra drivers in our platform. It is also useful to reference the appropriate 
sections in the UEFI specification to better understand some of the underlying 
parts that cannot, for conciseness, be covered in this article.

The BDS phase of operations is where various decisions are made regarding 
what gets launched and what platform policy is enacted. That being said, this is 
the code that will frequently get the most attention in the optimization efforts. 

At its simplest, the BDS phase is the means by which the BIOS completes any 
required hardware initialization so that it can launch the boot target. At its 
most complex, you can add a series of platform-specific, extensive, value-added 
hardware initialization that is not required for launching the boot target. 

 • What is a boot target? – The boot target is defined by something known as 
an EFI device path (see UEFI specification). This device path is a binary 
description of where the required boot target is physically located. This 
gives the BIOS sufficient information to understand what components of 
the platform need to be initialized to launch the boot target. Below is an 
example of just such a boot target:

Acpi(PNP0A03,0)/Pci(1F|1)/Ata(Primary,Master)/HD(Part3,Sig00110011)/ 
“\EFI\Boot”/“OSLoader.efi”

 • Loading a boot target – The logic associated with the BDS optimization 
focuses solely on what the minimal behavior is associated with initializing 
the platform and launching the OS loader. When customizing the platform 
BDS, you can avoid calling routines that attempt to connect all drivers 
to all devices recursively and instead only connect the devices directly 
associated with the boot target. Figure 2 is an example of that logic:

“The BDS phase of operations is where 

various decisions are made regarding 

what gets launched and what platform 

policy is enacted.”
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 • Steps taken in an optimized versus a normal boot – Figure 3 indicates that between 
the normal boot and an optimized boot, there are no design differences from 
a UEFI architecture point of view. Optimizing a platform’s boot performance 
does not mean that one has to violate any of the design specifications.

Initialize the ATA Device

Initialize the Partition Driver

Initialize the PCI Root Bridge

Initialize the PCI Device

Connect Consoles

Diagnostics

Boot

Initialize the File System Driver

Launch O/S Loader

Connect PCI root bridge and
InstallOpRom

• Acpi(PNP0A03,0)/Pci(1F 1)/Ata (Primary, Master)/HD(Part 3, Sig00110011)/“\EFI\Boot”/“OSLoader.efi”

Figure 2: Deconstructing the launching of a boot target
(source: Intel Corporation, 2010)

Figure 3: architectural boot flow comparison
(source: Intel Corporation, 2010)
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Allow Third Party Drivers to Delay the Boot? Not Anymore!
Normally the overall goal is to boot the target OS as quickly as possible and 
the only expected user interaction is with the OS. That said, the main reason 
for people today to interact with the BIOS is to launch the BIOS setup. 
Admittedly, there are some settings within this environment that are unique 
and cannot be properly configured outside of the BIOS. However, in many 
platforms the ability to interact with the user has caused a significant level 
of added slow-down due to third party drivers (such as option ROMs) being 
initialized and during their initialization soliciting hot-keys to be hit, delaying 
the boot by multiple seconds. This can potentially be multiplied by however 
many instances of such behavior are found in the platform.

With the advent of UEFI 2.1, and more specifically the Human Interface 
Infrastructure (HII) content in the UEFI specification, it became possible 
for configuration data in the BIOS to be exposed to the OS. Many of the 
BIOS settings can now have methods exposed and configured in what are 
not traditional (pre-OS) ways. This also allows for third party components 
to silently post their configuration data to the platform and it leaves up to 
the platform the decision on how that gets exposed to the user. This avoids 
numerous extraneous delays that might otherwise be encountered due to third 
party components trying to capture the attention of the user.

If it is deemed unnecessary to interact with the BIOS, there is very little reason 
(except as noted in prior sections) for the BIOS to probe for a hot-key.

Some Discovered Performance Guidelines
This section describes some guidelines to enhance the system boot 
performance. These guidelines are not specific for a given BIOS codebase, but 
could be treated as generic guidelines in firmware performance tuning. 

Guideline #1: Make Good Use of System Cache
CPU cache is the fastest memory bank in the system. Correctly using CPU 
cache can significantly improve the boot performance especially if the original 
code does not set the cache optimally.

Since reading data or code from flash is very slow, it is very important to cache 
the range of flash when executing code from flash in the PEI phase.

Guideline #2: Proper Flash Layout
In a BIOS that complies with the Platform Initialization (PI) specification, 
there is a flash component concept known as an firmware volume (FV). This is 
typically an accumulation of BIOS drivers. It is a reasonable expectation that 
these FVs are organized into several logical collections that may or may not be 
associated with their phase of operations or functions. The access from flash is 
significantly slower than access from memory. Minimizing the flash access will 
significantly improve the boot performance. For some quick boot paths, flash 
access may take a very large percentage of the boot time.

“Normally the overall goal is to boot 

the target OS as quickly as possible 

and the only expected user interaction 

is with the OS.”
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Some drivers read data or binaries from an FV, such as CSM binary, legacy 
option ROM, or BIOS ID. As a common design, the BIOS is intended to scan 
all FVs. But for a specific platform, files can be well organized so that the code 
can avoid scanning all FVs.

The less space a BIOS occupies, the shorter the time it takes for routines within 
the BIOS to read content into faster areas of the platform (such as memory). 
This can be done by minimizing the drivers that are required by the platform, 
at least for a specific boot path. For example, if you want the splash screen 
to appear as early as possible, you can create a FV that only contains drivers 
required for a graphic console. After the graphic console has connected, then it 
will dispatch other DXE drivers and boot.

Guideline #3: Skip Unnecessary Drivers!
If the system is designed to boot the OS as fast as possible, you can enable a 
special boot path that only initializes the devices required for the boot.

There are two levels of hardware initialization. The first level is initializing the 
hardware to make it meet the industry standard infrastructure that the OS 
phase would expect. This also includes initializing any hardware necessary to 
discover and launch the OS. For example, set the SATA controller mode to 
AHCI, native, or legacy so that the BIOS can launch the OS. 

The second level of hardware initialization is to make certain devices (such as 
USB) that might not be necessary for the pre-OS phase be accessible in the 
pre-OS phase. Accessing files from USB mass storage devices requires a lot of 
driver connections in the BDS phase and can take quite a bit of time.

To boot the OS quickly, some of the second level initialization can be skipped. 
Those devices still can work correctly in the OS. For example, if we want to 
boot the OS from a hard disk, we can skip USB, network, and CD-ROM 
initialization, which can save a lot of time. When there is no initialization for 
these type of devices in the pre-OS phase, the OS has native drivers that can 
initialize these devices when the OS is running. In fact, the OS will typically 
reinitialize these devices regardless of whether the BIOS has initialized them 
anyway.

Guideline #4: Avoid Unnecessary Hardware Resets
Some drivers reset the device and wait for the device ready signal. For example, 
a PS2 keyboard often needs more than one second to do a full reset. Even for 
an SSD device, it takes about 800 ms to do a reset of that device.

Guideline #5: Use Saved Data
If the hardware has not changed, we can use saved data instead of accessing 
slow I/O to get the data. For example, reading Serial Presence Detect (SPD) 
data from System Management Bus (SMBus) is much slower than reading 
it from nonvolatile RAM. Since it takes a long time to enumerate the PCI 
bus, we can use saved data from the last successful boot directly to reduce the 
overall boot time.

“If the system is designed to boot the 
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Guideline #6: Parallelize When Possible
Firmware does not support multitasking like an OS, but we can do some 
parallel work according to hardware behaviors. For example, the hard disk 
needs seconds of time to spin up. So we can send the spin-up signal to the hard 
disk as early as possible, then do other initialization work, which can save the 
boot time.

In addition, where devices might provide DMA capabilities, there are 
methods that can be used to initiate a DMA transaction (that is, pass a 
command to a controller to fill a buffer) while the main CPU is actively doing 
something else.

Optimization Case Study by Lenovo
Lenovo has been at the vanguard of reducing platform boot times in the PC 
industry, and has illustrated this with some of the platforms they have shipped. 
Lenovo partnered closely with Microsoft during the development of Windows* 7  
to improve on/off times on Lenovo systems. This culminated in the Lenovo 
Enhanced Experience, a development process at Lenovo wherein BIOS, 
drivers, and software are analyzed for performance and tuned to provide an 
optimized Windows experience with superfast boot, shutdown, and standby/
resume times. 

As a result of these efforts Lenovo built deep engineering contacts within key 
partners such as Microsoft, Intel, Phoenix, Symantec, and other IHV/ISVs 
that has allowed for a significant accumulation of subject matter expertise and 
allowed Lenovo to actively pursue performance-focused initiatives.

As an example of this, in January 2011 at the Consumer Electronics 
Show in Las Vegas, Lenovo demonstrated six Windows 7 PCs (two 
IdeaPads*, one IdeaCentre*, one ThinkCentre*, and two ThinkPads*) that 
boot in under 10 seconds to promote the release of the Lenovo Enhanced 
Experience 2.0. This started internally at Lenovo as a challenge to break 
through existing barriers to create an ultra-fast boot, to build a proof-
of-concept system so much better than what was out there that it would 
help drive industry level improvements much like concept cars do in the 
automotive industry.

So what went into the 10-second PC? All phases of boot were analyzed (see 
Figure 4) and progressive opportunities for improvement were identified.

“Lenovo demonstrated six Windows 7 
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First and foremost, BIOS time had to be addressed. The new generation of 
Lenovo systems (Intel Huron River-based) are UEFI-capable but by default 
expect a legacy configuration.

 • Legacy support means having to invoke a Compatibility Support 
Module (CSM), an option ROM that adds significant time to platform 
initialization. By utilizing a native-UEFI-only mode, the time delay caused 
by having to load the CSM can be avoided.

 • Furthermore, UEFI allows for multithreaded platform initialization, 
allowing for parallelism, whereas a legacy-compatible boot requires more 
serialized loading.

 • Additionally, disabling devices not required for booting, like alternate boot 
devices such as network and optical drives, further reduces initialization 
time. An extremely high percentage of the time, a user just boots to 
the internal mass-storage drive anyway. Lenovo optimizes for the most 
common case.

 • Finally, one last optimization, and by-product of legacy days, is displaying a 
startup logo—removing that yields a small but measurable time savings.

These improvements yielded BIOS initialization improvements that took the 
default BIOS time of 6.5 seconds down to 2.25 seconds!

The Main Path Boot phases (OS) were attacked in three ways:

1. Driver optimizations, especially video and boot start drivers

2. Minimizing CPU activity

3. Minimizing I/O activity

By reducing the shotgun blast of resource requests at boot, individual 
components can start quicker. As you can see in the CPU sampling and disk 
utilization graphs in Figure 5, reducing down to only boot-critical components 
yields a very clean and therefore very fast boot experience.

“improvements yielded BIOS 

initialization improvements that took 

the default BIOS time of 6.5 seconds 

down to 2.25 seconds!”

Figure 4: analysis of the boot process
(source: Lenovo, 2011)
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Figure 5: Optimized system: Intel® Core™ i5 2.60 GHz, 4 GB memory, Intel 160 GB SSD. 
This is a production version of a Lenovo ThinkPad* T420s Rapid Boot Extreme edition. OS 
Boot Time measured by Microsoft Velocity Test Suite 4.3.1 = 6 s.
(Source: Lenovo International, 2011)
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(Source: Lenovo International, 2011)
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Observe the significant differences in CPU and I/O activity between the 
optimized system shown in Figure 5 and the unoptimized system shown in 
Figure 6. The CPU is very busy for the entire boot period in Graph 6, maxing 
out at several points. The SSD is fast so I/O activity, which is traditionally the 
bottleneck for HDD systems, is not as significant a factor as it can be in this 
instance. However, the difference is still very compelling.

As you can see from the graphs, many IHVs and ISVs (and even the OS) 
include a lot of advanced function that loads at boot by default. In practice 
very little of the value-added software is required to boot the machine. Driver 
and software vendors need to adopt better system resource “conscientiousness” 
and produce software that does not “crowd” on/off transitions like boot, 
shutdown, and standby/resume.

Conclusion
Ultimately, the level of performance optimization that is achievable is largely 
subject to the requirements associated with the platform. Given sufficient 
probing, there are almost always methods to achieve boot speed gains by 
leveraging various aspects of UEFI-compliant codebases. 

Figure 7 is an illustration from a separate case study that indicates the 
percentage of overall boot time savings for a typical BIOS codebase when 
applying some of the previously enumerated techniques. It highlights some of 
the items to focus on and areas within each BIOS codebase that deserve further 
investigation. 

“Given sufficient probing, there are 

almost always methods to achieve 

boot speed gains by leveraging various 

aspects of UEFI-compliant codebases.”
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UEFI NETwOrkINg ANd PrE-OS SECUrITy

Readers will get an understanding for the scope and objective of the Unified 
Extensible Firmware Interface (UEFI) specification and the UEFI technology’s 
role as a foundation for pre-OS security and networking. This includes the 
platform boot process from local and remote media, assets to be protected, 
threats against those assets, and the various technologies that allow for their 
protection. In addition to a review of these technologies, forward-looking 
capabilities and approaches related to UEFI are discussed.

UEFI Architecture 
This section provides a basic overview of the UEFI firmware architecture. For  
a more detailed view of UEFI architecture, see the UEFI Web site [1] and  
Beyond BIOS[2]. UEFI provides a standard interface to shield the operating 
system from hardware changes. It has the ability to host chipset and peripheral 
boot drivers. It provides services both during the boot process and during 
runtime, available through architected tables.

Architecture Diagram
Figure 1 shows how an operating system loader relies upon the services 
provided by UEFI to launch the OS kernel. Other industry standard interfaces, 
such as ACPI, are available on a UEFI platform.

UEFI provides an orderly method for loading drivers and handling 
interdependence between them. Once the necessary drivers are loaded, a series 
of preconfigured boot paths or boot devices are attempted by a boot manager 
or dispatcher. During a boot attempt, a file is loaded using UEFI boot-time 
services and is executed. This file load operation is a good point to secure, as 
will be discussed in the section on UEFI 2.3.1 Secure Boot.

Failures of these boot attempts are handled by returning to the UEFI boot 
manager. However, once a boot attempt executes an OS boot loader that exits 
the UEFI boot-time environment, the UEFI boot-time environment cannot be 
re-entered, as shown in Figure 2.

“UEFI provides an orderly method 

for loading drivers and handling 

interdependence between them.”
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Figure 1: Firmware layering, including image loading
(Source: Intel Corporation, 2011)
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Table 1 shows the boot-time services categories available to a UEFI application. 
The most critical services surround image handling, as this is way that new 
code is loaded and executed.



Intel® Technology Journal | Volume 15, Issue 1, 2011

82   |   UEFI Networking and Pre-OS Security

Name (Boot-time) Description

Events Create, Close, Signal, WaitFor, Check, SetTimer
Task Priority Level Raise, Lower
Memory Allocate, Free, GetMemoryMap
Protocol Install, UnInstall, ReInstall, Notify, Locate, Open, 

Close, Information, Connect, Disconnect
Image Load, Start, Unload, EntryPoint, Exit, 

ExitBootServices
Misc SetWatchDogTimer, Stall, CopyMem, 

SetMem, GetNextMonotonicCount, 
InstallConfigurationTable, CalculateCrc32

Table 1: UEFI boot services
(Source: Intel Corporation, 2011)

Table 2 shows the runtime service categories available in the UEFI 
environment. These calls can change the state of the platform by modifying 
volatile data, nonvolatile data and real-time clock settings. Control of platform 
state is another critical area to review with respect to platform security.

Name (runtime) Description

Variables Get, GetNext, Set, Query
Time Get, Set, GetWakeup, SetWakeup
Virtual Memory SetVirtualAddressMap, ConvertPointer
Misc GetNextHighMonotonicCount, ResetSystem, 

UpdateCapsule, QueryCapsuleCapabilities

Table 2: UEFI runtime services
(Source: Intel Corporation, 2011)

Earlier versions of UEFI (UEFI 2.0) provided little in the way of security 
services. For example, there was no way to save platform data such that only 
the creator of the data could modify or delete it. In addition, earlier versions of 
UEFI did not provide basic authentication tools, such as hashing or decryption 
capabilities. This led to several development directions in an attempt to add 
security to the UEFI environment: one involved measuring and recording 
platform state (trusted computing), and the other moved to enhance UEFI 
security capabilities (secure boot). The next section starts with conceptual 
models of a computer system and leads into a detailed review of newer UEFI 
capabilities that enhance UEFI security.

Underlying UEFI Implementation
Although the prior discussions have been focused on aspects of UEFI, UEFI 
can be built upon another firmware standard called the Platform Initialization 
(PI) Standard [3]. The PI Standard provides a standard flow and architecture 
for early machine initialization. The security issues related to PI are discussed 
here, along with some related issues with respect to UEFI.
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UEFI by design allows files to be discovered and run from arbitrary locations 
in the system. Following is an overview of the power of this facility and touches 
on the security risks associated with loading files during the boot process.

Platform Initialization (PI) Standard
The PI specification allows a UEFI-based system to ride upon a standard 
firmware architecture. The boot process of such a system proceeds through a 
series of phases. Each phase has its own unique security advantages as well as its 
own risks.

SEC, PEI, and DXE
The security (SEC) phase of the PI platform boot must handle different types 
of platform reset events. SEC is also the root of trust for the system, providing 
a control point for further launch of firmware on the system. The main 
advantage of the SEC phase is to provide an anchor point from which to build 
an authenticated boot process. The SEC phase must find and transfer control 
to the Pre-EFI Initialization (PEI) phase of the boot process, once temporary 
memory is available. Of course, depending on location of the PEI code, as well 
as platform policy, the PEI code must be authenticated before execution.

The main purpose of the PEI phase is to provide an environment for PEI 
module execution. So early in the PEI phase, the PEI dispatcher is started. 
PEI modules typically perform low-level platform initialization of embedded 
devices and chipset, such as serial port initialization. Another requirement 
of the PEI phase is to discover platform information, create a database of 
this information in hand-off blocks (HOBs), and pass the database onto the 
DXE phase of platform boot. Again, PEI modules can be made subject to 
authentication before running the module. Typically PEI modules are part 
of the core firmware of the platform, and could be considered static and 
trusted for a particular platform model. However, there is no requirement 
in the PI specification regarding location of PEI modules, and so there 
could be platforms where some or all of the PEI modules would need to be 
authenticated to maintain platform integrity.

DXE as Preferred UEFI Core Embodiment
The final stage of the PI specification starts when the DXE Initial Program 
Load (IPL) is located and executed by the PEI phase. The DXE stage consumes 
information about the platform through the HOBs and creates a more 
complete environment for drivers. The DXE dispatcher is responsible for 
finding and launching DXE drivers, and in this phase drivers may come from 
many sources, as will be described later. 

Platform Manufacturer (PM) Authority
PI code and UEFI core only come from a system board manufacturer and 
are not arbitrarily extensible by third parties. A platform manufacturer is 
responsible for the delivery, authenticity, and protection of firmware that 
implements the PI and core UEFI services. In order to maintain platform 
integrity, this firmware must be changed under platform manufacturer control. 
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Achieving this control is platform-dependent, but true security methodology, 
including hashing and cryptographic authentication, is required. Some tools for 
firmware update have been provided in the UEFI specification and are touched 
upon later. Controlled firmware update is required for secure boot, as well as 
for TCG measured boot.

CRTM for TCG Boots
The Trusted Computing Group (TCG)[4] standard requires a Core Root of 
Trust for Measurement (CRTM). One method to implement a CRTM is to 
use a Static CRTM (S-CRTM), which is the core platform firmware provided 
in the flash part that comes with the system, as described earlier in this section. 
The S-CRTM is responsible for measuring any code that executes after the 
S-CRTM. Unlike secure boot, the measured boot only provides a record of all 
the firmware modules that have been run and does not provide any judgment 
about the integrity of the firmware modules.

Secure, Rollback-Protected Updates
In order to meet the need for a controlled method of updating platform 
firmware, several tools have been developed. UEFI 2.3 provides a protocol 
called Firmware Management Protocol. This protocol provides a standard way 
to control firmware on a platform. Any device in the system, from a PCIe card 
to the main system firmware, can expose this protocol so that a single tool can 
track and update firmware revisions. Although this protocol does not explicitly 
define firmware image authentication support, the support can be added into a 
system in various ways.

Another mechanism supporting secure firmware updates is the use of an EFI 
Update Capsule. If possible, firmware can perform the firmware update at 
runtime, or perhaps during the next reset of the platform. Again, security of a 
capsule update is the responsibility of the consumer of the capsule. Therefore, 
the structure of the capsule should contain authentication information 
necessary to maintain platform firmware integrity.

Firmware update solutions based on either of these techniques must provide 
the ability to detect firmware rollback conditions. This is critical, due to 
the possibility of an attacker using an older firmware image with a known 
vulnerability. There may be situations where firmware must be rolled back due 
to some failure, but in those cases, platform operator intervention is required. 
This prevents an automated firmware rollback attack.

UEFI 2.3.1 Secure Boot
An introduction to UEFI’s Secure Boot support is provided here as well 
as coverage of the various components associated with securely booting a 
platform. 
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Background
A core aspect of UEFI Secure Boot is its ability to leverage digital signatures 
to determine whether an EFI driver or application is trustworthy. After an 
initial brief introduction to the concept of digital signatures, this section 
describes how UEFI Secure Boot makes use of them—and other cryptographic 
constructs such as cryptographic hash functions—to establish a trustworthy 
system boot. We also discuss deployment aspects as well as how Secure Boot 
assists in the secure load of an operating system.

Cryptography Primer
Naturally, an article such as this one cannot provide anything but a high-level 
introduction to cryptography. The interested reader is referred to, for example, 
[5] for a more complete treatment of the topic.

Cryptographic Hash Functions
As is well known, a hash function h is a mathematical function from a large 
domain X of values into a smaller range Y. Normally, it is desirable that the 
projection of X into Y  is such that the values of Y are evenly distributed; this 
reduces the risk of  “hash collisions”, that is, that two values x1 and x2 that 
belong to X will have the same image y: h(x1) 5 h(x2).

A cryptographic hash function f  is a hash function that meets some additional 
properties:

 • It shall be computationally expensive to find x1, x2 such that f  (x1) 5 f  (x2) 
(this property is often referred to as collision resistance)

 • It shall be computationally expensive to find an x such that f  (x) 5 y for a 
given y (this property is often referred to as pre-image resistance)

In addition, cryptographic hash functions are usually designed to allow 
the quick computation of y 5 f  (x) given x. Some examples of well-known 
cryptographic hash functions are MD5 [6], SHA-1 [7], and the SHA-2  
family [7].

Cryptographic hash functions are useful in applications that need to protect 
data integrity since their properties make it difficult for an attacker to modify 
a datum (such as the image of an executable) without detection of a party with 
access to the original hash value. Likewise, replacement of an image for another 
one will be infeasible if the party that checks the image has stored the original 
image’s hash value (pre-image resistance). 

Public-Key Cryptography and Digital Signatures
Public-key cryptography was discovered in the late 1970s by Whitfield Diffie, 
Ralph Merkle, and Martin Hellman [8]. The main notion until then was that 
in order to carry out confidential communication between two parties the two 
parties had to agree—out of band—on a shared secret. This secret was then 
used to encrypt the communication. Diffie, Merkle, and Hellman’s discovery of 
a technique to establish shared secrets without the need for pre-agreements and 
without having to know in advance with whom to communicate securely was 
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revolutionary and was based on the concept of a new form of cryptographic 
keys consisting of a public key part and a private key part. The public key can 
be presented to anyone whereas the private part of the key is known only to its 
owner. 

Ronald Rivest, Adi Shamir, and Leon Adelman built upon Hellman, Merkle, 
and Diffie’s ideas when they invented the RSA cryptosystem a few years later. 
With RSA, an entity A holding a private key may not only use that key to 
decrypt data sent to him by someone knowing the public key of A but A 
may also use his private key to digitally sign some data, as shown in Figure 3. 
Anyone with knowledge of the public key of A and access to the signed data 
may then verify mathematically that the data could only have been signed with 
knowledge of A’s private key–that is, only A could have generated the message–
and that it has not been modified.

This property is extremely useful and has numerous applications. One of them 
is of interest in the context of UEFI Secure Boot: an issuer of a firmware driver 
may digitally sign this driver to vouch for the driver’s authenticity as well as 
provide assurance to a verifier that the driver has not been tampered with, as 
shown in Figure 4.
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Figure 3: digital signature creation process
(Source: UEFI Specification)
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Public-Key Infrastructures
One issue conveniently overlooked in the previous discussion is how a relying 
party (a party that needs to verify a digital signature) may determine that A 
actually is the holder of the public-private key pair that is claimed to be held 
by A. To achieve this, the concept of Public-Key Infrastructures (PKI) has been 
introduced. At a high level, a third party produces digital signatures binding 
a public key to the holder of the private key corresponding to the public key. 
Such signatures are commonly referred to as digital certificates and the issuer 
of the certificates are referred to as a certificate authority or CA. The problem 
is now transferred to one of distributing and trusting CAs. CAs may also be 
specialized; for example, a given CA may only issue certificates for individuals 
(stating that individual Alice holds public key A) whereas another CA only 
issues certificates for code-signing purposes (certificates stating that signer 
S can use his private key only to digitally sign computer code). Often these 
specialized CAs have certificates issued by a higher-layer CA. This is convenient 
as it reduces the distribution problem to the problem of distributing top-level 
CAs (commonly referred to as trust anchors or root CAs). The top-level CAs 
self-sign their certificates, meaning that they sign their own certificates. 
Technically this is not required; all that is required is for a relying party to 
know that a given root CA is in possession of a given public key, but for 
convenience’s sake (consistent use of certificates) self-signed certificates are 
often used.
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(Source: UEFI Specification)
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PKIs with CAs also allow for revocations. A revocation is essentially a 
statement made by a CA that it is no longer the case that the unique binding 
between an entity B and the private key whose public key counterpart was 
present in B’s certificate holds. This could be due to B losing his private key or 
because it is suspected to have been compromised or some other reason. Once 
a certificate has been revoked, it can no longer be used to verify signatures 
made with the corresponding private key. For this reason, it is sometimes 
important to augment a digital signature with a time stamp allowing a relying 
party to determine if a signature was created before a given point in time (the 
time stamp itself is usually created by a third party called a timestamping 
authority, who also needs to be trusted by the relying party). In particular, 
it allows a relying party to determine if the signature was made before the 
certificate used to verify the signature was revoked.

For a technical description of PKIs, see [9].

Functionality
With this introduction to the cryptographic building blocks that hash 
functions and digital signatures constitute, we are now ready to look at their 
application in UEFI Secure Boot.

Root of  Trust
As mentioned, in order to rely on a digital signature, the relying party needs 
to know that the purported signer indeed was in possession of the private key 
that was used to create the digital signature. As CAs are commonly used as 
“trusted third parties” to convey this knowledge, the distribution of CAs (and 
in particular root CAs) is what enables a relying party to establish trust in a 
signature.

In UEFI Secure Boot, there is a particular key that constitutes the basis for 
the trust environment. This key is the Platform Key (PK) and the holder of 
this key is able to modify any of the other trust anchor lists that exist on a 
platform. Typically, the PK is held by a device manufacturer, but it may also be 
held by an enterprise that wishes to have full control of the UEFI Secure Boot 
environment of PCs in their organization.

Trust Anchors
In addition to the PK, UEFI Secure Boot maintains two additional trust 
anchor databases:

 • The Key Exchange Key (KEK) database

 • The Allowed signature database

The former database contains those trust anchors that are allowed to modify 
the Allowed signature database. The Allowed signature database in turn 
contains those trust anchors that are used when verifying the signature on 
UEFI firmware images.
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There is also a third database, the Forbidden database. This database identifies 
signers that have been revoked and can therefore no longer be trusted.

Signed Firmware
In UEFI Secure Boot, firmware that isn’t explicitly White-listed (see below) 
must be digitally signed and time-stamped in such a way that the UEFI Boot 
Manager can verify the image’s signature. UEFI uses the PE/COFF [10] format 
and the Microsoft Authenticode Specification [11] for signatures over PE/
COFF images. The PE/COFF format contains a date/time field that may be 
used for timestamp purposes.

White-Listing and Black-Listing
UEFI Secure Boot extends beyond mere digital certificates for determining 
whether a signed UEFI firmware component is trustworthy or not, however. 
Besides digital certificates, UEFI Secure Boot also allows an authorized entity 
to identify a particular image hash as trustworthy (or not). If the hash of 
a given image is present in the Allowed database but not in the Forbidden 
database, then the fact that only an authorized entity (either the PK or a trust 
anchor in the KEK database) can modify the contents of the databases suffices 
to determine the validity of an image.

This scheme carries an advantage over most existing PKIs in that individual 
images can be allowed (white-listed) or revoked (black-listed); there is no 
requirement to revoke signers—an operation with potentially much more 
far-reaching implications since all images signed by that signer would be 
inoperable on a Secure Boot system. The usefulness of this is apparent when 
one considers a scenario where a specific driver from a vendor has been found 
to contain a vulnerability. Clearly, the vendor need (and most often should) 
not be considered malicious because of this and hence the natural action is 
to just black-list the driver (by adding its hash to the Forbidden database). A 
useful application of white-listing is when a new driver is detected but isn’t 
signed. In this situation, an authorized entity may explicitly add the hash of the 
driver image to the Allowed database, allowing future system boots with it.

Authenticated Variables
From the above logic regarding malicious code, it follows that a party that 
wishes to update any of the databases (KEK, Allowed, Forbidden), must be 
able to do so only with proper authorization. The authorization model chosen 
for UEFI Secure Boot follows a consistent design in that it leverages digital 
signatures itself and hence UEFI variables that requires authentication of the 
caller in order to be updated are referred to as Authenticated Variables. In short, 
in order to update an authenticated variable, the caller creates a signature over 
the new variable value. The trusted firmware then verifies this signature before 
updating the value of the variable.

What would happen if an early version of a Forbidden database update was 
captured by an attacker and later on replayed after the attacker’s key had been 
revoked? In a worst-case scenario, the attacker would be able to continue to 
have his firmware booted because the platform’s black-list would never include 
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the attacker’s certificate. To prevent this, any authenticated variable update 
includes a timestamp. Trusted UEFI firmware must ensure that the timestamp 
(which is part of the signature) is later in time than the timestamp currently 
associated with the authenticated variable before updating the variable’s value. 
There is one exception to this, though: UEFI 2.3.1 introduces functionality 
that allows an entity to append a value to an existing authenticated variable 
such as the Forbidden database. In this case, the timestamp is unimportant 
as the update does not affect values already present in the database. However, 
even in this case the firmware must update the time associated with the variable 
if the timestamp is later than the current time associated with the variable, 
since it will serve as a “last known update” time and may be required if a later 
“write” (rather than “append”) update request is made.

Rollback Prevention
Associated with the rollback prevention of the authenticated variables is the 
rollback prevention of drivers themselves. Imagine a scenario where a driver is 
known to have a vulnerability and hence a new version is distributed. Unless 
the UEFI implementation has maintained some means to determine the 
version (in an abstract sense) of the driver, it would not be able to tell if the 
new driver version actually is an older version of the driver currently installed 
rather than a newer one. This situation would allow an attacker to redistribute 
the vulnerable version of the driver and potentially gain control over a large 
number of platforms.

To remediate this situation, compliant UEFI 2.3.1 platforms must implement 
rollback prevention of firmware components. They may do so by using the 
TimeDateStamp field from the PE/COFF image header of the firmware 
in question or by otherwise associating a version with the driver. Firmware 
updates are verified against the time (or version) of the currently used driver 
and only if the new firmware is found to be “later” than the currently used 
does the update occur. NIST has recently released [12], which describes further 
guidelines for the protection of firmware and firmware updates.

Integration
A UEFI Secure Boot–capable platform may consist of many firmware 
components, including:

 • UEFI Boot Code

 • UEFI Boot Manager

 • UEFI Drivers

 • UEFI Applications 

 • UEFI OS Loader

When Secure Boot is enabled, the Platform Initialization module is expected 
to contain a public RSA key held in read-only memory. This key is used to 
verify the UEFI Boot Manager. Once the image has been verified, the UEFI 
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Boot Manager is launched and continues the platform boot by loading and 
initializing the EFI images as specified by boot order variables. Before the 
loading of each EFI image, the Boot Manager uses the Allowed and the 
Forbidden signature database to determine if the image should be allowed 
to be loaded. Only images whose signature matches an entry in the Allowed 
database (or whose signer is present in the Allowed database) and is not present 
in the Forbidden database (and whose signer is not present in the Forbidden 
database) are allowed to be loaded and initialized.

Information about images that are rejected due to failed signature verification 
or due to being associated with an entry in the Forbidden database will be 
stored in a UEFI table for later consumption (and possible remediation) by the 
platform operating system.

Once the UEFI Boot Time and UEFI Runtime services are available, updates 
are possible to the KEK, Allowed, and Forbidden databases (the PK may also 
be modified, but this would be a rare operation). In order to protect against 
unauthorized updates to these databases (that normally are held in NVRAM) 
by a faulty EFI component, implementations should preferably only allow such 
updates to occur via a trusted platform component, thereby guaranteeing that 
the signatures on such updates are valid before committing to the updates.

Deployment
There are various phases of a platform lifetime, some of which are described in 
[22]. For UEFI Secure Boot, this provisioning and field maintenance entails 
additional considerations described below.

Manufacturing Time
During manufacturing of a platform that supports Secure Boot, it is expected 
that the platform vendor will provision the initial Secure Boot configuration. 
In a nutshell, this configuration will consist of:

 • Creating the initial Allowed database

 • Creating the initial Forbidden database

 • Creating the initial KEK database

 • Setting the Platform Key (PK).

Once the final step above has occurred, the platform will no longer be in Setup 
mode and any further changes to the databases will require the update to be 
properly authorized (digitally signed).

Assuming that the Allowed database contains signers for the OS loaders that 
later on will be booted on the platform, the initial Secure Boot configuration 
is now complete. If the default mode for the platform boot is Secure Boot, 
the platform manufacturer may now also set the Secure Boot variable to True; 
this provides information to the OS loader about the EFI platform’s enforced 
security policy.
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Field Management
Once a Secure Boot device has been deployed in the field, there may, as 
previously indicated, occasionally be a need for modifications to the Secure 
Boot-related databases. For example, a firmware image may have been found 
to be vulnerable to a security threat and hence should not be allowed to be in 
the boot path any longer. Likewise, the platform owner may want to add a new 
KEK signer to allow for more flexible updates to the Allowed or Forbidden 
database.

Such management occurs through the EFI Runtime Services and in particular 
the Variable Services. As described, any update to the Authenticated database 
variables needs to be signed. The signature must be in the form of a PKCS #7 [20] 
signature and must contain a timestamp to allow the EFI Runtime Services to 
verify that the update is not a replay of a previous update.

Recovery Situations
There may be situations when a new driver has been found to be incompatible 
with the platform or contain a flaw that makes it unsuited for use on the 
device. Since Secure Boot does not allow for programmatic rollback of 
firmware (because this would open an attack vector in that earlier versions of 
the firmware with known vulnerabilities could be reintroduced), this could 
present an issue that in the worst case would render the device unusable.

Fortunately, however, platforms and platform administrators may avoid this 
situation in at least two ways:

 • By requiring a physically present user to accept the “older” firmware 
component to be reintroduced.

 • By re-signing the earlier firmware image, thereby creating a new image with 
a “fresher” time-stamp than the recently installed driver.

Such functionality provides robustness without compromising system security.

OS Load Aspects
One usage of UEFI Secure Boot includes the invocation of the operating 
system loader. Recall that in UEFI, the loader is a UEFI executable with a 
subsystem type of boot service application. Since the provenance of the OS and 
its loader is often different than that of the system board UEFI firmware, the 
secure boot of the loader is how a vendor’s OS is cryptographically bound to 
a platform likely produced by another vendor. The various modalities of this 
bootstrap are described below.

Fixed Local Storage
In the most common case, the OS is present on some fixed local storage, 
such as a local hard disk. The EFI Boot Manager concludes by verifying the 
signature of the OS Loader and then relinquishing control to the OS Loader. 
Once in control, the OS Loader performs the OS load and, at some point in 
this process, calls the ExitBootServices () Boot Service function. After this call, 
only UEFI Runtime Services will be available.
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Since EFI Variable Services are Runtime services, the OS may still perform 
updates to Secure Boot-related variables; however, the responsibility for 
verifying the validity of such updates still rests with the trusted firmware.

Removable Media
UEFI also allows OS load from removable media. The EFI Boot Manager reads 
the Boot order variable in order to determine whether to prioritize boot from 
removable media or from fixed local storage. Secure Boot still determines the 
validity of the OS Loader.

Network-based Access
A third alternative is to perform a network-based OS load, such as using the 
PXE [13] pre-boot environment protocol to download an OS loader.

The BIOS Integrity Services (BIS) protocol was deployed prior to the advent of 
the UEFI 2.3.1 Secure Boot. This was done because legacy BIOS loaders could 
not accommodate an embedded signature. As such, a detached signature and 
the Boot Object Authorization (BOA) were used for BIOS. During EFI1.02 
definition, this usage was simply mapped to EFI. The BOA had limitations, 
like no chaining or multiple authorities, for either BIOS or EFI. 

UEFI BIS also did not have a way to securely provision the BOA. Going 
forward, UEFI Secure Boot replaces BIS usage since Secure Boot mitigates these 
limitations via 1) certificate-based key storage with chaining, 2) authenticated 
variables to authorize the updates, and 3) a multiple-entry list of allowed signers.

In addition to authenticating the integrity of the code objects, the transport 
can either be integrity-protected and/or have confidentiality controls applied 
by means of the UEFI IPsec protocol [14].

Relationship with Measured Boot
There is often confusion surrounding the terms Secure Boot and Measured 
Boot. The previous section clearly described various components associated 
with Secure Boot, and this section describes Measured Boot and how the terms 
relate to one another.

Background
Measured Boot is the term used for a boot in which each component loaded 
during the boot process is measured into a trusted environment such as a TPM [4].  
The measurements taken during the boot process may be provided to a third 
party for attestation purposes (“Authenticated Boot”), that is, a statement about 
the device’s posture as indicated by the boot measurements. The combination of 
Secure Boot and Measured Boot is commonly referred to as Trusted Boot [15].

For a more thorough treatment of Measured Boot, the reader is referred to [16].

Complementary Functionality
While Secure Boot provides local verification of boot integrity, Measured Boot 
provides the basis for attested statements about the platform’s configuration. 
These statements may be provided to third parties for remote verification of the 

“Measured Boot is the term used for a 

boot in which each component loaded 

during the boot process is measured into 

a trusted environment such as a TPM.”

“Measured Boot provides the basis for 

attested statements about the platform’s 

configuration.”
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platforms configuration, such as, for example, in order to prove a platform’s 
conformance to some defined security policy.

UEFI Secure Boot therefore works in tandem with, but independent of , 
Measured Boot. UEFI supports Measured Boot and the process for performing 
Measured Boot on a UEFI platform is described in [17] and [18]. [18] states 
that any UEFI variables that have an effect of platform configuration shall be 
included in the measurement process. Because of this, Measured Boot must 
include the Allowed, Forbidden, KEK, and PK variables (databases) in its 
measurements of a Secure Boot-configured platform.

Example Usage Scenarios
This section illustrates use of Secure Boot functionality and Signature Databases.

EFI Boot
Manager

UEFICA

OSB-CA

UEFIKEK

OSB-KEK

OEMA

UEFIC

F2

OSB

F3

UEFID

F1

Allowed ForbiddenKEKPK

Figure 5: Boot succeeds
(Source: Microsoft Corporation, 2011)

In Figure 5, the boot succeeds because all of the image signatures are verified and 
no image (or image signer) is present in the Forbidden database. (In Figure 5, 
image F1 is signed by a certificate issued by the UEFI CA UEFICA identifying the 
vendor as D, image F2 is signed by a certificate issued by the UEFI CA UEFICA 
identifying the vendor as C, and image F3 is signed by a certificate issued by the 
OS vendor B CA OSB-CA (identifying the vendor as B).

At this point, an update to the Forbidden database with the image hash of 
firmware image F1 occurs through a UEFI SetVariable () call. The update is 
authenticated with a UEFIKEK , and since the timestamp on the signature was 
fresher than the timestamp associated with the existing Forbidden database 
value (which was empty) the update succeeds. We now have the situation 
illustrated in Figure 6.

“the boot succeeds because all of the 

image signatures are verified and no 

image (or image signer) is present in 

the Forbidden database.”
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Figure 6: Failure due to presence of F1 in the boot path
(Source: Microsoft Corporation, 2011)

A Secure Boot along this boot path will fail because the hash of image F1 is 
now in the Forbidden database. The dashed line indicates that the UEFI Boot 
Manager never attempts to load F2 or F3.

Next, a firmware update occurs in which F1 is replaced with F 1́. The update 
is signed with a key chaining back to UEFICA and the timestamp in the signed 
image as well as the signature itself is verified before the update is committed. 
This gives the situation illustrated in Figure 7.

Figure 7: Boot succeeds thanks to new F 1́ image
(Source: Microsoft Corporation, 2011)
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A Secure Boot now succeeds since F 1́ is signed by a signer chaining back to an 
entry in the Allowed database and none of the encountered images have a hash 
value equal to hash(F1).

Finally, it is determined that no images issued by vendor C shall be allowed 
to be booted. While a rare event in practice, it is included here for illustrative 
purposes. In this situation, an update to the Forbidden database occurs 
through a UEFI SetVariable () call that appends the certificate of C to the 
Forbidden database. The SetVariable () call must naturally be signed by an 
entity whose certificate chains back to an entity in the KEK database, pass all 
authentication checks, and so on. The current platform state becomes that 
shown in Figure 8.

Figure 8: Boot fails due to image F2 signature chaining 
to UEFIC

(Source: Microsoft Corporation, 2011)
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In this situation, Secure Boot in this boot path again fails because of the 
recognition by the UEFI Boot Manager that F2 was signed by an entity now in 
the Forbidden database.

Networking
One of the classic areas of concern with respect to security has been 
networking. The network should be considered a hostile environment 
because it is outside the perimeter of the platform protections. Some of the 
classic attacks include Man-in-the-Middle (MitM), wherein an agent can 
intercept traffic and corrupt traffic in flight. In addition, the end-point of the 
communication can impersonate the intended party; this is often referred to as 
the “lying endpoint problem” [19].

“The network should be considered 

a hostile environment because it is 

outside the perimeter of the platform 

protections.”
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For purposes of network boot, there are two perspectives. The first is identifying 
the machine to the network infrastructure. This is for corporate IT to protect 
its network from a possibly rogue machine. Technology to address this includes 
authentication protocols, such as 802.1X-controlled ports, and challenge-
response capabilities in the Extensible Authentication Protocol (EAP) over 
LAN (EAPOL). EAP handlers can include EAP-CHAP, EAP-TLS, or EAP-
KRB for Challenge-Handshake Application Protocol, Transport Layer Security 
or Kerberos, respectively. In this case, the UEFI machine needs to prove its 
identity or proof of some capability, such as a pre-shared key (PSK) for CHAP 
or Kerberos, or an asymmetric key pair for TLS, to the network infrastructure 
authentication server.

Technology such as hardware VLAN can be used to segregate this machine 
from the rest of the main network or quarantine the UEFI machine in case of 
an authentication failure/remediation.

The other perspective is for the client machine to protect itself from the 
network. This can include using the above-listed authenticated protocols in 
order to have the network prove it is authorized. A common use case here is 
ISCSI logon using CHAP, with the network operator setting the PSK in both 
the SAN target and the UEFI ISCSI initiator. 

But the more common protection mechanism is the UEFI Secure boot. Just 
as a mutable EFI System Partition is an attack vector for UEFI images from 
host malware, the network opens up a larger class of malware. As such, the 
ability to verify the UEFI executable loaded across the network represents the 
last defense against network-delivered malware. This problem was appreciated 
in the late 1990s with the BIOS Integrity Services (BIS), which EFI 1.02 
inherited in 1999. As mentioned earlier, the problem with BIS deployment 
is that it had a single certificate, the Boot Object Authentication (BOA). BIS 
was also a commercial failure in that it never specified a credential deployment 
strategy, such as that described for UEFI 2.3.1 Secure Boot. It was a single 
root, it didn’t define any BOA protection mechanism/update, it didn’t leverage 
industry-standard tool-flows, and it didn’t cover bootstrap from boot paths 
other than the network.

An additional set of capabilities for authentication, confidentiality, and 
integrity includes UEFI IPSec support. This provides for secure Internet 
Protocol communication. This is protects any application traffic across an 
IP network and is mandatory for IPv6. Features include the Authenticated 
header (AH), the Encapsulating Security Payload (ESP), and the Internet 
Key Exchange (IKEv2). In addition, integrity mechanisms such as HMAC-
SHA1, and encryption ciphers such as TripleDES-CBC and AES-CBC are 
incorporated. Finally, the stack can operate in both Transport or Tunnel modes 
for both IPv4 and IPv6 connections. And the authentication support includes 
pre-shared key and X.509 certificates.

Beyond the IPv6 and IPsec UEFI interfaces, the wire-protocol for network 
booting has commensurate evolution to the UEFI APIs. Specifically, in the 

“A common use case here is ISCSI 

logon using CHAP, with the network 

operator setting the PSK in both the 

SAN target and the UEFI ISCSI 

initiator.”

“An additional set of capabilities 
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DHCPv6 extensions for IPv6 network booting, the boot file information is 
sent as a Uniform Resource Locator (URL); the network boot option details 
are described in both the UEFI 2.3.1 specification and in IETF RFC 5970. 
As such, the UEFI client machine and the boot server can negotiate various 
types of downloads, including TFTP, FTP, HTTP, NFS, or ISCSI. This allows 
the network capabilities to track the needs of the market and the machine’s 
firmware capabilities. The default bootstrap on IPv6 is referred to as netboot6; 
this is a generalization of PXE 2.1 bootstrap on IPv4. 

In order to exercise some of these capabilities, there are open source examples 
of these codes at [21].

Summary
This article has described how the various integrity preserving technologies 
in UEFI allow for the “extensibility” of UEFI to be a boon for companies, 
not a sharp edge that damages them. Technology that can be applied to that 
end includes support for measured boot and the trusted platform module 
and UEFI Secure Boot. UEFI was designed as a policy-driven boot loader 
environment, and it is with Secure Boot that a cryptographically strong set 
of controls are introduced, which ensures that the party with the appropriate 
administrative role, whether platform or OS, can manage this policy. And 
the policy-driven controls can be applied for boot scenarios that entail either 
locally-attached media or a network-attached server.
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DEBUggIng FIrMwArE BAsED on ThE UnIFIED ExTEnsIBlE 
FIrMwArE InTErFAcE

Every software developer knows that debugging is more difficult than coding. 
Debugging is one of the most common tasks in product development and 
maintenance. In each phase of software engineering, engineers need debug 
tools. For UEFI firmware, this is an even larger problem. An environment 
with rich debug capability will speed up development for UEFI firmware, but 
specialized tools are often required.

This article provides an overview of common debug solutions including 
hardware based debugging, system checkpoints, and source-level debugging. 
Firmware specific concepts such as status codes, DEBUG/ASSERT macros, 
and the UEFI debug protocol are introduced. This article also demonstrates 
source-level debugging support using AMI and Intel solutions, comparing 
them to hardware-based alternatives in various scenarios.

Common Debug Scenarios in UEFI
This section describes the various aspects of debugging within a UEFI 
environment as well as the resources available to the developer during debug.

Hardware-Based Debugging
JTAG-style connectors such as the Intel XDP debug port allow complete 
software execution control and direct hardware inspection. JTAG is widely 
used for early silicon debugging on Intel platforms, especially when the system 
is not stable. We can use it to configure the system, fuse registers before boot, 
add workarounds, view the system state even when the system is stuck and the 
CPU is out of control at that time.

However, JTAG-style connectors are not commonly available on production 
hardware. This can limit debugging on systems in production, especially if 
physical intrusion is not possible. There are also scenarios when only a subset 
of JTAG capabilities is required to debug a firmware issue, so the cost of a 
hardware-based debugger is not justified.

System Checkpoints
A checkpoint is a hexadecimal value sent to I/O port 0x80. This checkpoint 
system was developed in legacy BIOS implementations and is still used 
in many UEFI implementations. The BIOS outputs checkpoints through 
PEI, DXE, and BDS to indicate the task the system is currently executing. 
Checkpoints are very useful in aiding software developers or technicians in 
debugging problems that occur during the pre-boot process, since they are 
available before the local display is initialized.

“JTAG-style connectors are not 

commonly available on production 

hardware.”

“The BIOS outputs checkpoints 

through PEI, DXE, and BDS to 

indicate the task the system is currently 

executing.”
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For BIOS developers, field technicians, and quality assurance technicians, the 
POST checkpoints are like the diagnostic codes used in today’s automotive 
computers. When the “check engine light” comes on, customers expect a 
mechanic to read the engine code and diagnose the problem. Checkpoints expose 
the same feature in the BIOS, providing debug information before the OS boots.

The use of checkpoint codes for firmware debugging is limited by a number of 
factors:

 • It requires access inside the system enclosure, which is not possible on some 
server, embedded, and mobile applications.

 • It requires a PCI slot, which is no longer standard on newer computer 
platforms. Today’s systems use PCI Express (PCIe) for internal expansion 
slots and Universal Serial Bus (USB) for external devices. PCIe and USB are 
preferable to system vendors due to the reduced size of the expansion slot.

 • If all of the system PCI slots are populated, then the hardware configuration 
has to be changed to use the PCI Checkpoint Card. This may change the 
problem that the technician or developer is trying to debug.

 • Technicians must use additional documentation to translate the hexadecimal 
checkpoint into useful information, typically via tables in BIOS documentation.

 • Checkpoint cards do not store any history of the checkpoints from any boot 
session, so checkpoint information must be manually recorded during testing.

Opening a consumer desktop system to insert a PCI-based POST Checkpoint 
Card is simple, but the same basic diagnostic on a tablet or embedded system 
is difficult. Computers in point of sale (POS), gaming, digital signage, and 
rugged computing applications are not designed to be easily opened, which 
makes system diagnostics difficult if an add-in card has to be installed.

Checkpoints are also limited by the I/O port implementation, restricting 
checkpoints to 8-bit or 16-bit values that are specific to the firmware vendor’s 
implementation. This legacy interface could be replaced with a larger bit field 
value over an interface-agnostic implementation.

Extended Debug Information
System checkpoints give us information, but the information is limited, since 
the use of checkpoints is just a simple method to let us know where we are.

UEFI debug strings are typically disabled on production firmware, but are 
often enabled on evaluation platforms and test firmware builds. When enabled, 
UEFI debug strings provide verbose details throughout the boot process such 
as driver entry notices, GUID for published protocols, and special messages 
reserved for code compiled in debug mode.

This example output comes from a memory detection routine in PEI:

[AmiDbg]MemDetect.Entry(FFFF6582)
[AmiDbg]Memory Installed: Address51C700000; Length53000000

“Computers in point of sale (POS), 

gaming, digital signage, and rugged 

computing applications are not 

designed to be easily opened.”

“UEFI debug strings are typically 

disabled on production firmware.”
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[AmiDbg]PEI_STACK: Address51C700000; Length5100000
[AmiDbg]HOBLIST address before memory init 5 0xfef00400
[AmiDbg]HOBLIST address after memory init 5 0x1c800000
[AmiDbg]PEI core reallocated to memory
[AmiDbg]Total Cache as RAM:    7168 bytes.
[AmiDbg]  CAR stack ever used: 3580 bytes.
[AmiDbg]  CAR heap used:       3016 bytes.
[AmiDbg]Notify: PPI Guid: f894643d-c449-42d1-8ea8-85bdd8c65bde, Peim 
notify entry point: fffbda9f
[AmiDbg]Notify: PPI Guid: 36164812-a023-44e5-bd85-05bf3c7700aa, Peim 
notify entry point: fffe7810
[AmiDbg]Capsule.Entry(1F6F0A5E)
[AmiDbg]Capsule Read variable service installed

In many cases, UEFI debug strings provide enough advanced information to resolve 
firmware issues. The problem for developers is finding a simple way to view and 
capture the strings. UEFI debug strings were primarily designed for systems with 
RS-232 serial ports, which are not commonplace on modern computer systems.

Source-Level Debugging
JTAG is very powerful, and most JTAG software provides the capability for 
source-level debugging, if the image has a debug section, for instance PE/
COFF PDB information and ELF Dwarf information. That helps firmware 
developers use tools commonly employed in software development.

Figure 1 is a source code window of the ITP/JTAG debugger. C code of the 
firmware can be displayed in source code window. The execution stops at line 
374, and there is a breakpoint at line 384.

Figure 1: Example of a source level debug screen
(source: Intel corporation, 2011)
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Figure 2 shows a processor registers window. It displays processor registers. 
Register values can be changed directly in this window. 

Figure 2: Dump screen of the registers
(source: Intel corporation, 2011)

Figure 3 shows a host memory window; we can change memory in this 
window.

Figure 3: Dump screen of a memory region
(source: Intel corporation, 2011)

UEFI Solutions for Pre-Boot Debugging
This section describes some of the data elements one would deal with when 
debugging software within UEFI.

UEFI Status Codes
Appendix D of the UEFI Specification defines a series of Status Codes (EFI_
STATUS) used by UEFI interfaces to indicate successes, errors, and warnings. 
These codes expand on the concept of checkpoints defined by legacy BIOS, 
with standardized values and use of larger bit fields. They are summarized in 
Table 1.
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Supported 32-
bit Range

Supported 64-bit 
Architecture Ranges

Description

0x00000000-
0x1fffffff

0x0000000000000000-
0x1fffffffffffffff

Success and warning codes 
reserved for use by UEFI main 
specification.

0x20000000-
0x3fffffff

0x2000000000000000-
0x3fffffffffffffff

Success and warning codes 
reserved for use by the 
Platform Initialization 
Architecture Specification.

0x80000000-
0x9fffffff

0x8000000000000000-
0x9fffffffffffffff

Error codes reserved for use by 
UEFI main specification.

0xa0000000-
0xbfffffff

0xa000000000000000-
0xbfffffffffffffff

Error codes reserved for use 
by the Platform Initialization 
Architecture Specification.

Table 1: UEFI status codes
(source: UEFI specification 2.3.1)

Status codes are not restricted to a specific hardware interface, such as ISA 
or PCI as used by legacy checkpoints. The UEFI Platform Interface (PI) 
specification provides Status Code Services and code definitions for the PPI 
and protocols used in a Report Status Code Router.

DEBUG() and ASSERT() Macros
DEBUG and ASSERT are very useful for developers who want to debug 
without using source level tools. These macros produce human readable 
debug output that can directed to a standard serial port or USB debug port. 
These macros can be enabled or disabled during firmware build. Figure 4 is an 
example of DEBUG() output from a UEFI system.

“DEBUG and ASSERT are very 

useful for developers who want to 

debug without using source level tools.”

Figure 4: sample DEBUg() output from a UEFI system
(source: Intel corporation, 2011)



Intel® Technology Journal | Volume 15, Issue 1, 2011

Debugging Firmware Based on the Unified Extensible Firmware Interface   |   107

UEFI Debug Protocol
Chapter 17 of the UEFI 2.3.1 specification describes the UEFI debug 
architecture, a minimal set of protocols and data structures used to enable source-
level debugging. UEFI debug support is presented as a pair of protocol interfaces:

 • Debug Support – this protocol abstracts the processor’s debugging facilities, 
namely a mechanism to manage the processor’s context via caller-installable 
exception handlers.

 • Debug Port – this protocol abstracts the device that is used for 
communication between the host and target. Typically this will be a serial 
stream style interface.

The best example of UEFI Debug Protocol implementation uses the USB 
Debug Port. USB-based debug solutions function thanks to the USB 2.0 
Debug Port. The debug port is a function of an EHCI USB 2.0 host controller, 
but is implemented by most Intel peripheral controller hubs. The debug port 
uses a simplified USB protocol that does not require a full memory stack, 
unlike the standard USB protocol. This allows the debug port to be initialized 
in the SEC or early PEI phase, almost immediately after the firmware gets 
control.

USB-based debug solutions offer the most flexibility for the platform developer 
and field technician:

 • Externally accessible – USB ports are designed for external expansion, so 
technicians don’t have to open the case to connect the device

 • USB 2.0 enables early debugging – accessible via the USB EHCI debug 
port

 • No additional hardware cost – use the same USB port for debugging 
devices or with standard USB 1.1 and USB 2.0 devices

 • USB is ubiquitous – users expect USB to be enabled on today’s systems

Since debug firmware contains extra strings and information for synchronizing 
the host and target systems, the UEFI debug protocol is not enabled by default. 
UEFI firmware and drivers must be compiled in “debug mode” to enable 
support for the UEFI debug protocol. This allows debug capabilities to be 
quickly disabled between builds, allowing non-debug firmware to be properly 
optimized before release.

The UEFI specification only describes low-level interfaces, not the entire debug 
architecture. Different solutions take advantage of the UEFI debug protocols, 
either for simple debug output or full source-level debugging at the firmware 
level. This allows the developer to choose from a variety of tools.

Practical Examples of UEFI Debug Solutions
This section covers several examples of debugger interfaces and tools that a user 
can experience both from open source repositories as well as AMI.

“The debug port is a function of an 

EHCI USB 2.0 host controller, but is 
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Intel® UEFI Development Kit (Intel UDK) Debugger Tool
The Intel® UDK Debugger Tool provides the ability to debug UDK-based 
firmware running on an IA-32 family processor through a simple debug cable 
(serial or USB).

In conjunction with the Microsoft Windows* Debug Tool (WinDbg) and 
Linux GDB, the Intel UDK Debugger Tool provides the ability to debug 
UDK-based firmware on UEFI IA-32 and UEFI x64 platforms. The target side 
“debug agent” (SourceLevelDebugPkg) is part of the EDK II project used to 
create UDK2010.

Figure 5 shows the WinDbg window. It can show the C source code, and the 
execution is stopped at the highlighted line.

Figure 5: snapshot of the winDbg interface with which the open source software debug 
package interacts
(source: Intel corporation, 2011)

Figure 6 shows the Linux GDB execution; it demonstrates the calling of 
PeiServicesAllocatePages.
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AMIDebug Rx*
AMIDebug Rx*, shown in Figure 7, is the first of its kind: a low-cost debug 
tool built around the debug port feature common to today’s USB 2.0 EHCI 
controllers. AMI Debug Rx is designed as replacement for the PCI POST 
Checkpoint Card, and also serves as a host-to-target interface for AMIDebug 
for UEFI and the Intel UDK 2010 firmware debug solutions.

“AMI Debug Rx is designed as 

replacement for the PCI POST 

Checkpoint Card, and also serves as a 

host-to-target interface for AMIDebug 

for UEFI and the Intel UDK 2010 

firmware debug solutions.”

Figure 6: snapshot of the gdb interface with which the open source software debug 
package interacts
(source: Intel corporation, 2011)

Figure 7: snapshot of the AMI Debugrx device
(source: American Megatrends Inc., 2011)
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Key features:

 • USB-based replacement for the PCI port 80h “POST Checkpoint” card

 • Checkpoints can be captured and stored to one of four “sessions” for later 
review

 • Measures elapsed time between checkpoints to analyze boot performance 
timing

 • Display descriptive text for each checkpoint, based on built-in string table 
or custom table

 • USB Virtual COM (VCOM) port for data transfer and configuration

 • UEFI debug messages redirected over USB VCOM or saved in device 
memory

Diagnosing small form factor platforms with AMIDebug Rx is nonintrusive, 
allowing technicians to see checkpoints without opening the case. AMIDebug 
Rx replaces the POST checkpoint card’s LED display with an easy-to-read 
LCD screen. This debug method produces more descriptive debugging 
messages than the checkpoint card, along with extended features such as boot 
speed timing and UEFI debug message redirection.

AMIDebug for UEFI
AMIDebug for UEFI is a powerful debug solution for Aptio, AMI’s product 
solution for UEFI firmware. AMIDebug for UEFI uses the UEFI debug 
protocols to provide an alternative to ITP/JTAG debugging for IA-32 and x64 
firmware. Developers have access to source-level debugging and control the 
debug target hardware through the Visual eBIOS (VeB) development interface, 
shown in Figure 8.

AMIDebug for UEFI provides functionality similar to hardware-based 
development tools:

 • Source-level symbolic debugging

 • Access to hardware resources (CPU registers, PCI configuration space, 
memory, and I/O locations)

 • Debug Aptio firmware, UEFI/DXE drivers, PEIMs, and pre-boot 
applications in the UEFI Shell

AMIDebug for UEFI and the UDK 2010 debugger have many common 
features, but AMIDebug is an example of a commercial software debugger with 
additional features.

“AMIDebug for UEFI uses the 

UEFI debug protocols to provide an 

alternative to ITP/JTAG debugging 

for IA-32 and x64 firmware.”
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The AMIDebug interface is integrated with Visual eBIOS (VeB), a 
development environment specifically built for developing BIOS and UEFI 
firmware. This allows debugging and development in the same interface, which 
speeds up issue resolution. AMIDebug extensions for VeB also incorporate 
extended debug information, such as checkpoints or debug messages, which 
normally appear in secondary redirection consoles. AMIDebug for UEFI 
also adds specialized firmware debug interfaces and can be extended to debug 
System Management Mode (SMM) routines on IA32 and x64 processors.

Firmware Debugging in UDK 2010
This section covers the various aspects of debugging code within the UDK 
codebase along with the pertinent architectural phases within which such 
debugging might take place.

Figure 8: snapshot of the AMI Debug interface.
(source: American Megatrends Inc., 2011)
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General Architecture
Debugging UDK-based firmware requires two machines: a target and a host. 
The target contains the UDK firmware to be debugged and the host executes 
the debug interface software (Figure 9).

Figure 9: cable connection between the target and 
host machines
(source: Intel corporation, 2011)

Host

Serial or
USB cable Target

The architecture of WinDbg debugging support is depicted in Figure 10.

Figure 10: general architecture (windows tool chain)
(source: Intel corporation, 2011)

Normal
Code
Flow

Debug
Agent

Target Machine Host Machine
(running Windows)

WinDgb

ItpExdi
(VC++/ATL COM)

SoftDebugger
(VC++/ATL COM)

Exdi COM
interface

by Microsoft

COM
interface

by ITP team

Channel

Debug
Interrupt
Handler

Debug
Port

Interrupt

PDB and
Source

The host’s responsibility:

 • Communicate with target for debug

 • Implement SoftDebugger APIs

 • Communicate with debug front end (WinDbg, Gdb, and so on)

 • Read a configuration file to accept user configuration
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The target’s responsibility:

 • Respond to host’s request to set hardware breakpoint in debug registers in 
processor

 • Handle interrupt (INT1, INT3, and so on) and give response to host, and 
wait for next step from host

Figure 11 shows the architecture of using GDB to debug UDK-based firmware 
compiled with GCC in Linux.

Figure 11: general architecture (linux/gcc tool chain)
(source: Intel corporation, 2011)
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WinDbg Debug
A UEFI firmware developer can use the Microsoft Windows Debug Tool 
(WinDbg) and the Intel UEFI Development Kit Debugger Tool (Intel 
UDK Debugger Tool) to debug UDK-based firmware on UEFI IA-32 
and UEFI x64 platforms. The target side component (debug agent) is 
“SourceLevelDebugPkg” in UDK 2010.

The host is a Microsoft Windows XP (SP3) platform executing WinDbg and 
the Intel UDK Debugger Tool. The target and host interconnect via a serial 
null modem or USB 2.0 debug cable (as shown in Figure 9).

The Intel UDK Debugger Tool supports the following:

 • Source-level debugging using Microsoft Windows Debug Tool (WinDbg) – 
host running Microsoft Windows XP (SP3)

 • Debugging as early as late SEC (after temporary RAM setup) for the 
normal boot path

 • Starting debugging SMM code by requesting target to stop at next SMI
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•• Cable•interconnect:•serial•null•modem•cable•or•USB•host•to•host•cable•
(USB•2.0•debug•device•cable)

•• Setting•unresolved•breakpoints

The•basic•debugging•flow•includes•three•major•steps:•compiling,•programming,•
and•launching.

1.• Compile•the•firmware•that•includes•the•target•side•debug•agent,•as•depicted•
in•Figure•12.

“The basic debugging flow includes 

three major steps: compiling, 

programming, and launching.”

UDK Based Firmware

Compile

DebugAgent (in
SourceLevelDebugPkg)

Firmware
Image

Figure 12: Compiling firmware image with debug agent
(Source: Intel Corporation, 2011)
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Figure 13: Debug session active components
(Source: Intel Corporation, 2011)

2.• Program•the•firmware•image•into•flash•on•the•target•system.

3.• Launch•a•debugger•on•the•host•to•debug•the•firmware•on•the•target•system.

Figure•13•shows•how•the•components•interact•during•a•debug•session•in•
Windbg•debugging.
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Debugging SEC and PEI Code
Most of the code for SEC and PEI phase executes from read-only memory. 
The Intel UDK Debugging Tool automatically uses a hardware breakpoint if it 
detects the address is within the read-only memory flash range.

Debugging DXE Code
Some PI firmware implementations execute SEC/PEI in 32-bit mode and DXE/
SMM in 64-bit mode. When the UEFI Debugger Tool detects a mode switch 
from either 32-bit mode to 64-bit mode (or from 64-bit mode to 32-bit mode), 
the Microsoft Windows Debug Tool (WinDbg) is automatically re-launched.

Debugging SMM Code
The Smmentrybreak command must be used to set a flag so the next entry into 
SMM will force the target to break into the debugger. The smmentrybreak 
switch must be set to inform the target whether it should stop the next time it 
enters SMM mode. Breakpoints can be set after the target enters SMM mode 
and debugging can continue. When the target stops at the SMM entry, the 
source for SMM handlers may be opened, and software breakpoints may be set.

Comparing Hardware and Software Debug Capabilities
Debuggers are critical tools for the development of software. Intel offers 
hardware debug solutions based on the ITP/JTAG model. Other solutions exist 
in the marketplace for hardware-level debugging, such as the WindRiver* ICE 
2 JTAG Debugger. Software debugger solutions also exist, such as the Intel 
UEFI Development Kit Debugger Tool or the AMIDebug for UEFI solution 
that integrates into the Aptio Visual eBIOS (VeB) development environment.

Table 2 illustrates differences between hardware- and software-based firmware 
debug solutions.

Hardware Debugger Software Debugger

Dependency Requires platform with JTAG (Joint Test Action 
Group) or TAP (Test Access Port) interface

Requires support for a low-level debug port (serial, USB 
debug port, 1394)

Special Features Hardware event. (Like init, reset, smmentry/
smmexit)

SMM/UEFI runtime service debug in OS 
environment.

SEC phase debug.

Debug mode switch (like 16-bit legacy code, 
32/64 switch code)

Debug software debugger agent.

Some special features, like firmware update.

Software logic.

Condition breakpoint (break if condition is satisfied).

Unresolved breakpoint (Set breakpoint on an unloaded 
module).

View data structures.

EBC (EFI byte code) debugger.

Debug UEFI driver and option ROM (OPROM).

View UEFI debug strings, BIOS checkpoints and UEFI 
status codes.

Usage Scenarios Debug silicon before production for hardware or 
firmware issues.

Debug production board (without JTAG) for firmware issues 
(BIOS/UEFI debugging, driver/OpROM compatibility)

Cost More costly than software-based solutions Some tools are open source and free.

Table 2: Differences between hardware and software debuggers
(source: American Megatrends, Inc. 2011)

“The Intel UDK Debugging Tool 

automatically uses a hardware 

breakpoint if it detects the address is 

within the read-only memory flash 

range.”
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For early silicon enabling, the hardware debugger is good for debugging 
hardware design issues. The direct interface to the processor eliminates 
communication issues with other platform hardware. The ability to trap 
hardware events (SMI, INIT, mode switch) is useful in early hardware 
debugging.

After the initial board power-on, a software debugger can be used to debug 
complex firmware issues. Full support for hardware and software breakpoints 
gives developers a great deal of flexibility without using an ITP/JPAG solution. 
The reduced cost of a software solution enables a larger number of developers 
access to power debugging tools.

One area of concern is debugging UEFI drivers based on EFI Byte Code 
(EBC). EBC is executed in a processor-independent virtual machine that 
interprets a predefined instruction set, similar to Java. EBC code interpretation 
on the target is hard to debug using a hardware debugger solution. This is an 
issue that may be addressed in future software-based debug solutions.

Summary
The article has described debugging solutions during UEFI firmware 
development. We can choose any of debugging solutions based on the specific 
platform hardware design and the firmware problems we meet. Checkpoint 
solution can be used with PCI POST Checkpoint Card. A serial port can 
print out debug messages. A USB debug port can be used as well when a 
serial port and PCI POST Checkpoint card cannot be used. These solutions 
can quickly let developers know where firmware execution is. If problems are 
encountered with silicon problem before production, JTAG software with a 
JTAG-connector is the most powerful debugging method to do source-level 
debugging. If the platform has no JTAG-style connectors, AMIDebug and 
the Intel UDK Debugger Tool can be employed to do source-level debugging 
as well. These debugging solutions make it possible to develop and debug 
firmware as general software.
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The reader of this article will understand the value that Hewlett Packard has 
gained from leveraging UEFI across their product portfolios. By providing a 
variety of case studies, HP shows how UEFI solutions have been used within 
HP’s products ranging from printers to supercomputers. 

Introduction
Before UEFI, there was EFI (Extensible Firmware Interface). EFI was created 
initially in 1998 for systems based on the Intel® Itanium® processor to 
overcome BIOS dependencies that presented formidable challenges to the “big 
iron” system design. For example, the dependency on the legacy 8259 interrupt 
controller, the 64K I/O port space, the 192K option ROM execution space, 
the single PCI segment group, all impacted the scalability of the system. We 
also foresaw the coming of the 2.2-TB Master Boot Record (MBR) hard drive 
partition limitation and defined a new GUID Partition Table (GPT) format. 

While addressing all these limitations, EFI also defined a modular, flexible and 
extensible architecture, enabling the use of high-level programming language. 
It was created with the processor architecture agnostics in mind, supporting 
Itanium, x86, and a processor-independent byte code, EFI Byte Code (EBC).

EFI was an Intel-owned specification defining the interfaces between the 
operating systems and the system firmware, as well as the device boot driver 
and the system firmware. Intel created the Framework defining the system 
firmware internal interfaces to further make the EFI implementation modular. 

In 2005, the industry came together and decided to form the UEFI Forum 
to own the interface definitions that EFI and Framework covered. Intel 
contributed the EFI and Framework specifications to the UEFI Forum as the 
starting point. The change of name from EFI to UEFI (U stands for Unified) 
signified that the tasks of definition, promotion, and adoption were on the 
shoulders of the industry from then on. 

The first specification, the UEFI 2.0 Specification, was published by the UEFI 
Forum and defined the binding for x64 processors with help from AMD 
and Intel. The Framework also evolved into the Platform Initialization (PI) 
Specification. ARM-binding for UEFI was published in 2009 as part of the 
UEFI 2.3 Specification. Most recently, the UEFI 2.3.1 Specification finalized 
the support for the Secure Boot capability and the IPv6 pre-boot support.

“EFI also defined a modular, flexible 

and extensible architecture, enabling 

the use of high-level programming 

language.”

“In 2005, the industry came together 

and decided to form the UEFI Forum 

to own the interface definitions that 

EFI and Framework covered.”
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HP’s History with EFI
In the mid-1990s, while HP partnered with Intel to develop the Itanium® 
architecture for the enterprise server systems, the system firmware architecture 
was initially Itanium-specific as a combination of processor abstraction layer 
(PAL) and system abstraction layer (SAL). The PAL/SAL concept inherited 
much from the firmware architecture used in the PA-RISC systems called 
processor- and I/O-dependent code (PDC-IODC). 

Due to the desire to leverage the x86 ecosystems to support the Windows* 
operating system, the boot services in SAL were directly wrapped around the 
x86 BIOS services like INT 19h, INT 13h, and INT10h. However the BIOS 
limitations presented formidable challenges to the “big iron” system design. For 
example, the dependency of BIOS on legacy PC-AT hardware such as the 8259 
interrupt controller and the 8254 timer created problems like single-point of 
failure, inflexible configurations, and resource duplication for multi-partition 
systems. The shortage of the I/O port space, option ROM execution space, 
and PCI bus numbers also made boot device configuration support severely 
constrained for enterprise servers that may have hundreds of I/O devices that 
are potentially bootable devices.

HP introduced the concept of an Enhanced Mode (EM, another name for the 
Itanium architecture at the time) option ROM, but it did not get finalized due 
to the Windows support requirement. Fortunately, when Microsoft considered 
the Windows support on Itanium in the late 1990s, they also saw the need to 
create a new boot model to replace BIOS.

There were some existing alternatives, but they all had some major technical, 
business, or legal issues. Intel put out a proposal called Intel Boot Initiative 
(IBI), which later became EFI. EFI 1.02 was a good start, but still did not 
address the option ROM limitation issue. It was not until EFI 1.10 when the 
boot model for Itanium was complete, in time for the first Itanium launch. 
Since then, EFI and later on UEFI, has been the only boot model supported 
on all Itanium systems. HP Integrity Systems have been leading in the EFI/
UEFI adoptions and supporting value-add features such as boot-from-tape, 
virtual partitioning, device parameter configuration, system management, and 
RAS capabilities. 

The two additional efforts during the evolution of EFI have made significant 
impact to HP’s system designs. The first is the processor-architecture–agnostic 
design of the interfaces. This originated from the desire to have one binary 
image for the Option ROM on the add-in card to support booting on 
both x86 and Itanium systems. Therefore, EFI was created to have three 
processor bindings: x86, Itanium, and an EFI Byte Code (EBC). EFI drivers 
compiled into EBC can support boot on both x86 and Itanium systems as 
long as they are EFI-compliant. UEFI now also supports x64 and ARM 
bindings. Another effort is the push to modularize the implementation of 
UEFI by Intel via its Framework development, which led to the Platform 
Initialization (PI) specifications. These efforts have enabled HP to modularize 

“However the BIOS limitations 

presented formidable challenges to the 

“big iron” system design.”

“Therefore, EFI was created to 

have three processor bindings: x86, 

Itanium, and an EFI Byte Code 

(EBC).”
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the implementation to share code across multiple business units and across 
products based on different processors.

Starting from 2008, HP has shipped UEFI-based systems using Itanium, x64, 
and ARM processors from servers to clients, from printers to networking gears, 
as shown in Figure 1. UEFI is becoming the converged firmware infrastructure.

Figure 1: UEFI deployment at HP
(Source: copyright 2011 Hewlett-Packard development company, l.P.)

Accompanying the UEFI and PI specifications, the UEFI Forum is responsible 
for providing the self-certifying compliance tests (SCT). On the UEFI front, 
the UEFI Forum is responsible for the development and delivery of the SCT. 
For PI SCT, there is an open source effort at http://sourceforge.net/projects/
pi-sct/. The UEFI Forum’s task is to endorse the PI SCT when it is ready. 
Currently, the UEFI Forum has made available the UEFI 2.3 SCT and has 
endorsed the PI 1.0 SCT.

Intel sponsors an open source component development at tianocore.org. Two 
major projects are EDK and EDK II. The EDK is the open-source component 
of the Framework, Intel’s implementation of the EFI Specification, which was 
developed under the project code-named Tiano. The EDK was released under 
the BSD License. The EDK II project is the response to the EFI community’s 
request for a better build and version tracking environment for UEFI and PI 
development. The main difference between the EDK II to the original EDK 
is the Enhanced Build Environment of the EDK II. EDK is no longer kept 
up. Newer features and components are provided via EDK II. In 2010, Intel 

“Accompanying the UEFI and PI 
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released UEFI Developer Kit (UDK) 2010 based on EDK II as a snapshot of 
the components implementing to the UEFI 2.3 and PI 1.2 specifications that 
were available at the beginning of January, 2010. 

When HP Integrity* enterprise servers first launched in 2002 with Itanium 
2 processors, there were two codebases. Both had Intel’s Sample EFI 
Implementation layered on top of proprietary implementations underneath. 
One was optimized for the entry-level severs and the other was optimized for 
the mid-range and Superdome* servers. When Intel first created EDK, HP was 
not quite sure if such a framework was actually scalable and flexible enough 
to support the HP systems that are quite different from Intel development 
vehicles. HP Integrity Systems have powered some of the world’s most 
demanding mission-critical environments for enterprise customers who require 
high availability, rich virtualization capabilities, and manageability.

At that time, we were working on systems using the HP zx2 chipset on the 
entry-level and the sx2000 chipset on the mid-range and Superdome servers. We 
collected and reexamined our requirements, which can be summarized as follows: 

 • Ability to support advanced features 

 • Path to support network boot over IPv6, and so on

 • Ability to provide HP platform innovations

 • Ability to deliver platform value-add module

 • Ability to protect intellectual property

 • Improve execution excellence

 • Deliver with limited engineering resources

 • Deliver faster time to market

 • Separate the hardware basic execution away from HP innovations

 • Reduce integration and validation time

 • Use packaging supplied by silicon driver modules from silicon supplier

 • Maximize proper code reuse

 • Build-once, use by multiple platforms

To evaluate whether EDK met these requirements, we prototyped EDK on top 
of systems based on the HP zx1 chipset. We were able to focus on the attributes 
of EDK since zx1-based systems were of shipping quality then. The results were 
promising. However, EDK II was emerging; it was the response to the UEFI 
community’s request for a better build and version tracking environment for 
UEFI and PI development. EDK II also has superior package support.

After careful preparation, HP was ready to intercept the product deployment 
with EDK. We decided to skip EDK and transition directly to EDK II on 
all new HP Integrity Systems based on the Intel Itanium 9300 processors. A 
single source tree is used to support Blades and Rack Servers using the Intel 
7500 chipset (as shown in Figure 2), and Superdome 2 using the HP sx3000 
enterprise systems chipset (as shown in Figures 3–5). 
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Figure 2: Blades and rack Servers using the Intel 7500 chipset
(Source: copyright 2011 Hewlett-Packard development company, l.P.)
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Figure 4: Superdome 2 Io Expansion
(Source: copyright 2011 Hewlett-Packard development company, l.P.)
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EDK II’s superior package support enables better ability to reuse, global 
visibility for bug fixes, and allows for single module/solution ownership. Some 
silicon modules and applications were developed or leveraged from the EDK 
environment. Intel designed EDK Compatibility Package (ECP) made it 
possible to reuse these modules and applications as-is without having to port 
into the EDK II construct. This made the EDK II transition smooth.

HP, as an early adopter for EDK II, provided reviews and guidance that 
helped refine EDK II to the present form. We provided multiple rounds of 
feedback on simplifications. We recommended the use of industry-standard 
tools instead of proprietary tools. We provided fixes of build tool bugs and 
identified EDK II issues that arose when enabling compiler optimization with 
the Intel C compiler. We also discovered multiple EDK II bugs, for example, a 
subtle design issue with the UEFI network stack that led to severe performance 
degradation on large systems. HP contributions benefited the entire open-
source community.

The challenge faced by HP as an early adopter for EDK II is that the code 
development required large-scale source tree updates. Updates were needed on 
average every two to three months, but that was expected in the early adoption 
phase. The UDK2010 release based on the EDK II codebase addressed this 
challenge through codebase maturity, packaging technology, and catching up 
with the latest specifications.

HP has the following recommendations for the developers:

 • Pay close attention to the specifications/errata

 • Employ parallel versions for different specification versions

 • Maintain the infrastructure support and compatibility: keep a “deprecated” 
version of lib/include/PCD and avoid changing build tools/lib/include/
PCD 

 • Proactively communicate when a bug is fixed 

HP also has the following recommendations for the OEMs/IBVs:

 • Take advantage of parallel versions if available

 • Get small-scale source updates needed

 • Pull in the latest code at least every two months

 • Use the EDK II package solution

 • Create vendor-specific modules

UEFI on Client Systems
When EFI was created, HP did various experiments of porting it to the x86 
environment. But actual product integration plans started after the formation 
of the UEFI Forum and the publication of the UEFI 2.0 Specification, where 
the x64 binding was first published. By 2008, commercial notebooks started 

“The challenge faced by HP as an 

early adopter for EDK II is that the 

code development required large-scale 

source tree updates.”
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to ship Class 2 UEFI systems (supporting both legacy and UEFI operating 
systems), while consumer notebooks started to ship Class 1 UEFI systems 
(supporting legacy operating systems only). Class 3 UEFI systems only boot 
UEFI operating systems and do not contain a CSM [1].

In 2011, desktops and workstations started shipping Class 2 UEFI systems 
based on the Intel “Sandy Bridge” microarchitecture (see Figure 6). These 
systems adopted a common UEFI codebase descended from the EDK and 
ported existing features from their legacy HP BIOS to this new environment. 
The runtime portion of the HP BIOS was reimplemented as a CSM. The shell, 
network stack, and network tools are delivered as Web downloads, and they 
reuse fixes and improvements previously developed on Itanium servers and 
printers.

“The shell, network stack, and 

network tools are delivered as Web 

downloads, and they reuse fixes and 

improvements previously developed on 

Itanium servers and printers.”
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HP’s UEFI diagnostics for client systems established a common diagnostics 
tool for these systems that converged to the UEFI technology. It has enhanced 
diagnostics, provided DIMM fault isolation, and enabled concurrent memory, 
hard drive, and battery tests. It has improved the test coverage and optimized 
test cycles.  

UEFI technology makes it easier to provide value-add to our systems. System 
boot time has been a challenge that needs collaborative work among ecosystem 
players such as OEMs, OSVs, and IHVs. The industry is collectively working 
to address this painful user experience for future products. However, the 
modularity of UEFI also makes it easier for HP to innovate. HP DayStarter is 
a simple value-add to the system allowing users to have access to productivity 
information while waiting for the system to boot. Although ultimately this 
feature may not be needed when the industry collectively reduce the boot time, 
it is a small investment that resulted in differentiated better user experience in 
the meantime while the overall boot time is still pretty long. 

Figure 7 shows a typical boot sequence to Windows, and how the new HP 
DayStarter kicks in to improve the user experience.

“HP’s UEFI diagnostics for client 

systems established a common 

diagnostics tool for these systems that 

converged to the UEFI technology.”
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Figure 7: HP Innovative Boot with dayStarter
(Source: copyright 2011 Hewlett-Packard development company, l.P.)

Figure 8 is a screenshot of what is present to the users while Windows boots in 
the background.

The benefits to the customers are the instant-on user experience with user 
productivity information (such as calendar, to-do list and customizable 
information) available for display before and while Windows is booting. The 
main technology behind it is for the UEFI BIOS to locate the proper JPEG 
images and use the System Management Mode (SMM) to update the frame 
buffer content until Windows is ready for system login. At OS runtime, HP 
implements an Outlook plug-in to capture the calendar information.
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Details on ARM and UEFI/PI
ARM processors have been predominant in the smartphone market and are 
becoming increasingly mainstream in the overall embedded space. However, 
historically ARM systems did not have a preboot firmware standard. This led 
each design to have its own distinct firmware model that was tightly coupled 
to the operating system being booted. This traditional approach means the 
firmware developers would need to maintain completely different codebases 
even though the systems may use many of the same types of peripheral devices 
(network, SATA, USB controllers, and so on) and feature sets across the 
designs. Generations of ARM cores relied on boot packages such as UBoot, 
[2], Redboot, or proprietary software. 

How to efficiently develop and ship these products and meet time-to-market 
demands becomes a challenge. Some form of converged firmware infrastructure 
is necessary to maximize proper code reuse, enable the products to achieve 
faster time to market with limited engineering resources, and concurrently add 
innovative features.

UEFI is a new opportunity for preboot firmware on ARM-based systems. 
The UEFI Forum defined the ARM-binding for UEFI. With UEFI, it is now 
possible to maximize the code reuse among different designs, including those 
using different processor architectures.

“Generations of ARM cores relied on 

boot packages such as UBoot, Redboot, 

or proprietary software.”
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Figure 8: HP DayStarter Screenshot
(Source: Copyright 2011 Hewlett-Packard Development Company, L.P.)
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With the publication of the ARM-binding, Apple and HP contributed UEFI 
reference implementations, including one for the Beagle Board (beagleboard.
org), to tianocore.org, enabling silicon vendors to supply UEFI drivers for 
their hardware. ARM Ltd. recently contributed reference code for the Versatile 
Express reference platform with Cortex A9 MP cores, in addition to:

 • Build environment fixes for the ARM GCC toolchains

 • Updates for the ARM RealView Emulation Baseboard code

 • A new ArmPlatformPkg containing common components for ARM 
reference platforms

 • TrustZone controller support

 • MP Core support

 • PL18x MMC Controller Support

 • A customized Boot Device Select (BDS) library that supports booting 
Linux directly

There are many advantages for ARM preboot firmware to standardize on 
UEFI. OEM/ODMs are always looking into reduced development cost. Code 
sharing among products is one way to achieve that. UEFI not only enables 
code sharing among ARM products or among x86 products, it also enables 
code sharing across processor architectures. Products may share many of the 
peripheral devices (network, SATA, USB controllers, and so on) and feature 
sets across the designs. 

Figure 9 shows an ARM port where 99.42 percent of the lines of code need not 
change from an x86 port.

“There are many advantages for ARM 

preboot firmware to standardize on 

UEFI.”
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The modularity of the UEFI technology also enables the silicon vendors to 
deliver drivers for their own hardware. This gives OEM/ODMs the flexibility 
to use modules from different suppliers, widening the options.

UEFI for ARM provides a truly OS-independent boot solution whereas most 
other existing ARM boot solutions (such as UBoot and Little Kernel) are 
coupled to the OS they support.

Standardizing preboot firmware on UEFI also enables potential independent 
firmware vendors to enter the market to provide support. It would make it 
possible for these vendors to provide support to multiple customers, deploy 
modules efficiently, and provide common scalable solutions. 

This standardization would also reduce the development cost for the silicon 
vendors, since they would only need to support one type of driver that could 
be integrated by all OEM/ODMs. This could improve validation efficiency and 
debug-ability. 

For the OSVs, this standardization would allow them to focus their investment 
in a single bootloader. Such standardization would also give new opportunities 
to the ISVs for innovations.

Future Direction: Scratching the Surface Today?
With more and more systems transitioned or transitioning to UEFI, the 
foundation is established to realize the benefit of code reuse across product 
segments and across architectures. Done well, this can be a significant cost savings 
to the company. This converged firmware infrastructure builds on an industry-
standard technology that the industry is collectively relying on to support modern 
features like secure boot and booting from an IPv6 network. But more importantly, 
as the E in the UEFI name indicates, HP is in the best position to fully take 
advantage of the extensibility of this technology. Now that the foundation is 
established, it is time for us to shift more resources toward differentiation and 
innovation. We have shown a few examples in this article, but opportunities are 
there everywhere. Our task is to recognize, capture and make it happen. 
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