
Introduction
This document gives a presentation of the core-coupled memory (CCM) SRAM available on STM32F3/STM32G4
microcontrollers and describes what is required to execute part of the application code from this memory region using different
toolchains.

The first section provides an overview of the CCM SRAM, while the next sections describe the steps required to execute part of
the application code from CCM SRAM using the following toolchains:
• IAR Systems® IAR Embedded Workbench®

• Keil® MDK-ARM
• STMicroelectronics STM32CubeIDE and other GNU-based toolchains

The procedures described throughout the document are applicable to other SRAM regions such as the CCM data RAM of some
STM32F4 devices, or external SRAM.

Table 1 lists the STM32 microcontrollers used as examples for CCM SRAM.

Table 1. Applicable products

Reference Products

STM32F3/STM32G4
STM32F3

STM32F303 line, STM32F334 line

STM32F328C8, STM32F328K8, STM32F328R8

STM32F358CC, STM32F358RC, STM32F358VC

STM32F398RE, STM32F398VE, STM32F398ZE

STM32G4 STM32G4 Series

Use STM32F3/STM32G4 CCM SRAM with IAR Embedded Workbench®, Keil®
MDK-ARM, STMicroelectronics STM32CubeIDE and other GNU-based toolchains

AN4296

Application note

AN4296 - Rev 5 - February 2021
For further information contact your local STMicroelectronics sales office.

www.st.com

https://manuals.plus/m/e756d55e4a19cb3fb376cb06874531bc08822160ec5ac2022bc558652e187d46

1 Overview of STM32F3/STM32G4 CCM SRAM

This document applies to STM32F3/STM32G4 microcontrollers based on the Arm® Cortex®‑M core.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

1.1 Purpose
The CCM SRAM is tightly coupled with the Arm® Cortex® core, to execute the code at the maximum system clock
frequency without any wait-state penalty. This also brings a significant decrease of the critical task execution time,
compared to code execution from Flash memory.
The CCM SRAM is typically used for real-time and computation intensive routines, like the following:
• digital power conversion control loops (switch-mode power supplies, lighting)
• field-oriented 3-phase motor control
• real-time DSP (digital signal processing) tasks

When the code is located in CCM SRAM and data stored in the regular SRAM, the Cortex®‑M4 core is in the
optimum Harvard configuration. A dedicated zero-wait-state memory is connected to each of its I-bus and D-bus
(see the figures below) and can thus perform at 1.25 DMIPS/MHz, with a deterministic performance of 90 DMIPS
in STM32F3 and 213 DMIPS in STM32G4. This also guarantees a minimal latency if the interrupt service routines
are placed in the CCM SRAM.

Figure 1. STM32F3 device system architecture

FLTIF

SRAM

AHB dedicated
to GPIO ports

CCM
SRAM

RCC, TSC, CRC and
AHB to APB1 and APB2

ADCs

I-bus

S-bus

D-bus

DMA

DMA

Arm
Cortex-M4

GPDMA1

GPDMA2

FLASH
64 bits

ICODE

DCODE

BusMatrix-S

M0 M1 M2 M3 M4 M5 M6

S4
S0

S3
S1

S2

AN4296
Overview of STM32F3/STM32G4 CCM SRAM

AN4296 - Rev 5 page 2/24

Figure 2. STM32G4 device system architecture

S-
bu

s

D
-b

us

Cortex-M4
with FPU DMA1 DMA2

FLASH
512 Kbytes

AC
C

EL

ICode

DCode

BusMatrix-S

SRAM1

SRAM2

AHB1
peripherals

AHB2
peripherals

FSMC(1)

QUADSPI(1)

I-b
us

CCM SRAM

(1) Not available on STM32G431 STM32G441
devices

Example

A benchmark between the STM32F103 and STM32F303 microcontrollers using the STMicroelectronics MC
library V3.4 shows that, in case of single motor control using three-shunt algorithm, the field-oriented control
(FOC) total execution time for STM32F303 is 16.97 µs compared to 21.3 µs for the STM32F103 (see the note
below), with FOC core and sensorless core loops running from CCM SRAM for STM32F303. This means that the
STM32F303 is 20.33 % faster than the STM32F103 thanks to the CCM SRAM.

Note: FOC routines are programmed in structured C, so the values provided above do not represent the fastest
possible execution both for STM32F103 and STM32F303. In addition, the execution time is also function of the
compiler used and of its version.
When the CCM SRAM is not used for code, it can hold data like an extra SRAM memory. It is not recommended
to place both code and data together in the CCM, since the Cortex® core must then fetch code and data from the
same memory with the risk of collisions. The core is then in the Von Neuman configuration and its performance
drops from 1.25 DMIPS/MHz to below 1 DMIPS/MHz.

AN4296
Purpose

AN4296 - Rev 5 page 3/24

1.2 CCM SRAM features
The table below summarizes the CCM SRAM features on various STM32 products. More details are provided in
the next sections.

Table 2. CCM SRAM main features

Feature/
products

STM32F303xB/C
STM32F358xx

STM32F303x6/8
STM32F334xx
STM32F328xx

STM32F303xD/E
STM32F398xx

STM32G47xx
STM32G84xx

STM32G431x
STM32G441x

Size (Kbytes) 8 4 16 32 10

Mapping 0x1000 0000 0x1000 0000 and can be
aliased at 0x2001 8000

0x1000 0000 and can be
aliased at 0x2000 5800

Parity check Yes

Write protection Yes, with 1-Kbyte page granularity

Read protection No Yes

Erase No Yes

DMA access No

• No if mapped at
0x1000 0000

• Yes if mapped at
0x2001 8000

• No if mapped at
0x1000 0000

• Yes if mapped at
0x2000 5800

1.2.1 CCM SRAM mapping
The CCM SRAM is mapped at address 0x1000 0000.
On the STM32G4 devices, the CCM SRAM is aliased at the address following the end of SRAM2 offering a
continuous address space with the SRAM1 and SRAM2.

1.2.2 CCM SRAM remapping
Unlike regular SRAM, the CCM SRAM cannot be remapped at address 0x0000 0000.

1.2.3 CCM SRAM write protection
The CCM SRAM can be protected against unwanted write operations with a page granularity of 1 Kbyte.
The write protection is enabled through the SYSCFG CCM SRAM protection register. This is a write-1-once
mechanism: once the write protection is enabled on a given CCM SRAM page by programming the corresponding
bit to 1, it can be cleared only through a system reset. For more details refer to the product reference manual.

1.2.4 CCM SRAM parity check
The implemented parity check is disabled by default and can be enabled by the user when needed through an
option bit (SRAM_PE bit). When this option bit is cleared, the parity check is enabled.

1.2.5 CCM SRAM read protection (only on STM32G4 devices)
The CCM SRAM can also be readout-protected via the RDP option byte. When protected, the CCM SRAM cannot
be read or written by the JTAG or serial-wire debug port, and when the boot in the system Flash memory or the
boot in the SRAM is selected.
The CCM SRAM is erased when the readout protection is changed from Level 1 to Level 0.

1.2.6 CCM SRAM erase (only on STM32G4 devices)
The CCM SRAM can be erased by software by setting the CCMER bit in the CCM SRAM system configuration
control and status register.
The CCM SRAM can also be erased with the system reset depending on the option bit CCMSRAM_RST in the
user option bytes.

AN4296
CCM SRAM features

AN4296 - Rev 5 page 4/24

2 Execute application code from CCM SRAM using the IAR Systems®

IAR Embedded Workbench® toolchain

2.1 Execute a simple code from CCM SRAM (except for interrupt handler)
A simple code can be composed of one or more functions that are not referenced from an interrupt handler. If the
code is referenced from an interrupt handler, follow the steps described in Section 2.2 .
IAR Embedded Workbench® provides the possibility to place one or more functions or a whole source file in CCM
SRAM. This operation requires a new section to be defined in the linker file (.icf) to host the code to be placed
in CCM SRAM. This section is copied to CCM SRAM at startup. The required steps are listed below:
1. Define the address area for the CCM SRAM by indicating the start and end addresses.
2. Tell the linker to copy at startup the section named .ccmram from the Flash memory to the CCM SRAM.
3. Indicate to the linker that the code section .ccmram must be placed in the CCM SRAM region.
The figure below shows an example of code implementing these operations.

Figure 3. IAR Embedded Workbench® linker update

Defines the address zone for
CCM SRAM.

‘Initialize by copy ‘ tells the linker to copy
this section at startup time.

Places .ccmram section at CCM SRAM
defined above.

1

2

3

Note: This procedure is not valid for interrupt handlers.

2.1.1 Execute a source file from CCM SRAM
Execute a source file from CCM SRAM means that all functions declared in this file are executed from this
memory area.
To place and execute a source file from CCM SRAM, use the IAR Embedded Workbench® file Options window as
follows:
1. Add the section .ccmram (for example) in the linker file as defined in Section 2.1 .
2. Right click on the file name from the workspace window.
3. Select [Options] from the displayed menu.
4. Check [Override inherited settings] from the displayed window.

AN4296
Execute application code from CCM SRAM using the IAR Systems® IAR Embedded Workbench® toolchain

AN4296 - Rev 5 page 5/24

5. Select the Output tab and type the name of the section already defined in the linker file (.ccmram in this
example) in the [Code section name] field (see the figure below).

Figure 4. IAR Embedded Workbench® file placement

2.1.2 Executing one or more functions from CCM SRAM
The steps required to execute a function from CCM SRAM are the following:
1. Add the section .ccmram in the linker file as described in Section 2.1 .
2. Using keyword pragma location, specify the function to be executed from CCM SRAM (see the figure

below).

Figure 5. IAR Embedded Workbench® function placement

Pragma key word to precise the
function placement

Note: To execute more than one function from CCM SRAM, the pragma location keyword must be placed above
each function declaration.

AN4296
Execute a simple code from CCM SRAM (except for interrupt handler)

AN4296 - Rev 5 page 6/24

2.2 Execute an interrupt handler from CCM SRAM
The vector table is implemented as an array named __vector_table and referenced in the startup code.

The IAR Embedded Workbench® linker protects the sections that are referenced from the startup code from being
affected by an 'initialize by copy' directive. The symbol __vector_table must not be used to allow
copying interrupt handler sections via the 'initialize by copy' directive. A second vector table must be
created and placed in CCM SRAM.
The steps required to execute an interrupt handler from CCM SRAM are listed below and described in the next
sub-sections:
1. Update the linker file (.icf).
2. Update the startup file.
3. Place the interrupt handler in CCM SRAM.
4. Remap the vector table to CCM SRAM.

2.2.1 Updating the linker file (.icf)
The following steps are needed to update the linker file .icf (see the figure below):
1. Define the address where the second vector table is located: 0x1000 0000.
2. Define the memory address area for the CCM SRAM by specifying the start and end addresses.
3. Tell the linker to copy at startup the section named .ccmram and the second vector table

section .intvec_CCMRAM from Flash memory to CCM SRAM.
4. Tell the linker that the second vector table must be placed in the .intvec_CCMRAM section.
5. Indicate that the .ccmram code section must be placed in CCM SRAM.

Figure 6. IAR Embedded Workbench® linker update for interrupt handler

1

2

3

4
5

AN4296
Execute an interrupt handler from CCM SRAM

AN4296 - Rev 5 page 7/24

2.2.2 Updating the startup file
The following steps are needed to update the startup file:
1. Make a second vector table to be stored in CCM SRAM. For example, the startup_stm32f30x.s file

must be modified by removing all entries except sfe(CSTACK) and Reset_Handler from the original
vector table __vector_table.

2. Add a second vector table to be placed in CCM SRAM. It must contain all entries. As an example this
table can be called __vector_table_CCMRAM. This vector table must be placed in the .intvec_CCMRAM
section defined in the linker file.

Figure 7. IAR Embedded Workbench® startup file update for interrupt handler

1

2

2.2.3 Place the interrupt handler in CCM SRAM
Place the interrupt handler to be executed in CCM SRAM as described in Executing one or more functions from
CCM SRAM or the whole stm32f_it.c file as described in Execute a source file from CCM SRAM.

2.2.4 Remap the vector table to CCM SRAM
In the SystemInit function, remap the vector table to CCM SRAM by modifying the VTOR register as follows:

SCB->VTOR = 0x10000000 | VECT_TAB_OFFSET;

AN4296
Execute an interrupt handler from CCM SRAM

AN4296 - Rev 5 page 8/24

2.3 Execute a library (.a) from CCM SRAM
IAR Embedded Workbench® allows the execution of a library or a library module from CCM SRAM. The required
steps are listed below:
1. Define the memory address area corresponding to the CCM SRAM by specifying the start and end

addresses.

Figure 8. CCM SRAM area definition

Defines the address zone for
CCM SRAM.

2. Update the linker to copy at startup the library or the library module in CCM SRAM using the 'initialize
by copy' directive.

Figure 9. IAR Embedded Workbench® section initialization

3. Indicate to the linker that the library must be placed in CCM SRAM.

Figure 10. IAR Embedded Workbench® library placement

To execute a library module from CCM SRAM, follow steps 1, 2 and 3 using the library module name.

AN4296
Execute a library (.a) from CCM SRAM

AN4296 - Rev 5 page 9/24

The example in the figure below shows how to place arm_abs_f32.o (a module of iar_cortexM4l_math.a
library) in CCM SRAM.

Figure 11. IAR Embedded Workbench® library module placement

1

2

3

AN4296
Execute a library (.a) from CCM SRAM

AN4296 - Rev 5 page 10/24

3 Execute application code from CCM SRAM using the Keil® MDK-
ARM toolchain

MDK-ARM features make it possible to execute simple functions or interrupt handlers from CCM SRAM. The
following sections explain how to use these features to execute code from CCM SRAM.

3.1 Execute a function or an interrupt handler from CCM SRAM
The steps required to execute a function or an interrupt handler from CCM SRAM are listed below:
1. Define a new region (ccmram) in the scatter file by indicating the start and end addresses of CCM SRAM.
2. Indicate to the linker that the sections with the ccmram attribute must be placed in the CCM SRAM region.

Figure 12. MDK-ARM scatter file

1

2 Places code in ccmram section.

Defines CCM SRAM as
execution region

AN4296
Execute application code from CCM SRAM using the Keil® MDK-ARM toolchain

AN4296 - Rev 5 page 11/24

3. Refer to the modified scatter file for the project options.

Figure 13. MDK-ARM Options menu

4. Place the part of code to be executed from CCM SRAM in the ccmram section defined above. This is done
by adding the attribute key word above the function declaration.

Figure 14. MDK-ARM function placement

Note: To execute more than one function from CCM SRAM, the attribute keyword must be placed above each function
declaration.

AN4296
Execute a function or an interrupt handler from CCM SRAM

AN4296 - Rev 5 page 12/24

3.2 Execute a source file from CCM SRAM
Executing a source file from CCM SRAM means that all functions declared in this file are executed from the CCM
SRAM region.
Follow the steps below to execute a file from CCM SRAM:
1. Define the CCM SRAM as a memory area in the project option window ([Project]>[option]>[target]).

Figure 15. MDK-ARM target memory

2. Right click on the file to place it in CCM SRAM and select [Options].
3. Select the CCM SRAM region in the [Memory assignment] menu.

Figure 16. MDK-ARM file placement

3.3 Execute a library or a library module from CCM SRAM
Follow the steps below to execute a library or a library module from CCM SRAM:
1. Define CCM SRAM as a memory area as shown in the figure below.
2. Right click on the library from the workspace and select [Options].
3. Place the complete library or a module from a library in CCM SRAM.

Figure 17. MDK-ARM library placement

AN4296
Execute a source file from CCM SRAM

AN4296 - Rev 5 page 13/24

4 Execute application code from CCM SRAM using STM32CubeIDE
with GNU-based toolchain

STM32CubeIDE and GNU-based toolchains allow executing simple functions or interrupt handlers from CCM
SRAM. The following sections explain how to use these features to execute code from CCM SRAM.

4.1 Execute a function or an interrupt handler from CCM SRAM
The steps required to execute a function or an interrupt handler from CCM SRAM are listed below:
1. Define a new region (ccmram) in the linker file (.ld) by defining the start address and the size of the CCM

SRAM region.

/* Entry Point */
ENTRY(Reset_Handler)

/* Highest address of the user mode stack */
_estack = ORIGIN(RAM) + LENGTH(RAM); /* end of "RAM" Ram type memory */

_Min_Heap_Size = 0x200; /* required amount of heap */
_Min_Stack_Size = 0x400; /* required amount of stack */

/* Memories definition */
MEMORY
{
 RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 112K
 FLASH (rx) : ORIGIN = 0x8000000, LENGTH = 512K
 CCMRAM (xrw) : ORIGIN = 0x10000000, LENGTH = 8K
}

AN4296
Execute application code from CCM SRAM using STM32CubeIDE with GNU-based toolchain

AN4296 - Rev 5 page 14/24

2. Instruct the linker that code sections with the ccmram attribute must be placed in CCM SRAM. Insert the
following code into the linker script. It is important to insert it before .text in the script.

/* The startup code into "FLASH" Rom type memory */
 .isr_vector :
 {
 . = ALIGN(4);
 KEEP(*(.isr_vector)) /* Startup code */
 . = ALIGN(4);
 } >FLASH

 /*--- New CCMRAM linker section definition ---*/
 _siccmram = LOADADDR(.ccmram);
 /* CCMRAM section */
 .ccmram :
 {
 . = ALIGN(4);
 _sccmram = .; /* define a global symbols at ccmram start */
 *(.ccmram)
 (.ccmram)
 . = ALIGN(4);
 _eccmram = .; /* define a global symbols at ccmram end */
 } >CCMRAM AT> FLASH
 /*--- End of CCMRAM linker section definition ---*/
 /* The program code and other data into "FLASH" Rom type memory */
 .text :
 {
 . = ALIGN(4);
 (.text) / .text sections (code) */
 (.text) /* .text* sections (code) */
 (.glue_7) / glue arm to thumb code */
 (.glue_7t) / glue thumb to arm code */
 *(.eh_frame)

 KEEP (*(.init))
 KEEP (*(.fini))

 . = ALIGN(4);
 _etext = .; /* define a global symbols at end of code */
 } >FLASH

AN4296
Execute a function or an interrupt handler from CCM SRAM

AN4296 - Rev 5 page 15/24

3. Modify the startup file to initialize data and code to place in CCM SRAM at startup time.

/* Copy the data segment initializers from flash to SRAM */
 ldr r0, =_sdata
 ldr r1, =_edata
 ldr r2, =_sidata
 movs r3, #0
 b LoopCopyDataInit

CopyDataInit:
 ldr r4, [r2, r3]
 str r4, [r0, r3]
 adds r3, r3, #4

LoopCopyDataInit:
 adds r4, r0, r3
 cmp r4, r1
 bcc CopyDataInit

/* Copy from flash to CCMRAM */
 ldr r0, =_sccmram
 ldr r1, =_eccmram
 ldr r2, =_siccmram
 movs r3, #0
 b LoopCopyCcmInit
CopyCcmInit:
 ldr r4, [r2, r3]
 str r4, [r0, r3]
 adds r3, r3, #4
LoopCopyCcmInit:
 adds r4, r0, r3
 cmp r4, r1
 bcc CopyCcmInit
/* End of copy to CCMRAM */

/* Zero fill the bss segment. */
 ldr r2, =_sbss
 ldr r4, =_ebss
 movs r3, #0
 b LoopFillZerobss

FillZerobss:
 str r3, [r2]
 adds r2, r2, #4

LoopFillZerobss:
 cmp r2, r4
 bcc FillZerobss

/* Call the clock system initialization function.*/
 bl SystemInit
/* Call static constructors */
 bl __libc_init_array
/* Call the application's entry point.*/
 bl main

LoopForever:
 b LoopForever

AN4296
Execute a function or an interrupt handler from CCM SRAM

AN4296 - Rev 5 page 16/24

4. Place the part of code to be executed from CCM SRAM in the .ccmram section by adding the attribute key
word in the function prototype.

void NMI_Handler(void);
void HardFault_Handler(void);
void MemManage_Handler(void);
void BusFault_Handler(void);
void UsageFault_Handler(void);
void SVC_Handler(void);
void DebugMon_Handler(void);
void PendSV_Handler(void);

void SysTick_Handler(void) __attribute__((section (".ccmram")));

AN4296
Execute a function or an interrupt handler from CCM SRAM

AN4296 - Rev 5 page 17/24

4.2 Execute a file from CCM SRAM
Executing a source file from CCM SRAM means that all functions declared in this file are executed from CCM
SRAM.
To execute a file from CCM SRAM, follow the steps listed below:
1. Add the .ccmram section in the linker file as defined in Execute a function or an interrupt handler from CCM

SRAM.
2. Place the file in CCM SRAM as shown below. The startup file also needs to be updated to copy code from

the Flash memory to CCM SRAM as described in Execute a function or an interrupt handler from CCM
SRAM.
This example shows how to execute file myTestCCM.o from CCM SRAM:

/*--- New CCMRAM linker section definition ---*/
_siccmram = LOADADDR(.ccmram);
/* CCMRAM section */
.ccmram :
{
 . = ALIGN(4);
 _sccmram = .; /* define a global symbols at ccmram start */
 *(.ccmram)
 (.ccmram)
 myTestCCM.o(.text .text)
 . = ALIGN(4);
 _eccmram = .; /* define a global symbols at ccmram end */
} >CCMRAM AT> FLASH
/*--- End of CCMRAM linker section definition ---*/

4.3 Execute a library from CCM SRAM
Follow the steps below to execute a library from CCM SRAM:
1. Add the .ccmram section in the linker file as defined in Execute a function or an interrupt handler from CCM

SRAM.
2. Place the library in CCM SRAM as shown below. The startup file also needs to be updated to copy code

from the Flash memory to CCM SRAM as described in Execute a function or an interrupt handler from CCM
SRAM.
This example shows how to execute library myLib.a from CCM SRAM:

/*--- New CCMRAM linker section definition ---*/
_siccmram = LOADADDR(.ccmram);
/* CCMRAM section */
.ccmram :
{
 . = ALIGN(4);
 _sccmram = .; /* define a global symbols at ccmram start */
 *(.ccmram)
 (.ccmram)
 myTestCCM.o(.text .text)
 myLib.a:(.text .text*)
 . = ALIGN(4);
 _eccmram = .; /* define a global symbols at ccmram end */
} >CCMRAM AT> FLASH
/*--- End of CCMRAM linker section definition ---*/

AN4296
Execute a file from CCM SRAM

AN4296 - Rev 5 page 18/24

Revision history

Table 3. Document revision history

Date Revision Changes

23-Jul-2013 1 Initial release.

25-Mar-2014 2
Changed STM32F313xC into STM32F358xC.

Reworked Section 1: Overview of STM32F303xB/C and STM32F358xC CCM
RAM.

2-Sep-2014 3

Added STM32F303x6/x8, STM32F328x8, STM32F334x4/x6/x8 in Table 1:
Applicable products.

Updated step 2 in Section 2.1: Executing a simple code from CCM RAM
(except for interrupt handler), step 3 in Section 2.2.1: Updating the linker file
(.icf) and updated Figure 5: EWARM linker update for interrupt handler.

Updated Figure 11: MDK-ARM scatter file.

16-Apr-2019 4

Updated:
• Title of the document
• Introduction
• CCM RAM replaced by CCM SRAM in the whole document
• Figure 1. STM32F3 devices system architecture

Added:
• Figure 2. STM32G4 devices system architecture
• Table 2. CCM SRAM main features
• Section 1.2.5 CCM SRAM read protection (only on STM32G4 devices)
• Section 1.2.6 CCM SRAM erase (only on STM32G4 devices)

Removed Table 2. CCM RAM organization.

8-Feb-2021 5

Updated:
• Title of the document
• Section 4 description and code examples to authorize code

execution in CCM SRAM when using a GNU-based toolchain such as
STM32CubeIDE

AN4296

AN4296 - Rev 5 page 19/24

Contents

1 Overview of STM32F3/STM32G4 CCM SRAM .2

1.1 Purpose . 2

1.2 CCM SRAM features . 4

1.2.1 CCM SRAM mapping . 4

1.2.2 CCM SRAM remapping. 4

1.2.3 CCM SRAM write protection . 4

1.2.4 CCM SRAM parity check . 4

1.2.5 CCM SRAM read protection (only on STM32G4 devices) . 4

1.2.6 CCM SRAM erase (only on STM32G4 devices) . 4

2 Execute application code from CCM SRAM using the IAR Systems® IAR Embedded
Workbench® toolchain .5

2.1 Execute a simple code from CCM SRAM (except for interrupt handler) 5

2.1.1 Execute a source file from CCM SRAM. 5

2.1.2 Executing one or more functions from CCM SRAM. 6

2.2 Execute an interrupt handler from CCM SRAM. 7

2.2.1 Updating the linker file (.icf) . 7

2.2.2 Updating the startup file . 8

2.2.3 Place the interrupt handler in CCM SRAM . 8

2.2.4 Remap the vector table to CCM SRAM. 8

2.3 Execute a library (.a) from CCM SRAM . 9

3 Execute application code from CCM SRAM using the Keil® MDK-ARM toolchain . . .11

3.1 Execute a function or an interrupt handler from CCM SRAM . 11

3.2 Execute a source file from CCM SRAM . 13

3.3 Execute a library or a library module from CCM SRAM . 13

4 Execute application code from CCM SRAM using STM32CubeIDE with GNU-based
toolchain .14

4.1 Execute a function or an interrupt handler from CCM SRAM . 14

4.2 Execute a file from CCM SRAM . 18

4.3 Execute a library from CCM SRAM. 18

Revision history .19

AN4296
Contents

AN4296 - Rev 5 page 20/24

Contents .20

List of tables .22

List of figures. .23

AN4296
Contents

AN4296 - Rev 5 page 21/24

List of tables
Table 1. Applicable products . 1
Table 2. CCM SRAM main features . 4
Table 3. Document revision history . 19

AN4296
List of tables

AN4296 - Rev 5 page 22/24

List of figures
Figure 1. STM32F3 device system architecture . 2
Figure 2. STM32G4 device system architecture . 3
Figure 3. IAR Embedded Workbench® linker update . 5
Figure 4. IAR Embedded Workbench® file placement . 6
Figure 5. IAR Embedded Workbench® function placement. 6
Figure 6. IAR Embedded Workbench® linker update for interrupt handler. 7
Figure 7. IAR Embedded Workbench® startup file update for interrupt handler . 8
Figure 8. CCM SRAM area definition . 9
Figure 9. IAR Embedded Workbench® section initialization . 9
Figure 10. IAR Embedded Workbench® library placement . 9
Figure 11. IAR Embedded Workbench® library module placement . 10
Figure 12. MDK-ARM scatter file . 11
Figure 13. MDK-ARM Options menu. 12
Figure 14. MDK-ARM function placement . 12
Figure 15. MDK-ARM target memory . 13
Figure 16. MDK-ARM file placement . 13
Figure 17. MDK-ARM library placement . 13

AN4296
List of figures

AN4296 - Rev 5 page 23/24

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics – All rights reserved

AN4296

AN4296 - Rev 5 page 24/24

	Introduction
	1 Overview of STM32F3/STM32G4 CCM SRAM
	1.1 Purpose
	1.2 CCM SRAM features
	1.2.1 CCM SRAM mapping
	1.2.2 CCM SRAM remapping
	1.2.3 CCM SRAM write protection
	1.2.4 CCM SRAM parity check
	1.2.5 CCM SRAM read protection (only on STM32G4 devices)
	1.2.6 CCM SRAM erase (only on STM32G4 devices)

	2 Execute application code from CCM SRAM using the IAR Systems(R) IAR Embedded Workbench(R) toolchain
	2.1 Execute a simple code from CCM SRAM (except for interrupt handler)
	2.1.1 Execute a source file from CCM SRAM
	2.1.2 Executing one or more functions from CCM SRAM

	2.2 Execute an interrupt handler from CCM SRAM
	2.2.1 Updating the linker file (.icf)
	2.2.2 Updating the startup file
	2.2.3 Place the interrupt handler in CCM SRAM
	2.2.4 Remap the vector table to CCM SRAM

	2.3 Execute a library (.a) from CCM SRAM

	3 Execute application code from CCM SRAM using the Keil(R) MDK-ARM toolchain
	3.1 Execute a function or an interrupt handler from CCM SRAM
	3.2 Execute a source file from CCM SRAM
	3.3 Execute a library or a library module from CCM SRAM

	4 Execute application code from CCM SRAM using STM32CubeIDE with GNU-based toolchain
	4.1 Execute a function or an interrupt handler from CCM SRAM
	4.2 Execute a file from CCM SRAM
	4.3 Execute a library from CCM SRAM

	Revision history
	Contents
	List of tables
	List of figures

