B

m AN4296
life.augmented

Application note

Use STM32F3/STM32G4 CCM SRAM with IAR Embedded Workbench®, Keil®
MDK-ARM, STMicroelectronics STM32CubelDE and other GNU-based toolchains

Introduction

This document gives a presentation of the core-coupled memory (CCM) SRAM available on STM32F3/STM32G4
microcontrollers and describes what is required to execute part of the application code from this memory region using different
toolchains.

The first section provides an overview of the CCM SRAM, while the next sections describe the steps required to execute part of
the application code from CCM SRAM using the following toolchains:

« IAR Systems® IAR Embedded Workbench®
+ Keil® MDK-ARM
¢ STMicroelectronics STM32CubelDE and other GNU-based toolchains

The procedures described throughout the document are applicable to other SRAM regions such as the CCM data RAM of some
STM32F4 devices, or external SRAM.

Table 1 lists the STM32 microcontrollers used as examples for CCM SRAM.
Table 1. Applicable products

Reference]

STM32F303 line, STM32F334 line
STM32F328C8, STM32F328K8, STM32F328R8
STM32F3
STM32F3/STM32G4 STM32F358CC, STM32F358RC, STM32F358VC
STM32F398RE, STM32F398VE, STM32F398ZE

STM32G4 STM32G4 Series

AN4296 - Rev 5 - February 2021 www.st.com
For further information contact your local STMicroelectronics sales office.

https://manuals.plus/m/e756d55e4a19cb3fb376cb06874531bc08822160ec5ac2022bc558652e187d46

‘W AN4296

Overview of STM32F3/STM32G4 CCM SRAM

1 Overview of STM32F3/STM32G4 CCM SRAM

This document applies to STM32F3/STM32G4 microcontrollers based on the Arm® Cortex®-M core.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

1.1 Purpose

The CCM SRAM is tightly coupled with the Arm® Cortex® core, to execute the code at the maximum system clock
frequency without any wait-state penalty. This also brings a significant decrease of the critical task execution time,
compared to code execution from Flash memory.

The CCM SRAM is typically used for real-time and computation intensive routines, like the following:
. digital power conversion control loops (switch-mode power supplies, lighting)

. field-oriented 3-phase motor control

. real-time DSP (digital signal processing) tasks

When the code is located in CCM SRAM and data stored in the regular SRAM, the Cortex®-M4 core is in the
optimum Harvard configuration. A dedicated zero-wait-state memory is connected to each of its I-bus and D-bus
(see the figures below) and can thus perform at 1.25 DMIPS/MHz, with a deterministic performance of 90 DMIPS
in STM32F3 and 213 DMIPS in STM32G4. This also guarantees a minimal latency if the interrupt service routines
are placed in the CCM SRAM.

Figure 1. STM32F3 device system architecture

BusMatrix-S
I-bus
Arm <—>| b7 _(I) (I)_(B

Cortex-M4

D-bus

4—»[» —1T—0O0—0——0O
S-bus
& e O—O—O0——

GPDMA1 DMA b C D, C

DMA
GPDMA2 R

MO M1l m2] Mm3] Mm4] wms5| Me
—
. .| AHB dedicated
ICODE to GPIO ports
FLASH |le—»| FLTIF
64 bits < DCODE_,
< » ADCs
»| RCC, TSC, CRC and
SRAM |« > "| AHB to APB1 and APB2
[CCM™
| SRAM

AN4296 - Rev 5 page 2/24

‘,_l AN4296

Purpose

Figure 2. STM32G4 device system architecture

Cortex-M4
with FPU DMA1 DMA2
7] @ [}
3 3 d
- [a) 7}
— — | — — | m— |
.L [] ICode
>
1 e} FLASH
N DCode | B[] 512 Kbytes
O O O —
0 O O O O SRAM1
O O O O O CCM SRAM
1% 0 0 SRAM2
& & A] AHB1
T T T | peripherals
iy & L] AHB2
T T T 1 peripherals
Q Q 0 0 Q FSMC®
T T T T T QUADSPI™
BusMatrix-S (1) Not available on STM32G431 STM32G441
devices
Example

A benchmark between the STM32F103 and STM32F303 microcontrollers using the STMicroelectronics MC
library V3.4 shows that, in case of single motor control using three-shunt algorithm, the field-oriented control
(FOC) total execution time for STM32F303 is 16.97 ys compared to 21.3 ps for the STM32F103 (see the note
below), with FOC core and sensorless core loops running from CCM SRAM for STM32F303. This means that the
STM32F303 is 20.33 % faster than the STM32F103 thanks to the CCM SRAM.

Note: FOC routines are programmed in structured C, so the values provided above do not represent the fastest
possible execution both for STM32F103 and STM32F303. In addition, the execution time is also function of the
compiler used and of its version.

When the CCM SRAM is not used for code, it can hold data like an extra SRAM memory. It is not recommended

to place both code and data together in the CCM, since the Cortex® core must then fetch code and data from the
same memory with the risk of collisions. The core is then in the Von Neuman configuration and its performance
drops from 1.25 DMIPS/MHz to below 1 DMIPS/MHz.

AN4296 - Rev 5 page 3/24

‘,_l AN4296

CCM SRAM features

1.2 CCM SRAM features

The table below summarizes the CCM SRAM features on various STM32 products. More details are provided in
the next sections.

Table 2. CCM SRAM main features

STM32F303x6/8

Feature/ STM32F303xB/C STM32F334xx STM32F303xD/E STM32G47xx STM32G431x
products STM32F358xx STM32F328xx STM32F398xx STM32G84xx STM32G441x
Size (Kbytes) 8 4 16 32 10
. 0x1000 0000 and can be 0x1000 0000 and can be
Mapping 0x1000 0000 aliased at 0x2001 8000 aliased at 0x2000 5800
Parity check Yes
Write protection Yes, with 1-Kbyte page granularity
Read protection No Yes
Erase No Yes
. No if mapped at . No if mapped at
0x1000 0000 0x1000 0000
DMA access No . .
. Yes if mapped at . Yes if mapped at
0x2001 8000 0x2000 5800
1.21 CCM SRAM mapping

The CCM SRAM is mapped at address 0x1000 0000.

On the STM32G4 devices, the CCM SRAM is aliased at the address following the end of SRAM2 offering a
continuous address space with the SRAM1 and SRAM2.

1.2.2 CCM SRAM remapping
Unlike regular SRAM, the CCM SRAM cannot be remapped at address 0x0000 0000.

1.2.3 CCM SRAM write protection
The CCM SRAM can be protected against unwanted write operations with a page granularity of 1 Kbyte.

The write protection is enabled through the SYSCFG CCM SRAM protection register. This is a write-1-once
mechanism: once the write protection is enabled on a given CCM SRAM page by programming the corresponding
bit to 1, it can be cleared only through a system reset. For more details refer to the product reference manual.

1.24 CCM SRAM parity check

The implemented parity check is disabled by default and can be enabled by the user when needed through an
option bit (SRAM_PE bit). When this option bit is cleared, the parity check is enabled.

1.2.5 CCM SRAM read protection (only on STM32G4 devices)

The CCM SRAM can also be readout-protected via the RDP option byte. When protected, the CCM SRAM cannot
be read or written by the JTAG or serial-wire debug port, and when the boot in the system Flash memory or the
boot in the SRAM is selected.

The CCM SRAM is erased when the readout protection is changed from Level 1 to Level 0.

1.2.6 CCM SRAM erase (only on STM32G4 devices)

The CCM SRAM can be erased by software by setting the CCMER bit in the CCM SRAM system configuration
control and status register.

The CCM SRAM can also be erased with the system reset depending on the option bit CCMSRAM_RST in the
user option bytes.

AN4296 - Rev 5 page 4/24

‘_, 77 AN4296
Execute application code from CCM SRAM using the IAR Systems® IAR Embedded Workbench® toolchain

2 Execute application code from CCM SRAM using the IAR Systems®
IAR Embedded Workbench® toolchain

2.1 Execute a simple code from CCM SRAM (except for interrupt handler)

A simple code can be composed of one or more functions that are not referenced from an interrupt handler. If the
code is referenced from an interrupt handler, follow the steps described in Section 2.2 .

IAR Embedded Workbench® provides the possibility to place one or more functions or a whole source file in CCM
SRAM. This operation requires a new section to be defined in the linker file (. icf) to host the code to be placed
in CCM SRAM. This section is copied to CCM SRAM at startup. The required steps are listed below:

1. Define the address area for the CCM SRAM by indicating the start and end addresses.
2. Tell the linker to copy at startup the section named . ccmram from the Flash memory to the CCM SRAM.

3. Indicate to the linker that the code section . ccmram must be placed in the CCM SRAM region.

The figure below shows an example of code implementing these operations.

Figure 3. AR Embedded Workbench® linker update

FEREFTCTEE Beccien Sendisd by IOT miicor, dsntcopomelil deed
fr=Eaiter annccariom File-r
fo [Pl earPile="aTO0CLHTT LIRS, comdy g ioe s Leflassom nopoen_ui 0, ax]= =
S Rpenial B
jefins pywpnl _ ESPERTT snvved_pnarn_ o= PedEgcipos
ol
ETLEF dyeeDl I1_FRjLos_RM_ FE_ = DEIIIELEE
SETiEr ksl ST _EejLos 0H il = DO FDEETET S
i Gl LELLIT SLEs RAME SSEcT_ = DRITOEL0d
SxPibn dysEal CLFELAT seqglin- KRM b = Dol EELIETY
izt
defice sysied] TTFETSIT pies matecl . = 11|
Sieliom rysio LTTEDIT i heap = RaSdas
#* Bl of IOF edbibtcr soctics. SEEICTRERES

Sriice memcry mem wiih xzim = dGg
=ficwe Fegicm ROM_regzo = mmm [o=

_ SCIILOT swgas= R mmass = SITIDOT swgusm KOW a=md |:
axforw reghon RAM_regiam = mms) [fram _ ICTEDIGT swgnes FE smess

T2 _ LOPIDOT pwgica W wmd [z

Defines the address zone for

1 wefrpe pegspm COHBAN pegian o S M- H] = EwlALEL YT 4—
| | CCM SRAM.
i by CETRIN Wiih BLLgTEWRT = 0, AL = _ JSFEDIE_Suee_peueal_
=fier ploce GELF Rl BLLFRESHT = 0. SLEF = ILTERLE_BLEE Siugr

2 |.I.I! lMLLME B CRET | ChMSMELNE, SUEELS | IERERE | - ‘Initialize by copy ‘ tells the linker to copy
this section at startup time.

= ECT oniblmiIaw {oEwTLlcs L ESoanct ¥
Flezr a8 a=SrEEy mEET FOTEDIT zriiwwc JRact | camdenly Secitcen _dnives i
plecw & BON magion | remdonTy |:
Places .ccmram section at CCM SRAM
3 |r|||.'l = ICHEER TegLIn ([a0 s i] | .
defined above.
Fluce iz RiH region | resdSwrics,

Wlock TETEON, Eiock WEAF |

Note: This procedure is not valid for interrupt handlers.

211 Execute a source file from CCM SRAM
Execute a source file from CCM SRAM means that all functions declared in this file are executed from this

memory area.
To place and execute a source file from CCM SRAM, use the IAR Embedded Workbench® file Options window as

follows:
1. Add the section .ccmram (for example) in the linker file as defined in Section 2.1 .

Right click on the file name from the workspace window.

2.
3. Select [Options] from the displayed menu.
4 Check [Override inherited settings] from the displayed window.

AN4296 - Rev 5 page 5/24

m AN4296

Execute a simple code from CCM SRAM (except for interrupt handler)

5. Select the Output tab and type the name of the section already defined in the linker file (. ccmram in this
example) in the [Code section name] field (see the figure below).

Figure 4. IAR Embedded Workbench® file placement

Canegon m nherted tethings ._Fm;ﬁ"ﬂ' |
| CCerCmper]
Cistom Bubd
: 4 .
| Lasguage 1 | Langeage 1 | Cods |m@uﬂ | Prvpiets * | *
| (Ganerale debug isfoomatan
Cida parion nams
[ok || cancel |
21.2 Executing one or more functions from CCM SRAM

The steps required to execute a function from CCM SRAM are the following:
1. Add the section .ccmram in the linker file as described in Section 2.1 .
2. Using keyword pragma location, specify the function to be executed from CCM SRAM (see the figure

below).

Figure 5. IAR Embedded Workbench® function placement

wa
* sl Iasscfs @ dBley tiss_
* jprraw nlipe| spenifiss the delpy fome lsmgoh. L millimsoosds,
& Freptva] Hooe

v Seottion = | 4 Prag|_'na key word to precise the

function placement
vald Delay(10 uisild £ eliss)
[TE Timsngleley = nTim=;
while (Tisiasle ey b= Oj;
Note: To execute more than one function from CCM SRAM, the pragma location keyword must be placed above

each function declaration.

AN4296 - Rev 5 page 6/24

m AN4296

Execute an interrupt handler from CCM SRAM

2.2 Execute an interrupt handler from CCM SRAM
The vector table is implemented as an array named vector table and referenced in the startup code.

The IAR Embedded Workbench® linker protects the sections that are referenced from the startup code from being
affected by an'initialize by copy'directive. The symbol vector table must not be used to allow
copying interrupt handler sections via the 'initialize by copy'directive. A second vector table must be
created and placed in CCM SRAM.

The steps required to execute an interrupt handler from CCM SRAM are listed below and described in the next
sub-sections:

1. Update the linker file (. icf).

2. Update the startup file.

3. Place the interrupt handler in CCM SRAM.
4 Remap the vector table to CCM SRAM.

2.21 Updating the linker file (. icf)
The following steps are needed to update the linker file . icf (see the figure below):
1. Define the address where the second vector table is located: 0x1000 0000.
2. Define the memory address area for the CCM SRAM by specifying the start and end addresses.

3. Tell the linker to copy at startup the section named . ccmram and the second vector table
section . intvec CCMRAM from Flash memory to CCM SRAM.

4. Tell the linker that the second vector table must be placed in the . intvec_CCMRAM section.
5. Indicate that the . ccmram code section must be placed in CCM SRAM.

Figure 6. AR Embedded Workbench® linker update for interrupt handler

Elp IOl Secrion Baodlsd by ITT sfitor, don®c sooch i +rady

ré-Liicar armsoacamn 2ile-t

& JofdtroePules"i TOODETT 2IN | confign Lied Icfldinssicccran wi O.mml® #
re-Spaaiale—r;

defirs spmeal | CTFECIT sooves mokrn = deiBIOC0AN;

& -Memz oy REgioee-+

Seiives wpmbol _ [TFESIT swgtae B0M stars n [IEOIEO0E)
dafirm spoenl ICFCSIT cegiem WO el = [xII0IFFTT;
dufiss spmbol _ DZFESIT regitoe 3EH scsce = 3000
omlane spmiol | DTTESIT seguse BB wed = [l =N
EELgww-d

dafine spmbol [CFEDDT eame cwecacy = ColEiEd:

daf€ins wpsr=l CINEIOT simd b 2 |l Ele];

‘easd End of IOT sdicor sectimn. PRRICTREHE)

1 Lﬂ:l.'rl specal [OHRAH Lorres asary = CmLDDOCCDE:

infine mccy = with sizs = #5;

define Tegass R swgpss = mmm: [from _ TCFIDOD swgnes ROE rmass en _ DTCFEOES segics ROS m=al | [
daiiss mazimm EBE rerim = mans |frow ICFEOLT mmadom B wiact en _ ICFESTE swgdcs R msid T
2 |u-=|.-u smgamm TOMM swgizn = amms |frow SRlA300038 &= ::-.::.:'.rrr;:l
dafime bBloct TETECK with aligzmmst = I, azom = _ ICFEDLD mise sotech i1
dalime block FEAF with aligremef = 1. pioa = JEFEDOLT zism Eewp I 11
3 |I:::I.I.J.ll EY =y | Smadwrice, mastasmooimsves COEFRM, mmcoiac L cTmrem, onosmgmst semBEIERD wn.s o

do agt imitislime | sesilow nEcwit

oleze a% sddrars mex ECTEEET fxiwmic wiarh TeaEmily Ssrtan -Ambwec A7
4 |||'.l_'l 5T asdrere mems OOFRS iarTwo gmact | secnizs Lizsews TONRAE |
5 |:'.l:ll 1n CTHERA regise | mmr=iem . cmrae i3

Pl ix TON_ Ewgios | ewmdmrlly B

piacm io EEH_oagloe | esdwriinm,

Bloch CUTRON, Efeck BERF jT

AN4296 - Rev 5 page 7/24

AN4296

Execute an interrupt handler from CCM SRAM

2.2.2 Updating the startup file

The following steps are needed to update the startup file:

1. Make a second vector table to be stored in CCM SRAM. For example, the startup stm32£30x.s file
must be modified by removing all entries except sfe (CSTACK) and Reset Handler from the original
vector table vector table.

2. Add a second vector table to be placed in CCM SRAM. It must contain all entries. As an example this
table can be called vector table CCMRAM. This vector table must be placed in the . intvec CCMRAM
section defined in the linker file.

Figure 7. IAR Embedded Workbench® startup file update for interrupt handler
22 Foreerd declergtion of sectloms.
SECTTON CSTACK: BETE: HORIOT(1)
SECTION . etwec: CODE: HORMOT [2)
EXTERN 141 POogIas SCALT
EITERH Systeslnati
AELIC _ wectoc_table
BETR
_ wecTor_Gable
1 =T #Ew { CETALK)
4] FReset Hasdles : Padal Hiodler
2 EECTIMN . inrec_ DIERAN: DODE RODTZ]
FEBLIC _ wector_table CCHRAN
BATR
__wactor_table CCEFAN
e B (CTTALE]
BT Feawt_Hacellmz s fauaml Mandlar
B HEI Handlsz s MNT Bardlar
{2411 HardFaulec_Handler » Hepd Feult Ramdlar
24] BemManape Handler 7 MPU Fault Mandler
s] TeasFault_Mandlec ; Bus Fault Mandler
E=ITF UrageFault_Handlex s Uragw Faull Nandlar
[i i & Badaried
[il i & Bajarved
BT] 2 BEmgarved
223 Place the interrupt handler in CCM SRAM
Place the interrupt handler to be executed in CCM SRAM as described in Executing one or more functions from
CCM SRAM or the whole stm32f_it.c file as described in Execute a source file from CCM SRAM.
224 Remap the vector table to CCM SRAM

In the SystemInit function, remap the vector table to CCM SRAM by modifying the VTOR register as follows:

SCB->VTOR = 0x10000000 | VECT TAB OFFSET;

AN4296 - Rev 5 page 8/24

m AN4296

Execute a library (.a) from CCM SRAM

2.3 Execute a library (.a) from CCM SRAM
IAR Embedded Workbench® allows the execution of a library or a library module from CCM SRAM. The required
steps are listed below:

1. Define the memory address area corresponding to the CCM SRAM by specifying the start and end
addresses.

Figure 8. CCM SRAM area definition

deline memory mem wish size = 45
defins Tegion ROM _regicn = mem: [From _ [CTECTOT _segico ROM scers_ To _ ICTEDTT regio= ROM end_];
dafine reglion RRM swgica = ma=m: [from | LCFECIT segicoo FAM stact to _ ICTEDAT segios= RAM and |;

Defines the address zone for

|d-=:".nr region COMERE region = memn[from ORODIODE oo IJ:LIJ:-ZLEF!]=|<— CCM SRAM

dafine Elesk CETALK with alignmant = B, mize = ICFEDIT size cotmck [&
defing Block HERF With aligmmest = B, sife = _ ICFEDIT sims Bedap [hs

2. Update the linker to copy at startup the library or the library module in CCM SRAM using the 'initialize
by copy' directive.

Figure 9. IAR Embedded Workbench® section initialization

LASTIRIIEE BY Sopy | SEAIWTILE.fo Gh)EET J.-l:_d:u:'.l:l]‘.i'.!_nll':.l. 11

dn ot inicislize | secnion Jnednic |

3. Indicate to the linker that the library must be placed in CCM SRAM.

Figure 10. IAR Embedded Workbench® library placement

place 1n ROM region | Peadesmly |r

place in CCMBAM regioo |e=ciion t=xt ocbj=ct iar corte=xMdlI math.a):

To execute a library module from CCM SRAM, follow steps 1, 2 and 3 using the library module name.

AN4296 - Rev 5 page 9/24

3

AN4296
Execute a library (.a) from CCM SRAM

AN4296 - Rev 5

The example in the figure below shows how to place arm abs £32.0 (a module of iar cortexM4l math.a
library) in CCM SRAM.

Figure 11. IAR Embedded Workbench® library module placement

FERIUCCTEIE Ssction handled By ICT sditor, don't toudh! #E&EF
Fo-Laieer sAGSTATIOn file-*/
F¢ [cfEditocTile=s"pTOMLKIT OCREcosfighide’ Toffditoricortax wi D.aml™ +f
Fa-dpscials-vy
defire aymbel _ TOTIDIT incvec stars = OedBQ0OCaD;
Fo-lREnEY REQLOBS ="
defire aymbol _ TCTFEDIT _regicn ROM_stacs = QedBd03030;
SEfipe SyEbel _ IEFERIT régisn RMOH gsd == = A©dBI3ITIT:
dafire aymbol _ TOFECIT_regicn RUH scars = QedDd03030;
Sefioe symbel _ DOFFRIT rejice MEH gsd = Qel0G0aFFE:
Fe-Fiama-os
defime aymbol _ ICFECIT adte_caback = Czd00:
gerire aymbel _ TTTERIT_sdae_teag = Emi0D;
Feses Fod of ICK sditor sectlom. SISICEEIW®S
Tine memory mem With size = 467
Selirm cegion ROM regicn = mm=:|from ICFEDIT regicon ROM stact to _ ICFEOLIT =-egios R end |:
pefine reylen RABH_Tegion = memi[from _ ITFECIT_region_RMH_scars__ w0 _ JCFEDIT_meqguom_RRs_snd__|)

'

dafirm regicn DOMRAM twgioo = e | from ‘D100 0] to D1S0Z1FTT];

Befipe Bloak CHIRCH WiCH SligEment = B, Sige = _ JCFEDIT_siee eSrack__ [
dafire Block EERF with aliczment = B, mizes = ICTEOLT mize Esapc [H

2

initislizs by copy | resdwrite, ro object arm_sbe F13.0 |7 |

da sot inisislize | mcrien .=oinis |7
plece ot addreap mem: _ JCPRDET_imcwes psast_ | ;esdoaly pession -ieswer |;
plice 1= ME eflsa [t=adcaly |-

3 |

olete is CTEREN Degion {aecEins _Eaxt Sbiect arm ahy IX2.& b |

plece im RAM_region [resdewice,
Elsck CETACK, Elsck EERF |:

page 10/24

m AN4296

Execute application code from CCM SRAM using the Keil® MDK-ARM toolchain

3 Execute application code from CCM SRAM using the Keil® MDK-
ARM toolchain

MDK-ARM features make it possible to execute simple functions or interrupt handlers from CCM SRAM. The
following sections explain how to use these features to execute code from CCM SRAM.

3.1 Execute a function or an interrupt handler from CCM SRAM
The steps required to execute a function or an interrupt handler from CCM SRAM are listed below:
1. Define a new region (ccmram) in the scatter file by indicating the start and end addresses of CCM SRAM.
2. Indicate to the linker that the sections with the ccmram attribute must be placed in the CCM SRAM region.

Figure 12. MDK-ARM scatter file

03 Pkt | 1 wptem s | (5] smiencne | (1) b tmaizines | (5] mee
1 r lllll'lli-ll.l-l.l.-l.l.ll"ll.llll-il-l-ll.ll.ll.-llllllll-ll_l'.l_lll:.l"l“i-l':l'.l.l_lrl;ll

2 ¢ owrv Segiear=-Loading Desceiprion Fili genscatsd by uWision =ve

3 - EFTIETEE T T FF I T F T T N TR N T I F I T T E F I T T EF I TN F TP E T EETEN FFANTR O YD

4

5 B TROR: OxT@0DI00d D=00040M000 o load seglon 2iie Teglan

B EF!_I!!EIEI Ox00000I00 OxCOD40000 § 1 losd address = execution sddress
7 *.0 (RESET, +Firac)

sl i InPoosf fSect sonm)

2 LAY {+HROY

i0]

11 PU_IRAR] OxI0O00000 Ox{0OODAOCDE 4§ BV oatm

pie ANT [+RE +II))

15 b Defines CCM SRAM as
14 AYU_IRAND Ox1000J000 Oe0O00LOGD | execution region

15 ANY [(+RE® +ZI]

i8 t

L5

1E 1 |I!E 010003000 DNd0DOZ0Dd | 1 load eddrsss = exscutlon sddeess
i®

ac 2 Places code in ccmram section.

21

-

AN4296 - Rev 5 page 11/24

3

AN4296

Execute a function or an interrupt handler from CCM SRAM

3. Refer to the modified scatter file for the project options.

Figure 13. MDK-ARM Options menu

T Qptions for Target STMIZ2I0IC-EVAL

Devicn | Togel | Ot | Listwg | Une | Cwe | e ks | Dot | Livmes |
Wy Lol fiis Tt Doy
[T RS Ry w——
[Mg A3 Simchon Pt ndmpanciend
I Dt Semsch Shandord Lismees
' Fopol ‘rraghi Anf' Coriiigrs s £ thiatie /g |

e

P Beie I"
YT

@;qumtmﬁwb []_ea |

=
onémly
Limbaw § o Do W fp " -
Aiwdred |-y hppeetmcindh -dhach -aoadie S TR0 030 EVAL Promol i a
g

[_os || Coed][Suuk | =]

Place the part of code to be executed from CCM SRAM in the ccmram section defined above. This is done
by adding the attribute key word above the function declaration.

Figure 14. MDK-ARM function placement

vl FpaTick Nandler ool
i

Timarglelay Lecrmmestii:
i

Note: To execute more than one function from CCM SRAM, the attribute keyword must be placed above each function

declaration.

AN4296 - Rev 5 page 12/24

m AN4296

Execute a source file from CCM SRAM

3.2 Execute a source file from CCM SRAM

Executing a source file from CCM SRAM means that all functions declared in this file are executed from the CCM
SRAM region.

Follow the steps below to execute a file from CCM SRAM:
1. Define the CCM SRAM as a memory area in the project option window ([Project]>[option]>[target]).

Figure 15. MDK-ARM target memory

or-chip
v |Eakid: [0x20000000 §0=a000]

& IRamMz: lD:-:'lElDEIEIEIEIEI 0=2000

2. Right click on the file to place it in CCM SRAM and select [Options].
3. Select the CCM SRAM region in the [Memory assignment] menu.

Figure 16. MDK-ARM file placement

Mermany &ssignment:

[el || i 2 [0 0000000-0:1 0001 FFF

Zero Initialized Data: |<default>

Other Crata: I<default>

el

3.3 Execute a library or a library module from CCM SRAM
Follow the steps below to execute a library or a library module from CCM SRAM:
1. Define CCM SRAM as a memory area as shown in the figure below.
2. Right click on the library from the workspace and select [Options].
3. Place the complete library or a module from a library in CCM SRAM.

Figure 17. MDK-ARM library placement

b emom Azsignrment; W Select Modules

BT e[|\ 2 [0 1 0000000-01 0007 FFF [am-abs F320
oL 7] arm_abs qf.o
Zero Intialized Data: I<default> ¥ I [am _abs q15.0

Other Data: |<d3f~5u't> L‘] arm_abs_g31.o0
arm_add f32.0
] arm_add_g¥.o
7] armn_add_g15.0

S

£

AN4296 - Rev 5 page 13/24

m AN4296

Execute application code from CCM SRAM using STM32CubelDE with GNU-based toolchain

4 Execute application code from CCM SRAM using STM32CubelDE
with GNU-based toolchain

STM32CubelDE and GNU-based toolchains allow executing simple functions or interrupt handlers from CCM
SRAM. The following sections explain how to use these features to execute code from CCM SRAM.

4.1 Execute a function or an interrupt handler from CCM SRAM
The steps required to execute a function or an interrupt handler from CCM SRAM are listed below:

1. Define a new region (ccmram) in the linker file (. 1d) by defining the start address and the size of the CCM
SRAM region.

/* Entry Point */
ENTRY (Reset Handler)

/* Highest address of the user mode stack */

_estack = ORIGIN(RAM) + LENGTH (RAM) ; /* end of "RAM" Ram type memory */
_Min Heap Size = 0x200; /* required amount of heap */
_Min Stack Size = 0x400; /* required amount of stack */

/* Memories definition */

MEMORY

{
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 112K
FLASH (rx) : ORIGIN = 0x8000000, LENGTH = 512K
CCMRAM (xrw) : ORIGIN = 0x10000000, LENGTH = 8K

}

AN4296 - Rev 5 page 14/24

m AN4296

Execute a function or an interrupt handler from CCM SRAM

2. Instruct the linker that code sections with the ccmram attribute must be placed in CCM SRAM. Insert the
following code into the linker script. It is important to insert it before .text in the script.

/* The startup code into "FLASH" Rom type memory */
.isr vector
{
= ALIGN (4) ;
KEEP (* (.isr_vector)) /* Startup code */
= ALIGN (4) ;
} >FLASH

/*--- New CCMRAM linker section definition ---*/
_siccmram = LOADADDR (.ccmram) ;
/* CCMRAM section */

.ccmram :
{

. = ALIGN(4) ;

_sccmram = . ; /* define a global symbols at ccmram start */

* (.ccmram)

* (.ccmram*)

. = ALIGN(4);

_eccmram = .; /* define a global symbols at ccmram end */
} >CCMRAM AT> FLASH
/*--- End of CCMRAM linker section definition ---*/

/* The program code and other data into "FLASH" Rom type memory */

.text
{
= ALIGN (4);

(.text) / .text sections (code) */
(.text) /* .text* sections (code) */
(.glue 7) / glue arm to thumb code */
(.glue 7t) / glue thumb to arm code */
*(.eh_frame)

KEEP (*(.init))
KEEP (*(.fini))

= ALIGN (4) ;
Letexti=" /* define a global symbols at end of code */
} >FLASH

AN4296 - Rev 5 page 15/24

‘W AN4296

Execute a function or an interrupt handler from CCM SRAM

3. Modify the startup file to initialize data and code to place in CCM SRAM at startup time.

/* Copy the data segment initializers from flash to SRAM */
ldr r0, = sdata
ldr rl, = edata
ldr r2, = sidata
movs r3, #0
b LoopCopyDataInit

CopyDatalInit:
1dr r4, [r2, r3]
str r4, [r0, r3]
adds r3, r3, #4

LoopCopyDataInit:
adds r4, r0, r3
cmp r4, rl
bcc CopyDatalnit

/* Copy from flash to CCMRAM */
ldr r0, = sccmram
ldr rl, = eccmram
ldr r2, = siccmram
movs r3, #0
b LoopCopyCcmInit

CopyCcmInit:
1dr r4, [r2, r3]
str r4, [r0, r3]
adds r3, r3, #4

LoopCopyCcmInit:
adds r4, r0, r3
cmp r4, rl
bce CopyCcmInit
/* End of copy to CCMRAM */

/* Zero fill the bss segment. */
ldr r2, = sbss
lieha wadlss = Elofsls
movs r3, #0
b LoopFillZerobss

FillZerobss:
str r3, [r2]
adds r2, r2, #4

LoopFillZerobss:
cmp r2, r4
bcc FillZerobss

/* Call the clock system initialization function.*/
bl SystemInit

/* Call static constructors */
bl _ libc_init array

/* Call the application's entry point.*/
bl main

LoopForever:
b LoopForever

AN4296 - Rev 5 page 16/24

3

AN4296

Execute a function or an interrupt handler from CCM SRAM

AN4296 - Rev 5

4. Place the part of code to be executed from CCM SRAM in the . ccmram section by adding the attribute key
word in the function prototype.

void
void
void
void
void
void
void
void

void

NMI_Handler (void) ;
HardFault Handler (void) ;
MemManage Handler (void) ;
BusFault_ Handler (void);
UsageFault Handler (void) ;
SVC_Handler (void) ;
DebugMon_Handler (void) ;
PendSV_Handler (void) ;

SysTick Handler (void) _ attribute ((section (".ccmram")));

page 17/24

‘W AN4296

Execute a file from CCM SRAM

4.2 Execute a file from CCM SRAM

Executing a source file from CCM SRAM means that all functions declared in this file are executed from CCM
SRAM.

To execute a file from CCM SRAM, follow the steps listed below:

1. Addthe .ccmram section in the linker file as defined in Execute a function or an interrupt handler from CCM
SRAM.

2. Place the file in CCM SRAM as shown below. The startup file also needs to be updated to copy code from
the Flash memory to CCM SRAM as described in Execute a function or an interrupt handler from CCM
SRAM.

This example shows how to execute file myTestCCM. o from CCM SRAM:

/*-—- New CCMRAM linker section definition ---%*/
_siccmram = LOADADDR (.ccmram) ;
/* CCMRAM section */
.ccmram :
{
. = ALIGN (4);
_sccmram = .;
* (.ccmram)
* (.ccmram*)
*myTestCCM.o (.text .text¥)

/* define a global symbols at ccmram start */

. = ALIGN (4);
_eccmram = .; /* define a global symbols at ccmram end */
} >CCMRAM AT> FLASH
/*--- End of CCMRAM linker section definition ---*/
4.3 Execute a library from CCM SRAM

Follow the steps below to execute a library from CCM SRAM:

1. Add the . ccmram section in the linker file as defined in Execute a function or an interrupt handler from CCM
SRAM.

2. Place the library in CCM SRAM as shown below. The startup file also needs to be updated to copy code
from the Flash memory to CCM SRAM as described in Execute a function or an interrupt handler from CCM
SRAM.

This example shows how to execute library myLib.a from CCM SRAM:

/*-—- New CCMRAM linker section definition ---%*/
_siccmram = LOADADDR (.ccmram) ;
/* CCMRAM section */
.ccmram
{
. = ALIGN (4) ;
_sccmram = .; /* define a global symbols at ccmram start */
* (.ccmram)
* (.ccmram*)
*myTestCCM.o (.text .text¥)
myLib.a: (.text .text¥)

. = ALIGN (4) ;

_eccmram = .; /* define a global symbols at ccmram end */
} >CCMRAM AT> FLASH
/*--— End of CCMRAM linker section definition —---*/

AN4296 - Rev 5 page 18/24

‘W AN4296

Revision history

Table 3. Document revision history

T S

23-Jul-2013 1 Initial release.
Changed STM32F313xC into STM32F358xC.

25-Mar-2014 2 Reworked Section 1: Overview of STM32F303xB/C and STM32F358xC CCM
RAM.

Added STM32F303x6/x8, STM32F328x8, STM32F334x4/x6/x8 in Table 1:
Applicable products.

Updated step 2 in Section 2.1: Executing a simple code from CCM RAM
(except for interrupt handler), step 3 in Section 2.2.1: Updating the linker file
(.icf) and updated Figure 5: EWARM linker update for interrupt handler.

Updated Figure 11: MDK-ARM scatter file.

2-Sep-2014 3

Updated:
. Title of the document
. Introduction

. CCM RAM replaced by CCM SRAM in the whole document
. Figure 1. STM32F3 devices system architecture

16-Apr-2019 4 Added:
. Figure 2. STM32G4 devices system architecture
. Table 2. CCM SRAM main features
. Section 1.2.5 CCM SRAM read protection (only on STM32G4 devices)
. Section 1.2.6 CCM SRAM erase (only on STM32G4 devices)

Removed Table 2. CCM RAM organization.

Updated:
. Title of the document
8-Feb-2021 5 . Section 4 description and code examples to authorize code
execution in CCM SRAM when using a GNU-based toolchain such as
STM32CubelDE

AN4296 - Rev 5 page 19/24

‘W AN4296

Contents
Contents
1 Overview of STM32F3/STM32G4 CCM SRAMottt eiii i aneas 2
1.1 PUIPOSE . o 2
1.2 CCM SRAMTeatures e e e e 4
1.21 CCM SRAM Mapping . . .« oot e e 4
1.2.2 CCM SRAM remapping. .« o oot e et e e 4
1.2.3 CCM SRAM write protection 4
1.2.4 CCM SRAM parity CheCK e 4
1.2.5 CCM SRAM read protection (only on STM32G4 devices).t ... 4
1.2.6 CCM SRAM erase (only on STM32G4 devViCes) oo it i i 4
2 Execute application code from CCM SRAM using the IAR Systems® IAR Embedded
Workbench® t00IChaIN.ocu ittt ettt et e e enaeans 5
2.1 Execute a simple code from CCM SRAM (except for interrupt handler) 5
2141 Execute a source file from CCM SRAM. 5
21.2 Executing one or more functions from CCM SRAM. 6
2.2 Execute an interrupt handler from CCM SRAM. 7
221 Updating the linker file (.icf) ... e 7
2.2.2 Updating the startup file 8
223 Place the interrupt handlerin CCM SRAM 8
224 Remap the vector table to CCM SRAM. e e e 8
2.3 Execute alibrary (.a) from CCM SRAM 9

3 Execute application code from CCM SRAM using the Keil® MDK-ARM toolchain .. .11

3.1 Execute a function or an interrupt handler from CCM SRAM 11
3.2 Execute a source file from CCM SRAM 13
3.3 Execute a library or a library module from CCMSRAM 13
4 Execute application code from CCM SRAM using STM32CubelDE with GNU-based
toolchain e 14
4.1 Execute a function or an interrupt handler from CCM SRAM 14
4.2 Execute a file from CCM SRAM 18
4.3 Execute a library from CCM SRAM. 18
ReVISIiON RiStOryo i i a s i s s 19

AN4296 - Rev 5 page 20/24

m AN4296

Contents
{020 Y 01 1= 21 = 20
TS o Y 8 7= o] (= 22
List Of figUIres.o i i 23

AN4296 - Rev 5 page 21/24

m AN4296

List of tables
List of tables
Table 1. Applicable products 1
Table 2. CCM SRAM main features 4
Table 3. Documentrevision history 19

AN4296 - Rev 5 page 22/24

m AN4296

List of figures

List of figures

Figure 1. STM32F3 device system architecture 2
Figure 2. STM32G4 device system architecture 3
Figure 3. IAR Embedded Workbench® linker update 5
Figure 4. IAR Embedded Workbench® file placement 6
Figure 5. IAR Embedded Workbench® function placement. 6
Figure 6. IAR Embedded Workbench® linker update for interrupt handler. 7
Figure 7. IAR Embedded Workbench® startup file update for interrupthandler 8
Figure 8. CCM SRAM area definition 9
Figure 9. IAR Embedded Workbench® section initialization 9
Figure 10. IAR Embedded Workbench® library placement. 9
Figure 11. IAR Embedded Workbench® library module placement 10
Figure 12. MDK-ARM scatter file 11
Figure 13. MDK-ARM OpfionS MENU. ittt e e e e e e e e e e e e e e e 12
Figure 14. MDK-ARM function placement 12
Figure 15. MDK-ARM target memory 13
Figure 16. MDK-ARM file placement. 13
Figure 17. MDK-ARM library placement 13

AN4296 - Rev 5 page 23/24

m AN4296

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics — All rights reserved

AN4296 - Rev 5 page 24/24

	Introduction
	1 Overview of STM32F3/STM32G4 CCM SRAM
	1.1 Purpose
	1.2 CCM SRAM features
	1.2.1 CCM SRAM mapping
	1.2.2 CCM SRAM remapping
	1.2.3 CCM SRAM write protection
	1.2.4 CCM SRAM parity check
	1.2.5 CCM SRAM read protection (only on STM32G4 devices)
	1.2.6 CCM SRAM erase (only on STM32G4 devices)

	2 Execute application code from CCM SRAM using the IAR Systems(R) IAR Embedded Workbench(R) toolchain
	2.1 Execute a simple code from CCM SRAM (except for interrupt handler)
	2.1.1 Execute a source file from CCM SRAM
	2.1.2 Executing one or more functions from CCM SRAM

	2.2 Execute an interrupt handler from CCM SRAM
	2.2.1 Updating the linker file (.icf)
	2.2.2 Updating the startup file
	2.2.3 Place the interrupt handler in CCM SRAM
	2.2.4 Remap the vector table to CCM SRAM

	2.3 Execute a library (.a) from CCM SRAM

	3 Execute application code from CCM SRAM using the Keil(R) MDK-ARM toolchain
	3.1 Execute a function or an interrupt handler from CCM SRAM
	3.2 Execute a source file from CCM SRAM
	3.3 Execute a library or a library module from CCM SRAM

	4 Execute application code from CCM SRAM using STM32CubeIDE with GNU-based toolchain
	4.1 Execute a function or an interrupt handler from CCM SRAM
	4.2 Execute a file from CCM SRAM
	4.3 Execute a library from CCM SRAM

	Revision history
	Contents
	List of tables
	List of figures

