
What’s New (and better) in Qt
Alistair Adams

24th May 2017

5 June 2017 Presentation name / Author2

Qt Wayland
› Multiprocess for embedded
› Fully supported in Qt 5.8

Qt Wayland Compositor

Enables your device to be a complete SW platform

Create your unique platform
› Create multi-process embedded devices with Qt
› Improve robustness by splitting your system into different functional

units/applications allowing you to make your device a SW platform for
additional content

The developer experience with productivity at its core
› Less lines of code to test, debug and maintain - creating window servers on

high abstraction levels
› Enable development & testing simultaneously by separating your UI into

different functional units
› Minimize risk by only updating one unit at a time

Extended with Application Manager in Qt Automotive Suite

5 June 20174

5 June 2017 Presentation name / Author5

95 Transition {

96 id: inTransition

97 NumberAnimation {

98 properties: "opacity, scale"

99 from: 0

100 to:1

101 duration: 250

102 }

103 }

104 Transition {

105 id: outTransition

106 NumberAnimation {

107 properties: "opacity"

108 from: 1

109 to:0

110 duration: 250

111 }

112 NumberAnimation {

113 properties: "scale"

114 from: 1

115 to:5

116 duration: 250

117 }

118 }

AGL Home Screen With Qt Compositor

https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l95
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l96
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l97
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l98
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l99
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l100
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l101
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l102
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l103
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l104
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l105
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l106
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l107
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l108
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l109
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l110
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l111
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l112
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l113
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l114
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l115
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l116
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l117
https://gerrit.automotivelinux.org/gerrit/gitweb?p=apps/homescreen.git;a=blob;f=homescreen/qml/SystemUI.qml;h=1e1c6beb2b7597950c65ea142396f7919c975c4d;hb=refs/heads/sandbox/tasuku/qt-compositor-ized#l118

Qt Lite
› New configuration system for Qt
› Fully supported in Qt 5.8

› Many low end devices where Qt is a good solution
› …but minimum hardware requirements for Qt a bit high

› Might not support OpenGL
› Memory constrained

› Solution
› Rearchitect scenegraph to allow different backends

› Software rasterizer
› OpenVG (Qt 5.9)

› Reduce Qt footprint by making Qt more configurable
› GUI tool to easily select only the required components
› Documentation: Guidelines, recommendations, HW requirements

7

Qt Lite

› Up to 80 percent smaller than Qt 5.6
› 65 percent smaller than Qt 5.6 static builds

› Faster application loading time
› Static linking reduces application loading time.
› It always guarantees constant loading time.

› Extreme flexibility to customize HMI & Qt library
› Best optimized memory foot-print
› It can make Qt libraries compact on a function level.

› Performance
› Compiles only needed part of a library per application level.
› Single process architecture will get the most performance benefit.

› Compatibility
› It eases concerns of compatibility issue by pre-installed libraries.

5 June 20178

Qt Lite – Significant Improvements

0

5

10

15

20

25

30

Qt 5.6 Dynamic Qt 5.6 Static Qt 5.8 Dynamic Qt Lite Dynamic Qt Lite Static

Binary Size of Qt Framework and App (MB)

› Easily see all available features

› Understand what you are doing with our
integrated documentation

› Make it an integrated and simple part of
your workflow

› Configuring Qt is no longer just for those
with deep internal Qt knowledge

5 June 20179

Qt Lite Configuration Tool

Qt Quick Compiler
› Next generation Qt Quick Compiler with Qt 5.8 and 5.9
› Previous one continues to be supported for commercial users

Qt Quick Compiler

5 June 2017 Presentation name / Author11

In the beginning
QML parsed and
compiled at run-time,
V8 Javascript engine.

Qt 5.3.1
Build time compiler
(qmlcompiler –
Commercial license only)
Much faster startup time

Qt 5.2
V4 Javascript engine.
Faster for the small JS
fragments in QML

Qt 5.8
JIT Disc Cache .qmlc, .jsc files
2nd + runs have faster startup; up
to 60-70%, 30-40% typical
Also lower memory consumption.

Qt 5.9
Build-time JIT Cache creation (TP)
Fast first time startup,
IPR protection – QML hidden

Summary: 5.9 Options:
1. Run-time disc cache makes 2nd and subsequent startups faster
2. Qt 5.9 technical preview enables build-time creation of cache files
3. qmlcompiler available for commercial licensees.

5 June 2017 Presentation name / Author12

JavaScript Performance

5 June 2017 Presentation name / Author13

• 32-bit ARM is 16% faster
• 64-bit ARM 302% (i.e. 4x improvement).

• Why? Qt 5.9 fully supports 64-bit ARM processors

QML Garbage Collector
› Rewritten to provide better memory consumption and

improved, more predictable performance for JavaScript code

› Different data structures for allocating memory

› Amongst it advantages are:
› Less overhead, faster allocation
› Faster sweeping of the GC heap
› More likely to return memory to the OS than the GC in 5.6
› Less memory fragmentation inside the GC

› By the Numbers
› 10-30% memory savings on the GC heap
› 10-15% better performance

5 June 2017 Presentation name / Author15

Complete re-write of QML Garbage Collector

Shader Cache
› Qt 5.9 Graphics Performance Improvements

Shader Cache

5 June 201717

› New Shader cache feature
› Qt specific binary cache for compiled

shaders
› Major startup time improvements after

running the application once, even on
drivers that actually implement shader
caches themselves.

Shared Image Provider
› Qt 5.9 Graphics Performance Improvements

› Built into QQuickImageProvider.
› QML example:

Image {

source: "image://shared/usr/share/wallpapers/mybackground.jpg“

}

› Looks for /usr/share/wallpapers/mybackground.jpg
› First process requesting file reads the image using normal Qt image loading.
› Decoded image data placed in shared memory, using the full file path as key.
› Later processes requesting the same image will not need to load again
› Shared image data kept until the last process has deleted
› If system memory sharing is not available, falls back to normal, unshared image loading.

5 June 2017 Presentation name / Author19

Shared Image Provider:
Saves disk and memory space in multi-process systems

› Shared Image Provider helps with multi-process UIs

› Bigger problem is shared resources in graphics memory

› Graphics driver dependent

› On-going research for Qt 5.11

5 June 2017 Presentation name / Author20

Share Resources in Graphics Memory

Qt SCXML

Reduce risk of unexpected system behaviour with fast
& easy state chart integration

Ultimate Performance, Reliability and Stability
› Reduce risk of unexpected behavior
› Ensure maximum uptime
› Fast and easy integration
› Concise representation of business logic

The developer experience with productivity at its core
› Formalize applications & validate workflows with SCXML to define state

machines
› Easily drive your state machine from a state chart rather than business logic

expressed in C++ or QML
› SCXML docs can be compiled into C++ and readily integrated into any Qt

application
› SCXML can also be dynamically loaded and interpreted at runtime

5 June 201721

WebGL Streaming
› Remote control of a Qt applications with a browser
› Stream user interface and input between two Qt applications
› Think of as Android Auto / CarPlay in reverse

5 June 201723

Remote Control Qt Apps with a Browser (WebGL Streaming)

› Remote display and control of a Qt
application with a common web
browser or a Qt application

› Connection over a network
› Streaming of OpenGL commands via

compressed WebGL
› User input in return channel

› Implemented as a new QPA plugin
and JavaScript component that
works with common web browsers
(no install needed)

› Planned for Qt 5.10

User Input
Master Qt
Application

Browser /
Remote UI

Path Rendering with Qt Quick

› Draw paths and shapes with Qt Quick
› Declarative way to specify complex shapes
› Significant performance increase compared to

previously existing approach
› Utilizing HW acceleration

› Works on any OpenGL HW
› Vendor specific extensions, e.g. on NVIDIA

› Leveraging QSGRenderNode to issue native
rendering commands in a scenegraph frame
without going through an additional render
target

› Planned for Qt 5.10

5 June 201725

Path Rendering with Qt Quick

Qt 3D and Qt 3D Studio

Today: Industries Embracing 3D User Interfaces and VR

5 June 201727

Industrial AutomationCar Clusters/IVI Systems Medical / Learning

3D Modeling / AnimationsProduct Visualization Virtual Reality

Tomorrow: Mixed Reality

5 June 201728

© Microsoft © Magic Leap

Building Blocks in Qt

Qt 3D

› Programmer oriented
› Fully data driven 3D engine with QML API
› Runtime supports “everything”
› Very deep

› Learning requires understanding graphics pipeline
› Qt 3D Scene Editor helps

› Extensibility:
› Framegraphs
› Custom shader materials
› Post processing shader effects

› Technical artist oriented
› Tooling that outputs data package for runtime
› Runtime supports the tooling
› Easy to approach

› Tool can be learned in 2 days if you know how to use
any 3D tool and Photoshop

› Quick to get results.
› Extensibility:

› Custom shader materials (integrate with UI)
› Post processing shader effects (integrate with UI)

5 June 201731

Qt 3D Studio

Qt 3D Studio
› Major code contribution from NVIDIA - NVIDIA

Drive Design Studio and Rendering Engine
donated to the Qt Project

› Takes Qt 3D UI tooling to a completely new level,
allowing for rapid 3D UI creation and
deployment.

› Goal is to fully integrate it with the Qt tooling
environment

› Early access releases available, first official
releases during H2/17

32 5 June 2017

5 June 2017 Presentation name / Author33

User Interface

Slides
(UI States)

Layers

Timeline
editor

Properties &
actions

Project
assets

› Import 3D geometry and animations from popular 3D Design tools (e.g. Maya, MODO and Blender)
using FBX and COLLADA exchange formats

› 3D Objects and scene hierarchies are imported

› Materials are imported and mapped to corresponding Qt 3D Studio materials

› Cameras and Lights - these objects will only come into Studio as empty nodes

› Animations - We recommend using Studio’s animation capabilities whenever practical. This helps keep
mesh information on import clean and reduces conflicts between imported mesh animation and
Studio’s animation upon refreshing.

5 June 2017 Presentation name / Author34

3D Assets

› Lens effects
› Depth Of Field Bokeh
› Depth Of Field HQ Blur
› Tilt Shift
› Chromatic Aberration

› Distortion
› Ripple
› Sphere
› Spiral

› Stylize
› Edge Detect
› Brush Strokes
› Corona
› Scatter

› Blur
› Gaussian Blur
› Motion Blur

› Color & light
› HDR Bloom Tonemap
› S-Curve Tonemap
› Sepia
› Bloom
› Light Table

› Antialiasing
› SMAA
› FXAA

5 June 2017 Presentation name / Author35

Post processing effects – in built

HDR Bloom Tonemap

Tilt Shift

Iterative UI Development

Qt with Traditional UI Development

Design Develop

Sketching

2D/3D
modeling

Painting/
Texturing

Animation

Design
brief

Rendering

Coding

Simulation +
Testing

Target
Integration

User Acceptance
Test Vehicle

Integration

Scene
Recreation
in Code

5 June 201737

Iterative UI Development with Qt 3D Studio

Design Develop

Sketching

2D/3D
modeling

Painting/
Texturing

Animation

Design
Brief

Scene
Editing

Coding

Simulation +
Testing

Target
Integration

User Acceptance
Test Vehicle

Integration

Send to
Coding

5 June 201738

5 June 2017 Sami Makkonen39

Qt 3D Studio release roadmap 2017

January February March April May June July August September October November December

Internal releases Early access releases Official releases
Internal binary releases for demonstrating
solution to key customers & partners

Main tasks:
• Code cleanup and bug fixing
• Initial Qt integration
• Initial documentation
• 2-3 Examples/demos available

HW & OS Support
• Editor & Runtime: Desktop Windows only

Binary releases for key customers & partners

Main tasks:
• Code cleanup and bug fixing
• Improved Qt API
• Improving documentation
• 2 Additional demo applications

HW & OS Support
• Cross Platform Editor (Windows, Mac)
• HW: NVIDIA TX1, Intel
• Embedded Linux, Android

General availability Commercial & Open Source

Main tasks:
• Fixing customer reported issues
• Extend embedded OS support
• Research on changing the rendering engine to Qt 3D

HW & OS Support
• Editor: Linux support
• HW: Qualcom, Renesas H3
• Integrity & QNX Support

Functional Safety for Digital Cockpit
Addressing ISO26262 Requirements with Qt

12th May 2017

Creating a ISO 26262 ASIL B Certified System with Qt

› Safety critical functionality needs to be adequately separated from other functionality using a certified
RTOS such as INTEGRITY or QNX

› Certified systems for multiple different industries have been created with Qt – not only automotive
› Certification e.g. according to IEC 51608, IEC 62304 and ISO 26262

› Qt Safe Renderer component makes it easier to include safety critical parts to Qt Quick UI

41

Qt can be used in a system certified
according to ISO 26262 ASIL B

5 June 201742

Architecture for Qt Based Digital Cockpit

Main UI

Qt

RTOS Libraries

SC UI

SC
Logic

RTOS Kernel (SC)

Electronics

Main UI

Qt

OS / Linux

SC UI

SC
Logic

RTOS
(SC)

Type 1 Hypervisor (SC)

Electronics

Example: Standalone Instrument Cluster Example: IVI and Instrument Cluster

› Certified Qt Safe Renderer
› Tooling to mark safety critical items.
› Change UI without need to modify Qt

Safe Render
› Integration to Qt Quick Designer

› Full set of ISO standard icons
› Drag and drop safety critical item to UI

› Proof of concept based on Qt 5.9
› Certification activities planned to be

completed during H2/17

5 June 201743

Qt Safe Renderer – Convenience for Safety Critical UI

› Key parts
› Qt Safe Renderer (safety critical runtime component)
› Integration to Qt Quick Designer and Creator IDE (safety

critical tooling component)
› Integration to RTOS

› QNX
› INTEGRITY

› Supported HW
› NVIDIA Drive CX
› NXP i.MX6
› Renesas H3
› Qualcomm Snapdragon 820

› Qt Safe Renderer controlled via CanBUS messages
during operations – no dependency to Main UI

5 June 201744

Qt Safe Renderer – Architecture

INTEGRITY Support
› Re-introduce support for INTEGRITY with Qt 5.9
› Last supported in Qt 4.8
› Initially NXP i.MX6 and NVIDIA Tegra X1

› Intel, Renesas, Qualcomm, … to be added in subsequent releases

Migrating code built with Open
Source Licensed Qt to Production
with a Commercial License

› Per our commercial license agreement, all code for commercial deployment must be developed with
commercially licensed Qt.

› Can I take Qt code developed for AGL or GENIVI into a production program?

› Not if it was developed with an open source licensed Qt

› But we can always make exceptions.

› We will make a blanket exception for AGL and GENIVI.

5 June 2017 Presentation name / Author47

We hear your concerns

› Any AGL member may use the open source licensed Qt within the AGL project, take any work or proof
of concepts built within the AGL project scope using open source licensed Qt, and transfer that work
into production programs by purchasing the commercial license with no penalty.

› Similarly, any GENIVI member may use the open source licensed Qt together with the GENIVI GDP,
take any work or proof of concepts developed within the GENIVI GDP scope using open source licensed
Qt, and transfer that work into production programs by purchasing the commercial license with no
penalty.

5 June 2017 Presentation name / Author48

Our Promise

We want AGL/GENIVI to be successful
› Any questions?

› Ask a question now
› Talk to us in private
› Or send email to automotive-licensing@qt.io

Checkout our demos
› AGL homescreen demo with QtWayand
› HTML5 comparison with QML (not ours)

Thank You!

tuukka.turunen@qt.io

