High-performance, Vector Control Inverter (Stack Type) FRENIC-VG

CAUTION

[^0]Copyright © 2013-2018 Fuji Electric Co., Ltd. All rights reserved.
No part of this publication may be reproduced or copied without prior written permission from Fuji Electric Co., Ltd.

All products and company names mentioned in this manual are trademarks or registered trademarks of their respective holders.

The information contained herein is subject to change without prior notice for improvement.

Preface

Thank you for purchasing our high-performance, vector control FRENIC-VG series of inverters. This product is designed to drive a three-phase motor.
Read through this instruction manual to become familiar with proper handling for correct use. Improper handling might result in incorrect operation, a short life, or even a failure of this product as well as the motor.
The related documents are subject to change without notice. Be sure to obtain the latest editions for use.

Table of Contents

Preface i

■ Inquiries about Product and Guarantee. iii

- Safety precautions v
Chapter 1 BEFORE USE 1
1.1 Acceptance Inspection (Nameplates and type of inverter) 1
1.2 External Appearance 3
1.3 Precautions for Using Inverters
1.3.1 Installation environment 7
1.3.2 Transportation 9
1.3.3 Storage environment 10
1.3.4 Precautions for connection of peripheral equipment 11
1.3.5 Noise reduction 12
1.3.6 Leakage current. 12
1.3.7 Precautions in driving a permanent magnet synchronous motor (PMSM) 12
Chapter 2 MOUNTING AND WIRING THE INVERTER 13
2.1 Mounting the Inverter 13
2.1.1 Terminal Arrangement and Screw Sizes (Main circuit terminals) 19
2.2 Wiring. 25
2.2.1 Connection diagram 25
2.2.2 Removing and mounting the front cover and the wiring guide 28
2.2.3 Precautions for long wiring (between the inverter and motor)29
2.2.4 Main circuit terminals 30
2.2.5 Control circuit terminals (common to all inverter types) 34
2.2.6 Setting up the slide switches 44
2.2.7 Fan power switching connector CN UX 46
2.2.8 Wiring between stacks of Phase-specific stack type 47
2.3 Mounting and Connecting the Keypad 49
2.3.1 Parts required for connection 49
2.3.2 Mounting procedure 50
2.4 Connecting a USB Cable 52
Chapter 3 OPERATION USING THE KEYPAD 53
3.1 Names and Functions of Keypad Components 53
3.2 Programming Mode 56
3.2.1 Setting the calendar clock -- Menu \#12 "DATE/TIME" 58
Chapter 4 TEST RUN PROCEDURE 62
4.1 Checking Prior to Powering On 63
4.2 Powering ON and Checking 64
4.2.1 Checking the input state of PG (pulse generator) signals 64
4.2.2 Mounting direction of a PG (pulse generator) and PG signals 65
4.3 Selecting a Desired Motor Drive Control 66
4.3.1 Vector control for IM with speed sensor. 66
4.3.2 Vector control for IM without speed sensor 68
4.3.3 Vector control for PMSM with speed sensor and magnetic pole position sensor70
4.3.4 V/f control for IM 73
4.4 Running the Inverter for Operation Check 75
4.4.1 Test Run Procedure for Induction Motor (IM) 75
4．4．2 Test Run Procedure for Permanent Magnet Synchronous Motor（PMSM） 76
4．5 Selecting a Speed Command Source 82
4．5．1 Setting up a speed command from the keypad 82
4．5．2 Setting up a speed command with an external potentiometer 82
4．6 Selecting a Run Command Source 83
4．6．1 Setting up a run command from the keypad 83
4．6．2 Setting up a run command with digital input signals（terminals［FWD］and［REV］） 83
Chapter 5 FUNCTION CODES 84
5．1 Function Code Groups and Function Codes 84
5．2 About the Contents of Column Headers in Function Code Tables 85
5．3 Function Code Tables 86
5．3．1 F codes（Fundamental Functions） 86
5．3．2 E codes（Extension Terminal Functions） 90
5．3．3 C codes（Control Functions） 97
5．3．4 P codes（Motor Parameter Functions M1） 99
5．3．5 H codes（High Performance Functions） 101
5．3．6 A codes（Alternative Motor Parameter Functions M2／M3） 108
5．3．7 o codes（Option Functions） 108
5．3．8 L codes（Lift Functions） 108
5．3．9 SF codes（Safety Functions） 108
Chapter 6 TROUBLESHOOTING 109
6．1 Protective Functions 109
6．2 Before Proceeding with Troubleshooting 110
6．3 If an alarm code appears on the LED monitor 111
6．3．1 List of alarm codes 111
6．3．2 Possible causes of alarms，checks and measures 116
 120
6．5 If Neither an Alarm Code Nor＂Light Alarm＂Indication（ $\underset{L-K_{L}}{\prime}$ ）Appears on the LED Monitor 120
6．5．1 Abnormal motor operation 120
6．5．2 Problems with inverter settings 128
Chapter 7 MAINTENANCE AND INSPECTION 130
7．1 Inspection Interval 130
7．2 Daily Inspection． 130
7．3 Periodic Inspection 131
7．4 List of Periodic Replacement Parts 133
7．4．1 Judgment on service life 133
7．4．2 Battery 134
7．5 Measurement of Electrical Amounts in Main Circuit 137
7．6 Insulation Test． 138
Chapter 8 SPECIFICATIONS 139
Chapter 9 CONFORMITY WITH STANDARDS 141
9．1 Compliance with European Standards（（ E ） 141
9．1．1 Compatibility with Revised EMC Directive and Low Voltage Directive 141
9．1．2 Compliance with EMC standards 142
9．1．3 Harmonic component regulation in the EU 144
9．1．4 Compliance with the low voltage directive in the EU 145
9．2 Compliance with Functional Safety Standard 149
9．2．1 General 149
9．2．2 Notes for compliance to Functional Safety Standard 150
9．2．3 Functional safety performance 151
9．2．4 Inverter output state when Safe Torque Off（STO）is activated 152
9．2．5 だー 153
9．2．6 Prevention of restarting 154
9．3 Compliance with UL Standards and Canadian Standards（cUL certification）（© ©Lus usteo ） 155

■ Inquiries about Product and Guarantee

- When making an inquiry

Upon breakage of the product, uncertainties, failure or inquiries, inform your Fuji Electric representative of the following information.

1) Inverter type (Refer to Chapter 1, Section 1.1.)
2) SER No. (serial number of equipment) (Refer to Chapter 1, Section 1.1.)
3) Function codes and their data that you changed (refer to the FRENIC-VG User's Manual, Chapter 3, Section 3.4.4.3.)
4) ROM version (refer to the FRENIC-VG User's Manual, Chapter 3, Section 3.4.4.6.)
5) Date of purchase
6) Inquiries (for example, point and extent of breakage, uncertainties, failure phenomena, and other circumstances)

- Product warranty

To all our customers who purchase Fuji Electric products included in this documentation:

Please take the following items into consideration when placing your order.

When requesting an estimate and placing your orders for the products included in these materials, please be aware that any items such as specifications which are not specifically mentioned in the contract, catalog, specifications or other materials will be as mentioned below.
In addition, the products included in these materials are limited in the use they are put to and the place where they can be used, etc., and may require periodic inspection. Please confirm these points with your sales representative or directly with this company.
Furthermore, regarding purchased products and delivered products, we request that you take adequate consideration of the necessity of rapid receiving inspections and of product management and maintenance even before receiving your products.

[1] Free of charge warranty period and warranty range

(1) Free of charge warranty period

1) The product warranty period is "1 year from the date of purchase" or 18 months from the manufacturing week imprinted on the name place, whichever date is earlier.
2) However, in cases where the use environment, conditions of use, use frequency and times used, etc., have an effect on product life, this warranty period may not apply.
3) Furthermore, the warranty period for parts restored by Fuji Electric's Service Department is " 6 months from the date that repairs are completed."
(2) Warranty range
4) In the event that breakdown occurs during the product's warranty period which is the responsibility of Fuji Electric, Fuji Electric will replace or repair the part of the product that has broken down free of charge at the place where the product was purchased or where it was delivered. However, if the following cases are applicable, the terms of this warranty may not apply.
(1) The breakdown was caused by inappropriate conditions, environment, handling or use methods, etc. which are not specified in the catalog, operation manual, specifications or other relevant documents.
(2) The breakdown was caused by the product other than the purchased or delivered Fuji's product.
(3) The breakdown was caused by the product other than Fuji's product, such as the customer's equipment or software design, etc.
(4) Concerning the Fuji's programmable products, the breakdown was caused by a program other than a program supplied by this company, or the results from using such a program.
(5) The breakdown was caused by modifications, repairs or disassembly made by a party other than Fuji Electric.
© The breakdown was caused by improper maintenance or replacement using consumables, etc. specified in the operation manual or catalog, etc.
(7) The breakdown was caused by a science or technical problem that was not foreseen when making practical application of the product at the time it was purchased or delivered.
(8) The product was not used in the manner the product was originally intended to be used.
(9) The breakdown was caused by a reason which is not this company's responsibility, such as lightning or other disaster.
5) Furthermore, the warranty specified herein shall be limited to the purchased or delivered product alone.
6) The upper limit for the warranty range shall be as specified in item (1) above and any damages (damage to or loss of machinery or equipment, or lost profits from the same, etc.) consequent to or resulting from breakdown of the purchased or delivered product shall be excluded from coverage by this warranty.

(3) Trouble diagnosis

As a rule, the customer is requested to carry out a preliminary trouble diagnosis. However, at the customer's request, this company or its service network can perform the trouble diagnosis on a chargeable basis. In this case, the customer is asked to assume the burden for charges levied in accordance with this company's fee schedule.

[2] Exclusion of liability for loss of opportunity, etc.

Regardless of whether a breakdown occurs during or after the free of charge warranty period, this company shall not be liable for any loss of opportunity, loss of profits, or damages arising from special circumstances, secondary damages, accident compensation to another company, or damages to products other than this company's products, whether foreseen or not by this company, which this company is not be responsible for causing.

[3] Repair period after production stop, spare parts supply period (holding period)

Concerning models (products) which have gone out of production, this company will perform repairs for a period of 7 years after production stop, counting from the month and year when the production stop occurs. In addition, we will continue to supply the spare parts required for repairs for a period of 7 years, counting from the month and year when the production stop occurs. However, if it is estimated that the life cycle of certain electronic and other parts is short and it will be difficult to procure or produce those parts, there may be cases where it is difficult to provide repairs or supply spare parts even within this 7 -year period. For details, please confirm at our company's business office or our service office.

[4] Transfer rights

In the case of standard products which do not include settings or adjustments in an application program, the products shall be transported to and transferred to the customer and this company shall not be responsible for local adjustments or trial operation.

[5] Service contents

The cost of purchased and delivered products does not include the cost of dispatching engineers or service costs. Depending on the request, these can be discussed separately.

[6] Applicable scope of service

Above contents shall be assumed to apply to transactions and use of the country where you purchased the products.
Consult the local supplier or Fuji for the detail separately.

Safety precautions

Read this manual thoroughly before proceeding with installation, connections (wiring), operation, or maintenance and inspection. Ensure you have sound knowledge of the device and familiarize yourself with all safety information and precautions before proceeding to operate the inverter.
Safety precautions are classified into the following two categories in this manual.
\triangle WARNING
Failure to heed the information indicated by this symbol may lead to dangerous conditions, possibly resulting in death or serious bodily injuries.
Failure to heed the information indicated by this symbol may lead to dangerous conditions, possibly resulting in minor or light bodily injuries and/or substantial property damage.

Failure to heed the information contained under the CAUTION title can also result in serious consequences. These safety precautions are of utmost importance and must be observed at all times.

Application

\triangle WARNING

- The FRENIC-VG is designed to drive a three-phase motor. Do not use it for single-phase motors or for other purposes.

Fire or an accident could occur.

- Use this product in combination with a Fuji authorized PWM converter or diode rectifier. The product connected with a commercial power cannot drive a three-phase motor by itself.

Fire or an accident could occur.

- The FRENIC-VG may not be used for a life-support system or other purposes directly related to the human safety.
- Though the FRENIC-VG is manufactured under strict quality control, install safety devices for applications where serious accidents or property damages are foreseen in relation to the failure of it.
An accident could occur.

Installation

\triangle WARNING \triangle

- Install the inverter on a base made of metal or other non-flammable material.

Otherwise, a fire could occur.

- Do not place flammable object nearby.

Doing so could cause fire.

- The inverter whose protective structure is IP00 involves a possibility that a human body may touch the live conductors of the main circuit terminal block. Install the inverter in an inaccessible place. Otherwise, electric shock or injuries could occur.

\triangle CAUTION

- Do not support the inverter by its front cover during transportation.

Doing so could cause a drop of the inverter and injuries.

- Prevent lint, paper fibers, sawdust, dust, metallic chips, or other foreign materials from getting into the inverter or from accumulating on the heat sink.
- When installing the inverter, use screws and bolts specified in the installation procedure and tighten them with the specified tightening torque.
Otherwise, a fire or an accident might result.
- Do not install or run an inverter that is damaged or lacking parts.

Doing so could cause fire, an accident or injuries.

\triangle WARNING \triangle

- If no zero-phase current (earth leakage current) detective device such as a ground-fault relay is installed in the upstream power supply line in order to avoid the entire power supply system's shutdown undesirable to factory operation, install a residual-current-operated protective device (RCD)/earth leakage circuit breaker (ELCB) individually to the input line of the PWM converter or diode rectifier.
- When wiring a PWM converter or diode rectifier to the power source, insert a recommended molded case circuit breaker (MCCB) or residual-current-operated protective device (RCD)/earth leakage circuit breaker (ELCB) (with overcurrent protection) in the path of each pair of power lines to those devices. Use the recommended devices within the recommended current capacity.
- Use wires in the specified size.
- Tighten terminals with specified torque.

Otherwise, a fire could occur.

- When there is more than one combination of an inverter and motor, do not use a multicore cable for the purpose of handling their wirings together.
- Do not connect a surge killer to the inverter's output (secondary) circuit.

Doing so could cause a fire.

- According to the input voltage series of the PWM converter or diode rectifier, ground the inverter in compliance with the national or local electric code.
- Be sure to ground the grounding terminals (步G) of the inverter and the PWM converter/diode rectifier.

Otherwise, an electric shock or a fire could occur.

- Qualified electricians should carry out wiring.
- Be sure to perform wiring after turning the power OFF.

Otherwise, an electric shock could occur.

- Be sure to perform wiring after installing the inverter unit.

Otherwise, an electric shock could occur.

- Ensure that the number of input phases and the rated voltage of the PWM converter or diode rectifier match the number of phases and the voltage of the AC power supply to which the PWM converter or diode rectifier is to be connected.

Otherwise, a fire or an accident could occur.

- Do not connect the PWM converter or diode rectifier to the inverter's output terminals (U, V, and W).

Doing so could cause fire or an accident.

- In general, sheaths of the control signal wires are not specifically designed to withstand a high voltage (i.e., reinforced insulation is not applied). Therefore, if a control signal wire comes into direct contact with a live conductor of the main circuit, the insulation of the sheath might break down, which would expose the signal wire to a high voltage of the main circuit. Make sure that the control signal wires will not come into contact with live conductors of the main circuit.

Doing so could cause an accident or an electric shock.

\triangle WARNING \wedge

- Before changing the slide switches on the control printed circuit board, turn the power OFF, wait at least ten minutes, and make sure that the LED monitor and charging lamp are turned OFF. Further, make sure, using a multimeter or a similar instrument, that the DC link bus voltage between the terminals $\mathrm{P}(+)$ and $\mathrm{N}(-)$ has dropped to the safe level (+25 VDC or below). Note that the diode rectifier has no LED monitor function.
An electric shock could occur.

\triangle CAUTION

- The PWM converter, inverter, motor and wiring generate electric noise. Be careful about malfunction of the nearby sensors and devices. To prevent them from malfunctioning, implement noise control measures.

[^1]- Be sure to mount the front cover before turning the power ON. Do not remove the cover when the inverter power is ON.
Otherwise, an electric shock could occur.
- Do not operate switches with wet hands.

Doing so could cause electric shock.

- If the auto-reset function has been selected, the inverter may automatically restart and drive the motor depending on the cause of tripping. Design the machinery or equipment so that human safety is ensured at the time of restarting.
Otherwise, an accident could occur.
- If the stall prevention function (torque limiter) has been selected, the inverter may operate with acceleration/deceleration or speed different from the commanded ones. Design the machine so that safety is ensured even in such cases.
- The (roo key on the keypad is effective only when the keypad operation is enabled with function code F02 ($=0,2$ or 3). When the keypad operation is disabled, prepare an emergency stop switch separately for safe operations. Switching the run command source from keypad (local) to external equipment (remote) by turning ON the "Enable communications link" command $\boldsymbol{L E}$ disables the (iom) key.
- If any of the protective functions have been activated, first remove the cause. Then, after checking that the all run commands are set to OFF, release the alarm. If the alarm is released while any run commands are set to ON, the inverter may supply the power to the motor, running the motor.

Otherwise, an accident could occur.

- If you enable the "Restart mode after momentary power failure" (Function code F14 = 3 to 5), then the inverter automatically restarts running the motor when the power is recovered
Design the machinery or equipment so that human safety is ensured after restarting.
- If the user configures the function codes wrongly without completely understanding this Instruction Manual and the FRENIC-VG User's Manual, the motor may rotate with a torque or at a speed not permitted for the machine
- Starting auto-tuning rotates the motor. Confirm sufficiently that there is no risk in rotating the motor beforehand.

An accident or injuries could occur.

- Even if the inverter has interrupted power to the motor, if the voltage is applied to the main input power of the PWM converter or diode rectifier, voltage may be output to inverter's output terminals U, V, and W .
- Even if the motor is stopped due to DC braking or preliminary excitation, voltage is output to inverter output terminals U, V, and W .

An electric shock may occur.

- The inverter can easily accept high-speed operation. When changing the speed setting, carefully check the specifications of motors or equipment beforehand.
Otherwise, injuries could occur.

\triangle CAUTION

- Do not touch the heat sink because it becomes very hot

Doing so could cause burns.

- The DC brake function of the inverter does not provide any holding mechanism.

Injuries could occur.

- Ensure safety before modifying function code settings.

Run commands (e.g., "Run forward" $\boldsymbol{F W} \boldsymbol{W}$), stop commands (e.g., "Coast to a stop" $\boldsymbol{B} \boldsymbol{X}$), and speed change commands can be assigned to digital input terminals. Depending upon the input terminal operation, modifying the function code setting may cause a sudden motor start or an abrupt change in speed.

- When the inverter is controlled with the digital input signals, switching run or speed command sources with the related terminal commands (e.g., SS1, SS2, SS4, SS8, N2/N1, KP/PID, IVS, and LE) may cause a sudden motor start or an abrupt change in speed.
An accident or injuries could occur.

Maintenance and inspection, and parts replacement

\triangle WARNING 』

- Before changing the slide switches on the control printed circuit board in maintenance or inspection, turn the power OFF, wait at least ten minutes, and make sure that the LED monitor and charging lamp are turned OFF. Further, make sure, using a multimeter or a similar instrument, that the DC link bus voltage between the terminals $\mathrm{P}(+)$ and $\mathrm{N}(-)$ has dropped to the safe level $(+25$ VDC or below). Note that the diode rectifier has no LED monitor function.
Otherwise, an electric shock could occur.
- Always carry out the daily and periodic inspections described in the instruction/user's manual. Use of the inverter for long periods of time without carrying out regular inspections could result in malfunction or damage, and an accident or fire could occur.
- It is recommended that periodic inspections be carried out every one to two years, however, they should be carried out more frequently depending on the usage conditions.
- It is recommended that parts for periodic replacement be replaced in accordance with the standard replacement frequency indicated in the user's manual. Use of the product for long periods of time without replacement could result in malfunction or damage, and an accident or fire could occur.
- Contact outputs [30A/B/C] and [Y5A/C] use relays, and may remain ON, OFF, or undetermined when their lifetime is reached. In the interests of safety, equip the inverter with an external protective function.
- If it continues using it in spite of having exhausted the battery, data may disappear.

Otherwise, an accident or fire could occur.

- Maintenance, inspection, and parts replacement should be made only by qualified persons.
- Take off the watch, rings and other metallic objects before starting work.
- Use insulated tools.

Otherwise, an electric shock or injuries could occur.

- Never modify the inverter.

Doing so could cause an electric shock or injuries.

Disposal

\triangle CAUTION

- Treat the FRENIC-VG as an industrial waste when disposing of it

Otherwise injuries could occur.

- The battery used in the inverter is a so-called primary battery. When disposing of it, comply with local codes and regulations

Speed control mode

\triangle CAUTION

- If the control parameters of the automatic speed regulator (ASR) are not appropriately configured under speed control, even turning the run command OFF may not decelerate the motor due to hunting caused by high gain setting. Accordingly, the inverter may not reach the stop conditions so that it may continue running.
During deceleration, hunting may be caused by high response in low speed domain so that the detected speed deviates from the zero speed area before the zero speed control duration (F39) elapses. Accordingly, the inverter will not reach the stop conditions so that it enters the deceleration mode again and continues running.
If any of the above problems occurs, adjust the ASR control parameters to appropriate values and use the speed mismatch alarm function in order to alarm-trip the inverter, switch the control parameters by speed, or judge the detection of a stop speed by commanded values when the actual speed deviates from the commanded one.
An accident or injuries could occur.

Torque control mode

\triangle CAUTION

- When the motor is rotated by load-side torque exceeding the torque command under torque control, turning the run command OFF may not bring the stop conditions so that the inverter may continue running.

An accident or injuries could occur.

- To shut down the inverter output, switch from torque control to speed control and apply a decelerate-to-stop or coast-to-stop command

General precautions

\triangle CAUTION

Drawings in this manual are illustrated without the front cover or safety shields for explanation of detail parts. Do not turn the power ON when the inverter is as shown in drawings. Be sure to restore the covers and shields in the original state before running the inverter.

Icons

The following icons are used throughout this manual.
This icon indicates information which, if not heeded, can result in the inverter not operating to full efficiency, as well as information concerning incorrect operations and settings which can result in accidents.

Tip This icon indicates information that can prove handy when performing certain settings or operations.
[D] This icon indicates a reference to more detailed information.

Chapter 1 BEFORE USE

1.1 Acceptance Inspection (Nameplates and type of inverter)

Unpack the package and check the following:
(1) An inverter and the following accessories are contained.

Accessories - Instruction manual (this document)

- CD-ROM (containing the FRENIC-VG User's Manual, FRENIC-VG Loader (free version), and FRENIC-VG Loader Instruction Manual)
(2) The inverter has not been damaged during transportation-there should be no dents or parts missing.
(3) The inverter is the type you ordered. You can check the type and specifications on the main and sub nameplates. (The main and sub nameplates are attached to the inverter as shown in Figures 1.2-1 through 1.2-4.)

(a) Main Nameplate

(b) Sub Nameplate

Figure 1.1-1 Nameplates

TYPE: Type of inverter

The FRENIC-VG is available in two drive modes depending upon the inverter capacity: Medium Duty (MD) and Low Duty (LD) modes. Specifications in each mode are printed on the main nameplate.
Medium Duty : MD mode designed for medium duty load applications.
Overload capability: 150% for 1 min . Continuous ratings = Inverter capacity
Low Duty : LD mode designed for light duty load applications.
Overload capability: 110% for 1 min . Continuous ratings = One rank higher capacity of inverters
SOURCE : Input current
OUTPUT : Number of output phases, rated output voltage, output frequency range, rated output capacity, rated output current, and overload capability
SCCR : Short-circuit capacity
MASS : Mass of the inverter in kilogram
SER. No. : Product number

28A456A0001 BA 232
 Production week
 This indicates the week number that is numbered from the 1st week of January.
 The 1st week of January is indicated as "01."
 Production year: Last digit of year
 Product version

C Compliance with European Standards (See Chapter 9 Section 9.1)

If you suspect the product is not working properly or if you have any questions about your product, contact your Fuji Electric representative.

1.2 External Appearance

(1) Outside and inside views

Figure 1.2-1 Rank 1 (30 to 45 kW)

Figure 1.2-2 Rank 2 (55 to 110 kW)

Figure 1.2-3 Rank 3 (132 to 200 kW)

Figure 1.2-4 Rank 4 (220 to 315 kW)

Figure 1.2-5 Rank 4 (630 to 800 kW)
（2）Warning plates and label

\triangle WARNING 今

－RISK OF INJURY OR ELECTRIC SHOCK
－Refer to the instruction manual before installation and operation．
－Do not remove this cover while applying power．
－This cover can be removed after at least 10 min of power off and
after the＂CHARGE＂lamp turns off
－More than one live circuit．See instruction manual．
－Do not insert fingers or anything else into the inverter．
－High touch current

\triangle WARNING	
4	RISK OF ELECTRIC SHOCK
迤警告	
4	有可能引起触电
¢ 警告	
4	感電の おそれあり

－居え付け連転時の前に，必ず取扱説明書を読んでその指示に従うこと

- 通電中は，表面カバーを開すなし
- 表面力バーを開ける場合は，電源しゃ断緂10分以上経過後チャージランングが消灯した
- 表面力ノ゚ーを開ける場合は，各補助電源（RO•TO，R1•T1端子）もしや断している
- 表面力ハー取付状態であっても，開口部より装置内部に指•買物等捙入しないこと
- 確実に接地をおこなうこと。

Only type B of RCD is allowed．
See manual for details
Figure 1．2－6 Warning Plates and Label

1.3 Precautions for Using Inverters

This section provides precautions in introducing inverters, e.g. precautions for installation environment, power supply lines, wiring, and connection to peripheral equipment. Be sure to observe those precautions.

1.3.1 Installation environment

Install the inverter in an environment that satisfies the requirements listed in Table 1.3-1.
Table 1.3-1 Environmental Requirements

Item	Specifications	
Site location	Indoors	
Ambient temperature	-10 to $+40^{\circ} \mathrm{C}$	
Relative humidity	5 to 95% (No condensation)	
Atmosphere	The inverter must not be exposed to dust, direct sunlight, corrosive gases, flammable gases, oil mist, vapor or water drops. Pollution degree 2 (IEC60664-1) (Note 1) The atmosphere can contain a small amount of salt. $\left(0.01 \mathrm{mg} / \mathrm{cm}^{2}\right.$ or less per year) The inverter must not be subjected to sudden changes in temperature that will cause condensation to form.	
Altitude	Less than $1,000 \mathrm{~m}$ If the altitude is 1,000 to $3,000 \mathrm{~m}$, output current derating is required. (Note 2) If the altitude is 2,001 to $3,000 \mathrm{~m}$, the insulation level of the control circuits lowers from the reinforced insulation to the basic insulation.	
Vibration	Compliant to the standard IEC61800-2 $\begin{array}{cc} \text { Amplitude } 0.3 \mathrm{~mm}: & 2 \text { to less than } 9 \mathrm{~Hz} \\ 1 \mathrm{~m} / \mathrm{s}^{2}: & 9 \text { to } 200 \mathrm{~Hz} \end{array}$	Compliant to the standard IEC61800-5-1 $\begin{array}{\|cl} \hline \text { Amplitude } 0.075 \mathrm{~mm}: & 10 \text { to less than } 57 \mathrm{~Hz} \\ 1 \mathrm{G}: & 57 \text { to } 150 \mathrm{~Hz} \\ \hline \end{array}$

(Note 1) Do not install the inverter in an environment where it may be exposed to lint, cotton waste or moist dust or dirt which will clog the heat sink of the inverter. If the inverter is to be used in such an environment, install it in a dustproof cabinet.
(Note 2) If you use the inverter in an altitude above 1000 m , you should apply an output current derating factor as listed in Table 1.3-2.

Table 1.3-2 Output Current Derating Factor in Relation to Altitude

Altitude	Output current derating factor
1000 m or lower	1.00
1000 to 1500 m	0.97
1500 to 2000 m	0.95
2000 to 2500 m	0.91
2500 to 3000 m	0.88

Fuji Electric strongly recommends installing inverters in a cabinet for safety reasons, in particular, when installing the ones whose enclosure rating is IP00.
When installing the inverter in a place out of the specified environmental requirements, it is necessary to derate the inverter or consider the cabinet engineering design suitable for the special environment or the cabinet installation location. For details, refer to the Fuji Electric technical information "Engineering Design of Panels" or consult your Fuji Electric representative.
The special environments listed below require using the specially designed cabinet or considering the cabinet installation location.

Environments	Possible problems	Sample measures	Applications
Highly concentrated sulfidizing gas or other corrosive gases	Corrosive gases cause parts inside the inverter to corrode, resulting in an inverter malfunction.	Any of the following measures may be necessary. - Mount the inverter in a sealed cabinet with IP6X or air-purge mechanism. - Place the cabinet in a room free from influence of the gases.	Paper manufacturing, sewage disposal, sludge treatment, tire manufacturing, gypsum manufacturing, metal processing, and a particular process in textile factories.
A lot of conductive dust or foreign material (e.g., metal powders or shavings, carbon fibers, or carbon dust)	Entry of conductive dust into the inverter causes a short circuit.	Any of the following measures may be necessary. - Mount the inverter in a sealed cabinet. - Place the cabinet in a room free from influence of the conductive dust.	Wiredrawing machines, metal processing, extruding machines, printing presses, combustors, and industrial waste treatment.
A lot of fibrous or paper dust	Fibrous or paper dust accumulated on the heat sink lowers the cooing effect. Entry of dust into the inverter causes the electronic circuitry to malfunction.	Any of the following measures may be necessary. - Mount the inverter in a sealed cabinet that shuts out dust. - Ensure a maintenance space for periodical cleaning of the heat sink in cabinet engineering design. - Employ external cooling when mounting the inverter in a cabinet for easy maintenance and perform periodical maintenance.	Textile manufacturing and paper manufacturing.
High humidity or dew condensation	In an environment where a humidifier is used or where the air conditioner is not equipped with a dehumidifier, high humidity or dew condensation results, which causes a short-circuiting or malfunction of electronic circuitry inside the inverter.	- Put a heating module such as a space heater in the cabinet.	Outdoor installation. Film manufacturing line, pumps and food processing.
Vibration or shock exceeding the specified level	If a large vibration or shock exceeding the specified level is applied to the inverter, for example, due to a carrier running on seam joints of rails or blasting at a construction site, the inverter structure gets damaged.	- Put shock-absorbing materials on the mounting base of the inverter for safe mounting.	Installation of an inverter cabinet on a carrier or self-propelled machine. Ventilating fan at a construction site or a press machine.
Fumigation for export packaging	Halogen compounds such as methyl bromide used in fumigation corrodes some parts inside the inverter.	- When exporting an inverter built in a cabinet or equipment, pack them in a previously fumigated wooden crate. - When packing an inverter alone for export, use a laminated veneer lumber (LVL).	Exporting.

1.3.2 Transportation

¢. CAUTION

Do not hold the covers or components during transportation.
The converter may fall or turn over, causing injuries.

When carrying the product, be sure to hold the handles (provided on the front side) or the rear side of the unit. Holding the covers or components may fall or turn over the product. When carrying the product with casters, in particular, take extra care for avoiding turnover.

To use a hoist or crane for carrying the product, pass the hook or rope through hoist holes.

Figure 1.3-1 Carrying direction and handle position

1.3.3 Storage environment

The storage environment in which the inverter should be stored after purchase differs from the installation environment. Store the inverter in an environment that satisfies the requirements listed below.

[1] Temporary storage

Table 1.3-3 Storage and Transport Environments

Item	Specifications	
Storage temperature $* 1$	-25 to $+70^{\circ} \mathrm{C}$	Places not subjected to abrupt temperature changes or condensation or freezing
Relative humidity	5 to $95 \% \quad * 2$	The inverter must not be exposed to dust, direct sunlight, corrosive or flammable gases, oil mist, vapor, water drops or vibration. The atmosphere must contain only a low level of salt. $\left(0.01 \mathrm{mg} / \mathrm{cm}^{2}\right.$ or less per year)
Atmosphere	86 to 106 kPa (during storage)	
	70 to 106 kPa (during transportation)	
Atmospheric pressure		

*1 Assuming comparatively short time storage, e.g., during transportation or the like.
*2 Even if the humidity is within the specified requirements, avoid such places where the inverter will be subjected to sudden changes in temperature that will cause condensation or freezing.

Precautions for temporary storage

(1) Do not leave the inverter directly on the floor.
(2) If the environment does not satisfy the specified requirements listed in Table 1.3-3, wrap the inverter in an airtight vinyl sheet or the like for storage.
(3) If the inverter is to be stored in a high-humidity environment, put a drying agent (such as silica gel) in the airtight package described in (2) above.

[2] Long-term storage

The long-term storage method of the inverter varies largely according to the environment of the storage site. General storage methods are described below.
(1) The storage site must satisfy the requirements specified for temporary storage.

However, for storage exceeding three months, the ambient temperature range should be within the range from -10 to $30^{\circ} \mathrm{C}$. This is to prevent electrolytic capacitors in the inverter from deterioration.
(2) The package must be airtight to protect the inverter from moisture. Add a drying agent inside the package to maintain the relative humidity inside the package within 70%.
(3) If the inverter has been installed to the equipment or cabinet at construction sites where it may be subjected to humidity, dust or dirt, then temporarily remove the inverter and store it in the environment specified in Table 1.3-3.

Precautions for storage over 1 year

If the inverter has not been powered on for a long time, the property of the electrolytic capacitors may deteriorate. Power the inverters on once a year and keep the inverters powering on for 30 to 60 minutes. Do not connect the inverter to the load circuit (secondary side) or run the inverter.

1.3.4 Precautions for connection of peripheral equipment

[1] Fuses

Fuses have their own service life. It is recommended that they be replaced periodically. Secure them since improper setting could cause an unexpected accident at the time of fuse melting.

[2] Circuit breakers and disconnectors

(Molded case circuit breaker (MCCB) or residual-current-operated protective device (RCD)/earth leakage circuit breaker (ELCB))
The MCCB or RCD/ELCB cannot apply to the inverter DC common input side or output circuit because of their properties.

- The inverter output circuit has the inverter protective functions (for overcurrent, grounding fault, phase loss, etc.), so it does not require using circuit breakers or disconnectors. In particular, no ELCB can be used.
When using an MCCB unavoidably for grounding fault protection, use such an MCCB that trips with the current larger than the inverter rated capacity. Confirm the protective coordination with the wire size. Also select the MCCB specifications suitable for the user specifications.
- Use a non-auto switch with the overcurrent trip function removed, as a disconnector.

[3] Magnetic contactors (MC)

For magnetic contactors to be installed at the DC common input side or output circuit, a sequence should be configured so that they open or close when the inverter is stopped (during inverter gate shutdown).

[4] Motor overload protection

The inverter has the electronic thermal overload protection function for motors. Use it when a single inverter drives a single motor.
In any of the following cases, the electronic thermal overload protection function cannot protect the motor, so use a thermistor (NTC/PTC) or thermal relay to protect the motor.

- In applications where start and stop are frequently repeated, great fluctuation of the load is frequently repeated, or the inverter drives in very low-speed domain continuously.
- Driving motors (whose electronic thermal overload characteristics are different) other than standard 3 -phase motors
Do not use a thermal relay at the inverter DC common power side. This is because the inverter DC common power is DC voltage containing high frequency components.

1.3.5 Noise reduction

If noise generated from the inverter affects other devices, or that generated from peripheral equipment causes the inverter to malfunction, follow the basic measures outlined below.
(1) If noise generated from the inverter affects the other devices through power wires or grounding wires:

- Isolate the grounding terminals of the inverter from those of the other devices.
- Connect a noise filter to the inverter power wires.
- Isolate the power system of the other devices from that of the inverter with an insulated transformer.
(2) If induction or radio noise generated from the inverter affects other devices:
- Isolate the main circuit wires from the control circuit wires and other device wires.
- Put the main circuit wires through a metal conduit pipe, and connect the pipe to the ground near the inverter.
- Install the inverter into a metal cabinet and connect the whole cabinet to the ground.
- Connect a noise filter to the inverter's power wires.
(3) When implementing measures against noise generated from peripheral equipment:
- For inverter's control signal wires, use twisted or shielded-twisted wires. When using shielded-twisted wires, connect the shield of the shielded wires to the common terminals of the control circuit.
- Connect a surge absorber in parallel with magnetic contactor's coils or other solenoids (if any).

1.3.6 Leakage current

A high frequency current component generated by insulated gate bipolar transistors (IGBTs) switching on/off inside the inverter becomes leakage current through stray capacitance of inverter input and output wires or a motor. If any of the problems listed below occurs, take an appropriate measure against them.

Problem	Measures
An earth leakage circuit	1) Make the wires between the inverter and motor shorter.
breaker* that is connected	
to the input (primary) side	2) Use an earth leakage circuit breaker with lower sensitivity than the one currently used. has tripped.
3se an earth leakage circuit breaker that features measures against the high frequency	
*With overcurrent protection	current component (Fuji SG and EG series).
An external thermal relay was falsely activated.	1) Increase the current setting of the thermal relay. 2) Use the electronic thermal overload protection built in the inverter, instead of the external thermal relay.

1.3.7 Precautions in driving a permanent magnet synchronous motor (PMSM)

When using a PMSM, note the following.

- When using a PMSM other than the Fuji standard synchronous motor (GNF2), consult your Fuji Electric representative.
- A single inverter cannot drive two or more PMSMs.
- A PMSM cannot be driven by commercial power.

Chapter 2 MOUNTING AND WIRING THE INVERTER

2.1 Mounting the Inverter

(1) Installation environment

Mount the inverter at the place satisfying the requirements given in Chapter 1, Section 1.3.1 "Installation environment."

(2) Mounting base

Install the inverter on a base made of metal or other non-flammable material. Do not mount the inverter upside down or horizontally.

\triangle WARNING

Install the inverter on a base made of metal or other non-flammable material.
Otherwise, a fire could occur.

(3) Clearances

Mount the stack only in the direction shown in Figure 2.1-1 (in the reading direction of the nameplate). For the clearances, refer to Figure 2.1-1 and Table 2.1-1. When mounting two or more stacks side by side, observe also the clearances specified in Table 2.1-1.

Exhaust direction

Figure 2.1-1 Mounting Direction and Required Clearances

Table 2.1-1 Clearances (mm)

		A	B	C	D	E	
	Rank 1	10	10	300	350	50	
	Rank 2						Rank 1: 30 to 45 kW stack size Rank 2: 55 to 110 kW stack size Rank 3: 132 to 200 kW stack size Rank 4: 220 to 800 kW stack size
	Rank 3					20	
	Rank 4					20	
With other equipment		20	20	-	$\begin{gathered} 350 \\ (100) \end{gathered}$	50	

Note - Stacks cannot be mounted, one above the other.

- Above the stack (i.e. above the exhaust fans) at location "C," only a fuse (authorized by Fuji) can be mounted. To mount general devices, select devices whose maximum allowable working temperature is $70^{\circ} \mathrm{C}$ and prevent them from interfering with the effect of the exhaust fans.
- Beneath the stack (i.e. beneath the intake vent) at location "D," do not block about 60% of the area in the 350 mm clearance. When mounting a device, ensure a 100 mm clearance.
$\mathrm{F}: 10$ to 135 [mm]

Figure 2.1-2 Clearances between stacks of Phase-specific stack type

(4) Mounting method

[1] Rank 1 ($\mathbf{3 0}$ to 45 kW)

1) The holes for fixing of the upper part on the back side ($2 \times \varphi 10$: The screw of M8 size,or stud bolt)
2) The tapped holes for fixing of the lower part on the front side ($2 \times \mathrm{M} 5-12(\sim 25)$: In case recommended thickness of the metal fitting is 2.3 mm)

Figure 2.1-3 The stack mounting method of Rank 1 size (30 to 45 kW)

[2] Rank 2 (55 to 110 kW)

1) The holes for fixing of the upper part on the back side ($2 \times \varphi 10$: The screw of M8 size,or stud bolt)
2) The tapped holes for fixing of the lower part on the front side ($2 \times \mathrm{M} 5-12$ (~ 25): In case recommended thickness of the metal fitting is 2.3 mm)

Figure 2.1-4 The stack mounting method of Rank 2 size (55 to 110 kW)

[3] Rank 3 ($\mathbf{1 3 2}$ to 200 kW)

1) The fixation plate of the upper part on the back side
2) The fixation plate of the lower part on the back side
3) The tapped holes for fixing of the upper part on the front side $(2 \times \mathrm{M} 8-25$: In case recommended thickness of the metal fitting is 2.3 mm)
4) The tapped holes for fixing of the lower part on the front side $(2 \times \mathrm{M} 8-25$: In case recommended thickness of the metal fitting is 2.3 mm)

Figure 2.1-5 The stack mounting method of Rank 3 size (132 to 200 kW)

[4] Rank 4 (220 to 800 kW)

1) The fixation plate of the upper part on the back side
2) The fixation plate of the lower part on the back side
3) The tapped holes for fixing of the upper part on the front side ($2 \times \mathrm{M} 8-25$: In case recommended thickness of the metal fitting is 2.3 mm)
4) The tapped holes for fixing of the lower part on the front side ($2 \times \mathrm{M} 8-25$: In case recommended thickness of the metal fitting is 2.3 mm)

Figure 2.1-6 The stack mounting method of Rank 4 size (220 to 800 kW)

2.1.1 Terminal Arrangement and Screw Sizes (Main circuit terminals)

[1] Rank 1 (30 to 45 kW)

Figure 2.1-7 Rank 1 (30 to 45 kW)

Figure 2.1-8 Rank 2 (55 to 110 kW)

Note
For output terminals of rank 3, the cabinet should have relay bar terminals.
Secure terminals with insulators to prevent them from short-circuiting each other.

Terminal name	Symbol	Bolt size	Tightening torque
Output terminal	U, V, W	M12	$48 \mathrm{~N} \cdot \mathrm{~m}$
DC input terminal	$\mathrm{P}(+), \mathrm{N}(-)$		
Grounding terminal	(9G		

[4] Rank 4 (220 to 315 kW)

[5] Rank 4 (630 to 800 kW)

Figure 2.1-11 Rank 4 (630 to 800 kW) V-PHASE

Figure 2.1-12 Rank 4 (630 to 800 kW) U/W-PHASE

2.2 Wiring

2.2.1 Connection diagram

[1] Standard stack

The connection example of the standard stack type is shown below.

(Note 1) In the primary circuit of the PWM converter or diode rectifier, install a recommended molded case circuit breaker (MCCB) or residual-current-operated protective device (RCD)/earth leakage circuit breaker (ELCB) (with overcurrent protection function) for protection of wiring. Ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.
(Note 2) Apart from the MCCB or RCD/ELCB, install a recommended magnetic contactor (MC) to separate the PWM converter or diode rectifier from the power supply as needed.
Connect a surge absorber in parallel when installing a coil such as an MC or solenoid near the inverter.
(Note 3) To retain an alarm output signal ALM issued on inverter's programmable output terminals by the protective function or to keep the keypad alive even if the main power has shut down, connect these terminals to the power supply lines. Without power supply to these terminals, the inverter can run.
(Note 4) These terminals are provided on inverters of 90 kW or above. Connect fan power wires to them.
(Note 5) A grounding terminal for a motor. It is recommended that the motor be grounded via this terminal for suppressing inverter noise.
(Note 6) For wiring enclosed with $\begin{gathered}\text { 鿊 } \\ -2\end{gathered}$, use twisted or shielded wires.
In principle, the shielded sheath of wires should be connected to ground. If the inverter is significantly affected by external induction noise, however, connection to (0V) ([M], [11], [THC]) or $0 \mathrm{~V}([\mathrm{CM}])$ may be effective to suppress the influence of noise.

Keep the control circuit wiring away from the main circuit wiring as far as possible (recommended: 10 cm or more). Never install them in the same wire duct. When crossing the control circuit wiring with the main circuit wiring, set them at right angles.
(Note 7) The connection diagram shows factory default functions assigned to digital input terminals [X1] to [X9], transistor output terminals [Y1] to [Y4], relay contact output terminals [Y5A/C], analog output terminals [AO1] to [AO3], and analog input terminals [Ai1] and [Ai2].
(Note 8) Slide switches on the control printed circuit board (control PCB).
(Note 9) The power voltage of the cooling fans differs depending upon the motors. Use a transformer as needed.
(Note 10) ([0V) ([M], [11], [THC]) and OV ([CM]) are insulated inside the inverter unit.
(Note 11) Use the auxiliary contact (manual reset) of the thermal relay to trip the MCCB or MC.
(Note 12) Jumper bars are mounted between safety terminals [EN1]/[EN2] and [PS] by factory default. To use the safety function, remove the jumper bars before connection of safety devices.
(Note 13) Using a PWM converter or diode rectifier requires selecting recommended peripheral equipment. For details about the PWM converter or diode rectifier, refer to the FRENIC-VG User's Manual.
(Note 14) When using a PWM converter in combination with the inverter, be sure to connect the auxiliary power supply input terminals (R0 and T0) of the PWM converter and inverter to the main power supply through the "b" contact of the electromagnetic contactor (MC1) for the power supply. When using a diode rectifier in combination with the inverter, it is not necessary. Additionally, when connecting to a non-grounding power supply, install an insulation transformer. Refer to High power factor PWM converter instruction manual for more information.

[2] Phase specific stack

630 to 800 kW Stack type inverter (Phase-specific stack) is consist of three set of Standard stacks of RANK 4 size.
In addition to the example of connection of the above-mentioned standard stack, you need connection between each stacks.
The example of connection is shown below.(This example of connection is in case of PWM Converter)

(Note 1) Connect a step-down transformer to lower the voltage of the sequence circuit to within 220 V .
(Note 2) When using a PWM converter in combination with the inverter, be sure to connect the auxiliary power supply input terminals (R0 and T0) of the PWM converter and inverter to the main power supply through the "b" contact of the electromagnetic contactor (52) for the power supply. When using a diode rectifier in combination with the inverter, it is not necessary. Additionally, when connecting to a non-grounding power supply, install an insulation transformer. Refer to High power factor PWM converter instruction manual for more information.
(Note 3) The power of the AC fan of the inverter is supplied from the R1 and T1 terminals; connect to the main power supply without being intervened by the normally closed contact of 73 or 52 .
(Note 4) Build the sequence so that the RUN signal is supplied to the inverter after the PWM converter becomes ready for operation.
(Note 5) Set the timer of 52T at 1 sec .
(Note 6) Assign one of X1 to X9 terminals of the inverter to external alarm (THR).
(Note 7) Connect cables to theL1/R, L2/S, L3/T, R2, T2, S1 and T1 terminals in the correct phase order.

Follow the procedure below. (In the following description, the inverter has already been installed.)

2.2.2 Removing and mounting the front cover and the wiring guide

\triangle CAUTION

Be sure to disconnect the USB cable from the USB connector before removing the front cover. Otherwise, a fire or accident could occur.
(1) To remove the front cover, loosen the screws (four or six) on the front cover.

The front cover fixing points have double circle holes that allow the front cover to be removed without removing the screws.
(2) For the front cover having no handles, hold the right and left ends of the front cover and slide the cover up and towards you.

For the front cover having handles, hold the handles and slide the cover up and towards you.
(3) Mount the front cover in the reverse order of removal.
(4) To show the control circuit terminals on the control printed circuit board, open the keypad enclosure (left-hand door).

Figure 2.2-1 Removing the Front Cover

2.2.3 Precautions for long wiring (between the inverter and motor)

(1) If more than one motor is to be connected to a single inverter, the wiring length should be the sum of the length of the wires to the motors.
(2) Precautions for high frequency leakage currents

If the wiring distance between an inverter and a motor is long, high frequency currents flowing through stray capacitance across wires of phases may cause an inverter overheat, overcurrent trip, increase of leakage current, or it may not assure the accuracy in measuring leakage current. Depending on the operating condition, an excessive leakage current may damage the inverter.
To avoid the above problems when directly connecting an inverter to a motor, keep the wiring distance 50 m or less for inverters with a capacity of 3.7 kW or below, and 100 m or less for inverters with a higher capacity.
If the wiring distance longer than the specified above is required, insert an output circuit filter (OFL- $\square \square \square-\square \mathrm{A}$) as shown below.
When a single inverter drives two or more motors connected in parallel (group drive), in particular, using shielded wires, the stray capacitance to the earth is large, so insert an output circuit filter (OFL- $\square \square \square-\square \mathrm{A}$).

If using the motor with encoder, 100 m below the wiring distance between the inverter and the motor. This is due to the limitation on the specifications of the encoder. If it exceeds 100 m , the action is required, such as in the middle put the isolated converter.
If further longer secondary wiring is required, consult your Fuji Electric representative.
(3) Precautions for surge voltage in driving a motor by an inverter (especially for 400 V class motors)

If the motor is driven by a PWM-type inverter, surge voltage generated by switching the inverter component may be superimposed on the output voltage and may be applied to the motor terminals. Particularly if the wiring length is long, the surge voltage may deteriorate the insulation resistance of the motor. Implement the following measures.

- Use a motor with insulation that withstands the surge voltage.
- Connect a surge suppressor unit (SSU50/100TA-NS) at the motor terminal.
- Connect an output circuit filter (OFL- $\square \square \square-\square A)$ to the output terminals (secondary circuits) of the inverter.
- Minimize the wiring length between the inverter and motor (10 to 20 m or less).
(4) When an output circuit filter is inserted in the secondary circuit or the wiring between the inverter and the motor is long, a voltage loss occurs due to reactance of the filter or wiring so that the insufficient voltage may cause output current oscillation or a lack of motor output torque.

\triangle WARNING

- Be sure to use wires in the specified size.
- Tighten terminals with specified torque.

Otherwise, a fire could occur.

- When there is more than one combination of an inverter and motor, do not use a multicore cable for the purpose of handling their wirings together.
- Do not connect a surge killer to the inverter's output (secondary) circuit.

Doing so could cause a fire.

- Ground the inverter in compliance with the national or local electric code.
- Be sure to ground the inverter's grounding terminals 옵G. Otherwise, an electric shock or fire could occur.
- Qualified electricians should carry out wiring.
- Be sure to perform wiring after shutting down the power.

Otherwise, electric shock could occur.

- Be sure to perform wiring after installing the inverter unit.

Otherwise, electric shock or injuries could occur.

- Ensure that the number of input phases and the rated voltage of the product match the number of phases and the voltage of the AC power supply to which the product is to be connected.

Otherwise, a fire or an accident could occur.

- Do not connect the power source wires to inverter output terminals (U, V, and W). Doing so could cause fire or an accident.

2.2.4 Main circuit terminals

[1] Screw specifications and recommended wire sizes (main circuit terminals)

This section provides information on choices of wire sizes for main circuit such as DC input and motor output.
Depending upon the main circuit wiring, electric noise could be applied to the control circuit, causing malfunctions.Refer to the FRENIC-VG User's Manual (Stack type), Chapter 7 "EMC Compatible Peripherals," Appendix 5 "Proficient Way to User Inverters (on Electric Noise), and Appendix 6 "Grounding As Noise Countermeasure and Ground Noise."
(1) Screw specifications

Table 2.2-1 Screw Specifications

Inverter type	Main DC input$[\mathrm{P}(+), \mathrm{N}(-)]$		Inverter output [U, V, W]		Grounding terminals [$\left.{ }^{\mathbf{s}} \mathrm{G} G\right]$		Auxiliary control power input terminals [R0, T0] Auxiliary fan power input terminals [R1, T1]		Input terminals for fuse blowout detection [DCF1, DCF2]	
FRNDVG1S-4E	Screw size	$\begin{gathered} \text { Tightening } \\ \text { torque } \\ (\mathrm{N} \cdot \mathrm{~m}) \end{gathered}$	Screw size	$\begin{gathered} \text { Tightening } \\ \text { torque } \\ (\mathrm{N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{aligned} & \text { Screw } \\ & \text { size } \end{aligned}$	$\begin{aligned} & \text { Tightening } \\ & \text { torque } \\ & (\mathrm{N} \cdot \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { Screw } \\ & \text { size } \end{aligned}$	$\begin{aligned} & \text { Tightening } \\ & \text { torque } \\ & (\mathrm{N} \cdot \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { Screw } \\ & \text { size } \end{aligned}$	$\begin{aligned} & \text { Tightening } \\ & \text { torque } \\ & (\mathrm{N} \cdot \mathrm{~m}) \end{aligned}$
30S										
37S	M8	13.5	M8	13.5	M8	13.5				
45S										
55S										
75S	M10	27	M10	27	M10	27				
90S	M10									
110 S										
132 S										
160S							M4	1.2	M3	0.5
200S										
220 S										
250S										
280S	M12	48	M12	48	M12	48				
315S										
630B										
710B										
800B										

(2) Recommended wire sizes

Table 2.2-2 Recommended wire/copper bar sizes (Ambient temperature: $40^{\circ} \mathrm{C}$)

(Note) *1 The recommended wire sizes listed above are for 600 V HIV insulated wires.
*2 The size of wire or copper bar of stack by phase is a part for 1 phase (1 stack).
*3 Do not connect electric wires directly to the inverter output terminals of FRN132-200SVG1S-4E, nor main DC input terminals of FRN132-315SVG1S-4E, FRN630-800BVG1S-4E.
If connecting electric wires directly to their terminals is required, consult your Fuji Electric representative.

(3) Rated current of Cu bus bars

"Table 2.2-3" shows the rated currents of bus bars. However, if the ambient temperature of the cabinet is lower than $40^{\circ} \mathrm{C}$ and in some other cases, the derating of the current must be considered.

[Precaution about the application of the current and capacity table of bus bars]

Select a bus bar based on a temperature of $70^{\circ} \mathrm{C}$, which means a temperature rise of 30 K from an ambient temperature of $40^{\circ} \mathrm{C}$. If ambient temperature drops below $40^{\circ} \mathrm{C}$, the value of temperature rise increases. Consider a correction factor according to "Figure 2.2-2 Temperature correction factor." In addition, the reduction rate of the supplied current depends on the layout of bus bars. When supplying a large current, plan the current by making reference to Figure 2.2-3

Figure 2.2-2 Temperature correction factor

Figure 2.2-3 Derating in installation direction (reference)

Table 2.2-3 Rated currents of CU bus bars

Dimension [mm]		Cross section [mm^{2}]	\square	Not parallel		2 parallel		3 parallel
Thickness	Width		DC	$\mathrm{AC}(50 / 60 \mathrm{~Hz})$	DC	$\mathrm{AC}(50 / 60 \mathrm{~Hz})$	DC	$\mathrm{AC}(50 / 60 \mathrm{~Hz})$
3	15	45	180	180	-	-	-	-
	20	60	225	225				
	25	75	275	275				
	30	90	320	320				
4	25	100	325	325	-	-	-	-
	30	120	380	375				
	40	160	485	480				
5	25	125	370	365	-	-	-	-
	30	150	430	425				
	40	200	550	540				
	50	250	660	650				
	60	300	780	860				
	75	375	950	930	1920	1790		
6	25	150	410	410	-	-	-	-
	30	180	480	470				
	40	240	610	600				
	50	300	730	720				
	60	360	860	840				
	75	450	1050	1010	2090	1910		
	80	480	1110	1070	2190	2000		
	100	600	1350	1280	2620	2330	3670	3060
8	25	200	500	490	-	-	-	-
	30	240	570	560				
	40	320	720	700				
	50	400	860	840				
	60	480	1010	970				
	75	600	1220	1160	2390	2120		
	80	640	1290	1220	2510	2210		
	100	800	1580	1470	2990	2560	4230	3330
10	30	300	670	650	1450	1390	-	-
	40	400	830	800	1730	1600		
	50	500	990	950	2010	1810		
	60	600	1150	1090	2280	2010		
	75	750	1390	1290	2680	2290		
	80	800	1460	1360	2810	2380		
	100	1000	1780	1620	3310	2730	4750	3490
	125	1250	2150	1930	3930	3160	5570	3960
	150	1500	2550	2260	4550	3590	6410	4450
12	125	1500	2390	2100	4290	3300	6140	4120
	150	1800	2800	2430	4930	3700	7000	4590
15	100	1500	2110	1920	-	-	-	-
	150	2250	3160	2660	5510	3870	7900	4790
	175	2625	3550	2960	6080	4240	8660	5200
	200	3000	4070	3350	6850	4680	9680	5700

(Note) *1 The selection conditions applied to this table are ambient temperature: $40^{\circ} \mathrm{C}$ and temperature rise: 30 K .
*2 The layout of bus bars is a vertical layout.
[2] Terminal functions (main circuit terminals)

| | Name | Functions |
| :--- | :--- | :--- | :--- |

2.2.5 Control circuit terminals (common to all inverter types)

[1] Screw specifications and recommended wire sizes (control circuit terminals)
Table 2.2-4 lists the screw specifications and recommended wire size for wiring of the control circuit terminals. The control circuit terminals are common to all inverter types regardless of their capacities.

Table 2.2-4 Screw Specifications and Recommended Wire Size

Terminals common to all inverter types	Screw specifications		Recommended wire size $\left(\mathrm{mm}^{2}\right)$
	Screw size	Tightening torque $(\mathrm{N} \cdot \mathrm{m})$	
Control circuit terminals	M3	0.7	$1.25 *$

* Using wires exceeding the recommended sizes may lift the front cover depending upon the number of wires used, resulting in a keypad connection failure and impeding keypad's normal operation.

[2] Terminal arrangement (control circuit terminals)

Reinforce insulation
(Max. 250 VAC, Overvoltage category II, Pollution degree 2)

Abstract

WARNING In general, the covers of the control signal wires are not specifically designed to withstand a high voltage (i.e., reinforced insulation is not applied). Therefore, if a control signal wire comes into direct contact with a live conductor of the main circuit, the insulation of the cover might break down, which would expose the signal wire to a high voltage of the main circuit. Make sure that the control signal wires will not come into contact with live conductors of the main circuit.

Failure to observe these precautions could cause electric shock or an accident.

\triangle CAUTION

Noise may be emitted from the inverter, motor and wires. Take appropriate measures to prevent the nearby sensors and devices from malfunctioning due to such noise.
It takes a maximum of 5 seconds to establish the input/output of the control circuit after the main power is turned ON. Take appropriate measures, such as external timers.
An accident could occur.

Table 2.2-5 lists the symbols, names and functions of the control circuit terminals. The wiring to the control circuit terminals differs depending upon the setting of the function codes, which reflects the use of the inverter. The states of the control circuit terminals can be checked with Menu \#4 "I/O CHECK" using the keypad. For details, refer to Section 3.2.
Route wires properly to reduce the influence of noise. (Refer to the notes for analog input in Table 2.2-5.)
Table 2.2-5 Symbols, Names and Functions of the Control Circuit Terminals

	Symbol	Name	Functions
	[13]	Power supply for potentiometer	Power supply for an external speed command potentiometer (Variable resistor: 1 to $5 \mathrm{k} \Omega$). The potentiometer of $1 / 2 \mathrm{~W}$ rating or more should be connected. Specifications $10 \mathrm{VDC} / 10 \mathrm{~mA}$ max.
	[12]	Analog setting voltage input	The speed is commanded according to the external voltage input. Specifications - 0 to $\pm 10 \mathrm{VDC} / 0$ to maximum speed Maximum input is ± 15 VDC Note that the input voltage out of the range of ± 10 VDC is regarded as ± 10 VDC. - Input impedance: $10 \mathrm{k} \Omega$
	$\begin{aligned} & \hline \text { [Ai1] } \\ & {[\mathrm{Ai} 2]} \end{aligned}$	Analog input 1 Analog input 2	(1) Analog input voltage from external equipment. Possible to assign various signal functions (Input signal off, Auxiliary speed setting 1, Torque limiter, etc.*) selected with Function codes E49 and E50 to these terminals. (2) Only for terminal [Ai2], the input is switchable between voltage and current with the SW3 configuration. (3) To use terminal [Ai2] for current input speed setting (N-REFC), turn SW3 to the I position, set F01 or C25 to "9" and set E50 to "26." After that, check that the current input is normal on the I/O check screen*. * For details, refer to the FRENIC-VG User's Manual (Unit Type / Function Codes Edition). Specifications - Voltage input: 0 to $\pm 10 \mathrm{VDC}$, Input impedance: $10 \mathrm{k} \Omega$ Maximum input voltage: ± 15 VDC Note that the input voltage out of the range of ± 10 VDC is regarded as ± 10 VDC. - Current input (only on terminal [Ai2]): Input impedance: 250Ω Maximum input current: 30 mADC Note that the input current exceeding 20 mADC is regarded as 20 mADC .
	$\begin{aligned} & {[11]} \\ & {[\mathrm{M}]} \\ & \hline \end{aligned}$	Analog input common	Common for analog input signals ([12], [Ai1] and [Ai2]). Isolated from terminals [CM], [CMY] and [PGM].

Table 2.2-5 Symbols, Names and Functions of the Control Circuit Terminals (Continued)

Table 2.2-5 Symbols, Names and Functions of the Control Circuit Terminals (Continued)

Figure 2.2-7 Circuit Configuration Using a Relay Contact

Table 2.2-5 Symbols, Names and Functions of the Control Circuit Terminals (Continued)

Figure 2.2-8 Circuit Configuration Using a PLC
For details about the slide switch setting, refer to Section 2.2.6 "Setting up the slide switches."

	[Ao1] [Ao2] [Ao3]	Analog output 1 Analog output 2 Analog output 3	Output of monitor signals with analog DC voltage. Various signals such as "Detected speed," "Speed setting," and "Torque current command" can be assigned to these terminals by setting Function codes E69, E70, and E71. For details, refer to the FRENIC-VG User's Manual(Unit Type / Function Codes Edition), Chapter 4, Section 4.3 "Details of Function Codes." Specifications - Output voltage: 0 to $\pm 10 \mathrm{VDC}$, Connectable impedance: $\mathrm{Min} .3 \mathrm{k} \Omega$ - Gain adjustment range: 0 to ± 100 times
	[M]	Analog common	Common for analog output signals ([Ao1], [Ao2] and [Ao3]). Electrically isolated from terminals [CM], [CMY] and [PGM].

Table 2.2-5 Symbols, Names and Functions of the Control Circuit Terminals (Continued)

	Symbol	Name	Functions		
	[Y1] [Y2] [Y3] [Y4]	Transistor output 1 Transistor output 2 Transistor output 3 Transistor output 4	(1) Various signals such as "Inverter running," "Speed valid, can be assigned to these terminals by setting Function (2) It is possible to switch the normal/negative logic output with Function code E28. * When short-circuited: ON (Active ON) When short-circuited: OFF (Active OFF) *For details, refer to the FRENIC-VG User's Manual(Unit Typ Chapter 4, Section 4.3 "Details of Function Codes." (Transistor output circuit specification) Figure 2.2-9 Transistor Output Circuit - When a transistor output drives a control rela diode across relay's coil terminals. - When any equipment or device connected to the supplied with DC power, feed the power (+24 VD +27 VDC, 100 mA max.) through the [PLC] te the terminals [CMY] and [CM] in this case.	and "Spee des E15 to mode for the Function m ON level OFF level rrent at ON ent at OFF connect a ransistor ou C: allowab inal. Short	reement" erminals s Edition), ge-absorbing needs to be ange: +22 to cuit between
	[CMY]	Transistor output common	Common terminal for transistor output signals Electrically isolated from terminals [CM], [11], [M], and		
	Tip Connecting programmable logic controller (PLC) to terminal [Y1], [Y2], [Y3] or [Y4] Figure 2.2-10 shows two examples of circuit connection between the transistor output of the inverter's control circuit and a PLC. In example (a), the input circuit of the PLC serves as a SINK for the control circuit output, whereas in example (b), it serves as a SOURCE for the output. (a) PLC serving as SINK (b) PLC serving as SOURCE Figure 2.2-10 Connecting PLC to Control Circuit				

Table 2．2－5 Symbols，Names and Functions of the Control Circuit Terminals（Continued）

或：	Symbol	Name	Functions
产	［Y5A／C］	General purpose relay output	（1）As a general－purpose relay contact output，this selects and outputs the same various signals as those from terminals［Y1］to［Y4］．＊ Contact rating： $250 \mathrm{VAC} 0.3 \mathrm{~A}, \cos \phi=0.3,48 \mathrm{VDC}, 0.5 \mathrm{~A}$（Resistance load） （2）It is possible to switch the normal／negative logic output mode for these terminals with Function code E28．＊ When ON signal is issued，［Y5A］－［Y5C］is short－circuited（Excited：＂Active ON＂） When ON signal is issued，［Y5A］－［Y5C］is opened（Not excited：＂Active OFF＂） ＊For details，refer to the FRENIC－VG User＇s Manual（Unit Type／Function Codes Edition）， Chapter 4，Section 4.3 ＂Details of Function Codes．＂
$\stackrel{\text { c }}{\text { 何 }}$	［30A／B／C］	Alarm relay output （for any error）	（1）Outputs a contact signal（relay contact，1C）when the protective function stops the inverter． Contact rating： $250 \mathrm{VAC}, 0.3 \mathrm{~A}, \cos \phi=0.3,48 \mathrm{VDC}, 0.5 \mathrm{~A}$（Resistance load） （2）It is possible to switch the normal／negative logic output mode for these terminals with Function code F36．＊ When ON signal is issued，［30A］－［30C］is short－circuited（excited：＂Active ON＂）． When ON signal is issued，［30A］－［30C］is opened（non－excited：＂Active OFF＂）． ＊For details，refer to the FRENIC－VG User＇s Manual（Unit Type／Function Codes Edition）， Chapter 4，Section 4.3 ＂Details of Function Codes．＂

Note－Terminals［Y5A／C］and［30A／B／C］use mechanical contacts that cannot stand frequent ON／OFF switching．The service life of a relay is approximately 200，000 times if it is switched ON and OFF at one－second intervals in case of rated load operation．Frequent ON／OFF switching signals can be output from the transistor outputs terminals［Y1］－［Y4］．
Further，even if an AC power source，in the case of loads，such as direction of the contact current is fixed（such as load having a half－wave rectifier circuit，for example a timer，the power supply for the motor electromagnetic brake），contact life is shortened．In such a case，instead of directly connecting the load to the contact output terminal，the control relay（separately installed）that matches the load requirement is connected to the contact output terminal，and connected to the load via the relay．

Table 2．2－5 Symbols，Names and Functions of the Control Circuit Terminals（Continued）

	FDX＋］／ $[\mathrm{DX}-]$	RS－485 communica－ tions port 2 （Terminal block）	Input／output terminals to transmit data through the RS－485 communications link between the inverter and a computer or other equipment such as a PLC． （For setting of the terminating resistor，refer to Section 2.2 .6 ＂Setting up the slide switches．＂）

Table 2.2-5 Symbols, Names and Functions of the Control Circuit Terminals (Continued)

[4] Wiring for the control circuit

The following three wiring routes are available for the control circuit.
(1) Wiring route for DC fuse blowout detection (Leading in from the top at the front side)
(2) Wiring route from the left-hand side of the front cover.
(3) Wiring route from the right-hand side of the front cover.

In wiring inside the stack, take care to bind control circuit wires with cable ties and secure them to the cable tie fixtures attached to the inside of the stack. Otherwise, the control circuit wires may come into contact with the electronic devices inside the stack, resulting in burnt wires.

Figure 2.2-11 Control Circuit Wiring Route for Rank 1 (30 to 45 kW) (Example)

The wiring route for DC fuse blowout detection is shown in Figure 2.2-12.
On the printed circuit boards, aluminum electrolytic capacitors, high-voltage circuits, and heat sinks for cooling electronic devices are mounted. To prevent the wires from coming into contact with those components, be sure to secure the wires to the cable tie fixtures using cable ties. Otherwise, those components in contact with the wires may come off due to vibration.

In wiring, take care not to stretch the wires too tight.

Figure 2.2-12 Wiring Route for DC Fuse Blowout Detection

2.2.6 Setting up the slide switches

\triangle WARNING \wedge

Before changing the slide switches on the control printed circuit board, turn the power OFF, wait at least ten minutes, and make sure that the LED monitor and charging lamp are turned OFF. Further, make sure, using a multimeter or a similar instrument, that the DC link bus voltage between the terminals $\mathrm{P}(+)$ and $\mathrm{N}(-)$ has dropped to the safe level $(+25$ VDC or below).
An electric shock could occur.

Switching the slide switches located on the control PCB (shown in Figure 2.2-13) allows you to customize the operation mode of the analog input terminals, digital I/O terminals, and communications ports.
To access the slide switches, remove the front cover so that you can see the control PCB.
(1)]

For details on how to remove the front cover and how to open and close the keypad enclosure, refer to Section 2.2.2 "Removing and mounting the front cover and the wiring guide."

Figure 2.2-13 shows the location of slide switches on the control PCB.

Figure 2.2-13 Location of the Slide Switches on the Control PCB
Switch Configuration and Factory Defaults

	SW1	SW2	SW3	SW4	SW5	SW6	SW7 SW8
Factory default	SINK \square	\square	\square	\square			

[^2]Table 2.2-6 lists function of each slide switch.
Table 2.2-6 Function of Each Slide Switch

Switch	Function		
SW1	Switches the service mode of the digital input terminals between SINK and SOURCE. - This switches the input mode of digital input terminals [X1] to [X9], [FWD] and [REV] to be used as the SINK or SOURCE mode. - Factory default: SINK		
SW2	Reserved for particular manufacturers.		
SW3	Switches the input mode of the analog input ter	nal [Ai2] between	voltage and curre
SW4	Switches the terminating resistor of RS-485 communications port 2 on the terminal block ON and OFF. (RS-485 communications port 2, for connecting the keypad) - If the inverter is connected to the RS-485 communications network as a terminating device, turn SW4 to ON.		
SW5	Reserved for particular manufacturers.		
SW6	Switches the output voltage of terminal [PGP] Select the voltage level that matches the power	ween 12 V and 15 V tage of the pulse	enerator to be
$\begin{aligned} & \text { SW7 } \\ & \text { SW8 } \end{aligned}$	Switch the output mode of terminals [FA] and [FB] between open collector output and complementary output.		
	Output form	$\begin{gathered} \text { SW7 } \\ \text { (Terminal [FA]) } \end{gathered}$	$\begin{array}{\|c} \hline \text { SW8 } \\ \text { (Terminal [FB] }) \\ \hline \end{array}$
	Open collector output (Factory default)	1	1
	Complementary output	2	2

2.2.7 Fan power switching connector CN UX

Stack type of inverters of 90 kW or above has fan power switching connector CN UX on the auxiliary power printed circuit board located at the bottom of the stack. If a power supply to be connected to auxiliary fan power input terminals [R1] and [T1] matches the following specifications, move the connector from the U1 to U2 position. In any other cases, retain the connector in the U1 position (factory default).
Terminal rating: $\quad 380$ to $440 \mathrm{VAC} / 50 \mathrm{~Hz}, 380$ to $480 \mathrm{VAC} / 60 \mathrm{~Hz}$, Maximum current 1.0 A (For the phase-specific stack, three time the current value should apply.)

Figure 2.2-14 Inserting/Removing the connector
Note To remove the connector, pinch its upper side between your fingers, unlock its fastener, and pull it up.
When mounting the connector, fit it over the connector until it snaps into place.

Figure 2.2-15 Fan Power Switching Connector

2.2.8 Wiring between stacks of Phase-specific stack type

In case of Phase-specific stack type (FRN630-800BVG1S-4), you need to wire between each stacks after installation the inverters. Refer to Figure2.2-16~2.2-18.

Figure2.2-16 Wiring between GATE P.C.B, FUSE P.C.B and POWER P.C.B of Phase-specific stack type

Figure2．2－17 Wiring between AUXILIARY POWER P．C．B ，CT（current detector）cable of Phase－specific stack type．

2.3 Mounting and Connecting the Keypad

The keypad can be installed and used in one of the following ways:

- Mounting it directly on the inverter (default state when shipped)
- Mounting it on the cabinet door for remote operation (see Figure 2.3-1.)
- Using it in your hand at remote location

Figure 2.3-1 Mounting the Keypad in the Cabinet

2.3.1 Parts required for connection

To mount the keypad on a place other than an inverter, the parts listed below are needed.

Parts name	Model	Remarks
Extension cable (Note 1)	CB-5S, CB-3S and CB-1S	3 types available in length of $5 \mathrm{~m}, 3 \mathrm{~m}$, and 1 m.
Fixing screw	M3 $\times \square$ (Note 2)	Two screws needed. (To be provided by the customer)

(Note 1) When using an off-the-shelf LAN cable, use a 10BASE-T/100BASE-TX straight type cable compliant with US
ANSI/TIA/EIA-568A Category 5. (20 m or less)
Recommended LAN cable
Manufacturer: Sanwa Supply Inc.
Model: \quad KB-10T5-01K (1 m)
KB-STP-01K: (1 m) (Shielded LAN cable to make the inverter compliant with the EMC Directive)
(Note 2) When mounting the keypad in a cabinet, use the screws with a length suitable for the cabinet thickness.

\triangle CAUTION

- The RJ-45 connector on the inverter is exclusive to communication via a keypad. With the RJ-45 connector, neither RS-485 communication nor connection with FRENIC-VG Loader is possible.
- Do not connect the inverter to a LAN port of a computer, Ethernet hub, or telephone line. Doing so may damage the inverter or devices connected.

A fire or accident could occur.

2.3.2 Mounting procedure

After completion of wiring, mount the keypad using the following procedure. Make sure that the inverter power is shut down beforehand.

[1] Removing and mounting the keypad from/to the inverter

(1) Removing the keypad

While holding down the hook as directed by the arrow, pull the keypad towards you and off the inverter.

Figure 2.3-2 Removing the Keypad
(2) Mounting the keypad

Set the bottom of the keypad into the latches, push the keypad in the direction of the terminal block cover (arrow (1)), and put the keypad in the original slot (arrow (2)).

Figure 2.3-3 Mounting the Keypad

[2] Mounting the keypad to the cabinet door

(1) Make a cutout in the cabinet door (in which the keypad is to be mounted) as shown in [3] External dimensions of the keypad.
(2) Mount the keypad on the cabinet door as shown in Figure 2.3-4.

- With two screws (M3 x 12) (Thickness of the door: 2.3 mm)
- Tightening torque: $0.7 \mathrm{~N} \cdot \mathrm{~m}$
(3) Using a remote operation extension cable or a LAN cable, connect the keypad (RJ-45 connector) to the inverter (RJ-45 connector, modular jack) as shown in Figure 2.3-5.

Secure the cable using fasteners such as Insulock. Otherwise, the cable may get caught in the cabinet door and be damaged when the door is opened or closed.

Figure 2.3-4 Mounting the Keypad

Figure 2.3-5 Connecting the Keypad to the Inverter

[3] External dimensions of the keypad

The dimensions of the keypad is shown below. Make a cutout in the cabinet door for mounting the keypad as instructed below.

2.4 Connecting a USB Cable

At the right side of the keypad mounting place, a USB port (mini B connector) is provided. To connect a USB cable, open the USB port cover as shown below.

Figure 2.4-1 Connecting a USB Cable

Connecting the inverter to a PC with a USB cable enables remote control from FRENIC-VG Loader. On the PC running FRENIC-VG Loader, it is possible to edit, check and manage the inverter's function code data and monitor the real-time data and the running/alarm status of the inverter.

\triangle CAUTION

Connector located beneath the USB connector is provided for particular manufacturers. Do not access it.
Otherwise, a fire or accident could occur.

Chapter 3 OPERATION USING THE KEYPAD

3.1 Names and Functions of Keypad Components

The keypad allows you to start and stop the motor, view various data including maintenance information and alarm information, configure function codes, monitor I/O signal status, copy data, and calculate the load factor.
For details, refer to the FRENIC-VG User's Manual, Chapter 3, Section 3.4 "OPERATION USING THE KEYPAD".

Table 3.1-1 Overview of Keypad Functions

Item	Monitors and Keys	Functions
Monitors	$15 \pi 7$	Five-digit, 7-segment LED monitor which displays the following according to the operation modes:
		LCD monitor which displays the following according to the operation modes:
	Indicator indexes	In Running mode, these indexes show the unit of the number displayed on the 7 -segment LED monitor and the running status information on the LCD monitor. For details, see the next page.
$\underset{\text { keys }}{\text { Programming }}$	(PRG)	Switches the operation modes of the inverter.
	(벡)	Shifts the cursor to the right for entry of a numerical value.
	(isti)	Pressing this key after removing the cause of an alarm switches the inverter to Running mode. This key is used to reset settings or screen transition.
	(1)	UP and DOWN keys, which are used to select the setting items or change function code data.
	(2nat)	Function/Data key, which switches the operation mode as follows: In Running mode: Pressing this key switches the information to be displayed concerning the status of the inverter (detected speed, speed command, torque command, etc.). In Programming mode: Pressing this key displays the function code and establishes the newly entered data. In Alarm mode: Pressing this key displays the details of the problem indicated by the alarm code that has come up on the LED monitor.
	(500) + -	This simultaneous keying toggles between the ordinary running mode and jogging mode. The current mode appears on the corresponding indicator.
	(500) + (185])	This simultaneous keying toggles between the remote and local modes. The current mode appears on the corresponding indicator.
	((HIn)	This simultaneous keying jumps the cursor to the preceding/following function code group (F to M) in selecting a function code.
Operation keys	(-wo)	Starts running the motor in the forward rotation.
	®EV)	Starts running the motor in the reverse rotation.
	(500)	Stops the motor.
	(HLC)	Switches the screen to the operation guide display prepared for each operation mode or to the menu function guide display.
$\begin{aligned} & \text { LED } \\ & \text { lamp } \end{aligned}$		Lights when the inverter is running.

Details of Indicator Indexes

Type	Item	Description (information, condition, status)
Unit of number on LED monitor	Hz	Output frequency
	A	Output current
	V	Output voltage
	\%	Torque command, calculated torque, and load factor
	kW	Input power and motor output
	r/min	Preset and actual (detected) motor speeds
	$\mathrm{m} / \mathrm{min}$	Preset and actual line speeds
	X10	Data exceeding 99,999
	min	Not used.
	sec	Not used.
	VG5	Not used.
Running status	FWD	Running in forward rotation
	REV	Running in reverse rotation
	STOP	No output
Run command source	REM	Remote mode (Run command and speed command sources selected by F02 and F01) (In the remote mode, a run command entered via the communications link takes effect. This indicator goes off when $\mathrm{H} 30=2$ or 3 .)
	LOC	Local mode (Run command and speed command sources from the keypad, independent of the setting of F02 and F01.)
	COMM	Via communications link
	JOG	Jogging mode
	HAND	Via keypad This indicator lights also: - in local mode or - in remote mode and when $\mathrm{H} 30=0$ and $\mathrm{F} 02=0$

3.2 Programming Mode

Programming mode allows you to set and check function code data and monitor maintenance information and input/output (I/O) signal status. The functions can be easily selected with a menu-driven system. Table 3.2-1 lists menus available in Programming mode.

Table 3.2-1 Menus Available in Programming Mode

Menu \#	Menu	Used to:
0	Selecting language (LANGUAGE)	Change the display language on the LCD monitor.
1	Configuring function codes (DATA SET)	Display and change the data of the function code selected.
2	Checking function code data (DATA CHECK)	Display a function code and its data on the same screen. Also this menu is used to change the function code data or check whether the data has been changed from the factory default.
3	Monitoring the running status (OPR MNTR)	Display the running information required for maintenance or test running.
4	Checking I/O signal status (I/O CHECK)	Display external interface information.
5	Reading maintenance information (MAINTENANCE)	Display maintenance information including cumulative run time. Note that information on the capacitance of the DC link bus capacitor and input watt-hour is invalid in the stack type of inverters.
6	Measuring load factor (LOAD FCTR)	Measure the maximum output current, average output current, and average braking power.
7	Reading alarm information (ALM INF)	Display recent four alarm codes. Also this menu is used to view the information on the running status at the time the alarm occurred.
8	Viewing causes of alarm (ALM CAUSE)	Display the cause of the alarm.
9	Reading communications information (COMM INFO)	(Available soon.)
10	Copying data (DATA COPY)	Read or write function code data, as well as verifying it.
11	Checking changed function codes (CHANGES)	Display only the function code data that has been changed from the factory default.
12	Setting the calendar clock (DATE/TIME)	Display/hide the date and time and adjust the display format and data.
13	Compatibility with conventional inverter models (FORMER INV)	Not supported.
14	Limiting function codes to be displayed (LIMITED FC)	- Select whether to display all function codes or limited ones (selected in Loader). - Cancel the directory structure of function codes.

- Configuring function code data

Figure 3.2-1 shows the LCD screen transition for Menu \#0 "DATA SET."
A hierarchy exists among those screens that are shifted in the order of "Menu screen," "List of function code groups," and "List of function codes." On the modification screen of the target function code, you can modify or check its data.

The screen transition and hierarchy structure in Running and Programming modes are shown below.

* If the screen system is password-protected, no menu can be selected until the password is canceled.

3.2.1 Setting the calendar clock -- Menu \#12 "DATE/TIME"

Menu \#12 "DATE/TIME" in Programming mode is used to select the format of the calendar clock to be displayed in the operation guide line in Running mode and set the date and time.

\triangle CAUTION

After mounting a memory backup battery, set the date and time. When no memory backup battery is mounted, the calendar clock does not work correctly.

1) Setting the date and time

The calendar clock can also be set with FRENIC-VG Loader. For details, refer to the FRENIC-VG Loader Instruction Manual.
2) Selecting the display format

To display this menu screen, press the key in Running mode to switch to Programming mode.
Move the cursor (flashing rectangle) at the left of the screen to " 12 .
DATA/TIME" using the \triangle and \otimes keys. Then press the (Nene
Press key to establish the desired menu.

Move the cursor (flashing rectangle) at the left of the screen to "FORMAT" using the Δ and \otimes keys. Then press the (anct key.

Change the date format data using the \otimes and \otimes keys.
<List of date formats>

y у y y $/ \mathrm{mm} / \mathrm{dd}$	Year/Month/Date
dd/mm/y y y y	Date/Month/Year
$\mathrm{mm} / \mathrm{dd} / \mathrm{y}$ y y y	Month/Date/Year
mmm d d, y y y y	Month Date, Year
<OFF>	No display

Press key to establish the newly specified date format.

3) Selecting the No display

Select the time format using the Θ and \otimes keys.
<List of time formats>
$h h: m m: s s$
$h h: m m: s s \quad A M$
$A M \quad h h: m m: s$
$<O F F\rangle$

0-24 hour: minutes: seconds
$0-12$ hour: minutes: seconds AM/PM AM/PM 0-12 hour: minutes: seconds No display

Press key to establish the newly specified time format.

After a second, the screen automatically switches back to the submenu.

To display this menu screen, press the key in Running mode to switch to Programming mode.
Move the cursor (flashing rectangle) at the left of the screen to " 12 .
DATA/TIME" using the \triangle and \diamond keys. Then press the key.
Press key to establish the desired menu.

Move the cursor (flashing rectangle) at the left of the screen to "FORMAT" using the \triangle and \diamond keys. Then press the

Change the date format using the \otimes and \otimes keys.
<List of date formats>

y y y y/mm/dd	Year/Month/Date
$\mathrm{dd} / \mathrm{mm} / \mathrm{y}$ y y y	Date/Month/Year
$\mathrm{mm} / \mathrm{dd} / \mathrm{l}$ y y y	Month/Date/Year
mmm d d, y y y y	Month Date, Year
<OFF>	No display

Move the cursor (flashing rectangle) at the left of the screen to "<OFF>" using the $\widehat{\Delta}$ and \otimes keys. Then press the key.

Press key to establish the newly specified date format.

Change the time format data using the \otimes and \diamond keys.
<List of time formats>

h h : mm: ss	0-24 hour: minutes: seconds
$\mathrm{hh}: \mathrm{mm}$: ss AM	0-12 hour: minutes: seconds AM/PM
AM hh : mm:s s	AM/PM 0-12 hour: minutes: seconds
<OFF>	No display

Move the cursor (flashing rectangle) at the left of the screen to "<OFF>" using the \triangle and \searrow keys. Then press the

After a second, the screen automatically switches back to the submenu.

Chapter 4 TEST RUN PROCEDURE
Make a test run of the motor using the flowchart given below.

4.1 Checking Prior to Powering On

Check the following before powering on the inverter.
(1) Check the wiring to the main DC input terminals $\mathrm{P}(+)$ and $\mathrm{N}(-)$ and output terminals U , V , and W . Also check that the grounding wires are connected to the grounding terminals (\mathcal{B}) correctly. (See Figure 4.1-1.)
\triangle WARNING

- Never connect power supply wires to the inverter output terminals U, V, and W. Doing so and turning the power ON breaks the inverter.
- Be sure to connect the grounding wires of the inverter and the motor to the ground electrodes.

Otherwise, an electric shock could occur.
(2) Check the control circuit terminals and main circuit terminals for short circuits or ground faults.
(3) Check for loose terminals, connectors and screws.
(4) Check that the motor is separated from mechanical equipment.
(5) Make sure that all switches of devices connected to the inverter are turned OFF. Powering on the inverter with any of those switches being ON may cause an unexpected motor operation.
(6) Check that safety measures are taken against runaway of the equipment, e.g., a defense to prevent people from access to the equipment.
(7) Check that the PG (pulse generator) wiring is correct.

\triangle CAUTION

Wrong wiring may break the PG.
If the inverter is powered on with wrong wiring, disconnect the PG signal wires from the inverter, keep only the PG powered on via the PGP and PGM, and then check that each signal is correctly output with an oscilloscope or recorder.

Note: In principle, the shielded sheath of wires should be connected to ground. If the inverter is significantly affected by external induction noise, however, connection to 0 V may be effective to suppress the influence of noise.

Figure 4.1-1 Connection of Main Circuit Terminals (Vector dedicated motor connected)

4.2 Powering ON and Checking

\triangle WARNING

- Be sure to mount the front cover before turning the power ON. Do not remove the cover when the inverter power is ON.
- Do not operate switches with wet hands.

Otherwise, an electric shock could occur.

Turn the power ON. After the initial display (LOAD) appears, check the following points. The following is a case when no function code data is changed from the factory defaults.
(1) Check that the LED monitor displays $/ 7$ (indicating that the reference speed is $0 \mathrm{r} / \mathrm{min}$) that is blinking. (See Figure 4.2-1.) If the LED monitor displays any number except i, , press \otimes $/ \otimes$ key to set
(2) Check that the built-in cooling fans rotate.

Figure 4.2-1 Display of the LED Monitor at Power-on

4.2.1 Checking the input state of PG (pulse generator) signals

Before proceeding to a test run of the inverter, rotate the motor shaft and check the digital input state of PG (pulse generator) signals on the screen shown below.
To call up the screen, switch the inverter operation mode from the Running mode to the Programming mode, select Menu \#4 "I/O CHECK" on the menu screen, and select page 15 (shown below) using the \otimes / \checkmark keys.
For details, refer to the FRENIC-VG User's Manual, Chapter 3, Section 3.4.4.5.

* When a PG (SD) option is mounted, the PG (SD) signal input info appears; when it is not, the inverter PG signal input info appears.

4.2.2 Mounting direction of a PG (pulse generator) and PG signals

The forward rotational direction of the dedicated motor (MVK type) is CCW when viewed from the motor output shaft as shown in Figure 4.2-2.
During rotation in the forward direction, the PG output pulse forms a forward rotation signal (B phase advanced by 90 degrees) shown in Figure $4.2-3$, and during rotation in the reverse direction, a reverse rotation signal (A phase advanced by 90 degrees).
When mounting an external PG on motors other than the dedicated one, directly connect it to the motor, using a coupling, etc.

Figure 4.2-2 Forward Rotational Direction of Motor and PG

Figure 4.2-3 PG (Pulse Generator) Signal

4.3 Selecting a Desired Motor Drive Control

The FRENIC-VG supports the following motor drive controls.

Data for P01	M1 drive control	Speed feedback	Speed control	Refer to:
0	Vector control for IM with speed sensor	Yes		Section 4.3.1
1	Vector control for IM without speed sensor	Estimated speed	Speed control with automatic speed regulator (ASR)	FRENIC-VG User's Manual, Chapter 4, Section 4.3.4 "P codes"
2	Simulation mode	Yes		Section 4.3.3
3	Vector control for PMSM with speed sensor	Yes		Sequency control
5	V/f control for IM	No	Section 4.3.4	

4.3.1 Vector control for IM with speed sensor

Under vector control, the inverter detects the motor's rotational position and speed according to PG feedback signals and uses them for speed control. In addition, it decomposes the motor drive current into the exciting and torque current components, and controls each of components in vector.

The desired response can be obtained by adjusting the control constants (PI constants) with the speed regulator (PI controller).

This control enables the speed control with higher accuracy and quicker response than the vector control without speed sensor.
(A recommended motor for this control is a Fuji VG motor exclusively designed for vector control.)
Note Vector control regulating the motor current requires some voltage margin between the voltage that the inverter can output and the induced voltage of the motor. Usually a general-purpose motor is so designed that the voltage matches the commercial power. Under the control, therefore, it is necessary to suppress the motor terminal voltage to the lower level in order to secure the voltage margin required.
However, driving the motor with the motor terminal voltage suppressed to the lower level cannot generate the rated torque even if the rated current originally specified for the motor is applied. To ensure the rated torque, it may be necessary to review the rated current.

[1] For Fuji VG motor exclusively designed for vector control

Configure the function codes as listed below. The machinery design values (maximum speed and acceleration/deceleration time) should match your machinery ones.
D) For details on how to modify the function code data, refer to the FRENIC-VG User's Manual, Chapter 3, Section 3.4.4.2 "Setting up function codes -- Menu \#1 "DATA SET". For details of the function code data, refer to the FRENIC-VG User's Manual, Chapter 4, Section 4.3 "Details of Function Codes".

Function code	Name	Function code data	Factory default
$\begin{gathered} \text { P01 } \\ \text { A01 } \\ \text { A101 } \end{gathered}$	M1 Drive Control M2 Drive Control M3 Drive Control	0: Vector control for IM with speed sensor	0: Vector control for IM with speed sensor
P02	M1 Selection	Motor to be applied	Motor to be applied
$\begin{gathered} \text { P28 } \\ \text { A30 } \\ \text { A130 } \end{gathered}$	M1 PG Pulse Resolution M2 PG Pulse Resolution M3 PG Pulse Resolution	1024	1024
$\begin{gathered} \text { P30 } \\ \text { A31 } \\ \text { A131 } \end{gathered}$	M1 Thermistor Type M2 Thermistor Type M3 Thermistor Type	1: NTC thermistor	1: NTC thermistor
F03	M1 Maximum Speed M2 Maximum Speed M3 Maximum Speed	Machinery design values (Note) For a test-driving of the motor, increase values so that they are longer than your machinery design values. If the specified time is short, the inverter may not run the motor properly.	$1500 \mathrm{r} / \mathrm{min}$
F07	Acceleration Time 1 (Note)		5.00 s
F08	Deceleration Time 1 (Note)		5.00 s

[2] For motors except Fuji VG motor

To use motors except a Fuji VG motor when their motor parameters to be set to function codes are unknown, perform auto-tuning to automatically configure them.
Configure the function codes as listed below according to the motor ratings and your machinery design values (maximum speed and acceleration/deceleration time). The motor ratings are printed on the motor's nameplate. For your machinery design values, ask system designers about them.
After configuring the function codes, perform motor parameter auto-tuning ($\mathrm{H} 01=3$ or 4).
[a] For details on how to modify the function code data, refer to the FRENIC-VG User's Manual, Chapter 3, Section 3.4.4.2 "Setting up function codes -- Menu \#1 "DATA SET". For details of the function code data, refer to the FRENIC-VG User's Manual Chapter 4, Section 4.3 "Details of Function Codes".

Function code	Name	Function code data	Factory default
$\begin{gathered} \text { P01 } \\ \text { A01 } \\ \text { A101 } \end{gathered}$	M1 Drive Control M2 Drive Control M3 Drive Control	0: Vector control for IM with speed sensor	0: Vector control for IM with speed sensor
P02	M1 Selection	37: Others (No modification is required for M2 or M3.)	Motor to be applied
$\begin{gathered} \text { P28 } \\ \text { A30 } \\ \text { A130 } \end{gathered}$	M1 Pulse Resolution M2 Pulse Resolution M3 Pulse Resolution	Match the specifications of the PG to be used.	1024
$\begin{gathered} \text { P30 } \\ \text { A31 } \\ \text { A131 } \end{gathered}$	M1 Thermistor Type M2 Thermistor Type M3 Thermistor Type	0: No thermistor	1: NTC thermistor
$\begin{gathered} \text { F04 } \\ \text { A05 } \\ \text { A105 } \end{gathered}$	M1 Rated Speed M2 Rated Speed M3 Rated Speed	Motor ratings (printed on the nameplate of the motor)	$1500 \mathrm{r} / \mathrm{min}$
F05	M1 Rated Voltage		Rated voltage of nominal applied motors
$\begin{gathered} \text { A04 } \\ \text { A104 } \end{gathered}$	M2 Rated Voltage M3 Rated Voltage		80 V
P03	M1 Rated Capacity		Capacity of nominal applied motors
$\begin{gathered} \mathrm{A} 02 \\ \mathrm{~A} 102 \end{gathered}$	M2 Rated Capacity M3 Rated Capacity		0.00 kW
P04	M1 Rated Current		Rated current of nominal applied motors
$\begin{gathered} \text { A03 } \\ \text { A103 } \end{gathered}$	M2 Rated Current M3 Rated Current		0.01 A
$\begin{gathered} \text { P05 } \\ \text { A07 } \\ \text { A107 } \end{gathered}$	M1 Poles M2 Poles M3 Poles		4 poles
$\begin{gathered} \text { F03 } \\ \text { A06 } \\ \text { A106 } \end{gathered}$	M1 Maximum Speed M2 Maximum Speed M3 Maximum Speed	Machinery design values (Note) For a test-driving of the motor, increase values so that they are longer than your machinery design values. If the specified time is short, the inverter may not run the motor properly.	$1500 \mathrm{r} / \mathrm{min}$
F07	Acceleration Time 1 (Note)		5.00 s
F08	Deceleration Time 1 (Note)		5.00 s

LD For the motor parameter auto-tuning procedure ($\mathrm{H} 01=3$ or 4), refer to the FRENIC-VG User's Manual, Chapter 4, Section 4.3.5 "H Codes (High Performance Functions)."

Function code	Name	Function code data	Factory default
H01	Tuning Selection	3: Auto tuning with motor stopped 4: Auto tuning with motor rotating	$0:$ Disable

Performing motor parameter auto-tuning $(\mathrm{H} 01=3$ or 4$)$ automatically changes the data of function codes P06 through P11 and P15 through P21 for M1, A08 through A13 and A17 through A23 for M2, and A108 through A113 and A117 through A123 for M3. Be careful with this data change.
After tuning, be sure to perform Save All $(\mathrm{H} 02=1)$ to save the tuned data into the non-volatile memory of the inverter.

4.3.2 Vector control for IM without speed sensor

Under this control, the inverter estimates the motor speed based on the inverter's output voltage and current to use the estimated speed for speed control. In addition, it controls the motor current and motor torque with quick response and high accuracy under vector control. No PG (pulse generator) is required.
The desired response can be obtained by adjusting the control constants (PI constants) and using the speed regulator (PI controller).
Applying "vector control without speed sensor" requires auto-tuning regardless of the motor type. (Even driving a Fuji VG motor exclusively designed for vector control requires auto-tuning.)
Configure the function codes as listed below according to the motor ratings and your machinery design values (maximum speed and acceleration/deceleration time). The motor ratings are printed on the motor's nameplate. For your machinery design values, ask system designers about them.

[1] For Fuji VG motor exclusively designed for vector control

Configure the function codes as listed below and perform motor parameter auto-tuning (H01 = 2)
[D] For details on how to modify the function code data, refer to the FRENIC-VG User's Manual, Chapter 3, Section 3.4.4.2 "Setting up function codes -- Menu \#1 "DATA SET". For details of the function code data, refer to the FRENIC-VG User's Manual, Chapter 4, Section 4.3 "Details of Function Codes".

Function code	Name	Function code data	Factory default
$\begin{gathered} \mathrm{P} 01 \\ \mathrm{~A} 01 \\ \mathrm{~A} 101 \end{gathered}$	M1 Drive Control M2 Drive Control M3 Drive Control	1: Vector control for IM without speed sensor	0: Vector control for IM with speed sensor
P02	M1 Selection	37: Others (No modification is required for M2 or M3.)	Motor to be applied
$\begin{gathered} \text { P30 } \\ \text { A31 } \\ \text { A131 } \end{gathered}$	M1 PG Pulse Resolution M2 PG Pulse Resolution M3 PG Pulse Resolution	1: NTC thermistor	1: NTC thermistor
$\begin{gathered} \text { F03 } \\ \text { A06 } \\ \text { A106 } \end{gathered}$	M1 Thermistor Type M2 Thermistor Type M3 Thermistor Type	Machinery design values (Note) For a test-driving of the motor, increase values so that they are longer than your machinery design values. If the specified time is short, the inverter may not run the motor properly.	$1500 \mathrm{r} / \mathrm{min}$
F07	M1 Maximum Speed M2 Maximum Speed M3 Maximum Speed		5.00 s
F08	Acceleration Time 1 (Note)		5.00 s

(1)] For the motor parameter auto-tuning procedure ($\mathrm{H} 01=2$), refer to the FRENIC-VG User's Manual, Chapter 4, Section 4.3.5 "H Codes (High Performance Functions)."

Function code	Name	Function code data	Factory default
H01	Tuning Selection	2: Auto-tuning (R1, L σ)	0 : Disable

Note Performing motor parameter auto-tuning $(\mathrm{H} 01=2)$ automatically changes the data of function codes P06 and P07 for M1, A08 and A09 for M2, and A108 and A109 for M3. Be careful with this data change.
After tuning, be sure to perform Save All $(\mathrm{H} 02=1)$ to save the tuned data into the non-volatile memory of the inverter.

[2] For motors except Fuji VG motor

Configure the function codes as listed below and perform motor parameter auto-tuning ($\mathrm{H} 01=3$ or 4)
[1] For details on how to modify the function code data, refer to the FRENIC-VG User's Manual, Chapter 3, Section 3.4.4.2 "Setting up function codes -- Menu \#1 "DATA SET". For details of the function code data, refer to the FRENIC-VG User's Manual, Chapter 4, Section 4.3 "Details of Function Codes".

Function code	Name	Function code data	Factory default

For the motor parameter auto-tuning procedure ($\mathrm{H} 01=3$ or 4), refer to the FRENIC-VG User's Manual, Chapter 4, Section 4.3.5 "H Codes (High Performance Functions)."

Function code	Name	Function code data	Factory default
H01	Tuning Selection	3: Auto tuning with motor stopped 4: Auto tuning with motor rotating	0 : Disable

Note Performing motor parameter auto-tuning ($\mathrm{H} 01=3$ or 4) automatically changes the data of function codes P06 through P11 and P15 through P21 for M1, A08 through A13 and A17 through A23 for M2, and A108 through A113 and A117 through A123 for M3. Be careful with this data change.
After tuning, be sure to perform Save All $(\mathrm{H} 02=1)$ to save the tuned data into the non-volatile memory of the inverter.

4.3.3 Vector control for PMSM with speed sensor and magnetic pole position sensor

Under this control, the inverter detects the motor's rotational position, speed and magnetic pole position according to feedback signals sent from the speed sensor and magnetic pole position sensor for speed control. In addition, it decomposes the motor drive current into the exciting and torque current components, and controls each of components in vector.
The desired response can be obtained by adjusting the control constants (PI constants) with the speed regulator (PI controller).
(A recommended motor for this control is Fuji GNF2 series exclusively designed for vector control.)

[1] For Fuji GNF2 motor exclusively designed for vector control

Configure the function codes as listed below. The machinery design values (maximum speed and acceleration/deceleration time) should match your machinery ones. For details, contact your Fuji Electric representative.
[D] For details on how to modify the function code data, refer to the FRENIC-VG User's Manual, Chapter 3, Section 3.4.4.2 "Setting up function codes -- Menu \#1 "DATA SET". For details of the function code data, refer to the FRENIC-VG User's Manual, Chapter 4, Section 4.3 "Details of Function Codes".

Function code	Name	Function code data	Factory default
$\begin{aligned} & \text { P01 } \\ & \text { A01 } \end{aligned}$	M1 Drive Control M2 Drive Control	3: Vector control for PMSM with speed sensor and magnetic pole	0: Vector control for IM with speed sensor
A101	M3 Drive Control		5: V/f control for IM
P02	M1 Selection	37: Others (No modification is required for M2 or M3.)	Motor to be applied
o10 A60 A160	M1 Magnetic Pole Position Sensor Offset M2 Magnetic Pole Position Sensor Offset M3 Magnetic Pole Position Sensor Offset	$\begin{aligned} & 0.0 \text { to } 359.9 \\ & \left(0.0^{\circ} \text { to } 359.9^{\circ} \mathrm{CCW}\right) \end{aligned}$ Use the function code to adjust the magnetic pole position. For detail, refer to page 77, "[3] Setting the magnetic pole position offset value."	0.0
$\begin{gathered} \text { o11 } \\ \text { A61 } \\ \text { A161 } \end{gathered}$	M1 Saliency Ratio (\%Xq/\%Xd) M2 Saliency Ratio (\%Xq/\%Xd) M3 Saliency Ratio (\%Xq/\%Xd)	$1.000 \text { to } 3.000$ Specify the saliency ratio of PMSM.	1.000
$\begin{gathered} \text { F03 } \\ \text { A06 } \\ \text { A106 } \end{gathered}$	M1 Maximum Speed M2 Maximum Speed M3 Maximum Speed	Machinery design values (Note) For a test-driving of the motor,	$1500 \mathrm{r} / \mathrm{min}$
F07	Acceleration time 1 (Note)	your machinery design values. If the specified time is short, the inverter may not	5.00 s
F08	Deceleration time 1 (Note)	run the motor properly.	5.00 s
* For detail on function code that need to be configured other than the above, refer to Table 4.3-1 " Function code table 1 of Synchronous motor (GNF2)" and Table 4.3-2 " Function code table 2 of Synchronous motor (GNF2)".			

[^3]| 會佥需 | 8 | － | 용 | 8 | 앙 | 응 | 8 | 웅 | 8 | 앙 | 앙 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 禺会雬 | 8 | 8 | 8 | 웅 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| $\frac{2}{2} \frac{\square}{s} \frac{0}{3}$ | 8 | 8 | 8 | \％ | \％ | 8 | 8 | 8 | \％ | 8 | 8 | 8 |
| $\frac{\pi}{a} \frac{0}{s}$ | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 응 | 8 | \bigcirc |
| | 8 | 8 | 응 | 8 | 8 | 응 | 8 | 8 | 8 | 8 | 응 | 8 |
| $\frac{\square}{2} \frac{0}{3} \frac{0}{3}$ | \％ | 8 | \％ | 융 | ¢ | \％ | 앙 | \％ | $\stackrel{8}{0}$ | \％ | \％ | 8 |
| $\frac{m}{2} \frac{6}{3} \frac{1}{3}$ | 8 | 8 | $\stackrel{8}{6}$ | $\stackrel{8}{\circ}$ | 8 | 8 | 8 | 8 | $\stackrel{8}{6}$ | $\stackrel{8}{8}$ | 8 | 8 |
| $\frac{N}{2} \frac{9}{s} \frac{0}{s}$ | \％ | 篤 | 号 | － | － | 8 | $\stackrel{8}{8}$ | 蜽 | \cdots | N | － | $\stackrel{\text { ¢ }}{ }$ |
| | $\bar{\circ}$ | $\bar{\circ}$ | $\begin{array}{\|c} \hline \stackrel{\circ}{6} \\ \hline \end{array}$ | 官 | 宮 | 产 | $\stackrel{\bar{\circ}}{6}$ | 言 | $\stackrel{\bar{\circ}}{0}$ | 宮 | $\bar{\delta}$ | $\stackrel{\bar{C}}{\mathbf{O}}$ |
| $\text { 울 } \frac{0}{5}$ | $\begin{aligned} & \overline{8} \\ & \hline \end{aligned}$ | $\overline{8}$ | 항 | $\overline{8}$ | $\overline{8}$ | $\stackrel{\bar{\delta}}{\mathbf{O}}$ | $\stackrel{\overline{8}}{8}$ | $\overline{8}$ | $\overline{8}$ | $\overline{8}$ | $\begin{aligned} & \overline{8} \\ & \hline \end{aligned}$ | \％ |
| $\frac{8}{2} \frac{3}{5}$ | $\stackrel{9}{4}$ | $\stackrel{\text { a }}{\text { s }}$ | $\begin{aligned} & 2 \\ & \pm \\ & \hline \end{aligned}$ | $\stackrel{\text { 雭 }}{2}$ | $\begin{gathered} \text { 厄్ట } \\ \hline \end{gathered}$ | $\frac{\text { ª }}{\mathbf{m}}$ | $\frac{18}{5}$ | $\begin{aligned} & \text { 硆 } \\ & \hline 8 \end{aligned}$ | $\begin{aligned} & \text { 哙 } \\ & \hline \end{aligned}$ | $$ | $\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathbf{\infty}} \\ & \hline \end{aligned}$ | 哭 |
| $8 \text { 운 }$ | $\stackrel{\%}{\square}$ | $\frac{80}{2}$ | 要 | $\begin{aligned} & 88 \\ & \stackrel{8}{7} \\ & \hline \end{aligned}$ | $\overline{\underline{g}}$ | $\begin{aligned} & \hline \stackrel{\text { ® }}{\leftrightarrows} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \underset{\sim}{\infty} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Q } \\ & \text { 守 } \end{aligned}$ | $\begin{aligned} & \text { 号 } \\ & \stackrel{y}{j} \end{aligned}$ | $\begin{aligned} & \frac{m}{5} \\ & \hline \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{\dot{\circ}} \\ & \stackrel{y}{\dot{\circ}} \end{aligned}$ | ¢ |
| 准宽富 | $\begin{aligned} & \stackrel{6}{6} \\ & \stackrel{6}{6} \end{aligned}$ | | $\overline{\mathrm{i}}$ | $\begin{array}{r} \stackrel{3}{8} \\ \text { 守 } \\ \hline \end{array}$ | $\stackrel{\leftrightarrow}{4}$ | $\stackrel{\tilde{\infty}}{\stackrel{\infty}{\rho}}$ | $\begin{aligned} & \tilde{m} \\ & \underset{\sigma}{\circ} \\ & \hline \end{aligned}$ | | $\begin{array}{r} \text { M } \\ \text { 骂 } \\ \hline \end{array}$ | $\begin{aligned} & \stackrel{8}{6} \\ & \stackrel{y}{*} \end{aligned}$ | $\begin{aligned} & \text { Ny } \\ & \text { Mg } \end{aligned}$ | 令 |
| 发家家总 | \％ | | 志 | $\frac{p}{4}$ | \％ | \％ | $\stackrel{\circ}{\sim}$ | $\stackrel{\sim}{N}$ | 号 | N | N | $\stackrel{\text { \％}}{\sim}$ |
| | － | \cdots | － | \cdots | \cdots | － | \cdots | \cdots | \cdots | \cdots | \cdots | \cdots |
| 䓘家家 | $\stackrel{8}{\circ}$ | $\stackrel{8}{\underline{5}}$ | $\frac{8}{i}$ | $$ | $\begin{array}{\|l} \hline \stackrel{0}{0} \\ \hline \end{array}$ | $\frac{8}{7}$ | $\frac{8}{6}$ | 号 | | 응 | | $\stackrel{\text { \％}}{\text { \％}}$ |
| 管宗会 | 吕 | 8 | $\stackrel{8}{=}$ | | $\begin{aligned} & \text { 总 } \\ & \stackrel{\Phi}{\Phi} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \stackrel{\text { N}}{2} \\ & \hline \end{aligned}$ | $$ | $\begin{array}{\|l\|l} \hline \stackrel{y}{5} \\ \hline \end{array}$ | | $\begin{aligned} & \text { 若 } \\ & \text { in } \end{aligned}$ | 8 | ¢ |
| \％ | | | $\begin{aligned} & \hline \text { 寽 } \\ & \text { 号 } \\ & \text { d } \end{aligned}$ | $\begin{aligned} & \hline \text { 寽 } \\ & \text { 号 } \\ & \text { i } \end{aligned}$ | | $\begin{aligned} & \hline \text { 爫 } \\ & \text { (} \\ & \text { id } \end{aligned}$ | | | $\begin{aligned} & \text { 敩 } \\ & \text { ㅁ } \end{aligned}$ | | | |
| 准会家㤩 | \cdots | \cdots | ∞ | \cdots | \cdots | \cdots | \cdots | \cdots | » | \％ | \cdots | ∞ |
| \％ | 8 | 은 | 온 | \％ | 윽 | 吕 | 8 | 号 | 8 | $\stackrel{8}{8}$ | 은 | $\stackrel{8}{9}$ |
| 8 | ∞ | \cdots | \cdots | ∞ | ∞ | \cdots |
| | $\stackrel{8}{8}$ | $\stackrel{9}{5}$ | P | 8 | $\stackrel{8}{0}$ | $\stackrel{9}{5}$ | $\stackrel{\text { ¢ }}{0}$ | 웅 | ？ | 8 | $\stackrel{9}{9}$ | $\stackrel{8}{0}$ |
| | 莒 | 屌 | $\begin{aligned} & \text { 宮 } \end{aligned}$ | 宮 | 苞 | 苞 | 令 | 吕 | 砍 | 苞 | \％ | 苟 |
| 管芳部 | 䓂 | Oiod | 宮 | 言 | 咒 | 蒿 | 융 | 商 | O⿳亠口冋几 | 镸 | 命 | 長 |
| | Oio | 웅 | 砍 | 镸 | ర్ర్రి | た ઠ్ర్ల | $\stackrel{\delta}{\circ}$ | 宮 | O우 | Oiర్ద | Oiod | ¢్ర్ర్ |
| | 号 | 呂 | 呂 | 呂 | 品 | $\underset{\sim}{\underline{3}}$ | $\stackrel{\text { ® }}{\underline{\text { S }}}$ | 呂 | 号 | 呂 | 苟 | 号 |
| 容\％${ }^{\text {\％}}$ | \cdots | \cdots | ∞ | \cdots | \cdots | － | \cdots | \cdots | \cdots | \cdots | \cdots | \cdots |
| | $\underline{\square}$ | \cdots | － | 品 | 8 | $\overline{7}$ | E | 号 | § | 앙 | $\stackrel{\text { ¢ }}{\text { ¢ }}$ | \％ |
| | $\stackrel{\circ}{\circ}$ | $\stackrel{2}{5}$ | $\stackrel{2}{8}$ | P | $\stackrel{8}{8}$ | $\stackrel{p}{2}$ | $\stackrel{\text { ¢ }}{\text { ¢ }}$ | ？ | ¢ | $\stackrel{\circ}{0}$ | $\stackrel{\mathrm{P}}{0}$ | $\stackrel{\circ}{\circ}$ |
| | 0 | \because | ＝ | $\stackrel{\sim}{\square}$ | $\stackrel{\square 0}{\underline{\circ}}$ | ส | 8 | 今 | $\%$ | $\stackrel{\sim}{\sim}$ | $\stackrel{\sim}{\sim}$ | ¢ |
| | | $\stackrel{4}{\stackrel{4}{7}}$ | | 总 | $\begin{aligned} & \stackrel{\leftrightarrow}{6} \\ & \stackrel{\text { N}}{N} \\ & \stackrel{4}{c} \end{aligned}$ | $\begin{aligned} & \stackrel{a}{c} \\ & \stackrel{N}{N} \\ & \stackrel{N}{0} \end{aligned}$ | $\begin{aligned} & \text { 希 } \\ & \frac{1}{4} \\ & \frac{\underset{\sigma}{3}}{2} \end{aligned}$ | $\begin{aligned} & \text { 吕 } \\ & \stackrel{8}{4} \\ & \stackrel{y}{2} \end{aligned}$ | | | 遃 | 发 |

気言采	瑙	喜	亨	濷	尔	鶼	喜	咢	$\stackrel{\square}{2}$	筞	$\stackrel{\circ}{\text { ¢ }}$	
	－	－	－	－	－	－	－	－	－	－	－	－
	\bigcirc	\bigcirc	\bigcirc	$\stackrel{\square}{-}$	\bigcirc	\bigcirc	\bigcirc	$\stackrel{\square}{\circ}$	\bigcirc	$\stackrel{\square}{-}$	\bigcirc	\bigcirc
	8	\％	\％	\％	¢	¢	¢	¢	\％	듬	¢	®
	－	－	－	－	－	－	－	－	－	－	－	－
豆	$\stackrel{1}{\underline{2}}$	$\stackrel{1}{\square}$	$\stackrel{1}{\square}$	을	$\stackrel{1}{1}$	$\stackrel{1}{2}$	$\stackrel{1}{\underline{\circ}}$	$\stackrel{9}{\square}$	$\stackrel{\square}{1}$	$\stackrel{1}{\underline{0}}$	$\stackrel{1}{1}$	$\stackrel{1}{\square}$
	$$	등	令	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline \end{aligned}$	妣	8	융	$\frac{9}{6}$	产	宮	京	
或家苞	$\frac{8}{9}$	茯	$\frac{8}{6}$	$\begin{array}{\|l\|} \hline \underset{\sim}{4} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \stackrel{⿸ 厂}{4} \\ \hline \end{array}$	$\underset{\substack{\mid \\ \hline \\ \hline}}{ }$	$\begin{array}{\|l} \hline \stackrel{ళ}{4} \\ \hline \end{array}$		\%		$\begin{array}{\|l\|l\|} \hline \stackrel{\leftrightarrow}{4} \\ \hline \end{array}$	\gtrless_{4}
房滣匋	$\begin{aligned} & 8 \\ & \hline 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 8 \\ \hline \end{array}$	号	$\underset{\sim}{\underset{\sim}{8}}$	$\begin{array}{\|l\|} \hline \stackrel{8}{9} \\ \hline \end{array}$	8	$\begin{array}{\|c} \hline \stackrel{8}{4} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \stackrel{8}{9} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \underset{\sim}{8} \end{array}$	号		\％
	$\underset{\sim}{8}$	8	$\stackrel{8}{4}$	$\begin{aligned} & \hline \stackrel{\circ}{\circ} \\ & i \\ & \hline \end{aligned}$	\|\%	8	9	$\begin{array}{\|l\|} \hline \underset{i}{8} \\ \hline \end{array}$	8	$\stackrel{8}{9}$	\％	$\stackrel{8}{8}$
戠高要	융	$\begin{array}{\|l\|l\|} \hline \text { 응 } \end{array}$	$\underset{\substack{\text { P } \\ \hline \\ \hline}}{ }$	$\frac{8}{9}$	$\begin{array}{\|c} \hline \\ \hline \end{array}$		$\frac{8}{9}$	$\frac{8}{9}$	$\begin{array}{\|l} \hline 9 \\ \hline i \end{array}$	$\frac{8}{6}$	$\begin{array}{\|l} \hline 8 \\ \hline 9 \end{array}$	骨
	$\frac{8}{i}$	$\stackrel{8}{4}$	$\begin{array}{\|l} 8 \\ \hline \end{array}$	$\stackrel{8}{i}$	응	$\begin{array}{\|l\|l} \hline 8 \\ \hline \end{array}$	$\frac{8}{8}$	$\frac{8}{i}$	$\begin{aligned} & 0 \\ & i \\ & \hline i \end{aligned}$	$\frac{8}{9}$	$\stackrel{8}{8}$	漊
	\％	\％	$\stackrel{n}{\square}$	\％	品	\％	응	$\stackrel{8}{-}$	${ }_{\circ}^{\circ}$	$\stackrel{8}{8}$	呂	\bigcirc
	为	8	$\stackrel{8}{9}$	\％	号	¢	$\stackrel{\circ}{\circ}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	\％	咢	¢	8
	웅	\％	近	$\stackrel{\text { ² }}{\sim}$	$\stackrel{\infty}{8}$		笠	－	弟	容	舃	昜
	앙	－	－	\％	앙	\％	\％	\％	\％	号	\％	\％
	禺	吕	宫	容	令	$\stackrel{\circ}{\circ}$	咸	熍	\％	品	令	$\stackrel{\circ}{\circ}$
砣彦总	\％	$\stackrel{\%}{5}$	号	\％	$\stackrel{\text { ¢ }}{\square}$	$\stackrel{\circ}{5}$	\％	\％	$\stackrel{\circ}{\circ}$	\％	\％	$\stackrel{\circ}{1}$
层言苞	－	－	－	－	－	－	－	－	－	－	－	－
运高哥	获	菏	吉	继	继	菏	㕺	菏	菏	苞	試	
䢒家采	\bigcirc	\bigcirc	앙	\bigcirc	\bigcirc	\bigcirc	9	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\stackrel{\square}{\text { ® }}$	$\stackrel{\sim}{\sim}$	－	$\stackrel{\square}{2}$	\％	$\stackrel{\square}{2}$	$\stackrel{\sim}{\sim}$	－	$\stackrel{\circ}{\sim}$	$\stackrel{\square}{4}$	$\stackrel{\text { ¢ }}{ }$	\％
	\%্ত্ర	若	\％	\%্ত্రి	\%	융	\% \%	荌	\％	8	宮	\％
	\％	$\stackrel{8}{8}$	\％	$\stackrel{8}{8}$	\％	$\stackrel{8}{8}$	\％	\％	\％	\％	$\stackrel{8}{8}$	$\stackrel{\text { \％}}{\square}$
	員	\％	号	$\stackrel{8}{9}$	\％	$\stackrel{8}{8}$	吕	\％	\％	吕	\％	$\stackrel{\text { ¢ }}{\square}$
（\％）${ }^{\text {a }}$	$\stackrel{8}{\underline{8}}$	$\stackrel{8}{-}$	$\stackrel{8}{\square}$	8	$\stackrel{8}{\square}$	8	$\stackrel{8}{\square}$	$\stackrel{8}{9}$	$\stackrel{8}{\square}$	晨	$\stackrel{8}{8}$	$\stackrel{8}{-1}$
$\bar{\alpha} \overline{\mathfrak{c}}$	\％	\％	\％	$\stackrel{ \pm}{5}$	జ్ల్	\％¢	$\stackrel{ \pm}{\text { m }}$	㐌	\％		－	\％${ }_{\text {\％}}$
运我家	产	忞	宮	若	产	¢	产	¢	¢	哀	产	¢
	2	$\stackrel{8}{8}$	$\stackrel{8}{5}$	2	\％	$\stackrel{2}{5}$	$\stackrel{\text { ¢ }}{6}$	$\stackrel{\circ}{5}$	$\stackrel{1}{2}$	$\stackrel{2}{5}$	$\stackrel{2}{2}$	$\stackrel{2}{2}$
	8	$\stackrel{\square}{\sim}$	$=$	\cong	$\stackrel{\text { ¢0 }}{\text { ¢ }}$	ส	8	\％	尔	品	$\stackrel{ }{2}$	8
号	李 亲	乭	免	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{\omega}} \\ & \stackrel{\rightharpoonup}{\tilde{u}} \\ & \stackrel{y}{z} \end{aligned}$	㔛		$\begin{array}{\|l\|l} \text { 亮 } \\ \text { 艺 } \end{array}$		砍		边	砏

4.3.4 V/f control for IM

Under this control, the inverter drives a motor with the voltage and frequency according to the V/f pattern specified by function codes.

[1] For Fuji VG motor exclusively designed for vector control

Configure the function codes as listed below. The machinery design values (maximum speed and acceleration/deceleration time) should match your machinery ones.For details on how to modify the function code data, refer to the FRENIC-VG User's Manual, Chapter 3, Section 3.4.4.2 "Setting up function codes -- Menu \#1 "DATA SET". For details of the function code data, refer to the FRENIC-VG User's Manual, Chapter 4, Section 4.3 "Details of Function Codes".

Function code	Name	Function code data	Factory default
$\begin{gathered} \text { P01 } \\ \text { A01 } \\ \text { A101 } \end{gathered}$	M1 Drive Control M2 Drive Control M3 Drive Control	5: V/f control for IM	0: Vector control for IM with speed sensor
P02	M1 Selection	Motor to be applied	Motor to be applied
$\begin{gathered} \text { P30 } \\ \text { A31 } \\ \text { A131 } \end{gathered}$	M1 Thermistor Type M2 Thermistor Type M3 Thermistor Type	1: NTC thermistor (Specify the thermistor as needed.)	1: NTC thermistor
$\begin{gathered} \text { F04 } \\ \text { A05 } \\ \text { A105 } \end{gathered}$	M1 Rated Speed M2 Rated Speed M3 Rated Speed	Motor ratings (printed on the nameplate of the motor)	$1500 \mathrm{r} / \mathrm{min}$
F05	M1 Rated Voltage		Rated voltage of nominal applied motors
A04 A104	M2 Rated Voltage M3 Rated Voltage		80 V
P33	M1 Maximum Output Voltage		200 V class series: 220 (V) 400 V class series: 440 (V)
$\begin{gathered} \text { A53 } \\ \text { A153 } \end{gathered}$	M2 Maximum Output Voltage M3 Maximum Output Voltage		80 V
$\begin{gathered} \text { F03 } \\ \text { A06 } \\ \text { A106 } \end{gathered}$	M1 Maximum Speed M2 Maximum Speed M3 Maximum Speed	Machinery design values (Note) For a test-driving of the motor, increase values so that they are longer than your machinery design values. If the specified time is short, the inverter may not run the motor properly.	$1500 \mathrm{r} / \mathrm{min}$
F07	Acceleration time 1 (Note)		5.00 s
F08	Deceleration time 1 (Note)		5.00 s
$\begin{gathered} \text { P35 } \\ \text { A55 } \\ \text { A155 } \end{gathered}$	M1 Torque Boost M2 Torque Boost M3 Torque Boost	2.0 (For constant torque load) (Note) In applications requiring a starting torque, adjust the torque boost (P35, A55, A155) within the range from 2.0 to 20.0.)	0.0 (Auto torque boost)

[2] For motors except Fuji VG motor

Configure the function codes as listed below according to the motor ratings and your machinery design values (maximum speed and acceleration/deceleration time). The motor ratings are printed on the motor's nameplate. For your machinery design values, ask system designers about them.
In applications requiring a starting torque, adjust the torque boost (P35, A55, A155) within the range from 2.0 to 20.0 , or perform motor parameter auto-tuning ($\mathrm{H} 01=2$) and then set the torque boost (P31, A55, A155) to 0.0 (auto torque boost).
In applications requiring a starting mode(Auto search), perform motor parameter auto-tuning ($\mathrm{H} 01=3$ or 4).
[D] For details on how to modify the function code data, refer to the FRENIC-VG User's Manual, Chapter 3, Section 3.4.4.2 "Setting up function codes -- Menu \#1 "DATA SET". For details of the function code data, refer to the FRENIC-VG User's Manual, Chapter 4, Section 4.3 "Details of Function Codes".

Function code	Name	Function code data	Factory default
$\begin{gathered} \hline \text { P01 } \\ \text { A01 } \\ \text { A101 } \end{gathered}$	M1 Drive Control M2 Drive Control M3 Drive Control	5: V/f control for IM	0: Vector control for IM
P02	M1 Selection	37: Others (No modification is required for M2 or M3.)	Motor to be applied
$\begin{gathered} \text { P30 } \\ \text { A31 } \\ \text { A131 } \end{gathered}$	M1 Thermistor Type M2 Thermistor Type M3 Thermistor Type	0 : No thermistor	1: NTC thermistor
$\begin{gathered} \text { F04 } \\ \text { A05 } \\ \text { A105 } \\ \hline \end{gathered}$	M1 Rated Speed M2 Rated Speed M3 Rated Speed	Motor ratings (printed on the nameplate of the motor)	$1500 \mathrm{r} / \mathrm{min}$
F05	M1 Rated Voltage		Rated voltage of nominal applied motors
$\begin{gathered} \text { A04 } \\ \text { A104 } \end{gathered}$	M2 Rated Voltage M3 Rated Voltage		80 V
P33	M1 Maximum Output Voltage		200 V class series: 220 (V) 400 V class series: $440(\mathrm{~V})$
$\begin{gathered} \text { A53 } \\ \text { A153 } \\ \hline \end{gathered}$	M2 Maximum Output Voltage M3 Maximum Output Voltage		80 V
P03	M1 Rated Capacity		Capacity of nominal applied motors
$\begin{gathered} \text { A02 } \\ \text { A102 } \end{gathered}$	M2 Rated Capacity M3 Rated Capacity		0.00 kW
P04	M1 Rated Current		Rated current of nominal applied motors
$\begin{gathered} \text { A03 } \\ \text { A103 } \end{gathered}$	M2 Rated Current M3 Rated Current		0.01 A
$\begin{gathered} \text { P05 } \\ \text { A07 } \\ \text { A107 } \\ \hline \end{gathered}$	M1 Poles M2 Poles M3 Poles		4 poles
$\begin{gathered} \hline \text { F03 } \\ \text { A06 } \\ \text { A106 } \\ \hline \end{gathered}$	M1 Maximum Speed M2 Maximum Speed M3 Maximum Speed	Machinery design values (Note) For a test-driving of the motor, increase values so that they are longer than your machinery design values. If the specified time is short, the inverter may not run the motor properly.	$1500 \mathrm{r} / \mathrm{min}$
F07	Acceleration time 1 (Note)		5.00 s
F08	Deceleration time 1 (Note)		5.00 s
$\begin{gathered} \text { P35 } \\ \text { A55 } \\ \text { A155 } \\ \hline \end{gathered}$	M1 Torque Boost M2 Torque Boost M3 Torque Boost	2.0 (For constant torque load)	0.0 (Auto torque boost)
P06	M1 \%R1	To use the auto torque boost function (P35, A55, A155 $=0.0$), be sure to perform motor parameter auto-tuning ($\mathrm{H} 01=2$).	Depends on the rated capacity.
$\begin{gathered} \text { A08 } \\ \text { A108 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { M2 \%R1 } \\ & \text { M3 \%R1 } \end{aligned}$		0.00\%
P07	M1 \% X		Depends on the rated capacity.
$\begin{gathered} \text { A09 } \\ \text { A109 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { M2 \%X } \\ & \text { M3 \%X } \end{aligned}$		0.00\%
H09	Starting Mode(Auto search)	To use the auto search, be sure to perform motor parameter auto-tuning ($\mathrm{H} 01=3$ or 4). Please disable the auto search function $(\mathrm{H} 09=0)$ if auto-tuning is not performed.	2: Enable

For the motor parameter auto-tuning procedure ($\mathrm{H} 01=2$), refer to the FRENIC-VG User's Manual, Chapter 4, Section 4.3.5 "H Codes (High Performance Functions)."

Function code	Name	Fanctory default	
H01	Tuning Selection	2: Auto-tuning (R1, L σ)	0 : Disable

Note Performing motor parameter auto-tuning $(\mathrm{H} 01=2)$ automatically changes the data of function codes P06 and P07 for M1, A08 and A09 for M2, and A108 and A109 for M3. Be careful with this data change.
After tuning, be sure to perform Save All $(\mathrm{H} 02=1)$ to save the tuned data into the non-volatile memory of the inverter.For the motor parameter auto-tuning procedure ($\mathrm{H} 01=3$ or 4), refer to the FRENIC-VG User's Manual Chapter 4, Section 4.3.5 "H Codes (High performance Functions)."

Function code	Name	Function code data	Factory default
H01	Tuning Selection	3: Auto tuning with motor stopped 4: Auto tuning with motor rotating	$0:$ Disable

Note Performing motor parameter auto-tuning ($\mathrm{H} 01=3$ or 4) automatically changes the data of function codes P06 through P11 and P15 through P21 for M1, A08 through A13 and A17 through A23 for M2, and A108 through A113 and A117 through A123 for M3. Be careful with this data change.
After tuning, be sure to perform the full save function $(\mathrm{H} 02=1)$ to save the tuned data into the inverter.

4.4 Running the Inverter for Operation Check

WARNING

- If the user configures the function codes without completely understanding this Instruction Manual and the FRENIC-VG User's Manual, the motor may rotate with a torque or at a speed not permitted for the machine.
- When making a test run with a permanent magnet synchronous motor (PMSM), be sure to observe the test run procedure given in Section 4.4.2. If wiring between the inverter and motor or PG wiring is wrong, or the magnetic pole position offset is improper, the motor may run out of control.
An accident or injuries may result.

After completion of preparations for a test run as described above, start running the inverter for motor operation check using the following procedure.

\triangle CAUTION

If any abnormality is found in the inverter or motor, immediately stop operation and investigate the cause referring to Chapter 6, "TROUBLESHOOTING."

4.4.1 Test Run Procedure for Induction Motor (IM)

(1) Turn the power ON and check that the reference speed is $\stackrel{\prime}{\prime} \mathrm{r} / \mathrm{min}$ and it is blinking on the LED monitor.
(2) Set a low reference speed such as $\|_{l / \prime \prime \prime} \mathrm{r} / \mathrm{min}$, using $\Theta / \circlearrowleft$ keys. (Check that the speed is blinking on the LED monitor.)
(3) To run the motor in the forward direction, press the key; to run it in the reverse direction, press the key. (Check that the speed is lit on the LED monitor.)
(4) Press the (roo) key to stop the motor.

< Check points during a test run >

- Check that the motor is running in the forward direction when it is driven with the wey.
- Check that the motor is running in the reverse direction when it is driven with the \circledast ®ey.
- Check for smooth rotation without motor humming or excessive vibration.
- Check for smooth acceleration and deceleration.

When no abnormality is found, press the or key again to start driving the motor, then increase the reference speed using Θ / \otimes keys. Check the above points again.

4.4.2 Test Run Procedure for Permanent Magnet Synchronous Motor (PMSM)

[1] Before proceeding with a test run

This section provides a test run procedure for the configuration consisting of the FRENIC-VG, the interface card for PMPG drive (OPC-VG1-PMPG), and a PMSM using a UVW phase detection PG (including GNF2 motor).
For a test run using a PMSM, it is recommended that the motor be disconnected from the equipment for testing it by itself. If it is impossible to drive the motor by itself due to the equipment, however, make a test run under the conditions that cause no problems even if the motor runs continuously in the forward and reverse directions.

[2] Preparation for a test run

(1) Before turning the inverter power ON, make checking given in Section 4.1 "Checking Prior to Powering On."
(2) Check that wiring of the encoder (PG) is correct.
(For the connection diagram, refer to the User's Manual, Chapter 2, Section 2.7.1.2 "In combination with a dedicated PMSM (GNF2 type).")

\triangle CAUTION

Wrong wiring may break the PG..
If the inverter is powered on with wrong wiring, disconnect the PG signal wires from the inverter, keep only the PG powered on via the PGP and PGM, and then check that each signal is correctly output with an oscilloscope or recorder.
(3) Turn the power ON, make a note of the current configuration of all function codes, and then change the function code data as listed in Table 4.4-1.
(4) Check that the magnetic pole position offset (o10) is set to the previously specified value or manually adjusted value. Replacing the motor or encoder requires adjustment of the magnetic pole position offset again.

Table 4.4-1 Configuration for Test Run of PMSM

Function code	Name	Current configuration before test run (Values given below are factory defaults)		Configuration for test run	
F01	Speed Command N1	0	The current configuration of function codes differs depending upon the equipment specifications. Make a note of the current configuration and then change the function code data as shown at the right.	0	0 : Enable the Θ and \otimes keys on the keypad (Digital speed setting)
F02	Operation Method	0		0	0: Enable the ©0, (eyy and (30) keys on the keypad to run or stop the motor.
F03	Maximum Speed M1	$\begin{aligned} & 1500 \\ & \mathrm{r} / \mathrm{min} \end{aligned}$		$750 \mathrm{r} / \mathrm{min}$	Set about half of the current value (before test run).
F40	Torque Limiter Mode 1	$\begin{gathered} 0 \\ \text { (Disable) } \end{gathered}$		3	3: Torque current limit
F44	Torque Limiter Level 1	150\%		10\%	If motor power wires or encoder wires are wrongly connected, the motor may run out of control, breaking the equipment. To suppress abrupt acceleration at the time of runaway, decrease the torque limiter level.
E45	Speed Disagreement Alarm	$\begin{gathered} 00 \\ \text { (Disable) } \end{gathered}$		01	Speed disagreement alarm: Enable Power supply phase loss detection: Disable

Note 1: If the moment of inertia of the coupled equipment is large, the motor may not run at a test run. If it happens, adjust the torque limiter level 1 properly.
Note 2: After a test run, revert the function code data to the previous values.

\triangle CAUTION

Be sure to adjust the magnetic pole position offset value, using the adjustment procedure given below.

- when the inverter runs for the first time after purchase
- after replacement of a motor, PG or inverter

Running the inverter with the magnetic pole position offset value (o10, A60, A160) not adjusted or with the position deviated greatly from the true value could run the motor in the opposite direction or out of control in the worst case.
An accident or injuries could occur.

When driving a PMSM for the first time, be sure to set the magnetic pole position offset value to the inverter with the following function code(s) beforehand.
M1: Function code o10
M2: Function code A60
M3: Function code A160

Select the adjustment procedure from the following three depending on the situation.
(1) When the magnetic pole position offset value is printed on the label attached to the motor

GNF2 motors have a magnetic pole position label on the motor power line (U phase) on which the magnetic pole position offset value is printed. See Figure 4.4-1. Set the value to the function code (o10, A60, A160).
As shown in Figure 4.4-2, there are two types of magnetic pole position labels.

Figure 4.4-1 Magnetic Pole Position Offset Label Attaching Position Example

Figure 4.4-2 Magnetic Pole Position Offset Labels

Once a pulse generator (PG) is removed from the motor, it is necessary to adjust the magnetic pole position offset value.
(2) Automatic adjustment of the magnetic pole position offset value

When you mount a PG on the motor or replace the PG at the site for motors having no magnetic pole position offset label, perform automatic adjustment with the tuning function ($\mathrm{H} 71=5$).
Upon normal end of tuning, the magnetic pole position offset data is automatically saved into function code o10 (Magnetic pole position offset).

Requisites for tuning the magnetic pole position offset

1) Running the motor does not bring the machinery into dangerous situations.
2) There is no load fluctuation at the machinery and the motor rotation is stabilized.

If any of the above conditions is not satisfied, separate the motor from the machinery and perform the magnetic pole position offset tuning.
3) Automatic adjustment of the magnetic pole position offset value can apply only to the absolute UVW encoders $(009=1)$. For encoders other than the absolute UVW ones, perform manual adjustment given in item (3) later.

Tuning procedure

1) Before starting tuning, configure the following function codes.

P01 $=3$ (Select PMSM)
o09 = 1 (Select absolute UVW encoders)
F02 $=0$ (Select keypad for operation)
2) Set H71 to "5" (Select magnetic pole position offset tuning).
(The H71 data can be changed by simultaneous keying of (Noop $+\Theta / \otimes$ keys.)
3) Press the key to start tuning.
4) Upon completion of tuning, the data of H71 automatically reverts to " 0 ."
5) The tuning result is saved into olo.

Note: When motor 2 (M2) or motor 3 (M3) is selected, use the following function codes in tuning as listed below

Motor 1 (M1)	Motor 2 (M2)	Motor 3 (M3)
P01	A01	A101
o09	A59	A159
o10	A60	A160

Function codes applied for adjustment

The following function codes are applied for adjustment in tuning. Usually, their factory default values should be retained.

- H161 (M1 pull-in current command)
- H171 (M2 pull-in current command)
- H181 (M3 pull-in current command)

Setting range: 10 to 200(\%), Factory default: 80(\%)
(Assuming the setting of P 04 (M1 rated current) as 100\%)
Note: If the motor sticks to the stop state, increasing the current value preset to the above function codes may resolve the problem.

- H162 (M1 pull-in frequency)
- H172 (M2 pull-in frequency)
- H182 (M3 pull-in frequency)

Setting range: 0.1 to $10.0(\mathrm{~Hz})$, Factory default: $1.0(\mathrm{~Hz})$
Note: If the motor vibrates abnormally, decreasing the frequency value preset to the above function codes may resolve the problem.For the configuration procedure of the function codes, refer to the FRENIC-VG User's Manual, Chapter 3, Section 3.4.4.2 "Configuring function codes -- Menu \#1 DATA Set." For function codes, refer to the FRENIC-VG User's Manual, Chapter 4, Section 4.3 "Details of Function Codes."

Tuning Errors

If tuning fails，check the configuration of the function codes and wiring according to the instructions given below．
1）The＂NOT EXECUTE＂appears on the keypad．
When M1 is selected，P02 $\neq 37$（OTHER）．
\Rightarrow Set P02 to＂37．＂
The JOG mode is selected．（The JOG indicator on the keypad is lit．）
\Rightarrow Cancel the JOG mode by simultaneous keying of（это）+ 人 keys．
\Rightarrow Turn the digital input JOG OFF（if ON）．

2）Alarm 危各occurs．
$\mathrm{P} 01 \neq 3, \mathrm{o} 09 \neq 1$ ，or $\mathrm{H} 160 \neq 0$ ．
\Rightarrow Set P01 to＂3，＂o09 to＂1，＂or H160 to＂0．＂
Any of the digital inputs $\boldsymbol{B X}, \boldsymbol{S T O P 1}, \boldsymbol{S T O P 2}$ ，and $\boldsymbol{S T O P} 3$ is ON．
Either one of the functional safety input terminals［EN1］and［EN2］is OFF．
\Rightarrow Turn $\boldsymbol{B X}, \boldsymbol{S T O P 1}, \boldsymbol{S T O P 2}$ ，and STOP3 OFF and turn［EN1］and［EN2］ON；otherwise，turning cannot start．

3）Alarm Í－Toccurs．
A phase loss may have occurred in connection between the inverter and motor．
\Rightarrow Correct the connection between the inverter and motor．
Brake applies to the motor．
\Rightarrow During tuning，be sure to enable the motor to rotate．
The motor cannot rotate．The motor is vibrating abnormally．
\Rightarrow For motor 1：Adjust the settings of H161（M1 pull－in current command）and H162（M1 pull－in frequency）．
\Rightarrow For motor 2：Adjust the settings of H171（M2 pull－in current command）and H172（M2 pull－in frequency）．
\Rightarrow For motor 3：Adjust the settings of H181（M3 pull－in current command）and H182（M3 pull－in frequency）．

The PG wiring may be wrong．
\Rightarrow Correct the PG wiring．

\triangle WARNING \wedge

Starting magnetic pole position offset tuning rotates the motor．Before starting tuning，be sure to check that running the motor does not cause any dangerous situation．
An accident or injuries could occur．
(3) Manual adjustment of the magnetic pole position offset value

If magnetic pole position offset tuning cannot be used, adjust the offset value manually according to the instructions given below. This procedure enables you to check the current magnetic pole position offset value.

Configuring function code data beforehand

- E69 (Terminal [Ao1] function)
- E70 (Terminal [Ao2] function)
- E84 (Ao1-Ao5 filter setting)

$$
\begin{aligned}
& =26 \text { (U phase voltage) } \\
& =39 \text { (Magnetic pole position signal } \boldsymbol{S M P}) \\
& =0.000 \mathrm{~s} \text { (Cancel filter) }
\end{aligned}
$$

Adjustment procedure

Rotate the motor shaft by hand to check that the positional relationship between the waveforms on Ao1 and Ao2 is as shown below. If the waveforms are greatly misaligned, adjust the data of function code o10 to align the waveforms as shown below.

Figure 4.4-3 Adjustment of Magnetic Pole Position

[^4]
[4] Test run

(1) Turn the power ON and check that the reference speed is $\frac{1 /}{\prime} \mathrm{r} / \mathrm{min}$ and it is blinking on the LED monitor.
(2) Set a low reference speed such as $\stackrel{\|-\prime \prime \prime}{ } \mathrm{r} / \mathrm{min}$, using $(\mathcal{)} / \vee$ keys. (Check that the speed is blinking on the LED monitor.)
(3) Set the maximum speed (F03) to
(4) Shift the LCD monitor to Menu \#3 "OPR MNTR" to show the speed ($\mathrm{N} *, \mathrm{~N}$).
(5) To run the motor in the forward direction, press the key; to run it in the reverse direction, press the key.

```
N*=}\times\times\times\times\times\times.\timesr/
N = x x x x x. }\times\textrm{r}/\textrm{m
f* = x x x x. }\times\textrm{Hz
TRQ= \times × × ×. }\times%
\wedgeV->PAGE SHIFT }

Check that:
- The speed on the LED monitor comes ON instead of blinking
- The motor accelerates up to the specified speed.
- There is no abnormal discrepancy between the reference speed \((* N)\) and the detected speed \((\mathrm{N})\) shown on the LCD monitor.
(6) Press the (500) key to stop the motor.
(7) If no alarm occurs or no problem is found in motor running, increase the speed with the \(\triangle \vee\) keys.
(8) Turn the run command OFF.

\section*{< Check points during a test run >}
- Check that the motor is running in the forward direction when it is driven with the key.
- Check that the motor is running in the reverse direction when it is driven with the key.
- Check for smooth rotation without motor humming or excessive vibration.
- Check for smooth acceleration and deceleration.

When no abnormality is found, press the or key again to start driving the motor, then increase the reference speed using \(\Theta / \diamond\) keys. Check the above points during a test run.

\section*{[5] Troubleshooting for motor abnormality}

If any of the following abnormalities is found during a test run, follow the troubleshooting procedure in Table 4.4-2.
- Turning the inverter ON triggers a alarm.
- Entering a run command triggers a or or alarm.
- Entering a run command does not run the motor or increase the speed.

Table 4.4-2 Troubleshooting for Motor Abnormality
\begin{tabular}{|l|l|}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline \begin{tabular}{l} 
(1) Setting of torque limiter level 1 \\
too small relative to the load.
\end{tabular} & \begin{tabular}{l} 
Check the setting of the torque limiter level 1 (F44). \\
\(\rightarrow\) Increase the F44 data in increments of 5\%.
\end{tabular} \\
\hline \begin{tabular}{l} 
(2) Wrong wiring between the \\
inverter and motor.
\end{tabular} & \begin{tabular}{l} 
Check the wiring between the inverter and motor. \\
\(\rightarrow\) Correct the wiring.
\end{tabular} \\
\hline (3) Wrong PG wiring. & \begin{tabular}{l} 
Check the wiring of the PG. \\
\(\rightarrow\) Correct the wiring.
\end{tabular} \\
\hline \begin{tabular}{l} 
(4) PMSM magnetic pole position \\
not matched.
\end{tabular} & \begin{tabular}{l} 
Check the magnetic pole position. \\
\(\rightarrow\) Adjust the magnetic pole position (o10, A60, A160), referring to "[ 3 ] \\
Setting the magnetic pole position offset value."
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.5 Selecting a Speed Command Source}

A speed command source is the keypad \(((\wedge) / \otimes\) keys ) by factory default. This section provides the speed command setting procedures using the speed command sources of the keypad, external potentiometer, and speed selection terminal commands.

\subsection*{4.5.1 Setting up a speed command from the keypad}

Follow the procedure given below.
(1) Configure the function codes as listed below.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Function \\
code
\end{tabular} & Name & Function code data & Factory default \\
\hline F01 & Speed Command Source N1 & \(0: \operatorname{Keypad}(\otimes / \oslash\) keys \()\) & 0 \\
\hline
\end{tabular}

Note - When the inverter is in Programming or Alarm mode, speed command setting with \(\otimes / \otimes\) keys is disabled. To enable it, switch to Running mode.
- If any of higher priority speed command sources (multistep speed commands and speed commands via communications link) is specified, the inverter may run at an unexpected speed.
(2) Press the \(\otimes / \otimes\) key to display the current speed command on the LED monitor. The least significant digit blinks.
(3) To change the speed command, press the \(\Theta / \otimes\) key again.

When you start specifying the speed command with the \(\Theta / \otimes\) key, the least significant digit on the display blinks; that it, the cursor lies in the least significant digit. Holding down the \(\Theta / \otimes\) key changes data in the least significant digit and generates a carry, while the cursor remains in the least significant digit.
(4) To save the new setting into the inverter's memory, press the key.
[D] For details on how to modify the function code data, refer to the FRENIC-VG User's Manual, Chapter 3, Section 3.4.4.2 "Setting up function codes -- Menu \#1 DATA SET".

\subsection*{4.5.2 Setting up a speed command with an external potentiometer}

Follow the procedure given below.
(1) Configure the function codes as listed below.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Function \\
code
\end{tabular} & Name & Function code data & Factory default \\
\hline F01 & Speed Command Source N1 & \begin{tabular}{l} 
1: Analog voltage input to terminal \([12]\) \\
\((0\) to \(\pm 10 \mathrm{~V})\)
\end{tabular} & 0 \\
\hline
\end{tabular}
(2) Connect an external potentiometer to terminals [11] through [13] of the inverter.
(3) Rotate the external potentiometer to apply voltage to terminal [12] for a speed command input.
[1] For precautions in wiring, refer to Chapter 2 "MOUNTING AND WIRING THE INVERTER."
For details on how to modify the function code data, refer to the FRENIC-VG User's Manual, Chapter 3, Section 3.4.4.2 "Setting up function codes -- Menu \#1 DATA SET".

\subsection*{4.6 Selecting a Run Command Source}

A run command source is the keypad (Ew) / (EEV) / (Noo) keys) by factory default.

\subsection*{4.6.1 Setting up a run command from the keypad}

Follow the procedure given below.
(1) Configure the function codes as listed below.
\begin{tabular}{|c|c|c|c|}
\hline Function code & Name & Function code data & Factory default \\
\hline F02 & Operation Method & 0: Keypad (ewo / rev) / (roo) keys) & 0: Keypad (FwD / (REv) / (Too) keys) \\
\hline
\end{tabular}
(2) Press the key to run the motor in the forward direction. Press the key to stop it.
(3) Press the key to run the motor in the reverse direction. Press the key to stop it.For details on how to modify the function code data, refer to the FRENIC-VG User's Manual, Chapter 3, Section 3.4.4.2 "Setting up function codes -- Menu \#1 "DATA SET".

\subsection*{4.6.2 Setting up a run command with digital input signals (terminals [FWD] and [REV])}

Follow the procedure given below.
(1) Configure the function codes as listed below.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Function \\
code
\end{tabular} & Name & Function code data & Factory default \\
\hline F02 & Operation Method & 1: External digital input signal & \(0:\) Keypad (※w) / ®®v / Foop keys) \\
\hline
\end{tabular}

Note If terminal [FWD] and [REV] are ON, the F02 data cannot be changed. First turn those terminals OFF and
then change the F02 data.
(2) Connect the run forward switch between terminals [FWD] and \([C M]\) and the run reverse switch between \([R E V]\) and [CM].

Make sure that the SINK/SOURCE slide switch (SW1) is turned to the SINK position. If SW1 is in the SOURCE position, the inverter cannot run the motor.
(3) Turn the run forward switch or run reverse switch ON (short-circuit) to run the motor in the forward or reverse direction, respectively.For precautions in wiring, refer to Chapter 2 "MOUNTING AND WIRING THE INVERTER."For details on how to modify the function code data, refer to the FRENIC-VG User's Manual, Chapter 3, Section 3.4.4.2 "Setting up function codes -- Menu \#1 DATA SET".

\section*{Chapter 5 FUNCTION CODES}

\subsection*{5.1 Function Code Groups and Function Codes}



Function codes Tables are stated only " F to H " code. For details of the other function code data, refer to the FRENIC-VG User's Manual, Chapter 4, Section 4.2 "Function Codes Tables".For details of the function code data, refer to the FRENIC-VG User's Manual, Chapter 4, Section 4.3 "Details of Function Codes".

\subsection*{5.2 About the Contents of Column Headers in Function Code Tables}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Column Headers} & Description \\
\hline \multicolumn{2}{|l|}{Function codes} & \begin{tabular}{l}
Function code group and code number \\
* Shaded function codes denote that they have different functions between the unit type and stack type or they are invalid for the stack type even if they can be displayed and configured.
\end{tabular} \\
\hline \multirow[b]{2}{*}{Communications address} & 485 No. & \begin{tabular}{l}
Address to be used to refer to or change function code data using a communications option. \\
Available for all communications options except OPC-VG1-TL.
\end{tabular} \\
\hline & Link No. & \begin{tabular}{l}
Address to be used to refer to or change function code data using a communications option (OPC-VG1-TL, OPC-VG1-SX, etc.). \\
Blank link number fields mean that the corresponding function codes cannot be accessed via a field option.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Name} & Name assigned to a function code. \\
\hline \multicolumn{2}{|l|}{Dir.} & \begin{tabular}{l}
Number of subdirectories in the keypad directory structure. \\
0 : Parent directory having no subdirectories \\
1: Subdirectory \\
2 or more: Parent directory having the specified number of subdirectories
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Data setting range} & Allowable data setting range and definition of each data. \\
\hline \multicolumn{2}{|l|}{Change when running} & \begin{tabular}{l}
Indicates whether the function code data can be changed or not when the inverter is running. \\
Y: Possible, N: Impossible
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Default setting} & \begin{tabular}{l}
Data preset by factory default. \\
If data is changed from the factory default, it is displayed with an asterisk \(\left(^{*}\right)\) on the keypad. \\
Using function code H 03 reverts changed function code data to the default values.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Data copying} & Indicates whether or not the function code data can be copied when you copy the data stored in the keypad memory of a source inverter to other destination inverters. \\
\hline \multicolumn{2}{|l|}{Initialization} & \begin{tabular}{l}
Indicates whether or not the function code data can be initialized to the default value by function code H03 (Data initialization). \\
Y: Possible, N: Impossible
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Format type} & Indicates a format type to be used to refer to or change function code data via the communications link. \\
\hline \multicolumn{2}{|l|}{Drive control (Availability)} & \begin{tabular}{l}
Indicates whether or not the function code is available to the individual drive controls. \\
Y: Available, N: Not available \\
Drive controls: \\
VC w/ PG: Vector control for induction motor (IM) with speed sensor \\
VC w/o PG: Vector control for induction motor (IM) without speed sensor \\
V/f: \(\quad \mathrm{V} / \mathrm{f}\) control for induction motor (IM) \\
VC for PMSM: Vector control for permanent magnet synchronous motor (PMSM) with speed sensor
\end{tabular} \\
\hline
\end{tabular}
[1] For details about the format type, refer to the FRENIC-VG User's Manual, Chapter 4, Section 4.2.4 "Data format list."

\subsection*{5.3 Function Code Tables}

\subsection*{5.3.1 F codes (Fundamental Functions)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
0 \\
\hline 8 \\
\hline 0 \\
\hline 0 \\
\hline 0 \\
\hline 0 \\
\hline 1
\end{tabular}} & \multicolumn{2}{|l|}{Communications address} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Dir.} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & & & & \multicolumn{4}{|c|}{Drive control} & \multirow[b]{2}{*}{\(\underset{\sim}{\text { n }}\)} \\
\hline & \[
\begin{aligned}
& 485 \\
& \text { No. }
\end{aligned}
\] & Link No. & & & & & & (0000 & N &  & \begin{tabular}{l}
0 \\
0 \\
3 \\
3 \\
0 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 3 \\
& 0 \\
& >
\end{aligned}
\] & &  & \\
\hline F00 & Oh & 50h & Data Protection & 0 & \begin{tabular}{l}
0 or 1 \\
0 : Enable data change \\
1: Protect data \\
This write-protects data from the keypad. \\
H29 defines write-protect from the communications \\
link (T-link, RS-485, etc.)
\end{tabular} & N & 0 & N & Y & 40 & Y & Y & Y Y & Y & \\
\hline F01 & 1h & h & Speed Command N1 & 0 & ```
0 to 9
0: Keypad ( \((\underset{\wedge}{ }(\stackrel{y}{ }\) keys)
1: Analog input to terminal [12]( 0 to \(\pm 10 \mathrm{~V}\) )
2: Analog input to terminal [12]( 0 to +10 V )
3: UP/DOWN control (Initial speed \(=0\) )
4: UP/DOWN control (Initial speed = Last value)
5: UP/DOWN control (Initial speed = Creep speed 1
    or 2)
6: DIA card input
7: DIB card input
8: \(\boldsymbol{N}\)-REFV input to terminal [Ai1]
9: \(\boldsymbol{N}\)-REFC input to terminal [Ai2]
F01 defines the command source that specifies a
speed command.
``` & N & 0 & Y & Y & 41 & Y & Y & Y Y & Y & \\
\hline F02 & 2 h & h & Operation Method & 0 & ```
0 or 1
0: Keypad (Fwo/REv)/EOP) keys) (Local mode)
1: External signals to terminals FWD/REV (Remote
 mode)
F02 defines a run command source.
``` & N & 0 & Y & Y & 42 & Y & Y Y & Y & Y & \\
\hline F03 & 3h & 51h & Maximum Speed M1 & 3 & 50 to \(30000 \mathrm{r} / \mathrm{min}\) & N & 1500 & Y & N & 0 & Y & Y & \(Y\) Y & Y & \\
\hline F04 & 4h & 52h & Rated Speed M1 & 1 & 50 to \(30000 \mathrm{r} / \mathrm{min}\) & N & * & Y & N & 0 & Y & Y & Y Y & Y & \\
\hline F05 & 5h & 53h & Rated Voltage M1 & 1 & 80 to 999 V & N & * & Y & N & 0 & Y & \(Y\) & \(Y\) Y & \(Y\) & \\
\hline F07 & 7h & 54h & Acceleration Time 1 & 0 & \[
\begin{aligned}
& 0.01 \text { to } 99.99 \mathrm{~s} \\
& 100.0 \text { to } 999.9 \mathrm{~s} \\
& 1000 \text { to } 3600 \mathrm{~s}
\end{aligned}
\] & Y & 5.00 & Y & Y & 13 & Y & Y & \(Y\) Y & Y & \\
\hline F08 & 8h & 55h & Deceleration Time 1 & 0 & \begin{tabular}{|l|l}
0.01 to 99.99 s \\
100.0 to 999.9 s \\
1000 to 3600 s
\end{tabular} & Y & 5.00 & Y & Y & 13 & Y & Y Y & Y Y & Y & \\
\hline F10 & Ah & 56h & M1 Electronic Thermal Overload Protection (Select motor characteristics) & 3 & \begin{tabular}{l}
0 to 2 \\
0: Disable (For a VG-dedicated motor) \\
1: Enable (For a general-purpose motor with shaft-driven cooling fan) \\
2: Enable (For an inverter-driven motor with separately powered cooling fan)
\end{tabular} & Y & 0 & Y & N & 85 & Y & Y Y & Y & Y & \\
\hline F11 & Bh & 57h & (Detection level) & 1 & \[
\begin{aligned}
& 0.01 \text { to } 99.99 \mathrm{~A} \\
& 100.0 \text { to } 999.9 \mathrm{~A} \\
& 1000 \text { to } 2000 \mathrm{~A}
\end{aligned}
\] & Y & * & Y & N & 13 & Y & Y Y & Y Y & Y & \\
\hline F12 & Ch & 58h & (Thermal time constant) & 1 & 0.5 to 75.0 min & Y & * & Y & N & 2 & Y & Y Y & Y & \(Y\) & \\
\hline F14 & Eh & & \begin{tabular}{l}
Restart Mode after Momentary Power Failure \\
(Mode selection)
\end{tabular} & 0 & \begin{tabular}{l}
```

0 to 5

```

```

1: No restart (Trip after recovery from power failure,
with alarm L $\left._{\prime}^{\prime} \iota^{\prime}\right)$

2: No restart (Trip after decelerate-to-stop, with alarm L'í)

3: Restart (Continue to run)

4: Restart at the speed at which the power failure occurred

5: Restart at the starting speed

```
\end{tabular} & Y & 0 & Y & Y & 0 & Y & Y Y & Y & Y & \\
\hline F17 & 11h & h & Gain (for terminal [12] input) & 0 & \begin{tabular}{l}
\[
0.0 \text { to } 200.0 \%
\] \\
Ratio to analog speed setting on terminal [12]. \\
Limited to \(\pm 110 \%\) of the maximum speed.
\end{tabular} & Y & 100.0 & Y & Y & 2 & Y & Y Y & Y Y & Y & \\
\hline F18 & 12h & h & Bias (for terminal [12] input) & 0 & -30000 to \(30000 \mathrm{r} / \mathrm{min}\)
Bias to analog speed setting on terminal [12].
Limited to \(\pm 110 \%\) of the maximum speed & Y & 0 & Y & Y & 5 & Y & Y Y & Y Y & Y & \\
\hline F20 & 14h & 59h & \begin{tabular}{l}
DC Braking \\
(Braking starting speed)
\end{tabular} & 3 & 0 to \(3600 \mathrm{r} / \mathrm{min}\) & Y & 0 & Y & Y & 0 & Y & Y Y & Y & N & \\
\hline F21 & 15h & 5Ah & (Braking level) & 1 & 0 to 100\% & Y & 0 & Y & Y & 16 & Y & Y Y & Y N & N & \\
\hline F22 & 16h & 5Bh & (Braking time) & 1 & \[
\begin{array}{|l}
0.0 \text { to } 30.0 \mathrm{~s} \\
0.0: \text { Disable } \\
0.1 \text { to } 30.0 \mathrm{~s} \\
\hline
\end{array}
\] & Y & 0.0 & Y & Y & 2 & Y & Y Y & Y N & N & \\
\hline F23 & 17h & 5Ch & \begin{tabular}{l}
Starting Speed \\
(Speed)
\end{tabular} & 0 & \begin{tabular}{l}
0.0 to \(150.0 \mathrm{r} / \mathrm{min}\) \\
Limited in order not to lower to 0.1 Hz or below (under vector control w/o speed sensor and V/f control). \\
Use F23 for assuring the torque at startup.
\end{tabular} & N & 0.0 & Y & Y & 2 & Y & Y Y & Y Y & Y & \\
\hline F24 & 18h & 5Dh & (Holding time) & 0 & 0.00 to 10.00 s & N & 0.00 & Y & Y & 3 & Y & Y Y & Y & Y & \\
\hline
\end{tabular}

\footnotetext{
*Depending upon the inverter's capacity.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Communications address} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Dir.} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & & & & \multicolumn{3}{|r|}{Drive control} & \multirow[b]{2}{*}{} \\
\hline \[
\begin{aligned}
& 0 \\
& \text { ㄷㅡㅡ } \\
& \text { 들 }
\end{aligned}
\] & \[
\begin{aligned}
& 485 \\
& \text { No. }
\end{aligned}
\] & Link No. & & & & & & \[
\left|\begin{array}{l}
\hat{0} \\
0 \\
0 \\
\frac{\pi}{0} \\
0 \\
0
\end{array}\right|
\] & N &  & \[
\begin{aligned}
& 0 \\
& 0 \\
& 3 \\
& 3 \\
& 0 \\
& >
\end{aligned}
\] & & - \begin{tabular}{l}
2 \\
\(\sum_{0}^{0}\) \\
0 \\
0 \\
0 \\
0 \\
\hline
\end{tabular} & \\
\hline F26 & 1Ah & 5Eh & Motor Sound \(\quad\) (Carrier frequency) & 0 & \begin{tabular}{l}
\[
\begin{array}{lll}
\hline 2 \text { to } 15 \mathrm{kHz} & \\
\text { 2: } & 2 \mathrm{kHz} & \\
3: & 3 \mathrm{kHz} & \\
\text { 4: } & 4 \mathrm{kHz} & \\
5: & 5 \mathrm{kHz} & \\
\text { 6: } & 6 \mathrm{kHz} & \\
\text { 7: } & 7 \mathrm{kHz} & \\
8,9: & 8 \mathrm{kHz} \\
10,11: & 10 \mathrm{kHz} \\
\text { 12, } 13,14: & 12 \mathrm{kHz} \\
\text { 15: } & 15 \mathrm{kHz}
\end{array}
\] \\
* In the stack type, the carrier frequency is fixed at 2 kHz by the internal parameter. If it is changed, 2 kHz applies.
\end{tabular} & N & 7 & Y & Y & 10 & Y & Y Y & Y Y & \\
\hline F36 & 24h & h & 30RY Drive Mode & 0 & \begin{tabular}{l}
0 or 1 \\
0 : Excite relay (30) when an alarm occurs \\
1: Excite relay (30) when the inverter power is normally established
\end{tabular} & N & 0 & Y & Y & 43 & Y & Y Y & Y Y & \\
\hline F37 & 25h & 60h & \begin{tabular}{l}
Stop Speed \\
(Speed)
\end{tabular} & 3 & \begin{tabular}{l}
0.0 to \(150.0 \mathrm{r} / \mathrm{min}\) \\
Limited in order not to lower to 0.1 Hz or below (under vector control w/o speed sensor and V/f control).
\end{tabular} & N & 10.0 & Y & Y & 2 & Y & Y Y & Y Y & \\
\hline F38 & 26h & 61 h & (Detection mode) & 1 & 0 or 1
0: Detected speed
1: Reference speed
Fixed at "1" under V/f control & N & 0 & Y & Y & 90 & Y & N N & N Y & \\
\hline F39 & 27h & 62 h & (Zero speed control holding time) & 1 & \begin{tabular}{l}
0.00 to 10.00 s \\
Applies to when timing the application of the mechanical brake.
\end{tabular} & N & 0.50 & Y & Y & 3 & Y & N N & N Y & \\
\hline F40 & 28h & 63h & Torque Limiter Mode 1 & 12 & \begin{tabular}{l}
0 to 3 \\
0 : Disable limiter \\
1: Torque limit \\
2: Power limit \\
3: Torque current limit
\end{tabular} & N & 0 & Y & Y & 44 & Y & Y N & N Y & \\
\hline F41 & 29h & 64h & Torque Limiter Mode 2 & 1 & \[
\begin{aligned}
& 0 \text { to } 3 \\
& \text { 0: Level } 1 \text { to all four quadrants } \\
& \text { 1: Level } 1 \text { to driving, Level } 2 \text { to braking } \\
& \text { 2: Level } 1 \text { to upper limit, Level } 2 \text { to lower limit } \\
& \text { 3: Level } 1 / \text { Level } 2 \text { (switchable) to all four quadrants } \\
& \text { Levels } 1 \text { and } 2 \text { are specified by the source defined by } \\
& \text { F42 and F43, respectively. }
\end{aligned}
\] & N & 0 & Y & Y & 45 & Y & Y Y & Y Y & \\
\hline F42 & 2Ah & 65h & Torque Limiter Level 1 Source & 1 & \begin{tabular}{l}
0 to 5 \\
0: Function code F44 \\
1: Ai [TL-REF1] \\
2: DIA card \\
3: DIB card \\
4: Communications link \\
5: PID output
\end{tabular} & N & 0 & Y & Y & 46 & Y & Y Y & Y Y & \\
\hline F43 & 2Bh & 66h & Torque Limiter Level 2 Source & 1 & 0 to 5
0: Function code F45
1: Ai [TL-REF2]
2: DIA card
3: DIB card
4: Communications link
5: PID output & N & 0 & Y & Y & 47 & Y & Y Y & Y Y & \\
\hline F44 & 2Ch & 67h & Torque Limiter Level 1 & 1 & -300 to 300\% & Y & 150 & Y & Y & 5 & Y & Y Y & Y Y & \\
\hline F45 & 2Dh & 68h & Torque Limiter Level 2 & 1 & -300 to 300\% & Y & 10 & Y & Y & 5 & Y & \(Y\) Y \(Y\) & Y Y & \\
\hline F46 & 2Eh & 69h & Mechanical Loss Compensation & 1 & -300.00 to 300.00\% & Y & 0.00 & Y & Y & 7 & Y & \(Y \mathrm{~N}\) & \(\mathrm{N} Y\) & \\
\hline F47 & 2Fh & 6Ah & Torque Bias T1 & 1 & \[
\begin{array}{|l|}
\hline-300.00 \text { to } 300.00 \% \\
\text { Torque biases T1 to T3 are switchable with DI. } \\
\hline
\end{array}
\] & Y & 0.00 & Y & Y & 7 & Y & Y N & N Y & \\
\hline F48 & 30h & h & Torque Bias T2 & 1 & -300.00 to 300.00\% & Y & 0.00 & Y & Y & 7 & Y & Y N & N Y & \\
\hline F49 & 31h & h & Torque Bias T3 & 1 & -300.00 to 300.00\% & Y & 0.00 & Y & Y & 7 & Y & \(Y \mathrm{~N}\) & \(\mathrm{N} Y\) & \\
\hline F50 & 32h & h & Torque Bias Startup Timer & 1 & \begin{tabular}{l}
0.00 to 1.00 s \\
F50 specifies the time required for generating \(300 \%\) torque.
\end{tabular} & Y & 0.00 & Y & Y & 3 & Y & Y N & N Y & \\
\hline F51 & 33h & FBh & Torque Command Monitor \(\quad\) (Polarity) & 1 & \begin{tabular}{l}
0 or 1 \\
0: Torque polarity \\
1: + for driving, - for braking \\
F51 specifies the polarity of torque related data output (e.g., Ao monitor, LED monitor, and LCD monitor).
\end{tabular} & Y & 0 & Y & Y & 48 & Y & Y Y & Y Y & \\
\hline F52 & 34h & & \[
\begin{array}{|l|}
\hline \text { LED Monitor } \\
\\
\\
\text { (Display coefficient A) }
\end{array}
\] & 8 & \begin{tabular}{l}
-999.00 to 999.00 \\
F52 specifies the conversion coefficient for displaying the load shaft speed and line speed on the LED monitor. \\
Display value \(=\) Motor speed \(\times(0.01\) to 200.00) Only the setting range from 0.01 to 200.00 takes effect. The specification out of the range is limited.
\end{tabular} & Y & 1.00 & Y & Y & 12 & Y & Y Y & Y Y & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { 음 } \\
& 0 \\
& \text { 든 } \\
& \text { 든 }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Communications address} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Dir.} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Drive control} & \multirow[b]{2}{*}{} \\
\hline & \[
\begin{aligned}
& 485 \\
& \text { No. }
\end{aligned}
\] & Link No. & & & & & & & & \[
\begin{aligned}
& 0 \\
& 0 \\
& 3 \\
& 3 \\
& 0
\end{aligned}
\] & \[
\begin{array}{|l|l}
\hline 0 \\
0 & \\
0 \\
3 & 5 \\
0 & 5 \\
> & \\
\hline
\end{array}
\] & \(\bigcirc\) & \\
\hline F60 & 3Ch & & Output Unit (HP/kW) & 0 & ```
0 or 1
0 : kW
1: HP
F60 switches the display unit between kW and HP on
the LED monitor and LCD monitor for the power
consumption (F55 = 6) and input power (F55 = 31). It
also switches the display table between kW and HP
for motor 1 selection (P02).
``` & Y & 0 & Y & 53 & Y & Y & Y Y & \\
\hline F61 & 3Dh & 6Bh & ASR1 (P-gain) & 10 & 0.1 to 500.0 times & Y & 10.0 & Y Y & 2 & Y & N & N Y & \\
\hline F62 & 3Eh & 6 Ch & (Integral constant) & 1 & \[
\begin{aligned}
& 0.000 \text { to } 10.000 \mathrm{~s} \\
& \mathrm{P} \text { control when } \mathrm{F} 62=0.000
\end{aligned}
\] & Y & 0.200 & Y Y & 4 & Y & N & N Y & \\
\hline F63 & 3Fh & 6Dh & (Feedforward gain) & 1 & 0.000 to 9.999 s & Y & 0.000 & Y Y & 4 & Y & N & N Y & \\
\hline F64 & 40h & 6 Eh & (Input filter) & 1 & 0.000 to 5.000 s & Y & 0.040 & Y Y & 4 & Y & Y & Y Y & \\
\hline F65 & 41h & 6 Fh & (Detection filter) & 1 & \[
\begin{array}{|l}
\hline 0.000 \text { to } 0.100 \mathrm{~s} \\
\text { F65 specifies a time constant of the first order delay } \\
\text { filter for detected speed. }
\end{array}
\] & Y & 0.005 & Y & 4 & Y & N & N Y & \\
\hline F66 & 42h & 70h & (Output filter) & 1 & \[
\begin{aligned}
& \hline 0.000 \text { to } 0.100 \mathrm{~s} \\
& \text { F66 specifies a time constant of the first order delay } \\
& \text { filter for torque command. } \\
& \hline
\end{aligned}
\] & N & 0.002 & Y & 4 & Y & N & N Y & \\
\hline F67 & 43h & 71h & S-curve Acceleration \(1 \quad\) (Start) & 1 & 0 to 50\% & Y & 0 & Y Y & 0 & Y & Y & Y Y & \\
\hline F68 & 44h & 72h & (End) & 1 & 0 to 50\% & Y & 0 & Y Y & 0 & Y & \(Y\) & Y Y & \\
\hline F69 & 45h & 73 h & S-curve Deceleration 1 & 1 & 0 to 50\% & Y & 0 & Y & 0 & Y & Y & Y Y & \\
\hline F70 & 46h & 74h & (End) & 1 & 0 to 50\% & Y & 0 & Y Y & 0 & Y & Y Y & Y Y & \\
\hline F72 & 48h & h & Pre-excitation Mode & 4 & \begin{tabular}{l}
0 or 1 \\
0: Cause pre-excitation at the time of startup (Pre-excitation continues for the duration specified by F74.) \\
1: Cause pre-excitation at the time of startup and stop. \\
(Pre-excitation continues for the duration specified by F74 or until the magnetic flux command reaches the detection level specified by E48, whichever is earlier.)
\end{tabular} & N & 0 & Y & 230 & Y & Y N & N N & \\
\hline F73 & 49h & h & Magnetic Flux Level at Light Load & 1 & 10 to 100\% & Y & 100 & Y Y & 16 & Y & N N & N N & \\
\hline F74 & 4Ah & 75h & Pre-excitation (Duration) & 1 & \begin{tabular}{l}
\[
0.0 \text { to } 10.0 \mathrm{~s}
\] \\
Turning a run command (FWD, REV) ON automatically continues pre-excitation for the duration specified by F74.
\end{tabular} & N & 0.0 & Y & 2 & Y & N & N N & \\
\hline F75 & 4Bh & 76h & (Initial level) & 1 & 100 to 400\% & N & 100 & Y Y & 0 & Y & N & N N & \\
\hline F76 & 4 Ch & h & Speed Limiter (Mode) & 3 & ```
0 to 3
0: Level 1 for forward rotation, Level 2 for reverse
 rotation
 Level 1 for both forward and reverse rotations
 Level 1 for upper limit, Level 2 for lower limit
3: Level 1 for forward rotation, Level 2 for reverse
 rotation
(Terminal [12] input added as a bias)
``` & N & 0 & Y Y & 91 & Y & Y & Y Y & \\
\hline F77 & 4Dh & 4Fh & (Level 1) & 1 & -110.0 to 110.0\% & Y & 100.0 & Y & 6 & Y & Y Y & Y Y & \\
\hline F78 & 4Eh & FEh & (Level 2) & 1 & -110.0 to 110.0\% & Y & 100.0 & Y Y & 6 & Y & Y Y & Y Y & \\
\hline F79 & 4Fh & 77h & Motor Selection (M1, M2, M3) & 0 & \begin{tabular}{l}
0 to 2 \\
0: Select M1 \\
(Note that switching of contacts by X terminal functions has priority over this function code setting.) \\
1: Select M2 ( \(X\) terminal functions disabled) \\
2: Select M3 ( \(X\) terminal functions disabled) \\
Select a motor to be used from M1, M2 and M3.
\end{tabular} & N & 0 & Y & 54 & Y & Y Y & Y Y & \\
\hline F80 & 50h & & Switching between HD, MD and LD Drive Modes & 0 & \begin{tabular}{l}
0 to 3 \\
\(0,2,3\) : MD (Medium duty mode, overload capability \(150 \%\) ) \\
1: LD (Low duty mode, overload capability 110\%) in the stack type, F80 switches the drive mode between MD and LD.
\end{tabular} & N & 0 & Y & 56 & Y & Y Y & Y Y & \\
\hline F81 & 51h & & Offset for Speed Setting on Terminal [12] & 3 & \[
\begin{aligned}
& \hline-30000 \text { to } 30000 \mathrm{r} / \mathrm{min} \\
& \text { F81 specifies the offset speed adjustment for analog } \\
& \text { speed setting on terminal [12]. } \\
& \hline
\end{aligned}
\] & Y & 0 & Y & 5 & Y & Y Y & Y Y & \\
\hline F82 & 52h & & Dead Zone for Speed Setting on Terminal [12] & 1 & 0.0 to \(150.0 \mathrm{r} / \mathrm{min}\) F82 specifies the dead zone for analog speed setting on terminal [12] to limit the \(\pm\) speed setting specified by F82 to \(0 \mathrm{r} / \mathrm{min}\). & Y & 0 & Y Y & 2 & Y & Y Y & Y Y & \\
\hline F83 & 53h & & Filter for Speed Setting on Terminal [12] & 1 & 0.000 to 5.000 s & Y & 0.005 & Y Y & 4 & Y & Y Y & Y Y & \\
\hline F84 & 54h & & \begin{tabular}{l}
Display Coefficient for Input Watt-hour Data \\
*This setting is invalid in the stack type.
\end{tabular} & 0 & \begin{tabular}{l}
\[
0.000 \text { to } 9999
\] \\
F84 specifies a display coefficient for displaying the input watt-hour data (M116). \\
M116 = F84 \(\times\) M115 (Input watt-hour, kWh) Specification of 0.000 clears the input watt-hour data.
\end{tabular} & Y & 0.010 & Y & 101 & Y & Y Y & Y Y & \\
\hline F85 & 55h & & Display Filter for Calculated Torque & 0 & \begin{tabular}{l}
0.000 to 1.000 s \\
F85 specifies a display filter for calculated torque output for monitoring (LED monitor and LCD monitor).
\end{tabular} & Y & 0.100 & Y & 4 & Y & Y Y & Y Y & \\
\hline
\end{tabular}

\subsection*{5.3.2 E codes (Extension Terminal Functions)}



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
0 \\
\hline 0 \\
0 \\
0 \\
\hline 0 \\
\hline 0 \\
0 \\
\hline 1
\end{tabular}} & \multicolumn{2}{|l|}{Communica－ tions address} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Dir．} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & & & & \multicolumn{3}{|c|}{Drive control} & \multirow[b]{2}{*}{} \\
\hline & \[
\begin{aligned}
& 485 \\
& \text { No. }
\end{aligned}
\] & Link No． & & & & & &  & （1） &  & \begin{tabular}{l|l}
0 \\
0 & 0 \\
3 & 0 \\
0 & 0 \\
0 & 0
\end{tabular} & &  & \\
\hline E20 & 114h & 8Ah & Terminal［Y11］Function & 1 & 0 to 84 （See Terminal［Y1］Function．） & N & 26 & Y & Y & 58 & Y & Y & Y & \\
\hline E21 & 115h & 8Bh & Terminal［Y12］Function & 1 & 0 to 84 （See Terminal［Y1］Function．） & N & 26 & Y & Y & 58 & Y Y & Y & Y & \\
\hline E22 & 116h & 8Ch & Terminal［Y13］Function & 1 & 0 to 84 （See Terminal［Y1］Function．） & N & 26 & Y & Y & 58 & Y & Y & Y & \\
\hline E23 & 117h & 8Dh & Terminal［Y14］Function & 1 & 0 to 84 （See Terminal［Y1］Function．） & N & 26 & Y & Y & 58 & Y Y & Y & Y & \\
\hline E24 & 118h & 8Eh & Terminal［Y15］Function & 1 & 0 to 84 （See Terminal［Y1］Function．） & N & 26 & Y & Y & 58 & Y Y & Y & Y & \\
\hline E25 & 119h & 8Fh & Terminal［Y16］Function & 1 & 0 to 84 （See Terminal［Y1］Function．） & N & 26 & Y & Y & 58 & Y & \(Y\) & Y & \\
\hline E26 & 11An & 90h & Terminal［Y17］Function & 1 & 0 to 84 （See Terminal［Y1］Function．） & N & 26 & Y & Y & 58 & Y Y & Y & Y & \\
\hline E27 & 11Bh & 91h & Terminal［Y18］Function & 1 & 0 to 84 （See Terminal［Y1］Function．） & N & 26 & Y & Y & 58 & Y & Y & Y & \\
\hline E28 & 11Ch & h & Y Terminal Function （Normal open／close） & 0 & \[
\begin{aligned}
& \hline 0000 \text { to 001F } \\
& \text { 0: Normal open } \\
& \text { 1: Normal close } \\
& \hline
\end{aligned}
\] & N & 0000 & Y & Y & 36 & Y & Y & Y & \\
\hline E29 & 11Dh & 92h & PG Pulse Output Selection & 0 & ```
0 to 10
    No dividing
    1/2
    \(1 / 4\)
    \(1 / 8\)
    1/16
    1/32
    1/64
    0 to 6: Internal PG input is divided before output.
7: Internal speed command: Pulse oscillation mode
8: PG (PD): Detected pulse input oscillation mode
9: PG (PR): Pulse command input oscillation mode
10: Integrated PG, PG (SD): Detected speed pulse input
    oscillation mode
    7 to 10: Input pulse is arbitrarily divided before
    output. (AB \(90^{\circ}\) phase difference signal)
``` & N & 0 & Y & Y & 92 & Y & N & Y & \\
\hline E30 & 11Eh & h & \begin{tabular}{|c}
\begin{tabular}{c}
Motor Overheat Protection \\
（Temperature）
\end{tabular}
\end{tabular} & 8 & 50 to \(200^{\circ} \mathrm{C}\) & Y & 150 & Y & Y & 0 & Y & Y & Y & \\
\hline E31 & 11Fh & h & Motor Overheat Early Warning
（Temperature） & 1 & 50 to \(200^{\circ} \mathrm{C}\) & Y & 75 & Y & Y & 0 & Y & Y & Y & \\
\hline E32 & 120h & CDh & M1－M3 PTC Activation Level & 1 & \begin{tabular}{l}
\[
0.00 \text { to } 5.00 \mathrm{~V}
\] \\
The PTC is activated if the input voltage of the PTC terminal exceeds this activation level when the PTC thermistor is selected（P30／A31／A131＝2）．
\end{tabular} & N & 1.60 & Y & Y & 3 & Y & Y & Y & \\
\hline E33 & 121h & & Inverter Overload Early Warning & 1 & 25 to 100\％ & Y & 90 & Y & Y & 0 & Y & Y & Y & \\
\hline E34 & 122h & h & Motor Overload Early Warning & 1 & 25 to 100\％ & Y & 90 & Y & Y & 0 & Y Y & Y & Y & \\
\hline E35 & 123h & h & \begin{tabular}{l}
DB Overload Protection \\
＊This setting is invalid in the stack type．
\end{tabular} & 1 & \begin{tabular}{l}
0 to 100\％ \\
E35 specifies \％ED of the braking resistor relative to the inverter capacity． \\
When E35＝0，the overload protection function（ロ゙ルード ） is disabled．
\end{tabular} & Y & 0 & Y & Y & 0 & Y & N & Y & \\
\hline E36 & 124h & & DB Overload Early Warning ＊This setting is invalid in the stack type． & 1 & 0 to \(100 \%\) & Y & 80 & Y & Y & 0 & Y & N & Y & \\
\hline E37 & 125h & & DB Thermal Time Constant ＊This setting is invalid in the stack type． & 1 & 0 to 1000 s & Y & 300 & Y & Y & 0 & Y & N & Y & \\
\hline E38 & 126h & 93h & Speed Detection Mode & 8 & \begin{tabular}{l}
000 to 111 \\
Detection mode of 0xE39／E40／E41 \\
0：Detected speed \\
1：Reference speed \\
Under V／f control，only the specified reference speed is valid．
\end{tabular} & Y & 000 & Y & Y & 9 & Y & N & Y & \\
\hline E39 & 127h & 94h & Speed Detection Level 1 & 1 & \begin{tabular}{l}
0 to \(30000 \mathrm{r} / \mathrm{min}\) \\
If \(\boldsymbol{N - F B 1} \pm\)（Detected speed 1）or \(\boldsymbol{N}\)－REF4（Reference speed 4）exceeds this speed detection level 1，the inverter issues the detection signal．
\end{tabular} & Y & 1500 & Y & Y & 0 & Y & Y & Y & \\
\hline E40 & 128h & 95h & Speed Detection Level 2 & 1 & -30000 to \(30000 \mathrm{r} / \mathrm{min}\) & Y & 1500 & Y & \(Y\) & 5 & Y & Y & Y & \\
\hline E41 & 129h & 96h & Speed Detection Level 3 & 1 & －30000 to \(30000 \mathrm{r} / \mathrm{min}\) & Y & 1500 & Y & Y & 5 & Y & Y & Y & \\
\hline E42 & 12Ah & 97h & Speed Arrival \({ }^{\text {（Detection width）}}\) & 1 & \begin{tabular}{l}
\[
1.0 \text { to } 20.0 \%
\] \\
If the detected speed comes within the range of \(\boldsymbol{N}\)－REF2 （Reference speed 2）\(\pm\) this detection width，the inverter issues the detection signal．
\end{tabular} & Y & 3.0 & Y & Y & 2 & Y & N & Y & \\
\hline E43 & 12Bh & 98h & \begin{tabular}{l}
Speed Agreement \\
（Detection width）
\end{tabular} & 1 & \begin{tabular}{l}
1.0 to 20．0\％ \\
If \(\boldsymbol{N}-\mathrm{FB} 2 \pm\)（Detected speed 2 ）is within the range of N－REF4（Reference speed 4）\(\pm\) this detection width，the inverter issues the detection signal．
\end{tabular} & Y & 3.0 & Y & Y & 2 & Y & N & Y & \\
\hline E44 & 12Ch & 99h & （Off－delay timer） & 1 & 0.000 to 5.000 s & Y & 0.100 & Y & Y & 4 & Y & N & Y & \\
\hline E45 & 12Dh & 9 Ah & Speed Disagreement Alarm & 1 & ```
00 to 21
Units place: Speed disagreement alarm (に, (ーフ)
0: Disable
1: Enable
Tenths place: Power supply phase loss detection (L
0 : Standard level
1: For particular manufacturers.
2: Cancel
``` & N & 00 & Y & Y & 9 & Y & N & Y & \\
\hline E46 & 12Eh & 9Bh & Torque Detection Level 1 & 3 & \begin{tabular}{l}
0 to 300\％ \\
Calculated value under V／f control． \\
If the torque command exceeds this setting，the inverter issues the detection signal．
\end{tabular} & Y & 30 & Y & Y & 16 & Y & Y Y & Y & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { 으 } \\
& \hline 0 \\
& 0 \\
& \text { 은 } \\
& \vdots \\
& \hline 17
\end{aligned}
\]} & \multicolumn{2}{|l|}{Communications address} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Dir.} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & & & & \multicolumn{4}{|c|}{Drive control} & \multirow[b]{2}{*}{} \\
\hline & \[
\begin{aligned}
& 485 \\
& \text { No. }
\end{aligned}
\] & \begin{tabular}{l}
Link \\
No.
\end{tabular} & & & & & &  & - &  & \[
\begin{aligned}
& 0 \\
& 0 \\
& 3 \\
& 3 \\
& 0
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 3 \\
& 0 \\
& 0 \\
& >
\end{aligned}\right.
\] & \(\stackrel{*}{*}\) & \[
\left|\begin{array}{l}
\sum_{n} \\
\sum_{n} \\
0 \\
\vdots \\
\vdots \\
\vdots \\
>
\end{array}\right|
\] & \\
\hline E91 & 15Bh & h & \begin{tabular}{l}
Link Command Function Selection 2 \\
(Available soon)
\end{tabular} & 1 & \begin{tabular}{l}
0 to 26 \\
When E91 \(\neq 0\) (OFF), analog setting via the communications link (S17) has priority over Ai input specified by Ai function selection. \\
(Refer to the Link Command Function Selection 1.)
\end{tabular} & Y & 0 & Y & Y & 231 & Y & Y & Y & Y & \\
\hline E101 & 1E01h & h & Ai1 Offset & 4 & -100.00 to 100.00\% & Y & 0.00 & Y & Y & 7 & Y & Y & Y & Y & \\
\hline E102 & 1E02h & h & Ai2 Offset & 1 & -100.00 to 100.00\% & Y & 0.00 & Y & Y & 7 & Y & Y & Y & Y & \\
\hline E103 & 1E03h & h & Ai3 Offset & 1 & -100.00 to 100.00\% & Y & 0.00 & Y & Y & 7 & Y & Y & Y & Y & \\
\hline E104 & 1E04h & h & Ai4 Offset & 1 & -100.00 to 100.00\% & Y & 0.00 & Y & Y & 7 & Y & Y & Y & Y & \\
\hline E105 & 1E05h & h & Ai1 Dead Zone & 4 & \begin{tabular}{l}
\[
0.00 \text { to } 10.00 \%
\] \\
Limits all command values except input values to 0 V .
\end{tabular} & Y & 0.00 & Y & Y & 3 & Y & Y & Y & Y & \\
\hline E106 & 1E06h & h & Ai2 Dead Zone & 1 & 0.00 to 10.00\% & Y & 0.00 & Y & Y & 3 & Y & Y & Y & Y & \\
\hline E107 & 1E07h & h & Ai3 Dead Zone & 1 & 0.00 to 10.00\% & Y & 0.00 & Y & Y & 3 & Y & Y & Y & Y & \\
\hline E108 & 1E08h & h & Ai4 Dead Zone & 1 & 0.00 to 10.00\% & Y & 0.00 & Y & Y & 3 & Y & Y & Y & Y & \\
\hline E109 & 1E09h & h & \begin{tabular}{l}
Dividing Ratio for FA, FB Pulse Output \\
(Numerator)
\end{tabular} & 2 & \begin{tabular}{l}
1 to 65535 \\
Specifies the numerator of the dividing ratio for FA and FB pulse output.
\end{tabular} & N & 1000 & Y & Y & 0 & Y & Y & N & Y & \\
\hline E110 & 1E0Ah & h & (Denominator) & 1 & \begin{tabular}{l}
1 to 65535 \\
Specifies the denominator of the dividing ratio for FA and FB pulse output.
\end{tabular} & N & 1000 & Y & Y & 0 & Y & Y & N & Y & \\
\hline E114 & 1E0Eh & h & \begin{tabular}{l}
Speed Agreement 2 \\
(Detection width)
\end{tabular} & 4 & \begin{tabular}{l}
\[
1.0 \text { to } 20.0 \%
\] \\
If \(N-F B 2 \pm\) (Detected speed 2 ) is within the range of N-REF4 (Reference speed 4) \(\pm\) this detection width, the inverter issues the speed agreement signal \(\mathbf{N}\)-AG2.
\end{tabular} & Y & 3.0 & Y & Y & 2 & Y & Y & N & Y & \\
\hline E115 & 1E0Fh & h & (Off-delay timer) & 1 & \begin{tabular}{l}
\[
0.000 \text { to } 5.000 \text { s }
\] \\
Specifies the off-delay timer of the speed agreement signal \(\boldsymbol{N}\)-AG2.
\end{tabular} & Y & 0.100 & Y & Y & 4 & Y & Y & N & Y & \\
\hline E116 & 1E10h & h & \begin{tabular}{l}
Speed Agreement 3 \\
(Detection width)
\end{tabular} & 1 & \begin{tabular}{l}
\[
1.0 \text { to } 20.0 \%
\] \\
If \(\boldsymbol{N}-\mathrm{FB2} \pm\) (Detected speed 2 ) is within the range of N-REF4 (Reference speed 4) \(\pm\) this detection width, the inverter issues the speed agreement signal \(\mathbf{N}-\mathbf{A G 3}\).
\end{tabular} & Y & 3.0 & Y & Y & 2 & Y & Y & N & Y & \\
\hline E117 & 1E11h & h & (Off-delay timer) & 1 & \begin{tabular}{l}
\[
0.000 \text { to } 5.000 \mathrm{~s}
\] \\
Specifies the off-delay timer of the speed agreement signal \(N\)-AG3.
\end{tabular} & Y & 0.100 & Y & Y & 4 & Y & Y & N & Y & \\
\hline E118 & 1E12h & h & Electric Motor Fan Stop Signal Preset Temperature & 0 & \begin{tabular}{l}
0 to 200 \\
If the NTC detection temperature of the motor fan having an NTC thermistor drops below this setting, the inverter turns ON the axial fan stopped signal MFAN.
\end{tabular} & Y & 0 & Y & Y & 0 & Y & Y & Y & Y & \\
\hline
\end{tabular}

\subsection*{5.3.3 C codes (Control Functions)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l} 
응 \\
\hline 0 \\
0 \\
\hline 0 \\
\hline 0 \\
\hline
\end{tabular}} & \multicolumn{2}{|l|}{Communications address} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Dir.} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{\[
\left|\begin{array}{c}
0 \\
\stackrel{y}{\lambda} \\
0 \\
0 \\
\frac{0}{0} \\
0 \\
0
\end{array}\right|
\]} & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Drive control} & \multirow[b]{2}{*}{} \\
\hline & \[
\begin{aligned}
& 485 \\
& \text { No. }
\end{aligned}
\] & Link No. & & & & & & & & & \[
\begin{aligned}
& 0 \\
& 0 \\
& 3 \\
& 3 \\
& 0 \\
& >
\end{aligned}
\] & \[
\left\lvert\, \begin{gathered}
0 \\
0 \\
0 \\
0 \\
3 \\
0 \\
0
\end{gathered}>\right.
\] &  & \\
\hline C01 & 201h & h & Jump Speed 1 & 4 & \begin{tabular}{l}
0 to \(30000 \mathrm{r} / \mathrm{min}\) \\
Enables the inverter to jump over a point on the reference speed in order to skip a resonance point of the driven machinery (load) and the motor speed. Up to three different jump points can be specified.
\end{tabular} & Y & 0 & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline C02 & 202h & h & Jump Speed 2 & 1 & 0 to \(30000 \mathrm{r} / \mathrm{min}\) & Y & 0 & Y & Y & 0 & Y & Y & Y Y & \\
\hline C03 & 203h & h & Jump Speed 3 & 1 & 0 to \(30000 \mathrm{r} / \mathrm{min}\) & Y & 0 & Y & Y & 0 & Y & Y & Y Y & \\
\hline C04 & 204h & h & Hysteresis Width for Jump Speed & 1 & 0 to \(1000 \mathrm{r} / \mathrm{min}\) & Y & 0 & Y & Y & 0 & Y & Y & Y Y & \\
\hline C05 & 205h & 9Eh & Multistep Speed 1 & 17 & 0 to \(30000 \mathrm{r} / \mathrm{min} / 0.00\) to \(100.00 \%\) / 0.0 to \(999.9 \mathrm{~m} / \mathrm{min}\) (Switchable by C21) Multistep speeds 1 to 15 can be switched by turning terminal commands SS1, SS2, SS4 and SS8 ON/OFF. & Y & \[
\begin{array}{|c|}
\hline 0 / 0.00 / \\
0.0
\end{array}
\] & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline C06 & 206h & 9Fh & Multistep Speed 2 & 1 & 0 to \(30000 \mathrm{r} / \mathrm{min} / 0.00\) to \(100.00 \%\) / 0.0 to \(999.9 \mathrm{~m} / \mathrm{min}\) (Switchable by C21) & Y & \[
\begin{array}{|c|}
\hline 0 / 0.00 / \\
0.0
\end{array}
\] & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline C07 & 207h & A0h & Multistep Speed 3 & 1 & 0 to \(30000 \mathrm{r} / \mathrm{min} / 0.00\) to \(100.00 \%\) / 0.0 to \(999.9 \mathrm{~m} / \mathrm{min}\) (Switchable by C21) & Y & \[
\begin{array}{|c|}
\hline 0 / 0.00 / \\
0.0
\end{array}
\] & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline C08 & 208h & A1h & Multistep Speed 4 & 1 & 0 to \(30000 \mathrm{r} / \mathrm{min} / 0.00\) to \(100.00 \%\) / 0.0 to \(999.9 \mathrm{~m} / \mathrm{min}\) (Switchable by C21) & Y & \[
\begin{array}{|c|}
\hline 0 / 0.00 / \\
0.0
\end{array}
\] & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline C09 & 209h & A2h & Multistep Speed 5 & 1 & 0 to \(30000 \mathrm{r} / \mathrm{min} / 0.00\) to \(100.00 \%\) / 0.0 to \(999.9 \mathrm{~m} / \mathrm{min}\) (Switchable by C21) & Y & \[
\begin{array}{|c|}
\hline 0 / 0.00 / \\
0.0
\end{array}
\] & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline C10 & 20Ah & A3h & Multistep Speed 6 & 1 & \begin{tabular}{l}
0 to \(30000 \mathrm{r} / \mathrm{min} / 0.00\) to \(100.00 \%\) / \\
0.0 to \(999.9 \mathrm{~m} / \mathrm{min}\) (Switchable by C21)
\end{tabular} & Y & \[
\begin{array}{|c|}
\hline 0 / 0.00 / \\
0.0
\end{array}
\] & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline C11 & 20Bh & A4h & Multistep Speed 7 & 1 & 0 to \(30000 \mathrm{r} / \mathrm{min} / 0.00\) to \(100.00 \%\) / 0.0 to \(999.9 \mathrm{~m} / \mathrm{min}\) (Switchable by C21) & Y & \[
\begin{array}{|c|}
\hline 0 / 0.00 / \\
0.0
\end{array}
\] & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline C12 & 20Ch & h & Multistep Speed 8 & 1 & 0 to \(30000 \mathrm{r} / \mathrm{min} / 0.00\) to \(100.00 \%\) / 0.0 to \(999.9 \mathrm{~m} / \mathrm{min}\) (Switchable by C21) & Y & \[
\begin{array}{|c|}
\hline 0 / 0.00 / \\
0.0
\end{array}
\] & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline C13 & 20Dh & h & Multistep Speed 9 & 1 & 0 to \(30000 \mathrm{r} / \mathrm{min} / 0.00\) to \(100.00 \%\) / 0.0 to \(999.9 \mathrm{~m} / \mathrm{min}\) (Switchable by C21) & Y & \[
\left|\begin{array}{c}
0 / 0.00 / \\
0.0
\end{array}\right|
\] & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline C14 & 20Eh & h & Multistep Speed 10 & 1 & 0 to \(30000 \mathrm{r} / \mathrm{min} / 0.00\) to \(100.00 \%\) / 0.0 to \(999.9 \mathrm{~m} / \mathrm{min}\) (Switchable by C21) & Y & \[
\begin{array}{|c|}
\hline 0 / 0.00 / \\
0.0
\end{array}
\] & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline C15 & 20Fh & h & Multistep Speed 11 & 1 & 0 to \(30000 \mathrm{r} / \mathrm{min} / 0.00\) to \(100.00 \%\) / 0.0 to \(999.9 \mathrm{~m} / \mathrm{min}\) (Switchable by C21) & Y & \[
\begin{array}{|c|}
\hline 0 / 0.00 / \\
0.0
\end{array}
\] & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline C16 & 210h & h & Multistep Speed 12 & 1 & 0 to \(30000 \mathrm{r} / \mathrm{min} / 0.00\) to \(100.00 \%\) / 0.0 to \(999.9 \mathrm{~m} / \mathrm{min}\) (Switchable by C21) & Y & \[
\begin{array}{|c|}
\hline 0 / 0.00 / \\
0.0
\end{array}
\] & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline C17 & 211h & h & Multistep Speed 13 & 1 & 0 to \(30000 \mathrm{r} / \mathrm{min} / 0.00\) to \(100.00 \%\) / 0.0 to \(999.9 \mathrm{~m} / \mathrm{min}\) (Switchable by C21) & Y & \[
\begin{array}{|c|}
\hline 0 / 0.00 / \\
0.0 \\
\hline
\end{array}
\] & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline C18 & 212h & h & Multistep Speed 14/ Creeping Speed 1 & 1 & 0 to \(30000 \mathrm{r} / \mathrm{min} / 0.00\) to \(100.00 \%\) / 0.0 to \(999.9 \mathrm{~m} / \mathrm{min}\) (Switchable by C21) C18 and C19 apply also to the creep speed under UP/DOWN control. & Y & \[
\begin{array}{|c|}
\hline 0 / 0.00 / \\
0.0
\end{array}
\] & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline C19 & 213h & h & Multistep Speed 15/ Creeping Speed 2 & 1 & 0 to \(30000 \mathrm{r} / \mathrm{min} / 0.00\) to \(100.00 \%\) / 0.0 to \(999.9 \mathrm{~m} / \mathrm{min}\) (Switchable by C21) & Y & \[
\begin{array}{|c|}
\hline 0 / 0.00 / \\
0.0
\end{array}
\] & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline C20 & 214h & h & Multistep Speed Agreement Timer & 1 & \begin{tabular}{l}
\[
0.000 \text { to } 0.100 \mathrm{~s}
\] \\
When SS1, SS2, SS4 and SS8 are kept at the same status for the duration specified by this function code, the inverter switches the reference speed.
\end{tabular} & Y & 0.000 & Y & Y & 4 & Y & Y Y & Y Y & \\
\hline C21 & 215h & & Multistep Speed Configuration Definition & 1 & \begin{tabular}{l}
0 to 2 \\
0: 0 to \(30000 \mathrm{r} / \mathrm{min}\) \\
1: 0.00 to \(100.00 \%\) \\
2: 0.0 to \(999.9 \mathrm{~m} / \mathrm{min}\) \\
Defines the unit of multistep speed specified by C05 \\
to C19. When C21 = 1, the percentage of the maximum speed (F03/A06/A40) of the selected motor applies.
\end{tabular} & N & 0 & Y & Y & 93 & Y & Y Y & Y Y & \\
\hline C25 & 219h & & Speed Command N2 & 0 & \begin{tabular}{l}
0 to 9 \\
0: Keypad ( \((\underset{\wedge}{ }(\diamond\) keys) \\
1: Analog input to terminal [12](0 to \(\pm 10 \mathrm{~V})\) \\
2: Analog input to terminal [12](0 to +10 V ) \\
3: UP/DOWN control (Initial speed \(=0\) ) \\
4: UP/DOWN control (Initial speed = Last value) \\
5: UP/DOWN control (Initial speed = Creep speed 1 \\
or 2) \\
6: DIA card input \\
7: DIB card input \\
8: N-REFV input to terminal [Ai1] \\
9: N-REFC input to terminal [Ai2] \\
The speed command specified by this function code takes effect when X terminal command N2/N1 is turned ON.
\end{tabular} & N & 0 & Y & Y & 41 & Y & Y Y & Y Y & \\
\hline C29 & 21Dh & & Jogging Speed & 0 & \begin{tabular}{l}
0 to \(30000 \mathrm{r} / \mathrm{min}\) \\
Specifies the speed to be applied when the motor jogs.
\end{tabular} & Y & 50 & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline C30 & 21Eh & & ASR-JOG (P-gain) & 9 & 0.1 to 500.0 times & Y & 10.0 & Y & Y & 2 & Y & N & N Y & \\
\hline C31 & 21Fh & h & (l-constant) & 1 & \[
\begin{aligned}
& 0.000 \text { to } 10.000 \mathrm{~s} \\
& \mathrm{P} \text { control when } \mathrm{C} 31=0.000
\end{aligned}
\] & Y & 0.200 & Y & Y & 4 & Y & Y N & N Y & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
0.0 \\
\hline 0 \\
0 \\
\hline 0 \\
\hline 0 \\
\hline 1
\end{tabular}} & \multicolumn{2}{|l|}{Communications address} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Dir.} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { 오 } \\
& \text { = } \\
& 0 \\
& \text { D } \\
& \text { 言 } \\
& \text { त }
\end{aligned}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{4}{|c|}{Drive control} & \multirow[b]{2}{*}{} \\
\hline & \[
\begin{aligned}
& 485 \\
& \text { No. }
\end{aligned}
\] & \begin{tabular}{l}
Link \\
No.
\end{tabular} & & & & & & & & & \[
\begin{aligned}
& 0 \\
& 0 \\
& 3 \\
& 3 \\
& 0 \\
& >
\end{aligned}
\] & \[
\left(\begin{array}{l}
0 \\
0 \\
0 \\
3 \\
0 \\
>
\end{array}\right.
\] & \(\pm\) & \[
\begin{aligned}
& \sum_{n}^{\infty} \\
& \sum_{n} \\
& 0 \\
& \vdots \\
& \vdots \\
& 0 \\
& \hline
\end{aligned}
\] & \\
\hline C32 & 220h & h & (Input filter) & 1 & 0.000 to 5.000 s & Y & 0.040 & Y & Y & 4 & Y & Y & Y & Y & \\
\hline C33 & 221h & h & (Detection filter) & 1 & 0.000 to 0.100 s & Y & 0.005 & \(Y\) & \(Y\) & 4 & Y & \(Y\) & N & Y & \\
\hline C34 & 222h & h & (Output filter) & 1 & 0.000 to 0.100 s & N & 0.002 & Y & Y & 4 & Y & Y & N & Y & \\
\hline C35 & 223h & h & Acceleration Time for Jogging & 1 & \[
\begin{aligned}
& 0.01 \text { to } 99.99 \mathrm{~s} \\
& 100.0 \text { to } 999.9 \mathrm{~s} \\
& 1000 \text { to } 3600 \mathrm{~s}
\end{aligned}
\] & Y & 5.00 & Y & Y & 13 & Y & Y & Y & Y & \\
\hline C36 & 224h & h & Deceleration Time for Jogging & 1 & 0.01 to 99.99 s 100.0 to 999.9 s 1000 to 3600 s & Y & 5.00 & Y & Y & 13 & Y & Y & Y & Y & \\
\hline C37 & 225h & h & S-curve JOG (Start side) & 1 & 0 to 50\% & Y & 0 & Y & Y & 0 & Y & Y & Y & Y & \\
\hline C38 & 226h & h & S-curve JOG (End side) & 1 & 0 to 50\% & Y & 0 & Y & \(Y\) & 0 & Y & Y & \(Y\) & Y & \\
\hline C40 & 228h & h & ASR2 (P-gain) & 10 & 0.1 to 500.0 times & Y & 10.0 & Y & Y & 2 & Y & Y & N & Y & \\
\hline C41 & 229h & h & (l-constant) & 1 & \[
\begin{aligned}
& 0.000 \text { to } 10.000 \mathrm{~s} \\
& \text { P control when C41 }=0.000
\end{aligned}
\] & Y & 0.200 & Y & Y & 4 & Y & Y & N & Y & \\
\hline C42 & 22Ah & h & (Feedforward gain) & 1 & 0.000 to 9.999 s & Y & 0.000 & Y & Y & 4 & Y & Y & N & Y & \\
\hline C43 & 22Bh & h & (Input filter) & 1 & 0.000 to 5.000 s & Y & 0.040 & Y & Y & 4 & Y & Y & Y & Y & \\
\hline C44 & 22Ch & h & (Detection filter) & 1 & 0.000 to 0.100 s & Y & 0.005 & Y & \(Y\) & 4 & Y & Y & N & Y & \\
\hline C45 & 22Dh & h & (Output filter) & 1 & 0.000 to 0.100 s & N & 0.002 & Y & \(Y\) & 4 & Y & \(Y\) & N & Y & \\
\hline C46 & 22Eh & h & Acceleration Time 2 & 1 & 0.01 to 99.99 s 100.0 to 999.9 s 1000 to 3600 s & Y & 5.00 & Y & Y & 13 & Y & Y & Y & Y & \\
\hline C47 & 22Fh & h & Deceleration Time 2 & 1 & 0.01 to 99.99 s 100.0 to 999.9 s 1000 to 3600 s & Y & 5.00 & Y & Y & 13 & Y & Y & Y & Y & \\
\hline C48 & 230h & h & S-curve 2 (Start side) & 1 & 0 to 50\% & Y & 0 & Y & Y & 0 & Y & Y & Y & Y & \\
\hline C49 & 231h & h & S-curve 2 (End side) & 1 & 0 to 50\% & Y & 0 & Y & \(Y\) & 0 & \(Y\) & Y & Y & Y & \\
\hline C50 & 232h & h & ASR3 (P-gain) & 10 & 0.1 to 500.0 times & Y & 10.0 & Y & \(Y\) & 2 & Y & \(Y\) & N & \(Y\) & \\
\hline C51 & 233h & h & (I-constant) & 1 & \[
\begin{array}{|l|}
\hline 0.000 \text { to } 10.000 \mathrm{~s} \\
\text { P control when C41 }=0.000
\end{array}
\] & Y & 0.200 & Y & Y & 4 & Y & Y & N & Y & \\
\hline C52 & 234h & h & (Feedforward gain) & 1 & 0.000 to 9.999 s & Y & 0.000 & Y & Y & 4 & Y & Y & N & Y & \\
\hline C53 & 235h & h & (Input filter) & 1 & 0.000 to 5.000 s & Y & 0.040 & Y & \(Y\) & 4 & \(Y\) & Y & Y & \(Y\) & \\
\hline C54 & 236h & h & (Detection filter) & 1 & 0.000 to 0.100 s & Y & 0.005 & Y & Y & 4 & Y & Y & N & Y & \\
\hline C55 & 237h & h & (Output filter) & 1 & 0.000 to 0.100 s & N & 0.002 & \(Y\) & \(Y\) & 4 & \(Y\) & \(Y\) & N & \(Y\) & \\
\hline C56 & 238h & h & Acceleration Time 3 & 1 & \[
\begin{aligned}
& 0.01 \text { to } 99.99 \mathrm{~s} \\
& 100.0 \text { to } 999.9 \mathrm{~s} \\
& 1000 \text { to } 3600 \mathrm{~s}
\end{aligned}
\] & Y & 5.00 & Y & Y & 13 & Y & Y & Y & Y & \\
\hline C57 & 239h & h & Deceleration Time 3 & 1 & \[
\begin{aligned}
& 0.01 \text { to } 99.99 \mathrm{~s} \\
& 100.0 \text { to } 999.9 \mathrm{~s} \\
& 1000 \text { to } 3600 \mathrm{~s}
\end{aligned}
\] & Y & 5.00 & Y & Y & 13 & Y & Y & Y & Y & \\
\hline C58 & 23Ah & h & S-curve 3 (Start side) & 1 & 0 to 50\% & Y & 0 & Y & \(Y\) & 0 & Y & Y & Y & Y & \\
\hline C59 & 23Bh & h & S-curve 3 (End side) & 1 & 0 to 50\% & Y & 0 & Y & \(Y\) & 0 & Y & \(Y\) & Y & Y & \\
\hline C60 & 23Ch & h & ASR4 (P-gain) & 10 & 0.1 to 500.0 times & Y & 10.0 & Y & \(Y\) & 2 & Y & Y & N & Y & \\
\hline C61 & 23Dh & h & (l-gain) & 1 & \[
\begin{array}{|l|}
\hline 0.000 \text { to } 10.000 \mathrm{~s} \\
\text { P control when C41 }=0.000 \\
\hline
\end{array}
\] & Y & 0.200 & Y & Y & 4 & Y & Y & N & Y & \\
\hline C62 & 23Eh & h & (Feedforward gain) & 1 & 0.000 to 9.999 s & Y & 0.000 & Y & Y & 4 & Y & Y & N & Y & \\
\hline C63 & 23Fh & h & (Input filter) & 1 & 0.000 to 5.000 s & Y & 0.040 & Y & \(Y\) & 4 & Y & Y & Y & \(Y\) & \\
\hline C64 & 240h & h & (Detection filter) & 1 & 0.000 to 0.100 s & Y & 0.005 & \(Y\) & \(Y\) & 4 & Y & Y & N & Y & \\
\hline C65 & 241h & h & (Output filter) & 1 & 0.000 to 0.100 s & N & 0.002 & \(Y\) & \(Y\) & 4 & Y & \(Y\) & N & \(Y\) & \\
\hline C66 & 242h & h & Acceleration Time 4 & 1 & \begin{tabular}{l|l}
0.01 to 99.99 s \\
100.0 to 999.9 s \\
1000 to 3600 s
\end{tabular} & Y & 5.00 & Y & Y & 13 & Y & Y & Y & Y & \\
\hline C67 & 243h & h & Deceleration Time 4 & 1 & \[
\begin{aligned}
& 0.01 \text { to } 99.99 \mathrm{~s} \\
& 100.0 \text { to } 999.9 \mathrm{~s} \\
& 1000 \text { to } 3600 \mathrm{~s}
\end{aligned}
\] & Y & 5.00 & Y & Y & 13 & Y & Y & Y & Y & \\
\hline C68 & 244h & h & S-curve 4 (Start side) & 1 & 0 to 50\% & Y & 0 & Y & Y & 0 & Y & Y & Y & Y & \\
\hline C69 & 245h & h & S-curve 4 (End side) & 1 & 0 to 50\% & Y & 0 & \(Y\) & \(Y\) & 0 & Y & \(Y\) & Y & Y & \\
\hline C70 & 246h & h & ASR Switching Time & 0 & 0.00 to 2.55 s & Y & 1.00 & Y & \(Y\) & 3 & Y & Y & N & Y & \\
\hline C71 & 247h & A5h & ACC/DEC Switching Speed & 0 & 0.00 to \(100.00 \%\) & Y & 0.00 & \(Y\) & \(Y\) & 3 & Y & \(Y\) & Y & Y & \\
\hline C72 & 248h & A6h & ASR Switching Time & 0 & 0.00 to 100.00\% & Y & 0.00 & Y & \(Y\) & 3 & Y & Y & N & \(Y\) & \\
\hline C73 & 249h & h & Creep Speed Switching (under UP/DOWN control) & 0 & \[
\begin{array}{|l}
\hline 00 \text { to } 11 \\
\text { (Creep Speed 1)(Creep Speed 2) } \\
\text { 0: Function code setting (C18, C19) } \\
\text { 1: Analog input (CRP1, CRP2) } \\
\hline
\end{array}
\] & N & 00 & Y & Y & 9 & Y & Y & Y & Y & \\
\hline
\end{tabular}

\subsection*{5.3.4 P codes (Motor Parameter Functions M1)}

*Depending upon the inverter's capacity.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Communications address} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Dir.} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & & & & \multicolumn{4}{|c|}{Drive control} & \multirow[b]{2}{*}{} \\
\hline  & \[
\begin{aligned}
& 485 \\
& \text { No. }
\end{aligned}
\] & Link No. & & & & & & \[
\left\lvert\, \begin{aligned}
& \overline{\hat{a}} \\
& 0 \\
& 0 \\
& 0 \\
& \underset{\widetilde{\sigma}}{0} \\
& \mid
\end{aligned}\right.
\] &  &  & \[
\begin{array}{|l|}
0 \\
0 \\
3 \\
3 \\
0 \\
>
\end{array}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 3 \\
& 0 \\
& >
\end{aligned}
\] & \[
\mid \stackrel{*}{>}
\] & \[
\begin{aligned}
& \sum_{\infty} \\
& \sum_{0} \\
& \vdots \\
& \overline{0} \\
& \bar{S} \\
& >
\end{aligned}
\] & \\
\hline P28 & 31 Ch & COh & M1 Pulse Resolution & 0 & 100 to 60000 & N & 1024 & Y & N & 0 & Y & N & N & Y & \\
\hline P29 & 31Dh & D6h & M1 External PG Correction Factor & 0 & 0000 to 4FFF & N & 4000 & Y & N & 9 & Y & N & N & N & \\
\hline P30 & 31Eh & C1h & M1 Thermistor Selection & 0 & \begin{tabular}{l}
0 to 3 \\
0: No thermistor \\
1: NTC thermistor \\
2: PTC thermistor \\
3: Ai (M-TMP) \\
The protection level of the motor protective functions should be specified by E30 to E32.
\end{tabular} & N & 1 & Y & N & 84 & Y & Y & Y & Y & \\
\hline P32 & 320h & h & M1 Online Auto-tuning & 0 & \begin{tabular}{l}
0 or 1 \\
0: Disable \\
1: Enable \\
Enabling this auto-tuning activates the compensation function for the resistance change caused by the temperature rise of the motor running.
\end{tabular} & Y & 0 & Y & N & 0 & Y & Y & N & N & \\
\hline P33 & 321h & h & M1 Maximum Output Voltage/ Maximum Voltage Limit & 0 & 80 to 999 V & Y & \[
\begin{gathered}
\hline 220 / \\
440 \\
\hline
\end{gathered}
\] & Y & N & 0 & N & N & Y & Y & \\
\hline P34 & 322h & h & M1 Slip Compensation & 3 & -20.000 to 5.000 Hz & Y & 0.000 & Y & N & 8 & N & N & Y & N & \\
\hline P35 & 323h & h & M1 Torque Boost & 1 & \begin{tabular}{ll}
0.0 to 20.0 & \\
Exclusive to \(\mathrm{V} / \mathrm{f}\) control. \\
\(0.0:\) & \(\quad\) Auto torque boost \\
& (for constant torque load) \\
0.1 to \(0.9:\) & For variable torque load \\
1.0 to 1.9: & For proportional torque load \\
2.0 to 20.0: & For constant torque load
\end{tabular} & Y & 0.0 & Y & N & 2 & N & N & Y & N & \\
\hline P36 & 324h & h & M1 Output Current Fluctuation Damping Gain & 1 & 0.00 to 1.00 & Y & 0.20 & Y & N & 3 & N & N & Y & N & \\
\hline P42 & 32Ah & h & M1 q-axis Inductance Magnetic Saturation Coefficient & 9 & 0 to 100\% & Y & 100.0 & Y & N & 0 & N & N & N & Y & \\
\hline P43 & 32Bh & h & M1 Magnetic Flux Limiting Value & 1 & 50.0 to 150.0\% & Y & * & Y & N & 2 & N & N & N & Y & \\
\hline P44 & 32 Ch & h & M1 Overcurrent Protection Level & 1 & \begin{tabular}{l}
0.00: Disable \\
0.01 to 5000 A \\
Specifies the allowable current value to prevent the permanent magnet of a PMSM from getting demagnetized. If the current exceeding this setting flows, an overcurrent alarm ( Lilí \(^{\prime \prime \prime}\) ) occurs.
\end{tabular} & N & 0.00 & Y & N & 0 & N & N & N & Y & \\
\hline P45 & 32Dh & h & M1 Torque Correction Gain 1 & 1 & 0.00 to 10.00 & Y & * & Y & N & 3 & N & N & N & Y & \\
\hline P46 & 32Eh & h & M1 Torque Correction Gain 2 & 1 & 0.00 to 10.00 & Y & * & Y & N & 3 & N & N & N & Y & \\
\hline P47 & 32Fh & h & M1 Torque Correction Gain 3 & 1 & -1.000 to 1.000 & Y & * & Y & N & 8 & N & N & N & \(Y\) & \\
\hline P48 & 330h & h & M1 Torque Correction Gain 4 & 1 & -1.000 to 1.000 & Y & * & Y & N & 8 & N & N & N & Y Y & \\
\hline P49 & 331h & h & M1 Torque Correction Gain 5 & 1 & -50.00 to 50.00 & Y & * & Y & N & 7 & N & N & N & Y & \\
\hline P50 & 332h & h & M1 Torque Correction Gain 6 & 1 & -50.00 to 50.00 & Y & * & Y & N & 7 & N & N & N & Y & \\
\hline P51 & 333h & h & M1 Torque Correction Gain 7 & 1 & -1.000 to 1.000 & Y & * & Y & N & 8 & N & N & N & Y & \\
\hline
\end{tabular}

\footnotetext{
*Depending upon the inverter's capacity
}

\subsection*{5.3.5 H codes (High Performance Functions)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Function code} & \multicolumn{2}{|l|}{Communications address} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Dir.} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Drive control} & \multirow[b]{2}{*}{} \\
\hline & \[
\begin{aligned}
& 485 \\
& \text { No. }
\end{aligned}
\] & Link No. & & & & & & & & & \[
\begin{aligned}
& 0 \\
& 0 \\
& 2 \\
& 3 \\
& 0 \\
& >
\end{aligned}
\] & \[
\begin{array}{|c|c}
0 \\
0 \\
0 \\
0 \\
3 & + \\
0 & > \\
> & \\
\hline
\end{array}
\] &  & \\
\hline H01 & 401h & h & \begin{tabular}{l}
Auto-tuning \\
*In the multiwinding motor drive
\end{tabular} & 0 & \[
\begin{array}{|l|}
0 \text { to } 4 \\
0: \text { Disable }
\end{array}
\] & N & 0 & N & N & 61 & Y & Y Y & Y Y & \\
\hline & & & system, H01 cannot be used. & & 1: ASR auto-tuning (Available soon) & & & & & & Y & N & , & \\
\hline & & & In the direct parallel connection & & 2: Motor parameter auto-tuning (R1, L \(\sigma\) ) & & & & & & Y Y & \(Y\) Y & Y & \\
\hline & & & control system, H01 is available soon. & & 3: Auto-tuning with the motor stopped & & & & & & Y Y & Y Y & Y & \\
\hline & & & & & 4: Auto-tuning with the motor running & & & & & & Y & Y Y & N & \\
\hline & & & & & \begin{tabular}{l}
Upon completion of auto-tuning, the H01 data automatically reverts to "0." \\
To save the tuned data, perform Save All (H02).
\end{tabular} & & & & & & & & & \\
\hline H02 & 402h & Eh & Save All Function & 0 & \begin{tabular}{l}
0 or 1 \\
When tuning is executed at H 01 and the internal data is written, or when the data is written by way of the link system (T-Link, field bus, and RS-458, etc.), the data goes out when the power supply of the inverter is turned off. This function must operate when preservation is necessary. After writing the data, this function's data code automatically returns to 0 .
\end{tabular} & Y & 0 & N & N & 11 & Y & Y Y & Y Y & \\
\hline H03 & 403h & h & Data Initialization & 0 & \begin{tabular}{l}
0 or 1 \\
Setting H03 to "1" reverts the function code data modified by the customer to the factory defaults. Initialization targets include all fields of F, E, C, H, o, L and \(U\) codes except motor parameter fields ( \(\mathrm{P}, \mathrm{A}\) ) and F04, F05, F10 to F12. \\
Upon completion of the initialization, the H 03 data automatically reverts to " 0 ."
\end{tabular} & N & 0 & N & N & 11 & Y & Y Y & \(Y\) & \\
\hline H04 & 404h & h & Auto-reset (Times) & 0 & \begin{tabular}{l}
0 to 10 \\
0 : Disable \\
1 to 10 times \\
The auto-resetting signal can be output to the output terminal.
\end{tabular} & N & 0 & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline H05 & 405h & H & Auto-reset (Reset interval) & 0 & 0.01 to 20.00 s & N & 5.00 & Y & Y & 3 & Y & Y Y & Y & \\
\hline H06 & 406h & h & Cooling Fan ON/OFF Control & 0 & \begin{tabular}{l}
0 or 1 \\
0: Disable \\
1: Enable \\
This control detects the temperature of the heat sink in the inverter unit and turns the cooling fan ON/OFF automatically. \\
It is possible to output the FAN (Cooling fan in operation) signal in conjunction with this function.
\end{tabular} & N & 0 & Y & Y & 68 & Y & Y Y & \(Y\) Y & \\
\hline H08 & 408h & h & Rev. Phase Sequence Lock & 0 & \begin{tabular}{|l|l}
0 or 1 \\
\(0:\) Disable \\
\(1:\) & Enable \\
\hline
\end{tabular} & Y & 0 & Y & Y & 68 & Y & N N & N Y & \\
\hline H09 & 409h & C2h & Starting Mode (Auto search) & 0 & \begin{tabular}{l}
0 to 2 \\
0: Disable \\
1: Enable (At restart after momentary power failure) \\
2: Enable \\
Auto search detects the idling motor speed at starting and drives the motor at the same speed without stopping it.
\end{tabular} & Y & 2 & Y & Y & 0 & Y & & Y \({ }_{1} \mathrm{Y}\) & \\
\hline H10 & 40Ah & C3h & Energy-saving Operation & 0 & \begin{tabular}{|l|l}
0 or 1 \\
\(0:\) Disable \\
1: Enable \\
\hline
\end{tabular} & N & 0 & Y & Y & 68 & Y & N N & N & \\
\hline H11 & 40Bh & h & Automatic Operation OFF Function & 0 & \begin{tabular}{l}
0 to 4 \\
0: Decelerate to stop when FWD-CM or REV-CM is opened \\
1: The inverter is turned off below the stop speed even for ON between FWD-CM and REV-CM. \\
2: Coast to stop when FWD-CM or REV-CM is opened \\
3: Decelerate to stop using ASR when FWD-CM or REV-CM is opened (under torque control) \\
4: Coast to stop when FWD-CM or REV-CM is opened (under torque control)
\end{tabular} & Y & 0 & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline H13 & 40Dh & C4h & \begin{tabular}{l}
Restart Mode after Momentary Power Failure \\
(Wait time)
\end{tabular} & 5 & 0.1 to 5.0 s & N & 0.5 & Y & Y & 2 & Y & Y Y & Y Y & \\
\hline H14 & 40Eh & h & (Decrease rate in speed) & 1 & 1 to \(3600 \mathrm{r} / \mathrm{min} / \mathrm{s}\) & Y & 500 & Y & Y & 0 & N & N Y & Y N & \\
\hline H15 & 40Fh & h & (Continuous running level) & 1 & \begin{tabular}{l}
3-phase 200 V : 200 to 300 V \\
3-phase 400 V : 400 to 600 V \\
This setting applies when F14 = 2 (Trip after recovery from power failure) or F14 = 3 (Continue to run).
\end{tabular} & Y & \[
\begin{gathered}
\hline 235 / \\
470
\end{gathered}
\] & Y & Y & 0 & Y & Y Y & Y Y & \\
\hline H16 & 410h & ¢ & (Run command self-hold setting) & 1 & \begin{tabular}{l}
0 or 1 \\
0: Setting made by H17 \\
1: Maximum time (The inverter self-holds the run command while the control power supply in the inverter is established or until the DC link bus voltage comes to almost "0.")
\end{tabular} & N & 1 & Y & Y & 94 & Y & Y Y & Y Y & \\
\hline
\end{tabular}
(*1) Available when ROM version is newer than \(\mathrm{H} 1 / 20030\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
0 \\
\hline 0 \\
0 \\
0 \\
\hline 0 \\
0 \\
0 \\
\hline 1
\end{tabular}} & \multicolumn{2}{|l|}{Communications address} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Dir.} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{4}{|c|}{Drive control} & \multirow[b]{2}{*}{} \\
\hline & \[
\begin{aligned}
& 485 \\
& \text { No. }
\end{aligned}
\] & \begin{tabular}{l}
Link \\
No.
\end{tabular} & & & & & & & & & \[
\left\lvert\, \begin{aligned}
& 0 \\
& 0 \\
& 3 \\
& 3 \\
& 0 \\
& >
\end{aligned}\right.
\] &  & & \(\sum\)
0
0
0
0
0 & \\
\hline H17 & 411h & h & (Run command self-hold time) & 1 & 0.0 to 30.0 s & N & 30.0 & Y & Y & 2 & Y & Y Y & Y Y & Y & \\
\hline H19 & 413h & C5h & Active Drive & 0 & \begin{tabular}{l}
0 or 1 \\
0: Disable \\
1: Enable \\
Under vector control, this function automatically limits the output torque to avoid an overload trip, etc.
\end{tabular} & N & 0 & Y & Y & 68 & Y & N Y & Y Y & Y & \\
\hline H2O & 414h & C6h & PID Control (Mode selection) & 8 & \begin{tabular}{l}
0 to 3 \\
0 : Inactive \\
1: Active \\
2: Inverse action 1 \\
3: Inverse action 2
\end{tabular} & N & 0 & Y & Y & 69 & Y & Y Y & Y Y & Y & \\
\hline H21 & 415h & C7h & (Command selection) & 1 & \[
\begin{array}{|l}
0 \text { or } 1 \\
\text { 0: Keypad or input to terminal [12] } \\
\text { 1: Analog input PID-REF } \\
\hline
\end{array}
\] & Y & 0 & Y & Y & 70 & Y & Y Y & Y Y & Y & \\
\hline H22 & 416h & C9h & (P-action) & 1 & 0.000 to 10.000 times & Y & 1.000 & Y & Y & 4 & Y & Y Y & Y & Y & \\
\hline H23 & 417h & CAh & (l-action) & 1 & 0.00 to 100.00 s & Y & 1.00 & Y & Y & 3 & Y & Y Y & Y & Y & \\
\hline H24 & 418h & CBh & (D-action) & 1 & 0.000 to 10.000 s & Y & 0.000 & Y & Y & 4 & Y & Y Y & Y & Y & \\
\hline H25 & 419h & C8h & (Upper limit) & 1 & -300 to 300\% & N & 100 & Y & Y & 5 & Y & Y Y & Y & Y & \\
\hline H26 & 41Ah & CCh & (Lower limit) & 1 & -300 to 300\% & N & -100 & Y & Y & 5 & Y & Y Y & Y & Y & \\
\hline H27 & 41 Bh & CEh & (Speed command selection) & 1 & 0 to 2
0: Disable
1: Select PID
2: Select auxiliary speed & N & 0 & Y & Y & 95 & Y & Y Y & Y & Y & \\
\hline H28 & 41 Ch & CFh & Droop Control & 0 & 0.0 to 25.0\% & Y & 0.0 & Y & Y & 2 & Y & Y N & N & Y & \\
\hline H29 & 41Dh & h & Communications Link Function (Data protection via link) & 2 & \begin{tabular}{l}
0 or 1 \\
0 : Writable to function code fields \\
1: Write-protect function code fields \\
Setting H29 to "1" protects function code data from getting changed mistakenly via the link (T-Link, RS-485, etc.). \\
Via the link, data can be written to the "function code fields" (given above) or "command data fields" (S fields). The S fields are defined by H 30 .
\end{tabular} & Y & 0 & Y & Y & 40 & Y & Y Y & Y & Y & \\
\hline H30 & 41Eh & DOh & (Link operation) & 1 & 0 to 3
Monitor \begin{tabular}{c} 
Command \\
data
\end{tabular}\(\quad\)\begin{tabular}{c} 
Run command \\
(FWD, REV)
\end{tabular} & Y & 0 & Y & Y & 72 & Y & Y Y & Y & Y & \\
\hline H31 & 41Fh & h & RS-485 Communication
(Station address) & 10 & \begin{tabular}{l}
0 to 255 \\
Broadcast: (0: RTU), (99: Fuji) \\
Address: 1 to 255 \\
Specify the station address of RS-485.
\end{tabular} & N & 1 & Y & N & 0 & Y & Y Y & Y & Y & \\
\hline H32 & 420h & h & (Error processing) & 1 & \begin{tabular}{l}
0 to 3 \\
0: Immediately trip with \\
1: Trip with by timer H33. \\
2: Trip with \(\Xi_{\text {- }}\) if a communications error persists exceeding the period specified by timer H 33 . \\
3: Continue to run
\end{tabular} & Y & 3 & Y & Y & 73 & Y & Y Y & Y & Y & \\
\hline H33 & 421h & h & (Timer) & 1 & 0.01 to 20.00 s & Y & 2.00 & Y & Y & 3 & Y & Y Y & Y & Y & \\
\hline H34 & 422h & h & (Baud rate) & 1 & \begin{tabular}{|l|l}
\hline 0 to 4 \\
\(0:\) & 38400 bps \\
\(1:\) & 19200 bps \\
\(2:\) & 9600 bps \\
\(3:\) & 4800 bps \\
\(4:\) & 2400 bps
\end{tabular} & Y & 0 & Y & N & 74 & Y & Y Y & Y & Y & \\
\hline H35 & 423h & h & (Data length) & 1 & \begin{tabular}{l}
0 or 1 \\
0: 8 bits \\
1:7 bits
\end{tabular} & Y & 0 & Y & N & 75 & Y & Y Y & Y Y & Y & \\
\hline H36 & 424h & h & (Parity check) & 1 & 0 to 2
0: None
1: Even parity
2: Odd parity & Y & 1 & Y & N & 76 & Y & Y Y & Y \({ }_{\text {Y }}\) & Y & \\
\hline H37 & 425h & h & (Stop bits) & 1 & \[
\begin{aligned}
& 0 \text { or } 1 \\
& 0: 2 \text { bits } \\
& 1: 1 \text { bit }
\end{aligned}
\] & Y & 1 & Y & N & 77 & Y & Y Y & Y & Y & \\
\hline H38 & 426h & h & (Communications line break time) & 1 & \[
\begin{array}{|l}
0.0 \text { to } 60.0 \mathrm{~s} \\
0.0: \text { Disable detection } \\
0.1 \text { to } 60.0: \text { Enable detection }
\end{array}
\] & Y & 60.0 & Y & Y & 2 & Y & Y Y & Y Y & Y & \\
\hline H39 & 427h & h & (Response interval) & 1 & 0.00 to 1.00 s & Y & 0.01 & Y & Y & 3 & Y & Y Y & Y Y & Y & \\
\hline H40 & 428 h & h & (Protocol selection) & 1 & \begin{tabular}{l}
0 to 2 \\
0: Fuji general-purpose inverter protocol \\
1: SX protocol (Loader protocol) \\
2: Modbus RTU protocol \\
To use the FRENIC-VG Loader, set H40 to "1."
\end{tabular} & N & 1 & Y & N & 78 & Y & Y Y & Y Y & Y & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { 음 } \\
& \text { O} \\
& \text { 음 } \\
& \stackrel{1}{7}
\end{aligned}
\]} & \multicolumn{2}{|l|}{Communications address} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Dir.} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{인
0.
0.
0
0
0
0
0
0} & & \multirow[b]{2}{*}{} & \multicolumn{4}{|c|}{Drive control} & \multirow[b]{2}{*}{} \\
\hline & \[
\begin{aligned}
& 485 \\
& \text { No. }
\end{aligned}
\] & Link No. & & & & & & & (ex & & & \[
\left.\begin{array}{|l|}
\hline 0 \\
0 \\
0 \\
0 \\
3 \\
0 \\
>
\end{array} \right\rvert\,=
\] &  & \[
\begin{aligned}
& \sum_{n} \\
& \sum_{n}^{2} \\
& \vdots \\
& \vdots \\
& \vdots \\
& \hline
\end{aligned}
\] & \\
\hline H41 & 429h & D1h & Torque Command Source & 4 & \begin{tabular}{l}
0 to 5 \\
0: Internal ASR output \\
1: Ai terminal input T-REF \\
2: DIA card \\
3: DIB card \\
4: Communications link \\
5: PID
\end{tabular} & N & 0 & Y & Y & 64 & Y & Y & N & Y & \\
\hline H42 & 42Ah & D2h & Torque Current Command Source & 1 & \begin{tabular}{l}
0 to 4 \\
0 : Internal ASR output \\
1: Ai terminal input IT-REF \\
2: DIA card \\
3: DIB card \\
4: Communications link
\end{tabular} & N & 0 & Y & Y & 65 & Y & Y & N & Y & \\
\hline H43 & 42Bh & D3h & Magnetic Flux Command Source & 1 & 0 to 3
0: Internal calculation
1: Ai terminal input MF-REF
2: Function code H44
3: Communications link & N & 0 & Y & Y & 66 & Y & N & N & N & \\
\hline H44 & 42 Ch & D4h & Magnetic Flux Command Value & 1 & 10 to 100\% & N & 100 & Y & Y & 16 & Y & N & N & N & \\
\hline H46 & 42Eh & D7h & \begin{tabular}{l}
Observer \\
(Mode selection)
\end{tabular} & 7 & 0 to 2
0: Disable
1: Enable (Load disturbance observer)
2: Enable (Oscillation suppressing observer) & N & 0 & Y & Y & 79 & Y & Y & N & Y & \\
\hline H47 & 42Fh & D8h & (M1 compensation gain) & 1 & 0.00 to 1.00 times & Y & 0.00 & Y & Y & 3 & Y & Y & N & Y & \\
\hline H48 & 430h & , & (M2 compensation gain) & 1 & 0.00 to 1.00 times & Y & 0.00 & Y & Y & 3 & Y & Y & N & Y & \\
\hline H49 & 431h & D9h & (M1 I-time) & 1 & 0.005 to 1.000 s & Y & 0.100 & Y & Y & 4 & Y & Y & N & Y & \\
\hline H50 & 432h & h & (M2 I-time) & 1 & 0.005 to 1.000 s & Y & 0.100 & Y & Y & 4 & Y & Y & N & Y & \\
\hline H51 & 433h & DAh & (M1 load inertia) & 1 & 0.001 to \(50.000 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) The magnification is switchable by H 228 . & Y & * & Y & N & 4 & Y & Y & N Y & Y & \\
\hline H52 & 434h & h & (M2 load inertia) & 1 & 0.001 to \(50.000 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) The magnification is switchable by H 228 . & Y & 0.001 & Y & N & 4 & Y & Y & N Y & Y & \\
\hline H53 & 435h & D5h & Line Speed Feedback Selection & 0 & \begin{tabular}{l}
0 to 3 \\
0: Disable line speed (Integrated PG enabled) Note that Ai input or PG (LD) should be high level-select in UPAC. \\
1: Detect analog line speed (AI-LINE) \\
2: Detect digital line speed (PG(LD)) \\
3: High level selected signal (Select high level of motor speed and line speed.)
\end{tabular} & Y & 0 & Y & Y & 67 & Y & Y & Y Y & Y & \\
\hline H55 & 437h & h & Zero Speed Control (Gain) & 2 & \begin{tabular}{l}
0 to 100 times \\
For details, refer to X terminal command LOCK assigned by any of E01 to E13.
\end{tabular} & Y & 5 & Y & Y & 0 & Y & N & N & Y & \\
\hline H56 & 438h & h & (Completion range) & 1 & 0 to 100 pulses & Y & 100 & Y & \(Y\) & 0 & Y & N & N & Y & \\
\hline H57 & 439h & h & Overvoltage Suppression & 2 & \[
\begin{array}{|l|}
\hline 0 \text { or } 1 \\
\text { 0: Disable } \\
\text { 1: Enable } \\
\hline
\end{array}
\] & N & 0 & Y & Y & 68 & Y & Y & Y Y & Y & \\
\hline H58 & 43Ah & h & Overcurrent Suppression & 1 & \[
\begin{aligned}
& 0 \text { or } 1 \\
& 0: \text { Disable } \\
& 1: \text { Enable }
\end{aligned}
\] & N & 0 & Y & Y & 68 & Y & Y & Y Y & Y & \\
\hline H60 & 43 Ch & & \begin{tabular}{l}
Load Adaptive Control \\
(Definition 1)
\end{tabular} & 7 & \[
\begin{array}{|l}
\hline 0 \text { to } 3 \\
\text { 0: Disable } \\
\text { 1: Method } 1 \\
\text { 2: Method } 2 \\
\text { 3: Method } 3 \\
\hline
\end{array}
\] & N & 0 & Y & Y & 80 & Y & N & N & Y & \\
\hline H61 & 43Dh & h & (Definition 2) & 1 & 0 or 1
\(0:\) Winding up in forward rotation
\(1:\) Winding down in forward rotation & N & 0 & Y & Y & 81 & Y & N & N & Y & \\
\hline H62 & 43Eh & h & (Winding-up speed) & 1 & 0.0 to \(999.9 \mathrm{~m} / \mathrm{min}\) & N & 0.0 & Y & Y & 2 & Y & N & N & Y & \\
\hline H63 & 43Fh & h & (Counter weight) & 1 & 0.00 to 600.00 t & N & 0.00 & Y & Y & 3 & Y & N & N & Y & \\
\hline H64 & 440h & h & (Safety coefficient) & 1 & 0.50 to 1.20 & N & 1.00 & Y & Y & 3 & Y & N & N & Y & \\
\hline H65 & 441h & h & (Machine efficiency) & 1 & 0.500 to 1.000 & N & 0.500 & Y & Y & 4 & Y & N & N & Y & \\
\hline H66 & 442h & h & (Rated load) & 1 & 0.00 to 600.00 t & N & 0.00 & Y & Y & 3 & Y & N & N & Y & \\
\hline H68 & 444h & h & Alarm Data Deletion & 0 & \begin{tabular}{l}
0 or 1 \\
Setting H68 to "1" deletes all of the alarm history, alarm causes and alarm information held in the inverter memory. \\
After that, the H68 data automatically reverts to " 0. ."
\end{tabular} & Y & 0 & N & N & 11 & Y & Y & Y Y & Y & \\
\hline H70 & 446h & h & Reserved 1 & 2 & \[
\begin{array}{|l|}
\hline 0 \text { to } 9999 \\
\text { Reserved. (Do not access this function code.) }
\end{array}
\] & N & 0 & Y & N & 0 & Y & Y & N & Y & \\
\hline H71 & 447h & h & Reserved 2 & 1 & 0 to 10
Reserved. (Do not access this function code.) & N & 0 & N & N & 62 & Y & Y & Y Y & Y & \\
\hline H74 & 44Ah & & PG Detection Circuit Self-diagnosis Selection & 0 & ```
0 or 1
0 : Disable
1: Enable
This function performs self-diagnosis of the speed
detection circuit by pulse generator signals (PA, PB).
``` & N & 0 & Y & Y & 225 & Y & Y & N & Y & \\
\hline
\end{tabular}
*Depending upon the inverter's capacity.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Communications address} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Dir.} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & & & & \multicolumn{4}{|c|}{Drive control} & \multirow[b]{2}{*}{} \\
\hline & \[
\begin{aligned}
& 485 \\
& \text { No. }
\end{aligned}
\] & Link No. & & & & & & \[
\left|\begin{array}{l}
\frac{7}{0} \\
0 \\
0 \\
\\
0 \\
0
\end{array}\right|
\] & - & & \[
\begin{aligned}
& 0 \\
& 0 \\
& 3 \\
& 3 \\
& 0
\end{aligned}
\] & \[
\left.\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 3 \\
& 0 \\
& 0
\end{aligned} \right\rvert\,
\] & \(\stackrel{*}{>}\) & & \\
\hline H75 & 44 Bh & h & Power Sequence Configuration of Main Circuit Output Wires & 0 & \begin{tabular}{l}
0 or 1 \\
0: Normal phase U-V-W \\
1: Reverse phase U-W-V \\
Using this function allows the motor to run with the phase sequence of the motor wires arbitrarily changed.
\end{tabular} & N & 0 & Y & Y & 197 & Y & Y & Y & Y & \\
\hline H76 & 44 Ch & & \begin{tabular}{l}
Main Power Shutdown Detection \\
*This setting is invalid in the stack type.
\end{tabular} & 0 & 0 or 1 & Y & 0 & Y & Y & 0 & Y & Y & Y & Y & \\
\hline H77 & 44Dh & h & Continuance Timer for Cooling Fan ON/OFF Control & 0 & \begin{tabular}{l}
0 to 600 s \\
Specifies the condition of the cooling fan ON/OFF control by H06.
\end{tabular} & Y & 600 & Y & Y & 0 & Y & Y & Y & Y & \\
\hline H78 & 44Eh & h & Initialization of Startup Counter/ Total Run Time & 6 & \begin{tabular}{l}
0 to 6 \\
0: Disable \\
1: M1 number of startups \\
2: M2 number of startups \\
3: M3 number of startups \\
4: M1 cumulative run time \\
5: M2 cumulative run time \\
6: M3 cumulative run time \\
Initializes the number of startups and cumulative run time.
\end{tabular} & N & 0 & N & N & 0 & Y & Y & Y & Y & \\
\hline H79 & 44Fh & h & Initialization of Cumulative Run Time of Cooling Fan & 1 & \begin{tabular}{l}
0 to 65535 (in units of 10 hours) Initializes the cumulative run time when the cooling fan is replaced. \\
Usually, write " 0 " after replacement.
\end{tabular} & N & 0 & N & N & 0 & Y & Y & Y & Y & \\
\hline H80 & 450h & & \begin{tabular}{l}
Capacitance of DC Link Bus Capacitor \\
*This setting is invalid in the stack type.
\end{tabular} & 1 & 0 to 32767 & N & 0 & N & N & 0 & Y & Y & Y & Y & \\
\hline H81 & 451h & h & Initialization of Service Life of DC Link Bus Capacitor & 1 & 0 to 65535 (in units of 10 hours) Initializes the elapsed time of the DC link bus capacitor. & N & 0 & N & N & 0 & Y & Y & Y & Y & \\
\hline H82 & 452h & h & Startup Count for Maintenance & 1 & \begin{tabular}{l}
0 to 65535 \\
Specifies the number of startups for performing maintenance of the machinery.
\end{tabular} & Y & 0 & N & Y & 0 & Y & Y & Y & Y & \\
\hline H83 & 453h & h & Maintenance Interval & 1 & 0 to 65535 (in units of 10 hours) Specifies the maintenance interval for performing maintenance of the machinery. & Y & 8760 & N & Y & 0 & Y & Y & Y & Y & \\
\hline H85 & 455h & h & Calendar Clock (Year/month) & 4 & \begin{tabular}{l}
0000 to FFFF \\
Upper two digits: Year, Lower two digits: Month
\end{tabular} & Y & 0001 & N & Y & 143 & Y & Y & Y & Y & \\
\hline H86 & 456h & h & (Day/hour) & 1 & \begin{tabular}{l}
0000 to FFFF \\
Upper two digits: Date, Lower two digits: Time
\end{tabular} & Y & 0100 & N & Y & 144 & Y & Y & Y & Y & \\
\hline H87 & 457h & h & (Minute/second) & 1 & \begin{tabular}{l}
0000 to FFFF \\
Upper two digits: Minute, Lower two digits: Second
\end{tabular} & Y & 0000 & N & Y & 145 & Y & Y & Y & Y & \\
\hline H88 & 458h & h & (Setting up clock) & 1 & \begin{tabular}{l}
0 or 1 \\
0: Disable \\
1: Write the current date and time \\
Setting H88 to "1" sets up the calendar clock in accordance with the settings of H 85 to H 87 . \\
After that, the H 88 data automatically reverts to " 0 ."
\end{tabular} & Y & 0 & N & N & 11 & Y & Y & Y & Y & \\
\hline H89 & 459h & & Speed Detection Monitor Selection (under vector control for IM without speed sensor/under V/f control) (Available soon) & 0 & \[
\begin{aligned}
& 0 \text { or } 1 \\
& 0: \text { Estimated value / No display } \\
& 1: \text { PG detected value / PG detected value }
\end{aligned}
\] & N & 0 & Y & Y & 198 & Y & Y & N & Y & \\
\hline H90 & 45Ah & h & Overspeed Alarm Level & 0 & 100 to 160\% & Y & 120 & Y & Y & 0 & Y & Y & N & Y & \\
\hline H94 & 45 Eh & & ASR Feedforward Gain Magnification Setting (Available soon) & 0 & \[
\begin{array}{|l|}
\hline 0 \text { to } 2 \\
0: 1 \text { time } \\
1: 10 \text { times } \\
2: 100 \text { times } \\
\text { Switches the magnification setting of ASR1 to ASR4 } \\
\text { feedforward gain. } \\
\hline
\end{array}
\] & Y & 0 & Y & Y & 193 & Y & Y & N & Y & \\
\hline H99 & 463h & & UP/DOWN S-curve Pattern (Available soon) & 0 & \[
\begin{array}{|l}
\hline 0 \text { or } 1 \\
0: \text { Disable (compatible with VG7) } \\
1: \text { Enable (compatible with VG5) } \\
\hline
\end{array}
\] & N & 0 & Y & Y & 0 & Y & N & N & Y & \\
\hline H101 & 1F01h & h & PID Command Filter Time Constant & 0 & \begin{tabular}{l}
0 to 5000 ms \\
Specifies the time constant of the PID command filter (after switched by H21).
\end{tabular} & Y & 0 & Y & Y & 0 & Y & Y & Y & Y & \\
\hline H102 & 1F02h & & \begin{tabular}{l}
Magnetic Pole Position Offset Writing Permission \\
(Available soon)
\end{tabular} & 0 & \[
\begin{aligned}
& 0 \text { or } 1 \\
& 0: \text { Disable, } 1: \text { Enable }
\end{aligned}
\] & Y & 0 & N & Y & 68 & N & N & N & Y & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Communications address} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Dir.} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & & & \multicolumn{3}{|c|}{Drive control} & \multirow[b]{2}{*}{} \\
\hline \[
\begin{aligned}
& 0 \\
& \text { 들 } \\
& \text { 은 } \\
&
\end{aligned}
\] & \[
\begin{aligned}
& 485 \\
& \text { No. }
\end{aligned}
\] & Link No. & & & & & & & (1) & & \begin{tabular}{ll}
0 & \\
0 & \\
3 & \\
0 & \\
0 & \\
\hline
\end{tabular} & & & \\
\hline H103 & 1F03h & h & \begin{tabular}{l}
Protective/Maintenance Function Selection 1 \\
*The setting for the tenth digit is invalid in the stack type.
\end{tabular} & 9 & & Y & 0101 & Y & Y & 9 & Y & \(Y\) & Y & \\
\hline H104 & 1F04h & & \begin{tabular}{l}
Protective/Maintenance Function Selection 2 \\
*The setting for the units digit is invalid in the stack type.
\end{tabular} & 1 & & Y & 1110 & Y & Y & 9 & Y & Y Y & Y & \\
\hline H105 & 1F05h & h & Protective/Maintenance Function Selection 3 & 1 & ```
0000 to 1111
Selects the protective/maintenance functions
individually.
 (0: Disable, 1: Enable)
Thousands digit: --
 Hundreds digit: --
 Tenths digit:
 Units digit: -- Electronic Thermal Integrated
 value preservation
``` & Y & 0000 & Y & Y & 9 & Y & Y Y & Y & \\
\hline H106 & 1F06h & h & Light Alarm Object Definition 1 & 1 & ```
0000 to 1111
(0: Heavy alarm (Eー,- ), 1: Light alarm (& &-GM))
Thousands digit: OH4 "Motor overheat"
    Hundreds digit: OL1-OL3 "Motor 1 to 3 overload"
    Tenths digit: nrb "NTC thermistor wire break
                error"
        Units digit: OH2 "External alarm"
``` & N & 0000 & Y & Y & 9 & Y & Y Y & Y & \\
\hline H107 & 1F07h & h & Light Alarm Object Definition 2 & 1 & ```
0000 to 1111
(0: Heavy alarm (E-,-), 1: Light alarm (& -IM\))
Thousands digit: Er5 "RS-485 communications error"
 Hundreds digit: Er4 "Network error"
 Tenths digit: Reserved
 Units digit: ArF "Toggle data error"
``` & N & 0000 & Y & Y & 9 & Y & Y Y & Y & \\
\hline H108 & 1F08h & h & Light Alarm Object Definition 3 & 1 & \begin{tabular}{cl} 
0000 to 1111 & \\
(0: Heavy alarm & \((E-,-), 1:\), Light alarm \(\left(L^{\prime}-17 \prime \prime\right.\) \\
Thousands digit: \()\) & Err "Mock alarm" \\
Hundreds digit: & dFA "DC fan locked" \\
Tenths digit: & Er9 "Speed mismatch" \\
& LOC "Start delay" \\
Units digit: & ArE "E-SX bus tact synchronization \\
& error"
\end{tabular} & Y & 0000 & Y & Y & 9 & Y & Y & Y & \\
\hline H109 & 1F09h & & Light Alarm Object Definition 4 & 1 & 0000 to 1111
(0: Heavy alarm (İ-,- ), 1: Light alarm ( \(\llcorner\) - - IIL \()\) )
Thousands digit: Reserved
Hundreds digit: Reserved
Tenths digit: Reserved
Units digit: Reserved & N & 0000 & Y & Y & 9 & Y & Y & Y & \\
\hline H110 & 1FOAh & & Light Alarm Object Definition 5 & 1 &  & N & 0000 & Y & Y & 9 & Y & Y Y & Y & \\
\hline H111 & 1F0Bh & & Light Alarm Object Definition 6 & 1 & ```
0 or 1
0 : Disable ( \(L-T_{1 / 2}^{\prime \prime}\) not shown)
1: Enable ( \(\left\llcorner-i_{1} / L\right.\) shown)
Specified whether or not to display \(L-S_{1 \prime \prime}^{\prime \prime}\) on the LED
monitor when a light alarm occurs.
``` & N & 1 & Y & Y & 68 & Y & Y Y & Y & \\
\hline H112 & 1F0Ch & & M1 Magnetic Saturation Extension Coefficient 6 & 7 & \[
\begin{array}{|l|}
\hline 0.0 \text { to } 100.0 \% \\
\text { Compensation factor for exciting current when the } \\
\text { magnetic flux command is } 43.75 \% \text {. } \\
\hline
\end{array}
\] & Y & 43.8 & Y & N & 2 & Y & N & N & \\
\hline H113 & 1FODh & & M1 Magnetic Saturation Extension Coefficient 7 & 1 & \begin{tabular}{l}
\[
0.0 \text { to } 100.0 \%
\] \\
Compensation factor for exciting current when the magnetic flux command is \(37.5 \%\).
\end{tabular} & Y & 37.5 & Y & N & 2 & Y & N N & N & \\
\hline H114 & 1F0Eh & & M1 Magnetic Saturation Extension Coefficient 8 & 1 & \[
\begin{aligned}
& 0.0 \text { to } 100.0 \% \\
& \text { Compensation factor for exciting current when the } \\
& \text { magnetic flux command is } 31.25 \% \text {. } \\
& \hline
\end{aligned}
\] & Y & 31.3 & Y & N & 2 & Y & N N & N & \\
\hline H115 & 1FOFh & & M1 Magnetic Saturation Extension Coefficient 9 & 1 & \begin{tabular}{l}
0.0 to 100.0\% \\
Compensation factor for exciting current when the magnetic flux command is \(25 \%\).
\end{tabular} & Y & 25.0 & Y & N & 2 & Y & N N & N & \\
\hline H116 & 1F10h & & M1 Magnetic Saturation Extension Coefficient 10 & 1 & 0.0 to \(100.0 \%\)
Compensation factor for exciting current when the
magnetic flux command is \(18.75 \%\). & Y & 18.8 & Y & N & 2 & Y & N N & N & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { © } \\
& \hline 0 \\
& 0 \\
& \text { 은 } \\
& \vdots \\
& \hline
\end{aligned}
\]} & \multicolumn{2}{|l|}{Communications address} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Dir.} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { 오 } \\
& \text { = } \\
& 0 \\
& 0 \\
& \text { 芌 } \\
& \text { त } \\
& 0
\end{aligned}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{} & \multicolumn{3}{|r|}{Drive control} & \multirow[b]{2}{*}{\(\stackrel{\sim}{\text { ® }}\)} \\
\hline & \[
\begin{aligned}
& 485 \\
& \text { No. }
\end{aligned}
\] & Link No. & & & & & & & & & \[
\begin{aligned}
& 0 \\
& 2 \\
& 3 \\
& 3 \\
& 0 \\
& >
\end{aligned}
\] & & & \\
\hline H117 & 1F11h & & M1 Magnetic Saturation Extension Coefficient 11 & 1 & \begin{tabular}{l}
0.0 to \(100.0 \%\) \\
Compensation factor for exciting current when the magnetic flux command is \(12.5 \%\).
\end{tabular} & Y & 12.5 & Y & N & 2 & Y & N N & N & \\
\hline H118 & 1F12h & & M1 Magnetic Saturation Extension Coefficient 12 & 1 & 0.0 to \(100.0 \%\) Compensation factor for exciting current when the magnetic flux command is \(6.25 \%\). & Y & 6.3 & Y & N & 2 & Y & N N & N & \\
\hline H125 & 1F19h & h & h Observer (M3 compensation gain) & 1 & 0.00 to 1.00 times & Y & 0.00 & Y & Y & 3 & Y & N & \(\mathrm{N} Y\) & \\
\hline H126 & 1F1Ah & , & h (M3 integral time) & 1 & 0.005 to 1.000 s & Y & 0.100 & Y & Y & 4 & Y & Y N & \(\mathrm{N} Y\) & \\
\hline H127 & 1F1Bh & h & h (M3 load inertia) & 1 & 0.001 to \(50.000 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) The magnification is switchable by H 228 . & Y & 0.001 & Y & Y & 4 & Y & N & N Y & \\
\hline H134 & 1F22h & & Speed Decrease Detection Delay Timer & 5 & 0.000 to 10.000 s & N & 0.000 & Y & Y & 4 & N & Y N & N N & \\
\hline H135 & 1F23h & h & \[
\begin{aligned}
& \text { Speed Command Detection Level } \\
& \text { (FWD) }
\end{aligned}
\] & 1 & 0.0 to \(150.0 \mathrm{r} / \mathrm{min}\) & N & 0.0 & Y & Y & 2 & N & Y N & N & \\
\hline H136 & 1F24h & , & h (REV) & 1 & 0.0 to \(150.0 \mathrm{r} / \mathrm{min}\) & N & 0.0 & Y & Y & 2 & N & Y N & N & \\
\hline H137 & 1F25h & h & h Speed Decrease Detection Level & 1 & 0.0 to \(150.0 \mathrm{r} / \mathrm{min}\) & N & 0.0 & \(Y\) & Y & 2 & N & Y N & N & \\
\hline H138 & 1F26h & & h \begin{tabular}{l}
Speed Command Detection Delay \\
Timer
\end{tabular} & 1 & 0.000 to 10.000 s & N & 0.000 & Y & Y & 4 & N & Y N & N N & \\
\hline H140 & 1F28h & , & h Start Delay (Detection level) & 1 & 0.0 to 300.0\% & Y & 150.0 & Y & Y & 2 & Y & Y N & N Y & \\
\hline H141 & 1F29h & h & h (Detection timer) & 1 & 0.000 to 10.000 s & Y & 1.000 & Y & Y & 0 & Y & N & \(\mathrm{N} Y\) & \\
\hline H142 & 1F2Ah & h & h Mock Alarm & 0 & \begin{tabular}{l}
0 or 1 \\
0: Disable \\
1: Cause a mock alarm \\
When H 108 does not define a mock alarm as a light alarm, a heavy alarm (I,-,-) occurs; when it defines a mock alarm as a light alarm, a light alarm (\(1-1 / \mathrm{M}\)) occurs. \\
Holding down the and keys simultaneously for three seconds also causes a mock alarm.
\end{tabular} & Y & 0 & N & N & 11 & Y & Y Y & Y Y & \\
\hline H144 & 1F2Ch & h & h Toggle Data Error Timer & 0 & \begin{tabular}{l}
\[
0.01 \text { to } 20.00 \text { s }
\] \\
H144 specifies the toggle data error detection time.
\end{tabular} & Y & 0.10 & Y & Y & 3 & Y & Y Y & Y Y & \\
\hline H145 & 1F2Dh & & \begin{tabular}{l}
Backstop for Vector Control without Speed Sensor \\
(Lower limit frequency operation)
\end{tabular} & 4 & \begin{tabular}{l}
0 to 3 \\
0: Disable \\
1: Enable for FWD unipolar operation \\
2: Enable for REV unipolar operation \\
3: Enable for FWD/REV bipolar operation
\end{tabular} & N & 0 & Y & Y & 202 & N & Y N & N & \\
\hline H146 & 1F2Eh & h & h (Lower limit frequency, FWD) & 1 & 0.000 to 10.000 Hz & N & 0.000 & Y & Y & 4 & N & Y N & N & \\
\hline H147 & 1F2Fh & h & h (Lower limit frequency, REV) & 1 & 0.000 to 10.000 Hz & N & 0.000 & Y & Y & 4 & N & Y N & N & \\
\hline H148 & 1F30h & h & h (Primary frequency estimation filter) & 0 & 0 to 100 ms Increase this setting if the speed fluctuation is large under vector control without speed sensor. & N & 0 & Y & Y & 0 & N & Y N & N & \\
\hline H149 & 1F31h & & Uncontrolled Machine Driving Detection Speed Setting & 0 & 0.0 to \(20.0 \%\)
\(0.0:\) Disable
0.1 to \(20.0 \%\)
Assuming the maximum speed as \(100 \%\). & N & 0.0 & Y & Y & 2 & Y & Y N & N Y & \\
\hline H160 & 1F3Ch & & M1 Initial Magnetic Pole Position Detection Mode (Available soon) & 3 & \begin{tabular}{l}
0 to 3 \\
0 : Pull-in by current for IPMSM (Interior Permanent \\
Magnet Synchronous Motor) \\
1: Pull-in by current for SPMSM (Surface Permanent Magnet Synchronous Motor) \\
2: Alternate system for IPMSM (Available soon) \\
3: Alternate system for IPMSM (Available soon)
\end{tabular} & N & 0 & Y & N & 0 & N & N N & N Y & \\
\hline H161 & 1F3Dh & & M1 Pull-in Reference Current (Available soon) & 1 & 10 to \(200 \%\)
\(100 \% /\) Motor rated current & N & 80 & Y & N & 0 & N & N N & N Y & \\
\hline H162 & 1F3Eh & & M1 Pull-in Frequency (Available soon) & 1 & 0.1 to 10.0 Hz & N & 1.0 & Y & N & 2 & N & N N & N Y & \\
\hline H163 & 1F3Fh & & M1 Reference Current for Polarity Discrimination (Available soon) & 1 & 0 to 200\% & N & 80 & Y & N & 0 & N & N N & N Y & \\
\hline H164 & 1F40h & & M1 Alternate Voltage (Available soon) & 1 & 0 to \(100 \%\) & N & 0 & Y & N & 0 & N & N N & N Y & \\
\hline H170 & 1F46h & & M2 Initial Magnetic Pole Position Detection Mode (Available soon) & 3 & \begin{tabular}{l}
0 to 3 \\
0: Pull-in by current for IPMSM (Interior Permanent \\
Magnet Synchronous Motor) \\
1: Pull-in by current for SPMSM (Surface Permanent Magnet Synchronous Motor) \\
2: Alternate system for IPMSM (Available soon) \\
3: Alternate system for IPMSM (Available soon)
\end{tabular} & N & 0 & Y & N & 0 & N & N N & N Y & \\
\hline H171 & 1F47h & & M2 Pull-in Reference Current (Available soon) & 1 & \[
\begin{aligned}
& 10 \text { to } 200 \% \\
& 100 \% / \text { Motor rated current }
\end{aligned}
\] & N & 80 & Y & N & 0 & N & N N & V Y & \\
\hline H172 & 1F48h & & M2 Pull-in Frequency (Available soon) & 1 & 0.1 to 10.0 Hz & N & 1.0 & Y & N & 2 & N & N N & N Y & \\
\hline H173 & 1F49h & & M2 Reference Current for Polarity Discrimination (Available soon) & 1 & 0 to 200\% & N & 80 & Y & N & 0 & N & N N & N Y & \\
\hline H174 & 1F4Ah & & M2 Alternate Voltage (Available soon) & 1 & 0 to \(100 \%\) & N & 0 & Y & N & 0 & N & N N & N Y & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& 00 \\
& \hline 0 \\
& 0 \\
& \text { 은 } \\
& \vdots \\
& \hline 1
\end{aligned}
\]} & \multicolumn{2}{|l|}{Communications address} & \multirow[b]{2}{*}{Name} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & & & & \multicolumn{4}{|c|}{Drive control} & \multirow[b]{2}{*}{} \\
\hline & \[
\begin{aligned}
& 485 \\
& \text { No. }
\end{aligned}
\] & Link No. & & & & & & \[
\left|\begin{array}{l}
\dot{\lambda} \\
0 \\
0 \\
0 \\
\tilde{0} \\
0 \\
0 \\
\hline
\end{array}\right|
\] & (1) & & O & & & \begin{tabular}{|c}
\(\sum\) \\
0 \\
\(\sum\) \\
2 \\
0 \\
0 \\
0 \\
\hline
\end{tabular} & \\
\hline H180 & 1F50h & & M3 Initial Magnetic Pole Position Detection Method (Available soon) & 8 & \begin{tabular}{l}
0 to 3 \\
0: Pull-in by current for IPMSM (Interior Permanent \\
Magnet Synchronous Motor) \\
1: Pull-in by current for SPMSM (Surface Permanent \\
Magnet Synchronous Motor) \\
2: Alternate system for IPMSM (Available soon) \\
3: Alternate system for IPMSM (Available soon)
\end{tabular} & N & 0 & Y & N & 0 & N & N N & N Y & Y & \\
\hline H181 & 1F51h & & M3 Pull-in Reference Current (Available soon) & 1 & \[
\begin{array}{|l|}
\hline 10 \text { to } 200 \% \\
100 \% / \text { Motor rated current } \\
\hline
\end{array}
\] & N & 80 & Y & N & 0 & N & N N & N Y & Y & \\
\hline H182 & 1F52h & & M3 Pull-in Frequency (Available soon) & 1 & 0.1 to 10.0 Hz & N & 1.0 & Y & N & 2 & N & N N & N Y & Y & \\
\hline H183 & 1F53h & & \begin{tabular}{l}
M3 Reference Current for Polarity Discrimination \\
(Available soon)
\end{tabular} & 1 & 0 to 200\% & N & 80 & Y & N & 0 & N & \(\mathrm{N} N\) & N Y & Y & \\
\hline H184 & 1F54h & & M3 Alternate Voltage (Available soon) & 1 & 0 to \(100 \%\) & N & 0 & Y & N & 0 & N & N N & N Y & Y & \\
\hline H201 & 2001h & h & Load Adaptive Control
(Load adaptive control
parameter switching)
(Available soon) & 13 & \[
\begin{aligned}
& \text { 0 or } 1 \\
& \text { 0: Enable H51/H64/H65, Disable H202-H213 } \\
& \text { 1: Disable H51/H64/H65, Enable H202-H213 }
\end{aligned}
\] & N & 0 & Y & Y & 0 & Y & \(\mathrm{N} N\) & N Y & Y & \\
\hline H202 & 2002h & h & \begin{tabular}{l}
(Load inertia for winding up 1) \\
(Available soon)
\end{tabular} & 1 & \begin{tabular}{l}
0.001 to \(50.000 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) \\
Applies to winding-up operation when \(\boldsymbol{A N}-\mathrm{P} 2 / 1\) is OFF. \\
The magnification is switchable by H 228 .
\end{tabular} & N & 0.001 & Y & Y & 4 & Y & N & N Y & Y & \\
\hline H203 & 2003h & h & (Safety coefficient for winding up 1) (Available soon) & 1 & \begin{tabular}{l}
0.50 to 1.20 \\
Applies to winding-up operation when \(\boldsymbol{A N}-\mathbf{P 2} / 1\) is OFF.
\end{tabular} & N & 1.00 & Y & Y & 3 & Y & \(\mathrm{N} N\) & N Y & Y & \\
\hline H204 & 2004h & h & (Mechanical efficiency for winding up 1) (Available soon) & 1 & \begin{tabular}{l}
0.500 to 1.000 \\
Applies to winding-up operation when \(\boldsymbol{A N}-\mathbf{P 2} / \mathbf{1}\) is OFF.
\end{tabular} & N & 0.500 & Y & Y & 4 & Y & N N & N Y & Y & \\
\hline H205 & 2005h & h & (Load inertia for winding up 2) (Available soon) & 1 & \begin{tabular}{l}
0.001 to \(50.000 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) \\
Applies to winding-up operation when \(A N-P 2 / 1\) is ON. \\
The magnification is switchable by H 228 .
\end{tabular} & N & 0.001 & Y & Y & 4 & Y & N N & N Y & Y & \\
\hline H206 & 2006h & h & \begin{tabular}{l}
(Safety coefficient for winding up 2) \\
(Available soon)
\end{tabular} & 1 & \begin{tabular}{l}
\[
0.50 \text { to } 1.20
\] \\
Applies to winding-up operation when \(\mathbf{A N}-\mathbf{P} 2 / 1\) is ON .
\end{tabular} & N & 1.00 & Y & Y & 3 & Y & N N & N Y & Y & \\
\hline H207 & 2007h & h & (Mechanical efficiency for winding up 2) (Available soon) & 1 & \[
\begin{aligned}
& 0.500 \text { to } 1.000 \\
& \text { Applies to winding-up operation when } \boldsymbol{A N}-\mathbf{P} / \mathbf{1} \text { is } \mathrm{ON} \text {. }
\end{aligned}
\] & N & 0.500 & Y & Y & 4 & Y & N N & N Y & Y & \\
\hline H208 & 2008h & h & \begin{tabular}{l}
(Load inertia for winding down 1) \\
(Available soon)
\end{tabular} & 1 & \begin{tabular}{l}
0.001 to \(50.000 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) \\
Applies to winding-down operation when \(\boldsymbol{A N}-\mathrm{P} 2 / 1\) is OFF. \\
The magnification is switchable by H 228 .
\end{tabular} & N & 0.001 & Y & Y & 4 & Y & N N & N Y & Y & \\
\hline H209 & 2009h & h & (Safety coefficient for winding down 1) (Available soon) & 1 & \begin{tabular}{l}
0.50 to 1.20 \\
Applies to winding-down operation when \(\boldsymbol{A N}-P 2 / 1\) is OFF.
\end{tabular} & N & 1.00 & Y & Y & 3 & Y & N N & N Y & Y & \\
\hline H210 & 200Ah & h & (Mechanical efficiency for winding down 1) (Available soon) & 1 & \begin{tabular}{l}
0.500 to 1.000 \\
Applies to winding-down operation when \(\boldsymbol{A N}-\mathbf{P} 2 / 1\) is OFF.
\end{tabular} & N & 0.500 & Y & Y & 4 & Y & N N & N Y & Y & \\
\hline H211 & 200Bh & h & (Load inertia for winding down 2) (Available soon) & 1 & \begin{tabular}{l}
0.001 to \(50.000 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) \\
Applies to winding-down operation when \(A N-P 2 / 1\) is ON. \\
The magnification is switchable by H 228 .
\end{tabular} & N & 0.001 & Y & Y & 4 & Y & N N & N Y & Y & \\
\hline H212 & 200Ch & h & \begin{tabular}{l}
(Safety coefficient for winding down 2) \\
(Available soon)
\end{tabular} & 1 & \begin{tabular}{l}
0.50 to 1.20 \\
Applies to winding-down operation when \(\boldsymbol{A N}-\mathrm{P} 2 / 1\) is ON.
\end{tabular} & N & 1.00 & Y & Y & 3 & Y & N N & N Y & Y & \\
\hline H213 & 200Dh & h & (Mechanical efficiency for winding down 2) (Available soon) & 1 & \begin{tabular}{l}
0.500 to 1.000 \\
Applies to winding-down operation when \(A N-P 2 / 1\) is ON.
\end{tabular} & N & 0.500 & Y & Y & 4 & Y & N N & N Y & Y & \\
\hline H214 & 200Eh & h & (Multi-limit speed pattern function) (Available soon) & 14 & \[
\begin{array}{|l}
\hline 0 \text { or } 1 \\
0: \text { Enable H60, Disable H215-H224 } \\
\text { 1: Disable H60, Enable H215-H224 } \\
\hline
\end{array}
\] & N & 0 & Y & Y & 0 & Y & N N & N Y & Y & \\
\hline H215 & 200Fh & h & (Multi-limit speed pattern at max. speed) (Available soon) & 1 & \[
\begin{aligned}
& 0.1 \text { to } 100.0 \% \\
& \text { Specifies the torque level at the maximum speed. }
\end{aligned}
\] & N & 50.0 & Y & Y & 2 & Y & N & N Y & Y & \\
\hline H216 & 2010h & h & (Multi-limit speed pattern at rated speed) (Available soon) & 1 & \[
\begin{aligned}
& 0.1 \text { to } 100.0 \% \\
& \text { Specifies the torque level at the rated speed. }
\end{aligned}
\] & N & 100.0 & Y & Y & 2 & Y & N & N Y & Y & \\
\hline H217 & 2011h & h & (Multi-limit speed pattern at rated speed \(\times 1.1\)) (Available soon) & 1 & \[
\begin{aligned}
& 0.1 \text { to } 100.0 \% \\
& \text { Specifies the torque level at the rated speed*1.1. }
\end{aligned}
\] & N & 90.9 & Y & Y & 2 & Y & N N & N Y & Y & \\
\hline H218 & 2012h & h & (Multi-limit speed pattern at rated speed \(x\) 1.2) (Available soon) & 1 & \[
\begin{aligned}
& 0.1 \text { to } 100.0 \% \\
& \text { Specifies the torque level at the rated speed*1.2. }
\end{aligned}
\] & N & 83.3 & Y & Y & 2 & Y & N N & N Y & Y & \\
\hline H219 & 2013h & h & (Multi-limit speed pattern at rated speed \(x\) 1.4) (Available soon) & 1 & \[
\begin{aligned}
& 0.1 \text { to } 100.0 \% \\
& \text { Specifies the torque level at the rated speed*1.4. }
\end{aligned}
\] & N & 71.4 & Y & Y & 2 & Y & N N & N Y & Y & \\
\hline H220 & 2014h & h & (Multi-limit speed pattern at rated speed \(\times 1.6\)) (Available soon) & 1 & \[
\begin{aligned}
& 0.1 \text { to } 100.0 \% \\
& \text { Specifies the torque level at the rated speed*1.6. }
\end{aligned}
\] & N & 62.5 & Y & Y & 2 & Y & N N & N Y & Y & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\stackrel{\square}{\square}\) & \multicolumn{2}{|l|}{Communications address} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Dir.} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & & & \multirow[b]{2}{*}{} & \multicolumn{4}{|c|}{Drive control} & \multirow[b]{2}{*}{} \\
\hline \[
\begin{aligned}
& 0 \\
& \text { O} \\
& \text { 은 } \\
& \vdots \\
& \hline 1
\end{aligned}
\] & \[
\begin{aligned}
& 485 \\
& \text { No. }
\end{aligned}
\] & Link No. & & & & & & & & & \[
\left\lvert\, \begin{aligned}
& 0 \\
& 0 \\
& 3 \\
& 0 \\
& 0 \\
& >
\end{aligned}\right.
\] & \[
\left|\begin{array}{l}
0 \\
0 \\
0 \\
3 \\
0 \\
>
\end{array}\right|
\] & \[
\pm
\] & & \\
\hline H221 & 2015h & h & (Multi-limit speed pattern at rated speed x 1.8) (Available soon) & 1 & 0.1 to \(100.0 \%\) Specifies the torque level at the rated speed*1.8. & N & 55.5 & Y & Y & 2 & Y & N & N & Y & \\
\hline H222 & 2016h & h & (Multi-limit speed pattern at rated speed \(\times 2.0\)) (Available soon) & 1 & \[
\begin{aligned}
& 0.1 \text { to } 100.0 \% \\
& \text { Specifies the torque level at the rated speed*2.0. }
\end{aligned}
\] & N & 50.0 & Y & Y & 2 & Y & N & N & Y & \\
\hline H223 & 2017h & h & (Multi-limit speed pattern at rated speed \(\times 2.5\)) (Available soon) & 1 & \begin{tabular}{l}
\[
0.1 \text { to } 100.0 \%
\] \\
Specifies the torque level at the rated speed*2.5.
\end{tabular} & N & 40.0 & Y & Y & 2 & Y & N & N & Y & \\
\hline H224 & 2018h & h & (Multi-limit speed pattern at rated speed \(\times 3.0\)) (Available soon) & 1 & \[
\begin{aligned}
& 0.1 \text { to } 100.0 \% \\
& \text { Specifies the torque level at the rated speed*3.0. }
\end{aligned}
\] & N & 33.3 & Y & Y & 2 & Y & N & N & Y & \\
\hline H225 & 2019h & h & \begin{tabular}{l}
(Limit speed discrimination zone, \\
Start speed) \\
(Available soon)
\end{tabular} & 1 & 0.1 to \(100.0 \%\) Specifies the starting speed of the discrimination zone. The rated speed is assumed as \(100 \%\). & N & 75.0 & Y & Y & 2 & Y & N & N & Y & \\
\hline H226 & 201Ah & h & (Limit speed discrimination zone, Completion speed) (Available soon) & 1 & \begin{tabular}{l}
0.1 to \(100.0 \%\) \\
Specifies the end speed of the discrimination zone. \\
The rated speed is assumed as \(100 \%\).
\end{tabular} & N & 93.7 & Y & Y & 2 & Y & N & N & Y & \\
\hline H227 & 201Bh & h & (Function definition 3) (Available soon) & 1 & \begin{tabular}{l}
0 to 2 \\
0: Calculate the limit speed for winding-up and winding-down individually \\
1: Drive winding-down operation using the last limited speed result Enable the winding-down limit calculation under specific conditions \\
2: Drive winding-down operation using the last limited speed result Limit the winding-down speed with the rated speed under specific conditions
\end{tabular} & N & 0 & Y & Y & 0 & Y & N & N & Y & \\
\hline H228 & 201Ch & h & Load Inertia Magnification Setting & 0 & \begin{tabular}{l}
0 to 2 \\
0: 1 time (0.001 to \(50.000 \mathrm{~kg} \cdot \mathrm{~m}^{2}\)) \\
1: 10 times (0.01 to \(500.00 \mathrm{~kg} \cdot \mathrm{~m}^{2}\)) \\
2: 100 times (0.1 to \(5000.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}\)) \\
Switches the magnification of the load inertia (H51, \\
H52, H2O2, H205, H208, H211).
\end{tabular} & N & 0 & Y & Y & 193 & Y & N & N & Y & \\
\hline H322 & 2116h & & \begin{tabular}{l}
Notch Filter 1 \\
(Resonance frequency)
\end{tabular} & 6 & 10 to 2000 Hz & Y & 1000 & Y & Y & 0 & Y & Y & N & Y & \\
\hline H323 & 2117h & & (Attenuation level) & 1 & 0 to 40 dB & Y & 0 & Y & Y & 0 & Y & Y & N & Y & \\
\hline H324 & 2118h & & & 1 & 0 to 3 & Y & 2 & Y & \(Y\) & 0 & Y & Y & N & Y & \\
\hline H325 & 2119h & & \begin{tabular}{l}
Notch Filter 2 \\
(Resonance frequency)
\end{tabular} & 1 & 10 to 2000 Hz & Y & 1000 & Y & Y & 0 & Y & Y & N & Y & \\
\hline H326 & 211Ah & & (Attenuation level) & 1 & 0 to 40 dB & Y & 0 & Y & Y & 0 & Y & \(Y\) & N & Y & \\
\hline H327 & 211 Bh & & & 1 & 0 to 3 & Y & 2 & Y & Y & 0 & \(Y\) & Y & N & Y & \\
\hline
\end{tabular}

\subsection*{5.3.6 A codes (Alternative Motor Parameter Functions M2/M3)}

\subsection*{5.3.7 o codes (Option Functions)}

\subsection*{5.3.8 L codes (Lift Functions)}

\subsection*{5.3.9 SF codes (Safety Functions)}
[1] For a list of the above function codes and the detailed description of them, refer to the FRENIC-VG User's Manual, Chapter 4, Section 4.2 "Function Codes Tables" and Section 4.3 "Details of Function Codes," respectively.

\section*{Chapter 6 TROUBLESHOOTING}

\subsection*{6.1 Protective Functions}

The FRENIC-VG series of inverters has various protective functions as listed below to prevent the system from going down and reduce system downtime. The protective functions marked with an asterisk (*) in the table are disabled by default. Enable them according to your needs.
The protective functions include, for example, the "heavy alarm" detection function which, upon detection of an abnormal state, displays the alarm code and causes the inverter to trip, the "light alarm" detection function which displays the alarm code but lets the inverter continue the current operation, and other warning signal output functions.
If any problem arises, understand the protective functions listed below and follow the procedures given in Section 6.2 and onwards for troubleshooting.
\begin{tabular}{|c|c|}
\hline Protective function & Description \\
\hline "Heavy alarm" detection & \begin{tabular}{l}
This function detects an abnormal state, displays the corresponding alarm code, and causes the inverter to trip. The "heavy alarm" codes are check-marked in the "Heavy alarm" object column in Table 6.3-1. For details of each alarm code, see the corresponding item in the troubleshooting. \\
The inverter retains the latest and the last 10 alarm codes (see Section 3.4.9) and the latest and the last three pieces of alarm information (see Section 3.4.8). It can also display them.
\end{tabular} \\
\hline "Light alarm" detection* & \begin{tabular}{l}
This function detects an abnormal state categorized as a "light alarm," displays \(\underset{\sim}{\prime}\) lets the inverter continue the current operation without tripping. \\
It is possible to define which abnormal states should be categorized as a "light alarm" using function codes H81 and H82. The "light alarm" codes are check-marked in the "Light alarm" object column in Table 6.3-1. \\
For instructions on how to check and release light alarms, see Section 3.3.5 "Monitoring light alarms, ■ How to remove the current light alarm."
\end{tabular} \\
\hline Stall prevention & When the torque command exceeds the torque limiter level (F44, F45) during acceleration/ deceleration or constant speed running, this function limits the motor torque generated in order to avoid an overcurrent trip. \\
\hline Motor overload early warning* & When the inverter output current has exceeded the specified level, this function issues the "Motor overload early warning" signal \(\boldsymbol{M}-\boldsymbol{O L}\) before the thermal overload protection function causes the inverter to trip for motor protection. \\
\hline Auto-reset* & When the inverter has stopped because of a trip, this function allows the inverter to automatically reset and restart itself. (The number of retries and the latency between stop and reset can be specified.) \\
\hline Surge protection & This function protects the inverter from a surge voltage invaded between main circuit power lines and the ground. \\
\hline
\end{tabular}

Notes When the DC link bus voltage drops below the undervoltage detection level, alarm information is not saved.

\subsection*{6.2 Before Proceeding with Troubleshooting}

\section*{\(\triangle\) WARNING \(\wedge\)}
- If any of the protective functions has been activated, first remove the cause. Then, after checking that the all run commands are set to OFF, release the alarm. If the alarm is released while any run commands are set to ON, the inverter may supply the power to the motor, running the motor.

\section*{Injury may occur.}
- Even if the inverter has interrupted power to the motor, if the voltage is applied to the main DC input terminals \(\mathrm{P}(+)\) and \(\mathrm{N}(-)\), voltage may be output to inverter output terminals \(\mathrm{U}, \mathrm{V}\), and W .
- Turn the power OFF, wait at least ten minutes, and make sure that the LED monitor and charging lamp are turned OFF. Further, make sure, using a multimeter or a similar instrument, that the DC link bus voltage between the terminals \(\mathrm{P}(+)\) and \(\mathrm{N}(-)\) has dropped to the safe level (+25 VDC or below).

\section*{Electric shock may occur.}

Follow the procedure below to solve problems.
(1) First, check that the inverter is correctly wired, referring to Chapter 2, Section 2.3.5 "Wiring of main circuit terminals and grounding terminals."
(2) Check whether an alarm code or the "light alarm" indication (\(\left(\underset{L}{\prime}-\mathcal{F}_{1} / 1 /\right)\) is displayed on the LED monitor.
- If an alarm code appears on the LED monitor \(\longrightarrow\) Go to Section 6.3.
- If the "light alarm" indication \(\left(\underset{L}{\prime}-\kappa_{1 / \prime \prime}^{\prime \prime}\right)\) appears on the LED monitor \(\longrightarrow\) Go to Section 6.4.
- If neither an alarm code nor "light alarm" indication (\(L\) - \(-\vdash_{1 \prime \prime \prime}^{\prime \prime}\)) appears on the LED monitor

If any problems persist after the above recovery procedure, contact your Fuji Electric representative.

\section*{6．3 If an alarm code appears on the LED monitor}

\section*{6．3．1 List of alarm codes}

If the inverter detects an alarm，check whether any alarm code appears on the 7 －segment LED monitor of the keypad．
As listed below，some alarm codes are followed by alarm sub codes that denote the detailed error causes．For alarm codes not followed by alarm sub codes，＂－－＂is written in the table below．

Table 6．3－1 Abnormal States Detectable（＂Heavy Alarm＂and＂Light Alarm＂Objects）
＊1 For the alarm sub code checking procedure，refer to the FRENIC－VG User＇s Manual，Chapter 3，Section 3．4．3．8＂Reading alarm information－－Menu \＃7 ALM INF．＂
＊2 For alarm codes followed by alarm sub codes listed as＂For particular manufacturers，＂inform your Fuji Electric representative of the alarm sub code also when contacting or asking him／her to repair the inverter．
＊3 For numbers marked with＊3，refer to Section 6．3．2＂Possible causes of alarms，checks and measures＂that provides the error details．For others，refer to the FRENIC－VG User＇s Manual，Chapter 13 ＂Troubleshooting．＂
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Num． & LED monitor displays & Name & Description & \[
\begin{aligned}
& \text { Alarm sub } \\
& \text { code } * 1
\end{aligned}
\] & Detailed error cause
\[
* 2
\] & Related function code \\
\hline ［3］ & & DC fuse blown & If a fuse in the main DC circuit blows to open the microswitch of the fuse due to a short circuit in the IGBT circuit，then this protective function displays the error to prevent the secondary damage．The inverter could be broken，so immediately contact your Fuji Electric representative． & －－ & －－ & \\
\hline ［4］ & ニルイ゙ー & DC fan locked & This function is activated if the DC fan is stopped． & －－ & －－ & H108 \\
\hline ［5］ & ニIİ＇ & Excessive positioning deviation & \begin{tabular}{l}
This function is activated when the positioning deviation between the command and the detected values exceeds the setting of Function code o18（Excessive deviation value）in synchronous operation． \\
Mounting an option makes the option codes＂o＂ effective and displays them on the keypad．
\end{tabular} & －－ & －－ & o18 \\
\hline ［6］ & E＇ & PG communication error & This function is activated if a PG communication error occurs when the 17－bit high resolution ABS interface （OPC－VG1－SPGT）is used． & 0001－2000 & For particular manufacturers＊2 & \\
\hline \multirow{3}{*}{\[
\begin{gathered}
{[7]} \\
* 3
\end{gathered}
\]} & \multirow{3}{*}{に！ご} & \multirow{3}{*}{Functional safety circuit fault} & \multirow{3}{*}{This function detects a functional safety circuit fault and stops the inverter．The alarm cannot be removed by the inverter＇s reset function．} & 0001 & Input mismatch between terminals ［EN1］and［EN2］ & \\
\hline & & & & 0002 & Printed circuit board failure & \\
\hline & & & & 0005－0008 & CPU error & \\
\hline ［8］ & にし－ & Ground fault & \begin{tabular}{l}
This function is activated when a ground fault is detected in the inverter output circuit．If the ground－fault current is large，the overcurrent protection may be activated． \\
This protective function is to protect the inverter．For the sake of prevention of accidents such as human damage and fire，connect a separate earth－leakage protective relay or an earth－leakage circuit breaker（ELCB）．
\end{tabular} & －－ & －－ & H103 \\
\hline ［9］ & E－！ & Memory error & \begin{tabular}{l}
This function is activated when a memory error such as a data write error occurs． \\
Note：The inverter memory uses a nonvolatile memory that has a limited number of rewritable times（ 100,000 to \(1,000,000\) times）．Saving data into the memory with the Save All function so many times unnecessarily will no longer allow the memory to save data，causing a memory error．
\end{tabular} & 0001－0008 & For particular manufacturers＊2 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Num． & \[
\left|\begin{array}{c}
\text { LED } \\
\text { monitor } \\
\text { displays }
\end{array}\right|
\] & Name & Description & Alarm sub code \(* 1\) & Detailed error cause & Related function code \\
\hline ［18］ & & UPAC error & Available soon & 0001－0004 & See the related option manual． & H108 \\
\hline ［19］ & に－に & Inter－inverter communicatio ns link error & This function is activated if a communications error occurs in the inverter－to－inverter communications link using a high－speed serial communication terminal block（option）． & 0002－0400 & For particular manufacturers＊2 & H107 \\
\hline ［20］ & & Hardware error & Upon detection of an LSI failure on the printed circuit board，this function stops the inverter output． & 0001－1000 & For particular manufacturers＊2 & \\
\hline ［21］ & E－I－ & Mock alarm & This can be caused with keypad operation or FRENIC－VG Loader． & －－ & －－ & \[
\begin{aligned}
& \mathrm{H} 108, \\
& \mathrm{H} 142
\end{aligned}
\] \\
\hline ［22］ & EL＇ & PG failure & This function is activated if a PG data error or PG failure is detected when the 17－bit high resolution ABS interface（OPC－VG1－SPGT）is used． & －－ & －－ & \\
\hline ［24］ & & Start delay & This function is activated when the reference torque current（F44，F45）exceeds the specified level（H140）and the detected speed or reference one drops below the specified stop speed（F37）and the state is kept for the specified duration（H141）． & －－ & －－ & \begin{tabular}{l}
H108， \\
H140， \\
H141
\end{tabular} \\
\hline ［25］ & ！！＇ & Undervoltage & \begin{tabular}{l}
This function is activated when the DC link bus voltage drops below the undervoltage detection level（ 360 VDC for 400 V series）． \\
Note that，if the restart mode after momentary power failure is selected（ \(\mathrm{F} 14=3,4\) or 5 ），no alarm is output even if the DC link bus voltage drops．
\end{tabular} & －－ & －－ & F14 \\
\hline ［26］ & －11 & NTC wire break error & \begin{tabular}{l}
This function is activated if the thermistor wire breaks when the NTC thermistor is selected with Function code P30／A31／A131 for motor M1／M2／M3． \\
This function works even at extremely low temperatures（approx．\(-30^{\circ} \mathrm{C}\) or below）．
\end{tabular} & －－ & －－ & P30， A31， A131， H106 \\
\hline & & & This function stops the inverter output when the & 0001－0004 & For particular manufacturers＊2 & \\
\hline & Lill & Overcurrent & output current to the motor exceeds the overcurrent level of the inverter． & 0100 & Demagnetizing limit current for PMSM & \begin{tabular}{l}
P44， \\
A64， \\
A164
\end{tabular} \\
\hline ［28］ & & Heat sink & This function is activated if the temperature surrounding the heat sink（that cools down the & 0001－0008 & Protection by thermistor & \\
\hline ＊3 & & overheat & rectifier diodes and the IGBTs）increases due to stopped cooling fans． & 0010－0200 & For particular manufacturers＊2 & \\
\hline \[
\begin{gathered}
{[29]} \\
* 3
\end{gathered}
\] & ，－17112＇ & External alarm & \begin{tabular}{l}
This function is activated by digital input signal THR（＂Enable external alarm trip＂）． \\
Connecting an alarm contact of external equipment such as a braking unit or braking resistor to the control circuit terminal（to which the \(\boldsymbol{T H R}\) is assigned）activates this function according to the contact signal status．
\end{tabular} & 0001 & Protection by THR signal & E01 to E14， H106 \\
\hline ［30］ & －－111イフ＇ & Inverter internal overheat & This function is activated if the temperature surrounding the control printed circuit board increases due to poor ventilation inside the inverter． & 0001－0008 & \begin{tabular}{l}
Protection by thermistor \\
For particular manufacturers＊2
\end{tabular} & \\
\hline ［31］ & & Motor overheat & This function is activated if the temperature detected by the NTC thermistor integrated in a dedicated motor for motor temperature detection exceeds the motor overheat protection level（E30）． & －－ & －－ & \[
\begin{aligned}
& \text { E30, } \\
& \text { H106 }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Num. & \[
\left|\begin{array}{c}
\text { LED } \\
\text { monitor } \\
\text { displays }
\end{array}\right|
\] & Name & Description & \[
\begin{aligned}
& \text { Alarm sub } \\
& \text { code } * 1
\end{aligned}
\] & Detailed error cause
*2 & Related function code \\
\hline [32] & 'ill & Motor 1 overload & This function is activated by the electronic thermal overload protection if the motor 1 current (inverter output current) exceeds the operation level specified by Function code F11. & -- & -- & \[
\begin{array}{|l}
\hline \text { F11, } \\
\text { H106 }
\end{array}
\] \\
\hline [33] & & Motor 2 overload & This function is activated by the electronic thermal overload protection if the motor 2 current (inverter output current) exceeds the operation level specified by Function code A33. & -- & -- & \[
\begin{aligned}
& \text { A33, } \\
& \text { H106 }
\end{aligned}
\] \\
\hline [34] & 保衔 & Motor 3 overload & This function is activated by the electronic thermal overload protection if the motor 3 current (inverter output current) exceeds the operation level specified by Function code A133. & -- & -- & \[
\begin{aligned}
& \text { A133, } \\
& \text { H106 }
\end{aligned}
\] \\
\hline \[
\begin{gathered}
{[35]} \\
* 3
\end{gathered}
\] & & Inverter overload & \begin{tabular}{l}
This function is activated if the output current exceeds the overload characteristic of the inverse time characteristic. \\
It stops the inverter output depending upon the heat sink temperature and switching element temperature calculated from the output current.
\end{tabular} & 0001-0010 & For particular manufacturers *2 & F80 \\
\hline [36] & , & Output phase loss & \begin{tabular}{l}
This function detects a break in inverter output wiring during running and stops the inverter output. \\
(Available under vector control for IM with speed sensor.)
\end{tabular} & 0001
0002 & \begin{tabular}{l}
Loss of one or more phases \\
Loss of two or more phases
\end{tabular} & \begin{tabular}{l}
H103, \\
P01, \\
A01, \\
A101
\end{tabular} \\
\hline [37] & (1) & Overspeed & \begin{tabular}{l}
This function \\
Stops the inverter output if the detected speed is \(120 \%\) or over of the maximum speed. \\
This function is activated if the motor speed (detected or estimated speed) exceeds \(120 \%\) (adjustable with Function code H90) of the maximum speed (F03/A06/A106).
\end{tabular} & -- & -- & H90 \\
\hline \[
\begin{gathered}
{[38]} \\
* 3
\end{gathered}
\] & ['II') & Overvoltage & \begin{tabular}{l}
This function is activated if the DC link bus voltage exceeds the overvoltage detection level (405 VDC for 200 V series, 820 VDC for 400 V series) due to an increase of supply voltage or regenerative braking current from the motor. \\
Note that the inverter cannot be protected from excessive voltage (high voltage, for example) supplied by mistake.
\end{tabular} & 0001 & For particular manufacturers *2 & \\
\hline \multirow{4}{*}{[39]} & \multirow{4}{*}{197} & \multirow{4}{*}{PG wire break} & \multirow{4}{*}{\begin{tabular}{l}
This function is activated if a wire breaks in the \(\mathrm{PA} / \mathrm{PB}\) circuit on the PG terminal or in the power supply circuit. \\
It does not work under vector control without speed sensor or under V/f control.
\end{tabular}} & 0001 & Wire break detected (inverter unit, PA and PB) & \multirow{4}{*}{H104} \\
\hline & & & & 0002 & Wire break detected (option) & \\
\hline & & & & 0004 & Power shutdown detected (inverter unit) & \\
\hline & & & & 0010-0400 & PG wiring fault for PMSM & \\
\hline [41] & A1-I & E-SX bus tact synchronizati on error & This error occurs when the E-SX tact cycle and inverter control cycle are out of synchronization with each other. & -- & -- & H108 \\
\hline [42] & , M-I & Toggle data error & \begin{tabular}{l}
The inverter monitors 2-bit signals of toggle signal 1 TGL1 and toggle signal 2 TGL2 which are sent from the PLC. \\
When the inverter receives no prescribed change pattern within the time specified by H144, this error occurs.
\end{tabular} & -- & -- & H107 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Num． & \[
\left|\begin{array}{c}
\text { LED } \\
\text { monitor } \\
\text { displays }
\end{array}\right|
\] & Name & Description & \[
\begin{aligned}
& \text { Alarm sub } \\
& \text { code } * 1
\end{aligned}
\] & \(\underset{* 2}{\text { Detailed error cause }}\) & Related function code \\
\hline ［43］ & 5117 & \multirow[b]{2}{*}{Functional safety card fault} & Refer to the Functional Safety Card instruction manual for details． & －－ & \multirow[b]{2}{*}{See the Functional Safety Card （OPC－VG1－SAFE） instruction manual．} & \\
\hline ［44］ & & & \begin{tabular}{l}
This alarm cannot be removed by the inverter＇s reset function． \\
For details，refer to the Functional Safety Card instruction manual．
\end{tabular} & －－ & & \\
\hline ［45］ & L－17\％ & Light alarm （warning） & \begin{tabular}{l}
 monitor if a failure or warning registered as a light alarm occurs．It outputs the \(\boldsymbol{L}-\boldsymbol{A L M}\) signal on the Y terminal but it does not issue an alarm relay output（［30A］，［30B］，［30C］），so the inverter continues to run． \\
Light alarm objects（selectable） \\
 to íIII \({ }^{\prime \prime}\) ）， \\
NTC wire break error（ヶוー念），External failure （ \\
RS－485 communications error（だーム）， Network error（I－，\(I^{\prime}\) ）， \\
Toggle data error（ \\
 （に，－－ \\
E－SX bus tact synchronization error（ケールーに Motor overheat early warning（MOH）， Motor overload early warning（MOL），Lifetime alarm（LiF）， \\
Heat sink overheat early warning \((\mathrm{OH})\) ， Inverter overload early warning（OL）， \\
 \\
Functional safety card light alarms （Iニールー ）：Alarms that could occur in the functional safety card．An individual alarm is not selectable as a light alarm object． \\
Light alarm objects can be checked on the keypad．
\end{tabular} & －－ & －－ & \begin{tabular}{l}
H106 to H108， \\
H110， \\
H111 \\
SF25 to \\
SF27 \\
（Only \\
SnF ）
\end{tabular} \\
\hline ［46］ & － & Surge protection & This function protects the inverter against surge voltages which might appear between one of the power lines，using surge absorbers connected to the control power terminals（R0， T0）． & －－ & －－ & \\
\hline
\end{tabular}

Notes • All protective functions are automatically reset if the control power voltage decreases until the inverter control circuit no longer operates．
－The inverter retains the latest and the last 10 alarm codes and the latest and the last three pieces of alarm information．
－Stoppage due to a protective function can be reset by the RST key on the keypad or turning OFF and then ON between the X terminal（to which RST is assigned）and the CM．This action is invalid if the cause of an alarm is not removed．
－The inverter cannot reset until the causes of all alarms are removed．（The causes of alarms not removed can be checked on the keypad．）
－If an abnormal state is categorized as a light alarm，the \(30 \mathrm{~A} / \mathrm{B} / \mathrm{C}\) does not operate．

\subsection*{6.3.2 Possible causes of alarms, checks and measures}

\section*{[7] EL/F Functional safety circuit fault}
(1) Alarm sub code: 0001

Problem An error occurred in Enable input circuit.
\begin{tabular}{l|l}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline \begin{tabular}{l}
(1) Poor contact of the control \\
circuit terminal block
\end{tabular} & Check that the control circuit terminal block is secured to the inverter. \\
\hline (2) Enable input circuit logic error & \begin{tabular}{l}
Check the ON/OFF timings of [EN1] and [EN2] with Menu \#4 "I/O CHECK." \\
\(\rightarrow\) Check that jumper bars are mounted between terminals [EN1] and [PS] and \\
between [EN2] and [PS].
\end{tabular} \\
\(\rightarrow\)\begin{tabular}{l}
Operate the relay so that the ON/OFF timings of [EN1] and [EN2] are \\
synchronized.
\end{tabular} \\
\(\rightarrow\) Check whether the relay(s) are not welded. If welded, replace the relay. \\
\(\rightarrow\) Check the gap between the ON/OFF timings of [EN1] and [EN2]. Keep the \\
gap within 50 ms.
\end{tabular}
(2) Alarm sub code: 0002, 0005 to 0008

Problem The printed circuit board(s) or CPU is faulty.
\(\left.\begin{array}{l|l}\hline \text { Possible Causes } & \text { What to Check and Suggested Measures } \\
\hline \text { (1) Inverter affected by strong } \\
\text { electrical noise. }\end{array} \quad \begin{array}{l}\text { Check if appropriate noise control measures have been implemented (e.g. correct } \\
\text { grounding and routing of signal wires, communications cables, and main circuit } \\
\text { wires). } \\
\rightarrow \text { Implement noise control measures. }\end{array}\right]\)\begin{tabular}{ll}
Check the printed circuit board(s) for short circuits, accumulation of dust or dirt. \\
(2) \begin{tabular}{l}
Short circuit on the printed \\
circuit board(s). \\
[Sub code: 0001 to 0008\(]\)
\end{tabular} & Inform the representative of the alarm sub code displayed.
\end{tabular}

Note To remove the \(!-=\) CPU error, turn the power to the inverter OFF and then ON. The error cannot be removed by pressing the (Hxse key.

\section*{[27] Overcurrent}

Problem The inverter momentary output current exceeded the overcurrent level.
\(\left.\begin{array}{l|l}\hline \text { Possible Causes } & \text { What to Check and Suggested Measures } \\
\hline \text { (1) The inverter output lines were } \\
\text { short-circuited. }\end{array} \begin{array}{l}\text { Disconnect the wiring from the inverter output terminals ([U], [V] and [W]) and } \\
\text { measure the interphase resistance of the motor wiring. Check if the resistance is } \\
\text { too low. } \\
\rightarrow \text { Remove the short-circuited part (including replacement of the wires, relay } \\
\text { terminals and motor). }\end{array}\right]\)\begin{tabular}{l}
(2) Ground faults have occurred at \\
the inverter output lines.
\end{tabular} \begin{tabular}{l}
Disconnect the wiring from the output terminals [U], [V] and [W] and perform a \\
Megger test for the inverter and the motor. (Refer to Section 7.6 "Insulation Test.") \\
\(\rightarrow\) Remove the grounded parts (including replacement of the wires, relay \\
terminals and motor).
\end{tabular}
\(\left.\begin{array}{l|l}\hline \text { Possible Causes } & \text { What to Check and Suggested Measures } \\ \hline \begin{array}{l}\text { Under V/f control } \\ \text { (5) The acceleration/deceleration } \\ \text { time was too short. }\end{array} & \begin{array}{l}\text { Check that the motor generates enough torque required during } \\ \text { acceleration/deceleration. That torque is calculated from the moment of inertia for } \\ \text { the load and the acceleration/deceleration time. } \\ \rightarrow \text { Increase the acceleration/deceleration time (F07, F08, C46, C47, C56, C57, } \\ \text { C66, C67). } \\ \rightarrow \text { Increase the inverter capacity. } \\ \rightarrow \text { Review the braking method. }\end{array} \\ \hline \text { (6) Malfunction caused by noise. } & \begin{array}{l}\text { Check if noise control measures are appropriate (e.g., correct grounding and } \\ \text { routing of control and main circuit wires). } \\ \rightarrow \text { Implement noise control measures. For details, refer to the FRENIC-VG User's } \\ \text { Manual, "Appendix A." }\end{array} \\ \rightarrow \begin{array}{l}\text { Enable the Auto-reset (H04). }\end{array} \\ \rightarrow \text { Connect a surge absorber to magnetic contactor's coils or other solenoids (if } \\ \text { any) causing noise. }\end{array}\right]\)

\section*{[28] AH'; Heat sink overheat}

Problem Temperature around heat sink has risen abnormally.
\begin{tabular}{|c|c|}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline \begin{tabular}{l}
(1) The ambient temperature exceeded the range of the inverter specification. \\
[Sub code: 0001 to 0008]
\end{tabular} & \begin{tabular}{l}
Measure the temperature around the inverter. \\
\(\rightarrow\) Lower the temperature around the inverter (e.g., ventilate the cabinet where the inverter is mounted).
\end{tabular} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Ventilation path is blocked. \\
[Sub code: 0001 to 0008]
\end{tabular}} & \begin{tabular}{l}
Check if there is sufficient clearance around the inverter. \\
\(\rightarrow\) Change the mounting place to ensure the clearance.
\end{tabular} \\
\hline & \begin{tabular}{l}
Check if the heat sink is not clogged. \\
\(\rightarrow\) Clean the heat sink. \\
(For the cleaning procedure, contact your Fuji Electric representative.)
\end{tabular} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Cooling fan's airflow volume decreased due to the service life expired or failure. \\
[Sub code: 0001 to 0008] \\
[Sub code: 0010 to 0200]
\end{tabular}} & \begin{tabular}{l}
Check the cumulative run time of the cooling fan. Refer to the FRENIC-VG User's Manual, Chapter 3, Section 3.4.4.6 "Reading maintenance information - Menu \#5 MAINTENANCE." \\
\(\rightarrow\) Replace the cooling fan. (Contact your Fuji Electric representative.)
\end{tabular} \\
\hline & \begin{tabular}{l}
Visually check whether the cooling fan rotates normally. \\
\(\rightarrow\) Replace the cooling fan. \\
(Contact your Fuji Electric representative.)
\end{tabular} \\
\hline \begin{tabular}{l}
(4) Overload. \\
[Sub code: 0001 to 0008]
\end{tabular} & \begin{tabular}{l}
Measure the output current. \\
\(\rightarrow\) Reduce the load (Use the heat sink overheat early warning INV-OH (E15 through E27) or the inverter overload early warning \(\boldsymbol{I N V}\)-OL (E15 through E 27) to reduce the load before the overload protection is activated.).
\end{tabular} \\
\hline
\end{tabular}

\section*{[29] בר}

Problem External alarm was inputted (THR).
(when the "Enable external alarm trip" \(\boldsymbol{T H R}\) has been assigned to any of digital input terminals)
\begin{tabular}{l|l}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline (1) \begin{tabular}{l}
An alarm function of external \\
equipment was activated.
\end{tabular} & \begin{tabular}{l}
Check the operation of external equipment. \\
\(\boldsymbol{\rightarrow}\) Remove the cause of the alarm that occurred.
\end{tabular} \\
\hline \begin{tabular}{l}
(2) \begin{tabular}{l}
Wrong connection or poor \\
contact in external alarm signal \\
wiring.
\end{tabular}
\end{tabular} \begin{tabular}{l}
Check if the external alarm signal wiring is correctly connected to the terminal to \\
which the "Enable external alarm trip" terminal command \(\boldsymbol{T H R}\) has been assigned \\
(Any of E01 through E09 should be set to "9."). \\
\(\boldsymbol{\rightarrow}\) Connect the external alarm signal wire correctly.
\end{tabular} \\
\hline (3) \begin{tabular}{l}
Incorrect setting of function \\
code data.
\end{tabular} & \begin{tabular}{l}
Check whether the normal/negative logic of the external signal matches that of the \\
\(\boldsymbol{T H R}\) command specified by E14. \\
\(\boldsymbol{\rightarrow}\) Ensure the matching of the normal/negative logic.
\end{tabular} \\
\hline (4) \begin{tabular}{l}
The ambient temperature \\
exceeded the range of the \\
braking resistor specification.
\end{tabular} & \begin{tabular}{l}
Measure the temperature around the braking resistor. \\
\(\boldsymbol{\rightarrow}\) Lower the temperature (e.g., ventilate the inverter).
\end{tabular} \\
\hline (5) \begin{tabular}{l}
The capacity of the braking \\
resistor is insufficient.
\end{tabular} & \begin{tabular}{l}
Reconsider the capacity and \%ED of the braking resistor. \\
\(\boldsymbol{\rightarrow}\) Review the braking resistor.
\end{tabular} \\
\hline
\end{tabular}

\section*{[35] 근 Í Inverter overload}

Problem Electronic thermal overload protection for inverter activated.
\begin{tabular}{|c|c|}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline (1) The ambient temperature exceeded the range of the inverter specification. & \begin{tabular}{l}
Measure the temperature around the inverter. \\
\(\rightarrow\) Lower the temperature (e.g., ventilate the cabinet where the inverter is mounted).
\end{tabular} \\
\hline (2) Excessive torque boost specified. & \begin{tabular}{l}
Check whether decreasing the torque boost (P35, A55, A155) does not stall the motor. \\
If no stall occurs, decrease the torque boost (P35, A55, A155).
\end{tabular} \\
\hline (3) The specified acceleration/ deceleration time was too short. & \begin{tabular}{l}
Recalculate the acceleration/deceleration torque and time needed for the load, based on the moment of inertia for the load and the acceleration/deceleration time. \\
\(\rightarrow\) Increase the acceleration/deceleration time (F07, C35, C46, C56, C66).
\end{tabular} \\
\hline (4) Overload. & \begin{tabular}{l}
Measure the load factor to see that it does not exceed \(100 \%\). (Refer to Section 3.4.7 "Measuring load factor -- Menu \#6 "LOAD FCTR." \\
\(\rightarrow\) Reduce the load (e.g., Use the overload early warning (E33) and reduce the load before the overload protection is activated.).
\end{tabular} \\
\hline (5) Ventilation paths are blocked. & \begin{tabular}{l}
Check if there is sufficient clearance around the inverter. \\
\(\rightarrow\) Change the mounting place to ensure the clearance. (For details, refer to Chapter 2, Section 2.2 "Installing the Inverter."
\end{tabular} \\
\hline & \begin{tabular}{l}
Check if the heat sink is not clogged. \\
\(\rightarrow\) Clean the heat sink. \\
(For the cleaning procedure, contact your Fuji Electric representative.)
\end{tabular} \\
\hline (6) Cooling fan's airflow volume decreased due to the service life expired or failure. & \begin{tabular}{l}
Check the cumulative run time of the cooling fan. \\
\(\rightarrow\) Replace the cooling fan. \\
(Contact your Fuji Electric representative.)
\end{tabular} \\
\hline & \begin{tabular}{l}
Visually check that the cooling fan rotates normally. \\
\(\rightarrow\) Replace the cooling fan. \\
(Contact your Fuji Electric representative.)
\end{tabular} \\
\hline (7) The wires to the motor are too long, causing a large leakage current from them. & \begin{tabular}{l}
Measure the leakage current. \\
\(\rightarrow\) Insert an output circuit filter (OFL).
\end{tabular} \\
\hline \begin{tabular}{l}
Under vector control with/without speed sensor \\
(8) Reference speed fluctuating
\end{tabular} & \begin{tabular}{l}
Check whether the reference speed is fluctuating. \\
\(\rightarrow\) Increase the ASR input filter setting (F64, C43, C53, C63).
\end{tabular} \\
\hline \begin{tabular}{l}
Under vector control with/without speed sensor \\
(9) The control constants of the automatic speed regulator (ASR) are inadequate.
\end{tabular} & \begin{tabular}{l}
Check whether the actual speed overshoots or undershoots the commanded one. \\
\(\rightarrow\) Readjust the ASR (ASR gain, constant of integration, etc.).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline (10) Wrong wiring to the PG. & \begin{tabular}{l}
Check the wiring to the PG. \\
\(\rightarrow\) Correct the wiring. (Refer to Section 4.2.2 "Mounting direction of a pulse \\
generator (PG) and PG signals.")
\end{tabular} \\
\hline (11) Wrong wiring to the motor. & \begin{tabular}{l}
Check the wiring to the motor. \\
\(\rightarrow\) Correct the wiring. \\
It is also possible to use H75 (Phase sequence configuration of main circuit \\
output wires).
\end{tabular} \\
\hline \begin{tabular}{l}
(12) The magnetic pole position of \\
the permanent magnet \\
synchronous motor (PMSM) is \\
out of place.
\end{tabular} & \begin{tabular}{l}
Check the magnetic pole position. \\
\(\rightarrow\)\begin{tabular}{l}
Adjust the magnetic pole position (o10, A60, A160). \\
(Refer to Section 4.3.3 "Vector control for PMSM with speed sensor and \\
magnetic pole position sensor," ■ Adjusting the magnetic pole position.")
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{[38] OU' Overvoltage}

Problem The DC link bus voltage exceeded the overvoltage detection level.
\begin{tabular}{|c|c|}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline (1) The power supply voltage exceeded the range of the inverter specification. & \begin{tabular}{l}
Measure the input voltage. \\
\(\rightarrow\) Decrease the voltage to within the specified range.
\end{tabular} \\
\hline (2) The deceleration time was too short for the moment of inertia of the load. & \begin{tabular}{l}
Recalculate the deceleration torque based on the moment of inertia of the load and the deceleration time. \\
\(\rightarrow\) Increase the deceleration time (F08, C36, C47, C57, C67). \\
\(\rightarrow\) Consider the use of a braking resistor or PWM converter. \\
\(\rightarrow\) Decrease the moment of inertia of the load. \\
\(\rightarrow\) Enable the overvoltage trip prevention (H57). \\
\(\rightarrow\) Select the power limit function (F40 = 2) . \\
\(\rightarrow\) Under vector control with speed sensor Enable the torque limiter (F40 to F45).
\end{tabular} \\
\hline (3) The acceleration time was too short. & \begin{tabular}{l}
Check if an overvoltage alarm occurs after rapid acceleration. \\
\(\rightarrow\) Increase the acceleration time (F07, C35, C46, C56, C66). \\
\(\rightarrow\) Select the S-curve acceleration/deceleration (F67 to F70). \\
\(\rightarrow\) Consider the use of a braking resistor or PWM converter. \\
\(\rightarrow\) Decrease the moment of inertia of the load.
\end{tabular} \\
\hline (4) Braking load was too heavy. & \begin{tabular}{l}
Compare the braking torque of the load with that of the inverter. \\
\(\rightarrow\) Consider the use of a braking resistor or PWM converter.
\end{tabular} \\
\hline (5) Malfunction caused by noise. & \begin{tabular}{l}
Check if the DC link bus voltage was below the protective level when the overvoltage alarm occurred. \\
\(\rightarrow\) Implement noise control measures. For details, refer to the FRENIC-VG User's Manual, "Appendix A." \\
\(\rightarrow\) Enable the auto-reset (H 04). \\
\(\rightarrow\) Connect a surge absorber to magnetic contactor's coils or other solenoids (if any) causing noise.
\end{tabular} \\
\hline (6) The inverter output lines were short-circuited. & \begin{tabular}{l}
Disconnect the wiring from the inverter output terminals ([U], [V] and [W]) and measure the interphase resistance of the motor wiring. Check if the resistance is too low. \\
\(\rightarrow\) Remove the short-circuited part (including replacement of the wires, relay terminals and motor).
\end{tabular} \\
\hline (7) Wrong connection of the braking resistor. & \begin{tabular}{l}
Check the connection. \\
\(\rightarrow\) Correct the connection.
\end{tabular} \\
\hline (8) Large, rapid decrease of the load. & \begin{tabular}{l}
Check whether the inverter runs at the time of rapid decrease of the load. \\
\(\rightarrow\) Consider the use of a braking resistor or PWM converter.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{6.4 If the "Light Alarm" Indication (\(\mathcal{L}-\) 保) Appears on the LED Monitor}

If the inverter detects a minor abnormal state "light alarm," it can continue the current operation without tripping while displaying the "light alarm" indication,\(-1 / 1 /\) on the LED monitor. In addition to the indication \(!-1 / 1 /\), the inverter blinks the KEYPAD CONTROL LED and outputs the "light alarm" signal \(L-A L M\) to a general-purpose digital output terminal to alert the peripheral equipment to the occurrence of a light alarm. (To use the \(L-A L M\), it is necessary to assign the signal to any of the digital output terminals by setting any of function codes E15 through E19 to "57.")
Function codes H106 through H110 specify which alarms should be categorized as "light alarm." The available "light alarm" codes are check-marked in the "Light alarm" object column in Table 6.3-1.
For the "light alarm" factors and the alarm removal procedure, refer to Chapter 3, Section 3.3.5 "Monitoring light alarms."
Note that light alarms SnF that could occur in the functional safety card OPC-VG1-SAFE cannot be selected by function codes H106 through H110. For details about SnF, refer to the Functional Safety Card instruction manual.

\subsection*{6.5 If Neither an Alarm Code Nor "Light Alarm" Indication (\(\mathcal{L}-\boldsymbol{R}\) 元) Appears on the LED Monitor}

\subsection*{6.5.1 Abnormal motor operation}

\section*{[1] The motor does not rotate.}
\begin{tabular}{|c|c|}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline (1) No power supplied to the inverter. & \begin{tabular}{l}
Check the input voltage and interphase voltage unbalance. \\
\(\rightarrow\) Turn ON a molded case circuit breaker (MCCB), a residual-currentoperated protective device (RCD)/earth leakage circuit breaker (ELCB) (with overcurrent protection) or a magnetic contactor (MC). \\
\(\rightarrow\) Check for voltage drop, phase loss, poor connections, or poor contacts, and fix them if necessary. \\
\(\rightarrow\) If only the auxiliary control power input is supplied, also supply the main power to the inverter.
\end{tabular} \\
\hline (2) No run forward/reverse command was inputted, or both the commands were inputted simultaneously (external signal operation). & \begin{tabular}{l}
Check the input status of the forward/reverse command with Menu \#4 "I/O \\
CHECK" using the keypad. \\
\(\rightarrow\) Input a run command. \\
\(\rightarrow\) Set either the forward or reverse operation command to off if both commands are being inputted. \\
\(\rightarrow\) Correct the run command source. (Set the data of F02 to "1.") \\
\(\rightarrow\) Connect the external circuit wires to control circuit terminals [FWD] and [REV] correctly. \\
\(\rightarrow\) Make sure that the sink/source slide switch (SW1) on the control printed circuit board (control PCB) is properly configured. (Refer to Section 2.2.6 "Setting up the slide switches.")
\end{tabular} \\
\hline (3) A run command with higher priority than the one attempted was active, and the run command was stopped. & \begin{tabular}{l}
Referring to the run command block diagram given in the FRENIC-VG User's \\
Manual, Chapter 4, check the higher priority run command using Menu \#2 "DATA CHECK" and Menu \#4 "I/O CHECK" with the keypad. \\
\(\rightarrow\) Correct wrong setting of function code H 30 (Communications link function, Mode selection) or cancel the higher priority run command.
\end{tabular} \\
\hline (4) No analog speed command input. & \begin{tabular}{l}
Check whether the analog speed command is correctly inputted, using Menu \#4 \\
"I/O CHECK" on the keypad. \\
\(\rightarrow\) Connect the external circuit wires to terminals [13], [12], [11], [Ai1] and [Ai2] correctly. \\
\(\rightarrow\) Inspect the external speed command potentiometers, signal converters, switches and relay contacts. Replace any ones that are faulty.
\end{tabular} \\
\hline \begin{tabular}{l}
Under V/f control \\
(5) The reference speed was below the starting or stop speed.
\end{tabular} & \begin{tabular}{l}
Check that a speed command has been entered correctly, using Menu \#4 "I/O CHECK" on the keypad. \\
\(\rightarrow\) Set the reference speed at the same or higher than the starting speed (F23). \\
\(\rightarrow\) Reconsider the starting speed (F23), and if necessary, change it to the lower value. \\
\(\rightarrow\) Inspect the external speed command potentiometers, signal converters, switches and relay contacts. Replace any ones that are faulty. \\
\(\rightarrow\) Connect the external circuit wires to terminals [13], [12], [11], [Ai1] and [Ai2] correctly.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline (6) A run command with higher priority than the one attempted was active. & \begin{tabular}{l}
Referring to the run command block diagram given in the FRENIC-VG User's Manual, Chapter 4, check the higher priority run command using Menu \#2 "DATA CHECK" and Menu \#4 "I/O CHECK" with the keypad. \\
\(\rightarrow\) Correct the wrong setting of function codes (e.g., cancel the higher priority speed command). \\
\(\rightarrow\) Correct wrong setting of function code H 30 (Communications link function, Mode selection) or cancel the higher priority speed command.
\end{tabular} \\
\hline (7) The speed limiter settings were made incorrectly. & \begin{tabular}{l}
Check the data of function codes F76 (Speed limiter mode), F77 and F78 (Speed limiter levels 1 and 2). \\
\(\rightarrow\) Correct the data of F76 through F78.
\end{tabular} \\
\hline (8) The coast-to-stop command was effective. & \begin{tabular}{l}
Check the data of function codes E01 through E09 and the input signal status of X terminals, using Menu \#4 "I/O CHECK" on the keypad. \\
\(\rightarrow\) Release the coast-to-stop command setting. \\
Check the input signal status of terminal [EN], using Menu \#4 "I/O CHECK" on the keypad. \\
\(\rightarrow\) Short-circuit the terminal [EN] with terminal [PS].
\end{tabular} \\
\hline (9) No input on [EN1] or [EN2]. & \begin{tabular}{l}
Check the input status of the EN terminal, using Menu \#4 "I/O CHECK" on the keypad. \\
\(\rightarrow\) Short-circuit each of [EN1] and [EN2] with [PS]. (Refer to Chapter 2, Section 2.2.5 "[3] Detailed functions of control circuit terminals."
\end{tabular} \\
\hline (10) Broken wires, incorrect connection or poor contact with the motor. Or the motor defective. & \begin{tabular}{l}
Check the wiring and the motor. (Measure the output current). \\
\(\rightarrow\) Repair the wires to the motor, or replace them. \\
\(\rightarrow\) Repair the motor or replace it.
\end{tabular} \\
\hline \multirow[t]{2}{*}{(11) Overload} & \begin{tabular}{l}
Measure the output current. \\
\(\rightarrow\) Reduce the load (In winter, the load tends to increase.) \\
\(\rightarrow\) Increase the inverter and motor capacities.
\end{tabular} \\
\hline & \begin{tabular}{l}
Check whether any mechanical brake is activated. \\
\(\rightarrow\) Release the mechanical brake, if any.
\end{tabular} \\
\hline (12) Torque generated by the motor was insufficient. & \begin{tabular}{l}
Check that the motor switching signal (selecting motor 1,2 or 3) is correct using Menu \#4 "I/O CHECK" on the keypad and that the data of function codes matches each motor. \\
\(\rightarrow\) Correct the motor switching signal. \\
\(\rightarrow\) Modify the function code data to match the connected motor.
\end{tabular} \\
\hline \begin{tabular}{l}
Under V/f control \\
(13) Torque generated by the motor was insufficient.
\end{tabular} & \begin{tabular}{l}
Check whether the reference speed is below the slip-compensated speed of the motor (Function codes P10 and P11 for M1, A12 and A13 for M2, and A112 and A113 for M3). \\
\(\rightarrow\) Change the reference speed so that it becomes higher than the slip-compensated speed of the motor. \\
Check whether increasing the toque boost (Function code P35, A55, A155) starts rotating the motor. \\
\(\rightarrow\) Increase the data of P35, A55 or A155. \\
Check the data of function code F04, A05 or A105. \\
\(\rightarrow\) Change the V/f pattern setting to match each motor.
\end{tabular} \\
\hline (14) No reference speed setting (keypad operation). & \begin{tabular}{l}
Check the reference speed setting made on the keypad. \\
\(\rightarrow\) Modify the reference speed setting by pressing [\(\uparrow\)] key.
\end{tabular} \\
\hline (15) The inverter could not accept any run commands from the keypad since it was in Programming mode. & \begin{tabular}{l}
Check which operation mode the inverter is in, using the keypad. \\
\(\rightarrow\) Shift the operation mode to Running mode and enter a run command.
\end{tabular} \\
\hline \begin{tabular}{l}
Under vector control with speed sensor \\
(16) Incorrect setting of the number of poles of the motor
\end{tabular} & \begin{tabular}{l}
Check whether the setting of function code P05, A07 or A107 (No. of poles) matches the number of poles of the actual motor. \\
\(\rightarrow\) Set the data of P05, A07 or A107 to the correct number of poles.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline \begin{tabular}{l}
Under vector control with speed \\
sensor \\
(17) Wrong wiring between the \\
motor and pulse generator (PG).
\end{tabular} & \begin{tabular}{l}
Check the motor wiring (phase sequence) and the polarity of the PG. \\
\(\rightarrow\) Correct the wiring. (Refer to Chapter 4, Section 4.2.2 "Mounting direction of a \\
PG (pulse generator) and PG signals.")
\end{tabular} \\
\hline \begin{tabular}{l}
Under vector control with/without \\
speed sensor \\
(18) Incorrect setting of the torque \\
limiter level.
\end{tabular} & \begin{tabular}{l}
Check whether the torque limiter level (Function code F44, F45) is set to zero (0). \\
\(\rightarrow\) Modify the data of F44 or F45 to the appropriate value.
\end{tabular} \\
\hline \begin{tabular}{l}
Under vector control with/without \\
speed sensor \\
(19) Incorrect setting of the torque \\
command.
\end{tabular} & \begin{tabular}{l}
Check whether the torque command of terminal [Ai1]/[Ai2] is zero (0) under \\
torque control mode. \\
\(\rightarrow\) Modify the torque command to the appropriate value.
\end{tabular} \\
\hline \begin{tabular}{l}
Under vector control with speed \\
sensor
\end{tabular} & \begin{tabular}{l}
Check whether the setting of function code P28, A30 or A130 matches the pulse \\
resolution of the actual PG.. \\
(20) Mismatch between the PG's \\
pulse resolution and the \\
function code setting.
\end{tabular} \\
\begin{tabular}{l}
Modify the data of P28, A30 or A130 to the appropriate value. \\
Check whether the voltage setting of terminal [PGP] (SW6) matches the voltage \\
specification of the actual PG. \\
\(\rightarrow\) Set SW6 to the appropriate position.
\end{tabular} \\
\hline \begin{tabular}{l}
(21) The magnetic pole position of \\
the permanent magnet \\
synchronous motor (PMSM) is \\
out of place.
\end{tabular} & \begin{tabular}{l}
Check the magnetic pole position. \\
\(\rightarrow\) Adjust the magnetic pole position (o10, A60, A160). \\
(Refer to Chapter 4, Section 4.3.3 "Vector control for PMSM with speed sensor \\
and magnetic pole position sensor," ■ Adjusting the magnetic pole position.")
\end{tabular} \\
\hline
\end{tabular}

\section*{[2] The motor rotates, but the speed does not change.}
\begin{tabular}{|c|c|}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline (1) The setting of the maximum speed was too low. & \begin{tabular}{l}
Check the data of function code F03, A06 or A106 (Maximum speed). \\
Modify the data of F03, A06 or A106 to the appropriate value.
\end{tabular} \\
\hline (2) The setting of the speed limiter was too low. & \begin{tabular}{l}
Check the setting of the speed limiter (F76 to F78). \\
\(\rightarrow\) Modify the data of F76 to F78 to the appropriate value.
\end{tabular} \\
\hline (3) The reference speed (analog setting) did not change. & \begin{tabular}{l}
Check whether the reference speed has been entered correctly, using Menu \#4 "I/O CHECK" on the keypad. \\
\(\rightarrow\) Increase the reference speed. \\
\(\rightarrow\) Inspect the external speed command potentiometers, signal converters, switches, and relay contacts. Replace any ones that are faulty. \\
\(\rightarrow\) Connect the external circuit wires to terminals [13], [12], [11], [Ai1] and [Ai2] correctly.
\end{tabular} \\
\hline (4) The external circuit wiring to terminals [X1] to [X9] or signal assignment to those terminals is wrong. & \begin{tabular}{l}
Check whether the reference speed has been entered correctly, using Menu \#4 "I/O CHECK" on the keypad. \\
\(\rightarrow\) Connect the external circuit wires to terminals [X1] through [X9]. \\
\(\rightarrow\) Correct the data of E01 to E14. \\
\(\rightarrow\) Correct the data of C05 to C21 (Multistep speed settings).
\end{tabular} \\
\hline (5) A reference speed (e.g., multistep speed or via communications link) with higher priority than the one attempted was active and the reference speed was too low. & \begin{tabular}{l}
Referring to the speed command block diagram given in the FRENIC-VG User's Manual, Chapter 4, check the data of the relevant function codes and what speed commands are being received, using Menu \#2 "DATA CHECK" and Menu \#4 "I/O CHECK" with the keypad. \\
\(\rightarrow\) Correct any incorrect data of function codes (e.g. cancel the higher priority reference speed).
\end{tabular} \\
\hline (6) The acceleration or deceleration time was too long or too short. & \begin{tabular}{l}
Check the settings of the acceleration time and deceleration time (function codes F07, F08, C35, C36, C46, C47, C56, C57, C66 and C67). \\
\(\rightarrow\) Change the acceleration/deceleration time to match the load.
\end{tabular} \\
\hline (7) Overload. & \begin{tabular}{l}
Measure the output current. \\
\(\rightarrow\) Reduce the load. \\
Check whether any mechanical brake is activated. \\
\(\rightarrow\) Release the mechanical brake.
\end{tabular} \\
\hline \begin{tabular}{l}
Under V/f control \\
(8) Function code settings do not agree with the motor characteristics.
\end{tabular} & \begin{tabular}{l}
If auto-torque boost (Function code P35, A55, A155) is enabled, check whether the data of P03, P04, P06, P07 and P08 for M1, A02, A03, A08, A09 and A10 for M2, A102, A103, A108, A109 and A110 for M3 matches the parameters of the motor. \\
\(\rightarrow\) Perform auto-tuning of the inverter for the motor to be used.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline \begin{tabular}{l}
Under V/f control \\
(9) The output frequency does not increase due to the current limiter operation.
\end{tabular} & \begin{tabular}{l}
Decrease the value of the torque boost (Function code P35, A55, A155), then run the motor again and check if the speed increases. \\
\(\rightarrow\) Adjust the value of the torque boost (P35, A55, A155). \\
Check the data of function codes F04, A05 and A105 to ensure that the V/f pattern setting is right. \\
\(\rightarrow\) Match the V/f pattern setting with the motor ratings.
\end{tabular} \\
\hline (10) The motor speed does not increase due to the torque limiter operation. & \begin{tabular}{l}
Check whether the data of torque limiter related function codes F40 through F45 is correctly configured and the TL2/TL1 terminal command ("Select torque limiter level") is correct. \\
\(\rightarrow\) Correct the data of F44 or F45 or enter the F40-CCL terminal command ("Cancel F40 (Torque limiter mode 1)").
\end{tabular} \\
\hline (11) Incorrect settings of bias and gain for analog input. & Check the data of function codes F17, F18 and E53 to E60. \(\rightarrow\) Correct the bias and gain settings. \\
\hline (12) The reference speed did not change. (Keypad operation) & \begin{tabular}{l}
Check whether modifying the reference speed setting from the keypad changes the reference speed. \\
\(\rightarrow\) Modify the reference speed setting by pressing the [\(\uparrow\)] and \([\downarrow]\) keys.
\end{tabular} \\
\hline \begin{tabular}{l}
Under vector control with speed sensor \\
(13) Wrong wiring of the PG.
\end{tabular} & \begin{tabular}{l}
Check the wiring between the PG and the inverter for the phase sequence, wire breaks, shielding and twisting. \\
\(\rightarrow\) Correct the wiring. (Refer to Section 4.2.2 "Mounting direction of a pulse generator (PG) and PG signals.")
\end{tabular} \\
\hline \begin{tabular}{l}
Under vector control with speed sensor \\
(14) Wrong wiring between the inverter and the motor.
\end{tabular} & \begin{tabular}{l}
Check the phase sequence (\(\mathrm{U}, \mathrm{V}\), and W) of the main circuit wires between the inverter and the motor. \\
\(\rightarrow\) Connect the inverter output terminals \(\mathrm{U}, \mathrm{V}\), and W to the motor input terminals \(\mathrm{U}, \mathrm{V}\), and W, respectively.
\end{tabular} \\
\hline \begin{tabular}{l}
Under vector control with/without speed sensor \\
(15) Function code settings do not agree with the motor characteristics.
\end{tabular} & \begin{tabular}{l}
For exclusive motors for the FRENIC-VG: Check whether the data of function code P02 matches the specification of the connected motor. \\
\(\rightarrow\) Correct the data of P02. \\
For other motors: \\
\(\rightarrow\) Perform auto-tuning.
\end{tabular} \\
\hline
\end{tabular}
[3] The motor runs in the opposite direction to the command.
\begin{tabular}{|c|c|}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline \begin{tabular}{l}
Under V/f control \\
Under vector control without speed sensor \\
(1) Wrong wiring to the motor.
\end{tabular} & \begin{tabular}{l}
Check the wiring to the motor. \\
\(\rightarrow\) Connect the inverter output terminals \(\mathrm{U}, \mathrm{V}\), and W to the motor input terminals \(\mathrm{U}, \mathrm{V}\), and W , respectively.
\end{tabular} \\
\hline (2) The rotation direction specification of the motor is opposite to that of the inverter. & \begin{tabular}{l}
The rotation direction of IEC-compliant motors is opposite to that of incompliant motors. \\
\(\rightarrow\) Switch the \(\boldsymbol{F W D} / \boldsymbol{R E V}\) signal setting.
\end{tabular} \\
\hline (3) Incorrect setting of speed command related function code data. & \begin{tabular}{l}
Check the data of the speed command related function codes, referring to the speed command block diagram given in the FRENIC-VG User's Manual, Chapter 4. \\
\(\rightarrow\) Correct the data of the related function codes.
\end{tabular} \\
\hline \begin{tabular}{l}
Under vector control with speed sensor \\
(4) Wrong wiring of the PG.
\end{tabular} & \begin{tabular}{l}
Check the wiring to the motor. \\
\(\rightarrow\) Correct the wiring. (Refer to Section 4.2.2 "Mounting direction of a pulse generator (PG) and PG signals.")
\end{tabular} \\
\hline
\end{tabular}
[4] Speed fluctuation or current oscillation (e.g., hunting) occurs during running at constant speed.
\begin{tabular}{l|l}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline (1) The analog speed command & \begin{tabular}{l}
Check the signal status for the speed command with Menu \#4 "I/O CHECK" using \\
fluctuates.
\end{tabular} \\
& \begin{tabular}{l}
the keypad. (Refer to Section 3.4.5.)
\end{tabular} \\
& \(\rightarrow\) Increase the filter constants (F83, E61 to E64) for the speed command. \\
& Take measures to keep the speed command constant.
\end{tabular}
\begin{tabular}{l|l}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline (2) An external potentiometer is \\
used for speed setting. & \begin{tabular}{l}
Check that there is no noise on the control signal wires connecting to external \\
sources. \\
\(\rightarrow\) Isolate the control signal wires from the main circuit wires as far as possible.
\end{tabular} \\
& \begin{tabular}{l}
\(\rightarrow\) Use shielded or twisted wires for control signals. \\
Check whether the external speed command potentiometer is malfunctioning due \\
to noise from the inverter. \\
\(\rightarrow\) Connect a capacitor to the output terminal of the potentiometer or set a ferrite
\end{tabular} \\
\hline core on the signal wire. (Refer to Chapter 2.)
\end{tabular}
[5] Grating sound is heard from the motor or the motor sound fluctuates.
\(\left.\left.\begin{array}{l|l}\hline \text { Possible Causes } & \text { What to Check and Suggested Measures } \\
\hline \text { (1) The ambient temperature of } \\
\text { the inverter was too high. } & \begin{array}{l}\text { Measure the temperature inside the cabinet where the inverter is mounted. } \\
\rightarrow \text { If it is over } 40^{\circ} \mathrm{C} \text {, lower it by improving the ventilation. } \\
\rightarrow \text { Lower the temperature of the inverter by reducing the load. }\end{array} \\
\hline \text { (2) Resonance with the load. } & \begin{array}{l}\text { Check the machinery mounting accuracy or check whether there is resonance with } \\
\text { the mounting base. } \\
\rightarrow \text { Disconnect the motor from the machinery and run it alone to find where the }\end{array} \\
\text { resonance comes from. Upon locating the cause, improve the characteristics of } \\
\text { the source of the resonance. }\end{array}\right] \begin{array}{l}\text { Adjust the jump speed (C01 through C04) to avoid continuous running in the } \\
\text { frequency range causing resonance. }\end{array}\right\}\)\begin{tabular}{l}
Specify the observer (H47 through H52, H125 through H127) to suppress \\
vibration. (Depending on the characteristics of the load, this may take no \\
effect.)
\end{tabular}

\section*{[6] The motor does not accelerate or decelerate within the specified time.}
\begin{tabular}{l|l}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline (1) The inverter runs the motor & \begin{tabular}{l}
Check the data of function codes F67 through F70 (S-curve acceleration/ \\
with S-curve acceleration/ \\
deceleration pattern).
\end{tabular} \\
& \begin{tabular}{l}
\(\rightarrow\) Select the linear pattern (F67 through F70 = 0). \\
decelion.
\end{tabular} \\
& Decrease the acceleration/deceleration time (F07, F08, C46, C47, C56, C57, \\
C66, C67).
\end{tabular}
\begin{tabular}{|c|c|}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline \begin{tabular}{l}
Under V/f control \\
(2) The current limiting operation prevented the output frequency from increasing (during acceleration).
\end{tabular} & \begin{tabular}{l}
Check whether the acceleration time and torque boost are properly specified. \\
\(\rightarrow\) Increase the data of F07, C35, C46, C56 or C66 (acceleration time). \\
\(\rightarrow\) Decrease the torque boost (P35, A55, A155) and restart the inverter to check that the speed increases.
\end{tabular} \\
\hline (3) Overload. & \begin{tabular}{l}
Measure the output current. \\
\(\rightarrow\) Reduce the load.
\end{tabular} \\
\hline \begin{tabular}{l}
Under V/f control \\
(4) Torque generated by the motor was insufficient.
\end{tabular} & \begin{tabular}{l}
Check that increasing the torque boost (P35, A55, A155) starts the motor. \\
\(\rightarrow\) Increase the value of the torque boost (P35, A55, A155).
\end{tabular} \\
\hline (5) An external potentiometer is used for speed setting. & \begin{tabular}{l}
Check that there is no noise on the control signal wires connecting to external sources. \\
\(\rightarrow\) Isolate the control signal wires from the main circuit wires as far as possible. \\
\(\rightarrow\) Use shielded or twisted wires for control signals. \\
Check whether the external speed command potentiometer is malfunctioning due to noise from the inverter. \\
\(\rightarrow\) Connect a capacitor to the output terminal of the potentiometer or set a ferrite core on the signal wire. (Refer to the notes for analog input in Table 2.2-5 "Symbols, Names and Functions of the Control Circuit Terminals.")
\end{tabular} \\
\hline (6) Motor torque generated is limited by the torque limiter. & \begin{tabular}{l}
Check whether data of torque limiter related function codes (F40 through F45) is correctly configured and the TL2/TLI terminal command ("Select torque limiter level \(2 / 1^{\prime \prime}\)) is correct. \\
\(\rightarrow\) Correct the data of F40 through F45 or reset them to the factory defaults. \\
Check whether the speed command potentiometer is malfunctioning due to noise from the inverter. \\
\(\rightarrow\) Set the TL2/TLI correctly. \\
\(\rightarrow\) Increase the acceleration/deceleration time (F07, F08, C35, C36, C46, C47, C56, C57, C66, C67).
\end{tabular} \\
\hline (7) The specified acceleration or deceleration time was incorrect. & \begin{tabular}{l}
Check the terminal commands \(\boldsymbol{R T 1}\) and \(\boldsymbol{R T 2}\) for acceleration/deceleration times. \\
\(\boldsymbol{\rightarrow}\) Correct the \(\boldsymbol{R T 1}\) and \(\boldsymbol{R T 2}\) settings.
\end{tabular} \\
\hline
\end{tabular}

\section*{[7] The motor does not restart even after the power recovers from a momentary power failure.}
\begin{tabular}{|c|c|}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline (1) The data of function code F14 is either " 0, " " 1, " or " 2. " & \begin{tabular}{l}
Check if an undervoltage trip (\(1,1 \begin{aligned} & 1 \\ & \text { Lí) }\end{aligned}\) occurs. \\
\(\rightarrow\) Change the data of F14 (Restart mode after momentary power failure, Mode selection) to "3," "4," or "5."
\end{tabular} \\
\hline \multirow[t]{2}{*}{The run command remains OFF even after the power has been restored.} & \begin{tabular}{l}
Check the input signal with Menu \#4 "I/O CHECK" using the keypad. (Refer to Section 3.4.5.) \\
\(\rightarrow\) Check the power recovery sequence with an external circuit. If necessary, consider the use of a relay that can keep the run command ON.
\end{tabular} \\
\hline & \begin{tabular}{l}
In 3-wire operation, the power to the control printed circuit board (control PCB) has been shut down once because of a long momentary power failure time, or the HOLD signal ("Enable 3-wire operation") has been turned OFF once. \\
\(\rightarrow\) Change the design or the setting so that a run command can be issued again within 2 seconds after the power has been restored.
\end{tabular} \\
\hline
\end{tabular}

\section*{[8] The motor abnormally heats up.}
\begin{tabular}{l|l}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline \begin{tabular}{ll}
(1) Airflow volume of the motor's \\
cooling fan decreased due to \\
the service life expired or \\
failure
\end{tabular} & \begin{tabular}{l}
Visually check whether the cooling fan rotates normally. \\
U Ask your Fuji Electric representative to repair the motor's cooling fan.
\end{tabular} \\
\hline \begin{tabular}{l}
Under V/f control \\
(2) Excessive torque boost \\
specified.
\end{tabular} & \begin{tabular}{l}
Check whether decreasing the torque boost (P35, A55, A155) decreases the output \\
current but does not stall the motor. \\
\(\rightarrow\) If no stall occurs, decrease the torque boost (P35, A55, A155).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline \begin{tabular}{l}
Under V/f control \\
(3) Continuous running in extremely slow speed.
\end{tabular} & \begin{tabular}{l}
Check the running speed of the inverter. \\
\(\rightarrow\) Change the speed setting or replace the motor with an exclusive motor for inverters (motor with separately powered cooling fan).
\end{tabular} \\
\hline (4) Overload. & \begin{tabular}{l}
Measure the inverter output current. \\
\(\rightarrow\) Reduce the load. \\
\(\rightarrow\) Increase the inverter capacity and motor capacity.
\end{tabular} \\
\hline \begin{tabular}{l}
Under vector control with/without speed sensor \\
(5) Function code settings do not agree with the motor characteristics.
\end{tabular} & \begin{tabular}{l}
For exclusive motors for the FRENIC-VG: Check whether the setting of function code P02 matches the connected motor. \\
\(\rightarrow\) Correct the data of P02. \\
For other motors: \\
\(\rightarrow\) Perform auto-tuning.
\end{tabular} \\
\hline (6) Motor defective. & Check whether the inverter output voltages (\(\mathrm{U}, \mathrm{V}\) and W) are well-balanced. \(\rightarrow\) Repair or replace the motor. \\
\hline
\end{tabular}
[9] The motor does not run as expected.
\begin{tabular}{|c|c|}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline (1) Incorrect setting of function code data. & \begin{tabular}{l}
Check that function codes are correctly configured and no unnecessary configuration has been done. \\
\(\rightarrow\) Configure all the function codes correctly.
\end{tabular} \\
\hline & \begin{tabular}{l}
Make a note of function code data currently configured and then initialize all function code data using H03. \\
\(\rightarrow\) After the above process, reconfigure function codes one by one, checking the running status of the motor.
\end{tabular} \\
\hline (2) Under torque control, the inverter keeps output although the run command is OFF. & \begin{tabular}{l}
Check the setting of the automatic operation OFF function (H11). \\
\(\rightarrow\) Set the data of H11 to "2" ("Coast to a stop when a run command is turned OFF") or "4" ("Coast to a stop when a run command is turned OFF" under torque control).
\end{tabular} \\
\hline
\end{tabular}
[10] When the motor accelerates or decelerates, the speed is not stable.
\begin{tabular}{l|l}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline \begin{tabular}{l}
Under vector control with/without
\end{tabular} & \begin{tabular}{l}
Check whether the automatic speed regulator (ASR) is properly adjusted under \\
speed control.
\end{tabular} \\
\begin{tabular}{l}
speed sensor \\
(1) The control constants of the \\
automatic speed regulator \\
(ASR) are inadequate.
\end{tabular} & \(\rightarrow\) Readjust the ASR (F61 to F66, C40 to C45, C50 to C55). \\
\hline
\end{tabular}

\section*{[11] The motor stalls during acceleration.}
\begin{tabular}{l|l}
\hline Possible Causes & What to Check and Suggested Measures \\
\begin{tabular}{l}
Under vector control with/without \\
speed sensor \\
(1) Function code settings do not \\
agree with the motor \\
characteristics.
\end{tabular} & \begin{tabular}{l}
For exclusive motors for the FRENIC-VG: Check whether the setting of function \\
code P02 matches the connected motor. \\
\(\rightarrow\) Correct the data of P02.
\end{tabular} \\
\hline \begin{tabular}{l}
Under V/f control \\
For other motors: \\
\(\rightarrow\) Perform auto-tuning.
\end{tabular} \\
\begin{tabular}{ll}
(2) The specified acceleration time \\
is too short.
\end{tabular} & \begin{tabular}{l}
Check the data of F07, C35, C46, C56 or C66 (acceleration time). \\
\(\rightarrow\) Increase the acceleration time.
\end{tabular} \\
\hline \begin{tabular}{l}
Under V/f control \\
(3) The moment of inertia of the \\
load is large.
\end{tabular} & \begin{tabular}{l}
Measure the inverter output current. \\
\(\rightarrow\) Decrease the moment of inertia of the load. \\
\(\rightarrow\) Increase the inverter capacity.
\end{tabular} \\
\hline Under V/f control \\
(4) Large voltage drop on wires. & \begin{tabular}{l}
Check the terminal voltage of the motor. \\
\(\rightarrow\) Use larger size wires between the inverter and motor or make the wiring \\
distance shorter.
\end{tabular} \\
\hline \begin{tabular}{l}
Under V/f control \\
(5) The torque of the load is large.
\end{tabular} & \begin{tabular}{l}
Measure the output current. \\
\(\rightarrow\) Decrease the torque of the load. \\
\(\rightarrow\) Increase the inverter capacity.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline \begin{tabular}{l}
Under V/f control \\
(6) \begin{tabular}{l}
Torque generated by the motor \\
was insufficient.
\end{tabular}
\end{tabular} \begin{tabular}{l}
Check that increasing the torque boost (P35, A55, A155) starts the motor. \\
\(\rightarrow\) Increase the value of the torque boost (P35, A55, A155). \\
\hline
\end{tabular} \\
\hline
\end{tabular}
[12] When the T-Link communications option is in use, neither a run command nor a speed command takes effect.
\begin{tabular}{l|l}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline \begin{tabular}{ll}
(1) Incorrect setting of the \\
communications link operation \\
(H30).
\end{tabular} & \begin{tabular}{l}
Check whether the setting of the communications link operation is correct (H30). \\
\(\boldsymbol{\rightarrow}\) Correct the data of H30. \\
\(\boldsymbol{\rightarrow}\) Check the status of the X terminal to which the \(\boldsymbol{L E}\) command ("Enable \\
communications link") is assigned.
\end{tabular} \\
\hline \begin{tabular}{ll}
(2) Incorrect setting of the \\
transmission format (o32).
\end{tabular} & \begin{tabular}{l}
Check whether the setting of the transmission format is correct (o32). \\
\(\rightarrow\) Correct the data of o32 (4W + 4W or 8W + 8W).
\end{tabular} \\
\hline (3) Incorrect setting of the link \\
number. & \begin{tabular}{l}
Check the current setting of the link number (that should be configured in \\
hexadecimal). \\
\(\boldsymbol{\rightarrow}\) Review the function code list.
\end{tabular} \\
\hline (4) \begin{tabular}{l}
Data not written to the I/O \\
relay area as assigned.
\end{tabular} & \begin{tabular}{l}
Check the data held in the I/O relay area, using the MICREX loader. \\
\(\boldsymbol{\rightarrow}\) Investigate writing into the I/O relay area.
\end{tabular} \\
\hline
\end{tabular}
[13] When the SX-bus communications option is in use, neither a run command nor a speed command takes effect.
\begin{tabular}{l|l}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline \begin{tabular}{l}
(1) Incorrect setting of the \\
communications link operation \\
(H30).
\end{tabular} & \begin{tabular}{l}
Check whether the setting of the communications link operation is correct (H30). \\
\(\boldsymbol{\rightarrow}\)
\end{tabular} \\
\hline \begin{tabular}{l}
(2) \begin{tabular}{l}
Terminal command \(\boldsymbol{L E}\) is \\
assigned to an X terminal, but data of H30. \\
the terminal is OFF.
\end{tabular}
\end{tabular} \begin{tabular}{l}
Check the status of the X terminal to which the \(\boldsymbol{L E}\) command ("Enable \\
communications link") is assigned. \\
\(\rightarrow\) Turn the corresponding X terminal ON.
\end{tabular} \\
\hline (3) \begin{tabular}{l}
Incorrect setting of the \\
transmission format (U11).
\end{tabular} & \begin{tabular}{l}
Check whether the transmission format selected by U11 is identical with the one \\
selected in the system configuration definition. \\
\(\rightarrow\) Correct the setting of the transmission format.
\end{tabular} \\
\hline (4) \begin{tabular}{l}
Incorrect setting of the link \\
number.
\end{tabular} & \begin{tabular}{l}
Check the current setting of the link number (that should be configured in \\
hexadecimal). \\
\(\rightarrow\) Review the function code list.
\end{tabular} \\
\hline (5) \begin{tabular}{l}
Data not written to the I/O \\
relay area as assigned.
\end{tabular} & \begin{tabular}{l}
Check the data in application programs, using the SX loader. \\
\(\rightarrow\) Investigate writing into the I/O memory area.
\end{tabular} \\
\hline
\end{tabular}
[14] When the CC-Link communications option is in use, neither a run command nor a speed command takes effect.
\begin{tabular}{l|l}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline \begin{tabular}{l}
(1) Incorrect setting of the \\
communications link operation \\
(H30).
\end{tabular} & \begin{tabular}{l}
Check whether the setting of the communications link operation is correct (H30). \\
\(\boldsymbol{\rightarrow}\) Correct the data of H30.
\end{tabular} \\
\hline \begin{tabular}{l}
(2) \begin{tabular}{l}
Terminal command \(\boldsymbol{L E}\) is \\
assigned to an X terminal, but \\
the terminal is OFF.
\end{tabular}
\end{tabular} \begin{tabular}{l}
Check the status of the X terminal to which the \(\boldsymbol{L E}\) command ("Enable \\
communications link") is assigned. \\
\(\boldsymbol{\rightarrow}\) Turn the corresponding X terminal ON.
\end{tabular} \\
\hline (3) \begin{tabular}{l}
Incorrect setting of the \\
transmission format (o32).
\end{tabular} & \begin{tabular}{l}
Check whether the transmission format selected by o32 is identical with the one \\
selected in the system configuration definition. \\
\(\rightarrow\) Correct the setting of the transmission format.
\end{tabular} \\
\hline (4) \begin{tabular}{l}
Incorrect setting of the link \\
number.
\end{tabular} & \begin{tabular}{l}
Check the current setting of the link number (that should be configured in \\
hexadecimal). \\
\(\rightarrow\) Review the function code list.
\end{tabular} \\
\hline (5) \begin{tabular}{l}
Data not written to the I/O \\
memory area as assigned.
\end{tabular} & \begin{tabular}{l}
Check the data in application programs, using the PLC loader. \\
\(\boldsymbol{\rightarrow}\) Investigate writing into the I/O memory area.
\end{tabular} \\
\hline
\end{tabular}
\(\qquad\) (under bar) appears.
Problem Although you pressed the (command \(\boldsymbol{R E V}\), the motor did not start and an under bar (\(\qquad\)) appeared on the LED monitor.
\(\left.\begin{array}{l|l}\hline \text { Possible Causes } & \text { What to Check and Suggested Measures } \\
\hline \text { (1) The DC link bus voltage was } \\
\text { low. } & \begin{array}{l}\text { Select Menu \#5 "MAINTENANCE" in Programming mode on the keypad and } \\
\text { check the DC link bus voltage which should be 400 VDC or below. (Refer to the } \\
\text { FRENIC-VG User's Manual(Unit Type / Function Codes Edition), Chapter 3, } \\
\text { Section 3.4.4.6 "Reading maintenance information - Menu \#5 } \\
\text { MAINTENANCE.") } \\
\rightarrow \text { Connect the inverter to a power supply that meets the input specifications. }\end{array} \\
\hline \text { Check that the converter works normally. }\end{array}\right]\)\begin{tabular}{ll}
& \begin{tabular}{l}
Check whether the main power is turned ON. \\
(2) The main power is not ON, \\
while the auxiliary input power \\
to the control circuit is \\
supplied.
\end{tabular} \\
\hline Turn the main power ON.
\end{tabular}

\subsection*{6.5.2 Problems with inverter settings}

\section*{[1] Nothing appears on the monitors.}
\begin{tabular}{|c|c|}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline (1) No power (neither main power nor auxiliary control power) supplied to the inverter. & \begin{tabular}{l}
Check the input voltage and interphase voltage unbalance. \\
\(\rightarrow\) Turn ON a molded case circuit breaker (MCCB), a residual-currentoperated protective device (RCD)/earth leakage circuit breaker (ELCB) (with overcurrent protection) or a magnetic contactor (MC). \\
\(\rightarrow\) Check for voltage drop, phase loss, poor connections, or poor contacts and fix them if necessary.
\end{tabular} \\
\hline \multirow[t]{2}{*}{The keypad was not properly connected to the inverter.} & \begin{tabular}{l}
Check whether the keypad is properly connected to the inverter. \\
\(\rightarrow\) Remove the keypad, put it back, and see whether the problem recurs. \\
\(\rightarrow\) Replace the keypad with another one and check whether the problem recurs.
\end{tabular} \\
\hline & \begin{tabular}{l}
When running the inverter remotely, ensure that the extension cable is securely connected both to the keypad and to the inverter. \\
\(\rightarrow\) Disconnect the cable, reconnect it, and see whether the problem recurs. \\
\(\rightarrow\) Replace the keypad with another one and check whether the problem per recurs.
\end{tabular} \\
\hline
\end{tabular}
[2] The desired function code does not appear.
\begin{tabular}{l|l}
\hline Possible Causes & Check and Measures \\
\hline (1) The function code is not & \begin{tabular}{l}
Check whether the function code is located in a different directory. \\
located in the current directory. \\
\(\rightarrow\) Display the function codes in the directory, referring to Chapter 3, Section 3.4 \\
"Programming Mode."
\end{tabular} \\
& \begin{tabular}{l}
If o codes do not appear, check whether an option board is mounted. \\
\(\rightarrow\) Display the function codes in the directory, referring to Chapter 3, Section 3.4 \\
"Programming Mode." \\
Note: No o codes appear unless an option board is mounted.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline \begin{tabular}{l}
(1) An attempt was made to \\
change function code data that \\
cannot be changed when the \\
inverter is running.
\end{tabular} & \begin{tabular}{l}
Check if the inverter is running with Menu \#3 "OPR MNTR" using the keypad and \\
then confirm whether the data of the function codes can be changed when the \\
motor is running, referring to the function code tables. \\
\(\rightarrow\) Stop the motor and then change the data of the function codes.
\end{tabular} \\
\hline (2) The data of the function codes \\
is protected.
\end{tabular} \begin{tabular}{l}
Check the data of function code F00 (Data Protection). \\
\(\rightarrow\) Change the data of F00 from "Enable data protection" (F00 = 1) to "Disable \\
data protection" (F00 = 0).
\end{tabular}

\section*{[4] Data of function codes cannot be changed via the communications link.}
\begin{tabular}{|c|c|}
\hline Possible Causes & What to Check and Suggested Measures \\
\hline (1) An attempt was made to change function code data that cannot be changed when the inverter is running. & \begin{tabular}{l}
Check if the inverter is running with Menu \#3 "OPR MNTR" using the keypad and then confirm whether the data of the function codes can be changed when the motor is running, referring to the function code tables. \\
\(\rightarrow\) Stop the motor and then change the data of the function codes.
\end{tabular} \\
\hline (2) The data of the function codes is protected. & \begin{tabular}{l}
Check the data of function code F00 (Data Protection). \\
\(\rightarrow\) Change the data of F00 from "Enable data protection" \((\mathrm{F} 00=1)\) to "Disable data protection" (\(\mathrm{F} 00=0\)).
\end{tabular} \\
\hline (3) The \(\boldsymbol{W} \boldsymbol{E}-\boldsymbol{L} \boldsymbol{K}\) terminal command ("Enable data change via communications link") is not entered, though it has been assigned to a digital input terminal. & \begin{tabular}{l}
Check the data of function codes E01 through E09 and the input signal status with Menu \#4 "I/O CHECK" using the keypad. \\
\(\rightarrow\) Input a \(\boldsymbol{W} \boldsymbol{E}-\boldsymbol{L} \boldsymbol{K}\) command through a digital input terminal.
\end{tabular} \\
\hline (4) The "Save All function" (H02) was not executed. & \begin{tabular}{l}
Check that the "Save All function" was executed (H02 = 1). \\
\(\rightarrow\) If data of function codes is changed via the communications link, execute the "Save All function"; otherwise, turning the power OFF loses the changed data.
\end{tabular} \\
\hline (5) The data of function code F02 cannot be changed. & Either one of the \(\boldsymbol{F} \boldsymbol{W} \boldsymbol{D}\) and \(\boldsymbol{R E} \boldsymbol{V}\) terminal commands is turned ON. \(\rightarrow\) Turn OFF both \(\boldsymbol{F W D}\) and \(\boldsymbol{R E V}\). \\
\hline
\end{tabular}

\section*{Chapter 7 MAINTENANCE AND INSPECTION}

Perform daily and periodic inspections to avoid trouble and keep reliable operation of the inverter for a long time. When performing inspections, follow the instructions given in this chapter.

\section*{\(\triangle\) WARNING \(\wedge\)}
- Before proceeding to the maintenance/inspection jobs, turn OFF the power OFF, wait at least ten minutes, and make sure that the LED monitor and charging lamp are turned OFF. Further, make sure, using a multimeter or a similar instrument, that the DC link bus voltage between the terminals \(\mathrm{P}(+)\) and \(\mathrm{N}(-)\) has dropped to the safe level (+25 VDC or below).

\section*{Electric shock may occur.}
- Maintenance, inspection, and parts replacement should be made only by authorized persons.
- Take off the watch, rings and other metallic objects before starting work
- Use insulated tools
- Never modify the inverter.

Electric shock or injuries could occur.

\subsection*{7.1 Inspection Interval}

Table 7.1-1 lists the inspection intervals and check items, as a guide.
Table 7.1-1 List of Inspections
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Inspection type } & Inspection interval & \multicolumn{1}{c|}{ Check items } \\
\hline Daily inspection & Every day & See Section 7.2. \\
\hline Periodic inspection & Every year & See Section 7.3. \\
\hline Decennial inspection \(* \mathbf{1}\) & Every 10 years & \begin{tabular}{l}
Replacement of cooling fans *2 \\
Replacement of DC link bus capacitors and close checks \\
Replacement of fuses
\end{tabular} \\
\hline
\end{tabular}
*1 The decennial inspection (except replacement of cooling fans) should be performed only by the persons who have finished the Fuji Electric training course. Contact the sales agent where you purchased the product or your nearest Fuji Electric representative.
*2 For the standard replacement interval of cooling fans, refer to Section 7.4 "List of Periodic Replacement Parts."
The replacement intervals are based on the stack type's service life estimated at an ambient temperature of \(30^{\circ} \mathrm{C}\) at \(100 \%\) (MD mode) or \(80 \%\) (LD mode) of full load. In environments with an ambient temperature above \(40^{\circ} \mathrm{C}\) or a large amount of dust or dirt, the replacement intervals may be shorter.
Standard replacement intervals mentioned above are only a guide for replacement, not a guaranteed service life.

\subsection*{7.2 Daily Inspection}

Visually inspect the inverter for operation errors from the outside without removing the covers when the inverter is running or the power is ON.
Table 7.2-1 lists daily inspection items.
Table 7.2-1 Daily Inspection List
\begin{tabular}{|c|c|c|c|}
\hline Check part & Check item & How to inspect & Evaluation criteria \\
\hline Environment & \begin{tabular}{l}
1) Check the ambient temperature, humidity, vibration and atmosphere (dust, gas, oil mist, or water drops). \\
2) Check that tools or other foreign materials or dangerous objects are not left around the equipment.
\end{tabular} & \begin{tabular}{l}
1) Check visually or measure using apparatus. \\
2) Visual inspection
\end{tabular} & \begin{tabular}{l}
1) The installation environment given in Chapter 1, Section 1.3.1 must be satisfied. \\
2) No foreign or dangerous objects are left.
\end{tabular} \\
\hline External appearance and others & \begin{tabular}{l}
1) Check that the bolts securing the wires to the main circuit terminals and control circuit terminals are not loose before turning the power ON. \\
2) Check for traces of overheat, discoloration and other defects. \\
3) Check for abnormal noise, odor, or excessive vibration.
\end{tabular} & \begin{tabular}{l}
1) Retighten. \\
2) Visual inspection \\
3) Auditory, visual, and olfactory inspection
\end{tabular} & \begin{tabular}{l}
1) No looseness. If loose, retighten the screws. \\
2), 3) \\
No abnormalities
\end{tabular} \\
\hline Cooling fans & Check for abnormal noise or excessive vibration when the cooling fans are in operation. & Auditory and visual inspections & No abnormalities \\
\hline Keypad & Check for alarm indication. & Visual inspection & If any alarm is displayed, refer to Chapter 6. \\
\hline Performance & Check that the inverter provides the expected performance (as defined in the standard specifications). & Check the monitor items shown on the keypad. & No abnormalities in the output speed, current and voltage and other running data. \\
\hline
\end{tabular}

\subsection*{7.3 Periodic Inspection}

\section*{[1] Periodic inspection 1--Before the inverter is powered ON or after it stops running}

Perform periodic inspections according to the items listed in Table 7.3-1. Before performing periodic inspection 1, shut down the power and then remove the front cover.
Even if the power has been shut down, it takes the time for the DC link bus capacitor to discharge. After the charging lamp is turned OFF, therefore, make sure for safety that the DC link bus voltage has dropped to the safe level (+25 VDC or below) using a multimeter or a similar instrument.

Table 7.3-1 Periodic Inspection List 1
\begin{tabular}{|c|c|c|c|c|}
\hline & Check part & Check item & How to inspect & Evaluation criteria \\
\hline \multicolumn{2}{|l|}{Structural components such as chassis and covers of the cabinet and inverter} & \begin{tabular}{l}
Check for: \\
1) Loose bolts (at clamp sections). \\
2) Deformation and breakage (warped cabinet) \\
3) Discoloration caused by overheat \\
4) Contamination and accumulation of dust or dirt
\end{tabular} & \begin{tabular}{l}
1) Retighten. \\
2), 3), 4) \\
Visual inspection
\end{tabular} & \begin{tabular}{l}
1), 2), 3), 4) \\
No abnormalities \\
(If any section is stained, clean it with a soft cloth.)
\end{tabular} \\
\hline \multirow{4}{*}{} & Common & \begin{tabular}{l}
1) Check that bolts and screws are tight and not missing. \\
2) Check the devices and insulators for deformation, cracks, breakage and discoloration caused by overheat or deterioration. \\
3) Check for contamination or accumulation of dust or dirt.
\end{tabular} & \begin{tabular}{l}
1) Retighten. \\
2), 3) \\
Visual inspection
\end{tabular} & \begin{tabular}{l}
1), 2), 3) \\
No abnormalities \\
(If any section is stained, clean it with a soft cloth.)
\end{tabular} \\
\hline & Conductors and wires & \begin{tabular}{l}
1) Check conductors for discoloration and distortion caused by overheat. \\
2) Check the sheath of the wires for cracks and discoloration.
\end{tabular} & \begin{tabular}{l}
1), 2) \\
Visual inspection
\end{tabular} & \begin{tabular}{l}
1), 2) \\
No abnormalities
\end{tabular} \\
\hline & Terminal blocks & Check that the terminal blocks are not damaged. & Visual inspection & No abnormalities \\
\hline & DC link bus capacitor & \begin{tabular}{l}
1) Check for electrolyte leakage, discoloration, cracks and swelling of the casing. \\
2) Check that the safety valve does not protrude remarkably.
\end{tabular} & \begin{tabular}{l}
1), 2) \\
Visual inspection
\end{tabular} & \begin{tabular}{l}
1), 2) \\
No abnormalities
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 砲 } \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & Printed circuit board & \begin{tabular}{l}
1) Check for loose screws and connectors. \\
2) Check for odor and discoloration. \\
3) Check for cracks, breakage, deformation and remarkable rust. \\
4) Check the capacitors for electrolyte leaks and deformation.
\end{tabular} & \begin{tabular}{l}
1) Retighten. \\
2) Olfactory and visual inspection \\
3), 4) \\
Visual inspection \\
* Judgment on service life using "Menu \#5 MAINTENANCE" (Refer to the FRENIC-VG User's Manual(Unit Type / Function Codes Edition), Chapter 3, Section 3.4.4.6.)
\end{tabular} & \begin{tabular}{l}
1), 2), 3), 4) \\
No abnormalities
\end{tabular} \\
\hline \multirow[t]{2}{*}{} & Cooling fan & \begin{tabular}{l}
1) Check for any abnormality. \\
2) Check for loose bolts. \\
3) Check for discoloration caused by overheat.
\end{tabular} & \begin{tabular}{l}
1) Turn by hand. (Be sure to turn the power OFF beforehand.) \\
2) Retighten. \\
3) Visual inspection \\
* Judgment on service life using "Menu \#5 MAINTENANCE" (Refer to the FRENIC-VG User's Manual(Unit Type / Function Codes Edition), Chapter 3, Section 3.4.4.6.)
\end{tabular} & \begin{tabular}{l}
1) Smooth rotation \\
2), 3) \\
No abnormalities
\end{tabular} \\
\hline & Ventilation path & Check the heat sink, intake and exhaust ports for clogging and foreign materials. & Visual inspection & No clogging or accumulation of dust, dirt or foreign materials. Clean it, if any, with a vacuum cleaner. \\
\hline
\end{tabular}

\section*{［ 2 ］Periodical inspection 2－－When the inverter is ON or it is running}

Visually inspect the inverter for operation errors from the outside without removing the covers when the inverter is ON or it is running．
Perform periodic inspections according to the items listed in Table 7．3－2
Table 7．3－2 Periodic Inspection List 2
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Check part} & Check item & How to inspect & Evaluation criteria \\
\hline \multicolumn{2}{|l|}{Input voltage} & Check that the input voltages of the main and control circuits are correct． & Measure the input voltages using a multimeter or the like． & The standard specifications must be satisfied． \\
\hline \multicolumn{2}{|l|}{Structure such as chassis and covers} & Check for abnormal noise or excessive vibration when the inverter is running． & Visual and auditory inspections & No abnormalities \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 言 } \\
& \text { 苟 } \\
& \text { 少 }
\end{aligned}
\]} & Transformers and reactors & Check for abnormal roaring noise or odor when the inverter is running． & Auditory，visual，and olfactory inspections & No abnormalities \\
\hline & Magnetic contactors and relays & Check for chatters when the inverter is running． & Auditory inspection & No abnormalities \\
\hline
\end{tabular}

\section*{Additional notes}
（1）The inspection interval（every year）of check items given in Tables 7．3－1 and 7．3－2 is merely a guide．Make the interval shorter depending on the installation environment．
（2）Store and organize the inspection results to utilize them as a guide for operation and maintenance of the equipment and service life estimation．
（3）At the time of an inspection，check the cumulative run times on the keypad to utilize them as a guide for replacement of parts．（Refer to Section 7．4．1＂Judgment on service life．＂）
（4）The inverter has cooling fans inside to ventilate itself for discharging the heat generated by the power converter section． This will accumulate dust or dirt on the heat sink depending on the surrounding environment．
In a dusty environment，the heat sink requires cleaning in a shorter interval than that specified in periodic inspection． Neglecting cleaning of the heat sink can rise its temperature，activating protective circuits to lead to an abrupt shutdown or causing the temperature rise of the surrounding electronic devices to adversely affect their service life．

\section*{［ 3］Checking the functional safety circuit}

In applications where no regular activation of the Safe Torque Off（STO）function with terminals［EN1］and ［EN2］is guaranteed，check at least once a year that the Safe Torque Off（STO）function works correctly．

\subsection*{7.4 List of Periodic Replacement Parts}

Each part of the inverter has its own service life that will vary according to the environmental and operating conditions. It is recommended that the following parts be replaced at the specified intervals.
When the replacement is necessary, consult your Fuji Electric representative.
Table 7.4-1 Replacement Parts
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Part name } & \multicolumn{1}{c}{ Standard replacement intervals (See Note below.) } \\
\hline DC link bus capacitor & 10 years \\
\hline Electrolytic capacitors on printed circuit boards & 10 years \\
\hline Cooling fans & 10 years \\
\hline Fuses & 10 years \\
\hline Battery & \begin{tabular}{l}
5 years (Battery ambient temperature \(60^{\circ} \mathrm{C}\), Inverter \\
not powered)
\end{tabular} \\
\hline
\end{tabular}

Note These replacement intervals are based on the inverter's service life estimated at an ambient temperature of \(30^{\circ} \mathrm{C}\) at \(100 \%\) (MD-mode inverters) or \(80 \%\) (LD-mode inverters) of full load. In environments with an ambient temperature above \(40^{\circ} \mathrm{C}\) or a large amount of dust or dirt, the replacement intervals may be shorter.

\section*{Notes for periodic replacement of parts}
(1) The replacement intervals listed above are a guide for almost preventing parts from failure if those parts are replaced with new ones at the intervals. They do not guarantee the completely fault-free operation.
(2) The table above does not apply to unused spare parts being kept in storage. It applies only when they are stored in a well-ventilated, cool and dark place and energized approximately once a year.
(3) Cooling fans and battery can be replaced by users. As for other parts, only the persons who have finished the Fuji Electric training course can replace them. For the purchase of spare cooling fans and battery and the request for replacement of other parts, contact the sales agent where you purchased the product or your nearest Fuji Electric representative.

\subsection*{7.4.1 Judgment on service life}

Table 7.4-2 lists the parts whose service life can be predicted and details the life prediction function. The predicted values should be used only as a guide since the actual service life is influenced by the ambient temperature and other usage environments. (Refer to the FRENIC-VG User's Manual, Chapter 3, Section 3.4.4.6 "Reading maintenance information -- Menu \#5 MAINTENANCE.")

Table 7.4-2 Life Prediction
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{c}
Object of life \\
prediction
\end{tabular} & \multicolumn{1}{|c|}{ Prediction function } & End-of-life criteria & Prediction timing & \begin{tabular}{l}
"5: MAINTENANCE" \\
on the LCD monitor
\end{tabular} \\
\hline \begin{tabular}{l}
DC link bus \\
capacitor
\end{tabular} & \begin{tabular}{l}
ON-time counting \\
Counts the time elapsed when the \\
voltage is applied to the DC link \\
bus capacitor.
\end{tabular} & \begin{tabular}{l}
Exceeding 87,600 hours \\
\((10\) years)
\end{tabular} & \begin{tabular}{l}
During ordinary \\
operation
\end{tabular} & \begin{tabular}{l}
LCD page 8 \\
CAPEH (Elapsed time) \\
CAPRH (Time remaining \\
before the end of life)
\end{tabular} \\
\hline \begin{tabular}{l}
Electrolytic \\
capacitors on \\
printed circuit \\
boards
\end{tabular} & \begin{tabular}{l}
Counts the time elapsed when the \\
voltage is applied to the \\
capacitors.
\end{tabular} & \begin{tabular}{l}
Exceeding 87,600 hours \\
\((10\) years)
\end{tabular} & \begin{tabular}{l}
During ordinary \\
operation
\end{tabular} & \begin{tabular}{l}
LCD page 3 \\
TCAP (Cumulative run \\
time)
\end{tabular} \\
\hline Cooling fans & \begin{tabular}{l}
Counts the run time of the \\
cooling fans.
\end{tabular} & \begin{tabular}{l}
Exceeding 87,600 hours \\
\((10\) years)
\end{tabular} & \begin{tabular}{l}
During ordinary \\
operation
\end{tabular} & \begin{tabular}{l}
LCD page 3 \\
TFAN (Cumulative run \\
time)
\end{tabular} \\
\hline
\end{tabular}
(Note) In the stack type, the CAP (Capacitance of DC link bus capacitor) on LCD page 2 in " 5 : MAINTENANCE" is invalid.

\section*{Early warning of lifetime alarm}

For the components listed in Table 7.4-2, the inverter can issue an early warning of lifetime alarm LIFE at one of the transistor output terminals ([Y1] to [Y4]) and Relay output terminals ([Y5A/C]) as soon as any of the levels specified in Table 7.4-2 has been exceeded.
The early warning signal is also turned ON when a lock condition on the internal air circulation DC fan is detected.

\subsection*{7.4.2 Battery}

\section*{[1] Outline}

The battery is used to back up the traceback memory and the calendar clock when no power is applied to the inverter.
\begin{tabular}{|l|l|}
\hline Model & OPK-BP \\
\hline Battery voltage/capacity & \(3.6 \mathrm{~V} / 1100 \mathrm{mAh}\) \\
\hline Type & Lithium-thionyl chloride battery \\
\hline Replacement interval (as a guide) & 5 years (Battery ambient temperature \(60^{\circ} \mathrm{C}\), Inverter not powered) \\
\hline
\end{tabular}

Unit: mm

Figure 7.4-1 Outside View and Dimensions
\begin{tabular}{|l|}
\hline \\
Safety Precautions \\
The lithium thionyl chloride battery, which contains lithium (dangerous material) and thionyl chloride (deleterious \\
material), is a hermetically sealed, high-energy density battery. Improper use of the battery could cause deformation, \\
leakage of battery fluid (Liquid inside the battery leaks out), heat generation, battery-rupture or fire, or produce irritant \\
and corrosive gas. This could result in bodily injury or inverter fault. Be sure to observe the following precautions. \\
- Take care not to swallow the battery. \\
- Do not apply excessive force to the positive terminal of the battery. \\
- Do not drop the battery. \\
- Do not short-circuit the battery terminals. \\
- Do not charge the battery. \\
- Do not discharge the battery forcedly. \\
- Never heat the battery. \\
- Never put the battery into fire. \\
- Never disassemble the battery. \\
- Do not deform the battery by pressure. \\
- When loading the battery into the inverter, take care not to insert it in wrong direction. \\
- Do not touch the fluid leaked from the battery. \\
- Do not leave a damaged battery in the inverter. \\
\hline
\end{tabular}

\section*{\(\triangle\) CAUTION}

When storing the battery, keep it away from direct sunlight, high temperature, high humidity, and rainwater.
The battery used in this product is a so-called primary battery. When disposing of it, comply with local codes and regulations.

\section*{[2] Loading the battery}

\section*{\(\triangle\) CAUTION}

Before proceeding to the loading procedure, be sure to shut down the power.
Fire or an accident could occur.
* For the calendar clock setting, refer to Section 3.2.1 "Setting the calendar clock."
1) Remove the front cover.

Open the keypad and disconnect it from connectors CN5 and CN8 on the control printed circuit board.

3) Load the battery to the location shown below.

2) Remove the keypad.

4) Fully insert the battery connector into the connector CN7 on the control printed circuit board.

Figure 7.4-2 Battery Loaded

To replace the battery, remove it from the inverter in the reverse order of loading and then load a new battery.
\(\square\)
Before proceeding to the loading procedure, be sure to shut down the power.
Fire or an accident could occur.
* For the calendar clock setting, refer to Section 3.2.1 "Setting the calendar clock."

\section*{[3] About marine or air transport of a lithium-metal battery}

When transporting a lithium-metal battery by itself, by packing it in a package of the inverter, or by incorporating it in the inverter, observe the following notes.
(1) To transport a lithium-metal battery incorporated in the inverter

When transporting a cabinet holding five or more inverters with a built-in battery, it is necessary to attach the label shown in Figure 7.4-3 and prepare the transportation documents.
(2) To transport a lithium-metal battery packed with the inverter

It is necessary to attach the label shown in Figure 7.4-3 and issue a drop test certificate together with the transportation documents.
To transport a lithium-metal battery by air, the number of batteries that can be contained in a package of the inverter is limited to the number of batteries required for device operation plus 2 batteries.

\(120 \times 110 \mathrm{~mm}\)
Figure 7.4-3 Label to be Attached to Outer Wrapping
For details, contact your shipping company.

\subsection*{7.5 Measurement of Electrical Amounts in Main Circuit}

Because the voltage and current of the main circuit power supply (input) of the converter connected to the inverter and those of the inverter output (to the motor) contain harmonic components, the readings may vary with the type of the meter. Use meters indicated in Table \(7.5-1\) when measuring with meters for commercial frequencies.
The power factor cannot be measured by a commercially available power-factor meter that measures the phase difference between the voltage and current. To obtain the power factor, measure the power, voltage and current on each of the input and output sides and use the following formula.

Power factor \(=\frac{\text { Electricpower }(\mathrm{W})}{\sqrt{3} \times \text { Voltage }(\mathrm{V}) \times \operatorname{Current}(\mathrm{A})} \times 100 \%\)
Table 7.5-1 Meters for Measurement of Main Circuit
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\underset{y}{\text { E }}
\]} & \multicolumn{3}{|l|}{Input (converter power supply) side} & \multicolumn{3}{|c|}{Output (motor) side} & DC link bus voltage (between \(\mathrm{P}(+)\) and \(\mathrm{N}(-))\) \\
\hline & Voltage & Curre & \[
V V
\] & Voltage & Curre & & \\
\hline & \begin{tabular}{l}
Ammeter \\
AR, s, T
\end{tabular} & Voltmeter VR, S, T & Wattmeter WR, s, T & Ammeter Au, v, w & Voltmeter
Vu, v, w & Wattmeter
Wu, w & \(\underset{\mathrm{V}}{\mathrm{DC} \text { voltmeter }}\) \\
\hline & Moving iron type & Rectifier or moving iron type & Digital AC power meter & Digital AC power meter & Digital AC power meter & Digital AC power meter & Moving coil type \\
\hline \[
\begin{aligned}
& \overline{\text { ou }} \\
& \text { U } \\
& \text { En } \\
& \text { n }
\end{aligned}
\] & \$ & 小本 & - & - & - & - & \(\bigcirc\) \\
\hline
\end{tabular}

It is not recommended that meters other than a digital AC power meter be used for measuring the output voltage or output current since they may cause larger measurement errors or, in the worst case, they may be damaged.

Figure 7.5-1 Connection of Meters

\subsection*{7.6 Insulation Test}

Since the inverter has undergone an insulation test before shipment, avoid making a Megger test at the customer's site.
If a Megger test is unavoidable for the main circuit, observe the following instructions; otherwise, the inverter may be damaged.
A withstand voltage test may also damage the inverter if the test procedure is wrong. When the withstand voltage test is necessary, consult your Fuji Electric representative.

\section*{(1) Megger test of main circuit}
1) Use a 500 VDC Megger and shut off the main power supply without fail before measurement.
2) If the test voltage leaks to the control circuit due to the wiring, disconnect all the wiring from the control circuit.
3) Connect the main circuit terminals with a common line as shown in Figure 7.6-1.
4) The Megger test must be limited to across the common line of the main circuit and the ground (\(\Theta\)).
5) Value of \(5 \mathrm{M} \Omega\) or more displayed on the Megger indicates a correct state. (The value is measured on an inverter alone.)

Figure 7.6-1 Main Circuit Terminal Connection for Megger Test

\section*{(2) Insulation test of control circuit}

Do not make a Megger test or withstand voltage test for the control circuit. Use a high resistance range tester for the control circuit.
1) Disconnect all the external wiring from the control circuit terminals.
2) Perform a continuity test to the ground. One \(M \Omega\) or a larger measurement indicates a correct state.

\section*{(3) Insulation test of external main circuit and sequence control circuit}

Disconnect all the wiring connected to the inverter so that the test voltage is not applied to the inverter.

\section*{Chapter 8 SPECIFICATIONS}

\section*{MD (Medium Duty)-mode inverters for medium load}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Item & \multicolumn{14}{|c|}{Specifications} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{9}{*}{}} & e (FRNDVG1S-4E) & 30S & 37S & 45S & 55S & 75S & 90S & 110S & 132S & 160S & 200S & 220S & 250S & 280S & 315S \\
\hline & & minal applied motor (kW) & 30 & 37 & 45 & 55 & 75 & 90 & 110 & 132 & 160 & 200 & 220 & 250 & 280 & 315 \\
\hline & & d capacity (kVA) *1 & 45 & 57 & 69 & 85 & 114 & 134 & 160 & 192 & 231 & 287 & 316 & 356 & 396 & 445 \\
\hline & & d current (A) & 60 & 75 & 91 & 112 & 150 & 176 & 210 & 253 & 304 & 377 & 415 & 468 & 520 & 585 \\
\hline & & rload capability & \multicolumn{14}{|l|}{150\% of the rated current for 1 minute *2} \\
\hline & & Main power input & \multicolumn{14}{|l|}{Refer to the PWM converter or Diode rectifier specifications.} \\
\hline & & Auxiliary control power input: Phase, voltage, frequency & \multicolumn{14}{|l|}{Single-phase, 380 to \(480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}\)} \\
\hline & & Auxiliary fan power input: Phase, voltage, frequency & \multicolumn{5}{|c|}{-} & \multicolumn{9}{|l|}{Single-phase, 380 to \(440 \mathrm{~V} / 50 \mathrm{~Hz}, 380\) to \(480 \mathrm{~V} / 60 \mathrm{~Hz} * 3\)} \\
\hline & & Allowable voltage/frequency & \multicolumn{14}{|l|}{Voltage: +10 to \(-15 \%\), Frequency: +5 to \(-5 \%\)} \\
\hline & Car & ier frequency (kHz) *4 & \multicolumn{14}{|c|}{2 kHz} \\
\hline & App & rox. mass (kg) & 30 & 30 & 30 & 37 & 37 & 45 & 45 & 95 & 95 & 95 & 125 & 135 & 135 & 135 \\
\hline & Enc & losure & \multicolumn{14}{|c|}{IP00, UL open type} \\
\hline
\end{tabular}

The above specifications apply when Function code F80 = 3 (MD mode).
*1 This specification applies when the rated output voltage is 440 V .
*2 When the inverter output frequency converted is less than 1 Hz , the inverter may trip earlier due to overload depending on the ambient temperature and other conditions.
*3 For 380 to \(398 \mathrm{~V} / 50 \mathrm{~Hz}\) or 380 to \(430 \mathrm{~V} / 60 \mathrm{~Hz}\), connector switching is required inside the inverter.
*4 Running a permanent magnet synchronous motor (PMSM) except Fuji standard PMSM (GNF2 series) at low carrier frequency may overheat the permanent magnet due to the output current harmonics, resulting in demagnetization. Be sure to check the allowable carrier frequency of the motor.
*5 A set of three phase-specific stacks for \(\mathrm{U}, \mathrm{V}\) and W phases constitutes a single inverter unit.

LD (Low Duty)-mode inverters for light load
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Item} & \multicolumn{14}{|c|}{Specifications} \\
\hline \multirow[t]{9}{*}{\[
\begin{aligned}
& \hline 1 \\
& \hline 1 \\
& \hline 1 \\
& \hline 1 \\
& \hline \\
& \hline \\
& \hline
\end{aligned}
\]} & Typ & (FRNDVG1S-4E) & 30S & 37S & 45S & 55S & 75 S & 90S & 110S & 132S & 160S & 200S & 220S & 250S & 280S & 315S \\
\hline & Nom & minal applied motor (kW) & 37 & 45 & 55 & 75 & 90 & 110 & 132 & 160 & 200 & 220 & 250 & 280 & 315 & 355 \\
\hline & Rate & d capacity (kVA) *1 & 57 & 69 & 85 & 114 & 134 & 160 & 192 & 231 & 287 & 316 & 356 & 396 & 445 & 495 \\
\hline & Rate & d current (A) & 75 & 91 & 112 & 150 & 176 & 210 & 253 & 304 & 377 & 415 & 468 & 520 & 585 & 650 \\
\hline & \multicolumn{2}{|l|}{Overload capability} & \multicolumn{14}{|l|}{110\% of the rated current for 1 minute *2} \\
\hline & \multirow{4}{*}{\[
\begin{aligned}
& \stackrel{0}{0} \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \vdots
\end{aligned}
\]} & Main power input & \multicolumn{14}{|l|}{Refer to the PWM converter or Diode rectifier specifications.} \\
\hline & & Auxiliary control power input: Phase, voltage, frequency & \multicolumn{14}{|l|}{Single-phase, 380 to \(480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}\)} \\
\hline & & Auxiliary fan power input: Phase, voltage, frequency & \multicolumn{5}{|c|}{-} & \multicolumn{9}{|l|}{Single-phase, 380 to \(440 \mathrm{~V} / 50 \mathrm{~Hz}, 380\) to \(480 \mathrm{~V} / 60 \mathrm{~Hz} * 3\)} \\
\hline & & Allowable voltage/frequency & \multicolumn{14}{|l|}{Voltage: +10 to \(-15 \%\), Frequency: +5 to \(-5 \%\)} \\
\hline & \multicolumn{2}{|l|}{Carrier frequency (kHz) *4} & \multicolumn{14}{|c|}{2 kHz} \\
\hline & App & rox. mass (kg) & 30 & 30 & 30 & 37 & 37 & 45 & 45 & 95 & 95 & 95 & 125 & 135 & 135 & 135 \\
\hline & \multicolumn{2}{|l|}{Enclosure} & \multicolumn{14}{|c|}{IP00, UL open type} \\
\hline
\end{tabular}

The above specifications apply when Function code F80 \(=1\) (LD mode).
*1 This specification applies when the rated output voltage is 440 V .
*2 When the inverter output frequency converted is less than 1 Hz , the inverter may trip earlier due to overload depending on the ambient temperature and other conditions
*3 For 380 to \(398 \mathrm{~V} / 50 \mathrm{~Hz}\) or 380 to \(430 \mathrm{~V} / 60 \mathrm{~Hz}\), connector switching is required inside the inverter.
*4 Running a permanent magnet synchronous motor (PMSM) except Fuji standard PMSM (GNF2 series) at low carrier frequency may overheat the permanent magnet due to the output current harmonics, resulting in demagnetization. Be sure to check the allowable carrier frequency of the motor.
*5 A set of three phase-specific stacks for \(\mathrm{U}, \mathrm{V}\) and W phases constitutes a single inverter unit.

\section*{Chapter 9 CONFORMITY WITH STANDARDS}

\subsection*{9.1 Compliance with European Standards ((\(\in\))}

The CE marking on Fuji products indicates that they comply with the essential requirements of the Electromagnetic Compatibility (EMC) Directive, Low Voltage Directive, and Machinery Directive which are issued by the Council of the European Communities.

Table 9.1-1 Conformity with Standards
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|c|}{Standards} \\
\hline Combination & \begin{tabular}{l}
Diode rectifier : \\
RHD200S-4D \(\square\), RHD315S-D \(\square\) \\
Inverter : \\
FRN30SVG1S-4■ to FRN315SVG1S-4■ FRN630BVG1S-4■ to FRN800BVG1S-4■
\end{tabular} & \begin{tabular}{l}
PWM converter : \\
RHC132S-4D \(\square\) to RHC315S-4D \(\square\) \\
RHC630B-4D \(\square\) to RHC800B-4D \(\square\) \\
Inverter : \\
FRN30SVG1S-4■ to FRN315SVG1S-4■ \\
FRN630BVG1S-4 \(\square\) to FRN800BVG1S-4■
\end{tabular} \\
\hline \begin{tabular}{l}
EMC \\
Directives
\end{tabular} & \begin{tabular}{l}
IEC/EN61800-3 \\
Immunity : Second environment (Industrial) \\
Emission : Category C3 \\
IEC/EN61326-3-1
\end{tabular} & \\
\hline Low Voltage Directive & IEC/EN61800-5-1 & \\
\hline Machinery Directive & EN ISO13849-1 : PL-d, Category 3 IEC/EN 60204-1 : Stop category 0 & \\
\hline \begin{tabular}{l}
Functional \\
Safety \\
Standard
\end{tabular} & IEC/EN 61800-5-2: SIL2 IEC/EN 62061 : SIL2 & \\
\hline
\end{tabular}

\subsection*{9.1.1 Compatibility with Revised EMC Directive and Low Voltage Directive}

In the revised EMC Directive (2014/30/EU) and Low Voltage Directive (2014/35/EU), it is necessary to clearly state the name and the address of manufacturers and importers to enhance traceability. Importers shall be indicated as follows when exporting products from Fuji Electric to Europe.

\section*{(Manufacturer)}

Fuji Electric Co., Ltd
5520, Minami Tamagaki-cho, Suzuka-city, Mie 513-8633, Japan

\section*{(Importer in Europe)}

Fuji Electric Europe GmbH
Goethering 58, 63067 Offenbach / Main, Germany

\section*{<Precaution when exporting to Europe>}
- Not all Fuji Electric products in Europe are necessarily imported by the above importer. If any Fuji Electric products are exported to Europe via another importer, please ensure that the importer is clearly stated by the customer.

\subsection*{9.1.2 Compliance with EMC standards}

The CE marking on inverters does not ensure that the entire equipment including our CE-marked products is compliant with the EMC Directive. Therefore, CE marking for the equipment shall be the responsibility of the equipment manufacturer. For this reason, Fuji's CE mark is indicated under the condition that the product shall be used within equipment meeting all requirements for the relevant Directives. Instrumentation of such equipment shall be the responsibility of the equipment manufacturer.
Generally, machinery or equipment includes not only our products but other devices as well. Manufacturers, therefore, shall design the whole system to be compliant with the relevant Directives.

\section*{■ List of EMC-compliant filters}

To satisfy the requirements noted above, use inverters in combination with an external filter (option) dedicated to Fuji inverters. In either case, mount inverters in accordance with the installation procedure given below. To ensure the compliance, it is recommended that inverters be mounted in a metal panel.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Power supply voltage} & \multirow[b]{3}{*}{PWM converter type} & \multirow[b]{3}{*}{Diode rectifier type} & \multirow[b]{3}{*}{MD/LD mode} & \multicolumn{3}{|c|}{Filter} & \multirow[b]{3}{*}{Remarks} \\
\hline & & & & \multirow[b]{2}{*}{type} & \multicolumn{2}{|l|}{Leakage current *1} & \\
\hline & & & & & Under normal conditions & Under worst-case conditions & \\
\hline \multirow{18}{*}{Three-phase 400 V} & \multirow{2}{*}{RHC132S-4D \(\square\)} & \multirow[b]{2}{*}{-} & MD & \multirow{6}{*}{FS5536-400-99-1} & \multirow{6}{*}{78} & \multirow{6}{*}{439} & \\
\hline & & & LD & & & & \\
\hline & \multirow{2}{*}{RHC160S-4D \(\square\)} & \multirow{2}{*}{-} & MD & & & & \\
\hline & & & LD & & & & \\
\hline & \multirow[b]{2}{*}{RHC200S-4D \(\square\)} & \multirow[b]{2}{*}{RHD200S-4D \(\square\)} & MD & & & & \\
\hline & & & LD & & & & \\
\hline & \multirow[t]{2}{*}{RHC220S-4D \(\square\)} & \multirow[t]{2}{*}{-} & MD & \multirow{6}{*}{FN3359-800-99} & \multirow{6}{*}{38} & \multirow{6}{*}{227} & \\
\hline & & & LD & & & & \\
\hline & \multirow[t]{2}{*}{RHC280S-4D \(\square\)} & \multirow[t]{2}{*}{-} & MD & & & & \\
\hline & & & LD & & & & \\
\hline & \multirow[b]{2}{*}{RHC315S-4D■} & \multirow[b]{2}{*}{RHD315S-4D \(\square\)} & MD & & & & \\
\hline & & & LD & & & & \\
\hline & \multirow[t]{2}{*}{RHC630B-4D \(\square\)} & \multirow[t]{2}{*}{-} & MD & \multirow{5}{*}{FN3359-1600-99} & \multirow{5}{*}{38} & \multirow{5}{*}{227} & \\
\hline & & & LD & & & & \\
\hline & \multirow[t]{2}{*}{RHC710B-4D \(\square\)} & \multirow[t]{2}{*}{-} & MD & & & & \\
\hline & & & LD & & & & \\
\hline & \multirow[t]{2}{*}{RHC800B-4D \(\square\)} & \multirow[t]{2}{*}{-} & MD & & & & \\
\hline & & & LD & FN3359-2500-99 & 38 & 227 & \\
\hline
\end{tabular}

\footnotetext{
*1 Calculated based on these measuring conditions: \(400 \mathrm{~V}, 50 \mathrm{~Hz}\), interphase voltage unbalance ratio \(2 \%\).
}

\section*{Recommended installation procedure}

To make the machinery or equipment fully compliant with the EMC Directive, have certified technicians wire the filter stack, the PWM converter, the diode rectifier, the inverter and the motor and in strict accordance with the procedure described below.

\section*{When an EMC-compliant filter (option) is externally used}
1) Mount the filter stack, the PWM converter, the diode rectifier, the inverter and the filter on a grounded panel or metal plate. Use shielded wires for the motor cable and route the cable as short as possible. Firmly clamp the shields to the metal plate to ground them. Further, connect the shielding layers electrically to the grounding terminal of the motor
2) For connection to control terminals of the filter stack, the PWM converter, the diode rectifier and the inverter and for connection of the RS-485 communication signal cable, use shielded wires. As with the motor, clamp the shields firmly to a grounded panel.

In the case of the combination of the PWM converter with RHF and the inverter.

In the case of the combination of the PWM converter and the inverter.

In the case of the combination of the diode rectifier and the inverter.
Figure 9.1-1 Mounting an EMC-compliant Filter (option) in a Metal Panel

\subsection*{9.1.3 Harmonic component regulation in the EU}

When you use general-purpose industrial inverters in the EU, the harmonics emitted from the inverter to power lines are strictly regulated as stated below.
If an inverter is connected to public low-voltage power supply, it is regulated by the harmonics emission regulations from inverters to power lines (with the exception of industrial low-voltage power lines). Refer to Figure 9.1-2 below for details.

Figure 9.1-2 Power Source and Regulation

Compliance with IEC/EN 61000-3-2
\begin{tabular}{|c|l|c|}
\hline Power supply voltage & \multicolumn{1}{|c|}{ Diode rectifier / PWM converter type } & Conformity \\
\hline \multirow{3}{*}{ Three-phase 400 V} & RHD200S-4D \(\square\), RHD315S-D \(\square\) & \multirow{1}{}{ RHC132S-4D \(\square\) to RHC315S-4D \(\square\)} \\
& RHC630B-4D \(\square\) to RHC800B-4D \(\square\) & \(\circ\) \\
\hline
\end{tabular}

To obtain the data with the harmonics current data, contact your Fuji Electric representative.
Use the inverter applied by combination within the limits of each diode rectifier or PWM converter.
*1 To conform to the diode rectifier or the PWM converter compliance with the IEC/EN 61000-3-12, connect them to the power supply whose short-circuit ratio Rsce is 120 or above.

\subsection*{9.1.4 Compliance with the low voltage directive in the EU}

General-purpose inverters are regulated by the Low Voltage Directive in the EU. Fuji Electric states that all our inverters with CE marking are compliant with the Low Voltage Directive.

\section*{\(\square\) Note}

If installed according to the guidelines given below, inverters marked with CE are considered as compliant with the Low Voltage Directive.

\section*{Compliance with European Standards}

Adjustable speed electrical power drive systems (PDS).
Part 5-1: Safety requirements. Electrical, thermal and energy. IEC/EN61800-5-1

\section*{\(\triangle\) WARNING \(\wedge\)}
1. The ground terminal \(\boldsymbol{5}\) G should always be connected to the ground. Do not use only a residual-current-operated protective device (RCD)/earth leakage circuit breaker (ELCB)* as the sole method of electric shock protection. Be sure to use ground wires whose size is greater than power supply lines.
*With overcurrent protection.
2. To prevent the risk of hazardous accidents that could be caused by damage of the inverter, install the specified fuses in the supply side (primary side) according to the following tables.
AC fuse : Breaking capacity: Min. 10 kA , Rated voltage: Min. 500 V
DC fuse : Breaking capacity: Min. 10 kA , Rated voltage: Min. 800 V
RHD \(\square\) S-4D series
\begin{tabular}{|l|c|c|l|}
\hline \multirow{2}{\text{Power}}{\begin{tabular}{l}
supply \\
voltage
\end{tabular}} & \begin{tabular}{c}
Diode rectifier \\
type
\end{tabular} & \begin{tabular}{c}
MD/LD \\
mode
\end{tabular} & \begin{tabular}{c}
AC Fuse rating \\
(A)
\end{tabular} \\
\hline \multirow{2}{*}{\begin{tabular}{l}
Three- \\
phase \\
400 V
\end{tabular}} & RHD200S-4D \(\square\) & RHD315S-4D \(\square\) & MD \\
\cline { 3 - 4 } & MD & 630(IEC60269-4) \\
\cline { 3 - 4 } & 630(IEC60269-4) \\
\hline
\end{tabular}

RHC \(\square\) S-4D series
\begin{tabular}{|c|c|c|c|}
\hline Power supply voltage & PWM converter type & MD/LD mode & \begin{tabular}{l}
AC Fuse rating \\
(A)
\end{tabular} \\
\hline \multirow{17}{*}{Three-
phase
400 V} & \multirow[b]{2}{*}{RHC132S-4D \(\square\)} & MD & 400(IEC60269-4) \\
\hline & & LD & 450(IEC60269-4) \\
\hline & \multirow[t]{2}{*}{RHC160S-4D \(\square\)} & MD & 450(IEC60269-4) \\
\hline & & LD & 630(IEC60269-4) \\
\hline & \multirow[t]{2}{*}{RHC200S-4D \(\square\)} & MD & 630(IEC60269-4) \\
\hline & & LD & 700(IEC60269-4) \\
\hline & RHC220S-4D \(\square\) & MD & 700(IEC60269-4) \\
\hline & \multirow[b]{2}{*}{RHC280S-4D \(\square\)} & MD & 800(IEC60269-4) \\
\hline & & LD & 900(IEC60269-4) \\
\hline & \multirow[t]{2}{*}{RHC315S-4D \(\square\)} & MD & 900(IEC60269-4) \\
\hline & & LD & 1000(IEC60269-4) \\
\hline & \multirow[b]{2}{*}{RHC630B-4D \(\square\)} & MD & 1800(IEC60269-4) \\
\hline & & LD & 2000(IEC60269-4) \\
\hline & \multirow[b]{2}{*}{RHC710B-4D \(\square\)} & MD & 2000(IEC60269-4) \\
\hline & & LD & 2500(IEC60269-4) \\
\hline & \multirow[b]{2}{*}{RHC800B-4D■} & MD & 2500(IEC60269-4) \\
\hline & & LD & 3000(IEC60269-4) \\
\hline
\end{tabular}

Note: A box (\(\square\)) replaces an alphabetic letter depending on the enclose and the shipping destination

RHD』S-4D series

SVG1 series
\begin{tabular}{|c|c|l|l|l|}
\hline \multirow{6}{*}{\begin{tabular}{l}
Power \\
supply \\
voltage
\end{tabular}} & \begin{tabular}{c}
Nominal \\
applied \\
motor \\
(kW)
\end{tabular} & & \multirow{3}{*}{ Inverter type } & \begin{tabular}{l}
MD/ \\
LD \\
mode
\end{tabular} \\
\hline
\end{tabular}

Conformity to the Low Voltage Directive in the EU (Continued)

3. When used with the inverter, a molded case circuit breaker (MCCB), residual-current-operated protective device (RCD)/earth leakage circuit breaker (ELCB) or magnetic contactor (MC) should conform to the EN or IEC standards.
4. When you use a residual-current-operated protective device (RCD)/earth leakage circuit breaker (ELCB) for protection from electric shock in direct or indirect contact power lines or nodes, be sure to install type B of RCD/ELCB on the input (primary) of the inverter if the power supply is three-phase 400 V .
5. The inverter should be used in an environment that does not exceed Pollution Degree 2 requirements. If the environment conforms to Pollution Degree 3 or 4, install the inverter in an enclosure of IP54 or higher.
6. Install the inverter, AC or DC reactor, input or output filter in an enclosure with minimum degree of protection of IP2X (Top surface of enclosure shall be minimum IP4X when it can be easily accessed), to prevent human body from touching directly to live parts of these equipment.
7. Do not connect any copper wire directly to grounding terminals. Use crimp terminals with tin or equivalent plating to connect them.
8. When you use an inverter at an altitude of more than 2000 m , you should apply basic insulation for the control circuits of the inverter. The inverter cannot be used at altitudes of more than 3000 m .
9. Use wires listed in IEC60364-5-52.

RHD』S-4D series
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{} & \multirow{4}{*}{Diode rectifier type} & \multirow{4}{*}{} & \multirow{4}{*}{\[
\begin{gathered}
\text { MCCB or } \\
\text { RCD/ELCB } \\
* 1 \\
\text { Rated } \\
\text { current }
\end{gathered}
\]} & \multicolumn{7}{|c|}{Recommended wire/copper bar size (\(\mathrm{mm}^{2}\))} \\
\hline & & & & \multicolumn{5}{|c|}{Main circuit} & \multirow{3}{*}{Control circuit} & \multirow{3}{*}{Fan power supply [R1, T1]} \\
\hline & & & & \multicolumn{2}{|l|}{\[
\begin{gathered}
\hline \text { Main power } \\
\text { input } * 2 \\
{[\mathrm{~L} 1 / \mathrm{R}, \mathrm{~L} 2 / \mathrm{S},} \\
\mathrm{L} 3 / \mathrm{T}] \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{Diode rectifier output
\[
\begin{gathered}
{[\mathrm{P}(+), \mathrm{N}(-)]} \\
* 2 \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{Ground terminal [롷G]} & & \\
\hline & & & & Copper bar & Wire & Copper bar & Wire & & & \\
\hline \multirow{4}{*}{} & \multirow[t]{2}{*}{RHD200S-4D■} & MD & 500 & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \mathbf{t 5 \times 3 0} \\
(150) \\
\hline
\end{gathered}
\]} & 240 & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline 4 \times 40 \\
(160) \\
\hline
\end{gathered}
\]} & 300 & 120 & \multirow{4}{*}{0.75} & \multirow{4}{*}{2.5} \\
\hline & & LD & 500 & & 240 & & \(150 \times 2\) & 120 & & \\
\hline & \multirow[b]{2}{*}{RHD315S-4D■} & MD & 700 & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{t} 10 \times 30 \\
(300)
\end{gathered}
\]} & \(185 \times 2\) & \multirow[t]{2}{*}{\[
\begin{gathered}
t 8 \times 50 \\
(400)
\end{gathered}
\]} & \(300 \times 2\) & 185 & & \\
\hline & & LD & 800 & & \(240 \times 2\) & & \(300 \times 2\) & 240 & & \\
\hline
\end{tabular}

RHCםS-4D series
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{} & \multirow{4}{*}{PWM converter type} & \multirow[b]{4}{*}{} & \multirow{4}{*}{\[
\begin{gathered}
\text { MCCB or } \\
\text { RCD/ELCB } \\
* 1 \\
\text { Rated } \\
\text { current }
\end{gathered}
\]} & \multicolumn{8}{|c|}{Recommended wire/copper bar size (\(\mathrm{mm}^{2}\))} \\
\hline & & & & \multicolumn{6}{|c|}{Main circuit} & \multirow{3}{*}{Control circuit} & \multirow[b]{3}{*}{\[
\begin{array}{|c}
\text { R0,T0 } \\
\text { R1,S1,T1 } \\
\text { R2,T2 } \\
\text { R3,T3 } \\
\text { 73A,73C }
\end{array}
\]} \\
\hline & & & & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Main power } \\
\text { input *2 } \\
{[\mathrm{L} 1 / \mathrm{R}, \mathrm{~L} 2 / \mathrm{S}, \mathrm{~L} 3 / \mathrm{T}]}
\end{gathered}
\]} & \multicolumn{2}{|l|}{PWM converter output
\[
\begin{gathered}
{[\mathrm{P}(+), \mathrm{N}(-)]} \\
* 2, * 3
\end{gathered}
\]} & \multirow[t]{2}{*}{Ground terminal [ㅗㅗㅋG]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Charging } \\
& \text { circuit } \\
& {[\text { L4,L5,L6] }}
\end{aligned}
\]} & & \\
\hline & & & & Copper bar & Wire & Copper bar & Wire & & & & \\
\hline \multirow{17}{*}{} & \multirow[b]{2}{*}{RHC132S-4D \(\square\)} & MD & 300 & \multirow{6}{*}{\[
\begin{gathered}
t 5 \times 30 \\
(150)
\end{gathered}
\]} & 120 & \multirow{6}{*}{\[
\begin{gathered}
t 4 \times 40 \\
(160)
\end{gathered}
\]} & 120 & 70 & \multirow{17}{*}{2.5} & \multirow{17}{*}{0.75} & \\
\hline & & LD & 350 & & 150 & & 150 & 95 & & & \\
\hline & \multirow[b]{2}{*}{RHC160S-4D \(\square\)} & MD & 350 & & 150 & & 150 & 95 & & & \\
\hline & & LD & 500 & & 240 & & 240 & 120 & & & \\
\hline & \multirow[b]{2}{*}{RHC200S-4D■} & MD & 500 & & 240 & & 240 & 120 & & & \\
\hline & & LD & 500 & & 240 & & 300 & 150 & & & \\
\hline & RHC220S-4D \(\square\) & MD & 500 & \multirow{5}{*}{\[
\begin{gathered}
\mathrm{t} 10 \times 30 \\
(300)
\end{gathered}
\]} & 240 & \multirow{5}{*}{\[
\begin{gathered}
t 8 \times 50 \\
(400)
\end{gathered}
\]} & 300 & 150 & & & \\
\hline & \multirow[t]{2}{*}{RHC280S-4D■} & MD & 600 & & \(150 \times 2\) & & \(185 \times 2\) & 185 & & & \\
\hline & & LD & 700 & & \(185 \times 2\) & & \(185 \times 2\) & 185 & & & 2.5 \\
\hline & \multirow[t]{2}{*}{RHC315S-4D■} & MD & 700 & & \(185 \times 2\) & & \(185 \times 2\) & 185 & & & 2.5 \\
\hline & & LD & 800 & & \(240 \times 2\) & & \(240 \times 2\) & \(120 \times 2\) & & & \\
\hline & \multirow[t]{2}{*}{RHC630B-4D \(\square\)} & MD & 1400 & \multirow{6}{*}{\[
\begin{gathered}
\mathrm{t} 10 \times 125 \\
(1250)
\end{gathered}
\]} & \(240 \times 4\) & \multirow{6}{*}{\[
\begin{gathered}
\mathrm{t} 8 \times 50 \\
(400)
\end{gathered}
\]} & \multirow[t]{6}{*}{-
-} & 185 & & & \\
\hline & & LD & 1600 & & \(300 \times 4\) & & & \(120 \times 2\) & & & \\
\hline & \multirow[t]{2}{*}{RHC710B-4D \(\square\)} & MD & 1600 & & \(300 \times 4\) & & & \(120 \times 2\) & & & \\
\hline & & LD & 1800 & & \(240 \times 5\) & & & \(120 \times 2\) & & & \\
\hline & \multirow{2}{*}{RHC800B-4D \(\square\)} & MD & 1800 & & \(240 \times 5\) & & & \(120 \times 2\) & & & \\
\hline & & LD & 2200 & & \(300 \times 6\) & & & \(150 \times 2\) & & & \\
\hline
\end{tabular}

Conformity to the Low Voltage Directive in the EU (Continued)

Note: A box (\(\square\)) replaces an alphabetic letter depending on the enclosure or the shipping destination.
*1 The frame size and model of the MCCB or RCD/ELCB (with overcurrent protection) will vary, depending on the power transformer capacity. Refer to the related technical documentation for details.
*2 The recommended wire size for main circuits is for the \(70^{\circ} \mathrm{C} 600 \mathrm{~V}\) PVC wires used at a surrounding temperature of \(40^{\circ} \mathrm{C}\).
*3 The size of wire or copper bar of stack by phase is a part for 1 phase (1 stack).

\section*{Conformity to the Low Voltage Directive in the EU (Continued)}

\section*{\(\triangle\) WARNING \(\wedge\)}
10. The inverter has been tested with IEC/EN61800-5-1 5.2.3.6.3 Short-circuit Current Test under the following conditions.

Short-circuit current in the supply: 10,000 A
Maximum 480 V for 400 V class series
11. Use this inverter at the following power supply system.

*1 Use this inverter at the following IT system.
\begin{tabular}{|l|l|}
\hline Non-earthed (isolated from earth) IT system & \begin{tabular}{l}
Can be used. \\
In this case the insulation between the control \\
interface and the main circuit of the inverter is \\
basic insulation. Thus do not connect SELV \\
circuit from external controller directly (make \\
connection using a supplementary insulation.). \\
Use an earth fault detector able to disconnect \\
the power within 5s after the earth fault \\
occurs.
\end{tabular} \\
\cline { 1 - 2 } & \\
\hline Corner earthed / Phase-earthed IT system by an impedance & Can not be used. \\
\hline
\end{tabular}
*2 Cannot apply to Corner earthed / Phase-earthed TT system of 400V type
12. As the touch current (leakage current) of inverters is relatively high, it is of essential importance to always assure a reliable connection to Protective Earth (PE). The minimum cross sectional area of the PE-conductor should be:
\(-10 \mathrm{~mm}^{2}\) (Cu-conductors) \(-16 \mathrm{~mm}^{2}\) (Al-conductors)

Three Phase PDS (Power Drive System) with touch currents \(\geq 3.5 \mathrm{~mA} \mathrm{AC}\) or \(\geq 10 \mathrm{~mA} \mathrm{DC}\)
An electric shock could occur.

\section*{9．2 Compliance with Functional Safety Standard}

\section*{9．2．1 General}

In FRENIC－VG series of inverters，opening the hardware circuit between terminals［EN1］－［PS］or between terminals［EN2］－［PS］stops the output transistor，coasting the motor to a stop．（EN1：Enable input 1，EN2： Enable input 2）This is the Safe Torque Off（STO）function prescribed in IEC／EN60204－1，Category 0 （Uncontrolled stop）and compliant with Functional Safety Standard．
Using the Safe Torque Off（STO）function eliminates the need of external safety circuit breakers while conventional inverters need those breakers to configure the Functional Safety Standard compliant safety system．

\section*{WARNING ©}
－The output shutdown function of this inverter uses the Safe Torque Off（STO）function prescribed in IEC／EN61800－5－2 so that it does not completely shut off the power supply to the motor electrically．Depending upon applications， therefore，additional measures are necessary for safety of end－users，e．g．，brake function that locks the machinery and motor terminal protection that prevents possible electrical hazard（s）．
－The output shutdown function does not completely shut off the power supply to the motor electrically．Before starting wiring or maintenance jobs，turn OFF the power and wait at least ten minutes．Make sure that the LED monitor and charging lamp are turned OFF．Further，make sure，using a multimeter or a similar instrument，that the DC link bus voltage between the terminals \(\mathrm{P}(+)\) and \(\mathrm{N}(-)\) has dropped to the safe level（ +25 VDC or below）．

\section*{Enable terminals and peripheral circuit，and internal circuit configuration}

Figure 9．2－1 Conventional Inverters

Figure 9．2－2 FRNDロロVG1ロ－ロロ

\subsection*{9.2.2 Notes for compliance to Functional Safety Standard}
1) Wiring for terminals [EN1] (Enable input 1) and [EN2] (Enable input 2)
- \([\mathrm{EN} 1] /[\mathrm{EN} 2]\) and \([\mathrm{PS}]\) are terminals prepared for connection of safety related wires; therefore, careful wiring should be performed to ensure that no short-circuit(s) can occur to these terminals.
- Stopping the current flowing through terminal [EN1] or [EN2] activates the safety stop function. For opening and closing the hardware circuit between terminals [EN1]/[EN2] and [PS], use safety approved components such as safety relays that comply with EN ISO13849-1 PL=d Cat. 3 or higher to ensure a complete shutoff.
- It is the responsibility of the machinery manufacturer to guarantee that a short-circuiting or other fault does not occur in wiring of external safety components between terminals [EN1]/[EN2] and [PS].
Fault examples:
- Terminals [EN1]/[EN2] and [PS] are short-circuited due to the wiring being caught in the door of the panel so that a current continues to flow in terminal \([E N 1] /[E N 2]\) although the safety component is OFF and therefore the safety function may NOT operate.
- The wiring is in contact with any other wire so that a current continues to flow in terminal [EN1]/[EN2] and therefore the safety function may NOT operate.
- To activate the STO function correctly, be sure to keep terminals [EN1] and [EN2] OFF for at least 50 ms .
- When inputting test pulses sent from the safety PLC to terminals [EN1] and [EN2], keep the pulse width of the OFF signal 1 ms or less.
- When using the functional safety card OPC-VG1-SAFE, keep the jumper bars mounted between terminals [EN1]/[EN2] and [PS] since those terminals cannot be used. For the Safe Torque Off (STO) function, use terminals [ST1] and [ST2] on the functional safety card.
2) Note for Safe Torque Off (STO)
- When configuring the product safety system with this Safe Torque Off (STO) function, make a risk assessment of not only the external equipment and wiring connected to terminals [EN1] and [EN2] (Enable input 1 and Enable input 2) but also the whole system including other equipment, devices and wiring against the product safety system required by the machinery manufacturer under the manufacturer's responsibility in order to confirm that the whole system conforms to the product safety system required by the machinery manufacturer.
In addition, as preventive maintenance, the machinery manufacturer must perform periodical inspections to check that the product safety system properly functions.
- To bring the inverter into compliance with Functional Safety Standard, it is necessary to install the inverter on a control panel with the enclosure rating of IP54 or above.
- To bring the inverter into compliance with Functional Safety Standard, it is necessary to bring it into compliance with European Standards IEC/EN61800-5-1 and IEC/EN61800-3.
- This Safe Torque Off (STO) function coasts the motor to a stop. When a mechanical brake is used to stop or hold the motor for the sake of the product safety system of whole system, do not use the inverter's control signals such as output from terminal [Y]. (Using control signals does not satisfy the safety standards because of software intervention.) Use safety relay units complying with EN ISO13849-1 PL=d Cat. 3 or higher to activate mechanical brakes.
- The safety shutdown circuit between terminal [EN1] and [EN2] input sections and inverter's output shutdown section is dual-configured (redundant circuit) so that an occurrence of a single fault does not detract the Safe Torque Off (STO). If a single fault is detected in the safety shutdown circuit, the inverter coasts the motor to a stop even with the [EN1]-[PS] and [EN2]-[PS] states being ON, as well as outputting an alarm to external equipment. (Note that the alarm output function is not guaranteed to all of single faults. It is compliant with EN ISO13849-1 PL=d Cat. 3).
- The Safe Torque Off (STO) function does not completely shut off the power supply to the motor electrically. Before starting wiring or maintenance jobs, be sure to disconnect the input power to the inverter. For details, refer to "wiring" in the safety precautions given on page vi.
- In the case of a permanent magnet synchronous motor (PMSM), a voltage is generated on the motor terminals even during "coast to a stop" caused by the Safe Torque Off (STO) function. When handling the live parts, therefore, be sure to check that the motor is stopped and cut off the input power to the inverter beforehand.
3) Checking wiring

If wiring is changed in the initial start-up or maintenance, be sure to perform the following test with the inverter stopped.
- Turn each of terminals [EN1] and [EN2] OFF (open) and ON (short) and check on the I/O check screen of the keypad that the relevant section turns "signal ON" and "signal OFF," respectively.

\subsection*{9.2.3 Functional safety performance}

Table 9.2-1 lists the safety performance values required by the Functional Safety Standard.

Table 9.2-1 Functional Safety Performance
\begin{tabular}{|l|ll|}
\hline Stop function & Safe Torque Off (STO) (IEC/EN61800-5-2) \\
\hline Response time & 60 ms or less (From input to the terminal to Safe Torque Off) \\
\hline Safety integrity level & SIL 2 & (IEC/EN61800-5-2) \\
\hline PFH & \(2.00 \times 10^{-9} \quad\)\begin{tabular}{l}
(Probability of a dangerous random hardware failure per \\
hour) (IEC/EN61800-5-2)
\end{tabular} \\
\hline Category & 3 & (EN ISO13849-1) \\
\hline Performance level & PL-d & (EN ISO13849-1) \\
\hline \begin{tabular}{l}
Mean time to dangerous random \\
hardware failure, MTTFd
\end{tabular} & 150 years \\
\hline Hardware fault tolerance & HFT1 & (IEC/EN61800-5-2) \\
\hline Safe failure fraction & SFF: \(60 \%\) or above, Type B (IEC/EN61800-5-2) \\
\hline Systematic capability & SC2 & \\
\hline Proof test interval & 10 years & \\
\hline
\end{tabular}
- The proof test refers to a periodical test to detect safety-related failures.
- The PFH is calculated with the Siemens standard model SN29500.

\subsection*{9.2.4 Inverter output state when Safe Torque Off (STO) is activated}

Turning the emergency stop button ON turns EN1 and EN2 OFF, bringing the inverter into the Safe Torque Off (STO) state.

Figure 9.2-3 Inverter Output State when the Emergency Stop Button is Turned OFF with the Inverter being Stopped shows the timing scheme to apply when the emergency stop button is turned OFF with the inverter being stopped. Input to the EN1 and EN2 comes ON, making the inverter ready to run.

Figure 9.2-3 Inverter Output State when the Emergency Stop Button is Turned OFF with the Inverter being Stopped

Figure 9.2-4 Inverter Output State when the Emergency Stop Button is Turned ON with the Inverter Running shows the timing scheme to apply when the emergency stop button is turned ON with the inverter running. Input to the EN1 and EN2 goes OFF, bringing the inverter into the Safe Torque Off (STO) state and coasting the motor to a stop.

Figure 9.2-4 Inverter Output State when the Emergency Stop Button is Turned ON with the Inverter Running

\section*{9．2．5 ELF alarm（caused by logic discrepancy）and inverter output state}

Figure \(9.2-5\) shows the timing scheme to apply when EN1 and EN2 inputs are not aligned so that an alarm に年に occurs．
Turning the emergency stop button ON turns EN1 and EN2 inputs OFF，which usually brings the inverter into the Safe Torque Off（STO）state．If the misalignment of the EN1 and EN2 inputs is within 50 ms ，no alarm occurs；if it is more than 50 ms ，the inverter interprets it as a logic discrepancy，outputting an alarm にN

Figure 9．2－5

\subsection*{9.2.6 Prevention of restarting}

To prevent the inverter from restarting just by turning the emergency stop button OFF, configure the Enable input circuit as shown below. Figure 9.2-7 shows the timing scheme for prevention of restarting.
Assigning the \(\boldsymbol{H L D}\) ("Enable 3-wire operation") to any digital input terminal and setting the E01 data to "6" sets up the \(H L D\) function at the [X1] terminal.
After the \(F W D\) comes ON with the \(H L D\) being ON, even turning the \(F W D\) OFF keeps the inverter running due to the HLD. Turning the emergency stop button ON under the condition causes the motor to coast to a stop. After that, turning the emergency stop button OFF no longer starts the inverter to run. To run the inverter, turn the \(F W D\) ON again.

\footnotetext{
*1 Digital input terminal (e.g., [X1])
*2 If SW1 is in the SINK mode, [CM] applies; if in the SOURCE mode, [PLC] applies.
*3 Transistor output terminals (e.g., [Y1]-[CMY], DECF (Function code data=80))
}

Figure 9.2-6 Connection Diagram and Internal Circuit Configuration

Figure 9.2-7 Prevention of Restarti

\subsection*{9.3 Compliance with UL Standards and Canadian Standards (cUL certification) (.®usura)}

Originally, the UL standards were established by Underwriters Laboratories, Inc. as private criteria for inspections/investigations pertaining to fire/accident insurance in the USA. Later, these standards were authorized as the official standards to protect operators, service personnel and the general populace from fires and other accidents in the USA.
cUL certification means that UL has given certification for products to clear CSA Standards. cUL certified products are equivalent to those compliant with CSA Standards.

\section*{■ Notes}

UL/cUL-listed inverters are subject to the regulations set forth by the UL standards and CSA standards (cUL-listed for Canada) by installation within precautions listed below.

\section*{\(\triangle\) CAUTION}
1. Solid state motor overload protection (motor protection by electronic thermal overload relay) is provided in the inverter (FRN-SVG1S or FRN-BVG1S series).
Use function codes F10 to F12 to set the protection level.
"WARNING - Operation of this equipment requires detailed operation instructions provided in the Users Manual intended for use with this product. This information is provided on the CD ROM included in the container this device was packaged in. It should be retained with this device at all times. A hard copy of this information may be ordered through your local service representative of Fuji Electric co.,ltd"
2. Use Cu wire only.
3. Use Class 1 wire only for control circuits.
4. Short circuit rating
"Suitable For Use On A Circuit Of Delivering Not More Than 100,000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Class J Fuses or a Circuit Breaker having an interrupting rating not less than 100,000 rms Symmetrical Amperes, 480 Volts Maximum."
"Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes."
5. When wire is used, field wiring connections must be made by a UL Listed and CSA Certified closed-loop terminal connector sized for the wire gauge involved. Connector must be fixed using the crimp tool specified by the connector manufacturer.
6. All circuits with terminals \(\mathrm{L} 1 / \mathrm{R}, \mathrm{L} 2 / \mathrm{S}, \mathrm{L} 3 / \mathrm{T}, \mathrm{R} 0, \mathrm{~T} 0, \mathrm{R} 1, \mathrm{~T} 1\) must have a common disconnect and be connected to the same pole of the disconnect if the terminals are connected to the power supply.

In case of the combination of Diode rectifier and Inverter

Conformity with UL standards and CSA standards (cUL-listed for Canada) (continued)

\section*{\(\triangle\) CAUTION}

\section*{7. Environmental Requirements}
- Surrounding temperature

Maximum Surrounding Air Temperature \(40^{\circ} \mathrm{C}\)
- Atmosphere

For use in pollution degree 2 environments. (for Open-Type models)
8.Functional Description of Control Circuit Terminals

A power source for connection to the Integrated alarm output (30A, 30B, 30C) should be limited to overvoltage category II such as control circuit or secondary winding of power transformer.
\begin{tabular}{|l|l|l|l|}
\hline Classification & \begin{tabular}{l}
Terminal \\
Symbol
\end{tabular} & \begin{tabular}{l}
Terminal \\
Name
\end{tabular} & Functional description \\
\hline Contact output & {\([30 \mathrm{~A} / \mathrm{B} / \mathrm{C}]\)} & \begin{tabular}{l}
Integrated \\
alarm output
\end{tabular} & \begin{tabular}{l}
When the inverter stops with an alarm, output is generated on the relay \\
contact \((1 \mathrm{C})\). \\
Contact capacitance: AC250 V \(0.3 \mathrm{~A} \cos \varphi=1, \mathrm{DC} 30 \mathrm{~V} 0.5 \mathrm{~A}\)
\end{tabular} \\
\hline
\end{tabular}
9. Combinations of Diode rectifier(RHD series) and inverter(SVG1S or BVG1S series) are shown in the table below.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Diode rectifier} & \multirow[b]{2}{*}{\begin{tabular}{l}
Applicable inverter capacity \\
[kW]
\end{tabular}} & \multirow[b]{2}{*}{Combined conditions} \\
\hline Type & \[
\begin{gathered}
\text { MD/LD } \\
\text { mode }
\end{gathered}
\] & & \\
\hline \multirow[t]{2}{*}{RHD200S-4D \(\square\)} & MD & 110 to 200 & \multirow[t]{4}{*}{\begin{tabular}{l}
1.The inverter which may be combined with this converter is made into FRN-SVG1S or FRN-BVG1S series. \\
2.The total capacity of all inverters shall not exceed the applicable inverter capacity(kW). \\
3.If it is less than mentioned capacity, two or more sets or a different combination of capacity is possible for the inverter connected to this converter. \\
4.The number of the maximum connection to the converter of the inverters is not restrained.
\end{tabular}} \\
\hline & LD & 110 to 220 & \\
\hline \multirow[t]{2}{*}{RHD315S-4D \(\square\)} & MD & 180 to 315 & \\
\hline & LD & 180 to 355 & \\
\hline
\end{tabular}
10. Combinations of PWM converter(RHC series) and inverter(FRN-SVG1S series or BVG1S series) are shown in the table below
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{PWM converter} & \multirow[t]{2}{*}{Applicable inverter capacity [kW]} & \multirow[b]{2}{*}{Combined conditions} \\
\hline Type & MD/LD mode & & \\
\hline \multirow[t]{2}{*}{RHC132S-4D■} & MD & 132 max & \multirow[t]{14}{*}{\begin{tabular}{l}
1.The inverter which may be combined with this converter is made into FRN-SVG1S or BVG1S series. \\
2.The total capacity of all inverters shall not exceed the applicable inverter capacity (kW). \\
3.If it is less than mentioned capacity, two or more sets or a different combination of capacity is possible for the inverter connected to this converter. \\
4.The number of the maximum connection to the converter of the inverters is not restrained.
\end{tabular}} \\
\hline & LD & \multirow[t]{2}{*}{160 max} & \\
\hline \multirow[t]{2}{*}{RHC160S-4D■} & MD & & \\
\hline & LD & \multirow[t]{2}{*}{200 max} & \\
\hline \multirow[t]{2}{*}{RHC200S-4D■} & MD & & \\
\hline & LD & \multirow[t]{2}{*}{220 max} & \\
\hline \multirow[t]{2}{*}{RHC220S-4D \(\square\)} & MD & & \\
\hline & LD & \multirow[t]{2}{*}{250 max} & \\
\hline \multirow[t]{2}{*}{RHC250S-4D■} & MD & & \\
\hline & LD & \multirow[t]{2}{*}{280 max} & \\
\hline \multirow[t]{2}{*}{RHC280S-4D■} & MD & & \\
\hline & LD & \multirow[t]{2}{*}{315 max} & \\
\hline \multirow[t]{2}{*}{RHC315S-4D■} & MD & & \\
\hline & LD & 355 max & \\
\hline
\end{tabular}

Conformity with UL standards and CSA standards (cUL-listed for Canada) (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{\. CAUTION} \\
\hline \multicolumn{8}{|l|}{11.Install UL certified fuses or circuit breaker between the power supply and the converter, referring to the table below. RHD series} \\
\hline \multirow[t]{3}{*}{} & \multirow{3}{*}{Converter type} & \multirow{3}{*}{} & \multirow[b]{3}{*}{} & \multirow{3}{*}{} & \multicolumn{3}{|c|}{Required torque lb-in (\(\mathrm{N} \cdot \mathrm{m}\))} \\
\hline & & & & & Main terminal/
Grounding & \multirow[t]{2}{*}{Control circuit} & Aux. fan power supply \\
\hline & & & & & \[
\begin{gathered}
\mathrm{L} 1 / \mathrm{R}, \mathrm{~L} 2 / \mathrm{S}, \mathrm{~L} 3 / \mathrm{T} \\
\mathrm{P}, \mathrm{~N}, \boldsymbol{\mathrm { C }}
\end{gathered}
\] & & R1,T1 \\
\hline \multirow{4}{*}{} & \multirow{2}{*}{RHD200S-4D■} & MD & 600 & \multirow{2}{*}{500} & \multirow{4}{*}{\[
\begin{gathered}
424.7 \\
(48)
\end{gathered}
\]} & \multirow{4}{*}{\[
\begin{aligned}
& 10.6 \\
& (1.2)
\end{aligned}
\]} & \multirow{4}{*}{\[
\begin{gathered}
10.6 \\
(1.2)
\end{gathered}
\]} \\
\hline & & LD & - & & & & \\
\hline & \multirow{2}{*}{RHD315S-4D \(\square\)} & MD & - & 700 & & & \\
\hline & & LD & - & 800 & & & \\
\hline \multirow[t]{3}{*}{} & \multirow{3}{*}{Converter type} & \multirow{3}{*}{} & \multicolumn{2}{|l|}{Copper bar size (\(\mathrm{mm}^{2}\))} & \multicolumn{3}{|c|}{Wire size \(\operatorname{AWG}\left(\mathrm{mm}^{2}\right)\)} \\
\hline & & & \multicolumn{2}{|r|}{Main terminal} & Grounding & \multirow{2}{*}{Control circuit} & Aux. fan power supply \\
\hline & & & \[
\begin{gathered}
\mathrm{L} 1 / \mathrm{R}, \mathrm{~L} 2 / \mathrm{S}, \\
\mathrm{~L} 3 / \mathrm{T}
\end{gathered}
\] & P,N & * G & & R1,T1 \\
\hline \multirow[t]{4}{*}{} & \multirow{2}{*}{RHD200S-4D \(\square\)} & MD & \multirow[b]{2}{*}{\[
\begin{gathered}
5 \text { by } 30 \\
(150)
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
4 \text { by } 40 \\
(160)
\end{gathered}
\]} & \[
\begin{gathered}
1 \\
(42.4)
\end{gathered}
\] & \multirow{4}{*}{\[
\begin{gathered}
16 \\
(1.25) \\
* 1 \\
* 2
\end{gathered}
\]} & \multirow{4}{*}{\[
\begin{gathered}
14 \\
(2.1) \\
* 2
\end{gathered}
\]} \\
\hline & & LD & & & \[
\begin{gathered}
1 / 0 \\
(53.5)
\end{gathered}
\] & & \\
\hline & \multirow[t]{2}{*}{RHD315S-4D \(\square\)} & MD & \multirow[t]{2}{*}{\[
\begin{gathered}
10 \text { by } 30 \\
(300)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
8 \text { by } 50 \\
(400)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
2 / 0 \\
(67.4)
\end{gathered}
\]} & & \\
\hline & & LD & & & & & \\
\hline
\end{tabular}

Conformity with UL standards and CSA standards (cUL-listed for Canada) (continued)
\(\triangle\) CAUTION

\section*{RHC series}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{} & \multirow{3}{*}{Converter type} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \stackrel{0}{0} \\
& \dot{B} \\
& \stackrel{i}{i} \\
& \dot{i}
\end{aligned}
\]} & \multirow[t]{3}{*}{} & \multirow[b]{3}{*}{} & \multicolumn{4}{|c|}{Required torque lb -in (\(\mathrm{N} \cdot \mathrm{m}\))} \\
\hline & & & & & Main terminal/ Grounding & \multirow{2}{*}{Control circuit} & Aux. control power supply & Aux. fan power supply \\
\hline & & & & & \[
\begin{gathered}
\text { L1/R,L2/S,L3/T } \\
\mathrm{P}, \mathrm{~N}, \mathrm{G}
\end{gathered}
\] & & R0,T0 & R1,S1,T1 \\
\hline \multirow{17}{*}{} & \multirow{2}{*}{RHC132S-4D \(\square\)} & MD & 300 & 300 & \multirow{17}{*}{\[
\begin{gathered}
424.7 \\
(48)
\end{gathered}
\]} & \multirow{17}{*}{\[
\begin{gathered}
6.1 \\
(0.7)
\end{gathered}
\]} & \multirow{17}{*}{\[
\begin{aligned}
& 10.6 \\
& (1.2)
\end{aligned}
\]} & \multirow{17}{*}{\[
\begin{array}{r}
10.6 \\
(1.2)
\end{array}
\]} \\
\hline & & LD & \multirow{2}{*}{400} & \multirow{2}{*}{350} & & & & \\
\hline & \multirow{2}{*}{RHC160S-4D■} & MD & & & & & & \\
\hline & & LD & \multirow{2}{*}{600} & \multirow{4}{*}{500} & & & & \\
\hline & \multirow{2}{*}{RHC200S-4D■} & MD & & & & & & \\
\hline & & LD & \multirow{2}{*}{-} & & & & & \\
\hline & RHC220S-4D■ & MD & & & & & & \\
\hline & \multirow[b]{2}{*}{RHC280S-4D■} & MD & - & 600 & & & & \\
\hline & & LD & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{700} & & & & \\
\hline & \multirow{2}{*}{RHC315S-4D \(\square\)} & MD & & & & & & \\
\hline & & LD & - & 800 & & & & \\
\hline & \multirow{2}{*}{RHC630B-4D \(\square\)} & MD & - & 1400 & & & & \\
\hline & & LD & \multirow{2}{*}{-} & \multirow{2}{*}{1600} & & & & \\
\hline & \multirow{2}{*}{RHC710B-4D \(\square\)} & MD & & & & & & \\
\hline & & LD & \multirow{2}{*}{-} & \multirow{2}{*}{1800} & & & & \\
\hline & \multirow{2}{*}{RHC800B-4D \(\square\)} & MD & & & & & & \\
\hline & & LD & - & 2200 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{} & \multirow{3}{*}{Converter type} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \stackrel{0}{0} \\
& \vdots \\
& \vdots \\
& i \\
& i
\end{aligned}
\]} & \multicolumn{2}{|l|}{Copper bar size (\(\mathrm{mm}^{2}\))} & \multicolumn{4}{|c|}{Wire size \(\operatorname{AWG}\left(\mathrm{mm}^{2}\right)\)} \\
\hline & & & \multicolumn{2}{|l|}{Main terminal} & Grounding & \multirow[b]{2}{*}{Control circuit} & Aux. control power supply & Aux. fan power supply \\
\hline & & & \[
\begin{gathered}
\mathrm{L} 1 / \mathrm{R}, \mathrm{~L} 2 / \mathrm{S} \\
\mathrm{~L} 3 / \mathrm{T}
\end{gathered}
\] & P,N & A G & & R0,T0 & R1,T1 \\
\hline \multirow{17}{*}{} & \multirow[t]{2}{*}{RHC132S-4D} & MD & \multirow{6}{*}{\[
\begin{gathered}
5 \text { by } 30 \\
(150)
\end{gathered}
\]} & \multirow{6}{*}{\[
\begin{gathered}
4 \text { by } 40 \\
(160)
\end{gathered}
\]} & \[
\begin{gathered}
4 \\
(21.2)
\end{gathered}
\] & \multirow{17}{*}{\[
\begin{gathered}
16 \\
(1.25) \\
*_{1} \\
*_{2}
\end{gathered}
\]} & \multirow{17}{*}{\[
\begin{gathered}
14 \\
(2.1) \\
* 2
\end{gathered}
\]} & \multirow{17}{*}{\[
\begin{gathered}
14 \\
(2.1) \\
* 2
\end{gathered}
\]} \\
\hline & & LD & & & 3 & & & \\
\hline & \multirow{2}{*}{RHC160S-4D} & MD & & & (26.7) & & & \\
\hline & & LD & & & 1 & & & \\
\hline & \multirow{2}{*}{RHC200S-4D} & MD & & & (42.4) & & & \\
\hline & & LD & & & \multirow{3}{*}{\[
\begin{gathered}
1 / 0 \\
(53.5)
\end{gathered}
\]} & & & \\
\hline & RHC220S-4D \(\square\) & MD & \multirow{5}{*}{\begin{tabular}{l}
10 by 30 \\
(150)
\end{tabular}} & \multirow{5}{*}{\[
\begin{gathered}
8 \text { by } 50 \\
(400)
\end{gathered}
\]} & & & & \\
\hline & \multirow[t]{2}{*}{RHC280S-4D} & MD & & & & & & \\
\hline & & LD & & & \multirow{3}{*}{\[
\begin{gathered}
2 / 0 \\
(67.4)
\end{gathered}
\]} & & & \\
\hline & \multirow[t]{2}{*}{RHC315S-4D \(\square\)} & MD & & & & & & \\
\hline & & LD & & & & & & \\
\hline & \multirow[t]{2}{*}{RHC630B-4Dı} & MD & \multirow{6}{*}{\begin{tabular}{l}
10 by 125 \\
(1250)
\end{tabular}} & \multirow{6}{*}{\[
\begin{aligned}
& 8 \text { by } 50 \\
& (3 \times 400)
\end{aligned}
\]} & \multirow{3}{*}{\[
\begin{gathered}
2 / 0 \times 2 \\
(67.4 \times 2)
\end{gathered}
\]} & & & \\
\hline & & LD & & & & & & \\
\hline & \multirow{2}{*}{RHC710B-4D■} & MD & & & & & & \\
\hline & & LD & & & \multirow{3}{*}{\[
\begin{gathered}
4 / 0 \times 2 \\
(107.2 \times 2)
\end{gathered}
\]} & & & \\
\hline & \multirow[t]{2}{*}{RHC800B-4Dı} & MD & & & & & & \\
\hline & & LD & & & & & & \\
\hline
\end{tabular}

Conformity with UL standards and CSA standards（cUL－listed for Canada）（continued）

\section*{\(\triangle\) CAUTION}

FRN－SVG1S，FRN－BVG1S series
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{} & \multirow[b]{3}{*}{} & \multirow{3}{*}{Inverter type} & \multirow{3}{*}{} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{DC Bus Fuse size ＊3}} & \multicolumn{4}{|c|}{Required torque \(\mathrm{lb}-\mathrm{in}(\mathrm{N} \cdot \mathrm{m})\)} \\
\hline & & & & & & Main terminal／ Grounding & \multirow{2}{*}{Control circuit} & Aux．control power supply & Aux．fan power supply \\
\hline & & & & Type & \begin{tabular}{l}
Rating \\
（A）
\end{tabular} & \[
\left.\begin{array}{|c}
\mathrm{L} 1 / \mathrm{R}, \mathrm{~L} 2 / \mathrm{S}, \mathrm{~L} 3 / \mathrm{T} \\
\mathrm{P}, \mathrm{~N}, \boldsymbol{\mathrm { G }}
\end{array} \right\rvert\,
\] & & R0，T0 & R1，T1 \\
\hline \multirow{34}{*}{} & 30 & \multirow{2}{*}{FRN30SVG1S－4■} & MD & \multirow{4}{*}{\[
\begin{gathered}
\text { 170M3394 } \\
\text {-XA }
\end{gathered}
\]} & \multirow{4}{*}{200} & \multirow{6}{*}{\[
\begin{aligned}
& 119.4 \\
& (13.5)
\end{aligned}
\]} & \multirow{34}{*}{\[
\begin{gathered}
6.1 \\
(0.7)
\end{gathered}
\]} & \multirow{34}{*}{\[
\begin{aligned}
& 10.6 \\
& (1.2)
\end{aligned}
\]} & \multirow{10}{*}{－} \\
\hline & \multirow{2}{*}{37} & & LD & & & & & & \\
\hline & & \multirow{2}{*}{FRN37SVG1S－4■} & MD & & & & & & \\
\hline & \multirow{2}{*}{45} & & LD & & & & & & \\
\hline & & \multirow{2}{*}{FRN45SVG1S－4■} & MD & \multirow{3}{*}{\[
\begin{gathered}
\text { 170M3395 } \\
\text {-XA }
\end{gathered}
\]} & \multirow[b]{2}{*}{250} & & & & \\
\hline & \multirow{2}{*}{55} & & LD & & & & & & \\
\hline & & \multirow{2}{*}{FRN55SVG1S－4■} & MD & & & \multirow{8}{*}{\[
\begin{gathered}
238.9 \\
(27)
\end{gathered}
\]} & & & \\
\hline & \multirow[t]{2}{*}{75} & & LD & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { 170M3396 } \\
\text {-XA }
\end{gathered}
\]} & \multirow{2}{*}{315} & & & & \\
\hline & & \multirow{2}{*}{FRN75SVG1S－4■} & MD & & & & & & \\
\hline & \multirow{2}{*}{90} & & LD & \multirow{4}{*}{\[
\begin{gathered}
\text { 170M3448 } \\
\text {-XA }
\end{gathered}
\]} & \multirow{4}{*}{400} & & & & \\
\hline & & \multirow{2}{*}{FRN90SVG1S－4} & MD & & & & & & \multirow{24}{*}{\[
\begin{aligned}
& 10.6 \\
& (1.2)
\end{aligned}
\]} \\
\hline & \multirow{2}{*}{110} & & LD & & & & & & \\
\hline & & \multirow{2}{*}{FRN110SVG1S－4} & MD & & & & & & \\
\hline & \multirow{2}{*}{132} & & LD & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { 170M4445 } \\
\text {-XA }
\end{gathered}
\]} & \multirow{2}{*}{500} & & & & \\
\hline & & \multirow{2}{*}{FRN132SVG1S－4口} & MD & & & \multirow{20}{*}{424.7} & & & \\
\hline & \multirow[t]{2}{*}{160} & & LD & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { 170M5446 } \\
\text {-XA }
\end{gathered}
\]} & \multirow{2}{*}{630} & & & & \\
\hline & & \multirow{2}{*}{FRN160SVG1S－4口} & MD & & & & & & \\
\hline & \multirow{2}{*}{200} & & LD & \multirow{4}{*}{\[
\begin{gathered}
\text { 170M6546 } \\
\text {-XA }
\end{gathered}
\]} & \multirow{4}{*}{800} & & & & \\
\hline & & \multirow[t]{2}{*}{FRN200SVG1S－4口} & MD & & & & & & \\
\hline & \multirow{2}{*}{220} & & LD & & & & & & \\
\hline & & FRN220SVG1S－4 & MD & & & & & & \\
\hline & 250 & & LD & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { 170M6547 } \\
\text {-XA }
\end{gathered}
\]} & \multirow[t]{2}{*}{900} & & & & \\
\hline & & \multirow{2}{*}{FRN250SVG1S－4口} & MD & & & & & & \\
\hline & \multirow[t]{2}{*}{280} & & LD & 170M6548 & \multirow[t]{2}{*}{1000} & & & & \\
\hline & & FRN280SVG1S 4 & MD & －XA & & & & & \\
\hline & \multirow{2}{*}{315} & & LD & \multirow{3}{*}{\[
\begin{gathered}
\text { 170M6500 } \\
-\mathrm{XA}
\end{gathered}
\]} & \multirow{3}{*}{1250} & & & & \\
\hline & & \multirow{2}{*}{FRN315SVG1S－4} & MD & & & & & & \\
\hline & 355 & & LD & & & & & & \\
\hline & 630 & \multirow{2}{*}{FRN630BVG1S－4} & MD & 170M7532 & 1800 & & & & \\
\hline & \multirow{2}{*}{710} & & LD & \multirow{4}{*}{170M7533} & \multirow{4}{*}{2000} & & & & \\
\hline & & FRN710BVG1S－4 & MD & & & & & & \\
\hline & \multirow{2}{*}{800} & & LD & & & & & & \\
\hline & & \multirow[b]{2}{*}{FRN800BVG1S－4} & MD & & & & & & \\
\hline & 1000 & & LD & 170M7595 & 2500 & & & & \\
\hline
\end{tabular}

Conformity with UL standards and CSA standards (cUL-listed for Canada) (continued)

\footnotetext{
\(\triangle\) CAUTION
*1 No terminal end treatment is required for connection.
*2 Use \(75^{\circ} \mathrm{C} \mathrm{Cu}\) wire only.
*3 Supplier: Cooper Bussmann
*4 6 rms Amperes for aux. control power supply.
*5 5 rms Amperes for aux. control power supply.
12. Filter stack(RHF series) and peripheral devices of PWM converter(RHC series) are not contained in UL/cUL authorization range.
13. If the keypad is removed from the inverter and mounts it to the out of the cabinet, it will be out of UL/cUL authorization range.
}
\(\overline{\text { MEMO }}\)

High Performance, Vector Control Inverter (Stack Type)

\section*{FRENIC-VG}

\section*{Instruction Manual}

First Edition, March 2013
Seventh Edition, January 2018
Fuji Electric Co., Ltd.

The purpose of this instruction manual is to provide accurate information in handling, setting up and operating of the FRENIC-VG series of inverters. Please feel free to send your comments regarding any errors or omissions you may have found, or any suggestions you may have for generally improving the manual.
In no event will Fuji Electric Co., Ltd. be liable for any direct or indirect damages resulting from the application of the information in this manual.

\section*{Fuji Electric Co., Ltd.}

Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku, Tokyo, 141-0032, Japan Phone: +81354357058 Fax: +81 354357420
URL http://www.fujielectric.com/```

[^0]: Thank you for purchasing our high-performance, vector control FRENIC-VG series of inverters.

 - This product is designed to drive a three-phase motor. Read through this instruction manual to become familiar with proper handling and correct use.
 - Improper handling might result in incorrect operation, a short life, or even a failure of this product as well as the motor.
 - Deliver this manual to the end user of this product. Keep this manual in a safe place until this product is discarded.
 - For instructions on how to use options, refer to the instruction manuals for those optional devices.
 - For the installation and selection of peripheral equipment exclusive to the stack type of inverters, refer to the FRENIC-VG User's Manual (Stack Type Edition).
 - For the configuration of the inverter functions and operating procedure, refer to the FRENIC-VG User's Manual (Unit Type / Function Codes Edition).
 - For details about PWM converters and diode rectifiers, refer to the FRENIC-VG User's Manual (Stack Type Edition).

[^1]: Otherwise an accident could occur.

[^2]: Note
 To move a switch slider, use a tool with a narrow tip (e.g., a tip of tweezers). Be careful not to touch other electronic parts, etc. If the slider is in an ambiguous position, the circuit is unclear whether it is turned ON or OFF and the digital input remains in an undefined state. Be sure to place the slider so that it contacts either side of the switch.
 SW2 and SW5 are reserved for particular manufacturers. Do not access them.

[^3]: Note
 Since vector control for a Fuji GNF2 motor with speed sensor uses motor parameters, the following conditions should be satisfied; otherwise, full control performance may not be obtained.

 - A single motor should be connected per inverter.
 - Motor parameters are properly configured.

[^4]: Note
 If a PG alarm occurs during adjustment, the PG connection may be wrong. Check the PG wiring.

